Loading...
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/tlv.h>
30#include <sound/info.h>
31#include <sound/pcm.h>
32#include <sound/pcm_params.h>
33#include <sound/timer.h>
34
35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
36#define CREATE_TRACE_POINTS
37#include "pcm_trace.h"
38#else
39#define trace_hwptr(substream, pos, in_interrupt)
40#define trace_xrun(substream)
41#define trace_hw_ptr_error(substream, reason)
42#endif
43
44/*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54{
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140}
141
142#ifdef CONFIG_SND_DEBUG
143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145{
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151}
152EXPORT_SYMBOL(snd_pcm_debug_name);
153#endif
154
155#define XRUN_DEBUG_BASIC (1<<0)
156#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161#define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163#else
164#define xrun_debug(substream, mask) 0
165#endif
166
167#define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
172static void xrun(struct snd_pcm_substream *substream)
173{
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186}
187
188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203#endif
204
205int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207{
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233}
234
235static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238{
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 runtime->status->audio_tstamp = *audio_tstamp;
268 runtime->status->tstamp = *curr_tstamp;
269
270 /*
271 * re-take a driver timestamp to let apps detect if the reference tstamp
272 * read by low-level hardware was provided with a delay
273 */
274 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
275 runtime->driver_tstamp = driver_tstamp;
276}
277
278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
279 unsigned int in_interrupt)
280{
281 struct snd_pcm_runtime *runtime = substream->runtime;
282 snd_pcm_uframes_t pos;
283 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
284 snd_pcm_sframes_t hdelta, delta;
285 unsigned long jdelta;
286 unsigned long curr_jiffies;
287 struct timespec curr_tstamp;
288 struct timespec audio_tstamp;
289 int crossed_boundary = 0;
290
291 old_hw_ptr = runtime->status->hw_ptr;
292
293 /*
294 * group pointer, time and jiffies reads to allow for more
295 * accurate correlations/corrections.
296 * The values are stored at the end of this routine after
297 * corrections for hw_ptr position
298 */
299 pos = substream->ops->pointer(substream);
300 curr_jiffies = jiffies;
301 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
302 if ((substream->ops->get_time_info) &&
303 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
304 substream->ops->get_time_info(substream, &curr_tstamp,
305 &audio_tstamp,
306 &runtime->audio_tstamp_config,
307 &runtime->audio_tstamp_report);
308
309 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
310 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
311 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
312 } else
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 }
315
316 if (pos == SNDRV_PCM_POS_XRUN) {
317 xrun(substream);
318 return -EPIPE;
319 }
320 if (pos >= runtime->buffer_size) {
321 if (printk_ratelimit()) {
322 char name[16];
323 snd_pcm_debug_name(substream, name, sizeof(name));
324 pcm_err(substream->pcm,
325 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
326 name, pos, runtime->buffer_size,
327 runtime->period_size);
328 }
329 pos = 0;
330 }
331 pos -= pos % runtime->min_align;
332 trace_hwptr(substream, pos, in_interrupt);
333 hw_base = runtime->hw_ptr_base;
334 new_hw_ptr = hw_base + pos;
335 if (in_interrupt) {
336 /* we know that one period was processed */
337 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
338 delta = runtime->hw_ptr_interrupt + runtime->period_size;
339 if (delta > new_hw_ptr) {
340 /* check for double acknowledged interrupts */
341 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
342 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
343 hw_base += runtime->buffer_size;
344 if (hw_base >= runtime->boundary) {
345 hw_base = 0;
346 crossed_boundary++;
347 }
348 new_hw_ptr = hw_base + pos;
349 goto __delta;
350 }
351 }
352 }
353 /* new_hw_ptr might be lower than old_hw_ptr in case when */
354 /* pointer crosses the end of the ring buffer */
355 if (new_hw_ptr < old_hw_ptr) {
356 hw_base += runtime->buffer_size;
357 if (hw_base >= runtime->boundary) {
358 hw_base = 0;
359 crossed_boundary++;
360 }
361 new_hw_ptr = hw_base + pos;
362 }
363 __delta:
364 delta = new_hw_ptr - old_hw_ptr;
365 if (delta < 0)
366 delta += runtime->boundary;
367
368 if (runtime->no_period_wakeup) {
369 snd_pcm_sframes_t xrun_threshold;
370 /*
371 * Without regular period interrupts, we have to check
372 * the elapsed time to detect xruns.
373 */
374 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
375 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
376 goto no_delta_check;
377 hdelta = jdelta - delta * HZ / runtime->rate;
378 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
379 while (hdelta > xrun_threshold) {
380 delta += runtime->buffer_size;
381 hw_base += runtime->buffer_size;
382 if (hw_base >= runtime->boundary) {
383 hw_base = 0;
384 crossed_boundary++;
385 }
386 new_hw_ptr = hw_base + pos;
387 hdelta -= runtime->hw_ptr_buffer_jiffies;
388 }
389 goto no_delta_check;
390 }
391
392 /* something must be really wrong */
393 if (delta >= runtime->buffer_size + runtime->period_size) {
394 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
395 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
396 substream->stream, (long)pos,
397 (long)new_hw_ptr, (long)old_hw_ptr);
398 return 0;
399 }
400
401 /* Do jiffies check only in xrun_debug mode */
402 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
403 goto no_jiffies_check;
404
405 /* Skip the jiffies check for hardwares with BATCH flag.
406 * Such hardware usually just increases the position at each IRQ,
407 * thus it can't give any strange position.
408 */
409 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
410 goto no_jiffies_check;
411 hdelta = delta;
412 if (hdelta < runtime->delay)
413 goto no_jiffies_check;
414 hdelta -= runtime->delay;
415 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
416 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
417 delta = jdelta /
418 (((runtime->period_size * HZ) / runtime->rate)
419 + HZ/100);
420 /* move new_hw_ptr according jiffies not pos variable */
421 new_hw_ptr = old_hw_ptr;
422 hw_base = delta;
423 /* use loop to avoid checks for delta overflows */
424 /* the delta value is small or zero in most cases */
425 while (delta > 0) {
426 new_hw_ptr += runtime->period_size;
427 if (new_hw_ptr >= runtime->boundary) {
428 new_hw_ptr -= runtime->boundary;
429 crossed_boundary--;
430 }
431 delta--;
432 }
433 /* align hw_base to buffer_size */
434 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
435 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
436 (long)pos, (long)hdelta,
437 (long)runtime->period_size, jdelta,
438 ((hdelta * HZ) / runtime->rate), hw_base,
439 (unsigned long)old_hw_ptr,
440 (unsigned long)new_hw_ptr);
441 /* reset values to proper state */
442 delta = 0;
443 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
444 }
445 no_jiffies_check:
446 if (delta > runtime->period_size + runtime->period_size / 2) {
447 hw_ptr_error(substream, in_interrupt,
448 "Lost interrupts?",
449 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
450 substream->stream, (long)delta,
451 (long)new_hw_ptr,
452 (long)old_hw_ptr);
453 }
454
455 no_delta_check:
456 if (runtime->status->hw_ptr == new_hw_ptr) {
457 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
458 return 0;
459 }
460
461 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
462 runtime->silence_size > 0)
463 snd_pcm_playback_silence(substream, new_hw_ptr);
464
465 if (in_interrupt) {
466 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
467 if (delta < 0)
468 delta += runtime->boundary;
469 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
470 runtime->hw_ptr_interrupt += delta;
471 if (runtime->hw_ptr_interrupt >= runtime->boundary)
472 runtime->hw_ptr_interrupt -= runtime->boundary;
473 }
474 runtime->hw_ptr_base = hw_base;
475 runtime->status->hw_ptr = new_hw_ptr;
476 runtime->hw_ptr_jiffies = curr_jiffies;
477 if (crossed_boundary) {
478 snd_BUG_ON(crossed_boundary != 1);
479 runtime->hw_ptr_wrap += runtime->boundary;
480 }
481
482 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
483
484 return snd_pcm_update_state(substream, runtime);
485}
486
487/* CAUTION: call it with irq disabled */
488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
489{
490 return snd_pcm_update_hw_ptr0(substream, 0);
491}
492
493/**
494 * snd_pcm_set_ops - set the PCM operators
495 * @pcm: the pcm instance
496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
497 * @ops: the operator table
498 *
499 * Sets the given PCM operators to the pcm instance.
500 */
501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
502 const struct snd_pcm_ops *ops)
503{
504 struct snd_pcm_str *stream = &pcm->streams[direction];
505 struct snd_pcm_substream *substream;
506
507 for (substream = stream->substream; substream != NULL; substream = substream->next)
508 substream->ops = ops;
509}
510
511EXPORT_SYMBOL(snd_pcm_set_ops);
512
513/**
514 * snd_pcm_sync - set the PCM sync id
515 * @substream: the pcm substream
516 *
517 * Sets the PCM sync identifier for the card.
518 */
519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
520{
521 struct snd_pcm_runtime *runtime = substream->runtime;
522
523 runtime->sync.id32[0] = substream->pcm->card->number;
524 runtime->sync.id32[1] = -1;
525 runtime->sync.id32[2] = -1;
526 runtime->sync.id32[3] = -1;
527}
528
529EXPORT_SYMBOL(snd_pcm_set_sync);
530
531/*
532 * Standard ioctl routine
533 */
534
535static inline unsigned int div32(unsigned int a, unsigned int b,
536 unsigned int *r)
537{
538 if (b == 0) {
539 *r = 0;
540 return UINT_MAX;
541 }
542 *r = a % b;
543 return a / b;
544}
545
546static inline unsigned int div_down(unsigned int a, unsigned int b)
547{
548 if (b == 0)
549 return UINT_MAX;
550 return a / b;
551}
552
553static inline unsigned int div_up(unsigned int a, unsigned int b)
554{
555 unsigned int r;
556 unsigned int q;
557 if (b == 0)
558 return UINT_MAX;
559 q = div32(a, b, &r);
560 if (r)
561 ++q;
562 return q;
563}
564
565static inline unsigned int mul(unsigned int a, unsigned int b)
566{
567 if (a == 0)
568 return 0;
569 if (div_down(UINT_MAX, a) < b)
570 return UINT_MAX;
571 return a * b;
572}
573
574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
575 unsigned int c, unsigned int *r)
576{
577 u_int64_t n = (u_int64_t) a * b;
578 if (c == 0) {
579 snd_BUG_ON(!n);
580 *r = 0;
581 return UINT_MAX;
582 }
583 n = div_u64_rem(n, c, r);
584 if (n >= UINT_MAX) {
585 *r = 0;
586 return UINT_MAX;
587 }
588 return n;
589}
590
591/**
592 * snd_interval_refine - refine the interval value of configurator
593 * @i: the interval value to refine
594 * @v: the interval value to refer to
595 *
596 * Refines the interval value with the reference value.
597 * The interval is changed to the range satisfying both intervals.
598 * The interval status (min, max, integer, etc.) are evaluated.
599 *
600 * Return: Positive if the value is changed, zero if it's not changed, or a
601 * negative error code.
602 */
603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
604{
605 int changed = 0;
606 if (snd_BUG_ON(snd_interval_empty(i)))
607 return -EINVAL;
608 if (i->min < v->min) {
609 i->min = v->min;
610 i->openmin = v->openmin;
611 changed = 1;
612 } else if (i->min == v->min && !i->openmin && v->openmin) {
613 i->openmin = 1;
614 changed = 1;
615 }
616 if (i->max > v->max) {
617 i->max = v->max;
618 i->openmax = v->openmax;
619 changed = 1;
620 } else if (i->max == v->max && !i->openmax && v->openmax) {
621 i->openmax = 1;
622 changed = 1;
623 }
624 if (!i->integer && v->integer) {
625 i->integer = 1;
626 changed = 1;
627 }
628 if (i->integer) {
629 if (i->openmin) {
630 i->min++;
631 i->openmin = 0;
632 }
633 if (i->openmax) {
634 i->max--;
635 i->openmax = 0;
636 }
637 } else if (!i->openmin && !i->openmax && i->min == i->max)
638 i->integer = 1;
639 if (snd_interval_checkempty(i)) {
640 snd_interval_none(i);
641 return -EINVAL;
642 }
643 return changed;
644}
645
646EXPORT_SYMBOL(snd_interval_refine);
647
648static int snd_interval_refine_first(struct snd_interval *i)
649{
650 if (snd_BUG_ON(snd_interval_empty(i)))
651 return -EINVAL;
652 if (snd_interval_single(i))
653 return 0;
654 i->max = i->min;
655 i->openmax = i->openmin;
656 if (i->openmax)
657 i->max++;
658 return 1;
659}
660
661static int snd_interval_refine_last(struct snd_interval *i)
662{
663 if (snd_BUG_ON(snd_interval_empty(i)))
664 return -EINVAL;
665 if (snd_interval_single(i))
666 return 0;
667 i->min = i->max;
668 i->openmin = i->openmax;
669 if (i->openmin)
670 i->min--;
671 return 1;
672}
673
674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
675{
676 if (a->empty || b->empty) {
677 snd_interval_none(c);
678 return;
679 }
680 c->empty = 0;
681 c->min = mul(a->min, b->min);
682 c->openmin = (a->openmin || b->openmin);
683 c->max = mul(a->max, b->max);
684 c->openmax = (a->openmax || b->openmax);
685 c->integer = (a->integer && b->integer);
686}
687
688/**
689 * snd_interval_div - refine the interval value with division
690 * @a: dividend
691 * @b: divisor
692 * @c: quotient
693 *
694 * c = a / b
695 *
696 * Returns non-zero if the value is changed, zero if not changed.
697 */
698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
699{
700 unsigned int r;
701 if (a->empty || b->empty) {
702 snd_interval_none(c);
703 return;
704 }
705 c->empty = 0;
706 c->min = div32(a->min, b->max, &r);
707 c->openmin = (r || a->openmin || b->openmax);
708 if (b->min > 0) {
709 c->max = div32(a->max, b->min, &r);
710 if (r) {
711 c->max++;
712 c->openmax = 1;
713 } else
714 c->openmax = (a->openmax || b->openmin);
715 } else {
716 c->max = UINT_MAX;
717 c->openmax = 0;
718 }
719 c->integer = 0;
720}
721
722/**
723 * snd_interval_muldivk - refine the interval value
724 * @a: dividend 1
725 * @b: dividend 2
726 * @k: divisor (as integer)
727 * @c: result
728 *
729 * c = a * b / k
730 *
731 * Returns non-zero if the value is changed, zero if not changed.
732 */
733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
734 unsigned int k, struct snd_interval *c)
735{
736 unsigned int r;
737 if (a->empty || b->empty) {
738 snd_interval_none(c);
739 return;
740 }
741 c->empty = 0;
742 c->min = muldiv32(a->min, b->min, k, &r);
743 c->openmin = (r || a->openmin || b->openmin);
744 c->max = muldiv32(a->max, b->max, k, &r);
745 if (r) {
746 c->max++;
747 c->openmax = 1;
748 } else
749 c->openmax = (a->openmax || b->openmax);
750 c->integer = 0;
751}
752
753/**
754 * snd_interval_mulkdiv - refine the interval value
755 * @a: dividend 1
756 * @k: dividend 2 (as integer)
757 * @b: divisor
758 * @c: result
759 *
760 * c = a * k / b
761 *
762 * Returns non-zero if the value is changed, zero if not changed.
763 */
764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
765 const struct snd_interval *b, struct snd_interval *c)
766{
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = muldiv32(a->min, k, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = muldiv32(a->max, k, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787}
788
789/* ---- */
790
791
792/**
793 * snd_interval_ratnum - refine the interval value
794 * @i: interval to refine
795 * @rats_count: number of ratnum_t
796 * @rats: ratnum_t array
797 * @nump: pointer to store the resultant numerator
798 * @denp: pointer to store the resultant denominator
799 *
800 * Return: Positive if the value is changed, zero if it's not changed, or a
801 * negative error code.
802 */
803int snd_interval_ratnum(struct snd_interval *i,
804 unsigned int rats_count, const struct snd_ratnum *rats,
805 unsigned int *nump, unsigned int *denp)
806{
807 unsigned int best_num, best_den;
808 int best_diff;
809 unsigned int k;
810 struct snd_interval t;
811 int err;
812 unsigned int result_num, result_den;
813 int result_diff;
814
815 best_num = best_den = best_diff = 0;
816 for (k = 0; k < rats_count; ++k) {
817 unsigned int num = rats[k].num;
818 unsigned int den;
819 unsigned int q = i->min;
820 int diff;
821 if (q == 0)
822 q = 1;
823 den = div_up(num, q);
824 if (den < rats[k].den_min)
825 continue;
826 if (den > rats[k].den_max)
827 den = rats[k].den_max;
828 else {
829 unsigned int r;
830 r = (den - rats[k].den_min) % rats[k].den_step;
831 if (r != 0)
832 den -= r;
833 }
834 diff = num - q * den;
835 if (diff < 0)
836 diff = -diff;
837 if (best_num == 0 ||
838 diff * best_den < best_diff * den) {
839 best_diff = diff;
840 best_den = den;
841 best_num = num;
842 }
843 }
844 if (best_den == 0) {
845 i->empty = 1;
846 return -EINVAL;
847 }
848 t.min = div_down(best_num, best_den);
849 t.openmin = !!(best_num % best_den);
850
851 result_num = best_num;
852 result_diff = best_diff;
853 result_den = best_den;
854 best_num = best_den = best_diff = 0;
855 for (k = 0; k < rats_count; ++k) {
856 unsigned int num = rats[k].num;
857 unsigned int den;
858 unsigned int q = i->max;
859 int diff;
860 if (q == 0) {
861 i->empty = 1;
862 return -EINVAL;
863 }
864 den = div_down(num, q);
865 if (den > rats[k].den_max)
866 continue;
867 if (den < rats[k].den_min)
868 den = rats[k].den_min;
869 else {
870 unsigned int r;
871 r = (den - rats[k].den_min) % rats[k].den_step;
872 if (r != 0)
873 den += rats[k].den_step - r;
874 }
875 diff = q * den - num;
876 if (diff < 0)
877 diff = -diff;
878 if (best_num == 0 ||
879 diff * best_den < best_diff * den) {
880 best_diff = diff;
881 best_den = den;
882 best_num = num;
883 }
884 }
885 if (best_den == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 t.max = div_up(best_num, best_den);
890 t.openmax = !!(best_num % best_den);
891 t.integer = 0;
892 err = snd_interval_refine(i, &t);
893 if (err < 0)
894 return err;
895
896 if (snd_interval_single(i)) {
897 if (best_diff * result_den < result_diff * best_den) {
898 result_num = best_num;
899 result_den = best_den;
900 }
901 if (nump)
902 *nump = result_num;
903 if (denp)
904 *denp = result_den;
905 }
906 return err;
907}
908
909EXPORT_SYMBOL(snd_interval_ratnum);
910
911/**
912 * snd_interval_ratden - refine the interval value
913 * @i: interval to refine
914 * @rats_count: number of struct ratden
915 * @rats: struct ratden array
916 * @nump: pointer to store the resultant numerator
917 * @denp: pointer to store the resultant denominator
918 *
919 * Return: Positive if the value is changed, zero if it's not changed, or a
920 * negative error code.
921 */
922static int snd_interval_ratden(struct snd_interval *i,
923 unsigned int rats_count,
924 const struct snd_ratden *rats,
925 unsigned int *nump, unsigned int *denp)
926{
927 unsigned int best_num, best_diff, best_den;
928 unsigned int k;
929 struct snd_interval t;
930 int err;
931
932 best_num = best_den = best_diff = 0;
933 for (k = 0; k < rats_count; ++k) {
934 unsigned int num;
935 unsigned int den = rats[k].den;
936 unsigned int q = i->min;
937 int diff;
938 num = mul(q, den);
939 if (num > rats[k].num_max)
940 continue;
941 if (num < rats[k].num_min)
942 num = rats[k].num_max;
943 else {
944 unsigned int r;
945 r = (num - rats[k].num_min) % rats[k].num_step;
946 if (r != 0)
947 num += rats[k].num_step - r;
948 }
949 diff = num - q * den;
950 if (best_num == 0 ||
951 diff * best_den < best_diff * den) {
952 best_diff = diff;
953 best_den = den;
954 best_num = num;
955 }
956 }
957 if (best_den == 0) {
958 i->empty = 1;
959 return -EINVAL;
960 }
961 t.min = div_down(best_num, best_den);
962 t.openmin = !!(best_num % best_den);
963
964 best_num = best_den = best_diff = 0;
965 for (k = 0; k < rats_count; ++k) {
966 unsigned int num;
967 unsigned int den = rats[k].den;
968 unsigned int q = i->max;
969 int diff;
970 num = mul(q, den);
971 if (num < rats[k].num_min)
972 continue;
973 if (num > rats[k].num_max)
974 num = rats[k].num_max;
975 else {
976 unsigned int r;
977 r = (num - rats[k].num_min) % rats[k].num_step;
978 if (r != 0)
979 num -= r;
980 }
981 diff = q * den - num;
982 if (best_num == 0 ||
983 diff * best_den < best_diff * den) {
984 best_diff = diff;
985 best_den = den;
986 best_num = num;
987 }
988 }
989 if (best_den == 0) {
990 i->empty = 1;
991 return -EINVAL;
992 }
993 t.max = div_up(best_num, best_den);
994 t.openmax = !!(best_num % best_den);
995 t.integer = 0;
996 err = snd_interval_refine(i, &t);
997 if (err < 0)
998 return err;
999
1000 if (snd_interval_single(i)) {
1001 if (nump)
1002 *nump = best_num;
1003 if (denp)
1004 *denp = best_den;
1005 }
1006 return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024 const unsigned int *list, unsigned int mask)
1025{
1026 unsigned int k;
1027 struct snd_interval list_range;
1028
1029 if (!count) {
1030 i->empty = 1;
1031 return -EINVAL;
1032 }
1033 snd_interval_any(&list_range);
1034 list_range.min = UINT_MAX;
1035 list_range.max = 0;
1036 for (k = 0; k < count; k++) {
1037 if (mask && !(mask & (1 << k)))
1038 continue;
1039 if (!snd_interval_test(i, list[k]))
1040 continue;
1041 list_range.min = min(list_range.min, list[k]);
1042 list_range.max = max(list_range.max, list[k]);
1043 }
1044 return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064 const struct snd_interval *ranges, unsigned int mask)
1065{
1066 unsigned int k;
1067 struct snd_interval range_union;
1068 struct snd_interval range;
1069
1070 if (!count) {
1071 snd_interval_none(i);
1072 return -EINVAL;
1073 }
1074 snd_interval_any(&range_union);
1075 range_union.min = UINT_MAX;
1076 range_union.max = 0;
1077 for (k = 0; k < count; k++) {
1078 if (mask && !(mask & (1 << k)))
1079 continue;
1080 snd_interval_copy(&range, &ranges[k]);
1081 if (snd_interval_refine(&range, i) < 0)
1082 continue;
1083 if (snd_interval_empty(&range))
1084 continue;
1085
1086 if (range.min < range_union.min) {
1087 range_union.min = range.min;
1088 range_union.openmin = 1;
1089 }
1090 if (range.min == range_union.min && !range.openmin)
1091 range_union.openmin = 0;
1092 if (range.max > range_union.max) {
1093 range_union.max = range.max;
1094 range_union.openmax = 1;
1095 }
1096 if (range.max == range_union.max && !range.openmax)
1097 range_union.openmax = 0;
1098 }
1099 return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105 unsigned int n;
1106 int changed = 0;
1107 n = i->min % step;
1108 if (n != 0 || i->openmin) {
1109 i->min += step - n;
1110 i->openmin = 0;
1111 changed = 1;
1112 }
1113 n = i->max % step;
1114 if (n != 0 || i->openmax) {
1115 i->max -= n;
1116 i->openmax = 0;
1117 changed = 1;
1118 }
1119 if (snd_interval_checkempty(i)) {
1120 i->empty = 1;
1121 return -EINVAL;
1122 }
1123 return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140 int var,
1141 snd_pcm_hw_rule_func_t func, void *private,
1142 int dep, ...)
1143{
1144 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145 struct snd_pcm_hw_rule *c;
1146 unsigned int k;
1147 va_list args;
1148 va_start(args, dep);
1149 if (constrs->rules_num >= constrs->rules_all) {
1150 struct snd_pcm_hw_rule *new;
1151 unsigned int new_rules = constrs->rules_all + 16;
1152 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153 if (!new) {
1154 va_end(args);
1155 return -ENOMEM;
1156 }
1157 if (constrs->rules) {
1158 memcpy(new, constrs->rules,
1159 constrs->rules_num * sizeof(*c));
1160 kfree(constrs->rules);
1161 }
1162 constrs->rules = new;
1163 constrs->rules_all = new_rules;
1164 }
1165 c = &constrs->rules[constrs->rules_num];
1166 c->cond = cond;
1167 c->func = func;
1168 c->var = var;
1169 c->private = private;
1170 k = 0;
1171 while (1) {
1172 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173 va_end(args);
1174 return -EINVAL;
1175 }
1176 c->deps[k++] = dep;
1177 if (dep < 0)
1178 break;
1179 dep = va_arg(args, int);
1180 }
1181 constrs->rules_num++;
1182 va_end(args);
1183 return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199 u_int32_t mask)
1200{
1201 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202 struct snd_mask *maskp = constrs_mask(constrs, var);
1203 *maskp->bits &= mask;
1204 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205 if (*maskp->bits == 0)
1206 return -EINVAL;
1207 return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221 u_int64_t mask)
1222{
1223 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224 struct snd_mask *maskp = constrs_mask(constrs, var);
1225 maskp->bits[0] &= (u_int32_t)mask;
1226 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228 if (! maskp->bits[0] && ! maskp->bits[1])
1229 return -EINVAL;
1230 return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279 struct snd_pcm_hw_rule *rule)
1280{
1281 struct snd_pcm_hw_constraint_list *list = rule->private;
1282 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 *
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298 unsigned int cond,
1299 snd_pcm_hw_param_t var,
1300 const struct snd_pcm_hw_constraint_list *l)
1301{
1302 return snd_pcm_hw_rule_add(runtime, cond, var,
1303 snd_pcm_hw_rule_list, (void *)l,
1304 var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310 struct snd_pcm_hw_rule *rule)
1311{
1312 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313 return snd_interval_ranges(hw_param_interval(params, rule->var),
1314 r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330 unsigned int cond,
1331 snd_pcm_hw_param_t var,
1332 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334 return snd_pcm_hw_rule_add(runtime, cond, var,
1335 snd_pcm_hw_rule_ranges, (void *)r,
1336 var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341 struct snd_pcm_hw_rule *rule)
1342{
1343 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344 unsigned int num = 0, den = 0;
1345 int err;
1346 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347 r->nrats, r->rats, &num, &den);
1348 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349 params->rate_num = num;
1350 params->rate_den = den;
1351 }
1352 return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1365 unsigned int cond,
1366 snd_pcm_hw_param_t var,
1367 const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369 return snd_pcm_hw_rule_add(runtime, cond, var,
1370 snd_pcm_hw_rule_ratnums, (void *)r,
1371 var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377 struct snd_pcm_hw_rule *rule)
1378{
1379 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380 unsigned int num = 0, den = 0;
1381 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382 r->nrats, r->rats, &num, &den);
1383 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384 params->rate_num = num;
1385 params->rate_den = den;
1386 }
1387 return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1400 unsigned int cond,
1401 snd_pcm_hw_param_t var,
1402 const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404 return snd_pcm_hw_rule_add(runtime, cond, var,
1405 snd_pcm_hw_rule_ratdens, (void *)r,
1406 var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412 struct snd_pcm_hw_rule *rule)
1413{
1414 unsigned int l = (unsigned long) rule->private;
1415 int width = l & 0xffff;
1416 unsigned int msbits = l >> 16;
1417 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419 if (!snd_interval_single(i))
1420 return 0;
1421
1422 if ((snd_interval_value(i) == width) ||
1423 (width == 0 && snd_interval_value(i) > msbits))
1424 params->msbits = min_not_zero(params->msbits, msbits);
1425
1426 return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 unsigned int width,
1446 unsigned int msbits)
1447{
1448 unsigned long l = (msbits << 16) | width;
1449 return snd_pcm_hw_rule_add(runtime, cond, -1,
1450 snd_pcm_hw_rule_msbits,
1451 (void*) l,
1452 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458 struct snd_pcm_hw_rule *rule)
1459{
1460 unsigned long step = (unsigned long) rule->private;
1461 return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474 unsigned int cond,
1475 snd_pcm_hw_param_t var,
1476 unsigned long step)
1477{
1478 return snd_pcm_hw_rule_add(runtime, cond, var,
1479 snd_pcm_hw_rule_step, (void *) step,
1480 var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487 static unsigned int pow2_sizes[] = {
1488 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492 };
1493 return snd_interval_list(hw_param_interval(params, rule->var),
1494 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506 unsigned int cond,
1507 snd_pcm_hw_param_t var)
1508{
1509 return snd_pcm_hw_rule_add(runtime, cond, var,
1510 snd_pcm_hw_rule_pow2, NULL,
1511 var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517 struct snd_pcm_hw_rule *rule)
1518{
1519 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520 struct snd_interval *rate;
1521
1522 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523 return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534 unsigned int base_rate)
1535{
1536 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537 SNDRV_PCM_HW_PARAM_RATE,
1538 snd_pcm_hw_rule_noresample_func,
1539 (void *)(uintptr_t)base_rate,
1540 SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545 snd_pcm_hw_param_t var)
1546{
1547 if (hw_is_mask(var)) {
1548 snd_mask_any(hw_param_mask(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 if (hw_is_interval(var)) {
1554 snd_interval_any(hw_param_interval(params, var));
1555 params->cmask |= 1 << var;
1556 params->rmask |= 1 << var;
1557 return;
1558 }
1559 snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564 unsigned int k;
1565 memset(params, 0, sizeof(*params));
1566 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567 _snd_pcm_hw_param_any(params, k);
1568 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569 _snd_pcm_hw_param_any(params, k);
1570 params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585 snd_pcm_hw_param_t var, int *dir)
1586{
1587 if (hw_is_mask(var)) {
1588 const struct snd_mask *mask = hw_param_mask_c(params, var);
1589 if (!snd_mask_single(mask))
1590 return -EINVAL;
1591 if (dir)
1592 *dir = 0;
1593 return snd_mask_value(mask);
1594 }
1595 if (hw_is_interval(var)) {
1596 const struct snd_interval *i = hw_param_interval_c(params, var);
1597 if (!snd_interval_single(i))
1598 return -EINVAL;
1599 if (dir)
1600 *dir = i->openmin;
1601 return snd_interval_value(i);
1602 }
1603 return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609 snd_pcm_hw_param_t var)
1610{
1611 if (hw_is_mask(var)) {
1612 snd_mask_none(hw_param_mask(params, var));
1613 params->cmask |= 1 << var;
1614 params->rmask |= 1 << var;
1615 } else if (hw_is_interval(var)) {
1616 snd_interval_none(hw_param_interval(params, var));
1617 params->cmask |= 1 << var;
1618 params->rmask |= 1 << var;
1619 } else {
1620 snd_BUG();
1621 }
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627 snd_pcm_hw_param_t var)
1628{
1629 int changed;
1630 if (hw_is_mask(var))
1631 changed = snd_mask_refine_first(hw_param_mask(params, var));
1632 else if (hw_is_interval(var))
1633 changed = snd_interval_refine_first(hw_param_interval(params, var));
1634 else
1635 return -EINVAL;
1636 if (changed) {
1637 params->cmask |= 1 << var;
1638 params->rmask |= 1 << var;
1639 }
1640 return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1657 struct snd_pcm_hw_params *params,
1658 snd_pcm_hw_param_t var, int *dir)
1659{
1660 int changed = _snd_pcm_hw_param_first(params, var);
1661 if (changed < 0)
1662 return changed;
1663 if (params->rmask) {
1664 int err = snd_pcm_hw_refine(pcm, params);
1665 if (snd_BUG_ON(err < 0))
1666 return err;
1667 }
1668 return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674 snd_pcm_hw_param_t var)
1675{
1676 int changed;
1677 if (hw_is_mask(var))
1678 changed = snd_mask_refine_last(hw_param_mask(params, var));
1679 else if (hw_is_interval(var))
1680 changed = snd_interval_refine_last(hw_param_interval(params, var));
1681 else
1682 return -EINVAL;
1683 if (changed) {
1684 params->cmask |= 1 << var;
1685 params->rmask |= 1 << var;
1686 }
1687 return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1704 struct snd_pcm_hw_params *params,
1705 snd_pcm_hw_param_t var, int *dir)
1706{
1707 int changed = _snd_pcm_hw_param_last(params, var);
1708 if (changed < 0)
1709 return changed;
1710 if (params->rmask) {
1711 int err = snd_pcm_hw_refine(pcm, params);
1712 if (snd_BUG_ON(err < 0))
1713 return err;
1714 }
1715 return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733 struct snd_pcm_hw_params *params)
1734{
1735 static int vars[] = {
1736 SNDRV_PCM_HW_PARAM_ACCESS,
1737 SNDRV_PCM_HW_PARAM_FORMAT,
1738 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739 SNDRV_PCM_HW_PARAM_CHANNELS,
1740 SNDRV_PCM_HW_PARAM_RATE,
1741 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743 SNDRV_PCM_HW_PARAM_TICK_TIME,
1744 -1
1745 };
1746 int err, *v;
1747
1748 for (v = vars; *v != -1; v++) {
1749 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751 else
1752 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753 if (snd_BUG_ON(err < 0))
1754 return err;
1755 }
1756 return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760 void *arg)
1761{
1762 struct snd_pcm_runtime *runtime = substream->runtime;
1763 unsigned long flags;
1764 snd_pcm_stream_lock_irqsave(substream, flags);
1765 if (snd_pcm_running(substream) &&
1766 snd_pcm_update_hw_ptr(substream) >= 0)
1767 runtime->status->hw_ptr %= runtime->buffer_size;
1768 else {
1769 runtime->status->hw_ptr = 0;
1770 runtime->hw_ptr_wrap = 0;
1771 }
1772 snd_pcm_stream_unlock_irqrestore(substream, flags);
1773 return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777 void *arg)
1778{
1779 struct snd_pcm_channel_info *info = arg;
1780 struct snd_pcm_runtime *runtime = substream->runtime;
1781 int width;
1782 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783 info->offset = -1;
1784 return 0;
1785 }
1786 width = snd_pcm_format_physical_width(runtime->format);
1787 if (width < 0)
1788 return width;
1789 info->offset = 0;
1790 switch (runtime->access) {
1791 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793 info->first = info->channel * width;
1794 info->step = runtime->channels * width;
1795 break;
1796 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798 {
1799 size_t size = runtime->dma_bytes / runtime->channels;
1800 info->first = info->channel * size * 8;
1801 info->step = width;
1802 break;
1803 }
1804 default:
1805 snd_BUG();
1806 break;
1807 }
1808 return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812 void *arg)
1813{
1814 struct snd_pcm_hw_params *params = arg;
1815 snd_pcm_format_t format;
1816 int channels;
1817 ssize_t frame_size;
1818
1819 params->fifo_size = substream->runtime->hw.fifo_size;
1820 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821 format = params_format(params);
1822 channels = params_channels(params);
1823 frame_size = snd_pcm_format_size(format, channels);
1824 if (frame_size > 0)
1825 params->fifo_size /= (unsigned)frame_size;
1826 }
1827 return 0;
1828}
1829
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842 unsigned int cmd, void *arg)
1843{
1844 switch (cmd) {
1845 case SNDRV_PCM_IOCTL1_INFO:
1846 return 0;
1847 case SNDRV_PCM_IOCTL1_RESET:
1848 return snd_pcm_lib_ioctl_reset(substream, arg);
1849 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853 }
1854 return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size. It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872 struct snd_pcm_runtime *runtime;
1873 unsigned long flags;
1874
1875 if (PCM_RUNTIME_CHECK(substream))
1876 return;
1877 runtime = substream->runtime;
1878
1879 snd_pcm_stream_lock_irqsave(substream, flags);
1880 if (!snd_pcm_running(substream) ||
1881 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882 goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885 if (substream->timer_running)
1886 snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1890 snd_pcm_stream_unlock_irqrestore(substream, flags);
1891}
1892
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp. When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902 snd_pcm_uframes_t *availp)
1903{
1904 struct snd_pcm_runtime *runtime = substream->runtime;
1905 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906 wait_queue_t wait;
1907 int err = 0;
1908 snd_pcm_uframes_t avail = 0;
1909 long wait_time, tout;
1910
1911 init_waitqueue_entry(&wait, current);
1912 set_current_state(TASK_INTERRUPTIBLE);
1913 add_wait_queue(&runtime->tsleep, &wait);
1914
1915 if (runtime->no_period_wakeup)
1916 wait_time = MAX_SCHEDULE_TIMEOUT;
1917 else {
1918 wait_time = 10;
1919 if (runtime->rate) {
1920 long t = runtime->period_size * 2 / runtime->rate;
1921 wait_time = max(t, wait_time);
1922 }
1923 wait_time = msecs_to_jiffies(wait_time * 1000);
1924 }
1925
1926 for (;;) {
1927 if (signal_pending(current)) {
1928 err = -ERESTARTSYS;
1929 break;
1930 }
1931
1932 /*
1933 * We need to check if space became available already
1934 * (and thus the wakeup happened already) first to close
1935 * the race of space already having become available.
1936 * This check must happen after been added to the waitqueue
1937 * and having current state be INTERRUPTIBLE.
1938 */
1939 if (is_playback)
1940 avail = snd_pcm_playback_avail(runtime);
1941 else
1942 avail = snd_pcm_capture_avail(runtime);
1943 if (avail >= runtime->twake)
1944 break;
1945 snd_pcm_stream_unlock_irq(substream);
1946
1947 tout = schedule_timeout(wait_time);
1948
1949 snd_pcm_stream_lock_irq(substream);
1950 set_current_state(TASK_INTERRUPTIBLE);
1951 switch (runtime->status->state) {
1952 case SNDRV_PCM_STATE_SUSPENDED:
1953 err = -ESTRPIPE;
1954 goto _endloop;
1955 case SNDRV_PCM_STATE_XRUN:
1956 err = -EPIPE;
1957 goto _endloop;
1958 case SNDRV_PCM_STATE_DRAINING:
1959 if (is_playback)
1960 err = -EPIPE;
1961 else
1962 avail = 0; /* indicate draining */
1963 goto _endloop;
1964 case SNDRV_PCM_STATE_OPEN:
1965 case SNDRV_PCM_STATE_SETUP:
1966 case SNDRV_PCM_STATE_DISCONNECTED:
1967 err = -EBADFD;
1968 goto _endloop;
1969 case SNDRV_PCM_STATE_PAUSED:
1970 continue;
1971 }
1972 if (!tout) {
1973 pcm_dbg(substream->pcm,
1974 "%s write error (DMA or IRQ trouble?)\n",
1975 is_playback ? "playback" : "capture");
1976 err = -EIO;
1977 break;
1978 }
1979 }
1980 _endloop:
1981 set_current_state(TASK_RUNNING);
1982 remove_wait_queue(&runtime->tsleep, &wait);
1983 *availp = avail;
1984 return err;
1985}
1986
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988 unsigned int hwoff,
1989 unsigned long data, unsigned int off,
1990 snd_pcm_uframes_t frames)
1991{
1992 struct snd_pcm_runtime *runtime = substream->runtime;
1993 int err;
1994 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995 if (substream->ops->copy) {
1996 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997 return err;
1998 } else {
1999 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001 return -EFAULT;
2002 }
2003 return 0;
2004}
2005
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007 unsigned long data, unsigned int off,
2008 snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2011 unsigned long data,
2012 snd_pcm_uframes_t size,
2013 int nonblock,
2014 transfer_f transfer)
2015{
2016 struct snd_pcm_runtime *runtime = substream->runtime;
2017 snd_pcm_uframes_t xfer = 0;
2018 snd_pcm_uframes_t offset = 0;
2019 snd_pcm_uframes_t avail;
2020 int err = 0;
2021
2022 if (size == 0)
2023 return 0;
2024
2025 snd_pcm_stream_lock_irq(substream);
2026 switch (runtime->status->state) {
2027 case SNDRV_PCM_STATE_PREPARED:
2028 case SNDRV_PCM_STATE_RUNNING:
2029 case SNDRV_PCM_STATE_PAUSED:
2030 break;
2031 case SNDRV_PCM_STATE_XRUN:
2032 err = -EPIPE;
2033 goto _end_unlock;
2034 case SNDRV_PCM_STATE_SUSPENDED:
2035 err = -ESTRPIPE;
2036 goto _end_unlock;
2037 default:
2038 err = -EBADFD;
2039 goto _end_unlock;
2040 }
2041
2042 runtime->twake = runtime->control->avail_min ? : 1;
2043 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044 snd_pcm_update_hw_ptr(substream);
2045 avail = snd_pcm_playback_avail(runtime);
2046 while (size > 0) {
2047 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048 snd_pcm_uframes_t cont;
2049 if (!avail) {
2050 if (nonblock) {
2051 err = -EAGAIN;
2052 goto _end_unlock;
2053 }
2054 runtime->twake = min_t(snd_pcm_uframes_t, size,
2055 runtime->control->avail_min ? : 1);
2056 err = wait_for_avail(substream, &avail);
2057 if (err < 0)
2058 goto _end_unlock;
2059 }
2060 frames = size > avail ? avail : size;
2061 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062 if (frames > cont)
2063 frames = cont;
2064 if (snd_BUG_ON(!frames)) {
2065 runtime->twake = 0;
2066 snd_pcm_stream_unlock_irq(substream);
2067 return -EINVAL;
2068 }
2069 appl_ptr = runtime->control->appl_ptr;
2070 appl_ofs = appl_ptr % runtime->buffer_size;
2071 snd_pcm_stream_unlock_irq(substream);
2072 err = transfer(substream, appl_ofs, data, offset, frames);
2073 snd_pcm_stream_lock_irq(substream);
2074 if (err < 0)
2075 goto _end_unlock;
2076 switch (runtime->status->state) {
2077 case SNDRV_PCM_STATE_XRUN:
2078 err = -EPIPE;
2079 goto _end_unlock;
2080 case SNDRV_PCM_STATE_SUSPENDED:
2081 err = -ESTRPIPE;
2082 goto _end_unlock;
2083 default:
2084 break;
2085 }
2086 appl_ptr += frames;
2087 if (appl_ptr >= runtime->boundary)
2088 appl_ptr -= runtime->boundary;
2089 runtime->control->appl_ptr = appl_ptr;
2090 if (substream->ops->ack)
2091 substream->ops->ack(substream);
2092
2093 offset += frames;
2094 size -= frames;
2095 xfer += frames;
2096 avail -= frames;
2097 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099 err = snd_pcm_start(substream);
2100 if (err < 0)
2101 goto _end_unlock;
2102 }
2103 }
2104 _end_unlock:
2105 runtime->twake = 0;
2106 if (xfer > 0 && err >= 0)
2107 snd_pcm_update_state(substream, runtime);
2108 snd_pcm_stream_unlock_irq(substream);
2109 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115 struct snd_pcm_runtime *runtime;
2116 if (PCM_RUNTIME_CHECK(substream))
2117 return -ENXIO;
2118 runtime = substream->runtime;
2119 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120 return -EINVAL;
2121 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122 return -EBADFD;
2123 return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128 struct snd_pcm_runtime *runtime;
2129 int nonblock;
2130 int err;
2131
2132 err = pcm_sanity_check(substream);
2133 if (err < 0)
2134 return err;
2135 runtime = substream->runtime;
2136 nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139 runtime->channels > 1)
2140 return -EINVAL;
2141 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142 snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148 unsigned int hwoff,
2149 unsigned long data, unsigned int off,
2150 snd_pcm_uframes_t frames)
2151{
2152 struct snd_pcm_runtime *runtime = substream->runtime;
2153 int err;
2154 void __user **bufs = (void __user **)data;
2155 int channels = runtime->channels;
2156 int c;
2157 if (substream->ops->copy) {
2158 if (snd_BUG_ON(!substream->ops->silence))
2159 return -EINVAL;
2160 for (c = 0; c < channels; ++c, ++bufs) {
2161 if (*bufs == NULL) {
2162 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163 return err;
2164 } else {
2165 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167 return err;
2168 }
2169 }
2170 } else {
2171 /* default transfer behaviour */
2172 size_t dma_csize = runtime->dma_bytes / channels;
2173 for (c = 0; c < channels; ++c, ++bufs) {
2174 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175 if (*bufs == NULL) {
2176 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177 } else {
2178 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180 return -EFAULT;
2181 }
2182 }
2183 }
2184 return 0;
2185}
2186
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188 void __user **bufs,
2189 snd_pcm_uframes_t frames)
2190{
2191 struct snd_pcm_runtime *runtime;
2192 int nonblock;
2193 int err;
2194
2195 err = pcm_sanity_check(substream);
2196 if (err < 0)
2197 return err;
2198 runtime = substream->runtime;
2199 nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202 return -EINVAL;
2203 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204 nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2210 unsigned int hwoff,
2211 unsigned long data, unsigned int off,
2212 snd_pcm_uframes_t frames)
2213{
2214 struct snd_pcm_runtime *runtime = substream->runtime;
2215 int err;
2216 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217 if (substream->ops->copy) {
2218 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219 return err;
2220 } else {
2221 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223 return -EFAULT;
2224 }
2225 return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229 unsigned long data,
2230 snd_pcm_uframes_t size,
2231 int nonblock,
2232 transfer_f transfer)
2233{
2234 struct snd_pcm_runtime *runtime = substream->runtime;
2235 snd_pcm_uframes_t xfer = 0;
2236 snd_pcm_uframes_t offset = 0;
2237 snd_pcm_uframes_t avail;
2238 int err = 0;
2239
2240 if (size == 0)
2241 return 0;
2242
2243 snd_pcm_stream_lock_irq(substream);
2244 switch (runtime->status->state) {
2245 case SNDRV_PCM_STATE_PREPARED:
2246 if (size >= runtime->start_threshold) {
2247 err = snd_pcm_start(substream);
2248 if (err < 0)
2249 goto _end_unlock;
2250 }
2251 break;
2252 case SNDRV_PCM_STATE_DRAINING:
2253 case SNDRV_PCM_STATE_RUNNING:
2254 case SNDRV_PCM_STATE_PAUSED:
2255 break;
2256 case SNDRV_PCM_STATE_XRUN:
2257 err = -EPIPE;
2258 goto _end_unlock;
2259 case SNDRV_PCM_STATE_SUSPENDED:
2260 err = -ESTRPIPE;
2261 goto _end_unlock;
2262 default:
2263 err = -EBADFD;
2264 goto _end_unlock;
2265 }
2266
2267 runtime->twake = runtime->control->avail_min ? : 1;
2268 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269 snd_pcm_update_hw_ptr(substream);
2270 avail = snd_pcm_capture_avail(runtime);
2271 while (size > 0) {
2272 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273 snd_pcm_uframes_t cont;
2274 if (!avail) {
2275 if (runtime->status->state ==
2276 SNDRV_PCM_STATE_DRAINING) {
2277 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278 goto _end_unlock;
2279 }
2280 if (nonblock) {
2281 err = -EAGAIN;
2282 goto _end_unlock;
2283 }
2284 runtime->twake = min_t(snd_pcm_uframes_t, size,
2285 runtime->control->avail_min ? : 1);
2286 err = wait_for_avail(substream, &avail);
2287 if (err < 0)
2288 goto _end_unlock;
2289 if (!avail)
2290 continue; /* draining */
2291 }
2292 frames = size > avail ? avail : size;
2293 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294 if (frames > cont)
2295 frames = cont;
2296 if (snd_BUG_ON(!frames)) {
2297 runtime->twake = 0;
2298 snd_pcm_stream_unlock_irq(substream);
2299 return -EINVAL;
2300 }
2301 appl_ptr = runtime->control->appl_ptr;
2302 appl_ofs = appl_ptr % runtime->buffer_size;
2303 snd_pcm_stream_unlock_irq(substream);
2304 err = transfer(substream, appl_ofs, data, offset, frames);
2305 snd_pcm_stream_lock_irq(substream);
2306 if (err < 0)
2307 goto _end_unlock;
2308 switch (runtime->status->state) {
2309 case SNDRV_PCM_STATE_XRUN:
2310 err = -EPIPE;
2311 goto _end_unlock;
2312 case SNDRV_PCM_STATE_SUSPENDED:
2313 err = -ESTRPIPE;
2314 goto _end_unlock;
2315 default:
2316 break;
2317 }
2318 appl_ptr += frames;
2319 if (appl_ptr >= runtime->boundary)
2320 appl_ptr -= runtime->boundary;
2321 runtime->control->appl_ptr = appl_ptr;
2322 if (substream->ops->ack)
2323 substream->ops->ack(substream);
2324
2325 offset += frames;
2326 size -= frames;
2327 xfer += frames;
2328 avail -= frames;
2329 }
2330 _end_unlock:
2331 runtime->twake = 0;
2332 if (xfer > 0 && err >= 0)
2333 snd_pcm_update_state(substream, runtime);
2334 snd_pcm_stream_unlock_irq(substream);
2335 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340 struct snd_pcm_runtime *runtime;
2341 int nonblock;
2342 int err;
2343
2344 err = pcm_sanity_check(substream);
2345 if (err < 0)
2346 return err;
2347 runtime = substream->runtime;
2348 nonblock = !!(substream->f_flags & O_NONBLOCK);
2349 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350 return -EINVAL;
2351 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357 unsigned int hwoff,
2358 unsigned long data, unsigned int off,
2359 snd_pcm_uframes_t frames)
2360{
2361 struct snd_pcm_runtime *runtime = substream->runtime;
2362 int err;
2363 void __user **bufs = (void __user **)data;
2364 int channels = runtime->channels;
2365 int c;
2366 if (substream->ops->copy) {
2367 for (c = 0; c < channels; ++c, ++bufs) {
2368 char __user *buf;
2369 if (*bufs == NULL)
2370 continue;
2371 buf = *bufs + samples_to_bytes(runtime, off);
2372 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373 return err;
2374 }
2375 } else {
2376 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377 for (c = 0; c < channels; ++c, ++bufs) {
2378 char *hwbuf;
2379 char __user *buf;
2380 if (*bufs == NULL)
2381 continue;
2382
2383 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384 buf = *bufs + samples_to_bytes(runtime, off);
2385 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386 return -EFAULT;
2387 }
2388 }
2389 return 0;
2390}
2391
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393 void __user **bufs,
2394 snd_pcm_uframes_t frames)
2395{
2396 struct snd_pcm_runtime *runtime;
2397 int nonblock;
2398 int err;
2399
2400 err = pcm_sanity_check(substream);
2401 if (err < 0)
2402 return err;
2403 runtime = substream->runtime;
2404 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405 return -EBADFD;
2406
2407 nonblock = !!(substream->f_flags & O_NONBLOCK);
2408 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409 return -EINVAL;
2410 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421 { .channels = 1,
2422 .map = { SNDRV_CHMAP_MONO } },
2423 { .channels = 2,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425 { .channels = 4,
2426 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428 { .channels = 6,
2429 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432 { .channels = 8,
2433 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437 { }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443 { .channels = 1,
2444 .map = { SNDRV_CHMAP_MONO } },
2445 { .channels = 2,
2446 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447 { .channels = 4,
2448 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450 { .channels = 6,
2451 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454 { .channels = 8,
2455 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459 { }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465 if (ch > info->max_channels)
2466 return false;
2467 return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471 struct snd_ctl_elem_info *uinfo)
2472{
2473 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476 uinfo->count = 0;
2477 uinfo->count = info->max_channels;
2478 uinfo->value.integer.min = 0;
2479 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480 return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487 struct snd_ctl_elem_value *ucontrol)
2488{
2489 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491 struct snd_pcm_substream *substream;
2492 const struct snd_pcm_chmap_elem *map;
2493
2494 if (snd_BUG_ON(!info->chmap))
2495 return -EINVAL;
2496 substream = snd_pcm_chmap_substream(info, idx);
2497 if (!substream)
2498 return -ENODEV;
2499 memset(ucontrol->value.integer.value, 0,
2500 sizeof(ucontrol->value.integer.value));
2501 if (!substream->runtime)
2502 return 0; /* no channels set */
2503 for (map = info->chmap; map->channels; map++) {
2504 int i;
2505 if (map->channels == substream->runtime->channels &&
2506 valid_chmap_channels(info, map->channels)) {
2507 for (i = 0; i < map->channels; i++)
2508 ucontrol->value.integer.value[i] = map->map[i];
2509 return 0;
2510 }
2511 }
2512 return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519 unsigned int size, unsigned int __user *tlv)
2520{
2521 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522 const struct snd_pcm_chmap_elem *map;
2523 unsigned int __user *dst;
2524 int c, count = 0;
2525
2526 if (snd_BUG_ON(!info->chmap))
2527 return -EINVAL;
2528 if (size < 8)
2529 return -ENOMEM;
2530 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531 return -EFAULT;
2532 size -= 8;
2533 dst = tlv + 2;
2534 for (map = info->chmap; map->channels; map++) {
2535 int chs_bytes = map->channels * 4;
2536 if (!valid_chmap_channels(info, map->channels))
2537 continue;
2538 if (size < 8)
2539 return -ENOMEM;
2540 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541 put_user(chs_bytes, dst + 1))
2542 return -EFAULT;
2543 dst += 2;
2544 size -= 8;
2545 count += 8;
2546 if (size < chs_bytes)
2547 return -ENOMEM;
2548 size -= chs_bytes;
2549 count += chs_bytes;
2550 for (c = 0; c < map->channels; c++) {
2551 if (put_user(map->map[c], dst))
2552 return -EFAULT;
2553 dst++;
2554 }
2555 }
2556 if (put_user(count, tlv + 1))
2557 return -EFAULT;
2558 return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564 info->pcm->streams[info->stream].chmap_kctl = NULL;
2565 kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581 const struct snd_pcm_chmap_elem *chmap,
2582 int max_channels,
2583 unsigned long private_value,
2584 struct snd_pcm_chmap **info_ret)
2585{
2586 struct snd_pcm_chmap *info;
2587 struct snd_kcontrol_new knew = {
2588 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2590 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592 .info = pcm_chmap_ctl_info,
2593 .get = pcm_chmap_ctl_get,
2594 .tlv.c = pcm_chmap_ctl_tlv,
2595 };
2596 int err;
2597
2598 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2599 return -EBUSY;
2600 info = kzalloc(sizeof(*info), GFP_KERNEL);
2601 if (!info)
2602 return -ENOMEM;
2603 info->pcm = pcm;
2604 info->stream = stream;
2605 info->chmap = chmap;
2606 info->max_channels = max_channels;
2607 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608 knew.name = "Playback Channel Map";
2609 else
2610 knew.name = "Capture Channel Map";
2611 knew.device = pcm->device;
2612 knew.count = pcm->streams[stream].substream_count;
2613 knew.private_value = private_value;
2614 info->kctl = snd_ctl_new1(&knew, info);
2615 if (!info->kctl) {
2616 kfree(info);
2617 return -ENOMEM;
2618 }
2619 info->kctl->private_free = pcm_chmap_ctl_private_free;
2620 err = snd_ctl_add(pcm->card, info->kctl);
2621 if (err < 0)
2622 return err;
2623 pcm->streams[stream].chmap_kctl = info->kctl;
2624 if (info_ret)
2625 *info_ret = info;
2626 return 0;
2627}
2628EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/info.h>
30#include <sound/pcm.h>
31#include <sound/pcm_params.h>
32#include <sound/timer.h>
33
34/*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44{
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130}
131
132#ifdef CONFIG_SND_DEBUG
133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135{
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141}
142EXPORT_SYMBOL(snd_pcm_debug_name);
143#endif
144
145#define XRUN_DEBUG_BASIC (1<<0)
146#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155#define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157#else
158#define xrun_debug(substream, mask) 0
159#endif
160
161#define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
166static void xrun(struct snd_pcm_substream *substream)
167{
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179}
180
181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
182#define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193#define XRUN_LOG_CNT 10
194
195struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203};
204
205struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209};
210
211static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213{
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236}
237
238static void xrun_log_show(struct snd_pcm_substream *substream)
239{
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268}
269
270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
273#define xrun_log(substream, pos, in_interrupt) do { } while (0)
274#define xrun_log_show(substream) do { } while (0)
275
276#endif
277
278int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280{
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306}
307
308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310{
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316 unsigned long curr_jiffies;
317 struct timespec curr_tstamp;
318
319 old_hw_ptr = runtime->status->hw_ptr;
320
321 /*
322 * group pointer, time and jiffies reads to allow for more
323 * accurate correlations/corrections.
324 * The values are stored at the end of this routine after
325 * corrections for hw_ptr position
326 */
327 pos = substream->ops->pointer(substream);
328 curr_jiffies = jiffies;
329 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331
332 if (pos == SNDRV_PCM_POS_XRUN) {
333 xrun(substream);
334 return -EPIPE;
335 }
336 if (pos >= runtime->buffer_size) {
337 if (printk_ratelimit()) {
338 char name[16];
339 snd_pcm_debug_name(substream, name, sizeof(name));
340 xrun_log_show(substream);
341 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
342 "buffer size = %ld, period size = %ld\n",
343 name, pos, runtime->buffer_size,
344 runtime->period_size);
345 }
346 pos = 0;
347 }
348 pos -= pos % runtime->min_align;
349 if (xrun_debug(substream, XRUN_DEBUG_LOG))
350 xrun_log(substream, pos, in_interrupt);
351 hw_base = runtime->hw_ptr_base;
352 new_hw_ptr = hw_base + pos;
353 if (in_interrupt) {
354 /* we know that one period was processed */
355 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
356 delta = runtime->hw_ptr_interrupt + runtime->period_size;
357 if (delta > new_hw_ptr) {
358 /* check for double acknowledged interrupts */
359 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary)
363 hw_base = 0;
364 new_hw_ptr = hw_base + pos;
365 goto __delta;
366 }
367 }
368 }
369 /* new_hw_ptr might be lower than old_hw_ptr in case when */
370 /* pointer crosses the end of the ring buffer */
371 if (new_hw_ptr < old_hw_ptr) {
372 hw_base += runtime->buffer_size;
373 if (hw_base >= runtime->boundary)
374 hw_base = 0;
375 new_hw_ptr = hw_base + pos;
376 }
377 __delta:
378 delta = new_hw_ptr - old_hw_ptr;
379 if (delta < 0)
380 delta += runtime->boundary;
381 if (xrun_debug(substream, in_interrupt ?
382 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383 char name[16];
384 snd_pcm_debug_name(substream, name, sizeof(name));
385 snd_printd("%s_update: %s: pos=%u/%u/%u, "
386 "hwptr=%ld/%ld/%ld/%ld\n",
387 in_interrupt ? "period" : "hwptr",
388 name,
389 (unsigned int)pos,
390 (unsigned int)runtime->period_size,
391 (unsigned int)runtime->buffer_size,
392 (unsigned long)delta,
393 (unsigned long)old_hw_ptr,
394 (unsigned long)new_hw_ptr,
395 (unsigned long)runtime->hw_ptr_base);
396 }
397
398 if (runtime->no_period_wakeup) {
399 snd_pcm_sframes_t xrun_threshold;
400 /*
401 * Without regular period interrupts, we have to check
402 * the elapsed time to detect xruns.
403 */
404 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406 goto no_delta_check;
407 hdelta = jdelta - delta * HZ / runtime->rate;
408 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409 while (hdelta > xrun_threshold) {
410 delta += runtime->buffer_size;
411 hw_base += runtime->buffer_size;
412 if (hw_base >= runtime->boundary)
413 hw_base = 0;
414 new_hw_ptr = hw_base + pos;
415 hdelta -= runtime->hw_ptr_buffer_jiffies;
416 }
417 goto no_delta_check;
418 }
419
420 /* something must be really wrong */
421 if (delta >= runtime->buffer_size + runtime->period_size) {
422 hw_ptr_error(substream,
423 "Unexpected hw_pointer value %s"
424 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425 "old_hw_ptr=%ld)\n",
426 in_interrupt ? "[Q] " : "[P]",
427 substream->stream, (long)pos,
428 (long)new_hw_ptr, (long)old_hw_ptr);
429 return 0;
430 }
431
432 /* Do jiffies check only in xrun_debug mode */
433 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434 goto no_jiffies_check;
435
436 /* Skip the jiffies check for hardwares with BATCH flag.
437 * Such hardware usually just increases the position at each IRQ,
438 * thus it can't give any strange position.
439 */
440 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441 goto no_jiffies_check;
442 hdelta = delta;
443 if (hdelta < runtime->delay)
444 goto no_jiffies_check;
445 hdelta -= runtime->delay;
446 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448 delta = jdelta /
449 (((runtime->period_size * HZ) / runtime->rate)
450 + HZ/100);
451 /* move new_hw_ptr according jiffies not pos variable */
452 new_hw_ptr = old_hw_ptr;
453 hw_base = delta;
454 /* use loop to avoid checks for delta overflows */
455 /* the delta value is small or zero in most cases */
456 while (delta > 0) {
457 new_hw_ptr += runtime->period_size;
458 if (new_hw_ptr >= runtime->boundary)
459 new_hw_ptr -= runtime->boundary;
460 delta--;
461 }
462 /* align hw_base to buffer_size */
463 hw_ptr_error(substream,
464 "hw_ptr skipping! %s"
465 "(pos=%ld, delta=%ld, period=%ld, "
466 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467 in_interrupt ? "[Q] " : "",
468 (long)pos, (long)hdelta,
469 (long)runtime->period_size, jdelta,
470 ((hdelta * HZ) / runtime->rate), hw_base,
471 (unsigned long)old_hw_ptr,
472 (unsigned long)new_hw_ptr);
473 /* reset values to proper state */
474 delta = 0;
475 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476 }
477 no_jiffies_check:
478 if (delta > runtime->period_size + runtime->period_size / 2) {
479 hw_ptr_error(substream,
480 "Lost interrupts? %s"
481 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482 "old_hw_ptr=%ld)\n",
483 in_interrupt ? "[Q] " : "",
484 substream->stream, (long)delta,
485 (long)new_hw_ptr,
486 (long)old_hw_ptr);
487 }
488
489 no_delta_check:
490 if (runtime->status->hw_ptr == new_hw_ptr)
491 return 0;
492
493 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494 runtime->silence_size > 0)
495 snd_pcm_playback_silence(substream, new_hw_ptr);
496
497 if (in_interrupt) {
498 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499 if (delta < 0)
500 delta += runtime->boundary;
501 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502 runtime->hw_ptr_interrupt += delta;
503 if (runtime->hw_ptr_interrupt >= runtime->boundary)
504 runtime->hw_ptr_interrupt -= runtime->boundary;
505 }
506 runtime->hw_ptr_base = hw_base;
507 runtime->status->hw_ptr = new_hw_ptr;
508 runtime->hw_ptr_jiffies = curr_jiffies;
509 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510 runtime->status->tstamp = curr_tstamp;
511
512 return snd_pcm_update_state(substream, runtime);
513}
514
515/* CAUTION: call it with irq disabled */
516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517{
518 return snd_pcm_update_hw_ptr0(substream, 0);
519}
520
521/**
522 * snd_pcm_set_ops - set the PCM operators
523 * @pcm: the pcm instance
524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525 * @ops: the operator table
526 *
527 * Sets the given PCM operators to the pcm instance.
528 */
529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530{
531 struct snd_pcm_str *stream = &pcm->streams[direction];
532 struct snd_pcm_substream *substream;
533
534 for (substream = stream->substream; substream != NULL; substream = substream->next)
535 substream->ops = ops;
536}
537
538EXPORT_SYMBOL(snd_pcm_set_ops);
539
540/**
541 * snd_pcm_sync - set the PCM sync id
542 * @substream: the pcm substream
543 *
544 * Sets the PCM sync identifier for the card.
545 */
546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547{
548 struct snd_pcm_runtime *runtime = substream->runtime;
549
550 runtime->sync.id32[0] = substream->pcm->card->number;
551 runtime->sync.id32[1] = -1;
552 runtime->sync.id32[2] = -1;
553 runtime->sync.id32[3] = -1;
554}
555
556EXPORT_SYMBOL(snd_pcm_set_sync);
557
558/*
559 * Standard ioctl routine
560 */
561
562static inline unsigned int div32(unsigned int a, unsigned int b,
563 unsigned int *r)
564{
565 if (b == 0) {
566 *r = 0;
567 return UINT_MAX;
568 }
569 *r = a % b;
570 return a / b;
571}
572
573static inline unsigned int div_down(unsigned int a, unsigned int b)
574{
575 if (b == 0)
576 return UINT_MAX;
577 return a / b;
578}
579
580static inline unsigned int div_up(unsigned int a, unsigned int b)
581{
582 unsigned int r;
583 unsigned int q;
584 if (b == 0)
585 return UINT_MAX;
586 q = div32(a, b, &r);
587 if (r)
588 ++q;
589 return q;
590}
591
592static inline unsigned int mul(unsigned int a, unsigned int b)
593{
594 if (a == 0)
595 return 0;
596 if (div_down(UINT_MAX, a) < b)
597 return UINT_MAX;
598 return a * b;
599}
600
601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602 unsigned int c, unsigned int *r)
603{
604 u_int64_t n = (u_int64_t) a * b;
605 if (c == 0) {
606 snd_BUG_ON(!n);
607 *r = 0;
608 return UINT_MAX;
609 }
610 n = div_u64_rem(n, c, r);
611 if (n >= UINT_MAX) {
612 *r = 0;
613 return UINT_MAX;
614 }
615 return n;
616}
617
618/**
619 * snd_interval_refine - refine the interval value of configurator
620 * @i: the interval value to refine
621 * @v: the interval value to refer to
622 *
623 * Refines the interval value with the reference value.
624 * The interval is changed to the range satisfying both intervals.
625 * The interval status (min, max, integer, etc.) are evaluated.
626 *
627 * Returns non-zero if the value is changed, zero if not changed.
628 */
629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630{
631 int changed = 0;
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (i->min < v->min) {
635 i->min = v->min;
636 i->openmin = v->openmin;
637 changed = 1;
638 } else if (i->min == v->min && !i->openmin && v->openmin) {
639 i->openmin = 1;
640 changed = 1;
641 }
642 if (i->max > v->max) {
643 i->max = v->max;
644 i->openmax = v->openmax;
645 changed = 1;
646 } else if (i->max == v->max && !i->openmax && v->openmax) {
647 i->openmax = 1;
648 changed = 1;
649 }
650 if (!i->integer && v->integer) {
651 i->integer = 1;
652 changed = 1;
653 }
654 if (i->integer) {
655 if (i->openmin) {
656 i->min++;
657 i->openmin = 0;
658 }
659 if (i->openmax) {
660 i->max--;
661 i->openmax = 0;
662 }
663 } else if (!i->openmin && !i->openmax && i->min == i->max)
664 i->integer = 1;
665 if (snd_interval_checkempty(i)) {
666 snd_interval_none(i);
667 return -EINVAL;
668 }
669 return changed;
670}
671
672EXPORT_SYMBOL(snd_interval_refine);
673
674static int snd_interval_refine_first(struct snd_interval *i)
675{
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->max = i->min;
681 i->openmax = i->openmin;
682 if (i->openmax)
683 i->max++;
684 return 1;
685}
686
687static int snd_interval_refine_last(struct snd_interval *i)
688{
689 if (snd_BUG_ON(snd_interval_empty(i)))
690 return -EINVAL;
691 if (snd_interval_single(i))
692 return 0;
693 i->min = i->max;
694 i->openmin = i->openmax;
695 if (i->openmin)
696 i->min--;
697 return 1;
698}
699
700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701{
702 if (a->empty || b->empty) {
703 snd_interval_none(c);
704 return;
705 }
706 c->empty = 0;
707 c->min = mul(a->min, b->min);
708 c->openmin = (a->openmin || b->openmin);
709 c->max = mul(a->max, b->max);
710 c->openmax = (a->openmax || b->openmax);
711 c->integer = (a->integer && b->integer);
712}
713
714/**
715 * snd_interval_div - refine the interval value with division
716 * @a: dividend
717 * @b: divisor
718 * @c: quotient
719 *
720 * c = a / b
721 *
722 * Returns non-zero if the value is changed, zero if not changed.
723 */
724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725{
726 unsigned int r;
727 if (a->empty || b->empty) {
728 snd_interval_none(c);
729 return;
730 }
731 c->empty = 0;
732 c->min = div32(a->min, b->max, &r);
733 c->openmin = (r || a->openmin || b->openmax);
734 if (b->min > 0) {
735 c->max = div32(a->max, b->min, &r);
736 if (r) {
737 c->max++;
738 c->openmax = 1;
739 } else
740 c->openmax = (a->openmax || b->openmin);
741 } else {
742 c->max = UINT_MAX;
743 c->openmax = 0;
744 }
745 c->integer = 0;
746}
747
748/**
749 * snd_interval_muldivk - refine the interval value
750 * @a: dividend 1
751 * @b: dividend 2
752 * @k: divisor (as integer)
753 * @c: result
754 *
755 * c = a * b / k
756 *
757 * Returns non-zero if the value is changed, zero if not changed.
758 */
759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760 unsigned int k, struct snd_interval *c)
761{
762 unsigned int r;
763 if (a->empty || b->empty) {
764 snd_interval_none(c);
765 return;
766 }
767 c->empty = 0;
768 c->min = muldiv32(a->min, b->min, k, &r);
769 c->openmin = (r || a->openmin || b->openmin);
770 c->max = muldiv32(a->max, b->max, k, &r);
771 if (r) {
772 c->max++;
773 c->openmax = 1;
774 } else
775 c->openmax = (a->openmax || b->openmax);
776 c->integer = 0;
777}
778
779/**
780 * snd_interval_mulkdiv - refine the interval value
781 * @a: dividend 1
782 * @k: dividend 2 (as integer)
783 * @b: divisor
784 * @c: result
785 *
786 * c = a * k / b
787 *
788 * Returns non-zero if the value is changed, zero if not changed.
789 */
790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791 const struct snd_interval *b, struct snd_interval *c)
792{
793 unsigned int r;
794 if (a->empty || b->empty) {
795 snd_interval_none(c);
796 return;
797 }
798 c->empty = 0;
799 c->min = muldiv32(a->min, k, b->max, &r);
800 c->openmin = (r || a->openmin || b->openmax);
801 if (b->min > 0) {
802 c->max = muldiv32(a->max, k, b->min, &r);
803 if (r) {
804 c->max++;
805 c->openmax = 1;
806 } else
807 c->openmax = (a->openmax || b->openmin);
808 } else {
809 c->max = UINT_MAX;
810 c->openmax = 0;
811 }
812 c->integer = 0;
813}
814
815/* ---- */
816
817
818/**
819 * snd_interval_ratnum - refine the interval value
820 * @i: interval to refine
821 * @rats_count: number of ratnum_t
822 * @rats: ratnum_t array
823 * @nump: pointer to store the resultant numerator
824 * @denp: pointer to store the resultant denominator
825 *
826 * Returns non-zero if the value is changed, zero if not changed.
827 */
828int snd_interval_ratnum(struct snd_interval *i,
829 unsigned int rats_count, struct snd_ratnum *rats,
830 unsigned int *nump, unsigned int *denp)
831{
832 unsigned int best_num, best_den;
833 int best_diff;
834 unsigned int k;
835 struct snd_interval t;
836 int err;
837 unsigned int result_num, result_den;
838 int result_diff;
839
840 best_num = best_den = best_diff = 0;
841 for (k = 0; k < rats_count; ++k) {
842 unsigned int num = rats[k].num;
843 unsigned int den;
844 unsigned int q = i->min;
845 int diff;
846 if (q == 0)
847 q = 1;
848 den = div_up(num, q);
849 if (den < rats[k].den_min)
850 continue;
851 if (den > rats[k].den_max)
852 den = rats[k].den_max;
853 else {
854 unsigned int r;
855 r = (den - rats[k].den_min) % rats[k].den_step;
856 if (r != 0)
857 den -= r;
858 }
859 diff = num - q * den;
860 if (diff < 0)
861 diff = -diff;
862 if (best_num == 0 ||
863 diff * best_den < best_diff * den) {
864 best_diff = diff;
865 best_den = den;
866 best_num = num;
867 }
868 }
869 if (best_den == 0) {
870 i->empty = 1;
871 return -EINVAL;
872 }
873 t.min = div_down(best_num, best_den);
874 t.openmin = !!(best_num % best_den);
875
876 result_num = best_num;
877 result_diff = best_diff;
878 result_den = best_den;
879 best_num = best_den = best_diff = 0;
880 for (k = 0; k < rats_count; ++k) {
881 unsigned int num = rats[k].num;
882 unsigned int den;
883 unsigned int q = i->max;
884 int diff;
885 if (q == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 den = div_down(num, q);
890 if (den > rats[k].den_max)
891 continue;
892 if (den < rats[k].den_min)
893 den = rats[k].den_min;
894 else {
895 unsigned int r;
896 r = (den - rats[k].den_min) % rats[k].den_step;
897 if (r != 0)
898 den += rats[k].den_step - r;
899 }
900 diff = q * den - num;
901 if (diff < 0)
902 diff = -diff;
903 if (best_num == 0 ||
904 diff * best_den < best_diff * den) {
905 best_diff = diff;
906 best_den = den;
907 best_num = num;
908 }
909 }
910 if (best_den == 0) {
911 i->empty = 1;
912 return -EINVAL;
913 }
914 t.max = div_up(best_num, best_den);
915 t.openmax = !!(best_num % best_den);
916 t.integer = 0;
917 err = snd_interval_refine(i, &t);
918 if (err < 0)
919 return err;
920
921 if (snd_interval_single(i)) {
922 if (best_diff * result_den < result_diff * best_den) {
923 result_num = best_num;
924 result_den = best_den;
925 }
926 if (nump)
927 *nump = result_num;
928 if (denp)
929 *denp = result_den;
930 }
931 return err;
932}
933
934EXPORT_SYMBOL(snd_interval_ratnum);
935
936/**
937 * snd_interval_ratden - refine the interval value
938 * @i: interval to refine
939 * @rats_count: number of struct ratden
940 * @rats: struct ratden array
941 * @nump: pointer to store the resultant numerator
942 * @denp: pointer to store the resultant denominator
943 *
944 * Returns non-zero if the value is changed, zero if not changed.
945 */
946static int snd_interval_ratden(struct snd_interval *i,
947 unsigned int rats_count, struct snd_ratden *rats,
948 unsigned int *nump, unsigned int *denp)
949{
950 unsigned int best_num, best_diff, best_den;
951 unsigned int k;
952 struct snd_interval t;
953 int err;
954
955 best_num = best_den = best_diff = 0;
956 for (k = 0; k < rats_count; ++k) {
957 unsigned int num;
958 unsigned int den = rats[k].den;
959 unsigned int q = i->min;
960 int diff;
961 num = mul(q, den);
962 if (num > rats[k].num_max)
963 continue;
964 if (num < rats[k].num_min)
965 num = rats[k].num_max;
966 else {
967 unsigned int r;
968 r = (num - rats[k].num_min) % rats[k].num_step;
969 if (r != 0)
970 num += rats[k].num_step - r;
971 }
972 diff = num - q * den;
973 if (best_num == 0 ||
974 diff * best_den < best_diff * den) {
975 best_diff = diff;
976 best_den = den;
977 best_num = num;
978 }
979 }
980 if (best_den == 0) {
981 i->empty = 1;
982 return -EINVAL;
983 }
984 t.min = div_down(best_num, best_den);
985 t.openmin = !!(best_num % best_den);
986
987 best_num = best_den = best_diff = 0;
988 for (k = 0; k < rats_count; ++k) {
989 unsigned int num;
990 unsigned int den = rats[k].den;
991 unsigned int q = i->max;
992 int diff;
993 num = mul(q, den);
994 if (num < rats[k].num_min)
995 continue;
996 if (num > rats[k].num_max)
997 num = rats[k].num_max;
998 else {
999 unsigned int r;
1000 r = (num - rats[k].num_min) % rats[k].num_step;
1001 if (r != 0)
1002 num -= r;
1003 }
1004 diff = q * den - num;
1005 if (best_num == 0 ||
1006 diff * best_den < best_diff * den) {
1007 best_diff = diff;
1008 best_den = den;
1009 best_num = num;
1010 }
1011 }
1012 if (best_den == 0) {
1013 i->empty = 1;
1014 return -EINVAL;
1015 }
1016 t.max = div_up(best_num, best_den);
1017 t.openmax = !!(best_num % best_den);
1018 t.integer = 0;
1019 err = snd_interval_refine(i, &t);
1020 if (err < 0)
1021 return err;
1022
1023 if (snd_interval_single(i)) {
1024 if (nump)
1025 *nump = best_num;
1026 if (denp)
1027 *denp = best_den;
1028 }
1029 return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046 const unsigned int *list, unsigned int mask)
1047{
1048 unsigned int k;
1049 struct snd_interval list_range;
1050
1051 if (!count) {
1052 i->empty = 1;
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&list_range);
1056 list_range.min = UINT_MAX;
1057 list_range.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 if (!snd_interval_test(i, list[k]))
1062 continue;
1063 list_range.min = min(list_range.min, list[k]);
1064 list_range.max = max(list_range.max, list[k]);
1065 }
1066 return snd_interval_refine(i, &list_range);
1067}
1068
1069EXPORT_SYMBOL(snd_interval_list);
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073 unsigned int n;
1074 int changed = 0;
1075 n = (i->min - min) % step;
1076 if (n != 0 || i->openmin) {
1077 i->min += step - n;
1078 changed = 1;
1079 }
1080 n = (i->max - min) % step;
1081 if (n != 0 || i->openmax) {
1082 i->max -= n;
1083 changed = 1;
1084 }
1085 if (snd_interval_checkempty(i)) {
1086 i->empty = 1;
1087 return -EINVAL;
1088 }
1089 return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106 int var,
1107 snd_pcm_hw_rule_func_t func, void *private,
1108 int dep, ...)
1109{
1110 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111 struct snd_pcm_hw_rule *c;
1112 unsigned int k;
1113 va_list args;
1114 va_start(args, dep);
1115 if (constrs->rules_num >= constrs->rules_all) {
1116 struct snd_pcm_hw_rule *new;
1117 unsigned int new_rules = constrs->rules_all + 16;
1118 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119 if (!new) {
1120 va_end(args);
1121 return -ENOMEM;
1122 }
1123 if (constrs->rules) {
1124 memcpy(new, constrs->rules,
1125 constrs->rules_num * sizeof(*c));
1126 kfree(constrs->rules);
1127 }
1128 constrs->rules = new;
1129 constrs->rules_all = new_rules;
1130 }
1131 c = &constrs->rules[constrs->rules_num];
1132 c->cond = cond;
1133 c->func = func;
1134 c->var = var;
1135 c->private = private;
1136 k = 0;
1137 while (1) {
1138 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139 va_end(args);
1140 return -EINVAL;
1141 }
1142 c->deps[k++] = dep;
1143 if (dep < 0)
1144 break;
1145 dep = va_arg(args, int);
1146 }
1147 constrs->rules_num++;
1148 va_end(args);
1149 return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183 u_int64_t mask)
1184{
1185 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186 struct snd_mask *maskp = constrs_mask(constrs, var);
1187 maskp->bits[0] &= (u_int32_t)mask;
1188 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190 if (! maskp->bits[0] && ! maskp->bits[1])
1191 return -EINVAL;
1192 return 0;
1193}
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205 return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 *
1217 * Apply the min/max range constraint to an interval parameter.
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 unsigned int min, unsigned int max)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 struct snd_interval t;
1224 t.min = min;
1225 t.max = max;
1226 t.openmin = t.openmax = 0;
1227 t.integer = 0;
1228 return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234 struct snd_pcm_hw_rule *rule)
1235{
1236 struct snd_pcm_hw_constraint_list *list = rule->private;
1237 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 *
1248 * Apply the list of constraints to an interval parameter.
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251 unsigned int cond,
1252 snd_pcm_hw_param_t var,
1253 struct snd_pcm_hw_constraint_list *l)
1254{
1255 return snd_pcm_hw_rule_add(runtime, cond, var,
1256 snd_pcm_hw_rule_list, l,
1257 var, -1);
1258}
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263 struct snd_pcm_hw_rule *rule)
1264{
1265 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266 unsigned int num = 0, den = 0;
1267 int err;
1268 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269 r->nrats, r->rats, &num, &den);
1270 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271 params->rate_num = num;
1272 params->rate_den = den;
1273 }
1274 return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1285 unsigned int cond,
1286 snd_pcm_hw_param_t var,
1287 struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289 return snd_pcm_hw_rule_add(runtime, cond, var,
1290 snd_pcm_hw_rule_ratnums, r,
1291 var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297 struct snd_pcm_hw_rule *rule)
1298{
1299 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300 unsigned int num = 0, den = 0;
1301 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302 r->nrats, r->rats, &num, &den);
1303 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304 params->rate_num = num;
1305 params->rate_den = den;
1306 }
1307 return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1318 unsigned int cond,
1319 snd_pcm_hw_param_t var,
1320 struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322 return snd_pcm_hw_rule_add(runtime, cond, var,
1323 snd_pcm_hw_rule_ratdens, r,
1324 var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330 struct snd_pcm_hw_rule *rule)
1331{
1332 unsigned int l = (unsigned long) rule->private;
1333 int width = l & 0xffff;
1334 unsigned int msbits = l >> 16;
1335 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336 if (snd_interval_single(i) && snd_interval_value(i) == width)
1337 params->msbits = msbits;
1338 return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1349 unsigned int cond,
1350 unsigned int width,
1351 unsigned int msbits)
1352{
1353 unsigned long l = (msbits << 16) | width;
1354 return snd_pcm_hw_rule_add(runtime, cond, -1,
1355 snd_pcm_hw_rule_msbits,
1356 (void*) l,
1357 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363 struct snd_pcm_hw_rule *rule)
1364{
1365 unsigned long step = (unsigned long) rule->private;
1366 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377 unsigned int cond,
1378 snd_pcm_hw_param_t var,
1379 unsigned long step)
1380{
1381 return snd_pcm_hw_rule_add(runtime, cond, var,
1382 snd_pcm_hw_rule_step, (void *) step,
1383 var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390 static unsigned int pow2_sizes[] = {
1391 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395 };
1396 return snd_interval_list(hw_param_interval(params, rule->var),
1397 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407 unsigned int cond,
1408 snd_pcm_hw_param_t var)
1409{
1410 return snd_pcm_hw_rule_add(runtime, cond, var,
1411 snd_pcm_hw_rule_pow2, NULL,
1412 var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418 struct snd_pcm_hw_rule *rule)
1419{
1420 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421 struct snd_interval *rate;
1422
1423 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424 return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433 unsigned int base_rate)
1434{
1435 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436 SNDRV_PCM_HW_PARAM_RATE,
1437 snd_pcm_hw_rule_noresample_func,
1438 (void *)(uintptr_t)base_rate,
1439 SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444 snd_pcm_hw_param_t var)
1445{
1446 if (hw_is_mask(var)) {
1447 snd_mask_any(hw_param_mask(params, var));
1448 params->cmask |= 1 << var;
1449 params->rmask |= 1 << var;
1450 return;
1451 }
1452 if (hw_is_interval(var)) {
1453 snd_interval_any(hw_param_interval(params, var));
1454 params->cmask |= 1 << var;
1455 params->rmask |= 1 << var;
1456 return;
1457 }
1458 snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463 unsigned int k;
1464 memset(params, 0, sizeof(*params));
1465 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466 _snd_pcm_hw_param_any(params, k);
1467 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468 _snd_pcm_hw_param_any(params, k);
1469 params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484 snd_pcm_hw_param_t var, int *dir)
1485{
1486 if (hw_is_mask(var)) {
1487 const struct snd_mask *mask = hw_param_mask_c(params, var);
1488 if (!snd_mask_single(mask))
1489 return -EINVAL;
1490 if (dir)
1491 *dir = 0;
1492 return snd_mask_value(mask);
1493 }
1494 if (hw_is_interval(var)) {
1495 const struct snd_interval *i = hw_param_interval_c(params, var);
1496 if (!snd_interval_single(i))
1497 return -EINVAL;
1498 if (dir)
1499 *dir = i->openmin;
1500 return snd_interval_value(i);
1501 }
1502 return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508 snd_pcm_hw_param_t var)
1509{
1510 if (hw_is_mask(var)) {
1511 snd_mask_none(hw_param_mask(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 } else if (hw_is_interval(var)) {
1515 snd_interval_none(hw_param_interval(params, var));
1516 params->cmask |= 1 << var;
1517 params->rmask |= 1 << var;
1518 } else {
1519 snd_BUG();
1520 }
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526 snd_pcm_hw_param_t var)
1527{
1528 int changed;
1529 if (hw_is_mask(var))
1530 changed = snd_mask_refine_first(hw_param_mask(params, var));
1531 else if (hw_is_interval(var))
1532 changed = snd_interval_refine_first(hw_param_interval(params, var));
1533 else
1534 return -EINVAL;
1535 if (changed) {
1536 params->cmask |= 1 << var;
1537 params->rmask |= 1 << var;
1538 }
1539 return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1555 struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557{
1558 int changed = _snd_pcm_hw_param_first(params, var);
1559 if (changed < 0)
1560 return changed;
1561 if (params->rmask) {
1562 int err = snd_pcm_hw_refine(pcm, params);
1563 if (snd_BUG_ON(err < 0))
1564 return err;
1565 }
1566 return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572 snd_pcm_hw_param_t var)
1573{
1574 int changed;
1575 if (hw_is_mask(var))
1576 changed = snd_mask_refine_last(hw_param_mask(params, var));
1577 else if (hw_is_interval(var))
1578 changed = snd_interval_refine_last(hw_param_interval(params, var));
1579 else
1580 return -EINVAL;
1581 if (changed) {
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 }
1585 return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1601 struct snd_pcm_hw_params *params,
1602 snd_pcm_hw_param_t var, int *dir)
1603{
1604 int changed = _snd_pcm_hw_param_last(params, var);
1605 if (changed < 0)
1606 return changed;
1607 if (params->rmask) {
1608 int err = snd_pcm_hw_refine(pcm, params);
1609 if (snd_BUG_ON(err < 0))
1610 return err;
1611 }
1612 return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628 struct snd_pcm_hw_params *params)
1629{
1630 static int vars[] = {
1631 SNDRV_PCM_HW_PARAM_ACCESS,
1632 SNDRV_PCM_HW_PARAM_FORMAT,
1633 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634 SNDRV_PCM_HW_PARAM_CHANNELS,
1635 SNDRV_PCM_HW_PARAM_RATE,
1636 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638 SNDRV_PCM_HW_PARAM_TICK_TIME,
1639 -1
1640 };
1641 int err, *v;
1642
1643 for (v = vars; *v != -1; v++) {
1644 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646 else
1647 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648 if (snd_BUG_ON(err < 0))
1649 return err;
1650 }
1651 return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655 void *arg)
1656{
1657 struct snd_pcm_runtime *runtime = substream->runtime;
1658 unsigned long flags;
1659 snd_pcm_stream_lock_irqsave(substream, flags);
1660 if (snd_pcm_running(substream) &&
1661 snd_pcm_update_hw_ptr(substream) >= 0)
1662 runtime->status->hw_ptr %= runtime->buffer_size;
1663 else
1664 runtime->status->hw_ptr = 0;
1665 snd_pcm_stream_unlock_irqrestore(substream, flags);
1666 return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670 void *arg)
1671{
1672 struct snd_pcm_channel_info *info = arg;
1673 struct snd_pcm_runtime *runtime = substream->runtime;
1674 int width;
1675 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676 info->offset = -1;
1677 return 0;
1678 }
1679 width = snd_pcm_format_physical_width(runtime->format);
1680 if (width < 0)
1681 return width;
1682 info->offset = 0;
1683 switch (runtime->access) {
1684 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686 info->first = info->channel * width;
1687 info->step = runtime->channels * width;
1688 break;
1689 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691 {
1692 size_t size = runtime->dma_bytes / runtime->channels;
1693 info->first = info->channel * size * 8;
1694 info->step = width;
1695 break;
1696 }
1697 default:
1698 snd_BUG();
1699 break;
1700 }
1701 return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705 void *arg)
1706{
1707 struct snd_pcm_hw_params *params = arg;
1708 snd_pcm_format_t format;
1709 int channels, width;
1710
1711 params->fifo_size = substream->runtime->hw.fifo_size;
1712 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713 format = params_format(params);
1714 channels = params_channels(params);
1715 width = snd_pcm_format_physical_width(format);
1716 params->fifo_size /= width * channels;
1717 }
1718 return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733 unsigned int cmd, void *arg)
1734{
1735 switch (cmd) {
1736 case SNDRV_PCM_IOCTL1_INFO:
1737 return 0;
1738 case SNDRV_PCM_IOCTL1_RESET:
1739 return snd_pcm_lib_ioctl_reset(substream, arg);
1740 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744 }
1745 return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size. It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763 struct snd_pcm_runtime *runtime;
1764 unsigned long flags;
1765
1766 if (PCM_RUNTIME_CHECK(substream))
1767 return;
1768 runtime = substream->runtime;
1769
1770 if (runtime->transfer_ack_begin)
1771 runtime->transfer_ack_begin(substream);
1772
1773 snd_pcm_stream_lock_irqsave(substream, flags);
1774 if (!snd_pcm_running(substream) ||
1775 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776 goto _end;
1777
1778 if (substream->timer_running)
1779 snd_timer_interrupt(substream->timer, 1);
1780 _end:
1781 snd_pcm_stream_unlock_irqrestore(substream, flags);
1782 if (runtime->transfer_ack_end)
1783 runtime->transfer_ack_end(substream);
1784 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp. When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796 snd_pcm_uframes_t *availp)
1797{
1798 struct snd_pcm_runtime *runtime = substream->runtime;
1799 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800 wait_queue_t wait;
1801 int err = 0;
1802 snd_pcm_uframes_t avail = 0;
1803 long wait_time, tout;
1804
1805 init_waitqueue_entry(&wait, current);
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 add_wait_queue(&runtime->tsleep, &wait);
1808
1809 if (runtime->no_period_wakeup)
1810 wait_time = MAX_SCHEDULE_TIMEOUT;
1811 else {
1812 wait_time = 10;
1813 if (runtime->rate) {
1814 long t = runtime->period_size * 2 / runtime->rate;
1815 wait_time = max(t, wait_time);
1816 }
1817 wait_time = msecs_to_jiffies(wait_time * 1000);
1818 }
1819
1820 for (;;) {
1821 if (signal_pending(current)) {
1822 err = -ERESTARTSYS;
1823 break;
1824 }
1825
1826 /*
1827 * We need to check if space became available already
1828 * (and thus the wakeup happened already) first to close
1829 * the race of space already having become available.
1830 * This check must happen after been added to the waitqueue
1831 * and having current state be INTERRUPTIBLE.
1832 */
1833 if (is_playback)
1834 avail = snd_pcm_playback_avail(runtime);
1835 else
1836 avail = snd_pcm_capture_avail(runtime);
1837 if (avail >= runtime->twake)
1838 break;
1839 snd_pcm_stream_unlock_irq(substream);
1840
1841 tout = schedule_timeout(wait_time);
1842
1843 snd_pcm_stream_lock_irq(substream);
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 switch (runtime->status->state) {
1846 case SNDRV_PCM_STATE_SUSPENDED:
1847 err = -ESTRPIPE;
1848 goto _endloop;
1849 case SNDRV_PCM_STATE_XRUN:
1850 err = -EPIPE;
1851 goto _endloop;
1852 case SNDRV_PCM_STATE_DRAINING:
1853 if (is_playback)
1854 err = -EPIPE;
1855 else
1856 avail = 0; /* indicate draining */
1857 goto _endloop;
1858 case SNDRV_PCM_STATE_OPEN:
1859 case SNDRV_PCM_STATE_SETUP:
1860 case SNDRV_PCM_STATE_DISCONNECTED:
1861 err = -EBADFD;
1862 goto _endloop;
1863 }
1864 if (!tout) {
1865 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866 is_playback ? "playback" : "capture");
1867 err = -EIO;
1868 break;
1869 }
1870 }
1871 _endloop:
1872 set_current_state(TASK_RUNNING);
1873 remove_wait_queue(&runtime->tsleep, &wait);
1874 *availp = avail;
1875 return err;
1876}
1877
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879 unsigned int hwoff,
1880 unsigned long data, unsigned int off,
1881 snd_pcm_uframes_t frames)
1882{
1883 struct snd_pcm_runtime *runtime = substream->runtime;
1884 int err;
1885 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886 if (substream->ops->copy) {
1887 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888 return err;
1889 } else {
1890 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892 return -EFAULT;
1893 }
1894 return 0;
1895}
1896
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898 unsigned long data, unsigned int off,
1899 snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1902 unsigned long data,
1903 snd_pcm_uframes_t size,
1904 int nonblock,
1905 transfer_f transfer)
1906{
1907 struct snd_pcm_runtime *runtime = substream->runtime;
1908 snd_pcm_uframes_t xfer = 0;
1909 snd_pcm_uframes_t offset = 0;
1910 snd_pcm_uframes_t avail;
1911 int err = 0;
1912
1913 if (size == 0)
1914 return 0;
1915
1916 snd_pcm_stream_lock_irq(substream);
1917 switch (runtime->status->state) {
1918 case SNDRV_PCM_STATE_PREPARED:
1919 case SNDRV_PCM_STATE_RUNNING:
1920 case SNDRV_PCM_STATE_PAUSED:
1921 break;
1922 case SNDRV_PCM_STATE_XRUN:
1923 err = -EPIPE;
1924 goto _end_unlock;
1925 case SNDRV_PCM_STATE_SUSPENDED:
1926 err = -ESTRPIPE;
1927 goto _end_unlock;
1928 default:
1929 err = -EBADFD;
1930 goto _end_unlock;
1931 }
1932
1933 runtime->twake = runtime->control->avail_min ? : 1;
1934 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935 snd_pcm_update_hw_ptr(substream);
1936 avail = snd_pcm_playback_avail(runtime);
1937 while (size > 0) {
1938 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939 snd_pcm_uframes_t cont;
1940 if (!avail) {
1941 if (nonblock) {
1942 err = -EAGAIN;
1943 goto _end_unlock;
1944 }
1945 runtime->twake = min_t(snd_pcm_uframes_t, size,
1946 runtime->control->avail_min ? : 1);
1947 err = wait_for_avail(substream, &avail);
1948 if (err < 0)
1949 goto _end_unlock;
1950 }
1951 frames = size > avail ? avail : size;
1952 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953 if (frames > cont)
1954 frames = cont;
1955 if (snd_BUG_ON(!frames)) {
1956 runtime->twake = 0;
1957 snd_pcm_stream_unlock_irq(substream);
1958 return -EINVAL;
1959 }
1960 appl_ptr = runtime->control->appl_ptr;
1961 appl_ofs = appl_ptr % runtime->buffer_size;
1962 snd_pcm_stream_unlock_irq(substream);
1963 err = transfer(substream, appl_ofs, data, offset, frames);
1964 snd_pcm_stream_lock_irq(substream);
1965 if (err < 0)
1966 goto _end_unlock;
1967 switch (runtime->status->state) {
1968 case SNDRV_PCM_STATE_XRUN:
1969 err = -EPIPE;
1970 goto _end_unlock;
1971 case SNDRV_PCM_STATE_SUSPENDED:
1972 err = -ESTRPIPE;
1973 goto _end_unlock;
1974 default:
1975 break;
1976 }
1977 appl_ptr += frames;
1978 if (appl_ptr >= runtime->boundary)
1979 appl_ptr -= runtime->boundary;
1980 runtime->control->appl_ptr = appl_ptr;
1981 if (substream->ops->ack)
1982 substream->ops->ack(substream);
1983
1984 offset += frames;
1985 size -= frames;
1986 xfer += frames;
1987 avail -= frames;
1988 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990 err = snd_pcm_start(substream);
1991 if (err < 0)
1992 goto _end_unlock;
1993 }
1994 }
1995 _end_unlock:
1996 runtime->twake = 0;
1997 if (xfer > 0 && err >= 0)
1998 snd_pcm_update_state(substream, runtime);
1999 snd_pcm_stream_unlock_irq(substream);
2000 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006 struct snd_pcm_runtime *runtime;
2007 if (PCM_RUNTIME_CHECK(substream))
2008 return -ENXIO;
2009 runtime = substream->runtime;
2010 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011 return -EINVAL;
2012 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013 return -EBADFD;
2014 return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019 struct snd_pcm_runtime *runtime;
2020 int nonblock;
2021 int err;
2022
2023 err = pcm_sanity_check(substream);
2024 if (err < 0)
2025 return err;
2026 runtime = substream->runtime;
2027 nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030 runtime->channels > 1)
2031 return -EINVAL;
2032 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033 snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039 unsigned int hwoff,
2040 unsigned long data, unsigned int off,
2041 snd_pcm_uframes_t frames)
2042{
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044 int err;
2045 void __user **bufs = (void __user **)data;
2046 int channels = runtime->channels;
2047 int c;
2048 if (substream->ops->copy) {
2049 if (snd_BUG_ON(!substream->ops->silence))
2050 return -EINVAL;
2051 for (c = 0; c < channels; ++c, ++bufs) {
2052 if (*bufs == NULL) {
2053 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054 return err;
2055 } else {
2056 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058 return err;
2059 }
2060 }
2061 } else {
2062 /* default transfer behaviour */
2063 size_t dma_csize = runtime->dma_bytes / channels;
2064 for (c = 0; c < channels; ++c, ++bufs) {
2065 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066 if (*bufs == NULL) {
2067 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068 } else {
2069 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071 return -EFAULT;
2072 }
2073 }
2074 }
2075 return 0;
2076}
2077
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079 void __user **bufs,
2080 snd_pcm_uframes_t frames)
2081{
2082 struct snd_pcm_runtime *runtime;
2083 int nonblock;
2084 int err;
2085
2086 err = pcm_sanity_check(substream);
2087 if (err < 0)
2088 return err;
2089 runtime = substream->runtime;
2090 nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093 return -EINVAL;
2094 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095 nonblock, snd_pcm_lib_writev_transfer);
2096}
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2101 unsigned int hwoff,
2102 unsigned long data, unsigned int off,
2103 snd_pcm_uframes_t frames)
2104{
2105 struct snd_pcm_runtime *runtime = substream->runtime;
2106 int err;
2107 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108 if (substream->ops->copy) {
2109 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110 return err;
2111 } else {
2112 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114 return -EFAULT;
2115 }
2116 return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120 unsigned long data,
2121 snd_pcm_uframes_t size,
2122 int nonblock,
2123 transfer_f transfer)
2124{
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 snd_pcm_uframes_t xfer = 0;
2127 snd_pcm_uframes_t offset = 0;
2128 snd_pcm_uframes_t avail;
2129 int err = 0;
2130
2131 if (size == 0)
2132 return 0;
2133
2134 snd_pcm_stream_lock_irq(substream);
2135 switch (runtime->status->state) {
2136 case SNDRV_PCM_STATE_PREPARED:
2137 if (size >= runtime->start_threshold) {
2138 err = snd_pcm_start(substream);
2139 if (err < 0)
2140 goto _end_unlock;
2141 }
2142 break;
2143 case SNDRV_PCM_STATE_DRAINING:
2144 case SNDRV_PCM_STATE_RUNNING:
2145 case SNDRV_PCM_STATE_PAUSED:
2146 break;
2147 case SNDRV_PCM_STATE_XRUN:
2148 err = -EPIPE;
2149 goto _end_unlock;
2150 case SNDRV_PCM_STATE_SUSPENDED:
2151 err = -ESTRPIPE;
2152 goto _end_unlock;
2153 default:
2154 err = -EBADFD;
2155 goto _end_unlock;
2156 }
2157
2158 runtime->twake = runtime->control->avail_min ? : 1;
2159 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160 snd_pcm_update_hw_ptr(substream);
2161 avail = snd_pcm_capture_avail(runtime);
2162 while (size > 0) {
2163 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164 snd_pcm_uframes_t cont;
2165 if (!avail) {
2166 if (runtime->status->state ==
2167 SNDRV_PCM_STATE_DRAINING) {
2168 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169 goto _end_unlock;
2170 }
2171 if (nonblock) {
2172 err = -EAGAIN;
2173 goto _end_unlock;
2174 }
2175 runtime->twake = min_t(snd_pcm_uframes_t, size,
2176 runtime->control->avail_min ? : 1);
2177 err = wait_for_avail(substream, &avail);
2178 if (err < 0)
2179 goto _end_unlock;
2180 if (!avail)
2181 continue; /* draining */
2182 }
2183 frames = size > avail ? avail : size;
2184 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185 if (frames > cont)
2186 frames = cont;
2187 if (snd_BUG_ON(!frames)) {
2188 runtime->twake = 0;
2189 snd_pcm_stream_unlock_irq(substream);
2190 return -EINVAL;
2191 }
2192 appl_ptr = runtime->control->appl_ptr;
2193 appl_ofs = appl_ptr % runtime->buffer_size;
2194 snd_pcm_stream_unlock_irq(substream);
2195 err = transfer(substream, appl_ofs, data, offset, frames);
2196 snd_pcm_stream_lock_irq(substream);
2197 if (err < 0)
2198 goto _end_unlock;
2199 switch (runtime->status->state) {
2200 case SNDRV_PCM_STATE_XRUN:
2201 err = -EPIPE;
2202 goto _end_unlock;
2203 case SNDRV_PCM_STATE_SUSPENDED:
2204 err = -ESTRPIPE;
2205 goto _end_unlock;
2206 default:
2207 break;
2208 }
2209 appl_ptr += frames;
2210 if (appl_ptr >= runtime->boundary)
2211 appl_ptr -= runtime->boundary;
2212 runtime->control->appl_ptr = appl_ptr;
2213 if (substream->ops->ack)
2214 substream->ops->ack(substream);
2215
2216 offset += frames;
2217 size -= frames;
2218 xfer += frames;
2219 avail -= frames;
2220 }
2221 _end_unlock:
2222 runtime->twake = 0;
2223 if (xfer > 0 && err >= 0)
2224 snd_pcm_update_state(substream, runtime);
2225 snd_pcm_stream_unlock_irq(substream);
2226 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231 struct snd_pcm_runtime *runtime;
2232 int nonblock;
2233 int err;
2234
2235 err = pcm_sanity_check(substream);
2236 if (err < 0)
2237 return err;
2238 runtime = substream->runtime;
2239 nonblock = !!(substream->f_flags & O_NONBLOCK);
2240 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241 return -EINVAL;
2242 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248 unsigned int hwoff,
2249 unsigned long data, unsigned int off,
2250 snd_pcm_uframes_t frames)
2251{
2252 struct snd_pcm_runtime *runtime = substream->runtime;
2253 int err;
2254 void __user **bufs = (void __user **)data;
2255 int channels = runtime->channels;
2256 int c;
2257 if (substream->ops->copy) {
2258 for (c = 0; c < channels; ++c, ++bufs) {
2259 char __user *buf;
2260 if (*bufs == NULL)
2261 continue;
2262 buf = *bufs + samples_to_bytes(runtime, off);
2263 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264 return err;
2265 }
2266 } else {
2267 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268 for (c = 0; c < channels; ++c, ++bufs) {
2269 char *hwbuf;
2270 char __user *buf;
2271 if (*bufs == NULL)
2272 continue;
2273
2274 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275 buf = *bufs + samples_to_bytes(runtime, off);
2276 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277 return -EFAULT;
2278 }
2279 }
2280 return 0;
2281}
2282
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284 void __user **bufs,
2285 snd_pcm_uframes_t frames)
2286{
2287 struct snd_pcm_runtime *runtime;
2288 int nonblock;
2289 int err;
2290
2291 err = pcm_sanity_check(substream);
2292 if (err < 0)
2293 return err;
2294 runtime = substream->runtime;
2295 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296 return -EBADFD;
2297
2298 nonblock = !!(substream->f_flags & O_NONBLOCK);
2299 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300 return -EINVAL;
2301 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);