Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.10.11
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
  35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  36#define CREATE_TRACE_POINTS
  37#include "pcm_trace.h"
  38#else
  39#define trace_hwptr(substream, pos, in_interrupt)
  40#define trace_xrun(substream)
  41#define trace_hw_ptr_error(substream, reason)
  42#endif
  43
  44/*
  45 * fill ring buffer with silence
  46 * runtime->silence_start: starting pointer to silence area
  47 * runtime->silence_filled: size filled with silence
  48 * runtime->silence_threshold: threshold from application
  49 * runtime->silence_size: maximal size from application
  50 *
  51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  52 */
  53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  54{
  55	struct snd_pcm_runtime *runtime = substream->runtime;
  56	snd_pcm_uframes_t frames, ofs, transfer;
  57
  58	if (runtime->silence_size < runtime->boundary) {
  59		snd_pcm_sframes_t noise_dist, n;
  60		if (runtime->silence_start != runtime->control->appl_ptr) {
  61			n = runtime->control->appl_ptr - runtime->silence_start;
  62			if (n < 0)
  63				n += runtime->boundary;
  64			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  65				runtime->silence_filled -= n;
  66			else
  67				runtime->silence_filled = 0;
  68			runtime->silence_start = runtime->control->appl_ptr;
  69		}
  70		if (runtime->silence_filled >= runtime->buffer_size)
  71			return;
  72		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  73		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  74			return;
  75		frames = runtime->silence_threshold - noise_dist;
  76		if (frames > runtime->silence_size)
  77			frames = runtime->silence_size;
  78	} else {
  79		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  80			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  81			if (avail > runtime->buffer_size)
  82				avail = runtime->buffer_size;
  83			runtime->silence_filled = avail > 0 ? avail : 0;
  84			runtime->silence_start = (runtime->status->hw_ptr +
  85						  runtime->silence_filled) %
  86						 runtime->boundary;
  87		} else {
  88			ofs = runtime->status->hw_ptr;
  89			frames = new_hw_ptr - ofs;
  90			if ((snd_pcm_sframes_t)frames < 0)
  91				frames += runtime->boundary;
  92			runtime->silence_filled -= frames;
  93			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  94				runtime->silence_filled = 0;
  95				runtime->silence_start = new_hw_ptr;
  96			} else {
  97				runtime->silence_start = ofs;
  98			}
  99		}
 100		frames = runtime->buffer_size - runtime->silence_filled;
 101	}
 102	if (snd_BUG_ON(frames > runtime->buffer_size))
 103		return;
 104	if (frames == 0)
 105		return;
 106	ofs = runtime->silence_start % runtime->buffer_size;
 107	while (frames > 0) {
 108		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 109		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 110		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 111			if (substream->ops->silence) {
 112				int err;
 113				err = substream->ops->silence(substream, -1, ofs, transfer);
 114				snd_BUG_ON(err < 0);
 115			} else {
 116				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 117				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 118			}
 119		} else {
 120			unsigned int c;
 121			unsigned int channels = runtime->channels;
 122			if (substream->ops->silence) {
 123				for (c = 0; c < channels; ++c) {
 124					int err;
 125					err = substream->ops->silence(substream, c, ofs, transfer);
 126					snd_BUG_ON(err < 0);
 127				}
 128			} else {
 129				size_t dma_csize = runtime->dma_bytes / channels;
 130				for (c = 0; c < channels; ++c) {
 131					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 132					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 133				}
 134			}
 135		}
 136		runtime->silence_filled += transfer;
 137		frames -= transfer;
 138		ofs = 0;
 139	}
 140}
 141
 142#ifdef CONFIG_SND_DEBUG
 143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 144			   char *name, size_t len)
 145{
 146	snprintf(name, len, "pcmC%dD%d%c:%d",
 147		 substream->pcm->card->number,
 148		 substream->pcm->device,
 149		 substream->stream ? 'c' : 'p',
 150		 substream->number);
 151}
 152EXPORT_SYMBOL(snd_pcm_debug_name);
 153#endif
 154
 155#define XRUN_DEBUG_BASIC	(1<<0)
 156#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 157#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 
 
 
 
 158
 159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 160
 161#define xrun_debug(substream, mask) \
 162			((substream)->pstr->xrun_debug & (mask))
 163#else
 164#define xrun_debug(substream, mask)	0
 165#endif
 166
 167#define dump_stack_on_xrun(substream) do {			\
 168		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 169			dump_stack();				\
 170	} while (0)
 171
 172static void xrun(struct snd_pcm_substream *substream)
 173{
 174	struct snd_pcm_runtime *runtime = substream->runtime;
 175
 176	trace_xrun(substream);
 177	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 178		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 179	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 180	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 181		char name[16];
 182		snd_pcm_debug_name(substream, name, sizeof(name));
 183		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 184		dump_stack_on_xrun(substream);
 185	}
 186}
 187
 188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 190	do {								\
 191		trace_hw_ptr_error(substream, reason);	\
 192		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 193			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 194					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 
 
 195			dump_stack_on_xrun(substream);			\
 196		}							\
 197	} while (0)
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 200
 201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 
 
 202
 203#endif
 204
 205int snd_pcm_update_state(struct snd_pcm_substream *substream,
 206			 struct snd_pcm_runtime *runtime)
 207{
 208	snd_pcm_uframes_t avail;
 209
 210	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 211		avail = snd_pcm_playback_avail(runtime);
 212	else
 213		avail = snd_pcm_capture_avail(runtime);
 214	if (avail > runtime->avail_max)
 215		runtime->avail_max = avail;
 216	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 217		if (avail >= runtime->buffer_size) {
 218			snd_pcm_drain_done(substream);
 219			return -EPIPE;
 220		}
 221	} else {
 222		if (avail >= runtime->stop_threshold) {
 223			xrun(substream);
 224			return -EPIPE;
 225		}
 226	}
 227	if (runtime->twake) {
 228		if (avail >= runtime->twake)
 229			wake_up(&runtime->tsleep);
 230	} else if (avail >= runtime->control->avail_min)
 231		wake_up(&runtime->sleep);
 232	return 0;
 233}
 234
 235static void update_audio_tstamp(struct snd_pcm_substream *substream,
 236				struct timespec *curr_tstamp,
 237				struct timespec *audio_tstamp)
 238{
 239	struct snd_pcm_runtime *runtime = substream->runtime;
 240	u64 audio_frames, audio_nsecs;
 241	struct timespec driver_tstamp;
 242
 243	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 244		return;
 245
 246	if (!(substream->ops->get_time_info) ||
 247		(runtime->audio_tstamp_report.actual_type ==
 248			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 249
 250		/*
 251		 * provide audio timestamp derived from pointer position
 252		 * add delay only if requested
 253		 */
 254
 255		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 256
 257		if (runtime->audio_tstamp_config.report_delay) {
 258			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 259				audio_frames -=  runtime->delay;
 260			else
 261				audio_frames +=  runtime->delay;
 262		}
 263		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 264				runtime->rate);
 265		*audio_tstamp = ns_to_timespec(audio_nsecs);
 266	}
 267	runtime->status->audio_tstamp = *audio_tstamp;
 268	runtime->status->tstamp = *curr_tstamp;
 269
 270	/*
 271	 * re-take a driver timestamp to let apps detect if the reference tstamp
 272	 * read by low-level hardware was provided with a delay
 273	 */
 274	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 275	runtime->driver_tstamp = driver_tstamp;
 276}
 277
 278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 279				  unsigned int in_interrupt)
 280{
 281	struct snd_pcm_runtime *runtime = substream->runtime;
 282	snd_pcm_uframes_t pos;
 283	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 284	snd_pcm_sframes_t hdelta, delta;
 285	unsigned long jdelta;
 286	unsigned long curr_jiffies;
 287	struct timespec curr_tstamp;
 288	struct timespec audio_tstamp;
 289	int crossed_boundary = 0;
 290
 291	old_hw_ptr = runtime->status->hw_ptr;
 292
 293	/*
 294	 * group pointer, time and jiffies reads to allow for more
 295	 * accurate correlations/corrections.
 296	 * The values are stored at the end of this routine after
 297	 * corrections for hw_ptr position
 298	 */
 299	pos = substream->ops->pointer(substream);
 300	curr_jiffies = jiffies;
 301	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 302		if ((substream->ops->get_time_info) &&
 303			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 304			substream->ops->get_time_info(substream, &curr_tstamp,
 305						&audio_tstamp,
 306						&runtime->audio_tstamp_config,
 307						&runtime->audio_tstamp_report);
 308
 309			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 310			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 311				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 312		} else
 313			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 314	}
 315
 316	if (pos == SNDRV_PCM_POS_XRUN) {
 317		xrun(substream);
 318		return -EPIPE;
 319	}
 320	if (pos >= runtime->buffer_size) {
 321		if (printk_ratelimit()) {
 322			char name[16];
 323			snd_pcm_debug_name(substream, name, sizeof(name));
 324			pcm_err(substream->pcm,
 325				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 326				name, pos, runtime->buffer_size,
 327				runtime->period_size);
 
 328		}
 329		pos = 0;
 330	}
 331	pos -= pos % runtime->min_align;
 332	trace_hwptr(substream, pos, in_interrupt);
 
 333	hw_base = runtime->hw_ptr_base;
 334	new_hw_ptr = hw_base + pos;
 335	if (in_interrupt) {
 336		/* we know that one period was processed */
 337		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 338		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 339		if (delta > new_hw_ptr) {
 340			/* check for double acknowledged interrupts */
 341			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 342			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 343				hw_base += runtime->buffer_size;
 344				if (hw_base >= runtime->boundary) {
 345					hw_base = 0;
 346					crossed_boundary++;
 347				}
 348				new_hw_ptr = hw_base + pos;
 349				goto __delta;
 350			}
 351		}
 352	}
 353	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 354	/* pointer crosses the end of the ring buffer */
 355	if (new_hw_ptr < old_hw_ptr) {
 356		hw_base += runtime->buffer_size;
 357		if (hw_base >= runtime->boundary) {
 358			hw_base = 0;
 359			crossed_boundary++;
 360		}
 361		new_hw_ptr = hw_base + pos;
 362	}
 363      __delta:
 364	delta = new_hw_ptr - old_hw_ptr;
 365	if (delta < 0)
 366		delta += runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368	if (runtime->no_period_wakeup) {
 369		snd_pcm_sframes_t xrun_threshold;
 370		/*
 371		 * Without regular period interrupts, we have to check
 372		 * the elapsed time to detect xruns.
 373		 */
 374		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 375		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 376			goto no_delta_check;
 377		hdelta = jdelta - delta * HZ / runtime->rate;
 378		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 379		while (hdelta > xrun_threshold) {
 380			delta += runtime->buffer_size;
 381			hw_base += runtime->buffer_size;
 382			if (hw_base >= runtime->boundary) {
 383				hw_base = 0;
 384				crossed_boundary++;
 385			}
 386			new_hw_ptr = hw_base + pos;
 387			hdelta -= runtime->hw_ptr_buffer_jiffies;
 388		}
 389		goto no_delta_check;
 390	}
 391
 392	/* something must be really wrong */
 393	if (delta >= runtime->buffer_size + runtime->period_size) {
 394		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 395			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 396			     substream->stream, (long)pos,
 397			     (long)new_hw_ptr, (long)old_hw_ptr);
 
 
 
 398		return 0;
 399	}
 400
 401	/* Do jiffies check only in xrun_debug mode */
 402	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 403		goto no_jiffies_check;
 404
 405	/* Skip the jiffies check for hardwares with BATCH flag.
 406	 * Such hardware usually just increases the position at each IRQ,
 407	 * thus it can't give any strange position.
 408	 */
 409	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 410		goto no_jiffies_check;
 411	hdelta = delta;
 412	if (hdelta < runtime->delay)
 413		goto no_jiffies_check;
 414	hdelta -= runtime->delay;
 415	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 416	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 417		delta = jdelta /
 418			(((runtime->period_size * HZ) / runtime->rate)
 419								+ HZ/100);
 420		/* move new_hw_ptr according jiffies not pos variable */
 421		new_hw_ptr = old_hw_ptr;
 422		hw_base = delta;
 423		/* use loop to avoid checks for delta overflows */
 424		/* the delta value is small or zero in most cases */
 425		while (delta > 0) {
 426			new_hw_ptr += runtime->period_size;
 427			if (new_hw_ptr >= runtime->boundary) {
 428				new_hw_ptr -= runtime->boundary;
 429				crossed_boundary--;
 430			}
 431			delta--;
 432		}
 433		/* align hw_base to buffer_size */
 434		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 435			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 
 
 
 436			     (long)pos, (long)hdelta,
 437			     (long)runtime->period_size, jdelta,
 438			     ((hdelta * HZ) / runtime->rate), hw_base,
 439			     (unsigned long)old_hw_ptr,
 440			     (unsigned long)new_hw_ptr);
 441		/* reset values to proper state */
 442		delta = 0;
 443		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 444	}
 445 no_jiffies_check:
 446	if (delta > runtime->period_size + runtime->period_size / 2) {
 447		hw_ptr_error(substream, in_interrupt,
 448			     "Lost interrupts?",
 449			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 
 
 450			     substream->stream, (long)delta,
 451			     (long)new_hw_ptr,
 452			     (long)old_hw_ptr);
 453	}
 454
 455 no_delta_check:
 456	if (runtime->status->hw_ptr == new_hw_ptr) {
 457		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 458		return 0;
 459	}
 460
 461	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 462	    runtime->silence_size > 0)
 463		snd_pcm_playback_silence(substream, new_hw_ptr);
 464
 465	if (in_interrupt) {
 466		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 467		if (delta < 0)
 468			delta += runtime->boundary;
 469		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 470		runtime->hw_ptr_interrupt += delta;
 471		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 472			runtime->hw_ptr_interrupt -= runtime->boundary;
 473	}
 474	runtime->hw_ptr_base = hw_base;
 475	runtime->status->hw_ptr = new_hw_ptr;
 476	runtime->hw_ptr_jiffies = curr_jiffies;
 477	if (crossed_boundary) {
 478		snd_BUG_ON(crossed_boundary != 1);
 479		runtime->hw_ptr_wrap += runtime->boundary;
 480	}
 481
 482	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 483
 484	return snd_pcm_update_state(substream, runtime);
 485}
 486
 487/* CAUTION: call it with irq disabled */
 488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 489{
 490	return snd_pcm_update_hw_ptr0(substream, 0);
 491}
 492
 493/**
 494 * snd_pcm_set_ops - set the PCM operators
 495 * @pcm: the pcm instance
 496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 497 * @ops: the operator table
 498 *
 499 * Sets the given PCM operators to the pcm instance.
 500 */
 501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 502		     const struct snd_pcm_ops *ops)
 503{
 504	struct snd_pcm_str *stream = &pcm->streams[direction];
 505	struct snd_pcm_substream *substream;
 506	
 507	for (substream = stream->substream; substream != NULL; substream = substream->next)
 508		substream->ops = ops;
 509}
 510
 511EXPORT_SYMBOL(snd_pcm_set_ops);
 512
 513/**
 514 * snd_pcm_sync - set the PCM sync id
 515 * @substream: the pcm substream
 516 *
 517 * Sets the PCM sync identifier for the card.
 518 */
 519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 520{
 521	struct snd_pcm_runtime *runtime = substream->runtime;
 522	
 523	runtime->sync.id32[0] = substream->pcm->card->number;
 524	runtime->sync.id32[1] = -1;
 525	runtime->sync.id32[2] = -1;
 526	runtime->sync.id32[3] = -1;
 527}
 528
 529EXPORT_SYMBOL(snd_pcm_set_sync);
 530
 531/*
 532 *  Standard ioctl routine
 533 */
 534
 535static inline unsigned int div32(unsigned int a, unsigned int b, 
 536				 unsigned int *r)
 537{
 538	if (b == 0) {
 539		*r = 0;
 540		return UINT_MAX;
 541	}
 542	*r = a % b;
 543	return a / b;
 544}
 545
 546static inline unsigned int div_down(unsigned int a, unsigned int b)
 547{
 548	if (b == 0)
 549		return UINT_MAX;
 550	return a / b;
 551}
 552
 553static inline unsigned int div_up(unsigned int a, unsigned int b)
 554{
 555	unsigned int r;
 556	unsigned int q;
 557	if (b == 0)
 558		return UINT_MAX;
 559	q = div32(a, b, &r);
 560	if (r)
 561		++q;
 562	return q;
 563}
 564
 565static inline unsigned int mul(unsigned int a, unsigned int b)
 566{
 567	if (a == 0)
 568		return 0;
 569	if (div_down(UINT_MAX, a) < b)
 570		return UINT_MAX;
 571	return a * b;
 572}
 573
 574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 575				    unsigned int c, unsigned int *r)
 576{
 577	u_int64_t n = (u_int64_t) a * b;
 578	if (c == 0) {
 579		snd_BUG_ON(!n);
 580		*r = 0;
 581		return UINT_MAX;
 582	}
 583	n = div_u64_rem(n, c, r);
 584	if (n >= UINT_MAX) {
 585		*r = 0;
 586		return UINT_MAX;
 587	}
 588	return n;
 589}
 590
 591/**
 592 * snd_interval_refine - refine the interval value of configurator
 593 * @i: the interval value to refine
 594 * @v: the interval value to refer to
 595 *
 596 * Refines the interval value with the reference value.
 597 * The interval is changed to the range satisfying both intervals.
 598 * The interval status (min, max, integer, etc.) are evaluated.
 599 *
 600 * Return: Positive if the value is changed, zero if it's not changed, or a
 601 * negative error code.
 602 */
 603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 604{
 605	int changed = 0;
 606	if (snd_BUG_ON(snd_interval_empty(i)))
 607		return -EINVAL;
 608	if (i->min < v->min) {
 609		i->min = v->min;
 610		i->openmin = v->openmin;
 611		changed = 1;
 612	} else if (i->min == v->min && !i->openmin && v->openmin) {
 613		i->openmin = 1;
 614		changed = 1;
 615	}
 616	if (i->max > v->max) {
 617		i->max = v->max;
 618		i->openmax = v->openmax;
 619		changed = 1;
 620	} else if (i->max == v->max && !i->openmax && v->openmax) {
 621		i->openmax = 1;
 622		changed = 1;
 623	}
 624	if (!i->integer && v->integer) {
 625		i->integer = 1;
 626		changed = 1;
 627	}
 628	if (i->integer) {
 629		if (i->openmin) {
 630			i->min++;
 631			i->openmin = 0;
 632		}
 633		if (i->openmax) {
 634			i->max--;
 635			i->openmax = 0;
 636		}
 637	} else if (!i->openmin && !i->openmax && i->min == i->max)
 638		i->integer = 1;
 639	if (snd_interval_checkempty(i)) {
 640		snd_interval_none(i);
 641		return -EINVAL;
 642	}
 643	return changed;
 644}
 645
 646EXPORT_SYMBOL(snd_interval_refine);
 647
 648static int snd_interval_refine_first(struct snd_interval *i)
 649{
 650	if (snd_BUG_ON(snd_interval_empty(i)))
 651		return -EINVAL;
 652	if (snd_interval_single(i))
 653		return 0;
 654	i->max = i->min;
 655	i->openmax = i->openmin;
 656	if (i->openmax)
 657		i->max++;
 658	return 1;
 659}
 660
 661static int snd_interval_refine_last(struct snd_interval *i)
 662{
 663	if (snd_BUG_ON(snd_interval_empty(i)))
 664		return -EINVAL;
 665	if (snd_interval_single(i))
 666		return 0;
 667	i->min = i->max;
 668	i->openmin = i->openmax;
 669	if (i->openmin)
 670		i->min--;
 671	return 1;
 672}
 673
 674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 675{
 676	if (a->empty || b->empty) {
 677		snd_interval_none(c);
 678		return;
 679	}
 680	c->empty = 0;
 681	c->min = mul(a->min, b->min);
 682	c->openmin = (a->openmin || b->openmin);
 683	c->max = mul(a->max,  b->max);
 684	c->openmax = (a->openmax || b->openmax);
 685	c->integer = (a->integer && b->integer);
 686}
 687
 688/**
 689 * snd_interval_div - refine the interval value with division
 690 * @a: dividend
 691 * @b: divisor
 692 * @c: quotient
 693 *
 694 * c = a / b
 695 *
 696 * Returns non-zero if the value is changed, zero if not changed.
 697 */
 698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 699{
 700	unsigned int r;
 701	if (a->empty || b->empty) {
 702		snd_interval_none(c);
 703		return;
 704	}
 705	c->empty = 0;
 706	c->min = div32(a->min, b->max, &r);
 707	c->openmin = (r || a->openmin || b->openmax);
 708	if (b->min > 0) {
 709		c->max = div32(a->max, b->min, &r);
 710		if (r) {
 711			c->max++;
 712			c->openmax = 1;
 713		} else
 714			c->openmax = (a->openmax || b->openmin);
 715	} else {
 716		c->max = UINT_MAX;
 717		c->openmax = 0;
 718	}
 719	c->integer = 0;
 720}
 721
 722/**
 723 * snd_interval_muldivk - refine the interval value
 724 * @a: dividend 1
 725 * @b: dividend 2
 726 * @k: divisor (as integer)
 727 * @c: result
 728  *
 729 * c = a * b / k
 730 *
 731 * Returns non-zero if the value is changed, zero if not changed.
 732 */
 733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 734		      unsigned int k, struct snd_interval *c)
 735{
 736	unsigned int r;
 737	if (a->empty || b->empty) {
 738		snd_interval_none(c);
 739		return;
 740	}
 741	c->empty = 0;
 742	c->min = muldiv32(a->min, b->min, k, &r);
 743	c->openmin = (r || a->openmin || b->openmin);
 744	c->max = muldiv32(a->max, b->max, k, &r);
 745	if (r) {
 746		c->max++;
 747		c->openmax = 1;
 748	} else
 749		c->openmax = (a->openmax || b->openmax);
 750	c->integer = 0;
 751}
 752
 753/**
 754 * snd_interval_mulkdiv - refine the interval value
 755 * @a: dividend 1
 756 * @k: dividend 2 (as integer)
 757 * @b: divisor
 758 * @c: result
 759 *
 760 * c = a * k / b
 761 *
 762 * Returns non-zero if the value is changed, zero if not changed.
 763 */
 764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 765		      const struct snd_interval *b, struct snd_interval *c)
 766{
 767	unsigned int r;
 768	if (a->empty || b->empty) {
 769		snd_interval_none(c);
 770		return;
 771	}
 772	c->empty = 0;
 773	c->min = muldiv32(a->min, k, b->max, &r);
 774	c->openmin = (r || a->openmin || b->openmax);
 775	if (b->min > 0) {
 776		c->max = muldiv32(a->max, k, b->min, &r);
 777		if (r) {
 778			c->max++;
 779			c->openmax = 1;
 780		} else
 781			c->openmax = (a->openmax || b->openmin);
 782	} else {
 783		c->max = UINT_MAX;
 784		c->openmax = 0;
 785	}
 786	c->integer = 0;
 787}
 788
 789/* ---- */
 790
 791
 792/**
 793 * snd_interval_ratnum - refine the interval value
 794 * @i: interval to refine
 795 * @rats_count: number of ratnum_t 
 796 * @rats: ratnum_t array
 797 * @nump: pointer to store the resultant numerator
 798 * @denp: pointer to store the resultant denominator
 799 *
 800 * Return: Positive if the value is changed, zero if it's not changed, or a
 801 * negative error code.
 802 */
 803int snd_interval_ratnum(struct snd_interval *i,
 804			unsigned int rats_count, const struct snd_ratnum *rats,
 805			unsigned int *nump, unsigned int *denp)
 806{
 807	unsigned int best_num, best_den;
 808	int best_diff;
 809	unsigned int k;
 810	struct snd_interval t;
 811	int err;
 812	unsigned int result_num, result_den;
 813	int result_diff;
 814
 815	best_num = best_den = best_diff = 0;
 816	for (k = 0; k < rats_count; ++k) {
 817		unsigned int num = rats[k].num;
 818		unsigned int den;
 819		unsigned int q = i->min;
 820		int diff;
 821		if (q == 0)
 822			q = 1;
 823		den = div_up(num, q);
 824		if (den < rats[k].den_min)
 825			continue;
 826		if (den > rats[k].den_max)
 827			den = rats[k].den_max;
 828		else {
 829			unsigned int r;
 830			r = (den - rats[k].den_min) % rats[k].den_step;
 831			if (r != 0)
 832				den -= r;
 833		}
 834		diff = num - q * den;
 835		if (diff < 0)
 836			diff = -diff;
 837		if (best_num == 0 ||
 838		    diff * best_den < best_diff * den) {
 839			best_diff = diff;
 840			best_den = den;
 841			best_num = num;
 842		}
 843	}
 844	if (best_den == 0) {
 845		i->empty = 1;
 846		return -EINVAL;
 847	}
 848	t.min = div_down(best_num, best_den);
 849	t.openmin = !!(best_num % best_den);
 850	
 851	result_num = best_num;
 852	result_diff = best_diff;
 853	result_den = best_den;
 854	best_num = best_den = best_diff = 0;
 855	for (k = 0; k < rats_count; ++k) {
 856		unsigned int num = rats[k].num;
 857		unsigned int den;
 858		unsigned int q = i->max;
 859		int diff;
 860		if (q == 0) {
 861			i->empty = 1;
 862			return -EINVAL;
 863		}
 864		den = div_down(num, q);
 865		if (den > rats[k].den_max)
 866			continue;
 867		if (den < rats[k].den_min)
 868			den = rats[k].den_min;
 869		else {
 870			unsigned int r;
 871			r = (den - rats[k].den_min) % rats[k].den_step;
 872			if (r != 0)
 873				den += rats[k].den_step - r;
 874		}
 875		diff = q * den - num;
 876		if (diff < 0)
 877			diff = -diff;
 878		if (best_num == 0 ||
 879		    diff * best_den < best_diff * den) {
 880			best_diff = diff;
 881			best_den = den;
 882			best_num = num;
 883		}
 884	}
 885	if (best_den == 0) {
 886		i->empty = 1;
 887		return -EINVAL;
 888	}
 889	t.max = div_up(best_num, best_den);
 890	t.openmax = !!(best_num % best_den);
 891	t.integer = 0;
 892	err = snd_interval_refine(i, &t);
 893	if (err < 0)
 894		return err;
 895
 896	if (snd_interval_single(i)) {
 897		if (best_diff * result_den < result_diff * best_den) {
 898			result_num = best_num;
 899			result_den = best_den;
 900		}
 901		if (nump)
 902			*nump = result_num;
 903		if (denp)
 904			*denp = result_den;
 905	}
 906	return err;
 907}
 908
 909EXPORT_SYMBOL(snd_interval_ratnum);
 910
 911/**
 912 * snd_interval_ratden - refine the interval value
 913 * @i: interval to refine
 914 * @rats_count: number of struct ratden
 915 * @rats: struct ratden array
 916 * @nump: pointer to store the resultant numerator
 917 * @denp: pointer to store the resultant denominator
 918 *
 919 * Return: Positive if the value is changed, zero if it's not changed, or a
 920 * negative error code.
 921 */
 922static int snd_interval_ratden(struct snd_interval *i,
 923			       unsigned int rats_count,
 924			       const struct snd_ratden *rats,
 925			       unsigned int *nump, unsigned int *denp)
 926{
 927	unsigned int best_num, best_diff, best_den;
 928	unsigned int k;
 929	struct snd_interval t;
 930	int err;
 931
 932	best_num = best_den = best_diff = 0;
 933	for (k = 0; k < rats_count; ++k) {
 934		unsigned int num;
 935		unsigned int den = rats[k].den;
 936		unsigned int q = i->min;
 937		int diff;
 938		num = mul(q, den);
 939		if (num > rats[k].num_max)
 940			continue;
 941		if (num < rats[k].num_min)
 942			num = rats[k].num_max;
 943		else {
 944			unsigned int r;
 945			r = (num - rats[k].num_min) % rats[k].num_step;
 946			if (r != 0)
 947				num += rats[k].num_step - r;
 948		}
 949		diff = num - q * den;
 950		if (best_num == 0 ||
 951		    diff * best_den < best_diff * den) {
 952			best_diff = diff;
 953			best_den = den;
 954			best_num = num;
 955		}
 956	}
 957	if (best_den == 0) {
 958		i->empty = 1;
 959		return -EINVAL;
 960	}
 961	t.min = div_down(best_num, best_den);
 962	t.openmin = !!(best_num % best_den);
 963	
 964	best_num = best_den = best_diff = 0;
 965	for (k = 0; k < rats_count; ++k) {
 966		unsigned int num;
 967		unsigned int den = rats[k].den;
 968		unsigned int q = i->max;
 969		int diff;
 970		num = mul(q, den);
 971		if (num < rats[k].num_min)
 972			continue;
 973		if (num > rats[k].num_max)
 974			num = rats[k].num_max;
 975		else {
 976			unsigned int r;
 977			r = (num - rats[k].num_min) % rats[k].num_step;
 978			if (r != 0)
 979				num -= r;
 980		}
 981		diff = q * den - num;
 982		if (best_num == 0 ||
 983		    diff * best_den < best_diff * den) {
 984			best_diff = diff;
 985			best_den = den;
 986			best_num = num;
 987		}
 988	}
 989	if (best_den == 0) {
 990		i->empty = 1;
 991		return -EINVAL;
 992	}
 993	t.max = div_up(best_num, best_den);
 994	t.openmax = !!(best_num % best_den);
 995	t.integer = 0;
 996	err = snd_interval_refine(i, &t);
 997	if (err < 0)
 998		return err;
 999
1000	if (snd_interval_single(i)) {
1001		if (nump)
1002			*nump = best_num;
1003		if (denp)
1004			*denp = best_den;
1005	}
1006	return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024		      const unsigned int *list, unsigned int mask)
1025{
1026        unsigned int k;
1027	struct snd_interval list_range;
1028
1029	if (!count) {
1030		i->empty = 1;
1031		return -EINVAL;
1032	}
1033	snd_interval_any(&list_range);
1034	list_range.min = UINT_MAX;
1035	list_range.max = 0;
1036        for (k = 0; k < count; k++) {
1037		if (mask && !(mask & (1 << k)))
1038			continue;
1039		if (!snd_interval_test(i, list[k]))
1040			continue;
1041		list_range.min = min(list_range.min, list[k]);
1042		list_range.max = max(list_range.max, list[k]);
1043        }
1044	return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064			const struct snd_interval *ranges, unsigned int mask)
1065{
1066	unsigned int k;
1067	struct snd_interval range_union;
1068	struct snd_interval range;
1069
1070	if (!count) {
1071		snd_interval_none(i);
1072		return -EINVAL;
1073	}
1074	snd_interval_any(&range_union);
1075	range_union.min = UINT_MAX;
1076	range_union.max = 0;
1077	for (k = 0; k < count; k++) {
1078		if (mask && !(mask & (1 << k)))
1079			continue;
1080		snd_interval_copy(&range, &ranges[k]);
1081		if (snd_interval_refine(&range, i) < 0)
1082			continue;
1083		if (snd_interval_empty(&range))
1084			continue;
1085
1086		if (range.min < range_union.min) {
1087			range_union.min = range.min;
1088			range_union.openmin = 1;
1089		}
1090		if (range.min == range_union.min && !range.openmin)
1091			range_union.openmin = 0;
1092		if (range.max > range_union.max) {
1093			range_union.max = range.max;
1094			range_union.openmax = 1;
1095		}
1096		if (range.max == range_union.max && !range.openmax)
1097			range_union.openmax = 0;
1098	}
1099	return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105	unsigned int n;
1106	int changed = 0;
1107	n = i->min % step;
1108	if (n != 0 || i->openmin) {
1109		i->min += step - n;
1110		i->openmin = 0;
1111		changed = 1;
1112	}
1113	n = i->max % step;
1114	if (n != 0 || i->openmax) {
1115		i->max -= n;
1116		i->openmax = 0;
1117		changed = 1;
1118	}
1119	if (snd_interval_checkempty(i)) {
1120		i->empty = 1;
1121		return -EINVAL;
1122	}
1123	return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140			int var,
1141			snd_pcm_hw_rule_func_t func, void *private,
1142			int dep, ...)
1143{
1144	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145	struct snd_pcm_hw_rule *c;
1146	unsigned int k;
1147	va_list args;
1148	va_start(args, dep);
1149	if (constrs->rules_num >= constrs->rules_all) {
1150		struct snd_pcm_hw_rule *new;
1151		unsigned int new_rules = constrs->rules_all + 16;
1152		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1153		if (!new) {
1154			va_end(args);
1155			return -ENOMEM;
1156		}
1157		if (constrs->rules) {
1158			memcpy(new, constrs->rules,
1159			       constrs->rules_num * sizeof(*c));
1160			kfree(constrs->rules);
1161		}
1162		constrs->rules = new;
1163		constrs->rules_all = new_rules;
1164	}
1165	c = &constrs->rules[constrs->rules_num];
1166	c->cond = cond;
1167	c->func = func;
1168	c->var = var;
1169	c->private = private;
1170	k = 0;
1171	while (1) {
1172		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173			va_end(args);
1174			return -EINVAL;
1175		}
1176		c->deps[k++] = dep;
1177		if (dep < 0)
1178			break;
1179		dep = va_arg(args, int);
1180	}
1181	constrs->rules_num++;
1182	va_end(args);
1183	return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199			       u_int32_t mask)
1200{
1201	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202	struct snd_mask *maskp = constrs_mask(constrs, var);
1203	*maskp->bits &= mask;
1204	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205	if (*maskp->bits == 0)
1206		return -EINVAL;
1207	return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221				 u_int64_t mask)
1222{
1223	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224	struct snd_mask *maskp = constrs_mask(constrs, var);
1225	maskp->bits[0] &= (u_int32_t)mask;
1226	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228	if (! maskp->bits[0] && ! maskp->bits[1])
1229		return -EINVAL;
1230	return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247	return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 * 
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265				 unsigned int min, unsigned int max)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	struct snd_interval t;
1269	t.min = min;
1270	t.max = max;
1271	t.openmin = t.openmax = 0;
1272	t.integer = 0;
1273	return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279				struct snd_pcm_hw_rule *rule)
1280{
1281	struct snd_pcm_hw_constraint_list *list = rule->private;
1282	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}		
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 * 
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298			       unsigned int cond,
1299			       snd_pcm_hw_param_t var,
1300			       const struct snd_pcm_hw_constraint_list *l)
1301{
1302	return snd_pcm_hw_rule_add(runtime, cond, var,
1303				   snd_pcm_hw_rule_list, (void *)l,
1304				   var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310				  struct snd_pcm_hw_rule *rule)
1311{
1312	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313	return snd_interval_ranges(hw_param_interval(params, rule->var),
1314				   r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330				 unsigned int cond,
1331				 snd_pcm_hw_param_t var,
1332				 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334	return snd_pcm_hw_rule_add(runtime, cond, var,
1335				   snd_pcm_hw_rule_ranges, (void *)r,
1336				   var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341				   struct snd_pcm_hw_rule *rule)
1342{
1343	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344	unsigned int num = 0, den = 0;
1345	int err;
1346	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347				  r->nrats, r->rats, &num, &den);
1348	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349		params->rate_num = num;
1350		params->rate_den = den;
1351	}
1352	return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1365				  unsigned int cond,
1366				  snd_pcm_hw_param_t var,
1367				  const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369	return snd_pcm_hw_rule_add(runtime, cond, var,
1370				   snd_pcm_hw_rule_ratnums, (void *)r,
1371				   var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377				   struct snd_pcm_hw_rule *rule)
1378{
1379	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380	unsigned int num = 0, den = 0;
1381	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382				  r->nrats, r->rats, &num, &den);
1383	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384		params->rate_num = num;
1385		params->rate_den = den;
1386	}
1387	return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1400				  unsigned int cond,
1401				  snd_pcm_hw_param_t var,
1402				  const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404	return snd_pcm_hw_rule_add(runtime, cond, var,
1405				   snd_pcm_hw_rule_ratdens, (void *)r,
1406				   var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412				  struct snd_pcm_hw_rule *rule)
1413{
1414	unsigned int l = (unsigned long) rule->private;
1415	int width = l & 0xffff;
1416	unsigned int msbits = l >> 16;
1417	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1418
1419	if (!snd_interval_single(i))
1420		return 0;
1421
1422	if ((snd_interval_value(i) == width) ||
1423	    (width == 0 && snd_interval_value(i) > msbits))
1424		params->msbits = min_not_zero(params->msbits, msbits);
1425
1426	return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1444				 unsigned int cond,
1445				 unsigned int width,
1446				 unsigned int msbits)
1447{
1448	unsigned long l = (msbits << 16) | width;
1449	return snd_pcm_hw_rule_add(runtime, cond, -1,
1450				    snd_pcm_hw_rule_msbits,
1451				    (void*) l,
1452				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458				struct snd_pcm_hw_rule *rule)
1459{
1460	unsigned long step = (unsigned long) rule->private;
1461	return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474			       unsigned int cond,
1475			       snd_pcm_hw_param_t var,
1476			       unsigned long step)
1477{
1478	return snd_pcm_hw_rule_add(runtime, cond, var, 
1479				   snd_pcm_hw_rule_step, (void *) step,
1480				   var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487	static unsigned int pow2_sizes[] = {
1488		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492	};
1493	return snd_interval_list(hw_param_interval(params, rule->var),
1494				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}		
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506			       unsigned int cond,
1507			       snd_pcm_hw_param_t var)
1508{
1509	return snd_pcm_hw_rule_add(runtime, cond, var, 
1510				   snd_pcm_hw_rule_pow2, NULL,
1511				   var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517					   struct snd_pcm_hw_rule *rule)
1518{
1519	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520	struct snd_interval *rate;
1521
1522	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523	return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534			       unsigned int base_rate)
1535{
1536	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537				   SNDRV_PCM_HW_PARAM_RATE,
1538				   snd_pcm_hw_rule_noresample_func,
1539				   (void *)(uintptr_t)base_rate,
1540				   SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545				  snd_pcm_hw_param_t var)
1546{
1547	if (hw_is_mask(var)) {
1548		snd_mask_any(hw_param_mask(params, var));
1549		params->cmask |= 1 << var;
1550		params->rmask |= 1 << var;
1551		return;
1552	}
1553	if (hw_is_interval(var)) {
1554		snd_interval_any(hw_param_interval(params, var));
1555		params->cmask |= 1 << var;
1556		params->rmask |= 1 << var;
1557		return;
1558	}
1559	snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564	unsigned int k;
1565	memset(params, 0, sizeof(*params));
1566	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567		_snd_pcm_hw_param_any(params, k);
1568	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569		_snd_pcm_hw_param_any(params, k);
1570	params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585			   snd_pcm_hw_param_t var, int *dir)
1586{
1587	if (hw_is_mask(var)) {
1588		const struct snd_mask *mask = hw_param_mask_c(params, var);
1589		if (!snd_mask_single(mask))
1590			return -EINVAL;
1591		if (dir)
1592			*dir = 0;
1593		return snd_mask_value(mask);
1594	}
1595	if (hw_is_interval(var)) {
1596		const struct snd_interval *i = hw_param_interval_c(params, var);
1597		if (!snd_interval_single(i))
1598			return -EINVAL;
1599		if (dir)
1600			*dir = i->openmin;
1601		return snd_interval_value(i);
1602	}
1603	return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609				snd_pcm_hw_param_t var)
1610{
1611	if (hw_is_mask(var)) {
1612		snd_mask_none(hw_param_mask(params, var));
1613		params->cmask |= 1 << var;
1614		params->rmask |= 1 << var;
1615	} else if (hw_is_interval(var)) {
1616		snd_interval_none(hw_param_interval(params, var));
1617		params->cmask |= 1 << var;
1618		params->rmask |= 1 << var;
1619	} else {
1620		snd_BUG();
1621	}
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627				   snd_pcm_hw_param_t var)
1628{
1629	int changed;
1630	if (hw_is_mask(var))
1631		changed = snd_mask_refine_first(hw_param_mask(params, var));
1632	else if (hw_is_interval(var))
1633		changed = snd_interval_refine_first(hw_param_interval(params, var));
1634	else
1635		return -EINVAL;
1636	if (changed) {
1637		params->cmask |= 1 << var;
1638		params->rmask |= 1 << var;
1639	}
1640	return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1657			   struct snd_pcm_hw_params *params, 
1658			   snd_pcm_hw_param_t var, int *dir)
1659{
1660	int changed = _snd_pcm_hw_param_first(params, var);
1661	if (changed < 0)
1662		return changed;
1663	if (params->rmask) {
1664		int err = snd_pcm_hw_refine(pcm, params);
1665		if (snd_BUG_ON(err < 0))
1666			return err;
1667	}
1668	return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674				  snd_pcm_hw_param_t var)
1675{
1676	int changed;
1677	if (hw_is_mask(var))
1678		changed = snd_mask_refine_last(hw_param_mask(params, var));
1679	else if (hw_is_interval(var))
1680		changed = snd_interval_refine_last(hw_param_interval(params, var));
1681	else
1682		return -EINVAL;
1683	if (changed) {
1684		params->cmask |= 1 << var;
1685		params->rmask |= 1 << var;
1686	}
1687	return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1704			  struct snd_pcm_hw_params *params,
1705			  snd_pcm_hw_param_t var, int *dir)
1706{
1707	int changed = _snd_pcm_hw_param_last(params, var);
1708	if (changed < 0)
1709		return changed;
1710	if (params->rmask) {
1711		int err = snd_pcm_hw_refine(pcm, params);
1712		if (snd_BUG_ON(err < 0))
1713			return err;
1714	}
1715	return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733			     struct snd_pcm_hw_params *params)
1734{
1735	static int vars[] = {
1736		SNDRV_PCM_HW_PARAM_ACCESS,
1737		SNDRV_PCM_HW_PARAM_FORMAT,
1738		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739		SNDRV_PCM_HW_PARAM_CHANNELS,
1740		SNDRV_PCM_HW_PARAM_RATE,
1741		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743		SNDRV_PCM_HW_PARAM_TICK_TIME,
1744		-1
1745	};
1746	int err, *v;
1747
1748	for (v = vars; *v != -1; v++) {
1749		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751		else
1752			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753		if (snd_BUG_ON(err < 0))
1754			return err;
1755	}
1756	return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760				   void *arg)
1761{
1762	struct snd_pcm_runtime *runtime = substream->runtime;
1763	unsigned long flags;
1764	snd_pcm_stream_lock_irqsave(substream, flags);
1765	if (snd_pcm_running(substream) &&
1766	    snd_pcm_update_hw_ptr(substream) >= 0)
1767		runtime->status->hw_ptr %= runtime->buffer_size;
1768	else {
1769		runtime->status->hw_ptr = 0;
1770		runtime->hw_ptr_wrap = 0;
1771	}
1772	snd_pcm_stream_unlock_irqrestore(substream, flags);
1773	return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777					  void *arg)
1778{
1779	struct snd_pcm_channel_info *info = arg;
1780	struct snd_pcm_runtime *runtime = substream->runtime;
1781	int width;
1782	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783		info->offset = -1;
1784		return 0;
1785	}
1786	width = snd_pcm_format_physical_width(runtime->format);
1787	if (width < 0)
1788		return width;
1789	info->offset = 0;
1790	switch (runtime->access) {
1791	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793		info->first = info->channel * width;
1794		info->step = runtime->channels * width;
1795		break;
1796	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798	{
1799		size_t size = runtime->dma_bytes / runtime->channels;
1800		info->first = info->channel * size * 8;
1801		info->step = width;
1802		break;
1803	}
1804	default:
1805		snd_BUG();
1806		break;
1807	}
1808	return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812				       void *arg)
1813{
1814	struct snd_pcm_hw_params *params = arg;
1815	snd_pcm_format_t format;
1816	int channels;
1817	ssize_t frame_size;
1818
1819	params->fifo_size = substream->runtime->hw.fifo_size;
1820	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821		format = params_format(params);
1822		channels = params_channels(params);
1823		frame_size = snd_pcm_format_size(format, channels);
1824		if (frame_size > 0)
1825			params->fifo_size /= (unsigned)frame_size;
1826	}
1827	return 0;
1828}
1829
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842		      unsigned int cmd, void *arg)
1843{
1844	switch (cmd) {
1845	case SNDRV_PCM_IOCTL1_INFO:
1846		return 0;
1847	case SNDRV_PCM_IOCTL1_RESET:
1848		return snd_pcm_lib_ioctl_reset(substream, arg);
1849	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1853	}
1854	return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size.  It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872	struct snd_pcm_runtime *runtime;
1873	unsigned long flags;
1874
1875	if (PCM_RUNTIME_CHECK(substream))
1876		return;
1877	runtime = substream->runtime;
1878
 
 
 
1879	snd_pcm_stream_lock_irqsave(substream, flags);
1880	if (!snd_pcm_running(substream) ||
1881	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882		goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885	if (substream->timer_running)
1886		snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1890	snd_pcm_stream_unlock_irqrestore(substream, flags);
 
 
 
1891}
1892
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp.  When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902			      snd_pcm_uframes_t *availp)
1903{
1904	struct snd_pcm_runtime *runtime = substream->runtime;
1905	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906	wait_queue_t wait;
1907	int err = 0;
1908	snd_pcm_uframes_t avail = 0;
1909	long wait_time, tout;
1910
1911	init_waitqueue_entry(&wait, current);
1912	set_current_state(TASK_INTERRUPTIBLE);
1913	add_wait_queue(&runtime->tsleep, &wait);
1914
1915	if (runtime->no_period_wakeup)
1916		wait_time = MAX_SCHEDULE_TIMEOUT;
1917	else {
1918		wait_time = 10;
1919		if (runtime->rate) {
1920			long t = runtime->period_size * 2 / runtime->rate;
1921			wait_time = max(t, wait_time);
1922		}
1923		wait_time = msecs_to_jiffies(wait_time * 1000);
1924	}
1925
1926	for (;;) {
1927		if (signal_pending(current)) {
1928			err = -ERESTARTSYS;
1929			break;
1930		}
1931
1932		/*
1933		 * We need to check if space became available already
1934		 * (and thus the wakeup happened already) first to close
1935		 * the race of space already having become available.
1936		 * This check must happen after been added to the waitqueue
1937		 * and having current state be INTERRUPTIBLE.
1938		 */
1939		if (is_playback)
1940			avail = snd_pcm_playback_avail(runtime);
1941		else
1942			avail = snd_pcm_capture_avail(runtime);
1943		if (avail >= runtime->twake)
1944			break;
1945		snd_pcm_stream_unlock_irq(substream);
1946
1947		tout = schedule_timeout(wait_time);
1948
1949		snd_pcm_stream_lock_irq(substream);
1950		set_current_state(TASK_INTERRUPTIBLE);
1951		switch (runtime->status->state) {
1952		case SNDRV_PCM_STATE_SUSPENDED:
1953			err = -ESTRPIPE;
1954			goto _endloop;
1955		case SNDRV_PCM_STATE_XRUN:
1956			err = -EPIPE;
1957			goto _endloop;
1958		case SNDRV_PCM_STATE_DRAINING:
1959			if (is_playback)
1960				err = -EPIPE;
1961			else 
1962				avail = 0; /* indicate draining */
1963			goto _endloop;
1964		case SNDRV_PCM_STATE_OPEN:
1965		case SNDRV_PCM_STATE_SETUP:
1966		case SNDRV_PCM_STATE_DISCONNECTED:
1967			err = -EBADFD;
1968			goto _endloop;
1969		case SNDRV_PCM_STATE_PAUSED:
1970			continue;
1971		}
1972		if (!tout) {
1973			pcm_dbg(substream->pcm,
1974				"%s write error (DMA or IRQ trouble?)\n",
1975				is_playback ? "playback" : "capture");
1976			err = -EIO;
1977			break;
1978		}
1979	}
1980 _endloop:
1981	set_current_state(TASK_RUNNING);
1982	remove_wait_queue(&runtime->tsleep, &wait);
1983	*availp = avail;
1984	return err;
1985}
1986	
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988				      unsigned int hwoff,
1989				      unsigned long data, unsigned int off,
1990				      snd_pcm_uframes_t frames)
1991{
1992	struct snd_pcm_runtime *runtime = substream->runtime;
1993	int err;
1994	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995	if (substream->ops->copy) {
1996		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997			return err;
1998	} else {
1999		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001			return -EFAULT;
2002	}
2003	return 0;
2004}
2005 
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007			  unsigned long data, unsigned int off,
2008			  snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2011					    unsigned long data,
2012					    snd_pcm_uframes_t size,
2013					    int nonblock,
2014					    transfer_f transfer)
2015{
2016	struct snd_pcm_runtime *runtime = substream->runtime;
2017	snd_pcm_uframes_t xfer = 0;
2018	snd_pcm_uframes_t offset = 0;
2019	snd_pcm_uframes_t avail;
2020	int err = 0;
2021
2022	if (size == 0)
2023		return 0;
2024
2025	snd_pcm_stream_lock_irq(substream);
2026	switch (runtime->status->state) {
2027	case SNDRV_PCM_STATE_PREPARED:
2028	case SNDRV_PCM_STATE_RUNNING:
2029	case SNDRV_PCM_STATE_PAUSED:
2030		break;
2031	case SNDRV_PCM_STATE_XRUN:
2032		err = -EPIPE;
2033		goto _end_unlock;
2034	case SNDRV_PCM_STATE_SUSPENDED:
2035		err = -ESTRPIPE;
2036		goto _end_unlock;
2037	default:
2038		err = -EBADFD;
2039		goto _end_unlock;
2040	}
2041
2042	runtime->twake = runtime->control->avail_min ? : 1;
2043	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044		snd_pcm_update_hw_ptr(substream);
2045	avail = snd_pcm_playback_avail(runtime);
2046	while (size > 0) {
2047		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048		snd_pcm_uframes_t cont;
2049		if (!avail) {
2050			if (nonblock) {
2051				err = -EAGAIN;
2052				goto _end_unlock;
2053			}
2054			runtime->twake = min_t(snd_pcm_uframes_t, size,
2055					runtime->control->avail_min ? : 1);
2056			err = wait_for_avail(substream, &avail);
2057			if (err < 0)
2058				goto _end_unlock;
2059		}
2060		frames = size > avail ? avail : size;
2061		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062		if (frames > cont)
2063			frames = cont;
2064		if (snd_BUG_ON(!frames)) {
2065			runtime->twake = 0;
2066			snd_pcm_stream_unlock_irq(substream);
2067			return -EINVAL;
2068		}
2069		appl_ptr = runtime->control->appl_ptr;
2070		appl_ofs = appl_ptr % runtime->buffer_size;
2071		snd_pcm_stream_unlock_irq(substream);
2072		err = transfer(substream, appl_ofs, data, offset, frames);
2073		snd_pcm_stream_lock_irq(substream);
2074		if (err < 0)
2075			goto _end_unlock;
2076		switch (runtime->status->state) {
2077		case SNDRV_PCM_STATE_XRUN:
2078			err = -EPIPE;
2079			goto _end_unlock;
2080		case SNDRV_PCM_STATE_SUSPENDED:
2081			err = -ESTRPIPE;
2082			goto _end_unlock;
2083		default:
2084			break;
2085		}
2086		appl_ptr += frames;
2087		if (appl_ptr >= runtime->boundary)
2088			appl_ptr -= runtime->boundary;
2089		runtime->control->appl_ptr = appl_ptr;
2090		if (substream->ops->ack)
2091			substream->ops->ack(substream);
2092
2093		offset += frames;
2094		size -= frames;
2095		xfer += frames;
2096		avail -= frames;
2097		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099			err = snd_pcm_start(substream);
2100			if (err < 0)
2101				goto _end_unlock;
2102		}
2103	}
2104 _end_unlock:
2105	runtime->twake = 0;
2106	if (xfer > 0 && err >= 0)
2107		snd_pcm_update_state(substream, runtime);
2108	snd_pcm_stream_unlock_irq(substream);
2109	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115	struct snd_pcm_runtime *runtime;
2116	if (PCM_RUNTIME_CHECK(substream))
2117		return -ENXIO;
2118	runtime = substream->runtime;
2119	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120		return -EINVAL;
2121	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122		return -EBADFD;
2123	return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128	struct snd_pcm_runtime *runtime;
2129	int nonblock;
2130	int err;
2131
2132	err = pcm_sanity_check(substream);
2133	if (err < 0)
2134		return err;
2135	runtime = substream->runtime;
2136	nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139	    runtime->channels > 1)
2140		return -EINVAL;
2141	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142				  snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148				       unsigned int hwoff,
2149				       unsigned long data, unsigned int off,
2150				       snd_pcm_uframes_t frames)
2151{
2152	struct snd_pcm_runtime *runtime = substream->runtime;
2153	int err;
2154	void __user **bufs = (void __user **)data;
2155	int channels = runtime->channels;
2156	int c;
2157	if (substream->ops->copy) {
2158		if (snd_BUG_ON(!substream->ops->silence))
2159			return -EINVAL;
2160		for (c = 0; c < channels; ++c, ++bufs) {
2161			if (*bufs == NULL) {
2162				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163					return err;
2164			} else {
2165				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167					return err;
2168			}
2169		}
2170	} else {
2171		/* default transfer behaviour */
2172		size_t dma_csize = runtime->dma_bytes / channels;
2173		for (c = 0; c < channels; ++c, ++bufs) {
2174			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175			if (*bufs == NULL) {
2176				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177			} else {
2178				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180					return -EFAULT;
2181			}
2182		}
2183	}
2184	return 0;
2185}
2186 
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188				     void __user **bufs,
2189				     snd_pcm_uframes_t frames)
2190{
2191	struct snd_pcm_runtime *runtime;
2192	int nonblock;
2193	int err;
2194
2195	err = pcm_sanity_check(substream);
2196	if (err < 0)
2197		return err;
2198	runtime = substream->runtime;
2199	nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202		return -EINVAL;
2203	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204				  nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2210				     unsigned int hwoff,
2211				     unsigned long data, unsigned int off,
2212				     snd_pcm_uframes_t frames)
2213{
2214	struct snd_pcm_runtime *runtime = substream->runtime;
2215	int err;
2216	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217	if (substream->ops->copy) {
2218		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219			return err;
2220	} else {
2221		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223			return -EFAULT;
2224	}
2225	return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229					   unsigned long data,
2230					   snd_pcm_uframes_t size,
2231					   int nonblock,
2232					   transfer_f transfer)
2233{
2234	struct snd_pcm_runtime *runtime = substream->runtime;
2235	snd_pcm_uframes_t xfer = 0;
2236	snd_pcm_uframes_t offset = 0;
2237	snd_pcm_uframes_t avail;
2238	int err = 0;
2239
2240	if (size == 0)
2241		return 0;
2242
2243	snd_pcm_stream_lock_irq(substream);
2244	switch (runtime->status->state) {
2245	case SNDRV_PCM_STATE_PREPARED:
2246		if (size >= runtime->start_threshold) {
2247			err = snd_pcm_start(substream);
2248			if (err < 0)
2249				goto _end_unlock;
2250		}
2251		break;
2252	case SNDRV_PCM_STATE_DRAINING:
2253	case SNDRV_PCM_STATE_RUNNING:
2254	case SNDRV_PCM_STATE_PAUSED:
2255		break;
2256	case SNDRV_PCM_STATE_XRUN:
2257		err = -EPIPE;
2258		goto _end_unlock;
2259	case SNDRV_PCM_STATE_SUSPENDED:
2260		err = -ESTRPIPE;
2261		goto _end_unlock;
2262	default:
2263		err = -EBADFD;
2264		goto _end_unlock;
2265	}
2266
2267	runtime->twake = runtime->control->avail_min ? : 1;
2268	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269		snd_pcm_update_hw_ptr(substream);
2270	avail = snd_pcm_capture_avail(runtime);
2271	while (size > 0) {
2272		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273		snd_pcm_uframes_t cont;
2274		if (!avail) {
2275			if (runtime->status->state ==
2276			    SNDRV_PCM_STATE_DRAINING) {
2277				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278				goto _end_unlock;
2279			}
2280			if (nonblock) {
2281				err = -EAGAIN;
2282				goto _end_unlock;
2283			}
2284			runtime->twake = min_t(snd_pcm_uframes_t, size,
2285					runtime->control->avail_min ? : 1);
2286			err = wait_for_avail(substream, &avail);
2287			if (err < 0)
2288				goto _end_unlock;
2289			if (!avail)
2290				continue; /* draining */
2291		}
2292		frames = size > avail ? avail : size;
2293		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2294		if (frames > cont)
2295			frames = cont;
2296		if (snd_BUG_ON(!frames)) {
2297			runtime->twake = 0;
2298			snd_pcm_stream_unlock_irq(substream);
2299			return -EINVAL;
2300		}
2301		appl_ptr = runtime->control->appl_ptr;
2302		appl_ofs = appl_ptr % runtime->buffer_size;
2303		snd_pcm_stream_unlock_irq(substream);
2304		err = transfer(substream, appl_ofs, data, offset, frames);
2305		snd_pcm_stream_lock_irq(substream);
2306		if (err < 0)
2307			goto _end_unlock;
2308		switch (runtime->status->state) {
2309		case SNDRV_PCM_STATE_XRUN:
2310			err = -EPIPE;
2311			goto _end_unlock;
2312		case SNDRV_PCM_STATE_SUSPENDED:
2313			err = -ESTRPIPE;
2314			goto _end_unlock;
2315		default:
2316			break;
2317		}
2318		appl_ptr += frames;
2319		if (appl_ptr >= runtime->boundary)
2320			appl_ptr -= runtime->boundary;
2321		runtime->control->appl_ptr = appl_ptr;
2322		if (substream->ops->ack)
2323			substream->ops->ack(substream);
2324
2325		offset += frames;
2326		size -= frames;
2327		xfer += frames;
2328		avail -= frames;
2329	}
2330 _end_unlock:
2331	runtime->twake = 0;
2332	if (xfer > 0 && err >= 0)
2333		snd_pcm_update_state(substream, runtime);
2334	snd_pcm_stream_unlock_irq(substream);
2335	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340	struct snd_pcm_runtime *runtime;
2341	int nonblock;
2342	int err;
2343	
2344	err = pcm_sanity_check(substream);
2345	if (err < 0)
2346		return err;
2347	runtime = substream->runtime;
2348	nonblock = !!(substream->f_flags & O_NONBLOCK);
2349	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350		return -EINVAL;
2351	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357				      unsigned int hwoff,
2358				      unsigned long data, unsigned int off,
2359				      snd_pcm_uframes_t frames)
2360{
2361	struct snd_pcm_runtime *runtime = substream->runtime;
2362	int err;
2363	void __user **bufs = (void __user **)data;
2364	int channels = runtime->channels;
2365	int c;
2366	if (substream->ops->copy) {
2367		for (c = 0; c < channels; ++c, ++bufs) {
2368			char __user *buf;
2369			if (*bufs == NULL)
2370				continue;
2371			buf = *bufs + samples_to_bytes(runtime, off);
2372			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373				return err;
2374		}
2375	} else {
2376		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377		for (c = 0; c < channels; ++c, ++bufs) {
2378			char *hwbuf;
2379			char __user *buf;
2380			if (*bufs == NULL)
2381				continue;
2382
2383			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384			buf = *bufs + samples_to_bytes(runtime, off);
2385			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386				return -EFAULT;
2387		}
2388	}
2389	return 0;
2390}
2391 
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393				    void __user **bufs,
2394				    snd_pcm_uframes_t frames)
2395{
2396	struct snd_pcm_runtime *runtime;
2397	int nonblock;
2398	int err;
2399
2400	err = pcm_sanity_check(substream);
2401	if (err < 0)
2402		return err;
2403	runtime = substream->runtime;
2404	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405		return -EBADFD;
2406
2407	nonblock = !!(substream->f_flags & O_NONBLOCK);
2408	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409		return -EINVAL;
2410	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421	{ .channels = 1,
2422	  .map = { SNDRV_CHMAP_MONO } },
2423	{ .channels = 2,
2424	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425	{ .channels = 4,
2426	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428	{ .channels = 6,
2429	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432	{ .channels = 8,
2433	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437	{ }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443	{ .channels = 1,
2444	  .map = { SNDRV_CHMAP_MONO } },
2445	{ .channels = 2,
2446	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447	{ .channels = 4,
2448	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450	{ .channels = 6,
2451	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454	{ .channels = 8,
2455	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459	{ }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465	if (ch > info->max_channels)
2466		return false;
2467	return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471			      struct snd_ctl_elem_info *uinfo)
2472{
2473	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476	uinfo->count = 0;
2477	uinfo->count = info->max_channels;
2478	uinfo->value.integer.min = 0;
2479	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480	return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487			     struct snd_ctl_elem_value *ucontrol)
2488{
2489	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491	struct snd_pcm_substream *substream;
2492	const struct snd_pcm_chmap_elem *map;
2493
2494	if (snd_BUG_ON(!info->chmap))
2495		return -EINVAL;
2496	substream = snd_pcm_chmap_substream(info, idx);
2497	if (!substream)
2498		return -ENODEV;
2499	memset(ucontrol->value.integer.value, 0,
2500	       sizeof(ucontrol->value.integer.value));
2501	if (!substream->runtime)
2502		return 0; /* no channels set */
2503	for (map = info->chmap; map->channels; map++) {
2504		int i;
2505		if (map->channels == substream->runtime->channels &&
2506		    valid_chmap_channels(info, map->channels)) {
2507			for (i = 0; i < map->channels; i++)
2508				ucontrol->value.integer.value[i] = map->map[i];
2509			return 0;
2510		}
2511	}
2512	return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519			     unsigned int size, unsigned int __user *tlv)
2520{
2521	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522	const struct snd_pcm_chmap_elem *map;
2523	unsigned int __user *dst;
2524	int c, count = 0;
2525
2526	if (snd_BUG_ON(!info->chmap))
2527		return -EINVAL;
2528	if (size < 8)
2529		return -ENOMEM;
2530	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531		return -EFAULT;
2532	size -= 8;
2533	dst = tlv + 2;
2534	for (map = info->chmap; map->channels; map++) {
2535		int chs_bytes = map->channels * 4;
2536		if (!valid_chmap_channels(info, map->channels))
2537			continue;
2538		if (size < 8)
2539			return -ENOMEM;
2540		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541		    put_user(chs_bytes, dst + 1))
2542			return -EFAULT;
2543		dst += 2;
2544		size -= 8;
2545		count += 8;
2546		if (size < chs_bytes)
2547			return -ENOMEM;
2548		size -= chs_bytes;
2549		count += chs_bytes;
2550		for (c = 0; c < map->channels; c++) {
2551			if (put_user(map->map[c], dst))
2552				return -EFAULT;
2553			dst++;
2554		}
2555	}
2556	if (put_user(count, tlv + 1))
2557		return -EFAULT;
2558	return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564	info->pcm->streams[info->stream].chmap_kctl = NULL;
2565	kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581			   const struct snd_pcm_chmap_elem *chmap,
2582			   int max_channels,
2583			   unsigned long private_value,
2584			   struct snd_pcm_chmap **info_ret)
2585{
2586	struct snd_pcm_chmap *info;
2587	struct snd_kcontrol_new knew = {
2588		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2590			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592		.info = pcm_chmap_ctl_info,
2593		.get = pcm_chmap_ctl_get,
2594		.tlv.c = pcm_chmap_ctl_tlv,
2595	};
2596	int err;
2597
2598	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2599		return -EBUSY;
2600	info = kzalloc(sizeof(*info), GFP_KERNEL);
2601	if (!info)
2602		return -ENOMEM;
2603	info->pcm = pcm;
2604	info->stream = stream;
2605	info->chmap = chmap;
2606	info->max_channels = max_channels;
2607	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608		knew.name = "Playback Channel Map";
2609	else
2610		knew.name = "Capture Channel Map";
2611	knew.device = pcm->device;
2612	knew.count = pcm->streams[stream].substream_count;
2613	knew.private_value = private_value;
2614	info->kctl = snd_ctl_new1(&knew, info);
2615	if (!info->kctl) {
2616		kfree(info);
2617		return -ENOMEM;
2618	}
2619	info->kctl->private_free = pcm_chmap_ctl_private_free;
2620	err = snd_ctl_add(pcm->card, info->kctl);
2621	if (err < 0)
2622		return err;
2623	pcm->streams[stream].chmap_kctl = info->kctl;
2624	if (info_ret)
2625		*info_ret = info;
2626	return 0;
2627}
2628EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
v3.5.6
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
 
  29#include <sound/info.h>
  30#include <sound/pcm.h>
  31#include <sound/pcm_params.h>
  32#include <sound/timer.h>
  33
 
 
 
 
 
 
 
 
 
  34/*
  35 * fill ring buffer with silence
  36 * runtime->silence_start: starting pointer to silence area
  37 * runtime->silence_filled: size filled with silence
  38 * runtime->silence_threshold: threshold from application
  39 * runtime->silence_size: maximal size from application
  40 *
  41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  42 */
  43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  44{
  45	struct snd_pcm_runtime *runtime = substream->runtime;
  46	snd_pcm_uframes_t frames, ofs, transfer;
  47
  48	if (runtime->silence_size < runtime->boundary) {
  49		snd_pcm_sframes_t noise_dist, n;
  50		if (runtime->silence_start != runtime->control->appl_ptr) {
  51			n = runtime->control->appl_ptr - runtime->silence_start;
  52			if (n < 0)
  53				n += runtime->boundary;
  54			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  55				runtime->silence_filled -= n;
  56			else
  57				runtime->silence_filled = 0;
  58			runtime->silence_start = runtime->control->appl_ptr;
  59		}
  60		if (runtime->silence_filled >= runtime->buffer_size)
  61			return;
  62		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  63		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  64			return;
  65		frames = runtime->silence_threshold - noise_dist;
  66		if (frames > runtime->silence_size)
  67			frames = runtime->silence_size;
  68	} else {
  69		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  70			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  71			if (avail > runtime->buffer_size)
  72				avail = runtime->buffer_size;
  73			runtime->silence_filled = avail > 0 ? avail : 0;
  74			runtime->silence_start = (runtime->status->hw_ptr +
  75						  runtime->silence_filled) %
  76						 runtime->boundary;
  77		} else {
  78			ofs = runtime->status->hw_ptr;
  79			frames = new_hw_ptr - ofs;
  80			if ((snd_pcm_sframes_t)frames < 0)
  81				frames += runtime->boundary;
  82			runtime->silence_filled -= frames;
  83			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  84				runtime->silence_filled = 0;
  85				runtime->silence_start = new_hw_ptr;
  86			} else {
  87				runtime->silence_start = ofs;
  88			}
  89		}
  90		frames = runtime->buffer_size - runtime->silence_filled;
  91	}
  92	if (snd_BUG_ON(frames > runtime->buffer_size))
  93		return;
  94	if (frames == 0)
  95		return;
  96	ofs = runtime->silence_start % runtime->buffer_size;
  97	while (frames > 0) {
  98		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
  99		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 100		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 101			if (substream->ops->silence) {
 102				int err;
 103				err = substream->ops->silence(substream, -1, ofs, transfer);
 104				snd_BUG_ON(err < 0);
 105			} else {
 106				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 107				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 108			}
 109		} else {
 110			unsigned int c;
 111			unsigned int channels = runtime->channels;
 112			if (substream->ops->silence) {
 113				for (c = 0; c < channels; ++c) {
 114					int err;
 115					err = substream->ops->silence(substream, c, ofs, transfer);
 116					snd_BUG_ON(err < 0);
 117				}
 118			} else {
 119				size_t dma_csize = runtime->dma_bytes / channels;
 120				for (c = 0; c < channels; ++c) {
 121					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 122					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 123				}
 124			}
 125		}
 126		runtime->silence_filled += transfer;
 127		frames -= transfer;
 128		ofs = 0;
 129	}
 130}
 131
 132#ifdef CONFIG_SND_DEBUG
 133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 134			   char *name, size_t len)
 135{
 136	snprintf(name, len, "pcmC%dD%d%c:%d",
 137		 substream->pcm->card->number,
 138		 substream->pcm->device,
 139		 substream->stream ? 'c' : 'p',
 140		 substream->number);
 141}
 142EXPORT_SYMBOL(snd_pcm_debug_name);
 143#endif
 144
 145#define XRUN_DEBUG_BASIC	(1<<0)
 146#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 147#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 148#define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
 149#define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
 150#define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
 151#define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
 152
 153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 154
 155#define xrun_debug(substream, mask) \
 156			((substream)->pstr->xrun_debug & (mask))
 157#else
 158#define xrun_debug(substream, mask)	0
 159#endif
 160
 161#define dump_stack_on_xrun(substream) do {			\
 162		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 163			dump_stack();				\
 164	} while (0)
 165
 166static void xrun(struct snd_pcm_substream *substream)
 167{
 168	struct snd_pcm_runtime *runtime = substream->runtime;
 169
 
 170	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 171		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 172	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 173	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 174		char name[16];
 175		snd_pcm_debug_name(substream, name, sizeof(name));
 176		snd_printd(KERN_DEBUG "XRUN: %s\n", name);
 177		dump_stack_on_xrun(substream);
 178	}
 179}
 180
 181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 182#define hw_ptr_error(substream, fmt, args...)				\
 183	do {								\
 
 184		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 185			xrun_log_show(substream);			\
 186			if (printk_ratelimit()) {			\
 187				snd_printd("PCM: " fmt, ##args);	\
 188			}						\
 189			dump_stack_on_xrun(substream);			\
 190		}							\
 191	} while (0)
 192
 193#define XRUN_LOG_CNT	10
 194
 195struct hwptr_log_entry {
 196	unsigned int in_interrupt;
 197	unsigned long jiffies;
 198	snd_pcm_uframes_t pos;
 199	snd_pcm_uframes_t period_size;
 200	snd_pcm_uframes_t buffer_size;
 201	snd_pcm_uframes_t old_hw_ptr;
 202	snd_pcm_uframes_t hw_ptr_base;
 203};
 204
 205struct snd_pcm_hwptr_log {
 206	unsigned int idx;
 207	unsigned int hit: 1;
 208	struct hwptr_log_entry entries[XRUN_LOG_CNT];
 209};
 210
 211static void xrun_log(struct snd_pcm_substream *substream,
 212		     snd_pcm_uframes_t pos, int in_interrupt)
 213{
 214	struct snd_pcm_runtime *runtime = substream->runtime;
 215	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
 216	struct hwptr_log_entry *entry;
 217
 218	if (log == NULL) {
 219		log = kzalloc(sizeof(*log), GFP_ATOMIC);
 220		if (log == NULL)
 221			return;
 222		runtime->hwptr_log = log;
 223	} else {
 224		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 225			return;
 226	}
 227	entry = &log->entries[log->idx];
 228	entry->in_interrupt = in_interrupt;
 229	entry->jiffies = jiffies;
 230	entry->pos = pos;
 231	entry->period_size = runtime->period_size;
 232	entry->buffer_size = runtime->buffer_size;
 233	entry->old_hw_ptr = runtime->status->hw_ptr;
 234	entry->hw_ptr_base = runtime->hw_ptr_base;
 235	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
 236}
 237
 238static void xrun_log_show(struct snd_pcm_substream *substream)
 239{
 240	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
 241	struct hwptr_log_entry *entry;
 242	char name[16];
 243	unsigned int idx;
 244	int cnt;
 245
 246	if (log == NULL)
 247		return;
 248	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
 249		return;
 250	snd_pcm_debug_name(substream, name, sizeof(name));
 251	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
 252		entry = &log->entries[idx];
 253		if (entry->period_size == 0)
 254			break;
 255		snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
 256			   "hwptr=%ld/%ld\n",
 257			   name, entry->in_interrupt ? "[Q] " : "",
 258			   entry->jiffies,
 259			   (unsigned long)entry->pos,
 260			   (unsigned long)entry->period_size,
 261			   (unsigned long)entry->buffer_size,
 262			   (unsigned long)entry->old_hw_ptr,
 263			   (unsigned long)entry->hw_ptr_base);
 264		idx++;
 265		idx %= XRUN_LOG_CNT;
 266	}
 267	log->hit = 1;
 268}
 269
 270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 271
 272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 273#define xrun_log(substream, pos, in_interrupt)	do { } while (0)
 274#define xrun_log_show(substream)	do { } while (0)
 275
 276#endif
 277
 278int snd_pcm_update_state(struct snd_pcm_substream *substream,
 279			 struct snd_pcm_runtime *runtime)
 280{
 281	snd_pcm_uframes_t avail;
 282
 283	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 284		avail = snd_pcm_playback_avail(runtime);
 285	else
 286		avail = snd_pcm_capture_avail(runtime);
 287	if (avail > runtime->avail_max)
 288		runtime->avail_max = avail;
 289	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 290		if (avail >= runtime->buffer_size) {
 291			snd_pcm_drain_done(substream);
 292			return -EPIPE;
 293		}
 294	} else {
 295		if (avail >= runtime->stop_threshold) {
 296			xrun(substream);
 297			return -EPIPE;
 298		}
 299	}
 300	if (runtime->twake) {
 301		if (avail >= runtime->twake)
 302			wake_up(&runtime->tsleep);
 303	} else if (avail >= runtime->control->avail_min)
 304		wake_up(&runtime->sleep);
 305	return 0;
 306}
 307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 309				  unsigned int in_interrupt)
 310{
 311	struct snd_pcm_runtime *runtime = substream->runtime;
 312	snd_pcm_uframes_t pos;
 313	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 314	snd_pcm_sframes_t hdelta, delta;
 315	unsigned long jdelta;
 316	unsigned long curr_jiffies;
 317	struct timespec curr_tstamp;
 
 
 318
 319	old_hw_ptr = runtime->status->hw_ptr;
 320
 321	/*
 322	 * group pointer, time and jiffies reads to allow for more
 323	 * accurate correlations/corrections.
 324	 * The values are stored at the end of this routine after
 325	 * corrections for hw_ptr position
 326	 */
 327	pos = substream->ops->pointer(substream);
 328	curr_jiffies = jiffies;
 329	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 330		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	if (pos == SNDRV_PCM_POS_XRUN) {
 333		xrun(substream);
 334		return -EPIPE;
 335	}
 336	if (pos >= runtime->buffer_size) {
 337		if (printk_ratelimit()) {
 338			char name[16];
 339			snd_pcm_debug_name(substream, name, sizeof(name));
 340			xrun_log_show(substream);
 341			snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
 342				   "buffer size = %ld, period size = %ld\n",
 343				   name, pos, runtime->buffer_size,
 344				   runtime->period_size);
 345		}
 346		pos = 0;
 347	}
 348	pos -= pos % runtime->min_align;
 349	if (xrun_debug(substream, XRUN_DEBUG_LOG))
 350		xrun_log(substream, pos, in_interrupt);
 351	hw_base = runtime->hw_ptr_base;
 352	new_hw_ptr = hw_base + pos;
 353	if (in_interrupt) {
 354		/* we know that one period was processed */
 355		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 356		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 357		if (delta > new_hw_ptr) {
 358			/* check for double acknowledged interrupts */
 359			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 360			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
 361				hw_base += runtime->buffer_size;
 362				if (hw_base >= runtime->boundary)
 363					hw_base = 0;
 
 
 364				new_hw_ptr = hw_base + pos;
 365				goto __delta;
 366			}
 367		}
 368	}
 369	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 370	/* pointer crosses the end of the ring buffer */
 371	if (new_hw_ptr < old_hw_ptr) {
 372		hw_base += runtime->buffer_size;
 373		if (hw_base >= runtime->boundary)
 374			hw_base = 0;
 
 
 375		new_hw_ptr = hw_base + pos;
 376	}
 377      __delta:
 378	delta = new_hw_ptr - old_hw_ptr;
 379	if (delta < 0)
 380		delta += runtime->boundary;
 381	if (xrun_debug(substream, in_interrupt ?
 382			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
 383		char name[16];
 384		snd_pcm_debug_name(substream, name, sizeof(name));
 385		snd_printd("%s_update: %s: pos=%u/%u/%u, "
 386			   "hwptr=%ld/%ld/%ld/%ld\n",
 387			   in_interrupt ? "period" : "hwptr",
 388			   name,
 389			   (unsigned int)pos,
 390			   (unsigned int)runtime->period_size,
 391			   (unsigned int)runtime->buffer_size,
 392			   (unsigned long)delta,
 393			   (unsigned long)old_hw_ptr,
 394			   (unsigned long)new_hw_ptr,
 395			   (unsigned long)runtime->hw_ptr_base);
 396	}
 397
 398	if (runtime->no_period_wakeup) {
 399		snd_pcm_sframes_t xrun_threshold;
 400		/*
 401		 * Without regular period interrupts, we have to check
 402		 * the elapsed time to detect xruns.
 403		 */
 404		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 405		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 406			goto no_delta_check;
 407		hdelta = jdelta - delta * HZ / runtime->rate;
 408		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 409		while (hdelta > xrun_threshold) {
 410			delta += runtime->buffer_size;
 411			hw_base += runtime->buffer_size;
 412			if (hw_base >= runtime->boundary)
 413				hw_base = 0;
 
 
 414			new_hw_ptr = hw_base + pos;
 415			hdelta -= runtime->hw_ptr_buffer_jiffies;
 416		}
 417		goto no_delta_check;
 418	}
 419
 420	/* something must be really wrong */
 421	if (delta >= runtime->buffer_size + runtime->period_size) {
 422		hw_ptr_error(substream,
 423			       "Unexpected hw_pointer value %s"
 424			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
 425			       "old_hw_ptr=%ld)\n",
 426				     in_interrupt ? "[Q] " : "[P]",
 427				     substream->stream, (long)pos,
 428				     (long)new_hw_ptr, (long)old_hw_ptr);
 429		return 0;
 430	}
 431
 432	/* Do jiffies check only in xrun_debug mode */
 433	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 434		goto no_jiffies_check;
 435
 436	/* Skip the jiffies check for hardwares with BATCH flag.
 437	 * Such hardware usually just increases the position at each IRQ,
 438	 * thus it can't give any strange position.
 439	 */
 440	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 441		goto no_jiffies_check;
 442	hdelta = delta;
 443	if (hdelta < runtime->delay)
 444		goto no_jiffies_check;
 445	hdelta -= runtime->delay;
 446	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 447	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 448		delta = jdelta /
 449			(((runtime->period_size * HZ) / runtime->rate)
 450								+ HZ/100);
 451		/* move new_hw_ptr according jiffies not pos variable */
 452		new_hw_ptr = old_hw_ptr;
 453		hw_base = delta;
 454		/* use loop to avoid checks for delta overflows */
 455		/* the delta value is small or zero in most cases */
 456		while (delta > 0) {
 457			new_hw_ptr += runtime->period_size;
 458			if (new_hw_ptr >= runtime->boundary)
 459				new_hw_ptr -= runtime->boundary;
 
 
 460			delta--;
 461		}
 462		/* align hw_base to buffer_size */
 463		hw_ptr_error(substream,
 464			     "hw_ptr skipping! %s"
 465			     "(pos=%ld, delta=%ld, period=%ld, "
 466			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 467			     in_interrupt ? "[Q] " : "",
 468			     (long)pos, (long)hdelta,
 469			     (long)runtime->period_size, jdelta,
 470			     ((hdelta * HZ) / runtime->rate), hw_base,
 471			     (unsigned long)old_hw_ptr,
 472			     (unsigned long)new_hw_ptr);
 473		/* reset values to proper state */
 474		delta = 0;
 475		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 476	}
 477 no_jiffies_check:
 478	if (delta > runtime->period_size + runtime->period_size / 2) {
 479		hw_ptr_error(substream,
 480			     "Lost interrupts? %s"
 481			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
 482			     "old_hw_ptr=%ld)\n",
 483			     in_interrupt ? "[Q] " : "",
 484			     substream->stream, (long)delta,
 485			     (long)new_hw_ptr,
 486			     (long)old_hw_ptr);
 487	}
 488
 489 no_delta_check:
 490	if (runtime->status->hw_ptr == new_hw_ptr)
 
 491		return 0;
 
 492
 493	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 494	    runtime->silence_size > 0)
 495		snd_pcm_playback_silence(substream, new_hw_ptr);
 496
 497	if (in_interrupt) {
 498		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 499		if (delta < 0)
 500			delta += runtime->boundary;
 501		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 502		runtime->hw_ptr_interrupt += delta;
 503		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 504			runtime->hw_ptr_interrupt -= runtime->boundary;
 505	}
 506	runtime->hw_ptr_base = hw_base;
 507	runtime->status->hw_ptr = new_hw_ptr;
 508	runtime->hw_ptr_jiffies = curr_jiffies;
 509	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 510		runtime->status->tstamp = curr_tstamp;
 
 
 
 
 511
 512	return snd_pcm_update_state(substream, runtime);
 513}
 514
 515/* CAUTION: call it with irq disabled */
 516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 517{
 518	return snd_pcm_update_hw_ptr0(substream, 0);
 519}
 520
 521/**
 522 * snd_pcm_set_ops - set the PCM operators
 523 * @pcm: the pcm instance
 524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 525 * @ops: the operator table
 526 *
 527 * Sets the given PCM operators to the pcm instance.
 528 */
 529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
 
 530{
 531	struct snd_pcm_str *stream = &pcm->streams[direction];
 532	struct snd_pcm_substream *substream;
 533	
 534	for (substream = stream->substream; substream != NULL; substream = substream->next)
 535		substream->ops = ops;
 536}
 537
 538EXPORT_SYMBOL(snd_pcm_set_ops);
 539
 540/**
 541 * snd_pcm_sync - set the PCM sync id
 542 * @substream: the pcm substream
 543 *
 544 * Sets the PCM sync identifier for the card.
 545 */
 546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 547{
 548	struct snd_pcm_runtime *runtime = substream->runtime;
 549	
 550	runtime->sync.id32[0] = substream->pcm->card->number;
 551	runtime->sync.id32[1] = -1;
 552	runtime->sync.id32[2] = -1;
 553	runtime->sync.id32[3] = -1;
 554}
 555
 556EXPORT_SYMBOL(snd_pcm_set_sync);
 557
 558/*
 559 *  Standard ioctl routine
 560 */
 561
 562static inline unsigned int div32(unsigned int a, unsigned int b, 
 563				 unsigned int *r)
 564{
 565	if (b == 0) {
 566		*r = 0;
 567		return UINT_MAX;
 568	}
 569	*r = a % b;
 570	return a / b;
 571}
 572
 573static inline unsigned int div_down(unsigned int a, unsigned int b)
 574{
 575	if (b == 0)
 576		return UINT_MAX;
 577	return a / b;
 578}
 579
 580static inline unsigned int div_up(unsigned int a, unsigned int b)
 581{
 582	unsigned int r;
 583	unsigned int q;
 584	if (b == 0)
 585		return UINT_MAX;
 586	q = div32(a, b, &r);
 587	if (r)
 588		++q;
 589	return q;
 590}
 591
 592static inline unsigned int mul(unsigned int a, unsigned int b)
 593{
 594	if (a == 0)
 595		return 0;
 596	if (div_down(UINT_MAX, a) < b)
 597		return UINT_MAX;
 598	return a * b;
 599}
 600
 601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 602				    unsigned int c, unsigned int *r)
 603{
 604	u_int64_t n = (u_int64_t) a * b;
 605	if (c == 0) {
 606		snd_BUG_ON(!n);
 607		*r = 0;
 608		return UINT_MAX;
 609	}
 610	n = div_u64_rem(n, c, r);
 611	if (n >= UINT_MAX) {
 612		*r = 0;
 613		return UINT_MAX;
 614	}
 615	return n;
 616}
 617
 618/**
 619 * snd_interval_refine - refine the interval value of configurator
 620 * @i: the interval value to refine
 621 * @v: the interval value to refer to
 622 *
 623 * Refines the interval value with the reference value.
 624 * The interval is changed to the range satisfying both intervals.
 625 * The interval status (min, max, integer, etc.) are evaluated.
 626 *
 627 * Returns non-zero if the value is changed, zero if not changed.
 
 628 */
 629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 630{
 631	int changed = 0;
 632	if (snd_BUG_ON(snd_interval_empty(i)))
 633		return -EINVAL;
 634	if (i->min < v->min) {
 635		i->min = v->min;
 636		i->openmin = v->openmin;
 637		changed = 1;
 638	} else if (i->min == v->min && !i->openmin && v->openmin) {
 639		i->openmin = 1;
 640		changed = 1;
 641	}
 642	if (i->max > v->max) {
 643		i->max = v->max;
 644		i->openmax = v->openmax;
 645		changed = 1;
 646	} else if (i->max == v->max && !i->openmax && v->openmax) {
 647		i->openmax = 1;
 648		changed = 1;
 649	}
 650	if (!i->integer && v->integer) {
 651		i->integer = 1;
 652		changed = 1;
 653	}
 654	if (i->integer) {
 655		if (i->openmin) {
 656			i->min++;
 657			i->openmin = 0;
 658		}
 659		if (i->openmax) {
 660			i->max--;
 661			i->openmax = 0;
 662		}
 663	} else if (!i->openmin && !i->openmax && i->min == i->max)
 664		i->integer = 1;
 665	if (snd_interval_checkempty(i)) {
 666		snd_interval_none(i);
 667		return -EINVAL;
 668	}
 669	return changed;
 670}
 671
 672EXPORT_SYMBOL(snd_interval_refine);
 673
 674static int snd_interval_refine_first(struct snd_interval *i)
 675{
 676	if (snd_BUG_ON(snd_interval_empty(i)))
 677		return -EINVAL;
 678	if (snd_interval_single(i))
 679		return 0;
 680	i->max = i->min;
 681	i->openmax = i->openmin;
 682	if (i->openmax)
 683		i->max++;
 684	return 1;
 685}
 686
 687static int snd_interval_refine_last(struct snd_interval *i)
 688{
 689	if (snd_BUG_ON(snd_interval_empty(i)))
 690		return -EINVAL;
 691	if (snd_interval_single(i))
 692		return 0;
 693	i->min = i->max;
 694	i->openmin = i->openmax;
 695	if (i->openmin)
 696		i->min--;
 697	return 1;
 698}
 699
 700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 701{
 702	if (a->empty || b->empty) {
 703		snd_interval_none(c);
 704		return;
 705	}
 706	c->empty = 0;
 707	c->min = mul(a->min, b->min);
 708	c->openmin = (a->openmin || b->openmin);
 709	c->max = mul(a->max,  b->max);
 710	c->openmax = (a->openmax || b->openmax);
 711	c->integer = (a->integer && b->integer);
 712}
 713
 714/**
 715 * snd_interval_div - refine the interval value with division
 716 * @a: dividend
 717 * @b: divisor
 718 * @c: quotient
 719 *
 720 * c = a / b
 721 *
 722 * Returns non-zero if the value is changed, zero if not changed.
 723 */
 724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 725{
 726	unsigned int r;
 727	if (a->empty || b->empty) {
 728		snd_interval_none(c);
 729		return;
 730	}
 731	c->empty = 0;
 732	c->min = div32(a->min, b->max, &r);
 733	c->openmin = (r || a->openmin || b->openmax);
 734	if (b->min > 0) {
 735		c->max = div32(a->max, b->min, &r);
 736		if (r) {
 737			c->max++;
 738			c->openmax = 1;
 739		} else
 740			c->openmax = (a->openmax || b->openmin);
 741	} else {
 742		c->max = UINT_MAX;
 743		c->openmax = 0;
 744	}
 745	c->integer = 0;
 746}
 747
 748/**
 749 * snd_interval_muldivk - refine the interval value
 750 * @a: dividend 1
 751 * @b: dividend 2
 752 * @k: divisor (as integer)
 753 * @c: result
 754  *
 755 * c = a * b / k
 756 *
 757 * Returns non-zero if the value is changed, zero if not changed.
 758 */
 759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 760		      unsigned int k, struct snd_interval *c)
 761{
 762	unsigned int r;
 763	if (a->empty || b->empty) {
 764		snd_interval_none(c);
 765		return;
 766	}
 767	c->empty = 0;
 768	c->min = muldiv32(a->min, b->min, k, &r);
 769	c->openmin = (r || a->openmin || b->openmin);
 770	c->max = muldiv32(a->max, b->max, k, &r);
 771	if (r) {
 772		c->max++;
 773		c->openmax = 1;
 774	} else
 775		c->openmax = (a->openmax || b->openmax);
 776	c->integer = 0;
 777}
 778
 779/**
 780 * snd_interval_mulkdiv - refine the interval value
 781 * @a: dividend 1
 782 * @k: dividend 2 (as integer)
 783 * @b: divisor
 784 * @c: result
 785 *
 786 * c = a * k / b
 787 *
 788 * Returns non-zero if the value is changed, zero if not changed.
 789 */
 790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 791		      const struct snd_interval *b, struct snd_interval *c)
 792{
 793	unsigned int r;
 794	if (a->empty || b->empty) {
 795		snd_interval_none(c);
 796		return;
 797	}
 798	c->empty = 0;
 799	c->min = muldiv32(a->min, k, b->max, &r);
 800	c->openmin = (r || a->openmin || b->openmax);
 801	if (b->min > 0) {
 802		c->max = muldiv32(a->max, k, b->min, &r);
 803		if (r) {
 804			c->max++;
 805			c->openmax = 1;
 806		} else
 807			c->openmax = (a->openmax || b->openmin);
 808	} else {
 809		c->max = UINT_MAX;
 810		c->openmax = 0;
 811	}
 812	c->integer = 0;
 813}
 814
 815/* ---- */
 816
 817
 818/**
 819 * snd_interval_ratnum - refine the interval value
 820 * @i: interval to refine
 821 * @rats_count: number of ratnum_t 
 822 * @rats: ratnum_t array
 823 * @nump: pointer to store the resultant numerator
 824 * @denp: pointer to store the resultant denominator
 825 *
 826 * Returns non-zero if the value is changed, zero if not changed.
 
 827 */
 828int snd_interval_ratnum(struct snd_interval *i,
 829			unsigned int rats_count, struct snd_ratnum *rats,
 830			unsigned int *nump, unsigned int *denp)
 831{
 832	unsigned int best_num, best_den;
 833	int best_diff;
 834	unsigned int k;
 835	struct snd_interval t;
 836	int err;
 837	unsigned int result_num, result_den;
 838	int result_diff;
 839
 840	best_num = best_den = best_diff = 0;
 841	for (k = 0; k < rats_count; ++k) {
 842		unsigned int num = rats[k].num;
 843		unsigned int den;
 844		unsigned int q = i->min;
 845		int diff;
 846		if (q == 0)
 847			q = 1;
 848		den = div_up(num, q);
 849		if (den < rats[k].den_min)
 850			continue;
 851		if (den > rats[k].den_max)
 852			den = rats[k].den_max;
 853		else {
 854			unsigned int r;
 855			r = (den - rats[k].den_min) % rats[k].den_step;
 856			if (r != 0)
 857				den -= r;
 858		}
 859		diff = num - q * den;
 860		if (diff < 0)
 861			diff = -diff;
 862		if (best_num == 0 ||
 863		    diff * best_den < best_diff * den) {
 864			best_diff = diff;
 865			best_den = den;
 866			best_num = num;
 867		}
 868	}
 869	if (best_den == 0) {
 870		i->empty = 1;
 871		return -EINVAL;
 872	}
 873	t.min = div_down(best_num, best_den);
 874	t.openmin = !!(best_num % best_den);
 875	
 876	result_num = best_num;
 877	result_diff = best_diff;
 878	result_den = best_den;
 879	best_num = best_den = best_diff = 0;
 880	for (k = 0; k < rats_count; ++k) {
 881		unsigned int num = rats[k].num;
 882		unsigned int den;
 883		unsigned int q = i->max;
 884		int diff;
 885		if (q == 0) {
 886			i->empty = 1;
 887			return -EINVAL;
 888		}
 889		den = div_down(num, q);
 890		if (den > rats[k].den_max)
 891			continue;
 892		if (den < rats[k].den_min)
 893			den = rats[k].den_min;
 894		else {
 895			unsigned int r;
 896			r = (den - rats[k].den_min) % rats[k].den_step;
 897			if (r != 0)
 898				den += rats[k].den_step - r;
 899		}
 900		diff = q * den - num;
 901		if (diff < 0)
 902			diff = -diff;
 903		if (best_num == 0 ||
 904		    diff * best_den < best_diff * den) {
 905			best_diff = diff;
 906			best_den = den;
 907			best_num = num;
 908		}
 909	}
 910	if (best_den == 0) {
 911		i->empty = 1;
 912		return -EINVAL;
 913	}
 914	t.max = div_up(best_num, best_den);
 915	t.openmax = !!(best_num % best_den);
 916	t.integer = 0;
 917	err = snd_interval_refine(i, &t);
 918	if (err < 0)
 919		return err;
 920
 921	if (snd_interval_single(i)) {
 922		if (best_diff * result_den < result_diff * best_den) {
 923			result_num = best_num;
 924			result_den = best_den;
 925		}
 926		if (nump)
 927			*nump = result_num;
 928		if (denp)
 929			*denp = result_den;
 930	}
 931	return err;
 932}
 933
 934EXPORT_SYMBOL(snd_interval_ratnum);
 935
 936/**
 937 * snd_interval_ratden - refine the interval value
 938 * @i: interval to refine
 939 * @rats_count: number of struct ratden
 940 * @rats: struct ratden array
 941 * @nump: pointer to store the resultant numerator
 942 * @denp: pointer to store the resultant denominator
 943 *
 944 * Returns non-zero if the value is changed, zero if not changed.
 
 945 */
 946static int snd_interval_ratden(struct snd_interval *i,
 947			       unsigned int rats_count, struct snd_ratden *rats,
 
 948			       unsigned int *nump, unsigned int *denp)
 949{
 950	unsigned int best_num, best_diff, best_den;
 951	unsigned int k;
 952	struct snd_interval t;
 953	int err;
 954
 955	best_num = best_den = best_diff = 0;
 956	for (k = 0; k < rats_count; ++k) {
 957		unsigned int num;
 958		unsigned int den = rats[k].den;
 959		unsigned int q = i->min;
 960		int diff;
 961		num = mul(q, den);
 962		if (num > rats[k].num_max)
 963			continue;
 964		if (num < rats[k].num_min)
 965			num = rats[k].num_max;
 966		else {
 967			unsigned int r;
 968			r = (num - rats[k].num_min) % rats[k].num_step;
 969			if (r != 0)
 970				num += rats[k].num_step - r;
 971		}
 972		diff = num - q * den;
 973		if (best_num == 0 ||
 974		    diff * best_den < best_diff * den) {
 975			best_diff = diff;
 976			best_den = den;
 977			best_num = num;
 978		}
 979	}
 980	if (best_den == 0) {
 981		i->empty = 1;
 982		return -EINVAL;
 983	}
 984	t.min = div_down(best_num, best_den);
 985	t.openmin = !!(best_num % best_den);
 986	
 987	best_num = best_den = best_diff = 0;
 988	for (k = 0; k < rats_count; ++k) {
 989		unsigned int num;
 990		unsigned int den = rats[k].den;
 991		unsigned int q = i->max;
 992		int diff;
 993		num = mul(q, den);
 994		if (num < rats[k].num_min)
 995			continue;
 996		if (num > rats[k].num_max)
 997			num = rats[k].num_max;
 998		else {
 999			unsigned int r;
1000			r = (num - rats[k].num_min) % rats[k].num_step;
1001			if (r != 0)
1002				num -= r;
1003		}
1004		diff = q * den - num;
1005		if (best_num == 0 ||
1006		    diff * best_den < best_diff * den) {
1007			best_diff = diff;
1008			best_den = den;
1009			best_num = num;
1010		}
1011	}
1012	if (best_den == 0) {
1013		i->empty = 1;
1014		return -EINVAL;
1015	}
1016	t.max = div_up(best_num, best_den);
1017	t.openmax = !!(best_num % best_den);
1018	t.integer = 0;
1019	err = snd_interval_refine(i, &t);
1020	if (err < 0)
1021		return err;
1022
1023	if (snd_interval_single(i)) {
1024		if (nump)
1025			*nump = best_num;
1026		if (denp)
1027			*denp = best_den;
1028	}
1029	return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
 
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046		      const unsigned int *list, unsigned int mask)
1047{
1048        unsigned int k;
1049	struct snd_interval list_range;
1050
1051	if (!count) {
1052		i->empty = 1;
1053		return -EINVAL;
1054	}
1055	snd_interval_any(&list_range);
1056	list_range.min = UINT_MAX;
1057	list_range.max = 0;
1058        for (k = 0; k < count; k++) {
1059		if (mask && !(mask & (1 << k)))
1060			continue;
1061		if (!snd_interval_test(i, list[k]))
1062			continue;
1063		list_range.min = min(list_range.min, list[k]);
1064		list_range.max = max(list_range.max, list[k]);
1065        }
1066	return snd_interval_refine(i, &list_range);
1067}
1068
1069EXPORT_SYMBOL(snd_interval_list);
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	unsigned int n;
1074	int changed = 0;
1075	n = (i->min - min) % step;
1076	if (n != 0 || i->openmin) {
1077		i->min += step - n;
 
1078		changed = 1;
1079	}
1080	n = (i->max - min) % step;
1081	if (n != 0 || i->openmax) {
1082		i->max -= n;
 
1083		changed = 1;
1084	}
1085	if (snd_interval_checkempty(i)) {
1086		i->empty = 1;
1087		return -EINVAL;
1088	}
1089	return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106			int var,
1107			snd_pcm_hw_rule_func_t func, void *private,
1108			int dep, ...)
1109{
1110	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111	struct snd_pcm_hw_rule *c;
1112	unsigned int k;
1113	va_list args;
1114	va_start(args, dep);
1115	if (constrs->rules_num >= constrs->rules_all) {
1116		struct snd_pcm_hw_rule *new;
1117		unsigned int new_rules = constrs->rules_all + 16;
1118		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119		if (!new) {
1120			va_end(args);
1121			return -ENOMEM;
1122		}
1123		if (constrs->rules) {
1124			memcpy(new, constrs->rules,
1125			       constrs->rules_num * sizeof(*c));
1126			kfree(constrs->rules);
1127		}
1128		constrs->rules = new;
1129		constrs->rules_all = new_rules;
1130	}
1131	c = &constrs->rules[constrs->rules_num];
1132	c->cond = cond;
1133	c->func = func;
1134	c->var = var;
1135	c->private = private;
1136	k = 0;
1137	while (1) {
1138		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139			va_end(args);
1140			return -EINVAL;
1141		}
1142		c->deps[k++] = dep;
1143		if (dep < 0)
1144			break;
1145		dep = va_arg(args, int);
1146	}
1147	constrs->rules_num++;
1148	va_end(args);
1149	return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
 
 
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163			       u_int32_t mask)
1164{
1165	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166	struct snd_mask *maskp = constrs_mask(constrs, var);
1167	*maskp->bits &= mask;
1168	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169	if (*maskp->bits == 0)
1170		return -EINVAL;
1171	return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
 
 
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183				 u_int64_t mask)
1184{
1185	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186	struct snd_mask *maskp = constrs_mask(constrs, var);
1187	maskp->bits[0] &= (u_int32_t)mask;
1188	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190	if (! maskp->bits[0] && ! maskp->bits[1])
1191		return -EINVAL;
1192	return 0;
1193}
 
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
 
 
 
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205	return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 * 
1217 * Apply the min/max range constraint to an interval parameter.
 
 
 
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220				 unsigned int min, unsigned int max)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	struct snd_interval t;
1224	t.min = min;
1225	t.max = max;
1226	t.openmin = t.openmax = 0;
1227	t.integer = 0;
1228	return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234				struct snd_pcm_hw_rule *rule)
1235{
1236	struct snd_pcm_hw_constraint_list *list = rule->private;
1237	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}		
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 * 
1248 * Apply the list of constraints to an interval parameter.
 
 
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251			       unsigned int cond,
1252			       snd_pcm_hw_param_t var,
1253			       struct snd_pcm_hw_constraint_list *l)
1254{
1255	return snd_pcm_hw_rule_add(runtime, cond, var,
1256				   snd_pcm_hw_rule_list, l,
1257				   var, -1);
1258}
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263				   struct snd_pcm_hw_rule *rule)
1264{
1265	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266	unsigned int num = 0, den = 0;
1267	int err;
1268	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269				  r->nrats, r->rats, &num, &den);
1270	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271		params->rate_num = num;
1272		params->rate_den = den;
1273	}
1274	return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
 
 
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1285				  unsigned int cond,
1286				  snd_pcm_hw_param_t var,
1287				  struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289	return snd_pcm_hw_rule_add(runtime, cond, var,
1290				   snd_pcm_hw_rule_ratnums, r,
1291				   var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297				   struct snd_pcm_hw_rule *rule)
1298{
1299	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300	unsigned int num = 0, den = 0;
1301	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302				  r->nrats, r->rats, &num, &den);
1303	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304		params->rate_num = num;
1305		params->rate_den = den;
1306	}
1307	return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
 
 
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1318				  unsigned int cond,
1319				  snd_pcm_hw_param_t var,
1320				  struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322	return snd_pcm_hw_rule_add(runtime, cond, var,
1323				   snd_pcm_hw_rule_ratdens, r,
1324				   var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330				  struct snd_pcm_hw_rule *rule)
1331{
1332	unsigned int l = (unsigned long) rule->private;
1333	int width = l & 0xffff;
1334	unsigned int msbits = l >> 16;
1335	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336	if (snd_interval_single(i) && snd_interval_value(i) == width)
1337		params->msbits = msbits;
 
 
 
 
 
 
1338	return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
 
 
 
 
 
 
 
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1349				 unsigned int cond,
1350				 unsigned int width,
1351				 unsigned int msbits)
1352{
1353	unsigned long l = (msbits << 16) | width;
1354	return snd_pcm_hw_rule_add(runtime, cond, -1,
1355				    snd_pcm_hw_rule_msbits,
1356				    (void*) l,
1357				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363				struct snd_pcm_hw_rule *rule)
1364{
1365	unsigned long step = (unsigned long) rule->private;
1366	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
 
 
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377			       unsigned int cond,
1378			       snd_pcm_hw_param_t var,
1379			       unsigned long step)
1380{
1381	return snd_pcm_hw_rule_add(runtime, cond, var, 
1382				   snd_pcm_hw_rule_step, (void *) step,
1383				   var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390	static unsigned int pow2_sizes[] = {
1391		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395	};
1396	return snd_interval_list(hw_param_interval(params, rule->var),
1397				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}		
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
 
 
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407			       unsigned int cond,
1408			       snd_pcm_hw_param_t var)
1409{
1410	return snd_pcm_hw_rule_add(runtime, cond, var, 
1411				   snd_pcm_hw_rule_pow2, NULL,
1412				   var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418					   struct snd_pcm_hw_rule *rule)
1419{
1420	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421	struct snd_interval *rate;
1422
1423	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424	return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
 
 
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433			       unsigned int base_rate)
1434{
1435	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436				   SNDRV_PCM_HW_PARAM_RATE,
1437				   snd_pcm_hw_rule_noresample_func,
1438				   (void *)(uintptr_t)base_rate,
1439				   SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444				  snd_pcm_hw_param_t var)
1445{
1446	if (hw_is_mask(var)) {
1447		snd_mask_any(hw_param_mask(params, var));
1448		params->cmask |= 1 << var;
1449		params->rmask |= 1 << var;
1450		return;
1451	}
1452	if (hw_is_interval(var)) {
1453		snd_interval_any(hw_param_interval(params, var));
1454		params->cmask |= 1 << var;
1455		params->rmask |= 1 << var;
1456		return;
1457	}
1458	snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463	unsigned int k;
1464	memset(params, 0, sizeof(*params));
1465	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466		_snd_pcm_hw_param_any(params, k);
1467	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468		_snd_pcm_hw_param_any(params, k);
1469	params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484			   snd_pcm_hw_param_t var, int *dir)
1485{
1486	if (hw_is_mask(var)) {
1487		const struct snd_mask *mask = hw_param_mask_c(params, var);
1488		if (!snd_mask_single(mask))
1489			return -EINVAL;
1490		if (dir)
1491			*dir = 0;
1492		return snd_mask_value(mask);
1493	}
1494	if (hw_is_interval(var)) {
1495		const struct snd_interval *i = hw_param_interval_c(params, var);
1496		if (!snd_interval_single(i))
1497			return -EINVAL;
1498		if (dir)
1499			*dir = i->openmin;
1500		return snd_interval_value(i);
1501	}
1502	return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508				snd_pcm_hw_param_t var)
1509{
1510	if (hw_is_mask(var)) {
1511		snd_mask_none(hw_param_mask(params, var));
1512		params->cmask |= 1 << var;
1513		params->rmask |= 1 << var;
1514	} else if (hw_is_interval(var)) {
1515		snd_interval_none(hw_param_interval(params, var));
1516		params->cmask |= 1 << var;
1517		params->rmask |= 1 << var;
1518	} else {
1519		snd_BUG();
1520	}
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526				   snd_pcm_hw_param_t var)
1527{
1528	int changed;
1529	if (hw_is_mask(var))
1530		changed = snd_mask_refine_first(hw_param_mask(params, var));
1531	else if (hw_is_interval(var))
1532		changed = snd_interval_refine_first(hw_param_interval(params, var));
1533	else
1534		return -EINVAL;
1535	if (changed) {
1536		params->cmask |= 1 << var;
1537		params->rmask |= 1 << var;
1538	}
1539	return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
 
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1555			   struct snd_pcm_hw_params *params, 
1556			   snd_pcm_hw_param_t var, int *dir)
1557{
1558	int changed = _snd_pcm_hw_param_first(params, var);
1559	if (changed < 0)
1560		return changed;
1561	if (params->rmask) {
1562		int err = snd_pcm_hw_refine(pcm, params);
1563		if (snd_BUG_ON(err < 0))
1564			return err;
1565	}
1566	return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572				  snd_pcm_hw_param_t var)
1573{
1574	int changed;
1575	if (hw_is_mask(var))
1576		changed = snd_mask_refine_last(hw_param_mask(params, var));
1577	else if (hw_is_interval(var))
1578		changed = snd_interval_refine_last(hw_param_interval(params, var));
1579	else
1580		return -EINVAL;
1581	if (changed) {
1582		params->cmask |= 1 << var;
1583		params->rmask |= 1 << var;
1584	}
1585	return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
 
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1601			  struct snd_pcm_hw_params *params,
1602			  snd_pcm_hw_param_t var, int *dir)
1603{
1604	int changed = _snd_pcm_hw_param_last(params, var);
1605	if (changed < 0)
1606		return changed;
1607	if (params->rmask) {
1608		int err = snd_pcm_hw_refine(pcm, params);
1609		if (snd_BUG_ON(err < 0))
1610			return err;
1611	}
1612	return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
 
 
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628			     struct snd_pcm_hw_params *params)
1629{
1630	static int vars[] = {
1631		SNDRV_PCM_HW_PARAM_ACCESS,
1632		SNDRV_PCM_HW_PARAM_FORMAT,
1633		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634		SNDRV_PCM_HW_PARAM_CHANNELS,
1635		SNDRV_PCM_HW_PARAM_RATE,
1636		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638		SNDRV_PCM_HW_PARAM_TICK_TIME,
1639		-1
1640	};
1641	int err, *v;
1642
1643	for (v = vars; *v != -1; v++) {
1644		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646		else
1647			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648		if (snd_BUG_ON(err < 0))
1649			return err;
1650	}
1651	return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655				   void *arg)
1656{
1657	struct snd_pcm_runtime *runtime = substream->runtime;
1658	unsigned long flags;
1659	snd_pcm_stream_lock_irqsave(substream, flags);
1660	if (snd_pcm_running(substream) &&
1661	    snd_pcm_update_hw_ptr(substream) >= 0)
1662		runtime->status->hw_ptr %= runtime->buffer_size;
1663	else
1664		runtime->status->hw_ptr = 0;
 
 
1665	snd_pcm_stream_unlock_irqrestore(substream, flags);
1666	return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670					  void *arg)
1671{
1672	struct snd_pcm_channel_info *info = arg;
1673	struct snd_pcm_runtime *runtime = substream->runtime;
1674	int width;
1675	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676		info->offset = -1;
1677		return 0;
1678	}
1679	width = snd_pcm_format_physical_width(runtime->format);
1680	if (width < 0)
1681		return width;
1682	info->offset = 0;
1683	switch (runtime->access) {
1684	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686		info->first = info->channel * width;
1687		info->step = runtime->channels * width;
1688		break;
1689	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691	{
1692		size_t size = runtime->dma_bytes / runtime->channels;
1693		info->first = info->channel * size * 8;
1694		info->step = width;
1695		break;
1696	}
1697	default:
1698		snd_BUG();
1699		break;
1700	}
1701	return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705				       void *arg)
1706{
1707	struct snd_pcm_hw_params *params = arg;
1708	snd_pcm_format_t format;
1709	int channels, width;
 
1710
1711	params->fifo_size = substream->runtime->hw.fifo_size;
1712	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713		format = params_format(params);
1714		channels = params_channels(params);
1715		width = snd_pcm_format_physical_width(format);
1716		params->fifo_size /= width * channels;
 
1717	}
1718	return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733		      unsigned int cmd, void *arg)
1734{
1735	switch (cmd) {
1736	case SNDRV_PCM_IOCTL1_INFO:
1737		return 0;
1738	case SNDRV_PCM_IOCTL1_RESET:
1739		return snd_pcm_lib_ioctl_reset(substream, arg);
1740	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744	}
1745	return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size.  It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763	struct snd_pcm_runtime *runtime;
1764	unsigned long flags;
1765
1766	if (PCM_RUNTIME_CHECK(substream))
1767		return;
1768	runtime = substream->runtime;
1769
1770	if (runtime->transfer_ack_begin)
1771		runtime->transfer_ack_begin(substream);
1772
1773	snd_pcm_stream_lock_irqsave(substream, flags);
1774	if (!snd_pcm_running(substream) ||
1775	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776		goto _end;
1777
 
1778	if (substream->timer_running)
1779		snd_timer_interrupt(substream->timer, 1);
 
1780 _end:
 
1781	snd_pcm_stream_unlock_irqrestore(substream, flags);
1782	if (runtime->transfer_ack_end)
1783		runtime->transfer_ack_end(substream);
1784	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp.  When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796			      snd_pcm_uframes_t *availp)
1797{
1798	struct snd_pcm_runtime *runtime = substream->runtime;
1799	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800	wait_queue_t wait;
1801	int err = 0;
1802	snd_pcm_uframes_t avail = 0;
1803	long wait_time, tout;
1804
1805	init_waitqueue_entry(&wait, current);
1806	set_current_state(TASK_INTERRUPTIBLE);
1807	add_wait_queue(&runtime->tsleep, &wait);
1808
1809	if (runtime->no_period_wakeup)
1810		wait_time = MAX_SCHEDULE_TIMEOUT;
1811	else {
1812		wait_time = 10;
1813		if (runtime->rate) {
1814			long t = runtime->period_size * 2 / runtime->rate;
1815			wait_time = max(t, wait_time);
1816		}
1817		wait_time = msecs_to_jiffies(wait_time * 1000);
1818	}
1819
1820	for (;;) {
1821		if (signal_pending(current)) {
1822			err = -ERESTARTSYS;
1823			break;
1824		}
1825
1826		/*
1827		 * We need to check if space became available already
1828		 * (and thus the wakeup happened already) first to close
1829		 * the race of space already having become available.
1830		 * This check must happen after been added to the waitqueue
1831		 * and having current state be INTERRUPTIBLE.
1832		 */
1833		if (is_playback)
1834			avail = snd_pcm_playback_avail(runtime);
1835		else
1836			avail = snd_pcm_capture_avail(runtime);
1837		if (avail >= runtime->twake)
1838			break;
1839		snd_pcm_stream_unlock_irq(substream);
1840
1841		tout = schedule_timeout(wait_time);
1842
1843		snd_pcm_stream_lock_irq(substream);
1844		set_current_state(TASK_INTERRUPTIBLE);
1845		switch (runtime->status->state) {
1846		case SNDRV_PCM_STATE_SUSPENDED:
1847			err = -ESTRPIPE;
1848			goto _endloop;
1849		case SNDRV_PCM_STATE_XRUN:
1850			err = -EPIPE;
1851			goto _endloop;
1852		case SNDRV_PCM_STATE_DRAINING:
1853			if (is_playback)
1854				err = -EPIPE;
1855			else 
1856				avail = 0; /* indicate draining */
1857			goto _endloop;
1858		case SNDRV_PCM_STATE_OPEN:
1859		case SNDRV_PCM_STATE_SETUP:
1860		case SNDRV_PCM_STATE_DISCONNECTED:
1861			err = -EBADFD;
1862			goto _endloop;
 
 
1863		}
1864		if (!tout) {
1865			snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866				   is_playback ? "playback" : "capture");
 
1867			err = -EIO;
1868			break;
1869		}
1870	}
1871 _endloop:
1872	set_current_state(TASK_RUNNING);
1873	remove_wait_queue(&runtime->tsleep, &wait);
1874	*availp = avail;
1875	return err;
1876}
1877	
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879				      unsigned int hwoff,
1880				      unsigned long data, unsigned int off,
1881				      snd_pcm_uframes_t frames)
1882{
1883	struct snd_pcm_runtime *runtime = substream->runtime;
1884	int err;
1885	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886	if (substream->ops->copy) {
1887		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888			return err;
1889	} else {
1890		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892			return -EFAULT;
1893	}
1894	return 0;
1895}
1896 
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898			  unsigned long data, unsigned int off,
1899			  snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1902					    unsigned long data,
1903					    snd_pcm_uframes_t size,
1904					    int nonblock,
1905					    transfer_f transfer)
1906{
1907	struct snd_pcm_runtime *runtime = substream->runtime;
1908	snd_pcm_uframes_t xfer = 0;
1909	snd_pcm_uframes_t offset = 0;
1910	snd_pcm_uframes_t avail;
1911	int err = 0;
1912
1913	if (size == 0)
1914		return 0;
1915
1916	snd_pcm_stream_lock_irq(substream);
1917	switch (runtime->status->state) {
1918	case SNDRV_PCM_STATE_PREPARED:
1919	case SNDRV_PCM_STATE_RUNNING:
1920	case SNDRV_PCM_STATE_PAUSED:
1921		break;
1922	case SNDRV_PCM_STATE_XRUN:
1923		err = -EPIPE;
1924		goto _end_unlock;
1925	case SNDRV_PCM_STATE_SUSPENDED:
1926		err = -ESTRPIPE;
1927		goto _end_unlock;
1928	default:
1929		err = -EBADFD;
1930		goto _end_unlock;
1931	}
1932
1933	runtime->twake = runtime->control->avail_min ? : 1;
1934	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935		snd_pcm_update_hw_ptr(substream);
1936	avail = snd_pcm_playback_avail(runtime);
1937	while (size > 0) {
1938		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939		snd_pcm_uframes_t cont;
1940		if (!avail) {
1941			if (nonblock) {
1942				err = -EAGAIN;
1943				goto _end_unlock;
1944			}
1945			runtime->twake = min_t(snd_pcm_uframes_t, size,
1946					runtime->control->avail_min ? : 1);
1947			err = wait_for_avail(substream, &avail);
1948			if (err < 0)
1949				goto _end_unlock;
1950		}
1951		frames = size > avail ? avail : size;
1952		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953		if (frames > cont)
1954			frames = cont;
1955		if (snd_BUG_ON(!frames)) {
1956			runtime->twake = 0;
1957			snd_pcm_stream_unlock_irq(substream);
1958			return -EINVAL;
1959		}
1960		appl_ptr = runtime->control->appl_ptr;
1961		appl_ofs = appl_ptr % runtime->buffer_size;
1962		snd_pcm_stream_unlock_irq(substream);
1963		err = transfer(substream, appl_ofs, data, offset, frames);
1964		snd_pcm_stream_lock_irq(substream);
1965		if (err < 0)
1966			goto _end_unlock;
1967		switch (runtime->status->state) {
1968		case SNDRV_PCM_STATE_XRUN:
1969			err = -EPIPE;
1970			goto _end_unlock;
1971		case SNDRV_PCM_STATE_SUSPENDED:
1972			err = -ESTRPIPE;
1973			goto _end_unlock;
1974		default:
1975			break;
1976		}
1977		appl_ptr += frames;
1978		if (appl_ptr >= runtime->boundary)
1979			appl_ptr -= runtime->boundary;
1980		runtime->control->appl_ptr = appl_ptr;
1981		if (substream->ops->ack)
1982			substream->ops->ack(substream);
1983
1984		offset += frames;
1985		size -= frames;
1986		xfer += frames;
1987		avail -= frames;
1988		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990			err = snd_pcm_start(substream);
1991			if (err < 0)
1992				goto _end_unlock;
1993		}
1994	}
1995 _end_unlock:
1996	runtime->twake = 0;
1997	if (xfer > 0 && err >= 0)
1998		snd_pcm_update_state(substream, runtime);
1999	snd_pcm_stream_unlock_irq(substream);
2000	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006	struct snd_pcm_runtime *runtime;
2007	if (PCM_RUNTIME_CHECK(substream))
2008		return -ENXIO;
2009	runtime = substream->runtime;
2010	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011		return -EINVAL;
2012	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013		return -EBADFD;
2014	return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019	struct snd_pcm_runtime *runtime;
2020	int nonblock;
2021	int err;
2022
2023	err = pcm_sanity_check(substream);
2024	if (err < 0)
2025		return err;
2026	runtime = substream->runtime;
2027	nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030	    runtime->channels > 1)
2031		return -EINVAL;
2032	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033				  snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039				       unsigned int hwoff,
2040				       unsigned long data, unsigned int off,
2041				       snd_pcm_uframes_t frames)
2042{
2043	struct snd_pcm_runtime *runtime = substream->runtime;
2044	int err;
2045	void __user **bufs = (void __user **)data;
2046	int channels = runtime->channels;
2047	int c;
2048	if (substream->ops->copy) {
2049		if (snd_BUG_ON(!substream->ops->silence))
2050			return -EINVAL;
2051		for (c = 0; c < channels; ++c, ++bufs) {
2052			if (*bufs == NULL) {
2053				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054					return err;
2055			} else {
2056				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058					return err;
2059			}
2060		}
2061	} else {
2062		/* default transfer behaviour */
2063		size_t dma_csize = runtime->dma_bytes / channels;
2064		for (c = 0; c < channels; ++c, ++bufs) {
2065			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066			if (*bufs == NULL) {
2067				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068			} else {
2069				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071					return -EFAULT;
2072			}
2073		}
2074	}
2075	return 0;
2076}
2077 
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079				     void __user **bufs,
2080				     snd_pcm_uframes_t frames)
2081{
2082	struct snd_pcm_runtime *runtime;
2083	int nonblock;
2084	int err;
2085
2086	err = pcm_sanity_check(substream);
2087	if (err < 0)
2088		return err;
2089	runtime = substream->runtime;
2090	nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093		return -EINVAL;
2094	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095				  nonblock, snd_pcm_lib_writev_transfer);
2096}
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2101				     unsigned int hwoff,
2102				     unsigned long data, unsigned int off,
2103				     snd_pcm_uframes_t frames)
2104{
2105	struct snd_pcm_runtime *runtime = substream->runtime;
2106	int err;
2107	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108	if (substream->ops->copy) {
2109		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110			return err;
2111	} else {
2112		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114			return -EFAULT;
2115	}
2116	return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120					   unsigned long data,
2121					   snd_pcm_uframes_t size,
2122					   int nonblock,
2123					   transfer_f transfer)
2124{
2125	struct snd_pcm_runtime *runtime = substream->runtime;
2126	snd_pcm_uframes_t xfer = 0;
2127	snd_pcm_uframes_t offset = 0;
2128	snd_pcm_uframes_t avail;
2129	int err = 0;
2130
2131	if (size == 0)
2132		return 0;
2133
2134	snd_pcm_stream_lock_irq(substream);
2135	switch (runtime->status->state) {
2136	case SNDRV_PCM_STATE_PREPARED:
2137		if (size >= runtime->start_threshold) {
2138			err = snd_pcm_start(substream);
2139			if (err < 0)
2140				goto _end_unlock;
2141		}
2142		break;
2143	case SNDRV_PCM_STATE_DRAINING:
2144	case SNDRV_PCM_STATE_RUNNING:
2145	case SNDRV_PCM_STATE_PAUSED:
2146		break;
2147	case SNDRV_PCM_STATE_XRUN:
2148		err = -EPIPE;
2149		goto _end_unlock;
2150	case SNDRV_PCM_STATE_SUSPENDED:
2151		err = -ESTRPIPE;
2152		goto _end_unlock;
2153	default:
2154		err = -EBADFD;
2155		goto _end_unlock;
2156	}
2157
2158	runtime->twake = runtime->control->avail_min ? : 1;
2159	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160		snd_pcm_update_hw_ptr(substream);
2161	avail = snd_pcm_capture_avail(runtime);
2162	while (size > 0) {
2163		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164		snd_pcm_uframes_t cont;
2165		if (!avail) {
2166			if (runtime->status->state ==
2167			    SNDRV_PCM_STATE_DRAINING) {
2168				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169				goto _end_unlock;
2170			}
2171			if (nonblock) {
2172				err = -EAGAIN;
2173				goto _end_unlock;
2174			}
2175			runtime->twake = min_t(snd_pcm_uframes_t, size,
2176					runtime->control->avail_min ? : 1);
2177			err = wait_for_avail(substream, &avail);
2178			if (err < 0)
2179				goto _end_unlock;
2180			if (!avail)
2181				continue; /* draining */
2182		}
2183		frames = size > avail ? avail : size;
2184		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185		if (frames > cont)
2186			frames = cont;
2187		if (snd_BUG_ON(!frames)) {
2188			runtime->twake = 0;
2189			snd_pcm_stream_unlock_irq(substream);
2190			return -EINVAL;
2191		}
2192		appl_ptr = runtime->control->appl_ptr;
2193		appl_ofs = appl_ptr % runtime->buffer_size;
2194		snd_pcm_stream_unlock_irq(substream);
2195		err = transfer(substream, appl_ofs, data, offset, frames);
2196		snd_pcm_stream_lock_irq(substream);
2197		if (err < 0)
2198			goto _end_unlock;
2199		switch (runtime->status->state) {
2200		case SNDRV_PCM_STATE_XRUN:
2201			err = -EPIPE;
2202			goto _end_unlock;
2203		case SNDRV_PCM_STATE_SUSPENDED:
2204			err = -ESTRPIPE;
2205			goto _end_unlock;
2206		default:
2207			break;
2208		}
2209		appl_ptr += frames;
2210		if (appl_ptr >= runtime->boundary)
2211			appl_ptr -= runtime->boundary;
2212		runtime->control->appl_ptr = appl_ptr;
2213		if (substream->ops->ack)
2214			substream->ops->ack(substream);
2215
2216		offset += frames;
2217		size -= frames;
2218		xfer += frames;
2219		avail -= frames;
2220	}
2221 _end_unlock:
2222	runtime->twake = 0;
2223	if (xfer > 0 && err >= 0)
2224		snd_pcm_update_state(substream, runtime);
2225	snd_pcm_stream_unlock_irq(substream);
2226	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231	struct snd_pcm_runtime *runtime;
2232	int nonblock;
2233	int err;
2234	
2235	err = pcm_sanity_check(substream);
2236	if (err < 0)
2237		return err;
2238	runtime = substream->runtime;
2239	nonblock = !!(substream->f_flags & O_NONBLOCK);
2240	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241		return -EINVAL;
2242	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248				      unsigned int hwoff,
2249				      unsigned long data, unsigned int off,
2250				      snd_pcm_uframes_t frames)
2251{
2252	struct snd_pcm_runtime *runtime = substream->runtime;
2253	int err;
2254	void __user **bufs = (void __user **)data;
2255	int channels = runtime->channels;
2256	int c;
2257	if (substream->ops->copy) {
2258		for (c = 0; c < channels; ++c, ++bufs) {
2259			char __user *buf;
2260			if (*bufs == NULL)
2261				continue;
2262			buf = *bufs + samples_to_bytes(runtime, off);
2263			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264				return err;
2265		}
2266	} else {
2267		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268		for (c = 0; c < channels; ++c, ++bufs) {
2269			char *hwbuf;
2270			char __user *buf;
2271			if (*bufs == NULL)
2272				continue;
2273
2274			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275			buf = *bufs + samples_to_bytes(runtime, off);
2276			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277				return -EFAULT;
2278		}
2279	}
2280	return 0;
2281}
2282 
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284				    void __user **bufs,
2285				    snd_pcm_uframes_t frames)
2286{
2287	struct snd_pcm_runtime *runtime;
2288	int nonblock;
2289	int err;
2290
2291	err = pcm_sanity_check(substream);
2292	if (err < 0)
2293		return err;
2294	runtime = substream->runtime;
2295	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296		return -EBADFD;
2297
2298	nonblock = !!(substream->f_flags & O_NONBLOCK);
2299	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300		return -EINVAL;
2301	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);