Loading...
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78#define VSD_FIRST_SECTOR_OFFSET 32768
79#define VSD_MAX_SECTOR_OFFSET 0x800000
80
81/*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87#define UDF_MAX_TD_NESTING 64
88#define UDF_MAX_LVID_NESTING 1000
89
90enum { UDF_MAX_LINKS = 0xffff };
91
92/* These are the "meat" - everything else is stuffing */
93static int udf_fill_super(struct super_block *, void *, int);
94static void udf_put_super(struct super_block *);
95static int udf_sync_fs(struct super_block *, int);
96static int udf_remount_fs(struct super_block *, int *, char *);
97static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102static void udf_open_lvid(struct super_block *);
103static void udf_close_lvid(struct super_block *);
104static unsigned int udf_count_free(struct super_block *);
105static int udf_statfs(struct dentry *, struct kstatfs *);
106static int udf_show_options(struct seq_file *, struct dentry *);
107
108struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109{
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128}
129
130/* UDF filesystem type */
131static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133{
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135}
136
137static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143};
144MODULE_ALIAS_FS("udf");
145
146static struct kmem_cache *udf_inode_cachep;
147
148static struct inode *udf_alloc_inode(struct super_block *sb)
149{
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165}
166
167static void udf_i_callback(struct rcu_head *head)
168{
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171}
172
173static void udf_destroy_inode(struct inode *inode)
174{
175 call_rcu(&inode->i_rcu, udf_i_callback);
176}
177
178static void init_once(void *foo)
179{
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184}
185
186static int __init init_inodecache(void)
187{
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197}
198
199static void destroy_inodecache(void)
200{
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207}
208
209/* Superblock operations */
210static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220};
221
222struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239};
240
241static int __init init_udf_fs(void)
242{
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254out:
255 destroy_inodecache();
256
257out1:
258 return err;
259}
260
261static void __exit exit_udf_fs(void)
262{
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265}
266
267module_init(init_udf_fs)
268module_exit(exit_udf_fs)
269
270static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271{
272 struct udf_sb_info *sbi = UDF_SB(sb);
273
274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 GFP_KERNEL);
276 if (!sbi->s_partmaps) {
277 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 count);
279 sbi->s_partitions = 0;
280 return -ENOMEM;
281 }
282
283 sbi->s_partitions = count;
284 return 0;
285}
286
287static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288{
289 int i;
290 int nr_groups = bitmap->s_nr_groups;
291
292 for (i = 0; i < nr_groups; i++)
293 if (bitmap->s_block_bitmap[i])
294 brelse(bitmap->s_block_bitmap[i]);
295
296 kvfree(bitmap);
297}
298
299static void udf_free_partition(struct udf_part_map *map)
300{
301 int i;
302 struct udf_meta_data *mdata;
303
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 iput(map->s_uspace.s_table);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 iput(map->s_fspace.s_table);
308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 for (i = 0; i < 4; i++)
314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 mdata = &map->s_type_specific.s_metadata;
317 iput(mdata->s_metadata_fe);
318 mdata->s_metadata_fe = NULL;
319
320 iput(mdata->s_mirror_fe);
321 mdata->s_mirror_fe = NULL;
322
323 iput(mdata->s_bitmap_fe);
324 mdata->s_bitmap_fe = NULL;
325 }
326}
327
328static void udf_sb_free_partitions(struct super_block *sb)
329{
330 struct udf_sb_info *sbi = UDF_SB(sb);
331 int i;
332 if (sbi->s_partmaps == NULL)
333 return;
334 for (i = 0; i < sbi->s_partitions; i++)
335 udf_free_partition(&sbi->s_partmaps[i]);
336 kfree(sbi->s_partmaps);
337 sbi->s_partmaps = NULL;
338}
339
340static int udf_show_options(struct seq_file *seq, struct dentry *root)
341{
342 struct super_block *sb = root->d_sb;
343 struct udf_sb_info *sbi = UDF_SB(sb);
344
345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 seq_puts(seq, ",nostrict");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 seq_puts(seq, ",unhide");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 seq_puts(seq, ",undelete");
353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 seq_puts(seq, ",noadinicb");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 seq_puts(seq, ",shortad");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 seq_puts(seq, ",uid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 seq_puts(seq, ",uid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 seq_puts(seq, ",gid=forget");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 seq_puts(seq, ",gid=ignore");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 if (sbi->s_umask != 0)
370 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 if (sbi->s_fmode != UDF_INVALID_MODE)
372 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 if (sbi->s_dmode != UDF_INVALID_MODE)
374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 seq_printf(seq, ",session=%u", sbi->s_session);
377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 if (sbi->s_anchor != 0)
380 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 /*
382 * volume, partition, fileset and rootdir seem to be ignored
383 * currently
384 */
385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 seq_puts(seq, ",utf8");
387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390 return 0;
391}
392
393/*
394 * udf_parse_options
395 *
396 * PURPOSE
397 * Parse mount options.
398 *
399 * DESCRIPTION
400 * The following mount options are supported:
401 *
402 * gid= Set the default group.
403 * umask= Set the default umask.
404 * mode= Set the default file permissions.
405 * dmode= Set the default directory permissions.
406 * uid= Set the default user.
407 * bs= Set the block size.
408 * unhide Show otherwise hidden files.
409 * undelete Show deleted files in lists.
410 * adinicb Embed data in the inode (default)
411 * noadinicb Don't embed data in the inode
412 * shortad Use short ad's
413 * longad Use long ad's (default)
414 * nostrict Unset strict conformance
415 * iocharset= Set the NLS character set
416 *
417 * The remaining are for debugging and disaster recovery:
418 *
419 * novrs Skip volume sequence recognition
420 *
421 * The following expect a offset from 0.
422 *
423 * session= Set the CDROM session (default= last session)
424 * anchor= Override standard anchor location. (default= 256)
425 * volume= Override the VolumeDesc location. (unused)
426 * partition= Override the PartitionDesc location. (unused)
427 * lastblock= Set the last block of the filesystem/
428 *
429 * The following expect a offset from the partition root.
430 *
431 * fileset= Override the fileset block location. (unused)
432 * rootdir= Override the root directory location. (unused)
433 * WARNING: overriding the rootdir to a non-directory may
434 * yield highly unpredictable results.
435 *
436 * PRE-CONDITIONS
437 * options Pointer to mount options string.
438 * uopts Pointer to mount options variable.
439 *
440 * POST-CONDITIONS
441 * <return> 1 Mount options parsed okay.
442 * <return> 0 Error parsing mount options.
443 *
444 * HISTORY
445 * July 1, 1997 - Andrew E. Mileski
446 * Written, tested, and released.
447 */
448
449enum {
450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 Opt_rootdir, Opt_utf8, Opt_iocharset,
455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 Opt_fmode, Opt_dmode
457};
458
459static const match_table_t tokens = {
460 {Opt_novrs, "novrs"},
461 {Opt_nostrict, "nostrict"},
462 {Opt_bs, "bs=%u"},
463 {Opt_unhide, "unhide"},
464 {Opt_undelete, "undelete"},
465 {Opt_noadinicb, "noadinicb"},
466 {Opt_adinicb, "adinicb"},
467 {Opt_shortad, "shortad"},
468 {Opt_longad, "longad"},
469 {Opt_uforget, "uid=forget"},
470 {Opt_uignore, "uid=ignore"},
471 {Opt_gforget, "gid=forget"},
472 {Opt_gignore, "gid=ignore"},
473 {Opt_gid, "gid=%u"},
474 {Opt_uid, "uid=%u"},
475 {Opt_umask, "umask=%o"},
476 {Opt_session, "session=%u"},
477 {Opt_lastblock, "lastblock=%u"},
478 {Opt_anchor, "anchor=%u"},
479 {Opt_volume, "volume=%u"},
480 {Opt_partition, "partition=%u"},
481 {Opt_fileset, "fileset=%u"},
482 {Opt_rootdir, "rootdir=%u"},
483 {Opt_utf8, "utf8"},
484 {Opt_iocharset, "iocharset=%s"},
485 {Opt_fmode, "mode=%o"},
486 {Opt_dmode, "dmode=%o"},
487 {Opt_err, NULL}
488};
489
490static int udf_parse_options(char *options, struct udf_options *uopt,
491 bool remount)
492{
493 char *p;
494 int option;
495
496 uopt->novrs = 0;
497 uopt->partition = 0xFFFF;
498 uopt->session = 0xFFFFFFFF;
499 uopt->lastblock = 0;
500 uopt->anchor = 0;
501 uopt->volume = 0xFFFFFFFF;
502 uopt->rootdir = 0xFFFFFFFF;
503 uopt->fileset = 0xFFFFFFFF;
504 uopt->nls_map = NULL;
505
506 if (!options)
507 return 1;
508
509 while ((p = strsep(&options, ",")) != NULL) {
510 substring_t args[MAX_OPT_ARGS];
511 int token;
512 unsigned n;
513 if (!*p)
514 continue;
515
516 token = match_token(p, tokens, args);
517 switch (token) {
518 case Opt_novrs:
519 uopt->novrs = 1;
520 break;
521 case Opt_bs:
522 if (match_int(&args[0], &option))
523 return 0;
524 n = option;
525 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 return 0;
527 uopt->blocksize = n;
528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 break;
530 case Opt_unhide:
531 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 break;
533 case Opt_undelete:
534 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 break;
536 case Opt_noadinicb:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_adinicb:
540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 break;
542 case Opt_shortad:
543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_longad:
546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 break;
548 case Opt_gid:
549 if (match_int(args, &option))
550 return 0;
551 uopt->gid = make_kgid(current_user_ns(), option);
552 if (!gid_valid(uopt->gid))
553 return 0;
554 uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 break;
556 case Opt_uid:
557 if (match_int(args, &option))
558 return 0;
559 uopt->uid = make_kuid(current_user_ns(), option);
560 if (!uid_valid(uopt->uid))
561 return 0;
562 uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 break;
564 case Opt_umask:
565 if (match_octal(args, &option))
566 return 0;
567 uopt->umask = option;
568 break;
569 case Opt_nostrict:
570 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 break;
572 case Opt_session:
573 if (match_int(args, &option))
574 return 0;
575 uopt->session = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 break;
579 case Opt_lastblock:
580 if (match_int(args, &option))
581 return 0;
582 uopt->lastblock = option;
583 if (!remount)
584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 break;
586 case Opt_anchor:
587 if (match_int(args, &option))
588 return 0;
589 uopt->anchor = option;
590 break;
591 case Opt_volume:
592 if (match_int(args, &option))
593 return 0;
594 uopt->volume = option;
595 break;
596 case Opt_partition:
597 if (match_int(args, &option))
598 return 0;
599 uopt->partition = option;
600 break;
601 case Opt_fileset:
602 if (match_int(args, &option))
603 return 0;
604 uopt->fileset = option;
605 break;
606 case Opt_rootdir:
607 if (match_int(args, &option))
608 return 0;
609 uopt->rootdir = option;
610 break;
611 case Opt_utf8:
612 uopt->flags |= (1 << UDF_FLAG_UTF8);
613 break;
614#ifdef CONFIG_UDF_NLS
615 case Opt_iocharset:
616 uopt->nls_map = load_nls(args[0].from);
617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 break;
619#endif
620 case Opt_uignore:
621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 break;
623 case Opt_uforget:
624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 break;
626 case Opt_gignore:
627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 break;
629 case Opt_gforget:
630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 break;
632 case Opt_fmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->fmode = option & 0777;
636 break;
637 case Opt_dmode:
638 if (match_octal(args, &option))
639 return 0;
640 uopt->dmode = option & 0777;
641 break;
642 default:
643 pr_err("bad mount option \"%s\" or missing value\n", p);
644 return 0;
645 }
646 }
647 return 1;
648}
649
650static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651{
652 struct udf_options uopt;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int error = 0;
655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657 sync_filesystem(sb);
658 if (lvidiu) {
659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 return -EACCES;
662 }
663
664 uopt.flags = sbi->s_flags;
665 uopt.uid = sbi->s_uid;
666 uopt.gid = sbi->s_gid;
667 uopt.umask = sbi->s_umask;
668 uopt.fmode = sbi->s_fmode;
669 uopt.dmode = sbi->s_dmode;
670
671 if (!udf_parse_options(options, &uopt, true))
672 return -EINVAL;
673
674 write_lock(&sbi->s_cred_lock);
675 sbi->s_flags = uopt.flags;
676 sbi->s_uid = uopt.uid;
677 sbi->s_gid = uopt.gid;
678 sbi->s_umask = uopt.umask;
679 sbi->s_fmode = uopt.fmode;
680 sbi->s_dmode = uopt.dmode;
681 write_unlock(&sbi->s_cred_lock);
682
683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 goto out_unlock;
685
686 if (*flags & MS_RDONLY)
687 udf_close_lvid(sb);
688 else
689 udf_open_lvid(sb);
690
691out_unlock:
692 return error;
693}
694
695/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697static loff_t udf_check_vsd(struct super_block *sb)
698{
699 struct volStructDesc *vsd = NULL;
700 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 int sectorsize;
702 struct buffer_head *bh = NULL;
703 int nsr02 = 0;
704 int nsr03 = 0;
705 struct udf_sb_info *sbi;
706
707 sbi = UDF_SB(sb);
708 if (sb->s_blocksize < sizeof(struct volStructDesc))
709 sectorsize = sizeof(struct volStructDesc);
710 else
711 sectorsize = sb->s_blocksize;
712
713 sector += (sbi->s_session << sb->s_blocksize_bits);
714
715 udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 (unsigned int)(sector >> sb->s_blocksize_bits),
717 sb->s_blocksize);
718 /* Process the sequence (if applicable). The hard limit on the sector
719 * offset is arbitrary, hopefully large enough so that all valid UDF
720 * filesystems will be recognised. There is no mention of an upper
721 * bound to the size of the volume recognition area in the standard.
722 * The limit will prevent the code to read all the sectors of a
723 * specially crafted image (like a bluray disc full of CD001 sectors),
724 * potentially causing minutes or even hours of uninterruptible I/O
725 * activity. This actually happened with uninitialised SSD partitions
726 * (all 0xFF) before the check for the limit and all valid IDs were
727 * added */
728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 sector += sectorsize) {
730 /* Read a block */
731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 if (!bh)
733 break;
734
735 /* Look for ISO descriptors */
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738
739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 VSD_STD_ID_LEN)) {
741 switch (vsd->structType) {
742 case 0:
743 udf_debug("ISO9660 Boot Record found\n");
744 break;
745 case 1:
746 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 break;
748 case 2:
749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 break;
751 case 3:
752 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 break;
754 case 255:
755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 break;
757 default:
758 udf_debug("ISO9660 VRS (%u) found\n",
759 vsd->structType);
760 break;
761 }
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 VSD_STD_ID_LEN))
764 ; /* nothing */
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 VSD_STD_ID_LEN)) {
767 brelse(bh);
768 break;
769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 VSD_STD_ID_LEN))
771 nsr02 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 VSD_STD_ID_LEN))
774 nsr03 = sector;
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 VSD_STD_ID_LEN))
780 ; /* nothing */
781 else {
782 /* invalid id : end of volume recognition area */
783 brelse(bh);
784 break;
785 }
786 brelse(bh);
787 }
788
789 if (nsr03)
790 return nsr03;
791 else if (nsr02)
792 return nsr02;
793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 VSD_FIRST_SECTOR_OFFSET)
795 return -1;
796 else
797 return 0;
798}
799
800static int udf_find_fileset(struct super_block *sb,
801 struct kernel_lb_addr *fileset,
802 struct kernel_lb_addr *root)
803{
804 struct buffer_head *bh = NULL;
805 long lastblock;
806 uint16_t ident;
807 struct udf_sb_info *sbi;
808
809 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 fileset->partitionReferenceNum != 0xFFFF) {
811 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813 if (!bh) {
814 return 1;
815 } else if (ident != TAG_IDENT_FSD) {
816 brelse(bh);
817 return 1;
818 }
819
820 }
821
822 sbi = UDF_SB(sb);
823 if (!bh) {
824 /* Search backwards through the partitions */
825 struct kernel_lb_addr newfileset;
826
827/* --> cvg: FIXME - is it reasonable? */
828 return 1;
829
830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 (newfileset.partitionReferenceNum != 0xFFFF &&
832 fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF);
834 newfileset.partitionReferenceNum--) {
835 lastblock = sbi->s_partmaps
836 [newfileset.partitionReferenceNum]
837 .s_partition_len;
838 newfileset.logicalBlockNum = 0;
839
840 do {
841 bh = udf_read_ptagged(sb, &newfileset, 0,
842 &ident);
843 if (!bh) {
844 newfileset.logicalBlockNum++;
845 continue;
846 }
847
848 switch (ident) {
849 case TAG_IDENT_SBD:
850 {
851 struct spaceBitmapDesc *sp;
852 sp = (struct spaceBitmapDesc *)
853 bh->b_data;
854 newfileset.logicalBlockNum += 1 +
855 ((le32_to_cpu(sp->numOfBytes) +
856 sizeof(struct spaceBitmapDesc)
857 - 1) >> sb->s_blocksize_bits);
858 brelse(bh);
859 break;
860 }
861 case TAG_IDENT_FSD:
862 *fileset = newfileset;
863 break;
864 default:
865 newfileset.logicalBlockNum++;
866 brelse(bh);
867 bh = NULL;
868 break;
869 }
870 } while (newfileset.logicalBlockNum < lastblock &&
871 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 fileset->partitionReferenceNum == 0xFFFF);
873 }
874 }
875
876 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 udf_debug("Fileset at block=%d, partition=%d\n",
879 fileset->logicalBlockNum,
880 fileset->partitionReferenceNum);
881
882 sbi->s_partition = fileset->partitionReferenceNum;
883 udf_load_fileset(sb, bh, root);
884 brelse(bh);
885 return 0;
886 }
887 return 1;
888}
889
890/*
891 * Load primary Volume Descriptor Sequence
892 *
893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894 * should be tried.
895 */
896static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897{
898 struct primaryVolDesc *pvoldesc;
899 uint8_t *outstr;
900 struct buffer_head *bh;
901 uint16_t ident;
902 int ret = -ENOMEM;
903
904 outstr = kmalloc(128, GFP_NOFS);
905 if (!outstr)
906 return -ENOMEM;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923#ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928#endif
929 }
930
931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 if (ret < 0)
940 goto out_bh;
941
942 outstr[ret] = 0;
943 udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945 ret = 0;
946out_bh:
947 brelse(bh);
948out2:
949 kfree(outstr);
950 return ret;
951}
952
953struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_ref)
955{
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_ref;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975}
976
977static int udf_load_metadata_files(struct super_block *sb, int partition,
978 int type1_index)
979{
980 struct udf_sb_info *sbi = UDF_SB(sb);
981 struct udf_part_map *map;
982 struct udf_meta_data *mdata;
983 struct kernel_lb_addr addr;
984 struct inode *fe;
985
986 map = &sbi->s_partmaps[partition];
987 mdata = &map->s_type_specific.s_metadata;
988 mdata->s_phys_partition_ref = type1_index;
989
990 /* metadata address */
991 udf_debug("Metadata file location: block = %d part = %d\n",
992 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993
994 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995 mdata->s_phys_partition_ref);
996 if (IS_ERR(fe)) {
997 /* mirror file entry */
998 udf_debug("Mirror metadata file location: block = %d part = %d\n",
999 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000
1001 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002 mdata->s_phys_partition_ref);
1003
1004 if (IS_ERR(fe)) {
1005 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006 return PTR_ERR(fe);
1007 }
1008 mdata->s_mirror_fe = fe;
1009 } else
1010 mdata->s_metadata_fe = fe;
1011
1012
1013 /*
1014 * bitmap file entry
1015 * Note:
1016 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017 */
1018 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021
1022 udf_debug("Bitmap file location: block = %d part = %d\n",
1023 addr.logicalBlockNum, addr.partitionReferenceNum);
1024
1025 fe = udf_iget_special(sb, &addr);
1026 if (IS_ERR(fe)) {
1027 if (sb->s_flags & MS_RDONLY)
1028 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029 else {
1030 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031 return PTR_ERR(fe);
1032 }
1033 } else
1034 mdata->s_bitmap_fe = fe;
1035 }
1036
1037 udf_debug("udf_load_metadata_files Ok\n");
1038 return 0;
1039}
1040
1041static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042 struct kernel_lb_addr *root)
1043{
1044 struct fileSetDesc *fset;
1045
1046 fset = (struct fileSetDesc *)bh->b_data;
1047
1048 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049
1050 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051
1052 udf_debug("Rootdir at block=%d, partition=%d\n",
1053 root->logicalBlockNum, root->partitionReferenceNum);
1054}
1055
1056int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057{
1058 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059 return DIV_ROUND_UP(map->s_partition_len +
1060 (sizeof(struct spaceBitmapDesc) << 3),
1061 sb->s_blocksize * 8);
1062}
1063
1064static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065{
1066 struct udf_bitmap *bitmap;
1067 int nr_groups;
1068 int size;
1069
1070 nr_groups = udf_compute_nr_groups(sb, index);
1071 size = sizeof(struct udf_bitmap) +
1072 (sizeof(struct buffer_head *) * nr_groups);
1073
1074 if (size <= PAGE_SIZE)
1075 bitmap = kzalloc(size, GFP_KERNEL);
1076 else
1077 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078
1079 if (bitmap == NULL)
1080 return NULL;
1081
1082 bitmap->s_nr_groups = nr_groups;
1083 return bitmap;
1084}
1085
1086static int udf_fill_partdesc_info(struct super_block *sb,
1087 struct partitionDesc *p, int p_index)
1088{
1089 struct udf_part_map *map;
1090 struct udf_sb_info *sbi = UDF_SB(sb);
1091 struct partitionHeaderDesc *phd;
1092
1093 map = &sbi->s_partmaps[p_index];
1094
1095 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106
1107 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108 p_index, map->s_partition_type,
1109 map->s_partition_root, map->s_partition_len);
1110
1111 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113 return 0;
1114
1115 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 if (phd->unallocSpaceTable.extLength) {
1117 struct kernel_lb_addr loc = {
1118 .logicalBlockNum = le32_to_cpu(
1119 phd->unallocSpaceTable.extPosition),
1120 .partitionReferenceNum = p_index,
1121 };
1122 struct inode *inode;
1123
1124 inode = udf_iget_special(sb, &loc);
1125 if (IS_ERR(inode)) {
1126 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 p_index);
1128 return PTR_ERR(inode);
1129 }
1130 map->s_uspace.s_table = inode;
1131 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133 p_index, map->s_uspace.s_table->i_ino);
1134 }
1135
1136 if (phd->unallocSpaceBitmap.extLength) {
1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 if (!bitmap)
1139 return -ENOMEM;
1140 map->s_uspace.s_bitmap = bitmap;
1141 bitmap->s_extPosition = le32_to_cpu(
1142 phd->unallocSpaceBitmap.extPosition);
1143 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145 p_index, bitmap->s_extPosition);
1146 }
1147
1148 if (phd->partitionIntegrityTable.extLength)
1149 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150
1151 if (phd->freedSpaceTable.extLength) {
1152 struct kernel_lb_addr loc = {
1153 .logicalBlockNum = le32_to_cpu(
1154 phd->freedSpaceTable.extPosition),
1155 .partitionReferenceNum = p_index,
1156 };
1157 struct inode *inode;
1158
1159 inode = udf_iget_special(sb, &loc);
1160 if (IS_ERR(inode)) {
1161 udf_debug("cannot load freedSpaceTable (part %d)\n",
1162 p_index);
1163 return PTR_ERR(inode);
1164 }
1165 map->s_fspace.s_table = inode;
1166 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168 p_index, map->s_fspace.s_table->i_ino);
1169 }
1170
1171 if (phd->freedSpaceBitmap.extLength) {
1172 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173 if (!bitmap)
1174 return -ENOMEM;
1175 map->s_fspace.s_bitmap = bitmap;
1176 bitmap->s_extPosition = le32_to_cpu(
1177 phd->freedSpaceBitmap.extPosition);
1178 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180 p_index, bitmap->s_extPosition);
1181 }
1182 return 0;
1183}
1184
1185static void udf_find_vat_block(struct super_block *sb, int p_index,
1186 int type1_index, sector_t start_block)
1187{
1188 struct udf_sb_info *sbi = UDF_SB(sb);
1189 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190 sector_t vat_block;
1191 struct kernel_lb_addr ino;
1192 struct inode *inode;
1193
1194 /*
1195 * VAT file entry is in the last recorded block. Some broken disks have
1196 * it a few blocks before so try a bit harder...
1197 */
1198 ino.partitionReferenceNum = type1_index;
1199 for (vat_block = start_block;
1200 vat_block >= map->s_partition_root &&
1201 vat_block >= start_block - 3; vat_block--) {
1202 ino.logicalBlockNum = vat_block - map->s_partition_root;
1203 inode = udf_iget_special(sb, &ino);
1204 if (!IS_ERR(inode)) {
1205 sbi->s_vat_inode = inode;
1206 break;
1207 }
1208 }
1209}
1210
1211static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212{
1213 struct udf_sb_info *sbi = UDF_SB(sb);
1214 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215 struct buffer_head *bh = NULL;
1216 struct udf_inode_info *vati;
1217 uint32_t pos;
1218 struct virtualAllocationTable20 *vat20;
1219 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220
1221 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222 if (!sbi->s_vat_inode &&
1223 sbi->s_last_block != blocks - 1) {
1224 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225 (unsigned long)sbi->s_last_block,
1226 (unsigned long)blocks - 1);
1227 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228 }
1229 if (!sbi->s_vat_inode)
1230 return -EIO;
1231
1232 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233 map->s_type_specific.s_virtual.s_start_offset = 0;
1234 map->s_type_specific.s_virtual.s_num_entries =
1235 (sbi->s_vat_inode->i_size - 36) >> 2;
1236 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237 vati = UDF_I(sbi->s_vat_inode);
1238 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239 pos = udf_block_map(sbi->s_vat_inode, 0);
1240 bh = sb_bread(sb, pos);
1241 if (!bh)
1242 return -EIO;
1243 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244 } else {
1245 vat20 = (struct virtualAllocationTable20 *)
1246 vati->i_ext.i_data;
1247 }
1248
1249 map->s_type_specific.s_virtual.s_start_offset =
1250 le16_to_cpu(vat20->lengthHeader);
1251 map->s_type_specific.s_virtual.s_num_entries =
1252 (sbi->s_vat_inode->i_size -
1253 map->s_type_specific.s_virtual.
1254 s_start_offset) >> 2;
1255 brelse(bh);
1256 }
1257 return 0;
1258}
1259
1260/*
1261 * Load partition descriptor block
1262 *
1263 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264 * sequence.
1265 */
1266static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267{
1268 struct buffer_head *bh;
1269 struct partitionDesc *p;
1270 struct udf_part_map *map;
1271 struct udf_sb_info *sbi = UDF_SB(sb);
1272 int i, type1_idx;
1273 uint16_t partitionNumber;
1274 uint16_t ident;
1275 int ret;
1276
1277 bh = udf_read_tagged(sb, block, block, &ident);
1278 if (!bh)
1279 return -EAGAIN;
1280 if (ident != TAG_IDENT_PD) {
1281 ret = 0;
1282 goto out_bh;
1283 }
1284
1285 p = (struct partitionDesc *)bh->b_data;
1286 partitionNumber = le16_to_cpu(p->partitionNumber);
1287
1288 /* First scan for TYPE1 and SPARABLE partitions */
1289 for (i = 0; i < sbi->s_partitions; i++) {
1290 map = &sbi->s_partmaps[i];
1291 udf_debug("Searching map: (%d == %d)\n",
1292 map->s_partition_num, partitionNumber);
1293 if (map->s_partition_num == partitionNumber &&
1294 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295 map->s_partition_type == UDF_SPARABLE_MAP15))
1296 break;
1297 }
1298
1299 if (i >= sbi->s_partitions) {
1300 udf_debug("Partition (%d) not found in partition map\n",
1301 partitionNumber);
1302 ret = 0;
1303 goto out_bh;
1304 }
1305
1306 ret = udf_fill_partdesc_info(sb, p, i);
1307 if (ret < 0)
1308 goto out_bh;
1309
1310 /*
1311 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312 * PHYSICAL partitions are already set up
1313 */
1314 type1_idx = i;
1315#ifdef UDFFS_DEBUG
1316 map = NULL; /* supress 'maybe used uninitialized' warning */
1317#endif
1318 for (i = 0; i < sbi->s_partitions; i++) {
1319 map = &sbi->s_partmaps[i];
1320
1321 if (map->s_partition_num == partitionNumber &&
1322 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324 map->s_partition_type == UDF_METADATA_MAP25))
1325 break;
1326 }
1327
1328 if (i >= sbi->s_partitions) {
1329 ret = 0;
1330 goto out_bh;
1331 }
1332
1333 ret = udf_fill_partdesc_info(sb, p, i);
1334 if (ret < 0)
1335 goto out_bh;
1336
1337 if (map->s_partition_type == UDF_METADATA_MAP25) {
1338 ret = udf_load_metadata_files(sb, i, type1_idx);
1339 if (ret < 0) {
1340 udf_err(sb, "error loading MetaData partition map %d\n",
1341 i);
1342 goto out_bh;
1343 }
1344 } else {
1345 /*
1346 * If we have a partition with virtual map, we don't handle
1347 * writing to it (we overwrite blocks instead of relocating
1348 * them).
1349 */
1350 if (!(sb->s_flags & MS_RDONLY)) {
1351 ret = -EACCES;
1352 goto out_bh;
1353 }
1354 ret = udf_load_vat(sb, i, type1_idx);
1355 if (ret < 0)
1356 goto out_bh;
1357 }
1358 ret = 0;
1359out_bh:
1360 /* In case loading failed, we handle cleanup in udf_fill_super */
1361 brelse(bh);
1362 return ret;
1363}
1364
1365static int udf_load_sparable_map(struct super_block *sb,
1366 struct udf_part_map *map,
1367 struct sparablePartitionMap *spm)
1368{
1369 uint32_t loc;
1370 uint16_t ident;
1371 struct sparingTable *st;
1372 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373 int i;
1374 struct buffer_head *bh;
1375
1376 map->s_partition_type = UDF_SPARABLE_MAP15;
1377 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378 if (!is_power_of_2(sdata->s_packet_len)) {
1379 udf_err(sb, "error loading logical volume descriptor: "
1380 "Invalid packet length %u\n",
1381 (unsigned)sdata->s_packet_len);
1382 return -EIO;
1383 }
1384 if (spm->numSparingTables > 4) {
1385 udf_err(sb, "error loading logical volume descriptor: "
1386 "Too many sparing tables (%d)\n",
1387 (int)spm->numSparingTables);
1388 return -EIO;
1389 }
1390
1391 for (i = 0; i < spm->numSparingTables; i++) {
1392 loc = le32_to_cpu(spm->locSparingTable[i]);
1393 bh = udf_read_tagged(sb, loc, loc, &ident);
1394 if (!bh)
1395 continue;
1396
1397 st = (struct sparingTable *)bh->b_data;
1398 if (ident != 0 ||
1399 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400 strlen(UDF_ID_SPARING)) ||
1401 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402 sb->s_blocksize) {
1403 brelse(bh);
1404 continue;
1405 }
1406
1407 sdata->s_spar_map[i] = bh;
1408 }
1409 map->s_partition_func = udf_get_pblock_spar15;
1410 return 0;
1411}
1412
1413static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414 struct kernel_lb_addr *fileset)
1415{
1416 struct logicalVolDesc *lvd;
1417 int i, offset;
1418 uint8_t type;
1419 struct udf_sb_info *sbi = UDF_SB(sb);
1420 struct genericPartitionMap *gpm;
1421 uint16_t ident;
1422 struct buffer_head *bh;
1423 unsigned int table_len;
1424 int ret;
1425
1426 bh = udf_read_tagged(sb, block, block, &ident);
1427 if (!bh)
1428 return -EAGAIN;
1429 BUG_ON(ident != TAG_IDENT_LVD);
1430 lvd = (struct logicalVolDesc *)bh->b_data;
1431 table_len = le32_to_cpu(lvd->mapTableLength);
1432 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433 udf_err(sb, "error loading logical volume descriptor: "
1434 "Partition table too long (%u > %lu)\n", table_len,
1435 sb->s_blocksize - sizeof(*lvd));
1436 ret = -EIO;
1437 goto out_bh;
1438 }
1439
1440 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441 if (ret)
1442 goto out_bh;
1443
1444 for (i = 0, offset = 0;
1445 i < sbi->s_partitions && offset < table_len;
1446 i++, offset += gpm->partitionMapLength) {
1447 struct udf_part_map *map = &sbi->s_partmaps[i];
1448 gpm = (struct genericPartitionMap *)
1449 &(lvd->partitionMaps[offset]);
1450 type = gpm->partitionMapType;
1451 if (type == 1) {
1452 struct genericPartitionMap1 *gpm1 =
1453 (struct genericPartitionMap1 *)gpm;
1454 map->s_partition_type = UDF_TYPE1_MAP15;
1455 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457 map->s_partition_func = NULL;
1458 } else if (type == 2) {
1459 struct udfPartitionMap2 *upm2 =
1460 (struct udfPartitionMap2 *)gpm;
1461 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462 strlen(UDF_ID_VIRTUAL))) {
1463 u16 suf =
1464 le16_to_cpu(((__le16 *)upm2->partIdent.
1465 identSuffix)[0]);
1466 if (suf < 0x0200) {
1467 map->s_partition_type =
1468 UDF_VIRTUAL_MAP15;
1469 map->s_partition_func =
1470 udf_get_pblock_virt15;
1471 } else {
1472 map->s_partition_type =
1473 UDF_VIRTUAL_MAP20;
1474 map->s_partition_func =
1475 udf_get_pblock_virt20;
1476 }
1477 } else if (!strncmp(upm2->partIdent.ident,
1478 UDF_ID_SPARABLE,
1479 strlen(UDF_ID_SPARABLE))) {
1480 ret = udf_load_sparable_map(sb, map,
1481 (struct sparablePartitionMap *)gpm);
1482 if (ret < 0)
1483 goto out_bh;
1484 } else if (!strncmp(upm2->partIdent.ident,
1485 UDF_ID_METADATA,
1486 strlen(UDF_ID_METADATA))) {
1487 struct udf_meta_data *mdata =
1488 &map->s_type_specific.s_metadata;
1489 struct metadataPartitionMap *mdm =
1490 (struct metadataPartitionMap *)
1491 &(lvd->partitionMaps[offset]);
1492 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1493 i, type, UDF_ID_METADATA);
1494
1495 map->s_partition_type = UDF_METADATA_MAP25;
1496 map->s_partition_func = udf_get_pblock_meta25;
1497
1498 mdata->s_meta_file_loc =
1499 le32_to_cpu(mdm->metadataFileLoc);
1500 mdata->s_mirror_file_loc =
1501 le32_to_cpu(mdm->metadataMirrorFileLoc);
1502 mdata->s_bitmap_file_loc =
1503 le32_to_cpu(mdm->metadataBitmapFileLoc);
1504 mdata->s_alloc_unit_size =
1505 le32_to_cpu(mdm->allocUnitSize);
1506 mdata->s_align_unit_size =
1507 le16_to_cpu(mdm->alignUnitSize);
1508 if (mdm->flags & 0x01)
1509 mdata->s_flags |= MF_DUPLICATE_MD;
1510
1511 udf_debug("Metadata Ident suffix=0x%x\n",
1512 le16_to_cpu(*(__le16 *)
1513 mdm->partIdent.identSuffix));
1514 udf_debug("Metadata part num=%d\n",
1515 le16_to_cpu(mdm->partitionNum));
1516 udf_debug("Metadata part alloc unit size=%d\n",
1517 le32_to_cpu(mdm->allocUnitSize));
1518 udf_debug("Metadata file loc=%d\n",
1519 le32_to_cpu(mdm->metadataFileLoc));
1520 udf_debug("Mirror file loc=%d\n",
1521 le32_to_cpu(mdm->metadataMirrorFileLoc));
1522 udf_debug("Bitmap file loc=%d\n",
1523 le32_to_cpu(mdm->metadataBitmapFileLoc));
1524 udf_debug("Flags: %d %d\n",
1525 mdata->s_flags, mdm->flags);
1526 } else {
1527 udf_debug("Unknown ident: %s\n",
1528 upm2->partIdent.ident);
1529 continue;
1530 }
1531 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533 }
1534 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535 i, map->s_partition_num, type, map->s_volumeseqnum);
1536 }
1537
1538 if (fileset) {
1539 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540
1541 *fileset = lelb_to_cpu(la->extLocation);
1542 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543 fileset->logicalBlockNum,
1544 fileset->partitionReferenceNum);
1545 }
1546 if (lvd->integritySeqExt.extLength)
1547 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548 ret = 0;
1549out_bh:
1550 brelse(bh);
1551 return ret;
1552}
1553
1554/*
1555 * Find the prevailing Logical Volume Integrity Descriptor.
1556 */
1557static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558{
1559 struct buffer_head *bh, *final_bh;
1560 uint16_t ident;
1561 struct udf_sb_info *sbi = UDF_SB(sb);
1562 struct logicalVolIntegrityDesc *lvid;
1563 int indirections = 0;
1564
1565 while (++indirections <= UDF_MAX_LVID_NESTING) {
1566 final_bh = NULL;
1567 while (loc.extLength > 0 &&
1568 (bh = udf_read_tagged(sb, loc.extLocation,
1569 loc.extLocation, &ident))) {
1570 if (ident != TAG_IDENT_LVID) {
1571 brelse(bh);
1572 break;
1573 }
1574
1575 brelse(final_bh);
1576 final_bh = bh;
1577
1578 loc.extLength -= sb->s_blocksize;
1579 loc.extLocation++;
1580 }
1581
1582 if (!final_bh)
1583 return;
1584
1585 brelse(sbi->s_lvid_bh);
1586 sbi->s_lvid_bh = final_bh;
1587
1588 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589 if (lvid->nextIntegrityExt.extLength == 0)
1590 return;
1591
1592 loc = leea_to_cpu(lvid->nextIntegrityExt);
1593 }
1594
1595 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596 UDF_MAX_LVID_NESTING);
1597 brelse(sbi->s_lvid_bh);
1598 sbi->s_lvid_bh = NULL;
1599}
1600
1601
1602/*
1603 * Process a main/reserve volume descriptor sequence.
1604 * @block First block of first extent of the sequence.
1605 * @lastblock Lastblock of first extent of the sequence.
1606 * @fileset There we store extent containing root fileset
1607 *
1608 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609 * sequence
1610 */
1611static noinline int udf_process_sequence(
1612 struct super_block *sb,
1613 sector_t block, sector_t lastblock,
1614 struct kernel_lb_addr *fileset)
1615{
1616 struct buffer_head *bh = NULL;
1617 struct udf_vds_record vds[VDS_POS_LENGTH];
1618 struct udf_vds_record *curr;
1619 struct generic_desc *gd;
1620 struct volDescPtr *vdp;
1621 bool done = false;
1622 uint32_t vdsn;
1623 uint16_t ident;
1624 long next_s = 0, next_e = 0;
1625 int ret;
1626 unsigned int indirections = 0;
1627
1628 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629
1630 /*
1631 * Read the main descriptor sequence and find which descriptors
1632 * are in it.
1633 */
1634 for (; (!done && block <= lastblock); block++) {
1635
1636 bh = udf_read_tagged(sb, block, block, &ident);
1637 if (!bh) {
1638 udf_err(sb,
1639 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640 (unsigned long long)block);
1641 return -EAGAIN;
1642 }
1643
1644 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645 gd = (struct generic_desc *)bh->b_data;
1646 vdsn = le32_to_cpu(gd->volDescSeqNum);
1647 switch (ident) {
1648 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650 if (vdsn >= curr->volDescSeqNum) {
1651 curr->volDescSeqNum = vdsn;
1652 curr->block = block;
1653 }
1654 break;
1655 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656 curr = &vds[VDS_POS_VOL_DESC_PTR];
1657 if (vdsn >= curr->volDescSeqNum) {
1658 curr->volDescSeqNum = vdsn;
1659 curr->block = block;
1660
1661 vdp = (struct volDescPtr *)bh->b_data;
1662 next_s = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLocation);
1664 next_e = le32_to_cpu(
1665 vdp->nextVolDescSeqExt.extLength);
1666 next_e = next_e >> sb->s_blocksize_bits;
1667 next_e += next_s;
1668 }
1669 break;
1670 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672 if (vdsn >= curr->volDescSeqNum) {
1673 curr->volDescSeqNum = vdsn;
1674 curr->block = block;
1675 }
1676 break;
1677 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 curr = &vds[VDS_POS_PARTITION_DESC];
1679 if (!curr->block)
1680 curr->block = block;
1681 break;
1682 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684 if (vdsn >= curr->volDescSeqNum) {
1685 curr->volDescSeqNum = vdsn;
1686 curr->block = block;
1687 }
1688 break;
1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691 if (vdsn >= curr->volDescSeqNum) {
1692 curr->volDescSeqNum = vdsn;
1693 curr->block = block;
1694 }
1695 break;
1696 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697 if (++indirections > UDF_MAX_TD_NESTING) {
1698 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699 brelse(bh);
1700 return -EIO;
1701 }
1702
1703 vds[VDS_POS_TERMINATING_DESC].block = block;
1704 if (next_e) {
1705 block = next_s;
1706 lastblock = next_e;
1707 next_s = next_e = 0;
1708 } else
1709 done = true;
1710 break;
1711 }
1712 brelse(bh);
1713 }
1714 /*
1715 * Now read interesting descriptors again and process them
1716 * in a suitable order
1717 */
1718 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719 udf_err(sb, "Primary Volume Descriptor not found!\n");
1720 return -EAGAIN;
1721 }
1722 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723 if (ret < 0)
1724 return ret;
1725
1726 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727 ret = udf_load_logicalvol(sb,
1728 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729 fileset);
1730 if (ret < 0)
1731 return ret;
1732 }
1733
1734 if (vds[VDS_POS_PARTITION_DESC].block) {
1735 /*
1736 * We rescan the whole descriptor sequence to find
1737 * partition descriptor blocks and process them.
1738 */
1739 for (block = vds[VDS_POS_PARTITION_DESC].block;
1740 block < vds[VDS_POS_TERMINATING_DESC].block;
1741 block++) {
1742 ret = udf_load_partdesc(sb, block);
1743 if (ret < 0)
1744 return ret;
1745 }
1746 }
1747
1748 return 0;
1749}
1750
1751/*
1752 * Load Volume Descriptor Sequence described by anchor in bh
1753 *
1754 * Returns <0 on error, 0 on success
1755 */
1756static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757 struct kernel_lb_addr *fileset)
1758{
1759 struct anchorVolDescPtr *anchor;
1760 sector_t main_s, main_e, reserve_s, reserve_e;
1761 int ret;
1762
1763 anchor = (struct anchorVolDescPtr *)bh->b_data;
1764
1765 /* Locate the main sequence */
1766 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768 main_e = main_e >> sb->s_blocksize_bits;
1769 main_e += main_s;
1770
1771 /* Locate the reserve sequence */
1772 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774 reserve_e = reserve_e >> sb->s_blocksize_bits;
1775 reserve_e += reserve_s;
1776
1777 /* Process the main & reserve sequences */
1778 /* responsible for finding the PartitionDesc(s) */
1779 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780 if (ret != -EAGAIN)
1781 return ret;
1782 udf_sb_free_partitions(sb);
1783 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784 if (ret < 0) {
1785 udf_sb_free_partitions(sb);
1786 /* No sequence was OK, return -EIO */
1787 if (ret == -EAGAIN)
1788 ret = -EIO;
1789 }
1790 return ret;
1791}
1792
1793/*
1794 * Check whether there is an anchor block in the given block and
1795 * load Volume Descriptor Sequence if so.
1796 *
1797 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798 * block
1799 */
1800static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801 struct kernel_lb_addr *fileset)
1802{
1803 struct buffer_head *bh;
1804 uint16_t ident;
1805 int ret;
1806
1807 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808 udf_fixed_to_variable(block) >=
1809 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810 return -EAGAIN;
1811
1812 bh = udf_read_tagged(sb, block, block, &ident);
1813 if (!bh)
1814 return -EAGAIN;
1815 if (ident != TAG_IDENT_AVDP) {
1816 brelse(bh);
1817 return -EAGAIN;
1818 }
1819 ret = udf_load_sequence(sb, bh, fileset);
1820 brelse(bh);
1821 return ret;
1822}
1823
1824/*
1825 * Search for an anchor volume descriptor pointer.
1826 *
1827 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828 * of anchors.
1829 */
1830static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831 struct kernel_lb_addr *fileset)
1832{
1833 sector_t last[6];
1834 int i;
1835 struct udf_sb_info *sbi = UDF_SB(sb);
1836 int last_count = 0;
1837 int ret;
1838
1839 /* First try user provided anchor */
1840 if (sbi->s_anchor) {
1841 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842 if (ret != -EAGAIN)
1843 return ret;
1844 }
1845 /*
1846 * according to spec, anchor is in either:
1847 * block 256
1848 * lastblock-256
1849 * lastblock
1850 * however, if the disc isn't closed, it could be 512.
1851 */
1852 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853 if (ret != -EAGAIN)
1854 return ret;
1855 /*
1856 * The trouble is which block is the last one. Drives often misreport
1857 * this so we try various possibilities.
1858 */
1859 last[last_count++] = *lastblock;
1860 if (*lastblock >= 1)
1861 last[last_count++] = *lastblock - 1;
1862 last[last_count++] = *lastblock + 1;
1863 if (*lastblock >= 2)
1864 last[last_count++] = *lastblock - 2;
1865 if (*lastblock >= 150)
1866 last[last_count++] = *lastblock - 150;
1867 if (*lastblock >= 152)
1868 last[last_count++] = *lastblock - 152;
1869
1870 for (i = 0; i < last_count; i++) {
1871 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872 sb->s_blocksize_bits)
1873 continue;
1874 ret = udf_check_anchor_block(sb, last[i], fileset);
1875 if (ret != -EAGAIN) {
1876 if (!ret)
1877 *lastblock = last[i];
1878 return ret;
1879 }
1880 if (last[i] < 256)
1881 continue;
1882 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883 if (ret != -EAGAIN) {
1884 if (!ret)
1885 *lastblock = last[i];
1886 return ret;
1887 }
1888 }
1889
1890 /* Finally try block 512 in case media is open */
1891 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892}
1893
1894/*
1895 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896 * area specified by it. The function expects sbi->s_lastblock to be the last
1897 * block on the media.
1898 *
1899 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900 * was not found.
1901 */
1902static int udf_find_anchor(struct super_block *sb,
1903 struct kernel_lb_addr *fileset)
1904{
1905 struct udf_sb_info *sbi = UDF_SB(sb);
1906 sector_t lastblock = sbi->s_last_block;
1907 int ret;
1908
1909 ret = udf_scan_anchors(sb, &lastblock, fileset);
1910 if (ret != -EAGAIN)
1911 goto out;
1912
1913 /* No anchor found? Try VARCONV conversion of block numbers */
1914 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916 /* Firstly, we try to not convert number of the last block */
1917 ret = udf_scan_anchors(sb, &lastblock, fileset);
1918 if (ret != -EAGAIN)
1919 goto out;
1920
1921 lastblock = sbi->s_last_block;
1922 /* Secondly, we try with converted number of the last block */
1923 ret = udf_scan_anchors(sb, &lastblock, fileset);
1924 if (ret < 0) {
1925 /* VARCONV didn't help. Clear it. */
1926 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927 }
1928out:
1929 if (ret == 0)
1930 sbi->s_last_block = lastblock;
1931 return ret;
1932}
1933
1934/*
1935 * Check Volume Structure Descriptor, find Anchor block and load Volume
1936 * Descriptor Sequence.
1937 *
1938 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939 * block was not found.
1940 */
1941static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942 int silent, struct kernel_lb_addr *fileset)
1943{
1944 struct udf_sb_info *sbi = UDF_SB(sb);
1945 loff_t nsr_off;
1946 int ret;
1947
1948 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949 if (!silent)
1950 udf_warn(sb, "Bad block size\n");
1951 return -EINVAL;
1952 }
1953 sbi->s_last_block = uopt->lastblock;
1954 if (!uopt->novrs) {
1955 /* Check that it is NSR02 compliant */
1956 nsr_off = udf_check_vsd(sb);
1957 if (!nsr_off) {
1958 if (!silent)
1959 udf_warn(sb, "No VRS found\n");
1960 return 0;
1961 }
1962 if (nsr_off == -1)
1963 udf_debug("Failed to read sector at offset %d. "
1964 "Assuming open disc. Skipping validity "
1965 "check\n", VSD_FIRST_SECTOR_OFFSET);
1966 if (!sbi->s_last_block)
1967 sbi->s_last_block = udf_get_last_block(sb);
1968 } else {
1969 udf_debug("Validity check skipped because of novrs option\n");
1970 }
1971
1972 /* Look for anchor block and load Volume Descriptor Sequence */
1973 sbi->s_anchor = uopt->anchor;
1974 ret = udf_find_anchor(sb, fileset);
1975 if (ret < 0) {
1976 if (!silent && ret == -EAGAIN)
1977 udf_warn(sb, "No anchor found\n");
1978 return ret;
1979 }
1980 return 0;
1981}
1982
1983static void udf_open_lvid(struct super_block *sb)
1984{
1985 struct udf_sb_info *sbi = UDF_SB(sb);
1986 struct buffer_head *bh = sbi->s_lvid_bh;
1987 struct logicalVolIntegrityDesc *lvid;
1988 struct logicalVolIntegrityDescImpUse *lvidiu;
1989
1990 if (!bh)
1991 return;
1992 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993 lvidiu = udf_sb_lvidiu(sb);
1994 if (!lvidiu)
1995 return;
1996
1997 mutex_lock(&sbi->s_alloc_mutex);
1998 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001 CURRENT_TIME);
2002 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003
2004 lvid->descTag.descCRC = cpu_to_le16(
2005 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 le16_to_cpu(lvid->descTag.descCRCLength)));
2007
2008 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 mark_buffer_dirty(bh);
2010 sbi->s_lvid_dirty = 0;
2011 mutex_unlock(&sbi->s_alloc_mutex);
2012 /* Make opening of filesystem visible on the media immediately */
2013 sync_dirty_buffer(bh);
2014}
2015
2016static void udf_close_lvid(struct super_block *sb)
2017{
2018 struct udf_sb_info *sbi = UDF_SB(sb);
2019 struct buffer_head *bh = sbi->s_lvid_bh;
2020 struct logicalVolIntegrityDesc *lvid;
2021 struct logicalVolIntegrityDescImpUse *lvidiu;
2022
2023 if (!bh)
2024 return;
2025 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026 lvidiu = udf_sb_lvidiu(sb);
2027 if (!lvidiu)
2028 return;
2029
2030 mutex_lock(&sbi->s_alloc_mutex);
2031 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041
2042 lvid->descTag.descCRC = cpu_to_le16(
2043 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044 le16_to_cpu(lvid->descTag.descCRCLength)));
2045
2046 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047 /*
2048 * We set buffer uptodate unconditionally here to avoid spurious
2049 * warnings from mark_buffer_dirty() when previous EIO has marked
2050 * the buffer as !uptodate
2051 */
2052 set_buffer_uptodate(bh);
2053 mark_buffer_dirty(bh);
2054 sbi->s_lvid_dirty = 0;
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 /* Make closing of filesystem visible on the media immediately */
2057 sync_dirty_buffer(bh);
2058}
2059
2060u64 lvid_get_unique_id(struct super_block *sb)
2061{
2062 struct buffer_head *bh;
2063 struct udf_sb_info *sbi = UDF_SB(sb);
2064 struct logicalVolIntegrityDesc *lvid;
2065 struct logicalVolHeaderDesc *lvhd;
2066 u64 uniqueID;
2067 u64 ret;
2068
2069 bh = sbi->s_lvid_bh;
2070 if (!bh)
2071 return 0;
2072
2073 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075
2076 mutex_lock(&sbi->s_alloc_mutex);
2077 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078 if (!(++uniqueID & 0xFFFFFFFF))
2079 uniqueID += 16;
2080 lvhd->uniqueID = cpu_to_le64(uniqueID);
2081 mutex_unlock(&sbi->s_alloc_mutex);
2082 mark_buffer_dirty(bh);
2083
2084 return ret;
2085}
2086
2087static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088{
2089 int ret = -EINVAL;
2090 struct inode *inode = NULL;
2091 struct udf_options uopt;
2092 struct kernel_lb_addr rootdir, fileset;
2093 struct udf_sb_info *sbi;
2094 bool lvid_open = false;
2095
2096 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097 uopt.uid = INVALID_UID;
2098 uopt.gid = INVALID_GID;
2099 uopt.umask = 0;
2100 uopt.fmode = UDF_INVALID_MODE;
2101 uopt.dmode = UDF_INVALID_MODE;
2102
2103 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104 if (!sbi)
2105 return -ENOMEM;
2106
2107 sb->s_fs_info = sbi;
2108
2109 mutex_init(&sbi->s_alloc_mutex);
2110
2111 if (!udf_parse_options((char *)options, &uopt, false))
2112 goto parse_options_failure;
2113
2114 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117 goto parse_options_failure;
2118 }
2119#ifdef CONFIG_UDF_NLS
2120 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121 uopt.nls_map = load_nls_default();
2122 if (!uopt.nls_map)
2123 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124 else
2125 udf_debug("Using default NLS map\n");
2126 }
2127#endif
2128 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130
2131 fileset.logicalBlockNum = 0xFFFFFFFF;
2132 fileset.partitionReferenceNum = 0xFFFF;
2133
2134 sbi->s_flags = uopt.flags;
2135 sbi->s_uid = uopt.uid;
2136 sbi->s_gid = uopt.gid;
2137 sbi->s_umask = uopt.umask;
2138 sbi->s_fmode = uopt.fmode;
2139 sbi->s_dmode = uopt.dmode;
2140 sbi->s_nls_map = uopt.nls_map;
2141 rwlock_init(&sbi->s_cred_lock);
2142
2143 if (uopt.session == 0xFFFFFFFF)
2144 sbi->s_session = udf_get_last_session(sb);
2145 else
2146 sbi->s_session = uopt.session;
2147
2148 udf_debug("Multi-session=%d\n", sbi->s_session);
2149
2150 /* Fill in the rest of the superblock */
2151 sb->s_op = &udf_sb_ops;
2152 sb->s_export_op = &udf_export_ops;
2153
2154 sb->s_magic = UDF_SUPER_MAGIC;
2155 sb->s_time_gran = 1000;
2156
2157 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159 } else {
2160 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163 if (!silent)
2164 pr_notice("Rescanning with blocksize %d\n",
2165 UDF_DEFAULT_BLOCKSIZE);
2166 brelse(sbi->s_lvid_bh);
2167 sbi->s_lvid_bh = NULL;
2168 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170 }
2171 }
2172 if (ret < 0) {
2173 if (ret == -EAGAIN) {
2174 udf_warn(sb, "No partition found (1)\n");
2175 ret = -EINVAL;
2176 }
2177 goto error_out;
2178 }
2179
2180 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181
2182 if (sbi->s_lvid_bh) {
2183 struct logicalVolIntegrityDescImpUse *lvidiu =
2184 udf_sb_lvidiu(sb);
2185 uint16_t minUDFReadRev;
2186 uint16_t minUDFWriteRev;
2187
2188 if (!lvidiu) {
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196 minUDFReadRev,
2197 UDF_MAX_READ_VERSION);
2198 ret = -EINVAL;
2199 goto error_out;
2200 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 sbi->s_udfrev = minUDFWriteRev;
2207
2208 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212 }
2213
2214 if (!sbi->s_partitions) {
2215 udf_warn(sb, "No partition found (2)\n");
2216 ret = -EINVAL;
2217 goto error_out;
2218 }
2219
2220 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221 UDF_PART_FLAG_READ_ONLY &&
2222 !(sb->s_flags & MS_RDONLY)) {
2223 ret = -EACCES;
2224 goto error_out;
2225 }
2226
2227 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228 udf_warn(sb, "No fileset found\n");
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232
2233 if (!silent) {
2234 struct timestamp ts;
2235 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237 sbi->s_volume_ident,
2238 le16_to_cpu(ts.year), ts.month, ts.day,
2239 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240 }
2241 if (!(sb->s_flags & MS_RDONLY)) {
2242 udf_open_lvid(sb);
2243 lvid_open = true;
2244 }
2245
2246 /* Assign the root inode */
2247 /* assign inodes by physical block number */
2248 /* perhaps it's not extensible enough, but for now ... */
2249 inode = udf_iget(sb, &rootdir);
2250 if (IS_ERR(inode)) {
2251 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253 ret = PTR_ERR(inode);
2254 goto error_out;
2255 }
2256
2257 /* Allocate a dentry for the root inode */
2258 sb->s_root = d_make_root(inode);
2259 if (!sb->s_root) {
2260 udf_err(sb, "Couldn't allocate root dentry\n");
2261 ret = -ENOMEM;
2262 goto error_out;
2263 }
2264 sb->s_maxbytes = MAX_LFS_FILESIZE;
2265 sb->s_max_links = UDF_MAX_LINKS;
2266 return 0;
2267
2268error_out:
2269 iput(sbi->s_vat_inode);
2270parse_options_failure:
2271#ifdef CONFIG_UDF_NLS
2272 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273 unload_nls(sbi->s_nls_map);
2274#endif
2275 if (lvid_open)
2276 udf_close_lvid(sb);
2277 brelse(sbi->s_lvid_bh);
2278 udf_sb_free_partitions(sb);
2279 kfree(sbi);
2280 sb->s_fs_info = NULL;
2281
2282 return ret;
2283}
2284
2285void _udf_err(struct super_block *sb, const char *function,
2286 const char *fmt, ...)
2287{
2288 struct va_format vaf;
2289 va_list args;
2290
2291 va_start(args, fmt);
2292
2293 vaf.fmt = fmt;
2294 vaf.va = &args;
2295
2296 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297
2298 va_end(args);
2299}
2300
2301void _udf_warn(struct super_block *sb, const char *function,
2302 const char *fmt, ...)
2303{
2304 struct va_format vaf;
2305 va_list args;
2306
2307 va_start(args, fmt);
2308
2309 vaf.fmt = fmt;
2310 vaf.va = &args;
2311
2312 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313
2314 va_end(args);
2315}
2316
2317static void udf_put_super(struct super_block *sb)
2318{
2319 struct udf_sb_info *sbi;
2320
2321 sbi = UDF_SB(sb);
2322
2323 iput(sbi->s_vat_inode);
2324#ifdef CONFIG_UDF_NLS
2325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326 unload_nls(sbi->s_nls_map);
2327#endif
2328 if (!(sb->s_flags & MS_RDONLY))
2329 udf_close_lvid(sb);
2330 brelse(sbi->s_lvid_bh);
2331 udf_sb_free_partitions(sb);
2332 mutex_destroy(&sbi->s_alloc_mutex);
2333 kfree(sb->s_fs_info);
2334 sb->s_fs_info = NULL;
2335}
2336
2337static int udf_sync_fs(struct super_block *sb, int wait)
2338{
2339 struct udf_sb_info *sbi = UDF_SB(sb);
2340
2341 mutex_lock(&sbi->s_alloc_mutex);
2342 if (sbi->s_lvid_dirty) {
2343 /*
2344 * Blockdevice will be synced later so we don't have to submit
2345 * the buffer for IO
2346 */
2347 mark_buffer_dirty(sbi->s_lvid_bh);
2348 sbi->s_lvid_dirty = 0;
2349 }
2350 mutex_unlock(&sbi->s_alloc_mutex);
2351
2352 return 0;
2353}
2354
2355static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356{
2357 struct super_block *sb = dentry->d_sb;
2358 struct udf_sb_info *sbi = UDF_SB(sb);
2359 struct logicalVolIntegrityDescImpUse *lvidiu;
2360 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361
2362 lvidiu = udf_sb_lvidiu(sb);
2363 buf->f_type = UDF_SUPER_MAGIC;
2364 buf->f_bsize = sb->s_blocksize;
2365 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366 buf->f_bfree = udf_count_free(sb);
2367 buf->f_bavail = buf->f_bfree;
2368 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369 le32_to_cpu(lvidiu->numDirs)) : 0)
2370 + buf->f_bfree;
2371 buf->f_ffree = buf->f_bfree;
2372 buf->f_namelen = UDF_NAME_LEN;
2373 buf->f_fsid.val[0] = (u32)id;
2374 buf->f_fsid.val[1] = (u32)(id >> 32);
2375
2376 return 0;
2377}
2378
2379static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380 struct udf_bitmap *bitmap)
2381{
2382 struct buffer_head *bh = NULL;
2383 unsigned int accum = 0;
2384 int index;
2385 int block = 0, newblock;
2386 struct kernel_lb_addr loc;
2387 uint32_t bytes;
2388 uint8_t *ptr;
2389 uint16_t ident;
2390 struct spaceBitmapDesc *bm;
2391
2392 loc.logicalBlockNum = bitmap->s_extPosition;
2393 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395
2396 if (!bh) {
2397 udf_err(sb, "udf_count_free failed\n");
2398 goto out;
2399 } else if (ident != TAG_IDENT_SBD) {
2400 brelse(bh);
2401 udf_err(sb, "udf_count_free failed\n");
2402 goto out;
2403 }
2404
2405 bm = (struct spaceBitmapDesc *)bh->b_data;
2406 bytes = le32_to_cpu(bm->numOfBytes);
2407 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408 ptr = (uint8_t *)bh->b_data;
2409
2410 while (bytes > 0) {
2411 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413 cur_bytes * 8);
2414 bytes -= cur_bytes;
2415 if (bytes) {
2416 brelse(bh);
2417 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418 bh = udf_tread(sb, newblock);
2419 if (!bh) {
2420 udf_debug("read failed\n");
2421 goto out;
2422 }
2423 index = 0;
2424 ptr = (uint8_t *)bh->b_data;
2425 }
2426 }
2427 brelse(bh);
2428out:
2429 return accum;
2430}
2431
2432static unsigned int udf_count_free_table(struct super_block *sb,
2433 struct inode *table)
2434{
2435 unsigned int accum = 0;
2436 uint32_t elen;
2437 struct kernel_lb_addr eloc;
2438 int8_t etype;
2439 struct extent_position epos;
2440
2441 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442 epos.block = UDF_I(table)->i_location;
2443 epos.offset = sizeof(struct unallocSpaceEntry);
2444 epos.bh = NULL;
2445
2446 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447 accum += (elen >> table->i_sb->s_blocksize_bits);
2448
2449 brelse(epos.bh);
2450 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451
2452 return accum;
2453}
2454
2455static unsigned int udf_count_free(struct super_block *sb)
2456{
2457 unsigned int accum = 0;
2458 struct udf_sb_info *sbi;
2459 struct udf_part_map *map;
2460
2461 sbi = UDF_SB(sb);
2462 if (sbi->s_lvid_bh) {
2463 struct logicalVolIntegrityDesc *lvid =
2464 (struct logicalVolIntegrityDesc *)
2465 sbi->s_lvid_bh->b_data;
2466 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467 accum = le32_to_cpu(
2468 lvid->freeSpaceTable[sbi->s_partition]);
2469 if (accum == 0xFFFFFFFF)
2470 accum = 0;
2471 }
2472 }
2473
2474 if (accum)
2475 return accum;
2476
2477 map = &sbi->s_partmaps[sbi->s_partition];
2478 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479 accum += udf_count_free_bitmap(sb,
2480 map->s_uspace.s_bitmap);
2481 }
2482 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483 accum += udf_count_free_bitmap(sb,
2484 map->s_fspace.s_bitmap);
2485 }
2486 if (accum)
2487 return accum;
2488
2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490 accum += udf_count_free_table(sb,
2491 map->s_uspace.s_table);
2492 }
2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494 accum += udf_count_free_table(sb,
2495 map->s_fspace.s_table);
2496 }
2497
2498 return accum;
2499}
1/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/buffer_head.h>
52#include <linux/vfs.h>
53#include <linux/vmalloc.h>
54#include <linux/errno.h>
55#include <linux/mount.h>
56#include <linux/seq_file.h>
57#include <linux/bitmap.h>
58#include <linux/crc-itu-t.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <asm/uaccess.h>
66
67#define VDS_POS_PRIMARY_VOL_DESC 0
68#define VDS_POS_UNALLOC_SPACE_DESC 1
69#define VDS_POS_LOGICAL_VOL_DESC 2
70#define VDS_POS_PARTITION_DESC 3
71#define VDS_POS_IMP_USE_VOL_DESC 4
72#define VDS_POS_VOL_DESC_PTR 5
73#define VDS_POS_TERMINATING_DESC 6
74#define VDS_POS_LENGTH 7
75
76#define UDF_DEFAULT_BLOCKSIZE 2048
77
78static char error_buf[1024];
79
80/* These are the "meat" - everything else is stuffing */
81static int udf_fill_super(struct super_block *, void *, int);
82static void udf_put_super(struct super_block *);
83static int udf_sync_fs(struct super_block *, int);
84static int udf_remount_fs(struct super_block *, int *, char *);
85static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87 struct kernel_lb_addr *);
88static void udf_load_fileset(struct super_block *, struct buffer_head *,
89 struct kernel_lb_addr *);
90static void udf_open_lvid(struct super_block *);
91static void udf_close_lvid(struct super_block *);
92static unsigned int udf_count_free(struct super_block *);
93static int udf_statfs(struct dentry *, struct kstatfs *);
94static int udf_show_options(struct seq_file *, struct vfsmount *);
95static void udf_error(struct super_block *sb, const char *function,
96 const char *fmt, ...);
97
98struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
99{
100 struct logicalVolIntegrityDesc *lvid =
101 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
102 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
103 __u32 offset = number_of_partitions * 2 *
104 sizeof(uint32_t)/sizeof(uint8_t);
105 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
106}
107
108/* UDF filesystem type */
109static struct dentry *udf_mount(struct file_system_type *fs_type,
110 int flags, const char *dev_name, void *data)
111{
112 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
113}
114
115static struct file_system_type udf_fstype = {
116 .owner = THIS_MODULE,
117 .name = "udf",
118 .mount = udf_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121};
122
123static struct kmem_cache *udf_inode_cachep;
124
125static struct inode *udf_alloc_inode(struct super_block *sb)
126{
127 struct udf_inode_info *ei;
128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 if (!ei)
130 return NULL;
131
132 ei->i_unique = 0;
133 ei->i_lenExtents = 0;
134 ei->i_next_alloc_block = 0;
135 ei->i_next_alloc_goal = 0;
136 ei->i_strat4096 = 0;
137 init_rwsem(&ei->i_data_sem);
138
139 return &ei->vfs_inode;
140}
141
142static void udf_i_callback(struct rcu_head *head)
143{
144 struct inode *inode = container_of(head, struct inode, i_rcu);
145 INIT_LIST_HEAD(&inode->i_dentry);
146 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147}
148
149static void udf_destroy_inode(struct inode *inode)
150{
151 call_rcu(&inode->i_rcu, udf_i_callback);
152}
153
154static void init_once(void *foo)
155{
156 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157
158 ei->i_ext.i_data = NULL;
159 inode_init_once(&ei->vfs_inode);
160}
161
162static int init_inodecache(void)
163{
164 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165 sizeof(struct udf_inode_info),
166 0, (SLAB_RECLAIM_ACCOUNT |
167 SLAB_MEM_SPREAD),
168 init_once);
169 if (!udf_inode_cachep)
170 return -ENOMEM;
171 return 0;
172}
173
174static void destroy_inodecache(void)
175{
176 kmem_cache_destroy(udf_inode_cachep);
177}
178
179/* Superblock operations */
180static const struct super_operations udf_sb_ops = {
181 .alloc_inode = udf_alloc_inode,
182 .destroy_inode = udf_destroy_inode,
183 .write_inode = udf_write_inode,
184 .evict_inode = udf_evict_inode,
185 .put_super = udf_put_super,
186 .sync_fs = udf_sync_fs,
187 .statfs = udf_statfs,
188 .remount_fs = udf_remount_fs,
189 .show_options = udf_show_options,
190};
191
192struct udf_options {
193 unsigned char novrs;
194 unsigned int blocksize;
195 unsigned int session;
196 unsigned int lastblock;
197 unsigned int anchor;
198 unsigned int volume;
199 unsigned short partition;
200 unsigned int fileset;
201 unsigned int rootdir;
202 unsigned int flags;
203 mode_t umask;
204 gid_t gid;
205 uid_t uid;
206 mode_t fmode;
207 mode_t dmode;
208 struct nls_table *nls_map;
209};
210
211static int __init init_udf_fs(void)
212{
213 int err;
214
215 err = init_inodecache();
216 if (err)
217 goto out1;
218 err = register_filesystem(&udf_fstype);
219 if (err)
220 goto out;
221
222 return 0;
223
224out:
225 destroy_inodecache();
226
227out1:
228 return err;
229}
230
231static void __exit exit_udf_fs(void)
232{
233 unregister_filesystem(&udf_fstype);
234 destroy_inodecache();
235}
236
237module_init(init_udf_fs)
238module_exit(exit_udf_fs)
239
240static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
241{
242 struct udf_sb_info *sbi = UDF_SB(sb);
243
244 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
245 GFP_KERNEL);
246 if (!sbi->s_partmaps) {
247 udf_error(sb, __func__,
248 "Unable to allocate space for %d partition maps",
249 count);
250 sbi->s_partitions = 0;
251 return -ENOMEM;
252 }
253
254 sbi->s_partitions = count;
255 return 0;
256}
257
258static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
259{
260 struct super_block *sb = mnt->mnt_sb;
261 struct udf_sb_info *sbi = UDF_SB(sb);
262
263 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
264 seq_puts(seq, ",nostrict");
265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
266 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
268 seq_puts(seq, ",unhide");
269 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
270 seq_puts(seq, ",undelete");
271 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
272 seq_puts(seq, ",noadinicb");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
274 seq_puts(seq, ",shortad");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
276 seq_puts(seq, ",uid=forget");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
278 seq_puts(seq, ",uid=ignore");
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
280 seq_puts(seq, ",gid=forget");
281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
282 seq_puts(seq, ",gid=ignore");
283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
284 seq_printf(seq, ",uid=%u", sbi->s_uid);
285 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
286 seq_printf(seq, ",gid=%u", sbi->s_gid);
287 if (sbi->s_umask != 0)
288 seq_printf(seq, ",umask=%o", sbi->s_umask);
289 if (sbi->s_fmode != UDF_INVALID_MODE)
290 seq_printf(seq, ",mode=%o", sbi->s_fmode);
291 if (sbi->s_dmode != UDF_INVALID_MODE)
292 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
293 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
294 seq_printf(seq, ",session=%u", sbi->s_session);
295 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
296 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
297 if (sbi->s_anchor != 0)
298 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
299 /*
300 * volume, partition, fileset and rootdir seem to be ignored
301 * currently
302 */
303 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
304 seq_puts(seq, ",utf8");
305 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
306 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
307
308 return 0;
309}
310
311/*
312 * udf_parse_options
313 *
314 * PURPOSE
315 * Parse mount options.
316 *
317 * DESCRIPTION
318 * The following mount options are supported:
319 *
320 * gid= Set the default group.
321 * umask= Set the default umask.
322 * mode= Set the default file permissions.
323 * dmode= Set the default directory permissions.
324 * uid= Set the default user.
325 * bs= Set the block size.
326 * unhide Show otherwise hidden files.
327 * undelete Show deleted files in lists.
328 * adinicb Embed data in the inode (default)
329 * noadinicb Don't embed data in the inode
330 * shortad Use short ad's
331 * longad Use long ad's (default)
332 * nostrict Unset strict conformance
333 * iocharset= Set the NLS character set
334 *
335 * The remaining are for debugging and disaster recovery:
336 *
337 * novrs Skip volume sequence recognition
338 *
339 * The following expect a offset from 0.
340 *
341 * session= Set the CDROM session (default= last session)
342 * anchor= Override standard anchor location. (default= 256)
343 * volume= Override the VolumeDesc location. (unused)
344 * partition= Override the PartitionDesc location. (unused)
345 * lastblock= Set the last block of the filesystem/
346 *
347 * The following expect a offset from the partition root.
348 *
349 * fileset= Override the fileset block location. (unused)
350 * rootdir= Override the root directory location. (unused)
351 * WARNING: overriding the rootdir to a non-directory may
352 * yield highly unpredictable results.
353 *
354 * PRE-CONDITIONS
355 * options Pointer to mount options string.
356 * uopts Pointer to mount options variable.
357 *
358 * POST-CONDITIONS
359 * <return> 1 Mount options parsed okay.
360 * <return> 0 Error parsing mount options.
361 *
362 * HISTORY
363 * July 1, 1997 - Andrew E. Mileski
364 * Written, tested, and released.
365 */
366
367enum {
368 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
369 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
370 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
371 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
372 Opt_rootdir, Opt_utf8, Opt_iocharset,
373 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
374 Opt_fmode, Opt_dmode
375};
376
377static const match_table_t tokens = {
378 {Opt_novrs, "novrs"},
379 {Opt_nostrict, "nostrict"},
380 {Opt_bs, "bs=%u"},
381 {Opt_unhide, "unhide"},
382 {Opt_undelete, "undelete"},
383 {Opt_noadinicb, "noadinicb"},
384 {Opt_adinicb, "adinicb"},
385 {Opt_shortad, "shortad"},
386 {Opt_longad, "longad"},
387 {Opt_uforget, "uid=forget"},
388 {Opt_uignore, "uid=ignore"},
389 {Opt_gforget, "gid=forget"},
390 {Opt_gignore, "gid=ignore"},
391 {Opt_gid, "gid=%u"},
392 {Opt_uid, "uid=%u"},
393 {Opt_umask, "umask=%o"},
394 {Opt_session, "session=%u"},
395 {Opt_lastblock, "lastblock=%u"},
396 {Opt_anchor, "anchor=%u"},
397 {Opt_volume, "volume=%u"},
398 {Opt_partition, "partition=%u"},
399 {Opt_fileset, "fileset=%u"},
400 {Opt_rootdir, "rootdir=%u"},
401 {Opt_utf8, "utf8"},
402 {Opt_iocharset, "iocharset=%s"},
403 {Opt_fmode, "mode=%o"},
404 {Opt_dmode, "dmode=%o"},
405 {Opt_err, NULL}
406};
407
408static int udf_parse_options(char *options, struct udf_options *uopt,
409 bool remount)
410{
411 char *p;
412 int option;
413
414 uopt->novrs = 0;
415 uopt->partition = 0xFFFF;
416 uopt->session = 0xFFFFFFFF;
417 uopt->lastblock = 0;
418 uopt->anchor = 0;
419 uopt->volume = 0xFFFFFFFF;
420 uopt->rootdir = 0xFFFFFFFF;
421 uopt->fileset = 0xFFFFFFFF;
422 uopt->nls_map = NULL;
423
424 if (!options)
425 return 1;
426
427 while ((p = strsep(&options, ",")) != NULL) {
428 substring_t args[MAX_OPT_ARGS];
429 int token;
430 if (!*p)
431 continue;
432
433 token = match_token(p, tokens, args);
434 switch (token) {
435 case Opt_novrs:
436 uopt->novrs = 1;
437 break;
438 case Opt_bs:
439 if (match_int(&args[0], &option))
440 return 0;
441 uopt->blocksize = option;
442 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
443 break;
444 case Opt_unhide:
445 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
446 break;
447 case Opt_undelete:
448 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
449 break;
450 case Opt_noadinicb:
451 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
452 break;
453 case Opt_adinicb:
454 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
455 break;
456 case Opt_shortad:
457 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
458 break;
459 case Opt_longad:
460 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
461 break;
462 case Opt_gid:
463 if (match_int(args, &option))
464 return 0;
465 uopt->gid = option;
466 uopt->flags |= (1 << UDF_FLAG_GID_SET);
467 break;
468 case Opt_uid:
469 if (match_int(args, &option))
470 return 0;
471 uopt->uid = option;
472 uopt->flags |= (1 << UDF_FLAG_UID_SET);
473 break;
474 case Opt_umask:
475 if (match_octal(args, &option))
476 return 0;
477 uopt->umask = option;
478 break;
479 case Opt_nostrict:
480 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
481 break;
482 case Opt_session:
483 if (match_int(args, &option))
484 return 0;
485 uopt->session = option;
486 if (!remount)
487 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
488 break;
489 case Opt_lastblock:
490 if (match_int(args, &option))
491 return 0;
492 uopt->lastblock = option;
493 if (!remount)
494 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
495 break;
496 case Opt_anchor:
497 if (match_int(args, &option))
498 return 0;
499 uopt->anchor = option;
500 break;
501 case Opt_volume:
502 if (match_int(args, &option))
503 return 0;
504 uopt->volume = option;
505 break;
506 case Opt_partition:
507 if (match_int(args, &option))
508 return 0;
509 uopt->partition = option;
510 break;
511 case Opt_fileset:
512 if (match_int(args, &option))
513 return 0;
514 uopt->fileset = option;
515 break;
516 case Opt_rootdir:
517 if (match_int(args, &option))
518 return 0;
519 uopt->rootdir = option;
520 break;
521 case Opt_utf8:
522 uopt->flags |= (1 << UDF_FLAG_UTF8);
523 break;
524#ifdef CONFIG_UDF_NLS
525 case Opt_iocharset:
526 uopt->nls_map = load_nls(args[0].from);
527 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
528 break;
529#endif
530 case Opt_uignore:
531 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
532 break;
533 case Opt_uforget:
534 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
535 break;
536 case Opt_gignore:
537 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
538 break;
539 case Opt_gforget:
540 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
541 break;
542 case Opt_fmode:
543 if (match_octal(args, &option))
544 return 0;
545 uopt->fmode = option & 0777;
546 break;
547 case Opt_dmode:
548 if (match_octal(args, &option))
549 return 0;
550 uopt->dmode = option & 0777;
551 break;
552 default:
553 printk(KERN_ERR "udf: bad mount option \"%s\" "
554 "or missing value\n", p);
555 return 0;
556 }
557 }
558 return 1;
559}
560
561static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
562{
563 struct udf_options uopt;
564 struct udf_sb_info *sbi = UDF_SB(sb);
565 int error = 0;
566
567 uopt.flags = sbi->s_flags;
568 uopt.uid = sbi->s_uid;
569 uopt.gid = sbi->s_gid;
570 uopt.umask = sbi->s_umask;
571 uopt.fmode = sbi->s_fmode;
572 uopt.dmode = sbi->s_dmode;
573
574 if (!udf_parse_options(options, &uopt, true))
575 return -EINVAL;
576
577 write_lock(&sbi->s_cred_lock);
578 sbi->s_flags = uopt.flags;
579 sbi->s_uid = uopt.uid;
580 sbi->s_gid = uopt.gid;
581 sbi->s_umask = uopt.umask;
582 sbi->s_fmode = uopt.fmode;
583 sbi->s_dmode = uopt.dmode;
584 write_unlock(&sbi->s_cred_lock);
585
586 if (sbi->s_lvid_bh) {
587 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
588 if (write_rev > UDF_MAX_WRITE_VERSION)
589 *flags |= MS_RDONLY;
590 }
591
592 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
593 goto out_unlock;
594
595 if (*flags & MS_RDONLY)
596 udf_close_lvid(sb);
597 else
598 udf_open_lvid(sb);
599
600out_unlock:
601 return error;
602}
603
604/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
605/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
606static loff_t udf_check_vsd(struct super_block *sb)
607{
608 struct volStructDesc *vsd = NULL;
609 loff_t sector = 32768;
610 int sectorsize;
611 struct buffer_head *bh = NULL;
612 int nsr02 = 0;
613 int nsr03 = 0;
614 struct udf_sb_info *sbi;
615
616 sbi = UDF_SB(sb);
617 if (sb->s_blocksize < sizeof(struct volStructDesc))
618 sectorsize = sizeof(struct volStructDesc);
619 else
620 sectorsize = sb->s_blocksize;
621
622 sector += (sbi->s_session << sb->s_blocksize_bits);
623
624 udf_debug("Starting at sector %u (%ld byte sectors)\n",
625 (unsigned int)(sector >> sb->s_blocksize_bits),
626 sb->s_blocksize);
627 /* Process the sequence (if applicable) */
628 for (; !nsr02 && !nsr03; sector += sectorsize) {
629 /* Read a block */
630 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
631 if (!bh)
632 break;
633
634 /* Look for ISO descriptors */
635 vsd = (struct volStructDesc *)(bh->b_data +
636 (sector & (sb->s_blocksize - 1)));
637
638 if (vsd->stdIdent[0] == 0) {
639 brelse(bh);
640 break;
641 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
642 VSD_STD_ID_LEN)) {
643 switch (vsd->structType) {
644 case 0:
645 udf_debug("ISO9660 Boot Record found\n");
646 break;
647 case 1:
648 udf_debug("ISO9660 Primary Volume Descriptor "
649 "found\n");
650 break;
651 case 2:
652 udf_debug("ISO9660 Supplementary Volume "
653 "Descriptor found\n");
654 break;
655 case 3:
656 udf_debug("ISO9660 Volume Partition Descriptor "
657 "found\n");
658 break;
659 case 255:
660 udf_debug("ISO9660 Volume Descriptor Set "
661 "Terminator found\n");
662 break;
663 default:
664 udf_debug("ISO9660 VRS (%u) found\n",
665 vsd->structType);
666 break;
667 }
668 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
669 VSD_STD_ID_LEN))
670 ; /* nothing */
671 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
672 VSD_STD_ID_LEN)) {
673 brelse(bh);
674 break;
675 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
676 VSD_STD_ID_LEN))
677 nsr02 = sector;
678 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
679 VSD_STD_ID_LEN))
680 nsr03 = sector;
681 brelse(bh);
682 }
683
684 if (nsr03)
685 return nsr03;
686 else if (nsr02)
687 return nsr02;
688 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
689 return -1;
690 else
691 return 0;
692}
693
694static int udf_find_fileset(struct super_block *sb,
695 struct kernel_lb_addr *fileset,
696 struct kernel_lb_addr *root)
697{
698 struct buffer_head *bh = NULL;
699 long lastblock;
700 uint16_t ident;
701 struct udf_sb_info *sbi;
702
703 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
704 fileset->partitionReferenceNum != 0xFFFF) {
705 bh = udf_read_ptagged(sb, fileset, 0, &ident);
706
707 if (!bh) {
708 return 1;
709 } else if (ident != TAG_IDENT_FSD) {
710 brelse(bh);
711 return 1;
712 }
713
714 }
715
716 sbi = UDF_SB(sb);
717 if (!bh) {
718 /* Search backwards through the partitions */
719 struct kernel_lb_addr newfileset;
720
721/* --> cvg: FIXME - is it reasonable? */
722 return 1;
723
724 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
725 (newfileset.partitionReferenceNum != 0xFFFF &&
726 fileset->logicalBlockNum == 0xFFFFFFFF &&
727 fileset->partitionReferenceNum == 0xFFFF);
728 newfileset.partitionReferenceNum--) {
729 lastblock = sbi->s_partmaps
730 [newfileset.partitionReferenceNum]
731 .s_partition_len;
732 newfileset.logicalBlockNum = 0;
733
734 do {
735 bh = udf_read_ptagged(sb, &newfileset, 0,
736 &ident);
737 if (!bh) {
738 newfileset.logicalBlockNum++;
739 continue;
740 }
741
742 switch (ident) {
743 case TAG_IDENT_SBD:
744 {
745 struct spaceBitmapDesc *sp;
746 sp = (struct spaceBitmapDesc *)
747 bh->b_data;
748 newfileset.logicalBlockNum += 1 +
749 ((le32_to_cpu(sp->numOfBytes) +
750 sizeof(struct spaceBitmapDesc)
751 - 1) >> sb->s_blocksize_bits);
752 brelse(bh);
753 break;
754 }
755 case TAG_IDENT_FSD:
756 *fileset = newfileset;
757 break;
758 default:
759 newfileset.logicalBlockNum++;
760 brelse(bh);
761 bh = NULL;
762 break;
763 }
764 } while (newfileset.logicalBlockNum < lastblock &&
765 fileset->logicalBlockNum == 0xFFFFFFFF &&
766 fileset->partitionReferenceNum == 0xFFFF);
767 }
768 }
769
770 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
771 fileset->partitionReferenceNum != 0xFFFF) && bh) {
772 udf_debug("Fileset at block=%d, partition=%d\n",
773 fileset->logicalBlockNum,
774 fileset->partitionReferenceNum);
775
776 sbi->s_partition = fileset->partitionReferenceNum;
777 udf_load_fileset(sb, bh, root);
778 brelse(bh);
779 return 0;
780 }
781 return 1;
782}
783
784static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
785{
786 struct primaryVolDesc *pvoldesc;
787 struct ustr *instr, *outstr;
788 struct buffer_head *bh;
789 uint16_t ident;
790 int ret = 1;
791
792 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
793 if (!instr)
794 return 1;
795
796 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
797 if (!outstr)
798 goto out1;
799
800 bh = udf_read_tagged(sb, block, block, &ident);
801 if (!bh)
802 goto out2;
803
804 BUG_ON(ident != TAG_IDENT_PVD);
805
806 pvoldesc = (struct primaryVolDesc *)bh->b_data;
807
808 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
809 pvoldesc->recordingDateAndTime)) {
810#ifdef UDFFS_DEBUG
811 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
812 udf_debug("recording time %04u/%02u/%02u"
813 " %02u:%02u (%x)\n",
814 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
815 ts->minute, le16_to_cpu(ts->typeAndTimezone));
816#endif
817 }
818
819 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
820 if (udf_CS0toUTF8(outstr, instr)) {
821 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
822 outstr->u_len > 31 ? 31 : outstr->u_len);
823 udf_debug("volIdent[] = '%s'\n",
824 UDF_SB(sb)->s_volume_ident);
825 }
826
827 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
828 if (udf_CS0toUTF8(outstr, instr))
829 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
830
831 brelse(bh);
832 ret = 0;
833out2:
834 kfree(outstr);
835out1:
836 kfree(instr);
837 return ret;
838}
839
840static int udf_load_metadata_files(struct super_block *sb, int partition)
841{
842 struct udf_sb_info *sbi = UDF_SB(sb);
843 struct udf_part_map *map;
844 struct udf_meta_data *mdata;
845 struct kernel_lb_addr addr;
846 int fe_error = 0;
847
848 map = &sbi->s_partmaps[partition];
849 mdata = &map->s_type_specific.s_metadata;
850
851 /* metadata address */
852 addr.logicalBlockNum = mdata->s_meta_file_loc;
853 addr.partitionReferenceNum = map->s_partition_num;
854
855 udf_debug("Metadata file location: block = %d part = %d\n",
856 addr.logicalBlockNum, addr.partitionReferenceNum);
857
858 mdata->s_metadata_fe = udf_iget(sb, &addr);
859
860 if (mdata->s_metadata_fe == NULL) {
861 udf_warning(sb, __func__, "metadata inode efe not found, "
862 "will try mirror inode.");
863 fe_error = 1;
864 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
865 ICBTAG_FLAG_AD_SHORT) {
866 udf_warning(sb, __func__, "metadata inode efe does not have "
867 "short allocation descriptors!");
868 fe_error = 1;
869 iput(mdata->s_metadata_fe);
870 mdata->s_metadata_fe = NULL;
871 }
872
873 /* mirror file entry */
874 addr.logicalBlockNum = mdata->s_mirror_file_loc;
875 addr.partitionReferenceNum = map->s_partition_num;
876
877 udf_debug("Mirror metadata file location: block = %d part = %d\n",
878 addr.logicalBlockNum, addr.partitionReferenceNum);
879
880 mdata->s_mirror_fe = udf_iget(sb, &addr);
881
882 if (mdata->s_mirror_fe == NULL) {
883 if (fe_error) {
884 udf_error(sb, __func__, "mirror inode efe not found "
885 "and metadata inode is missing too, exiting...");
886 goto error_exit;
887 } else
888 udf_warning(sb, __func__, "mirror inode efe not found,"
889 " but metadata inode is OK");
890 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
891 ICBTAG_FLAG_AD_SHORT) {
892 udf_warning(sb, __func__, "mirror inode efe does not have "
893 "short allocation descriptors!");
894 iput(mdata->s_mirror_fe);
895 mdata->s_mirror_fe = NULL;
896 if (fe_error)
897 goto error_exit;
898 }
899
900 /*
901 * bitmap file entry
902 * Note:
903 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
904 */
905 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
906 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
907 addr.partitionReferenceNum = map->s_partition_num;
908
909 udf_debug("Bitmap file location: block = %d part = %d\n",
910 addr.logicalBlockNum, addr.partitionReferenceNum);
911
912 mdata->s_bitmap_fe = udf_iget(sb, &addr);
913
914 if (mdata->s_bitmap_fe == NULL) {
915 if (sb->s_flags & MS_RDONLY)
916 udf_warning(sb, __func__, "bitmap inode efe "
917 "not found but it's ok since the disc"
918 " is mounted read-only");
919 else {
920 udf_error(sb, __func__, "bitmap inode efe not "
921 "found and attempted read-write mount");
922 goto error_exit;
923 }
924 }
925 }
926
927 udf_debug("udf_load_metadata_files Ok\n");
928
929 return 0;
930
931error_exit:
932 return 1;
933}
934
935static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
936 struct kernel_lb_addr *root)
937{
938 struct fileSetDesc *fset;
939
940 fset = (struct fileSetDesc *)bh->b_data;
941
942 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
943
944 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
945
946 udf_debug("Rootdir at block=%d, partition=%d\n",
947 root->logicalBlockNum, root->partitionReferenceNum);
948}
949
950int udf_compute_nr_groups(struct super_block *sb, u32 partition)
951{
952 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
953 return DIV_ROUND_UP(map->s_partition_len +
954 (sizeof(struct spaceBitmapDesc) << 3),
955 sb->s_blocksize * 8);
956}
957
958static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
959{
960 struct udf_bitmap *bitmap;
961 int nr_groups;
962 int size;
963
964 nr_groups = udf_compute_nr_groups(sb, index);
965 size = sizeof(struct udf_bitmap) +
966 (sizeof(struct buffer_head *) * nr_groups);
967
968 if (size <= PAGE_SIZE)
969 bitmap = kzalloc(size, GFP_KERNEL);
970 else
971 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
972
973 if (bitmap == NULL) {
974 udf_error(sb, __func__,
975 "Unable to allocate space for bitmap "
976 "and %d buffer_head pointers", nr_groups);
977 return NULL;
978 }
979
980 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
981 bitmap->s_nr_groups = nr_groups;
982 return bitmap;
983}
984
985static int udf_fill_partdesc_info(struct super_block *sb,
986 struct partitionDesc *p, int p_index)
987{
988 struct udf_part_map *map;
989 struct udf_sb_info *sbi = UDF_SB(sb);
990 struct partitionHeaderDesc *phd;
991
992 map = &sbi->s_partmaps[p_index];
993
994 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
995 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
996
997 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
998 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
999 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1000 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1001 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1002 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1003 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1004 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1005
1006 udf_debug("Partition (%d type %x) starts at physical %d, "
1007 "block length %d\n", p_index,
1008 map->s_partition_type, map->s_partition_root,
1009 map->s_partition_len);
1010
1011 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1012 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1013 return 0;
1014
1015 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1016 if (phd->unallocSpaceTable.extLength) {
1017 struct kernel_lb_addr loc = {
1018 .logicalBlockNum = le32_to_cpu(
1019 phd->unallocSpaceTable.extPosition),
1020 .partitionReferenceNum = p_index,
1021 };
1022
1023 map->s_uspace.s_table = udf_iget(sb, &loc);
1024 if (!map->s_uspace.s_table) {
1025 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1026 p_index);
1027 return 1;
1028 }
1029 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1030 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1031 p_index, map->s_uspace.s_table->i_ino);
1032 }
1033
1034 if (phd->unallocSpaceBitmap.extLength) {
1035 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1036 if (!bitmap)
1037 return 1;
1038 map->s_uspace.s_bitmap = bitmap;
1039 bitmap->s_extLength = le32_to_cpu(
1040 phd->unallocSpaceBitmap.extLength);
1041 bitmap->s_extPosition = le32_to_cpu(
1042 phd->unallocSpaceBitmap.extPosition);
1043 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1044 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1045 bitmap->s_extPosition);
1046 }
1047
1048 if (phd->partitionIntegrityTable.extLength)
1049 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1050
1051 if (phd->freedSpaceTable.extLength) {
1052 struct kernel_lb_addr loc = {
1053 .logicalBlockNum = le32_to_cpu(
1054 phd->freedSpaceTable.extPosition),
1055 .partitionReferenceNum = p_index,
1056 };
1057
1058 map->s_fspace.s_table = udf_iget(sb, &loc);
1059 if (!map->s_fspace.s_table) {
1060 udf_debug("cannot load freedSpaceTable (part %d)\n",
1061 p_index);
1062 return 1;
1063 }
1064
1065 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1066 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1067 p_index, map->s_fspace.s_table->i_ino);
1068 }
1069
1070 if (phd->freedSpaceBitmap.extLength) {
1071 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1072 if (!bitmap)
1073 return 1;
1074 map->s_fspace.s_bitmap = bitmap;
1075 bitmap->s_extLength = le32_to_cpu(
1076 phd->freedSpaceBitmap.extLength);
1077 bitmap->s_extPosition = le32_to_cpu(
1078 phd->freedSpaceBitmap.extPosition);
1079 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1080 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1081 bitmap->s_extPosition);
1082 }
1083 return 0;
1084}
1085
1086static void udf_find_vat_block(struct super_block *sb, int p_index,
1087 int type1_index, sector_t start_block)
1088{
1089 struct udf_sb_info *sbi = UDF_SB(sb);
1090 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1091 sector_t vat_block;
1092 struct kernel_lb_addr ino;
1093
1094 /*
1095 * VAT file entry is in the last recorded block. Some broken disks have
1096 * it a few blocks before so try a bit harder...
1097 */
1098 ino.partitionReferenceNum = type1_index;
1099 for (vat_block = start_block;
1100 vat_block >= map->s_partition_root &&
1101 vat_block >= start_block - 3 &&
1102 !sbi->s_vat_inode; vat_block--) {
1103 ino.logicalBlockNum = vat_block - map->s_partition_root;
1104 sbi->s_vat_inode = udf_iget(sb, &ino);
1105 }
1106}
1107
1108static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1109{
1110 struct udf_sb_info *sbi = UDF_SB(sb);
1111 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1112 struct buffer_head *bh = NULL;
1113 struct udf_inode_info *vati;
1114 uint32_t pos;
1115 struct virtualAllocationTable20 *vat20;
1116 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1117
1118 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1119 if (!sbi->s_vat_inode &&
1120 sbi->s_last_block != blocks - 1) {
1121 printk(KERN_NOTICE "UDF-fs: Failed to read VAT inode from the"
1122 " last recorded block (%lu), retrying with the last "
1123 "block of the device (%lu).\n",
1124 (unsigned long)sbi->s_last_block,
1125 (unsigned long)blocks - 1);
1126 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1127 }
1128 if (!sbi->s_vat_inode)
1129 return 1;
1130
1131 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1132 map->s_type_specific.s_virtual.s_start_offset = 0;
1133 map->s_type_specific.s_virtual.s_num_entries =
1134 (sbi->s_vat_inode->i_size - 36) >> 2;
1135 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1136 vati = UDF_I(sbi->s_vat_inode);
1137 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1138 pos = udf_block_map(sbi->s_vat_inode, 0);
1139 bh = sb_bread(sb, pos);
1140 if (!bh)
1141 return 1;
1142 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1143 } else {
1144 vat20 = (struct virtualAllocationTable20 *)
1145 vati->i_ext.i_data;
1146 }
1147
1148 map->s_type_specific.s_virtual.s_start_offset =
1149 le16_to_cpu(vat20->lengthHeader);
1150 map->s_type_specific.s_virtual.s_num_entries =
1151 (sbi->s_vat_inode->i_size -
1152 map->s_type_specific.s_virtual.
1153 s_start_offset) >> 2;
1154 brelse(bh);
1155 }
1156 return 0;
1157}
1158
1159static int udf_load_partdesc(struct super_block *sb, sector_t block)
1160{
1161 struct buffer_head *bh;
1162 struct partitionDesc *p;
1163 struct udf_part_map *map;
1164 struct udf_sb_info *sbi = UDF_SB(sb);
1165 int i, type1_idx;
1166 uint16_t partitionNumber;
1167 uint16_t ident;
1168 int ret = 0;
1169
1170 bh = udf_read_tagged(sb, block, block, &ident);
1171 if (!bh)
1172 return 1;
1173 if (ident != TAG_IDENT_PD)
1174 goto out_bh;
1175
1176 p = (struct partitionDesc *)bh->b_data;
1177 partitionNumber = le16_to_cpu(p->partitionNumber);
1178
1179 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1180 for (i = 0; i < sbi->s_partitions; i++) {
1181 map = &sbi->s_partmaps[i];
1182 udf_debug("Searching map: (%d == %d)\n",
1183 map->s_partition_num, partitionNumber);
1184 if (map->s_partition_num == partitionNumber &&
1185 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1186 map->s_partition_type == UDF_SPARABLE_MAP15))
1187 break;
1188 }
1189
1190 if (i >= sbi->s_partitions) {
1191 udf_debug("Partition (%d) not found in partition map\n",
1192 partitionNumber);
1193 goto out_bh;
1194 }
1195
1196 ret = udf_fill_partdesc_info(sb, p, i);
1197
1198 /*
1199 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1200 * PHYSICAL partitions are already set up
1201 */
1202 type1_idx = i;
1203 for (i = 0; i < sbi->s_partitions; i++) {
1204 map = &sbi->s_partmaps[i];
1205
1206 if (map->s_partition_num == partitionNumber &&
1207 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1208 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1209 map->s_partition_type == UDF_METADATA_MAP25))
1210 break;
1211 }
1212
1213 if (i >= sbi->s_partitions)
1214 goto out_bh;
1215
1216 ret = udf_fill_partdesc_info(sb, p, i);
1217 if (ret)
1218 goto out_bh;
1219
1220 if (map->s_partition_type == UDF_METADATA_MAP25) {
1221 ret = udf_load_metadata_files(sb, i);
1222 if (ret) {
1223 printk(KERN_ERR "UDF-fs: error loading MetaData "
1224 "partition map %d\n", i);
1225 goto out_bh;
1226 }
1227 } else {
1228 ret = udf_load_vat(sb, i, type1_idx);
1229 if (ret)
1230 goto out_bh;
1231 /*
1232 * Mark filesystem read-only if we have a partition with
1233 * virtual map since we don't handle writing to it (we
1234 * overwrite blocks instead of relocating them).
1235 */
1236 sb->s_flags |= MS_RDONLY;
1237 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1238 "because writing to pseudooverwrite partition is "
1239 "not implemented.\n");
1240 }
1241out_bh:
1242 /* In case loading failed, we handle cleanup in udf_fill_super */
1243 brelse(bh);
1244 return ret;
1245}
1246
1247static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1248 struct kernel_lb_addr *fileset)
1249{
1250 struct logicalVolDesc *lvd;
1251 int i, j, offset;
1252 uint8_t type;
1253 struct udf_sb_info *sbi = UDF_SB(sb);
1254 struct genericPartitionMap *gpm;
1255 uint16_t ident;
1256 struct buffer_head *bh;
1257 int ret = 0;
1258
1259 bh = udf_read_tagged(sb, block, block, &ident);
1260 if (!bh)
1261 return 1;
1262 BUG_ON(ident != TAG_IDENT_LVD);
1263 lvd = (struct logicalVolDesc *)bh->b_data;
1264
1265 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1266 if (i != 0) {
1267 ret = i;
1268 goto out_bh;
1269 }
1270
1271 for (i = 0, offset = 0;
1272 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1273 i++, offset += gpm->partitionMapLength) {
1274 struct udf_part_map *map = &sbi->s_partmaps[i];
1275 gpm = (struct genericPartitionMap *)
1276 &(lvd->partitionMaps[offset]);
1277 type = gpm->partitionMapType;
1278 if (type == 1) {
1279 struct genericPartitionMap1 *gpm1 =
1280 (struct genericPartitionMap1 *)gpm;
1281 map->s_partition_type = UDF_TYPE1_MAP15;
1282 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1283 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1284 map->s_partition_func = NULL;
1285 } else if (type == 2) {
1286 struct udfPartitionMap2 *upm2 =
1287 (struct udfPartitionMap2 *)gpm;
1288 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1289 strlen(UDF_ID_VIRTUAL))) {
1290 u16 suf =
1291 le16_to_cpu(((__le16 *)upm2->partIdent.
1292 identSuffix)[0]);
1293 if (suf < 0x0200) {
1294 map->s_partition_type =
1295 UDF_VIRTUAL_MAP15;
1296 map->s_partition_func =
1297 udf_get_pblock_virt15;
1298 } else {
1299 map->s_partition_type =
1300 UDF_VIRTUAL_MAP20;
1301 map->s_partition_func =
1302 udf_get_pblock_virt20;
1303 }
1304 } else if (!strncmp(upm2->partIdent.ident,
1305 UDF_ID_SPARABLE,
1306 strlen(UDF_ID_SPARABLE))) {
1307 uint32_t loc;
1308 struct sparingTable *st;
1309 struct sparablePartitionMap *spm =
1310 (struct sparablePartitionMap *)gpm;
1311
1312 map->s_partition_type = UDF_SPARABLE_MAP15;
1313 map->s_type_specific.s_sparing.s_packet_len =
1314 le16_to_cpu(spm->packetLength);
1315 for (j = 0; j < spm->numSparingTables; j++) {
1316 struct buffer_head *bh2;
1317
1318 loc = le32_to_cpu(
1319 spm->locSparingTable[j]);
1320 bh2 = udf_read_tagged(sb, loc, loc,
1321 &ident);
1322 map->s_type_specific.s_sparing.
1323 s_spar_map[j] = bh2;
1324
1325 if (bh2 == NULL)
1326 continue;
1327
1328 st = (struct sparingTable *)bh2->b_data;
1329 if (ident != 0 || strncmp(
1330 st->sparingIdent.ident,
1331 UDF_ID_SPARING,
1332 strlen(UDF_ID_SPARING))) {
1333 brelse(bh2);
1334 map->s_type_specific.s_sparing.
1335 s_spar_map[j] = NULL;
1336 }
1337 }
1338 map->s_partition_func = udf_get_pblock_spar15;
1339 } else if (!strncmp(upm2->partIdent.ident,
1340 UDF_ID_METADATA,
1341 strlen(UDF_ID_METADATA))) {
1342 struct udf_meta_data *mdata =
1343 &map->s_type_specific.s_metadata;
1344 struct metadataPartitionMap *mdm =
1345 (struct metadataPartitionMap *)
1346 &(lvd->partitionMaps[offset]);
1347 udf_debug("Parsing Logical vol part %d "
1348 "type %d id=%s\n", i, type,
1349 UDF_ID_METADATA);
1350
1351 map->s_partition_type = UDF_METADATA_MAP25;
1352 map->s_partition_func = udf_get_pblock_meta25;
1353
1354 mdata->s_meta_file_loc =
1355 le32_to_cpu(mdm->metadataFileLoc);
1356 mdata->s_mirror_file_loc =
1357 le32_to_cpu(mdm->metadataMirrorFileLoc);
1358 mdata->s_bitmap_file_loc =
1359 le32_to_cpu(mdm->metadataBitmapFileLoc);
1360 mdata->s_alloc_unit_size =
1361 le32_to_cpu(mdm->allocUnitSize);
1362 mdata->s_align_unit_size =
1363 le16_to_cpu(mdm->alignUnitSize);
1364 mdata->s_dup_md_flag =
1365 mdm->flags & 0x01;
1366
1367 udf_debug("Metadata Ident suffix=0x%x\n",
1368 (le16_to_cpu(
1369 ((__le16 *)
1370 mdm->partIdent.identSuffix)[0])));
1371 udf_debug("Metadata part num=%d\n",
1372 le16_to_cpu(mdm->partitionNum));
1373 udf_debug("Metadata part alloc unit size=%d\n",
1374 le32_to_cpu(mdm->allocUnitSize));
1375 udf_debug("Metadata file loc=%d\n",
1376 le32_to_cpu(mdm->metadataFileLoc));
1377 udf_debug("Mirror file loc=%d\n",
1378 le32_to_cpu(mdm->metadataMirrorFileLoc));
1379 udf_debug("Bitmap file loc=%d\n",
1380 le32_to_cpu(mdm->metadataBitmapFileLoc));
1381 udf_debug("Duplicate Flag: %d %d\n",
1382 mdata->s_dup_md_flag, mdm->flags);
1383 } else {
1384 udf_debug("Unknown ident: %s\n",
1385 upm2->partIdent.ident);
1386 continue;
1387 }
1388 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1389 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1390 }
1391 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1392 i, map->s_partition_num, type,
1393 map->s_volumeseqnum);
1394 }
1395
1396 if (fileset) {
1397 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1398
1399 *fileset = lelb_to_cpu(la->extLocation);
1400 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1401 "partition=%d\n", fileset->logicalBlockNum,
1402 fileset->partitionReferenceNum);
1403 }
1404 if (lvd->integritySeqExt.extLength)
1405 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1406
1407out_bh:
1408 brelse(bh);
1409 return ret;
1410}
1411
1412/*
1413 * udf_load_logicalvolint
1414 *
1415 */
1416static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1417{
1418 struct buffer_head *bh = NULL;
1419 uint16_t ident;
1420 struct udf_sb_info *sbi = UDF_SB(sb);
1421 struct logicalVolIntegrityDesc *lvid;
1422
1423 while (loc.extLength > 0 &&
1424 (bh = udf_read_tagged(sb, loc.extLocation,
1425 loc.extLocation, &ident)) &&
1426 ident == TAG_IDENT_LVID) {
1427 sbi->s_lvid_bh = bh;
1428 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1429
1430 if (lvid->nextIntegrityExt.extLength)
1431 udf_load_logicalvolint(sb,
1432 leea_to_cpu(lvid->nextIntegrityExt));
1433
1434 if (sbi->s_lvid_bh != bh)
1435 brelse(bh);
1436 loc.extLength -= sb->s_blocksize;
1437 loc.extLocation++;
1438 }
1439 if (sbi->s_lvid_bh != bh)
1440 brelse(bh);
1441}
1442
1443/*
1444 * udf_process_sequence
1445 *
1446 * PURPOSE
1447 * Process a main/reserve volume descriptor sequence.
1448 *
1449 * PRE-CONDITIONS
1450 * sb Pointer to _locked_ superblock.
1451 * block First block of first extent of the sequence.
1452 * lastblock Lastblock of first extent of the sequence.
1453 *
1454 * HISTORY
1455 * July 1, 1997 - Andrew E. Mileski
1456 * Written, tested, and released.
1457 */
1458static noinline int udf_process_sequence(struct super_block *sb, long block,
1459 long lastblock, struct kernel_lb_addr *fileset)
1460{
1461 struct buffer_head *bh = NULL;
1462 struct udf_vds_record vds[VDS_POS_LENGTH];
1463 struct udf_vds_record *curr;
1464 struct generic_desc *gd;
1465 struct volDescPtr *vdp;
1466 int done = 0;
1467 uint32_t vdsn;
1468 uint16_t ident;
1469 long next_s = 0, next_e = 0;
1470
1471 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1472
1473 /*
1474 * Read the main descriptor sequence and find which descriptors
1475 * are in it.
1476 */
1477 for (; (!done && block <= lastblock); block++) {
1478
1479 bh = udf_read_tagged(sb, block, block, &ident);
1480 if (!bh) {
1481 printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1482 "sequence is corrupted or we could not read "
1483 "it.\n", (unsigned long long)block);
1484 return 1;
1485 }
1486
1487 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1488 gd = (struct generic_desc *)bh->b_data;
1489 vdsn = le32_to_cpu(gd->volDescSeqNum);
1490 switch (ident) {
1491 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1492 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1493 if (vdsn >= curr->volDescSeqNum) {
1494 curr->volDescSeqNum = vdsn;
1495 curr->block = block;
1496 }
1497 break;
1498 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1499 curr = &vds[VDS_POS_VOL_DESC_PTR];
1500 if (vdsn >= curr->volDescSeqNum) {
1501 curr->volDescSeqNum = vdsn;
1502 curr->block = block;
1503
1504 vdp = (struct volDescPtr *)bh->b_data;
1505 next_s = le32_to_cpu(
1506 vdp->nextVolDescSeqExt.extLocation);
1507 next_e = le32_to_cpu(
1508 vdp->nextVolDescSeqExt.extLength);
1509 next_e = next_e >> sb->s_blocksize_bits;
1510 next_e += next_s;
1511 }
1512 break;
1513 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1514 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1515 if (vdsn >= curr->volDescSeqNum) {
1516 curr->volDescSeqNum = vdsn;
1517 curr->block = block;
1518 }
1519 break;
1520 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1521 curr = &vds[VDS_POS_PARTITION_DESC];
1522 if (!curr->block)
1523 curr->block = block;
1524 break;
1525 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1526 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1527 if (vdsn >= curr->volDescSeqNum) {
1528 curr->volDescSeqNum = vdsn;
1529 curr->block = block;
1530 }
1531 break;
1532 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1533 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1534 if (vdsn >= curr->volDescSeqNum) {
1535 curr->volDescSeqNum = vdsn;
1536 curr->block = block;
1537 }
1538 break;
1539 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1540 vds[VDS_POS_TERMINATING_DESC].block = block;
1541 if (next_e) {
1542 block = next_s;
1543 lastblock = next_e;
1544 next_s = next_e = 0;
1545 } else
1546 done = 1;
1547 break;
1548 }
1549 brelse(bh);
1550 }
1551 /*
1552 * Now read interesting descriptors again and process them
1553 * in a suitable order
1554 */
1555 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1556 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1557 return 1;
1558 }
1559 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1560 return 1;
1561
1562 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1563 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1564 return 1;
1565
1566 if (vds[VDS_POS_PARTITION_DESC].block) {
1567 /*
1568 * We rescan the whole descriptor sequence to find
1569 * partition descriptor blocks and process them.
1570 */
1571 for (block = vds[VDS_POS_PARTITION_DESC].block;
1572 block < vds[VDS_POS_TERMINATING_DESC].block;
1573 block++)
1574 if (udf_load_partdesc(sb, block))
1575 return 1;
1576 }
1577
1578 return 0;
1579}
1580
1581static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1582 struct kernel_lb_addr *fileset)
1583{
1584 struct anchorVolDescPtr *anchor;
1585 long main_s, main_e, reserve_s, reserve_e;
1586
1587 anchor = (struct anchorVolDescPtr *)bh->b_data;
1588
1589 /* Locate the main sequence */
1590 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1591 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1592 main_e = main_e >> sb->s_blocksize_bits;
1593 main_e += main_s;
1594
1595 /* Locate the reserve sequence */
1596 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1597 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1598 reserve_e = reserve_e >> sb->s_blocksize_bits;
1599 reserve_e += reserve_s;
1600
1601 /* Process the main & reserve sequences */
1602 /* responsible for finding the PartitionDesc(s) */
1603 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1604 return 1;
1605 return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1606}
1607
1608/*
1609 * Check whether there is an anchor block in the given block and
1610 * load Volume Descriptor Sequence if so.
1611 */
1612static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1613 struct kernel_lb_addr *fileset)
1614{
1615 struct buffer_head *bh;
1616 uint16_t ident;
1617 int ret;
1618
1619 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1620 udf_fixed_to_variable(block) >=
1621 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1622 return 0;
1623
1624 bh = udf_read_tagged(sb, block, block, &ident);
1625 if (!bh)
1626 return 0;
1627 if (ident != TAG_IDENT_AVDP) {
1628 brelse(bh);
1629 return 0;
1630 }
1631 ret = udf_load_sequence(sb, bh, fileset);
1632 brelse(bh);
1633 return ret;
1634}
1635
1636/* Search for an anchor volume descriptor pointer */
1637static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1638 struct kernel_lb_addr *fileset)
1639{
1640 sector_t last[6];
1641 int i;
1642 struct udf_sb_info *sbi = UDF_SB(sb);
1643 int last_count = 0;
1644
1645 /* First try user provided anchor */
1646 if (sbi->s_anchor) {
1647 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1648 return lastblock;
1649 }
1650 /*
1651 * according to spec, anchor is in either:
1652 * block 256
1653 * lastblock-256
1654 * lastblock
1655 * however, if the disc isn't closed, it could be 512.
1656 */
1657 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1658 return lastblock;
1659 /*
1660 * The trouble is which block is the last one. Drives often misreport
1661 * this so we try various possibilities.
1662 */
1663 last[last_count++] = lastblock;
1664 if (lastblock >= 1)
1665 last[last_count++] = lastblock - 1;
1666 last[last_count++] = lastblock + 1;
1667 if (lastblock >= 2)
1668 last[last_count++] = lastblock - 2;
1669 if (lastblock >= 150)
1670 last[last_count++] = lastblock - 150;
1671 if (lastblock >= 152)
1672 last[last_count++] = lastblock - 152;
1673
1674 for (i = 0; i < last_count; i++) {
1675 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1676 sb->s_blocksize_bits)
1677 continue;
1678 if (udf_check_anchor_block(sb, last[i], fileset))
1679 return last[i];
1680 if (last[i] < 256)
1681 continue;
1682 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1683 return last[i];
1684 }
1685
1686 /* Finally try block 512 in case media is open */
1687 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1688 return last[0];
1689 return 0;
1690}
1691
1692/*
1693 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1694 * area specified by it. The function expects sbi->s_lastblock to be the last
1695 * block on the media.
1696 *
1697 * Return 1 if ok, 0 if not found.
1698 *
1699 */
1700static int udf_find_anchor(struct super_block *sb,
1701 struct kernel_lb_addr *fileset)
1702{
1703 sector_t lastblock;
1704 struct udf_sb_info *sbi = UDF_SB(sb);
1705
1706 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1707 if (lastblock)
1708 goto out;
1709
1710 /* No anchor found? Try VARCONV conversion of block numbers */
1711 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1712 /* Firstly, we try to not convert number of the last block */
1713 lastblock = udf_scan_anchors(sb,
1714 udf_variable_to_fixed(sbi->s_last_block),
1715 fileset);
1716 if (lastblock)
1717 goto out;
1718
1719 /* Secondly, we try with converted number of the last block */
1720 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1721 if (!lastblock) {
1722 /* VARCONV didn't help. Clear it. */
1723 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1724 return 0;
1725 }
1726out:
1727 sbi->s_last_block = lastblock;
1728 return 1;
1729}
1730
1731/*
1732 * Check Volume Structure Descriptor, find Anchor block and load Volume
1733 * Descriptor Sequence
1734 */
1735static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1736 int silent, struct kernel_lb_addr *fileset)
1737{
1738 struct udf_sb_info *sbi = UDF_SB(sb);
1739 loff_t nsr_off;
1740
1741 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1742 if (!silent)
1743 printk(KERN_WARNING "UDF-fs: Bad block size\n");
1744 return 0;
1745 }
1746 sbi->s_last_block = uopt->lastblock;
1747 if (!uopt->novrs) {
1748 /* Check that it is NSR02 compliant */
1749 nsr_off = udf_check_vsd(sb);
1750 if (!nsr_off) {
1751 if (!silent)
1752 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1753 return 0;
1754 }
1755 if (nsr_off == -1)
1756 udf_debug("Failed to read byte 32768. Assuming open "
1757 "disc. Skipping validity check\n");
1758 if (!sbi->s_last_block)
1759 sbi->s_last_block = udf_get_last_block(sb);
1760 } else {
1761 udf_debug("Validity check skipped because of novrs option\n");
1762 }
1763
1764 /* Look for anchor block and load Volume Descriptor Sequence */
1765 sbi->s_anchor = uopt->anchor;
1766 if (!udf_find_anchor(sb, fileset)) {
1767 if (!silent)
1768 printk(KERN_WARNING "UDF-fs: No anchor found\n");
1769 return 0;
1770 }
1771 return 1;
1772}
1773
1774static void udf_open_lvid(struct super_block *sb)
1775{
1776 struct udf_sb_info *sbi = UDF_SB(sb);
1777 struct buffer_head *bh = sbi->s_lvid_bh;
1778 struct logicalVolIntegrityDesc *lvid;
1779 struct logicalVolIntegrityDescImpUse *lvidiu;
1780
1781 if (!bh)
1782 return;
1783
1784 mutex_lock(&sbi->s_alloc_mutex);
1785 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1786 lvidiu = udf_sb_lvidiu(sbi);
1787
1788 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1789 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1790 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1791 CURRENT_TIME);
1792 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1793
1794 lvid->descTag.descCRC = cpu_to_le16(
1795 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1796 le16_to_cpu(lvid->descTag.descCRCLength)));
1797
1798 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1799 mark_buffer_dirty(bh);
1800 sbi->s_lvid_dirty = 0;
1801 mutex_unlock(&sbi->s_alloc_mutex);
1802}
1803
1804static void udf_close_lvid(struct super_block *sb)
1805{
1806 struct udf_sb_info *sbi = UDF_SB(sb);
1807 struct buffer_head *bh = sbi->s_lvid_bh;
1808 struct logicalVolIntegrityDesc *lvid;
1809 struct logicalVolIntegrityDescImpUse *lvidiu;
1810
1811 if (!bh)
1812 return;
1813
1814 mutex_lock(&sbi->s_alloc_mutex);
1815 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1816 lvidiu = udf_sb_lvidiu(sbi);
1817 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1818 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1819 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1820 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1821 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1822 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1823 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1824 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1825 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1826 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1827
1828 lvid->descTag.descCRC = cpu_to_le16(
1829 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1830 le16_to_cpu(lvid->descTag.descCRCLength)));
1831
1832 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1833 mark_buffer_dirty(bh);
1834 sbi->s_lvid_dirty = 0;
1835 mutex_unlock(&sbi->s_alloc_mutex);
1836}
1837
1838u64 lvid_get_unique_id(struct super_block *sb)
1839{
1840 struct buffer_head *bh;
1841 struct udf_sb_info *sbi = UDF_SB(sb);
1842 struct logicalVolIntegrityDesc *lvid;
1843 struct logicalVolHeaderDesc *lvhd;
1844 u64 uniqueID;
1845 u64 ret;
1846
1847 bh = sbi->s_lvid_bh;
1848 if (!bh)
1849 return 0;
1850
1851 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1852 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1853
1854 mutex_lock(&sbi->s_alloc_mutex);
1855 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1856 if (!(++uniqueID & 0xFFFFFFFF))
1857 uniqueID += 16;
1858 lvhd->uniqueID = cpu_to_le64(uniqueID);
1859 mutex_unlock(&sbi->s_alloc_mutex);
1860 mark_buffer_dirty(bh);
1861
1862 return ret;
1863}
1864
1865static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1866{
1867 int i;
1868 int nr_groups = bitmap->s_nr_groups;
1869 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1870 nr_groups);
1871
1872 for (i = 0; i < nr_groups; i++)
1873 if (bitmap->s_block_bitmap[i])
1874 brelse(bitmap->s_block_bitmap[i]);
1875
1876 if (size <= PAGE_SIZE)
1877 kfree(bitmap);
1878 else
1879 vfree(bitmap);
1880}
1881
1882static void udf_free_partition(struct udf_part_map *map)
1883{
1884 int i;
1885 struct udf_meta_data *mdata;
1886
1887 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1888 iput(map->s_uspace.s_table);
1889 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1890 iput(map->s_fspace.s_table);
1891 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1892 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1893 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1894 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1895 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1896 for (i = 0; i < 4; i++)
1897 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1898 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1899 mdata = &map->s_type_specific.s_metadata;
1900 iput(mdata->s_metadata_fe);
1901 mdata->s_metadata_fe = NULL;
1902
1903 iput(mdata->s_mirror_fe);
1904 mdata->s_mirror_fe = NULL;
1905
1906 iput(mdata->s_bitmap_fe);
1907 mdata->s_bitmap_fe = NULL;
1908 }
1909}
1910
1911static int udf_fill_super(struct super_block *sb, void *options, int silent)
1912{
1913 int i;
1914 int ret;
1915 struct inode *inode = NULL;
1916 struct udf_options uopt;
1917 struct kernel_lb_addr rootdir, fileset;
1918 struct udf_sb_info *sbi;
1919
1920 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1921 uopt.uid = -1;
1922 uopt.gid = -1;
1923 uopt.umask = 0;
1924 uopt.fmode = UDF_INVALID_MODE;
1925 uopt.dmode = UDF_INVALID_MODE;
1926
1927 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1928 if (!sbi)
1929 return -ENOMEM;
1930
1931 sb->s_fs_info = sbi;
1932
1933 mutex_init(&sbi->s_alloc_mutex);
1934
1935 if (!udf_parse_options((char *)options, &uopt, false))
1936 goto error_out;
1937
1938 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1939 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1940 udf_error(sb, "udf_read_super",
1941 "utf8 cannot be combined with iocharset\n");
1942 goto error_out;
1943 }
1944#ifdef CONFIG_UDF_NLS
1945 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1946 uopt.nls_map = load_nls_default();
1947 if (!uopt.nls_map)
1948 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1949 else
1950 udf_debug("Using default NLS map\n");
1951 }
1952#endif
1953 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1954 uopt.flags |= (1 << UDF_FLAG_UTF8);
1955
1956 fileset.logicalBlockNum = 0xFFFFFFFF;
1957 fileset.partitionReferenceNum = 0xFFFF;
1958
1959 sbi->s_flags = uopt.flags;
1960 sbi->s_uid = uopt.uid;
1961 sbi->s_gid = uopt.gid;
1962 sbi->s_umask = uopt.umask;
1963 sbi->s_fmode = uopt.fmode;
1964 sbi->s_dmode = uopt.dmode;
1965 sbi->s_nls_map = uopt.nls_map;
1966 rwlock_init(&sbi->s_cred_lock);
1967
1968 if (uopt.session == 0xFFFFFFFF)
1969 sbi->s_session = udf_get_last_session(sb);
1970 else
1971 sbi->s_session = uopt.session;
1972
1973 udf_debug("Multi-session=%d\n", sbi->s_session);
1974
1975 /* Fill in the rest of the superblock */
1976 sb->s_op = &udf_sb_ops;
1977 sb->s_export_op = &udf_export_ops;
1978
1979 sb->s_dirt = 0;
1980 sb->s_magic = UDF_SUPER_MAGIC;
1981 sb->s_time_gran = 1000;
1982
1983 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1984 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1985 } else {
1986 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1987 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1988 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1989 if (!silent)
1990 printk(KERN_NOTICE
1991 "UDF-fs: Rescanning with blocksize "
1992 "%d\n", UDF_DEFAULT_BLOCKSIZE);
1993 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995 }
1996 }
1997 if (!ret) {
1998 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1999 goto error_out;
2000 }
2001
2002 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003
2004 if (sbi->s_lvid_bh) {
2005 struct logicalVolIntegrityDescImpUse *lvidiu =
2006 udf_sb_lvidiu(sbi);
2007 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009 /* uint16_t maxUDFWriteRev =
2010 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011
2012 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
2014 "(max is %x)\n",
2015 le16_to_cpu(lvidiu->minUDFReadRev),
2016 UDF_MAX_READ_VERSION);
2017 goto error_out;
2018 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2019 sb->s_flags |= MS_RDONLY;
2020
2021 sbi->s_udfrev = minUDFWriteRev;
2022
2023 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2024 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2025 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2026 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2027 }
2028
2029 if (!sbi->s_partitions) {
2030 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2031 goto error_out;
2032 }
2033
2034 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2035 UDF_PART_FLAG_READ_ONLY) {
2036 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2037 "forcing readonly mount\n");
2038 sb->s_flags |= MS_RDONLY;
2039 }
2040
2041 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2042 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2043 goto error_out;
2044 }
2045
2046 if (!silent) {
2047 struct timestamp ts;
2048 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2049 udf_info("UDF: Mounting volume '%s', "
2050 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2051 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2052 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2053 }
2054 if (!(sb->s_flags & MS_RDONLY))
2055 udf_open_lvid(sb);
2056
2057 /* Assign the root inode */
2058 /* assign inodes by physical block number */
2059 /* perhaps it's not extensible enough, but for now ... */
2060 inode = udf_iget(sb, &rootdir);
2061 if (!inode) {
2062 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2063 "partition=%d\n",
2064 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2065 goto error_out;
2066 }
2067
2068 /* Allocate a dentry for the root inode */
2069 sb->s_root = d_alloc_root(inode);
2070 if (!sb->s_root) {
2071 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2072 iput(inode);
2073 goto error_out;
2074 }
2075 sb->s_maxbytes = MAX_LFS_FILESIZE;
2076 return 0;
2077
2078error_out:
2079 if (sbi->s_vat_inode)
2080 iput(sbi->s_vat_inode);
2081 if (sbi->s_partitions)
2082 for (i = 0; i < sbi->s_partitions; i++)
2083 udf_free_partition(&sbi->s_partmaps[i]);
2084#ifdef CONFIG_UDF_NLS
2085 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2086 unload_nls(sbi->s_nls_map);
2087#endif
2088 if (!(sb->s_flags & MS_RDONLY))
2089 udf_close_lvid(sb);
2090 brelse(sbi->s_lvid_bh);
2091
2092 kfree(sbi->s_partmaps);
2093 kfree(sbi);
2094 sb->s_fs_info = NULL;
2095
2096 return -EINVAL;
2097}
2098
2099static void udf_error(struct super_block *sb, const char *function,
2100 const char *fmt, ...)
2101{
2102 va_list args;
2103
2104 if (!(sb->s_flags & MS_RDONLY)) {
2105 /* mark sb error */
2106 sb->s_dirt = 1;
2107 }
2108 va_start(args, fmt);
2109 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2110 va_end(args);
2111 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2112 sb->s_id, function, error_buf);
2113}
2114
2115void udf_warning(struct super_block *sb, const char *function,
2116 const char *fmt, ...)
2117{
2118 va_list args;
2119
2120 va_start(args, fmt);
2121 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2122 va_end(args);
2123 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2124 sb->s_id, function, error_buf);
2125}
2126
2127static void udf_put_super(struct super_block *sb)
2128{
2129 int i;
2130 struct udf_sb_info *sbi;
2131
2132 sbi = UDF_SB(sb);
2133
2134 if (sbi->s_vat_inode)
2135 iput(sbi->s_vat_inode);
2136 if (sbi->s_partitions)
2137 for (i = 0; i < sbi->s_partitions; i++)
2138 udf_free_partition(&sbi->s_partmaps[i]);
2139#ifdef CONFIG_UDF_NLS
2140 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2141 unload_nls(sbi->s_nls_map);
2142#endif
2143 if (!(sb->s_flags & MS_RDONLY))
2144 udf_close_lvid(sb);
2145 brelse(sbi->s_lvid_bh);
2146 kfree(sbi->s_partmaps);
2147 kfree(sb->s_fs_info);
2148 sb->s_fs_info = NULL;
2149}
2150
2151static int udf_sync_fs(struct super_block *sb, int wait)
2152{
2153 struct udf_sb_info *sbi = UDF_SB(sb);
2154
2155 mutex_lock(&sbi->s_alloc_mutex);
2156 if (sbi->s_lvid_dirty) {
2157 /*
2158 * Blockdevice will be synced later so we don't have to submit
2159 * the buffer for IO
2160 */
2161 mark_buffer_dirty(sbi->s_lvid_bh);
2162 sb->s_dirt = 0;
2163 sbi->s_lvid_dirty = 0;
2164 }
2165 mutex_unlock(&sbi->s_alloc_mutex);
2166
2167 return 0;
2168}
2169
2170static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2171{
2172 struct super_block *sb = dentry->d_sb;
2173 struct udf_sb_info *sbi = UDF_SB(sb);
2174 struct logicalVolIntegrityDescImpUse *lvidiu;
2175 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2176
2177 if (sbi->s_lvid_bh != NULL)
2178 lvidiu = udf_sb_lvidiu(sbi);
2179 else
2180 lvidiu = NULL;
2181
2182 buf->f_type = UDF_SUPER_MAGIC;
2183 buf->f_bsize = sb->s_blocksize;
2184 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2185 buf->f_bfree = udf_count_free(sb);
2186 buf->f_bavail = buf->f_bfree;
2187 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2188 le32_to_cpu(lvidiu->numDirs)) : 0)
2189 + buf->f_bfree;
2190 buf->f_ffree = buf->f_bfree;
2191 buf->f_namelen = UDF_NAME_LEN - 2;
2192 buf->f_fsid.val[0] = (u32)id;
2193 buf->f_fsid.val[1] = (u32)(id >> 32);
2194
2195 return 0;
2196}
2197
2198static unsigned int udf_count_free_bitmap(struct super_block *sb,
2199 struct udf_bitmap *bitmap)
2200{
2201 struct buffer_head *bh = NULL;
2202 unsigned int accum = 0;
2203 int index;
2204 int block = 0, newblock;
2205 struct kernel_lb_addr loc;
2206 uint32_t bytes;
2207 uint8_t *ptr;
2208 uint16_t ident;
2209 struct spaceBitmapDesc *bm;
2210
2211 loc.logicalBlockNum = bitmap->s_extPosition;
2212 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2213 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2214
2215 if (!bh) {
2216 printk(KERN_ERR "udf: udf_count_free failed\n");
2217 goto out;
2218 } else if (ident != TAG_IDENT_SBD) {
2219 brelse(bh);
2220 printk(KERN_ERR "udf: udf_count_free failed\n");
2221 goto out;
2222 }
2223
2224 bm = (struct spaceBitmapDesc *)bh->b_data;
2225 bytes = le32_to_cpu(bm->numOfBytes);
2226 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2227 ptr = (uint8_t *)bh->b_data;
2228
2229 while (bytes > 0) {
2230 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2231 accum += bitmap_weight((const unsigned long *)(ptr + index),
2232 cur_bytes * 8);
2233 bytes -= cur_bytes;
2234 if (bytes) {
2235 brelse(bh);
2236 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2237 bh = udf_tread(sb, newblock);
2238 if (!bh) {
2239 udf_debug("read failed\n");
2240 goto out;
2241 }
2242 index = 0;
2243 ptr = (uint8_t *)bh->b_data;
2244 }
2245 }
2246 brelse(bh);
2247out:
2248 return accum;
2249}
2250
2251static unsigned int udf_count_free_table(struct super_block *sb,
2252 struct inode *table)
2253{
2254 unsigned int accum = 0;
2255 uint32_t elen;
2256 struct kernel_lb_addr eloc;
2257 int8_t etype;
2258 struct extent_position epos;
2259
2260 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2261 epos.block = UDF_I(table)->i_location;
2262 epos.offset = sizeof(struct unallocSpaceEntry);
2263 epos.bh = NULL;
2264
2265 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2266 accum += (elen >> table->i_sb->s_blocksize_bits);
2267
2268 brelse(epos.bh);
2269 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2270
2271 return accum;
2272}
2273
2274static unsigned int udf_count_free(struct super_block *sb)
2275{
2276 unsigned int accum = 0;
2277 struct udf_sb_info *sbi;
2278 struct udf_part_map *map;
2279
2280 sbi = UDF_SB(sb);
2281 if (sbi->s_lvid_bh) {
2282 struct logicalVolIntegrityDesc *lvid =
2283 (struct logicalVolIntegrityDesc *)
2284 sbi->s_lvid_bh->b_data;
2285 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2286 accum = le32_to_cpu(
2287 lvid->freeSpaceTable[sbi->s_partition]);
2288 if (accum == 0xFFFFFFFF)
2289 accum = 0;
2290 }
2291 }
2292
2293 if (accum)
2294 return accum;
2295
2296 map = &sbi->s_partmaps[sbi->s_partition];
2297 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2298 accum += udf_count_free_bitmap(sb,
2299 map->s_uspace.s_bitmap);
2300 }
2301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2302 accum += udf_count_free_bitmap(sb,
2303 map->s_fspace.s_bitmap);
2304 }
2305 if (accum)
2306 return accum;
2307
2308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2309 accum += udf_count_free_table(sb,
2310 map->s_uspace.s_table);
2311 }
2312 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2313 accum += udf_count_free_table(sb,
2314 map->s_fspace.s_table);
2315 }
2316
2317 return accum;
2318}