Loading...
1/*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/init.h>
13#include <linux/fs.h>
14#include <linux/statfs.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17#include <linux/kthread.h>
18#include <linux/parser.h>
19#include <linux/mount.h>
20#include <linux/seq_file.h>
21#include <linux/proc_fs.h>
22#include <linux/random.h>
23#include <linux/exportfs.h>
24#include <linux/blkdev.h>
25#include <linux/f2fs_fs.h>
26#include <linux/sysfs.h>
27
28#include "f2fs.h"
29#include "node.h"
30#include "segment.h"
31#include "xattr.h"
32#include "gc.h"
33#include "trace.h"
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/f2fs.h>
37
38static struct proc_dir_entry *f2fs_proc_root;
39static struct kmem_cache *f2fs_inode_cachep;
40static struct kset *f2fs_kset;
41
42#ifdef CONFIG_F2FS_FAULT_INJECTION
43
44char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_ALLOC_NID] = "alloc nid",
48 [FAULT_ORPHAN] = "orphan",
49 [FAULT_BLOCK] = "no more block",
50 [FAULT_DIR_DEPTH] = "too big dir depth",
51 [FAULT_EVICT_INODE] = "evict_inode fail",
52 [FAULT_IO] = "IO error",
53 [FAULT_CHECKPOINT] = "checkpoint error",
54};
55
56static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 unsigned int rate)
58{
59 struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61 if (rate) {
62 atomic_set(&ffi->inject_ops, 0);
63 ffi->inject_rate = rate;
64 ffi->inject_type = (1 << FAULT_MAX) - 1;
65 } else {
66 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67 }
68}
69#endif
70
71/* f2fs-wide shrinker description */
72static struct shrinker f2fs_shrinker_info = {
73 .scan_objects = f2fs_shrink_scan,
74 .count_objects = f2fs_shrink_count,
75 .seeks = DEFAULT_SEEKS,
76};
77
78enum {
79 Opt_gc_background,
80 Opt_disable_roll_forward,
81 Opt_norecovery,
82 Opt_discard,
83 Opt_nodiscard,
84 Opt_noheap,
85 Opt_user_xattr,
86 Opt_nouser_xattr,
87 Opt_acl,
88 Opt_noacl,
89 Opt_active_logs,
90 Opt_disable_ext_identify,
91 Opt_inline_xattr,
92 Opt_inline_data,
93 Opt_inline_dentry,
94 Opt_noinline_dentry,
95 Opt_flush_merge,
96 Opt_noflush_merge,
97 Opt_nobarrier,
98 Opt_fastboot,
99 Opt_extent_cache,
100 Opt_noextent_cache,
101 Opt_noinline_data,
102 Opt_data_flush,
103 Opt_mode,
104 Opt_fault_injection,
105 Opt_lazytime,
106 Opt_nolazytime,
107 Opt_err,
108};
109
110static match_table_t f2fs_tokens = {
111 {Opt_gc_background, "background_gc=%s"},
112 {Opt_disable_roll_forward, "disable_roll_forward"},
113 {Opt_norecovery, "norecovery"},
114 {Opt_discard, "discard"},
115 {Opt_nodiscard, "nodiscard"},
116 {Opt_noheap, "no_heap"},
117 {Opt_user_xattr, "user_xattr"},
118 {Opt_nouser_xattr, "nouser_xattr"},
119 {Opt_acl, "acl"},
120 {Opt_noacl, "noacl"},
121 {Opt_active_logs, "active_logs=%u"},
122 {Opt_disable_ext_identify, "disable_ext_identify"},
123 {Opt_inline_xattr, "inline_xattr"},
124 {Opt_inline_data, "inline_data"},
125 {Opt_inline_dentry, "inline_dentry"},
126 {Opt_noinline_dentry, "noinline_dentry"},
127 {Opt_flush_merge, "flush_merge"},
128 {Opt_noflush_merge, "noflush_merge"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_fastboot, "fastboot"},
131 {Opt_extent_cache, "extent_cache"},
132 {Opt_noextent_cache, "noextent_cache"},
133 {Opt_noinline_data, "noinline_data"},
134 {Opt_data_flush, "data_flush"},
135 {Opt_mode, "mode=%s"},
136 {Opt_fault_injection, "fault_injection=%u"},
137 {Opt_lazytime, "lazytime"},
138 {Opt_nolazytime, "nolazytime"},
139 {Opt_err, NULL},
140};
141
142/* Sysfs support for f2fs */
143enum {
144 GC_THREAD, /* struct f2fs_gc_thread */
145 SM_INFO, /* struct f2fs_sm_info */
146 NM_INFO, /* struct f2fs_nm_info */
147 F2FS_SBI, /* struct f2fs_sb_info */
148#ifdef CONFIG_F2FS_FAULT_INJECTION
149 FAULT_INFO_RATE, /* struct f2fs_fault_info */
150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
151#endif
152};
153
154struct f2fs_attr {
155 struct attribute attr;
156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
158 const char *, size_t);
159 int struct_type;
160 int offset;
161};
162
163static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
164{
165 if (struct_type == GC_THREAD)
166 return (unsigned char *)sbi->gc_thread;
167 else if (struct_type == SM_INFO)
168 return (unsigned char *)SM_I(sbi);
169 else if (struct_type == NM_INFO)
170 return (unsigned char *)NM_I(sbi);
171 else if (struct_type == F2FS_SBI)
172 return (unsigned char *)sbi;
173#ifdef CONFIG_F2FS_FAULT_INJECTION
174 else if (struct_type == FAULT_INFO_RATE ||
175 struct_type == FAULT_INFO_TYPE)
176 return (unsigned char *)&sbi->fault_info;
177#endif
178 return NULL;
179}
180
181static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
182 struct f2fs_sb_info *sbi, char *buf)
183{
184 struct super_block *sb = sbi->sb;
185
186 if (!sb->s_bdev->bd_part)
187 return snprintf(buf, PAGE_SIZE, "0\n");
188
189 return snprintf(buf, PAGE_SIZE, "%llu\n",
190 (unsigned long long)(sbi->kbytes_written +
191 BD_PART_WRITTEN(sbi)));
192}
193
194static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
195 struct f2fs_sb_info *sbi, char *buf)
196{
197 unsigned char *ptr = NULL;
198 unsigned int *ui;
199
200 ptr = __struct_ptr(sbi, a->struct_type);
201 if (!ptr)
202 return -EINVAL;
203
204 ui = (unsigned int *)(ptr + a->offset);
205
206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
207}
208
209static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
210 struct f2fs_sb_info *sbi,
211 const char *buf, size_t count)
212{
213 unsigned char *ptr;
214 unsigned long t;
215 unsigned int *ui;
216 ssize_t ret;
217
218 ptr = __struct_ptr(sbi, a->struct_type);
219 if (!ptr)
220 return -EINVAL;
221
222 ui = (unsigned int *)(ptr + a->offset);
223
224 ret = kstrtoul(skip_spaces(buf), 0, &t);
225 if (ret < 0)
226 return ret;
227#ifdef CONFIG_F2FS_FAULT_INJECTION
228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
229 return -EINVAL;
230#endif
231 *ui = t;
232 return count;
233}
234
235static ssize_t f2fs_attr_show(struct kobject *kobj,
236 struct attribute *attr, char *buf)
237{
238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
239 s_kobj);
240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
241
242 return a->show ? a->show(a, sbi, buf) : 0;
243}
244
245static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
246 const char *buf, size_t len)
247{
248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
249 s_kobj);
250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
251
252 return a->store ? a->store(a, sbi, buf, len) : 0;
253}
254
255static void f2fs_sb_release(struct kobject *kobj)
256{
257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
258 s_kobj);
259 complete(&sbi->s_kobj_unregister);
260}
261
262#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
263static struct f2fs_attr f2fs_attr_##_name = { \
264 .attr = {.name = __stringify(_name), .mode = _mode }, \
265 .show = _show, \
266 .store = _store, \
267 .struct_type = _struct_type, \
268 .offset = _offset \
269}
270
271#define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
273 f2fs_sbi_show, f2fs_sbi_store, \
274 offsetof(struct struct_name, elname))
275
276#define F2FS_GENERAL_RO_ATTR(name) \
277static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
278
279F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
280F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
281F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
282F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
283F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
284F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
285F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
286F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
287F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
288F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
289F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
290F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
291F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
292F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
293F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
294F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
295F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
296#ifdef CONFIG_F2FS_FAULT_INJECTION
297F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
298F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
299#endif
300F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
301
302#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
303static struct attribute *f2fs_attrs[] = {
304 ATTR_LIST(gc_min_sleep_time),
305 ATTR_LIST(gc_max_sleep_time),
306 ATTR_LIST(gc_no_gc_sleep_time),
307 ATTR_LIST(gc_idle),
308 ATTR_LIST(reclaim_segments),
309 ATTR_LIST(max_small_discards),
310 ATTR_LIST(batched_trim_sections),
311 ATTR_LIST(ipu_policy),
312 ATTR_LIST(min_ipu_util),
313 ATTR_LIST(min_fsync_blocks),
314 ATTR_LIST(max_victim_search),
315 ATTR_LIST(dir_level),
316 ATTR_LIST(ram_thresh),
317 ATTR_LIST(ra_nid_pages),
318 ATTR_LIST(dirty_nats_ratio),
319 ATTR_LIST(cp_interval),
320 ATTR_LIST(idle_interval),
321#ifdef CONFIG_F2FS_FAULT_INJECTION
322 ATTR_LIST(inject_rate),
323 ATTR_LIST(inject_type),
324#endif
325 ATTR_LIST(lifetime_write_kbytes),
326 NULL,
327};
328
329static const struct sysfs_ops f2fs_attr_ops = {
330 .show = f2fs_attr_show,
331 .store = f2fs_attr_store,
332};
333
334static struct kobj_type f2fs_ktype = {
335 .default_attrs = f2fs_attrs,
336 .sysfs_ops = &f2fs_attr_ops,
337 .release = f2fs_sb_release,
338};
339
340void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
341{
342 struct va_format vaf;
343 va_list args;
344
345 va_start(args, fmt);
346 vaf.fmt = fmt;
347 vaf.va = &args;
348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
349 va_end(args);
350}
351
352static void init_once(void *foo)
353{
354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
355
356 inode_init_once(&fi->vfs_inode);
357}
358
359static int parse_options(struct super_block *sb, char *options)
360{
361 struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 struct request_queue *q;
363 substring_t args[MAX_OPT_ARGS];
364 char *p, *name;
365 int arg = 0;
366
367 if (!options)
368 return 0;
369
370 while ((p = strsep(&options, ",")) != NULL) {
371 int token;
372 if (!*p)
373 continue;
374 /*
375 * Initialize args struct so we know whether arg was
376 * found; some options take optional arguments.
377 */
378 args[0].to = args[0].from = NULL;
379 token = match_token(p, f2fs_tokens, args);
380
381 switch (token) {
382 case Opt_gc_background:
383 name = match_strdup(&args[0]);
384
385 if (!name)
386 return -ENOMEM;
387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
388 set_opt(sbi, BG_GC);
389 clear_opt(sbi, FORCE_FG_GC);
390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
391 clear_opt(sbi, BG_GC);
392 clear_opt(sbi, FORCE_FG_GC);
393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
394 set_opt(sbi, BG_GC);
395 set_opt(sbi, FORCE_FG_GC);
396 } else {
397 kfree(name);
398 return -EINVAL;
399 }
400 kfree(name);
401 break;
402 case Opt_disable_roll_forward:
403 set_opt(sbi, DISABLE_ROLL_FORWARD);
404 break;
405 case Opt_norecovery:
406 /* this option mounts f2fs with ro */
407 set_opt(sbi, DISABLE_ROLL_FORWARD);
408 if (!f2fs_readonly(sb))
409 return -EINVAL;
410 break;
411 case Opt_discard:
412 q = bdev_get_queue(sb->s_bdev);
413 if (blk_queue_discard(q)) {
414 set_opt(sbi, DISCARD);
415 } else if (!f2fs_sb_mounted_blkzoned(sb)) {
416 f2fs_msg(sb, KERN_WARNING,
417 "mounting with \"discard\" option, but "
418 "the device does not support discard");
419 }
420 break;
421 case Opt_nodiscard:
422 if (f2fs_sb_mounted_blkzoned(sb)) {
423 f2fs_msg(sb, KERN_WARNING,
424 "discard is required for zoned block devices");
425 return -EINVAL;
426 }
427 clear_opt(sbi, DISCARD);
428 break;
429 case Opt_noheap:
430 set_opt(sbi, NOHEAP);
431 break;
432#ifdef CONFIG_F2FS_FS_XATTR
433 case Opt_user_xattr:
434 set_opt(sbi, XATTR_USER);
435 break;
436 case Opt_nouser_xattr:
437 clear_opt(sbi, XATTR_USER);
438 break;
439 case Opt_inline_xattr:
440 set_opt(sbi, INLINE_XATTR);
441 break;
442#else
443 case Opt_user_xattr:
444 f2fs_msg(sb, KERN_INFO,
445 "user_xattr options not supported");
446 break;
447 case Opt_nouser_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "nouser_xattr options not supported");
450 break;
451 case Opt_inline_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "inline_xattr options not supported");
454 break;
455#endif
456#ifdef CONFIG_F2FS_FS_POSIX_ACL
457 case Opt_acl:
458 set_opt(sbi, POSIX_ACL);
459 break;
460 case Opt_noacl:
461 clear_opt(sbi, POSIX_ACL);
462 break;
463#else
464 case Opt_acl:
465 f2fs_msg(sb, KERN_INFO, "acl options not supported");
466 break;
467 case Opt_noacl:
468 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
469 break;
470#endif
471 case Opt_active_logs:
472 if (args->from && match_int(args, &arg))
473 return -EINVAL;
474 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
475 return -EINVAL;
476 sbi->active_logs = arg;
477 break;
478 case Opt_disable_ext_identify:
479 set_opt(sbi, DISABLE_EXT_IDENTIFY);
480 break;
481 case Opt_inline_data:
482 set_opt(sbi, INLINE_DATA);
483 break;
484 case Opt_inline_dentry:
485 set_opt(sbi, INLINE_DENTRY);
486 break;
487 case Opt_noinline_dentry:
488 clear_opt(sbi, INLINE_DENTRY);
489 break;
490 case Opt_flush_merge:
491 set_opt(sbi, FLUSH_MERGE);
492 break;
493 case Opt_noflush_merge:
494 clear_opt(sbi, FLUSH_MERGE);
495 break;
496 case Opt_nobarrier:
497 set_opt(sbi, NOBARRIER);
498 break;
499 case Opt_fastboot:
500 set_opt(sbi, FASTBOOT);
501 break;
502 case Opt_extent_cache:
503 set_opt(sbi, EXTENT_CACHE);
504 break;
505 case Opt_noextent_cache:
506 clear_opt(sbi, EXTENT_CACHE);
507 break;
508 case Opt_noinline_data:
509 clear_opt(sbi, INLINE_DATA);
510 break;
511 case Opt_data_flush:
512 set_opt(sbi, DATA_FLUSH);
513 break;
514 case Opt_mode:
515 name = match_strdup(&args[0]);
516
517 if (!name)
518 return -ENOMEM;
519 if (strlen(name) == 8 &&
520 !strncmp(name, "adaptive", 8)) {
521 if (f2fs_sb_mounted_blkzoned(sb)) {
522 f2fs_msg(sb, KERN_WARNING,
523 "adaptive mode is not allowed with "
524 "zoned block device feature");
525 kfree(name);
526 return -EINVAL;
527 }
528 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
529 } else if (strlen(name) == 3 &&
530 !strncmp(name, "lfs", 3)) {
531 set_opt_mode(sbi, F2FS_MOUNT_LFS);
532 } else {
533 kfree(name);
534 return -EINVAL;
535 }
536 kfree(name);
537 break;
538 case Opt_fault_injection:
539 if (args->from && match_int(args, &arg))
540 return -EINVAL;
541#ifdef CONFIG_F2FS_FAULT_INJECTION
542 f2fs_build_fault_attr(sbi, arg);
543#else
544 f2fs_msg(sb, KERN_INFO,
545 "FAULT_INJECTION was not selected");
546#endif
547 break;
548 case Opt_lazytime:
549 sb->s_flags |= MS_LAZYTIME;
550 break;
551 case Opt_nolazytime:
552 sb->s_flags &= ~MS_LAZYTIME;
553 break;
554 default:
555 f2fs_msg(sb, KERN_ERR,
556 "Unrecognized mount option \"%s\" or missing value",
557 p);
558 return -EINVAL;
559 }
560 }
561 return 0;
562}
563
564static struct inode *f2fs_alloc_inode(struct super_block *sb)
565{
566 struct f2fs_inode_info *fi;
567
568 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
569 if (!fi)
570 return NULL;
571
572 init_once((void *) fi);
573
574 /* Initialize f2fs-specific inode info */
575 fi->vfs_inode.i_version = 1;
576 atomic_set(&fi->dirty_pages, 0);
577 fi->i_current_depth = 1;
578 fi->i_advise = 0;
579 init_rwsem(&fi->i_sem);
580 INIT_LIST_HEAD(&fi->dirty_list);
581 INIT_LIST_HEAD(&fi->gdirty_list);
582 INIT_LIST_HEAD(&fi->inmem_pages);
583 mutex_init(&fi->inmem_lock);
584 init_rwsem(&fi->dio_rwsem[READ]);
585 init_rwsem(&fi->dio_rwsem[WRITE]);
586
587 /* Will be used by directory only */
588 fi->i_dir_level = F2FS_SB(sb)->dir_level;
589 return &fi->vfs_inode;
590}
591
592static int f2fs_drop_inode(struct inode *inode)
593{
594 /*
595 * This is to avoid a deadlock condition like below.
596 * writeback_single_inode(inode)
597 * - f2fs_write_data_page
598 * - f2fs_gc -> iput -> evict
599 * - inode_wait_for_writeback(inode)
600 */
601 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
602 if (!inode->i_nlink && !is_bad_inode(inode)) {
603 /* to avoid evict_inode call simultaneously */
604 atomic_inc(&inode->i_count);
605 spin_unlock(&inode->i_lock);
606
607 /* some remained atomic pages should discarded */
608 if (f2fs_is_atomic_file(inode))
609 drop_inmem_pages(inode);
610
611 /* should remain fi->extent_tree for writepage */
612 f2fs_destroy_extent_node(inode);
613
614 sb_start_intwrite(inode->i_sb);
615 f2fs_i_size_write(inode, 0);
616
617 if (F2FS_HAS_BLOCKS(inode))
618 f2fs_truncate(inode);
619
620 sb_end_intwrite(inode->i_sb);
621
622 fscrypt_put_encryption_info(inode, NULL);
623 spin_lock(&inode->i_lock);
624 atomic_dec(&inode->i_count);
625 }
626 return 0;
627 }
628
629 return generic_drop_inode(inode);
630}
631
632int f2fs_inode_dirtied(struct inode *inode, bool sync)
633{
634 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
635 int ret = 0;
636
637 spin_lock(&sbi->inode_lock[DIRTY_META]);
638 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
639 ret = 1;
640 } else {
641 set_inode_flag(inode, FI_DIRTY_INODE);
642 stat_inc_dirty_inode(sbi, DIRTY_META);
643 }
644 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
645 list_add_tail(&F2FS_I(inode)->gdirty_list,
646 &sbi->inode_list[DIRTY_META]);
647 inc_page_count(sbi, F2FS_DIRTY_IMETA);
648 }
649 spin_unlock(&sbi->inode_lock[DIRTY_META]);
650 return ret;
651}
652
653void f2fs_inode_synced(struct inode *inode)
654{
655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656
657 spin_lock(&sbi->inode_lock[DIRTY_META]);
658 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
659 spin_unlock(&sbi->inode_lock[DIRTY_META]);
660 return;
661 }
662 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
663 list_del_init(&F2FS_I(inode)->gdirty_list);
664 dec_page_count(sbi, F2FS_DIRTY_IMETA);
665 }
666 clear_inode_flag(inode, FI_DIRTY_INODE);
667 clear_inode_flag(inode, FI_AUTO_RECOVER);
668 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
669 spin_unlock(&sbi->inode_lock[DIRTY_META]);
670}
671
672/*
673 * f2fs_dirty_inode() is called from __mark_inode_dirty()
674 *
675 * We should call set_dirty_inode to write the dirty inode through write_inode.
676 */
677static void f2fs_dirty_inode(struct inode *inode, int flags)
678{
679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
680
681 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
682 inode->i_ino == F2FS_META_INO(sbi))
683 return;
684
685 if (flags == I_DIRTY_TIME)
686 return;
687
688 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
689 clear_inode_flag(inode, FI_AUTO_RECOVER);
690
691 f2fs_inode_dirtied(inode, false);
692}
693
694static void f2fs_i_callback(struct rcu_head *head)
695{
696 struct inode *inode = container_of(head, struct inode, i_rcu);
697 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
698}
699
700static void f2fs_destroy_inode(struct inode *inode)
701{
702 call_rcu(&inode->i_rcu, f2fs_i_callback);
703}
704
705static void destroy_percpu_info(struct f2fs_sb_info *sbi)
706{
707 percpu_counter_destroy(&sbi->alloc_valid_block_count);
708 percpu_counter_destroy(&sbi->total_valid_inode_count);
709}
710
711static void destroy_device_list(struct f2fs_sb_info *sbi)
712{
713 int i;
714
715 for (i = 0; i < sbi->s_ndevs; i++) {
716 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
717#ifdef CONFIG_BLK_DEV_ZONED
718 kfree(FDEV(i).blkz_type);
719#endif
720 }
721 kfree(sbi->devs);
722}
723
724static void f2fs_put_super(struct super_block *sb)
725{
726 struct f2fs_sb_info *sbi = F2FS_SB(sb);
727
728 if (sbi->s_proc) {
729 remove_proc_entry("segment_info", sbi->s_proc);
730 remove_proc_entry("segment_bits", sbi->s_proc);
731 remove_proc_entry(sb->s_id, f2fs_proc_root);
732 }
733 kobject_del(&sbi->s_kobj);
734
735 stop_gc_thread(sbi);
736
737 /* prevent remaining shrinker jobs */
738 mutex_lock(&sbi->umount_mutex);
739
740 /*
741 * We don't need to do checkpoint when superblock is clean.
742 * But, the previous checkpoint was not done by umount, it needs to do
743 * clean checkpoint again.
744 */
745 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
746 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
747 struct cp_control cpc = {
748 .reason = CP_UMOUNT,
749 };
750 write_checkpoint(sbi, &cpc);
751 }
752
753 /* write_checkpoint can update stat informaion */
754 f2fs_destroy_stats(sbi);
755
756 /*
757 * normally superblock is clean, so we need to release this.
758 * In addition, EIO will skip do checkpoint, we need this as well.
759 */
760 release_ino_entry(sbi, true);
761
762 f2fs_leave_shrinker(sbi);
763 mutex_unlock(&sbi->umount_mutex);
764
765 /* our cp_error case, we can wait for any writeback page */
766 f2fs_flush_merged_bios(sbi);
767
768 iput(sbi->node_inode);
769 iput(sbi->meta_inode);
770
771 /* destroy f2fs internal modules */
772 destroy_node_manager(sbi);
773 destroy_segment_manager(sbi);
774
775 kfree(sbi->ckpt);
776 kobject_put(&sbi->s_kobj);
777 wait_for_completion(&sbi->s_kobj_unregister);
778
779 sb->s_fs_info = NULL;
780 if (sbi->s_chksum_driver)
781 crypto_free_shash(sbi->s_chksum_driver);
782 kfree(sbi->raw_super);
783
784 destroy_device_list(sbi);
785
786 destroy_percpu_info(sbi);
787 kfree(sbi);
788}
789
790int f2fs_sync_fs(struct super_block *sb, int sync)
791{
792 struct f2fs_sb_info *sbi = F2FS_SB(sb);
793 int err = 0;
794
795 trace_f2fs_sync_fs(sb, sync);
796
797 if (sync) {
798 struct cp_control cpc;
799
800 cpc.reason = __get_cp_reason(sbi);
801
802 mutex_lock(&sbi->gc_mutex);
803 err = write_checkpoint(sbi, &cpc);
804 mutex_unlock(&sbi->gc_mutex);
805 }
806 f2fs_trace_ios(NULL, 1);
807
808 return err;
809}
810
811static int f2fs_freeze(struct super_block *sb)
812{
813 if (f2fs_readonly(sb))
814 return 0;
815
816 /* IO error happened before */
817 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
818 return -EIO;
819
820 /* must be clean, since sync_filesystem() was already called */
821 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
822 return -EINVAL;
823 return 0;
824}
825
826static int f2fs_unfreeze(struct super_block *sb)
827{
828 return 0;
829}
830
831static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
832{
833 struct super_block *sb = dentry->d_sb;
834 struct f2fs_sb_info *sbi = F2FS_SB(sb);
835 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
836 block_t total_count, user_block_count, start_count, ovp_count;
837
838 total_count = le64_to_cpu(sbi->raw_super->block_count);
839 user_block_count = sbi->user_block_count;
840 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
841 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
842 buf->f_type = F2FS_SUPER_MAGIC;
843 buf->f_bsize = sbi->blocksize;
844
845 buf->f_blocks = total_count - start_count;
846 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
847 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
848
849 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
850 buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
851 buf->f_bavail);
852
853 buf->f_namelen = F2FS_NAME_LEN;
854 buf->f_fsid.val[0] = (u32)id;
855 buf->f_fsid.val[1] = (u32)(id >> 32);
856
857 return 0;
858}
859
860static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
861{
862 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
863
864 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
865 if (test_opt(sbi, FORCE_FG_GC))
866 seq_printf(seq, ",background_gc=%s", "sync");
867 else
868 seq_printf(seq, ",background_gc=%s", "on");
869 } else {
870 seq_printf(seq, ",background_gc=%s", "off");
871 }
872 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
873 seq_puts(seq, ",disable_roll_forward");
874 if (test_opt(sbi, DISCARD))
875 seq_puts(seq, ",discard");
876 if (test_opt(sbi, NOHEAP))
877 seq_puts(seq, ",no_heap_alloc");
878#ifdef CONFIG_F2FS_FS_XATTR
879 if (test_opt(sbi, XATTR_USER))
880 seq_puts(seq, ",user_xattr");
881 else
882 seq_puts(seq, ",nouser_xattr");
883 if (test_opt(sbi, INLINE_XATTR))
884 seq_puts(seq, ",inline_xattr");
885#endif
886#ifdef CONFIG_F2FS_FS_POSIX_ACL
887 if (test_opt(sbi, POSIX_ACL))
888 seq_puts(seq, ",acl");
889 else
890 seq_puts(seq, ",noacl");
891#endif
892 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
893 seq_puts(seq, ",disable_ext_identify");
894 if (test_opt(sbi, INLINE_DATA))
895 seq_puts(seq, ",inline_data");
896 else
897 seq_puts(seq, ",noinline_data");
898 if (test_opt(sbi, INLINE_DENTRY))
899 seq_puts(seq, ",inline_dentry");
900 else
901 seq_puts(seq, ",noinline_dentry");
902 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
903 seq_puts(seq, ",flush_merge");
904 if (test_opt(sbi, NOBARRIER))
905 seq_puts(seq, ",nobarrier");
906 if (test_opt(sbi, FASTBOOT))
907 seq_puts(seq, ",fastboot");
908 if (test_opt(sbi, EXTENT_CACHE))
909 seq_puts(seq, ",extent_cache");
910 else
911 seq_puts(seq, ",noextent_cache");
912 if (test_opt(sbi, DATA_FLUSH))
913 seq_puts(seq, ",data_flush");
914
915 seq_puts(seq, ",mode=");
916 if (test_opt(sbi, ADAPTIVE))
917 seq_puts(seq, "adaptive");
918 else if (test_opt(sbi, LFS))
919 seq_puts(seq, "lfs");
920 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
921
922 return 0;
923}
924
925static int segment_info_seq_show(struct seq_file *seq, void *offset)
926{
927 struct super_block *sb = seq->private;
928 struct f2fs_sb_info *sbi = F2FS_SB(sb);
929 unsigned int total_segs =
930 le32_to_cpu(sbi->raw_super->segment_count_main);
931 int i;
932
933 seq_puts(seq, "format: segment_type|valid_blocks\n"
934 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
935
936 for (i = 0; i < total_segs; i++) {
937 struct seg_entry *se = get_seg_entry(sbi, i);
938
939 if ((i % 10) == 0)
940 seq_printf(seq, "%-10d", i);
941 seq_printf(seq, "%d|%-3u", se->type,
942 get_valid_blocks(sbi, i, 1));
943 if ((i % 10) == 9 || i == (total_segs - 1))
944 seq_putc(seq, '\n');
945 else
946 seq_putc(seq, ' ');
947 }
948
949 return 0;
950}
951
952static int segment_bits_seq_show(struct seq_file *seq, void *offset)
953{
954 struct super_block *sb = seq->private;
955 struct f2fs_sb_info *sbi = F2FS_SB(sb);
956 unsigned int total_segs =
957 le32_to_cpu(sbi->raw_super->segment_count_main);
958 int i, j;
959
960 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
961 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
962
963 for (i = 0; i < total_segs; i++) {
964 struct seg_entry *se = get_seg_entry(sbi, i);
965
966 seq_printf(seq, "%-10d", i);
967 seq_printf(seq, "%d|%-3u|", se->type,
968 get_valid_blocks(sbi, i, 1));
969 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
970 seq_printf(seq, " %.2x", se->cur_valid_map[j]);
971 seq_putc(seq, '\n');
972 }
973 return 0;
974}
975
976#define F2FS_PROC_FILE_DEF(_name) \
977static int _name##_open_fs(struct inode *inode, struct file *file) \
978{ \
979 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
980} \
981 \
982static const struct file_operations f2fs_seq_##_name##_fops = { \
983 .open = _name##_open_fs, \
984 .read = seq_read, \
985 .llseek = seq_lseek, \
986 .release = single_release, \
987};
988
989F2FS_PROC_FILE_DEF(segment_info);
990F2FS_PROC_FILE_DEF(segment_bits);
991
992static void default_options(struct f2fs_sb_info *sbi)
993{
994 /* init some FS parameters */
995 sbi->active_logs = NR_CURSEG_TYPE;
996
997 set_opt(sbi, BG_GC);
998 set_opt(sbi, INLINE_DATA);
999 set_opt(sbi, INLINE_DENTRY);
1000 set_opt(sbi, EXTENT_CACHE);
1001 sbi->sb->s_flags |= MS_LAZYTIME;
1002 set_opt(sbi, FLUSH_MERGE);
1003 if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1004 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1005 set_opt(sbi, DISCARD);
1006 } else {
1007 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1008 }
1009
1010#ifdef CONFIG_F2FS_FS_XATTR
1011 set_opt(sbi, XATTR_USER);
1012#endif
1013#ifdef CONFIG_F2FS_FS_POSIX_ACL
1014 set_opt(sbi, POSIX_ACL);
1015#endif
1016
1017#ifdef CONFIG_F2FS_FAULT_INJECTION
1018 f2fs_build_fault_attr(sbi, 0);
1019#endif
1020}
1021
1022static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1023{
1024 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1025 struct f2fs_mount_info org_mount_opt;
1026 int err, active_logs;
1027 bool need_restart_gc = false;
1028 bool need_stop_gc = false;
1029 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1030#ifdef CONFIG_F2FS_FAULT_INJECTION
1031 struct f2fs_fault_info ffi = sbi->fault_info;
1032#endif
1033
1034 /*
1035 * Save the old mount options in case we
1036 * need to restore them.
1037 */
1038 org_mount_opt = sbi->mount_opt;
1039 active_logs = sbi->active_logs;
1040
1041 /* recover superblocks we couldn't write due to previous RO mount */
1042 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1043 err = f2fs_commit_super(sbi, false);
1044 f2fs_msg(sb, KERN_INFO,
1045 "Try to recover all the superblocks, ret: %d", err);
1046 if (!err)
1047 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1048 }
1049
1050 sbi->mount_opt.opt = 0;
1051 default_options(sbi);
1052
1053 /* parse mount options */
1054 err = parse_options(sb, data);
1055 if (err)
1056 goto restore_opts;
1057
1058 /*
1059 * Previous and new state of filesystem is RO,
1060 * so skip checking GC and FLUSH_MERGE conditions.
1061 */
1062 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1063 goto skip;
1064
1065 /* disallow enable/disable extent_cache dynamically */
1066 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1067 err = -EINVAL;
1068 f2fs_msg(sbi->sb, KERN_WARNING,
1069 "switch extent_cache option is not allowed");
1070 goto restore_opts;
1071 }
1072
1073 /*
1074 * We stop the GC thread if FS is mounted as RO
1075 * or if background_gc = off is passed in mount
1076 * option. Also sync the filesystem.
1077 */
1078 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1079 if (sbi->gc_thread) {
1080 stop_gc_thread(sbi);
1081 need_restart_gc = true;
1082 }
1083 } else if (!sbi->gc_thread) {
1084 err = start_gc_thread(sbi);
1085 if (err)
1086 goto restore_opts;
1087 need_stop_gc = true;
1088 }
1089
1090 if (*flags & MS_RDONLY) {
1091 writeback_inodes_sb(sb, WB_REASON_SYNC);
1092 sync_inodes_sb(sb);
1093
1094 set_sbi_flag(sbi, SBI_IS_DIRTY);
1095 set_sbi_flag(sbi, SBI_IS_CLOSE);
1096 f2fs_sync_fs(sb, 1);
1097 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1098 }
1099
1100 /*
1101 * We stop issue flush thread if FS is mounted as RO
1102 * or if flush_merge is not passed in mount option.
1103 */
1104 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1105 clear_opt(sbi, FLUSH_MERGE);
1106 destroy_flush_cmd_control(sbi, false);
1107 } else {
1108 err = create_flush_cmd_control(sbi);
1109 if (err)
1110 goto restore_gc;
1111 }
1112skip:
1113 /* Update the POSIXACL Flag */
1114 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1115 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1116
1117 return 0;
1118restore_gc:
1119 if (need_restart_gc) {
1120 if (start_gc_thread(sbi))
1121 f2fs_msg(sbi->sb, KERN_WARNING,
1122 "background gc thread has stopped");
1123 } else if (need_stop_gc) {
1124 stop_gc_thread(sbi);
1125 }
1126restore_opts:
1127 sbi->mount_opt = org_mount_opt;
1128 sbi->active_logs = active_logs;
1129#ifdef CONFIG_F2FS_FAULT_INJECTION
1130 sbi->fault_info = ffi;
1131#endif
1132 return err;
1133}
1134
1135static struct super_operations f2fs_sops = {
1136 .alloc_inode = f2fs_alloc_inode,
1137 .drop_inode = f2fs_drop_inode,
1138 .destroy_inode = f2fs_destroy_inode,
1139 .write_inode = f2fs_write_inode,
1140 .dirty_inode = f2fs_dirty_inode,
1141 .show_options = f2fs_show_options,
1142 .evict_inode = f2fs_evict_inode,
1143 .put_super = f2fs_put_super,
1144 .sync_fs = f2fs_sync_fs,
1145 .freeze_fs = f2fs_freeze,
1146 .unfreeze_fs = f2fs_unfreeze,
1147 .statfs = f2fs_statfs,
1148 .remount_fs = f2fs_remount,
1149};
1150
1151#ifdef CONFIG_F2FS_FS_ENCRYPTION
1152static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1153{
1154 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1155 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1156 ctx, len, NULL);
1157}
1158
1159static int f2fs_key_prefix(struct inode *inode, u8 **key)
1160{
1161 *key = F2FS_I_SB(inode)->key_prefix;
1162 return F2FS_I_SB(inode)->key_prefix_size;
1163}
1164
1165static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1166 void *fs_data)
1167{
1168 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1169 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1170 ctx, len, fs_data, XATTR_CREATE);
1171}
1172
1173static unsigned f2fs_max_namelen(struct inode *inode)
1174{
1175 return S_ISLNK(inode->i_mode) ?
1176 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1177}
1178
1179static struct fscrypt_operations f2fs_cryptops = {
1180 .get_context = f2fs_get_context,
1181 .key_prefix = f2fs_key_prefix,
1182 .set_context = f2fs_set_context,
1183 .is_encrypted = f2fs_encrypted_inode,
1184 .empty_dir = f2fs_empty_dir,
1185 .max_namelen = f2fs_max_namelen,
1186};
1187#else
1188static struct fscrypt_operations f2fs_cryptops = {
1189 .is_encrypted = f2fs_encrypted_inode,
1190};
1191#endif
1192
1193static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1194 u64 ino, u32 generation)
1195{
1196 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1197 struct inode *inode;
1198
1199 if (check_nid_range(sbi, ino))
1200 return ERR_PTR(-ESTALE);
1201
1202 /*
1203 * f2fs_iget isn't quite right if the inode is currently unallocated!
1204 * However f2fs_iget currently does appropriate checks to handle stale
1205 * inodes so everything is OK.
1206 */
1207 inode = f2fs_iget(sb, ino);
1208 if (IS_ERR(inode))
1209 return ERR_CAST(inode);
1210 if (unlikely(generation && inode->i_generation != generation)) {
1211 /* we didn't find the right inode.. */
1212 iput(inode);
1213 return ERR_PTR(-ESTALE);
1214 }
1215 return inode;
1216}
1217
1218static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1219 int fh_len, int fh_type)
1220{
1221 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1222 f2fs_nfs_get_inode);
1223}
1224
1225static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1226 int fh_len, int fh_type)
1227{
1228 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1229 f2fs_nfs_get_inode);
1230}
1231
1232static const struct export_operations f2fs_export_ops = {
1233 .fh_to_dentry = f2fs_fh_to_dentry,
1234 .fh_to_parent = f2fs_fh_to_parent,
1235 .get_parent = f2fs_get_parent,
1236};
1237
1238static loff_t max_file_blocks(void)
1239{
1240 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1241 loff_t leaf_count = ADDRS_PER_BLOCK;
1242
1243 /* two direct node blocks */
1244 result += (leaf_count * 2);
1245
1246 /* two indirect node blocks */
1247 leaf_count *= NIDS_PER_BLOCK;
1248 result += (leaf_count * 2);
1249
1250 /* one double indirect node block */
1251 leaf_count *= NIDS_PER_BLOCK;
1252 result += leaf_count;
1253
1254 return result;
1255}
1256
1257static int __f2fs_commit_super(struct buffer_head *bh,
1258 struct f2fs_super_block *super)
1259{
1260 lock_buffer(bh);
1261 if (super)
1262 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1263 set_buffer_uptodate(bh);
1264 set_buffer_dirty(bh);
1265 unlock_buffer(bh);
1266
1267 /* it's rare case, we can do fua all the time */
1268 return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA);
1269}
1270
1271static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1272 struct buffer_head *bh)
1273{
1274 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1275 (bh->b_data + F2FS_SUPER_OFFSET);
1276 struct super_block *sb = sbi->sb;
1277 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1278 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1279 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1280 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1281 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1282 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1283 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1284 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1285 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1286 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1287 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1288 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1289 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1290 u64 main_end_blkaddr = main_blkaddr +
1291 (segment_count_main << log_blocks_per_seg);
1292 u64 seg_end_blkaddr = segment0_blkaddr +
1293 (segment_count << log_blocks_per_seg);
1294
1295 if (segment0_blkaddr != cp_blkaddr) {
1296 f2fs_msg(sb, KERN_INFO,
1297 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1298 segment0_blkaddr, cp_blkaddr);
1299 return true;
1300 }
1301
1302 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1303 sit_blkaddr) {
1304 f2fs_msg(sb, KERN_INFO,
1305 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1306 cp_blkaddr, sit_blkaddr,
1307 segment_count_ckpt << log_blocks_per_seg);
1308 return true;
1309 }
1310
1311 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1312 nat_blkaddr) {
1313 f2fs_msg(sb, KERN_INFO,
1314 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1315 sit_blkaddr, nat_blkaddr,
1316 segment_count_sit << log_blocks_per_seg);
1317 return true;
1318 }
1319
1320 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1321 ssa_blkaddr) {
1322 f2fs_msg(sb, KERN_INFO,
1323 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1324 nat_blkaddr, ssa_blkaddr,
1325 segment_count_nat << log_blocks_per_seg);
1326 return true;
1327 }
1328
1329 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1330 main_blkaddr) {
1331 f2fs_msg(sb, KERN_INFO,
1332 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1333 ssa_blkaddr, main_blkaddr,
1334 segment_count_ssa << log_blocks_per_seg);
1335 return true;
1336 }
1337
1338 if (main_end_blkaddr > seg_end_blkaddr) {
1339 f2fs_msg(sb, KERN_INFO,
1340 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1341 main_blkaddr,
1342 segment0_blkaddr +
1343 (segment_count << log_blocks_per_seg),
1344 segment_count_main << log_blocks_per_seg);
1345 return true;
1346 } else if (main_end_blkaddr < seg_end_blkaddr) {
1347 int err = 0;
1348 char *res;
1349
1350 /* fix in-memory information all the time */
1351 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1352 segment0_blkaddr) >> log_blocks_per_seg);
1353
1354 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1355 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1356 res = "internally";
1357 } else {
1358 err = __f2fs_commit_super(bh, NULL);
1359 res = err ? "failed" : "done";
1360 }
1361 f2fs_msg(sb, KERN_INFO,
1362 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1363 res, main_blkaddr,
1364 segment0_blkaddr +
1365 (segment_count << log_blocks_per_seg),
1366 segment_count_main << log_blocks_per_seg);
1367 if (err)
1368 return true;
1369 }
1370 return false;
1371}
1372
1373static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1374 struct buffer_head *bh)
1375{
1376 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1377 (bh->b_data + F2FS_SUPER_OFFSET);
1378 struct super_block *sb = sbi->sb;
1379 unsigned int blocksize;
1380
1381 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1382 f2fs_msg(sb, KERN_INFO,
1383 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1384 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1385 return 1;
1386 }
1387
1388 /* Currently, support only 4KB page cache size */
1389 if (F2FS_BLKSIZE != PAGE_SIZE) {
1390 f2fs_msg(sb, KERN_INFO,
1391 "Invalid page_cache_size (%lu), supports only 4KB\n",
1392 PAGE_SIZE);
1393 return 1;
1394 }
1395
1396 /* Currently, support only 4KB block size */
1397 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1398 if (blocksize != F2FS_BLKSIZE) {
1399 f2fs_msg(sb, KERN_INFO,
1400 "Invalid blocksize (%u), supports only 4KB\n",
1401 blocksize);
1402 return 1;
1403 }
1404
1405 /* check log blocks per segment */
1406 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1407 f2fs_msg(sb, KERN_INFO,
1408 "Invalid log blocks per segment (%u)\n",
1409 le32_to_cpu(raw_super->log_blocks_per_seg));
1410 return 1;
1411 }
1412
1413 /* Currently, support 512/1024/2048/4096 bytes sector size */
1414 if (le32_to_cpu(raw_super->log_sectorsize) >
1415 F2FS_MAX_LOG_SECTOR_SIZE ||
1416 le32_to_cpu(raw_super->log_sectorsize) <
1417 F2FS_MIN_LOG_SECTOR_SIZE) {
1418 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1419 le32_to_cpu(raw_super->log_sectorsize));
1420 return 1;
1421 }
1422 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1423 le32_to_cpu(raw_super->log_sectorsize) !=
1424 F2FS_MAX_LOG_SECTOR_SIZE) {
1425 f2fs_msg(sb, KERN_INFO,
1426 "Invalid log sectors per block(%u) log sectorsize(%u)",
1427 le32_to_cpu(raw_super->log_sectors_per_block),
1428 le32_to_cpu(raw_super->log_sectorsize));
1429 return 1;
1430 }
1431
1432 /* check reserved ino info */
1433 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1434 le32_to_cpu(raw_super->meta_ino) != 2 ||
1435 le32_to_cpu(raw_super->root_ino) != 3) {
1436 f2fs_msg(sb, KERN_INFO,
1437 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1438 le32_to_cpu(raw_super->node_ino),
1439 le32_to_cpu(raw_super->meta_ino),
1440 le32_to_cpu(raw_super->root_ino));
1441 return 1;
1442 }
1443
1444 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1445 if (sanity_check_area_boundary(sbi, bh))
1446 return 1;
1447
1448 return 0;
1449}
1450
1451int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1452{
1453 unsigned int total, fsmeta;
1454 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1455 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456 unsigned int ovp_segments, reserved_segments;
1457
1458 total = le32_to_cpu(raw_super->segment_count);
1459 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1460 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1461 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1462 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1463 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1464
1465 if (unlikely(fsmeta >= total))
1466 return 1;
1467
1468 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1469 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1470
1471 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1472 ovp_segments == 0 || reserved_segments == 0)) {
1473 f2fs_msg(sbi->sb, KERN_ERR,
1474 "Wrong layout: check mkfs.f2fs version");
1475 return 1;
1476 }
1477
1478 if (unlikely(f2fs_cp_error(sbi))) {
1479 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1480 return 1;
1481 }
1482 return 0;
1483}
1484
1485static void init_sb_info(struct f2fs_sb_info *sbi)
1486{
1487 struct f2fs_super_block *raw_super = sbi->raw_super;
1488 int i;
1489
1490 sbi->log_sectors_per_block =
1491 le32_to_cpu(raw_super->log_sectors_per_block);
1492 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1493 sbi->blocksize = 1 << sbi->log_blocksize;
1494 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1495 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1496 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1497 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1498 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1499 sbi->total_node_count =
1500 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1501 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1502 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1503 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1504 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1505 sbi->cur_victim_sec = NULL_SECNO;
1506 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1507
1508 sbi->dir_level = DEF_DIR_LEVEL;
1509 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1510 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1511 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1512
1513 for (i = 0; i < NR_COUNT_TYPE; i++)
1514 atomic_set(&sbi->nr_pages[i], 0);
1515
1516 INIT_LIST_HEAD(&sbi->s_list);
1517 mutex_init(&sbi->umount_mutex);
1518 mutex_init(&sbi->wio_mutex[NODE]);
1519 mutex_init(&sbi->wio_mutex[DATA]);
1520 spin_lock_init(&sbi->cp_lock);
1521
1522#ifdef CONFIG_F2FS_FS_ENCRYPTION
1523 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1524 F2FS_KEY_DESC_PREFIX_SIZE);
1525 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1526#endif
1527}
1528
1529static int init_percpu_info(struct f2fs_sb_info *sbi)
1530{
1531 int err;
1532
1533 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1534 if (err)
1535 return err;
1536
1537 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1538 GFP_KERNEL);
1539}
1540
1541#ifdef CONFIG_BLK_DEV_ZONED
1542static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1543{
1544 struct block_device *bdev = FDEV(devi).bdev;
1545 sector_t nr_sectors = bdev->bd_part->nr_sects;
1546 sector_t sector = 0;
1547 struct blk_zone *zones;
1548 unsigned int i, nr_zones;
1549 unsigned int n = 0;
1550 int err = -EIO;
1551
1552 if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1553 return 0;
1554
1555 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1556 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1557 return -EINVAL;
1558 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1559 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1560 __ilog2_u32(sbi->blocks_per_blkz))
1561 return -EINVAL;
1562 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1563 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1564 sbi->log_blocks_per_blkz;
1565 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1566 FDEV(devi).nr_blkz++;
1567
1568 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1569 if (!FDEV(devi).blkz_type)
1570 return -ENOMEM;
1571
1572#define F2FS_REPORT_NR_ZONES 4096
1573
1574 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1575 GFP_KERNEL);
1576 if (!zones)
1577 return -ENOMEM;
1578
1579 /* Get block zones type */
1580 while (zones && sector < nr_sectors) {
1581
1582 nr_zones = F2FS_REPORT_NR_ZONES;
1583 err = blkdev_report_zones(bdev, sector,
1584 zones, &nr_zones,
1585 GFP_KERNEL);
1586 if (err)
1587 break;
1588 if (!nr_zones) {
1589 err = -EIO;
1590 break;
1591 }
1592
1593 for (i = 0; i < nr_zones; i++) {
1594 FDEV(devi).blkz_type[n] = zones[i].type;
1595 sector += zones[i].len;
1596 n++;
1597 }
1598 }
1599
1600 kfree(zones);
1601
1602 return err;
1603}
1604#endif
1605
1606/*
1607 * Read f2fs raw super block.
1608 * Because we have two copies of super block, so read both of them
1609 * to get the first valid one. If any one of them is broken, we pass
1610 * them recovery flag back to the caller.
1611 */
1612static int read_raw_super_block(struct f2fs_sb_info *sbi,
1613 struct f2fs_super_block **raw_super,
1614 int *valid_super_block, int *recovery)
1615{
1616 struct super_block *sb = sbi->sb;
1617 int block;
1618 struct buffer_head *bh;
1619 struct f2fs_super_block *super;
1620 int err = 0;
1621
1622 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1623 if (!super)
1624 return -ENOMEM;
1625
1626 for (block = 0; block < 2; block++) {
1627 bh = sb_bread(sb, block);
1628 if (!bh) {
1629 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1630 block + 1);
1631 err = -EIO;
1632 continue;
1633 }
1634
1635 /* sanity checking of raw super */
1636 if (sanity_check_raw_super(sbi, bh)) {
1637 f2fs_msg(sb, KERN_ERR,
1638 "Can't find valid F2FS filesystem in %dth superblock",
1639 block + 1);
1640 err = -EINVAL;
1641 brelse(bh);
1642 continue;
1643 }
1644
1645 if (!*raw_super) {
1646 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1647 sizeof(*super));
1648 *valid_super_block = block;
1649 *raw_super = super;
1650 }
1651 brelse(bh);
1652 }
1653
1654 /* Fail to read any one of the superblocks*/
1655 if (err < 0)
1656 *recovery = 1;
1657
1658 /* No valid superblock */
1659 if (!*raw_super)
1660 kfree(super);
1661 else
1662 err = 0;
1663
1664 return err;
1665}
1666
1667int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1668{
1669 struct buffer_head *bh;
1670 int err;
1671
1672 if ((recover && f2fs_readonly(sbi->sb)) ||
1673 bdev_read_only(sbi->sb->s_bdev)) {
1674 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1675 return -EROFS;
1676 }
1677
1678 /* write back-up superblock first */
1679 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1680 if (!bh)
1681 return -EIO;
1682 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1683 brelse(bh);
1684
1685 /* if we are in recovery path, skip writing valid superblock */
1686 if (recover || err)
1687 return err;
1688
1689 /* write current valid superblock */
1690 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1691 if (!bh)
1692 return -EIO;
1693 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1694 brelse(bh);
1695 return err;
1696}
1697
1698static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1699{
1700 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1701 unsigned int max_devices = MAX_DEVICES;
1702 int i;
1703
1704 /* Initialize single device information */
1705 if (!RDEV(0).path[0]) {
1706 if (!bdev_is_zoned(sbi->sb->s_bdev))
1707 return 0;
1708 max_devices = 1;
1709 }
1710
1711 /*
1712 * Initialize multiple devices information, or single
1713 * zoned block device information.
1714 */
1715 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1716 GFP_KERNEL);
1717 if (!sbi->devs)
1718 return -ENOMEM;
1719
1720 for (i = 0; i < max_devices; i++) {
1721
1722 if (i > 0 && !RDEV(i).path[0])
1723 break;
1724
1725 if (max_devices == 1) {
1726 /* Single zoned block device mount */
1727 FDEV(0).bdev =
1728 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1729 sbi->sb->s_mode, sbi->sb->s_type);
1730 } else {
1731 /* Multi-device mount */
1732 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1733 FDEV(i).total_segments =
1734 le32_to_cpu(RDEV(i).total_segments);
1735 if (i == 0) {
1736 FDEV(i).start_blk = 0;
1737 FDEV(i).end_blk = FDEV(i).start_blk +
1738 (FDEV(i).total_segments <<
1739 sbi->log_blocks_per_seg) - 1 +
1740 le32_to_cpu(raw_super->segment0_blkaddr);
1741 } else {
1742 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1743 FDEV(i).end_blk = FDEV(i).start_blk +
1744 (FDEV(i).total_segments <<
1745 sbi->log_blocks_per_seg) - 1;
1746 }
1747 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1748 sbi->sb->s_mode, sbi->sb->s_type);
1749 }
1750 if (IS_ERR(FDEV(i).bdev))
1751 return PTR_ERR(FDEV(i).bdev);
1752
1753 /* to release errored devices */
1754 sbi->s_ndevs = i + 1;
1755
1756#ifdef CONFIG_BLK_DEV_ZONED
1757 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1758 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1759 f2fs_msg(sbi->sb, KERN_ERR,
1760 "Zoned block device feature not enabled\n");
1761 return -EINVAL;
1762 }
1763 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1764 if (init_blkz_info(sbi, i)) {
1765 f2fs_msg(sbi->sb, KERN_ERR,
1766 "Failed to initialize F2FS blkzone information");
1767 return -EINVAL;
1768 }
1769 if (max_devices == 1)
1770 break;
1771 f2fs_msg(sbi->sb, KERN_INFO,
1772 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1773 i, FDEV(i).path,
1774 FDEV(i).total_segments,
1775 FDEV(i).start_blk, FDEV(i).end_blk,
1776 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1777 "Host-aware" : "Host-managed");
1778 continue;
1779 }
1780#endif
1781 f2fs_msg(sbi->sb, KERN_INFO,
1782 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1783 i, FDEV(i).path,
1784 FDEV(i).total_segments,
1785 FDEV(i).start_blk, FDEV(i).end_blk);
1786 }
1787 return 0;
1788}
1789
1790static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1791{
1792 struct f2fs_sb_info *sbi;
1793 struct f2fs_super_block *raw_super;
1794 struct inode *root;
1795 int err;
1796 bool retry = true, need_fsck = false;
1797 char *options = NULL;
1798 int recovery, i, valid_super_block;
1799 struct curseg_info *seg_i;
1800
1801try_onemore:
1802 err = -EINVAL;
1803 raw_super = NULL;
1804 valid_super_block = -1;
1805 recovery = 0;
1806
1807 /* allocate memory for f2fs-specific super block info */
1808 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1809 if (!sbi)
1810 return -ENOMEM;
1811
1812 sbi->sb = sb;
1813
1814 /* Load the checksum driver */
1815 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1816 if (IS_ERR(sbi->s_chksum_driver)) {
1817 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1818 err = PTR_ERR(sbi->s_chksum_driver);
1819 sbi->s_chksum_driver = NULL;
1820 goto free_sbi;
1821 }
1822
1823 /* set a block size */
1824 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1825 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1826 goto free_sbi;
1827 }
1828
1829 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1830 &recovery);
1831 if (err)
1832 goto free_sbi;
1833
1834 sb->s_fs_info = sbi;
1835 sbi->raw_super = raw_super;
1836
1837 /*
1838 * The BLKZONED feature indicates that the drive was formatted with
1839 * zone alignment optimization. This is optional for host-aware
1840 * devices, but mandatory for host-managed zoned block devices.
1841 */
1842#ifndef CONFIG_BLK_DEV_ZONED
1843 if (f2fs_sb_mounted_blkzoned(sb)) {
1844 f2fs_msg(sb, KERN_ERR,
1845 "Zoned block device support is not enabled\n");
1846 goto free_sb_buf;
1847 }
1848#endif
1849 default_options(sbi);
1850 /* parse mount options */
1851 options = kstrdup((const char *)data, GFP_KERNEL);
1852 if (data && !options) {
1853 err = -ENOMEM;
1854 goto free_sb_buf;
1855 }
1856
1857 err = parse_options(sb, options);
1858 if (err)
1859 goto free_options;
1860
1861 sbi->max_file_blocks = max_file_blocks();
1862 sb->s_maxbytes = sbi->max_file_blocks <<
1863 le32_to_cpu(raw_super->log_blocksize);
1864 sb->s_max_links = F2FS_LINK_MAX;
1865 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1866
1867 sb->s_op = &f2fs_sops;
1868 sb->s_cop = &f2fs_cryptops;
1869 sb->s_xattr = f2fs_xattr_handlers;
1870 sb->s_export_op = &f2fs_export_ops;
1871 sb->s_magic = F2FS_SUPER_MAGIC;
1872 sb->s_time_gran = 1;
1873 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1874 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1875 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1876
1877 /* init f2fs-specific super block info */
1878 sbi->valid_super_block = valid_super_block;
1879 mutex_init(&sbi->gc_mutex);
1880 mutex_init(&sbi->cp_mutex);
1881 init_rwsem(&sbi->node_write);
1882
1883 /* disallow all the data/node/meta page writes */
1884 set_sbi_flag(sbi, SBI_POR_DOING);
1885 spin_lock_init(&sbi->stat_lock);
1886
1887 init_rwsem(&sbi->read_io.io_rwsem);
1888 sbi->read_io.sbi = sbi;
1889 sbi->read_io.bio = NULL;
1890 for (i = 0; i < NR_PAGE_TYPE; i++) {
1891 init_rwsem(&sbi->write_io[i].io_rwsem);
1892 sbi->write_io[i].sbi = sbi;
1893 sbi->write_io[i].bio = NULL;
1894 }
1895
1896 init_rwsem(&sbi->cp_rwsem);
1897 init_waitqueue_head(&sbi->cp_wait);
1898 init_sb_info(sbi);
1899
1900 err = init_percpu_info(sbi);
1901 if (err)
1902 goto free_options;
1903
1904 /* get an inode for meta space */
1905 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1906 if (IS_ERR(sbi->meta_inode)) {
1907 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1908 err = PTR_ERR(sbi->meta_inode);
1909 goto free_options;
1910 }
1911
1912 err = get_valid_checkpoint(sbi);
1913 if (err) {
1914 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1915 goto free_meta_inode;
1916 }
1917
1918 /* Initialize device list */
1919 err = f2fs_scan_devices(sbi);
1920 if (err) {
1921 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1922 goto free_devices;
1923 }
1924
1925 sbi->total_valid_node_count =
1926 le32_to_cpu(sbi->ckpt->valid_node_count);
1927 percpu_counter_set(&sbi->total_valid_inode_count,
1928 le32_to_cpu(sbi->ckpt->valid_inode_count));
1929 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1930 sbi->total_valid_block_count =
1931 le64_to_cpu(sbi->ckpt->valid_block_count);
1932 sbi->last_valid_block_count = sbi->total_valid_block_count;
1933
1934 for (i = 0; i < NR_INODE_TYPE; i++) {
1935 INIT_LIST_HEAD(&sbi->inode_list[i]);
1936 spin_lock_init(&sbi->inode_lock[i]);
1937 }
1938
1939 init_extent_cache_info(sbi);
1940
1941 init_ino_entry_info(sbi);
1942
1943 /* setup f2fs internal modules */
1944 err = build_segment_manager(sbi);
1945 if (err) {
1946 f2fs_msg(sb, KERN_ERR,
1947 "Failed to initialize F2FS segment manager");
1948 goto free_sm;
1949 }
1950 err = build_node_manager(sbi);
1951 if (err) {
1952 f2fs_msg(sb, KERN_ERR,
1953 "Failed to initialize F2FS node manager");
1954 goto free_nm;
1955 }
1956
1957 /* For write statistics */
1958 if (sb->s_bdev->bd_part)
1959 sbi->sectors_written_start =
1960 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1961
1962 /* Read accumulated write IO statistics if exists */
1963 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1964 if (__exist_node_summaries(sbi))
1965 sbi->kbytes_written =
1966 le64_to_cpu(seg_i->journal->info.kbytes_written);
1967
1968 build_gc_manager(sbi);
1969
1970 /* get an inode for node space */
1971 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1972 if (IS_ERR(sbi->node_inode)) {
1973 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1974 err = PTR_ERR(sbi->node_inode);
1975 goto free_nm;
1976 }
1977
1978 f2fs_join_shrinker(sbi);
1979
1980 /* if there are nt orphan nodes free them */
1981 err = recover_orphan_inodes(sbi);
1982 if (err)
1983 goto free_node_inode;
1984
1985 /* read root inode and dentry */
1986 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1987 if (IS_ERR(root)) {
1988 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1989 err = PTR_ERR(root);
1990 goto free_node_inode;
1991 }
1992 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1993 iput(root);
1994 err = -EINVAL;
1995 goto free_node_inode;
1996 }
1997
1998 sb->s_root = d_make_root(root); /* allocate root dentry */
1999 if (!sb->s_root) {
2000 err = -ENOMEM;
2001 goto free_root_inode;
2002 }
2003
2004 err = f2fs_build_stats(sbi);
2005 if (err)
2006 goto free_root_inode;
2007
2008 if (f2fs_proc_root)
2009 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2010
2011 if (sbi->s_proc) {
2012 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2013 &f2fs_seq_segment_info_fops, sb);
2014 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2015 &f2fs_seq_segment_bits_fops, sb);
2016 }
2017
2018 sbi->s_kobj.kset = f2fs_kset;
2019 init_completion(&sbi->s_kobj_unregister);
2020 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2021 "%s", sb->s_id);
2022 if (err)
2023 goto free_proc;
2024
2025 /* recover fsynced data */
2026 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2027 /*
2028 * mount should be failed, when device has readonly mode, and
2029 * previous checkpoint was not done by clean system shutdown.
2030 */
2031 if (bdev_read_only(sb->s_bdev) &&
2032 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2033 err = -EROFS;
2034 goto free_kobj;
2035 }
2036
2037 if (need_fsck)
2038 set_sbi_flag(sbi, SBI_NEED_FSCK);
2039
2040 if (!retry)
2041 goto skip_recovery;
2042
2043 err = recover_fsync_data(sbi, false);
2044 if (err < 0) {
2045 need_fsck = true;
2046 f2fs_msg(sb, KERN_ERR,
2047 "Cannot recover all fsync data errno=%d", err);
2048 goto free_kobj;
2049 }
2050 } else {
2051 err = recover_fsync_data(sbi, true);
2052
2053 if (!f2fs_readonly(sb) && err > 0) {
2054 err = -EINVAL;
2055 f2fs_msg(sb, KERN_ERR,
2056 "Need to recover fsync data");
2057 goto free_kobj;
2058 }
2059 }
2060skip_recovery:
2061 /* recover_fsync_data() cleared this already */
2062 clear_sbi_flag(sbi, SBI_POR_DOING);
2063
2064 /*
2065 * If filesystem is not mounted as read-only then
2066 * do start the gc_thread.
2067 */
2068 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2069 /* After POR, we can run background GC thread.*/
2070 err = start_gc_thread(sbi);
2071 if (err)
2072 goto free_kobj;
2073 }
2074 kfree(options);
2075
2076 /* recover broken superblock */
2077 if (recovery) {
2078 err = f2fs_commit_super(sbi, true);
2079 f2fs_msg(sb, KERN_INFO,
2080 "Try to recover %dth superblock, ret: %d",
2081 sbi->valid_super_block ? 1 : 2, err);
2082 }
2083
2084 f2fs_update_time(sbi, CP_TIME);
2085 f2fs_update_time(sbi, REQ_TIME);
2086 return 0;
2087
2088free_kobj:
2089 f2fs_sync_inode_meta(sbi);
2090 kobject_del(&sbi->s_kobj);
2091 kobject_put(&sbi->s_kobj);
2092 wait_for_completion(&sbi->s_kobj_unregister);
2093free_proc:
2094 if (sbi->s_proc) {
2095 remove_proc_entry("segment_info", sbi->s_proc);
2096 remove_proc_entry("segment_bits", sbi->s_proc);
2097 remove_proc_entry(sb->s_id, f2fs_proc_root);
2098 }
2099 f2fs_destroy_stats(sbi);
2100free_root_inode:
2101 dput(sb->s_root);
2102 sb->s_root = NULL;
2103free_node_inode:
2104 truncate_inode_pages_final(NODE_MAPPING(sbi));
2105 mutex_lock(&sbi->umount_mutex);
2106 release_ino_entry(sbi, true);
2107 f2fs_leave_shrinker(sbi);
2108 /*
2109 * Some dirty meta pages can be produced by recover_orphan_inodes()
2110 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2111 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2112 * falls into an infinite loop in sync_meta_pages().
2113 */
2114 truncate_inode_pages_final(META_MAPPING(sbi));
2115 iput(sbi->node_inode);
2116 mutex_unlock(&sbi->umount_mutex);
2117free_nm:
2118 destroy_node_manager(sbi);
2119free_sm:
2120 destroy_segment_manager(sbi);
2121free_devices:
2122 destroy_device_list(sbi);
2123 kfree(sbi->ckpt);
2124free_meta_inode:
2125 make_bad_inode(sbi->meta_inode);
2126 iput(sbi->meta_inode);
2127free_options:
2128 destroy_percpu_info(sbi);
2129 kfree(options);
2130free_sb_buf:
2131 kfree(raw_super);
2132free_sbi:
2133 if (sbi->s_chksum_driver)
2134 crypto_free_shash(sbi->s_chksum_driver);
2135 kfree(sbi);
2136
2137 /* give only one another chance */
2138 if (retry) {
2139 retry = false;
2140 shrink_dcache_sb(sb);
2141 goto try_onemore;
2142 }
2143 return err;
2144}
2145
2146static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2147 const char *dev_name, void *data)
2148{
2149 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2150}
2151
2152static void kill_f2fs_super(struct super_block *sb)
2153{
2154 if (sb->s_root)
2155 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2156 kill_block_super(sb);
2157}
2158
2159static struct file_system_type f2fs_fs_type = {
2160 .owner = THIS_MODULE,
2161 .name = "f2fs",
2162 .mount = f2fs_mount,
2163 .kill_sb = kill_f2fs_super,
2164 .fs_flags = FS_REQUIRES_DEV,
2165};
2166MODULE_ALIAS_FS("f2fs");
2167
2168static int __init init_inodecache(void)
2169{
2170 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2171 sizeof(struct f2fs_inode_info), 0,
2172 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2173 if (!f2fs_inode_cachep)
2174 return -ENOMEM;
2175 return 0;
2176}
2177
2178static void destroy_inodecache(void)
2179{
2180 /*
2181 * Make sure all delayed rcu free inodes are flushed before we
2182 * destroy cache.
2183 */
2184 rcu_barrier();
2185 kmem_cache_destroy(f2fs_inode_cachep);
2186}
2187
2188static int __init init_f2fs_fs(void)
2189{
2190 int err;
2191
2192 f2fs_build_trace_ios();
2193
2194 err = init_inodecache();
2195 if (err)
2196 goto fail;
2197 err = create_node_manager_caches();
2198 if (err)
2199 goto free_inodecache;
2200 err = create_segment_manager_caches();
2201 if (err)
2202 goto free_node_manager_caches;
2203 err = create_checkpoint_caches();
2204 if (err)
2205 goto free_segment_manager_caches;
2206 err = create_extent_cache();
2207 if (err)
2208 goto free_checkpoint_caches;
2209 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2210 if (!f2fs_kset) {
2211 err = -ENOMEM;
2212 goto free_extent_cache;
2213 }
2214 err = register_shrinker(&f2fs_shrinker_info);
2215 if (err)
2216 goto free_kset;
2217
2218 err = register_filesystem(&f2fs_fs_type);
2219 if (err)
2220 goto free_shrinker;
2221 err = f2fs_create_root_stats();
2222 if (err)
2223 goto free_filesystem;
2224 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2225 return 0;
2226
2227free_filesystem:
2228 unregister_filesystem(&f2fs_fs_type);
2229free_shrinker:
2230 unregister_shrinker(&f2fs_shrinker_info);
2231free_kset:
2232 kset_unregister(f2fs_kset);
2233free_extent_cache:
2234 destroy_extent_cache();
2235free_checkpoint_caches:
2236 destroy_checkpoint_caches();
2237free_segment_manager_caches:
2238 destroy_segment_manager_caches();
2239free_node_manager_caches:
2240 destroy_node_manager_caches();
2241free_inodecache:
2242 destroy_inodecache();
2243fail:
2244 return err;
2245}
2246
2247static void __exit exit_f2fs_fs(void)
2248{
2249 remove_proc_entry("fs/f2fs", NULL);
2250 f2fs_destroy_root_stats();
2251 unregister_filesystem(&f2fs_fs_type);
2252 unregister_shrinker(&f2fs_shrinker_info);
2253 kset_unregister(f2fs_kset);
2254 destroy_extent_cache();
2255 destroy_checkpoint_caches();
2256 destroy_segment_manager_caches();
2257 destroy_node_manager_caches();
2258 destroy_inodecache();
2259 f2fs_destroy_trace_ios();
2260}
2261
2262module_init(init_f2fs_fs)
2263module_exit(exit_f2fs_fs)
2264
2265MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2266MODULE_DESCRIPTION("Flash Friendly File System");
2267MODULE_LICENSE("GPL");
2268
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/fs.h>
11#include <linux/statfs.h>
12#include <linux/buffer_head.h>
13#include <linux/backing-dev.h>
14#include <linux/kthread.h>
15#include <linux/parser.h>
16#include <linux/mount.h>
17#include <linux/seq_file.h>
18#include <linux/proc_fs.h>
19#include <linux/random.h>
20#include <linux/exportfs.h>
21#include <linux/blkdev.h>
22#include <linux/quotaops.h>
23#include <linux/f2fs_fs.h>
24#include <linux/sysfs.h>
25#include <linux/quota.h>
26#include <linux/unicode.h>
27#include <linux/part_stat.h>
28#include <linux/zstd.h>
29#include <linux/lz4.h>
30
31#include "f2fs.h"
32#include "node.h"
33#include "segment.h"
34#include "xattr.h"
35#include "gc.h"
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/f2fs.h>
39
40static struct kmem_cache *f2fs_inode_cachep;
41
42#ifdef CONFIG_F2FS_FAULT_INJECTION
43
44const char *f2fs_fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_KVMALLOC] = "kvmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_PAGE_GET] = "page get",
49 [FAULT_ALLOC_NID] = "alloc nid",
50 [FAULT_ORPHAN] = "orphan",
51 [FAULT_BLOCK] = "no more block",
52 [FAULT_DIR_DEPTH] = "too big dir depth",
53 [FAULT_EVICT_INODE] = "evict_inode fail",
54 [FAULT_TRUNCATE] = "truncate fail",
55 [FAULT_READ_IO] = "read IO error",
56 [FAULT_CHECKPOINT] = "checkpoint error",
57 [FAULT_DISCARD] = "discard error",
58 [FAULT_WRITE_IO] = "write IO error",
59};
60
61void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 unsigned int type)
63{
64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66 if (rate) {
67 atomic_set(&ffi->inject_ops, 0);
68 ffi->inject_rate = rate;
69 }
70
71 if (type)
72 ffi->inject_type = type;
73
74 if (!rate && !type)
75 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76}
77#endif
78
79/* f2fs-wide shrinker description */
80static struct shrinker f2fs_shrinker_info = {
81 .scan_objects = f2fs_shrink_scan,
82 .count_objects = f2fs_shrink_count,
83 .seeks = DEFAULT_SEEKS,
84};
85
86enum {
87 Opt_gc_background,
88 Opt_disable_roll_forward,
89 Opt_norecovery,
90 Opt_discard,
91 Opt_nodiscard,
92 Opt_noheap,
93 Opt_heap,
94 Opt_user_xattr,
95 Opt_nouser_xattr,
96 Opt_acl,
97 Opt_noacl,
98 Opt_active_logs,
99 Opt_disable_ext_identify,
100 Opt_inline_xattr,
101 Opt_noinline_xattr,
102 Opt_inline_xattr_size,
103 Opt_inline_data,
104 Opt_inline_dentry,
105 Opt_noinline_dentry,
106 Opt_flush_merge,
107 Opt_noflush_merge,
108 Opt_nobarrier,
109 Opt_fastboot,
110 Opt_extent_cache,
111 Opt_noextent_cache,
112 Opt_noinline_data,
113 Opt_data_flush,
114 Opt_reserve_root,
115 Opt_resgid,
116 Opt_resuid,
117 Opt_mode,
118 Opt_io_size_bits,
119 Opt_fault_injection,
120 Opt_fault_type,
121 Opt_lazytime,
122 Opt_nolazytime,
123 Opt_quota,
124 Opt_noquota,
125 Opt_usrquota,
126 Opt_grpquota,
127 Opt_prjquota,
128 Opt_usrjquota,
129 Opt_grpjquota,
130 Opt_prjjquota,
131 Opt_offusrjquota,
132 Opt_offgrpjquota,
133 Opt_offprjjquota,
134 Opt_jqfmt_vfsold,
135 Opt_jqfmt_vfsv0,
136 Opt_jqfmt_vfsv1,
137 Opt_whint,
138 Opt_alloc,
139 Opt_fsync,
140 Opt_test_dummy_encryption,
141 Opt_inlinecrypt,
142 Opt_checkpoint_disable,
143 Opt_checkpoint_disable_cap,
144 Opt_checkpoint_disable_cap_perc,
145 Opt_checkpoint_enable,
146 Opt_checkpoint_merge,
147 Opt_nocheckpoint_merge,
148 Opt_compress_algorithm,
149 Opt_compress_log_size,
150 Opt_compress_extension,
151 Opt_nocompress_extension,
152 Opt_compress_chksum,
153 Opt_compress_mode,
154 Opt_compress_cache,
155 Opt_atgc,
156 Opt_gc_merge,
157 Opt_nogc_merge,
158 Opt_err,
159};
160
161static match_table_t f2fs_tokens = {
162 {Opt_gc_background, "background_gc=%s"},
163 {Opt_disable_roll_forward, "disable_roll_forward"},
164 {Opt_norecovery, "norecovery"},
165 {Opt_discard, "discard"},
166 {Opt_nodiscard, "nodiscard"},
167 {Opt_noheap, "no_heap"},
168 {Opt_heap, "heap"},
169 {Opt_user_xattr, "user_xattr"},
170 {Opt_nouser_xattr, "nouser_xattr"},
171 {Opt_acl, "acl"},
172 {Opt_noacl, "noacl"},
173 {Opt_active_logs, "active_logs=%u"},
174 {Opt_disable_ext_identify, "disable_ext_identify"},
175 {Opt_inline_xattr, "inline_xattr"},
176 {Opt_noinline_xattr, "noinline_xattr"},
177 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
178 {Opt_inline_data, "inline_data"},
179 {Opt_inline_dentry, "inline_dentry"},
180 {Opt_noinline_dentry, "noinline_dentry"},
181 {Opt_flush_merge, "flush_merge"},
182 {Opt_noflush_merge, "noflush_merge"},
183 {Opt_nobarrier, "nobarrier"},
184 {Opt_fastboot, "fastboot"},
185 {Opt_extent_cache, "extent_cache"},
186 {Opt_noextent_cache, "noextent_cache"},
187 {Opt_noinline_data, "noinline_data"},
188 {Opt_data_flush, "data_flush"},
189 {Opt_reserve_root, "reserve_root=%u"},
190 {Opt_resgid, "resgid=%u"},
191 {Opt_resuid, "resuid=%u"},
192 {Opt_mode, "mode=%s"},
193 {Opt_io_size_bits, "io_bits=%u"},
194 {Opt_fault_injection, "fault_injection=%u"},
195 {Opt_fault_type, "fault_type=%u"},
196 {Opt_lazytime, "lazytime"},
197 {Opt_nolazytime, "nolazytime"},
198 {Opt_quota, "quota"},
199 {Opt_noquota, "noquota"},
200 {Opt_usrquota, "usrquota"},
201 {Opt_grpquota, "grpquota"},
202 {Opt_prjquota, "prjquota"},
203 {Opt_usrjquota, "usrjquota=%s"},
204 {Opt_grpjquota, "grpjquota=%s"},
205 {Opt_prjjquota, "prjjquota=%s"},
206 {Opt_offusrjquota, "usrjquota="},
207 {Opt_offgrpjquota, "grpjquota="},
208 {Opt_offprjjquota, "prjjquota="},
209 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
210 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
211 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
212 {Opt_whint, "whint_mode=%s"},
213 {Opt_alloc, "alloc_mode=%s"},
214 {Opt_fsync, "fsync_mode=%s"},
215 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
216 {Opt_test_dummy_encryption, "test_dummy_encryption"},
217 {Opt_inlinecrypt, "inlinecrypt"},
218 {Opt_checkpoint_disable, "checkpoint=disable"},
219 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
220 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
221 {Opt_checkpoint_enable, "checkpoint=enable"},
222 {Opt_checkpoint_merge, "checkpoint_merge"},
223 {Opt_nocheckpoint_merge, "nocheckpoint_merge"},
224 {Opt_compress_algorithm, "compress_algorithm=%s"},
225 {Opt_compress_log_size, "compress_log_size=%u"},
226 {Opt_compress_extension, "compress_extension=%s"},
227 {Opt_nocompress_extension, "nocompress_extension=%s"},
228 {Opt_compress_chksum, "compress_chksum"},
229 {Opt_compress_mode, "compress_mode=%s"},
230 {Opt_compress_cache, "compress_cache"},
231 {Opt_atgc, "atgc"},
232 {Opt_gc_merge, "gc_merge"},
233 {Opt_nogc_merge, "nogc_merge"},
234 {Opt_err, NULL},
235};
236
237void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
238{
239 struct va_format vaf;
240 va_list args;
241 int level;
242
243 va_start(args, fmt);
244
245 level = printk_get_level(fmt);
246 vaf.fmt = printk_skip_level(fmt);
247 vaf.va = &args;
248 printk("%c%cF2FS-fs (%s): %pV\n",
249 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
250
251 va_end(args);
252}
253
254#ifdef CONFIG_UNICODE
255static const struct f2fs_sb_encodings {
256 __u16 magic;
257 char *name;
258 char *version;
259} f2fs_sb_encoding_map[] = {
260 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
261};
262
263static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
264 const struct f2fs_sb_encodings **encoding,
265 __u16 *flags)
266{
267 __u16 magic = le16_to_cpu(sb->s_encoding);
268 int i;
269
270 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
271 if (magic == f2fs_sb_encoding_map[i].magic)
272 break;
273
274 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
275 return -EINVAL;
276
277 *encoding = &f2fs_sb_encoding_map[i];
278 *flags = le16_to_cpu(sb->s_encoding_flags);
279
280 return 0;
281}
282
283struct kmem_cache *f2fs_cf_name_slab;
284static int __init f2fs_create_casefold_cache(void)
285{
286 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
287 F2FS_NAME_LEN);
288 if (!f2fs_cf_name_slab)
289 return -ENOMEM;
290 return 0;
291}
292
293static void f2fs_destroy_casefold_cache(void)
294{
295 kmem_cache_destroy(f2fs_cf_name_slab);
296}
297#else
298static int __init f2fs_create_casefold_cache(void) { return 0; }
299static void f2fs_destroy_casefold_cache(void) { }
300#endif
301
302static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
303{
304 block_t limit = min((sbi->user_block_count << 1) / 1000,
305 sbi->user_block_count - sbi->reserved_blocks);
306
307 /* limit is 0.2% */
308 if (test_opt(sbi, RESERVE_ROOT) &&
309 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
310 F2FS_OPTION(sbi).root_reserved_blocks = limit;
311 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
312 F2FS_OPTION(sbi).root_reserved_blocks);
313 }
314 if (!test_opt(sbi, RESERVE_ROOT) &&
315 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
316 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
317 !gid_eq(F2FS_OPTION(sbi).s_resgid,
318 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
319 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
320 from_kuid_munged(&init_user_ns,
321 F2FS_OPTION(sbi).s_resuid),
322 from_kgid_munged(&init_user_ns,
323 F2FS_OPTION(sbi).s_resgid));
324}
325
326static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
327{
328 if (!F2FS_OPTION(sbi).unusable_cap_perc)
329 return;
330
331 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
332 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
333 else
334 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
335 F2FS_OPTION(sbi).unusable_cap_perc;
336
337 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
338 F2FS_OPTION(sbi).unusable_cap,
339 F2FS_OPTION(sbi).unusable_cap_perc);
340}
341
342static void init_once(void *foo)
343{
344 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
345
346 inode_init_once(&fi->vfs_inode);
347}
348
349#ifdef CONFIG_QUOTA
350static const char * const quotatypes[] = INITQFNAMES;
351#define QTYPE2NAME(t) (quotatypes[t])
352static int f2fs_set_qf_name(struct super_block *sb, int qtype,
353 substring_t *args)
354{
355 struct f2fs_sb_info *sbi = F2FS_SB(sb);
356 char *qname;
357 int ret = -EINVAL;
358
359 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
360 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
361 return -EINVAL;
362 }
363 if (f2fs_sb_has_quota_ino(sbi)) {
364 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
365 return 0;
366 }
367
368 qname = match_strdup(args);
369 if (!qname) {
370 f2fs_err(sbi, "Not enough memory for storing quotafile name");
371 return -ENOMEM;
372 }
373 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
374 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
375 ret = 0;
376 else
377 f2fs_err(sbi, "%s quota file already specified",
378 QTYPE2NAME(qtype));
379 goto errout;
380 }
381 if (strchr(qname, '/')) {
382 f2fs_err(sbi, "quotafile must be on filesystem root");
383 goto errout;
384 }
385 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
386 set_opt(sbi, QUOTA);
387 return 0;
388errout:
389 kfree(qname);
390 return ret;
391}
392
393static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
394{
395 struct f2fs_sb_info *sbi = F2FS_SB(sb);
396
397 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
398 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
399 return -EINVAL;
400 }
401 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
402 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
403 return 0;
404}
405
406static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
407{
408 /*
409 * We do the test below only for project quotas. 'usrquota' and
410 * 'grpquota' mount options are allowed even without quota feature
411 * to support legacy quotas in quota files.
412 */
413 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
414 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
415 return -1;
416 }
417 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
418 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
419 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
420 if (test_opt(sbi, USRQUOTA) &&
421 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
422 clear_opt(sbi, USRQUOTA);
423
424 if (test_opt(sbi, GRPQUOTA) &&
425 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
426 clear_opt(sbi, GRPQUOTA);
427
428 if (test_opt(sbi, PRJQUOTA) &&
429 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
430 clear_opt(sbi, PRJQUOTA);
431
432 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
433 test_opt(sbi, PRJQUOTA)) {
434 f2fs_err(sbi, "old and new quota format mixing");
435 return -1;
436 }
437
438 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
439 f2fs_err(sbi, "journaled quota format not specified");
440 return -1;
441 }
442 }
443
444 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
445 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
446 F2FS_OPTION(sbi).s_jquota_fmt = 0;
447 }
448 return 0;
449}
450#endif
451
452static int f2fs_set_test_dummy_encryption(struct super_block *sb,
453 const char *opt,
454 const substring_t *arg,
455 bool is_remount)
456{
457 struct f2fs_sb_info *sbi = F2FS_SB(sb);
458#ifdef CONFIG_FS_ENCRYPTION
459 int err;
460
461 if (!f2fs_sb_has_encrypt(sbi)) {
462 f2fs_err(sbi, "Encrypt feature is off");
463 return -EINVAL;
464 }
465
466 /*
467 * This mount option is just for testing, and it's not worthwhile to
468 * implement the extra complexity (e.g. RCU protection) that would be
469 * needed to allow it to be set or changed during remount. We do allow
470 * it to be specified during remount, but only if there is no change.
471 */
472 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
473 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
474 return -EINVAL;
475 }
476 err = fscrypt_set_test_dummy_encryption(
477 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
478 if (err) {
479 if (err == -EEXIST)
480 f2fs_warn(sbi,
481 "Can't change test_dummy_encryption on remount");
482 else if (err == -EINVAL)
483 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
484 opt);
485 else
486 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
487 opt, err);
488 return -EINVAL;
489 }
490 f2fs_warn(sbi, "Test dummy encryption mode enabled");
491#else
492 f2fs_warn(sbi, "Test dummy encryption mount option ignored");
493#endif
494 return 0;
495}
496
497#ifdef CONFIG_F2FS_FS_COMPRESSION
498/*
499 * 1. The same extension name cannot not appear in both compress and non-compress extension
500 * at the same time.
501 * 2. If the compress extension specifies all files, the types specified by the non-compress
502 * extension will be treated as special cases and will not be compressed.
503 * 3. Don't allow the non-compress extension specifies all files.
504 */
505static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
506{
507 unsigned char (*ext)[F2FS_EXTENSION_LEN];
508 unsigned char (*noext)[F2FS_EXTENSION_LEN];
509 int ext_cnt, noext_cnt, index = 0, no_index = 0;
510
511 ext = F2FS_OPTION(sbi).extensions;
512 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
513 noext = F2FS_OPTION(sbi).noextensions;
514 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
515
516 if (!noext_cnt)
517 return 0;
518
519 for (no_index = 0; no_index < noext_cnt; no_index++) {
520 if (!strcasecmp("*", noext[no_index])) {
521 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
522 return -EINVAL;
523 }
524 for (index = 0; index < ext_cnt; index++) {
525 if (!strcasecmp(ext[index], noext[no_index])) {
526 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
527 ext[index]);
528 return -EINVAL;
529 }
530 }
531 }
532 return 0;
533}
534
535#ifdef CONFIG_F2FS_FS_LZ4
536static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
537{
538#ifdef CONFIG_F2FS_FS_LZ4HC
539 unsigned int level;
540#endif
541
542 if (strlen(str) == 3) {
543 F2FS_OPTION(sbi).compress_level = 0;
544 return 0;
545 }
546
547#ifdef CONFIG_F2FS_FS_LZ4HC
548 str += 3;
549
550 if (str[0] != ':') {
551 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
552 return -EINVAL;
553 }
554 if (kstrtouint(str + 1, 10, &level))
555 return -EINVAL;
556
557 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
558 f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
559 return -EINVAL;
560 }
561
562 F2FS_OPTION(sbi).compress_level = level;
563 return 0;
564#else
565 f2fs_info(sbi, "kernel doesn't support lz4hc compression");
566 return -EINVAL;
567#endif
568}
569#endif
570
571#ifdef CONFIG_F2FS_FS_ZSTD
572static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
573{
574 unsigned int level;
575 int len = 4;
576
577 if (strlen(str) == len) {
578 F2FS_OPTION(sbi).compress_level = 0;
579 return 0;
580 }
581
582 str += len;
583
584 if (str[0] != ':') {
585 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
586 return -EINVAL;
587 }
588 if (kstrtouint(str + 1, 10, &level))
589 return -EINVAL;
590
591 if (!level || level > ZSTD_maxCLevel()) {
592 f2fs_info(sbi, "invalid zstd compress level: %d", level);
593 return -EINVAL;
594 }
595
596 F2FS_OPTION(sbi).compress_level = level;
597 return 0;
598}
599#endif
600#endif
601
602static int parse_options(struct super_block *sb, char *options, bool is_remount)
603{
604 struct f2fs_sb_info *sbi = F2FS_SB(sb);
605 substring_t args[MAX_OPT_ARGS];
606#ifdef CONFIG_F2FS_FS_COMPRESSION
607 unsigned char (*ext)[F2FS_EXTENSION_LEN];
608 unsigned char (*noext)[F2FS_EXTENSION_LEN];
609 int ext_cnt, noext_cnt;
610#endif
611 char *p, *name;
612 int arg = 0;
613 kuid_t uid;
614 kgid_t gid;
615 int ret;
616
617 if (!options)
618 goto default_check;
619
620 while ((p = strsep(&options, ",")) != NULL) {
621 int token;
622
623 if (!*p)
624 continue;
625 /*
626 * Initialize args struct so we know whether arg was
627 * found; some options take optional arguments.
628 */
629 args[0].to = args[0].from = NULL;
630 token = match_token(p, f2fs_tokens, args);
631
632 switch (token) {
633 case Opt_gc_background:
634 name = match_strdup(&args[0]);
635
636 if (!name)
637 return -ENOMEM;
638 if (!strcmp(name, "on")) {
639 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
640 } else if (!strcmp(name, "off")) {
641 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
642 } else if (!strcmp(name, "sync")) {
643 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
644 } else {
645 kfree(name);
646 return -EINVAL;
647 }
648 kfree(name);
649 break;
650 case Opt_disable_roll_forward:
651 set_opt(sbi, DISABLE_ROLL_FORWARD);
652 break;
653 case Opt_norecovery:
654 /* this option mounts f2fs with ro */
655 set_opt(sbi, NORECOVERY);
656 if (!f2fs_readonly(sb))
657 return -EINVAL;
658 break;
659 case Opt_discard:
660 set_opt(sbi, DISCARD);
661 break;
662 case Opt_nodiscard:
663 if (f2fs_sb_has_blkzoned(sbi)) {
664 f2fs_warn(sbi, "discard is required for zoned block devices");
665 return -EINVAL;
666 }
667 clear_opt(sbi, DISCARD);
668 break;
669 case Opt_noheap:
670 set_opt(sbi, NOHEAP);
671 break;
672 case Opt_heap:
673 clear_opt(sbi, NOHEAP);
674 break;
675#ifdef CONFIG_F2FS_FS_XATTR
676 case Opt_user_xattr:
677 set_opt(sbi, XATTR_USER);
678 break;
679 case Opt_nouser_xattr:
680 clear_opt(sbi, XATTR_USER);
681 break;
682 case Opt_inline_xattr:
683 set_opt(sbi, INLINE_XATTR);
684 break;
685 case Opt_noinline_xattr:
686 clear_opt(sbi, INLINE_XATTR);
687 break;
688 case Opt_inline_xattr_size:
689 if (args->from && match_int(args, &arg))
690 return -EINVAL;
691 set_opt(sbi, INLINE_XATTR_SIZE);
692 F2FS_OPTION(sbi).inline_xattr_size = arg;
693 break;
694#else
695 case Opt_user_xattr:
696 f2fs_info(sbi, "user_xattr options not supported");
697 break;
698 case Opt_nouser_xattr:
699 f2fs_info(sbi, "nouser_xattr options not supported");
700 break;
701 case Opt_inline_xattr:
702 f2fs_info(sbi, "inline_xattr options not supported");
703 break;
704 case Opt_noinline_xattr:
705 f2fs_info(sbi, "noinline_xattr options not supported");
706 break;
707#endif
708#ifdef CONFIG_F2FS_FS_POSIX_ACL
709 case Opt_acl:
710 set_opt(sbi, POSIX_ACL);
711 break;
712 case Opt_noacl:
713 clear_opt(sbi, POSIX_ACL);
714 break;
715#else
716 case Opt_acl:
717 f2fs_info(sbi, "acl options not supported");
718 break;
719 case Opt_noacl:
720 f2fs_info(sbi, "noacl options not supported");
721 break;
722#endif
723 case Opt_active_logs:
724 if (args->from && match_int(args, &arg))
725 return -EINVAL;
726 if (arg != 2 && arg != 4 &&
727 arg != NR_CURSEG_PERSIST_TYPE)
728 return -EINVAL;
729 F2FS_OPTION(sbi).active_logs = arg;
730 break;
731 case Opt_disable_ext_identify:
732 set_opt(sbi, DISABLE_EXT_IDENTIFY);
733 break;
734 case Opt_inline_data:
735 set_opt(sbi, INLINE_DATA);
736 break;
737 case Opt_inline_dentry:
738 set_opt(sbi, INLINE_DENTRY);
739 break;
740 case Opt_noinline_dentry:
741 clear_opt(sbi, INLINE_DENTRY);
742 break;
743 case Opt_flush_merge:
744 set_opt(sbi, FLUSH_MERGE);
745 break;
746 case Opt_noflush_merge:
747 clear_opt(sbi, FLUSH_MERGE);
748 break;
749 case Opt_nobarrier:
750 set_opt(sbi, NOBARRIER);
751 break;
752 case Opt_fastboot:
753 set_opt(sbi, FASTBOOT);
754 break;
755 case Opt_extent_cache:
756 set_opt(sbi, EXTENT_CACHE);
757 break;
758 case Opt_noextent_cache:
759 clear_opt(sbi, EXTENT_CACHE);
760 break;
761 case Opt_noinline_data:
762 clear_opt(sbi, INLINE_DATA);
763 break;
764 case Opt_data_flush:
765 set_opt(sbi, DATA_FLUSH);
766 break;
767 case Opt_reserve_root:
768 if (args->from && match_int(args, &arg))
769 return -EINVAL;
770 if (test_opt(sbi, RESERVE_ROOT)) {
771 f2fs_info(sbi, "Preserve previous reserve_root=%u",
772 F2FS_OPTION(sbi).root_reserved_blocks);
773 } else {
774 F2FS_OPTION(sbi).root_reserved_blocks = arg;
775 set_opt(sbi, RESERVE_ROOT);
776 }
777 break;
778 case Opt_resuid:
779 if (args->from && match_int(args, &arg))
780 return -EINVAL;
781 uid = make_kuid(current_user_ns(), arg);
782 if (!uid_valid(uid)) {
783 f2fs_err(sbi, "Invalid uid value %d", arg);
784 return -EINVAL;
785 }
786 F2FS_OPTION(sbi).s_resuid = uid;
787 break;
788 case Opt_resgid:
789 if (args->from && match_int(args, &arg))
790 return -EINVAL;
791 gid = make_kgid(current_user_ns(), arg);
792 if (!gid_valid(gid)) {
793 f2fs_err(sbi, "Invalid gid value %d", arg);
794 return -EINVAL;
795 }
796 F2FS_OPTION(sbi).s_resgid = gid;
797 break;
798 case Opt_mode:
799 name = match_strdup(&args[0]);
800
801 if (!name)
802 return -ENOMEM;
803 if (!strcmp(name, "adaptive")) {
804 if (f2fs_sb_has_blkzoned(sbi)) {
805 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
806 kfree(name);
807 return -EINVAL;
808 }
809 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
810 } else if (!strcmp(name, "lfs")) {
811 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
812 } else {
813 kfree(name);
814 return -EINVAL;
815 }
816 kfree(name);
817 break;
818 case Opt_io_size_bits:
819 if (args->from && match_int(args, &arg))
820 return -EINVAL;
821 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
822 f2fs_warn(sbi, "Not support %d, larger than %d",
823 1 << arg, BIO_MAX_VECS);
824 return -EINVAL;
825 }
826 F2FS_OPTION(sbi).write_io_size_bits = arg;
827 break;
828#ifdef CONFIG_F2FS_FAULT_INJECTION
829 case Opt_fault_injection:
830 if (args->from && match_int(args, &arg))
831 return -EINVAL;
832 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
833 set_opt(sbi, FAULT_INJECTION);
834 break;
835
836 case Opt_fault_type:
837 if (args->from && match_int(args, &arg))
838 return -EINVAL;
839 f2fs_build_fault_attr(sbi, 0, arg);
840 set_opt(sbi, FAULT_INJECTION);
841 break;
842#else
843 case Opt_fault_injection:
844 f2fs_info(sbi, "fault_injection options not supported");
845 break;
846
847 case Opt_fault_type:
848 f2fs_info(sbi, "fault_type options not supported");
849 break;
850#endif
851 case Opt_lazytime:
852 sb->s_flags |= SB_LAZYTIME;
853 break;
854 case Opt_nolazytime:
855 sb->s_flags &= ~SB_LAZYTIME;
856 break;
857#ifdef CONFIG_QUOTA
858 case Opt_quota:
859 case Opt_usrquota:
860 set_opt(sbi, USRQUOTA);
861 break;
862 case Opt_grpquota:
863 set_opt(sbi, GRPQUOTA);
864 break;
865 case Opt_prjquota:
866 set_opt(sbi, PRJQUOTA);
867 break;
868 case Opt_usrjquota:
869 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
870 if (ret)
871 return ret;
872 break;
873 case Opt_grpjquota:
874 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
875 if (ret)
876 return ret;
877 break;
878 case Opt_prjjquota:
879 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
880 if (ret)
881 return ret;
882 break;
883 case Opt_offusrjquota:
884 ret = f2fs_clear_qf_name(sb, USRQUOTA);
885 if (ret)
886 return ret;
887 break;
888 case Opt_offgrpjquota:
889 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
890 if (ret)
891 return ret;
892 break;
893 case Opt_offprjjquota:
894 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
895 if (ret)
896 return ret;
897 break;
898 case Opt_jqfmt_vfsold:
899 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
900 break;
901 case Opt_jqfmt_vfsv0:
902 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
903 break;
904 case Opt_jqfmt_vfsv1:
905 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
906 break;
907 case Opt_noquota:
908 clear_opt(sbi, QUOTA);
909 clear_opt(sbi, USRQUOTA);
910 clear_opt(sbi, GRPQUOTA);
911 clear_opt(sbi, PRJQUOTA);
912 break;
913#else
914 case Opt_quota:
915 case Opt_usrquota:
916 case Opt_grpquota:
917 case Opt_prjquota:
918 case Opt_usrjquota:
919 case Opt_grpjquota:
920 case Opt_prjjquota:
921 case Opt_offusrjquota:
922 case Opt_offgrpjquota:
923 case Opt_offprjjquota:
924 case Opt_jqfmt_vfsold:
925 case Opt_jqfmt_vfsv0:
926 case Opt_jqfmt_vfsv1:
927 case Opt_noquota:
928 f2fs_info(sbi, "quota operations not supported");
929 break;
930#endif
931 case Opt_whint:
932 name = match_strdup(&args[0]);
933 if (!name)
934 return -ENOMEM;
935 if (!strcmp(name, "user-based")) {
936 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
937 } else if (!strcmp(name, "off")) {
938 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
939 } else if (!strcmp(name, "fs-based")) {
940 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
941 } else {
942 kfree(name);
943 return -EINVAL;
944 }
945 kfree(name);
946 break;
947 case Opt_alloc:
948 name = match_strdup(&args[0]);
949 if (!name)
950 return -ENOMEM;
951
952 if (!strcmp(name, "default")) {
953 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
954 } else if (!strcmp(name, "reuse")) {
955 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
956 } else {
957 kfree(name);
958 return -EINVAL;
959 }
960 kfree(name);
961 break;
962 case Opt_fsync:
963 name = match_strdup(&args[0]);
964 if (!name)
965 return -ENOMEM;
966 if (!strcmp(name, "posix")) {
967 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
968 } else if (!strcmp(name, "strict")) {
969 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
970 } else if (!strcmp(name, "nobarrier")) {
971 F2FS_OPTION(sbi).fsync_mode =
972 FSYNC_MODE_NOBARRIER;
973 } else {
974 kfree(name);
975 return -EINVAL;
976 }
977 kfree(name);
978 break;
979 case Opt_test_dummy_encryption:
980 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
981 is_remount);
982 if (ret)
983 return ret;
984 break;
985 case Opt_inlinecrypt:
986#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
987 sb->s_flags |= SB_INLINECRYPT;
988#else
989 f2fs_info(sbi, "inline encryption not supported");
990#endif
991 break;
992 case Opt_checkpoint_disable_cap_perc:
993 if (args->from && match_int(args, &arg))
994 return -EINVAL;
995 if (arg < 0 || arg > 100)
996 return -EINVAL;
997 F2FS_OPTION(sbi).unusable_cap_perc = arg;
998 set_opt(sbi, DISABLE_CHECKPOINT);
999 break;
1000 case Opt_checkpoint_disable_cap:
1001 if (args->from && match_int(args, &arg))
1002 return -EINVAL;
1003 F2FS_OPTION(sbi).unusable_cap = arg;
1004 set_opt(sbi, DISABLE_CHECKPOINT);
1005 break;
1006 case Opt_checkpoint_disable:
1007 set_opt(sbi, DISABLE_CHECKPOINT);
1008 break;
1009 case Opt_checkpoint_enable:
1010 clear_opt(sbi, DISABLE_CHECKPOINT);
1011 break;
1012 case Opt_checkpoint_merge:
1013 set_opt(sbi, MERGE_CHECKPOINT);
1014 break;
1015 case Opt_nocheckpoint_merge:
1016 clear_opt(sbi, MERGE_CHECKPOINT);
1017 break;
1018#ifdef CONFIG_F2FS_FS_COMPRESSION
1019 case Opt_compress_algorithm:
1020 if (!f2fs_sb_has_compression(sbi)) {
1021 f2fs_info(sbi, "Image doesn't support compression");
1022 break;
1023 }
1024 name = match_strdup(&args[0]);
1025 if (!name)
1026 return -ENOMEM;
1027 if (!strcmp(name, "lzo")) {
1028#ifdef CONFIG_F2FS_FS_LZO
1029 F2FS_OPTION(sbi).compress_level = 0;
1030 F2FS_OPTION(sbi).compress_algorithm =
1031 COMPRESS_LZO;
1032#else
1033 f2fs_info(sbi, "kernel doesn't support lzo compression");
1034#endif
1035 } else if (!strncmp(name, "lz4", 3)) {
1036#ifdef CONFIG_F2FS_FS_LZ4
1037 ret = f2fs_set_lz4hc_level(sbi, name);
1038 if (ret) {
1039 kfree(name);
1040 return -EINVAL;
1041 }
1042 F2FS_OPTION(sbi).compress_algorithm =
1043 COMPRESS_LZ4;
1044#else
1045 f2fs_info(sbi, "kernel doesn't support lz4 compression");
1046#endif
1047 } else if (!strncmp(name, "zstd", 4)) {
1048#ifdef CONFIG_F2FS_FS_ZSTD
1049 ret = f2fs_set_zstd_level(sbi, name);
1050 if (ret) {
1051 kfree(name);
1052 return -EINVAL;
1053 }
1054 F2FS_OPTION(sbi).compress_algorithm =
1055 COMPRESS_ZSTD;
1056#else
1057 f2fs_info(sbi, "kernel doesn't support zstd compression");
1058#endif
1059 } else if (!strcmp(name, "lzo-rle")) {
1060#ifdef CONFIG_F2FS_FS_LZORLE
1061 F2FS_OPTION(sbi).compress_level = 0;
1062 F2FS_OPTION(sbi).compress_algorithm =
1063 COMPRESS_LZORLE;
1064#else
1065 f2fs_info(sbi, "kernel doesn't support lzorle compression");
1066#endif
1067 } else {
1068 kfree(name);
1069 return -EINVAL;
1070 }
1071 kfree(name);
1072 break;
1073 case Opt_compress_log_size:
1074 if (!f2fs_sb_has_compression(sbi)) {
1075 f2fs_info(sbi, "Image doesn't support compression");
1076 break;
1077 }
1078 if (args->from && match_int(args, &arg))
1079 return -EINVAL;
1080 if (arg < MIN_COMPRESS_LOG_SIZE ||
1081 arg > MAX_COMPRESS_LOG_SIZE) {
1082 f2fs_err(sbi,
1083 "Compress cluster log size is out of range");
1084 return -EINVAL;
1085 }
1086 F2FS_OPTION(sbi).compress_log_size = arg;
1087 break;
1088 case Opt_compress_extension:
1089 if (!f2fs_sb_has_compression(sbi)) {
1090 f2fs_info(sbi, "Image doesn't support compression");
1091 break;
1092 }
1093 name = match_strdup(&args[0]);
1094 if (!name)
1095 return -ENOMEM;
1096
1097 ext = F2FS_OPTION(sbi).extensions;
1098 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1099
1100 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1101 ext_cnt >= COMPRESS_EXT_NUM) {
1102 f2fs_err(sbi,
1103 "invalid extension length/number");
1104 kfree(name);
1105 return -EINVAL;
1106 }
1107
1108 strcpy(ext[ext_cnt], name);
1109 F2FS_OPTION(sbi).compress_ext_cnt++;
1110 kfree(name);
1111 break;
1112 case Opt_nocompress_extension:
1113 if (!f2fs_sb_has_compression(sbi)) {
1114 f2fs_info(sbi, "Image doesn't support compression");
1115 break;
1116 }
1117 name = match_strdup(&args[0]);
1118 if (!name)
1119 return -ENOMEM;
1120
1121 noext = F2FS_OPTION(sbi).noextensions;
1122 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1123
1124 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1125 noext_cnt >= COMPRESS_EXT_NUM) {
1126 f2fs_err(sbi,
1127 "invalid extension length/number");
1128 kfree(name);
1129 return -EINVAL;
1130 }
1131
1132 strcpy(noext[noext_cnt], name);
1133 F2FS_OPTION(sbi).nocompress_ext_cnt++;
1134 kfree(name);
1135 break;
1136 case Opt_compress_chksum:
1137 F2FS_OPTION(sbi).compress_chksum = true;
1138 break;
1139 case Opt_compress_mode:
1140 name = match_strdup(&args[0]);
1141 if (!name)
1142 return -ENOMEM;
1143 if (!strcmp(name, "fs")) {
1144 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1145 } else if (!strcmp(name, "user")) {
1146 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1147 } else {
1148 kfree(name);
1149 return -EINVAL;
1150 }
1151 kfree(name);
1152 break;
1153 case Opt_compress_cache:
1154 set_opt(sbi, COMPRESS_CACHE);
1155 break;
1156#else
1157 case Opt_compress_algorithm:
1158 case Opt_compress_log_size:
1159 case Opt_compress_extension:
1160 case Opt_nocompress_extension:
1161 case Opt_compress_chksum:
1162 case Opt_compress_mode:
1163 case Opt_compress_cache:
1164 f2fs_info(sbi, "compression options not supported");
1165 break;
1166#endif
1167 case Opt_atgc:
1168 set_opt(sbi, ATGC);
1169 break;
1170 case Opt_gc_merge:
1171 set_opt(sbi, GC_MERGE);
1172 break;
1173 case Opt_nogc_merge:
1174 clear_opt(sbi, GC_MERGE);
1175 break;
1176 default:
1177 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1178 p);
1179 return -EINVAL;
1180 }
1181 }
1182default_check:
1183#ifdef CONFIG_QUOTA
1184 if (f2fs_check_quota_options(sbi))
1185 return -EINVAL;
1186#else
1187 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1188 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1189 return -EINVAL;
1190 }
1191 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1192 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1193 return -EINVAL;
1194 }
1195#endif
1196#ifndef CONFIG_UNICODE
1197 if (f2fs_sb_has_casefold(sbi)) {
1198 f2fs_err(sbi,
1199 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1200 return -EINVAL;
1201 }
1202#endif
1203 /*
1204 * The BLKZONED feature indicates that the drive was formatted with
1205 * zone alignment optimization. This is optional for host-aware
1206 * devices, but mandatory for host-managed zoned block devices.
1207 */
1208#ifndef CONFIG_BLK_DEV_ZONED
1209 if (f2fs_sb_has_blkzoned(sbi)) {
1210 f2fs_err(sbi, "Zoned block device support is not enabled");
1211 return -EINVAL;
1212 }
1213#endif
1214
1215#ifdef CONFIG_F2FS_FS_COMPRESSION
1216 if (f2fs_test_compress_extension(sbi)) {
1217 f2fs_err(sbi, "invalid compress or nocompress extension");
1218 return -EINVAL;
1219 }
1220#endif
1221
1222 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1223 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1224 F2FS_IO_SIZE_KB(sbi));
1225 return -EINVAL;
1226 }
1227
1228 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1229 int min_size, max_size;
1230
1231 if (!f2fs_sb_has_extra_attr(sbi) ||
1232 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1233 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1234 return -EINVAL;
1235 }
1236 if (!test_opt(sbi, INLINE_XATTR)) {
1237 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1238 return -EINVAL;
1239 }
1240
1241 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1242 max_size = MAX_INLINE_XATTR_SIZE;
1243
1244 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1245 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1246 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1247 min_size, max_size);
1248 return -EINVAL;
1249 }
1250 }
1251
1252 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1253 f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1254 return -EINVAL;
1255 }
1256
1257 /* Not pass down write hints if the number of active logs is lesser
1258 * than NR_CURSEG_PERSIST_TYPE.
1259 */
1260 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1261 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1262
1263 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1264 f2fs_err(sbi, "Allow to mount readonly mode only");
1265 return -EROFS;
1266 }
1267 return 0;
1268}
1269
1270static struct inode *f2fs_alloc_inode(struct super_block *sb)
1271{
1272 struct f2fs_inode_info *fi;
1273
1274 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1275 if (!fi)
1276 return NULL;
1277
1278 init_once((void *) fi);
1279
1280 /* Initialize f2fs-specific inode info */
1281 atomic_set(&fi->dirty_pages, 0);
1282 atomic_set(&fi->i_compr_blocks, 0);
1283 init_rwsem(&fi->i_sem);
1284 spin_lock_init(&fi->i_size_lock);
1285 INIT_LIST_HEAD(&fi->dirty_list);
1286 INIT_LIST_HEAD(&fi->gdirty_list);
1287 INIT_LIST_HEAD(&fi->inmem_ilist);
1288 INIT_LIST_HEAD(&fi->inmem_pages);
1289 mutex_init(&fi->inmem_lock);
1290 init_rwsem(&fi->i_gc_rwsem[READ]);
1291 init_rwsem(&fi->i_gc_rwsem[WRITE]);
1292 init_rwsem(&fi->i_mmap_sem);
1293 init_rwsem(&fi->i_xattr_sem);
1294
1295 /* Will be used by directory only */
1296 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1297
1298 return &fi->vfs_inode;
1299}
1300
1301static int f2fs_drop_inode(struct inode *inode)
1302{
1303 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1304 int ret;
1305
1306 /*
1307 * during filesystem shutdown, if checkpoint is disabled,
1308 * drop useless meta/node dirty pages.
1309 */
1310 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1311 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1312 inode->i_ino == F2FS_META_INO(sbi)) {
1313 trace_f2fs_drop_inode(inode, 1);
1314 return 1;
1315 }
1316 }
1317
1318 /*
1319 * This is to avoid a deadlock condition like below.
1320 * writeback_single_inode(inode)
1321 * - f2fs_write_data_page
1322 * - f2fs_gc -> iput -> evict
1323 * - inode_wait_for_writeback(inode)
1324 */
1325 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1326 if (!inode->i_nlink && !is_bad_inode(inode)) {
1327 /* to avoid evict_inode call simultaneously */
1328 atomic_inc(&inode->i_count);
1329 spin_unlock(&inode->i_lock);
1330
1331 /* some remained atomic pages should discarded */
1332 if (f2fs_is_atomic_file(inode))
1333 f2fs_drop_inmem_pages(inode);
1334
1335 /* should remain fi->extent_tree for writepage */
1336 f2fs_destroy_extent_node(inode);
1337
1338 sb_start_intwrite(inode->i_sb);
1339 f2fs_i_size_write(inode, 0);
1340
1341 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1342 inode, NULL, 0, DATA);
1343 truncate_inode_pages_final(inode->i_mapping);
1344
1345 if (F2FS_HAS_BLOCKS(inode))
1346 f2fs_truncate(inode);
1347
1348 sb_end_intwrite(inode->i_sb);
1349
1350 spin_lock(&inode->i_lock);
1351 atomic_dec(&inode->i_count);
1352 }
1353 trace_f2fs_drop_inode(inode, 0);
1354 return 0;
1355 }
1356 ret = generic_drop_inode(inode);
1357 if (!ret)
1358 ret = fscrypt_drop_inode(inode);
1359 trace_f2fs_drop_inode(inode, ret);
1360 return ret;
1361}
1362
1363int f2fs_inode_dirtied(struct inode *inode, bool sync)
1364{
1365 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1366 int ret = 0;
1367
1368 spin_lock(&sbi->inode_lock[DIRTY_META]);
1369 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1370 ret = 1;
1371 } else {
1372 set_inode_flag(inode, FI_DIRTY_INODE);
1373 stat_inc_dirty_inode(sbi, DIRTY_META);
1374 }
1375 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1376 list_add_tail(&F2FS_I(inode)->gdirty_list,
1377 &sbi->inode_list[DIRTY_META]);
1378 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1379 }
1380 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1381 return ret;
1382}
1383
1384void f2fs_inode_synced(struct inode *inode)
1385{
1386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1387
1388 spin_lock(&sbi->inode_lock[DIRTY_META]);
1389 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1390 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1391 return;
1392 }
1393 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1394 list_del_init(&F2FS_I(inode)->gdirty_list);
1395 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1396 }
1397 clear_inode_flag(inode, FI_DIRTY_INODE);
1398 clear_inode_flag(inode, FI_AUTO_RECOVER);
1399 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1400 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1401}
1402
1403/*
1404 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1405 *
1406 * We should call set_dirty_inode to write the dirty inode through write_inode.
1407 */
1408static void f2fs_dirty_inode(struct inode *inode, int flags)
1409{
1410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1411
1412 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1413 inode->i_ino == F2FS_META_INO(sbi))
1414 return;
1415
1416 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1417 clear_inode_flag(inode, FI_AUTO_RECOVER);
1418
1419 f2fs_inode_dirtied(inode, false);
1420}
1421
1422static void f2fs_free_inode(struct inode *inode)
1423{
1424 fscrypt_free_inode(inode);
1425 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1426}
1427
1428static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1429{
1430 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1431 percpu_counter_destroy(&sbi->total_valid_inode_count);
1432}
1433
1434static void destroy_device_list(struct f2fs_sb_info *sbi)
1435{
1436 int i;
1437
1438 for (i = 0; i < sbi->s_ndevs; i++) {
1439 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1440#ifdef CONFIG_BLK_DEV_ZONED
1441 kvfree(FDEV(i).blkz_seq);
1442 kfree(FDEV(i).zone_capacity_blocks);
1443#endif
1444 }
1445 kvfree(sbi->devs);
1446}
1447
1448static void f2fs_put_super(struct super_block *sb)
1449{
1450 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1451 int i;
1452 bool dropped;
1453
1454 /* unregister procfs/sysfs entries in advance to avoid race case */
1455 f2fs_unregister_sysfs(sbi);
1456
1457 f2fs_quota_off_umount(sb);
1458
1459 /* prevent remaining shrinker jobs */
1460 mutex_lock(&sbi->umount_mutex);
1461
1462 /*
1463 * flush all issued checkpoints and stop checkpoint issue thread.
1464 * after then, all checkpoints should be done by each process context.
1465 */
1466 f2fs_stop_ckpt_thread(sbi);
1467
1468 /*
1469 * We don't need to do checkpoint when superblock is clean.
1470 * But, the previous checkpoint was not done by umount, it needs to do
1471 * clean checkpoint again.
1472 */
1473 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1474 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1475 struct cp_control cpc = {
1476 .reason = CP_UMOUNT,
1477 };
1478 f2fs_write_checkpoint(sbi, &cpc);
1479 }
1480
1481 /* be sure to wait for any on-going discard commands */
1482 dropped = f2fs_issue_discard_timeout(sbi);
1483
1484 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1485 !sbi->discard_blks && !dropped) {
1486 struct cp_control cpc = {
1487 .reason = CP_UMOUNT | CP_TRIMMED,
1488 };
1489 f2fs_write_checkpoint(sbi, &cpc);
1490 }
1491
1492 /*
1493 * normally superblock is clean, so we need to release this.
1494 * In addition, EIO will skip do checkpoint, we need this as well.
1495 */
1496 f2fs_release_ino_entry(sbi, true);
1497
1498 f2fs_leave_shrinker(sbi);
1499 mutex_unlock(&sbi->umount_mutex);
1500
1501 /* our cp_error case, we can wait for any writeback page */
1502 f2fs_flush_merged_writes(sbi);
1503
1504 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1505
1506 f2fs_bug_on(sbi, sbi->fsync_node_num);
1507
1508 f2fs_destroy_compress_inode(sbi);
1509
1510 iput(sbi->node_inode);
1511 sbi->node_inode = NULL;
1512
1513 iput(sbi->meta_inode);
1514 sbi->meta_inode = NULL;
1515
1516 /*
1517 * iput() can update stat information, if f2fs_write_checkpoint()
1518 * above failed with error.
1519 */
1520 f2fs_destroy_stats(sbi);
1521
1522 /* destroy f2fs internal modules */
1523 f2fs_destroy_node_manager(sbi);
1524 f2fs_destroy_segment_manager(sbi);
1525
1526 f2fs_destroy_post_read_wq(sbi);
1527
1528 kvfree(sbi->ckpt);
1529
1530 sb->s_fs_info = NULL;
1531 if (sbi->s_chksum_driver)
1532 crypto_free_shash(sbi->s_chksum_driver);
1533 kfree(sbi->raw_super);
1534
1535 destroy_device_list(sbi);
1536 f2fs_destroy_page_array_cache(sbi);
1537 f2fs_destroy_xattr_caches(sbi);
1538 mempool_destroy(sbi->write_io_dummy);
1539#ifdef CONFIG_QUOTA
1540 for (i = 0; i < MAXQUOTAS; i++)
1541 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1542#endif
1543 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1544 destroy_percpu_info(sbi);
1545 for (i = 0; i < NR_PAGE_TYPE; i++)
1546 kvfree(sbi->write_io[i]);
1547#ifdef CONFIG_UNICODE
1548 utf8_unload(sb->s_encoding);
1549#endif
1550 kfree(sbi);
1551}
1552
1553int f2fs_sync_fs(struct super_block *sb, int sync)
1554{
1555 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1556 int err = 0;
1557
1558 if (unlikely(f2fs_cp_error(sbi)))
1559 return 0;
1560 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1561 return 0;
1562
1563 trace_f2fs_sync_fs(sb, sync);
1564
1565 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1566 return -EAGAIN;
1567
1568 if (sync)
1569 err = f2fs_issue_checkpoint(sbi);
1570
1571 return err;
1572}
1573
1574static int f2fs_freeze(struct super_block *sb)
1575{
1576 if (f2fs_readonly(sb))
1577 return 0;
1578
1579 /* IO error happened before */
1580 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1581 return -EIO;
1582
1583 /* must be clean, since sync_filesystem() was already called */
1584 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1585 return -EINVAL;
1586
1587 /* ensure no checkpoint required */
1588 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1589 return -EINVAL;
1590 return 0;
1591}
1592
1593static int f2fs_unfreeze(struct super_block *sb)
1594{
1595 return 0;
1596}
1597
1598#ifdef CONFIG_QUOTA
1599static int f2fs_statfs_project(struct super_block *sb,
1600 kprojid_t projid, struct kstatfs *buf)
1601{
1602 struct kqid qid;
1603 struct dquot *dquot;
1604 u64 limit;
1605 u64 curblock;
1606
1607 qid = make_kqid_projid(projid);
1608 dquot = dqget(sb, qid);
1609 if (IS_ERR(dquot))
1610 return PTR_ERR(dquot);
1611 spin_lock(&dquot->dq_dqb_lock);
1612
1613 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1614 dquot->dq_dqb.dqb_bhardlimit);
1615 if (limit)
1616 limit >>= sb->s_blocksize_bits;
1617
1618 if (limit && buf->f_blocks > limit) {
1619 curblock = (dquot->dq_dqb.dqb_curspace +
1620 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1621 buf->f_blocks = limit;
1622 buf->f_bfree = buf->f_bavail =
1623 (buf->f_blocks > curblock) ?
1624 (buf->f_blocks - curblock) : 0;
1625 }
1626
1627 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1628 dquot->dq_dqb.dqb_ihardlimit);
1629
1630 if (limit && buf->f_files > limit) {
1631 buf->f_files = limit;
1632 buf->f_ffree =
1633 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1634 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1635 }
1636
1637 spin_unlock(&dquot->dq_dqb_lock);
1638 dqput(dquot);
1639 return 0;
1640}
1641#endif
1642
1643static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1644{
1645 struct super_block *sb = dentry->d_sb;
1646 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1647 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1648 block_t total_count, user_block_count, start_count;
1649 u64 avail_node_count;
1650
1651 total_count = le64_to_cpu(sbi->raw_super->block_count);
1652 user_block_count = sbi->user_block_count;
1653 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1654 buf->f_type = F2FS_SUPER_MAGIC;
1655 buf->f_bsize = sbi->blocksize;
1656
1657 buf->f_blocks = total_count - start_count;
1658 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1659 sbi->current_reserved_blocks;
1660
1661 spin_lock(&sbi->stat_lock);
1662 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1663 buf->f_bfree = 0;
1664 else
1665 buf->f_bfree -= sbi->unusable_block_count;
1666 spin_unlock(&sbi->stat_lock);
1667
1668 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1669 buf->f_bavail = buf->f_bfree -
1670 F2FS_OPTION(sbi).root_reserved_blocks;
1671 else
1672 buf->f_bavail = 0;
1673
1674 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1675
1676 if (avail_node_count > user_block_count) {
1677 buf->f_files = user_block_count;
1678 buf->f_ffree = buf->f_bavail;
1679 } else {
1680 buf->f_files = avail_node_count;
1681 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1682 buf->f_bavail);
1683 }
1684
1685 buf->f_namelen = F2FS_NAME_LEN;
1686 buf->f_fsid = u64_to_fsid(id);
1687
1688#ifdef CONFIG_QUOTA
1689 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1690 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1691 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1692 }
1693#endif
1694 return 0;
1695}
1696
1697static inline void f2fs_show_quota_options(struct seq_file *seq,
1698 struct super_block *sb)
1699{
1700#ifdef CONFIG_QUOTA
1701 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1702
1703 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1704 char *fmtname = "";
1705
1706 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1707 case QFMT_VFS_OLD:
1708 fmtname = "vfsold";
1709 break;
1710 case QFMT_VFS_V0:
1711 fmtname = "vfsv0";
1712 break;
1713 case QFMT_VFS_V1:
1714 fmtname = "vfsv1";
1715 break;
1716 }
1717 seq_printf(seq, ",jqfmt=%s", fmtname);
1718 }
1719
1720 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1721 seq_show_option(seq, "usrjquota",
1722 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1723
1724 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1725 seq_show_option(seq, "grpjquota",
1726 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1727
1728 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1729 seq_show_option(seq, "prjjquota",
1730 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1731#endif
1732}
1733
1734#ifdef CONFIG_F2FS_FS_COMPRESSION
1735static inline void f2fs_show_compress_options(struct seq_file *seq,
1736 struct super_block *sb)
1737{
1738 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1739 char *algtype = "";
1740 int i;
1741
1742 if (!f2fs_sb_has_compression(sbi))
1743 return;
1744
1745 switch (F2FS_OPTION(sbi).compress_algorithm) {
1746 case COMPRESS_LZO:
1747 algtype = "lzo";
1748 break;
1749 case COMPRESS_LZ4:
1750 algtype = "lz4";
1751 break;
1752 case COMPRESS_ZSTD:
1753 algtype = "zstd";
1754 break;
1755 case COMPRESS_LZORLE:
1756 algtype = "lzo-rle";
1757 break;
1758 }
1759 seq_printf(seq, ",compress_algorithm=%s", algtype);
1760
1761 if (F2FS_OPTION(sbi).compress_level)
1762 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1763
1764 seq_printf(seq, ",compress_log_size=%u",
1765 F2FS_OPTION(sbi).compress_log_size);
1766
1767 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1768 seq_printf(seq, ",compress_extension=%s",
1769 F2FS_OPTION(sbi).extensions[i]);
1770 }
1771
1772 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1773 seq_printf(seq, ",nocompress_extension=%s",
1774 F2FS_OPTION(sbi).noextensions[i]);
1775 }
1776
1777 if (F2FS_OPTION(sbi).compress_chksum)
1778 seq_puts(seq, ",compress_chksum");
1779
1780 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1781 seq_printf(seq, ",compress_mode=%s", "fs");
1782 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1783 seq_printf(seq, ",compress_mode=%s", "user");
1784
1785 if (test_opt(sbi, COMPRESS_CACHE))
1786 seq_puts(seq, ",compress_cache");
1787}
1788#endif
1789
1790static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1791{
1792 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1793
1794 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1795 seq_printf(seq, ",background_gc=%s", "sync");
1796 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1797 seq_printf(seq, ",background_gc=%s", "on");
1798 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1799 seq_printf(seq, ",background_gc=%s", "off");
1800
1801 if (test_opt(sbi, GC_MERGE))
1802 seq_puts(seq, ",gc_merge");
1803
1804 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1805 seq_puts(seq, ",disable_roll_forward");
1806 if (test_opt(sbi, NORECOVERY))
1807 seq_puts(seq, ",norecovery");
1808 if (test_opt(sbi, DISCARD))
1809 seq_puts(seq, ",discard");
1810 else
1811 seq_puts(seq, ",nodiscard");
1812 if (test_opt(sbi, NOHEAP))
1813 seq_puts(seq, ",no_heap");
1814 else
1815 seq_puts(seq, ",heap");
1816#ifdef CONFIG_F2FS_FS_XATTR
1817 if (test_opt(sbi, XATTR_USER))
1818 seq_puts(seq, ",user_xattr");
1819 else
1820 seq_puts(seq, ",nouser_xattr");
1821 if (test_opt(sbi, INLINE_XATTR))
1822 seq_puts(seq, ",inline_xattr");
1823 else
1824 seq_puts(seq, ",noinline_xattr");
1825 if (test_opt(sbi, INLINE_XATTR_SIZE))
1826 seq_printf(seq, ",inline_xattr_size=%u",
1827 F2FS_OPTION(sbi).inline_xattr_size);
1828#endif
1829#ifdef CONFIG_F2FS_FS_POSIX_ACL
1830 if (test_opt(sbi, POSIX_ACL))
1831 seq_puts(seq, ",acl");
1832 else
1833 seq_puts(seq, ",noacl");
1834#endif
1835 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1836 seq_puts(seq, ",disable_ext_identify");
1837 if (test_opt(sbi, INLINE_DATA))
1838 seq_puts(seq, ",inline_data");
1839 else
1840 seq_puts(seq, ",noinline_data");
1841 if (test_opt(sbi, INLINE_DENTRY))
1842 seq_puts(seq, ",inline_dentry");
1843 else
1844 seq_puts(seq, ",noinline_dentry");
1845 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1846 seq_puts(seq, ",flush_merge");
1847 if (test_opt(sbi, NOBARRIER))
1848 seq_puts(seq, ",nobarrier");
1849 if (test_opt(sbi, FASTBOOT))
1850 seq_puts(seq, ",fastboot");
1851 if (test_opt(sbi, EXTENT_CACHE))
1852 seq_puts(seq, ",extent_cache");
1853 else
1854 seq_puts(seq, ",noextent_cache");
1855 if (test_opt(sbi, DATA_FLUSH))
1856 seq_puts(seq, ",data_flush");
1857
1858 seq_puts(seq, ",mode=");
1859 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1860 seq_puts(seq, "adaptive");
1861 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1862 seq_puts(seq, "lfs");
1863 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1864 if (test_opt(sbi, RESERVE_ROOT))
1865 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1866 F2FS_OPTION(sbi).root_reserved_blocks,
1867 from_kuid_munged(&init_user_ns,
1868 F2FS_OPTION(sbi).s_resuid),
1869 from_kgid_munged(&init_user_ns,
1870 F2FS_OPTION(sbi).s_resgid));
1871 if (F2FS_IO_SIZE_BITS(sbi))
1872 seq_printf(seq, ",io_bits=%u",
1873 F2FS_OPTION(sbi).write_io_size_bits);
1874#ifdef CONFIG_F2FS_FAULT_INJECTION
1875 if (test_opt(sbi, FAULT_INJECTION)) {
1876 seq_printf(seq, ",fault_injection=%u",
1877 F2FS_OPTION(sbi).fault_info.inject_rate);
1878 seq_printf(seq, ",fault_type=%u",
1879 F2FS_OPTION(sbi).fault_info.inject_type);
1880 }
1881#endif
1882#ifdef CONFIG_QUOTA
1883 if (test_opt(sbi, QUOTA))
1884 seq_puts(seq, ",quota");
1885 if (test_opt(sbi, USRQUOTA))
1886 seq_puts(seq, ",usrquota");
1887 if (test_opt(sbi, GRPQUOTA))
1888 seq_puts(seq, ",grpquota");
1889 if (test_opt(sbi, PRJQUOTA))
1890 seq_puts(seq, ",prjquota");
1891#endif
1892 f2fs_show_quota_options(seq, sbi->sb);
1893 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1894 seq_printf(seq, ",whint_mode=%s", "user-based");
1895 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1896 seq_printf(seq, ",whint_mode=%s", "fs-based");
1897
1898 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1899
1900 if (sbi->sb->s_flags & SB_INLINECRYPT)
1901 seq_puts(seq, ",inlinecrypt");
1902
1903 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1904 seq_printf(seq, ",alloc_mode=%s", "default");
1905 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1906 seq_printf(seq, ",alloc_mode=%s", "reuse");
1907
1908 if (test_opt(sbi, DISABLE_CHECKPOINT))
1909 seq_printf(seq, ",checkpoint=disable:%u",
1910 F2FS_OPTION(sbi).unusable_cap);
1911 if (test_opt(sbi, MERGE_CHECKPOINT))
1912 seq_puts(seq, ",checkpoint_merge");
1913 else
1914 seq_puts(seq, ",nocheckpoint_merge");
1915 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1916 seq_printf(seq, ",fsync_mode=%s", "posix");
1917 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1918 seq_printf(seq, ",fsync_mode=%s", "strict");
1919 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1920 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1921
1922#ifdef CONFIG_F2FS_FS_COMPRESSION
1923 f2fs_show_compress_options(seq, sbi->sb);
1924#endif
1925
1926 if (test_opt(sbi, ATGC))
1927 seq_puts(seq, ",atgc");
1928 return 0;
1929}
1930
1931static void default_options(struct f2fs_sb_info *sbi)
1932{
1933 /* init some FS parameters */
1934 if (f2fs_sb_has_readonly(sbi))
1935 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1936 else
1937 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1938
1939 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1940 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1941 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1942 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1943 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1944 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1945 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1946 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1947 F2FS_OPTION(sbi).compress_ext_cnt = 0;
1948 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1949 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1950
1951 sbi->sb->s_flags &= ~SB_INLINECRYPT;
1952
1953 set_opt(sbi, INLINE_XATTR);
1954 set_opt(sbi, INLINE_DATA);
1955 set_opt(sbi, INLINE_DENTRY);
1956 set_opt(sbi, EXTENT_CACHE);
1957 set_opt(sbi, NOHEAP);
1958 clear_opt(sbi, DISABLE_CHECKPOINT);
1959 set_opt(sbi, MERGE_CHECKPOINT);
1960 F2FS_OPTION(sbi).unusable_cap = 0;
1961 sbi->sb->s_flags |= SB_LAZYTIME;
1962 set_opt(sbi, FLUSH_MERGE);
1963 set_opt(sbi, DISCARD);
1964 if (f2fs_sb_has_blkzoned(sbi))
1965 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1966 else
1967 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1968
1969#ifdef CONFIG_F2FS_FS_XATTR
1970 set_opt(sbi, XATTR_USER);
1971#endif
1972#ifdef CONFIG_F2FS_FS_POSIX_ACL
1973 set_opt(sbi, POSIX_ACL);
1974#endif
1975
1976 f2fs_build_fault_attr(sbi, 0, 0);
1977}
1978
1979#ifdef CONFIG_QUOTA
1980static int f2fs_enable_quotas(struct super_block *sb);
1981#endif
1982
1983static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1984{
1985 unsigned int s_flags = sbi->sb->s_flags;
1986 struct cp_control cpc;
1987 int err = 0;
1988 int ret;
1989 block_t unusable;
1990
1991 if (s_flags & SB_RDONLY) {
1992 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1993 return -EINVAL;
1994 }
1995 sbi->sb->s_flags |= SB_ACTIVE;
1996
1997 f2fs_update_time(sbi, DISABLE_TIME);
1998
1999 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2000 down_write(&sbi->gc_lock);
2001 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2002 if (err == -ENODATA) {
2003 err = 0;
2004 break;
2005 }
2006 if (err && err != -EAGAIN)
2007 break;
2008 }
2009
2010 ret = sync_filesystem(sbi->sb);
2011 if (ret || err) {
2012 err = ret ? ret : err;
2013 goto restore_flag;
2014 }
2015
2016 unusable = f2fs_get_unusable_blocks(sbi);
2017 if (f2fs_disable_cp_again(sbi, unusable)) {
2018 err = -EAGAIN;
2019 goto restore_flag;
2020 }
2021
2022 down_write(&sbi->gc_lock);
2023 cpc.reason = CP_PAUSE;
2024 set_sbi_flag(sbi, SBI_CP_DISABLED);
2025 err = f2fs_write_checkpoint(sbi, &cpc);
2026 if (err)
2027 goto out_unlock;
2028
2029 spin_lock(&sbi->stat_lock);
2030 sbi->unusable_block_count = unusable;
2031 spin_unlock(&sbi->stat_lock);
2032
2033out_unlock:
2034 up_write(&sbi->gc_lock);
2035restore_flag:
2036 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2037 return err;
2038}
2039
2040static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2041{
2042 int retry = DEFAULT_RETRY_IO_COUNT;
2043
2044 /* we should flush all the data to keep data consistency */
2045 do {
2046 sync_inodes_sb(sbi->sb);
2047 cond_resched();
2048 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2049 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2050
2051 if (unlikely(retry < 0))
2052 f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2053
2054 down_write(&sbi->gc_lock);
2055 f2fs_dirty_to_prefree(sbi);
2056
2057 clear_sbi_flag(sbi, SBI_CP_DISABLED);
2058 set_sbi_flag(sbi, SBI_IS_DIRTY);
2059 up_write(&sbi->gc_lock);
2060
2061 f2fs_sync_fs(sbi->sb, 1);
2062}
2063
2064static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2065{
2066 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2067 struct f2fs_mount_info org_mount_opt;
2068 unsigned long old_sb_flags;
2069 int err;
2070 bool need_restart_gc = false, need_stop_gc = false;
2071 bool need_restart_ckpt = false, need_stop_ckpt = false;
2072 bool need_restart_flush = false, need_stop_flush = false;
2073 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2074 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2075 bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2076 bool no_atgc = !test_opt(sbi, ATGC);
2077 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2078#ifdef CONFIG_QUOTA
2079 int i, j;
2080#endif
2081
2082 /*
2083 * Save the old mount options in case we
2084 * need to restore them.
2085 */
2086 org_mount_opt = sbi->mount_opt;
2087 old_sb_flags = sb->s_flags;
2088
2089#ifdef CONFIG_QUOTA
2090 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2091 for (i = 0; i < MAXQUOTAS; i++) {
2092 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2093 org_mount_opt.s_qf_names[i] =
2094 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2095 GFP_KERNEL);
2096 if (!org_mount_opt.s_qf_names[i]) {
2097 for (j = 0; j < i; j++)
2098 kfree(org_mount_opt.s_qf_names[j]);
2099 return -ENOMEM;
2100 }
2101 } else {
2102 org_mount_opt.s_qf_names[i] = NULL;
2103 }
2104 }
2105#endif
2106
2107 /* recover superblocks we couldn't write due to previous RO mount */
2108 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2109 err = f2fs_commit_super(sbi, false);
2110 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2111 err);
2112 if (!err)
2113 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2114 }
2115
2116 default_options(sbi);
2117
2118 /* parse mount options */
2119 err = parse_options(sb, data, true);
2120 if (err)
2121 goto restore_opts;
2122
2123 /*
2124 * Previous and new state of filesystem is RO,
2125 * so skip checking GC and FLUSH_MERGE conditions.
2126 */
2127 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2128 goto skip;
2129
2130 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2131 err = -EROFS;
2132 goto restore_opts;
2133 }
2134
2135#ifdef CONFIG_QUOTA
2136 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2137 err = dquot_suspend(sb, -1);
2138 if (err < 0)
2139 goto restore_opts;
2140 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2141 /* dquot_resume needs RW */
2142 sb->s_flags &= ~SB_RDONLY;
2143 if (sb_any_quota_suspended(sb)) {
2144 dquot_resume(sb, -1);
2145 } else if (f2fs_sb_has_quota_ino(sbi)) {
2146 err = f2fs_enable_quotas(sb);
2147 if (err)
2148 goto restore_opts;
2149 }
2150 }
2151#endif
2152 /* disallow enable atgc dynamically */
2153 if (no_atgc == !!test_opt(sbi, ATGC)) {
2154 err = -EINVAL;
2155 f2fs_warn(sbi, "switch atgc option is not allowed");
2156 goto restore_opts;
2157 }
2158
2159 /* disallow enable/disable extent_cache dynamically */
2160 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2161 err = -EINVAL;
2162 f2fs_warn(sbi, "switch extent_cache option is not allowed");
2163 goto restore_opts;
2164 }
2165
2166 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2167 err = -EINVAL;
2168 f2fs_warn(sbi, "switch io_bits option is not allowed");
2169 goto restore_opts;
2170 }
2171
2172 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2173 err = -EINVAL;
2174 f2fs_warn(sbi, "switch compress_cache option is not allowed");
2175 goto restore_opts;
2176 }
2177
2178 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2179 err = -EINVAL;
2180 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2181 goto restore_opts;
2182 }
2183
2184 /*
2185 * We stop the GC thread if FS is mounted as RO
2186 * or if background_gc = off is passed in mount
2187 * option. Also sync the filesystem.
2188 */
2189 if ((*flags & SB_RDONLY) ||
2190 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2191 !test_opt(sbi, GC_MERGE))) {
2192 if (sbi->gc_thread) {
2193 f2fs_stop_gc_thread(sbi);
2194 need_restart_gc = true;
2195 }
2196 } else if (!sbi->gc_thread) {
2197 err = f2fs_start_gc_thread(sbi);
2198 if (err)
2199 goto restore_opts;
2200 need_stop_gc = true;
2201 }
2202
2203 if (*flags & SB_RDONLY ||
2204 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2205 sync_inodes_sb(sb);
2206
2207 set_sbi_flag(sbi, SBI_IS_DIRTY);
2208 set_sbi_flag(sbi, SBI_IS_CLOSE);
2209 f2fs_sync_fs(sb, 1);
2210 clear_sbi_flag(sbi, SBI_IS_CLOSE);
2211 }
2212
2213 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2214 !test_opt(sbi, MERGE_CHECKPOINT)) {
2215 f2fs_stop_ckpt_thread(sbi);
2216 need_restart_ckpt = true;
2217 } else {
2218 err = f2fs_start_ckpt_thread(sbi);
2219 if (err) {
2220 f2fs_err(sbi,
2221 "Failed to start F2FS issue_checkpoint_thread (%d)",
2222 err);
2223 goto restore_gc;
2224 }
2225 need_stop_ckpt = true;
2226 }
2227
2228 /*
2229 * We stop issue flush thread if FS is mounted as RO
2230 * or if flush_merge is not passed in mount option.
2231 */
2232 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2233 clear_opt(sbi, FLUSH_MERGE);
2234 f2fs_destroy_flush_cmd_control(sbi, false);
2235 need_restart_flush = true;
2236 } else {
2237 err = f2fs_create_flush_cmd_control(sbi);
2238 if (err)
2239 goto restore_ckpt;
2240 need_stop_flush = true;
2241 }
2242
2243 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2244 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2245 err = f2fs_disable_checkpoint(sbi);
2246 if (err)
2247 goto restore_flush;
2248 } else {
2249 f2fs_enable_checkpoint(sbi);
2250 }
2251 }
2252
2253skip:
2254#ifdef CONFIG_QUOTA
2255 /* Release old quota file names */
2256 for (i = 0; i < MAXQUOTAS; i++)
2257 kfree(org_mount_opt.s_qf_names[i]);
2258#endif
2259 /* Update the POSIXACL Flag */
2260 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2261 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2262
2263 limit_reserve_root(sbi);
2264 adjust_unusable_cap_perc(sbi);
2265 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2266 return 0;
2267restore_flush:
2268 if (need_restart_flush) {
2269 if (f2fs_create_flush_cmd_control(sbi))
2270 f2fs_warn(sbi, "background flush thread has stopped");
2271 } else if (need_stop_flush) {
2272 clear_opt(sbi, FLUSH_MERGE);
2273 f2fs_destroy_flush_cmd_control(sbi, false);
2274 }
2275restore_ckpt:
2276 if (need_restart_ckpt) {
2277 if (f2fs_start_ckpt_thread(sbi))
2278 f2fs_warn(sbi, "background ckpt thread has stopped");
2279 } else if (need_stop_ckpt) {
2280 f2fs_stop_ckpt_thread(sbi);
2281 }
2282restore_gc:
2283 if (need_restart_gc) {
2284 if (f2fs_start_gc_thread(sbi))
2285 f2fs_warn(sbi, "background gc thread has stopped");
2286 } else if (need_stop_gc) {
2287 f2fs_stop_gc_thread(sbi);
2288 }
2289restore_opts:
2290#ifdef CONFIG_QUOTA
2291 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2292 for (i = 0; i < MAXQUOTAS; i++) {
2293 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2294 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2295 }
2296#endif
2297 sbi->mount_opt = org_mount_opt;
2298 sb->s_flags = old_sb_flags;
2299 return err;
2300}
2301
2302#ifdef CONFIG_QUOTA
2303/* Read data from quotafile */
2304static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2305 size_t len, loff_t off)
2306{
2307 struct inode *inode = sb_dqopt(sb)->files[type];
2308 struct address_space *mapping = inode->i_mapping;
2309 block_t blkidx = F2FS_BYTES_TO_BLK(off);
2310 int offset = off & (sb->s_blocksize - 1);
2311 int tocopy;
2312 size_t toread;
2313 loff_t i_size = i_size_read(inode);
2314 struct page *page;
2315 char *kaddr;
2316
2317 if (off > i_size)
2318 return 0;
2319
2320 if (off + len > i_size)
2321 len = i_size - off;
2322 toread = len;
2323 while (toread > 0) {
2324 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2325repeat:
2326 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2327 if (IS_ERR(page)) {
2328 if (PTR_ERR(page) == -ENOMEM) {
2329 congestion_wait(BLK_RW_ASYNC,
2330 DEFAULT_IO_TIMEOUT);
2331 goto repeat;
2332 }
2333 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2334 return PTR_ERR(page);
2335 }
2336
2337 lock_page(page);
2338
2339 if (unlikely(page->mapping != mapping)) {
2340 f2fs_put_page(page, 1);
2341 goto repeat;
2342 }
2343 if (unlikely(!PageUptodate(page))) {
2344 f2fs_put_page(page, 1);
2345 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2346 return -EIO;
2347 }
2348
2349 kaddr = kmap_atomic(page);
2350 memcpy(data, kaddr + offset, tocopy);
2351 kunmap_atomic(kaddr);
2352 f2fs_put_page(page, 1);
2353
2354 offset = 0;
2355 toread -= tocopy;
2356 data += tocopy;
2357 blkidx++;
2358 }
2359 return len;
2360}
2361
2362/* Write to quotafile */
2363static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2364 const char *data, size_t len, loff_t off)
2365{
2366 struct inode *inode = sb_dqopt(sb)->files[type];
2367 struct address_space *mapping = inode->i_mapping;
2368 const struct address_space_operations *a_ops = mapping->a_ops;
2369 int offset = off & (sb->s_blocksize - 1);
2370 size_t towrite = len;
2371 struct page *page;
2372 void *fsdata = NULL;
2373 char *kaddr;
2374 int err = 0;
2375 int tocopy;
2376
2377 while (towrite > 0) {
2378 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2379 towrite);
2380retry:
2381 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2382 &page, &fsdata);
2383 if (unlikely(err)) {
2384 if (err == -ENOMEM) {
2385 congestion_wait(BLK_RW_ASYNC,
2386 DEFAULT_IO_TIMEOUT);
2387 goto retry;
2388 }
2389 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2390 break;
2391 }
2392
2393 kaddr = kmap_atomic(page);
2394 memcpy(kaddr + offset, data, tocopy);
2395 kunmap_atomic(kaddr);
2396 flush_dcache_page(page);
2397
2398 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2399 page, fsdata);
2400 offset = 0;
2401 towrite -= tocopy;
2402 off += tocopy;
2403 data += tocopy;
2404 cond_resched();
2405 }
2406
2407 if (len == towrite)
2408 return err;
2409 inode->i_mtime = inode->i_ctime = current_time(inode);
2410 f2fs_mark_inode_dirty_sync(inode, false);
2411 return len - towrite;
2412}
2413
2414static struct dquot **f2fs_get_dquots(struct inode *inode)
2415{
2416 return F2FS_I(inode)->i_dquot;
2417}
2418
2419static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2420{
2421 return &F2FS_I(inode)->i_reserved_quota;
2422}
2423
2424static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2425{
2426 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2427 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2428 return 0;
2429 }
2430
2431 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2432 F2FS_OPTION(sbi).s_jquota_fmt, type);
2433}
2434
2435int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2436{
2437 int enabled = 0;
2438 int i, err;
2439
2440 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2441 err = f2fs_enable_quotas(sbi->sb);
2442 if (err) {
2443 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2444 return 0;
2445 }
2446 return 1;
2447 }
2448
2449 for (i = 0; i < MAXQUOTAS; i++) {
2450 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2451 err = f2fs_quota_on_mount(sbi, i);
2452 if (!err) {
2453 enabled = 1;
2454 continue;
2455 }
2456 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2457 err, i);
2458 }
2459 }
2460 return enabled;
2461}
2462
2463static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2464 unsigned int flags)
2465{
2466 struct inode *qf_inode;
2467 unsigned long qf_inum;
2468 int err;
2469
2470 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2471
2472 qf_inum = f2fs_qf_ino(sb, type);
2473 if (!qf_inum)
2474 return -EPERM;
2475
2476 qf_inode = f2fs_iget(sb, qf_inum);
2477 if (IS_ERR(qf_inode)) {
2478 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2479 return PTR_ERR(qf_inode);
2480 }
2481
2482 /* Don't account quota for quota files to avoid recursion */
2483 qf_inode->i_flags |= S_NOQUOTA;
2484 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2485 iput(qf_inode);
2486 return err;
2487}
2488
2489static int f2fs_enable_quotas(struct super_block *sb)
2490{
2491 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2492 int type, err = 0;
2493 unsigned long qf_inum;
2494 bool quota_mopt[MAXQUOTAS] = {
2495 test_opt(sbi, USRQUOTA),
2496 test_opt(sbi, GRPQUOTA),
2497 test_opt(sbi, PRJQUOTA),
2498 };
2499
2500 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2501 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2502 return 0;
2503 }
2504
2505 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2506
2507 for (type = 0; type < MAXQUOTAS; type++) {
2508 qf_inum = f2fs_qf_ino(sb, type);
2509 if (qf_inum) {
2510 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2511 DQUOT_USAGE_ENABLED |
2512 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2513 if (err) {
2514 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2515 type, err);
2516 for (type--; type >= 0; type--)
2517 dquot_quota_off(sb, type);
2518 set_sbi_flag(F2FS_SB(sb),
2519 SBI_QUOTA_NEED_REPAIR);
2520 return err;
2521 }
2522 }
2523 }
2524 return 0;
2525}
2526
2527static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2528{
2529 struct quota_info *dqopt = sb_dqopt(sbi->sb);
2530 struct address_space *mapping = dqopt->files[type]->i_mapping;
2531 int ret = 0;
2532
2533 ret = dquot_writeback_dquots(sbi->sb, type);
2534 if (ret)
2535 goto out;
2536
2537 ret = filemap_fdatawrite(mapping);
2538 if (ret)
2539 goto out;
2540
2541 /* if we are using journalled quota */
2542 if (is_journalled_quota(sbi))
2543 goto out;
2544
2545 ret = filemap_fdatawait(mapping);
2546
2547 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2548out:
2549 if (ret)
2550 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2551 return ret;
2552}
2553
2554int f2fs_quota_sync(struct super_block *sb, int type)
2555{
2556 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2557 struct quota_info *dqopt = sb_dqopt(sb);
2558 int cnt;
2559 int ret;
2560
2561 /*
2562 * Now when everything is written we can discard the pagecache so
2563 * that userspace sees the changes.
2564 */
2565 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2566
2567 if (type != -1 && cnt != type)
2568 continue;
2569
2570 if (!sb_has_quota_active(sb, type))
2571 return 0;
2572
2573 inode_lock(dqopt->files[cnt]);
2574
2575 /*
2576 * do_quotactl
2577 * f2fs_quota_sync
2578 * down_read(quota_sem)
2579 * dquot_writeback_dquots()
2580 * f2fs_dquot_commit
2581 * block_operation
2582 * down_read(quota_sem)
2583 */
2584 f2fs_lock_op(sbi);
2585 down_read(&sbi->quota_sem);
2586
2587 ret = f2fs_quota_sync_file(sbi, cnt);
2588
2589 up_read(&sbi->quota_sem);
2590 f2fs_unlock_op(sbi);
2591
2592 inode_unlock(dqopt->files[cnt]);
2593
2594 if (ret)
2595 break;
2596 }
2597 return ret;
2598}
2599
2600static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2601 const struct path *path)
2602{
2603 struct inode *inode;
2604 int err;
2605
2606 /* if quota sysfile exists, deny enabling quota with specific file */
2607 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2608 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2609 return -EBUSY;
2610 }
2611
2612 err = f2fs_quota_sync(sb, type);
2613 if (err)
2614 return err;
2615
2616 err = dquot_quota_on(sb, type, format_id, path);
2617 if (err)
2618 return err;
2619
2620 inode = d_inode(path->dentry);
2621
2622 inode_lock(inode);
2623 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2624 f2fs_set_inode_flags(inode);
2625 inode_unlock(inode);
2626 f2fs_mark_inode_dirty_sync(inode, false);
2627
2628 return 0;
2629}
2630
2631static int __f2fs_quota_off(struct super_block *sb, int type)
2632{
2633 struct inode *inode = sb_dqopt(sb)->files[type];
2634 int err;
2635
2636 if (!inode || !igrab(inode))
2637 return dquot_quota_off(sb, type);
2638
2639 err = f2fs_quota_sync(sb, type);
2640 if (err)
2641 goto out_put;
2642
2643 err = dquot_quota_off(sb, type);
2644 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2645 goto out_put;
2646
2647 inode_lock(inode);
2648 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2649 f2fs_set_inode_flags(inode);
2650 inode_unlock(inode);
2651 f2fs_mark_inode_dirty_sync(inode, false);
2652out_put:
2653 iput(inode);
2654 return err;
2655}
2656
2657static int f2fs_quota_off(struct super_block *sb, int type)
2658{
2659 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2660 int err;
2661
2662 err = __f2fs_quota_off(sb, type);
2663
2664 /*
2665 * quotactl can shutdown journalled quota, result in inconsistence
2666 * between quota record and fs data by following updates, tag the
2667 * flag to let fsck be aware of it.
2668 */
2669 if (is_journalled_quota(sbi))
2670 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2671 return err;
2672}
2673
2674void f2fs_quota_off_umount(struct super_block *sb)
2675{
2676 int type;
2677 int err;
2678
2679 for (type = 0; type < MAXQUOTAS; type++) {
2680 err = __f2fs_quota_off(sb, type);
2681 if (err) {
2682 int ret = dquot_quota_off(sb, type);
2683
2684 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2685 type, err, ret);
2686 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2687 }
2688 }
2689 /*
2690 * In case of checkpoint=disable, we must flush quota blocks.
2691 * This can cause NULL exception for node_inode in end_io, since
2692 * put_super already dropped it.
2693 */
2694 sync_filesystem(sb);
2695}
2696
2697static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2698{
2699 struct quota_info *dqopt = sb_dqopt(sb);
2700 int type;
2701
2702 for (type = 0; type < MAXQUOTAS; type++) {
2703 if (!dqopt->files[type])
2704 continue;
2705 f2fs_inode_synced(dqopt->files[type]);
2706 }
2707}
2708
2709static int f2fs_dquot_commit(struct dquot *dquot)
2710{
2711 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2712 int ret;
2713
2714 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2715 ret = dquot_commit(dquot);
2716 if (ret < 0)
2717 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2718 up_read(&sbi->quota_sem);
2719 return ret;
2720}
2721
2722static int f2fs_dquot_acquire(struct dquot *dquot)
2723{
2724 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2725 int ret;
2726
2727 down_read(&sbi->quota_sem);
2728 ret = dquot_acquire(dquot);
2729 if (ret < 0)
2730 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2731 up_read(&sbi->quota_sem);
2732 return ret;
2733}
2734
2735static int f2fs_dquot_release(struct dquot *dquot)
2736{
2737 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2738 int ret = dquot_release(dquot);
2739
2740 if (ret < 0)
2741 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2742 return ret;
2743}
2744
2745static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2746{
2747 struct super_block *sb = dquot->dq_sb;
2748 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2749 int ret = dquot_mark_dquot_dirty(dquot);
2750
2751 /* if we are using journalled quota */
2752 if (is_journalled_quota(sbi))
2753 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2754
2755 return ret;
2756}
2757
2758static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2759{
2760 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2761 int ret = dquot_commit_info(sb, type);
2762
2763 if (ret < 0)
2764 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2765 return ret;
2766}
2767
2768static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2769{
2770 *projid = F2FS_I(inode)->i_projid;
2771 return 0;
2772}
2773
2774static const struct dquot_operations f2fs_quota_operations = {
2775 .get_reserved_space = f2fs_get_reserved_space,
2776 .write_dquot = f2fs_dquot_commit,
2777 .acquire_dquot = f2fs_dquot_acquire,
2778 .release_dquot = f2fs_dquot_release,
2779 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
2780 .write_info = f2fs_dquot_commit_info,
2781 .alloc_dquot = dquot_alloc,
2782 .destroy_dquot = dquot_destroy,
2783 .get_projid = f2fs_get_projid,
2784 .get_next_id = dquot_get_next_id,
2785};
2786
2787static const struct quotactl_ops f2fs_quotactl_ops = {
2788 .quota_on = f2fs_quota_on,
2789 .quota_off = f2fs_quota_off,
2790 .quota_sync = f2fs_quota_sync,
2791 .get_state = dquot_get_state,
2792 .set_info = dquot_set_dqinfo,
2793 .get_dqblk = dquot_get_dqblk,
2794 .set_dqblk = dquot_set_dqblk,
2795 .get_nextdqblk = dquot_get_next_dqblk,
2796};
2797#else
2798int f2fs_quota_sync(struct super_block *sb, int type)
2799{
2800 return 0;
2801}
2802
2803void f2fs_quota_off_umount(struct super_block *sb)
2804{
2805}
2806#endif
2807
2808static const struct super_operations f2fs_sops = {
2809 .alloc_inode = f2fs_alloc_inode,
2810 .free_inode = f2fs_free_inode,
2811 .drop_inode = f2fs_drop_inode,
2812 .write_inode = f2fs_write_inode,
2813 .dirty_inode = f2fs_dirty_inode,
2814 .show_options = f2fs_show_options,
2815#ifdef CONFIG_QUOTA
2816 .quota_read = f2fs_quota_read,
2817 .quota_write = f2fs_quota_write,
2818 .get_dquots = f2fs_get_dquots,
2819#endif
2820 .evict_inode = f2fs_evict_inode,
2821 .put_super = f2fs_put_super,
2822 .sync_fs = f2fs_sync_fs,
2823 .freeze_fs = f2fs_freeze,
2824 .unfreeze_fs = f2fs_unfreeze,
2825 .statfs = f2fs_statfs,
2826 .remount_fs = f2fs_remount,
2827};
2828
2829#ifdef CONFIG_FS_ENCRYPTION
2830static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2831{
2832 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2833 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2834 ctx, len, NULL);
2835}
2836
2837static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2838 void *fs_data)
2839{
2840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2841
2842 /*
2843 * Encrypting the root directory is not allowed because fsck
2844 * expects lost+found directory to exist and remain unencrypted
2845 * if LOST_FOUND feature is enabled.
2846 *
2847 */
2848 if (f2fs_sb_has_lost_found(sbi) &&
2849 inode->i_ino == F2FS_ROOT_INO(sbi))
2850 return -EPERM;
2851
2852 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2853 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2854 ctx, len, fs_data, XATTR_CREATE);
2855}
2856
2857static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2858{
2859 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2860}
2861
2862static bool f2fs_has_stable_inodes(struct super_block *sb)
2863{
2864 return true;
2865}
2866
2867static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2868 int *ino_bits_ret, int *lblk_bits_ret)
2869{
2870 *ino_bits_ret = 8 * sizeof(nid_t);
2871 *lblk_bits_ret = 8 * sizeof(block_t);
2872}
2873
2874static int f2fs_get_num_devices(struct super_block *sb)
2875{
2876 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2877
2878 if (f2fs_is_multi_device(sbi))
2879 return sbi->s_ndevs;
2880 return 1;
2881}
2882
2883static void f2fs_get_devices(struct super_block *sb,
2884 struct request_queue **devs)
2885{
2886 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2887 int i;
2888
2889 for (i = 0; i < sbi->s_ndevs; i++)
2890 devs[i] = bdev_get_queue(FDEV(i).bdev);
2891}
2892
2893static const struct fscrypt_operations f2fs_cryptops = {
2894 .key_prefix = "f2fs:",
2895 .get_context = f2fs_get_context,
2896 .set_context = f2fs_set_context,
2897 .get_dummy_policy = f2fs_get_dummy_policy,
2898 .empty_dir = f2fs_empty_dir,
2899 .max_namelen = F2FS_NAME_LEN,
2900 .has_stable_inodes = f2fs_has_stable_inodes,
2901 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits,
2902 .get_num_devices = f2fs_get_num_devices,
2903 .get_devices = f2fs_get_devices,
2904};
2905#endif
2906
2907static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2908 u64 ino, u32 generation)
2909{
2910 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2911 struct inode *inode;
2912
2913 if (f2fs_check_nid_range(sbi, ino))
2914 return ERR_PTR(-ESTALE);
2915
2916 /*
2917 * f2fs_iget isn't quite right if the inode is currently unallocated!
2918 * However f2fs_iget currently does appropriate checks to handle stale
2919 * inodes so everything is OK.
2920 */
2921 inode = f2fs_iget(sb, ino);
2922 if (IS_ERR(inode))
2923 return ERR_CAST(inode);
2924 if (unlikely(generation && inode->i_generation != generation)) {
2925 /* we didn't find the right inode.. */
2926 iput(inode);
2927 return ERR_PTR(-ESTALE);
2928 }
2929 return inode;
2930}
2931
2932static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2933 int fh_len, int fh_type)
2934{
2935 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2936 f2fs_nfs_get_inode);
2937}
2938
2939static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2940 int fh_len, int fh_type)
2941{
2942 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2943 f2fs_nfs_get_inode);
2944}
2945
2946static const struct export_operations f2fs_export_ops = {
2947 .fh_to_dentry = f2fs_fh_to_dentry,
2948 .fh_to_parent = f2fs_fh_to_parent,
2949 .get_parent = f2fs_get_parent,
2950};
2951
2952loff_t max_file_blocks(struct inode *inode)
2953{
2954 loff_t result = 0;
2955 loff_t leaf_count;
2956
2957 /*
2958 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2959 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2960 * space in inode.i_addr, it will be more safe to reassign
2961 * result as zero.
2962 */
2963
2964 if (inode && f2fs_compressed_file(inode))
2965 leaf_count = ADDRS_PER_BLOCK(inode);
2966 else
2967 leaf_count = DEF_ADDRS_PER_BLOCK;
2968
2969 /* two direct node blocks */
2970 result += (leaf_count * 2);
2971
2972 /* two indirect node blocks */
2973 leaf_count *= NIDS_PER_BLOCK;
2974 result += (leaf_count * 2);
2975
2976 /* one double indirect node block */
2977 leaf_count *= NIDS_PER_BLOCK;
2978 result += leaf_count;
2979
2980 return result;
2981}
2982
2983static int __f2fs_commit_super(struct buffer_head *bh,
2984 struct f2fs_super_block *super)
2985{
2986 lock_buffer(bh);
2987 if (super)
2988 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2989 set_buffer_dirty(bh);
2990 unlock_buffer(bh);
2991
2992 /* it's rare case, we can do fua all the time */
2993 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2994}
2995
2996static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2997 struct buffer_head *bh)
2998{
2999 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3000 (bh->b_data + F2FS_SUPER_OFFSET);
3001 struct super_block *sb = sbi->sb;
3002 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3003 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3004 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3005 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3006 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3007 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3008 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3009 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3010 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3011 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3012 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3013 u32 segment_count = le32_to_cpu(raw_super->segment_count);
3014 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3015 u64 main_end_blkaddr = main_blkaddr +
3016 (segment_count_main << log_blocks_per_seg);
3017 u64 seg_end_blkaddr = segment0_blkaddr +
3018 (segment_count << log_blocks_per_seg);
3019
3020 if (segment0_blkaddr != cp_blkaddr) {
3021 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3022 segment0_blkaddr, cp_blkaddr);
3023 return true;
3024 }
3025
3026 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3027 sit_blkaddr) {
3028 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3029 cp_blkaddr, sit_blkaddr,
3030 segment_count_ckpt << log_blocks_per_seg);
3031 return true;
3032 }
3033
3034 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3035 nat_blkaddr) {
3036 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3037 sit_blkaddr, nat_blkaddr,
3038 segment_count_sit << log_blocks_per_seg);
3039 return true;
3040 }
3041
3042 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3043 ssa_blkaddr) {
3044 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3045 nat_blkaddr, ssa_blkaddr,
3046 segment_count_nat << log_blocks_per_seg);
3047 return true;
3048 }
3049
3050 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3051 main_blkaddr) {
3052 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3053 ssa_blkaddr, main_blkaddr,
3054 segment_count_ssa << log_blocks_per_seg);
3055 return true;
3056 }
3057
3058 if (main_end_blkaddr > seg_end_blkaddr) {
3059 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3060 main_blkaddr, seg_end_blkaddr,
3061 segment_count_main << log_blocks_per_seg);
3062 return true;
3063 } else if (main_end_blkaddr < seg_end_blkaddr) {
3064 int err = 0;
3065 char *res;
3066
3067 /* fix in-memory information all the time */
3068 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3069 segment0_blkaddr) >> log_blocks_per_seg);
3070
3071 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3072 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3073 res = "internally";
3074 } else {
3075 err = __f2fs_commit_super(bh, NULL);
3076 res = err ? "failed" : "done";
3077 }
3078 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3079 res, main_blkaddr, seg_end_blkaddr,
3080 segment_count_main << log_blocks_per_seg);
3081 if (err)
3082 return true;
3083 }
3084 return false;
3085}
3086
3087static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3088 struct buffer_head *bh)
3089{
3090 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3091 block_t total_sections, blocks_per_seg;
3092 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3093 (bh->b_data + F2FS_SUPER_OFFSET);
3094 size_t crc_offset = 0;
3095 __u32 crc = 0;
3096
3097 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3098 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3099 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3100 return -EINVAL;
3101 }
3102
3103 /* Check checksum_offset and crc in superblock */
3104 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3105 crc_offset = le32_to_cpu(raw_super->checksum_offset);
3106 if (crc_offset !=
3107 offsetof(struct f2fs_super_block, crc)) {
3108 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3109 crc_offset);
3110 return -EFSCORRUPTED;
3111 }
3112 crc = le32_to_cpu(raw_super->crc);
3113 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3114 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3115 return -EFSCORRUPTED;
3116 }
3117 }
3118
3119 /* Currently, support only 4KB block size */
3120 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3121 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3122 le32_to_cpu(raw_super->log_blocksize),
3123 F2FS_BLKSIZE_BITS);
3124 return -EFSCORRUPTED;
3125 }
3126
3127 /* check log blocks per segment */
3128 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3129 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3130 le32_to_cpu(raw_super->log_blocks_per_seg));
3131 return -EFSCORRUPTED;
3132 }
3133
3134 /* Currently, support 512/1024/2048/4096 bytes sector size */
3135 if (le32_to_cpu(raw_super->log_sectorsize) >
3136 F2FS_MAX_LOG_SECTOR_SIZE ||
3137 le32_to_cpu(raw_super->log_sectorsize) <
3138 F2FS_MIN_LOG_SECTOR_SIZE) {
3139 f2fs_info(sbi, "Invalid log sectorsize (%u)",
3140 le32_to_cpu(raw_super->log_sectorsize));
3141 return -EFSCORRUPTED;
3142 }
3143 if (le32_to_cpu(raw_super->log_sectors_per_block) +
3144 le32_to_cpu(raw_super->log_sectorsize) !=
3145 F2FS_MAX_LOG_SECTOR_SIZE) {
3146 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3147 le32_to_cpu(raw_super->log_sectors_per_block),
3148 le32_to_cpu(raw_super->log_sectorsize));
3149 return -EFSCORRUPTED;
3150 }
3151
3152 segment_count = le32_to_cpu(raw_super->segment_count);
3153 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3154 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3155 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3156 total_sections = le32_to_cpu(raw_super->section_count);
3157
3158 /* blocks_per_seg should be 512, given the above check */
3159 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3160
3161 if (segment_count > F2FS_MAX_SEGMENT ||
3162 segment_count < F2FS_MIN_SEGMENTS) {
3163 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3164 return -EFSCORRUPTED;
3165 }
3166
3167 if (total_sections > segment_count_main || total_sections < 1 ||
3168 segs_per_sec > segment_count || !segs_per_sec) {
3169 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3170 segment_count, total_sections, segs_per_sec);
3171 return -EFSCORRUPTED;
3172 }
3173
3174 if (segment_count_main != total_sections * segs_per_sec) {
3175 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3176 segment_count_main, total_sections, segs_per_sec);
3177 return -EFSCORRUPTED;
3178 }
3179
3180 if ((segment_count / segs_per_sec) < total_sections) {
3181 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3182 segment_count, segs_per_sec, total_sections);
3183 return -EFSCORRUPTED;
3184 }
3185
3186 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3187 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3188 segment_count, le64_to_cpu(raw_super->block_count));
3189 return -EFSCORRUPTED;
3190 }
3191
3192 if (RDEV(0).path[0]) {
3193 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3194 int i = 1;
3195
3196 while (i < MAX_DEVICES && RDEV(i).path[0]) {
3197 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3198 i++;
3199 }
3200 if (segment_count != dev_seg_count) {
3201 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3202 segment_count, dev_seg_count);
3203 return -EFSCORRUPTED;
3204 }
3205 } else {
3206 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3207 !bdev_is_zoned(sbi->sb->s_bdev)) {
3208 f2fs_info(sbi, "Zoned block device path is missing");
3209 return -EFSCORRUPTED;
3210 }
3211 }
3212
3213 if (secs_per_zone > total_sections || !secs_per_zone) {
3214 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3215 secs_per_zone, total_sections);
3216 return -EFSCORRUPTED;
3217 }
3218 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3219 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3220 (le32_to_cpu(raw_super->extension_count) +
3221 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3222 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3223 le32_to_cpu(raw_super->extension_count),
3224 raw_super->hot_ext_count,
3225 F2FS_MAX_EXTENSION);
3226 return -EFSCORRUPTED;
3227 }
3228
3229 if (le32_to_cpu(raw_super->cp_payload) >=
3230 (blocks_per_seg - F2FS_CP_PACKS -
3231 NR_CURSEG_PERSIST_TYPE)) {
3232 f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3233 le32_to_cpu(raw_super->cp_payload),
3234 blocks_per_seg - F2FS_CP_PACKS -
3235 NR_CURSEG_PERSIST_TYPE);
3236 return -EFSCORRUPTED;
3237 }
3238
3239 /* check reserved ino info */
3240 if (le32_to_cpu(raw_super->node_ino) != 1 ||
3241 le32_to_cpu(raw_super->meta_ino) != 2 ||
3242 le32_to_cpu(raw_super->root_ino) != 3) {
3243 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3244 le32_to_cpu(raw_super->node_ino),
3245 le32_to_cpu(raw_super->meta_ino),
3246 le32_to_cpu(raw_super->root_ino));
3247 return -EFSCORRUPTED;
3248 }
3249
3250 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3251 if (sanity_check_area_boundary(sbi, bh))
3252 return -EFSCORRUPTED;
3253
3254 return 0;
3255}
3256
3257int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3258{
3259 unsigned int total, fsmeta;
3260 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3261 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3262 unsigned int ovp_segments, reserved_segments;
3263 unsigned int main_segs, blocks_per_seg;
3264 unsigned int sit_segs, nat_segs;
3265 unsigned int sit_bitmap_size, nat_bitmap_size;
3266 unsigned int log_blocks_per_seg;
3267 unsigned int segment_count_main;
3268 unsigned int cp_pack_start_sum, cp_payload;
3269 block_t user_block_count, valid_user_blocks;
3270 block_t avail_node_count, valid_node_count;
3271 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3272 int i, j;
3273
3274 total = le32_to_cpu(raw_super->segment_count);
3275 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3276 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3277 fsmeta += sit_segs;
3278 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3279 fsmeta += nat_segs;
3280 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3281 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3282
3283 if (unlikely(fsmeta >= total))
3284 return 1;
3285
3286 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3287 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3288
3289 if (!f2fs_sb_has_readonly(sbi) &&
3290 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3291 ovp_segments == 0 || reserved_segments == 0)) {
3292 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3293 return 1;
3294 }
3295 user_block_count = le64_to_cpu(ckpt->user_block_count);
3296 segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3297 (f2fs_sb_has_readonly(sbi) ? 1 : 0);
3298 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3299 if (!user_block_count || user_block_count >=
3300 segment_count_main << log_blocks_per_seg) {
3301 f2fs_err(sbi, "Wrong user_block_count: %u",
3302 user_block_count);
3303 return 1;
3304 }
3305
3306 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3307 if (valid_user_blocks > user_block_count) {
3308 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3309 valid_user_blocks, user_block_count);
3310 return 1;
3311 }
3312
3313 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3314 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3315 if (valid_node_count > avail_node_count) {
3316 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3317 valid_node_count, avail_node_count);
3318 return 1;
3319 }
3320
3321 main_segs = le32_to_cpu(raw_super->segment_count_main);
3322 blocks_per_seg = sbi->blocks_per_seg;
3323
3324 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3325 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3326 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3327 return 1;
3328
3329 if (f2fs_sb_has_readonly(sbi))
3330 goto check_data;
3331
3332 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3333 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3334 le32_to_cpu(ckpt->cur_node_segno[j])) {
3335 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3336 i, j,
3337 le32_to_cpu(ckpt->cur_node_segno[i]));
3338 return 1;
3339 }
3340 }
3341 }
3342check_data:
3343 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3344 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3345 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3346 return 1;
3347
3348 if (f2fs_sb_has_readonly(sbi))
3349 goto skip_cross;
3350
3351 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3352 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3353 le32_to_cpu(ckpt->cur_data_segno[j])) {
3354 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3355 i, j,
3356 le32_to_cpu(ckpt->cur_data_segno[i]));
3357 return 1;
3358 }
3359 }
3360 }
3361 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3362 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3363 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3364 le32_to_cpu(ckpt->cur_data_segno[j])) {
3365 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3366 i, j,
3367 le32_to_cpu(ckpt->cur_node_segno[i]));
3368 return 1;
3369 }
3370 }
3371 }
3372skip_cross:
3373 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3374 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3375
3376 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3377 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3378 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3379 sit_bitmap_size, nat_bitmap_size);
3380 return 1;
3381 }
3382
3383 cp_pack_start_sum = __start_sum_addr(sbi);
3384 cp_payload = __cp_payload(sbi);
3385 if (cp_pack_start_sum < cp_payload + 1 ||
3386 cp_pack_start_sum > blocks_per_seg - 1 -
3387 NR_CURSEG_PERSIST_TYPE) {
3388 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3389 cp_pack_start_sum);
3390 return 1;
3391 }
3392
3393 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3394 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3395 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3396 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3397 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3398 le32_to_cpu(ckpt->checksum_offset));
3399 return 1;
3400 }
3401
3402 nat_blocks = nat_segs << log_blocks_per_seg;
3403 nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3404 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3405 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3406 (cp_payload + F2FS_CP_PACKS +
3407 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3408 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3409 cp_payload, nat_bits_blocks);
3410 return -EFSCORRUPTED;
3411 }
3412
3413 if (unlikely(f2fs_cp_error(sbi))) {
3414 f2fs_err(sbi, "A bug case: need to run fsck");
3415 return 1;
3416 }
3417 return 0;
3418}
3419
3420static void init_sb_info(struct f2fs_sb_info *sbi)
3421{
3422 struct f2fs_super_block *raw_super = sbi->raw_super;
3423 int i;
3424
3425 sbi->log_sectors_per_block =
3426 le32_to_cpu(raw_super->log_sectors_per_block);
3427 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3428 sbi->blocksize = 1 << sbi->log_blocksize;
3429 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3430 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3431 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3432 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3433 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3434 sbi->total_node_count =
3435 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3436 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3437 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3438 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3439 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3440 sbi->cur_victim_sec = NULL_SECNO;
3441 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3442 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3443 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3444 sbi->migration_granularity = sbi->segs_per_sec;
3445
3446 sbi->dir_level = DEF_DIR_LEVEL;
3447 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3448 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3449 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3450 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3451 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3452 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3453 DEF_UMOUNT_DISCARD_TIMEOUT;
3454 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3455
3456 for (i = 0; i < NR_COUNT_TYPE; i++)
3457 atomic_set(&sbi->nr_pages[i], 0);
3458
3459 for (i = 0; i < META; i++)
3460 atomic_set(&sbi->wb_sync_req[i], 0);
3461
3462 INIT_LIST_HEAD(&sbi->s_list);
3463 mutex_init(&sbi->umount_mutex);
3464 init_rwsem(&sbi->io_order_lock);
3465 spin_lock_init(&sbi->cp_lock);
3466
3467 sbi->dirty_device = 0;
3468 spin_lock_init(&sbi->dev_lock);
3469
3470 init_rwsem(&sbi->sb_lock);
3471 init_rwsem(&sbi->pin_sem);
3472}
3473
3474static int init_percpu_info(struct f2fs_sb_info *sbi)
3475{
3476 int err;
3477
3478 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3479 if (err)
3480 return err;
3481
3482 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3483 GFP_KERNEL);
3484 if (err)
3485 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3486
3487 return err;
3488}
3489
3490#ifdef CONFIG_BLK_DEV_ZONED
3491
3492struct f2fs_report_zones_args {
3493 struct f2fs_dev_info *dev;
3494 bool zone_cap_mismatch;
3495};
3496
3497static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3498 void *data)
3499{
3500 struct f2fs_report_zones_args *rz_args = data;
3501
3502 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3503 return 0;
3504
3505 set_bit(idx, rz_args->dev->blkz_seq);
3506 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3507 F2FS_LOG_SECTORS_PER_BLOCK;
3508 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3509 rz_args->zone_cap_mismatch = true;
3510
3511 return 0;
3512}
3513
3514static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3515{
3516 struct block_device *bdev = FDEV(devi).bdev;
3517 sector_t nr_sectors = bdev_nr_sectors(bdev);
3518 struct f2fs_report_zones_args rep_zone_arg;
3519 int ret;
3520
3521 if (!f2fs_sb_has_blkzoned(sbi))
3522 return 0;
3523
3524 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3525 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3526 return -EINVAL;
3527 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3528 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3529 __ilog2_u32(sbi->blocks_per_blkz))
3530 return -EINVAL;
3531 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3532 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3533 sbi->log_blocks_per_blkz;
3534 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3535 FDEV(devi).nr_blkz++;
3536
3537 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3538 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3539 * sizeof(unsigned long),
3540 GFP_KERNEL);
3541 if (!FDEV(devi).blkz_seq)
3542 return -ENOMEM;
3543
3544 /* Get block zones type and zone-capacity */
3545 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3546 FDEV(devi).nr_blkz * sizeof(block_t),
3547 GFP_KERNEL);
3548 if (!FDEV(devi).zone_capacity_blocks)
3549 return -ENOMEM;
3550
3551 rep_zone_arg.dev = &FDEV(devi);
3552 rep_zone_arg.zone_cap_mismatch = false;
3553
3554 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3555 &rep_zone_arg);
3556 if (ret < 0)
3557 return ret;
3558
3559 if (!rep_zone_arg.zone_cap_mismatch) {
3560 kfree(FDEV(devi).zone_capacity_blocks);
3561 FDEV(devi).zone_capacity_blocks = NULL;
3562 }
3563
3564 return 0;
3565}
3566#endif
3567
3568/*
3569 * Read f2fs raw super block.
3570 * Because we have two copies of super block, so read both of them
3571 * to get the first valid one. If any one of them is broken, we pass
3572 * them recovery flag back to the caller.
3573 */
3574static int read_raw_super_block(struct f2fs_sb_info *sbi,
3575 struct f2fs_super_block **raw_super,
3576 int *valid_super_block, int *recovery)
3577{
3578 struct super_block *sb = sbi->sb;
3579 int block;
3580 struct buffer_head *bh;
3581 struct f2fs_super_block *super;
3582 int err = 0;
3583
3584 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3585 if (!super)
3586 return -ENOMEM;
3587
3588 for (block = 0; block < 2; block++) {
3589 bh = sb_bread(sb, block);
3590 if (!bh) {
3591 f2fs_err(sbi, "Unable to read %dth superblock",
3592 block + 1);
3593 err = -EIO;
3594 *recovery = 1;
3595 continue;
3596 }
3597
3598 /* sanity checking of raw super */
3599 err = sanity_check_raw_super(sbi, bh);
3600 if (err) {
3601 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3602 block + 1);
3603 brelse(bh);
3604 *recovery = 1;
3605 continue;
3606 }
3607
3608 if (!*raw_super) {
3609 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3610 sizeof(*super));
3611 *valid_super_block = block;
3612 *raw_super = super;
3613 }
3614 brelse(bh);
3615 }
3616
3617 /* No valid superblock */
3618 if (!*raw_super)
3619 kfree(super);
3620 else
3621 err = 0;
3622
3623 return err;
3624}
3625
3626int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3627{
3628 struct buffer_head *bh;
3629 __u32 crc = 0;
3630 int err;
3631
3632 if ((recover && f2fs_readonly(sbi->sb)) ||
3633 bdev_read_only(sbi->sb->s_bdev)) {
3634 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3635 return -EROFS;
3636 }
3637
3638 /* we should update superblock crc here */
3639 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3640 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3641 offsetof(struct f2fs_super_block, crc));
3642 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3643 }
3644
3645 /* write back-up superblock first */
3646 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3647 if (!bh)
3648 return -EIO;
3649 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3650 brelse(bh);
3651
3652 /* if we are in recovery path, skip writing valid superblock */
3653 if (recover || err)
3654 return err;
3655
3656 /* write current valid superblock */
3657 bh = sb_bread(sbi->sb, sbi->valid_super_block);
3658 if (!bh)
3659 return -EIO;
3660 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3661 brelse(bh);
3662 return err;
3663}
3664
3665static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3666{
3667 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3668 unsigned int max_devices = MAX_DEVICES;
3669 int i;
3670
3671 /* Initialize single device information */
3672 if (!RDEV(0).path[0]) {
3673 if (!bdev_is_zoned(sbi->sb->s_bdev))
3674 return 0;
3675 max_devices = 1;
3676 }
3677
3678 /*
3679 * Initialize multiple devices information, or single
3680 * zoned block device information.
3681 */
3682 sbi->devs = f2fs_kzalloc(sbi,
3683 array_size(max_devices,
3684 sizeof(struct f2fs_dev_info)),
3685 GFP_KERNEL);
3686 if (!sbi->devs)
3687 return -ENOMEM;
3688
3689 for (i = 0; i < max_devices; i++) {
3690
3691 if (i > 0 && !RDEV(i).path[0])
3692 break;
3693
3694 if (max_devices == 1) {
3695 /* Single zoned block device mount */
3696 FDEV(0).bdev =
3697 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3698 sbi->sb->s_mode, sbi->sb->s_type);
3699 } else {
3700 /* Multi-device mount */
3701 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3702 FDEV(i).total_segments =
3703 le32_to_cpu(RDEV(i).total_segments);
3704 if (i == 0) {
3705 FDEV(i).start_blk = 0;
3706 FDEV(i).end_blk = FDEV(i).start_blk +
3707 (FDEV(i).total_segments <<
3708 sbi->log_blocks_per_seg) - 1 +
3709 le32_to_cpu(raw_super->segment0_blkaddr);
3710 } else {
3711 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3712 FDEV(i).end_blk = FDEV(i).start_blk +
3713 (FDEV(i).total_segments <<
3714 sbi->log_blocks_per_seg) - 1;
3715 }
3716 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3717 sbi->sb->s_mode, sbi->sb->s_type);
3718 }
3719 if (IS_ERR(FDEV(i).bdev))
3720 return PTR_ERR(FDEV(i).bdev);
3721
3722 /* to release errored devices */
3723 sbi->s_ndevs = i + 1;
3724
3725#ifdef CONFIG_BLK_DEV_ZONED
3726 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3727 !f2fs_sb_has_blkzoned(sbi)) {
3728 f2fs_err(sbi, "Zoned block device feature not enabled");
3729 return -EINVAL;
3730 }
3731 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3732 if (init_blkz_info(sbi, i)) {
3733 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3734 return -EINVAL;
3735 }
3736 if (max_devices == 1)
3737 break;
3738 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3739 i, FDEV(i).path,
3740 FDEV(i).total_segments,
3741 FDEV(i).start_blk, FDEV(i).end_blk,
3742 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3743 "Host-aware" : "Host-managed");
3744 continue;
3745 }
3746#endif
3747 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3748 i, FDEV(i).path,
3749 FDEV(i).total_segments,
3750 FDEV(i).start_blk, FDEV(i).end_blk);
3751 }
3752 f2fs_info(sbi,
3753 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3754 return 0;
3755}
3756
3757static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3758{
3759#ifdef CONFIG_UNICODE
3760 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3761 const struct f2fs_sb_encodings *encoding_info;
3762 struct unicode_map *encoding;
3763 __u16 encoding_flags;
3764
3765 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3766 &encoding_flags)) {
3767 f2fs_err(sbi,
3768 "Encoding requested by superblock is unknown");
3769 return -EINVAL;
3770 }
3771
3772 encoding = utf8_load(encoding_info->version);
3773 if (IS_ERR(encoding)) {
3774 f2fs_err(sbi,
3775 "can't mount with superblock charset: %s-%s "
3776 "not supported by the kernel. flags: 0x%x.",
3777 encoding_info->name, encoding_info->version,
3778 encoding_flags);
3779 return PTR_ERR(encoding);
3780 }
3781 f2fs_info(sbi, "Using encoding defined by superblock: "
3782 "%s-%s with flags 0x%hx", encoding_info->name,
3783 encoding_info->version?:"\b", encoding_flags);
3784
3785 sbi->sb->s_encoding = encoding;
3786 sbi->sb->s_encoding_flags = encoding_flags;
3787 }
3788#else
3789 if (f2fs_sb_has_casefold(sbi)) {
3790 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3791 return -EINVAL;
3792 }
3793#endif
3794 return 0;
3795}
3796
3797static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3798{
3799 struct f2fs_sm_info *sm_i = SM_I(sbi);
3800
3801 /* adjust parameters according to the volume size */
3802 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3803 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3804 sm_i->dcc_info->discard_granularity = 1;
3805 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3806 }
3807
3808 sbi->readdir_ra = 1;
3809}
3810
3811static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3812{
3813 struct f2fs_sb_info *sbi;
3814 struct f2fs_super_block *raw_super;
3815 struct inode *root;
3816 int err;
3817 bool skip_recovery = false, need_fsck = false;
3818 char *options = NULL;
3819 int recovery, i, valid_super_block;
3820 struct curseg_info *seg_i;
3821 int retry_cnt = 1;
3822
3823try_onemore:
3824 err = -EINVAL;
3825 raw_super = NULL;
3826 valid_super_block = -1;
3827 recovery = 0;
3828
3829 /* allocate memory for f2fs-specific super block info */
3830 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3831 if (!sbi)
3832 return -ENOMEM;
3833
3834 sbi->sb = sb;
3835
3836 /* Load the checksum driver */
3837 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3838 if (IS_ERR(sbi->s_chksum_driver)) {
3839 f2fs_err(sbi, "Cannot load crc32 driver.");
3840 err = PTR_ERR(sbi->s_chksum_driver);
3841 sbi->s_chksum_driver = NULL;
3842 goto free_sbi;
3843 }
3844
3845 /* set a block size */
3846 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3847 f2fs_err(sbi, "unable to set blocksize");
3848 goto free_sbi;
3849 }
3850
3851 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3852 &recovery);
3853 if (err)
3854 goto free_sbi;
3855
3856 sb->s_fs_info = sbi;
3857 sbi->raw_super = raw_super;
3858
3859 /* precompute checksum seed for metadata */
3860 if (f2fs_sb_has_inode_chksum(sbi))
3861 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3862 sizeof(raw_super->uuid));
3863
3864 default_options(sbi);
3865 /* parse mount options */
3866 options = kstrdup((const char *)data, GFP_KERNEL);
3867 if (data && !options) {
3868 err = -ENOMEM;
3869 goto free_sb_buf;
3870 }
3871
3872 err = parse_options(sb, options, false);
3873 if (err)
3874 goto free_options;
3875
3876 sb->s_maxbytes = max_file_blocks(NULL) <<
3877 le32_to_cpu(raw_super->log_blocksize);
3878 sb->s_max_links = F2FS_LINK_MAX;
3879
3880 err = f2fs_setup_casefold(sbi);
3881 if (err)
3882 goto free_options;
3883
3884#ifdef CONFIG_QUOTA
3885 sb->dq_op = &f2fs_quota_operations;
3886 sb->s_qcop = &f2fs_quotactl_ops;
3887 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3888
3889 if (f2fs_sb_has_quota_ino(sbi)) {
3890 for (i = 0; i < MAXQUOTAS; i++) {
3891 if (f2fs_qf_ino(sbi->sb, i))
3892 sbi->nquota_files++;
3893 }
3894 }
3895#endif
3896
3897 sb->s_op = &f2fs_sops;
3898#ifdef CONFIG_FS_ENCRYPTION
3899 sb->s_cop = &f2fs_cryptops;
3900#endif
3901#ifdef CONFIG_FS_VERITY
3902 sb->s_vop = &f2fs_verityops;
3903#endif
3904 sb->s_xattr = f2fs_xattr_handlers;
3905 sb->s_export_op = &f2fs_export_ops;
3906 sb->s_magic = F2FS_SUPER_MAGIC;
3907 sb->s_time_gran = 1;
3908 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3909 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3910 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3911 sb->s_iflags |= SB_I_CGROUPWB;
3912
3913 /* init f2fs-specific super block info */
3914 sbi->valid_super_block = valid_super_block;
3915 init_rwsem(&sbi->gc_lock);
3916 mutex_init(&sbi->writepages);
3917 init_rwsem(&sbi->cp_global_sem);
3918 init_rwsem(&sbi->node_write);
3919 init_rwsem(&sbi->node_change);
3920
3921 /* disallow all the data/node/meta page writes */
3922 set_sbi_flag(sbi, SBI_POR_DOING);
3923 spin_lock_init(&sbi->stat_lock);
3924
3925 /* init iostat info */
3926 spin_lock_init(&sbi->iostat_lock);
3927 sbi->iostat_enable = false;
3928 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3929
3930 for (i = 0; i < NR_PAGE_TYPE; i++) {
3931 int n = (i == META) ? 1 : NR_TEMP_TYPE;
3932 int j;
3933
3934 sbi->write_io[i] =
3935 f2fs_kmalloc(sbi,
3936 array_size(n,
3937 sizeof(struct f2fs_bio_info)),
3938 GFP_KERNEL);
3939 if (!sbi->write_io[i]) {
3940 err = -ENOMEM;
3941 goto free_bio_info;
3942 }
3943
3944 for (j = HOT; j < n; j++) {
3945 init_rwsem(&sbi->write_io[i][j].io_rwsem);
3946 sbi->write_io[i][j].sbi = sbi;
3947 sbi->write_io[i][j].bio = NULL;
3948 spin_lock_init(&sbi->write_io[i][j].io_lock);
3949 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3950 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3951 init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3952 }
3953 }
3954
3955 init_rwsem(&sbi->cp_rwsem);
3956 init_rwsem(&sbi->quota_sem);
3957 init_waitqueue_head(&sbi->cp_wait);
3958 init_sb_info(sbi);
3959
3960 err = init_percpu_info(sbi);
3961 if (err)
3962 goto free_bio_info;
3963
3964 if (F2FS_IO_ALIGNED(sbi)) {
3965 sbi->write_io_dummy =
3966 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3967 if (!sbi->write_io_dummy) {
3968 err = -ENOMEM;
3969 goto free_percpu;
3970 }
3971 }
3972
3973 /* init per sbi slab cache */
3974 err = f2fs_init_xattr_caches(sbi);
3975 if (err)
3976 goto free_io_dummy;
3977 err = f2fs_init_page_array_cache(sbi);
3978 if (err)
3979 goto free_xattr_cache;
3980
3981 /* get an inode for meta space */
3982 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3983 if (IS_ERR(sbi->meta_inode)) {
3984 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3985 err = PTR_ERR(sbi->meta_inode);
3986 goto free_page_array_cache;
3987 }
3988
3989 err = f2fs_get_valid_checkpoint(sbi);
3990 if (err) {
3991 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3992 goto free_meta_inode;
3993 }
3994
3995 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3996 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3997 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3998 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3999 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4000 }
4001
4002 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4003 set_sbi_flag(sbi, SBI_NEED_FSCK);
4004
4005 /* Initialize device list */
4006 err = f2fs_scan_devices(sbi);
4007 if (err) {
4008 f2fs_err(sbi, "Failed to find devices");
4009 goto free_devices;
4010 }
4011
4012 err = f2fs_init_post_read_wq(sbi);
4013 if (err) {
4014 f2fs_err(sbi, "Failed to initialize post read workqueue");
4015 goto free_devices;
4016 }
4017
4018 sbi->total_valid_node_count =
4019 le32_to_cpu(sbi->ckpt->valid_node_count);
4020 percpu_counter_set(&sbi->total_valid_inode_count,
4021 le32_to_cpu(sbi->ckpt->valid_inode_count));
4022 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4023 sbi->total_valid_block_count =
4024 le64_to_cpu(sbi->ckpt->valid_block_count);
4025 sbi->last_valid_block_count = sbi->total_valid_block_count;
4026 sbi->reserved_blocks = 0;
4027 sbi->current_reserved_blocks = 0;
4028 limit_reserve_root(sbi);
4029 adjust_unusable_cap_perc(sbi);
4030
4031 for (i = 0; i < NR_INODE_TYPE; i++) {
4032 INIT_LIST_HEAD(&sbi->inode_list[i]);
4033 spin_lock_init(&sbi->inode_lock[i]);
4034 }
4035 mutex_init(&sbi->flush_lock);
4036
4037 f2fs_init_extent_cache_info(sbi);
4038
4039 f2fs_init_ino_entry_info(sbi);
4040
4041 f2fs_init_fsync_node_info(sbi);
4042
4043 /* setup checkpoint request control and start checkpoint issue thread */
4044 f2fs_init_ckpt_req_control(sbi);
4045 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4046 test_opt(sbi, MERGE_CHECKPOINT)) {
4047 err = f2fs_start_ckpt_thread(sbi);
4048 if (err) {
4049 f2fs_err(sbi,
4050 "Failed to start F2FS issue_checkpoint_thread (%d)",
4051 err);
4052 goto stop_ckpt_thread;
4053 }
4054 }
4055
4056 /* setup f2fs internal modules */
4057 err = f2fs_build_segment_manager(sbi);
4058 if (err) {
4059 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4060 err);
4061 goto free_sm;
4062 }
4063 err = f2fs_build_node_manager(sbi);
4064 if (err) {
4065 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4066 err);
4067 goto free_nm;
4068 }
4069
4070 /* For write statistics */
4071 sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4072
4073 /* Read accumulated write IO statistics if exists */
4074 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4075 if (__exist_node_summaries(sbi))
4076 sbi->kbytes_written =
4077 le64_to_cpu(seg_i->journal->info.kbytes_written);
4078
4079 f2fs_build_gc_manager(sbi);
4080
4081 err = f2fs_build_stats(sbi);
4082 if (err)
4083 goto free_nm;
4084
4085 /* get an inode for node space */
4086 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4087 if (IS_ERR(sbi->node_inode)) {
4088 f2fs_err(sbi, "Failed to read node inode");
4089 err = PTR_ERR(sbi->node_inode);
4090 goto free_stats;
4091 }
4092
4093 /* read root inode and dentry */
4094 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4095 if (IS_ERR(root)) {
4096 f2fs_err(sbi, "Failed to read root inode");
4097 err = PTR_ERR(root);
4098 goto free_node_inode;
4099 }
4100 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4101 !root->i_size || !root->i_nlink) {
4102 iput(root);
4103 err = -EINVAL;
4104 goto free_node_inode;
4105 }
4106
4107 sb->s_root = d_make_root(root); /* allocate root dentry */
4108 if (!sb->s_root) {
4109 err = -ENOMEM;
4110 goto free_node_inode;
4111 }
4112
4113 err = f2fs_init_compress_inode(sbi);
4114 if (err)
4115 goto free_root_inode;
4116
4117 err = f2fs_register_sysfs(sbi);
4118 if (err)
4119 goto free_compress_inode;
4120
4121#ifdef CONFIG_QUOTA
4122 /* Enable quota usage during mount */
4123 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4124 err = f2fs_enable_quotas(sb);
4125 if (err)
4126 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4127 }
4128#endif
4129 /* if there are any orphan inodes, free them */
4130 err = f2fs_recover_orphan_inodes(sbi);
4131 if (err)
4132 goto free_meta;
4133
4134 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4135 goto reset_checkpoint;
4136
4137 /* recover fsynced data */
4138 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4139 !test_opt(sbi, NORECOVERY)) {
4140 /*
4141 * mount should be failed, when device has readonly mode, and
4142 * previous checkpoint was not done by clean system shutdown.
4143 */
4144 if (f2fs_hw_is_readonly(sbi)) {
4145 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4146 err = f2fs_recover_fsync_data(sbi, true);
4147 if (err > 0) {
4148 err = -EROFS;
4149 f2fs_err(sbi, "Need to recover fsync data, but "
4150 "write access unavailable, please try "
4151 "mount w/ disable_roll_forward or norecovery");
4152 }
4153 if (err < 0)
4154 goto free_meta;
4155 }
4156 f2fs_info(sbi, "write access unavailable, skipping recovery");
4157 goto reset_checkpoint;
4158 }
4159
4160 if (need_fsck)
4161 set_sbi_flag(sbi, SBI_NEED_FSCK);
4162
4163 if (skip_recovery)
4164 goto reset_checkpoint;
4165
4166 err = f2fs_recover_fsync_data(sbi, false);
4167 if (err < 0) {
4168 if (err != -ENOMEM)
4169 skip_recovery = true;
4170 need_fsck = true;
4171 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4172 err);
4173 goto free_meta;
4174 }
4175 } else {
4176 err = f2fs_recover_fsync_data(sbi, true);
4177
4178 if (!f2fs_readonly(sb) && err > 0) {
4179 err = -EINVAL;
4180 f2fs_err(sbi, "Need to recover fsync data");
4181 goto free_meta;
4182 }
4183 }
4184
4185 /*
4186 * If the f2fs is not readonly and fsync data recovery succeeds,
4187 * check zoned block devices' write pointer consistency.
4188 */
4189 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4190 err = f2fs_check_write_pointer(sbi);
4191 if (err)
4192 goto free_meta;
4193 }
4194
4195reset_checkpoint:
4196 f2fs_init_inmem_curseg(sbi);
4197
4198 /* f2fs_recover_fsync_data() cleared this already */
4199 clear_sbi_flag(sbi, SBI_POR_DOING);
4200
4201 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4202 err = f2fs_disable_checkpoint(sbi);
4203 if (err)
4204 goto sync_free_meta;
4205 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4206 f2fs_enable_checkpoint(sbi);
4207 }
4208
4209 /*
4210 * If filesystem is not mounted as read-only then
4211 * do start the gc_thread.
4212 */
4213 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4214 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4215 /* After POR, we can run background GC thread.*/
4216 err = f2fs_start_gc_thread(sbi);
4217 if (err)
4218 goto sync_free_meta;
4219 }
4220 kvfree(options);
4221
4222 /* recover broken superblock */
4223 if (recovery) {
4224 err = f2fs_commit_super(sbi, true);
4225 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4226 sbi->valid_super_block ? 1 : 2, err);
4227 }
4228
4229 f2fs_join_shrinker(sbi);
4230
4231 f2fs_tuning_parameters(sbi);
4232
4233 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4234 cur_cp_version(F2FS_CKPT(sbi)));
4235 f2fs_update_time(sbi, CP_TIME);
4236 f2fs_update_time(sbi, REQ_TIME);
4237 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4238 return 0;
4239
4240sync_free_meta:
4241 /* safe to flush all the data */
4242 sync_filesystem(sbi->sb);
4243 retry_cnt = 0;
4244
4245free_meta:
4246#ifdef CONFIG_QUOTA
4247 f2fs_truncate_quota_inode_pages(sb);
4248 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4249 f2fs_quota_off_umount(sbi->sb);
4250#endif
4251 /*
4252 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4253 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4254 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4255 * falls into an infinite loop in f2fs_sync_meta_pages().
4256 */
4257 truncate_inode_pages_final(META_MAPPING(sbi));
4258 /* evict some inodes being cached by GC */
4259 evict_inodes(sb);
4260 f2fs_unregister_sysfs(sbi);
4261free_compress_inode:
4262 f2fs_destroy_compress_inode(sbi);
4263free_root_inode:
4264 dput(sb->s_root);
4265 sb->s_root = NULL;
4266free_node_inode:
4267 f2fs_release_ino_entry(sbi, true);
4268 truncate_inode_pages_final(NODE_MAPPING(sbi));
4269 iput(sbi->node_inode);
4270 sbi->node_inode = NULL;
4271free_stats:
4272 f2fs_destroy_stats(sbi);
4273free_nm:
4274 f2fs_destroy_node_manager(sbi);
4275free_sm:
4276 f2fs_destroy_segment_manager(sbi);
4277 f2fs_destroy_post_read_wq(sbi);
4278stop_ckpt_thread:
4279 f2fs_stop_ckpt_thread(sbi);
4280free_devices:
4281 destroy_device_list(sbi);
4282 kvfree(sbi->ckpt);
4283free_meta_inode:
4284 make_bad_inode(sbi->meta_inode);
4285 iput(sbi->meta_inode);
4286 sbi->meta_inode = NULL;
4287free_page_array_cache:
4288 f2fs_destroy_page_array_cache(sbi);
4289free_xattr_cache:
4290 f2fs_destroy_xattr_caches(sbi);
4291free_io_dummy:
4292 mempool_destroy(sbi->write_io_dummy);
4293free_percpu:
4294 destroy_percpu_info(sbi);
4295free_bio_info:
4296 for (i = 0; i < NR_PAGE_TYPE; i++)
4297 kvfree(sbi->write_io[i]);
4298
4299#ifdef CONFIG_UNICODE
4300 utf8_unload(sb->s_encoding);
4301 sb->s_encoding = NULL;
4302#endif
4303free_options:
4304#ifdef CONFIG_QUOTA
4305 for (i = 0; i < MAXQUOTAS; i++)
4306 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4307#endif
4308 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4309 kvfree(options);
4310free_sb_buf:
4311 kfree(raw_super);
4312free_sbi:
4313 if (sbi->s_chksum_driver)
4314 crypto_free_shash(sbi->s_chksum_driver);
4315 kfree(sbi);
4316
4317 /* give only one another chance */
4318 if (retry_cnt > 0 && skip_recovery) {
4319 retry_cnt--;
4320 shrink_dcache_sb(sb);
4321 goto try_onemore;
4322 }
4323 return err;
4324}
4325
4326static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4327 const char *dev_name, void *data)
4328{
4329 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4330}
4331
4332static void kill_f2fs_super(struct super_block *sb)
4333{
4334 if (sb->s_root) {
4335 struct f2fs_sb_info *sbi = F2FS_SB(sb);
4336
4337 set_sbi_flag(sbi, SBI_IS_CLOSE);
4338 f2fs_stop_gc_thread(sbi);
4339 f2fs_stop_discard_thread(sbi);
4340
4341#ifdef CONFIG_F2FS_FS_COMPRESSION
4342 /*
4343 * latter evict_inode() can bypass checking and invalidating
4344 * compress inode cache.
4345 */
4346 if (test_opt(sbi, COMPRESS_CACHE))
4347 truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4348#endif
4349
4350 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4351 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4352 struct cp_control cpc = {
4353 .reason = CP_UMOUNT,
4354 };
4355 f2fs_write_checkpoint(sbi, &cpc);
4356 }
4357
4358 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4359 sb->s_flags &= ~SB_RDONLY;
4360 }
4361 kill_block_super(sb);
4362}
4363
4364static struct file_system_type f2fs_fs_type = {
4365 .owner = THIS_MODULE,
4366 .name = "f2fs",
4367 .mount = f2fs_mount,
4368 .kill_sb = kill_f2fs_super,
4369 .fs_flags = FS_REQUIRES_DEV,
4370};
4371MODULE_ALIAS_FS("f2fs");
4372
4373static int __init init_inodecache(void)
4374{
4375 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4376 sizeof(struct f2fs_inode_info), 0,
4377 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4378 if (!f2fs_inode_cachep)
4379 return -ENOMEM;
4380 return 0;
4381}
4382
4383static void destroy_inodecache(void)
4384{
4385 /*
4386 * Make sure all delayed rcu free inodes are flushed before we
4387 * destroy cache.
4388 */
4389 rcu_barrier();
4390 kmem_cache_destroy(f2fs_inode_cachep);
4391}
4392
4393static int __init init_f2fs_fs(void)
4394{
4395 int err;
4396
4397 if (PAGE_SIZE != F2FS_BLKSIZE) {
4398 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4399 PAGE_SIZE, F2FS_BLKSIZE);
4400 return -EINVAL;
4401 }
4402
4403 err = init_inodecache();
4404 if (err)
4405 goto fail;
4406 err = f2fs_create_node_manager_caches();
4407 if (err)
4408 goto free_inodecache;
4409 err = f2fs_create_segment_manager_caches();
4410 if (err)
4411 goto free_node_manager_caches;
4412 err = f2fs_create_checkpoint_caches();
4413 if (err)
4414 goto free_segment_manager_caches;
4415 err = f2fs_create_recovery_cache();
4416 if (err)
4417 goto free_checkpoint_caches;
4418 err = f2fs_create_extent_cache();
4419 if (err)
4420 goto free_recovery_cache;
4421 err = f2fs_create_garbage_collection_cache();
4422 if (err)
4423 goto free_extent_cache;
4424 err = f2fs_init_sysfs();
4425 if (err)
4426 goto free_garbage_collection_cache;
4427 err = register_shrinker(&f2fs_shrinker_info);
4428 if (err)
4429 goto free_sysfs;
4430 err = register_filesystem(&f2fs_fs_type);
4431 if (err)
4432 goto free_shrinker;
4433 f2fs_create_root_stats();
4434 err = f2fs_init_post_read_processing();
4435 if (err)
4436 goto free_root_stats;
4437 err = f2fs_init_bio_entry_cache();
4438 if (err)
4439 goto free_post_read;
4440 err = f2fs_init_bioset();
4441 if (err)
4442 goto free_bio_enrty_cache;
4443 err = f2fs_init_compress_mempool();
4444 if (err)
4445 goto free_bioset;
4446 err = f2fs_init_compress_cache();
4447 if (err)
4448 goto free_compress_mempool;
4449 err = f2fs_create_casefold_cache();
4450 if (err)
4451 goto free_compress_cache;
4452 return 0;
4453free_compress_cache:
4454 f2fs_destroy_compress_cache();
4455free_compress_mempool:
4456 f2fs_destroy_compress_mempool();
4457free_bioset:
4458 f2fs_destroy_bioset();
4459free_bio_enrty_cache:
4460 f2fs_destroy_bio_entry_cache();
4461free_post_read:
4462 f2fs_destroy_post_read_processing();
4463free_root_stats:
4464 f2fs_destroy_root_stats();
4465 unregister_filesystem(&f2fs_fs_type);
4466free_shrinker:
4467 unregister_shrinker(&f2fs_shrinker_info);
4468free_sysfs:
4469 f2fs_exit_sysfs();
4470free_garbage_collection_cache:
4471 f2fs_destroy_garbage_collection_cache();
4472free_extent_cache:
4473 f2fs_destroy_extent_cache();
4474free_recovery_cache:
4475 f2fs_destroy_recovery_cache();
4476free_checkpoint_caches:
4477 f2fs_destroy_checkpoint_caches();
4478free_segment_manager_caches:
4479 f2fs_destroy_segment_manager_caches();
4480free_node_manager_caches:
4481 f2fs_destroy_node_manager_caches();
4482free_inodecache:
4483 destroy_inodecache();
4484fail:
4485 return err;
4486}
4487
4488static void __exit exit_f2fs_fs(void)
4489{
4490 f2fs_destroy_casefold_cache();
4491 f2fs_destroy_compress_cache();
4492 f2fs_destroy_compress_mempool();
4493 f2fs_destroy_bioset();
4494 f2fs_destroy_bio_entry_cache();
4495 f2fs_destroy_post_read_processing();
4496 f2fs_destroy_root_stats();
4497 unregister_filesystem(&f2fs_fs_type);
4498 unregister_shrinker(&f2fs_shrinker_info);
4499 f2fs_exit_sysfs();
4500 f2fs_destroy_garbage_collection_cache();
4501 f2fs_destroy_extent_cache();
4502 f2fs_destroy_recovery_cache();
4503 f2fs_destroy_checkpoint_caches();
4504 f2fs_destroy_segment_manager_caches();
4505 f2fs_destroy_node_manager_caches();
4506 destroy_inodecache();
4507}
4508
4509module_init(init_f2fs_fs)
4510module_exit(exit_f2fs_fs)
4511
4512MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4513MODULE_DESCRIPTION("Flash Friendly File System");
4514MODULE_LICENSE("GPL");
4515MODULE_SOFTDEP("pre: crc32");
4516