Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <linux/uaccess.h>
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 
 
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104
105	if (filp->f_flags & O_DIRECT)
106		goto force_reval;
107	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
108		goto force_reval;
109	return 0;
110force_reval:
111	return __nfs_revalidate_inode(server, inode);
112}
113
114loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
115{
116	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
117			filp, offset, whence);
118
119	/*
120	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
121	 * the cached file length
122	 */
123	if (whence != SEEK_SET && whence != SEEK_CUR) {
124		struct inode *inode = filp->f_mapping->host;
125
126		int retval = nfs_revalidate_file_size(inode, filp);
127		if (retval < 0)
128			return (loff_t)retval;
129	}
130
131	return generic_file_llseek(filp, offset, whence);
132}
133EXPORT_SYMBOL_GPL(nfs_file_llseek);
134
135/*
136 * Flush all dirty pages, and check for write errors.
137 */
138static int
139nfs_file_flush(struct file *file, fl_owner_t id)
140{
141	struct inode	*inode = file_inode(file);
 
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	return vfs_fsync(file, 0);
 
 
151}
152
153ssize_t
154nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
155{
156	struct inode *inode = file_inode(iocb->ki_filp);
157	ssize_t result;
158
159	if (iocb->ki_flags & IOCB_DIRECT)
160		return nfs_file_direct_read(iocb, to);
161
162	dprintk("NFS: read(%pD2, %zu@%lu)\n",
163		iocb->ki_filp,
164		iov_iter_count(to), (unsigned long) iocb->ki_pos);
165
166	nfs_start_io_read(inode);
167	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
168	if (!result) {
169		result = generic_file_read_iter(iocb, to);
170		if (result > 0)
171			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
172	}
173	nfs_end_io_read(inode);
174	return result;
175}
176EXPORT_SYMBOL_GPL(nfs_file_read);
177
178int
179nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
180{
181	struct inode *inode = file_inode(file);
182	int	status;
183
184	dprintk("NFS: mmap(%pD2)\n", file);
185
186	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
187	 *       so we call that before revalidating the mapping
188	 */
189	status = generic_file_mmap(file, vma);
190	if (!status) {
191		vma->vm_ops = &nfs_file_vm_ops;
192		status = nfs_revalidate_mapping(inode, file->f_mapping);
193	}
194	return status;
195}
196EXPORT_SYMBOL_GPL(nfs_file_mmap);
197
198/*
199 * Flush any dirty pages for this process, and check for write errors.
200 * The return status from this call provides a reliable indication of
201 * whether any write errors occurred for this process.
202 *
203 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
204 * disk, but it retrieves and clears ctx->error after synching, despite
205 * the two being set at the same time in nfs_context_set_write_error().
206 * This is because the former is used to notify the _next_ call to
207 * nfs_file_write() that a write error occurred, and hence cause it to
208 * fall back to doing a synchronous write.
209 */
210static int
211nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
212{
213	struct nfs_open_context *ctx = nfs_file_open_context(file);
214	struct inode *inode = file_inode(file);
215	int have_error, do_resend, status;
216	int ret = 0;
217
218	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
219
220	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
221	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
222	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
223	status = nfs_commit_inode(inode, FLUSH_SYNC);
224	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
225	if (have_error) {
226		ret = xchg(&ctx->error, 0);
227		if (ret)
228			goto out;
229	}
230	if (status < 0) {
231		ret = status;
232		goto out;
233	}
234	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
235	if (do_resend)
236		ret = -EAGAIN;
237out:
238	return ret;
239}
240
241int
242nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
243{
244	int ret;
245	struct inode *inode = file_inode(file);
 
 
 
 
246
247	trace_nfs_fsync_enter(inode);
248
249	do {
250		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
251		if (ret != 0)
252			break;
253		ret = nfs_file_fsync_commit(file, start, end, datasync);
254		if (!ret)
255			ret = pnfs_sync_inode(inode, !!datasync);
256		/*
257		 * If nfs_file_fsync_commit detected a server reboot, then
258		 * resend all dirty pages that might have been covered by
259		 * the NFS_CONTEXT_RESEND_WRITES flag
260		 */
261		start = 0;
262		end = LLONG_MAX;
263	} while (ret == -EAGAIN);
264
265	trace_nfs_fsync_exit(inode, ret);
266	return ret;
267}
268EXPORT_SYMBOL_GPL(nfs_file_fsync);
269
270/*
271 * Decide whether a read/modify/write cycle may be more efficient
272 * then a modify/write/read cycle when writing to a page in the
273 * page cache.
274 *
 
 
 
 
 
 
275 * The modify/write/read cycle may occur if a page is read before
276 * being completely filled by the writer.  In this situation, the
277 * page must be completely written to stable storage on the server
278 * before it can be refilled by reading in the page from the server.
279 * This can lead to expensive, small, FILE_SYNC mode writes being
280 * done.
281 *
282 * It may be more efficient to read the page first if the file is
283 * open for reading in addition to writing, the page is not marked
284 * as Uptodate, it is not dirty or waiting to be committed,
285 * indicating that it was previously allocated and then modified,
286 * that there were valid bytes of data in that range of the file,
287 * and that the new data won't completely replace the old data in
288 * that range of the file.
289 */
290static int nfs_want_read_modify_write(struct file *file, struct page *page,
291			loff_t pos, unsigned len)
292{
293	unsigned int pglen = nfs_page_length(page);
294	unsigned int offset = pos & (PAGE_SIZE - 1);
295	unsigned int end = offset + len;
296
297	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
298		if (!PageUptodate(page))
299			return 1;
300		return 0;
301	}
302
303	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
304	    !PageUptodate(page) &&		/* Uptodate? */
305	    !PagePrivate(page) &&		/* i/o request already? */
306	    pglen &&				/* valid bytes of file? */
307	    (end < pglen || offset))		/* replace all valid bytes? */
308		return 1;
309	return 0;
 
 
 
 
 
 
 
 
 
 
310}
311
312/*
313 * This does the "real" work of the write. We must allocate and lock the
314 * page to be sent back to the generic routine, which then copies the
315 * data from user space.
316 *
317 * If the writer ends up delaying the write, the writer needs to
318 * increment the page use counts until he is done with the page.
319 */
320static int nfs_write_begin(struct file *file, struct address_space *mapping,
321			loff_t pos, unsigned len, unsigned flags,
322			struct page **pagep, void **fsdata)
323{
324	int ret;
325	pgoff_t index = pos >> PAGE_SHIFT;
326	struct page *page;
327	int once_thru = 0;
328
329	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
330		file, mapping->host->i_ino, len, (long long) pos);
331
332start:
333	page = grab_cache_page_write_begin(mapping, index, flags);
334	if (!page)
335		return -ENOMEM;
336	*pagep = page;
337
338	ret = nfs_flush_incompatible(file, page);
339	if (ret) {
340		unlock_page(page);
341		put_page(page);
342	} else if (!once_thru &&
343		   nfs_want_read_modify_write(file, page, pos, len)) {
344		once_thru = 1;
345		ret = nfs_readpage(file, page);
346		put_page(page);
347		if (!ret)
348			goto start;
349	}
350	return ret;
351}
352
353static int nfs_write_end(struct file *file, struct address_space *mapping,
354			loff_t pos, unsigned len, unsigned copied,
355			struct page *page, void *fsdata)
356{
357	unsigned offset = pos & (PAGE_SIZE - 1);
358	struct nfs_open_context *ctx = nfs_file_open_context(file);
359	int status;
360
361	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
362		file, mapping->host->i_ino, len, (long long) pos);
363
364	/*
365	 * Zero any uninitialised parts of the page, and then mark the page
366	 * as up to date if it turns out that we're extending the file.
367	 */
368	if (!PageUptodate(page)) {
369		unsigned pglen = nfs_page_length(page);
370		unsigned end = offset + copied;
371
372		if (pglen == 0) {
373			zero_user_segments(page, 0, offset,
374					end, PAGE_SIZE);
375			SetPageUptodate(page);
376		} else if (end >= pglen) {
377			zero_user_segment(page, end, PAGE_SIZE);
378			if (offset == 0)
379				SetPageUptodate(page);
380		} else
381			zero_user_segment(page, pglen, PAGE_SIZE);
382	}
383
384	status = nfs_updatepage(file, page, offset, copied);
385
386	unlock_page(page);
387	put_page(page);
388
389	if (status < 0)
390		return status;
391	NFS_I(mapping->host)->write_io += copied;
392
393	if (nfs_ctx_key_to_expire(ctx, mapping->host)) {
394		status = nfs_wb_all(mapping->host);
395		if (status < 0)
396			return status;
397	}
398
399	return copied;
400}
401
402/*
403 * Partially or wholly invalidate a page
404 * - Release the private state associated with a page if undergoing complete
405 *   page invalidation
406 * - Called if either PG_private or PG_fscache is set on the page
407 * - Caller holds page lock
408 */
409static void nfs_invalidate_page(struct page *page, unsigned int offset,
410				unsigned int length)
411{
412	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
413		 page, offset, length);
414
415	if (offset != 0 || length < PAGE_SIZE)
416		return;
417	/* Cancel any unstarted writes on this page */
418	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
419
420	nfs_fscache_invalidate_page(page, page->mapping->host);
421}
422
423/*
424 * Attempt to release the private state associated with a page
425 * - Called if either PG_private or PG_fscache is set on the page
426 * - Caller holds page lock
427 * - Return true (may release page) or false (may not)
428 */
429static int nfs_release_page(struct page *page, gfp_t gfp)
430{
431	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
432
433	/* If PagePrivate() is set, then the page is not freeable */
434	if (PagePrivate(page))
435		return 0;
436	return nfs_fscache_release_page(page, gfp);
437}
438
439static void nfs_check_dirty_writeback(struct page *page,
440				bool *dirty, bool *writeback)
441{
442	struct nfs_inode *nfsi;
443	struct address_space *mapping = page_file_mapping(page);
444
445	if (!mapping || PageSwapCache(page))
446		return;
447
448	/*
449	 * Check if an unstable page is currently being committed and
450	 * if so, have the VM treat it as if the page is under writeback
451	 * so it will not block due to pages that will shortly be freeable.
452	 */
453	nfsi = NFS_I(mapping->host);
454	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
455		*writeback = true;
456		return;
457	}
458
459	/*
460	 * If PagePrivate() is set, then the page is not freeable and as the
461	 * inode is not being committed, it's not going to be cleaned in the
462	 * near future so treat it as dirty
463	 */
464	if (PagePrivate(page))
465		*dirty = true;
466}
467
468/*
469 * Attempt to clear the private state associated with a page when an error
470 * occurs that requires the cached contents of an inode to be written back or
471 * destroyed
472 * - Called if either PG_private or fscache is set on the page
473 * - Caller holds page lock
474 * - Return 0 if successful, -error otherwise
475 */
476static int nfs_launder_page(struct page *page)
477{
478	struct inode *inode = page_file_mapping(page)->host;
479	struct nfs_inode *nfsi = NFS_I(inode);
480
481	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
482		inode->i_ino, (long long)page_offset(page));
483
484	nfs_fscache_wait_on_page_write(nfsi, page);
485	return nfs_wb_launder_page(inode, page);
486}
487
488static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
489						sector_t *span)
490{
491	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492
493	*span = sis->pages;
494
495	return rpc_clnt_swap_activate(clnt);
 
 
 
 
496}
497
498static void nfs_swap_deactivate(struct file *file)
499{
500	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
 
 
501
502	rpc_clnt_swap_deactivate(clnt);
 
 
503}
504
505const struct address_space_operations nfs_file_aops = {
506	.readpage = nfs_readpage,
507	.readpages = nfs_readpages,
508	.set_page_dirty = __set_page_dirty_nobuffers,
509	.writepage = nfs_writepage,
510	.writepages = nfs_writepages,
511	.write_begin = nfs_write_begin,
512	.write_end = nfs_write_end,
513	.invalidatepage = nfs_invalidate_page,
514	.releasepage = nfs_release_page,
515	.direct_IO = nfs_direct_IO,
516#ifdef CONFIG_MIGRATION
517	.migratepage = nfs_migrate_page,
518#endif
519	.launder_page = nfs_launder_page,
520	.is_dirty_writeback = nfs_check_dirty_writeback,
521	.error_remove_page = generic_error_remove_page,
522	.swap_activate = nfs_swap_activate,
523	.swap_deactivate = nfs_swap_deactivate,
 
524};
525
526/*
527 * Notification that a PTE pointing to an NFS page is about to be made
528 * writable, implying that someone is about to modify the page through a
529 * shared-writable mapping
530 */
531static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
532{
533	struct page *page = vmf->page;
534	struct file *filp = vma->vm_file;
535	struct inode *inode = file_inode(filp);
536	unsigned pagelen;
537	int ret = VM_FAULT_NOPAGE;
538	struct address_space *mapping;
539
540	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
541		filp, filp->f_mapping->host->i_ino,
542		(long long)page_offset(page));
543
544	sb_start_pagefault(inode->i_sb);
545
546	/* make sure the cache has finished storing the page */
547	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
 
 
 
 
548
549	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
550			nfs_wait_bit_killable, TASK_KILLABLE);
 
551
552	lock_page(page);
553	mapping = page_file_mapping(page);
554	if (mapping != inode->i_mapping)
555		goto out_unlock;
556
557	wait_on_page_writeback(page);
558
559	pagelen = nfs_page_length(page);
560	if (pagelen == 0)
561		goto out_unlock;
562
563	ret = VM_FAULT_LOCKED;
564	if (nfs_flush_incompatible(filp, page) == 0 &&
565	    nfs_updatepage(filp, page, 0, pagelen) == 0)
566		goto out;
567
568	ret = VM_FAULT_SIGBUS;
569out_unlock:
570	unlock_page(page);
571out:
572	sb_end_pagefault(inode->i_sb);
573	return ret;
574}
575
576static const struct vm_operations_struct nfs_file_vm_ops = {
577	.fault = filemap_fault,
578	.map_pages = filemap_map_pages,
579	.page_mkwrite = nfs_vm_page_mkwrite,
580};
581
582static int nfs_need_check_write(struct file *filp, struct inode *inode)
583{
584	struct nfs_open_context *ctx;
585
586	ctx = nfs_file_open_context(filp);
587	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
588	    nfs_ctx_key_to_expire(ctx, inode))
589		return 1;
590	return 0;
591}
592
593ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
594{
595	struct file *file = iocb->ki_filp;
596	struct inode *inode = file_inode(file);
597	unsigned long written = 0;
598	ssize_t result;
 
 
599
600	result = nfs_key_timeout_notify(file, inode);
601	if (result)
602		return result;
603
604	if (iocb->ki_flags & IOCB_DIRECT)
605		return nfs_file_direct_write(iocb, from);
606
607	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
608		file, iov_iter_count(from), (long long) iocb->ki_pos);
609
610	if (IS_SWAPFILE(inode))
611		goto out_swapfile;
612	/*
613	 * O_APPEND implies that we must revalidate the file length.
614	 */
615	if (iocb->ki_flags & IOCB_APPEND) {
616		result = nfs_revalidate_file_size(inode, file);
617		if (result)
618			goto out;
619	}
620
 
 
 
621	nfs_start_io_write(inode);
622	result = generic_write_checks(iocb, from);
623	if (result > 0) {
624		current->backing_dev_info = inode_to_bdi(inode);
625		result = generic_perform_write(file, from, iocb->ki_pos);
626		current->backing_dev_info = NULL;
627	}
628	nfs_end_io_write(inode);
629	if (result <= 0)
630		goto out;
631
632	result = generic_write_sync(iocb, result);
633	if (result < 0)
634		goto out;
635	written = result;
636	iocb->ki_pos += written;
 
637
638	/* Return error values */
639	if (nfs_need_check_write(file, inode)) {
640		int err = vfs_fsync(file, 0);
641		if (err < 0)
642			result = err;
 
643	}
644	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
 
 
 
 
 
 
 
 
645out:
 
 
 
 
 
 
 
 
 
 
 
 
 
646	return result;
647
648out_swapfile:
649	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
650	return -EBUSY;
651}
652EXPORT_SYMBOL_GPL(nfs_file_write);
653
654static int
655do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
656{
657	struct inode *inode = filp->f_mapping->host;
658	int status = 0;
659	unsigned int saved_type = fl->fl_type;
660
661	/* Try local locking first */
662	posix_test_lock(filp, fl);
663	if (fl->fl_type != F_UNLCK) {
664		/* found a conflict */
665		goto out;
666	}
667	fl->fl_type = saved_type;
668
669	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
670		goto out_noconflict;
671
672	if (is_local)
673		goto out_noconflict;
674
675	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
676out:
677	return status;
678out_noconflict:
679	fl->fl_type = F_UNLCK;
680	goto out;
681}
682
683static int
684do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
685{
686	struct inode *inode = filp->f_mapping->host;
687	struct nfs_lock_context *l_ctx;
688	int status;
689
690	/*
691	 * Flush all pending writes before doing anything
692	 * with locks..
693	 */
694	vfs_fsync(filp, 0);
695
696	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
697	if (!IS_ERR(l_ctx)) {
698		status = nfs_iocounter_wait(l_ctx);
699		nfs_put_lock_context(l_ctx);
700		if (status < 0)
 
 
 
 
701			return status;
702	}
703
704	/* NOTE: special case
705	 * 	If we're signalled while cleaning up locks on process exit, we
706	 * 	still need to complete the unlock.
707	 */
708	/*
709	 * Use local locking if mounted with "-onolock" or with appropriate
710	 * "-olocal_lock="
711	 */
712	if (!is_local)
713		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
714	else
715		status = locks_lock_file_wait(filp, fl);
716	return status;
717}
718
719static int
720do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
721{
722	struct inode *inode = filp->f_mapping->host;
723	int status;
724
725	/*
726	 * Flush all pending writes before doing anything
727	 * with locks..
728	 */
729	status = nfs_sync_mapping(filp->f_mapping);
730	if (status != 0)
731		goto out;
732
733	/*
734	 * Use local locking if mounted with "-onolock" or with appropriate
735	 * "-olocal_lock="
736	 */
737	if (!is_local)
738		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
739	else
740		status = locks_lock_file_wait(filp, fl);
741	if (status < 0)
742		goto out;
743
744	/*
745	 * Revalidate the cache if the server has time stamps granular
746	 * enough to detect subsecond changes.  Otherwise, clear the
747	 * cache to prevent missing any changes.
748	 *
749	 * This makes locking act as a cache coherency point.
750	 */
751	nfs_sync_mapping(filp->f_mapping);
752	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
753		nfs_zap_mapping(inode, filp->f_mapping);
 
 
 
754out:
755	return status;
756}
757
758/*
759 * Lock a (portion of) a file
760 */
761int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
762{
763	struct inode *inode = filp->f_mapping->host;
764	int ret = -ENOLCK;
765	int is_local = 0;
766
767	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
768			filp, fl->fl_type, fl->fl_flags,
769			(long long)fl->fl_start, (long long)fl->fl_end);
770
771	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
772
773	/* No mandatory locks over NFS */
774	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
775		goto out_err;
776
777	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
778		is_local = 1;
779
780	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
781		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
782		if (ret < 0)
783			goto out_err;
784	}
785
786	if (IS_GETLK(cmd))
787		ret = do_getlk(filp, cmd, fl, is_local);
788	else if (fl->fl_type == F_UNLCK)
789		ret = do_unlk(filp, cmd, fl, is_local);
790	else
791		ret = do_setlk(filp, cmd, fl, is_local);
792out_err:
793	return ret;
794}
795EXPORT_SYMBOL_GPL(nfs_lock);
796
797/*
798 * Lock a (portion of) a file
799 */
800int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
801{
802	struct inode *inode = filp->f_mapping->host;
803	int is_local = 0;
804
805	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
806			filp, fl->fl_type, fl->fl_flags);
807
808	if (!(fl->fl_flags & FL_FLOCK))
809		return -ENOLCK;
810
811	/*
812	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
813	 * any standard. In principle we might be able to support LOCK_MAND
814	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
815	 * NFS code is not set up for it.
816	 */
817	if (fl->fl_type & LOCK_MAND)
818		return -EINVAL;
819
820	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
821		is_local = 1;
822
823	/* We're simulating flock() locks using posix locks on the server */
824	if (fl->fl_type == F_UNLCK)
825		return do_unlk(filp, cmd, fl, is_local);
826	return do_setlk(filp, cmd, fl, is_local);
827}
828EXPORT_SYMBOL_GPL(nfs_flock);
829
830const struct file_operations nfs_file_operations = {
831	.llseek		= nfs_file_llseek,
832	.read_iter	= nfs_file_read,
833	.write_iter	= nfs_file_write,
834	.mmap		= nfs_file_mmap,
835	.open		= nfs_file_open,
836	.flush		= nfs_file_flush,
837	.release	= nfs_file_release,
838	.fsync		= nfs_file_fsync,
839	.lock		= nfs_lock,
840	.flock		= nfs_flock,
841	.splice_read	= generic_file_splice_read,
842	.splice_write	= iter_file_splice_write,
843	.check_flags	= nfs_check_flags,
844	.setlease	= simple_nosetlease,
845};
846EXPORT_SYMBOL_GPL(nfs_file_operations);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/nfs/file.c
  4 *
  5 *  Copyright (C) 1992  Rick Sladkey
  6 *
  7 *  Changes Copyright (C) 1994 by Florian La Roche
  8 *   - Do not copy data too often around in the kernel.
  9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
 10 *   - Put in a better version of read look-ahead buffering. Original idea
 11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 12 *
 13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 14 *
 15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 16 *
 17 *  nfs regular file handling functions
 18 */
 19
 20#include <linux/module.h>
 21#include <linux/time.h>
 22#include <linux/kernel.h>
 23#include <linux/errno.h>
 24#include <linux/fcntl.h>
 25#include <linux/stat.h>
 26#include <linux/nfs_fs.h>
 27#include <linux/nfs_mount.h>
 28#include <linux/mm.h>
 29#include <linux/pagemap.h>
 30#include <linux/gfp.h>
 31#include <linux/swap.h>
 32
 33#include <linux/uaccess.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#include "nfstrace.h"
 42
 43#define NFSDBG_FACILITY		NFSDBG_FILE
 44
 45static const struct vm_operations_struct nfs_file_vm_ops;
 46
 
 
 
 
 
 47int nfs_check_flags(int flags)
 48{
 49	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 50		return -EINVAL;
 51
 52	return 0;
 53}
 54EXPORT_SYMBOL_GPL(nfs_check_flags);
 55
 56/*
 57 * Open file
 58 */
 59static int
 60nfs_file_open(struct inode *inode, struct file *filp)
 61{
 62	int res;
 63
 64	dprintk("NFS: open file(%pD2)\n", filp);
 65
 66	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 67	res = nfs_check_flags(filp->f_flags);
 68	if (res)
 69		return res;
 70
 71	res = nfs_open(inode, filp);
 72	if (res == 0)
 73		filp->f_mode |= FMODE_CAN_ODIRECT;
 74	return res;
 75}
 76
 77int
 78nfs_file_release(struct inode *inode, struct file *filp)
 79{
 80	dprintk("NFS: release(%pD2)\n", filp);
 81
 82	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 83	nfs_file_clear_open_context(filp);
 84	nfs_fscache_release_file(inode, filp);
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(nfs_file_release);
 88
 89/**
 90 * nfs_revalidate_file_size - Revalidate the file size
 91 * @inode: pointer to inode struct
 92 * @filp: pointer to struct file
 93 *
 94 * Revalidates the file length. This is basically a wrapper around
 95 * nfs_revalidate_inode() that takes into account the fact that we may
 96 * have cached writes (in which case we don't care about the server's
 97 * idea of what the file length is), or O_DIRECT (in which case we
 98 * shouldn't trust the cache).
 99 */
100static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101{
102	struct nfs_server *server = NFS_SERVER(inode);
103
104	if (filp->f_flags & O_DIRECT)
105		goto force_reval;
106	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_SIZE))
107		goto force_reval;
108	return 0;
109force_reval:
110	return __nfs_revalidate_inode(server, inode);
111}
112
113loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
114{
115	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
116			filp, offset, whence);
117
118	/*
119	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
120	 * the cached file length
121	 */
122	if (whence != SEEK_SET && whence != SEEK_CUR) {
123		struct inode *inode = filp->f_mapping->host;
124
125		int retval = nfs_revalidate_file_size(inode, filp);
126		if (retval < 0)
127			return (loff_t)retval;
128	}
129
130	return generic_file_llseek(filp, offset, whence);
131}
132EXPORT_SYMBOL_GPL(nfs_file_llseek);
133
134/*
135 * Flush all dirty pages, and check for write errors.
136 */
137static int
138nfs_file_flush(struct file *file, fl_owner_t id)
139{
140	struct inode	*inode = file_inode(file);
141	errseq_t since;
142
143	dprintk("NFS: flush(%pD2)\n", file);
144
145	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
146	if ((file->f_mode & FMODE_WRITE) == 0)
147		return 0;
148
149	/* Flush writes to the server and return any errors */
150	since = filemap_sample_wb_err(file->f_mapping);
151	nfs_wb_all(inode);
152	return filemap_check_wb_err(file->f_mapping, since);
153}
154
155ssize_t
156nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
157{
158	struct inode *inode = file_inode(iocb->ki_filp);
159	ssize_t result;
160
161	if (iocb->ki_flags & IOCB_DIRECT)
162		return nfs_file_direct_read(iocb, to, false);
163
164	dprintk("NFS: read(%pD2, %zu@%lu)\n",
165		iocb->ki_filp,
166		iov_iter_count(to), (unsigned long) iocb->ki_pos);
167
168	nfs_start_io_read(inode);
169	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
170	if (!result) {
171		result = generic_file_read_iter(iocb, to);
172		if (result > 0)
173			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
174	}
175	nfs_end_io_read(inode);
176	return result;
177}
178EXPORT_SYMBOL_GPL(nfs_file_read);
179
180int
181nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
182{
183	struct inode *inode = file_inode(file);
184	int	status;
185
186	dprintk("NFS: mmap(%pD2)\n", file);
187
188	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
189	 *       so we call that before revalidating the mapping
190	 */
191	status = generic_file_mmap(file, vma);
192	if (!status) {
193		vma->vm_ops = &nfs_file_vm_ops;
194		status = nfs_revalidate_mapping(inode, file->f_mapping);
195	}
196	return status;
197}
198EXPORT_SYMBOL_GPL(nfs_file_mmap);
199
200/*
201 * Flush any dirty pages for this process, and check for write errors.
202 * The return status from this call provides a reliable indication of
203 * whether any write errors occurred for this process.
 
 
 
 
 
 
 
204 */
205static int
206nfs_file_fsync_commit(struct file *file, int datasync)
207{
 
208	struct inode *inode = file_inode(file);
209	int ret, ret2;
 
210
211	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
212
213	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
214	ret = nfs_commit_inode(inode, FLUSH_SYNC);
215	ret2 = file_check_and_advance_wb_err(file);
216	if (ret2 < 0)
217		return ret2;
 
 
 
 
 
 
 
 
 
 
 
 
 
218	return ret;
219}
220
221int
222nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
223{
 
224	struct inode *inode = file_inode(file);
225	struct nfs_inode *nfsi = NFS_I(inode);
226	long save_nredirtied = atomic_long_read(&nfsi->redirtied_pages);
227	long nredirtied;
228	int ret;
229
230	trace_nfs_fsync_enter(inode);
231
232	for (;;) {
233		ret = file_write_and_wait_range(file, start, end);
234		if (ret != 0)
235			break;
236		ret = nfs_file_fsync_commit(file, datasync);
237		if (ret != 0)
238			break;
239		ret = pnfs_sync_inode(inode, !!datasync);
240		if (ret != 0)
241			break;
242		nredirtied = atomic_long_read(&nfsi->redirtied_pages);
243		if (nredirtied == save_nredirtied)
244			break;
245		save_nredirtied = nredirtied;
246	}
247
248	trace_nfs_fsync_exit(inode, ret);
249	return ret;
250}
251EXPORT_SYMBOL_GPL(nfs_file_fsync);
252
253/*
254 * Decide whether a read/modify/write cycle may be more efficient
255 * then a modify/write/read cycle when writing to a page in the
256 * page cache.
257 *
258 * Some pNFS layout drivers can only read/write at a certain block
259 * granularity like all block devices and therefore we must perform
260 * read/modify/write whenever a page hasn't read yet and the data
261 * to be written there is not aligned to a block boundary and/or
262 * smaller than the block size.
263 *
264 * The modify/write/read cycle may occur if a page is read before
265 * being completely filled by the writer.  In this situation, the
266 * page must be completely written to stable storage on the server
267 * before it can be refilled by reading in the page from the server.
268 * This can lead to expensive, small, FILE_SYNC mode writes being
269 * done.
270 *
271 * It may be more efficient to read the page first if the file is
272 * open for reading in addition to writing, the page is not marked
273 * as Uptodate, it is not dirty or waiting to be committed,
274 * indicating that it was previously allocated and then modified,
275 * that there were valid bytes of data in that range of the file,
276 * and that the new data won't completely replace the old data in
277 * that range of the file.
278 */
279static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
 
280{
281	unsigned int pglen = nfs_page_length(page);
282	unsigned int offset = pos & (PAGE_SIZE - 1);
283	unsigned int end = offset + len;
284
285	return !pglen || (end >= pglen && !offset);
286}
 
 
 
287
288static bool nfs_want_read_modify_write(struct file *file, struct page *page,
289			loff_t pos, unsigned int len)
290{
291	/*
292	 * Up-to-date pages, those with ongoing or full-page write
293	 * don't need read/modify/write
294	 */
295	if (PageUptodate(page) || PagePrivate(page) ||
296	    nfs_full_page_write(page, pos, len))
297		return false;
298
299	if (pnfs_ld_read_whole_page(file->f_mapping->host))
300		return true;
301	/* Open for reading too? */
302	if (file->f_mode & FMODE_READ)
303		return true;
304	return false;
305}
306
307/*
308 * This does the "real" work of the write. We must allocate and lock the
309 * page to be sent back to the generic routine, which then copies the
310 * data from user space.
311 *
312 * If the writer ends up delaying the write, the writer needs to
313 * increment the page use counts until he is done with the page.
314 */
315static int nfs_write_begin(struct file *file, struct address_space *mapping,
316			loff_t pos, unsigned len,
317			struct page **pagep, void **fsdata)
318{
319	int ret;
320	pgoff_t index = pos >> PAGE_SHIFT;
321	struct page *page;
322	int once_thru = 0;
323
324	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
325		file, mapping->host->i_ino, len, (long long) pos);
326
327start:
328	page = grab_cache_page_write_begin(mapping, index);
329	if (!page)
330		return -ENOMEM;
331	*pagep = page;
332
333	ret = nfs_flush_incompatible(file, page);
334	if (ret) {
335		unlock_page(page);
336		put_page(page);
337	} else if (!once_thru &&
338		   nfs_want_read_modify_write(file, page, pos, len)) {
339		once_thru = 1;
340		ret = nfs_read_folio(file, page_folio(page));
341		put_page(page);
342		if (!ret)
343			goto start;
344	}
345	return ret;
346}
347
348static int nfs_write_end(struct file *file, struct address_space *mapping,
349			loff_t pos, unsigned len, unsigned copied,
350			struct page *page, void *fsdata)
351{
352	unsigned offset = pos & (PAGE_SIZE - 1);
353	struct nfs_open_context *ctx = nfs_file_open_context(file);
354	int status;
355
356	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
357		file, mapping->host->i_ino, len, (long long) pos);
358
359	/*
360	 * Zero any uninitialised parts of the page, and then mark the page
361	 * as up to date if it turns out that we're extending the file.
362	 */
363	if (!PageUptodate(page)) {
364		unsigned pglen = nfs_page_length(page);
365		unsigned end = offset + copied;
366
367		if (pglen == 0) {
368			zero_user_segments(page, 0, offset,
369					end, PAGE_SIZE);
370			SetPageUptodate(page);
371		} else if (end >= pglen) {
372			zero_user_segment(page, end, PAGE_SIZE);
373			if (offset == 0)
374				SetPageUptodate(page);
375		} else
376			zero_user_segment(page, pglen, PAGE_SIZE);
377	}
378
379	status = nfs_updatepage(file, page, offset, copied);
380
381	unlock_page(page);
382	put_page(page);
383
384	if (status < 0)
385		return status;
386	NFS_I(mapping->host)->write_io += copied;
387
388	if (nfs_ctx_key_to_expire(ctx, mapping->host))
389		nfs_wb_all(mapping->host);
 
 
 
390
391	return copied;
392}
393
394/*
395 * Partially or wholly invalidate a page
396 * - Release the private state associated with a page if undergoing complete
397 *   page invalidation
398 * - Called if either PG_private or PG_fscache is set on the page
399 * - Caller holds page lock
400 */
401static void nfs_invalidate_folio(struct folio *folio, size_t offset,
402				size_t length)
403{
404	dfprintk(PAGECACHE, "NFS: invalidate_folio(%lu, %zu, %zu)\n",
405		 folio->index, offset, length);
406
407	if (offset != 0 || length < folio_size(folio))
408		return;
409	/* Cancel any unstarted writes on this page */
410	nfs_wb_folio_cancel(folio->mapping->host, folio);
411	folio_wait_fscache(folio);
 
412}
413
414/*
415 * Attempt to release the private state associated with a folio
416 * - Called if either private or fscache flags are set on the folio
417 * - Caller holds folio lock
418 * - Return true (may release folio) or false (may not)
419 */
420static bool nfs_release_folio(struct folio *folio, gfp_t gfp)
421{
422	dfprintk(PAGECACHE, "NFS: release_folio(%p)\n", folio);
423
424	/* If the private flag is set, then the folio is not freeable */
425	if (folio_test_private(folio))
426		return false;
427	return nfs_fscache_release_folio(folio, gfp);
428}
429
430static void nfs_check_dirty_writeback(struct folio *folio,
431				bool *dirty, bool *writeback)
432{
433	struct nfs_inode *nfsi;
434	struct address_space *mapping = folio->mapping;
 
 
 
435
436	/*
437	 * Check if an unstable folio is currently being committed and
438	 * if so, have the VM treat it as if the folio is under writeback
439	 * so it will not block due to folios that will shortly be freeable.
440	 */
441	nfsi = NFS_I(mapping->host);
442	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
443		*writeback = true;
444		return;
445	}
446
447	/*
448	 * If the private flag is set, then the folio is not freeable
449	 * and as the inode is not being committed, it's not going to
450	 * be cleaned in the near future so treat it as dirty
451	 */
452	if (folio_test_private(folio))
453		*dirty = true;
454}
455
456/*
457 * Attempt to clear the private state associated with a page when an error
458 * occurs that requires the cached contents of an inode to be written back or
459 * destroyed
460 * - Called if either PG_private or fscache is set on the page
461 * - Caller holds page lock
462 * - Return 0 if successful, -error otherwise
463 */
464static int nfs_launder_folio(struct folio *folio)
465{
466	struct inode *inode = folio->mapping->host;
 
467
468	dfprintk(PAGECACHE, "NFS: launder_folio(%ld, %llu)\n",
469		inode->i_ino, folio_pos(folio));
470
471	folio_wait_fscache(folio);
472	return nfs_wb_page(inode, &folio->page);
473}
474
475static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
476						sector_t *span)
477{
478	unsigned long blocks;
479	long long isize;
480	int ret;
481	struct inode *inode = file_inode(file);
482	struct rpc_clnt *clnt = NFS_CLIENT(inode);
483	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
484
485	spin_lock(&inode->i_lock);
486	blocks = inode->i_blocks;
487	isize = inode->i_size;
488	spin_unlock(&inode->i_lock);
489	if (blocks*512 < isize) {
490		pr_warn("swap activate: swapfile has holes\n");
491		return -EINVAL;
492	}
493
494	ret = rpc_clnt_swap_activate(clnt);
495	if (ret)
496		return ret;
497	ret = add_swap_extent(sis, 0, sis->max, 0);
498	if (ret < 0) {
499		rpc_clnt_swap_deactivate(clnt);
500		return ret;
501	}
502
503	*span = sis->pages;
504
505	if (cl->rpc_ops->enable_swap)
506		cl->rpc_ops->enable_swap(inode);
507
508	sis->flags |= SWP_FS_OPS;
509	return ret;
510}
511
512static void nfs_swap_deactivate(struct file *file)
513{
514	struct inode *inode = file_inode(file);
515	struct rpc_clnt *clnt = NFS_CLIENT(inode);
516	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
517
518	rpc_clnt_swap_deactivate(clnt);
519	if (cl->rpc_ops->disable_swap)
520		cl->rpc_ops->disable_swap(file_inode(file));
521}
522
523const struct address_space_operations nfs_file_aops = {
524	.read_folio = nfs_read_folio,
525	.readahead = nfs_readahead,
526	.dirty_folio = filemap_dirty_folio,
527	.writepage = nfs_writepage,
528	.writepages = nfs_writepages,
529	.write_begin = nfs_write_begin,
530	.write_end = nfs_write_end,
531	.invalidate_folio = nfs_invalidate_folio,
532	.release_folio = nfs_release_folio,
533	.migrate_folio = nfs_migrate_folio,
534	.launder_folio = nfs_launder_folio,
 
 
 
535	.is_dirty_writeback = nfs_check_dirty_writeback,
536	.error_remove_page = generic_error_remove_page,
537	.swap_activate = nfs_swap_activate,
538	.swap_deactivate = nfs_swap_deactivate,
539	.swap_rw = nfs_swap_rw,
540};
541
542/*
543 * Notification that a PTE pointing to an NFS page is about to be made
544 * writable, implying that someone is about to modify the page through a
545 * shared-writable mapping
546 */
547static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
548{
549	struct page *page = vmf->page;
550	struct file *filp = vmf->vma->vm_file;
551	struct inode *inode = file_inode(filp);
552	unsigned pagelen;
553	vm_fault_t ret = VM_FAULT_NOPAGE;
554	struct address_space *mapping;
555
556	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
557		filp, filp->f_mapping->host->i_ino,
558		(long long)page_offset(page));
559
560	sb_start_pagefault(inode->i_sb);
561
562	/* make sure the cache has finished storing the page */
563	if (PageFsCache(page) &&
564	    wait_on_page_fscache_killable(vmf->page) < 0) {
565		ret = VM_FAULT_RETRY;
566		goto out;
567	}
568
569	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
570			   nfs_wait_bit_killable,
571			   TASK_KILLABLE|TASK_FREEZABLE_UNSAFE);
572
573	lock_page(page);
574	mapping = page_file_mapping(page);
575	if (mapping != inode->i_mapping)
576		goto out_unlock;
577
578	wait_on_page_writeback(page);
579
580	pagelen = nfs_page_length(page);
581	if (pagelen == 0)
582		goto out_unlock;
583
584	ret = VM_FAULT_LOCKED;
585	if (nfs_flush_incompatible(filp, page) == 0 &&
586	    nfs_updatepage(filp, page, 0, pagelen) == 0)
587		goto out;
588
589	ret = VM_FAULT_SIGBUS;
590out_unlock:
591	unlock_page(page);
592out:
593	sb_end_pagefault(inode->i_sb);
594	return ret;
595}
596
597static const struct vm_operations_struct nfs_file_vm_ops = {
598	.fault = filemap_fault,
599	.map_pages = filemap_map_pages,
600	.page_mkwrite = nfs_vm_page_mkwrite,
601};
602
 
 
 
 
 
 
 
 
 
 
 
603ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
604{
605	struct file *file = iocb->ki_filp;
606	struct inode *inode = file_inode(file);
607	unsigned int mntflags = NFS_SERVER(inode)->flags;
608	ssize_t result, written;
609	errseq_t since;
610	int error;
611
612	result = nfs_key_timeout_notify(file, inode);
613	if (result)
614		return result;
615
616	if (iocb->ki_flags & IOCB_DIRECT)
617		return nfs_file_direct_write(iocb, from, false);
618
619	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
620		file, iov_iter_count(from), (long long) iocb->ki_pos);
621
622	if (IS_SWAPFILE(inode))
623		goto out_swapfile;
624	/*
625	 * O_APPEND implies that we must revalidate the file length.
626	 */
627	if (iocb->ki_flags & IOCB_APPEND || iocb->ki_pos > i_size_read(inode)) {
628		result = nfs_revalidate_file_size(inode, file);
629		if (result)
630			return result;
631	}
632
633	nfs_clear_invalid_mapping(file->f_mapping);
634
635	since = filemap_sample_wb_err(file->f_mapping);
636	nfs_start_io_write(inode);
637	result = generic_write_checks(iocb, from);
638	if (result > 0) {
639		current->backing_dev_info = inode_to_bdi(inode);
640		result = generic_perform_write(iocb, from);
641		current->backing_dev_info = NULL;
642	}
643	nfs_end_io_write(inode);
644	if (result <= 0)
645		goto out;
646
 
 
 
647	written = result;
648	iocb->ki_pos += written;
649	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
650
651	if (mntflags & NFS_MOUNT_WRITE_EAGER) {
652		result = filemap_fdatawrite_range(file->f_mapping,
653						  iocb->ki_pos - written,
654						  iocb->ki_pos - 1);
655		if (result < 0)
656			goto out;
657	}
658	if (mntflags & NFS_MOUNT_WRITE_WAIT) {
659		filemap_fdatawait_range(file->f_mapping,
660					iocb->ki_pos - written,
661					iocb->ki_pos - 1);
662	}
663	result = generic_write_sync(iocb, written);
664	if (result < 0)
665		return result;
666
667out:
668	/* Return error values */
669	error = filemap_check_wb_err(file->f_mapping, since);
670	switch (error) {
671	default:
672		break;
673	case -EDQUOT:
674	case -EFBIG:
675	case -ENOSPC:
676		nfs_wb_all(inode);
677		error = file_check_and_advance_wb_err(file);
678		if (error < 0)
679			result = error;
680	}
681	return result;
682
683out_swapfile:
684	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
685	return -ETXTBSY;
686}
687EXPORT_SYMBOL_GPL(nfs_file_write);
688
689static int
690do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
691{
692	struct inode *inode = filp->f_mapping->host;
693	int status = 0;
694	unsigned int saved_type = fl->fl_type;
695
696	/* Try local locking first */
697	posix_test_lock(filp, fl);
698	if (fl->fl_type != F_UNLCK) {
699		/* found a conflict */
700		goto out;
701	}
702	fl->fl_type = saved_type;
703
704	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
705		goto out_noconflict;
706
707	if (is_local)
708		goto out_noconflict;
709
710	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
711out:
712	return status;
713out_noconflict:
714	fl->fl_type = F_UNLCK;
715	goto out;
716}
717
718static int
719do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
720{
721	struct inode *inode = filp->f_mapping->host;
722	struct nfs_lock_context *l_ctx;
723	int status;
724
725	/*
726	 * Flush all pending writes before doing anything
727	 * with locks..
728	 */
729	nfs_wb_all(inode);
730
731	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
732	if (!IS_ERR(l_ctx)) {
733		status = nfs_iocounter_wait(l_ctx);
734		nfs_put_lock_context(l_ctx);
735		/*  NOTE: special case
736		 * 	If we're signalled while cleaning up locks on process exit, we
737		 * 	still need to complete the unlock.
738		 */
739		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
740			return status;
741	}
742
 
 
 
 
743	/*
744	 * Use local locking if mounted with "-onolock" or with appropriate
745	 * "-olocal_lock="
746	 */
747	if (!is_local)
748		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
749	else
750		status = locks_lock_file_wait(filp, fl);
751	return status;
752}
753
754static int
755do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
756{
757	struct inode *inode = filp->f_mapping->host;
758	int status;
759
760	/*
761	 * Flush all pending writes before doing anything
762	 * with locks..
763	 */
764	status = nfs_sync_mapping(filp->f_mapping);
765	if (status != 0)
766		goto out;
767
768	/*
769	 * Use local locking if mounted with "-onolock" or with appropriate
770	 * "-olocal_lock="
771	 */
772	if (!is_local)
773		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
774	else
775		status = locks_lock_file_wait(filp, fl);
776	if (status < 0)
777		goto out;
778
779	/*
780	 * Invalidate cache to prevent missing any changes.  If
781	 * the file is mapped, clear the page cache as well so
782	 * those mappings will be loaded.
783	 *
784	 * This makes locking act as a cache coherency point.
785	 */
786	nfs_sync_mapping(filp->f_mapping);
787	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
788		nfs_zap_caches(inode);
789		if (mapping_mapped(filp->f_mapping))
790			nfs_revalidate_mapping(inode, filp->f_mapping);
791	}
792out:
793	return status;
794}
795
796/*
797 * Lock a (portion of) a file
798 */
799int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
800{
801	struct inode *inode = filp->f_mapping->host;
802	int ret = -ENOLCK;
803	int is_local = 0;
804
805	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
806			filp, fl->fl_type, fl->fl_flags,
807			(long long)fl->fl_start, (long long)fl->fl_end);
808
809	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
810
811	if (fl->fl_flags & FL_RECLAIM)
812		return -ENOGRACE;
 
813
814	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
815		is_local = 1;
816
817	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
818		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
819		if (ret < 0)
820			goto out_err;
821	}
822
823	if (IS_GETLK(cmd))
824		ret = do_getlk(filp, cmd, fl, is_local);
825	else if (fl->fl_type == F_UNLCK)
826		ret = do_unlk(filp, cmd, fl, is_local);
827	else
828		ret = do_setlk(filp, cmd, fl, is_local);
829out_err:
830	return ret;
831}
832EXPORT_SYMBOL_GPL(nfs_lock);
833
834/*
835 * Lock a (portion of) a file
836 */
837int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
838{
839	struct inode *inode = filp->f_mapping->host;
840	int is_local = 0;
841
842	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
843			filp, fl->fl_type, fl->fl_flags);
844
845	if (!(fl->fl_flags & FL_FLOCK))
846		return -ENOLCK;
 
 
 
 
 
 
 
 
 
847
848	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
849		is_local = 1;
850
851	/* We're simulating flock() locks using posix locks on the server */
852	if (fl->fl_type == F_UNLCK)
853		return do_unlk(filp, cmd, fl, is_local);
854	return do_setlk(filp, cmd, fl, is_local);
855}
856EXPORT_SYMBOL_GPL(nfs_flock);
857
858const struct file_operations nfs_file_operations = {
859	.llseek		= nfs_file_llseek,
860	.read_iter	= nfs_file_read,
861	.write_iter	= nfs_file_write,
862	.mmap		= nfs_file_mmap,
863	.open		= nfs_file_open,
864	.flush		= nfs_file_flush,
865	.release	= nfs_file_release,
866	.fsync		= nfs_file_fsync,
867	.lock		= nfs_lock,
868	.flock		= nfs_flock,
869	.splice_read	= generic_file_splice_read,
870	.splice_write	= iter_file_splice_write,
871	.check_flags	= nfs_check_flags,
872	.setlease	= simple_nosetlease,
873};
874EXPORT_SYMBOL_GPL(nfs_file_operations);