Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78#define VSD_FIRST_SECTOR_OFFSET 32768
79#define VSD_MAX_SECTOR_OFFSET 0x800000
80
81/*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87#define UDF_MAX_TD_NESTING 64
88#define UDF_MAX_LVID_NESTING 1000
89
90enum { UDF_MAX_LINKS = 0xffff };
91
92/* These are the "meat" - everything else is stuffing */
93static int udf_fill_super(struct super_block *, void *, int);
94static void udf_put_super(struct super_block *);
95static int udf_sync_fs(struct super_block *, int);
96static int udf_remount_fs(struct super_block *, int *, char *);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102static void udf_open_lvid(struct super_block *);
103static void udf_close_lvid(struct super_block *);
104static unsigned int udf_count_free(struct super_block *);
105static int udf_statfs(struct dentry *, struct kstatfs *);
106static int udf_show_options(struct seq_file *, struct dentry *);
107
108struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109{
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128}
129
130/* UDF filesystem type */
131static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133{
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135}
136
137static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143};
144MODULE_ALIAS_FS("udf");
145
146static struct kmem_cache *udf_inode_cachep;
147
148static struct inode *udf_alloc_inode(struct super_block *sb)
149{
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165}
166
167static void udf_i_callback(struct rcu_head *head)
168{
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171}
172
173static void udf_destroy_inode(struct inode *inode)
174{
175 call_rcu(&inode->i_rcu, udf_i_callback);
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197}
198
199static void destroy_inodecache(void)
200{
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207}
208
209/* Superblock operations */
210static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220};
221
222struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239};
240
241static int __init init_udf_fs(void)
242{
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254out:
255 destroy_inodecache();
256
257out1:
258 return err;
259}
260
261static void __exit exit_udf_fs(void)
262{
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265}
266
267module_init(init_udf_fs)
268module_exit(exit_udf_fs)
269
270static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271{
272 struct udf_sb_info *sbi = UDF_SB(sb);
273
274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 GFP_KERNEL);
276 if (!sbi->s_partmaps) {
277 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 count);
279 sbi->s_partitions = 0;
280 return -ENOMEM;
281 }
282
283 sbi->s_partitions = count;
284 return 0;
285}
286
287static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288{
289 int i;
290 int nr_groups = bitmap->s_nr_groups;
291
292 for (i = 0; i < nr_groups; i++)
293 if (bitmap->s_block_bitmap[i])
294 brelse(bitmap->s_block_bitmap[i]);
295
296 kvfree(bitmap);
297}
298
299static void udf_free_partition(struct udf_part_map *map)
300{
301 int i;
302 struct udf_meta_data *mdata;
303
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 iput(map->s_uspace.s_table);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 iput(map->s_fspace.s_table);
308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 for (i = 0; i < 4; i++)
314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 mdata = &map->s_type_specific.s_metadata;
317 iput(mdata->s_metadata_fe);
318 mdata->s_metadata_fe = NULL;
319
320 iput(mdata->s_mirror_fe);
321 mdata->s_mirror_fe = NULL;
322
323 iput(mdata->s_bitmap_fe);
324 mdata->s_bitmap_fe = NULL;
325 }
326}
327
328static void udf_sb_free_partitions(struct super_block *sb)
329{
330 struct udf_sb_info *sbi = UDF_SB(sb);
331 int i;
332 if (sbi->s_partmaps == NULL)
333 return;
334 for (i = 0; i < sbi->s_partitions; i++)
335 udf_free_partition(&sbi->s_partmaps[i]);
336 kfree(sbi->s_partmaps);
337 sbi->s_partmaps = NULL;
338}
339
340static int udf_show_options(struct seq_file *seq, struct dentry *root)
341{
342 struct super_block *sb = root->d_sb;
343 struct udf_sb_info *sbi = UDF_SB(sb);
344
345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 seq_puts(seq, ",nostrict");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 seq_puts(seq, ",unhide");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 seq_puts(seq, ",undelete");
353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 seq_puts(seq, ",noadinicb");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 seq_puts(seq, ",shortad");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 seq_puts(seq, ",uid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 seq_puts(seq, ",uid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 seq_puts(seq, ",gid=forget");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 seq_puts(seq, ",gid=ignore");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 if (sbi->s_umask != 0)
370 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 if (sbi->s_fmode != UDF_INVALID_MODE)
372 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 if (sbi->s_dmode != UDF_INVALID_MODE)
374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 seq_printf(seq, ",session=%u", sbi->s_session);
377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 if (sbi->s_anchor != 0)
380 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 /*
382 * volume, partition, fileset and rootdir seem to be ignored
383 * currently
384 */
385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 seq_puts(seq, ",utf8");
387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390 return 0;
391}
392
393/*
394 * udf_parse_options
395 *
396 * PURPOSE
397 * Parse mount options.
398 *
399 * DESCRIPTION
400 * The following mount options are supported:
401 *
402 * gid= Set the default group.
403 * umask= Set the default umask.
404 * mode= Set the default file permissions.
405 * dmode= Set the default directory permissions.
406 * uid= Set the default user.
407 * bs= Set the block size.
408 * unhide Show otherwise hidden files.
409 * undelete Show deleted files in lists.
410 * adinicb Embed data in the inode (default)
411 * noadinicb Don't embed data in the inode
412 * shortad Use short ad's
413 * longad Use long ad's (default)
414 * nostrict Unset strict conformance
415 * iocharset= Set the NLS character set
416 *
417 * The remaining are for debugging and disaster recovery:
418 *
419 * novrs Skip volume sequence recognition
420 *
421 * The following expect a offset from 0.
422 *
423 * session= Set the CDROM session (default= last session)
424 * anchor= Override standard anchor location. (default= 256)
425 * volume= Override the VolumeDesc location. (unused)
426 * partition= Override the PartitionDesc location. (unused)
427 * lastblock= Set the last block of the filesystem/
428 *
429 * The following expect a offset from the partition root.
430 *
431 * fileset= Override the fileset block location. (unused)
432 * rootdir= Override the root directory location. (unused)
433 * WARNING: overriding the rootdir to a non-directory may
434 * yield highly unpredictable results.
435 *
436 * PRE-CONDITIONS
437 * options Pointer to mount options string.
438 * uopts Pointer to mount options variable.
439 *
440 * POST-CONDITIONS
441 * <return> 1 Mount options parsed okay.
442 * <return> 0 Error parsing mount options.
443 *
444 * HISTORY
445 * July 1, 1997 - Andrew E. Mileski
446 * Written, tested, and released.
447 */
448
449enum {
450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 Opt_rootdir, Opt_utf8, Opt_iocharset,
455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 Opt_fmode, Opt_dmode
457};
458
459static const match_table_t tokens = {
460 {Opt_novrs, "novrs"},
461 {Opt_nostrict, "nostrict"},
462 {Opt_bs, "bs=%u"},
463 {Opt_unhide, "unhide"},
464 {Opt_undelete, "undelete"},
465 {Opt_noadinicb, "noadinicb"},
466 {Opt_adinicb, "adinicb"},
467 {Opt_shortad, "shortad"},
468 {Opt_longad, "longad"},
469 {Opt_uforget, "uid=forget"},
470 {Opt_uignore, "uid=ignore"},
471 {Opt_gforget, "gid=forget"},
472 {Opt_gignore, "gid=ignore"},
473 {Opt_gid, "gid=%u"},
474 {Opt_uid, "uid=%u"},
475 {Opt_umask, "umask=%o"},
476 {Opt_session, "session=%u"},
477 {Opt_lastblock, "lastblock=%u"},
478 {Opt_anchor, "anchor=%u"},
479 {Opt_volume, "volume=%u"},
480 {Opt_partition, "partition=%u"},
481 {Opt_fileset, "fileset=%u"},
482 {Opt_rootdir, "rootdir=%u"},
483 {Opt_utf8, "utf8"},
484 {Opt_iocharset, "iocharset=%s"},
485 {Opt_fmode, "mode=%o"},
486 {Opt_dmode, "dmode=%o"},
487 {Opt_err, NULL}
488};
489
490static int udf_parse_options(char *options, struct udf_options *uopt,
491 bool remount)
492{
493 char *p;
494 int option;
495
496 uopt->novrs = 0;
497 uopt->partition = 0xFFFF;
498 uopt->session = 0xFFFFFFFF;
499 uopt->lastblock = 0;
500 uopt->anchor = 0;
501 uopt->volume = 0xFFFFFFFF;
502 uopt->rootdir = 0xFFFFFFFF;
503 uopt->fileset = 0xFFFFFFFF;
504 uopt->nls_map = NULL;
505
506 if (!options)
507 return 1;
508
509 while ((p = strsep(&options, ",")) != NULL) {
510 substring_t args[MAX_OPT_ARGS];
511 int token;
512 unsigned n;
513 if (!*p)
514 continue;
515
516 token = match_token(p, tokens, args);
517 switch (token) {
518 case Opt_novrs:
519 uopt->novrs = 1;
520 break;
521 case Opt_bs:
522 if (match_int(&args[0], &option))
523 return 0;
524 n = option;
525 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 return 0;
527 uopt->blocksize = n;
528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 break;
530 case Opt_unhide:
531 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 break;
533 case Opt_undelete:
534 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 break;
536 case Opt_noadinicb:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_adinicb:
540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 break;
542 case Opt_shortad:
543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_longad:
546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 break;
548 case Opt_gid:
549 if (match_int(args, &option))
550 return 0;
551 uopt->gid = make_kgid(current_user_ns(), option);
552 if (!gid_valid(uopt->gid))
553 return 0;
554 uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 break;
556 case Opt_uid:
557 if (match_int(args, &option))
558 return 0;
559 uopt->uid = make_kuid(current_user_ns(), option);
560 if (!uid_valid(uopt->uid))
561 return 0;
562 uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 break;
564 case Opt_umask:
565 if (match_octal(args, &option))
566 return 0;
567 uopt->umask = option;
568 break;
569 case Opt_nostrict:
570 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 break;
572 case Opt_session:
573 if (match_int(args, &option))
574 return 0;
575 uopt->session = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 break;
579 case Opt_lastblock:
580 if (match_int(args, &option))
581 return 0;
582 uopt->lastblock = option;
583 if (!remount)
584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 break;
586 case Opt_anchor:
587 if (match_int(args, &option))
588 return 0;
589 uopt->anchor = option;
590 break;
591 case Opt_volume:
592 if (match_int(args, &option))
593 return 0;
594 uopt->volume = option;
595 break;
596 case Opt_partition:
597 if (match_int(args, &option))
598 return 0;
599 uopt->partition = option;
600 break;
601 case Opt_fileset:
602 if (match_int(args, &option))
603 return 0;
604 uopt->fileset = option;
605 break;
606 case Opt_rootdir:
607 if (match_int(args, &option))
608 return 0;
609 uopt->rootdir = option;
610 break;
611 case Opt_utf8:
612 uopt->flags |= (1 << UDF_FLAG_UTF8);
613 break;
614#ifdef CONFIG_UDF_NLS
615 case Opt_iocharset:
616 uopt->nls_map = load_nls(args[0].from);
617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 break;
619#endif
620 case Opt_uignore:
621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 break;
623 case Opt_uforget:
624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 break;
626 case Opt_gignore:
627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 break;
629 case Opt_gforget:
630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 break;
632 case Opt_fmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->fmode = option & 0777;
636 break;
637 case Opt_dmode:
638 if (match_octal(args, &option))
639 return 0;
640 uopt->dmode = option & 0777;
641 break;
642 default:
643 pr_err("bad mount option \"%s\" or missing value\n", p);
644 return 0;
645 }
646 }
647 return 1;
648}
649
650static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651{
652 struct udf_options uopt;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int error = 0;
655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657 sync_filesystem(sb);
658 if (lvidiu) {
659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 return -EACCES;
662 }
663
664 uopt.flags = sbi->s_flags;
665 uopt.uid = sbi->s_uid;
666 uopt.gid = sbi->s_gid;
667 uopt.umask = sbi->s_umask;
668 uopt.fmode = sbi->s_fmode;
669 uopt.dmode = sbi->s_dmode;
670
671 if (!udf_parse_options(options, &uopt, true))
672 return -EINVAL;
673
674 write_lock(&sbi->s_cred_lock);
675 sbi->s_flags = uopt.flags;
676 sbi->s_uid = uopt.uid;
677 sbi->s_gid = uopt.gid;
678 sbi->s_umask = uopt.umask;
679 sbi->s_fmode = uopt.fmode;
680 sbi->s_dmode = uopt.dmode;
681 write_unlock(&sbi->s_cred_lock);
682
683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 goto out_unlock;
685
686 if (*flags & MS_RDONLY)
687 udf_close_lvid(sb);
688 else
689 udf_open_lvid(sb);
690
691out_unlock:
692 return error;
693}
694
695/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697static loff_t udf_check_vsd(struct super_block *sb)
698{
699 struct volStructDesc *vsd = NULL;
700 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 int sectorsize;
702 struct buffer_head *bh = NULL;
703 int nsr02 = 0;
704 int nsr03 = 0;
705 struct udf_sb_info *sbi;
706
707 sbi = UDF_SB(sb);
708 if (sb->s_blocksize < sizeof(struct volStructDesc))
709 sectorsize = sizeof(struct volStructDesc);
710 else
711 sectorsize = sb->s_blocksize;
712
713 sector += (sbi->s_session << sb->s_blocksize_bits);
714
715 udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 (unsigned int)(sector >> sb->s_blocksize_bits),
717 sb->s_blocksize);
718 /* Process the sequence (if applicable). The hard limit on the sector
719 * offset is arbitrary, hopefully large enough so that all valid UDF
720 * filesystems will be recognised. There is no mention of an upper
721 * bound to the size of the volume recognition area in the standard.
722 * The limit will prevent the code to read all the sectors of a
723 * specially crafted image (like a bluray disc full of CD001 sectors),
724 * potentially causing minutes or even hours of uninterruptible I/O
725 * activity. This actually happened with uninitialised SSD partitions
726 * (all 0xFF) before the check for the limit and all valid IDs were
727 * added */
728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 sector += sectorsize) {
730 /* Read a block */
731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 if (!bh)
733 break;
734
735 /* Look for ISO descriptors */
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738
739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 VSD_STD_ID_LEN)) {
741 switch (vsd->structType) {
742 case 0:
743 udf_debug("ISO9660 Boot Record found\n");
744 break;
745 case 1:
746 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 break;
748 case 2:
749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 break;
751 case 3:
752 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 break;
754 case 255:
755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 break;
757 default:
758 udf_debug("ISO9660 VRS (%u) found\n",
759 vsd->structType);
760 break;
761 }
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 VSD_STD_ID_LEN))
764 ; /* nothing */
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 VSD_STD_ID_LEN)) {
767 brelse(bh);
768 break;
769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 VSD_STD_ID_LEN))
771 nsr02 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 VSD_STD_ID_LEN))
774 nsr03 = sector;
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 VSD_STD_ID_LEN))
780 ; /* nothing */
781 else {
782 /* invalid id : end of volume recognition area */
783 brelse(bh);
784 break;
785 }
786 brelse(bh);
787 }
788
789 if (nsr03)
790 return nsr03;
791 else if (nsr02)
792 return nsr02;
793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 VSD_FIRST_SECTOR_OFFSET)
795 return -1;
796 else
797 return 0;
798}
799
800static int udf_find_fileset(struct super_block *sb,
801 struct kernel_lb_addr *fileset,
802 struct kernel_lb_addr *root)
803{
804 struct buffer_head *bh = NULL;
805 long lastblock;
806 uint16_t ident;
807 struct udf_sb_info *sbi;
808
809 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 fileset->partitionReferenceNum != 0xFFFF) {
811 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813 if (!bh) {
814 return 1;
815 } else if (ident != TAG_IDENT_FSD) {
816 brelse(bh);
817 return 1;
818 }
819
820 }
821
822 sbi = UDF_SB(sb);
823 if (!bh) {
824 /* Search backwards through the partitions */
825 struct kernel_lb_addr newfileset;
826
827/* --> cvg: FIXME - is it reasonable? */
828 return 1;
829
830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 (newfileset.partitionReferenceNum != 0xFFFF &&
832 fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF);
834 newfileset.partitionReferenceNum--) {
835 lastblock = sbi->s_partmaps
836 [newfileset.partitionReferenceNum]
837 .s_partition_len;
838 newfileset.logicalBlockNum = 0;
839
840 do {
841 bh = udf_read_ptagged(sb, &newfileset, 0,
842 &ident);
843 if (!bh) {
844 newfileset.logicalBlockNum++;
845 continue;
846 }
847
848 switch (ident) {
849 case TAG_IDENT_SBD:
850 {
851 struct spaceBitmapDesc *sp;
852 sp = (struct spaceBitmapDesc *)
853 bh->b_data;
854 newfileset.logicalBlockNum += 1 +
855 ((le32_to_cpu(sp->numOfBytes) +
856 sizeof(struct spaceBitmapDesc)
857 - 1) >> sb->s_blocksize_bits);
858 brelse(bh);
859 break;
860 }
861 case TAG_IDENT_FSD:
862 *fileset = newfileset;
863 break;
864 default:
865 newfileset.logicalBlockNum++;
866 brelse(bh);
867 bh = NULL;
868 break;
869 }
870 } while (newfileset.logicalBlockNum < lastblock &&
871 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 fileset->partitionReferenceNum == 0xFFFF);
873 }
874 }
875
876 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 udf_debug("Fileset at block=%d, partition=%d\n",
879 fileset->logicalBlockNum,
880 fileset->partitionReferenceNum);
881
882 sbi->s_partition = fileset->partitionReferenceNum;
883 udf_load_fileset(sb, bh, root);
884 brelse(bh);
885 return 0;
886 }
887 return 1;
888}
889
890/*
891 * Load primary Volume Descriptor Sequence
892 *
893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894 * should be tried.
895 */
896static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897{
898 struct primaryVolDesc *pvoldesc;
899 uint8_t *outstr;
900 struct buffer_head *bh;
901 uint16_t ident;
902 int ret = -ENOMEM;
903
904 outstr = kmalloc(128, GFP_NOFS);
905 if (!outstr)
906 return -ENOMEM;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 if (ret < 0)
940 goto out_bh;
941
942 outstr[ret] = 0;
943 udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945 ret = 0;
946out_bh:
947 brelse(bh);
948out2:
949 kfree(outstr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_ref)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_ref;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975}
976
977static int udf_load_metadata_files(struct super_block *sb, int partition,
978 int type1_index)
979{
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct udf_part_map *map;
982 struct udf_meta_data *mdata;
983 struct kernel_lb_addr addr;
984 struct inode *fe;
985
986 map = &sbi->s_partmaps[partition];
987 mdata = &map->s_type_specific.s_metadata;
988 mdata->s_phys_partition_ref = type1_index;
989
990 /* metadata address */
991 udf_debug("Metadata file location: block = %d part = %d\n",
992 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993
994 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995 mdata->s_phys_partition_ref);
996 if (IS_ERR(fe)) {
997 /* mirror file entry */
998 udf_debug("Mirror metadata file location: block = %d part = %d\n",
999 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000
1001 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002 mdata->s_phys_partition_ref);
1003
1004 if (IS_ERR(fe)) {
1005 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006 return PTR_ERR(fe);
1007 }
1008 mdata->s_mirror_fe = fe;
1009 } else
1010 mdata->s_metadata_fe = fe;
1011
1012
1013 /*
1014 * bitmap file entry
1015 * Note:
1016 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017 */
1018 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021
1022 udf_debug("Bitmap file location: block = %d part = %d\n",
1023 addr.logicalBlockNum, addr.partitionReferenceNum);
1024
1025 fe = udf_iget_special(sb, &addr);
1026 if (IS_ERR(fe)) {
1027 if (sb->s_flags & MS_RDONLY)
1028 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029 else {
1030 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031 return PTR_ERR(fe);
1032 }
1033 } else
1034 mdata->s_bitmap_fe = fe;
1035 }
1036
1037 udf_debug("udf_load_metadata_files Ok\n");
1038 return 0;
1039}
1040
1041static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042 struct kernel_lb_addr *root)
1043{
1044 struct fileSetDesc *fset;
1045
1046 fset = (struct fileSetDesc *)bh->b_data;
1047
1048 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049
1050 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051
1052 udf_debug("Rootdir at block=%d, partition=%d\n",
1053 root->logicalBlockNum, root->partitionReferenceNum);
1054}
1055
1056int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057{
1058 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059 return DIV_ROUND_UP(map->s_partition_len +
1060 (sizeof(struct spaceBitmapDesc) << 3),
1061 sb->s_blocksize * 8);
1062}
1063
1064static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065{
1066 struct udf_bitmap *bitmap;
1067 int nr_groups;
1068 int size;
1069
1070 nr_groups = udf_compute_nr_groups(sb, index);
1071 size = sizeof(struct udf_bitmap) +
1072 (sizeof(struct buffer_head *) * nr_groups);
1073
1074 if (size <= PAGE_SIZE)
1075 bitmap = kzalloc(size, GFP_KERNEL);
1076 else
1077 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078
1079 if (bitmap == NULL)
1080 return NULL;
1081
1082 bitmap->s_nr_groups = nr_groups;
1083 return bitmap;
1084}
1085
1086static int udf_fill_partdesc_info(struct super_block *sb,
1087 struct partitionDesc *p, int p_index)
1088{
1089 struct udf_part_map *map;
1090 struct udf_sb_info *sbi = UDF_SB(sb);
1091 struct partitionHeaderDesc *phd;
1092
1093 map = &sbi->s_partmaps[p_index];
1094
1095 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106
1107 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108 p_index, map->s_partition_type,
1109 map->s_partition_root, map->s_partition_len);
1110
1111 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113 return 0;
1114
1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 if (phd->unallocSpaceTable.extLength) {
1117 struct kernel_lb_addr loc = {
1118 .logicalBlockNum = le32_to_cpu(
1119 phd->unallocSpaceTable.extPosition),
1120 .partitionReferenceNum = p_index,
1121 };
1122 struct inode *inode;
1123
1124 inode = udf_iget_special(sb, &loc);
1125 if (IS_ERR(inode)) {
1126 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 p_index);
1128 return PTR_ERR(inode);
1129 }
1130 map->s_uspace.s_table = inode;
1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133 p_index, map->s_uspace.s_table->i_ino);
1134 }
1135
1136 if (phd->unallocSpaceBitmap.extLength) {
1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 if (!bitmap)
1139 return -ENOMEM;
1140 map->s_uspace.s_bitmap = bitmap;
1141 bitmap->s_extPosition = le32_to_cpu(
1142 phd->unallocSpaceBitmap.extPosition);
1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145 p_index, bitmap->s_extPosition);
1146 }
1147
1148 if (phd->partitionIntegrityTable.extLength)
1149 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150
1151 if (phd->freedSpaceTable.extLength) {
1152 struct kernel_lb_addr loc = {
1153 .logicalBlockNum = le32_to_cpu(
1154 phd->freedSpaceTable.extPosition),
1155 .partitionReferenceNum = p_index,
1156 };
1157 struct inode *inode;
1158
1159 inode = udf_iget_special(sb, &loc);
1160 if (IS_ERR(inode)) {
1161 udf_debug("cannot load freedSpaceTable (part %d)\n",
1162 p_index);
1163 return PTR_ERR(inode);
1164 }
1165 map->s_fspace.s_table = inode;
1166 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168 p_index, map->s_fspace.s_table->i_ino);
1169 }
1170
1171 if (phd->freedSpaceBitmap.extLength) {
1172 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173 if (!bitmap)
1174 return -ENOMEM;
1175 map->s_fspace.s_bitmap = bitmap;
1176 bitmap->s_extPosition = le32_to_cpu(
1177 phd->freedSpaceBitmap.extPosition);
1178 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180 p_index, bitmap->s_extPosition);
1181 }
1182 return 0;
1183}
1184
1185static void udf_find_vat_block(struct super_block *sb, int p_index,
1186 int type1_index, sector_t start_block)
1187{
1188 struct udf_sb_info *sbi = UDF_SB(sb);
1189 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190 sector_t vat_block;
1191 struct kernel_lb_addr ino;
1192 struct inode *inode;
1193
1194 /*
1195 * VAT file entry is in the last recorded block. Some broken disks have
1196 * it a few blocks before so try a bit harder...
1197 */
1198 ino.partitionReferenceNum = type1_index;
1199 for (vat_block = start_block;
1200 vat_block >= map->s_partition_root &&
1201 vat_block >= start_block - 3; vat_block--) {
1202 ino.logicalBlockNum = vat_block - map->s_partition_root;
1203 inode = udf_iget_special(sb, &ino);
1204 if (!IS_ERR(inode)) {
1205 sbi->s_vat_inode = inode;
1206 break;
1207 }
1208 }
1209}
1210
1211static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212{
1213 struct udf_sb_info *sbi = UDF_SB(sb);
1214 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215 struct buffer_head *bh = NULL;
1216 struct udf_inode_info *vati;
1217 uint32_t pos;
1218 struct virtualAllocationTable20 *vat20;
1219 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220
1221 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222 if (!sbi->s_vat_inode &&
1223 sbi->s_last_block != blocks - 1) {
1224 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225 (unsigned long)sbi->s_last_block,
1226 (unsigned long)blocks - 1);
1227 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228 }
1229 if (!sbi->s_vat_inode)
1230 return -EIO;
1231
1232 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233 map->s_type_specific.s_virtual.s_start_offset = 0;
1234 map->s_type_specific.s_virtual.s_num_entries =
1235 (sbi->s_vat_inode->i_size - 36) >> 2;
1236 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237 vati = UDF_I(sbi->s_vat_inode);
1238 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239 pos = udf_block_map(sbi->s_vat_inode, 0);
1240 bh = sb_bread(sb, pos);
1241 if (!bh)
1242 return -EIO;
1243 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244 } else {
1245 vat20 = (struct virtualAllocationTable20 *)
1246 vati->i_ext.i_data;
1247 }
1248
1249 map->s_type_specific.s_virtual.s_start_offset =
1250 le16_to_cpu(vat20->lengthHeader);
1251 map->s_type_specific.s_virtual.s_num_entries =
1252 (sbi->s_vat_inode->i_size -
1253 map->s_type_specific.s_virtual.
1254 s_start_offset) >> 2;
1255 brelse(bh);
1256 }
1257 return 0;
1258}
1259
1260/*
1261 * Load partition descriptor block
1262 *
1263 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264 * sequence.
1265 */
1266static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267{
1268 struct buffer_head *bh;
1269 struct partitionDesc *p;
1270 struct udf_part_map *map;
1271 struct udf_sb_info *sbi = UDF_SB(sb);
1272 int i, type1_idx;
1273 uint16_t partitionNumber;
1274 uint16_t ident;
1275 int ret;
1276
1277 bh = udf_read_tagged(sb, block, block, &ident);
1278 if (!bh)
1279 return -EAGAIN;
1280 if (ident != TAG_IDENT_PD) {
1281 ret = 0;
1282 goto out_bh;
1283 }
1284
1285 p = (struct partitionDesc *)bh->b_data;
1286 partitionNumber = le16_to_cpu(p->partitionNumber);
1287
1288 /* First scan for TYPE1 and SPARABLE partitions */
1289 for (i = 0; i < sbi->s_partitions; i++) {
1290 map = &sbi->s_partmaps[i];
1291 udf_debug("Searching map: (%d == %d)\n",
1292 map->s_partition_num, partitionNumber);
1293 if (map->s_partition_num == partitionNumber &&
1294 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295 map->s_partition_type == UDF_SPARABLE_MAP15))
1296 break;
1297 }
1298
1299 if (i >= sbi->s_partitions) {
1300 udf_debug("Partition (%d) not found in partition map\n",
1301 partitionNumber);
1302 ret = 0;
1303 goto out_bh;
1304 }
1305
1306 ret = udf_fill_partdesc_info(sb, p, i);
1307 if (ret < 0)
1308 goto out_bh;
1309
1310 /*
1311 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312 * PHYSICAL partitions are already set up
1313 */
1314 type1_idx = i;
1315#ifdef UDFFS_DEBUG
1316 map = NULL; /* supress 'maybe used uninitialized' warning */
1317#endif
1318 for (i = 0; i < sbi->s_partitions; i++) {
1319 map = &sbi->s_partmaps[i];
1320
1321 if (map->s_partition_num == partitionNumber &&
1322 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324 map->s_partition_type == UDF_METADATA_MAP25))
1325 break;
1326 }
1327
1328 if (i >= sbi->s_partitions) {
1329 ret = 0;
1330 goto out_bh;
1331 }
1332
1333 ret = udf_fill_partdesc_info(sb, p, i);
1334 if (ret < 0)
1335 goto out_bh;
1336
1337 if (map->s_partition_type == UDF_METADATA_MAP25) {
1338 ret = udf_load_metadata_files(sb, i, type1_idx);
1339 if (ret < 0) {
1340 udf_err(sb, "error loading MetaData partition map %d\n",
1341 i);
1342 goto out_bh;
1343 }
1344 } else {
1345 /*
1346 * If we have a partition with virtual map, we don't handle
1347 * writing to it (we overwrite blocks instead of relocating
1348 * them).
1349 */
1350 if (!(sb->s_flags & MS_RDONLY)) {
1351 ret = -EACCES;
1352 goto out_bh;
1353 }
1354 ret = udf_load_vat(sb, i, type1_idx);
1355 if (ret < 0)
1356 goto out_bh;
1357 }
1358 ret = 0;
1359out_bh:
1360 /* In case loading failed, we handle cleanup in udf_fill_super */
1361 brelse(bh);
1362 return ret;
1363}
1364
1365static int udf_load_sparable_map(struct super_block *sb,
1366 struct udf_part_map *map,
1367 struct sparablePartitionMap *spm)
1368{
1369 uint32_t loc;
1370 uint16_t ident;
1371 struct sparingTable *st;
1372 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373 int i;
1374 struct buffer_head *bh;
1375
1376 map->s_partition_type = UDF_SPARABLE_MAP15;
1377 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378 if (!is_power_of_2(sdata->s_packet_len)) {
1379 udf_err(sb, "error loading logical volume descriptor: "
1380 "Invalid packet length %u\n",
1381 (unsigned)sdata->s_packet_len);
1382 return -EIO;
1383 }
1384 if (spm->numSparingTables > 4) {
1385 udf_err(sb, "error loading logical volume descriptor: "
1386 "Too many sparing tables (%d)\n",
1387 (int)spm->numSparingTables);
1388 return -EIO;
1389 }
1390
1391 for (i = 0; i < spm->numSparingTables; i++) {
1392 loc = le32_to_cpu(spm->locSparingTable[i]);
1393 bh = udf_read_tagged(sb, loc, loc, &ident);
1394 if (!bh)
1395 continue;
1396
1397 st = (struct sparingTable *)bh->b_data;
1398 if (ident != 0 ||
1399 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400 strlen(UDF_ID_SPARING)) ||
1401 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402 sb->s_blocksize) {
1403 brelse(bh);
1404 continue;
1405 }
1406
1407 sdata->s_spar_map[i] = bh;
1408 }
1409 map->s_partition_func = udf_get_pblock_spar15;
1410 return 0;
1411}
1412
1413static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414 struct kernel_lb_addr *fileset)
1415{
1416 struct logicalVolDesc *lvd;
1417 int i, offset;
1418 uint8_t type;
1419 struct udf_sb_info *sbi = UDF_SB(sb);
1420 struct genericPartitionMap *gpm;
1421 uint16_t ident;
1422 struct buffer_head *bh;
1423 unsigned int table_len;
1424 int ret;
1425
1426 bh = udf_read_tagged(sb, block, block, &ident);
1427 if (!bh)
1428 return -EAGAIN;
1429 BUG_ON(ident != TAG_IDENT_LVD);
1430 lvd = (struct logicalVolDesc *)bh->b_data;
1431 table_len = le32_to_cpu(lvd->mapTableLength);
1432 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433 udf_err(sb, "error loading logical volume descriptor: "
1434 "Partition table too long (%u > %lu)\n", table_len,
1435 sb->s_blocksize - sizeof(*lvd));
1436 ret = -EIO;
1437 goto out_bh;
1438 }
1439
1440 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441 if (ret)
1442 goto out_bh;
1443
1444 for (i = 0, offset = 0;
1445 i < sbi->s_partitions && offset < table_len;
1446 i++, offset += gpm->partitionMapLength) {
1447 struct udf_part_map *map = &sbi->s_partmaps[i];
1448 gpm = (struct genericPartitionMap *)
1449 &(lvd->partitionMaps[offset]);
1450 type = gpm->partitionMapType;
1451 if (type == 1) {
1452 struct genericPartitionMap1 *gpm1 =
1453 (struct genericPartitionMap1 *)gpm;
1454 map->s_partition_type = UDF_TYPE1_MAP15;
1455 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457 map->s_partition_func = NULL;
1458 } else if (type == 2) {
1459 struct udfPartitionMap2 *upm2 =
1460 (struct udfPartitionMap2 *)gpm;
1461 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462 strlen(UDF_ID_VIRTUAL))) {
1463 u16 suf =
1464 le16_to_cpu(((__le16 *)upm2->partIdent.
1465 identSuffix)[0]);
1466 if (suf < 0x0200) {
1467 map->s_partition_type =
1468 UDF_VIRTUAL_MAP15;
1469 map->s_partition_func =
1470 udf_get_pblock_virt15;
1471 } else {
1472 map->s_partition_type =
1473 UDF_VIRTUAL_MAP20;
1474 map->s_partition_func =
1475 udf_get_pblock_virt20;
1476 }
1477 } else if (!strncmp(upm2->partIdent.ident,
1478 UDF_ID_SPARABLE,
1479 strlen(UDF_ID_SPARABLE))) {
1480 ret = udf_load_sparable_map(sb, map,
1481 (struct sparablePartitionMap *)gpm);
1482 if (ret < 0)
1483 goto out_bh;
1484 } else if (!strncmp(upm2->partIdent.ident,
1485 UDF_ID_METADATA,
1486 strlen(UDF_ID_METADATA))) {
1487 struct udf_meta_data *mdata =
1488 &map->s_type_specific.s_metadata;
1489 struct metadataPartitionMap *mdm =
1490 (struct metadataPartitionMap *)
1491 &(lvd->partitionMaps[offset]);
1492 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1493 i, type, UDF_ID_METADATA);
1494
1495 map->s_partition_type = UDF_METADATA_MAP25;
1496 map->s_partition_func = udf_get_pblock_meta25;
1497
1498 mdata->s_meta_file_loc =
1499 le32_to_cpu(mdm->metadataFileLoc);
1500 mdata->s_mirror_file_loc =
1501 le32_to_cpu(mdm->metadataMirrorFileLoc);
1502 mdata->s_bitmap_file_loc =
1503 le32_to_cpu(mdm->metadataBitmapFileLoc);
1504 mdata->s_alloc_unit_size =
1505 le32_to_cpu(mdm->allocUnitSize);
1506 mdata->s_align_unit_size =
1507 le16_to_cpu(mdm->alignUnitSize);
1508 if (mdm->flags & 0x01)
1509 mdata->s_flags |= MF_DUPLICATE_MD;
1510
1511 udf_debug("Metadata Ident suffix=0x%x\n",
1512 le16_to_cpu(*(__le16 *)
1513 mdm->partIdent.identSuffix));
1514 udf_debug("Metadata part num=%d\n",
1515 le16_to_cpu(mdm->partitionNum));
1516 udf_debug("Metadata part alloc unit size=%d\n",
1517 le32_to_cpu(mdm->allocUnitSize));
1518 udf_debug("Metadata file loc=%d\n",
1519 le32_to_cpu(mdm->metadataFileLoc));
1520 udf_debug("Mirror file loc=%d\n",
1521 le32_to_cpu(mdm->metadataMirrorFileLoc));
1522 udf_debug("Bitmap file loc=%d\n",
1523 le32_to_cpu(mdm->metadataBitmapFileLoc));
1524 udf_debug("Flags: %d %d\n",
1525 mdata->s_flags, mdm->flags);
1526 } else {
1527 udf_debug("Unknown ident: %s\n",
1528 upm2->partIdent.ident);
1529 continue;
1530 }
1531 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533 }
1534 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535 i, map->s_partition_num, type, map->s_volumeseqnum);
1536 }
1537
1538 if (fileset) {
1539 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540
1541 *fileset = lelb_to_cpu(la->extLocation);
1542 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543 fileset->logicalBlockNum,
1544 fileset->partitionReferenceNum);
1545 }
1546 if (lvd->integritySeqExt.extLength)
1547 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548 ret = 0;
1549out_bh:
1550 brelse(bh);
1551 return ret;
1552}
1553
1554/*
1555 * Find the prevailing Logical Volume Integrity Descriptor.
1556 */
1557static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558{
1559 struct buffer_head *bh, *final_bh;
1560 uint16_t ident;
1561 struct udf_sb_info *sbi = UDF_SB(sb);
1562 struct logicalVolIntegrityDesc *lvid;
1563 int indirections = 0;
1564
1565 while (++indirections <= UDF_MAX_LVID_NESTING) {
1566 final_bh = NULL;
1567 while (loc.extLength > 0 &&
1568 (bh = udf_read_tagged(sb, loc.extLocation,
1569 loc.extLocation, &ident))) {
1570 if (ident != TAG_IDENT_LVID) {
1571 brelse(bh);
1572 break;
1573 }
1574
1575 brelse(final_bh);
1576 final_bh = bh;
1577
1578 loc.extLength -= sb->s_blocksize;
1579 loc.extLocation++;
1580 }
1581
1582 if (!final_bh)
1583 return;
1584
1585 brelse(sbi->s_lvid_bh);
1586 sbi->s_lvid_bh = final_bh;
1587
1588 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589 if (lvid->nextIntegrityExt.extLength == 0)
1590 return;
1591
1592 loc = leea_to_cpu(lvid->nextIntegrityExt);
1593 }
1594
1595 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596 UDF_MAX_LVID_NESTING);
1597 brelse(sbi->s_lvid_bh);
1598 sbi->s_lvid_bh = NULL;
1599}
1600
1601
1602/*
1603 * Process a main/reserve volume descriptor sequence.
1604 * @block First block of first extent of the sequence.
1605 * @lastblock Lastblock of first extent of the sequence.
1606 * @fileset There we store extent containing root fileset
1607 *
1608 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609 * sequence
1610 */
1611static noinline int udf_process_sequence(
1612 struct super_block *sb,
1613 sector_t block, sector_t lastblock,
1614 struct kernel_lb_addr *fileset)
1615{
1616 struct buffer_head *bh = NULL;
1617 struct udf_vds_record vds[VDS_POS_LENGTH];
1618 struct udf_vds_record *curr;
1619 struct generic_desc *gd;
1620 struct volDescPtr *vdp;
1621 bool done = false;
1622 uint32_t vdsn;
1623 uint16_t ident;
1624 long next_s = 0, next_e = 0;
1625 int ret;
1626 unsigned int indirections = 0;
1627
1628 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629
1630 /*
1631 * Read the main descriptor sequence and find which descriptors
1632 * are in it.
1633 */
1634 for (; (!done && block <= lastblock); block++) {
1635
1636 bh = udf_read_tagged(sb, block, block, &ident);
1637 if (!bh) {
1638 udf_err(sb,
1639 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640 (unsigned long long)block);
1641 return -EAGAIN;
1642 }
1643
1644 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645 gd = (struct generic_desc *)bh->b_data;
1646 vdsn = le32_to_cpu(gd->volDescSeqNum);
1647 switch (ident) {
1648 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650 if (vdsn >= curr->volDescSeqNum) {
1651 curr->volDescSeqNum = vdsn;
1652 curr->block = block;
1653 }
1654 break;
1655 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656 curr = &vds[VDS_POS_VOL_DESC_PTR];
1657 if (vdsn >= curr->volDescSeqNum) {
1658 curr->volDescSeqNum = vdsn;
1659 curr->block = block;
1660
1661 vdp = (struct volDescPtr *)bh->b_data;
1662 next_s = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLocation);
1664 next_e = le32_to_cpu(
1665 vdp->nextVolDescSeqExt.extLength);
1666 next_e = next_e >> sb->s_blocksize_bits;
1667 next_e += next_s;
1668 }
1669 break;
1670 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672 if (vdsn >= curr->volDescSeqNum) {
1673 curr->volDescSeqNum = vdsn;
1674 curr->block = block;
1675 }
1676 break;
1677 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 curr = &vds[VDS_POS_PARTITION_DESC];
1679 if (!curr->block)
1680 curr->block = block;
1681 break;
1682 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684 if (vdsn >= curr->volDescSeqNum) {
1685 curr->volDescSeqNum = vdsn;
1686 curr->block = block;
1687 }
1688 break;
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691 if (vdsn >= curr->volDescSeqNum) {
1692 curr->volDescSeqNum = vdsn;
1693 curr->block = block;
1694 }
1695 break;
1696 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697 if (++indirections > UDF_MAX_TD_NESTING) {
1698 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699 brelse(bh);
1700 return -EIO;
1701 }
1702
1703 vds[VDS_POS_TERMINATING_DESC].block = block;
1704 if (next_e) {
1705 block = next_s;
1706 lastblock = next_e;
1707 next_s = next_e = 0;
1708 } else
1709 done = true;
1710 break;
1711 }
1712 brelse(bh);
1713 }
1714 /*
1715 * Now read interesting descriptors again and process them
1716 * in a suitable order
1717 */
1718 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719 udf_err(sb, "Primary Volume Descriptor not found!\n");
1720 return -EAGAIN;
1721 }
1722 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723 if (ret < 0)
1724 return ret;
1725
1726 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727 ret = udf_load_logicalvol(sb,
1728 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729 fileset);
1730 if (ret < 0)
1731 return ret;
1732 }
1733
1734 if (vds[VDS_POS_PARTITION_DESC].block) {
1735 /*
1736 * We rescan the whole descriptor sequence to find
1737 * partition descriptor blocks and process them.
1738 */
1739 for (block = vds[VDS_POS_PARTITION_DESC].block;
1740 block < vds[VDS_POS_TERMINATING_DESC].block;
1741 block++) {
1742 ret = udf_load_partdesc(sb, block);
1743 if (ret < 0)
1744 return ret;
1745 }
1746 }
1747
1748 return 0;
1749}
1750
1751/*
1752 * Load Volume Descriptor Sequence described by anchor in bh
1753 *
1754 * Returns <0 on error, 0 on success
1755 */
1756static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757 struct kernel_lb_addr *fileset)
1758{
1759 struct anchorVolDescPtr *anchor;
1760 sector_t main_s, main_e, reserve_s, reserve_e;
1761 int ret;
1762
1763 anchor = (struct anchorVolDescPtr *)bh->b_data;
1764
1765 /* Locate the main sequence */
1766 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768 main_e = main_e >> sb->s_blocksize_bits;
1769 main_e += main_s;
1770
1771 /* Locate the reserve sequence */
1772 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774 reserve_e = reserve_e >> sb->s_blocksize_bits;
1775 reserve_e += reserve_s;
1776
1777 /* Process the main & reserve sequences */
1778 /* responsible for finding the PartitionDesc(s) */
1779 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780 if (ret != -EAGAIN)
1781 return ret;
1782 udf_sb_free_partitions(sb);
1783 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784 if (ret < 0) {
1785 udf_sb_free_partitions(sb);
1786 /* No sequence was OK, return -EIO */
1787 if (ret == -EAGAIN)
1788 ret = -EIO;
1789 }
1790 return ret;
1791}
1792
1793/*
1794 * Check whether there is an anchor block in the given block and
1795 * load Volume Descriptor Sequence if so.
1796 *
1797 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798 * block
1799 */
1800static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801 struct kernel_lb_addr *fileset)
1802{
1803 struct buffer_head *bh;
1804 uint16_t ident;
1805 int ret;
1806
1807 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808 udf_fixed_to_variable(block) >=
1809 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810 return -EAGAIN;
1811
1812 bh = udf_read_tagged(sb, block, block, &ident);
1813 if (!bh)
1814 return -EAGAIN;
1815 if (ident != TAG_IDENT_AVDP) {
1816 brelse(bh);
1817 return -EAGAIN;
1818 }
1819 ret = udf_load_sequence(sb, bh, fileset);
1820 brelse(bh);
1821 return ret;
1822}
1823
1824/*
1825 * Search for an anchor volume descriptor pointer.
1826 *
1827 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828 * of anchors.
1829 */
1830static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831 struct kernel_lb_addr *fileset)
1832{
1833 sector_t last[6];
1834 int i;
1835 struct udf_sb_info *sbi = UDF_SB(sb);
1836 int last_count = 0;
1837 int ret;
1838
1839 /* First try user provided anchor */
1840 if (sbi->s_anchor) {
1841 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842 if (ret != -EAGAIN)
1843 return ret;
1844 }
1845 /*
1846 * according to spec, anchor is in either:
1847 * block 256
1848 * lastblock-256
1849 * lastblock
1850 * however, if the disc isn't closed, it could be 512.
1851 */
1852 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853 if (ret != -EAGAIN)
1854 return ret;
1855 /*
1856 * The trouble is which block is the last one. Drives often misreport
1857 * this so we try various possibilities.
1858 */
1859 last[last_count++] = *lastblock;
1860 if (*lastblock >= 1)
1861 last[last_count++] = *lastblock - 1;
1862 last[last_count++] = *lastblock + 1;
1863 if (*lastblock >= 2)
1864 last[last_count++] = *lastblock - 2;
1865 if (*lastblock >= 150)
1866 last[last_count++] = *lastblock - 150;
1867 if (*lastblock >= 152)
1868 last[last_count++] = *lastblock - 152;
1869
1870 for (i = 0; i < last_count; i++) {
1871 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872 sb->s_blocksize_bits)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i], fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 if (last[i] < 256)
1881 continue;
1882 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883 if (ret != -EAGAIN) {
1884 if (!ret)
1885 *lastblock = last[i];
1886 return ret;
1887 }
1888 }
1889
1890 /* Finally try block 512 in case media is open */
1891 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892}
1893
1894/*
1895 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896 * area specified by it. The function expects sbi->s_lastblock to be the last
1897 * block on the media.
1898 *
1899 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900 * was not found.
1901 */
1902static int udf_find_anchor(struct super_block *sb,
1903 struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 sector_t lastblock = sbi->s_last_block;
1907 int ret;
1908
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 /* No anchor found? Try VARCONV conversion of block numbers */
1914 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916 /* Firstly, we try to not convert number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret != -EAGAIN)
1919 goto out;
1920
1921 lastblock = sbi->s_last_block;
1922 /* Secondly, we try with converted number of the last block */
1923 ret = udf_scan_anchors(sb, &lastblock, fileset);
1924 if (ret < 0) {
1925 /* VARCONV didn't help. Clear it. */
1926 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927 }
1928out:
1929 if (ret == 0)
1930 sbi->s_last_block = lastblock;
1931 return ret;
1932}
1933
1934/*
1935 * Check Volume Structure Descriptor, find Anchor block and load Volume
1936 * Descriptor Sequence.
1937 *
1938 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939 * block was not found.
1940 */
1941static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942 int silent, struct kernel_lb_addr *fileset)
1943{
1944 struct udf_sb_info *sbi = UDF_SB(sb);
1945 loff_t nsr_off;
1946 int ret;
1947
1948 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949 if (!silent)
1950 udf_warn(sb, "Bad block size\n");
1951 return -EINVAL;
1952 }
1953 sbi->s_last_block = uopt->lastblock;
1954 if (!uopt->novrs) {
1955 /* Check that it is NSR02 compliant */
1956 nsr_off = udf_check_vsd(sb);
1957 if (!nsr_off) {
1958 if (!silent)
1959 udf_warn(sb, "No VRS found\n");
1960 return 0;
1961 }
1962 if (nsr_off == -1)
1963 udf_debug("Failed to read sector at offset %d. "
1964 "Assuming open disc. Skipping validity "
1965 "check\n", VSD_FIRST_SECTOR_OFFSET);
1966 if (!sbi->s_last_block)
1967 sbi->s_last_block = udf_get_last_block(sb);
1968 } else {
1969 udf_debug("Validity check skipped because of novrs option\n");
1970 }
1971
1972 /* Look for anchor block and load Volume Descriptor Sequence */
1973 sbi->s_anchor = uopt->anchor;
1974 ret = udf_find_anchor(sb, fileset);
1975 if (ret < 0) {
1976 if (!silent && ret == -EAGAIN)
1977 udf_warn(sb, "No anchor found\n");
1978 return ret;
1979 }
1980 return 0;
1981}
1982
1983static void udf_open_lvid(struct super_block *sb)
1984{
1985 struct udf_sb_info *sbi = UDF_SB(sb);
1986 struct buffer_head *bh = sbi->s_lvid_bh;
1987 struct logicalVolIntegrityDesc *lvid;
1988 struct logicalVolIntegrityDescImpUse *lvidiu;
1989
1990 if (!bh)
1991 return;
1992 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993 lvidiu = udf_sb_lvidiu(sb);
1994 if (!lvidiu)
1995 return;
1996
1997 mutex_lock(&sbi->s_alloc_mutex);
1998 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001 CURRENT_TIME);
2002 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003
2004 lvid->descTag.descCRC = cpu_to_le16(
2005 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 le16_to_cpu(lvid->descTag.descCRCLength)));
2007
2008 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 mark_buffer_dirty(bh);
2010 sbi->s_lvid_dirty = 0;
2011 mutex_unlock(&sbi->s_alloc_mutex);
2012 /* Make opening of filesystem visible on the media immediately */
2013 sync_dirty_buffer(bh);
2014}
2015
2016static void udf_close_lvid(struct super_block *sb)
2017{
2018 struct udf_sb_info *sbi = UDF_SB(sb);
2019 struct buffer_head *bh = sbi->s_lvid_bh;
2020 struct logicalVolIntegrityDesc *lvid;
2021 struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042 lvid->descTag.descCRC = cpu_to_le16(
2043 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044 le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047 /*
2048 * We set buffer uptodate unconditionally here to avoid spurious
2049 * warnings from mark_buffer_dirty() when previous EIO has marked
2050 * the buffer as !uptodate
2051 */
2052 set_buffer_uptodate(bh);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 mutex_unlock(&sbi->s_alloc_mutex);
2082 mark_buffer_dirty(bh);
2083
2084 return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 uopt.uid = INVALID_UID;
2098 uopt.gid = INVALID_GID;
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102
2103 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119#ifdef CONFIG_UDF_NLS
2120 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 uopt.nls_map = load_nls_default();
2122 if (!uopt.nls_map)
2123 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 else
2125 udf_debug("Using default NLS map\n");
2126 }
2127#endif
2128 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131 fileset.logicalBlockNum = 0xFFFFFFFF;
2132 fileset.partitionReferenceNum = 0xFFFF;
2133
2134 sbi->s_flags = uopt.flags;
2135 sbi->s_uid = uopt.uid;
2136 sbi->s_gid = uopt.gid;
2137 sbi->s_umask = uopt.umask;
2138 sbi->s_fmode = uopt.fmode;
2139 sbi->s_dmode = uopt.dmode;
2140 sbi->s_nls_map = uopt.nls_map;
2141 rwlock_init(&sbi->s_cred_lock);
2142
2143 if (uopt.session == 0xFFFFFFFF)
2144 sbi->s_session = udf_get_last_session(sb);
2145 else
2146 sbi->s_session = uopt.session;
2147
2148 udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150 /* Fill in the rest of the superblock */
2151 sb->s_op = &udf_sb_ops;
2152 sb->s_export_op = &udf_export_ops;
2153
2154 sb->s_magic = UDF_SUPER_MAGIC;
2155 sb->s_time_gran = 1000;
2156
2157 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 } else {
2160 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163 if (!silent)
2164 pr_notice("Rescanning with blocksize %d\n",
2165 UDF_DEFAULT_BLOCKSIZE);
2166 brelse(sbi->s_lvid_bh);
2167 sbi->s_lvid_bh = NULL;
2168 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170 }
2171 }
2172 if (ret < 0) {
2173 if (ret == -EAGAIN) {
2174 udf_warn(sb, "No partition found (1)\n");
2175 ret = -EINVAL;
2176 }
2177 goto error_out;
2178 }
2179
2180 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182 if (sbi->s_lvid_bh) {
2183 struct logicalVolIntegrityDescImpUse *lvidiu =
2184 udf_sb_lvidiu(sb);
2185 uint16_t minUDFReadRev;
2186 uint16_t minUDFWriteRev;
2187
2188 if (!lvidiu) {
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196 minUDFReadRev,
2197 UDF_MAX_READ_VERSION);
2198 ret = -EINVAL;
2199 goto error_out;
2200 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 sbi->s_udfrev = minUDFWriteRev;
2207
2208 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212 }
2213
2214 if (!sbi->s_partitions) {
2215 udf_warn(sb, "No partition found (2)\n");
2216 ret = -EINVAL;
2217 goto error_out;
2218 }
2219
2220 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221 UDF_PART_FLAG_READ_ONLY &&
2222 !(sb->s_flags & MS_RDONLY)) {
2223 ret = -EACCES;
2224 goto error_out;
2225 }
2226
2227 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228 udf_warn(sb, "No fileset found\n");
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232
2233 if (!silent) {
2234 struct timestamp ts;
2235 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237 sbi->s_volume_ident,
2238 le16_to_cpu(ts.year), ts.month, ts.day,
2239 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240 }
2241 if (!(sb->s_flags & MS_RDONLY)) {
2242 udf_open_lvid(sb);
2243 lvid_open = true;
2244 }
2245
2246 /* Assign the root inode */
2247 /* assign inodes by physical block number */
2248 /* perhaps it's not extensible enough, but for now ... */
2249 inode = udf_iget(sb, &rootdir);
2250 if (IS_ERR(inode)) {
2251 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253 ret = PTR_ERR(inode);
2254 goto error_out;
2255 }
2256
2257 /* Allocate a dentry for the root inode */
2258 sb->s_root = d_make_root(inode);
2259 if (!sb->s_root) {
2260 udf_err(sb, "Couldn't allocate root dentry\n");
2261 ret = -ENOMEM;
2262 goto error_out;
2263 }
2264 sb->s_maxbytes = MAX_LFS_FILESIZE;
2265 sb->s_max_links = UDF_MAX_LINKS;
2266 return 0;
2267
2268error_out:
2269 iput(sbi->s_vat_inode);
2270parse_options_failure:
2271#ifdef CONFIG_UDF_NLS
2272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273 unload_nls(sbi->s_nls_map);
2274#endif
2275 if (lvid_open)
2276 udf_close_lvid(sb);
2277 brelse(sbi->s_lvid_bh);
2278 udf_sb_free_partitions(sb);
2279 kfree(sbi);
2280 sb->s_fs_info = NULL;
2281
2282 return ret;
2283}
2284
2285void _udf_err(struct super_block *sb, const char *function,
2286 const char *fmt, ...)
2287{
2288 struct va_format vaf;
2289 va_list args;
2290
2291 va_start(args, fmt);
2292
2293 vaf.fmt = fmt;
2294 vaf.va = &args;
2295
2296 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298 va_end(args);
2299}
2300
2301void _udf_warn(struct super_block *sb, const char *function,
2302 const char *fmt, ...)
2303{
2304 struct va_format vaf;
2305 va_list args;
2306
2307 va_start(args, fmt);
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314 va_end(args);
2315}
2316
2317static void udf_put_super(struct super_block *sb)
2318{
2319 struct udf_sb_info *sbi;
2320
2321 sbi = UDF_SB(sb);
2322
2323 iput(sbi->s_vat_inode);
2324#ifdef CONFIG_UDF_NLS
2325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326 unload_nls(sbi->s_nls_map);
2327#endif
2328 if (!(sb->s_flags & MS_RDONLY))
2329 udf_close_lvid(sb);
2330 brelse(sbi->s_lvid_bh);
2331 udf_sb_free_partitions(sb);
2332 mutex_destroy(&sbi->s_alloc_mutex);
2333 kfree(sb->s_fs_info);
2334 sb->s_fs_info = NULL;
2335}
2336
2337static int udf_sync_fs(struct super_block *sb, int wait)
2338{
2339 struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341 mutex_lock(&sbi->s_alloc_mutex);
2342 if (sbi->s_lvid_dirty) {
2343 /*
2344 * Blockdevice will be synced later so we don't have to submit
2345 * the buffer for IO
2346 */
2347 mark_buffer_dirty(sbi->s_lvid_bh);
2348 sbi->s_lvid_dirty = 0;
2349 }
2350 mutex_unlock(&sbi->s_alloc_mutex);
2351
2352 return 0;
2353}
2354
2355static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356{
2357 struct super_block *sb = dentry->d_sb;
2358 struct udf_sb_info *sbi = UDF_SB(sb);
2359 struct logicalVolIntegrityDescImpUse *lvidiu;
2360 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362 lvidiu = udf_sb_lvidiu(sb);
2363 buf->f_type = UDF_SUPER_MAGIC;
2364 buf->f_bsize = sb->s_blocksize;
2365 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366 buf->f_bfree = udf_count_free(sb);
2367 buf->f_bavail = buf->f_bfree;
2368 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369 le32_to_cpu(lvidiu->numDirs)) : 0)
2370 + buf->f_bfree;
2371 buf->f_ffree = buf->f_bfree;
2372 buf->f_namelen = UDF_NAME_LEN;
2373 buf->f_fsid.val[0] = (u32)id;
2374 buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376 return 0;
2377}
2378
2379static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380 struct udf_bitmap *bitmap)
2381{
2382 struct buffer_head *bh = NULL;
2383 unsigned int accum = 0;
2384 int index;
2385 int block = 0, newblock;
2386 struct kernel_lb_addr loc;
2387 uint32_t bytes;
2388 uint8_t *ptr;
2389 uint16_t ident;
2390 struct spaceBitmapDesc *bm;
2391
2392 loc.logicalBlockNum = bitmap->s_extPosition;
2393 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396 if (!bh) {
2397 udf_err(sb, "udf_count_free failed\n");
2398 goto out;
2399 } else if (ident != TAG_IDENT_SBD) {
2400 brelse(bh);
2401 udf_err(sb, "udf_count_free failed\n");
2402 goto out;
2403 }
2404
2405 bm = (struct spaceBitmapDesc *)bh->b_data;
2406 bytes = le32_to_cpu(bm->numOfBytes);
2407 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408 ptr = (uint8_t *)bh->b_data;
2409
2410 while (bytes > 0) {
2411 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413 cur_bytes * 8);
2414 bytes -= cur_bytes;
2415 if (bytes) {
2416 brelse(bh);
2417 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418 bh = udf_tread(sb, newblock);
2419 if (!bh) {
2420 udf_debug("read failed\n");
2421 goto out;
2422 }
2423 index = 0;
2424 ptr = (uint8_t *)bh->b_data;
2425 }
2426 }
2427 brelse(bh);
2428out:
2429 return accum;
2430}
2431
2432static unsigned int udf_count_free_table(struct super_block *sb,
2433 struct inode *table)
2434{
2435 unsigned int accum = 0;
2436 uint32_t elen;
2437 struct kernel_lb_addr eloc;
2438 int8_t etype;
2439 struct extent_position epos;
2440
2441 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442 epos.block = UDF_I(table)->i_location;
2443 epos.offset = sizeof(struct unallocSpaceEntry);
2444 epos.bh = NULL;
2445
2446 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447 accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449 brelse(epos.bh);
2450 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452 return accum;
2453}
2454
2455static unsigned int udf_count_free(struct super_block *sb)
2456{
2457 unsigned int accum = 0;
2458 struct udf_sb_info *sbi;
2459 struct udf_part_map *map;
2460
2461 sbi = UDF_SB(sb);
2462 if (sbi->s_lvid_bh) {
2463 struct logicalVolIntegrityDesc *lvid =
2464 (struct logicalVolIntegrityDesc *)
2465 sbi->s_lvid_bh->b_data;
2466 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467 accum = le32_to_cpu(
2468 lvid->freeSpaceTable[sbi->s_partition]);
2469 if (accum == 0xFFFFFFFF)
2470 accum = 0;
2471 }
2472 }
2473
2474 if (accum)
2475 return accum;
2476
2477 map = &sbi->s_partmaps[sbi->s_partition];
2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479 accum += udf_count_free_bitmap(sb,
2480 map->s_uspace.s_bitmap);
2481 }
2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483 accum += udf_count_free_bitmap(sb,
2484 map->s_fspace.s_bitmap);
2485 }
2486 if (accum)
2487 return accum;
2488
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490 accum += udf_count_free_table(sb,
2491 map->s_uspace.s_table);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494 accum += udf_count_free_table(sb,
2495 map->s_fspace.s_table);
2496 }
2497
2498 return accum;
2499}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37#include "udfdecl.h"
38
39#include <linux/blkdev.h>
40#include <linux/slab.h>
41#include <linux/kernel.h>
42#include <linux/module.h>
43#include <linux/parser.h>
44#include <linux/stat.h>
45#include <linux/cdrom.h>
46#include <linux/nls.h>
47#include <linux/vfs.h>
48#include <linux/vmalloc.h>
49#include <linux/errno.h>
50#include <linux/mount.h>
51#include <linux/seq_file.h>
52#include <linux/bitmap.h>
53#include <linux/crc-itu-t.h>
54#include <linux/log2.h>
55#include <asm/byteorder.h>
56#include <linux/iversion.h>
57
58#include "udf_sb.h"
59#include "udf_i.h"
60
61#include <linux/init.h>
62#include <linux/uaccess.h>
63
64enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70};
71
72#define VSD_FIRST_SECTOR_OFFSET 32768
73#define VSD_MAX_SECTOR_OFFSET 0x800000
74
75/*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81#define UDF_MAX_TD_NESTING 64
82#define UDF_MAX_LVID_NESTING 1000
83
84enum { UDF_MAX_LINKS = 0xffff };
85/*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91#define UDF_MAX_FILESIZE (1ULL << 42)
92
93/* These are the "meat" - everything else is stuffing */
94static int udf_fill_super(struct super_block *, void *, int);
95static void udf_put_super(struct super_block *);
96static int udf_sync_fs(struct super_block *, int);
97static int udf_remount_fs(struct super_block *, int *, char *);
98static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 /* The offset is to skip freeSpaceTable and sizeTable arrays */
116 offset = partnum * 2 * sizeof(uint32_t);
117 return (struct logicalVolIntegrityDescImpUse *)
118 (((uint8_t *)(lvid + 1)) + offset);
119}
120
121/* UDF filesystem type */
122static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124{
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126}
127
128static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134};
135MODULE_ALIAS_FS("udf");
136
137static struct kmem_cache *udf_inode_cachep;
138
139static struct inode *udf_alloc_inode(struct super_block *sb)
140{
141 struct udf_inode_info *ei;
142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_lenStreams = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 ei->i_streamdir = 0;
153 ei->i_hidden = 0;
154 init_rwsem(&ei->i_data_sem);
155 ei->cached_extent.lstart = -1;
156 spin_lock_init(&ei->i_extent_cache_lock);
157 inode_set_iversion(&ei->vfs_inode, 1);
158
159 return &ei->vfs_inode;
160}
161
162static void udf_free_in_core_inode(struct inode *inode)
163{
164 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165}
166
167static void init_once(void *foo)
168{
169 struct udf_inode_info *ei = foo;
170
171 ei->i_data = NULL;
172 inode_init_once(&ei->vfs_inode);
173}
174
175static int __init init_inodecache(void)
176{
177 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info),
179 0, (SLAB_RECLAIM_ACCOUNT |
180 SLAB_MEM_SPREAD |
181 SLAB_ACCOUNT),
182 init_once);
183 if (!udf_inode_cachep)
184 return -ENOMEM;
185 return 0;
186}
187
188static void destroy_inodecache(void)
189{
190 /*
191 * Make sure all delayed rcu free inodes are flushed before we
192 * destroy cache.
193 */
194 rcu_barrier();
195 kmem_cache_destroy(udf_inode_cachep);
196}
197
198/* Superblock operations */
199static const struct super_operations udf_sb_ops = {
200 .alloc_inode = udf_alloc_inode,
201 .free_inode = udf_free_in_core_inode,
202 .write_inode = udf_write_inode,
203 .evict_inode = udf_evict_inode,
204 .put_super = udf_put_super,
205 .sync_fs = udf_sync_fs,
206 .statfs = udf_statfs,
207 .remount_fs = udf_remount_fs,
208 .show_options = udf_show_options,
209};
210
211struct udf_options {
212 unsigned char novrs;
213 unsigned int blocksize;
214 unsigned int session;
215 unsigned int lastblock;
216 unsigned int anchor;
217 unsigned int flags;
218 umode_t umask;
219 kgid_t gid;
220 kuid_t uid;
221 umode_t fmode;
222 umode_t dmode;
223 struct nls_table *nls_map;
224};
225
226static int __init init_udf_fs(void)
227{
228 int err;
229
230 err = init_inodecache();
231 if (err)
232 goto out1;
233 err = register_filesystem(&udf_fstype);
234 if (err)
235 goto out;
236
237 return 0;
238
239out:
240 destroy_inodecache();
241
242out1:
243 return err;
244}
245
246static void __exit exit_udf_fs(void)
247{
248 unregister_filesystem(&udf_fstype);
249 destroy_inodecache();
250}
251
252static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253{
254 struct udf_sb_info *sbi = UDF_SB(sb);
255
256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 if (!sbi->s_partmaps) {
258 sbi->s_partitions = 0;
259 return -ENOMEM;
260 }
261
262 sbi->s_partitions = count;
263 return 0;
264}
265
266static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267{
268 int i;
269 int nr_groups = bitmap->s_nr_groups;
270
271 for (i = 0; i < nr_groups; i++)
272 brelse(bitmap->s_block_bitmap[i]);
273
274 kvfree(bitmap);
275}
276
277static void udf_free_partition(struct udf_part_map *map)
278{
279 int i;
280 struct udf_meta_data *mdata;
281
282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 iput(map->s_uspace.s_table);
284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 for (i = 0; i < 4; i++)
288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 mdata = &map->s_type_specific.s_metadata;
291 iput(mdata->s_metadata_fe);
292 mdata->s_metadata_fe = NULL;
293
294 iput(mdata->s_mirror_fe);
295 mdata->s_mirror_fe = NULL;
296
297 iput(mdata->s_bitmap_fe);
298 mdata->s_bitmap_fe = NULL;
299 }
300}
301
302static void udf_sb_free_partitions(struct super_block *sb)
303{
304 struct udf_sb_info *sbi = UDF_SB(sb);
305 int i;
306
307 if (!sbi->s_partmaps)
308 return;
309 for (i = 0; i < sbi->s_partitions; i++)
310 udf_free_partition(&sbi->s_partmaps[i]);
311 kfree(sbi->s_partmaps);
312 sbi->s_partmaps = NULL;
313}
314
315static int udf_show_options(struct seq_file *seq, struct dentry *root)
316{
317 struct super_block *sb = root->d_sb;
318 struct udf_sb_info *sbi = UDF_SB(sb);
319
320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 seq_puts(seq, ",nostrict");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 seq_puts(seq, ",unhide");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 seq_puts(seq, ",undelete");
328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 seq_puts(seq, ",noadinicb");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 seq_puts(seq, ",shortad");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 seq_puts(seq, ",uid=forget");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 seq_puts(seq, ",gid=forget");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 if (sbi->s_umask != 0)
341 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 if (sbi->s_fmode != UDF_INVALID_MODE)
343 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 if (sbi->s_dmode != UDF_INVALID_MODE)
345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 seq_printf(seq, ",session=%d", sbi->s_session);
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 if (sbi->s_anchor != 0)
351 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 if (sbi->s_nls_map)
353 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
354 else
355 seq_puts(seq, ",iocharset=utf8");
356
357 return 0;
358}
359
360/*
361 * udf_parse_options
362 *
363 * PURPOSE
364 * Parse mount options.
365 *
366 * DESCRIPTION
367 * The following mount options are supported:
368 *
369 * gid= Set the default group.
370 * umask= Set the default umask.
371 * mode= Set the default file permissions.
372 * dmode= Set the default directory permissions.
373 * uid= Set the default user.
374 * bs= Set the block size.
375 * unhide Show otherwise hidden files.
376 * undelete Show deleted files in lists.
377 * adinicb Embed data in the inode (default)
378 * noadinicb Don't embed data in the inode
379 * shortad Use short ad's
380 * longad Use long ad's (default)
381 * nostrict Unset strict conformance
382 * iocharset= Set the NLS character set
383 *
384 * The remaining are for debugging and disaster recovery:
385 *
386 * novrs Skip volume sequence recognition
387 *
388 * The following expect a offset from 0.
389 *
390 * session= Set the CDROM session (default= last session)
391 * anchor= Override standard anchor location. (default= 256)
392 * volume= Override the VolumeDesc location. (unused)
393 * partition= Override the PartitionDesc location. (unused)
394 * lastblock= Set the last block of the filesystem/
395 *
396 * The following expect a offset from the partition root.
397 *
398 * fileset= Override the fileset block location. (unused)
399 * rootdir= Override the root directory location. (unused)
400 * WARNING: overriding the rootdir to a non-directory may
401 * yield highly unpredictable results.
402 *
403 * PRE-CONDITIONS
404 * options Pointer to mount options string.
405 * uopts Pointer to mount options variable.
406 *
407 * POST-CONDITIONS
408 * <return> 1 Mount options parsed okay.
409 * <return> 0 Error parsing mount options.
410 *
411 * HISTORY
412 * July 1, 1997 - Andrew E. Mileski
413 * Written, tested, and released.
414 */
415
416enum {
417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 Opt_rootdir, Opt_utf8, Opt_iocharset,
422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 Opt_fmode, Opt_dmode
424};
425
426static const match_table_t tokens = {
427 {Opt_novrs, "novrs"},
428 {Opt_nostrict, "nostrict"},
429 {Opt_bs, "bs=%u"},
430 {Opt_unhide, "unhide"},
431 {Opt_undelete, "undelete"},
432 {Opt_noadinicb, "noadinicb"},
433 {Opt_adinicb, "adinicb"},
434 {Opt_shortad, "shortad"},
435 {Opt_longad, "longad"},
436 {Opt_uforget, "uid=forget"},
437 {Opt_uignore, "uid=ignore"},
438 {Opt_gforget, "gid=forget"},
439 {Opt_gignore, "gid=ignore"},
440 {Opt_gid, "gid=%u"},
441 {Opt_uid, "uid=%u"},
442 {Opt_umask, "umask=%o"},
443 {Opt_session, "session=%u"},
444 {Opt_lastblock, "lastblock=%u"},
445 {Opt_anchor, "anchor=%u"},
446 {Opt_volume, "volume=%u"},
447 {Opt_partition, "partition=%u"},
448 {Opt_fileset, "fileset=%u"},
449 {Opt_rootdir, "rootdir=%u"},
450 {Opt_utf8, "utf8"},
451 {Opt_iocharset, "iocharset=%s"},
452 {Opt_fmode, "mode=%o"},
453 {Opt_dmode, "dmode=%o"},
454 {Opt_err, NULL}
455};
456
457static int udf_parse_options(char *options, struct udf_options *uopt,
458 bool remount)
459{
460 char *p;
461 int option;
462 unsigned int uv;
463
464 uopt->novrs = 0;
465 uopt->session = 0xFFFFFFFF;
466 uopt->lastblock = 0;
467 uopt->anchor = 0;
468
469 if (!options)
470 return 1;
471
472 while ((p = strsep(&options, ",")) != NULL) {
473 substring_t args[MAX_OPT_ARGS];
474 int token;
475 unsigned n;
476 if (!*p)
477 continue;
478
479 token = match_token(p, tokens, args);
480 switch (token) {
481 case Opt_novrs:
482 uopt->novrs = 1;
483 break;
484 case Opt_bs:
485 if (match_int(&args[0], &option))
486 return 0;
487 n = option;
488 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
489 return 0;
490 uopt->blocksize = n;
491 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
492 break;
493 case Opt_unhide:
494 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
495 break;
496 case Opt_undelete:
497 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
498 break;
499 case Opt_noadinicb:
500 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
501 break;
502 case Opt_adinicb:
503 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
504 break;
505 case Opt_shortad:
506 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
507 break;
508 case Opt_longad:
509 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
510 break;
511 case Opt_gid:
512 if (match_uint(args, &uv))
513 return 0;
514 uopt->gid = make_kgid(current_user_ns(), uv);
515 if (!gid_valid(uopt->gid))
516 return 0;
517 uopt->flags |= (1 << UDF_FLAG_GID_SET);
518 break;
519 case Opt_uid:
520 if (match_uint(args, &uv))
521 return 0;
522 uopt->uid = make_kuid(current_user_ns(), uv);
523 if (!uid_valid(uopt->uid))
524 return 0;
525 uopt->flags |= (1 << UDF_FLAG_UID_SET);
526 break;
527 case Opt_umask:
528 if (match_octal(args, &option))
529 return 0;
530 uopt->umask = option;
531 break;
532 case Opt_nostrict:
533 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
534 break;
535 case Opt_session:
536 if (match_int(args, &option))
537 return 0;
538 uopt->session = option;
539 if (!remount)
540 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
541 break;
542 case Opt_lastblock:
543 if (match_int(args, &option))
544 return 0;
545 uopt->lastblock = option;
546 if (!remount)
547 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
548 break;
549 case Opt_anchor:
550 if (match_int(args, &option))
551 return 0;
552 uopt->anchor = option;
553 break;
554 case Opt_volume:
555 case Opt_partition:
556 case Opt_fileset:
557 case Opt_rootdir:
558 /* Ignored (never implemented properly) */
559 break;
560 case Opt_utf8:
561 if (!remount) {
562 unload_nls(uopt->nls_map);
563 uopt->nls_map = NULL;
564 }
565 break;
566 case Opt_iocharset:
567 if (!remount) {
568 unload_nls(uopt->nls_map);
569 uopt->nls_map = NULL;
570 }
571 /* When nls_map is not loaded then UTF-8 is used */
572 if (!remount && strcmp(args[0].from, "utf8") != 0) {
573 uopt->nls_map = load_nls(args[0].from);
574 if (!uopt->nls_map) {
575 pr_err("iocharset %s not found\n",
576 args[0].from);
577 return 0;
578 }
579 }
580 break;
581 case Opt_uforget:
582 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
583 break;
584 case Opt_uignore:
585 case Opt_gignore:
586 /* These options are superseeded by uid=<number> */
587 break;
588 case Opt_gforget:
589 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
590 break;
591 case Opt_fmode:
592 if (match_octal(args, &option))
593 return 0;
594 uopt->fmode = option & 0777;
595 break;
596 case Opt_dmode:
597 if (match_octal(args, &option))
598 return 0;
599 uopt->dmode = option & 0777;
600 break;
601 default:
602 pr_err("bad mount option \"%s\" or missing value\n", p);
603 return 0;
604 }
605 }
606 return 1;
607}
608
609static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
610{
611 struct udf_options uopt;
612 struct udf_sb_info *sbi = UDF_SB(sb);
613 int error = 0;
614
615 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
616 return -EACCES;
617
618 sync_filesystem(sb);
619
620 uopt.flags = sbi->s_flags;
621 uopt.uid = sbi->s_uid;
622 uopt.gid = sbi->s_gid;
623 uopt.umask = sbi->s_umask;
624 uopt.fmode = sbi->s_fmode;
625 uopt.dmode = sbi->s_dmode;
626 uopt.nls_map = NULL;
627
628 if (!udf_parse_options(options, &uopt, true))
629 return -EINVAL;
630
631 write_lock(&sbi->s_cred_lock);
632 sbi->s_flags = uopt.flags;
633 sbi->s_uid = uopt.uid;
634 sbi->s_gid = uopt.gid;
635 sbi->s_umask = uopt.umask;
636 sbi->s_fmode = uopt.fmode;
637 sbi->s_dmode = uopt.dmode;
638 write_unlock(&sbi->s_cred_lock);
639
640 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
641 goto out_unlock;
642
643 if (*flags & SB_RDONLY)
644 udf_close_lvid(sb);
645 else
646 udf_open_lvid(sb);
647
648out_unlock:
649 return error;
650}
651
652/*
653 * Check VSD descriptor. Returns -1 in case we are at the end of volume
654 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
655 * we found one of NSR descriptors we are looking for.
656 */
657static int identify_vsd(const struct volStructDesc *vsd)
658{
659 int ret = 0;
660
661 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
662 switch (vsd->structType) {
663 case 0:
664 udf_debug("ISO9660 Boot Record found\n");
665 break;
666 case 1:
667 udf_debug("ISO9660 Primary Volume Descriptor found\n");
668 break;
669 case 2:
670 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
671 break;
672 case 3:
673 udf_debug("ISO9660 Volume Partition Descriptor found\n");
674 break;
675 case 255:
676 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
677 break;
678 default:
679 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
680 break;
681 }
682 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
685 ret = 1;
686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
687 ret = 1;
688 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
689 ; /* ret = 0 */
690 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
691 ; /* ret = 0 */
692 else {
693 /* TEA01 or invalid id : end of volume recognition area */
694 ret = -1;
695 }
696
697 return ret;
698}
699
700/*
701 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
702 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
703 * @return 1 if NSR02 or NSR03 found,
704 * -1 if first sector read error, 0 otherwise
705 */
706static int udf_check_vsd(struct super_block *sb)
707{
708 struct volStructDesc *vsd = NULL;
709 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
710 int sectorsize;
711 struct buffer_head *bh = NULL;
712 int nsr = 0;
713 struct udf_sb_info *sbi;
714 loff_t session_offset;
715
716 sbi = UDF_SB(sb);
717 if (sb->s_blocksize < sizeof(struct volStructDesc))
718 sectorsize = sizeof(struct volStructDesc);
719 else
720 sectorsize = sb->s_blocksize;
721
722 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
723 sector += session_offset;
724
725 udf_debug("Starting at sector %u (%lu byte sectors)\n",
726 (unsigned int)(sector >> sb->s_blocksize_bits),
727 sb->s_blocksize);
728 /* Process the sequence (if applicable). The hard limit on the sector
729 * offset is arbitrary, hopefully large enough so that all valid UDF
730 * filesystems will be recognised. There is no mention of an upper
731 * bound to the size of the volume recognition area in the standard.
732 * The limit will prevent the code to read all the sectors of a
733 * specially crafted image (like a bluray disc full of CD001 sectors),
734 * potentially causing minutes or even hours of uninterruptible I/O
735 * activity. This actually happened with uninitialised SSD partitions
736 * (all 0xFF) before the check for the limit and all valid IDs were
737 * added */
738 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
739 /* Read a block */
740 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
741 if (!bh)
742 break;
743
744 vsd = (struct volStructDesc *)(bh->b_data +
745 (sector & (sb->s_blocksize - 1)));
746 nsr = identify_vsd(vsd);
747 /* Found NSR or end? */
748 if (nsr) {
749 brelse(bh);
750 break;
751 }
752 /*
753 * Special handling for improperly formatted VRS (e.g., Win10)
754 * where components are separated by 2048 bytes even though
755 * sectors are 4K
756 */
757 if (sb->s_blocksize == 4096) {
758 nsr = identify_vsd(vsd + 1);
759 /* Ignore unknown IDs... */
760 if (nsr < 0)
761 nsr = 0;
762 }
763 brelse(bh);
764 }
765
766 if (nsr > 0)
767 return 1;
768 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
769 return -1;
770 else
771 return 0;
772}
773
774static int udf_verify_domain_identifier(struct super_block *sb,
775 struct regid *ident, char *dname)
776{
777 struct domainIdentSuffix *suffix;
778
779 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
780 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
781 goto force_ro;
782 }
783 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
784 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
785 dname);
786 goto force_ro;
787 }
788 suffix = (struct domainIdentSuffix *)ident->identSuffix;
789 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
790 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
791 if (!sb_rdonly(sb)) {
792 udf_warn(sb, "Descriptor for %s marked write protected."
793 " Forcing read only mount.\n", dname);
794 }
795 goto force_ro;
796 }
797 return 0;
798
799force_ro:
800 if (!sb_rdonly(sb))
801 return -EACCES;
802 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
803 return 0;
804}
805
806static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
807 struct kernel_lb_addr *root)
808{
809 int ret;
810
811 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
812 if (ret < 0)
813 return ret;
814
815 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
816 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
817
818 udf_debug("Rootdir at block=%u, partition=%u\n",
819 root->logicalBlockNum, root->partitionReferenceNum);
820 return 0;
821}
822
823static int udf_find_fileset(struct super_block *sb,
824 struct kernel_lb_addr *fileset,
825 struct kernel_lb_addr *root)
826{
827 struct buffer_head *bh;
828 uint16_t ident;
829 int ret;
830
831 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
832 fileset->partitionReferenceNum == 0xFFFF)
833 return -EINVAL;
834
835 bh = udf_read_ptagged(sb, fileset, 0, &ident);
836 if (!bh)
837 return -EIO;
838 if (ident != TAG_IDENT_FSD) {
839 brelse(bh);
840 return -EINVAL;
841 }
842
843 udf_debug("Fileset at block=%u, partition=%u\n",
844 fileset->logicalBlockNum, fileset->partitionReferenceNum);
845
846 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
847 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
848 brelse(bh);
849 return ret;
850}
851
852/*
853 * Load primary Volume Descriptor Sequence
854 *
855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
856 * should be tried.
857 */
858static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
859{
860 struct primaryVolDesc *pvoldesc;
861 uint8_t *outstr;
862 struct buffer_head *bh;
863 uint16_t ident;
864 int ret;
865 struct timestamp *ts;
866
867 outstr = kmalloc(128, GFP_NOFS);
868 if (!outstr)
869 return -ENOMEM;
870
871 bh = udf_read_tagged(sb, block, block, &ident);
872 if (!bh) {
873 ret = -EAGAIN;
874 goto out2;
875 }
876
877 if (ident != TAG_IDENT_PVD) {
878 ret = -EIO;
879 goto out_bh;
880 }
881
882 pvoldesc = (struct primaryVolDesc *)bh->b_data;
883
884 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
885 pvoldesc->recordingDateAndTime);
886 ts = &pvoldesc->recordingDateAndTime;
887 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
888 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
889 ts->minute, le16_to_cpu(ts->typeAndTimezone));
890
891 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
892 if (ret < 0) {
893 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
894 pr_warn("incorrect volume identification, setting to "
895 "'InvalidName'\n");
896 } else {
897 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
898 }
899 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
900
901 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
902 if (ret < 0) {
903 ret = 0;
904 goto out_bh;
905 }
906 outstr[ret] = 0;
907 udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909 ret = 0;
910out_bh:
911 brelse(bh);
912out2:
913 kfree(outstr);
914 return ret;
915}
916
917struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918 u32 meta_file_loc, u32 partition_ref)
919{
920 struct kernel_lb_addr addr;
921 struct inode *metadata_fe;
922
923 addr.logicalBlockNum = meta_file_loc;
924 addr.partitionReferenceNum = partition_ref;
925
926 metadata_fe = udf_iget_special(sb, &addr);
927
928 if (IS_ERR(metadata_fe)) {
929 udf_warn(sb, "metadata inode efe not found\n");
930 return metadata_fe;
931 }
932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934 iput(metadata_fe);
935 return ERR_PTR(-EIO);
936 }
937
938 return metadata_fe;
939}
940
941static int udf_load_metadata_files(struct super_block *sb, int partition,
942 int type1_index)
943{
944 struct udf_sb_info *sbi = UDF_SB(sb);
945 struct udf_part_map *map;
946 struct udf_meta_data *mdata;
947 struct kernel_lb_addr addr;
948 struct inode *fe;
949
950 map = &sbi->s_partmaps[partition];
951 mdata = &map->s_type_specific.s_metadata;
952 mdata->s_phys_partition_ref = type1_index;
953
954 /* metadata address */
955 udf_debug("Metadata file location: block = %u part = %u\n",
956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959 mdata->s_phys_partition_ref);
960 if (IS_ERR(fe)) {
961 /* mirror file entry */
962 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966 mdata->s_phys_partition_ref);
967
968 if (IS_ERR(fe)) {
969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970 return PTR_ERR(fe);
971 }
972 mdata->s_mirror_fe = fe;
973 } else
974 mdata->s_metadata_fe = fe;
975
976
977 /*
978 * bitmap file entry
979 * Note:
980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981 */
982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986 udf_debug("Bitmap file location: block = %u part = %u\n",
987 addr.logicalBlockNum, addr.partitionReferenceNum);
988
989 fe = udf_iget_special(sb, &addr);
990 if (IS_ERR(fe)) {
991 if (sb_rdonly(sb))
992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993 else {
994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995 return PTR_ERR(fe);
996 }
997 } else
998 mdata->s_bitmap_fe = fe;
999 }
1000
1001 udf_debug("udf_load_metadata_files Ok\n");
1002 return 0;
1003}
1004
1005int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1006{
1007 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1008 return DIV_ROUND_UP(map->s_partition_len +
1009 (sizeof(struct spaceBitmapDesc) << 3),
1010 sb->s_blocksize * 8);
1011}
1012
1013static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1014{
1015 struct udf_bitmap *bitmap;
1016 int nr_groups = udf_compute_nr_groups(sb, index);
1017
1018 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019 GFP_KERNEL);
1020 if (!bitmap)
1021 return NULL;
1022
1023 bitmap->s_nr_groups = nr_groups;
1024 return bitmap;
1025}
1026
1027static int check_partition_desc(struct super_block *sb,
1028 struct partitionDesc *p,
1029 struct udf_part_map *map)
1030{
1031 bool umap, utable, fmap, ftable;
1032 struct partitionHeaderDesc *phd;
1033
1034 switch (le32_to_cpu(p->accessType)) {
1035 case PD_ACCESS_TYPE_READ_ONLY:
1036 case PD_ACCESS_TYPE_WRITE_ONCE:
1037 case PD_ACCESS_TYPE_NONE:
1038 goto force_ro;
1039 }
1040
1041 /* No Partition Header Descriptor? */
1042 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1043 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1044 goto force_ro;
1045
1046 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1047 utable = phd->unallocSpaceTable.extLength;
1048 umap = phd->unallocSpaceBitmap.extLength;
1049 ftable = phd->freedSpaceTable.extLength;
1050 fmap = phd->freedSpaceBitmap.extLength;
1051
1052 /* No allocation info? */
1053 if (!utable && !umap && !ftable && !fmap)
1054 goto force_ro;
1055
1056 /* We don't support blocks that require erasing before overwrite */
1057 if (ftable || fmap)
1058 goto force_ro;
1059 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1060 if (utable && umap)
1061 goto force_ro;
1062
1063 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1064 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1065 map->s_partition_type == UDF_METADATA_MAP25)
1066 goto force_ro;
1067
1068 return 0;
1069force_ro:
1070 if (!sb_rdonly(sb))
1071 return -EACCES;
1072 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073 return 0;
1074}
1075
1076static int udf_fill_partdesc_info(struct super_block *sb,
1077 struct partitionDesc *p, int p_index)
1078{
1079 struct udf_part_map *map;
1080 struct udf_sb_info *sbi = UDF_SB(sb);
1081 struct partitionHeaderDesc *phd;
1082 int err;
1083
1084 map = &sbi->s_partmaps[p_index];
1085
1086 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1088
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1097
1098 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099 p_index, map->s_partition_type,
1100 map->s_partition_root, map->s_partition_len);
1101
1102 err = check_partition_desc(sb, p, map);
1103 if (err)
1104 return err;
1105
1106 /*
1107 * Skip loading allocation info it we cannot ever write to the fs.
1108 * This is a correctness thing as we may have decided to force ro mount
1109 * to avoid allocation info we don't support.
1110 */
1111 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112 return 0;
1113
1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115 if (phd->unallocSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->unallocSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1120 };
1121 struct inode *inode;
1122
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1128 }
1129 map->s_uspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_uspace.s_table->i_ino);
1133 }
1134
1135 if (phd->unallocSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_uspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->unallocSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1145 }
1146
1147 return 0;
1148}
1149
1150static void udf_find_vat_block(struct super_block *sb, int p_index,
1151 int type1_index, sector_t start_block)
1152{
1153 struct udf_sb_info *sbi = UDF_SB(sb);
1154 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 sector_t vat_block;
1156 struct kernel_lb_addr ino;
1157 struct inode *inode;
1158
1159 /*
1160 * VAT file entry is in the last recorded block. Some broken disks have
1161 * it a few blocks before so try a bit harder...
1162 */
1163 ino.partitionReferenceNum = type1_index;
1164 for (vat_block = start_block;
1165 vat_block >= map->s_partition_root &&
1166 vat_block >= start_block - 3; vat_block--) {
1167 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168 inode = udf_iget_special(sb, &ino);
1169 if (!IS_ERR(inode)) {
1170 sbi->s_vat_inode = inode;
1171 break;
1172 }
1173 }
1174}
1175
1176static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1177{
1178 struct udf_sb_info *sbi = UDF_SB(sb);
1179 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180 struct buffer_head *bh = NULL;
1181 struct udf_inode_info *vati;
1182 struct virtualAllocationTable20 *vat20;
1183 sector_t blocks = sb_bdev_nr_blocks(sb);
1184
1185 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1186 if (!sbi->s_vat_inode &&
1187 sbi->s_last_block != blocks - 1) {
1188 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1189 (unsigned long)sbi->s_last_block,
1190 (unsigned long)blocks - 1);
1191 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1192 }
1193 if (!sbi->s_vat_inode)
1194 return -EIO;
1195
1196 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1197 map->s_type_specific.s_virtual.s_start_offset = 0;
1198 map->s_type_specific.s_virtual.s_num_entries =
1199 (sbi->s_vat_inode->i_size - 36) >> 2;
1200 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1201 vati = UDF_I(sbi->s_vat_inode);
1202 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1203 int err = 0;
1204
1205 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1206 if (!bh) {
1207 if (!err)
1208 err = -EFSCORRUPTED;
1209 return err;
1210 }
1211 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1212 } else {
1213 vat20 = (struct virtualAllocationTable20 *)
1214 vati->i_data;
1215 }
1216
1217 map->s_type_specific.s_virtual.s_start_offset =
1218 le16_to_cpu(vat20->lengthHeader);
1219 map->s_type_specific.s_virtual.s_num_entries =
1220 (sbi->s_vat_inode->i_size -
1221 map->s_type_specific.s_virtual.
1222 s_start_offset) >> 2;
1223 brelse(bh);
1224 }
1225 return 0;
1226}
1227
1228/*
1229 * Load partition descriptor block
1230 *
1231 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1232 * sequence.
1233 */
1234static int udf_load_partdesc(struct super_block *sb, sector_t block)
1235{
1236 struct buffer_head *bh;
1237 struct partitionDesc *p;
1238 struct udf_part_map *map;
1239 struct udf_sb_info *sbi = UDF_SB(sb);
1240 int i, type1_idx;
1241 uint16_t partitionNumber;
1242 uint16_t ident;
1243 int ret;
1244
1245 bh = udf_read_tagged(sb, block, block, &ident);
1246 if (!bh)
1247 return -EAGAIN;
1248 if (ident != TAG_IDENT_PD) {
1249 ret = 0;
1250 goto out_bh;
1251 }
1252
1253 p = (struct partitionDesc *)bh->b_data;
1254 partitionNumber = le16_to_cpu(p->partitionNumber);
1255
1256 /* First scan for TYPE1 and SPARABLE partitions */
1257 for (i = 0; i < sbi->s_partitions; i++) {
1258 map = &sbi->s_partmaps[i];
1259 udf_debug("Searching map: (%u == %u)\n",
1260 map->s_partition_num, partitionNumber);
1261 if (map->s_partition_num == partitionNumber &&
1262 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1263 map->s_partition_type == UDF_SPARABLE_MAP15))
1264 break;
1265 }
1266
1267 if (i >= sbi->s_partitions) {
1268 udf_debug("Partition (%u) not found in partition map\n",
1269 partitionNumber);
1270 ret = 0;
1271 goto out_bh;
1272 }
1273
1274 ret = udf_fill_partdesc_info(sb, p, i);
1275 if (ret < 0)
1276 goto out_bh;
1277
1278 /*
1279 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1280 * PHYSICAL partitions are already set up
1281 */
1282 type1_idx = i;
1283 map = NULL; /* supress 'maybe used uninitialized' warning */
1284 for (i = 0; i < sbi->s_partitions; i++) {
1285 map = &sbi->s_partmaps[i];
1286
1287 if (map->s_partition_num == partitionNumber &&
1288 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1289 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1290 map->s_partition_type == UDF_METADATA_MAP25))
1291 break;
1292 }
1293
1294 if (i >= sbi->s_partitions) {
1295 ret = 0;
1296 goto out_bh;
1297 }
1298
1299 ret = udf_fill_partdesc_info(sb, p, i);
1300 if (ret < 0)
1301 goto out_bh;
1302
1303 if (map->s_partition_type == UDF_METADATA_MAP25) {
1304 ret = udf_load_metadata_files(sb, i, type1_idx);
1305 if (ret < 0) {
1306 udf_err(sb, "error loading MetaData partition map %d\n",
1307 i);
1308 goto out_bh;
1309 }
1310 } else {
1311 /*
1312 * If we have a partition with virtual map, we don't handle
1313 * writing to it (we overwrite blocks instead of relocating
1314 * them).
1315 */
1316 if (!sb_rdonly(sb)) {
1317 ret = -EACCES;
1318 goto out_bh;
1319 }
1320 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1321 ret = udf_load_vat(sb, i, type1_idx);
1322 if (ret < 0)
1323 goto out_bh;
1324 }
1325 ret = 0;
1326out_bh:
1327 /* In case loading failed, we handle cleanup in udf_fill_super */
1328 brelse(bh);
1329 return ret;
1330}
1331
1332static int udf_load_sparable_map(struct super_block *sb,
1333 struct udf_part_map *map,
1334 struct sparablePartitionMap *spm)
1335{
1336 uint32_t loc;
1337 uint16_t ident;
1338 struct sparingTable *st;
1339 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1340 int i;
1341 struct buffer_head *bh;
1342
1343 map->s_partition_type = UDF_SPARABLE_MAP15;
1344 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1345 if (!is_power_of_2(sdata->s_packet_len)) {
1346 udf_err(sb, "error loading logical volume descriptor: "
1347 "Invalid packet length %u\n",
1348 (unsigned)sdata->s_packet_len);
1349 return -EIO;
1350 }
1351 if (spm->numSparingTables > 4) {
1352 udf_err(sb, "error loading logical volume descriptor: "
1353 "Too many sparing tables (%d)\n",
1354 (int)spm->numSparingTables);
1355 return -EIO;
1356 }
1357 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1358 udf_err(sb, "error loading logical volume descriptor: "
1359 "Too big sparing table size (%u)\n",
1360 le32_to_cpu(spm->sizeSparingTable));
1361 return -EIO;
1362 }
1363
1364 for (i = 0; i < spm->numSparingTables; i++) {
1365 loc = le32_to_cpu(spm->locSparingTable[i]);
1366 bh = udf_read_tagged(sb, loc, loc, &ident);
1367 if (!bh)
1368 continue;
1369
1370 st = (struct sparingTable *)bh->b_data;
1371 if (ident != 0 ||
1372 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1373 strlen(UDF_ID_SPARING)) ||
1374 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1375 sb->s_blocksize) {
1376 brelse(bh);
1377 continue;
1378 }
1379
1380 sdata->s_spar_map[i] = bh;
1381 }
1382 map->s_partition_func = udf_get_pblock_spar15;
1383 return 0;
1384}
1385
1386static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1387 struct kernel_lb_addr *fileset)
1388{
1389 struct logicalVolDesc *lvd;
1390 int i, offset;
1391 uint8_t type;
1392 struct udf_sb_info *sbi = UDF_SB(sb);
1393 struct genericPartitionMap *gpm;
1394 uint16_t ident;
1395 struct buffer_head *bh;
1396 unsigned int table_len;
1397 int ret;
1398
1399 bh = udf_read_tagged(sb, block, block, &ident);
1400 if (!bh)
1401 return -EAGAIN;
1402 BUG_ON(ident != TAG_IDENT_LVD);
1403 lvd = (struct logicalVolDesc *)bh->b_data;
1404 table_len = le32_to_cpu(lvd->mapTableLength);
1405 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1406 udf_err(sb, "error loading logical volume descriptor: "
1407 "Partition table too long (%u > %lu)\n", table_len,
1408 sb->s_blocksize - sizeof(*lvd));
1409 ret = -EIO;
1410 goto out_bh;
1411 }
1412
1413 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1414 "logical volume");
1415 if (ret)
1416 goto out_bh;
1417 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1418 if (ret)
1419 goto out_bh;
1420
1421 for (i = 0, offset = 0;
1422 i < sbi->s_partitions && offset < table_len;
1423 i++, offset += gpm->partitionMapLength) {
1424 struct udf_part_map *map = &sbi->s_partmaps[i];
1425 gpm = (struct genericPartitionMap *)
1426 &(lvd->partitionMaps[offset]);
1427 type = gpm->partitionMapType;
1428 if (type == 1) {
1429 struct genericPartitionMap1 *gpm1 =
1430 (struct genericPartitionMap1 *)gpm;
1431 map->s_partition_type = UDF_TYPE1_MAP15;
1432 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1433 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1434 map->s_partition_func = NULL;
1435 } else if (type == 2) {
1436 struct udfPartitionMap2 *upm2 =
1437 (struct udfPartitionMap2 *)gpm;
1438 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1439 strlen(UDF_ID_VIRTUAL))) {
1440 u16 suf =
1441 le16_to_cpu(((__le16 *)upm2->partIdent.
1442 identSuffix)[0]);
1443 if (suf < 0x0200) {
1444 map->s_partition_type =
1445 UDF_VIRTUAL_MAP15;
1446 map->s_partition_func =
1447 udf_get_pblock_virt15;
1448 } else {
1449 map->s_partition_type =
1450 UDF_VIRTUAL_MAP20;
1451 map->s_partition_func =
1452 udf_get_pblock_virt20;
1453 }
1454 } else if (!strncmp(upm2->partIdent.ident,
1455 UDF_ID_SPARABLE,
1456 strlen(UDF_ID_SPARABLE))) {
1457 ret = udf_load_sparable_map(sb, map,
1458 (struct sparablePartitionMap *)gpm);
1459 if (ret < 0)
1460 goto out_bh;
1461 } else if (!strncmp(upm2->partIdent.ident,
1462 UDF_ID_METADATA,
1463 strlen(UDF_ID_METADATA))) {
1464 struct udf_meta_data *mdata =
1465 &map->s_type_specific.s_metadata;
1466 struct metadataPartitionMap *mdm =
1467 (struct metadataPartitionMap *)
1468 &(lvd->partitionMaps[offset]);
1469 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1470 i, type, UDF_ID_METADATA);
1471
1472 map->s_partition_type = UDF_METADATA_MAP25;
1473 map->s_partition_func = udf_get_pblock_meta25;
1474
1475 mdata->s_meta_file_loc =
1476 le32_to_cpu(mdm->metadataFileLoc);
1477 mdata->s_mirror_file_loc =
1478 le32_to_cpu(mdm->metadataMirrorFileLoc);
1479 mdata->s_bitmap_file_loc =
1480 le32_to_cpu(mdm->metadataBitmapFileLoc);
1481 mdata->s_alloc_unit_size =
1482 le32_to_cpu(mdm->allocUnitSize);
1483 mdata->s_align_unit_size =
1484 le16_to_cpu(mdm->alignUnitSize);
1485 if (mdm->flags & 0x01)
1486 mdata->s_flags |= MF_DUPLICATE_MD;
1487
1488 udf_debug("Metadata Ident suffix=0x%x\n",
1489 le16_to_cpu(*(__le16 *)
1490 mdm->partIdent.identSuffix));
1491 udf_debug("Metadata part num=%u\n",
1492 le16_to_cpu(mdm->partitionNum));
1493 udf_debug("Metadata part alloc unit size=%u\n",
1494 le32_to_cpu(mdm->allocUnitSize));
1495 udf_debug("Metadata file loc=%u\n",
1496 le32_to_cpu(mdm->metadataFileLoc));
1497 udf_debug("Mirror file loc=%u\n",
1498 le32_to_cpu(mdm->metadataMirrorFileLoc));
1499 udf_debug("Bitmap file loc=%u\n",
1500 le32_to_cpu(mdm->metadataBitmapFileLoc));
1501 udf_debug("Flags: %d %u\n",
1502 mdata->s_flags, mdm->flags);
1503 } else {
1504 udf_debug("Unknown ident: %s\n",
1505 upm2->partIdent.ident);
1506 continue;
1507 }
1508 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1509 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1510 }
1511 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1512 i, map->s_partition_num, type, map->s_volumeseqnum);
1513 }
1514
1515 if (fileset) {
1516 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518 *fileset = lelb_to_cpu(la->extLocation);
1519 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1520 fileset->logicalBlockNum,
1521 fileset->partitionReferenceNum);
1522 }
1523 if (lvd->integritySeqExt.extLength)
1524 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525 ret = 0;
1526
1527 if (!sbi->s_lvid_bh) {
1528 /* We can't generate unique IDs without a valid LVID */
1529 if (sb_rdonly(sb)) {
1530 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1531 } else {
1532 udf_warn(sb, "Damaged or missing LVID, forcing "
1533 "readonly mount\n");
1534 ret = -EACCES;
1535 }
1536 }
1537out_bh:
1538 brelse(bh);
1539 return ret;
1540}
1541
1542/*
1543 * Find the prevailing Logical Volume Integrity Descriptor.
1544 */
1545static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1546{
1547 struct buffer_head *bh, *final_bh;
1548 uint16_t ident;
1549 struct udf_sb_info *sbi = UDF_SB(sb);
1550 struct logicalVolIntegrityDesc *lvid;
1551 int indirections = 0;
1552 u32 parts, impuselen;
1553
1554 while (++indirections <= UDF_MAX_LVID_NESTING) {
1555 final_bh = NULL;
1556 while (loc.extLength > 0 &&
1557 (bh = udf_read_tagged(sb, loc.extLocation,
1558 loc.extLocation, &ident))) {
1559 if (ident != TAG_IDENT_LVID) {
1560 brelse(bh);
1561 break;
1562 }
1563
1564 brelse(final_bh);
1565 final_bh = bh;
1566
1567 loc.extLength -= sb->s_blocksize;
1568 loc.extLocation++;
1569 }
1570
1571 if (!final_bh)
1572 return;
1573
1574 brelse(sbi->s_lvid_bh);
1575 sbi->s_lvid_bh = final_bh;
1576
1577 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1578 if (lvid->nextIntegrityExt.extLength == 0)
1579 goto check;
1580
1581 loc = leea_to_cpu(lvid->nextIntegrityExt);
1582 }
1583
1584 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1585 UDF_MAX_LVID_NESTING);
1586out_err:
1587 brelse(sbi->s_lvid_bh);
1588 sbi->s_lvid_bh = NULL;
1589 return;
1590check:
1591 parts = le32_to_cpu(lvid->numOfPartitions);
1592 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1593 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1594 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1595 2 * parts * sizeof(u32) > sb->s_blocksize) {
1596 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1597 "ignoring.\n", parts, impuselen);
1598 goto out_err;
1599 }
1600}
1601
1602/*
1603 * Step for reallocation of table of partition descriptor sequence numbers.
1604 * Must be power of 2.
1605 */
1606#define PART_DESC_ALLOC_STEP 32
1607
1608struct part_desc_seq_scan_data {
1609 struct udf_vds_record rec;
1610 u32 partnum;
1611};
1612
1613struct desc_seq_scan_data {
1614 struct udf_vds_record vds[VDS_POS_LENGTH];
1615 unsigned int size_part_descs;
1616 unsigned int num_part_descs;
1617 struct part_desc_seq_scan_data *part_descs_loc;
1618};
1619
1620static struct udf_vds_record *handle_partition_descriptor(
1621 struct buffer_head *bh,
1622 struct desc_seq_scan_data *data)
1623{
1624 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1625 int partnum;
1626 int i;
1627
1628 partnum = le16_to_cpu(desc->partitionNumber);
1629 for (i = 0; i < data->num_part_descs; i++)
1630 if (partnum == data->part_descs_loc[i].partnum)
1631 return &(data->part_descs_loc[i].rec);
1632 if (data->num_part_descs >= data->size_part_descs) {
1633 struct part_desc_seq_scan_data *new_loc;
1634 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1635
1636 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1637 if (!new_loc)
1638 return ERR_PTR(-ENOMEM);
1639 memcpy(new_loc, data->part_descs_loc,
1640 data->size_part_descs * sizeof(*new_loc));
1641 kfree(data->part_descs_loc);
1642 data->part_descs_loc = new_loc;
1643 data->size_part_descs = new_size;
1644 }
1645 return &(data->part_descs_loc[data->num_part_descs++].rec);
1646}
1647
1648
1649static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1650 struct buffer_head *bh, struct desc_seq_scan_data *data)
1651{
1652 switch (ident) {
1653 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1654 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1655 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1656 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1657 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1658 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1659 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1660 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1661 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1662 return handle_partition_descriptor(bh, data);
1663 }
1664 return NULL;
1665}
1666
1667/*
1668 * Process a main/reserve volume descriptor sequence.
1669 * @block First block of first extent of the sequence.
1670 * @lastblock Lastblock of first extent of the sequence.
1671 * @fileset There we store extent containing root fileset
1672 *
1673 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1674 * sequence
1675 */
1676static noinline int udf_process_sequence(
1677 struct super_block *sb,
1678 sector_t block, sector_t lastblock,
1679 struct kernel_lb_addr *fileset)
1680{
1681 struct buffer_head *bh = NULL;
1682 struct udf_vds_record *curr;
1683 struct generic_desc *gd;
1684 struct volDescPtr *vdp;
1685 bool done = false;
1686 uint32_t vdsn;
1687 uint16_t ident;
1688 int ret;
1689 unsigned int indirections = 0;
1690 struct desc_seq_scan_data data;
1691 unsigned int i;
1692
1693 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1694 data.size_part_descs = PART_DESC_ALLOC_STEP;
1695 data.num_part_descs = 0;
1696 data.part_descs_loc = kcalloc(data.size_part_descs,
1697 sizeof(*data.part_descs_loc),
1698 GFP_KERNEL);
1699 if (!data.part_descs_loc)
1700 return -ENOMEM;
1701
1702 /*
1703 * Read the main descriptor sequence and find which descriptors
1704 * are in it.
1705 */
1706 for (; (!done && block <= lastblock); block++) {
1707 bh = udf_read_tagged(sb, block, block, &ident);
1708 if (!bh)
1709 break;
1710
1711 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1712 gd = (struct generic_desc *)bh->b_data;
1713 vdsn = le32_to_cpu(gd->volDescSeqNum);
1714 switch (ident) {
1715 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1716 if (++indirections > UDF_MAX_TD_NESTING) {
1717 udf_err(sb, "too many Volume Descriptor "
1718 "Pointers (max %u supported)\n",
1719 UDF_MAX_TD_NESTING);
1720 brelse(bh);
1721 ret = -EIO;
1722 goto out;
1723 }
1724
1725 vdp = (struct volDescPtr *)bh->b_data;
1726 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1727 lastblock = le32_to_cpu(
1728 vdp->nextVolDescSeqExt.extLength) >>
1729 sb->s_blocksize_bits;
1730 lastblock += block - 1;
1731 /* For loop is going to increment 'block' again */
1732 block--;
1733 break;
1734 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1735 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1736 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1737 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1738 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1739 curr = get_volume_descriptor_record(ident, bh, &data);
1740 if (IS_ERR(curr)) {
1741 brelse(bh);
1742 ret = PTR_ERR(curr);
1743 goto out;
1744 }
1745 /* Descriptor we don't care about? */
1746 if (!curr)
1747 break;
1748 if (vdsn >= curr->volDescSeqNum) {
1749 curr->volDescSeqNum = vdsn;
1750 curr->block = block;
1751 }
1752 break;
1753 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1754 done = true;
1755 break;
1756 }
1757 brelse(bh);
1758 }
1759 /*
1760 * Now read interesting descriptors again and process them
1761 * in a suitable order
1762 */
1763 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1764 udf_err(sb, "Primary Volume Descriptor not found!\n");
1765 ret = -EAGAIN;
1766 goto out;
1767 }
1768 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1769 if (ret < 0)
1770 goto out;
1771
1772 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1773 ret = udf_load_logicalvol(sb,
1774 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1775 fileset);
1776 if (ret < 0)
1777 goto out;
1778 }
1779
1780 /* Now handle prevailing Partition Descriptors */
1781 for (i = 0; i < data.num_part_descs; i++) {
1782 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1783 if (ret < 0)
1784 goto out;
1785 }
1786 ret = 0;
1787out:
1788 kfree(data.part_descs_loc);
1789 return ret;
1790}
1791
1792/*
1793 * Load Volume Descriptor Sequence described by anchor in bh
1794 *
1795 * Returns <0 on error, 0 on success
1796 */
1797static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1798 struct kernel_lb_addr *fileset)
1799{
1800 struct anchorVolDescPtr *anchor;
1801 sector_t main_s, main_e, reserve_s, reserve_e;
1802 int ret;
1803
1804 anchor = (struct anchorVolDescPtr *)bh->b_data;
1805
1806 /* Locate the main sequence */
1807 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1808 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1809 main_e = main_e >> sb->s_blocksize_bits;
1810 main_e += main_s - 1;
1811
1812 /* Locate the reserve sequence */
1813 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1814 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1815 reserve_e = reserve_e >> sb->s_blocksize_bits;
1816 reserve_e += reserve_s - 1;
1817
1818 /* Process the main & reserve sequences */
1819 /* responsible for finding the PartitionDesc(s) */
1820 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1821 if (ret != -EAGAIN)
1822 return ret;
1823 udf_sb_free_partitions(sb);
1824 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1825 if (ret < 0) {
1826 udf_sb_free_partitions(sb);
1827 /* No sequence was OK, return -EIO */
1828 if (ret == -EAGAIN)
1829 ret = -EIO;
1830 }
1831 return ret;
1832}
1833
1834/*
1835 * Check whether there is an anchor block in the given block and
1836 * load Volume Descriptor Sequence if so.
1837 *
1838 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1839 * block
1840 */
1841static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1842 struct kernel_lb_addr *fileset)
1843{
1844 struct buffer_head *bh;
1845 uint16_t ident;
1846 int ret;
1847
1848 bh = udf_read_tagged(sb, block, block, &ident);
1849 if (!bh)
1850 return -EAGAIN;
1851 if (ident != TAG_IDENT_AVDP) {
1852 brelse(bh);
1853 return -EAGAIN;
1854 }
1855 ret = udf_load_sequence(sb, bh, fileset);
1856 brelse(bh);
1857 return ret;
1858}
1859
1860/*
1861 * Search for an anchor volume descriptor pointer.
1862 *
1863 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1864 * of anchors.
1865 */
1866static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1867 struct kernel_lb_addr *fileset)
1868{
1869 udf_pblk_t last[6];
1870 int i;
1871 struct udf_sb_info *sbi = UDF_SB(sb);
1872 int last_count = 0;
1873 int ret;
1874
1875 /* First try user provided anchor */
1876 if (sbi->s_anchor) {
1877 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1878 if (ret != -EAGAIN)
1879 return ret;
1880 }
1881 /*
1882 * according to spec, anchor is in either:
1883 * block 256
1884 * lastblock-256
1885 * lastblock
1886 * however, if the disc isn't closed, it could be 512.
1887 */
1888 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889 if (ret != -EAGAIN)
1890 return ret;
1891 /*
1892 * The trouble is which block is the last one. Drives often misreport
1893 * this so we try various possibilities.
1894 */
1895 last[last_count++] = *lastblock;
1896 if (*lastblock >= 1)
1897 last[last_count++] = *lastblock - 1;
1898 last[last_count++] = *lastblock + 1;
1899 if (*lastblock >= 2)
1900 last[last_count++] = *lastblock - 2;
1901 if (*lastblock >= 150)
1902 last[last_count++] = *lastblock - 150;
1903 if (*lastblock >= 152)
1904 last[last_count++] = *lastblock - 152;
1905
1906 for (i = 0; i < last_count; i++) {
1907 if (last[i] >= sb_bdev_nr_blocks(sb))
1908 continue;
1909 ret = udf_check_anchor_block(sb, last[i], fileset);
1910 if (ret != -EAGAIN) {
1911 if (!ret)
1912 *lastblock = last[i];
1913 return ret;
1914 }
1915 if (last[i] < 256)
1916 continue;
1917 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1918 if (ret != -EAGAIN) {
1919 if (!ret)
1920 *lastblock = last[i];
1921 return ret;
1922 }
1923 }
1924
1925 /* Finally try block 512 in case media is open */
1926 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1927}
1928
1929/*
1930 * Check Volume Structure Descriptor, find Anchor block and load Volume
1931 * Descriptor Sequence.
1932 *
1933 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1934 * block was not found.
1935 */
1936static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1937 int silent, struct kernel_lb_addr *fileset)
1938{
1939 struct udf_sb_info *sbi = UDF_SB(sb);
1940 int nsr = 0;
1941 int ret;
1942
1943 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1944 if (!silent)
1945 udf_warn(sb, "Bad block size\n");
1946 return -EINVAL;
1947 }
1948 sbi->s_last_block = uopt->lastblock;
1949 if (!uopt->novrs) {
1950 /* Check that it is NSR02 compliant */
1951 nsr = udf_check_vsd(sb);
1952 if (!nsr) {
1953 if (!silent)
1954 udf_warn(sb, "No VRS found\n");
1955 return -EINVAL;
1956 }
1957 if (nsr == -1)
1958 udf_debug("Failed to read sector at offset %d. "
1959 "Assuming open disc. Skipping validity "
1960 "check\n", VSD_FIRST_SECTOR_OFFSET);
1961 if (!sbi->s_last_block)
1962 sbi->s_last_block = udf_get_last_block(sb);
1963 } else {
1964 udf_debug("Validity check skipped because of novrs option\n");
1965 }
1966
1967 /* Look for anchor block and load Volume Descriptor Sequence */
1968 sbi->s_anchor = uopt->anchor;
1969 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1970 if (ret < 0) {
1971 if (!silent && ret == -EAGAIN)
1972 udf_warn(sb, "No anchor found\n");
1973 return ret;
1974 }
1975 return 0;
1976}
1977
1978static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1979{
1980 struct timespec64 ts;
1981
1982 ktime_get_real_ts64(&ts);
1983 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1984 lvid->descTag.descCRC = cpu_to_le16(
1985 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1986 le16_to_cpu(lvid->descTag.descCRCLength)));
1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988}
1989
1990static void udf_open_lvid(struct super_block *sb)
1991{
1992 struct udf_sb_info *sbi = UDF_SB(sb);
1993 struct buffer_head *bh = sbi->s_lvid_bh;
1994 struct logicalVolIntegrityDesc *lvid;
1995 struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997 if (!bh)
1998 return;
1999 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000 lvidiu = udf_sb_lvidiu(sb);
2001 if (!lvidiu)
2002 return;
2003
2004 mutex_lock(&sbi->s_alloc_mutex);
2005 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2008 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2009 else
2010 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2011
2012 udf_finalize_lvid(lvid);
2013 mark_buffer_dirty(bh);
2014 sbi->s_lvid_dirty = 0;
2015 mutex_unlock(&sbi->s_alloc_mutex);
2016 /* Make opening of filesystem visible on the media immediately */
2017 sync_dirty_buffer(bh);
2018}
2019
2020static void udf_close_lvid(struct super_block *sb)
2021{
2022 struct udf_sb_info *sbi = UDF_SB(sb);
2023 struct buffer_head *bh = sbi->s_lvid_bh;
2024 struct logicalVolIntegrityDesc *lvid;
2025 struct logicalVolIntegrityDescImpUse *lvidiu;
2026
2027 if (!bh)
2028 return;
2029 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2030 lvidiu = udf_sb_lvidiu(sb);
2031 if (!lvidiu)
2032 return;
2033
2034 mutex_lock(&sbi->s_alloc_mutex);
2035 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2036 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2037 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2038 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2039 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2040 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2041 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2042 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2043 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2044 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2045
2046 /*
2047 * We set buffer uptodate unconditionally here to avoid spurious
2048 * warnings from mark_buffer_dirty() when previous EIO has marked
2049 * the buffer as !uptodate
2050 */
2051 set_buffer_uptodate(bh);
2052 udf_finalize_lvid(lvid);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 udf_updated_lvid(sb);
2082 mutex_unlock(&sbi->s_alloc_mutex);
2083
2084 return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2098 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2099 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2100 uopt.umask = 0;
2101 uopt.fmode = UDF_INVALID_MODE;
2102 uopt.dmode = UDF_INVALID_MODE;
2103 uopt.nls_map = NULL;
2104
2105 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2106 if (!sbi)
2107 return -ENOMEM;
2108
2109 sb->s_fs_info = sbi;
2110
2111 mutex_init(&sbi->s_alloc_mutex);
2112
2113 if (!udf_parse_options((char *)options, &uopt, false))
2114 goto parse_options_failure;
2115
2116 fileset.logicalBlockNum = 0xFFFFFFFF;
2117 fileset.partitionReferenceNum = 0xFFFF;
2118
2119 sbi->s_flags = uopt.flags;
2120 sbi->s_uid = uopt.uid;
2121 sbi->s_gid = uopt.gid;
2122 sbi->s_umask = uopt.umask;
2123 sbi->s_fmode = uopt.fmode;
2124 sbi->s_dmode = uopt.dmode;
2125 sbi->s_nls_map = uopt.nls_map;
2126 rwlock_init(&sbi->s_cred_lock);
2127
2128 if (uopt.session == 0xFFFFFFFF)
2129 sbi->s_session = udf_get_last_session(sb);
2130 else
2131 sbi->s_session = uopt.session;
2132
2133 udf_debug("Multi-session=%d\n", sbi->s_session);
2134
2135 /* Fill in the rest of the superblock */
2136 sb->s_op = &udf_sb_ops;
2137 sb->s_export_op = &udf_export_ops;
2138
2139 sb->s_magic = UDF_SUPER_MAGIC;
2140 sb->s_time_gran = 1000;
2141
2142 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2143 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2144 } else {
2145 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2146 while (uopt.blocksize <= 4096) {
2147 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148 if (ret < 0) {
2149 if (!silent && ret != -EACCES) {
2150 pr_notice("Scanning with blocksize %u failed\n",
2151 uopt.blocksize);
2152 }
2153 brelse(sbi->s_lvid_bh);
2154 sbi->s_lvid_bh = NULL;
2155 /*
2156 * EACCES is special - we want to propagate to
2157 * upper layers that we cannot handle RW mount.
2158 */
2159 if (ret == -EACCES)
2160 break;
2161 } else
2162 break;
2163
2164 uopt.blocksize <<= 1;
2165 }
2166 }
2167 if (ret < 0) {
2168 if (ret == -EAGAIN) {
2169 udf_warn(sb, "No partition found (1)\n");
2170 ret = -EINVAL;
2171 }
2172 goto error_out;
2173 }
2174
2175 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2176
2177 if (sbi->s_lvid_bh) {
2178 struct logicalVolIntegrityDescImpUse *lvidiu =
2179 udf_sb_lvidiu(sb);
2180 uint16_t minUDFReadRev;
2181 uint16_t minUDFWriteRev;
2182
2183 if (!lvidiu) {
2184 ret = -EINVAL;
2185 goto error_out;
2186 }
2187 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2188 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2189 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2190 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2191 minUDFReadRev,
2192 UDF_MAX_READ_VERSION);
2193 ret = -EINVAL;
2194 goto error_out;
2195 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2196 if (!sb_rdonly(sb)) {
2197 ret = -EACCES;
2198 goto error_out;
2199 }
2200 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2201 }
2202
2203 sbi->s_udfrev = minUDFWriteRev;
2204
2205 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2206 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2207 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2208 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2209 }
2210
2211 if (!sbi->s_partitions) {
2212 udf_warn(sb, "No partition found (2)\n");
2213 ret = -EINVAL;
2214 goto error_out;
2215 }
2216
2217 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2218 UDF_PART_FLAG_READ_ONLY) {
2219 if (!sb_rdonly(sb)) {
2220 ret = -EACCES;
2221 goto error_out;
2222 }
2223 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2224 }
2225
2226 ret = udf_find_fileset(sb, &fileset, &rootdir);
2227 if (ret < 0) {
2228 udf_warn(sb, "No fileset found\n");
2229 goto error_out;
2230 }
2231
2232 if (!silent) {
2233 struct timestamp ts;
2234 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2235 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2236 sbi->s_volume_ident,
2237 le16_to_cpu(ts.year), ts.month, ts.day,
2238 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2239 }
2240 if (!sb_rdonly(sb)) {
2241 udf_open_lvid(sb);
2242 lvid_open = true;
2243 }
2244
2245 /* Assign the root inode */
2246 /* assign inodes by physical block number */
2247 /* perhaps it's not extensible enough, but for now ... */
2248 inode = udf_iget(sb, &rootdir);
2249 if (IS_ERR(inode)) {
2250 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2251 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2252 ret = PTR_ERR(inode);
2253 goto error_out;
2254 }
2255
2256 /* Allocate a dentry for the root inode */
2257 sb->s_root = d_make_root(inode);
2258 if (!sb->s_root) {
2259 udf_err(sb, "Couldn't allocate root dentry\n");
2260 ret = -ENOMEM;
2261 goto error_out;
2262 }
2263 sb->s_maxbytes = UDF_MAX_FILESIZE;
2264 sb->s_max_links = UDF_MAX_LINKS;
2265 return 0;
2266
2267error_out:
2268 iput(sbi->s_vat_inode);
2269parse_options_failure:
2270 unload_nls(uopt.nls_map);
2271 if (lvid_open)
2272 udf_close_lvid(sb);
2273 brelse(sbi->s_lvid_bh);
2274 udf_sb_free_partitions(sb);
2275 kfree(sbi);
2276 sb->s_fs_info = NULL;
2277
2278 return ret;
2279}
2280
2281void _udf_err(struct super_block *sb, const char *function,
2282 const char *fmt, ...)
2283{
2284 struct va_format vaf;
2285 va_list args;
2286
2287 va_start(args, fmt);
2288
2289 vaf.fmt = fmt;
2290 vaf.va = &args;
2291
2292 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2293
2294 va_end(args);
2295}
2296
2297void _udf_warn(struct super_block *sb, const char *function,
2298 const char *fmt, ...)
2299{
2300 struct va_format vaf;
2301 va_list args;
2302
2303 va_start(args, fmt);
2304
2305 vaf.fmt = fmt;
2306 vaf.va = &args;
2307
2308 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310 va_end(args);
2311}
2312
2313static void udf_put_super(struct super_block *sb)
2314{
2315 struct udf_sb_info *sbi;
2316
2317 sbi = UDF_SB(sb);
2318
2319 iput(sbi->s_vat_inode);
2320 unload_nls(sbi->s_nls_map);
2321 if (!sb_rdonly(sb))
2322 udf_close_lvid(sb);
2323 brelse(sbi->s_lvid_bh);
2324 udf_sb_free_partitions(sb);
2325 mutex_destroy(&sbi->s_alloc_mutex);
2326 kfree(sb->s_fs_info);
2327 sb->s_fs_info = NULL;
2328}
2329
2330static int udf_sync_fs(struct super_block *sb, int wait)
2331{
2332 struct udf_sb_info *sbi = UDF_SB(sb);
2333
2334 mutex_lock(&sbi->s_alloc_mutex);
2335 if (sbi->s_lvid_dirty) {
2336 struct buffer_head *bh = sbi->s_lvid_bh;
2337 struct logicalVolIntegrityDesc *lvid;
2338
2339 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2340 udf_finalize_lvid(lvid);
2341
2342 /*
2343 * Blockdevice will be synced later so we don't have to submit
2344 * the buffer for IO
2345 */
2346 mark_buffer_dirty(bh);
2347 sbi->s_lvid_dirty = 0;
2348 }
2349 mutex_unlock(&sbi->s_alloc_mutex);
2350
2351 return 0;
2352}
2353
2354static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2355{
2356 struct super_block *sb = dentry->d_sb;
2357 struct udf_sb_info *sbi = UDF_SB(sb);
2358 struct logicalVolIntegrityDescImpUse *lvidiu;
2359 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2360
2361 lvidiu = udf_sb_lvidiu(sb);
2362 buf->f_type = UDF_SUPER_MAGIC;
2363 buf->f_bsize = sb->s_blocksize;
2364 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2365 buf->f_bfree = udf_count_free(sb);
2366 buf->f_bavail = buf->f_bfree;
2367 /*
2368 * Let's pretend each free block is also a free 'inode' since UDF does
2369 * not have separate preallocated table of inodes.
2370 */
2371 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2372 le32_to_cpu(lvidiu->numDirs)) : 0)
2373 + buf->f_bfree;
2374 buf->f_ffree = buf->f_bfree;
2375 buf->f_namelen = UDF_NAME_LEN;
2376 buf->f_fsid = u64_to_fsid(id);
2377
2378 return 0;
2379}
2380
2381static unsigned int udf_count_free_bitmap(struct super_block *sb,
2382 struct udf_bitmap *bitmap)
2383{
2384 struct buffer_head *bh = NULL;
2385 unsigned int accum = 0;
2386 int index;
2387 udf_pblk_t block = 0, newblock;
2388 struct kernel_lb_addr loc;
2389 uint32_t bytes;
2390 uint8_t *ptr;
2391 uint16_t ident;
2392 struct spaceBitmapDesc *bm;
2393
2394 loc.logicalBlockNum = bitmap->s_extPosition;
2395 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2396 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2397
2398 if (!bh) {
2399 udf_err(sb, "udf_count_free failed\n");
2400 goto out;
2401 } else if (ident != TAG_IDENT_SBD) {
2402 brelse(bh);
2403 udf_err(sb, "udf_count_free failed\n");
2404 goto out;
2405 }
2406
2407 bm = (struct spaceBitmapDesc *)bh->b_data;
2408 bytes = le32_to_cpu(bm->numOfBytes);
2409 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2410 ptr = (uint8_t *)bh->b_data;
2411
2412 while (bytes > 0) {
2413 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2414 accum += bitmap_weight((const unsigned long *)(ptr + index),
2415 cur_bytes * 8);
2416 bytes -= cur_bytes;
2417 if (bytes) {
2418 brelse(bh);
2419 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2420 bh = sb_bread(sb, newblock);
2421 if (!bh) {
2422 udf_debug("read failed\n");
2423 goto out;
2424 }
2425 index = 0;
2426 ptr = (uint8_t *)bh->b_data;
2427 }
2428 }
2429 brelse(bh);
2430out:
2431 return accum;
2432}
2433
2434static unsigned int udf_count_free_table(struct super_block *sb,
2435 struct inode *table)
2436{
2437 unsigned int accum = 0;
2438 uint32_t elen;
2439 struct kernel_lb_addr eloc;
2440 struct extent_position epos;
2441
2442 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2443 epos.block = UDF_I(table)->i_location;
2444 epos.offset = sizeof(struct unallocSpaceEntry);
2445 epos.bh = NULL;
2446
2447 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2448 accum += (elen >> table->i_sb->s_blocksize_bits);
2449
2450 brelse(epos.bh);
2451 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2452
2453 return accum;
2454}
2455
2456static unsigned int udf_count_free(struct super_block *sb)
2457{
2458 unsigned int accum = 0;
2459 struct udf_sb_info *sbi = UDF_SB(sb);
2460 struct udf_part_map *map;
2461 unsigned int part = sbi->s_partition;
2462 int ptype = sbi->s_partmaps[part].s_partition_type;
2463
2464 if (ptype == UDF_METADATA_MAP25) {
2465 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2466 s_phys_partition_ref;
2467 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2468 /*
2469 * Filesystems with VAT are append-only and we cannot write to
2470 * them. Let's just report 0 here.
2471 */
2472 return 0;
2473 }
2474
2475 if (sbi->s_lvid_bh) {
2476 struct logicalVolIntegrityDesc *lvid =
2477 (struct logicalVolIntegrityDesc *)
2478 sbi->s_lvid_bh->b_data;
2479 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2480 accum = le32_to_cpu(
2481 lvid->freeSpaceTable[part]);
2482 if (accum == 0xFFFFFFFF)
2483 accum = 0;
2484 }
2485 }
2486
2487 if (accum)
2488 return accum;
2489
2490 map = &sbi->s_partmaps[part];
2491 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2492 accum += udf_count_free_bitmap(sb,
2493 map->s_uspace.s_bitmap);
2494 }
2495 if (accum)
2496 return accum;
2497
2498 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2499 accum += udf_count_free_table(sb,
2500 map->s_uspace.s_table);
2501 }
2502 return accum;
2503}
2504
2505MODULE_AUTHOR("Ben Fennema");
2506MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2507MODULE_LICENSE("GPL");
2508module_init(init_udf_fs)
2509module_exit(exit_udf_fs)