Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 
 
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
 
 
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int have_error, do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
223	status = nfs_commit_inode(inode, FLUSH_SYNC);
224	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
225	if (have_error) {
226		ret = xchg(&ctx->error, 0);
227		if (ret)
228			goto out;
229	}
230	if (status < 0) {
231		ret = status;
232		goto out;
233	}
234	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
235	if (do_resend)
236		ret = -EAGAIN;
237out:
238	return ret;
239}
240
241int
242nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
243{
244	int ret;
245	struct inode *inode = file_inode(file);
 
 
 
 
246
247	trace_nfs_fsync_enter(inode);
248
249	do {
250		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
251		if (ret != 0)
252			break;
253		ret = nfs_file_fsync_commit(file, start, end, datasync);
254		if (!ret)
255			ret = pnfs_sync_inode(inode, !!datasync);
256		/*
257		 * If nfs_file_fsync_commit detected a server reboot, then
258		 * resend all dirty pages that might have been covered by
259		 * the NFS_CONTEXT_RESEND_WRITES flag
260		 */
261		start = 0;
262		end = LLONG_MAX;
263	} while (ret == -EAGAIN);
264
265	trace_nfs_fsync_exit(inode, ret);
266	return ret;
267}
268EXPORT_SYMBOL_GPL(nfs_file_fsync);
269
270/*
271 * Decide whether a read/modify/write cycle may be more efficient
272 * then a modify/write/read cycle when writing to a page in the
273 * page cache.
274 *
 
 
 
 
 
 
275 * The modify/write/read cycle may occur if a page is read before
276 * being completely filled by the writer.  In this situation, the
277 * page must be completely written to stable storage on the server
278 * before it can be refilled by reading in the page from the server.
279 * This can lead to expensive, small, FILE_SYNC mode writes being
280 * done.
281 *
282 * It may be more efficient to read the page first if the file is
283 * open for reading in addition to writing, the page is not marked
284 * as Uptodate, it is not dirty or waiting to be committed,
285 * indicating that it was previously allocated and then modified,
286 * that there were valid bytes of data in that range of the file,
287 * and that the new data won't completely replace the old data in
288 * that range of the file.
289 */
290static int nfs_want_read_modify_write(struct file *file, struct page *page,
291			loff_t pos, unsigned len)
292{
293	unsigned int pglen = nfs_page_length(page);
294	unsigned int offset = pos & (PAGE_SIZE - 1);
295	unsigned int end = offset + len;
296
297	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
298		if (!PageUptodate(page))
299			return 1;
300		return 0;
301	}
302
303	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
304	    !PageUptodate(page) &&		/* Uptodate? */
305	    !PagePrivate(page) &&		/* i/o request already? */
306	    pglen &&				/* valid bytes of file? */
307	    (end < pglen || offset))		/* replace all valid bytes? */
308		return 1;
309	return 0;
 
 
 
 
 
 
 
 
 
 
310}
311
312/*
313 * This does the "real" work of the write. We must allocate and lock the
314 * page to be sent back to the generic routine, which then copies the
315 * data from user space.
316 *
317 * If the writer ends up delaying the write, the writer needs to
318 * increment the page use counts until he is done with the page.
319 */
320static int nfs_write_begin(struct file *file, struct address_space *mapping,
321			loff_t pos, unsigned len, unsigned flags,
322			struct page **pagep, void **fsdata)
323{
324	int ret;
325	pgoff_t index = pos >> PAGE_SHIFT;
326	struct page *page;
327	int once_thru = 0;
 
328
329	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
330		file, mapping->host->i_ino, len, (long long) pos);
331
332start:
333	page = grab_cache_page_write_begin(mapping, index, flags);
334	if (!page)
335		return -ENOMEM;
336	*pagep = page;
 
337
338	ret = nfs_flush_incompatible(file, page);
339	if (ret) {
340		unlock_page(page);
341		put_page(page);
342	} else if (!once_thru &&
343		   nfs_want_read_modify_write(file, page, pos, len)) {
344		once_thru = 1;
345		ret = nfs_readpage(file, page);
346		put_page(page);
347		if (!ret)
348			goto start;
349	}
350	return ret;
351}
352
353static int nfs_write_end(struct file *file, struct address_space *mapping,
354			loff_t pos, unsigned len, unsigned copied,
355			struct page *page, void *fsdata)
356{
357	unsigned offset = pos & (PAGE_SIZE - 1);
358	struct nfs_open_context *ctx = nfs_file_open_context(file);
 
 
359	int status;
360
361	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
362		file, mapping->host->i_ino, len, (long long) pos);
363
364	/*
365	 * Zero any uninitialised parts of the page, and then mark the page
366	 * as up to date if it turns out that we're extending the file.
367	 */
368	if (!PageUptodate(page)) {
369		unsigned pglen = nfs_page_length(page);
 
370		unsigned end = offset + copied;
371
372		if (pglen == 0) {
373			zero_user_segments(page, 0, offset,
374					end, PAGE_SIZE);
375			SetPageUptodate(page);
376		} else if (end >= pglen) {
377			zero_user_segment(page, end, PAGE_SIZE);
378			if (offset == 0)
379				SetPageUptodate(page);
380		} else
381			zero_user_segment(page, pglen, PAGE_SIZE);
382	}
383
384	status = nfs_updatepage(file, page, offset, copied);
385
386	unlock_page(page);
387	put_page(page);
388
389	if (status < 0)
390		return status;
391	NFS_I(mapping->host)->write_io += copied;
392
393	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
394		status = nfs_wb_all(mapping->host);
395		if (status < 0)
396			return status;
397	}
398
399	return copied;
400}
401
402/*
403 * Partially or wholly invalidate a page
404 * - Release the private state associated with a page if undergoing complete
405 *   page invalidation
406 * - Called if either PG_private or PG_fscache is set on the page
407 * - Caller holds page lock
408 */
409static void nfs_invalidate_page(struct page *page, unsigned int offset,
410				unsigned int length)
411{
412	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
413		 page, offset, length);
 
414
415	if (offset != 0 || length < PAGE_SIZE)
416		return;
417	/* Cancel any unstarted writes on this page */
418	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
419
420	nfs_fscache_invalidate_page(page, page->mapping->host);
421}
422
423/*
424 * Attempt to release the private state associated with a page
425 * - Called if either PG_private or PG_fscache is set on the page
426 * - Caller holds page lock
427 * - Return true (may release page) or false (may not)
428 */
429static int nfs_release_page(struct page *page, gfp_t gfp)
430{
431	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
432
433	/* If PagePrivate() is set, then the page is not freeable */
434	if (PagePrivate(page))
435		return 0;
436	return nfs_fscache_release_page(page, gfp);
 
 
 
 
 
437}
438
439static void nfs_check_dirty_writeback(struct page *page,
440				bool *dirty, bool *writeback)
441{
442	struct nfs_inode *nfsi;
443	struct address_space *mapping = page_file_mapping(page);
444
445	if (!mapping || PageSwapCache(page))
446		return;
447
448	/*
449	 * Check if an unstable page is currently being committed and
450	 * if so, have the VM treat it as if the page is under writeback
451	 * so it will not block due to pages that will shortly be freeable.
452	 */
453	nfsi = NFS_I(mapping->host);
454	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
455		*writeback = true;
456		return;
457	}
458
459	/*
460	 * If PagePrivate() is set, then the page is not freeable and as the
461	 * inode is not being committed, it's not going to be cleaned in the
462	 * near future so treat it as dirty
463	 */
464	if (PagePrivate(page))
465		*dirty = true;
466}
467
468/*
469 * Attempt to clear the private state associated with a page when an error
470 * occurs that requires the cached contents of an inode to be written back or
471 * destroyed
472 * - Called if either PG_private or fscache is set on the page
473 * - Caller holds page lock
474 * - Return 0 if successful, -error otherwise
475 */
476static int nfs_launder_page(struct page *page)
477{
478	struct inode *inode = page_file_mapping(page)->host;
479	struct nfs_inode *nfsi = NFS_I(inode);
480
481	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
482		inode->i_ino, (long long)page_offset(page));
483
484	nfs_fscache_wait_on_page_write(nfsi, page);
485	return nfs_wb_launder_page(inode, page);
 
 
486}
487
488static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
489						sector_t *span)
490{
491	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
493	*span = sis->pages;
494
495	return rpc_clnt_swap_activate(clnt);
 
 
 
 
496}
497
498static void nfs_swap_deactivate(struct file *file)
499{
500	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
501
502	rpc_clnt_swap_deactivate(clnt);
 
 
503}
504
505const struct address_space_operations nfs_file_aops = {
506	.readpage = nfs_readpage,
507	.readpages = nfs_readpages,
508	.set_page_dirty = __set_page_dirty_nobuffers,
509	.writepage = nfs_writepage,
510	.writepages = nfs_writepages,
511	.write_begin = nfs_write_begin,
512	.write_end = nfs_write_end,
513	.invalidatepage = nfs_invalidate_page,
514	.releasepage = nfs_release_page,
515	.direct_IO = nfs_direct_IO,
516#ifdef CONFIG_MIGRATION
517	.migratepage = nfs_migrate_page,
518#endif
519	.launder_page = nfs_launder_page,
520	.is_dirty_writeback = nfs_check_dirty_writeback,
521	.error_remove_page = generic_error_remove_page,
522	.swap_activate = nfs_swap_activate,
523	.swap_deactivate = nfs_swap_deactivate,
 
524};
525
526/*
527 * Notification that a PTE pointing to an NFS page is about to be made
528 * writable, implying that someone is about to modify the page through a
529 * shared-writable mapping
530 */
531static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
532{
533	struct page *page = vmf->page;
534	struct file *filp = vma->vm_file;
535	struct inode *inode = file_inode(filp);
536	unsigned pagelen;
537	int ret = VM_FAULT_NOPAGE;
538	struct address_space *mapping;
 
539
540	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
541		filp, filp->f_mapping->host->i_ino,
542		(long long)page_offset(page));
543
544	sb_start_pagefault(inode->i_sb);
545
546	/* make sure the cache has finished storing the page */
547	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 
 
 
 
548
549	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
550			nfs_wait_bit_killable, TASK_KILLABLE);
 
551
552	lock_page(page);
553	mapping = page_file_mapping(page);
554	if (mapping != inode->i_mapping)
555		goto out_unlock;
556
557	wait_on_page_writeback(page);
558
559	pagelen = nfs_page_length(page);
560	if (pagelen == 0)
561		goto out_unlock;
562
563	ret = VM_FAULT_LOCKED;
564	if (nfs_flush_incompatible(filp, page) == 0 &&
565	    nfs_updatepage(filp, page, 0, pagelen) == 0)
566		goto out;
567
568	ret = VM_FAULT_SIGBUS;
569out_unlock:
570	unlock_page(page);
571out:
572	sb_end_pagefault(inode->i_sb);
573	return ret;
574}
575
576static const struct vm_operations_struct nfs_file_vm_ops = {
577	.fault = filemap_fault,
578	.map_pages = filemap_map_pages,
579	.page_mkwrite = nfs_vm_page_mkwrite,
580};
581
582static int nfs_need_check_write(struct file *filp, struct inode *inode)
583{
584	struct nfs_open_context *ctx;
585
586	ctx = nfs_file_open_context(filp);
587	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
588	    nfs_ctx_key_to_expire(ctx, inode))
589		return 1;
590	return 0;
591}
592
593ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
594{
595	struct file *file = iocb->ki_filp;
596	struct inode *inode = file_inode(file);
597	unsigned long written = 0;
598	ssize_t result;
 
 
599
600	result = nfs_key_timeout_notify(file, inode);
601	if (result)
602		return result;
603
604	if (iocb->ki_flags & IOCB_DIRECT)
605		return nfs_file_direct_write(iocb, from);
606
607	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608		file, iov_iter_count(from), (long long) iocb->ki_pos);
609
610	if (IS_SWAPFILE(inode))
611		goto out_swapfile;
612	/*
613	 * O_APPEND implies that we must revalidate the file length.
614	 */
615	if (iocb->ki_flags & IOCB_APPEND) {
616		result = nfs_revalidate_file_size(inode, file);
617		if (result)
618			goto out;
619	}
620
 
 
 
621	nfs_start_io_write(inode);
622	result = generic_write_checks(iocb, from);
623	if (result > 0) {
624		current->backing_dev_info = inode_to_bdi(inode);
625		result = generic_perform_write(file, from, iocb->ki_pos);
626		current->backing_dev_info = NULL;
627	}
628	nfs_end_io_write(inode);
629	if (result <= 0)
630		goto out;
631
632	result = generic_write_sync(iocb, result);
633	if (result < 0)
634		goto out;
635	written = result;
636	iocb->ki_pos += written;
637
638	/* Return error values */
639	if (nfs_need_check_write(file, inode)) {
640		int err = vfs_fsync(file, 0);
641		if (err < 0)
642			result = err;
 
643	}
644	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
 
 
 
 
 
 
 
645out:
 
 
 
 
 
 
 
 
 
 
 
 
 
646	return result;
647
648out_swapfile:
649	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
650	return -EBUSY;
651}
652EXPORT_SYMBOL_GPL(nfs_file_write);
653
654static int
655do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
656{
657	struct inode *inode = filp->f_mapping->host;
658	int status = 0;
659	unsigned int saved_type = fl->fl_type;
660
661	/* Try local locking first */
662	posix_test_lock(filp, fl);
663	if (fl->fl_type != F_UNLCK) {
664		/* found a conflict */
665		goto out;
666	}
667	fl->fl_type = saved_type;
668
669	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
670		goto out_noconflict;
671
672	if (is_local)
673		goto out_noconflict;
674
675	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
676out:
677	return status;
678out_noconflict:
679	fl->fl_type = F_UNLCK;
680	goto out;
681}
682
683static int
684do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
685{
686	struct inode *inode = filp->f_mapping->host;
687	struct nfs_lock_context *l_ctx;
688	int status;
689
690	/*
691	 * Flush all pending writes before doing anything
692	 * with locks..
693	 */
694	vfs_fsync(filp, 0);
695
696	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
697	if (!IS_ERR(l_ctx)) {
698		status = nfs_iocounter_wait(l_ctx);
699		nfs_put_lock_context(l_ctx);
700		if (status < 0)
 
 
 
 
701			return status;
702	}
703
704	/* NOTE: special case
705	 * 	If we're signalled while cleaning up locks on process exit, we
706	 * 	still need to complete the unlock.
707	 */
708	/*
709	 * Use local locking if mounted with "-onolock" or with appropriate
710	 * "-olocal_lock="
711	 */
712	if (!is_local)
713		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
714	else
715		status = locks_lock_file_wait(filp, fl);
716	return status;
717}
718
719static int
720do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
721{
722	struct inode *inode = filp->f_mapping->host;
723	int status;
724
725	/*
726	 * Flush all pending writes before doing anything
727	 * with locks..
728	 */
729	status = nfs_sync_mapping(filp->f_mapping);
730	if (status != 0)
731		goto out;
732
733	/*
734	 * Use local locking if mounted with "-onolock" or with appropriate
735	 * "-olocal_lock="
736	 */
737	if (!is_local)
738		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
739	else
740		status = locks_lock_file_wait(filp, fl);
741	if (status < 0)
742		goto out;
743
744	/*
745	 * Revalidate the cache if the server has time stamps granular
746	 * enough to detect subsecond changes.  Otherwise, clear the
747	 * cache to prevent missing any changes.
748	 *
749	 * This makes locking act as a cache coherency point.
750	 */
751	nfs_sync_mapping(filp->f_mapping);
752	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
753		nfs_zap_mapping(inode, filp->f_mapping);
 
 
 
754out:
755	return status;
756}
757
758/*
759 * Lock a (portion of) a file
760 */
761int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
762{
763	struct inode *inode = filp->f_mapping->host;
764	int ret = -ENOLCK;
765	int is_local = 0;
766
767	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
768			filp, fl->fl_type, fl->fl_flags,
769			(long long)fl->fl_start, (long long)fl->fl_end);
770
771	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
772
773	/* No mandatory locks over NFS */
774	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
775		goto out_err;
776
777	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
778		is_local = 1;
779
780	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
781		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
782		if (ret < 0)
783			goto out_err;
784	}
785
786	if (IS_GETLK(cmd))
787		ret = do_getlk(filp, cmd, fl, is_local);
788	else if (fl->fl_type == F_UNLCK)
789		ret = do_unlk(filp, cmd, fl, is_local);
790	else
791		ret = do_setlk(filp, cmd, fl, is_local);
792out_err:
793	return ret;
794}
795EXPORT_SYMBOL_GPL(nfs_lock);
796
797/*
798 * Lock a (portion of) a file
799 */
800int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
801{
802	struct inode *inode = filp->f_mapping->host;
803	int is_local = 0;
804
805	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
806			filp, fl->fl_type, fl->fl_flags);
807
808	if (!(fl->fl_flags & FL_FLOCK))
809		return -ENOLCK;
810
811	/*
812	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
813	 * any standard. In principle we might be able to support LOCK_MAND
814	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
815	 * NFS code is not set up for it.
816	 */
817	if (fl->fl_type & LOCK_MAND)
818		return -EINVAL;
819
820	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
821		is_local = 1;
822
823	/* We're simulating flock() locks using posix locks on the server */
824	if (fl->fl_type == F_UNLCK)
825		return do_unlk(filp, cmd, fl, is_local);
826	return do_setlk(filp, cmd, fl, is_local);
827}
828EXPORT_SYMBOL_GPL(nfs_flock);
829
830const struct file_operations nfs_file_operations = {
831	.llseek		= nfs_file_llseek,
832	.read_iter	= nfs_file_read,
833	.write_iter	= nfs_file_write,
834	.mmap		= nfs_file_mmap,
835	.open		= nfs_file_open,
836	.flush		= nfs_file_flush,
837	.release	= nfs_file_release,
838	.fsync		= nfs_file_fsync,
839	.lock		= nfs_lock,
840	.flock		= nfs_flock,
841	.splice_read	= generic_file_splice_read,
842	.splice_write	= iter_file_splice_write,
843	.check_flags	= nfs_check_flags,
844	.setlease	= simple_nosetlease,
845};
846EXPORT_SYMBOL_GPL(nfs_file_operations);
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34#include <linux/filelock.h>
 35
 36#include "delegation.h"
 37#include "internal.h"
 38#include "iostat.h"
 39#include "fscache.h"
 40#include "pnfs.h"
 41
 42#include "nfstrace.h"
 43
 44#define NFSDBG_FACILITY		NFSDBG_FILE
 45
 46static const struct vm_operations_struct nfs_file_vm_ops;
 47
 
 
 
 
 
 48int nfs_check_flags(int flags)
 49{
 50	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 51		return -EINVAL;
 52
 53	return 0;
 54}
 55EXPORT_SYMBOL_GPL(nfs_check_flags);
 56
 57/*
 58 * Open file
 59 */
 60static int
 61nfs_file_open(struct inode *inode, struct file *filp)
 62{
 63	int res;
 64
 65	dprintk("NFS: open file(%pD2)\n", filp);
 66
 67	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 68	res = nfs_check_flags(filp->f_flags);
 69	if (res)
 70		return res;
 71
 72	res = nfs_open(inode, filp);
 73	if (res == 0)
 74		filp->f_mode |= FMODE_CAN_ODIRECT;
 75	return res;
 76}
 77
 78int
 79nfs_file_release(struct inode *inode, struct file *filp)
 80{
 81	dprintk("NFS: release(%pD2)\n", filp);
 82
 83	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 84	nfs_file_clear_open_context(filp);
 85	nfs_fscache_release_file(inode, filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_file_size - Revalidate the file size
 92 * @inode: pointer to inode struct
 93 * @filp: pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
142	errseq_t since;
143
144	dprintk("NFS: flush(%pD2)\n", file);
145
146	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
147	if ((file->f_mode & FMODE_WRITE) == 0)
148		return 0;
149
150	/* Flush writes to the server and return any errors */
151	since = filemap_sample_wb_err(file->f_mapping);
152	nfs_wb_all(inode);
153	return filemap_check_wb_err(file->f_mapping, since);
154}
155
156ssize_t
157nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
158{
159	struct inode *inode = file_inode(iocb->ki_filp);
160	ssize_t result;
161
162	if (iocb->ki_flags & IOCB_DIRECT)
163		return nfs_file_direct_read(iocb, to, false);
164
165	dprintk("NFS: read(%pD2, %zu@%lu)\n",
166		iocb->ki_filp,
167		iov_iter_count(to), (unsigned long) iocb->ki_pos);
168
169	nfs_start_io_read(inode);
170	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
171	if (!result) {
172		result = generic_file_read_iter(iocb, to);
173		if (result > 0)
174			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
175	}
176	nfs_end_io_read(inode);
177	return result;
178}
179EXPORT_SYMBOL_GPL(nfs_file_read);
180
181ssize_t
182nfs_file_splice_read(struct file *in, loff_t *ppos, struct pipe_inode_info *pipe,
183		     size_t len, unsigned int flags)
184{
185	struct inode *inode = file_inode(in);
186	ssize_t result;
187
188	dprintk("NFS: splice_read(%pD2, %zu@%llu)\n", in, len, *ppos);
189
190	nfs_start_io_read(inode);
191	result = nfs_revalidate_mapping(inode, in->f_mapping);
192	if (!result) {
193		result = filemap_splice_read(in, ppos, pipe, len, flags);
194		if (result > 0)
195			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
196	}
197	nfs_end_io_read(inode);
198	return result;
199}
200EXPORT_SYMBOL_GPL(nfs_file_splice_read);
201
202int
203nfs_file_mmap(struct file *file, struct vm_area_struct *vma)
204{
205	struct inode *inode = file_inode(file);
206	int	status;
207
208	dprintk("NFS: mmap(%pD2)\n", file);
209
210	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
211	 *       so we call that before revalidating the mapping
212	 */
213	status = generic_file_mmap(file, vma);
214	if (!status) {
215		vma->vm_ops = &nfs_file_vm_ops;
216		status = nfs_revalidate_mapping(inode, file->f_mapping);
217	}
218	return status;
219}
220EXPORT_SYMBOL_GPL(nfs_file_mmap);
221
222/*
223 * Flush any dirty pages for this process, and check for write errors.
224 * The return status from this call provides a reliable indication of
225 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
226 */
227static int
228nfs_file_fsync_commit(struct file *file, int datasync)
229{
 
230	struct inode *inode = file_inode(file);
231	int ret, ret2;
 
232
233	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
234
235	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
236	ret = nfs_commit_inode(inode, FLUSH_SYNC);
237	ret2 = file_check_and_advance_wb_err(file);
238	if (ret2 < 0)
239		return ret2;
 
 
 
 
 
 
 
 
 
 
 
 
 
240	return ret;
241}
242
243int
244nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
245{
 
246	struct inode *inode = file_inode(file);
247	struct nfs_inode *nfsi = NFS_I(inode);
248	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
249	long nredirtied;
250	int ret;
251
252	trace_nfs_fsync_enter(inode);
253
254	for (;;) {
255		ret = file_write_and_wait_range(file, start, end);
256		if (ret != 0)
257			break;
258		ret = nfs_file_fsync_commit(file, datasync);
259		if (ret != 0)
260			break;
261		ret = pnfs_sync_inode(inode, !!datasync);
262		if (ret != 0)
263			break;
264		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
265		if (nredirtied == save_nredirtied)
266			break;
267		save_nredirtied = nredirtied;
268	}
269
270	trace_nfs_fsync_exit(inode, ret);
271	return ret;
272}
273EXPORT_SYMBOL_GPL(nfs_file_fsync);
274
275/*
276 * Decide whether a read/modify/write cycle may be more efficient
277 * then a modify/write/read cycle when writing to a page in the
278 * page cache.
279 *
280 * Some pNFS layout drivers can only read/write at a certain block
281 * granularity like all block devices and therefore we must perform
282 * read/modify/write whenever a page hasn't read yet and the data
283 * to be written there is not aligned to a block boundary and/or
284 * smaller than the block size.
285 *
286 * The modify/write/read cycle may occur if a page is read before
287 * being completely filled by the writer.  In this situation, the
288 * page must be completely written to stable storage on the server
289 * before it can be refilled by reading in the page from the server.
290 * This can lead to expensive, small, FILE_SYNC mode writes being
291 * done.
292 *
293 * It may be more efficient to read the page first if the file is
294 * open for reading in addition to writing, the page is not marked
295 * as Uptodate, it is not dirty or waiting to be committed,
296 * indicating that it was previously allocated and then modified,
297 * that there were valid bytes of data in that range of the file,
298 * and that the new data won't completely replace the old data in
299 * that range of the file.
300 */
301static bool nfs_folio_is_full_write(struct folio *folio, loff_t pos,
302				    unsigned int len)
303{
304	unsigned int pglen = nfs_folio_length(folio);
305	unsigned int offset = offset_in_folio(folio, pos);
306	unsigned int end = offset + len;
307
308	return !pglen || (end >= pglen && !offset);
309}
 
 
 
310
311static bool nfs_want_read_modify_write(struct file *file, struct folio *folio,
312				       loff_t pos, unsigned int len)
313{
314	/*
315	 * Up-to-date pages, those with ongoing or full-page write
316	 * don't need read/modify/write
317	 */
318	if (folio_test_uptodate(folio) || folio_test_private(folio) ||
319	    nfs_folio_is_full_write(folio, pos, len))
320		return false;
321
322	if (pnfs_ld_read_whole_page(file_inode(file)))
323		return true;
324	/* Open for reading too? */
325	if (file->f_mode & FMODE_READ)
326		return true;
327	return false;
328}
329
330/*
331 * This does the "real" work of the write. We must allocate and lock the
332 * page to be sent back to the generic routine, which then copies the
333 * data from user space.
334 *
335 * If the writer ends up delaying the write, the writer needs to
336 * increment the page use counts until he is done with the page.
337 */
338static int nfs_write_begin(struct file *file, struct address_space *mapping,
339			   loff_t pos, unsigned len, struct page **pagep,
340			   void **fsdata)
341{
342	struct folio *folio;
 
 
343	int once_thru = 0;
344	int ret;
345
346	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
347		file, mapping->host->i_ino, len, (long long) pos);
348
349start:
350	folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, FGP_WRITEBEGIN,
351				    mapping_gfp_mask(mapping));
352	if (IS_ERR(folio))
353		return PTR_ERR(folio);
354	*pagep = &folio->page;
355
356	ret = nfs_flush_incompatible(file, folio);
357	if (ret) {
358		folio_unlock(folio);
359		folio_put(folio);
360	} else if (!once_thru &&
361		   nfs_want_read_modify_write(file, folio, pos, len)) {
362		once_thru = 1;
363		ret = nfs_read_folio(file, folio);
364		folio_put(folio);
365		if (!ret)
366			goto start;
367	}
368	return ret;
369}
370
371static int nfs_write_end(struct file *file, struct address_space *mapping,
372			 loff_t pos, unsigned len, unsigned copied,
373			 struct page *page, void *fsdata)
374{
 
375	struct nfs_open_context *ctx = nfs_file_open_context(file);
376	struct folio *folio = page_folio(page);
377	unsigned offset = offset_in_folio(folio, pos);
378	int status;
379
380	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
381		file, mapping->host->i_ino, len, (long long) pos);
382
383	/*
384	 * Zero any uninitialised parts of the page, and then mark the page
385	 * as up to date if it turns out that we're extending the file.
386	 */
387	if (!folio_test_uptodate(folio)) {
388		size_t fsize = folio_size(folio);
389		unsigned pglen = nfs_folio_length(folio);
390		unsigned end = offset + copied;
391
392		if (pglen == 0) {
393			folio_zero_segments(folio, 0, offset, end, fsize);
394			folio_mark_uptodate(folio);
 
395		} else if (end >= pglen) {
396			folio_zero_segment(folio, end, fsize);
397			if (offset == 0)
398				folio_mark_uptodate(folio);
399		} else
400			folio_zero_segment(folio, pglen, fsize);
401	}
402
403	status = nfs_update_folio(file, folio, offset, copied);
404
405	folio_unlock(folio);
406	folio_put(folio);
407
408	if (status < 0)
409		return status;
410	NFS_I(mapping->host)->write_io += copied;
411
412	if (nfs_ctx_key_to_expire(ctx, mapping->host))
413		nfs_wb_all(mapping->host);
 
 
 
414
415	return copied;
416}
417
418/*
419 * Partially or wholly invalidate a page
420 * - Release the private state associated with a page if undergoing complete
421 *   page invalidation
422 * - Called if either PG_private or PG_fscache is set on the page
423 * - Caller holds page lock
424 */
425static void nfs_invalidate_folio(struct folio *folio, size_t offset,
426				size_t length)
427{
428	struct inode *inode = folio_file_mapping(folio)->host;
429	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
430		 folio->index, offset, length);
431
432	if (offset != 0 || length < folio_size(folio))
433		return;
434	/* Cancel any unstarted writes on this page */
435	nfs_wb_folio_cancel(inode, folio);
436	folio_wait_fscache(folio);
437	trace_nfs_invalidate_folio(inode, folio);
438}
439
440/*
441 * Attempt to release the private state associated with a folio
442 * - Called if either private or fscache flags are set on the folio
443 * - Caller holds folio lock
444 * - Return true (may release folio) or false (may not)
445 */
446static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
447{
448	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
449
450	/* If the private flag is set, then the folio is not freeable */
451	if (folio_test_private(folio)) {
452		if ((current_gfp_context(gfp) & GFP_KERNEL) != GFP_KERNEL ||
453		    current_is_kswapd())
454			return false;
455		if (nfs_wb_folio(folio_file_mapping(folio)->host, folio) < 0)
456			return false;
457	}
458	return nfs_fscache_release_folio(folio, gfp);
459}
460
461static void nfs_check_dirty_writeback(struct folio *folio,
462				bool *dirty, bool *writeback)
463{
464	struct nfs_inode *nfsi;
465	struct address_space *mapping = folio->mapping;
 
 
 
466
467	/*
468	 * Check if an unstable folio is currently being committed and
469	 * if so, have the VM treat it as if the folio is under writeback
470	 * so it will not block due to folios that will shortly be freeable.
471	 */
472	nfsi = NFS_I(mapping->host);
473	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
474		*writeback = true;
475		return;
476	}
477
478	/*
479	 * If the private flag is set, then the folio is not freeable
480	 * and as the inode is not being committed, it's not going to
481	 * be cleaned in the near future so treat it as dirty
482	 */
483	if (folio_test_private(folio))
484		*dirty = true;
485}
486
487/*
488 * Attempt to clear the private state associated with a page when an error
489 * occurs that requires the cached contents of an inode to be written back or
490 * destroyed
491 * - Called if either PG_private or fscache is set on the page
492 * - Caller holds page lock
493 * - Return 0 if successful, -error otherwise
494 */
495static int nfs_launder_folio(struct folio *folio)
496{
497	struct inode *inode = folio->mapping->host;
498	int ret;
499
500	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
501		inode->i_ino, folio_pos(folio));
502
503	folio_wait_fscache(folio);
504	ret = nfs_wb_folio(inode, folio);
505	trace_nfs_launder_folio_done(inode, folio, ret);
506	return ret;
507}
508
509static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
510						sector_t *span)
511{
512	unsigned long blocks;
513	long long isize;
514	int ret;
515	struct inode *inode = file_inode(file);
516	struct rpc_clnt *clnt = NFS_CLIENT(inode);
517	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
518
519	spin_lock(&inode->i_lock);
520	blocks = inode->i_blocks;
521	isize = inode->i_size;
522	spin_unlock(&inode->i_lock);
523	if (blocks*512 < isize) {
524		pr_warn("swap activate: swapfile has holes\n");
525		return -EINVAL;
526	}
527
528	ret = rpc_clnt_swap_activate(clnt);
529	if (ret)
530		return ret;
531	ret = add_swap_extent(sis, 0, sis->max, 0);
532	if (ret < 0) {
533		rpc_clnt_swap_deactivate(clnt);
534		return ret;
535	}
536
537	*span = sis->pages;
538
539	if (cl->rpc_ops->enable_swap)
540		cl->rpc_ops->enable_swap(inode);
541
542	sis->flags |= SWP_FS_OPS;
543	return ret;
544}
545
546static void nfs_swap_deactivate(struct file *file)
547{
548	struct inode *inode = file_inode(file);
549	struct rpc_clnt *clnt = NFS_CLIENT(inode);
550	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
551
552	rpc_clnt_swap_deactivate(clnt);
553	if (cl->rpc_ops->disable_swap)
554		cl->rpc_ops->disable_swap(file_inode(file));
555}
556
557const struct address_space_operations nfs_file_aops = {
558	.read_folio = nfs_read_folio,
559	.readahead = nfs_readahead,
560	.dirty_folio = filemap_dirty_folio,
 
561	.writepages = nfs_writepages,
562	.write_begin = nfs_write_begin,
563	.write_end = nfs_write_end,
564	.invalidate_folio = nfs_invalidate_folio,
565	.release_folio = nfs_release_folio,
566	.migrate_folio = nfs_migrate_folio,
567	.launder_folio = nfs_launder_folio,
 
 
 
568	.is_dirty_writeback = nfs_check_dirty_writeback,
569	.error_remove_folio = generic_error_remove_folio,
570	.swap_activate = nfs_swap_activate,
571	.swap_deactivate = nfs_swap_deactivate,
572	.swap_rw = nfs_swap_rw,
573};
574
575/*
576 * Notification that a PTE pointing to an NFS page is about to be made
577 * writable, implying that someone is about to modify the page through a
578 * shared-writable mapping
579 */
580static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
581{
582	struct file *filp = vmf->vma->vm_file;
 
583	struct inode *inode = file_inode(filp);
584	unsigned pagelen;
585	vm_fault_t ret = VM_FAULT_NOPAGE;
586	struct address_space *mapping;
587	struct folio *folio = page_folio(vmf->page);
588
589	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
590		 filp, filp->f_mapping->host->i_ino,
591		 (long long)folio_file_pos(folio));
592
593	sb_start_pagefault(inode->i_sb);
594
595	/* make sure the cache has finished storing the page */
596	if (folio_test_fscache(folio) &&
597	    folio_wait_fscache_killable(folio) < 0) {
598		ret = VM_FAULT_RETRY;
599		goto out;
600	}
601
602	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
603			   nfs_wait_bit_killable,
604			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
605
606	folio_lock(folio);
607	mapping = folio_file_mapping(folio);
608	if (mapping != inode->i_mapping)
609		goto out_unlock;
610
611	folio_wait_writeback(folio);
612
613	pagelen = nfs_folio_length(folio);
614	if (pagelen == 0)
615		goto out_unlock;
616
617	ret = VM_FAULT_LOCKED;
618	if (nfs_flush_incompatible(filp, folio) == 0 &&
619	    nfs_update_folio(filp, folio, 0, pagelen) == 0)
620		goto out;
621
622	ret = VM_FAULT_SIGBUS;
623out_unlock:
624	folio_unlock(folio);
625out:
626	sb_end_pagefault(inode->i_sb);
627	return ret;
628}
629
630static const struct vm_operations_struct nfs_file_vm_ops = {
631	.fault = filemap_fault,
632	.map_pages = filemap_map_pages,
633	.page_mkwrite = nfs_vm_page_mkwrite,
634};
635
 
 
 
 
 
 
 
 
 
 
 
636ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
637{
638	struct file *file = iocb->ki_filp;
639	struct inode *inode = file_inode(file);
640	unsigned int mntflags = NFS_SERVER(inode)->flags;
641	ssize_t result, written;
642	errseq_t since;
643	int error;
644
645	result = nfs_key_timeout_notify(file, inode);
646	if (result)
647		return result;
648
649	if (iocb->ki_flags & IOCB_DIRECT)
650		return nfs_file_direct_write(iocb, from, false);
651
652	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
653		file, iov_iter_count(from), (long long) iocb->ki_pos);
654
655	if (IS_SWAPFILE(inode))
656		goto out_swapfile;
657	/*
658	 * O_APPEND implies that we must revalidate the file length.
659	 */
660	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
661		result = nfs_revalidate_file_size(inode, file);
662		if (result)
663			return result;
664	}
665
666	nfs_clear_invalid_mapping(file->f_mapping);
667
668	since = filemap_sample_wb_err(file->f_mapping);
669	nfs_start_io_write(inode);
670	result = generic_write_checks(iocb, from);
671	if (result > 0)
672		result = generic_perform_write(iocb, from);
 
 
 
673	nfs_end_io_write(inode);
674	if (result <= 0)
675		goto out;
676
 
 
 
677	written = result;
678	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
679
680	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
681		result = filemap_fdatawrite_range(file->f_mapping,
682						  iocb->ki_pos - written,
683						  iocb->ki_pos - 1);
684		if (result < 0)
685			goto out;
686	}
687	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
688		filemap_fdatawait_range(file->f_mapping,
689					iocb->ki_pos - written,
690					iocb->ki_pos - 1);
691	}
692	result = generic_write_sync(iocb, written);
693	if (result < 0)
694		return result;
695
696out:
697	/* Return error values */
698	error = filemap_check_wb_err(file->f_mapping, since);
699	switch (error) {
700	default:
701		break;
702	case -EDQUOT:
703	case -EFBIG:
704	case -ENOSPC:
705		nfs_wb_all(inode);
706		error = file_check_and_advance_wb_err(file);
707		if (error < 0)
708			result = error;
709	}
710	return result;
711
712out_swapfile:
713	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
714	return -ETXTBSY;
715}
716EXPORT_SYMBOL_GPL(nfs_file_write);
717
718static int
719do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721	struct inode *inode = filp->f_mapping->host;
722	int status = 0;
723	unsigned int saved_type = fl->fl_type;
724
725	/* Try local locking first */
726	posix_test_lock(filp, fl);
727	if (fl->fl_type != F_UNLCK) {
728		/* found a conflict */
729		goto out;
730	}
731	fl->fl_type = saved_type;
732
733	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
734		goto out_noconflict;
735
736	if (is_local)
737		goto out_noconflict;
738
739	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
740out:
741	return status;
742out_noconflict:
743	fl->fl_type = F_UNLCK;
744	goto out;
745}
746
747static int
748do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
749{
750	struct inode *inode = filp->f_mapping->host;
751	struct nfs_lock_context *l_ctx;
752	int status;
753
754	/*
755	 * Flush all pending writes before doing anything
756	 * with locks..
757	 */
758	nfs_wb_all(inode);
759
760	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
761	if (!IS_ERR(l_ctx)) {
762		status = nfs_iocounter_wait(l_ctx);
763		nfs_put_lock_context(l_ctx);
764		/*  NOTE: special case
765		 * 	If we're signalled while cleaning up locks on process exit, we
766		 * 	still need to complete the unlock.
767		 */
768		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
769			return status;
770	}
771
 
 
 
 
772	/*
773	 * Use local locking if mounted with "-onolock" or with appropriate
774	 * "-olocal_lock="
775	 */
776	if (!is_local)
777		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
778	else
779		status = locks_lock_file_wait(filp, fl);
780	return status;
781}
782
783static int
784do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int status;
788
789	/*
790	 * Flush all pending writes before doing anything
791	 * with locks..
792	 */
793	status = nfs_sync_mapping(filp->f_mapping);
794	if (status != 0)
795		goto out;
796
797	/*
798	 * Use local locking if mounted with "-onolock" or with appropriate
799	 * "-olocal_lock="
800	 */
801	if (!is_local)
802		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
803	else
804		status = locks_lock_file_wait(filp, fl);
805	if (status < 0)
806		goto out;
807
808	/*
809	 * Invalidate cache to prevent missing any changes.  If
810	 * the file is mapped, clear the page cache as well so
811	 * those mappings will be loaded.
812	 *
813	 * This makes locking act as a cache coherency point.
814	 */
815	nfs_sync_mapping(filp->f_mapping);
816	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
817		nfs_zap_caches(inode);
818		if (mapping_mapped(filp->f_mapping))
819			nfs_revalidate_mapping(inode, filp->f_mapping);
820	}
821out:
822	return status;
823}
824
825/*
826 * Lock a (portion of) a file
827 */
828int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
829{
830	struct inode *inode = filp->f_mapping->host;
831	int ret = -ENOLCK;
832	int is_local = 0;
833
834	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
835			filp, fl->fl_type, fl->fl_flags,
836			(long long)fl->fl_start, (long long)fl->fl_end);
837
838	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
839
840	if (fl->fl_flags & FL_RECLAIM)
841		return -ENOGRACE;
 
842
843	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
844		is_local = 1;
845
846	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
847		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
848		if (ret < 0)
849			goto out_err;
850	}
851
852	if (IS_GETLK(cmd))
853		ret = do_getlk(filp, cmd, fl, is_local);
854	else if (fl->fl_type == F_UNLCK)
855		ret = do_unlk(filp, cmd, fl, is_local);
856	else
857		ret = do_setlk(filp, cmd, fl, is_local);
858out_err:
859	return ret;
860}
861EXPORT_SYMBOL_GPL(nfs_lock);
862
863/*
864 * Lock a (portion of) a file
865 */
866int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
867{
868	struct inode *inode = filp->f_mapping->host;
869	int is_local = 0;
870
871	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
872			filp, fl->fl_type, fl->fl_flags);
873
874	if (!(fl->fl_flags & FL_FLOCK))
875		return -ENOLCK;
876
 
 
 
 
 
 
 
 
 
877	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
878		is_local = 1;
879
880	/* We're simulating flock() locks using posix locks on the server */
881	if (fl->fl_type == F_UNLCK)
882		return do_unlk(filp, cmd, fl, is_local);
883	return do_setlk(filp, cmd, fl, is_local);
884}
885EXPORT_SYMBOL_GPL(nfs_flock);
886
887const struct file_operations nfs_file_operations = {
888	.llseek		= nfs_file_llseek,
889	.read_iter	= nfs_file_read,
890	.write_iter	= nfs_file_write,
891	.mmap		= nfs_file_mmap,
892	.open		= nfs_file_open,
893	.flush		= nfs_file_flush,
894	.release	= nfs_file_release,
895	.fsync		= nfs_file_fsync,
896	.lock		= nfs_lock,
897	.flock		= nfs_flock,
898	.splice_read	= nfs_file_splice_read,
899	.splice_write	= iter_file_splice_write,
900	.check_flags	= nfs_check_flags,
901	.setlease	= simple_nosetlease,
902};
903EXPORT_SYMBOL_GPL(nfs_file_operations);