Loading...
1/*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/statfs.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17#include <linux/kthread.h>
18#include <linux/parser.h>
19#include <linux/mount.h>
20#include <linux/seq_file.h>
21#include <linux/proc_fs.h>
22#include <linux/random.h>
23#include <linux/exportfs.h>
24#include <linux/blkdev.h>
25#include <linux/f2fs_fs.h>
26#include <linux/sysfs.h>
27
28#include "f2fs.h"
29#include "node.h"
30#include "segment.h"
31#include "xattr.h"
32#include "gc.h"
33#include "trace.h"
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/f2fs.h>
37
38static struct proc_dir_entry *f2fs_proc_root;
39static struct kmem_cache *f2fs_inode_cachep;
40static struct kset *f2fs_kset;
41
42#ifdef CONFIG_F2FS_FAULT_INJECTION
43
44char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_ALLOC_NID] = "alloc nid",
48 [FAULT_ORPHAN] = "orphan",
49 [FAULT_BLOCK] = "no more block",
50 [FAULT_DIR_DEPTH] = "too big dir depth",
51 [FAULT_EVICT_INODE] = "evict_inode fail",
52 [FAULT_IO] = "IO error",
53 [FAULT_CHECKPOINT] = "checkpoint error",
54};
55
56static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 unsigned int rate)
58{
59 struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61 if (rate) {
62 atomic_set(&ffi->inject_ops, 0);
63 ffi->inject_rate = rate;
64 ffi->inject_type = (1 << FAULT_MAX) - 1;
65 } else {
66 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67 }
68}
69#endif
70
71/* f2fs-wide shrinker description */
72static struct shrinker f2fs_shrinker_info = {
73 .scan_objects = f2fs_shrink_scan,
74 .count_objects = f2fs_shrink_count,
75 .seeks = DEFAULT_SEEKS,
76};
77
78enum {
79 Opt_gc_background,
80 Opt_disable_roll_forward,
81 Opt_norecovery,
82 Opt_discard,
83 Opt_nodiscard,
84 Opt_noheap,
85 Opt_user_xattr,
86 Opt_nouser_xattr,
87 Opt_acl,
88 Opt_noacl,
89 Opt_active_logs,
90 Opt_disable_ext_identify,
91 Opt_inline_xattr,
92 Opt_inline_data,
93 Opt_inline_dentry,
94 Opt_noinline_dentry,
95 Opt_flush_merge,
96 Opt_noflush_merge,
97 Opt_nobarrier,
98 Opt_fastboot,
99 Opt_extent_cache,
100 Opt_noextent_cache,
101 Opt_noinline_data,
102 Opt_data_flush,
103 Opt_mode,
104 Opt_fault_injection,
105 Opt_lazytime,
106 Opt_nolazytime,
107 Opt_err,
108};
109
110static match_table_t f2fs_tokens = {
111 {Opt_gc_background, "background_gc=%s"},
112 {Opt_disable_roll_forward, "disable_roll_forward"},
113 {Opt_norecovery, "norecovery"},
114 {Opt_discard, "discard"},
115 {Opt_nodiscard, "nodiscard"},
116 {Opt_noheap, "no_heap"},
117 {Opt_user_xattr, "user_xattr"},
118 {Opt_nouser_xattr, "nouser_xattr"},
119 {Opt_acl, "acl"},
120 {Opt_noacl, "noacl"},
121 {Opt_active_logs, "active_logs=%u"},
122 {Opt_disable_ext_identify, "disable_ext_identify"},
123 {Opt_inline_xattr, "inline_xattr"},
124 {Opt_inline_data, "inline_data"},
125 {Opt_inline_dentry, "inline_dentry"},
126 {Opt_noinline_dentry, "noinline_dentry"},
127 {Opt_flush_merge, "flush_merge"},
128 {Opt_noflush_merge, "noflush_merge"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_fastboot, "fastboot"},
131 {Opt_extent_cache, "extent_cache"},
132 {Opt_noextent_cache, "noextent_cache"},
133 {Opt_noinline_data, "noinline_data"},
134 {Opt_data_flush, "data_flush"},
135 {Opt_mode, "mode=%s"},
136 {Opt_fault_injection, "fault_injection=%u"},
137 {Opt_lazytime, "lazytime"},
138 {Opt_nolazytime, "nolazytime"},
139 {Opt_err, NULL},
140};
141
142/* Sysfs support for f2fs */
143enum {
144 GC_THREAD, /* struct f2fs_gc_thread */
145 SM_INFO, /* struct f2fs_sm_info */
146 NM_INFO, /* struct f2fs_nm_info */
147 F2FS_SBI, /* struct f2fs_sb_info */
148#ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
151#endif
152};
153
154struct f2fs_attr {
155 struct attribute attr;
156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158 const char *, size_t);
159 int struct_type;
160 int offset;
161};
162
163static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
164{
165 if (struct_type == GC_THREAD)
166 return (unsigned char *)sbi->gc_thread;
167 else if (struct_type == SM_INFO)
168 return (unsigned char *)SM_I(sbi);
169 else if (struct_type == NM_INFO)
170 return (unsigned char *)NM_I(sbi);
171 else if (struct_type == F2FS_SBI)
172 return (unsigned char *)sbi;
173#ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type == FAULT_INFO_RATE ||
175 struct_type == FAULT_INFO_TYPE)
176 return (unsigned char *)&sbi->fault_info;
177#endif
178 return NULL;
179}
180
181static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182 struct f2fs_sb_info *sbi, char *buf)
183{
184 struct super_block *sb = sbi->sb;
185
186 if (!sb->s_bdev->bd_part)
187 return snprintf(buf, PAGE_SIZE, "0\n");
188
189 return snprintf(buf, PAGE_SIZE, "%llu\n",
190 (unsigned long long)(sbi->kbytes_written +
191 BD_PART_WRITTEN(sbi)));
192}
193
194static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195 struct f2fs_sb_info *sbi, char *buf)
196{
197 unsigned char *ptr = NULL;
198 unsigned int *ui;
199
200 ptr = __struct_ptr(sbi, a->struct_type);
201 if (!ptr)
202 return -EINVAL;
203
204 ui = (unsigned int *)(ptr + a->offset);
205
206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
207}
208
209static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210 struct f2fs_sb_info *sbi,
211 const char *buf, size_t count)
212{
213 unsigned char *ptr;
214 unsigned long t;
215 unsigned int *ui;
216 ssize_t ret;
217
218 ptr = __struct_ptr(sbi, a->struct_type);
219 if (!ptr)
220 return -EINVAL;
221
222 ui = (unsigned int *)(ptr + a->offset);
223
224 ret = kstrtoul(skip_spaces(buf), 0, &t);
225 if (ret < 0)
226 return ret;
227#ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229 return -EINVAL;
230#endif
231 *ui = t;
232 return count;
233}
234
235static ssize_t f2fs_attr_show(struct kobject *kobj,
236 struct attribute *attr, char *buf)
237{
238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239 s_kobj);
240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
241
242 return a->show ? a->show(a, sbi, buf) : 0;
243}
244
245static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246 const char *buf, size_t len)
247{
248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249 s_kobj);
250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251
252 return a->store ? a->store(a, sbi, buf, len) : 0;
253}
254
255static void f2fs_sb_release(struct kobject *kobj)
256{
257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258 s_kobj);
259 complete(&sbi->s_kobj_unregister);
260}
261
262#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
265 .show = _show, \
266 .store = _store, \
267 .struct_type = _struct_type, \
268 .offset = _offset \
269}
270
271#define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
275
276#define F2FS_GENERAL_RO_ATTR(name) \
277static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
278
279F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296#ifdef CONFIG_F2FS_FAULT_INJECTION
297F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299#endif
300F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
301
302#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303static struct attribute *f2fs_attrs[] = {
304 ATTR_LIST(gc_min_sleep_time),
305 ATTR_LIST(gc_max_sleep_time),
306 ATTR_LIST(gc_no_gc_sleep_time),
307 ATTR_LIST(gc_idle),
308 ATTR_LIST(reclaim_segments),
309 ATTR_LIST(max_small_discards),
310 ATTR_LIST(batched_trim_sections),
311 ATTR_LIST(ipu_policy),
312 ATTR_LIST(min_ipu_util),
313 ATTR_LIST(min_fsync_blocks),
314 ATTR_LIST(max_victim_search),
315 ATTR_LIST(dir_level),
316 ATTR_LIST(ram_thresh),
317 ATTR_LIST(ra_nid_pages),
318 ATTR_LIST(dirty_nats_ratio),
319 ATTR_LIST(cp_interval),
320 ATTR_LIST(idle_interval),
321#ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate),
323 ATTR_LIST(inject_type),
324#endif
325 ATTR_LIST(lifetime_write_kbytes),
326 NULL,
327};
328
329static const struct sysfs_ops f2fs_attr_ops = {
330 .show = f2fs_attr_show,
331 .store = f2fs_attr_store,
332};
333
334static struct kobj_type f2fs_ktype = {
335 .default_attrs = f2fs_attrs,
336 .sysfs_ops = &f2fs_attr_ops,
337 .release = f2fs_sb_release,
338};
339
340void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
341{
342 struct va_format vaf;
343 va_list args;
344
345 va_start(args, fmt);
346 vaf.fmt = fmt;
347 vaf.va = &args;
348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349 va_end(args);
350}
351
352static void init_once(void *foo)
353{
354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
355
356 inode_init_once(&fi->vfs_inode);
357}
358
359static int parse_options(struct super_block *sb, char *options)
360{
361 struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 struct request_queue *q;
363 substring_t args[MAX_OPT_ARGS];
364 char *p, *name;
365 int arg = 0;
366
367 if (!options)
368 return 0;
369
370 while ((p = strsep(&options, ",")) != NULL) {
371 int token;
372 if (!*p)
373 continue;
374 /*
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
377 */
378 args[0].to = args[0].from = NULL;
379 token = match_token(p, f2fs_tokens, args);
380
381 switch (token) {
382 case Opt_gc_background:
383 name = match_strdup(&args[0]);
384
385 if (!name)
386 return -ENOMEM;
387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388 set_opt(sbi, BG_GC);
389 clear_opt(sbi, FORCE_FG_GC);
390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391 clear_opt(sbi, BG_GC);
392 clear_opt(sbi, FORCE_FG_GC);
393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394 set_opt(sbi, BG_GC);
395 set_opt(sbi, FORCE_FG_GC);
396 } else {
397 kfree(name);
398 return -EINVAL;
399 }
400 kfree(name);
401 break;
402 case Opt_disable_roll_forward:
403 set_opt(sbi, DISABLE_ROLL_FORWARD);
404 break;
405 case Opt_norecovery:
406 /* this option mounts f2fs with ro */
407 set_opt(sbi, DISABLE_ROLL_FORWARD);
408 if (!f2fs_readonly(sb))
409 return -EINVAL;
410 break;
411 case Opt_discard:
412 q = bdev_get_queue(sb->s_bdev);
413 if (blk_queue_discard(q)) {
414 set_opt(sbi, DISCARD);
415 } else if (!f2fs_sb_mounted_blkzoned(sb)) {
416 f2fs_msg(sb, KERN_WARNING,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
419 }
420 break;
421 case Opt_nodiscard:
422 if (f2fs_sb_mounted_blkzoned(sb)) {
423 f2fs_msg(sb, KERN_WARNING,
424 "discard is required for zoned block devices");
425 return -EINVAL;
426 }
427 clear_opt(sbi, DISCARD);
428 break;
429 case Opt_noheap:
430 set_opt(sbi, NOHEAP);
431 break;
432#ifdef CONFIG_F2FS_FS_XATTR
433 case Opt_user_xattr:
434 set_opt(sbi, XATTR_USER);
435 break;
436 case Opt_nouser_xattr:
437 clear_opt(sbi, XATTR_USER);
438 break;
439 case Opt_inline_xattr:
440 set_opt(sbi, INLINE_XATTR);
441 break;
442#else
443 case Opt_user_xattr:
444 f2fs_msg(sb, KERN_INFO,
445 "user_xattr options not supported");
446 break;
447 case Opt_nouser_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "nouser_xattr options not supported");
450 break;
451 case Opt_inline_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "inline_xattr options not supported");
454 break;
455#endif
456#ifdef CONFIG_F2FS_FS_POSIX_ACL
457 case Opt_acl:
458 set_opt(sbi, POSIX_ACL);
459 break;
460 case Opt_noacl:
461 clear_opt(sbi, POSIX_ACL);
462 break;
463#else
464 case Opt_acl:
465 f2fs_msg(sb, KERN_INFO, "acl options not supported");
466 break;
467 case Opt_noacl:
468 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
469 break;
470#endif
471 case Opt_active_logs:
472 if (args->from && match_int(args, &arg))
473 return -EINVAL;
474 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
475 return -EINVAL;
476 sbi->active_logs = arg;
477 break;
478 case Opt_disable_ext_identify:
479 set_opt(sbi, DISABLE_EXT_IDENTIFY);
480 break;
481 case Opt_inline_data:
482 set_opt(sbi, INLINE_DATA);
483 break;
484 case Opt_inline_dentry:
485 set_opt(sbi, INLINE_DENTRY);
486 break;
487 case Opt_noinline_dentry:
488 clear_opt(sbi, INLINE_DENTRY);
489 break;
490 case Opt_flush_merge:
491 set_opt(sbi, FLUSH_MERGE);
492 break;
493 case Opt_noflush_merge:
494 clear_opt(sbi, FLUSH_MERGE);
495 break;
496 case Opt_nobarrier:
497 set_opt(sbi, NOBARRIER);
498 break;
499 case Opt_fastboot:
500 set_opt(sbi, FASTBOOT);
501 break;
502 case Opt_extent_cache:
503 set_opt(sbi, EXTENT_CACHE);
504 break;
505 case Opt_noextent_cache:
506 clear_opt(sbi, EXTENT_CACHE);
507 break;
508 case Opt_noinline_data:
509 clear_opt(sbi, INLINE_DATA);
510 break;
511 case Opt_data_flush:
512 set_opt(sbi, DATA_FLUSH);
513 break;
514 case Opt_mode:
515 name = match_strdup(&args[0]);
516
517 if (!name)
518 return -ENOMEM;
519 if (strlen(name) == 8 &&
520 !strncmp(name, "adaptive", 8)) {
521 if (f2fs_sb_mounted_blkzoned(sb)) {
522 f2fs_msg(sb, KERN_WARNING,
523 "adaptive mode is not allowed with "
524 "zoned block device feature");
525 kfree(name);
526 return -EINVAL;
527 }
528 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
529 } else if (strlen(name) == 3 &&
530 !strncmp(name, "lfs", 3)) {
531 set_opt_mode(sbi, F2FS_MOUNT_LFS);
532 } else {
533 kfree(name);
534 return -EINVAL;
535 }
536 kfree(name);
537 break;
538 case Opt_fault_injection:
539 if (args->from && match_int(args, &arg))
540 return -EINVAL;
541#ifdef CONFIG_F2FS_FAULT_INJECTION
542 f2fs_build_fault_attr(sbi, arg);
543#else
544 f2fs_msg(sb, KERN_INFO,
545 "FAULT_INJECTION was not selected");
546#endif
547 break;
548 case Opt_lazytime:
549 sb->s_flags |= MS_LAZYTIME;
550 break;
551 case Opt_nolazytime:
552 sb->s_flags &= ~MS_LAZYTIME;
553 break;
554 default:
555 f2fs_msg(sb, KERN_ERR,
556 "Unrecognized mount option \"%s\" or missing value",
557 p);
558 return -EINVAL;
559 }
560 }
561 return 0;
562}
563
564static struct inode *f2fs_alloc_inode(struct super_block *sb)
565{
566 struct f2fs_inode_info *fi;
567
568 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
569 if (!fi)
570 return NULL;
571
572 init_once((void *) fi);
573
574 /* Initialize f2fs-specific inode info */
575 fi->vfs_inode.i_version = 1;
576 atomic_set(&fi->dirty_pages, 0);
577 fi->i_current_depth = 1;
578 fi->i_advise = 0;
579 init_rwsem(&fi->i_sem);
580 INIT_LIST_HEAD(&fi->dirty_list);
581 INIT_LIST_HEAD(&fi->gdirty_list);
582 INIT_LIST_HEAD(&fi->inmem_pages);
583 mutex_init(&fi->inmem_lock);
584 init_rwsem(&fi->dio_rwsem[READ]);
585 init_rwsem(&fi->dio_rwsem[WRITE]);
586
587 /* Will be used by directory only */
588 fi->i_dir_level = F2FS_SB(sb)->dir_level;
589 return &fi->vfs_inode;
590}
591
592static int f2fs_drop_inode(struct inode *inode)
593{
594 /*
595 * This is to avoid a deadlock condition like below.
596 * writeback_single_inode(inode)
597 * - f2fs_write_data_page
598 * - f2fs_gc -> iput -> evict
599 * - inode_wait_for_writeback(inode)
600 */
601 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
602 if (!inode->i_nlink && !is_bad_inode(inode)) {
603 /* to avoid evict_inode call simultaneously */
604 atomic_inc(&inode->i_count);
605 spin_unlock(&inode->i_lock);
606
607 /* some remained atomic pages should discarded */
608 if (f2fs_is_atomic_file(inode))
609 drop_inmem_pages(inode);
610
611 /* should remain fi->extent_tree for writepage */
612 f2fs_destroy_extent_node(inode);
613
614 sb_start_intwrite(inode->i_sb);
615 f2fs_i_size_write(inode, 0);
616
617 if (F2FS_HAS_BLOCKS(inode))
618 f2fs_truncate(inode);
619
620 sb_end_intwrite(inode->i_sb);
621
622 fscrypt_put_encryption_info(inode, NULL);
623 spin_lock(&inode->i_lock);
624 atomic_dec(&inode->i_count);
625 }
626 return 0;
627 }
628
629 return generic_drop_inode(inode);
630}
631
632int f2fs_inode_dirtied(struct inode *inode, bool sync)
633{
634 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
635 int ret = 0;
636
637 spin_lock(&sbi->inode_lock[DIRTY_META]);
638 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
639 ret = 1;
640 } else {
641 set_inode_flag(inode, FI_DIRTY_INODE);
642 stat_inc_dirty_inode(sbi, DIRTY_META);
643 }
644 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
645 list_add_tail(&F2FS_I(inode)->gdirty_list,
646 &sbi->inode_list[DIRTY_META]);
647 inc_page_count(sbi, F2FS_DIRTY_IMETA);
648 }
649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 return ret;
651}
652
653void f2fs_inode_synced(struct inode *inode)
654{
655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656
657 spin_lock(&sbi->inode_lock[DIRTY_META]);
658 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
659 spin_unlock(&sbi->inode_lock[DIRTY_META]);
660 return;
661 }
662 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
663 list_del_init(&F2FS_I(inode)->gdirty_list);
664 dec_page_count(sbi, F2FS_DIRTY_IMETA);
665 }
666 clear_inode_flag(inode, FI_DIRTY_INODE);
667 clear_inode_flag(inode, FI_AUTO_RECOVER);
668 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
669 spin_unlock(&sbi->inode_lock[DIRTY_META]);
670}
671
672/*
673 * f2fs_dirty_inode() is called from __mark_inode_dirty()
674 *
675 * We should call set_dirty_inode to write the dirty inode through write_inode.
676 */
677static void f2fs_dirty_inode(struct inode *inode, int flags)
678{
679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
680
681 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
682 inode->i_ino == F2FS_META_INO(sbi))
683 return;
684
685 if (flags == I_DIRTY_TIME)
686 return;
687
688 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
689 clear_inode_flag(inode, FI_AUTO_RECOVER);
690
691 f2fs_inode_dirtied(inode, false);
692}
693
694static void f2fs_i_callback(struct rcu_head *head)
695{
696 struct inode *inode = container_of(head, struct inode, i_rcu);
697 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
698}
699
700static void f2fs_destroy_inode(struct inode *inode)
701{
702 call_rcu(&inode->i_rcu, f2fs_i_callback);
703}
704
705static void destroy_percpu_info(struct f2fs_sb_info *sbi)
706{
707 percpu_counter_destroy(&sbi->alloc_valid_block_count);
708 percpu_counter_destroy(&sbi->total_valid_inode_count);
709}
710
711static void destroy_device_list(struct f2fs_sb_info *sbi)
712{
713 int i;
714
715 for (i = 0; i < sbi->s_ndevs; i++) {
716 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
717#ifdef CONFIG_BLK_DEV_ZONED
718 kfree(FDEV(i).blkz_type);
719#endif
720 }
721 kfree(sbi->devs);
722}
723
724static void f2fs_put_super(struct super_block *sb)
725{
726 struct f2fs_sb_info *sbi = F2FS_SB(sb);
727
728 if (sbi->s_proc) {
729 remove_proc_entry("segment_info", sbi->s_proc);
730 remove_proc_entry("segment_bits", sbi->s_proc);
731 remove_proc_entry(sb->s_id, f2fs_proc_root);
732 }
733 kobject_del(&sbi->s_kobj);
734
735 stop_gc_thread(sbi);
736
737 /* prevent remaining shrinker jobs */
738 mutex_lock(&sbi->umount_mutex);
739
740 /*
741 * We don't need to do checkpoint when superblock is clean.
742 * But, the previous checkpoint was not done by umount, it needs to do
743 * clean checkpoint again.
744 */
745 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
746 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
747 struct cp_control cpc = {
748 .reason = CP_UMOUNT,
749 };
750 write_checkpoint(sbi, &cpc);
751 }
752
753 /* write_checkpoint can update stat informaion */
754 f2fs_destroy_stats(sbi);
755
756 /*
757 * normally superblock is clean, so we need to release this.
758 * In addition, EIO will skip do checkpoint, we need this as well.
759 */
760 release_ino_entry(sbi, true);
761
762 f2fs_leave_shrinker(sbi);
763 mutex_unlock(&sbi->umount_mutex);
764
765 /* our cp_error case, we can wait for any writeback page */
766 f2fs_flush_merged_bios(sbi);
767
768 iput(sbi->node_inode);
769 iput(sbi->meta_inode);
770
771 /* destroy f2fs internal modules */
772 destroy_node_manager(sbi);
773 destroy_segment_manager(sbi);
774
775 kfree(sbi->ckpt);
776 kobject_put(&sbi->s_kobj);
777 wait_for_completion(&sbi->s_kobj_unregister);
778
779 sb->s_fs_info = NULL;
780 if (sbi->s_chksum_driver)
781 crypto_free_shash(sbi->s_chksum_driver);
782 kfree(sbi->raw_super);
783
784 destroy_device_list(sbi);
785
786 destroy_percpu_info(sbi);
787 kfree(sbi);
788}
789
790int f2fs_sync_fs(struct super_block *sb, int sync)
791{
792 struct f2fs_sb_info *sbi = F2FS_SB(sb);
793 int err = 0;
794
795 trace_f2fs_sync_fs(sb, sync);
796
797 if (sync) {
798 struct cp_control cpc;
799
800 cpc.reason = __get_cp_reason(sbi);
801
802 mutex_lock(&sbi->gc_mutex);
803 err = write_checkpoint(sbi, &cpc);
804 mutex_unlock(&sbi->gc_mutex);
805 }
806 f2fs_trace_ios(NULL, 1);
807
808 return err;
809}
810
811static int f2fs_freeze(struct super_block *sb)
812{
813 if (f2fs_readonly(sb))
814 return 0;
815
816 /* IO error happened before */
817 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
818 return -EIO;
819
820 /* must be clean, since sync_filesystem() was already called */
821 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
822 return -EINVAL;
823 return 0;
824}
825
826static int f2fs_unfreeze(struct super_block *sb)
827{
828 return 0;
829}
830
831static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
832{
833 struct super_block *sb = dentry->d_sb;
834 struct f2fs_sb_info *sbi = F2FS_SB(sb);
835 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
836 block_t total_count, user_block_count, start_count, ovp_count;
837
838 total_count = le64_to_cpu(sbi->raw_super->block_count);
839 user_block_count = sbi->user_block_count;
840 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
841 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
842 buf->f_type = F2FS_SUPER_MAGIC;
843 buf->f_bsize = sbi->blocksize;
844
845 buf->f_blocks = total_count - start_count;
846 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
847 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
848
849 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
850 buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
851 buf->f_bavail);
852
853 buf->f_namelen = F2FS_NAME_LEN;
854 buf->f_fsid.val[0] = (u32)id;
855 buf->f_fsid.val[1] = (u32)(id >> 32);
856
857 return 0;
858}
859
860static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
861{
862 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
863
864 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
865 if (test_opt(sbi, FORCE_FG_GC))
866 seq_printf(seq, ",background_gc=%s", "sync");
867 else
868 seq_printf(seq, ",background_gc=%s", "on");
869 } else {
870 seq_printf(seq, ",background_gc=%s", "off");
871 }
872 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
873 seq_puts(seq, ",disable_roll_forward");
874 if (test_opt(sbi, DISCARD))
875 seq_puts(seq, ",discard");
876 if (test_opt(sbi, NOHEAP))
877 seq_puts(seq, ",no_heap_alloc");
878#ifdef CONFIG_F2FS_FS_XATTR
879 if (test_opt(sbi, XATTR_USER))
880 seq_puts(seq, ",user_xattr");
881 else
882 seq_puts(seq, ",nouser_xattr");
883 if (test_opt(sbi, INLINE_XATTR))
884 seq_puts(seq, ",inline_xattr");
885#endif
886#ifdef CONFIG_F2FS_FS_POSIX_ACL
887 if (test_opt(sbi, POSIX_ACL))
888 seq_puts(seq, ",acl");
889 else
890 seq_puts(seq, ",noacl");
891#endif
892 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
893 seq_puts(seq, ",disable_ext_identify");
894 if (test_opt(sbi, INLINE_DATA))
895 seq_puts(seq, ",inline_data");
896 else
897 seq_puts(seq, ",noinline_data");
898 if (test_opt(sbi, INLINE_DENTRY))
899 seq_puts(seq, ",inline_dentry");
900 else
901 seq_puts(seq, ",noinline_dentry");
902 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
903 seq_puts(seq, ",flush_merge");
904 if (test_opt(sbi, NOBARRIER))
905 seq_puts(seq, ",nobarrier");
906 if (test_opt(sbi, FASTBOOT))
907 seq_puts(seq, ",fastboot");
908 if (test_opt(sbi, EXTENT_CACHE))
909 seq_puts(seq, ",extent_cache");
910 else
911 seq_puts(seq, ",noextent_cache");
912 if (test_opt(sbi, DATA_FLUSH))
913 seq_puts(seq, ",data_flush");
914
915 seq_puts(seq, ",mode=");
916 if (test_opt(sbi, ADAPTIVE))
917 seq_puts(seq, "adaptive");
918 else if (test_opt(sbi, LFS))
919 seq_puts(seq, "lfs");
920 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
921
922 return 0;
923}
924
925static int segment_info_seq_show(struct seq_file *seq, void *offset)
926{
927 struct super_block *sb = seq->private;
928 struct f2fs_sb_info *sbi = F2FS_SB(sb);
929 unsigned int total_segs =
930 le32_to_cpu(sbi->raw_super->segment_count_main);
931 int i;
932
933 seq_puts(seq, "format: segment_type|valid_blocks\n"
934 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
935
936 for (i = 0; i < total_segs; i++) {
937 struct seg_entry *se = get_seg_entry(sbi, i);
938
939 if ((i % 10) == 0)
940 seq_printf(seq, "%-10d", i);
941 seq_printf(seq, "%d|%-3u", se->type,
942 get_valid_blocks(sbi, i, 1));
943 if ((i % 10) == 9 || i == (total_segs - 1))
944 seq_putc(seq, '\n');
945 else
946 seq_putc(seq, ' ');
947 }
948
949 return 0;
950}
951
952static int segment_bits_seq_show(struct seq_file *seq, void *offset)
953{
954 struct super_block *sb = seq->private;
955 struct f2fs_sb_info *sbi = F2FS_SB(sb);
956 unsigned int total_segs =
957 le32_to_cpu(sbi->raw_super->segment_count_main);
958 int i, j;
959
960 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
961 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
962
963 for (i = 0; i < total_segs; i++) {
964 struct seg_entry *se = get_seg_entry(sbi, i);
965
966 seq_printf(seq, "%-10d", i);
967 seq_printf(seq, "%d|%-3u|", se->type,
968 get_valid_blocks(sbi, i, 1));
969 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
970 seq_printf(seq, " %.2x", se->cur_valid_map[j]);
971 seq_putc(seq, '\n');
972 }
973 return 0;
974}
975
976#define F2FS_PROC_FILE_DEF(_name) \
977static int _name##_open_fs(struct inode *inode, struct file *file) \
978{ \
979 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
980} \
981 \
982static const struct file_operations f2fs_seq_##_name##_fops = { \
983 .open = _name##_open_fs, \
984 .read = seq_read, \
985 .llseek = seq_lseek, \
986 .release = single_release, \
987};
988
989F2FS_PROC_FILE_DEF(segment_info);
990F2FS_PROC_FILE_DEF(segment_bits);
991
992static void default_options(struct f2fs_sb_info *sbi)
993{
994 /* init some FS parameters */
995 sbi->active_logs = NR_CURSEG_TYPE;
996
997 set_opt(sbi, BG_GC);
998 set_opt(sbi, INLINE_DATA);
999 set_opt(sbi, INLINE_DENTRY);
1000 set_opt(sbi, EXTENT_CACHE);
1001 sbi->sb->s_flags |= MS_LAZYTIME;
1002 set_opt(sbi, FLUSH_MERGE);
1003 if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1004 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1005 set_opt(sbi, DISCARD);
1006 } else {
1007 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1008 }
1009
1010#ifdef CONFIG_F2FS_FS_XATTR
1011 set_opt(sbi, XATTR_USER);
1012#endif
1013#ifdef CONFIG_F2FS_FS_POSIX_ACL
1014 set_opt(sbi, POSIX_ACL);
1015#endif
1016
1017#ifdef CONFIG_F2FS_FAULT_INJECTION
1018 f2fs_build_fault_attr(sbi, 0);
1019#endif
1020}
1021
1022static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1023{
1024 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1025 struct f2fs_mount_info org_mount_opt;
1026 int err, active_logs;
1027 bool need_restart_gc = false;
1028 bool need_stop_gc = false;
1029 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1030#ifdef CONFIG_F2FS_FAULT_INJECTION
1031 struct f2fs_fault_info ffi = sbi->fault_info;
1032#endif
1033
1034 /*
1035 * Save the old mount options in case we
1036 * need to restore them.
1037 */
1038 org_mount_opt = sbi->mount_opt;
1039 active_logs = sbi->active_logs;
1040
1041 /* recover superblocks we couldn't write due to previous RO mount */
1042 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1043 err = f2fs_commit_super(sbi, false);
1044 f2fs_msg(sb, KERN_INFO,
1045 "Try to recover all the superblocks, ret: %d", err);
1046 if (!err)
1047 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1048 }
1049
1050 sbi->mount_opt.opt = 0;
1051 default_options(sbi);
1052
1053 /* parse mount options */
1054 err = parse_options(sb, data);
1055 if (err)
1056 goto restore_opts;
1057
1058 /*
1059 * Previous and new state of filesystem is RO,
1060 * so skip checking GC and FLUSH_MERGE conditions.
1061 */
1062 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1063 goto skip;
1064
1065 /* disallow enable/disable extent_cache dynamically */
1066 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1067 err = -EINVAL;
1068 f2fs_msg(sbi->sb, KERN_WARNING,
1069 "switch extent_cache option is not allowed");
1070 goto restore_opts;
1071 }
1072
1073 /*
1074 * We stop the GC thread if FS is mounted as RO
1075 * or if background_gc = off is passed in mount
1076 * option. Also sync the filesystem.
1077 */
1078 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1079 if (sbi->gc_thread) {
1080 stop_gc_thread(sbi);
1081 need_restart_gc = true;
1082 }
1083 } else if (!sbi->gc_thread) {
1084 err = start_gc_thread(sbi);
1085 if (err)
1086 goto restore_opts;
1087 need_stop_gc = true;
1088 }
1089
1090 if (*flags & MS_RDONLY) {
1091 writeback_inodes_sb(sb, WB_REASON_SYNC);
1092 sync_inodes_sb(sb);
1093
1094 set_sbi_flag(sbi, SBI_IS_DIRTY);
1095 set_sbi_flag(sbi, SBI_IS_CLOSE);
1096 f2fs_sync_fs(sb, 1);
1097 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1098 }
1099
1100 /*
1101 * We stop issue flush thread if FS is mounted as RO
1102 * or if flush_merge is not passed in mount option.
1103 */
1104 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1105 clear_opt(sbi, FLUSH_MERGE);
1106 destroy_flush_cmd_control(sbi, false);
1107 } else {
1108 err = create_flush_cmd_control(sbi);
1109 if (err)
1110 goto restore_gc;
1111 }
1112skip:
1113 /* Update the POSIXACL Flag */
1114 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1115 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1116
1117 return 0;
1118restore_gc:
1119 if (need_restart_gc) {
1120 if (start_gc_thread(sbi))
1121 f2fs_msg(sbi->sb, KERN_WARNING,
1122 "background gc thread has stopped");
1123 } else if (need_stop_gc) {
1124 stop_gc_thread(sbi);
1125 }
1126restore_opts:
1127 sbi->mount_opt = org_mount_opt;
1128 sbi->active_logs = active_logs;
1129#ifdef CONFIG_F2FS_FAULT_INJECTION
1130 sbi->fault_info = ffi;
1131#endif
1132 return err;
1133}
1134
1135static struct super_operations f2fs_sops = {
1136 .alloc_inode = f2fs_alloc_inode,
1137 .drop_inode = f2fs_drop_inode,
1138 .destroy_inode = f2fs_destroy_inode,
1139 .write_inode = f2fs_write_inode,
1140 .dirty_inode = f2fs_dirty_inode,
1141 .show_options = f2fs_show_options,
1142 .evict_inode = f2fs_evict_inode,
1143 .put_super = f2fs_put_super,
1144 .sync_fs = f2fs_sync_fs,
1145 .freeze_fs = f2fs_freeze,
1146 .unfreeze_fs = f2fs_unfreeze,
1147 .statfs = f2fs_statfs,
1148 .remount_fs = f2fs_remount,
1149};
1150
1151#ifdef CONFIG_F2FS_FS_ENCRYPTION
1152static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1153{
1154 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1155 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1156 ctx, len, NULL);
1157}
1158
1159static int f2fs_key_prefix(struct inode *inode, u8 **key)
1160{
1161 *key = F2FS_I_SB(inode)->key_prefix;
1162 return F2FS_I_SB(inode)->key_prefix_size;
1163}
1164
1165static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1166 void *fs_data)
1167{
1168 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1169 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1170 ctx, len, fs_data, XATTR_CREATE);
1171}
1172
1173static unsigned f2fs_max_namelen(struct inode *inode)
1174{
1175 return S_ISLNK(inode->i_mode) ?
1176 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1177}
1178
1179static struct fscrypt_operations f2fs_cryptops = {
1180 .get_context = f2fs_get_context,
1181 .key_prefix = f2fs_key_prefix,
1182 .set_context = f2fs_set_context,
1183 .is_encrypted = f2fs_encrypted_inode,
1184 .empty_dir = f2fs_empty_dir,
1185 .max_namelen = f2fs_max_namelen,
1186};
1187#else
1188static struct fscrypt_operations f2fs_cryptops = {
1189 .is_encrypted = f2fs_encrypted_inode,
1190};
1191#endif
1192
1193static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1194 u64 ino, u32 generation)
1195{
1196 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1197 struct inode *inode;
1198
1199 if (check_nid_range(sbi, ino))
1200 return ERR_PTR(-ESTALE);
1201
1202 /*
1203 * f2fs_iget isn't quite right if the inode is currently unallocated!
1204 * However f2fs_iget currently does appropriate checks to handle stale
1205 * inodes so everything is OK.
1206 */
1207 inode = f2fs_iget(sb, ino);
1208 if (IS_ERR(inode))
1209 return ERR_CAST(inode);
1210 if (unlikely(generation && inode->i_generation != generation)) {
1211 /* we didn't find the right inode.. */
1212 iput(inode);
1213 return ERR_PTR(-ESTALE);
1214 }
1215 return inode;
1216}
1217
1218static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1219 int fh_len, int fh_type)
1220{
1221 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1222 f2fs_nfs_get_inode);
1223}
1224
1225static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1226 int fh_len, int fh_type)
1227{
1228 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1229 f2fs_nfs_get_inode);
1230}
1231
1232static const struct export_operations f2fs_export_ops = {
1233 .fh_to_dentry = f2fs_fh_to_dentry,
1234 .fh_to_parent = f2fs_fh_to_parent,
1235 .get_parent = f2fs_get_parent,
1236};
1237
1238static loff_t max_file_blocks(void)
1239{
1240 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1241 loff_t leaf_count = ADDRS_PER_BLOCK;
1242
1243 /* two direct node blocks */
1244 result += (leaf_count * 2);
1245
1246 /* two indirect node blocks */
1247 leaf_count *= NIDS_PER_BLOCK;
1248 result += (leaf_count * 2);
1249
1250 /* one double indirect node block */
1251 leaf_count *= NIDS_PER_BLOCK;
1252 result += leaf_count;
1253
1254 return result;
1255}
1256
1257static int __f2fs_commit_super(struct buffer_head *bh,
1258 struct f2fs_super_block *super)
1259{
1260 lock_buffer(bh);
1261 if (super)
1262 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1263 set_buffer_uptodate(bh);
1264 set_buffer_dirty(bh);
1265 unlock_buffer(bh);
1266
1267 /* it's rare case, we can do fua all the time */
1268 return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA);
1269}
1270
1271static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1272 struct buffer_head *bh)
1273{
1274 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1275 (bh->b_data + F2FS_SUPER_OFFSET);
1276 struct super_block *sb = sbi->sb;
1277 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1278 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1279 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1280 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1281 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1282 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1283 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1284 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1285 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1286 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1287 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1288 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1289 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1290 u64 main_end_blkaddr = main_blkaddr +
1291 (segment_count_main << log_blocks_per_seg);
1292 u64 seg_end_blkaddr = segment0_blkaddr +
1293 (segment_count << log_blocks_per_seg);
1294
1295 if (segment0_blkaddr != cp_blkaddr) {
1296 f2fs_msg(sb, KERN_INFO,
1297 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1298 segment0_blkaddr, cp_blkaddr);
1299 return true;
1300 }
1301
1302 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1303 sit_blkaddr) {
1304 f2fs_msg(sb, KERN_INFO,
1305 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1306 cp_blkaddr, sit_blkaddr,
1307 segment_count_ckpt << log_blocks_per_seg);
1308 return true;
1309 }
1310
1311 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1312 nat_blkaddr) {
1313 f2fs_msg(sb, KERN_INFO,
1314 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1315 sit_blkaddr, nat_blkaddr,
1316 segment_count_sit << log_blocks_per_seg);
1317 return true;
1318 }
1319
1320 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1321 ssa_blkaddr) {
1322 f2fs_msg(sb, KERN_INFO,
1323 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1324 nat_blkaddr, ssa_blkaddr,
1325 segment_count_nat << log_blocks_per_seg);
1326 return true;
1327 }
1328
1329 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1330 main_blkaddr) {
1331 f2fs_msg(sb, KERN_INFO,
1332 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1333 ssa_blkaddr, main_blkaddr,
1334 segment_count_ssa << log_blocks_per_seg);
1335 return true;
1336 }
1337
1338 if (main_end_blkaddr > seg_end_blkaddr) {
1339 f2fs_msg(sb, KERN_INFO,
1340 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1341 main_blkaddr,
1342 segment0_blkaddr +
1343 (segment_count << log_blocks_per_seg),
1344 segment_count_main << log_blocks_per_seg);
1345 return true;
1346 } else if (main_end_blkaddr < seg_end_blkaddr) {
1347 int err = 0;
1348 char *res;
1349
1350 /* fix in-memory information all the time */
1351 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1352 segment0_blkaddr) >> log_blocks_per_seg);
1353
1354 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1355 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1356 res = "internally";
1357 } else {
1358 err = __f2fs_commit_super(bh, NULL);
1359 res = err ? "failed" : "done";
1360 }
1361 f2fs_msg(sb, KERN_INFO,
1362 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1363 res, main_blkaddr,
1364 segment0_blkaddr +
1365 (segment_count << log_blocks_per_seg),
1366 segment_count_main << log_blocks_per_seg);
1367 if (err)
1368 return true;
1369 }
1370 return false;
1371}
1372
1373static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1374 struct buffer_head *bh)
1375{
1376 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1377 (bh->b_data + F2FS_SUPER_OFFSET);
1378 struct super_block *sb = sbi->sb;
1379 unsigned int blocksize;
1380
1381 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1382 f2fs_msg(sb, KERN_INFO,
1383 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1384 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1385 return 1;
1386 }
1387
1388 /* Currently, support only 4KB page cache size */
1389 if (F2FS_BLKSIZE != PAGE_SIZE) {
1390 f2fs_msg(sb, KERN_INFO,
1391 "Invalid page_cache_size (%lu), supports only 4KB\n",
1392 PAGE_SIZE);
1393 return 1;
1394 }
1395
1396 /* Currently, support only 4KB block size */
1397 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1398 if (blocksize != F2FS_BLKSIZE) {
1399 f2fs_msg(sb, KERN_INFO,
1400 "Invalid blocksize (%u), supports only 4KB\n",
1401 blocksize);
1402 return 1;
1403 }
1404
1405 /* check log blocks per segment */
1406 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1407 f2fs_msg(sb, KERN_INFO,
1408 "Invalid log blocks per segment (%u)\n",
1409 le32_to_cpu(raw_super->log_blocks_per_seg));
1410 return 1;
1411 }
1412
1413 /* Currently, support 512/1024/2048/4096 bytes sector size */
1414 if (le32_to_cpu(raw_super->log_sectorsize) >
1415 F2FS_MAX_LOG_SECTOR_SIZE ||
1416 le32_to_cpu(raw_super->log_sectorsize) <
1417 F2FS_MIN_LOG_SECTOR_SIZE) {
1418 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1419 le32_to_cpu(raw_super->log_sectorsize));
1420 return 1;
1421 }
1422 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1423 le32_to_cpu(raw_super->log_sectorsize) !=
1424 F2FS_MAX_LOG_SECTOR_SIZE) {
1425 f2fs_msg(sb, KERN_INFO,
1426 "Invalid log sectors per block(%u) log sectorsize(%u)",
1427 le32_to_cpu(raw_super->log_sectors_per_block),
1428 le32_to_cpu(raw_super->log_sectorsize));
1429 return 1;
1430 }
1431
1432 /* check reserved ino info */
1433 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1434 le32_to_cpu(raw_super->meta_ino) != 2 ||
1435 le32_to_cpu(raw_super->root_ino) != 3) {
1436 f2fs_msg(sb, KERN_INFO,
1437 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1438 le32_to_cpu(raw_super->node_ino),
1439 le32_to_cpu(raw_super->meta_ino),
1440 le32_to_cpu(raw_super->root_ino));
1441 return 1;
1442 }
1443
1444 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1445 if (sanity_check_area_boundary(sbi, bh))
1446 return 1;
1447
1448 return 0;
1449}
1450
1451int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1452{
1453 unsigned int total, fsmeta;
1454 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1455 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456 unsigned int ovp_segments, reserved_segments;
1457
1458 total = le32_to_cpu(raw_super->segment_count);
1459 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1460 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1461 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1462 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1463 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1464
1465 if (unlikely(fsmeta >= total))
1466 return 1;
1467
1468 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1469 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1470
1471 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1472 ovp_segments == 0 || reserved_segments == 0)) {
1473 f2fs_msg(sbi->sb, KERN_ERR,
1474 "Wrong layout: check mkfs.f2fs version");
1475 return 1;
1476 }
1477
1478 if (unlikely(f2fs_cp_error(sbi))) {
1479 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1480 return 1;
1481 }
1482 return 0;
1483}
1484
1485static void init_sb_info(struct f2fs_sb_info *sbi)
1486{
1487 struct f2fs_super_block *raw_super = sbi->raw_super;
1488 int i;
1489
1490 sbi->log_sectors_per_block =
1491 le32_to_cpu(raw_super->log_sectors_per_block);
1492 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1493 sbi->blocksize = 1 << sbi->log_blocksize;
1494 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1495 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1496 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1497 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1498 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1499 sbi->total_node_count =
1500 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1501 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1502 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1503 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1504 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1505 sbi->cur_victim_sec = NULL_SECNO;
1506 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1507
1508 sbi->dir_level = DEF_DIR_LEVEL;
1509 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1510 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1511 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1512
1513 for (i = 0; i < NR_COUNT_TYPE; i++)
1514 atomic_set(&sbi->nr_pages[i], 0);
1515
1516 INIT_LIST_HEAD(&sbi->s_list);
1517 mutex_init(&sbi->umount_mutex);
1518 mutex_init(&sbi->wio_mutex[NODE]);
1519 mutex_init(&sbi->wio_mutex[DATA]);
1520 spin_lock_init(&sbi->cp_lock);
1521
1522#ifdef CONFIG_F2FS_FS_ENCRYPTION
1523 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1524 F2FS_KEY_DESC_PREFIX_SIZE);
1525 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1526#endif
1527}
1528
1529static int init_percpu_info(struct f2fs_sb_info *sbi)
1530{
1531 int err;
1532
1533 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1534 if (err)
1535 return err;
1536
1537 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1538 GFP_KERNEL);
1539}
1540
1541#ifdef CONFIG_BLK_DEV_ZONED
1542static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1543{
1544 struct block_device *bdev = FDEV(devi).bdev;
1545 sector_t nr_sectors = bdev->bd_part->nr_sects;
1546 sector_t sector = 0;
1547 struct blk_zone *zones;
1548 unsigned int i, nr_zones;
1549 unsigned int n = 0;
1550 int err = -EIO;
1551
1552 if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1553 return 0;
1554
1555 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1556 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1557 return -EINVAL;
1558 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1559 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1560 __ilog2_u32(sbi->blocks_per_blkz))
1561 return -EINVAL;
1562 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1563 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1564 sbi->log_blocks_per_blkz;
1565 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1566 FDEV(devi).nr_blkz++;
1567
1568 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1569 if (!FDEV(devi).blkz_type)
1570 return -ENOMEM;
1571
1572#define F2FS_REPORT_NR_ZONES 4096
1573
1574 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1575 GFP_KERNEL);
1576 if (!zones)
1577 return -ENOMEM;
1578
1579 /* Get block zones type */
1580 while (zones && sector < nr_sectors) {
1581
1582 nr_zones = F2FS_REPORT_NR_ZONES;
1583 err = blkdev_report_zones(bdev, sector,
1584 zones, &nr_zones,
1585 GFP_KERNEL);
1586 if (err)
1587 break;
1588 if (!nr_zones) {
1589 err = -EIO;
1590 break;
1591 }
1592
1593 for (i = 0; i < nr_zones; i++) {
1594 FDEV(devi).blkz_type[n] = zones[i].type;
1595 sector += zones[i].len;
1596 n++;
1597 }
1598 }
1599
1600 kfree(zones);
1601
1602 return err;
1603}
1604#endif
1605
1606/*
1607 * Read f2fs raw super block.
1608 * Because we have two copies of super block, so read both of them
1609 * to get the first valid one. If any one of them is broken, we pass
1610 * them recovery flag back to the caller.
1611 */
1612static int read_raw_super_block(struct f2fs_sb_info *sbi,
1613 struct f2fs_super_block **raw_super,
1614 int *valid_super_block, int *recovery)
1615{
1616 struct super_block *sb = sbi->sb;
1617 int block;
1618 struct buffer_head *bh;
1619 struct f2fs_super_block *super;
1620 int err = 0;
1621
1622 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1623 if (!super)
1624 return -ENOMEM;
1625
1626 for (block = 0; block < 2; block++) {
1627 bh = sb_bread(sb, block);
1628 if (!bh) {
1629 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1630 block + 1);
1631 err = -EIO;
1632 continue;
1633 }
1634
1635 /* sanity checking of raw super */
1636 if (sanity_check_raw_super(sbi, bh)) {
1637 f2fs_msg(sb, KERN_ERR,
1638 "Can't find valid F2FS filesystem in %dth superblock",
1639 block + 1);
1640 err = -EINVAL;
1641 brelse(bh);
1642 continue;
1643 }
1644
1645 if (!*raw_super) {
1646 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1647 sizeof(*super));
1648 *valid_super_block = block;
1649 *raw_super = super;
1650 }
1651 brelse(bh);
1652 }
1653
1654 /* Fail to read any one of the superblocks*/
1655 if (err < 0)
1656 *recovery = 1;
1657
1658 /* No valid superblock */
1659 if (!*raw_super)
1660 kfree(super);
1661 else
1662 err = 0;
1663
1664 return err;
1665}
1666
1667int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1668{
1669 struct buffer_head *bh;
1670 int err;
1671
1672 if ((recover && f2fs_readonly(sbi->sb)) ||
1673 bdev_read_only(sbi->sb->s_bdev)) {
1674 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1675 return -EROFS;
1676 }
1677
1678 /* write back-up superblock first */
1679 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1680 if (!bh)
1681 return -EIO;
1682 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1683 brelse(bh);
1684
1685 /* if we are in recovery path, skip writing valid superblock */
1686 if (recover || err)
1687 return err;
1688
1689 /* write current valid superblock */
1690 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1691 if (!bh)
1692 return -EIO;
1693 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1694 brelse(bh);
1695 return err;
1696}
1697
1698static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1699{
1700 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1701 unsigned int max_devices = MAX_DEVICES;
1702 int i;
1703
1704 /* Initialize single device information */
1705 if (!RDEV(0).path[0]) {
1706 if (!bdev_is_zoned(sbi->sb->s_bdev))
1707 return 0;
1708 max_devices = 1;
1709 }
1710
1711 /*
1712 * Initialize multiple devices information, or single
1713 * zoned block device information.
1714 */
1715 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1716 GFP_KERNEL);
1717 if (!sbi->devs)
1718 return -ENOMEM;
1719
1720 for (i = 0; i < max_devices; i++) {
1721
1722 if (i > 0 && !RDEV(i).path[0])
1723 break;
1724
1725 if (max_devices == 1) {
1726 /* Single zoned block device mount */
1727 FDEV(0).bdev =
1728 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1729 sbi->sb->s_mode, sbi->sb->s_type);
1730 } else {
1731 /* Multi-device mount */
1732 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1733 FDEV(i).total_segments =
1734 le32_to_cpu(RDEV(i).total_segments);
1735 if (i == 0) {
1736 FDEV(i).start_blk = 0;
1737 FDEV(i).end_blk = FDEV(i).start_blk +
1738 (FDEV(i).total_segments <<
1739 sbi->log_blocks_per_seg) - 1 +
1740 le32_to_cpu(raw_super->segment0_blkaddr);
1741 } else {
1742 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1743 FDEV(i).end_blk = FDEV(i).start_blk +
1744 (FDEV(i).total_segments <<
1745 sbi->log_blocks_per_seg) - 1;
1746 }
1747 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1748 sbi->sb->s_mode, sbi->sb->s_type);
1749 }
1750 if (IS_ERR(FDEV(i).bdev))
1751 return PTR_ERR(FDEV(i).bdev);
1752
1753 /* to release errored devices */
1754 sbi->s_ndevs = i + 1;
1755
1756#ifdef CONFIG_BLK_DEV_ZONED
1757 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1758 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1759 f2fs_msg(sbi->sb, KERN_ERR,
1760 "Zoned block device feature not enabled\n");
1761 return -EINVAL;
1762 }
1763 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1764 if (init_blkz_info(sbi, i)) {
1765 f2fs_msg(sbi->sb, KERN_ERR,
1766 "Failed to initialize F2FS blkzone information");
1767 return -EINVAL;
1768 }
1769 if (max_devices == 1)
1770 break;
1771 f2fs_msg(sbi->sb, KERN_INFO,
1772 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1773 i, FDEV(i).path,
1774 FDEV(i).total_segments,
1775 FDEV(i).start_blk, FDEV(i).end_blk,
1776 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1777 "Host-aware" : "Host-managed");
1778 continue;
1779 }
1780#endif
1781 f2fs_msg(sbi->sb, KERN_INFO,
1782 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1783 i, FDEV(i).path,
1784 FDEV(i).total_segments,
1785 FDEV(i).start_blk, FDEV(i).end_blk);
1786 }
1787 return 0;
1788}
1789
1790static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1791{
1792 struct f2fs_sb_info *sbi;
1793 struct f2fs_super_block *raw_super;
1794 struct inode *root;
1795 int err;
1796 bool retry = true, need_fsck = false;
1797 char *options = NULL;
1798 int recovery, i, valid_super_block;
1799 struct curseg_info *seg_i;
1800
1801try_onemore:
1802 err = -EINVAL;
1803 raw_super = NULL;
1804 valid_super_block = -1;
1805 recovery = 0;
1806
1807 /* allocate memory for f2fs-specific super block info */
1808 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1809 if (!sbi)
1810 return -ENOMEM;
1811
1812 sbi->sb = sb;
1813
1814 /* Load the checksum driver */
1815 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1816 if (IS_ERR(sbi->s_chksum_driver)) {
1817 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1818 err = PTR_ERR(sbi->s_chksum_driver);
1819 sbi->s_chksum_driver = NULL;
1820 goto free_sbi;
1821 }
1822
1823 /* set a block size */
1824 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1825 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1826 goto free_sbi;
1827 }
1828
1829 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1830 &recovery);
1831 if (err)
1832 goto free_sbi;
1833
1834 sb->s_fs_info = sbi;
1835 sbi->raw_super = raw_super;
1836
1837 /*
1838 * The BLKZONED feature indicates that the drive was formatted with
1839 * zone alignment optimization. This is optional for host-aware
1840 * devices, but mandatory for host-managed zoned block devices.
1841 */
1842#ifndef CONFIG_BLK_DEV_ZONED
1843 if (f2fs_sb_mounted_blkzoned(sb)) {
1844 f2fs_msg(sb, KERN_ERR,
1845 "Zoned block device support is not enabled\n");
1846 goto free_sb_buf;
1847 }
1848#endif
1849 default_options(sbi);
1850 /* parse mount options */
1851 options = kstrdup((const char *)data, GFP_KERNEL);
1852 if (data && !options) {
1853 err = -ENOMEM;
1854 goto free_sb_buf;
1855 }
1856
1857 err = parse_options(sb, options);
1858 if (err)
1859 goto free_options;
1860
1861 sbi->max_file_blocks = max_file_blocks();
1862 sb->s_maxbytes = sbi->max_file_blocks <<
1863 le32_to_cpu(raw_super->log_blocksize);
1864 sb->s_max_links = F2FS_LINK_MAX;
1865 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1866
1867 sb->s_op = &f2fs_sops;
1868 sb->s_cop = &f2fs_cryptops;
1869 sb->s_xattr = f2fs_xattr_handlers;
1870 sb->s_export_op = &f2fs_export_ops;
1871 sb->s_magic = F2FS_SUPER_MAGIC;
1872 sb->s_time_gran = 1;
1873 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1874 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1875 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1876
1877 /* init f2fs-specific super block info */
1878 sbi->valid_super_block = valid_super_block;
1879 mutex_init(&sbi->gc_mutex);
1880 mutex_init(&sbi->cp_mutex);
1881 init_rwsem(&sbi->node_write);
1882
1883 /* disallow all the data/node/meta page writes */
1884 set_sbi_flag(sbi, SBI_POR_DOING);
1885 spin_lock_init(&sbi->stat_lock);
1886
1887 init_rwsem(&sbi->read_io.io_rwsem);
1888 sbi->read_io.sbi = sbi;
1889 sbi->read_io.bio = NULL;
1890 for (i = 0; i < NR_PAGE_TYPE; i++) {
1891 init_rwsem(&sbi->write_io[i].io_rwsem);
1892 sbi->write_io[i].sbi = sbi;
1893 sbi->write_io[i].bio = NULL;
1894 }
1895
1896 init_rwsem(&sbi->cp_rwsem);
1897 init_waitqueue_head(&sbi->cp_wait);
1898 init_sb_info(sbi);
1899
1900 err = init_percpu_info(sbi);
1901 if (err)
1902 goto free_options;
1903
1904 /* get an inode for meta space */
1905 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1906 if (IS_ERR(sbi->meta_inode)) {
1907 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1908 err = PTR_ERR(sbi->meta_inode);
1909 goto free_options;
1910 }
1911
1912 err = get_valid_checkpoint(sbi);
1913 if (err) {
1914 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1915 goto free_meta_inode;
1916 }
1917
1918 /* Initialize device list */
1919 err = f2fs_scan_devices(sbi);
1920 if (err) {
1921 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1922 goto free_devices;
1923 }
1924
1925 sbi->total_valid_node_count =
1926 le32_to_cpu(sbi->ckpt->valid_node_count);
1927 percpu_counter_set(&sbi->total_valid_inode_count,
1928 le32_to_cpu(sbi->ckpt->valid_inode_count));
1929 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1930 sbi->total_valid_block_count =
1931 le64_to_cpu(sbi->ckpt->valid_block_count);
1932 sbi->last_valid_block_count = sbi->total_valid_block_count;
1933
1934 for (i = 0; i < NR_INODE_TYPE; i++) {
1935 INIT_LIST_HEAD(&sbi->inode_list[i]);
1936 spin_lock_init(&sbi->inode_lock[i]);
1937 }
1938
1939 init_extent_cache_info(sbi);
1940
1941 init_ino_entry_info(sbi);
1942
1943 /* setup f2fs internal modules */
1944 err = build_segment_manager(sbi);
1945 if (err) {
1946 f2fs_msg(sb, KERN_ERR,
1947 "Failed to initialize F2FS segment manager");
1948 goto free_sm;
1949 }
1950 err = build_node_manager(sbi);
1951 if (err) {
1952 f2fs_msg(sb, KERN_ERR,
1953 "Failed to initialize F2FS node manager");
1954 goto free_nm;
1955 }
1956
1957 /* For write statistics */
1958 if (sb->s_bdev->bd_part)
1959 sbi->sectors_written_start =
1960 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1961
1962 /* Read accumulated write IO statistics if exists */
1963 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1964 if (__exist_node_summaries(sbi))
1965 sbi->kbytes_written =
1966 le64_to_cpu(seg_i->journal->info.kbytes_written);
1967
1968 build_gc_manager(sbi);
1969
1970 /* get an inode for node space */
1971 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1972 if (IS_ERR(sbi->node_inode)) {
1973 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1974 err = PTR_ERR(sbi->node_inode);
1975 goto free_nm;
1976 }
1977
1978 f2fs_join_shrinker(sbi);
1979
1980 /* if there are nt orphan nodes free them */
1981 err = recover_orphan_inodes(sbi);
1982 if (err)
1983 goto free_node_inode;
1984
1985 /* read root inode and dentry */
1986 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1987 if (IS_ERR(root)) {
1988 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1989 err = PTR_ERR(root);
1990 goto free_node_inode;
1991 }
1992 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1993 iput(root);
1994 err = -EINVAL;
1995 goto free_node_inode;
1996 }
1997
1998 sb->s_root = d_make_root(root); /* allocate root dentry */
1999 if (!sb->s_root) {
2000 err = -ENOMEM;
2001 goto free_root_inode;
2002 }
2003
2004 err = f2fs_build_stats(sbi);
2005 if (err)
2006 goto free_root_inode;
2007
2008 if (f2fs_proc_root)
2009 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2010
2011 if (sbi->s_proc) {
2012 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2013 &f2fs_seq_segment_info_fops, sb);
2014 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2015 &f2fs_seq_segment_bits_fops, sb);
2016 }
2017
2018 sbi->s_kobj.kset = f2fs_kset;
2019 init_completion(&sbi->s_kobj_unregister);
2020 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2021 "%s", sb->s_id);
2022 if (err)
2023 goto free_proc;
2024
2025 /* recover fsynced data */
2026 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2027 /*
2028 * mount should be failed, when device has readonly mode, and
2029 * previous checkpoint was not done by clean system shutdown.
2030 */
2031 if (bdev_read_only(sb->s_bdev) &&
2032 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2033 err = -EROFS;
2034 goto free_kobj;
2035 }
2036
2037 if (need_fsck)
2038 set_sbi_flag(sbi, SBI_NEED_FSCK);
2039
2040 if (!retry)
2041 goto skip_recovery;
2042
2043 err = recover_fsync_data(sbi, false);
2044 if (err < 0) {
2045 need_fsck = true;
2046 f2fs_msg(sb, KERN_ERR,
2047 "Cannot recover all fsync data errno=%d", err);
2048 goto free_kobj;
2049 }
2050 } else {
2051 err = recover_fsync_data(sbi, true);
2052
2053 if (!f2fs_readonly(sb) && err > 0) {
2054 err = -EINVAL;
2055 f2fs_msg(sb, KERN_ERR,
2056 "Need to recover fsync data");
2057 goto free_kobj;
2058 }
2059 }
2060skip_recovery:
2061 /* recover_fsync_data() cleared this already */
2062 clear_sbi_flag(sbi, SBI_POR_DOING);
2063
2064 /*
2065 * If filesystem is not mounted as read-only then
2066 * do start the gc_thread.
2067 */
2068 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2069 /* After POR, we can run background GC thread.*/
2070 err = start_gc_thread(sbi);
2071 if (err)
2072 goto free_kobj;
2073 }
2074 kfree(options);
2075
2076 /* recover broken superblock */
2077 if (recovery) {
2078 err = f2fs_commit_super(sbi, true);
2079 f2fs_msg(sb, KERN_INFO,
2080 "Try to recover %dth superblock, ret: %d",
2081 sbi->valid_super_block ? 1 : 2, err);
2082 }
2083
2084 f2fs_update_time(sbi, CP_TIME);
2085 f2fs_update_time(sbi, REQ_TIME);
2086 return 0;
2087
2088free_kobj:
2089 f2fs_sync_inode_meta(sbi);
2090 kobject_del(&sbi->s_kobj);
2091 kobject_put(&sbi->s_kobj);
2092 wait_for_completion(&sbi->s_kobj_unregister);
2093free_proc:
2094 if (sbi->s_proc) {
2095 remove_proc_entry("segment_info", sbi->s_proc);
2096 remove_proc_entry("segment_bits", sbi->s_proc);
2097 remove_proc_entry(sb->s_id, f2fs_proc_root);
2098 }
2099 f2fs_destroy_stats(sbi);
2100free_root_inode:
2101 dput(sb->s_root);
2102 sb->s_root = NULL;
2103free_node_inode:
2104 truncate_inode_pages_final(NODE_MAPPING(sbi));
2105 mutex_lock(&sbi->umount_mutex);
2106 release_ino_entry(sbi, true);
2107 f2fs_leave_shrinker(sbi);
2108 /*
2109 * Some dirty meta pages can be produced by recover_orphan_inodes()
2110 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2111 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2112 * falls into an infinite loop in sync_meta_pages().
2113 */
2114 truncate_inode_pages_final(META_MAPPING(sbi));
2115 iput(sbi->node_inode);
2116 mutex_unlock(&sbi->umount_mutex);
2117free_nm:
2118 destroy_node_manager(sbi);
2119free_sm:
2120 destroy_segment_manager(sbi);
2121free_devices:
2122 destroy_device_list(sbi);
2123 kfree(sbi->ckpt);
2124free_meta_inode:
2125 make_bad_inode(sbi->meta_inode);
2126 iput(sbi->meta_inode);
2127free_options:
2128 destroy_percpu_info(sbi);
2129 kfree(options);
2130free_sb_buf:
2131 kfree(raw_super);
2132free_sbi:
2133 if (sbi->s_chksum_driver)
2134 crypto_free_shash(sbi->s_chksum_driver);
2135 kfree(sbi);
2136
2137 /* give only one another chance */
2138 if (retry) {
2139 retry = false;
2140 shrink_dcache_sb(sb);
2141 goto try_onemore;
2142 }
2143 return err;
2144}
2145
2146static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2147 const char *dev_name, void *data)
2148{
2149 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2150}
2151
2152static void kill_f2fs_super(struct super_block *sb)
2153{
2154 if (sb->s_root)
2155 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2156 kill_block_super(sb);
2157}
2158
2159static struct file_system_type f2fs_fs_type = {
2160 .owner = THIS_MODULE,
2161 .name = "f2fs",
2162 .mount = f2fs_mount,
2163 .kill_sb = kill_f2fs_super,
2164 .fs_flags = FS_REQUIRES_DEV,
2165};
2166MODULE_ALIAS_FS("f2fs");
2167
2168static int __init init_inodecache(void)
2169{
2170 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2171 sizeof(struct f2fs_inode_info), 0,
2172 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2173 if (!f2fs_inode_cachep)
2174 return -ENOMEM;
2175 return 0;
2176}
2177
2178static void destroy_inodecache(void)
2179{
2180 /*
2181 * Make sure all delayed rcu free inodes are flushed before we
2182 * destroy cache.
2183 */
2184 rcu_barrier();
2185 kmem_cache_destroy(f2fs_inode_cachep);
2186}
2187
2188static int __init init_f2fs_fs(void)
2189{
2190 int err;
2191
2192 f2fs_build_trace_ios();
2193
2194 err = init_inodecache();
2195 if (err)
2196 goto fail;
2197 err = create_node_manager_caches();
2198 if (err)
2199 goto free_inodecache;
2200 err = create_segment_manager_caches();
2201 if (err)
2202 goto free_node_manager_caches;
2203 err = create_checkpoint_caches();
2204 if (err)
2205 goto free_segment_manager_caches;
2206 err = create_extent_cache();
2207 if (err)
2208 goto free_checkpoint_caches;
2209 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2210 if (!f2fs_kset) {
2211 err = -ENOMEM;
2212 goto free_extent_cache;
2213 }
2214 err = register_shrinker(&f2fs_shrinker_info);
2215 if (err)
2216 goto free_kset;
2217
2218 err = register_filesystem(&f2fs_fs_type);
2219 if (err)
2220 goto free_shrinker;
2221 err = f2fs_create_root_stats();
2222 if (err)
2223 goto free_filesystem;
2224 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2225 return 0;
2226
2227free_filesystem:
2228 unregister_filesystem(&f2fs_fs_type);
2229free_shrinker:
2230 unregister_shrinker(&f2fs_shrinker_info);
2231free_kset:
2232 kset_unregister(f2fs_kset);
2233free_extent_cache:
2234 destroy_extent_cache();
2235free_checkpoint_caches:
2236 destroy_checkpoint_caches();
2237free_segment_manager_caches:
2238 destroy_segment_manager_caches();
2239free_node_manager_caches:
2240 destroy_node_manager_caches();
2241free_inodecache:
2242 destroy_inodecache();
2243fail:
2244 return err;
2245}
2246
2247static void __exit exit_f2fs_fs(void)
2248{
2249 remove_proc_entry("fs/f2fs", NULL);
2250 f2fs_destroy_root_stats();
2251 unregister_filesystem(&f2fs_fs_type);
2252 unregister_shrinker(&f2fs_shrinker_info);
2253 kset_unregister(f2fs_kset);
2254 destroy_extent_cache();
2255 destroy_checkpoint_caches();
2256 destroy_segment_manager_caches();
2257 destroy_node_manager_caches();
2258 destroy_inodecache();
2259 f2fs_destroy_trace_ios();
2260}
2261
2262module_init(init_f2fs_fs)
2263module_exit(exit_f2fs_fs)
2264
2265MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2266MODULE_DESCRIPTION("Flash Friendly File System");
2267MODULE_LICENSE("GPL");
2268
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/fs.h>
11#include <linux/fs_context.h>
12#include <linux/sched/mm.h>
13#include <linux/statfs.h>
14#include <linux/buffer_head.h>
15#include <linux/kthread.h>
16#include <linux/parser.h>
17#include <linux/mount.h>
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
20#include <linux/random.h>
21#include <linux/exportfs.h>
22#include <linux/blkdev.h>
23#include <linux/quotaops.h>
24#include <linux/f2fs_fs.h>
25#include <linux/sysfs.h>
26#include <linux/quota.h>
27#include <linux/unicode.h>
28#include <linux/part_stat.h>
29#include <linux/zstd.h>
30#include <linux/lz4.h>
31
32#include "f2fs.h"
33#include "node.h"
34#include "segment.h"
35#include "xattr.h"
36#include "gc.h"
37#include "iostat.h"
38
39#define CREATE_TRACE_POINTS
40#include <trace/events/f2fs.h>
41
42static struct kmem_cache *f2fs_inode_cachep;
43
44#ifdef CONFIG_F2FS_FAULT_INJECTION
45
46const char *f2fs_fault_name[FAULT_MAX] = {
47 [FAULT_KMALLOC] = "kmalloc",
48 [FAULT_KVMALLOC] = "kvmalloc",
49 [FAULT_PAGE_ALLOC] = "page alloc",
50 [FAULT_PAGE_GET] = "page get",
51 [FAULT_ALLOC_NID] = "alloc nid",
52 [FAULT_ORPHAN] = "orphan",
53 [FAULT_BLOCK] = "no more block",
54 [FAULT_DIR_DEPTH] = "too big dir depth",
55 [FAULT_EVICT_INODE] = "evict_inode fail",
56 [FAULT_TRUNCATE] = "truncate fail",
57 [FAULT_READ_IO] = "read IO error",
58 [FAULT_CHECKPOINT] = "checkpoint error",
59 [FAULT_DISCARD] = "discard error",
60 [FAULT_WRITE_IO] = "write IO error",
61 [FAULT_SLAB_ALLOC] = "slab alloc",
62 [FAULT_DQUOT_INIT] = "dquot initialize",
63 [FAULT_LOCK_OP] = "lock_op",
64 [FAULT_BLKADDR] = "invalid blkaddr",
65};
66
67void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
68 unsigned int type)
69{
70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
71
72 if (rate) {
73 atomic_set(&ffi->inject_ops, 0);
74 ffi->inject_rate = rate;
75 }
76
77 if (type)
78 ffi->inject_type = type;
79
80 if (!rate && !type)
81 memset(ffi, 0, sizeof(struct f2fs_fault_info));
82}
83#endif
84
85/* f2fs-wide shrinker description */
86static struct shrinker *f2fs_shrinker_info;
87
88static int __init f2fs_init_shrinker(void)
89{
90 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker");
91 if (!f2fs_shrinker_info)
92 return -ENOMEM;
93
94 f2fs_shrinker_info->count_objects = f2fs_shrink_count;
95 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan;
96
97 shrinker_register(f2fs_shrinker_info);
98
99 return 0;
100}
101
102static void f2fs_exit_shrinker(void)
103{
104 shrinker_free(f2fs_shrinker_info);
105}
106
107enum {
108 Opt_gc_background,
109 Opt_disable_roll_forward,
110 Opt_norecovery,
111 Opt_discard,
112 Opt_nodiscard,
113 Opt_noheap,
114 Opt_heap,
115 Opt_user_xattr,
116 Opt_nouser_xattr,
117 Opt_acl,
118 Opt_noacl,
119 Opt_active_logs,
120 Opt_disable_ext_identify,
121 Opt_inline_xattr,
122 Opt_noinline_xattr,
123 Opt_inline_xattr_size,
124 Opt_inline_data,
125 Opt_inline_dentry,
126 Opt_noinline_dentry,
127 Opt_flush_merge,
128 Opt_noflush_merge,
129 Opt_barrier,
130 Opt_nobarrier,
131 Opt_fastboot,
132 Opt_extent_cache,
133 Opt_noextent_cache,
134 Opt_noinline_data,
135 Opt_data_flush,
136 Opt_reserve_root,
137 Opt_resgid,
138 Opt_resuid,
139 Opt_mode,
140 Opt_io_size_bits,
141 Opt_fault_injection,
142 Opt_fault_type,
143 Opt_lazytime,
144 Opt_nolazytime,
145 Opt_quota,
146 Opt_noquota,
147 Opt_usrquota,
148 Opt_grpquota,
149 Opt_prjquota,
150 Opt_usrjquota,
151 Opt_grpjquota,
152 Opt_prjjquota,
153 Opt_offusrjquota,
154 Opt_offgrpjquota,
155 Opt_offprjjquota,
156 Opt_jqfmt_vfsold,
157 Opt_jqfmt_vfsv0,
158 Opt_jqfmt_vfsv1,
159 Opt_alloc,
160 Opt_fsync,
161 Opt_test_dummy_encryption,
162 Opt_inlinecrypt,
163 Opt_checkpoint_disable,
164 Opt_checkpoint_disable_cap,
165 Opt_checkpoint_disable_cap_perc,
166 Opt_checkpoint_enable,
167 Opt_checkpoint_merge,
168 Opt_nocheckpoint_merge,
169 Opt_compress_algorithm,
170 Opt_compress_log_size,
171 Opt_compress_extension,
172 Opt_nocompress_extension,
173 Opt_compress_chksum,
174 Opt_compress_mode,
175 Opt_compress_cache,
176 Opt_atgc,
177 Opt_gc_merge,
178 Opt_nogc_merge,
179 Opt_discard_unit,
180 Opt_memory_mode,
181 Opt_age_extent_cache,
182 Opt_errors,
183 Opt_err,
184};
185
186static match_table_t f2fs_tokens = {
187 {Opt_gc_background, "background_gc=%s"},
188 {Opt_disable_roll_forward, "disable_roll_forward"},
189 {Opt_norecovery, "norecovery"},
190 {Opt_discard, "discard"},
191 {Opt_nodiscard, "nodiscard"},
192 {Opt_noheap, "no_heap"},
193 {Opt_heap, "heap"},
194 {Opt_user_xattr, "user_xattr"},
195 {Opt_nouser_xattr, "nouser_xattr"},
196 {Opt_acl, "acl"},
197 {Opt_noacl, "noacl"},
198 {Opt_active_logs, "active_logs=%u"},
199 {Opt_disable_ext_identify, "disable_ext_identify"},
200 {Opt_inline_xattr, "inline_xattr"},
201 {Opt_noinline_xattr, "noinline_xattr"},
202 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
203 {Opt_inline_data, "inline_data"},
204 {Opt_inline_dentry, "inline_dentry"},
205 {Opt_noinline_dentry, "noinline_dentry"},
206 {Opt_flush_merge, "flush_merge"},
207 {Opt_noflush_merge, "noflush_merge"},
208 {Opt_barrier, "barrier"},
209 {Opt_nobarrier, "nobarrier"},
210 {Opt_fastboot, "fastboot"},
211 {Opt_extent_cache, "extent_cache"},
212 {Opt_noextent_cache, "noextent_cache"},
213 {Opt_noinline_data, "noinline_data"},
214 {Opt_data_flush, "data_flush"},
215 {Opt_reserve_root, "reserve_root=%u"},
216 {Opt_resgid, "resgid=%u"},
217 {Opt_resuid, "resuid=%u"},
218 {Opt_mode, "mode=%s"},
219 {Opt_io_size_bits, "io_bits=%u"},
220 {Opt_fault_injection, "fault_injection=%u"},
221 {Opt_fault_type, "fault_type=%u"},
222 {Opt_lazytime, "lazytime"},
223 {Opt_nolazytime, "nolazytime"},
224 {Opt_quota, "quota"},
225 {Opt_noquota, "noquota"},
226 {Opt_usrquota, "usrquota"},
227 {Opt_grpquota, "grpquota"},
228 {Opt_prjquota, "prjquota"},
229 {Opt_usrjquota, "usrjquota=%s"},
230 {Opt_grpjquota, "grpjquota=%s"},
231 {Opt_prjjquota, "prjjquota=%s"},
232 {Opt_offusrjquota, "usrjquota="},
233 {Opt_offgrpjquota, "grpjquota="},
234 {Opt_offprjjquota, "prjjquota="},
235 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
236 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
237 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
238 {Opt_alloc, "alloc_mode=%s"},
239 {Opt_fsync, "fsync_mode=%s"},
240 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
241 {Opt_test_dummy_encryption, "test_dummy_encryption"},
242 {Opt_inlinecrypt, "inlinecrypt"},
243 {Opt_checkpoint_disable, "checkpoint=disable"},
244 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
245 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
246 {Opt_checkpoint_enable, "checkpoint=enable"},
247 {Opt_checkpoint_merge, "checkpoint_merge"},
248 {Opt_nocheckpoint_merge, "nocheckpoint_merge"},
249 {Opt_compress_algorithm, "compress_algorithm=%s"},
250 {Opt_compress_log_size, "compress_log_size=%u"},
251 {Opt_compress_extension, "compress_extension=%s"},
252 {Opt_nocompress_extension, "nocompress_extension=%s"},
253 {Opt_compress_chksum, "compress_chksum"},
254 {Opt_compress_mode, "compress_mode=%s"},
255 {Opt_compress_cache, "compress_cache"},
256 {Opt_atgc, "atgc"},
257 {Opt_gc_merge, "gc_merge"},
258 {Opt_nogc_merge, "nogc_merge"},
259 {Opt_discard_unit, "discard_unit=%s"},
260 {Opt_memory_mode, "memory=%s"},
261 {Opt_age_extent_cache, "age_extent_cache"},
262 {Opt_errors, "errors=%s"},
263 {Opt_err, NULL},
264};
265
266void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
267{
268 struct va_format vaf;
269 va_list args;
270 int level;
271
272 va_start(args, fmt);
273
274 level = printk_get_level(fmt);
275 vaf.fmt = printk_skip_level(fmt);
276 vaf.va = &args;
277 printk("%c%cF2FS-fs (%s): %pV\n",
278 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
279
280 va_end(args);
281}
282
283#if IS_ENABLED(CONFIG_UNICODE)
284static const struct f2fs_sb_encodings {
285 __u16 magic;
286 char *name;
287 unsigned int version;
288} f2fs_sb_encoding_map[] = {
289 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
290};
291
292static const struct f2fs_sb_encodings *
293f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
294{
295 __u16 magic = le16_to_cpu(sb->s_encoding);
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
299 if (magic == f2fs_sb_encoding_map[i].magic)
300 return &f2fs_sb_encoding_map[i];
301
302 return NULL;
303}
304
305struct kmem_cache *f2fs_cf_name_slab;
306static int __init f2fs_create_casefold_cache(void)
307{
308 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
309 F2FS_NAME_LEN);
310 return f2fs_cf_name_slab ? 0 : -ENOMEM;
311}
312
313static void f2fs_destroy_casefold_cache(void)
314{
315 kmem_cache_destroy(f2fs_cf_name_slab);
316}
317#else
318static int __init f2fs_create_casefold_cache(void) { return 0; }
319static void f2fs_destroy_casefold_cache(void) { }
320#endif
321
322static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
323{
324 block_t limit = min((sbi->user_block_count >> 3),
325 sbi->user_block_count - sbi->reserved_blocks);
326
327 /* limit is 12.5% */
328 if (test_opt(sbi, RESERVE_ROOT) &&
329 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
330 F2FS_OPTION(sbi).root_reserved_blocks = limit;
331 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
332 F2FS_OPTION(sbi).root_reserved_blocks);
333 }
334 if (!test_opt(sbi, RESERVE_ROOT) &&
335 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
336 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
337 !gid_eq(F2FS_OPTION(sbi).s_resgid,
338 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
339 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
340 from_kuid_munged(&init_user_ns,
341 F2FS_OPTION(sbi).s_resuid),
342 from_kgid_munged(&init_user_ns,
343 F2FS_OPTION(sbi).s_resgid));
344}
345
346static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
347{
348 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
349 unsigned int avg_vblocks;
350 unsigned int wanted_reserved_segments;
351 block_t avail_user_block_count;
352
353 if (!F2FS_IO_ALIGNED(sbi))
354 return 0;
355
356 /* average valid block count in section in worst case */
357 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
358
359 /*
360 * we need enough free space when migrating one section in worst case
361 */
362 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
363 reserved_segments(sbi);
364 wanted_reserved_segments -= reserved_segments(sbi);
365
366 avail_user_block_count = sbi->user_block_count -
367 sbi->current_reserved_blocks -
368 F2FS_OPTION(sbi).root_reserved_blocks;
369
370 if (wanted_reserved_segments * sbi->blocks_per_seg >
371 avail_user_block_count) {
372 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
373 wanted_reserved_segments,
374 avail_user_block_count >> sbi->log_blocks_per_seg);
375 return -ENOSPC;
376 }
377
378 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
379
380 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
381 wanted_reserved_segments);
382
383 return 0;
384}
385
386static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
387{
388 if (!F2FS_OPTION(sbi).unusable_cap_perc)
389 return;
390
391 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
392 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
393 else
394 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
395 F2FS_OPTION(sbi).unusable_cap_perc;
396
397 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
398 F2FS_OPTION(sbi).unusable_cap,
399 F2FS_OPTION(sbi).unusable_cap_perc);
400}
401
402static void init_once(void *foo)
403{
404 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
405
406 inode_init_once(&fi->vfs_inode);
407}
408
409#ifdef CONFIG_QUOTA
410static const char * const quotatypes[] = INITQFNAMES;
411#define QTYPE2NAME(t) (quotatypes[t])
412static int f2fs_set_qf_name(struct super_block *sb, int qtype,
413 substring_t *args)
414{
415 struct f2fs_sb_info *sbi = F2FS_SB(sb);
416 char *qname;
417 int ret = -EINVAL;
418
419 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
420 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
421 return -EINVAL;
422 }
423 if (f2fs_sb_has_quota_ino(sbi)) {
424 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
425 return 0;
426 }
427
428 qname = match_strdup(args);
429 if (!qname) {
430 f2fs_err(sbi, "Not enough memory for storing quotafile name");
431 return -ENOMEM;
432 }
433 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
434 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
435 ret = 0;
436 else
437 f2fs_err(sbi, "%s quota file already specified",
438 QTYPE2NAME(qtype));
439 goto errout;
440 }
441 if (strchr(qname, '/')) {
442 f2fs_err(sbi, "quotafile must be on filesystem root");
443 goto errout;
444 }
445 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
446 set_opt(sbi, QUOTA);
447 return 0;
448errout:
449 kfree(qname);
450 return ret;
451}
452
453static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
454{
455 struct f2fs_sb_info *sbi = F2FS_SB(sb);
456
457 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
458 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
459 return -EINVAL;
460 }
461 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
462 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
463 return 0;
464}
465
466static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
467{
468 /*
469 * We do the test below only for project quotas. 'usrquota' and
470 * 'grpquota' mount options are allowed even without quota feature
471 * to support legacy quotas in quota files.
472 */
473 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
474 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
475 return -1;
476 }
477 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
478 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
479 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
480 if (test_opt(sbi, USRQUOTA) &&
481 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
482 clear_opt(sbi, USRQUOTA);
483
484 if (test_opt(sbi, GRPQUOTA) &&
485 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
486 clear_opt(sbi, GRPQUOTA);
487
488 if (test_opt(sbi, PRJQUOTA) &&
489 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
490 clear_opt(sbi, PRJQUOTA);
491
492 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
493 test_opt(sbi, PRJQUOTA)) {
494 f2fs_err(sbi, "old and new quota format mixing");
495 return -1;
496 }
497
498 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
499 f2fs_err(sbi, "journaled quota format not specified");
500 return -1;
501 }
502 }
503
504 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
505 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
506 F2FS_OPTION(sbi).s_jquota_fmt = 0;
507 }
508 return 0;
509}
510#endif
511
512static int f2fs_set_test_dummy_encryption(struct super_block *sb,
513 const char *opt,
514 const substring_t *arg,
515 bool is_remount)
516{
517 struct f2fs_sb_info *sbi = F2FS_SB(sb);
518 struct fs_parameter param = {
519 .type = fs_value_is_string,
520 .string = arg->from ? arg->from : "",
521 };
522 struct fscrypt_dummy_policy *policy =
523 &F2FS_OPTION(sbi).dummy_enc_policy;
524 int err;
525
526 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
527 f2fs_warn(sbi, "test_dummy_encryption option not supported");
528 return -EINVAL;
529 }
530
531 if (!f2fs_sb_has_encrypt(sbi)) {
532 f2fs_err(sbi, "Encrypt feature is off");
533 return -EINVAL;
534 }
535
536 /*
537 * This mount option is just for testing, and it's not worthwhile to
538 * implement the extra complexity (e.g. RCU protection) that would be
539 * needed to allow it to be set or changed during remount. We do allow
540 * it to be specified during remount, but only if there is no change.
541 */
542 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
543 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
544 return -EINVAL;
545 }
546
547 err = fscrypt_parse_test_dummy_encryption(¶m, policy);
548 if (err) {
549 if (err == -EEXIST)
550 f2fs_warn(sbi,
551 "Can't change test_dummy_encryption on remount");
552 else if (err == -EINVAL)
553 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
554 opt);
555 else
556 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
557 opt, err);
558 return -EINVAL;
559 }
560 f2fs_warn(sbi, "Test dummy encryption mode enabled");
561 return 0;
562}
563
564#ifdef CONFIG_F2FS_FS_COMPRESSION
565static bool is_compress_extension_exist(struct f2fs_sb_info *sbi,
566 const char *new_ext, bool is_ext)
567{
568 unsigned char (*ext)[F2FS_EXTENSION_LEN];
569 int ext_cnt;
570 int i;
571
572 if (is_ext) {
573 ext = F2FS_OPTION(sbi).extensions;
574 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
575 } else {
576 ext = F2FS_OPTION(sbi).noextensions;
577 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
578 }
579
580 for (i = 0; i < ext_cnt; i++) {
581 if (!strcasecmp(new_ext, ext[i]))
582 return true;
583 }
584
585 return false;
586}
587
588/*
589 * 1. The same extension name cannot not appear in both compress and non-compress extension
590 * at the same time.
591 * 2. If the compress extension specifies all files, the types specified by the non-compress
592 * extension will be treated as special cases and will not be compressed.
593 * 3. Don't allow the non-compress extension specifies all files.
594 */
595static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
596{
597 unsigned char (*ext)[F2FS_EXTENSION_LEN];
598 unsigned char (*noext)[F2FS_EXTENSION_LEN];
599 int ext_cnt, noext_cnt, index = 0, no_index = 0;
600
601 ext = F2FS_OPTION(sbi).extensions;
602 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
603 noext = F2FS_OPTION(sbi).noextensions;
604 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
605
606 if (!noext_cnt)
607 return 0;
608
609 for (no_index = 0; no_index < noext_cnt; no_index++) {
610 if (!strcasecmp("*", noext[no_index])) {
611 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
612 return -EINVAL;
613 }
614 for (index = 0; index < ext_cnt; index++) {
615 if (!strcasecmp(ext[index], noext[no_index])) {
616 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
617 ext[index]);
618 return -EINVAL;
619 }
620 }
621 }
622 return 0;
623}
624
625#ifdef CONFIG_F2FS_FS_LZ4
626static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
627{
628#ifdef CONFIG_F2FS_FS_LZ4HC
629 unsigned int level;
630
631 if (strlen(str) == 3) {
632 F2FS_OPTION(sbi).compress_level = 0;
633 return 0;
634 }
635
636 str += 3;
637
638 if (str[0] != ':') {
639 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
640 return -EINVAL;
641 }
642 if (kstrtouint(str + 1, 10, &level))
643 return -EINVAL;
644
645 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
646 f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
647 return -EINVAL;
648 }
649
650 F2FS_OPTION(sbi).compress_level = level;
651 return 0;
652#else
653 if (strlen(str) == 3) {
654 F2FS_OPTION(sbi).compress_level = 0;
655 return 0;
656 }
657 f2fs_info(sbi, "kernel doesn't support lz4hc compression");
658 return -EINVAL;
659#endif
660}
661#endif
662
663#ifdef CONFIG_F2FS_FS_ZSTD
664static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
665{
666 unsigned int level;
667 int len = 4;
668
669 if (strlen(str) == len) {
670 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
671 return 0;
672 }
673
674 str += len;
675
676 if (str[0] != ':') {
677 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
678 return -EINVAL;
679 }
680 if (kstrtouint(str + 1, 10, &level))
681 return -EINVAL;
682
683 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
684 f2fs_info(sbi, "invalid zstd compress level: %d", level);
685 return -EINVAL;
686 }
687
688 F2FS_OPTION(sbi).compress_level = level;
689 return 0;
690}
691#endif
692#endif
693
694static int parse_options(struct super_block *sb, char *options, bool is_remount)
695{
696 struct f2fs_sb_info *sbi = F2FS_SB(sb);
697 substring_t args[MAX_OPT_ARGS];
698#ifdef CONFIG_F2FS_FS_COMPRESSION
699 unsigned char (*ext)[F2FS_EXTENSION_LEN];
700 unsigned char (*noext)[F2FS_EXTENSION_LEN];
701 int ext_cnt, noext_cnt;
702#endif
703 char *p, *name;
704 int arg = 0;
705 kuid_t uid;
706 kgid_t gid;
707 int ret;
708
709 if (!options)
710 goto default_check;
711
712 while ((p = strsep(&options, ",")) != NULL) {
713 int token;
714
715 if (!*p)
716 continue;
717 /*
718 * Initialize args struct so we know whether arg was
719 * found; some options take optional arguments.
720 */
721 args[0].to = args[0].from = NULL;
722 token = match_token(p, f2fs_tokens, args);
723
724 switch (token) {
725 case Opt_gc_background:
726 name = match_strdup(&args[0]);
727
728 if (!name)
729 return -ENOMEM;
730 if (!strcmp(name, "on")) {
731 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
732 } else if (!strcmp(name, "off")) {
733 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
734 } else if (!strcmp(name, "sync")) {
735 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
736 } else {
737 kfree(name);
738 return -EINVAL;
739 }
740 kfree(name);
741 break;
742 case Opt_disable_roll_forward:
743 set_opt(sbi, DISABLE_ROLL_FORWARD);
744 break;
745 case Opt_norecovery:
746 /* this option mounts f2fs with ro */
747 set_opt(sbi, NORECOVERY);
748 if (!f2fs_readonly(sb))
749 return -EINVAL;
750 break;
751 case Opt_discard:
752 if (!f2fs_hw_support_discard(sbi)) {
753 f2fs_warn(sbi, "device does not support discard");
754 break;
755 }
756 set_opt(sbi, DISCARD);
757 break;
758 case Opt_nodiscard:
759 if (f2fs_hw_should_discard(sbi)) {
760 f2fs_warn(sbi, "discard is required for zoned block devices");
761 return -EINVAL;
762 }
763 clear_opt(sbi, DISCARD);
764 break;
765 case Opt_noheap:
766 set_opt(sbi, NOHEAP);
767 break;
768 case Opt_heap:
769 clear_opt(sbi, NOHEAP);
770 break;
771#ifdef CONFIG_F2FS_FS_XATTR
772 case Opt_user_xattr:
773 set_opt(sbi, XATTR_USER);
774 break;
775 case Opt_nouser_xattr:
776 clear_opt(sbi, XATTR_USER);
777 break;
778 case Opt_inline_xattr:
779 set_opt(sbi, INLINE_XATTR);
780 break;
781 case Opt_noinline_xattr:
782 clear_opt(sbi, INLINE_XATTR);
783 break;
784 case Opt_inline_xattr_size:
785 if (args->from && match_int(args, &arg))
786 return -EINVAL;
787 set_opt(sbi, INLINE_XATTR_SIZE);
788 F2FS_OPTION(sbi).inline_xattr_size = arg;
789 break;
790#else
791 case Opt_user_xattr:
792 f2fs_info(sbi, "user_xattr options not supported");
793 break;
794 case Opt_nouser_xattr:
795 f2fs_info(sbi, "nouser_xattr options not supported");
796 break;
797 case Opt_inline_xattr:
798 f2fs_info(sbi, "inline_xattr options not supported");
799 break;
800 case Opt_noinline_xattr:
801 f2fs_info(sbi, "noinline_xattr options not supported");
802 break;
803#endif
804#ifdef CONFIG_F2FS_FS_POSIX_ACL
805 case Opt_acl:
806 set_opt(sbi, POSIX_ACL);
807 break;
808 case Opt_noacl:
809 clear_opt(sbi, POSIX_ACL);
810 break;
811#else
812 case Opt_acl:
813 f2fs_info(sbi, "acl options not supported");
814 break;
815 case Opt_noacl:
816 f2fs_info(sbi, "noacl options not supported");
817 break;
818#endif
819 case Opt_active_logs:
820 if (args->from && match_int(args, &arg))
821 return -EINVAL;
822 if (arg != 2 && arg != 4 &&
823 arg != NR_CURSEG_PERSIST_TYPE)
824 return -EINVAL;
825 F2FS_OPTION(sbi).active_logs = arg;
826 break;
827 case Opt_disable_ext_identify:
828 set_opt(sbi, DISABLE_EXT_IDENTIFY);
829 break;
830 case Opt_inline_data:
831 set_opt(sbi, INLINE_DATA);
832 break;
833 case Opt_inline_dentry:
834 set_opt(sbi, INLINE_DENTRY);
835 break;
836 case Opt_noinline_dentry:
837 clear_opt(sbi, INLINE_DENTRY);
838 break;
839 case Opt_flush_merge:
840 set_opt(sbi, FLUSH_MERGE);
841 break;
842 case Opt_noflush_merge:
843 clear_opt(sbi, FLUSH_MERGE);
844 break;
845 case Opt_nobarrier:
846 set_opt(sbi, NOBARRIER);
847 break;
848 case Opt_barrier:
849 clear_opt(sbi, NOBARRIER);
850 break;
851 case Opt_fastboot:
852 set_opt(sbi, FASTBOOT);
853 break;
854 case Opt_extent_cache:
855 set_opt(sbi, READ_EXTENT_CACHE);
856 break;
857 case Opt_noextent_cache:
858 clear_opt(sbi, READ_EXTENT_CACHE);
859 break;
860 case Opt_noinline_data:
861 clear_opt(sbi, INLINE_DATA);
862 break;
863 case Opt_data_flush:
864 set_opt(sbi, DATA_FLUSH);
865 break;
866 case Opt_reserve_root:
867 if (args->from && match_int(args, &arg))
868 return -EINVAL;
869 if (test_opt(sbi, RESERVE_ROOT)) {
870 f2fs_info(sbi, "Preserve previous reserve_root=%u",
871 F2FS_OPTION(sbi).root_reserved_blocks);
872 } else {
873 F2FS_OPTION(sbi).root_reserved_blocks = arg;
874 set_opt(sbi, RESERVE_ROOT);
875 }
876 break;
877 case Opt_resuid:
878 if (args->from && match_int(args, &arg))
879 return -EINVAL;
880 uid = make_kuid(current_user_ns(), arg);
881 if (!uid_valid(uid)) {
882 f2fs_err(sbi, "Invalid uid value %d", arg);
883 return -EINVAL;
884 }
885 F2FS_OPTION(sbi).s_resuid = uid;
886 break;
887 case Opt_resgid:
888 if (args->from && match_int(args, &arg))
889 return -EINVAL;
890 gid = make_kgid(current_user_ns(), arg);
891 if (!gid_valid(gid)) {
892 f2fs_err(sbi, "Invalid gid value %d", arg);
893 return -EINVAL;
894 }
895 F2FS_OPTION(sbi).s_resgid = gid;
896 break;
897 case Opt_mode:
898 name = match_strdup(&args[0]);
899
900 if (!name)
901 return -ENOMEM;
902 if (!strcmp(name, "adaptive")) {
903 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
904 } else if (!strcmp(name, "lfs")) {
905 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
906 } else if (!strcmp(name, "fragment:segment")) {
907 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
908 } else if (!strcmp(name, "fragment:block")) {
909 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
910 } else {
911 kfree(name);
912 return -EINVAL;
913 }
914 kfree(name);
915 break;
916 case Opt_io_size_bits:
917 if (args->from && match_int(args, &arg))
918 return -EINVAL;
919 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
920 f2fs_warn(sbi, "Not support %ld, larger than %d",
921 BIT(arg), BIO_MAX_VECS);
922 return -EINVAL;
923 }
924 F2FS_OPTION(sbi).write_io_size_bits = arg;
925 break;
926#ifdef CONFIG_F2FS_FAULT_INJECTION
927 case Opt_fault_injection:
928 if (args->from && match_int(args, &arg))
929 return -EINVAL;
930 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
931 set_opt(sbi, FAULT_INJECTION);
932 break;
933
934 case Opt_fault_type:
935 if (args->from && match_int(args, &arg))
936 return -EINVAL;
937 f2fs_build_fault_attr(sbi, 0, arg);
938 set_opt(sbi, FAULT_INJECTION);
939 break;
940#else
941 case Opt_fault_injection:
942 f2fs_info(sbi, "fault_injection options not supported");
943 break;
944
945 case Opt_fault_type:
946 f2fs_info(sbi, "fault_type options not supported");
947 break;
948#endif
949 case Opt_lazytime:
950 sb->s_flags |= SB_LAZYTIME;
951 break;
952 case Opt_nolazytime:
953 sb->s_flags &= ~SB_LAZYTIME;
954 break;
955#ifdef CONFIG_QUOTA
956 case Opt_quota:
957 case Opt_usrquota:
958 set_opt(sbi, USRQUOTA);
959 break;
960 case Opt_grpquota:
961 set_opt(sbi, GRPQUOTA);
962 break;
963 case Opt_prjquota:
964 set_opt(sbi, PRJQUOTA);
965 break;
966 case Opt_usrjquota:
967 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
968 if (ret)
969 return ret;
970 break;
971 case Opt_grpjquota:
972 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
973 if (ret)
974 return ret;
975 break;
976 case Opt_prjjquota:
977 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
978 if (ret)
979 return ret;
980 break;
981 case Opt_offusrjquota:
982 ret = f2fs_clear_qf_name(sb, USRQUOTA);
983 if (ret)
984 return ret;
985 break;
986 case Opt_offgrpjquota:
987 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
988 if (ret)
989 return ret;
990 break;
991 case Opt_offprjjquota:
992 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
993 if (ret)
994 return ret;
995 break;
996 case Opt_jqfmt_vfsold:
997 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
998 break;
999 case Opt_jqfmt_vfsv0:
1000 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
1001 break;
1002 case Opt_jqfmt_vfsv1:
1003 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
1004 break;
1005 case Opt_noquota:
1006 clear_opt(sbi, QUOTA);
1007 clear_opt(sbi, USRQUOTA);
1008 clear_opt(sbi, GRPQUOTA);
1009 clear_opt(sbi, PRJQUOTA);
1010 break;
1011#else
1012 case Opt_quota:
1013 case Opt_usrquota:
1014 case Opt_grpquota:
1015 case Opt_prjquota:
1016 case Opt_usrjquota:
1017 case Opt_grpjquota:
1018 case Opt_prjjquota:
1019 case Opt_offusrjquota:
1020 case Opt_offgrpjquota:
1021 case Opt_offprjjquota:
1022 case Opt_jqfmt_vfsold:
1023 case Opt_jqfmt_vfsv0:
1024 case Opt_jqfmt_vfsv1:
1025 case Opt_noquota:
1026 f2fs_info(sbi, "quota operations not supported");
1027 break;
1028#endif
1029 case Opt_alloc:
1030 name = match_strdup(&args[0]);
1031 if (!name)
1032 return -ENOMEM;
1033
1034 if (!strcmp(name, "default")) {
1035 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1036 } else if (!strcmp(name, "reuse")) {
1037 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1038 } else {
1039 kfree(name);
1040 return -EINVAL;
1041 }
1042 kfree(name);
1043 break;
1044 case Opt_fsync:
1045 name = match_strdup(&args[0]);
1046 if (!name)
1047 return -ENOMEM;
1048 if (!strcmp(name, "posix")) {
1049 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1050 } else if (!strcmp(name, "strict")) {
1051 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1052 } else if (!strcmp(name, "nobarrier")) {
1053 F2FS_OPTION(sbi).fsync_mode =
1054 FSYNC_MODE_NOBARRIER;
1055 } else {
1056 kfree(name);
1057 return -EINVAL;
1058 }
1059 kfree(name);
1060 break;
1061 case Opt_test_dummy_encryption:
1062 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1063 is_remount);
1064 if (ret)
1065 return ret;
1066 break;
1067 case Opt_inlinecrypt:
1068#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1069 sb->s_flags |= SB_INLINECRYPT;
1070#else
1071 f2fs_info(sbi, "inline encryption not supported");
1072#endif
1073 break;
1074 case Opt_checkpoint_disable_cap_perc:
1075 if (args->from && match_int(args, &arg))
1076 return -EINVAL;
1077 if (arg < 0 || arg > 100)
1078 return -EINVAL;
1079 F2FS_OPTION(sbi).unusable_cap_perc = arg;
1080 set_opt(sbi, DISABLE_CHECKPOINT);
1081 break;
1082 case Opt_checkpoint_disable_cap:
1083 if (args->from && match_int(args, &arg))
1084 return -EINVAL;
1085 F2FS_OPTION(sbi).unusable_cap = arg;
1086 set_opt(sbi, DISABLE_CHECKPOINT);
1087 break;
1088 case Opt_checkpoint_disable:
1089 set_opt(sbi, DISABLE_CHECKPOINT);
1090 break;
1091 case Opt_checkpoint_enable:
1092 clear_opt(sbi, DISABLE_CHECKPOINT);
1093 break;
1094 case Opt_checkpoint_merge:
1095 set_opt(sbi, MERGE_CHECKPOINT);
1096 break;
1097 case Opt_nocheckpoint_merge:
1098 clear_opt(sbi, MERGE_CHECKPOINT);
1099 break;
1100#ifdef CONFIG_F2FS_FS_COMPRESSION
1101 case Opt_compress_algorithm:
1102 if (!f2fs_sb_has_compression(sbi)) {
1103 f2fs_info(sbi, "Image doesn't support compression");
1104 break;
1105 }
1106 name = match_strdup(&args[0]);
1107 if (!name)
1108 return -ENOMEM;
1109 if (!strcmp(name, "lzo")) {
1110#ifdef CONFIG_F2FS_FS_LZO
1111 F2FS_OPTION(sbi).compress_level = 0;
1112 F2FS_OPTION(sbi).compress_algorithm =
1113 COMPRESS_LZO;
1114#else
1115 f2fs_info(sbi, "kernel doesn't support lzo compression");
1116#endif
1117 } else if (!strncmp(name, "lz4", 3)) {
1118#ifdef CONFIG_F2FS_FS_LZ4
1119 ret = f2fs_set_lz4hc_level(sbi, name);
1120 if (ret) {
1121 kfree(name);
1122 return -EINVAL;
1123 }
1124 F2FS_OPTION(sbi).compress_algorithm =
1125 COMPRESS_LZ4;
1126#else
1127 f2fs_info(sbi, "kernel doesn't support lz4 compression");
1128#endif
1129 } else if (!strncmp(name, "zstd", 4)) {
1130#ifdef CONFIG_F2FS_FS_ZSTD
1131 ret = f2fs_set_zstd_level(sbi, name);
1132 if (ret) {
1133 kfree(name);
1134 return -EINVAL;
1135 }
1136 F2FS_OPTION(sbi).compress_algorithm =
1137 COMPRESS_ZSTD;
1138#else
1139 f2fs_info(sbi, "kernel doesn't support zstd compression");
1140#endif
1141 } else if (!strcmp(name, "lzo-rle")) {
1142#ifdef CONFIG_F2FS_FS_LZORLE
1143 F2FS_OPTION(sbi).compress_level = 0;
1144 F2FS_OPTION(sbi).compress_algorithm =
1145 COMPRESS_LZORLE;
1146#else
1147 f2fs_info(sbi, "kernel doesn't support lzorle compression");
1148#endif
1149 } else {
1150 kfree(name);
1151 return -EINVAL;
1152 }
1153 kfree(name);
1154 break;
1155 case Opt_compress_log_size:
1156 if (!f2fs_sb_has_compression(sbi)) {
1157 f2fs_info(sbi, "Image doesn't support compression");
1158 break;
1159 }
1160 if (args->from && match_int(args, &arg))
1161 return -EINVAL;
1162 if (arg < MIN_COMPRESS_LOG_SIZE ||
1163 arg > MAX_COMPRESS_LOG_SIZE) {
1164 f2fs_err(sbi,
1165 "Compress cluster log size is out of range");
1166 return -EINVAL;
1167 }
1168 F2FS_OPTION(sbi).compress_log_size = arg;
1169 break;
1170 case Opt_compress_extension:
1171 if (!f2fs_sb_has_compression(sbi)) {
1172 f2fs_info(sbi, "Image doesn't support compression");
1173 break;
1174 }
1175 name = match_strdup(&args[0]);
1176 if (!name)
1177 return -ENOMEM;
1178
1179 ext = F2FS_OPTION(sbi).extensions;
1180 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1181
1182 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1183 ext_cnt >= COMPRESS_EXT_NUM) {
1184 f2fs_err(sbi,
1185 "invalid extension length/number");
1186 kfree(name);
1187 return -EINVAL;
1188 }
1189
1190 if (is_compress_extension_exist(sbi, name, true)) {
1191 kfree(name);
1192 break;
1193 }
1194
1195 strcpy(ext[ext_cnt], name);
1196 F2FS_OPTION(sbi).compress_ext_cnt++;
1197 kfree(name);
1198 break;
1199 case Opt_nocompress_extension:
1200 if (!f2fs_sb_has_compression(sbi)) {
1201 f2fs_info(sbi, "Image doesn't support compression");
1202 break;
1203 }
1204 name = match_strdup(&args[0]);
1205 if (!name)
1206 return -ENOMEM;
1207
1208 noext = F2FS_OPTION(sbi).noextensions;
1209 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1210
1211 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1212 noext_cnt >= COMPRESS_EXT_NUM) {
1213 f2fs_err(sbi,
1214 "invalid extension length/number");
1215 kfree(name);
1216 return -EINVAL;
1217 }
1218
1219 if (is_compress_extension_exist(sbi, name, false)) {
1220 kfree(name);
1221 break;
1222 }
1223
1224 strcpy(noext[noext_cnt], name);
1225 F2FS_OPTION(sbi).nocompress_ext_cnt++;
1226 kfree(name);
1227 break;
1228 case Opt_compress_chksum:
1229 if (!f2fs_sb_has_compression(sbi)) {
1230 f2fs_info(sbi, "Image doesn't support compression");
1231 break;
1232 }
1233 F2FS_OPTION(sbi).compress_chksum = true;
1234 break;
1235 case Opt_compress_mode:
1236 if (!f2fs_sb_has_compression(sbi)) {
1237 f2fs_info(sbi, "Image doesn't support compression");
1238 break;
1239 }
1240 name = match_strdup(&args[0]);
1241 if (!name)
1242 return -ENOMEM;
1243 if (!strcmp(name, "fs")) {
1244 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1245 } else if (!strcmp(name, "user")) {
1246 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1247 } else {
1248 kfree(name);
1249 return -EINVAL;
1250 }
1251 kfree(name);
1252 break;
1253 case Opt_compress_cache:
1254 if (!f2fs_sb_has_compression(sbi)) {
1255 f2fs_info(sbi, "Image doesn't support compression");
1256 break;
1257 }
1258 set_opt(sbi, COMPRESS_CACHE);
1259 break;
1260#else
1261 case Opt_compress_algorithm:
1262 case Opt_compress_log_size:
1263 case Opt_compress_extension:
1264 case Opt_nocompress_extension:
1265 case Opt_compress_chksum:
1266 case Opt_compress_mode:
1267 case Opt_compress_cache:
1268 f2fs_info(sbi, "compression options not supported");
1269 break;
1270#endif
1271 case Opt_atgc:
1272 set_opt(sbi, ATGC);
1273 break;
1274 case Opt_gc_merge:
1275 set_opt(sbi, GC_MERGE);
1276 break;
1277 case Opt_nogc_merge:
1278 clear_opt(sbi, GC_MERGE);
1279 break;
1280 case Opt_discard_unit:
1281 name = match_strdup(&args[0]);
1282 if (!name)
1283 return -ENOMEM;
1284 if (!strcmp(name, "block")) {
1285 F2FS_OPTION(sbi).discard_unit =
1286 DISCARD_UNIT_BLOCK;
1287 } else if (!strcmp(name, "segment")) {
1288 F2FS_OPTION(sbi).discard_unit =
1289 DISCARD_UNIT_SEGMENT;
1290 } else if (!strcmp(name, "section")) {
1291 F2FS_OPTION(sbi).discard_unit =
1292 DISCARD_UNIT_SECTION;
1293 } else {
1294 kfree(name);
1295 return -EINVAL;
1296 }
1297 kfree(name);
1298 break;
1299 case Opt_memory_mode:
1300 name = match_strdup(&args[0]);
1301 if (!name)
1302 return -ENOMEM;
1303 if (!strcmp(name, "normal")) {
1304 F2FS_OPTION(sbi).memory_mode =
1305 MEMORY_MODE_NORMAL;
1306 } else if (!strcmp(name, "low")) {
1307 F2FS_OPTION(sbi).memory_mode =
1308 MEMORY_MODE_LOW;
1309 } else {
1310 kfree(name);
1311 return -EINVAL;
1312 }
1313 kfree(name);
1314 break;
1315 case Opt_age_extent_cache:
1316 set_opt(sbi, AGE_EXTENT_CACHE);
1317 break;
1318 case Opt_errors:
1319 name = match_strdup(&args[0]);
1320 if (!name)
1321 return -ENOMEM;
1322 if (!strcmp(name, "remount-ro")) {
1323 F2FS_OPTION(sbi).errors =
1324 MOUNT_ERRORS_READONLY;
1325 } else if (!strcmp(name, "continue")) {
1326 F2FS_OPTION(sbi).errors =
1327 MOUNT_ERRORS_CONTINUE;
1328 } else if (!strcmp(name, "panic")) {
1329 F2FS_OPTION(sbi).errors =
1330 MOUNT_ERRORS_PANIC;
1331 } else {
1332 kfree(name);
1333 return -EINVAL;
1334 }
1335 kfree(name);
1336 break;
1337 default:
1338 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1339 p);
1340 return -EINVAL;
1341 }
1342 }
1343default_check:
1344#ifdef CONFIG_QUOTA
1345 if (f2fs_check_quota_options(sbi))
1346 return -EINVAL;
1347#else
1348 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1349 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1350 return -EINVAL;
1351 }
1352 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1353 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1354 return -EINVAL;
1355 }
1356#endif
1357#if !IS_ENABLED(CONFIG_UNICODE)
1358 if (f2fs_sb_has_casefold(sbi)) {
1359 f2fs_err(sbi,
1360 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1361 return -EINVAL;
1362 }
1363#endif
1364 /*
1365 * The BLKZONED feature indicates that the drive was formatted with
1366 * zone alignment optimization. This is optional for host-aware
1367 * devices, but mandatory for host-managed zoned block devices.
1368 */
1369 if (f2fs_sb_has_blkzoned(sbi)) {
1370#ifdef CONFIG_BLK_DEV_ZONED
1371 if (F2FS_OPTION(sbi).discard_unit !=
1372 DISCARD_UNIT_SECTION) {
1373 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1374 F2FS_OPTION(sbi).discard_unit =
1375 DISCARD_UNIT_SECTION;
1376 }
1377
1378 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) {
1379 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1380 return -EINVAL;
1381 }
1382#else
1383 f2fs_err(sbi, "Zoned block device support is not enabled");
1384 return -EINVAL;
1385#endif
1386 }
1387
1388#ifdef CONFIG_F2FS_FS_COMPRESSION
1389 if (f2fs_test_compress_extension(sbi)) {
1390 f2fs_err(sbi, "invalid compress or nocompress extension");
1391 return -EINVAL;
1392 }
1393#endif
1394
1395 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1396 f2fs_err(sbi, "Should set mode=lfs with %luKB-sized IO",
1397 F2FS_IO_SIZE_KB(sbi));
1398 return -EINVAL;
1399 }
1400
1401 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1402 int min_size, max_size;
1403
1404 if (!f2fs_sb_has_extra_attr(sbi) ||
1405 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1406 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1407 return -EINVAL;
1408 }
1409 if (!test_opt(sbi, INLINE_XATTR)) {
1410 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1411 return -EINVAL;
1412 }
1413
1414 min_size = MIN_INLINE_XATTR_SIZE;
1415 max_size = MAX_INLINE_XATTR_SIZE;
1416
1417 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1418 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1419 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1420 min_size, max_size);
1421 return -EINVAL;
1422 }
1423 }
1424
1425 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1426 f2fs_err(sbi, "LFS is not compatible with ATGC");
1427 return -EINVAL;
1428 }
1429
1430 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1431 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1432 return -EINVAL;
1433 }
1434
1435 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1436 f2fs_err(sbi, "Allow to mount readonly mode only");
1437 return -EROFS;
1438 }
1439 return 0;
1440}
1441
1442static struct inode *f2fs_alloc_inode(struct super_block *sb)
1443{
1444 struct f2fs_inode_info *fi;
1445
1446 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1447 return NULL;
1448
1449 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1450 if (!fi)
1451 return NULL;
1452
1453 init_once((void *) fi);
1454
1455 /* Initialize f2fs-specific inode info */
1456 atomic_set(&fi->dirty_pages, 0);
1457 atomic_set(&fi->i_compr_blocks, 0);
1458 init_f2fs_rwsem(&fi->i_sem);
1459 spin_lock_init(&fi->i_size_lock);
1460 INIT_LIST_HEAD(&fi->dirty_list);
1461 INIT_LIST_HEAD(&fi->gdirty_list);
1462 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1463 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1464 init_f2fs_rwsem(&fi->i_xattr_sem);
1465
1466 /* Will be used by directory only */
1467 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1468
1469 return &fi->vfs_inode;
1470}
1471
1472static int f2fs_drop_inode(struct inode *inode)
1473{
1474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1475 int ret;
1476
1477 /*
1478 * during filesystem shutdown, if checkpoint is disabled,
1479 * drop useless meta/node dirty pages.
1480 */
1481 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1482 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1483 inode->i_ino == F2FS_META_INO(sbi)) {
1484 trace_f2fs_drop_inode(inode, 1);
1485 return 1;
1486 }
1487 }
1488
1489 /*
1490 * This is to avoid a deadlock condition like below.
1491 * writeback_single_inode(inode)
1492 * - f2fs_write_data_page
1493 * - f2fs_gc -> iput -> evict
1494 * - inode_wait_for_writeback(inode)
1495 */
1496 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1497 if (!inode->i_nlink && !is_bad_inode(inode)) {
1498 /* to avoid evict_inode call simultaneously */
1499 atomic_inc(&inode->i_count);
1500 spin_unlock(&inode->i_lock);
1501
1502 /* should remain fi->extent_tree for writepage */
1503 f2fs_destroy_extent_node(inode);
1504
1505 sb_start_intwrite(inode->i_sb);
1506 f2fs_i_size_write(inode, 0);
1507
1508 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1509 inode, NULL, 0, DATA);
1510 truncate_inode_pages_final(inode->i_mapping);
1511
1512 if (F2FS_HAS_BLOCKS(inode))
1513 f2fs_truncate(inode);
1514
1515 sb_end_intwrite(inode->i_sb);
1516
1517 spin_lock(&inode->i_lock);
1518 atomic_dec(&inode->i_count);
1519 }
1520 trace_f2fs_drop_inode(inode, 0);
1521 return 0;
1522 }
1523 ret = generic_drop_inode(inode);
1524 if (!ret)
1525 ret = fscrypt_drop_inode(inode);
1526 trace_f2fs_drop_inode(inode, ret);
1527 return ret;
1528}
1529
1530int f2fs_inode_dirtied(struct inode *inode, bool sync)
1531{
1532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1533 int ret = 0;
1534
1535 spin_lock(&sbi->inode_lock[DIRTY_META]);
1536 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1537 ret = 1;
1538 } else {
1539 set_inode_flag(inode, FI_DIRTY_INODE);
1540 stat_inc_dirty_inode(sbi, DIRTY_META);
1541 }
1542 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1543 list_add_tail(&F2FS_I(inode)->gdirty_list,
1544 &sbi->inode_list[DIRTY_META]);
1545 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1546 }
1547 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1548 return ret;
1549}
1550
1551void f2fs_inode_synced(struct inode *inode)
1552{
1553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1554
1555 spin_lock(&sbi->inode_lock[DIRTY_META]);
1556 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1557 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1558 return;
1559 }
1560 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1561 list_del_init(&F2FS_I(inode)->gdirty_list);
1562 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1563 }
1564 clear_inode_flag(inode, FI_DIRTY_INODE);
1565 clear_inode_flag(inode, FI_AUTO_RECOVER);
1566 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1567 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1568}
1569
1570/*
1571 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1572 *
1573 * We should call set_dirty_inode to write the dirty inode through write_inode.
1574 */
1575static void f2fs_dirty_inode(struct inode *inode, int flags)
1576{
1577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1578
1579 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1580 inode->i_ino == F2FS_META_INO(sbi))
1581 return;
1582
1583 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1584 clear_inode_flag(inode, FI_AUTO_RECOVER);
1585
1586 f2fs_inode_dirtied(inode, false);
1587}
1588
1589static void f2fs_free_inode(struct inode *inode)
1590{
1591 fscrypt_free_inode(inode);
1592 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1593}
1594
1595static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1596{
1597 percpu_counter_destroy(&sbi->total_valid_inode_count);
1598 percpu_counter_destroy(&sbi->rf_node_block_count);
1599 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1600}
1601
1602static void destroy_device_list(struct f2fs_sb_info *sbi)
1603{
1604 int i;
1605
1606 for (i = 0; i < sbi->s_ndevs; i++) {
1607 if (i > 0)
1608 bdev_release(FDEV(i).bdev_handle);
1609#ifdef CONFIG_BLK_DEV_ZONED
1610 kvfree(FDEV(i).blkz_seq);
1611#endif
1612 }
1613 kvfree(sbi->devs);
1614}
1615
1616static void f2fs_put_super(struct super_block *sb)
1617{
1618 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1619 int i;
1620 int err = 0;
1621 bool done;
1622
1623 /* unregister procfs/sysfs entries in advance to avoid race case */
1624 f2fs_unregister_sysfs(sbi);
1625
1626 f2fs_quota_off_umount(sb);
1627
1628 /* prevent remaining shrinker jobs */
1629 mutex_lock(&sbi->umount_mutex);
1630
1631 /*
1632 * flush all issued checkpoints and stop checkpoint issue thread.
1633 * after then, all checkpoints should be done by each process context.
1634 */
1635 f2fs_stop_ckpt_thread(sbi);
1636
1637 /*
1638 * We don't need to do checkpoint when superblock is clean.
1639 * But, the previous checkpoint was not done by umount, it needs to do
1640 * clean checkpoint again.
1641 */
1642 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1643 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1644 struct cp_control cpc = {
1645 .reason = CP_UMOUNT,
1646 };
1647 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1648 err = f2fs_write_checkpoint(sbi, &cpc);
1649 }
1650
1651 /* be sure to wait for any on-going discard commands */
1652 done = f2fs_issue_discard_timeout(sbi);
1653 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1654 struct cp_control cpc = {
1655 .reason = CP_UMOUNT | CP_TRIMMED,
1656 };
1657 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1658 err = f2fs_write_checkpoint(sbi, &cpc);
1659 }
1660
1661 /*
1662 * normally superblock is clean, so we need to release this.
1663 * In addition, EIO will skip do checkpoint, we need this as well.
1664 */
1665 f2fs_release_ino_entry(sbi, true);
1666
1667 f2fs_leave_shrinker(sbi);
1668 mutex_unlock(&sbi->umount_mutex);
1669
1670 /* our cp_error case, we can wait for any writeback page */
1671 f2fs_flush_merged_writes(sbi);
1672
1673 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1674
1675 if (err || f2fs_cp_error(sbi)) {
1676 truncate_inode_pages_final(NODE_MAPPING(sbi));
1677 truncate_inode_pages_final(META_MAPPING(sbi));
1678 }
1679
1680 for (i = 0; i < NR_COUNT_TYPE; i++) {
1681 if (!get_pages(sbi, i))
1682 continue;
1683 f2fs_err(sbi, "detect filesystem reference count leak during "
1684 "umount, type: %d, count: %lld", i, get_pages(sbi, i));
1685 f2fs_bug_on(sbi, 1);
1686 }
1687
1688 f2fs_bug_on(sbi, sbi->fsync_node_num);
1689
1690 f2fs_destroy_compress_inode(sbi);
1691
1692 iput(sbi->node_inode);
1693 sbi->node_inode = NULL;
1694
1695 iput(sbi->meta_inode);
1696 sbi->meta_inode = NULL;
1697
1698 /*
1699 * iput() can update stat information, if f2fs_write_checkpoint()
1700 * above failed with error.
1701 */
1702 f2fs_destroy_stats(sbi);
1703
1704 /* destroy f2fs internal modules */
1705 f2fs_destroy_node_manager(sbi);
1706 f2fs_destroy_segment_manager(sbi);
1707
1708 /* flush s_error_work before sbi destroy */
1709 flush_work(&sbi->s_error_work);
1710
1711 f2fs_destroy_post_read_wq(sbi);
1712
1713 kvfree(sbi->ckpt);
1714
1715 if (sbi->s_chksum_driver)
1716 crypto_free_shash(sbi->s_chksum_driver);
1717 kfree(sbi->raw_super);
1718
1719 f2fs_destroy_page_array_cache(sbi);
1720 f2fs_destroy_xattr_caches(sbi);
1721 mempool_destroy(sbi->write_io_dummy);
1722#ifdef CONFIG_QUOTA
1723 for (i = 0; i < MAXQUOTAS; i++)
1724 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1725#endif
1726 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1727 destroy_percpu_info(sbi);
1728 f2fs_destroy_iostat(sbi);
1729 for (i = 0; i < NR_PAGE_TYPE; i++)
1730 kvfree(sbi->write_io[i]);
1731#if IS_ENABLED(CONFIG_UNICODE)
1732 utf8_unload(sb->s_encoding);
1733#endif
1734}
1735
1736int f2fs_sync_fs(struct super_block *sb, int sync)
1737{
1738 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1739 int err = 0;
1740
1741 if (unlikely(f2fs_cp_error(sbi)))
1742 return 0;
1743 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1744 return 0;
1745
1746 trace_f2fs_sync_fs(sb, sync);
1747
1748 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1749 return -EAGAIN;
1750
1751 if (sync) {
1752 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1753 err = f2fs_issue_checkpoint(sbi);
1754 }
1755
1756 return err;
1757}
1758
1759static int f2fs_freeze(struct super_block *sb)
1760{
1761 if (f2fs_readonly(sb))
1762 return 0;
1763
1764 /* IO error happened before */
1765 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1766 return -EIO;
1767
1768 /* must be clean, since sync_filesystem() was already called */
1769 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1770 return -EINVAL;
1771
1772 /* Let's flush checkpoints and stop the thread. */
1773 f2fs_flush_ckpt_thread(F2FS_SB(sb));
1774
1775 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1776 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1777 return 0;
1778}
1779
1780static int f2fs_unfreeze(struct super_block *sb)
1781{
1782 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1783 return 0;
1784}
1785
1786#ifdef CONFIG_QUOTA
1787static int f2fs_statfs_project(struct super_block *sb,
1788 kprojid_t projid, struct kstatfs *buf)
1789{
1790 struct kqid qid;
1791 struct dquot *dquot;
1792 u64 limit;
1793 u64 curblock;
1794
1795 qid = make_kqid_projid(projid);
1796 dquot = dqget(sb, qid);
1797 if (IS_ERR(dquot))
1798 return PTR_ERR(dquot);
1799 spin_lock(&dquot->dq_dqb_lock);
1800
1801 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1802 dquot->dq_dqb.dqb_bhardlimit);
1803 if (limit)
1804 limit >>= sb->s_blocksize_bits;
1805
1806 if (limit && buf->f_blocks > limit) {
1807 curblock = (dquot->dq_dqb.dqb_curspace +
1808 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1809 buf->f_blocks = limit;
1810 buf->f_bfree = buf->f_bavail =
1811 (buf->f_blocks > curblock) ?
1812 (buf->f_blocks - curblock) : 0;
1813 }
1814
1815 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1816 dquot->dq_dqb.dqb_ihardlimit);
1817
1818 if (limit && buf->f_files > limit) {
1819 buf->f_files = limit;
1820 buf->f_ffree =
1821 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1822 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1823 }
1824
1825 spin_unlock(&dquot->dq_dqb_lock);
1826 dqput(dquot);
1827 return 0;
1828}
1829#endif
1830
1831static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1832{
1833 struct super_block *sb = dentry->d_sb;
1834 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1835 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1836 block_t total_count, user_block_count, start_count;
1837 u64 avail_node_count;
1838 unsigned int total_valid_node_count;
1839
1840 total_count = le64_to_cpu(sbi->raw_super->block_count);
1841 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1842 buf->f_type = F2FS_SUPER_MAGIC;
1843 buf->f_bsize = sbi->blocksize;
1844
1845 buf->f_blocks = total_count - start_count;
1846
1847 spin_lock(&sbi->stat_lock);
1848
1849 user_block_count = sbi->user_block_count;
1850 total_valid_node_count = valid_node_count(sbi);
1851 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1852 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1853 sbi->current_reserved_blocks;
1854
1855 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1856 buf->f_bfree = 0;
1857 else
1858 buf->f_bfree -= sbi->unusable_block_count;
1859 spin_unlock(&sbi->stat_lock);
1860
1861 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1862 buf->f_bavail = buf->f_bfree -
1863 F2FS_OPTION(sbi).root_reserved_blocks;
1864 else
1865 buf->f_bavail = 0;
1866
1867 if (avail_node_count > user_block_count) {
1868 buf->f_files = user_block_count;
1869 buf->f_ffree = buf->f_bavail;
1870 } else {
1871 buf->f_files = avail_node_count;
1872 buf->f_ffree = min(avail_node_count - total_valid_node_count,
1873 buf->f_bavail);
1874 }
1875
1876 buf->f_namelen = F2FS_NAME_LEN;
1877 buf->f_fsid = u64_to_fsid(id);
1878
1879#ifdef CONFIG_QUOTA
1880 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1881 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1882 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1883 }
1884#endif
1885 return 0;
1886}
1887
1888static inline void f2fs_show_quota_options(struct seq_file *seq,
1889 struct super_block *sb)
1890{
1891#ifdef CONFIG_QUOTA
1892 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1893
1894 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1895 char *fmtname = "";
1896
1897 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1898 case QFMT_VFS_OLD:
1899 fmtname = "vfsold";
1900 break;
1901 case QFMT_VFS_V0:
1902 fmtname = "vfsv0";
1903 break;
1904 case QFMT_VFS_V1:
1905 fmtname = "vfsv1";
1906 break;
1907 }
1908 seq_printf(seq, ",jqfmt=%s", fmtname);
1909 }
1910
1911 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1912 seq_show_option(seq, "usrjquota",
1913 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1914
1915 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1916 seq_show_option(seq, "grpjquota",
1917 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1918
1919 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1920 seq_show_option(seq, "prjjquota",
1921 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1922#endif
1923}
1924
1925#ifdef CONFIG_F2FS_FS_COMPRESSION
1926static inline void f2fs_show_compress_options(struct seq_file *seq,
1927 struct super_block *sb)
1928{
1929 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1930 char *algtype = "";
1931 int i;
1932
1933 if (!f2fs_sb_has_compression(sbi))
1934 return;
1935
1936 switch (F2FS_OPTION(sbi).compress_algorithm) {
1937 case COMPRESS_LZO:
1938 algtype = "lzo";
1939 break;
1940 case COMPRESS_LZ4:
1941 algtype = "lz4";
1942 break;
1943 case COMPRESS_ZSTD:
1944 algtype = "zstd";
1945 break;
1946 case COMPRESS_LZORLE:
1947 algtype = "lzo-rle";
1948 break;
1949 }
1950 seq_printf(seq, ",compress_algorithm=%s", algtype);
1951
1952 if (F2FS_OPTION(sbi).compress_level)
1953 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1954
1955 seq_printf(seq, ",compress_log_size=%u",
1956 F2FS_OPTION(sbi).compress_log_size);
1957
1958 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1959 seq_printf(seq, ",compress_extension=%s",
1960 F2FS_OPTION(sbi).extensions[i]);
1961 }
1962
1963 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1964 seq_printf(seq, ",nocompress_extension=%s",
1965 F2FS_OPTION(sbi).noextensions[i]);
1966 }
1967
1968 if (F2FS_OPTION(sbi).compress_chksum)
1969 seq_puts(seq, ",compress_chksum");
1970
1971 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1972 seq_printf(seq, ",compress_mode=%s", "fs");
1973 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1974 seq_printf(seq, ",compress_mode=%s", "user");
1975
1976 if (test_opt(sbi, COMPRESS_CACHE))
1977 seq_puts(seq, ",compress_cache");
1978}
1979#endif
1980
1981static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1982{
1983 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1984
1985 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1986 seq_printf(seq, ",background_gc=%s", "sync");
1987 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1988 seq_printf(seq, ",background_gc=%s", "on");
1989 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1990 seq_printf(seq, ",background_gc=%s", "off");
1991
1992 if (test_opt(sbi, GC_MERGE))
1993 seq_puts(seq, ",gc_merge");
1994 else
1995 seq_puts(seq, ",nogc_merge");
1996
1997 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1998 seq_puts(seq, ",disable_roll_forward");
1999 if (test_opt(sbi, NORECOVERY))
2000 seq_puts(seq, ",norecovery");
2001 if (test_opt(sbi, DISCARD)) {
2002 seq_puts(seq, ",discard");
2003 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2004 seq_printf(seq, ",discard_unit=%s", "block");
2005 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2006 seq_printf(seq, ",discard_unit=%s", "segment");
2007 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2008 seq_printf(seq, ",discard_unit=%s", "section");
2009 } else {
2010 seq_puts(seq, ",nodiscard");
2011 }
2012 if (test_opt(sbi, NOHEAP))
2013 seq_puts(seq, ",no_heap");
2014 else
2015 seq_puts(seq, ",heap");
2016#ifdef CONFIG_F2FS_FS_XATTR
2017 if (test_opt(sbi, XATTR_USER))
2018 seq_puts(seq, ",user_xattr");
2019 else
2020 seq_puts(seq, ",nouser_xattr");
2021 if (test_opt(sbi, INLINE_XATTR))
2022 seq_puts(seq, ",inline_xattr");
2023 else
2024 seq_puts(seq, ",noinline_xattr");
2025 if (test_opt(sbi, INLINE_XATTR_SIZE))
2026 seq_printf(seq, ",inline_xattr_size=%u",
2027 F2FS_OPTION(sbi).inline_xattr_size);
2028#endif
2029#ifdef CONFIG_F2FS_FS_POSIX_ACL
2030 if (test_opt(sbi, POSIX_ACL))
2031 seq_puts(seq, ",acl");
2032 else
2033 seq_puts(seq, ",noacl");
2034#endif
2035 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2036 seq_puts(seq, ",disable_ext_identify");
2037 if (test_opt(sbi, INLINE_DATA))
2038 seq_puts(seq, ",inline_data");
2039 else
2040 seq_puts(seq, ",noinline_data");
2041 if (test_opt(sbi, INLINE_DENTRY))
2042 seq_puts(seq, ",inline_dentry");
2043 else
2044 seq_puts(seq, ",noinline_dentry");
2045 if (test_opt(sbi, FLUSH_MERGE))
2046 seq_puts(seq, ",flush_merge");
2047 else
2048 seq_puts(seq, ",noflush_merge");
2049 if (test_opt(sbi, NOBARRIER))
2050 seq_puts(seq, ",nobarrier");
2051 else
2052 seq_puts(seq, ",barrier");
2053 if (test_opt(sbi, FASTBOOT))
2054 seq_puts(seq, ",fastboot");
2055 if (test_opt(sbi, READ_EXTENT_CACHE))
2056 seq_puts(seq, ",extent_cache");
2057 else
2058 seq_puts(seq, ",noextent_cache");
2059 if (test_opt(sbi, AGE_EXTENT_CACHE))
2060 seq_puts(seq, ",age_extent_cache");
2061 if (test_opt(sbi, DATA_FLUSH))
2062 seq_puts(seq, ",data_flush");
2063
2064 seq_puts(seq, ",mode=");
2065 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2066 seq_puts(seq, "adaptive");
2067 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2068 seq_puts(seq, "lfs");
2069 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2070 seq_puts(seq, "fragment:segment");
2071 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2072 seq_puts(seq, "fragment:block");
2073 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2074 if (test_opt(sbi, RESERVE_ROOT))
2075 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
2076 F2FS_OPTION(sbi).root_reserved_blocks,
2077 from_kuid_munged(&init_user_ns,
2078 F2FS_OPTION(sbi).s_resuid),
2079 from_kgid_munged(&init_user_ns,
2080 F2FS_OPTION(sbi).s_resgid));
2081 if (F2FS_IO_SIZE_BITS(sbi))
2082 seq_printf(seq, ",io_bits=%u",
2083 F2FS_OPTION(sbi).write_io_size_bits);
2084#ifdef CONFIG_F2FS_FAULT_INJECTION
2085 if (test_opt(sbi, FAULT_INJECTION)) {
2086 seq_printf(seq, ",fault_injection=%u",
2087 F2FS_OPTION(sbi).fault_info.inject_rate);
2088 seq_printf(seq, ",fault_type=%u",
2089 F2FS_OPTION(sbi).fault_info.inject_type);
2090 }
2091#endif
2092#ifdef CONFIG_QUOTA
2093 if (test_opt(sbi, QUOTA))
2094 seq_puts(seq, ",quota");
2095 if (test_opt(sbi, USRQUOTA))
2096 seq_puts(seq, ",usrquota");
2097 if (test_opt(sbi, GRPQUOTA))
2098 seq_puts(seq, ",grpquota");
2099 if (test_opt(sbi, PRJQUOTA))
2100 seq_puts(seq, ",prjquota");
2101#endif
2102 f2fs_show_quota_options(seq, sbi->sb);
2103
2104 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2105
2106 if (sbi->sb->s_flags & SB_INLINECRYPT)
2107 seq_puts(seq, ",inlinecrypt");
2108
2109 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2110 seq_printf(seq, ",alloc_mode=%s", "default");
2111 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2112 seq_printf(seq, ",alloc_mode=%s", "reuse");
2113
2114 if (test_opt(sbi, DISABLE_CHECKPOINT))
2115 seq_printf(seq, ",checkpoint=disable:%u",
2116 F2FS_OPTION(sbi).unusable_cap);
2117 if (test_opt(sbi, MERGE_CHECKPOINT))
2118 seq_puts(seq, ",checkpoint_merge");
2119 else
2120 seq_puts(seq, ",nocheckpoint_merge");
2121 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2122 seq_printf(seq, ",fsync_mode=%s", "posix");
2123 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2124 seq_printf(seq, ",fsync_mode=%s", "strict");
2125 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2126 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2127
2128#ifdef CONFIG_F2FS_FS_COMPRESSION
2129 f2fs_show_compress_options(seq, sbi->sb);
2130#endif
2131
2132 if (test_opt(sbi, ATGC))
2133 seq_puts(seq, ",atgc");
2134
2135 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2136 seq_printf(seq, ",memory=%s", "normal");
2137 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2138 seq_printf(seq, ",memory=%s", "low");
2139
2140 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2141 seq_printf(seq, ",errors=%s", "remount-ro");
2142 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2143 seq_printf(seq, ",errors=%s", "continue");
2144 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2145 seq_printf(seq, ",errors=%s", "panic");
2146
2147 return 0;
2148}
2149
2150static void default_options(struct f2fs_sb_info *sbi, bool remount)
2151{
2152 /* init some FS parameters */
2153 if (!remount) {
2154 set_opt(sbi, READ_EXTENT_CACHE);
2155 clear_opt(sbi, DISABLE_CHECKPOINT);
2156
2157 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2158 set_opt(sbi, DISCARD);
2159
2160 if (f2fs_sb_has_blkzoned(sbi))
2161 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2162 else
2163 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2164 }
2165
2166 if (f2fs_sb_has_readonly(sbi))
2167 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2168 else
2169 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2170
2171 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2172 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2173 SMALL_VOLUME_SEGMENTS)
2174 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2175 else
2176 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2177 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2178 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2179 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2180 if (f2fs_sb_has_compression(sbi)) {
2181 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2182 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2183 F2FS_OPTION(sbi).compress_ext_cnt = 0;
2184 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2185 }
2186 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2187 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2188 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2189
2190 sbi->sb->s_flags &= ~SB_INLINECRYPT;
2191
2192 set_opt(sbi, INLINE_XATTR);
2193 set_opt(sbi, INLINE_DATA);
2194 set_opt(sbi, INLINE_DENTRY);
2195 set_opt(sbi, NOHEAP);
2196 set_opt(sbi, MERGE_CHECKPOINT);
2197 F2FS_OPTION(sbi).unusable_cap = 0;
2198 sbi->sb->s_flags |= SB_LAZYTIME;
2199 if (!f2fs_is_readonly(sbi))
2200 set_opt(sbi, FLUSH_MERGE);
2201 if (f2fs_sb_has_blkzoned(sbi))
2202 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2203 else
2204 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2205
2206#ifdef CONFIG_F2FS_FS_XATTR
2207 set_opt(sbi, XATTR_USER);
2208#endif
2209#ifdef CONFIG_F2FS_FS_POSIX_ACL
2210 set_opt(sbi, POSIX_ACL);
2211#endif
2212
2213 f2fs_build_fault_attr(sbi, 0, 0);
2214}
2215
2216#ifdef CONFIG_QUOTA
2217static int f2fs_enable_quotas(struct super_block *sb);
2218#endif
2219
2220static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2221{
2222 unsigned int s_flags = sbi->sb->s_flags;
2223 struct cp_control cpc;
2224 unsigned int gc_mode = sbi->gc_mode;
2225 int err = 0;
2226 int ret;
2227 block_t unusable;
2228
2229 if (s_flags & SB_RDONLY) {
2230 f2fs_err(sbi, "checkpoint=disable on readonly fs");
2231 return -EINVAL;
2232 }
2233 sbi->sb->s_flags |= SB_ACTIVE;
2234
2235 /* check if we need more GC first */
2236 unusable = f2fs_get_unusable_blocks(sbi);
2237 if (!f2fs_disable_cp_again(sbi, unusable))
2238 goto skip_gc;
2239
2240 f2fs_update_time(sbi, DISABLE_TIME);
2241
2242 sbi->gc_mode = GC_URGENT_HIGH;
2243
2244 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2245 struct f2fs_gc_control gc_control = {
2246 .victim_segno = NULL_SEGNO,
2247 .init_gc_type = FG_GC,
2248 .should_migrate_blocks = false,
2249 .err_gc_skipped = true,
2250 .nr_free_secs = 1 };
2251
2252 f2fs_down_write(&sbi->gc_lock);
2253 stat_inc_gc_call_count(sbi, FOREGROUND);
2254 err = f2fs_gc(sbi, &gc_control);
2255 if (err == -ENODATA) {
2256 err = 0;
2257 break;
2258 }
2259 if (err && err != -EAGAIN)
2260 break;
2261 }
2262
2263 ret = sync_filesystem(sbi->sb);
2264 if (ret || err) {
2265 err = ret ? ret : err;
2266 goto restore_flag;
2267 }
2268
2269 unusable = f2fs_get_unusable_blocks(sbi);
2270 if (f2fs_disable_cp_again(sbi, unusable)) {
2271 err = -EAGAIN;
2272 goto restore_flag;
2273 }
2274
2275skip_gc:
2276 f2fs_down_write(&sbi->gc_lock);
2277 cpc.reason = CP_PAUSE;
2278 set_sbi_flag(sbi, SBI_CP_DISABLED);
2279 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2280 err = f2fs_write_checkpoint(sbi, &cpc);
2281 if (err)
2282 goto out_unlock;
2283
2284 spin_lock(&sbi->stat_lock);
2285 sbi->unusable_block_count = unusable;
2286 spin_unlock(&sbi->stat_lock);
2287
2288out_unlock:
2289 f2fs_up_write(&sbi->gc_lock);
2290restore_flag:
2291 sbi->gc_mode = gc_mode;
2292 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2293 return err;
2294}
2295
2296static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2297{
2298 int retry = DEFAULT_RETRY_IO_COUNT;
2299
2300 /* we should flush all the data to keep data consistency */
2301 do {
2302 sync_inodes_sb(sbi->sb);
2303 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2304 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2305
2306 if (unlikely(retry < 0))
2307 f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2308
2309 f2fs_down_write(&sbi->gc_lock);
2310 f2fs_dirty_to_prefree(sbi);
2311
2312 clear_sbi_flag(sbi, SBI_CP_DISABLED);
2313 set_sbi_flag(sbi, SBI_IS_DIRTY);
2314 f2fs_up_write(&sbi->gc_lock);
2315
2316 f2fs_sync_fs(sbi->sb, 1);
2317
2318 /* Let's ensure there's no pending checkpoint anymore */
2319 f2fs_flush_ckpt_thread(sbi);
2320}
2321
2322static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2323{
2324 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2325 struct f2fs_mount_info org_mount_opt;
2326 unsigned long old_sb_flags;
2327 int err;
2328 bool need_restart_gc = false, need_stop_gc = false;
2329 bool need_restart_flush = false, need_stop_flush = false;
2330 bool need_restart_discard = false, need_stop_discard = false;
2331 bool need_enable_checkpoint = false, need_disable_checkpoint = false;
2332 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2333 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2334 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2335 bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2336 bool no_atgc = !test_opt(sbi, ATGC);
2337 bool no_discard = !test_opt(sbi, DISCARD);
2338 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2339 bool block_unit_discard = f2fs_block_unit_discard(sbi);
2340#ifdef CONFIG_QUOTA
2341 int i, j;
2342#endif
2343
2344 /*
2345 * Save the old mount options in case we
2346 * need to restore them.
2347 */
2348 org_mount_opt = sbi->mount_opt;
2349 old_sb_flags = sb->s_flags;
2350
2351#ifdef CONFIG_QUOTA
2352 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2353 for (i = 0; i < MAXQUOTAS; i++) {
2354 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2355 org_mount_opt.s_qf_names[i] =
2356 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2357 GFP_KERNEL);
2358 if (!org_mount_opt.s_qf_names[i]) {
2359 for (j = 0; j < i; j++)
2360 kfree(org_mount_opt.s_qf_names[j]);
2361 return -ENOMEM;
2362 }
2363 } else {
2364 org_mount_opt.s_qf_names[i] = NULL;
2365 }
2366 }
2367#endif
2368
2369 /* recover superblocks we couldn't write due to previous RO mount */
2370 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2371 err = f2fs_commit_super(sbi, false);
2372 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2373 err);
2374 if (!err)
2375 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2376 }
2377
2378 default_options(sbi, true);
2379
2380 /* parse mount options */
2381 err = parse_options(sb, data, true);
2382 if (err)
2383 goto restore_opts;
2384
2385 /* flush outstanding errors before changing fs state */
2386 flush_work(&sbi->s_error_work);
2387
2388 /*
2389 * Previous and new state of filesystem is RO,
2390 * so skip checking GC and FLUSH_MERGE conditions.
2391 */
2392 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2393 goto skip;
2394
2395 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) {
2396 err = -EROFS;
2397 goto restore_opts;
2398 }
2399
2400#ifdef CONFIG_QUOTA
2401 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2402 err = dquot_suspend(sb, -1);
2403 if (err < 0)
2404 goto restore_opts;
2405 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2406 /* dquot_resume needs RW */
2407 sb->s_flags &= ~SB_RDONLY;
2408 if (sb_any_quota_suspended(sb)) {
2409 dquot_resume(sb, -1);
2410 } else if (f2fs_sb_has_quota_ino(sbi)) {
2411 err = f2fs_enable_quotas(sb);
2412 if (err)
2413 goto restore_opts;
2414 }
2415 }
2416#endif
2417 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
2418 err = -EINVAL;
2419 f2fs_warn(sbi, "LFS is not compatible with IPU");
2420 goto restore_opts;
2421 }
2422
2423 /* disallow enable atgc dynamically */
2424 if (no_atgc == !!test_opt(sbi, ATGC)) {
2425 err = -EINVAL;
2426 f2fs_warn(sbi, "switch atgc option is not allowed");
2427 goto restore_opts;
2428 }
2429
2430 /* disallow enable/disable extent_cache dynamically */
2431 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2432 err = -EINVAL;
2433 f2fs_warn(sbi, "switch extent_cache option is not allowed");
2434 goto restore_opts;
2435 }
2436 /* disallow enable/disable age extent_cache dynamically */
2437 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2438 err = -EINVAL;
2439 f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2440 goto restore_opts;
2441 }
2442
2443 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2444 err = -EINVAL;
2445 f2fs_warn(sbi, "switch io_bits option is not allowed");
2446 goto restore_opts;
2447 }
2448
2449 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2450 err = -EINVAL;
2451 f2fs_warn(sbi, "switch compress_cache option is not allowed");
2452 goto restore_opts;
2453 }
2454
2455 if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2456 err = -EINVAL;
2457 f2fs_warn(sbi, "switch discard_unit option is not allowed");
2458 goto restore_opts;
2459 }
2460
2461 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2462 err = -EINVAL;
2463 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2464 goto restore_opts;
2465 }
2466
2467 /*
2468 * We stop the GC thread if FS is mounted as RO
2469 * or if background_gc = off is passed in mount
2470 * option. Also sync the filesystem.
2471 */
2472 if ((*flags & SB_RDONLY) ||
2473 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2474 !test_opt(sbi, GC_MERGE))) {
2475 if (sbi->gc_thread) {
2476 f2fs_stop_gc_thread(sbi);
2477 need_restart_gc = true;
2478 }
2479 } else if (!sbi->gc_thread) {
2480 err = f2fs_start_gc_thread(sbi);
2481 if (err)
2482 goto restore_opts;
2483 need_stop_gc = true;
2484 }
2485
2486 if (*flags & SB_RDONLY) {
2487 sync_inodes_sb(sb);
2488
2489 set_sbi_flag(sbi, SBI_IS_DIRTY);
2490 set_sbi_flag(sbi, SBI_IS_CLOSE);
2491 f2fs_sync_fs(sb, 1);
2492 clear_sbi_flag(sbi, SBI_IS_CLOSE);
2493 }
2494
2495 /*
2496 * We stop issue flush thread if FS is mounted as RO
2497 * or if flush_merge is not passed in mount option.
2498 */
2499 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2500 clear_opt(sbi, FLUSH_MERGE);
2501 f2fs_destroy_flush_cmd_control(sbi, false);
2502 need_restart_flush = true;
2503 } else {
2504 err = f2fs_create_flush_cmd_control(sbi);
2505 if (err)
2506 goto restore_gc;
2507 need_stop_flush = true;
2508 }
2509
2510 if (no_discard == !!test_opt(sbi, DISCARD)) {
2511 if (test_opt(sbi, DISCARD)) {
2512 err = f2fs_start_discard_thread(sbi);
2513 if (err)
2514 goto restore_flush;
2515 need_stop_discard = true;
2516 } else {
2517 f2fs_stop_discard_thread(sbi);
2518 f2fs_issue_discard_timeout(sbi);
2519 need_restart_discard = true;
2520 }
2521 }
2522
2523 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2524 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2525 err = f2fs_disable_checkpoint(sbi);
2526 if (err)
2527 goto restore_discard;
2528 need_enable_checkpoint = true;
2529 } else {
2530 f2fs_enable_checkpoint(sbi);
2531 need_disable_checkpoint = true;
2532 }
2533 }
2534
2535 /*
2536 * Place this routine at the end, since a new checkpoint would be
2537 * triggered while remount and we need to take care of it before
2538 * returning from remount.
2539 */
2540 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2541 !test_opt(sbi, MERGE_CHECKPOINT)) {
2542 f2fs_stop_ckpt_thread(sbi);
2543 } else {
2544 /* Flush if the prevous checkpoint, if exists. */
2545 f2fs_flush_ckpt_thread(sbi);
2546
2547 err = f2fs_start_ckpt_thread(sbi);
2548 if (err) {
2549 f2fs_err(sbi,
2550 "Failed to start F2FS issue_checkpoint_thread (%d)",
2551 err);
2552 goto restore_checkpoint;
2553 }
2554 }
2555
2556skip:
2557#ifdef CONFIG_QUOTA
2558 /* Release old quota file names */
2559 for (i = 0; i < MAXQUOTAS; i++)
2560 kfree(org_mount_opt.s_qf_names[i]);
2561#endif
2562 /* Update the POSIXACL Flag */
2563 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2564 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2565
2566 limit_reserve_root(sbi);
2567 adjust_unusable_cap_perc(sbi);
2568 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2569 return 0;
2570restore_checkpoint:
2571 if (need_enable_checkpoint) {
2572 f2fs_enable_checkpoint(sbi);
2573 } else if (need_disable_checkpoint) {
2574 if (f2fs_disable_checkpoint(sbi))
2575 f2fs_warn(sbi, "checkpoint has not been disabled");
2576 }
2577restore_discard:
2578 if (need_restart_discard) {
2579 if (f2fs_start_discard_thread(sbi))
2580 f2fs_warn(sbi, "discard has been stopped");
2581 } else if (need_stop_discard) {
2582 f2fs_stop_discard_thread(sbi);
2583 }
2584restore_flush:
2585 if (need_restart_flush) {
2586 if (f2fs_create_flush_cmd_control(sbi))
2587 f2fs_warn(sbi, "background flush thread has stopped");
2588 } else if (need_stop_flush) {
2589 clear_opt(sbi, FLUSH_MERGE);
2590 f2fs_destroy_flush_cmd_control(sbi, false);
2591 }
2592restore_gc:
2593 if (need_restart_gc) {
2594 if (f2fs_start_gc_thread(sbi))
2595 f2fs_warn(sbi, "background gc thread has stopped");
2596 } else if (need_stop_gc) {
2597 f2fs_stop_gc_thread(sbi);
2598 }
2599restore_opts:
2600#ifdef CONFIG_QUOTA
2601 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2602 for (i = 0; i < MAXQUOTAS; i++) {
2603 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2604 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2605 }
2606#endif
2607 sbi->mount_opt = org_mount_opt;
2608 sb->s_flags = old_sb_flags;
2609 return err;
2610}
2611
2612#ifdef CONFIG_QUOTA
2613static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2614{
2615 /* need to recovery orphan */
2616 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2617 return true;
2618 /* need to recovery data */
2619 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2620 return false;
2621 if (test_opt(sbi, NORECOVERY))
2622 return false;
2623 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2624}
2625
2626static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
2627{
2628 bool readonly = f2fs_readonly(sbi->sb);
2629
2630 if (!f2fs_need_recovery(sbi))
2631 return false;
2632
2633 /* it doesn't need to check f2fs_sb_has_readonly() */
2634 if (f2fs_hw_is_readonly(sbi))
2635 return false;
2636
2637 if (readonly) {
2638 sbi->sb->s_flags &= ~SB_RDONLY;
2639 set_sbi_flag(sbi, SBI_IS_WRITABLE);
2640 }
2641
2642 /*
2643 * Turn on quotas which were not enabled for read-only mounts if
2644 * filesystem has quota feature, so that they are updated correctly.
2645 */
2646 return f2fs_enable_quota_files(sbi, readonly);
2647}
2648
2649static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
2650 bool quota_enabled)
2651{
2652 if (quota_enabled)
2653 f2fs_quota_off_umount(sbi->sb);
2654
2655 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
2656 clear_sbi_flag(sbi, SBI_IS_WRITABLE);
2657 sbi->sb->s_flags |= SB_RDONLY;
2658 }
2659}
2660
2661/* Read data from quotafile */
2662static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2663 size_t len, loff_t off)
2664{
2665 struct inode *inode = sb_dqopt(sb)->files[type];
2666 struct address_space *mapping = inode->i_mapping;
2667 block_t blkidx = F2FS_BYTES_TO_BLK(off);
2668 int offset = off & (sb->s_blocksize - 1);
2669 int tocopy;
2670 size_t toread;
2671 loff_t i_size = i_size_read(inode);
2672 struct page *page;
2673
2674 if (off > i_size)
2675 return 0;
2676
2677 if (off + len > i_size)
2678 len = i_size - off;
2679 toread = len;
2680 while (toread > 0) {
2681 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2682repeat:
2683 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2684 if (IS_ERR(page)) {
2685 if (PTR_ERR(page) == -ENOMEM) {
2686 memalloc_retry_wait(GFP_NOFS);
2687 goto repeat;
2688 }
2689 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2690 return PTR_ERR(page);
2691 }
2692
2693 lock_page(page);
2694
2695 if (unlikely(page->mapping != mapping)) {
2696 f2fs_put_page(page, 1);
2697 goto repeat;
2698 }
2699 if (unlikely(!PageUptodate(page))) {
2700 f2fs_put_page(page, 1);
2701 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2702 return -EIO;
2703 }
2704
2705 memcpy_from_page(data, page, offset, tocopy);
2706 f2fs_put_page(page, 1);
2707
2708 offset = 0;
2709 toread -= tocopy;
2710 data += tocopy;
2711 blkidx++;
2712 }
2713 return len;
2714}
2715
2716/* Write to quotafile */
2717static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2718 const char *data, size_t len, loff_t off)
2719{
2720 struct inode *inode = sb_dqopt(sb)->files[type];
2721 struct address_space *mapping = inode->i_mapping;
2722 const struct address_space_operations *a_ops = mapping->a_ops;
2723 int offset = off & (sb->s_blocksize - 1);
2724 size_t towrite = len;
2725 struct page *page;
2726 void *fsdata = NULL;
2727 int err = 0;
2728 int tocopy;
2729
2730 while (towrite > 0) {
2731 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2732 towrite);
2733retry:
2734 err = a_ops->write_begin(NULL, mapping, off, tocopy,
2735 &page, &fsdata);
2736 if (unlikely(err)) {
2737 if (err == -ENOMEM) {
2738 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2739 goto retry;
2740 }
2741 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2742 break;
2743 }
2744
2745 memcpy_to_page(page, offset, data, tocopy);
2746
2747 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2748 page, fsdata);
2749 offset = 0;
2750 towrite -= tocopy;
2751 off += tocopy;
2752 data += tocopy;
2753 cond_resched();
2754 }
2755
2756 if (len == towrite)
2757 return err;
2758 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2759 f2fs_mark_inode_dirty_sync(inode, false);
2760 return len - towrite;
2761}
2762
2763int f2fs_dquot_initialize(struct inode *inode)
2764{
2765 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
2766 return -ESRCH;
2767
2768 return dquot_initialize(inode);
2769}
2770
2771static struct dquot **f2fs_get_dquots(struct inode *inode)
2772{
2773 return F2FS_I(inode)->i_dquot;
2774}
2775
2776static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2777{
2778 return &F2FS_I(inode)->i_reserved_quota;
2779}
2780
2781static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2782{
2783 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2784 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2785 return 0;
2786 }
2787
2788 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2789 F2FS_OPTION(sbi).s_jquota_fmt, type);
2790}
2791
2792int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2793{
2794 int enabled = 0;
2795 int i, err;
2796
2797 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2798 err = f2fs_enable_quotas(sbi->sb);
2799 if (err) {
2800 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2801 return 0;
2802 }
2803 return 1;
2804 }
2805
2806 for (i = 0; i < MAXQUOTAS; i++) {
2807 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2808 err = f2fs_quota_on_mount(sbi, i);
2809 if (!err) {
2810 enabled = 1;
2811 continue;
2812 }
2813 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2814 err, i);
2815 }
2816 }
2817 return enabled;
2818}
2819
2820static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2821 unsigned int flags)
2822{
2823 struct inode *qf_inode;
2824 unsigned long qf_inum;
2825 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
2826 int err;
2827
2828 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2829
2830 qf_inum = f2fs_qf_ino(sb, type);
2831 if (!qf_inum)
2832 return -EPERM;
2833
2834 qf_inode = f2fs_iget(sb, qf_inum);
2835 if (IS_ERR(qf_inode)) {
2836 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2837 return PTR_ERR(qf_inode);
2838 }
2839
2840 /* Don't account quota for quota files to avoid recursion */
2841 inode_lock(qf_inode);
2842 qf_inode->i_flags |= S_NOQUOTA;
2843
2844 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
2845 F2FS_I(qf_inode)->i_flags |= qf_flag;
2846 f2fs_set_inode_flags(qf_inode);
2847 }
2848 inode_unlock(qf_inode);
2849
2850 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2851 iput(qf_inode);
2852 return err;
2853}
2854
2855static int f2fs_enable_quotas(struct super_block *sb)
2856{
2857 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2858 int type, err = 0;
2859 unsigned long qf_inum;
2860 bool quota_mopt[MAXQUOTAS] = {
2861 test_opt(sbi, USRQUOTA),
2862 test_opt(sbi, GRPQUOTA),
2863 test_opt(sbi, PRJQUOTA),
2864 };
2865
2866 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2867 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2868 return 0;
2869 }
2870
2871 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2872
2873 for (type = 0; type < MAXQUOTAS; type++) {
2874 qf_inum = f2fs_qf_ino(sb, type);
2875 if (qf_inum) {
2876 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2877 DQUOT_USAGE_ENABLED |
2878 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2879 if (err) {
2880 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2881 type, err);
2882 for (type--; type >= 0; type--)
2883 dquot_quota_off(sb, type);
2884 set_sbi_flag(F2FS_SB(sb),
2885 SBI_QUOTA_NEED_REPAIR);
2886 return err;
2887 }
2888 }
2889 }
2890 return 0;
2891}
2892
2893static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2894{
2895 struct quota_info *dqopt = sb_dqopt(sbi->sb);
2896 struct address_space *mapping = dqopt->files[type]->i_mapping;
2897 int ret = 0;
2898
2899 ret = dquot_writeback_dquots(sbi->sb, type);
2900 if (ret)
2901 goto out;
2902
2903 ret = filemap_fdatawrite(mapping);
2904 if (ret)
2905 goto out;
2906
2907 /* if we are using journalled quota */
2908 if (is_journalled_quota(sbi))
2909 goto out;
2910
2911 ret = filemap_fdatawait(mapping);
2912
2913 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2914out:
2915 if (ret)
2916 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2917 return ret;
2918}
2919
2920int f2fs_quota_sync(struct super_block *sb, int type)
2921{
2922 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2923 struct quota_info *dqopt = sb_dqopt(sb);
2924 int cnt;
2925 int ret = 0;
2926
2927 /*
2928 * Now when everything is written we can discard the pagecache so
2929 * that userspace sees the changes.
2930 */
2931 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2932
2933 if (type != -1 && cnt != type)
2934 continue;
2935
2936 if (!sb_has_quota_active(sb, cnt))
2937 continue;
2938
2939 if (!f2fs_sb_has_quota_ino(sbi))
2940 inode_lock(dqopt->files[cnt]);
2941
2942 /*
2943 * do_quotactl
2944 * f2fs_quota_sync
2945 * f2fs_down_read(quota_sem)
2946 * dquot_writeback_dquots()
2947 * f2fs_dquot_commit
2948 * block_operation
2949 * f2fs_down_read(quota_sem)
2950 */
2951 f2fs_lock_op(sbi);
2952 f2fs_down_read(&sbi->quota_sem);
2953
2954 ret = f2fs_quota_sync_file(sbi, cnt);
2955
2956 f2fs_up_read(&sbi->quota_sem);
2957 f2fs_unlock_op(sbi);
2958
2959 if (!f2fs_sb_has_quota_ino(sbi))
2960 inode_unlock(dqopt->files[cnt]);
2961
2962 if (ret)
2963 break;
2964 }
2965 return ret;
2966}
2967
2968static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2969 const struct path *path)
2970{
2971 struct inode *inode;
2972 int err;
2973
2974 /* if quota sysfile exists, deny enabling quota with specific file */
2975 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2976 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2977 return -EBUSY;
2978 }
2979
2980 if (path->dentry->d_sb != sb)
2981 return -EXDEV;
2982
2983 err = f2fs_quota_sync(sb, type);
2984 if (err)
2985 return err;
2986
2987 inode = d_inode(path->dentry);
2988
2989 err = filemap_fdatawrite(inode->i_mapping);
2990 if (err)
2991 return err;
2992
2993 err = filemap_fdatawait(inode->i_mapping);
2994 if (err)
2995 return err;
2996
2997 err = dquot_quota_on(sb, type, format_id, path);
2998 if (err)
2999 return err;
3000
3001 inode_lock(inode);
3002 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
3003 f2fs_set_inode_flags(inode);
3004 inode_unlock(inode);
3005 f2fs_mark_inode_dirty_sync(inode, false);
3006
3007 return 0;
3008}
3009
3010static int __f2fs_quota_off(struct super_block *sb, int type)
3011{
3012 struct inode *inode = sb_dqopt(sb)->files[type];
3013 int err;
3014
3015 if (!inode || !igrab(inode))
3016 return dquot_quota_off(sb, type);
3017
3018 err = f2fs_quota_sync(sb, type);
3019 if (err)
3020 goto out_put;
3021
3022 err = dquot_quota_off(sb, type);
3023 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
3024 goto out_put;
3025
3026 inode_lock(inode);
3027 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
3028 f2fs_set_inode_flags(inode);
3029 inode_unlock(inode);
3030 f2fs_mark_inode_dirty_sync(inode, false);
3031out_put:
3032 iput(inode);
3033 return err;
3034}
3035
3036static int f2fs_quota_off(struct super_block *sb, int type)
3037{
3038 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3039 int err;
3040
3041 err = __f2fs_quota_off(sb, type);
3042
3043 /*
3044 * quotactl can shutdown journalled quota, result in inconsistence
3045 * between quota record and fs data by following updates, tag the
3046 * flag to let fsck be aware of it.
3047 */
3048 if (is_journalled_quota(sbi))
3049 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3050 return err;
3051}
3052
3053void f2fs_quota_off_umount(struct super_block *sb)
3054{
3055 int type;
3056 int err;
3057
3058 for (type = 0; type < MAXQUOTAS; type++) {
3059 err = __f2fs_quota_off(sb, type);
3060 if (err) {
3061 int ret = dquot_quota_off(sb, type);
3062
3063 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3064 type, err, ret);
3065 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3066 }
3067 }
3068 /*
3069 * In case of checkpoint=disable, we must flush quota blocks.
3070 * This can cause NULL exception for node_inode in end_io, since
3071 * put_super already dropped it.
3072 */
3073 sync_filesystem(sb);
3074}
3075
3076static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3077{
3078 struct quota_info *dqopt = sb_dqopt(sb);
3079 int type;
3080
3081 for (type = 0; type < MAXQUOTAS; type++) {
3082 if (!dqopt->files[type])
3083 continue;
3084 f2fs_inode_synced(dqopt->files[type]);
3085 }
3086}
3087
3088static int f2fs_dquot_commit(struct dquot *dquot)
3089{
3090 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3091 int ret;
3092
3093 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3094 ret = dquot_commit(dquot);
3095 if (ret < 0)
3096 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3097 f2fs_up_read(&sbi->quota_sem);
3098 return ret;
3099}
3100
3101static int f2fs_dquot_acquire(struct dquot *dquot)
3102{
3103 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3104 int ret;
3105
3106 f2fs_down_read(&sbi->quota_sem);
3107 ret = dquot_acquire(dquot);
3108 if (ret < 0)
3109 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3110 f2fs_up_read(&sbi->quota_sem);
3111 return ret;
3112}
3113
3114static int f2fs_dquot_release(struct dquot *dquot)
3115{
3116 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3117 int ret = dquot_release(dquot);
3118
3119 if (ret < 0)
3120 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3121 return ret;
3122}
3123
3124static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3125{
3126 struct super_block *sb = dquot->dq_sb;
3127 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3128 int ret = dquot_mark_dquot_dirty(dquot);
3129
3130 /* if we are using journalled quota */
3131 if (is_journalled_quota(sbi))
3132 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3133
3134 return ret;
3135}
3136
3137static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3138{
3139 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3140 int ret = dquot_commit_info(sb, type);
3141
3142 if (ret < 0)
3143 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3144 return ret;
3145}
3146
3147static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3148{
3149 *projid = F2FS_I(inode)->i_projid;
3150 return 0;
3151}
3152
3153static const struct dquot_operations f2fs_quota_operations = {
3154 .get_reserved_space = f2fs_get_reserved_space,
3155 .write_dquot = f2fs_dquot_commit,
3156 .acquire_dquot = f2fs_dquot_acquire,
3157 .release_dquot = f2fs_dquot_release,
3158 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
3159 .write_info = f2fs_dquot_commit_info,
3160 .alloc_dquot = dquot_alloc,
3161 .destroy_dquot = dquot_destroy,
3162 .get_projid = f2fs_get_projid,
3163 .get_next_id = dquot_get_next_id,
3164};
3165
3166static const struct quotactl_ops f2fs_quotactl_ops = {
3167 .quota_on = f2fs_quota_on,
3168 .quota_off = f2fs_quota_off,
3169 .quota_sync = f2fs_quota_sync,
3170 .get_state = dquot_get_state,
3171 .set_info = dquot_set_dqinfo,
3172 .get_dqblk = dquot_get_dqblk,
3173 .set_dqblk = dquot_set_dqblk,
3174 .get_nextdqblk = dquot_get_next_dqblk,
3175};
3176#else
3177int f2fs_dquot_initialize(struct inode *inode)
3178{
3179 return 0;
3180}
3181
3182int f2fs_quota_sync(struct super_block *sb, int type)
3183{
3184 return 0;
3185}
3186
3187void f2fs_quota_off_umount(struct super_block *sb)
3188{
3189}
3190#endif
3191
3192static const struct super_operations f2fs_sops = {
3193 .alloc_inode = f2fs_alloc_inode,
3194 .free_inode = f2fs_free_inode,
3195 .drop_inode = f2fs_drop_inode,
3196 .write_inode = f2fs_write_inode,
3197 .dirty_inode = f2fs_dirty_inode,
3198 .show_options = f2fs_show_options,
3199#ifdef CONFIG_QUOTA
3200 .quota_read = f2fs_quota_read,
3201 .quota_write = f2fs_quota_write,
3202 .get_dquots = f2fs_get_dquots,
3203#endif
3204 .evict_inode = f2fs_evict_inode,
3205 .put_super = f2fs_put_super,
3206 .sync_fs = f2fs_sync_fs,
3207 .freeze_fs = f2fs_freeze,
3208 .unfreeze_fs = f2fs_unfreeze,
3209 .statfs = f2fs_statfs,
3210 .remount_fs = f2fs_remount,
3211};
3212
3213#ifdef CONFIG_FS_ENCRYPTION
3214static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3215{
3216 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3217 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3218 ctx, len, NULL);
3219}
3220
3221static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3222 void *fs_data)
3223{
3224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3225
3226 /*
3227 * Encrypting the root directory is not allowed because fsck
3228 * expects lost+found directory to exist and remain unencrypted
3229 * if LOST_FOUND feature is enabled.
3230 *
3231 */
3232 if (f2fs_sb_has_lost_found(sbi) &&
3233 inode->i_ino == F2FS_ROOT_INO(sbi))
3234 return -EPERM;
3235
3236 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3237 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3238 ctx, len, fs_data, XATTR_CREATE);
3239}
3240
3241static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3242{
3243 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3244}
3245
3246static bool f2fs_has_stable_inodes(struct super_block *sb)
3247{
3248 return true;
3249}
3250
3251static struct block_device **f2fs_get_devices(struct super_block *sb,
3252 unsigned int *num_devs)
3253{
3254 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3255 struct block_device **devs;
3256 int i;
3257
3258 if (!f2fs_is_multi_device(sbi))
3259 return NULL;
3260
3261 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3262 if (!devs)
3263 return ERR_PTR(-ENOMEM);
3264
3265 for (i = 0; i < sbi->s_ndevs; i++)
3266 devs[i] = FDEV(i).bdev;
3267 *num_devs = sbi->s_ndevs;
3268 return devs;
3269}
3270
3271static const struct fscrypt_operations f2fs_cryptops = {
3272 .needs_bounce_pages = 1,
3273 .has_32bit_inodes = 1,
3274 .supports_subblock_data_units = 1,
3275 .legacy_key_prefix = "f2fs:",
3276 .get_context = f2fs_get_context,
3277 .set_context = f2fs_set_context,
3278 .get_dummy_policy = f2fs_get_dummy_policy,
3279 .empty_dir = f2fs_empty_dir,
3280 .has_stable_inodes = f2fs_has_stable_inodes,
3281 .get_devices = f2fs_get_devices,
3282};
3283#endif
3284
3285static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3286 u64 ino, u32 generation)
3287{
3288 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3289 struct inode *inode;
3290
3291 if (f2fs_check_nid_range(sbi, ino))
3292 return ERR_PTR(-ESTALE);
3293
3294 /*
3295 * f2fs_iget isn't quite right if the inode is currently unallocated!
3296 * However f2fs_iget currently does appropriate checks to handle stale
3297 * inodes so everything is OK.
3298 */
3299 inode = f2fs_iget(sb, ino);
3300 if (IS_ERR(inode))
3301 return ERR_CAST(inode);
3302 if (unlikely(generation && inode->i_generation != generation)) {
3303 /* we didn't find the right inode.. */
3304 iput(inode);
3305 return ERR_PTR(-ESTALE);
3306 }
3307 return inode;
3308}
3309
3310static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3311 int fh_len, int fh_type)
3312{
3313 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3314 f2fs_nfs_get_inode);
3315}
3316
3317static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3318 int fh_len, int fh_type)
3319{
3320 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3321 f2fs_nfs_get_inode);
3322}
3323
3324static const struct export_operations f2fs_export_ops = {
3325 .encode_fh = generic_encode_ino32_fh,
3326 .fh_to_dentry = f2fs_fh_to_dentry,
3327 .fh_to_parent = f2fs_fh_to_parent,
3328 .get_parent = f2fs_get_parent,
3329};
3330
3331loff_t max_file_blocks(struct inode *inode)
3332{
3333 loff_t result = 0;
3334 loff_t leaf_count;
3335
3336 /*
3337 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3338 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3339 * space in inode.i_addr, it will be more safe to reassign
3340 * result as zero.
3341 */
3342
3343 if (inode && f2fs_compressed_file(inode))
3344 leaf_count = ADDRS_PER_BLOCK(inode);
3345 else
3346 leaf_count = DEF_ADDRS_PER_BLOCK;
3347
3348 /* two direct node blocks */
3349 result += (leaf_count * 2);
3350
3351 /* two indirect node blocks */
3352 leaf_count *= NIDS_PER_BLOCK;
3353 result += (leaf_count * 2);
3354
3355 /* one double indirect node block */
3356 leaf_count *= NIDS_PER_BLOCK;
3357 result += leaf_count;
3358
3359 /*
3360 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with
3361 * a 4K crypto data unit, we must restrict the max filesize to what can
3362 * fit within U32_MAX + 1 data units.
3363 */
3364
3365 result = min(result, (((loff_t)U32_MAX + 1) * 4096) >> F2FS_BLKSIZE_BITS);
3366
3367 return result;
3368}
3369
3370static int __f2fs_commit_super(struct buffer_head *bh,
3371 struct f2fs_super_block *super)
3372{
3373 lock_buffer(bh);
3374 if (super)
3375 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3376 set_buffer_dirty(bh);
3377 unlock_buffer(bh);
3378
3379 /* it's rare case, we can do fua all the time */
3380 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3381}
3382
3383static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3384 struct buffer_head *bh)
3385{
3386 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3387 (bh->b_data + F2FS_SUPER_OFFSET);
3388 struct super_block *sb = sbi->sb;
3389 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3390 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3391 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3392 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3393 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3394 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3395 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3396 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3397 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3398 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3399 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3400 u32 segment_count = le32_to_cpu(raw_super->segment_count);
3401 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3402 u64 main_end_blkaddr = main_blkaddr +
3403 (segment_count_main << log_blocks_per_seg);
3404 u64 seg_end_blkaddr = segment0_blkaddr +
3405 (segment_count << log_blocks_per_seg);
3406
3407 if (segment0_blkaddr != cp_blkaddr) {
3408 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3409 segment0_blkaddr, cp_blkaddr);
3410 return true;
3411 }
3412
3413 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3414 sit_blkaddr) {
3415 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3416 cp_blkaddr, sit_blkaddr,
3417 segment_count_ckpt << log_blocks_per_seg);
3418 return true;
3419 }
3420
3421 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3422 nat_blkaddr) {
3423 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3424 sit_blkaddr, nat_blkaddr,
3425 segment_count_sit << log_blocks_per_seg);
3426 return true;
3427 }
3428
3429 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3430 ssa_blkaddr) {
3431 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3432 nat_blkaddr, ssa_blkaddr,
3433 segment_count_nat << log_blocks_per_seg);
3434 return true;
3435 }
3436
3437 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3438 main_blkaddr) {
3439 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3440 ssa_blkaddr, main_blkaddr,
3441 segment_count_ssa << log_blocks_per_seg);
3442 return true;
3443 }
3444
3445 if (main_end_blkaddr > seg_end_blkaddr) {
3446 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3447 main_blkaddr, seg_end_blkaddr,
3448 segment_count_main << log_blocks_per_seg);
3449 return true;
3450 } else if (main_end_blkaddr < seg_end_blkaddr) {
3451 int err = 0;
3452 char *res;
3453
3454 /* fix in-memory information all the time */
3455 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3456 segment0_blkaddr) >> log_blocks_per_seg);
3457
3458 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3459 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3460 res = "internally";
3461 } else {
3462 err = __f2fs_commit_super(bh, NULL);
3463 res = err ? "failed" : "done";
3464 }
3465 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3466 res, main_blkaddr, seg_end_blkaddr,
3467 segment_count_main << log_blocks_per_seg);
3468 if (err)
3469 return true;
3470 }
3471 return false;
3472}
3473
3474static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3475 struct buffer_head *bh)
3476{
3477 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3478 block_t total_sections, blocks_per_seg;
3479 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3480 (bh->b_data + F2FS_SUPER_OFFSET);
3481 size_t crc_offset = 0;
3482 __u32 crc = 0;
3483
3484 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3485 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3486 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3487 return -EINVAL;
3488 }
3489
3490 /* Check checksum_offset and crc in superblock */
3491 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3492 crc_offset = le32_to_cpu(raw_super->checksum_offset);
3493 if (crc_offset !=
3494 offsetof(struct f2fs_super_block, crc)) {
3495 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3496 crc_offset);
3497 return -EFSCORRUPTED;
3498 }
3499 crc = le32_to_cpu(raw_super->crc);
3500 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3501 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3502 return -EFSCORRUPTED;
3503 }
3504 }
3505
3506 /* Currently, support only 4KB block size */
3507 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3508 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3509 le32_to_cpu(raw_super->log_blocksize),
3510 F2FS_BLKSIZE_BITS);
3511 return -EFSCORRUPTED;
3512 }
3513
3514 /* check log blocks per segment */
3515 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3516 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3517 le32_to_cpu(raw_super->log_blocks_per_seg));
3518 return -EFSCORRUPTED;
3519 }
3520
3521 /* Currently, support 512/1024/2048/4096/16K bytes sector size */
3522 if (le32_to_cpu(raw_super->log_sectorsize) >
3523 F2FS_MAX_LOG_SECTOR_SIZE ||
3524 le32_to_cpu(raw_super->log_sectorsize) <
3525 F2FS_MIN_LOG_SECTOR_SIZE) {
3526 f2fs_info(sbi, "Invalid log sectorsize (%u)",
3527 le32_to_cpu(raw_super->log_sectorsize));
3528 return -EFSCORRUPTED;
3529 }
3530 if (le32_to_cpu(raw_super->log_sectors_per_block) +
3531 le32_to_cpu(raw_super->log_sectorsize) !=
3532 F2FS_MAX_LOG_SECTOR_SIZE) {
3533 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3534 le32_to_cpu(raw_super->log_sectors_per_block),
3535 le32_to_cpu(raw_super->log_sectorsize));
3536 return -EFSCORRUPTED;
3537 }
3538
3539 segment_count = le32_to_cpu(raw_super->segment_count);
3540 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3541 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3542 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3543 total_sections = le32_to_cpu(raw_super->section_count);
3544
3545 /* blocks_per_seg should be 512, given the above check */
3546 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3547
3548 if (segment_count > F2FS_MAX_SEGMENT ||
3549 segment_count < F2FS_MIN_SEGMENTS) {
3550 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3551 return -EFSCORRUPTED;
3552 }
3553
3554 if (total_sections > segment_count_main || total_sections < 1 ||
3555 segs_per_sec > segment_count || !segs_per_sec) {
3556 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3557 segment_count, total_sections, segs_per_sec);
3558 return -EFSCORRUPTED;
3559 }
3560
3561 if (segment_count_main != total_sections * segs_per_sec) {
3562 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3563 segment_count_main, total_sections, segs_per_sec);
3564 return -EFSCORRUPTED;
3565 }
3566
3567 if ((segment_count / segs_per_sec) < total_sections) {
3568 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3569 segment_count, segs_per_sec, total_sections);
3570 return -EFSCORRUPTED;
3571 }
3572
3573 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3574 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3575 segment_count, le64_to_cpu(raw_super->block_count));
3576 return -EFSCORRUPTED;
3577 }
3578
3579 if (RDEV(0).path[0]) {
3580 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3581 int i = 1;
3582
3583 while (i < MAX_DEVICES && RDEV(i).path[0]) {
3584 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3585 i++;
3586 }
3587 if (segment_count != dev_seg_count) {
3588 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3589 segment_count, dev_seg_count);
3590 return -EFSCORRUPTED;
3591 }
3592 } else {
3593 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3594 !bdev_is_zoned(sbi->sb->s_bdev)) {
3595 f2fs_info(sbi, "Zoned block device path is missing");
3596 return -EFSCORRUPTED;
3597 }
3598 }
3599
3600 if (secs_per_zone > total_sections || !secs_per_zone) {
3601 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3602 secs_per_zone, total_sections);
3603 return -EFSCORRUPTED;
3604 }
3605 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3606 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3607 (le32_to_cpu(raw_super->extension_count) +
3608 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3609 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3610 le32_to_cpu(raw_super->extension_count),
3611 raw_super->hot_ext_count,
3612 F2FS_MAX_EXTENSION);
3613 return -EFSCORRUPTED;
3614 }
3615
3616 if (le32_to_cpu(raw_super->cp_payload) >=
3617 (blocks_per_seg - F2FS_CP_PACKS -
3618 NR_CURSEG_PERSIST_TYPE)) {
3619 f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3620 le32_to_cpu(raw_super->cp_payload),
3621 blocks_per_seg - F2FS_CP_PACKS -
3622 NR_CURSEG_PERSIST_TYPE);
3623 return -EFSCORRUPTED;
3624 }
3625
3626 /* check reserved ino info */
3627 if (le32_to_cpu(raw_super->node_ino) != 1 ||
3628 le32_to_cpu(raw_super->meta_ino) != 2 ||
3629 le32_to_cpu(raw_super->root_ino) != 3) {
3630 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3631 le32_to_cpu(raw_super->node_ino),
3632 le32_to_cpu(raw_super->meta_ino),
3633 le32_to_cpu(raw_super->root_ino));
3634 return -EFSCORRUPTED;
3635 }
3636
3637 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3638 if (sanity_check_area_boundary(sbi, bh))
3639 return -EFSCORRUPTED;
3640
3641 return 0;
3642}
3643
3644int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3645{
3646 unsigned int total, fsmeta;
3647 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3648 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3649 unsigned int ovp_segments, reserved_segments;
3650 unsigned int main_segs, blocks_per_seg;
3651 unsigned int sit_segs, nat_segs;
3652 unsigned int sit_bitmap_size, nat_bitmap_size;
3653 unsigned int log_blocks_per_seg;
3654 unsigned int segment_count_main;
3655 unsigned int cp_pack_start_sum, cp_payload;
3656 block_t user_block_count, valid_user_blocks;
3657 block_t avail_node_count, valid_node_count;
3658 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3659 int i, j;
3660
3661 total = le32_to_cpu(raw_super->segment_count);
3662 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3663 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3664 fsmeta += sit_segs;
3665 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3666 fsmeta += nat_segs;
3667 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3668 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3669
3670 if (unlikely(fsmeta >= total))
3671 return 1;
3672
3673 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3674 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3675
3676 if (!f2fs_sb_has_readonly(sbi) &&
3677 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3678 ovp_segments == 0 || reserved_segments == 0)) {
3679 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3680 return 1;
3681 }
3682 user_block_count = le64_to_cpu(ckpt->user_block_count);
3683 segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3684 (f2fs_sb_has_readonly(sbi) ? 1 : 0);
3685 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3686 if (!user_block_count || user_block_count >=
3687 segment_count_main << log_blocks_per_seg) {
3688 f2fs_err(sbi, "Wrong user_block_count: %u",
3689 user_block_count);
3690 return 1;
3691 }
3692
3693 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3694 if (valid_user_blocks > user_block_count) {
3695 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3696 valid_user_blocks, user_block_count);
3697 return 1;
3698 }
3699
3700 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3701 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3702 if (valid_node_count > avail_node_count) {
3703 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3704 valid_node_count, avail_node_count);
3705 return 1;
3706 }
3707
3708 main_segs = le32_to_cpu(raw_super->segment_count_main);
3709 blocks_per_seg = sbi->blocks_per_seg;
3710
3711 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3712 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3713 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3714 return 1;
3715
3716 if (f2fs_sb_has_readonly(sbi))
3717 goto check_data;
3718
3719 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3720 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3721 le32_to_cpu(ckpt->cur_node_segno[j])) {
3722 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3723 i, j,
3724 le32_to_cpu(ckpt->cur_node_segno[i]));
3725 return 1;
3726 }
3727 }
3728 }
3729check_data:
3730 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3731 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3732 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3733 return 1;
3734
3735 if (f2fs_sb_has_readonly(sbi))
3736 goto skip_cross;
3737
3738 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3739 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3740 le32_to_cpu(ckpt->cur_data_segno[j])) {
3741 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3742 i, j,
3743 le32_to_cpu(ckpt->cur_data_segno[i]));
3744 return 1;
3745 }
3746 }
3747 }
3748 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3749 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3750 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3751 le32_to_cpu(ckpt->cur_data_segno[j])) {
3752 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3753 i, j,
3754 le32_to_cpu(ckpt->cur_node_segno[i]));
3755 return 1;
3756 }
3757 }
3758 }
3759skip_cross:
3760 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3761 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3762
3763 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3764 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3765 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3766 sit_bitmap_size, nat_bitmap_size);
3767 return 1;
3768 }
3769
3770 cp_pack_start_sum = __start_sum_addr(sbi);
3771 cp_payload = __cp_payload(sbi);
3772 if (cp_pack_start_sum < cp_payload + 1 ||
3773 cp_pack_start_sum > blocks_per_seg - 1 -
3774 NR_CURSEG_PERSIST_TYPE) {
3775 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3776 cp_pack_start_sum);
3777 return 1;
3778 }
3779
3780 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3781 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3782 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3783 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3784 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3785 le32_to_cpu(ckpt->checksum_offset));
3786 return 1;
3787 }
3788
3789 nat_blocks = nat_segs << log_blocks_per_seg;
3790 nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3791 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3792 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3793 (cp_payload + F2FS_CP_PACKS +
3794 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3795 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3796 cp_payload, nat_bits_blocks);
3797 return 1;
3798 }
3799
3800 if (unlikely(f2fs_cp_error(sbi))) {
3801 f2fs_err(sbi, "A bug case: need to run fsck");
3802 return 1;
3803 }
3804 return 0;
3805}
3806
3807static void init_sb_info(struct f2fs_sb_info *sbi)
3808{
3809 struct f2fs_super_block *raw_super = sbi->raw_super;
3810 int i;
3811
3812 sbi->log_sectors_per_block =
3813 le32_to_cpu(raw_super->log_sectors_per_block);
3814 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3815 sbi->blocksize = BIT(sbi->log_blocksize);
3816 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3817 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
3818 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3819 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3820 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3821 sbi->total_node_count =
3822 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3823 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3824 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3825 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3826 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3827 sbi->cur_victim_sec = NULL_SECNO;
3828 sbi->gc_mode = GC_NORMAL;
3829 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3830 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3831 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3832 sbi->migration_granularity = sbi->segs_per_sec;
3833 sbi->seq_file_ra_mul = MIN_RA_MUL;
3834 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3835 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3836 spin_lock_init(&sbi->gc_remaining_trials_lock);
3837 atomic64_set(&sbi->current_atomic_write, 0);
3838
3839 sbi->dir_level = DEF_DIR_LEVEL;
3840 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3841 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3842 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3843 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3844 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3845 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3846 DEF_UMOUNT_DISCARD_TIMEOUT;
3847 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3848
3849 for (i = 0; i < NR_COUNT_TYPE; i++)
3850 atomic_set(&sbi->nr_pages[i], 0);
3851
3852 for (i = 0; i < META; i++)
3853 atomic_set(&sbi->wb_sync_req[i], 0);
3854
3855 INIT_LIST_HEAD(&sbi->s_list);
3856 mutex_init(&sbi->umount_mutex);
3857 init_f2fs_rwsem(&sbi->io_order_lock);
3858 spin_lock_init(&sbi->cp_lock);
3859
3860 sbi->dirty_device = 0;
3861 spin_lock_init(&sbi->dev_lock);
3862
3863 init_f2fs_rwsem(&sbi->sb_lock);
3864 init_f2fs_rwsem(&sbi->pin_sem);
3865}
3866
3867static int init_percpu_info(struct f2fs_sb_info *sbi)
3868{
3869 int err;
3870
3871 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3872 if (err)
3873 return err;
3874
3875 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3876 if (err)
3877 goto err_valid_block;
3878
3879 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3880 GFP_KERNEL);
3881 if (err)
3882 goto err_node_block;
3883 return 0;
3884
3885err_node_block:
3886 percpu_counter_destroy(&sbi->rf_node_block_count);
3887err_valid_block:
3888 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3889 return err;
3890}
3891
3892#ifdef CONFIG_BLK_DEV_ZONED
3893
3894struct f2fs_report_zones_args {
3895 struct f2fs_sb_info *sbi;
3896 struct f2fs_dev_info *dev;
3897};
3898
3899static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3900 void *data)
3901{
3902 struct f2fs_report_zones_args *rz_args = data;
3903 block_t unusable_blocks = (zone->len - zone->capacity) >>
3904 F2FS_LOG_SECTORS_PER_BLOCK;
3905
3906 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3907 return 0;
3908
3909 set_bit(idx, rz_args->dev->blkz_seq);
3910 if (!rz_args->sbi->unusable_blocks_per_sec) {
3911 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3912 return 0;
3913 }
3914 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3915 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3916 return -EINVAL;
3917 }
3918 return 0;
3919}
3920
3921static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3922{
3923 struct block_device *bdev = FDEV(devi).bdev;
3924 sector_t nr_sectors = bdev_nr_sectors(bdev);
3925 struct f2fs_report_zones_args rep_zone_arg;
3926 u64 zone_sectors;
3927 int ret;
3928
3929 if (!f2fs_sb_has_blkzoned(sbi))
3930 return 0;
3931
3932 zone_sectors = bdev_zone_sectors(bdev);
3933 if (!is_power_of_2(zone_sectors)) {
3934 f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n");
3935 return -EINVAL;
3936 }
3937
3938 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3939 SECTOR_TO_BLOCK(zone_sectors))
3940 return -EINVAL;
3941 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3942 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
3943 sbi->blocks_per_blkz);
3944 if (nr_sectors & (zone_sectors - 1))
3945 FDEV(devi).nr_blkz++;
3946
3947 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3948 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3949 * sizeof(unsigned long),
3950 GFP_KERNEL);
3951 if (!FDEV(devi).blkz_seq)
3952 return -ENOMEM;
3953
3954 rep_zone_arg.sbi = sbi;
3955 rep_zone_arg.dev = &FDEV(devi);
3956
3957 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3958 &rep_zone_arg);
3959 if (ret < 0)
3960 return ret;
3961 return 0;
3962}
3963#endif
3964
3965/*
3966 * Read f2fs raw super block.
3967 * Because we have two copies of super block, so read both of them
3968 * to get the first valid one. If any one of them is broken, we pass
3969 * them recovery flag back to the caller.
3970 */
3971static int read_raw_super_block(struct f2fs_sb_info *sbi,
3972 struct f2fs_super_block **raw_super,
3973 int *valid_super_block, int *recovery)
3974{
3975 struct super_block *sb = sbi->sb;
3976 int block;
3977 struct buffer_head *bh;
3978 struct f2fs_super_block *super;
3979 int err = 0;
3980
3981 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3982 if (!super)
3983 return -ENOMEM;
3984
3985 for (block = 0; block < 2; block++) {
3986 bh = sb_bread(sb, block);
3987 if (!bh) {
3988 f2fs_err(sbi, "Unable to read %dth superblock",
3989 block + 1);
3990 err = -EIO;
3991 *recovery = 1;
3992 continue;
3993 }
3994
3995 /* sanity checking of raw super */
3996 err = sanity_check_raw_super(sbi, bh);
3997 if (err) {
3998 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3999 block + 1);
4000 brelse(bh);
4001 *recovery = 1;
4002 continue;
4003 }
4004
4005 if (!*raw_super) {
4006 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
4007 sizeof(*super));
4008 *valid_super_block = block;
4009 *raw_super = super;
4010 }
4011 brelse(bh);
4012 }
4013
4014 /* No valid superblock */
4015 if (!*raw_super)
4016 kfree(super);
4017 else
4018 err = 0;
4019
4020 return err;
4021}
4022
4023int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
4024{
4025 struct buffer_head *bh;
4026 __u32 crc = 0;
4027 int err;
4028
4029 if ((recover && f2fs_readonly(sbi->sb)) ||
4030 f2fs_hw_is_readonly(sbi)) {
4031 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
4032 return -EROFS;
4033 }
4034
4035 /* we should update superblock crc here */
4036 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
4037 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
4038 offsetof(struct f2fs_super_block, crc));
4039 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
4040 }
4041
4042 /* write back-up superblock first */
4043 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
4044 if (!bh)
4045 return -EIO;
4046 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
4047 brelse(bh);
4048
4049 /* if we are in recovery path, skip writing valid superblock */
4050 if (recover || err)
4051 return err;
4052
4053 /* write current valid superblock */
4054 bh = sb_bread(sbi->sb, sbi->valid_super_block);
4055 if (!bh)
4056 return -EIO;
4057 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
4058 brelse(bh);
4059 return err;
4060}
4061
4062static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4063{
4064 unsigned long flags;
4065
4066 spin_lock_irqsave(&sbi->error_lock, flags);
4067 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4068 sbi->stop_reason[reason]++;
4069 spin_unlock_irqrestore(&sbi->error_lock, flags);
4070}
4071
4072static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4073{
4074 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4075 unsigned long flags;
4076 int err;
4077
4078 f2fs_down_write(&sbi->sb_lock);
4079
4080 spin_lock_irqsave(&sbi->error_lock, flags);
4081 if (sbi->error_dirty) {
4082 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4083 MAX_F2FS_ERRORS);
4084 sbi->error_dirty = false;
4085 }
4086 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4087 spin_unlock_irqrestore(&sbi->error_lock, flags);
4088
4089 err = f2fs_commit_super(sbi, false);
4090
4091 f2fs_up_write(&sbi->sb_lock);
4092 if (err)
4093 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err);
4094}
4095
4096void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4097{
4098 unsigned long flags;
4099
4100 spin_lock_irqsave(&sbi->error_lock, flags);
4101 if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4102 set_bit(flag, (unsigned long *)sbi->errors);
4103 sbi->error_dirty = true;
4104 }
4105 spin_unlock_irqrestore(&sbi->error_lock, flags);
4106}
4107
4108static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4109{
4110 unsigned long flags;
4111 bool need_update = false;
4112
4113 spin_lock_irqsave(&sbi->error_lock, flags);
4114 if (sbi->error_dirty) {
4115 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4116 MAX_F2FS_ERRORS);
4117 sbi->error_dirty = false;
4118 need_update = true;
4119 }
4120 spin_unlock_irqrestore(&sbi->error_lock, flags);
4121
4122 return need_update;
4123}
4124
4125static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4126{
4127 int err;
4128
4129 f2fs_down_write(&sbi->sb_lock);
4130
4131 if (!f2fs_update_errors(sbi))
4132 goto out_unlock;
4133
4134 err = f2fs_commit_super(sbi, false);
4135 if (err)
4136 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d",
4137 error, err);
4138out_unlock:
4139 f2fs_up_write(&sbi->sb_lock);
4140}
4141
4142void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4143{
4144 f2fs_save_errors(sbi, error);
4145 f2fs_record_errors(sbi, error);
4146}
4147
4148void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4149{
4150 f2fs_save_errors(sbi, error);
4151
4152 if (!sbi->error_dirty)
4153 return;
4154 if (!test_bit(error, (unsigned long *)sbi->errors))
4155 return;
4156 schedule_work(&sbi->s_error_work);
4157}
4158
4159static bool system_going_down(void)
4160{
4161 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4162 || system_state == SYSTEM_RESTART;
4163}
4164
4165void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
4166 bool irq_context)
4167{
4168 struct super_block *sb = sbi->sb;
4169 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4170 bool continue_fs = !shutdown &&
4171 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4172
4173 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4174
4175 if (!f2fs_hw_is_readonly(sbi)) {
4176 save_stop_reason(sbi, reason);
4177
4178 if (irq_context && !shutdown)
4179 schedule_work(&sbi->s_error_work);
4180 else
4181 f2fs_record_stop_reason(sbi);
4182 }
4183
4184 /*
4185 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4186 * could panic during 'reboot -f' as the underlying device got already
4187 * disabled.
4188 */
4189 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4190 !shutdown && !system_going_down() &&
4191 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4192 panic("F2FS-fs (device %s): panic forced after error\n",
4193 sb->s_id);
4194
4195 if (shutdown)
4196 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4197
4198 /* continue filesystem operators if errors=continue */
4199 if (continue_fs || f2fs_readonly(sb))
4200 return;
4201
4202 f2fs_warn(sbi, "Remounting filesystem read-only");
4203 /*
4204 * Make sure updated value of ->s_mount_flags will be visible before
4205 * ->s_flags update
4206 */
4207 smp_wmb();
4208 sb->s_flags |= SB_RDONLY;
4209}
4210
4211static void f2fs_record_error_work(struct work_struct *work)
4212{
4213 struct f2fs_sb_info *sbi = container_of(work,
4214 struct f2fs_sb_info, s_error_work);
4215
4216 f2fs_record_stop_reason(sbi);
4217}
4218
4219static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4220{
4221 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4222 unsigned int max_devices = MAX_DEVICES;
4223 unsigned int logical_blksize;
4224 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4225 int i;
4226
4227 /* Initialize single device information */
4228 if (!RDEV(0).path[0]) {
4229 if (!bdev_is_zoned(sbi->sb->s_bdev))
4230 return 0;
4231 max_devices = 1;
4232 }
4233
4234 /*
4235 * Initialize multiple devices information, or single
4236 * zoned block device information.
4237 */
4238 sbi->devs = f2fs_kzalloc(sbi,
4239 array_size(max_devices,
4240 sizeof(struct f2fs_dev_info)),
4241 GFP_KERNEL);
4242 if (!sbi->devs)
4243 return -ENOMEM;
4244
4245 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4246 sbi->aligned_blksize = true;
4247
4248 for (i = 0; i < max_devices; i++) {
4249 if (i == 0)
4250 FDEV(0).bdev_handle = sbi->sb->s_bdev_handle;
4251 else if (!RDEV(i).path[0])
4252 break;
4253
4254 if (max_devices > 1) {
4255 /* Multi-device mount */
4256 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4257 FDEV(i).total_segments =
4258 le32_to_cpu(RDEV(i).total_segments);
4259 if (i == 0) {
4260 FDEV(i).start_blk = 0;
4261 FDEV(i).end_blk = FDEV(i).start_blk +
4262 (FDEV(i).total_segments <<
4263 sbi->log_blocks_per_seg) - 1 +
4264 le32_to_cpu(raw_super->segment0_blkaddr);
4265 } else {
4266 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4267 FDEV(i).end_blk = FDEV(i).start_blk +
4268 (FDEV(i).total_segments <<
4269 sbi->log_blocks_per_seg) - 1;
4270 FDEV(i).bdev_handle = bdev_open_by_path(
4271 FDEV(i).path, mode, sbi->sb, NULL);
4272 }
4273 }
4274 if (IS_ERR(FDEV(i).bdev_handle))
4275 return PTR_ERR(FDEV(i).bdev_handle);
4276
4277 FDEV(i).bdev = FDEV(i).bdev_handle->bdev;
4278 /* to release errored devices */
4279 sbi->s_ndevs = i + 1;
4280
4281 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4282 sbi->aligned_blksize = false;
4283
4284#ifdef CONFIG_BLK_DEV_ZONED
4285 if (bdev_is_zoned(FDEV(i).bdev)) {
4286 if (!f2fs_sb_has_blkzoned(sbi)) {
4287 f2fs_err(sbi, "Zoned block device feature not enabled");
4288 return -EINVAL;
4289 }
4290 if (init_blkz_info(sbi, i)) {
4291 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4292 return -EINVAL;
4293 }
4294 if (max_devices == 1)
4295 break;
4296 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)",
4297 i, FDEV(i).path,
4298 FDEV(i).total_segments,
4299 FDEV(i).start_blk, FDEV(i).end_blk);
4300 continue;
4301 }
4302#endif
4303 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4304 i, FDEV(i).path,
4305 FDEV(i).total_segments,
4306 FDEV(i).start_blk, FDEV(i).end_blk);
4307 }
4308 f2fs_info(sbi,
4309 "IO Block Size: %8ld KB", F2FS_IO_SIZE_KB(sbi));
4310 return 0;
4311}
4312
4313static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4314{
4315#if IS_ENABLED(CONFIG_UNICODE)
4316 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4317 const struct f2fs_sb_encodings *encoding_info;
4318 struct unicode_map *encoding;
4319 __u16 encoding_flags;
4320
4321 encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4322 if (!encoding_info) {
4323 f2fs_err(sbi,
4324 "Encoding requested by superblock is unknown");
4325 return -EINVAL;
4326 }
4327
4328 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4329 encoding = utf8_load(encoding_info->version);
4330 if (IS_ERR(encoding)) {
4331 f2fs_err(sbi,
4332 "can't mount with superblock charset: %s-%u.%u.%u "
4333 "not supported by the kernel. flags: 0x%x.",
4334 encoding_info->name,
4335 unicode_major(encoding_info->version),
4336 unicode_minor(encoding_info->version),
4337 unicode_rev(encoding_info->version),
4338 encoding_flags);
4339 return PTR_ERR(encoding);
4340 }
4341 f2fs_info(sbi, "Using encoding defined by superblock: "
4342 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4343 unicode_major(encoding_info->version),
4344 unicode_minor(encoding_info->version),
4345 unicode_rev(encoding_info->version),
4346 encoding_flags);
4347
4348 sbi->sb->s_encoding = encoding;
4349 sbi->sb->s_encoding_flags = encoding_flags;
4350 }
4351#else
4352 if (f2fs_sb_has_casefold(sbi)) {
4353 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4354 return -EINVAL;
4355 }
4356#endif
4357 return 0;
4358}
4359
4360static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4361{
4362 /* adjust parameters according to the volume size */
4363 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4364 if (f2fs_block_unit_discard(sbi))
4365 SM_I(sbi)->dcc_info->discard_granularity =
4366 MIN_DISCARD_GRANULARITY;
4367 if (!f2fs_lfs_mode(sbi))
4368 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4369 BIT(F2FS_IPU_HONOR_OPU_WRITE);
4370 }
4371
4372 sbi->readdir_ra = true;
4373}
4374
4375static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4376{
4377 struct f2fs_sb_info *sbi;
4378 struct f2fs_super_block *raw_super;
4379 struct inode *root;
4380 int err;
4381 bool skip_recovery = false, need_fsck = false;
4382 char *options = NULL;
4383 int recovery, i, valid_super_block;
4384 struct curseg_info *seg_i;
4385 int retry_cnt = 1;
4386#ifdef CONFIG_QUOTA
4387 bool quota_enabled = false;
4388#endif
4389
4390try_onemore:
4391 err = -EINVAL;
4392 raw_super = NULL;
4393 valid_super_block = -1;
4394 recovery = 0;
4395
4396 /* allocate memory for f2fs-specific super block info */
4397 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4398 if (!sbi)
4399 return -ENOMEM;
4400
4401 sbi->sb = sb;
4402
4403 /* initialize locks within allocated memory */
4404 init_f2fs_rwsem(&sbi->gc_lock);
4405 mutex_init(&sbi->writepages);
4406 init_f2fs_rwsem(&sbi->cp_global_sem);
4407 init_f2fs_rwsem(&sbi->node_write);
4408 init_f2fs_rwsem(&sbi->node_change);
4409 spin_lock_init(&sbi->stat_lock);
4410 init_f2fs_rwsem(&sbi->cp_rwsem);
4411 init_f2fs_rwsem(&sbi->quota_sem);
4412 init_waitqueue_head(&sbi->cp_wait);
4413 spin_lock_init(&sbi->error_lock);
4414
4415 for (i = 0; i < NR_INODE_TYPE; i++) {
4416 INIT_LIST_HEAD(&sbi->inode_list[i]);
4417 spin_lock_init(&sbi->inode_lock[i]);
4418 }
4419 mutex_init(&sbi->flush_lock);
4420
4421 /* Load the checksum driver */
4422 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4423 if (IS_ERR(sbi->s_chksum_driver)) {
4424 f2fs_err(sbi, "Cannot load crc32 driver.");
4425 err = PTR_ERR(sbi->s_chksum_driver);
4426 sbi->s_chksum_driver = NULL;
4427 goto free_sbi;
4428 }
4429
4430 /* set a block size */
4431 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4432 f2fs_err(sbi, "unable to set blocksize");
4433 goto free_sbi;
4434 }
4435
4436 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4437 &recovery);
4438 if (err)
4439 goto free_sbi;
4440
4441 sb->s_fs_info = sbi;
4442 sbi->raw_super = raw_super;
4443
4444 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4445 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4446 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4447
4448 /* precompute checksum seed for metadata */
4449 if (f2fs_sb_has_inode_chksum(sbi))
4450 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4451 sizeof(raw_super->uuid));
4452
4453 default_options(sbi, false);
4454 /* parse mount options */
4455 options = kstrdup((const char *)data, GFP_KERNEL);
4456 if (data && !options) {
4457 err = -ENOMEM;
4458 goto free_sb_buf;
4459 }
4460
4461 err = parse_options(sb, options, false);
4462 if (err)
4463 goto free_options;
4464
4465 sb->s_maxbytes = max_file_blocks(NULL) <<
4466 le32_to_cpu(raw_super->log_blocksize);
4467 sb->s_max_links = F2FS_LINK_MAX;
4468
4469 err = f2fs_setup_casefold(sbi);
4470 if (err)
4471 goto free_options;
4472
4473#ifdef CONFIG_QUOTA
4474 sb->dq_op = &f2fs_quota_operations;
4475 sb->s_qcop = &f2fs_quotactl_ops;
4476 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4477
4478 if (f2fs_sb_has_quota_ino(sbi)) {
4479 for (i = 0; i < MAXQUOTAS; i++) {
4480 if (f2fs_qf_ino(sbi->sb, i))
4481 sbi->nquota_files++;
4482 }
4483 }
4484#endif
4485
4486 sb->s_op = &f2fs_sops;
4487#ifdef CONFIG_FS_ENCRYPTION
4488 sb->s_cop = &f2fs_cryptops;
4489#endif
4490#ifdef CONFIG_FS_VERITY
4491 sb->s_vop = &f2fs_verityops;
4492#endif
4493 sb->s_xattr = f2fs_xattr_handlers;
4494 sb->s_export_op = &f2fs_export_ops;
4495 sb->s_magic = F2FS_SUPER_MAGIC;
4496 sb->s_time_gran = 1;
4497 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4498 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4499 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4500 sb->s_iflags |= SB_I_CGROUPWB;
4501
4502 /* init f2fs-specific super block info */
4503 sbi->valid_super_block = valid_super_block;
4504
4505 /* disallow all the data/node/meta page writes */
4506 set_sbi_flag(sbi, SBI_POR_DOING);
4507
4508 err = f2fs_init_write_merge_io(sbi);
4509 if (err)
4510 goto free_bio_info;
4511
4512 init_sb_info(sbi);
4513
4514 err = f2fs_init_iostat(sbi);
4515 if (err)
4516 goto free_bio_info;
4517
4518 err = init_percpu_info(sbi);
4519 if (err)
4520 goto free_iostat;
4521
4522 if (F2FS_IO_ALIGNED(sbi)) {
4523 sbi->write_io_dummy =
4524 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4525 if (!sbi->write_io_dummy) {
4526 err = -ENOMEM;
4527 goto free_percpu;
4528 }
4529 }
4530
4531 /* init per sbi slab cache */
4532 err = f2fs_init_xattr_caches(sbi);
4533 if (err)
4534 goto free_io_dummy;
4535 err = f2fs_init_page_array_cache(sbi);
4536 if (err)
4537 goto free_xattr_cache;
4538
4539 /* get an inode for meta space */
4540 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4541 if (IS_ERR(sbi->meta_inode)) {
4542 f2fs_err(sbi, "Failed to read F2FS meta data inode");
4543 err = PTR_ERR(sbi->meta_inode);
4544 goto free_page_array_cache;
4545 }
4546
4547 err = f2fs_get_valid_checkpoint(sbi);
4548 if (err) {
4549 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4550 goto free_meta_inode;
4551 }
4552
4553 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4554 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4555 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4556 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4557 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4558 }
4559
4560 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4561 set_sbi_flag(sbi, SBI_NEED_FSCK);
4562
4563 /* Initialize device list */
4564 err = f2fs_scan_devices(sbi);
4565 if (err) {
4566 f2fs_err(sbi, "Failed to find devices");
4567 goto free_devices;
4568 }
4569
4570 err = f2fs_init_post_read_wq(sbi);
4571 if (err) {
4572 f2fs_err(sbi, "Failed to initialize post read workqueue");
4573 goto free_devices;
4574 }
4575
4576 sbi->total_valid_node_count =
4577 le32_to_cpu(sbi->ckpt->valid_node_count);
4578 percpu_counter_set(&sbi->total_valid_inode_count,
4579 le32_to_cpu(sbi->ckpt->valid_inode_count));
4580 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4581 sbi->total_valid_block_count =
4582 le64_to_cpu(sbi->ckpt->valid_block_count);
4583 sbi->last_valid_block_count = sbi->total_valid_block_count;
4584 sbi->reserved_blocks = 0;
4585 sbi->current_reserved_blocks = 0;
4586 limit_reserve_root(sbi);
4587 adjust_unusable_cap_perc(sbi);
4588
4589 f2fs_init_extent_cache_info(sbi);
4590
4591 f2fs_init_ino_entry_info(sbi);
4592
4593 f2fs_init_fsync_node_info(sbi);
4594
4595 /* setup checkpoint request control and start checkpoint issue thread */
4596 f2fs_init_ckpt_req_control(sbi);
4597 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4598 test_opt(sbi, MERGE_CHECKPOINT)) {
4599 err = f2fs_start_ckpt_thread(sbi);
4600 if (err) {
4601 f2fs_err(sbi,
4602 "Failed to start F2FS issue_checkpoint_thread (%d)",
4603 err);
4604 goto stop_ckpt_thread;
4605 }
4606 }
4607
4608 /* setup f2fs internal modules */
4609 err = f2fs_build_segment_manager(sbi);
4610 if (err) {
4611 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4612 err);
4613 goto free_sm;
4614 }
4615 err = f2fs_build_node_manager(sbi);
4616 if (err) {
4617 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4618 err);
4619 goto free_nm;
4620 }
4621
4622 err = adjust_reserved_segment(sbi);
4623 if (err)
4624 goto free_nm;
4625
4626 /* For write statistics */
4627 sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4628
4629 /* Read accumulated write IO statistics if exists */
4630 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4631 if (__exist_node_summaries(sbi))
4632 sbi->kbytes_written =
4633 le64_to_cpu(seg_i->journal->info.kbytes_written);
4634
4635 f2fs_build_gc_manager(sbi);
4636
4637 err = f2fs_build_stats(sbi);
4638 if (err)
4639 goto free_nm;
4640
4641 /* get an inode for node space */
4642 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4643 if (IS_ERR(sbi->node_inode)) {
4644 f2fs_err(sbi, "Failed to read node inode");
4645 err = PTR_ERR(sbi->node_inode);
4646 goto free_stats;
4647 }
4648
4649 /* read root inode and dentry */
4650 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4651 if (IS_ERR(root)) {
4652 f2fs_err(sbi, "Failed to read root inode");
4653 err = PTR_ERR(root);
4654 goto free_node_inode;
4655 }
4656 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4657 !root->i_size || !root->i_nlink) {
4658 iput(root);
4659 err = -EINVAL;
4660 goto free_node_inode;
4661 }
4662
4663 sb->s_root = d_make_root(root); /* allocate root dentry */
4664 if (!sb->s_root) {
4665 err = -ENOMEM;
4666 goto free_node_inode;
4667 }
4668
4669 err = f2fs_init_compress_inode(sbi);
4670 if (err)
4671 goto free_root_inode;
4672
4673 err = f2fs_register_sysfs(sbi);
4674 if (err)
4675 goto free_compress_inode;
4676
4677#ifdef CONFIG_QUOTA
4678 /* Enable quota usage during mount */
4679 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4680 err = f2fs_enable_quotas(sb);
4681 if (err)
4682 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4683 }
4684
4685 quota_enabled = f2fs_recover_quota_begin(sbi);
4686#endif
4687 /* if there are any orphan inodes, free them */
4688 err = f2fs_recover_orphan_inodes(sbi);
4689 if (err)
4690 goto free_meta;
4691
4692 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4693 goto reset_checkpoint;
4694
4695 /* recover fsynced data */
4696 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4697 !test_opt(sbi, NORECOVERY)) {
4698 /*
4699 * mount should be failed, when device has readonly mode, and
4700 * previous checkpoint was not done by clean system shutdown.
4701 */
4702 if (f2fs_hw_is_readonly(sbi)) {
4703 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4704 err = f2fs_recover_fsync_data(sbi, true);
4705 if (err > 0) {
4706 err = -EROFS;
4707 f2fs_err(sbi, "Need to recover fsync data, but "
4708 "write access unavailable, please try "
4709 "mount w/ disable_roll_forward or norecovery");
4710 }
4711 if (err < 0)
4712 goto free_meta;
4713 }
4714 f2fs_info(sbi, "write access unavailable, skipping recovery");
4715 goto reset_checkpoint;
4716 }
4717
4718 if (need_fsck)
4719 set_sbi_flag(sbi, SBI_NEED_FSCK);
4720
4721 if (skip_recovery)
4722 goto reset_checkpoint;
4723
4724 err = f2fs_recover_fsync_data(sbi, false);
4725 if (err < 0) {
4726 if (err != -ENOMEM)
4727 skip_recovery = true;
4728 need_fsck = true;
4729 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4730 err);
4731 goto free_meta;
4732 }
4733 } else {
4734 err = f2fs_recover_fsync_data(sbi, true);
4735
4736 if (!f2fs_readonly(sb) && err > 0) {
4737 err = -EINVAL;
4738 f2fs_err(sbi, "Need to recover fsync data");
4739 goto free_meta;
4740 }
4741 }
4742
4743#ifdef CONFIG_QUOTA
4744 f2fs_recover_quota_end(sbi, quota_enabled);
4745#endif
4746reset_checkpoint:
4747 /*
4748 * If the f2fs is not readonly and fsync data recovery succeeds,
4749 * check zoned block devices' write pointer consistency.
4750 */
4751 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4752 err = f2fs_check_write_pointer(sbi);
4753 if (err)
4754 goto free_meta;
4755 }
4756
4757 f2fs_init_inmem_curseg(sbi);
4758
4759 /* f2fs_recover_fsync_data() cleared this already */
4760 clear_sbi_flag(sbi, SBI_POR_DOING);
4761
4762 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4763 err = f2fs_disable_checkpoint(sbi);
4764 if (err)
4765 goto sync_free_meta;
4766 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4767 f2fs_enable_checkpoint(sbi);
4768 }
4769
4770 /*
4771 * If filesystem is not mounted as read-only then
4772 * do start the gc_thread.
4773 */
4774 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4775 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4776 /* After POR, we can run background GC thread.*/
4777 err = f2fs_start_gc_thread(sbi);
4778 if (err)
4779 goto sync_free_meta;
4780 }
4781 kvfree(options);
4782
4783 /* recover broken superblock */
4784 if (recovery) {
4785 err = f2fs_commit_super(sbi, true);
4786 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4787 sbi->valid_super_block ? 1 : 2, err);
4788 }
4789
4790 f2fs_join_shrinker(sbi);
4791
4792 f2fs_tuning_parameters(sbi);
4793
4794 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4795 cur_cp_version(F2FS_CKPT(sbi)));
4796 f2fs_update_time(sbi, CP_TIME);
4797 f2fs_update_time(sbi, REQ_TIME);
4798 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4799 return 0;
4800
4801sync_free_meta:
4802 /* safe to flush all the data */
4803 sync_filesystem(sbi->sb);
4804 retry_cnt = 0;
4805
4806free_meta:
4807#ifdef CONFIG_QUOTA
4808 f2fs_truncate_quota_inode_pages(sb);
4809 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4810 f2fs_quota_off_umount(sbi->sb);
4811#endif
4812 /*
4813 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4814 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4815 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4816 * falls into an infinite loop in f2fs_sync_meta_pages().
4817 */
4818 truncate_inode_pages_final(META_MAPPING(sbi));
4819 /* evict some inodes being cached by GC */
4820 evict_inodes(sb);
4821 f2fs_unregister_sysfs(sbi);
4822free_compress_inode:
4823 f2fs_destroy_compress_inode(sbi);
4824free_root_inode:
4825 dput(sb->s_root);
4826 sb->s_root = NULL;
4827free_node_inode:
4828 f2fs_release_ino_entry(sbi, true);
4829 truncate_inode_pages_final(NODE_MAPPING(sbi));
4830 iput(sbi->node_inode);
4831 sbi->node_inode = NULL;
4832free_stats:
4833 f2fs_destroy_stats(sbi);
4834free_nm:
4835 /* stop discard thread before destroying node manager */
4836 f2fs_stop_discard_thread(sbi);
4837 f2fs_destroy_node_manager(sbi);
4838free_sm:
4839 f2fs_destroy_segment_manager(sbi);
4840stop_ckpt_thread:
4841 f2fs_stop_ckpt_thread(sbi);
4842 /* flush s_error_work before sbi destroy */
4843 flush_work(&sbi->s_error_work);
4844 f2fs_destroy_post_read_wq(sbi);
4845free_devices:
4846 destroy_device_list(sbi);
4847 kvfree(sbi->ckpt);
4848free_meta_inode:
4849 make_bad_inode(sbi->meta_inode);
4850 iput(sbi->meta_inode);
4851 sbi->meta_inode = NULL;
4852free_page_array_cache:
4853 f2fs_destroy_page_array_cache(sbi);
4854free_xattr_cache:
4855 f2fs_destroy_xattr_caches(sbi);
4856free_io_dummy:
4857 mempool_destroy(sbi->write_io_dummy);
4858free_percpu:
4859 destroy_percpu_info(sbi);
4860free_iostat:
4861 f2fs_destroy_iostat(sbi);
4862free_bio_info:
4863 for (i = 0; i < NR_PAGE_TYPE; i++)
4864 kvfree(sbi->write_io[i]);
4865
4866#if IS_ENABLED(CONFIG_UNICODE)
4867 utf8_unload(sb->s_encoding);
4868 sb->s_encoding = NULL;
4869#endif
4870free_options:
4871#ifdef CONFIG_QUOTA
4872 for (i = 0; i < MAXQUOTAS; i++)
4873 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4874#endif
4875 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4876 kvfree(options);
4877free_sb_buf:
4878 kfree(raw_super);
4879free_sbi:
4880 if (sbi->s_chksum_driver)
4881 crypto_free_shash(sbi->s_chksum_driver);
4882 kfree(sbi);
4883 sb->s_fs_info = NULL;
4884
4885 /* give only one another chance */
4886 if (retry_cnt > 0 && skip_recovery) {
4887 retry_cnt--;
4888 shrink_dcache_sb(sb);
4889 goto try_onemore;
4890 }
4891 return err;
4892}
4893
4894static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4895 const char *dev_name, void *data)
4896{
4897 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4898}
4899
4900static void kill_f2fs_super(struct super_block *sb)
4901{
4902 struct f2fs_sb_info *sbi = F2FS_SB(sb);
4903
4904 if (sb->s_root) {
4905 set_sbi_flag(sbi, SBI_IS_CLOSE);
4906 f2fs_stop_gc_thread(sbi);
4907 f2fs_stop_discard_thread(sbi);
4908
4909#ifdef CONFIG_F2FS_FS_COMPRESSION
4910 /*
4911 * latter evict_inode() can bypass checking and invalidating
4912 * compress inode cache.
4913 */
4914 if (test_opt(sbi, COMPRESS_CACHE))
4915 truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4916#endif
4917
4918 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4919 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4920 struct cp_control cpc = {
4921 .reason = CP_UMOUNT,
4922 };
4923 stat_inc_cp_call_count(sbi, TOTAL_CALL);
4924 f2fs_write_checkpoint(sbi, &cpc);
4925 }
4926
4927 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4928 sb->s_flags &= ~SB_RDONLY;
4929 }
4930 kill_block_super(sb);
4931 /* Release block devices last, after fscrypt_destroy_keyring(). */
4932 if (sbi) {
4933 destroy_device_list(sbi);
4934 kfree(sbi);
4935 sb->s_fs_info = NULL;
4936 }
4937}
4938
4939static struct file_system_type f2fs_fs_type = {
4940 .owner = THIS_MODULE,
4941 .name = "f2fs",
4942 .mount = f2fs_mount,
4943 .kill_sb = kill_f2fs_super,
4944 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4945};
4946MODULE_ALIAS_FS("f2fs");
4947
4948static int __init init_inodecache(void)
4949{
4950 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4951 sizeof(struct f2fs_inode_info), 0,
4952 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4953 return f2fs_inode_cachep ? 0 : -ENOMEM;
4954}
4955
4956static void destroy_inodecache(void)
4957{
4958 /*
4959 * Make sure all delayed rcu free inodes are flushed before we
4960 * destroy cache.
4961 */
4962 rcu_barrier();
4963 kmem_cache_destroy(f2fs_inode_cachep);
4964}
4965
4966static int __init init_f2fs_fs(void)
4967{
4968 int err;
4969
4970 if (PAGE_SIZE != F2FS_BLKSIZE) {
4971 printk("F2FS not supported on PAGE_SIZE(%lu) != BLOCK_SIZE(%lu)\n",
4972 PAGE_SIZE, F2FS_BLKSIZE);
4973 return -EINVAL;
4974 }
4975
4976 err = init_inodecache();
4977 if (err)
4978 goto fail;
4979 err = f2fs_create_node_manager_caches();
4980 if (err)
4981 goto free_inodecache;
4982 err = f2fs_create_segment_manager_caches();
4983 if (err)
4984 goto free_node_manager_caches;
4985 err = f2fs_create_checkpoint_caches();
4986 if (err)
4987 goto free_segment_manager_caches;
4988 err = f2fs_create_recovery_cache();
4989 if (err)
4990 goto free_checkpoint_caches;
4991 err = f2fs_create_extent_cache();
4992 if (err)
4993 goto free_recovery_cache;
4994 err = f2fs_create_garbage_collection_cache();
4995 if (err)
4996 goto free_extent_cache;
4997 err = f2fs_init_sysfs();
4998 if (err)
4999 goto free_garbage_collection_cache;
5000 err = f2fs_init_shrinker();
5001 if (err)
5002 goto free_sysfs;
5003 err = register_filesystem(&f2fs_fs_type);
5004 if (err)
5005 goto free_shrinker;
5006 f2fs_create_root_stats();
5007 err = f2fs_init_post_read_processing();
5008 if (err)
5009 goto free_root_stats;
5010 err = f2fs_init_iostat_processing();
5011 if (err)
5012 goto free_post_read;
5013 err = f2fs_init_bio_entry_cache();
5014 if (err)
5015 goto free_iostat;
5016 err = f2fs_init_bioset();
5017 if (err)
5018 goto free_bio_entry_cache;
5019 err = f2fs_init_compress_mempool();
5020 if (err)
5021 goto free_bioset;
5022 err = f2fs_init_compress_cache();
5023 if (err)
5024 goto free_compress_mempool;
5025 err = f2fs_create_casefold_cache();
5026 if (err)
5027 goto free_compress_cache;
5028 return 0;
5029free_compress_cache:
5030 f2fs_destroy_compress_cache();
5031free_compress_mempool:
5032 f2fs_destroy_compress_mempool();
5033free_bioset:
5034 f2fs_destroy_bioset();
5035free_bio_entry_cache:
5036 f2fs_destroy_bio_entry_cache();
5037free_iostat:
5038 f2fs_destroy_iostat_processing();
5039free_post_read:
5040 f2fs_destroy_post_read_processing();
5041free_root_stats:
5042 f2fs_destroy_root_stats();
5043 unregister_filesystem(&f2fs_fs_type);
5044free_shrinker:
5045 f2fs_exit_shrinker();
5046free_sysfs:
5047 f2fs_exit_sysfs();
5048free_garbage_collection_cache:
5049 f2fs_destroy_garbage_collection_cache();
5050free_extent_cache:
5051 f2fs_destroy_extent_cache();
5052free_recovery_cache:
5053 f2fs_destroy_recovery_cache();
5054free_checkpoint_caches:
5055 f2fs_destroy_checkpoint_caches();
5056free_segment_manager_caches:
5057 f2fs_destroy_segment_manager_caches();
5058free_node_manager_caches:
5059 f2fs_destroy_node_manager_caches();
5060free_inodecache:
5061 destroy_inodecache();
5062fail:
5063 return err;
5064}
5065
5066static void __exit exit_f2fs_fs(void)
5067{
5068 f2fs_destroy_casefold_cache();
5069 f2fs_destroy_compress_cache();
5070 f2fs_destroy_compress_mempool();
5071 f2fs_destroy_bioset();
5072 f2fs_destroy_bio_entry_cache();
5073 f2fs_destroy_iostat_processing();
5074 f2fs_destroy_post_read_processing();
5075 f2fs_destroy_root_stats();
5076 unregister_filesystem(&f2fs_fs_type);
5077 f2fs_exit_shrinker();
5078 f2fs_exit_sysfs();
5079 f2fs_destroy_garbage_collection_cache();
5080 f2fs_destroy_extent_cache();
5081 f2fs_destroy_recovery_cache();
5082 f2fs_destroy_checkpoint_caches();
5083 f2fs_destroy_segment_manager_caches();
5084 f2fs_destroy_node_manager_caches();
5085 destroy_inodecache();
5086}
5087
5088module_init(init_f2fs_fs)
5089module_exit(exit_f2fs_fs)
5090
5091MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5092MODULE_DESCRIPTION("Flash Friendly File System");
5093MODULE_LICENSE("GPL");
5094MODULE_SOFTDEP("pre: crc32");
5095