Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
 
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
  16#include <linux/gcd.h>
 
 
  17#include "core.h"
  18#include "rdev-ops.h"
  19
  20
  21struct ieee80211_rate *
  22ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  23			    u32 basic_rates, int bitrate)
  24{
  25	struct ieee80211_rate *result = &sband->bitrates[0];
  26	int i;
  27
  28	for (i = 0; i < sband->n_bitrates; i++) {
  29		if (!(basic_rates & BIT(i)))
  30			continue;
  31		if (sband->bitrates[i].bitrate > bitrate)
  32			continue;
  33		result = &sband->bitrates[i];
  34	}
  35
  36	return result;
  37}
  38EXPORT_SYMBOL(ieee80211_get_response_rate);
  39
  40u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  41			      enum nl80211_bss_scan_width scan_width)
  42{
  43	struct ieee80211_rate *bitrates;
  44	u32 mandatory_rates = 0;
  45	enum ieee80211_rate_flags mandatory_flag;
  46	int i;
  47
  48	if (WARN_ON(!sband))
  49		return 1;
  50
  51	if (sband->band == NL80211_BAND_2GHZ) {
  52		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  53		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  54			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  55		else
  56			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  57	} else {
  58		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  59	}
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
 
  77		if (chan == 14)
  78			return 2484;
  79		else if (chan < 14)
  80			return 2407 + chan * 5;
  81		break;
  82	case NL80211_BAND_5GHZ:
  83		if (chan >= 182 && chan <= 196)
  84			return 4000 + chan * 5;
  85		else
  86			return 5000 + chan * 5;
 
 
 
 
 
 
 
  87		break;
  88	case NL80211_BAND_60GHZ:
  89		if (chan < 5)
  90			return 56160 + chan * 2160;
  91		break;
 
 
  92	default:
  93		;
  94	}
  95	return 0; /* not supported */
  96}
  97EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  98
  99int ieee80211_frequency_to_channel(int freq)
 
 100{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101	/* see 802.11 17.3.8.3.2 and Annex J */
 102	if (freq == 2484)
 103		return 14;
 104	else if (freq < 2484)
 105		return (freq - 2407) / 5;
 106	else if (freq >= 4910 && freq <= 4980)
 107		return (freq - 4000) / 5;
 108	else if (freq <= 45000) /* DMG band lower limit */
 109		return (freq - 5000) / 5;
 110	else if (freq >= 58320 && freq <= 64800)
 
 
 
 
 
 111		return (freq - 56160) / 2160;
 112	else
 113		return 0;
 114}
 115EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 116
 117struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 118						  int freq)
 119{
 120	enum nl80211_band band;
 121	struct ieee80211_supported_band *sband;
 122	int i;
 123
 124	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 125		sband = wiphy->bands[band];
 126
 127		if (!sband)
 128			continue;
 129
 130		for (i = 0; i < sband->n_channels; i++) {
 131			if (sband->channels[i].center_freq == freq)
 132				return &sband->channels[i];
 
 
 133		}
 134	}
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL(__ieee80211_get_channel);
 139
 140static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 141				     enum nl80211_band band)
 142{
 143	int i, want;
 144
 145	switch (band) {
 146	case NL80211_BAND_5GHZ:
 
 147		want = 3;
 148		for (i = 0; i < sband->n_bitrates; i++) {
 149			if (sband->bitrates[i].bitrate == 60 ||
 150			    sband->bitrates[i].bitrate == 120 ||
 151			    sband->bitrates[i].bitrate == 240) {
 152				sband->bitrates[i].flags |=
 153					IEEE80211_RATE_MANDATORY_A;
 154				want--;
 155			}
 156		}
 157		WARN_ON(want);
 158		break;
 159	case NL80211_BAND_2GHZ:
 
 160		want = 7;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 10) {
 
 
 
 
 163				sband->bitrates[i].flags |=
 164					IEEE80211_RATE_MANDATORY_B |
 165					IEEE80211_RATE_MANDATORY_G;
 166				want--;
 167			}
 168
 169			if (sband->bitrates[i].bitrate == 20 ||
 170			    sband->bitrates[i].bitrate == 55 ||
 171			    sband->bitrates[i].bitrate == 110 ||
 172			    sband->bitrates[i].bitrate == 60 ||
 173			    sband->bitrates[i].bitrate == 120 ||
 174			    sband->bitrates[i].bitrate == 240) {
 175				sband->bitrates[i].flags |=
 176					IEEE80211_RATE_MANDATORY_G;
 177				want--;
 178			}
 179
 180			if (sband->bitrates[i].bitrate != 10 &&
 181			    sband->bitrates[i].bitrate != 20 &&
 182			    sband->bitrates[i].bitrate != 55 &&
 183			    sband->bitrates[i].bitrate != 110)
 184				sband->bitrates[i].flags |=
 185					IEEE80211_RATE_ERP_G;
 
 
 186		}
 187		WARN_ON(want != 0 && want != 3 && want != 6);
 188		break;
 189	case NL80211_BAND_60GHZ:
 190		/* check for mandatory HT MCS 1..4 */
 191		WARN_ON(!sband->ht_cap.ht_supported);
 192		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 193		break;
 
 
 
 
 
 
 194	case NUM_NL80211_BANDS:
 
 195		WARN_ON(1);
 196		break;
 197	}
 198}
 199
 200void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 201{
 202	enum nl80211_band band;
 203
 204	for (band = 0; band < NUM_NL80211_BANDS; band++)
 205		if (wiphy->bands[band])
 206			set_mandatory_flags_band(wiphy->bands[band], band);
 207}
 208
 209bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 210{
 211	int i;
 212	for (i = 0; i < wiphy->n_cipher_suites; i++)
 213		if (cipher == wiphy->cipher_suites[i])
 214			return true;
 215	return false;
 216}
 217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 219				   struct key_params *params, int key_idx,
 220				   bool pairwise, const u8 *mac_addr)
 221{
 222	if (key_idx < 0 || key_idx > 5)
 223		return -EINVAL;
 224
 225	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 226		return -EINVAL;
 227
 228	if (pairwise && !mac_addr)
 229		return -EINVAL;
 230
 231	switch (params->cipher) {
 232	case WLAN_CIPHER_SUITE_TKIP:
 
 
 
 
 
 233	case WLAN_CIPHER_SUITE_CCMP:
 234	case WLAN_CIPHER_SUITE_CCMP_256:
 235	case WLAN_CIPHER_SUITE_GCMP:
 236	case WLAN_CIPHER_SUITE_GCMP_256:
 237		/* Disallow pairwise keys with non-zero index unless it's WEP
 238		 * or a vendor specific cipher (because current deployments use
 239		 * pairwise WEP keys with non-zero indices and for vendor
 240		 * specific ciphers this should be validated in the driver or
 241		 * hardware level - but 802.11i clearly specifies to use zero)
 
 242		 */
 243		if (pairwise && key_idx)
 
 
 
 
 
 
 
 244			return -EINVAL;
 
 245		break;
 246	case WLAN_CIPHER_SUITE_AES_CMAC:
 247	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 249	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 250		/* Disallow BIP (group-only) cipher as pairwise cipher */
 251		if (pairwise)
 252			return -EINVAL;
 253		if (key_idx < 4)
 254			return -EINVAL;
 255		break;
 256	case WLAN_CIPHER_SUITE_WEP40:
 257	case WLAN_CIPHER_SUITE_WEP104:
 258		if (key_idx > 3)
 259			return -EINVAL;
 
 260	default:
 261		break;
 262	}
 263
 264	switch (params->cipher) {
 265	case WLAN_CIPHER_SUITE_WEP40:
 266		if (params->key_len != WLAN_KEY_LEN_WEP40)
 267			return -EINVAL;
 268		break;
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		if (params->key_len != WLAN_KEY_LEN_TKIP)
 271			return -EINVAL;
 272		break;
 273	case WLAN_CIPHER_SUITE_CCMP:
 274		if (params->key_len != WLAN_KEY_LEN_CCMP)
 275			return -EINVAL;
 276		break;
 277	case WLAN_CIPHER_SUITE_CCMP_256:
 278		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 279			return -EINVAL;
 280		break;
 281	case WLAN_CIPHER_SUITE_GCMP:
 282		if (params->key_len != WLAN_KEY_LEN_GCMP)
 283			return -EINVAL;
 284		break;
 285	case WLAN_CIPHER_SUITE_GCMP_256:
 286		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 287			return -EINVAL;
 288		break;
 289	case WLAN_CIPHER_SUITE_WEP104:
 290		if (params->key_len != WLAN_KEY_LEN_WEP104)
 291			return -EINVAL;
 292		break;
 293	case WLAN_CIPHER_SUITE_AES_CMAC:
 294		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 295			return -EINVAL;
 296		break;
 297	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 298		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 299			return -EINVAL;
 300		break;
 301	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 302		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 303			return -EINVAL;
 304		break;
 305	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 306		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 307			return -EINVAL;
 308		break;
 309	default:
 310		/*
 311		 * We don't know anything about this algorithm,
 312		 * allow using it -- but the driver must check
 313		 * all parameters! We still check below whether
 314		 * or not the driver supports this algorithm,
 315		 * of course.
 316		 */
 317		break;
 318	}
 319
 320	if (params->seq) {
 321		switch (params->cipher) {
 322		case WLAN_CIPHER_SUITE_WEP40:
 323		case WLAN_CIPHER_SUITE_WEP104:
 324			/* These ciphers do not use key sequence */
 325			return -EINVAL;
 326		case WLAN_CIPHER_SUITE_TKIP:
 327		case WLAN_CIPHER_SUITE_CCMP:
 328		case WLAN_CIPHER_SUITE_CCMP_256:
 329		case WLAN_CIPHER_SUITE_GCMP:
 330		case WLAN_CIPHER_SUITE_GCMP_256:
 331		case WLAN_CIPHER_SUITE_AES_CMAC:
 332		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 333		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 334		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 335			if (params->seq_len != 6)
 336				return -EINVAL;
 337			break;
 338		}
 339	}
 340
 341	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 342		return -EINVAL;
 343
 344	return 0;
 345}
 346
 347unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 348{
 349	unsigned int hdrlen = 24;
 350
 
 
 
 
 
 351	if (ieee80211_is_data(fc)) {
 352		if (ieee80211_has_a4(fc))
 353			hdrlen = 30;
 354		if (ieee80211_is_data_qos(fc)) {
 355			hdrlen += IEEE80211_QOS_CTL_LEN;
 356			if (ieee80211_has_order(fc))
 357				hdrlen += IEEE80211_HT_CTL_LEN;
 358		}
 359		goto out;
 360	}
 361
 362	if (ieee80211_is_mgmt(fc)) {
 363		if (ieee80211_has_order(fc))
 364			hdrlen += IEEE80211_HT_CTL_LEN;
 365		goto out;
 366	}
 367
 368	if (ieee80211_is_ctl(fc)) {
 369		/*
 370		 * ACK and CTS are 10 bytes, all others 16. To see how
 371		 * to get this condition consider
 372		 *   subtype mask:   0b0000000011110000 (0x00F0)
 373		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 374		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 375		 *   bits that matter:         ^^^      (0x00E0)
 376		 *   value of those: 0b0000000011000000 (0x00C0)
 377		 */
 378		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 379			hdrlen = 10;
 380		else
 381			hdrlen = 16;
 382	}
 383out:
 384	return hdrlen;
 385}
 386EXPORT_SYMBOL(ieee80211_hdrlen);
 387
 388unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 389{
 390	const struct ieee80211_hdr *hdr =
 391			(const struct ieee80211_hdr *)skb->data;
 392	unsigned int hdrlen;
 393
 394	if (unlikely(skb->len < 10))
 395		return 0;
 396	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 397	if (unlikely(hdrlen > skb->len))
 398		return 0;
 399	return hdrlen;
 400}
 401EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 402
 403static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 404{
 405	int ae = flags & MESH_FLAGS_AE;
 406	/* 802.11-2012, 8.2.4.7.3 */
 407	switch (ae) {
 408	default:
 409	case 0:
 410		return 6;
 411	case MESH_FLAGS_AE_A4:
 412		return 12;
 413	case MESH_FLAGS_AE_A5_A6:
 414		return 18;
 415	}
 416}
 417
 418unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 419{
 420	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 421}
 422EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 423
 424int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 425				  const u8 *addr, enum nl80211_iftype iftype)
 
 426{
 427	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 428	struct {
 429		u8 hdr[ETH_ALEN] __aligned(2);
 430		__be16 proto;
 431	} payload;
 432	struct ethhdr tmp;
 433	u16 hdrlen;
 434	u8 mesh_flags = 0;
 435
 436	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 437		return -1;
 438
 439	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 440	if (skb->len < hdrlen + 8)
 441		return -1;
 442
 443	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 444	 * header
 445	 * IEEE 802.11 address fields:
 446	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 447	 *   0     0   DA    SA    BSSID n/a
 448	 *   0     1   DA    BSSID SA    n/a
 449	 *   1     0   BSSID SA    DA    n/a
 450	 *   1     1   RA    TA    DA    SA
 451	 */
 452	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 453	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 454
 455	if (iftype == NL80211_IFTYPE_MESH_POINT)
 456		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 
 
 
 457
 458	switch (hdr->frame_control &
 459		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 460	case cpu_to_le16(IEEE80211_FCTL_TODS):
 461		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_P2P_GO))
 464			return -1;
 465		break;
 466	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 467		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 468			     iftype != NL80211_IFTYPE_MESH_POINT &&
 469			     iftype != NL80211_IFTYPE_AP_VLAN &&
 470			     iftype != NL80211_IFTYPE_STATION))
 471			return -1;
 472		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 473			if (mesh_flags & MESH_FLAGS_AE_A4)
 474				return -1;
 475			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 476				skb_copy_bits(skb, hdrlen +
 477					offsetof(struct ieee80211s_hdr, eaddr1),
 478					tmp.h_dest, 2 * ETH_ALEN);
 479			}
 
 480			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 481		}
 482		break;
 483	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 484		if ((iftype != NL80211_IFTYPE_STATION &&
 485		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 486		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 487		    (is_multicast_ether_addr(tmp.h_dest) &&
 488		     ether_addr_equal(tmp.h_source, addr)))
 489			return -1;
 490		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 491			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 
 
 
 
 
 492				return -1;
 493			if (mesh_flags & MESH_FLAGS_AE_A4)
 494				skb_copy_bits(skb, hdrlen +
 495					offsetof(struct ieee80211s_hdr, eaddr1),
 496					tmp.h_source, ETH_ALEN);
 497			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 498		}
 499		break;
 500	case cpu_to_le16(0):
 501		if (iftype != NL80211_IFTYPE_ADHOC &&
 502		    iftype != NL80211_IFTYPE_STATION &&
 503		    iftype != NL80211_IFTYPE_OCB)
 504				return -1;
 505		break;
 506	}
 507
 508	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 509	tmp.h_proto = payload.proto;
 510
 511	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 512		    tmp.h_proto != htons(ETH_P_AARP) &&
 513		    tmp.h_proto != htons(ETH_P_IPX)) ||
 514		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 515		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 516		 * replace EtherType */
 517		hdrlen += ETH_ALEN + 2;
 518	else
 
 
 519		tmp.h_proto = htons(skb->len - hdrlen);
 
 520
 521	pskb_pull(skb, hdrlen);
 522
 523	if (!ehdr)
 524		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 525	memcpy(ehdr, &tmp, sizeof(tmp));
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 530
 531int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 532			     enum nl80211_iftype iftype,
 533			     const u8 *bssid, bool qos)
 534{
 535	struct ieee80211_hdr hdr;
 536	u16 hdrlen, ethertype;
 537	__le16 fc;
 538	const u8 *encaps_data;
 539	int encaps_len, skip_header_bytes;
 540	int nh_pos, h_pos;
 541	int head_need;
 542
 543	if (unlikely(skb->len < ETH_HLEN))
 544		return -EINVAL;
 545
 546	nh_pos = skb_network_header(skb) - skb->data;
 547	h_pos = skb_transport_header(skb) - skb->data;
 548
 549	/* convert Ethernet header to proper 802.11 header (based on
 550	 * operation mode) */
 551	ethertype = (skb->data[12] << 8) | skb->data[13];
 552	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 553
 554	switch (iftype) {
 555	case NL80211_IFTYPE_AP:
 556	case NL80211_IFTYPE_AP_VLAN:
 557	case NL80211_IFTYPE_P2P_GO:
 558		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 559		/* DA BSSID SA */
 560		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 561		memcpy(hdr.addr2, addr, ETH_ALEN);
 562		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 563		hdrlen = 24;
 564		break;
 565	case NL80211_IFTYPE_STATION:
 566	case NL80211_IFTYPE_P2P_CLIENT:
 567		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 568		/* BSSID SA DA */
 569		memcpy(hdr.addr1, bssid, ETH_ALEN);
 570		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 571		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 572		hdrlen = 24;
 573		break;
 574	case NL80211_IFTYPE_OCB:
 575	case NL80211_IFTYPE_ADHOC:
 576		/* DA SA BSSID */
 577		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 578		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 579		memcpy(hdr.addr3, bssid, ETH_ALEN);
 580		hdrlen = 24;
 581		break;
 582	default:
 583		return -EOPNOTSUPP;
 584	}
 585
 586	if (qos) {
 587		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 588		hdrlen += 2;
 589	}
 590
 591	hdr.frame_control = fc;
 592	hdr.duration_id = 0;
 593	hdr.seq_ctrl = 0;
 594
 595	skip_header_bytes = ETH_HLEN;
 596	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 597		encaps_data = bridge_tunnel_header;
 598		encaps_len = sizeof(bridge_tunnel_header);
 599		skip_header_bytes -= 2;
 600	} else if (ethertype >= ETH_P_802_3_MIN) {
 601		encaps_data = rfc1042_header;
 602		encaps_len = sizeof(rfc1042_header);
 603		skip_header_bytes -= 2;
 604	} else {
 605		encaps_data = NULL;
 606		encaps_len = 0;
 607	}
 608
 609	skb_pull(skb, skip_header_bytes);
 610	nh_pos -= skip_header_bytes;
 611	h_pos -= skip_header_bytes;
 612
 613	head_need = hdrlen + encaps_len - skb_headroom(skb);
 614
 615	if (head_need > 0 || skb_cloned(skb)) {
 616		head_need = max(head_need, 0);
 617		if (head_need)
 618			skb_orphan(skb);
 619
 620		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 621			return -ENOMEM;
 622
 623		skb->truesize += head_need;
 624	}
 625
 626	if (encaps_data) {
 627		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 628		nh_pos += encaps_len;
 629		h_pos += encaps_len;
 630	}
 631
 632	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 633
 634	nh_pos += hdrlen;
 635	h_pos += hdrlen;
 636
 637	/* Update skb pointers to various headers since this modified frame
 638	 * is going to go through Linux networking code that may potentially
 639	 * need things like pointer to IP header. */
 640	skb_reset_mac_header(skb);
 641	skb_set_network_header(skb, nh_pos);
 642	skb_set_transport_header(skb, h_pos);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL(ieee80211_data_from_8023);
 647
 648static void
 649__frame_add_frag(struct sk_buff *skb, struct page *page,
 650		 void *ptr, int len, int size)
 651{
 652	struct skb_shared_info *sh = skb_shinfo(skb);
 653	int page_offset;
 654
 655	page_ref_inc(page);
 656	page_offset = ptr - page_address(page);
 657	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 658}
 659
 660static void
 661__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 662			    int offset, int len)
 663{
 664	struct skb_shared_info *sh = skb_shinfo(skb);
 665	const skb_frag_t *frag = &sh->frags[-1];
 666	struct page *frag_page;
 667	void *frag_ptr;
 668	int frag_len, frag_size;
 669	int head_size = skb->len - skb->data_len;
 670	int cur_len;
 671
 672	frag_page = virt_to_head_page(skb->head);
 673	frag_ptr = skb->data;
 674	frag_size = head_size;
 675
 676	while (offset >= frag_size) {
 677		offset -= frag_size;
 678		frag++;
 679		frag_page = skb_frag_page(frag);
 680		frag_ptr = skb_frag_address(frag);
 681		frag_size = skb_frag_size(frag);
 
 682	}
 683
 684	frag_ptr += offset;
 685	frag_len = frag_size - offset;
 686
 687	cur_len = min(len, frag_len);
 688
 689	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 690	len -= cur_len;
 691
 692	while (len > 0) {
 693		frag++;
 694		frag_len = skb_frag_size(frag);
 695		cur_len = min(len, frag_len);
 696		__frame_add_frag(frame, skb_frag_page(frag),
 697				 skb_frag_address(frag), cur_len, frag_len);
 698		len -= cur_len;
 
 699	}
 700}
 701
 702static struct sk_buff *
 703__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 704		       int offset, int len, bool reuse_frag)
 705{
 706	struct sk_buff *frame;
 707	int cur_len = len;
 708
 709	if (skb->len - offset < len)
 710		return NULL;
 711
 712	/*
 713	 * When reusing framents, copy some data to the head to simplify
 714	 * ethernet header handling and speed up protocol header processing
 715	 * in the stack later.
 716	 */
 717	if (reuse_frag)
 718		cur_len = min_t(int, len, 32);
 719
 720	/*
 721	 * Allocate and reserve two bytes more for payload
 722	 * alignment since sizeof(struct ethhdr) is 14.
 723	 */
 724	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 725	if (!frame)
 726		return NULL;
 727
 728	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 729	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 730
 731	len -= cur_len;
 732	if (!len)
 733		return frame;
 734
 735	offset += cur_len;
 736	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 737
 738	return frame;
 739}
 740
 741void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 742			      const u8 *addr, enum nl80211_iftype iftype,
 743			      const unsigned int extra_headroom,
 744			      const u8 *check_da, const u8 *check_sa)
 745{
 746	unsigned int hlen = ALIGN(extra_headroom, 4);
 747	struct sk_buff *frame = NULL;
 748	u16 ethertype;
 749	u8 *payload;
 750	int offset = 0, remaining;
 751	struct ethhdr eth;
 752	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 753	bool reuse_skb = false;
 754	bool last = false;
 755
 756	while (!last) {
 757		unsigned int subframe_len;
 758		int len;
 759		u8 padding;
 760
 761		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 762		len = ntohs(eth.h_proto);
 763		subframe_len = sizeof(struct ethhdr) + len;
 764		padding = (4 - subframe_len) & 0x3;
 765
 766		/* the last MSDU has no padding */
 767		remaining = skb->len - offset;
 768		if (subframe_len > remaining)
 769			goto purge;
 
 
 
 770
 771		offset += sizeof(struct ethhdr);
 772		last = remaining <= subframe_len + padding;
 773
 774		/* FIXME: should we really accept multicast DA? */
 775		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 776		     !ether_addr_equal(check_da, eth.h_dest)) ||
 777		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 778			offset += len + padding;
 779			continue;
 780		}
 781
 782		/* reuse skb for the last subframe */
 783		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 784			skb_pull(skb, offset);
 785			frame = skb;
 786			reuse_skb = true;
 787		} else {
 788			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 789						       reuse_frag);
 790			if (!frame)
 791				goto purge;
 792
 793			offset += len + padding;
 794		}
 795
 796		skb_reset_network_header(frame);
 797		frame->dev = skb->dev;
 798		frame->priority = skb->priority;
 799
 800		payload = frame->data;
 801		ethertype = (payload[6] << 8) | payload[7];
 802		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 803			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 804			   ether_addr_equal(payload, bridge_tunnel_header))) {
 805			eth.h_proto = htons(ethertype);
 806			skb_pull(frame, ETH_ALEN + 2);
 807		}
 808
 809		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 810		__skb_queue_tail(list, frame);
 811	}
 812
 813	if (!reuse_skb)
 814		dev_kfree_skb(skb);
 815
 816	return;
 817
 818 purge:
 819	__skb_queue_purge(list);
 820	dev_kfree_skb(skb);
 821}
 822EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 823
 824/* Given a data frame determine the 802.1p/1d tag to use. */
 825unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 826				    struct cfg80211_qos_map *qos_map)
 827{
 828	unsigned int dscp;
 829	unsigned char vlan_priority;
 
 830
 831	/* skb->priority values from 256->263 are magic values to
 832	 * directly indicate a specific 802.1d priority.  This is used
 833	 * to allow 802.1d priority to be passed directly in from VLAN
 834	 * tags, etc.
 835	 */
 836	if (skb->priority >= 256 && skb->priority <= 263)
 837		return skb->priority - 256;
 
 
 838
 839	if (skb_vlan_tag_present(skb)) {
 840		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 841			>> VLAN_PRIO_SHIFT;
 842		if (vlan_priority > 0)
 843			return vlan_priority;
 
 
 844	}
 845
 846	switch (skb->protocol) {
 847	case htons(ETH_P_IP):
 848		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 849		break;
 850	case htons(ETH_P_IPV6):
 851		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 852		break;
 853	case htons(ETH_P_MPLS_UC):
 854	case htons(ETH_P_MPLS_MC): {
 855		struct mpls_label mpls_tmp, *mpls;
 856
 857		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 858					  sizeof(*mpls), &mpls_tmp);
 859		if (!mpls)
 860			return 0;
 861
 862		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 863			>> MPLS_LS_TC_SHIFT;
 
 864	}
 865	case htons(ETH_P_80221):
 866		/* 802.21 is always network control traffic */
 867		return 7;
 868	default:
 869		return 0;
 870	}
 871
 872	if (qos_map) {
 873		unsigned int i, tmp_dscp = dscp >> 2;
 874
 875		for (i = 0; i < qos_map->num_des; i++) {
 876			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 877				return qos_map->dscp_exception[i].up;
 
 
 878		}
 879
 880		for (i = 0; i < 8; i++) {
 881			if (tmp_dscp >= qos_map->up[i].low &&
 882			    tmp_dscp <= qos_map->up[i].high)
 883				return i;
 
 
 884		}
 885	}
 886
 887	return dscp >> 5;
 
 
 888}
 889EXPORT_SYMBOL(cfg80211_classify8021d);
 890
 891const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 892{
 893	const struct cfg80211_bss_ies *ies;
 894
 895	ies = rcu_dereference(bss->ies);
 896	if (!ies)
 897		return NULL;
 898
 899	return cfg80211_find_ie(ie, ies->data, ies->len);
 900}
 901EXPORT_SYMBOL(ieee80211_bss_get_ie);
 902
 903void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 904{
 905	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 906	struct net_device *dev = wdev->netdev;
 907	int i;
 908
 909	if (!wdev->connect_keys)
 910		return;
 911
 912	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 913		if (!wdev->connect_keys->params[i].cipher)
 914			continue;
 915		if (rdev_add_key(rdev, dev, i, false, NULL,
 916				 &wdev->connect_keys->params[i])) {
 917			netdev_err(dev, "failed to set key %d\n", i);
 918			continue;
 919		}
 920		if (wdev->connect_keys->def == i)
 921			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 922				netdev_err(dev, "failed to set defkey %d\n", i);
 923				continue;
 924			}
 925	}
 926
 927	kzfree(wdev->connect_keys);
 928	wdev->connect_keys = NULL;
 929}
 930
 931void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 932{
 933	struct cfg80211_event *ev;
 934	unsigned long flags;
 935	const u8 *bssid = NULL;
 936
 937	spin_lock_irqsave(&wdev->event_lock, flags);
 938	while (!list_empty(&wdev->event_list)) {
 939		ev = list_first_entry(&wdev->event_list,
 940				      struct cfg80211_event, list);
 941		list_del(&ev->list);
 942		spin_unlock_irqrestore(&wdev->event_lock, flags);
 943
 944		wdev_lock(wdev);
 945		switch (ev->type) {
 946		case EVENT_CONNECT_RESULT:
 947			if (!is_zero_ether_addr(ev->cr.bssid))
 948				bssid = ev->cr.bssid;
 949			__cfg80211_connect_result(
 950				wdev->netdev, bssid,
 951				ev->cr.req_ie, ev->cr.req_ie_len,
 952				ev->cr.resp_ie, ev->cr.resp_ie_len,
 953				ev->cr.status,
 954				ev->cr.status == WLAN_STATUS_SUCCESS,
 955				ev->cr.bss);
 956			break;
 957		case EVENT_ROAMED:
 958			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 959					  ev->rm.req_ie_len, ev->rm.resp_ie,
 960					  ev->rm.resp_ie_len);
 961			break;
 962		case EVENT_DISCONNECTED:
 963			__cfg80211_disconnected(wdev->netdev,
 964						ev->dc.ie, ev->dc.ie_len,
 965						ev->dc.reason,
 966						!ev->dc.locally_generated);
 967			break;
 968		case EVENT_IBSS_JOINED:
 969			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 970					       ev->ij.channel);
 971			break;
 972		case EVENT_STOPPED:
 973			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 974			break;
 
 
 
 
 
 975		}
 976		wdev_unlock(wdev);
 977
 978		kfree(ev);
 979
 980		spin_lock_irqsave(&wdev->event_lock, flags);
 981	}
 982	spin_unlock_irqrestore(&wdev->event_lock, flags);
 983}
 984
 985void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 986{
 987	struct wireless_dev *wdev;
 988
 989	ASSERT_RTNL();
 990
 991	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 992		cfg80211_process_wdev_events(wdev);
 993}
 994
 995int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 996			  struct net_device *dev, enum nl80211_iftype ntype,
 997			  u32 *flags, struct vif_params *params)
 998{
 999	int err;
1000	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002	ASSERT_RTNL();
1003
1004	/* don't support changing VLANs, you just re-create them */
1005	if (otype == NL80211_IFTYPE_AP_VLAN)
1006		return -EOPNOTSUPP;
1007
1008	/* cannot change into P2P device or NAN */
1009	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010	    ntype == NL80211_IFTYPE_NAN)
1011		return -EOPNOTSUPP;
1012
1013	if (!rdev->ops->change_virtual_intf ||
1014	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1015		return -EOPNOTSUPP;
1016
1017	/* if it's part of a bridge, reject changing type to station/ibss */
1018	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019	    (ntype == NL80211_IFTYPE_ADHOC ||
1020	     ntype == NL80211_IFTYPE_STATION ||
1021	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1022		return -EBUSY;
1023
1024	if (ntype != otype) {
 
 
 
 
 
 
 
1025		dev->ieee80211_ptr->use_4addr = false;
1026		dev->ieee80211_ptr->mesh_id_up_len = 0;
1027		wdev_lock(dev->ieee80211_ptr);
1028		rdev_set_qos_map(rdev, dev, NULL);
1029		wdev_unlock(dev->ieee80211_ptr);
1030
1031		switch (otype) {
1032		case NL80211_IFTYPE_AP:
1033			cfg80211_stop_ap(rdev, dev, true);
 
1034			break;
1035		case NL80211_IFTYPE_ADHOC:
1036			cfg80211_leave_ibss(rdev, dev, false);
1037			break;
1038		case NL80211_IFTYPE_STATION:
1039		case NL80211_IFTYPE_P2P_CLIENT:
1040			wdev_lock(dev->ieee80211_ptr);
1041			cfg80211_disconnect(rdev, dev,
1042					    WLAN_REASON_DEAUTH_LEAVING, true);
1043			wdev_unlock(dev->ieee80211_ptr);
1044			break;
1045		case NL80211_IFTYPE_MESH_POINT:
1046			/* mesh should be handled? */
1047			break;
 
 
 
1048		default:
1049			break;
1050		}
1051
1052		cfg80211_process_rdev_events(rdev);
 
 
 
 
 
 
1053	}
1054
1055	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056
1057	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058
1059	if (!err && params && params->use_4addr != -1)
1060		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061
1062	if (!err) {
1063		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064		switch (ntype) {
1065		case NL80211_IFTYPE_STATION:
1066			if (dev->ieee80211_ptr->use_4addr)
1067				break;
1068			/* fall through */
1069		case NL80211_IFTYPE_OCB:
1070		case NL80211_IFTYPE_P2P_CLIENT:
1071		case NL80211_IFTYPE_ADHOC:
1072			dev->priv_flags |= IFF_DONT_BRIDGE;
1073			break;
1074		case NL80211_IFTYPE_P2P_GO:
1075		case NL80211_IFTYPE_AP:
1076		case NL80211_IFTYPE_AP_VLAN:
1077		case NL80211_IFTYPE_WDS:
1078		case NL80211_IFTYPE_MESH_POINT:
1079			/* bridging OK */
1080			break;
1081		case NL80211_IFTYPE_MONITOR:
1082			/* monitor can't bridge anyway */
1083			break;
1084		case NL80211_IFTYPE_UNSPECIFIED:
1085		case NUM_NL80211_IFTYPES:
1086			/* not happening */
1087			break;
1088		case NL80211_IFTYPE_P2P_DEVICE:
 
1089		case NL80211_IFTYPE_NAN:
1090			WARN_ON(1);
1091			break;
1092		}
1093	}
1094
1095	if (!err && ntype != otype && netif_running(dev)) {
1096		cfg80211_update_iface_num(rdev, ntype, 1);
1097		cfg80211_update_iface_num(rdev, otype, -1);
1098	}
1099
1100	return err;
1101}
1102
1103static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104{
1105	static const u32 __mcs2bitrate[] = {
1106		/* control PHY */
1107		[0] =   275,
1108		/* SC PHY */
1109		[1] =  3850,
1110		[2] =  7700,
1111		[3] =  9625,
1112		[4] = 11550,
1113		[5] = 12512, /* 1251.25 mbps */
1114		[6] = 15400,
1115		[7] = 19250,
1116		[8] = 23100,
1117		[9] = 25025,
1118		[10] = 30800,
1119		[11] = 38500,
1120		[12] = 46200,
1121		/* OFDM PHY */
1122		[13] =  6930,
1123		[14] =  8662, /* 866.25 mbps */
1124		[15] = 13860,
1125		[16] = 17325,
1126		[17] = 20790,
1127		[18] = 27720,
1128		[19] = 34650,
1129		[20] = 41580,
1130		[21] = 45045,
1131		[22] = 51975,
1132		[23] = 62370,
1133		[24] = 67568, /* 6756.75 mbps */
1134		/* LP-SC PHY */
1135		[25] =  6260,
1136		[26] =  8340,
1137		[27] = 11120,
1138		[28] = 12510,
1139		[29] = 16680,
1140		[30] = 22240,
1141		[31] = 25030,
1142	};
1143
1144	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145		return 0;
1146
1147	return __mcs2bitrate[rate->mcs];
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151{
1152	static const u32 base[4][10] = {
1153		{   6500000,
1154		   13000000,
1155		   19500000,
1156		   26000000,
1157		   39000000,
1158		   52000000,
1159		   58500000,
1160		   65000000,
1161		   78000000,
1162		/* not in the spec, but some devices use this: */
1163		   86500000,
 
 
1164		},
1165		{  13500000,
1166		   27000000,
1167		   40500000,
1168		   54000000,
1169		   81000000,
1170		  108000000,
1171		  121500000,
1172		  135000000,
1173		  162000000,
1174		  180000000,
 
 
1175		},
1176		{  29300000,
1177		   58500000,
1178		   87800000,
1179		  117000000,
1180		  175500000,
1181		  234000000,
1182		  263300000,
1183		  292500000,
1184		  351000000,
1185		  390000000,
 
 
1186		},
1187		{  58500000,
1188		  117000000,
1189		  175500000,
1190		  234000000,
1191		  351000000,
1192		  468000000,
1193		  526500000,
1194		  585000000,
1195		  702000000,
1196		  780000000,
 
 
1197		},
1198	};
1199	u32 bitrate;
1200	int idx;
1201
1202	if (WARN_ON_ONCE(rate->mcs > 9))
1203		return 0;
1204
1205	switch (rate->bw) {
1206	case RATE_INFO_BW_160:
1207		idx = 3;
1208		break;
1209	case RATE_INFO_BW_80:
1210		idx = 2;
1211		break;
1212	case RATE_INFO_BW_40:
1213		idx = 1;
1214		break;
1215	case RATE_INFO_BW_5:
1216	case RATE_INFO_BW_10:
1217	default:
1218		WARN_ON(1);
1219		/* fall through */
1220	case RATE_INFO_BW_20:
1221		idx = 0;
1222	}
1223
1224	bitrate = base[idx][rate->mcs];
1225	bitrate *= rate->nss;
1226
1227	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228		bitrate = (bitrate / 9) * 10;
1229
1230	/* do NOT round down here */
1231	return (bitrate + 50000) / 100000;
 
 
 
 
1232}
1233
1234u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235{
1236	int modulation, streams, bitrate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240		return rate->legacy;
1241	if (rate->flags & RATE_INFO_FLAGS_60G)
1242		return cfg80211_calculate_bitrate_60g(rate);
1243	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244		return cfg80211_calculate_bitrate_vht(rate);
1245
1246	/* the formula below does only work for MCS values smaller than 32 */
1247	if (WARN_ON_ONCE(rate->mcs >= 32))
 
 
 
 
1248		return 0;
1249
1250	modulation = rate->mcs & 7;
1251	streams = (rate->mcs >> 3) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252
1253	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254
1255	if (modulation < 4)
1256		bitrate *= (modulation + 1);
1257	else if (modulation == 4)
1258		bitrate *= (modulation + 2);
1259	else
1260		bitrate *= (modulation + 3);
 
 
 
1261
1262	bitrate *= streams;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265		bitrate = (bitrate / 9) * 10;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1266
1267	/* do NOT round down here */
1268	return (bitrate + 50000) / 100000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1269}
1270EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271
1272int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273			  enum ieee80211_p2p_attr_id attr,
1274			  u8 *buf, unsigned int bufsize)
1275{
1276	u8 *out = buf;
1277	u16 attr_remaining = 0;
1278	bool desired_attr = false;
1279	u16 desired_len = 0;
1280
1281	while (len > 0) {
1282		unsigned int iedatalen;
1283		unsigned int copy;
1284		const u8 *iedata;
1285
1286		if (len < 2)
1287			return -EILSEQ;
1288		iedatalen = ies[1];
1289		if (iedatalen + 2 > len)
1290			return -EILSEQ;
1291
1292		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293			goto cont;
1294
1295		if (iedatalen < 4)
1296			goto cont;
1297
1298		iedata = ies + 2;
1299
1300		/* check WFA OUI, P2P subtype */
1301		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303			goto cont;
1304
1305		iedatalen -= 4;
1306		iedata += 4;
1307
1308		/* check attribute continuation into this IE */
1309		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310		if (copy && desired_attr) {
1311			desired_len += copy;
1312			if (out) {
1313				memcpy(out, iedata, min(bufsize, copy));
1314				out += min(bufsize, copy);
1315				bufsize -= min(bufsize, copy);
1316			}
1317
1318
1319			if (copy == attr_remaining)
1320				return desired_len;
1321		}
1322
1323		attr_remaining -= copy;
1324		if (attr_remaining)
1325			goto cont;
1326
1327		iedatalen -= copy;
1328		iedata += copy;
1329
1330		while (iedatalen > 0) {
1331			u16 attr_len;
1332
1333			/* P2P attribute ID & size must fit */
1334			if (iedatalen < 3)
1335				return -EILSEQ;
1336			desired_attr = iedata[0] == attr;
1337			attr_len = get_unaligned_le16(iedata + 1);
1338			iedatalen -= 3;
1339			iedata += 3;
1340
1341			copy = min_t(unsigned int, attr_len, iedatalen);
1342
1343			if (desired_attr) {
1344				desired_len += copy;
1345				if (out) {
1346					memcpy(out, iedata, min(bufsize, copy));
1347					out += min(bufsize, copy);
1348					bufsize -= min(bufsize, copy);
1349				}
1350
1351				if (copy == attr_len)
1352					return desired_len;
1353			}
1354
1355			iedata += copy;
1356			iedatalen -= copy;
1357			attr_remaining = attr_len - copy;
1358		}
1359
1360 cont:
1361		len -= ies[1] + 2;
1362		ies += ies[1] + 2;
1363	}
1364
1365	if (attr_remaining && desired_attr)
1366		return -EILSEQ;
1367
1368	return -ENOENT;
1369}
1370EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371
1372static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373{
1374	int i;
1375
1376	for (i = 0; i < n_ids; i++)
1377		if (ids[i] == id)
 
 
 
 
 
 
 
 
 
 
 
 
 
1378			return true;
 
 
 
1379	return false;
1380}
1381
1382static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383{
1384	/* we assume a validly formed IEs buffer */
1385	u8 len = ies[pos + 1];
1386
1387	pos += 2 + len;
1388
1389	/* the IE itself must have 255 bytes for fragments to follow */
1390	if (len < 255)
1391		return pos;
1392
1393	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394		len = ies[pos + 1];
1395		pos += 2 + len;
1396	}
1397
1398	return pos;
1399}
1400
1401size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402			      const u8 *ids, int n_ids,
1403			      const u8 *after_ric, int n_after_ric,
1404			      size_t offset)
1405{
1406	size_t pos = offset;
1407
1408	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
 
 
 
 
 
 
 
 
 
 
 
1409		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410			pos = skip_ie(ies, ielen, pos);
1411
1412			while (pos < ielen &&
1413			       !ieee80211_id_in_list(after_ric, n_after_ric,
1414						     ies[pos]))
1415				pos = skip_ie(ies, ielen, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
1416		} else {
1417			pos = skip_ie(ies, ielen, pos);
1418		}
1419	}
1420
1421	return pos;
1422}
1423EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424
1425bool ieee80211_operating_class_to_band(u8 operating_class,
1426				       enum nl80211_band *band)
1427{
1428	switch (operating_class) {
1429	case 112:
1430	case 115 ... 127:
1431	case 128 ... 130:
1432		*band = NL80211_BAND_5GHZ;
1433		return true;
 
 
 
1434	case 81:
1435	case 82:
1436	case 83:
1437	case 84:
1438		*band = NL80211_BAND_2GHZ;
1439		return true;
1440	case 180:
1441		*band = NL80211_BAND_60GHZ;
1442		return true;
1443	}
1444
1445	return false;
1446}
1447EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448
1449bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450					  u8 *op_class)
1451{
1452	u8 vht_opclass;
1453	u16 freq = chandef->center_freq1;
1454
1455	if (freq >= 2412 && freq <= 2472) {
1456		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457			return false;
1458
1459		/* 2.407 GHz, channels 1..13 */
1460		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461			if (freq > chandef->chan->center_freq)
1462				*op_class = 83; /* HT40+ */
1463			else
1464				*op_class = 84; /* HT40- */
1465		} else {
1466			*op_class = 81;
1467		}
1468
1469		return true;
1470	}
1471
1472	if (freq == 2484) {
1473		if (chandef->width > NL80211_CHAN_WIDTH_40)
 
1474			return false;
1475
1476		*op_class = 82; /* channel 14 */
1477		return true;
1478	}
1479
1480	switch (chandef->width) {
1481	case NL80211_CHAN_WIDTH_80:
1482		vht_opclass = 128;
1483		break;
1484	case NL80211_CHAN_WIDTH_160:
1485		vht_opclass = 129;
1486		break;
1487	case NL80211_CHAN_WIDTH_80P80:
1488		vht_opclass = 130;
1489		break;
1490	case NL80211_CHAN_WIDTH_10:
1491	case NL80211_CHAN_WIDTH_5:
1492		return false; /* unsupported for now */
1493	default:
1494		vht_opclass = 0;
1495		break;
1496	}
1497
1498	/* 5 GHz, channels 36..48 */
1499	if (freq >= 5180 && freq <= 5240) {
1500		if (vht_opclass) {
1501			*op_class = vht_opclass;
1502		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503			if (freq > chandef->chan->center_freq)
1504				*op_class = 116;
1505			else
1506				*op_class = 117;
1507		} else {
1508			*op_class = 115;
1509		}
1510
1511		return true;
1512	}
1513
1514	/* 5 GHz, channels 52..64 */
1515	if (freq >= 5260 && freq <= 5320) {
1516		if (vht_opclass) {
1517			*op_class = vht_opclass;
1518		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519			if (freq > chandef->chan->center_freq)
1520				*op_class = 119;
1521			else
1522				*op_class = 120;
1523		} else {
1524			*op_class = 118;
1525		}
1526
1527		return true;
1528	}
1529
1530	/* 5 GHz, channels 100..144 */
1531	if (freq >= 5500 && freq <= 5720) {
1532		if (vht_opclass) {
1533			*op_class = vht_opclass;
1534		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535			if (freq > chandef->chan->center_freq)
1536				*op_class = 122;
1537			else
1538				*op_class = 123;
1539		} else {
1540			*op_class = 121;
1541		}
1542
1543		return true;
1544	}
1545
1546	/* 5 GHz, channels 149..169 */
1547	if (freq >= 5745 && freq <= 5845) {
1548		if (vht_opclass) {
1549			*op_class = vht_opclass;
1550		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551			if (freq > chandef->chan->center_freq)
1552				*op_class = 126;
1553			else
1554				*op_class = 127;
1555		} else if (freq <= 5805) {
1556			*op_class = 124;
1557		} else {
1558			*op_class = 125;
1559		}
1560
1561		return true;
1562	}
1563
1564	/* 56.16 GHz, channel 1..4 */
1565	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567			return false;
1568
1569		*op_class = 180;
1570		return true;
1571	}
1572
1573	/* not supported yet */
1574	return false;
1575}
1576EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579				       u32 *beacon_int_gcd,
1580				       bool *beacon_int_different)
1581{
1582	struct wireless_dev *wdev;
1583
1584	*beacon_int_gcd = 0;
1585	*beacon_int_different = false;
1586
1587	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588		if (!wdev->beacon_interval)
 
 
 
 
 
 
 
 
1589			continue;
1590
1591		if (!*beacon_int_gcd) {
1592			*beacon_int_gcd = wdev->beacon_interval;
1593			continue;
1594		}
1595
1596		if (wdev->beacon_interval == *beacon_int_gcd)
1597			continue;
1598
1599		*beacon_int_different = true;
1600		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601	}
1602
1603	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604		if (*beacon_int_gcd)
1605			*beacon_int_different = true;
1606		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607	}
1608}
1609
1610int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611				 enum nl80211_iftype iftype, u32 beacon_int)
1612{
1613	/*
1614	 * This is just a basic pre-condition check; if interface combinations
1615	 * are possible the driver must already be checking those with a call
1616	 * to cfg80211_check_combinations(), in which case we'll validate more
1617	 * through the cfg80211_calculate_bi_data() call and code in
1618	 * cfg80211_iter_combinations().
1619	 */
1620
1621	if (beacon_int < 10 || beacon_int > 10000)
1622		return -EINVAL;
1623
1624	return 0;
1625}
1626
1627int cfg80211_iter_combinations(struct wiphy *wiphy,
1628			       struct iface_combination_params *params,
1629			       void (*iter)(const struct ieee80211_iface_combination *c,
1630					    void *data),
1631			       void *data)
1632{
1633	const struct ieee80211_regdomain *regdom;
1634	enum nl80211_dfs_regions region = 0;
1635	int i, j, iftype;
1636	int num_interfaces = 0;
1637	u32 used_iftypes = 0;
1638	u32 beacon_int_gcd;
1639	bool beacon_int_different;
1640
1641	/*
1642	 * This is a bit strange, since the iteration used to rely only on
1643	 * the data given by the driver, but here it now relies on context,
1644	 * in form of the currently operating interfaces.
1645	 * This is OK for all current users, and saves us from having to
1646	 * push the GCD calculations into all the drivers.
1647	 * In the future, this should probably rely more on data that's in
1648	 * cfg80211 already - the only thing not would appear to be any new
1649	 * interfaces (while being brought up) and channel/radar data.
1650	 */
1651	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652				   &beacon_int_gcd, &beacon_int_different);
1653
1654	if (params->radar_detect) {
1655		rcu_read_lock();
1656		regdom = rcu_dereference(cfg80211_regdomain);
1657		if (regdom)
1658			region = regdom->dfs_region;
1659		rcu_read_unlock();
1660	}
1661
1662	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663		num_interfaces += params->iftype_num[iftype];
1664		if (params->iftype_num[iftype] > 0 &&
1665		    !(wiphy->software_iftypes & BIT(iftype)))
1666			used_iftypes |= BIT(iftype);
1667	}
1668
1669	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670		const struct ieee80211_iface_combination *c;
1671		struct ieee80211_iface_limit *limits;
1672		u32 all_iftypes = 0;
1673
1674		c = &wiphy->iface_combinations[i];
1675
1676		if (num_interfaces > c->max_interfaces)
1677			continue;
1678		if (params->num_different_channels > c->num_different_channels)
1679			continue;
1680
1681		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682				 GFP_KERNEL);
1683		if (!limits)
1684			return -ENOMEM;
1685
1686		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687			if (wiphy->software_iftypes & BIT(iftype))
1688				continue;
1689			for (j = 0; j < c->n_limits; j++) {
1690				all_iftypes |= limits[j].types;
1691				if (!(limits[j].types & BIT(iftype)))
1692					continue;
1693				if (limits[j].max < params->iftype_num[iftype])
1694					goto cont;
1695				limits[j].max -= params->iftype_num[iftype];
1696			}
1697		}
1698
1699		if (params->radar_detect !=
1700			(c->radar_detect_widths & params->radar_detect))
1701			goto cont;
1702
1703		if (params->radar_detect && c->radar_detect_regions &&
1704		    !(c->radar_detect_regions & BIT(region)))
1705			goto cont;
1706
1707		/* Finally check that all iftypes that we're currently
1708		 * using are actually part of this combination. If they
1709		 * aren't then we can't use this combination and have
1710		 * to continue to the next.
1711		 */
1712		if ((all_iftypes & used_iftypes) != used_iftypes)
1713			goto cont;
1714
1715		if (beacon_int_gcd) {
1716			if (c->beacon_int_min_gcd &&
1717			    beacon_int_gcd < c->beacon_int_min_gcd)
1718				goto cont;
1719			if (!c->beacon_int_min_gcd && beacon_int_different)
1720				goto cont;
1721		}
1722
1723		/* This combination covered all interface types and
1724		 * supported the requested numbers, so we're good.
1725		 */
1726
1727		(*iter)(c, data);
1728 cont:
1729		kfree(limits);
1730	}
1731
1732	return 0;
1733}
1734EXPORT_SYMBOL(cfg80211_iter_combinations);
1735
1736static void
1737cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738			  void *data)
1739{
1740	int *num = data;
1741	(*num)++;
1742}
1743
1744int cfg80211_check_combinations(struct wiphy *wiphy,
1745				struct iface_combination_params *params)
1746{
1747	int err, num = 0;
1748
1749	err = cfg80211_iter_combinations(wiphy, params,
1750					 cfg80211_iter_sum_ifcombs, &num);
1751	if (err)
1752		return err;
1753	if (num == 0)
1754		return -EBUSY;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(cfg80211_check_combinations);
1759
1760int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761			   const u8 *rates, unsigned int n_rates,
1762			   u32 *mask)
1763{
1764	int i, j;
1765
1766	if (!sband)
1767		return -EINVAL;
1768
1769	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770		return -EINVAL;
1771
1772	*mask = 0;
1773
1774	for (i = 0; i < n_rates; i++) {
1775		int rate = (rates[i] & 0x7f) * 5;
1776		bool found = false;
1777
1778		for (j = 0; j < sband->n_bitrates; j++) {
1779			if (sband->bitrates[j].bitrate == rate) {
1780				found = true;
1781				*mask |= BIT(j);
1782				break;
1783			}
1784		}
1785		if (!found)
1786			return -EINVAL;
1787	}
1788
1789	/*
1790	 * mask must have at least one bit set here since we
1791	 * didn't accept a 0-length rates array nor allowed
1792	 * entries in the array that didn't exist
1793	 */
1794
1795	return 0;
1796}
1797
1798unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799{
1800	enum nl80211_band band;
1801	unsigned int n_channels = 0;
1802
1803	for (band = 0; band < NUM_NL80211_BANDS; band++)
1804		if (wiphy->bands[band])
1805			n_channels += wiphy->bands[band]->n_channels;
1806
1807	return n_channels;
1808}
1809EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810
1811int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812			 struct station_info *sinfo)
1813{
1814	struct cfg80211_registered_device *rdev;
1815	struct wireless_dev *wdev;
1816
1817	wdev = dev->ieee80211_ptr;
1818	if (!wdev)
1819		return -EOPNOTSUPP;
1820
1821	rdev = wiphy_to_rdev(wdev->wiphy);
1822	if (!rdev->ops->get_station)
1823		return -EOPNOTSUPP;
1824
 
 
1825	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826}
1827EXPORT_SYMBOL(cfg80211_get_station);
1828
1829void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830{
1831	int i;
1832
1833	if (!f)
1834		return;
1835
1836	kfree(f->serv_spec_info);
1837	kfree(f->srf_bf);
1838	kfree(f->srf_macs);
1839	for (i = 0; i < f->num_rx_filters; i++)
1840		kfree(f->rx_filters[i].filter);
1841
1842	for (i = 0; i < f->num_tx_filters; i++)
1843		kfree(f->tx_filters[i].filter);
1844
1845	kfree(f->rx_filters);
1846	kfree(f->tx_filters);
1847	kfree(f);
1848}
1849EXPORT_SYMBOL(cfg80211_free_nan_func);
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853const unsigned char rfc1042_header[] __aligned(2) =
1854	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855EXPORT_SYMBOL(rfc1042_header);
1856
1857/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858const unsigned char bridge_tunnel_header[] __aligned(2) =
1859	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860EXPORT_SYMBOL(bridge_tunnel_header);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2022 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27const struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
  83	case NL80211_BAND_LC:
  84		if (chan == 14)
  85			return MHZ_TO_KHZ(2484);
  86		else if (chan < 14)
  87			return MHZ_TO_KHZ(2407 + chan * 5);
  88		break;
  89	case NL80211_BAND_5GHZ:
  90		if (chan >= 182 && chan <= 196)
  91			return MHZ_TO_KHZ(4000 + chan * 5);
  92		else
  93			return MHZ_TO_KHZ(5000 + chan * 5);
  94		break;
  95	case NL80211_BAND_6GHZ:
  96		/* see 802.11ax D6.1 27.3.23.2 */
  97		if (chan == 2)
  98			return MHZ_TO_KHZ(5935);
  99		if (chan <= 233)
 100			return MHZ_TO_KHZ(5950 + chan * 5);
 101		break;
 102	case NL80211_BAND_60GHZ:
 103		if (chan < 7)
 104			return MHZ_TO_KHZ(56160 + chan * 2160);
 105		break;
 106	case NL80211_BAND_S1GHZ:
 107		return 902000 + chan * 500;
 108	default:
 109		;
 110	}
 111	return 0; /* not supported */
 112}
 113EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 114
 115enum nl80211_chan_width
 116ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 117{
 118	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 119		return NL80211_CHAN_WIDTH_20_NOHT;
 120
 121	/*S1G defines a single allowed channel width per channel.
 122	 * Extract that width here.
 123	 */
 124	if (chan->flags & IEEE80211_CHAN_1MHZ)
 125		return NL80211_CHAN_WIDTH_1;
 126	else if (chan->flags & IEEE80211_CHAN_2MHZ)
 127		return NL80211_CHAN_WIDTH_2;
 128	else if (chan->flags & IEEE80211_CHAN_4MHZ)
 129		return NL80211_CHAN_WIDTH_4;
 130	else if (chan->flags & IEEE80211_CHAN_8MHZ)
 131		return NL80211_CHAN_WIDTH_8;
 132	else if (chan->flags & IEEE80211_CHAN_16MHZ)
 133		return NL80211_CHAN_WIDTH_16;
 134
 135	pr_err("unknown channel width for channel at %dKHz?\n",
 136	       ieee80211_channel_to_khz(chan));
 137
 138	return NL80211_CHAN_WIDTH_1;
 139}
 140EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 141
 142int ieee80211_freq_khz_to_channel(u32 freq)
 143{
 144	/* TODO: just handle MHz for now */
 145	freq = KHZ_TO_MHZ(freq);
 146
 147	/* see 802.11 17.3.8.3.2 and Annex J */
 148	if (freq == 2484)
 149		return 14;
 150	else if (freq < 2484)
 151		return (freq - 2407) / 5;
 152	else if (freq >= 4910 && freq <= 4980)
 153		return (freq - 4000) / 5;
 154	else if (freq < 5925)
 155		return (freq - 5000) / 5;
 156	else if (freq == 5935)
 157		return 2;
 158	else if (freq <= 45000) /* DMG band lower limit */
 159		/* see 802.11ax D6.1 27.3.22.2 */
 160		return (freq - 5950) / 5;
 161	else if (freq >= 58320 && freq <= 70200)
 162		return (freq - 56160) / 2160;
 163	else
 164		return 0;
 165}
 166EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 167
 168struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 169						    u32 freq)
 170{
 171	enum nl80211_band band;
 172	struct ieee80211_supported_band *sband;
 173	int i;
 174
 175	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 176		sband = wiphy->bands[band];
 177
 178		if (!sband)
 179			continue;
 180
 181		for (i = 0; i < sband->n_channels; i++) {
 182			struct ieee80211_channel *chan = &sband->channels[i];
 183
 184			if (ieee80211_channel_to_khz(chan) == freq)
 185				return chan;
 186		}
 187	}
 188
 189	return NULL;
 190}
 191EXPORT_SYMBOL(ieee80211_get_channel_khz);
 192
 193static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 
 194{
 195	int i, want;
 196
 197	switch (sband->band) {
 198	case NL80211_BAND_5GHZ:
 199	case NL80211_BAND_6GHZ:
 200		want = 3;
 201		for (i = 0; i < sband->n_bitrates; i++) {
 202			if (sband->bitrates[i].bitrate == 60 ||
 203			    sband->bitrates[i].bitrate == 120 ||
 204			    sband->bitrates[i].bitrate == 240) {
 205				sband->bitrates[i].flags |=
 206					IEEE80211_RATE_MANDATORY_A;
 207				want--;
 208			}
 209		}
 210		WARN_ON(want);
 211		break;
 212	case NL80211_BAND_2GHZ:
 213	case NL80211_BAND_LC:
 214		want = 7;
 215		for (i = 0; i < sband->n_bitrates; i++) {
 216			switch (sband->bitrates[i].bitrate) {
 217			case 10:
 218			case 20:
 219			case 55:
 220			case 110:
 221				sband->bitrates[i].flags |=
 222					IEEE80211_RATE_MANDATORY_B |
 223					IEEE80211_RATE_MANDATORY_G;
 224				want--;
 225				break;
 226			case 60:
 227			case 120:
 228			case 240:
 
 
 
 
 229				sband->bitrates[i].flags |=
 230					IEEE80211_RATE_MANDATORY_G;
 231				want--;
 232				fallthrough;
 233			default:
 
 
 
 
 234				sband->bitrates[i].flags |=
 235					IEEE80211_RATE_ERP_G;
 236				break;
 237			}
 238		}
 239		WARN_ON(want != 0 && want != 3);
 240		break;
 241	case NL80211_BAND_60GHZ:
 242		/* check for mandatory HT MCS 1..4 */
 243		WARN_ON(!sband->ht_cap.ht_supported);
 244		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 245		break;
 246	case NL80211_BAND_S1GHZ:
 247		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 248		 * mandatory is ok.
 249		 */
 250		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 251		break;
 252	case NUM_NL80211_BANDS:
 253	default:
 254		WARN_ON(1);
 255		break;
 256	}
 257}
 258
 259void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 260{
 261	enum nl80211_band band;
 262
 263	for (band = 0; band < NUM_NL80211_BANDS; band++)
 264		if (wiphy->bands[band])
 265			set_mandatory_flags_band(wiphy->bands[band]);
 266}
 267
 268bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 269{
 270	int i;
 271	for (i = 0; i < wiphy->n_cipher_suites; i++)
 272		if (cipher == wiphy->cipher_suites[i])
 273			return true;
 274	return false;
 275}
 276
 277static bool
 278cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
 279{
 280	struct wiphy *wiphy = &rdev->wiphy;
 281	int i;
 282
 283	for (i = 0; i < wiphy->n_cipher_suites; i++) {
 284		switch (wiphy->cipher_suites[i]) {
 285		case WLAN_CIPHER_SUITE_AES_CMAC:
 286		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 287		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 288		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 289			return true;
 290		}
 291	}
 292
 293	return false;
 294}
 295
 296bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
 297			    int key_idx, bool pairwise)
 298{
 299	int max_key_idx;
 300
 301	if (pairwise)
 302		max_key_idx = 3;
 303	else if (wiphy_ext_feature_isset(&rdev->wiphy,
 304					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 305		 wiphy_ext_feature_isset(&rdev->wiphy,
 306					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 307		max_key_idx = 7;
 308	else if (cfg80211_igtk_cipher_supported(rdev))
 309		max_key_idx = 5;
 310	else
 311		max_key_idx = 3;
 312
 313	if (key_idx < 0 || key_idx > max_key_idx)
 314		return false;
 315
 316	return true;
 317}
 318
 319int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 320				   struct key_params *params, int key_idx,
 321				   bool pairwise, const u8 *mac_addr)
 322{
 323	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
 324		return -EINVAL;
 325
 326	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 327		return -EINVAL;
 328
 329	if (pairwise && !mac_addr)
 330		return -EINVAL;
 331
 332	switch (params->cipher) {
 333	case WLAN_CIPHER_SUITE_TKIP:
 334		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 335		if ((pairwise && key_idx) ||
 336		    params->mode != NL80211_KEY_RX_TX)
 337			return -EINVAL;
 338		break;
 339	case WLAN_CIPHER_SUITE_CCMP:
 340	case WLAN_CIPHER_SUITE_CCMP_256:
 341	case WLAN_CIPHER_SUITE_GCMP:
 342	case WLAN_CIPHER_SUITE_GCMP_256:
 343		/* IEEE802.11-2016 allows only 0 and - when supporting
 344		 * Extended Key ID - 1 as index for pairwise keys.
 345		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 346		 * the driver supports Extended Key ID.
 347		 * @NL80211_KEY_SET_TX can't be set when installing and
 348		 * validating a key.
 349		 */
 350		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 351		    params->mode == NL80211_KEY_SET_TX)
 352			return -EINVAL;
 353		if (wiphy_ext_feature_isset(&rdev->wiphy,
 354					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 355			if (pairwise && (key_idx < 0 || key_idx > 1))
 356				return -EINVAL;
 357		} else if (pairwise && key_idx) {
 358			return -EINVAL;
 359		}
 360		break;
 361	case WLAN_CIPHER_SUITE_AES_CMAC:
 362	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 363	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 364	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 365		/* Disallow BIP (group-only) cipher as pairwise cipher */
 366		if (pairwise)
 367			return -EINVAL;
 368		if (key_idx < 4)
 369			return -EINVAL;
 370		break;
 371	case WLAN_CIPHER_SUITE_WEP40:
 372	case WLAN_CIPHER_SUITE_WEP104:
 373		if (key_idx > 3)
 374			return -EINVAL;
 375		break;
 376	default:
 377		break;
 378	}
 379
 380	switch (params->cipher) {
 381	case WLAN_CIPHER_SUITE_WEP40:
 382		if (params->key_len != WLAN_KEY_LEN_WEP40)
 383			return -EINVAL;
 384		break;
 385	case WLAN_CIPHER_SUITE_TKIP:
 386		if (params->key_len != WLAN_KEY_LEN_TKIP)
 387			return -EINVAL;
 388		break;
 389	case WLAN_CIPHER_SUITE_CCMP:
 390		if (params->key_len != WLAN_KEY_LEN_CCMP)
 391			return -EINVAL;
 392		break;
 393	case WLAN_CIPHER_SUITE_CCMP_256:
 394		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 395			return -EINVAL;
 396		break;
 397	case WLAN_CIPHER_SUITE_GCMP:
 398		if (params->key_len != WLAN_KEY_LEN_GCMP)
 399			return -EINVAL;
 400		break;
 401	case WLAN_CIPHER_SUITE_GCMP_256:
 402		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 403			return -EINVAL;
 404		break;
 405	case WLAN_CIPHER_SUITE_WEP104:
 406		if (params->key_len != WLAN_KEY_LEN_WEP104)
 407			return -EINVAL;
 408		break;
 409	case WLAN_CIPHER_SUITE_AES_CMAC:
 410		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 411			return -EINVAL;
 412		break;
 413	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 414		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 415			return -EINVAL;
 416		break;
 417	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 418		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 419			return -EINVAL;
 420		break;
 421	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 422		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 423			return -EINVAL;
 424		break;
 425	default:
 426		/*
 427		 * We don't know anything about this algorithm,
 428		 * allow using it -- but the driver must check
 429		 * all parameters! We still check below whether
 430		 * or not the driver supports this algorithm,
 431		 * of course.
 432		 */
 433		break;
 434	}
 435
 436	if (params->seq) {
 437		switch (params->cipher) {
 438		case WLAN_CIPHER_SUITE_WEP40:
 439		case WLAN_CIPHER_SUITE_WEP104:
 440			/* These ciphers do not use key sequence */
 441			return -EINVAL;
 442		case WLAN_CIPHER_SUITE_TKIP:
 443		case WLAN_CIPHER_SUITE_CCMP:
 444		case WLAN_CIPHER_SUITE_CCMP_256:
 445		case WLAN_CIPHER_SUITE_GCMP:
 446		case WLAN_CIPHER_SUITE_GCMP_256:
 447		case WLAN_CIPHER_SUITE_AES_CMAC:
 448		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 449		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 450		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 451			if (params->seq_len != 6)
 452				return -EINVAL;
 453			break;
 454		}
 455	}
 456
 457	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 458		return -EINVAL;
 459
 460	return 0;
 461}
 462
 463unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 464{
 465	unsigned int hdrlen = 24;
 466
 467	if (ieee80211_is_ext(fc)) {
 468		hdrlen = 4;
 469		goto out;
 470	}
 471
 472	if (ieee80211_is_data(fc)) {
 473		if (ieee80211_has_a4(fc))
 474			hdrlen = 30;
 475		if (ieee80211_is_data_qos(fc)) {
 476			hdrlen += IEEE80211_QOS_CTL_LEN;
 477			if (ieee80211_has_order(fc))
 478				hdrlen += IEEE80211_HT_CTL_LEN;
 479		}
 480		goto out;
 481	}
 482
 483	if (ieee80211_is_mgmt(fc)) {
 484		if (ieee80211_has_order(fc))
 485			hdrlen += IEEE80211_HT_CTL_LEN;
 486		goto out;
 487	}
 488
 489	if (ieee80211_is_ctl(fc)) {
 490		/*
 491		 * ACK and CTS are 10 bytes, all others 16. To see how
 492		 * to get this condition consider
 493		 *   subtype mask:   0b0000000011110000 (0x00F0)
 494		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 495		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 496		 *   bits that matter:         ^^^      (0x00E0)
 497		 *   value of those: 0b0000000011000000 (0x00C0)
 498		 */
 499		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 500			hdrlen = 10;
 501		else
 502			hdrlen = 16;
 503	}
 504out:
 505	return hdrlen;
 506}
 507EXPORT_SYMBOL(ieee80211_hdrlen);
 508
 509unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 510{
 511	const struct ieee80211_hdr *hdr =
 512			(const struct ieee80211_hdr *)skb->data;
 513	unsigned int hdrlen;
 514
 515	if (unlikely(skb->len < 10))
 516		return 0;
 517	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 518	if (unlikely(hdrlen > skb->len))
 519		return 0;
 520	return hdrlen;
 521}
 522EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 523
 524static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 525{
 526	int ae = flags & MESH_FLAGS_AE;
 527	/* 802.11-2012, 8.2.4.7.3 */
 528	switch (ae) {
 529	default:
 530	case 0:
 531		return 6;
 532	case MESH_FLAGS_AE_A4:
 533		return 12;
 534	case MESH_FLAGS_AE_A5_A6:
 535		return 18;
 536	}
 537}
 538
 539unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 540{
 541	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 542}
 543EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 544
 545int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 546				  const u8 *addr, enum nl80211_iftype iftype,
 547				  u8 data_offset, bool is_amsdu)
 548{
 549	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 550	struct {
 551		u8 hdr[ETH_ALEN] __aligned(2);
 552		__be16 proto;
 553	} payload;
 554	struct ethhdr tmp;
 555	u16 hdrlen;
 556	u8 mesh_flags = 0;
 557
 558	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 559		return -1;
 560
 561	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 562	if (skb->len < hdrlen)
 563		return -1;
 564
 565	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 566	 * header
 567	 * IEEE 802.11 address fields:
 568	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 569	 *   0     0   DA    SA    BSSID n/a
 570	 *   0     1   DA    BSSID SA    n/a
 571	 *   1     0   BSSID SA    DA    n/a
 572	 *   1     1   RA    TA    DA    SA
 573	 */
 574	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 575	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 576
 577	if (iftype == NL80211_IFTYPE_MESH_POINT &&
 578	    skb_copy_bits(skb, hdrlen, &mesh_flags, 1) < 0)
 579		return -1;
 580
 581	mesh_flags &= MESH_FLAGS_AE;
 582
 583	switch (hdr->frame_control &
 584		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 585	case cpu_to_le16(IEEE80211_FCTL_TODS):
 586		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 587			     iftype != NL80211_IFTYPE_AP_VLAN &&
 588			     iftype != NL80211_IFTYPE_P2P_GO))
 589			return -1;
 590		break;
 591	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 592		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
 
 593			     iftype != NL80211_IFTYPE_AP_VLAN &&
 594			     iftype != NL80211_IFTYPE_STATION))
 595			return -1;
 596		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 597			if (mesh_flags == MESH_FLAGS_AE_A4)
 598				return -1;
 599			if (mesh_flags == MESH_FLAGS_AE_A5_A6 &&
 600			    skb_copy_bits(skb, hdrlen +
 601					  offsetof(struct ieee80211s_hdr, eaddr1),
 602					  tmp.h_dest, 2 * ETH_ALEN) < 0)
 603				return -1;
 604
 605			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 606		}
 607		break;
 608	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 609		if ((iftype != NL80211_IFTYPE_STATION &&
 610		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 611		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 612		    (is_multicast_ether_addr(tmp.h_dest) &&
 613		     ether_addr_equal(tmp.h_source, addr)))
 614			return -1;
 615		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 616			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 617				return -1;
 618			if (mesh_flags == MESH_FLAGS_AE_A4 &&
 619			    skb_copy_bits(skb, hdrlen +
 620					  offsetof(struct ieee80211s_hdr, eaddr1),
 621					  tmp.h_source, ETH_ALEN) < 0)
 622				return -1;
 
 
 
 
 623			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 624		}
 625		break;
 626	case cpu_to_le16(0):
 627		if (iftype != NL80211_IFTYPE_ADHOC &&
 628		    iftype != NL80211_IFTYPE_STATION &&
 629		    iftype != NL80211_IFTYPE_OCB)
 630				return -1;
 631		break;
 632	}
 633
 634	if (likely(skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
 635	           ((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
 636		     payload.proto != htons(ETH_P_AARP) &&
 637		     payload.proto != htons(ETH_P_IPX)) ||
 638		    ether_addr_equal(payload.hdr, bridge_tunnel_header)))) {
 
 
 639		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 640		 * replace EtherType */
 641		hdrlen += ETH_ALEN + 2;
 642		tmp.h_proto = payload.proto;
 643		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
 644	} else {
 645		tmp.h_proto = htons(skb->len - hdrlen);
 646	}
 647
 648	pskb_pull(skb, hdrlen);
 649
 650	if (!ehdr)
 651		ehdr = skb_push(skb, sizeof(struct ethhdr));
 652	memcpy(ehdr, &tmp, sizeof(tmp));
 653
 654	return 0;
 655}
 656EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658static void
 659__frame_add_frag(struct sk_buff *skb, struct page *page,
 660		 void *ptr, int len, int size)
 661{
 662	struct skb_shared_info *sh = skb_shinfo(skb);
 663	int page_offset;
 664
 665	get_page(page);
 666	page_offset = ptr - page_address(page);
 667	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 668}
 669
 670static void
 671__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 672			    int offset, int len)
 673{
 674	struct skb_shared_info *sh = skb_shinfo(skb);
 675	const skb_frag_t *frag = &sh->frags[0];
 676	struct page *frag_page;
 677	void *frag_ptr;
 678	int frag_len, frag_size;
 679	int head_size = skb->len - skb->data_len;
 680	int cur_len;
 681
 682	frag_page = virt_to_head_page(skb->head);
 683	frag_ptr = skb->data;
 684	frag_size = head_size;
 685
 686	while (offset >= frag_size) {
 687		offset -= frag_size;
 
 688		frag_page = skb_frag_page(frag);
 689		frag_ptr = skb_frag_address(frag);
 690		frag_size = skb_frag_size(frag);
 691		frag++;
 692	}
 693
 694	frag_ptr += offset;
 695	frag_len = frag_size - offset;
 696
 697	cur_len = min(len, frag_len);
 698
 699	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 700	len -= cur_len;
 701
 702	while (len > 0) {
 
 703		frag_len = skb_frag_size(frag);
 704		cur_len = min(len, frag_len);
 705		__frame_add_frag(frame, skb_frag_page(frag),
 706				 skb_frag_address(frag), cur_len, frag_len);
 707		len -= cur_len;
 708		frag++;
 709	}
 710}
 711
 712static struct sk_buff *
 713__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 714		       int offset, int len, bool reuse_frag)
 715{
 716	struct sk_buff *frame;
 717	int cur_len = len;
 718
 719	if (skb->len - offset < len)
 720		return NULL;
 721
 722	/*
 723	 * When reusing framents, copy some data to the head to simplify
 724	 * ethernet header handling and speed up protocol header processing
 725	 * in the stack later.
 726	 */
 727	if (reuse_frag)
 728		cur_len = min_t(int, len, 32);
 729
 730	/*
 731	 * Allocate and reserve two bytes more for payload
 732	 * alignment since sizeof(struct ethhdr) is 14.
 733	 */
 734	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 735	if (!frame)
 736		return NULL;
 737
 738	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 739	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 740
 741	len -= cur_len;
 742	if (!len)
 743		return frame;
 744
 745	offset += cur_len;
 746	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 747
 748	return frame;
 749}
 750
 751void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 752			      const u8 *addr, enum nl80211_iftype iftype,
 753			      const unsigned int extra_headroom,
 754			      const u8 *check_da, const u8 *check_sa)
 755{
 756	unsigned int hlen = ALIGN(extra_headroom, 4);
 757	struct sk_buff *frame = NULL;
 758	u16 ethertype;
 759	u8 *payload;
 760	int offset = 0, remaining;
 761	struct ethhdr eth;
 762	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 763	bool reuse_skb = false;
 764	bool last = false;
 765
 766	while (!last) {
 767		unsigned int subframe_len;
 768		int len;
 769		u8 padding;
 770
 771		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 772		len = ntohs(eth.h_proto);
 773		subframe_len = sizeof(struct ethhdr) + len;
 774		padding = (4 - subframe_len) & 0x3;
 775
 776		/* the last MSDU has no padding */
 777		remaining = skb->len - offset;
 778		if (subframe_len > remaining)
 779			goto purge;
 780		/* mitigate A-MSDU aggregation injection attacks */
 781		if (ether_addr_equal(eth.h_dest, rfc1042_header))
 782			goto purge;
 783
 784		offset += sizeof(struct ethhdr);
 785		last = remaining <= subframe_len + padding;
 786
 787		/* FIXME: should we really accept multicast DA? */
 788		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 789		     !ether_addr_equal(check_da, eth.h_dest)) ||
 790		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 791			offset += len + padding;
 792			continue;
 793		}
 794
 795		/* reuse skb for the last subframe */
 796		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 797			skb_pull(skb, offset);
 798			frame = skb;
 799			reuse_skb = true;
 800		} else {
 801			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 802						       reuse_frag);
 803			if (!frame)
 804				goto purge;
 805
 806			offset += len + padding;
 807		}
 808
 809		skb_reset_network_header(frame);
 810		frame->dev = skb->dev;
 811		frame->priority = skb->priority;
 812
 813		payload = frame->data;
 814		ethertype = (payload[6] << 8) | payload[7];
 815		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 816			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 817			   ether_addr_equal(payload, bridge_tunnel_header))) {
 818			eth.h_proto = htons(ethertype);
 819			skb_pull(frame, ETH_ALEN + 2);
 820		}
 821
 822		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 823		__skb_queue_tail(list, frame);
 824	}
 825
 826	if (!reuse_skb)
 827		dev_kfree_skb(skb);
 828
 829	return;
 830
 831 purge:
 832	__skb_queue_purge(list);
 833	dev_kfree_skb(skb);
 834}
 835EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 836
 837/* Given a data frame determine the 802.1p/1d tag to use. */
 838unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 839				    struct cfg80211_qos_map *qos_map)
 840{
 841	unsigned int dscp;
 842	unsigned char vlan_priority;
 843	unsigned int ret;
 844
 845	/* skb->priority values from 256->263 are magic values to
 846	 * directly indicate a specific 802.1d priority.  This is used
 847	 * to allow 802.1d priority to be passed directly in from VLAN
 848	 * tags, etc.
 849	 */
 850	if (skb->priority >= 256 && skb->priority <= 263) {
 851		ret = skb->priority - 256;
 852		goto out;
 853	}
 854
 855	if (skb_vlan_tag_present(skb)) {
 856		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 857			>> VLAN_PRIO_SHIFT;
 858		if (vlan_priority > 0) {
 859			ret = vlan_priority;
 860			goto out;
 861		}
 862	}
 863
 864	switch (skb->protocol) {
 865	case htons(ETH_P_IP):
 866		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 867		break;
 868	case htons(ETH_P_IPV6):
 869		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 870		break;
 871	case htons(ETH_P_MPLS_UC):
 872	case htons(ETH_P_MPLS_MC): {
 873		struct mpls_label mpls_tmp, *mpls;
 874
 875		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 876					  sizeof(*mpls), &mpls_tmp);
 877		if (!mpls)
 878			return 0;
 879
 880		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 881			>> MPLS_LS_TC_SHIFT;
 882		goto out;
 883	}
 884	case htons(ETH_P_80221):
 885		/* 802.21 is always network control traffic */
 886		return 7;
 887	default:
 888		return 0;
 889	}
 890
 891	if (qos_map) {
 892		unsigned int i, tmp_dscp = dscp >> 2;
 893
 894		for (i = 0; i < qos_map->num_des; i++) {
 895			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 896				ret = qos_map->dscp_exception[i].up;
 897				goto out;
 898			}
 899		}
 900
 901		for (i = 0; i < 8; i++) {
 902			if (tmp_dscp >= qos_map->up[i].low &&
 903			    tmp_dscp <= qos_map->up[i].high) {
 904				ret = i;
 905				goto out;
 906			}
 907		}
 908	}
 909
 910	ret = dscp >> 5;
 911out:
 912	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 913}
 914EXPORT_SYMBOL(cfg80211_classify8021d);
 915
 916const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 917{
 918	const struct cfg80211_bss_ies *ies;
 919
 920	ies = rcu_dereference(bss->ies);
 921	if (!ies)
 922		return NULL;
 923
 924	return cfg80211_find_elem(id, ies->data, ies->len);
 925}
 926EXPORT_SYMBOL(ieee80211_bss_get_elem);
 927
 928void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 929{
 930	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 931	struct net_device *dev = wdev->netdev;
 932	int i;
 933
 934	if (!wdev->connect_keys)
 935		return;
 936
 937	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 938		if (!wdev->connect_keys->params[i].cipher)
 939			continue;
 940		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
 941				 &wdev->connect_keys->params[i])) {
 942			netdev_err(dev, "failed to set key %d\n", i);
 943			continue;
 944		}
 945		if (wdev->connect_keys->def == i &&
 946		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
 947			netdev_err(dev, "failed to set defkey %d\n", i);
 948			continue;
 949		}
 950	}
 951
 952	kfree_sensitive(wdev->connect_keys);
 953	wdev->connect_keys = NULL;
 954}
 955
 956void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 957{
 958	struct cfg80211_event *ev;
 959	unsigned long flags;
 
 960
 961	spin_lock_irqsave(&wdev->event_lock, flags);
 962	while (!list_empty(&wdev->event_list)) {
 963		ev = list_first_entry(&wdev->event_list,
 964				      struct cfg80211_event, list);
 965		list_del(&ev->list);
 966		spin_unlock_irqrestore(&wdev->event_lock, flags);
 967
 968		wdev_lock(wdev);
 969		switch (ev->type) {
 970		case EVENT_CONNECT_RESULT:
 
 
 971			__cfg80211_connect_result(
 972				wdev->netdev,
 973				&ev->cr,
 974				ev->cr.status == WLAN_STATUS_SUCCESS);
 
 
 
 975			break;
 976		case EVENT_ROAMED:
 977			__cfg80211_roamed(wdev, &ev->rm);
 
 
 978			break;
 979		case EVENT_DISCONNECTED:
 980			__cfg80211_disconnected(wdev->netdev,
 981						ev->dc.ie, ev->dc.ie_len,
 982						ev->dc.reason,
 983						!ev->dc.locally_generated);
 984			break;
 985		case EVENT_IBSS_JOINED:
 986			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 987					       ev->ij.channel);
 988			break;
 989		case EVENT_STOPPED:
 990			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 991			break;
 992		case EVENT_PORT_AUTHORIZED:
 993			__cfg80211_port_authorized(wdev, ev->pa.bssid,
 994						   ev->pa.td_bitmap,
 995						   ev->pa.td_bitmap_len);
 996			break;
 997		}
 998		wdev_unlock(wdev);
 999
1000		kfree(ev);
1001
1002		spin_lock_irqsave(&wdev->event_lock, flags);
1003	}
1004	spin_unlock_irqrestore(&wdev->event_lock, flags);
1005}
1006
1007void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1008{
1009	struct wireless_dev *wdev;
1010
1011	lockdep_assert_held(&rdev->wiphy.mtx);
1012
1013	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1014		cfg80211_process_wdev_events(wdev);
1015}
1016
1017int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1018			  struct net_device *dev, enum nl80211_iftype ntype,
1019			  struct vif_params *params)
1020{
1021	int err;
1022	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1023
1024	lockdep_assert_held(&rdev->wiphy.mtx);
1025
1026	/* don't support changing VLANs, you just re-create them */
1027	if (otype == NL80211_IFTYPE_AP_VLAN)
1028		return -EOPNOTSUPP;
1029
1030	/* cannot change into P2P device or NAN */
1031	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1032	    ntype == NL80211_IFTYPE_NAN)
1033		return -EOPNOTSUPP;
1034
1035	if (!rdev->ops->change_virtual_intf ||
1036	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1037		return -EOPNOTSUPP;
1038
 
 
 
 
 
 
 
1039	if (ntype != otype) {
1040		/* if it's part of a bridge, reject changing type to station/ibss */
1041		if (netif_is_bridge_port(dev) &&
1042		    (ntype == NL80211_IFTYPE_ADHOC ||
1043		     ntype == NL80211_IFTYPE_STATION ||
1044		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1045			return -EBUSY;
1046
1047		dev->ieee80211_ptr->use_4addr = false;
 
1048		wdev_lock(dev->ieee80211_ptr);
1049		rdev_set_qos_map(rdev, dev, NULL);
1050		wdev_unlock(dev->ieee80211_ptr);
1051
1052		switch (otype) {
1053		case NL80211_IFTYPE_AP:
1054		case NL80211_IFTYPE_P2P_GO:
1055			cfg80211_stop_ap(rdev, dev, -1, true);
1056			break;
1057		case NL80211_IFTYPE_ADHOC:
1058			cfg80211_leave_ibss(rdev, dev, false);
1059			break;
1060		case NL80211_IFTYPE_STATION:
1061		case NL80211_IFTYPE_P2P_CLIENT:
1062			wdev_lock(dev->ieee80211_ptr);
1063			cfg80211_disconnect(rdev, dev,
1064					    WLAN_REASON_DEAUTH_LEAVING, true);
1065			wdev_unlock(dev->ieee80211_ptr);
1066			break;
1067		case NL80211_IFTYPE_MESH_POINT:
1068			/* mesh should be handled? */
1069			break;
1070		case NL80211_IFTYPE_OCB:
1071			cfg80211_leave_ocb(rdev, dev);
1072			break;
1073		default:
1074			break;
1075		}
1076
1077		cfg80211_process_rdev_events(rdev);
1078		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1079
1080		memset(&dev->ieee80211_ptr->u, 0,
1081		       sizeof(dev->ieee80211_ptr->u));
1082		memset(&dev->ieee80211_ptr->links, 0,
1083		       sizeof(dev->ieee80211_ptr->links));
1084	}
1085
1086	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1087
1088	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1089
1090	if (!err && params && params->use_4addr != -1)
1091		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1092
1093	if (!err) {
1094		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1095		switch (ntype) {
1096		case NL80211_IFTYPE_STATION:
1097			if (dev->ieee80211_ptr->use_4addr)
1098				break;
1099			fallthrough;
1100		case NL80211_IFTYPE_OCB:
1101		case NL80211_IFTYPE_P2P_CLIENT:
1102		case NL80211_IFTYPE_ADHOC:
1103			dev->priv_flags |= IFF_DONT_BRIDGE;
1104			break;
1105		case NL80211_IFTYPE_P2P_GO:
1106		case NL80211_IFTYPE_AP:
1107		case NL80211_IFTYPE_AP_VLAN:
 
1108		case NL80211_IFTYPE_MESH_POINT:
1109			/* bridging OK */
1110			break;
1111		case NL80211_IFTYPE_MONITOR:
1112			/* monitor can't bridge anyway */
1113			break;
1114		case NL80211_IFTYPE_UNSPECIFIED:
1115		case NUM_NL80211_IFTYPES:
1116			/* not happening */
1117			break;
1118		case NL80211_IFTYPE_P2P_DEVICE:
1119		case NL80211_IFTYPE_WDS:
1120		case NL80211_IFTYPE_NAN:
1121			WARN_ON(1);
1122			break;
1123		}
1124	}
1125
1126	if (!err && ntype != otype && netif_running(dev)) {
1127		cfg80211_update_iface_num(rdev, ntype, 1);
1128		cfg80211_update_iface_num(rdev, otype, -1);
1129	}
1130
1131	return err;
1132}
1133
1134static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1135{
1136	int modulation, streams, bitrate;
1137
1138	/* the formula below does only work for MCS values smaller than 32 */
1139	if (WARN_ON_ONCE(rate->mcs >= 32))
1140		return 0;
1141
1142	modulation = rate->mcs & 7;
1143	streams = (rate->mcs >> 3) + 1;
1144
1145	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1146
1147	if (modulation < 4)
1148		bitrate *= (modulation + 1);
1149	else if (modulation == 4)
1150		bitrate *= (modulation + 2);
1151	else
1152		bitrate *= (modulation + 3);
1153
1154	bitrate *= streams;
1155
1156	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1157		bitrate = (bitrate / 9) * 10;
1158
1159	/* do NOT round down here */
1160	return (bitrate + 50000) / 100000;
1161}
1162
1163static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1164{
1165	static const u32 __mcs2bitrate[] = {
1166		/* control PHY */
1167		[0] =   275,
1168		/* SC PHY */
1169		[1] =  3850,
1170		[2] =  7700,
1171		[3] =  9625,
1172		[4] = 11550,
1173		[5] = 12512, /* 1251.25 mbps */
1174		[6] = 15400,
1175		[7] = 19250,
1176		[8] = 23100,
1177		[9] = 25025,
1178		[10] = 30800,
1179		[11] = 38500,
1180		[12] = 46200,
1181		/* OFDM PHY */
1182		[13] =  6930,
1183		[14] =  8662, /* 866.25 mbps */
1184		[15] = 13860,
1185		[16] = 17325,
1186		[17] = 20790,
1187		[18] = 27720,
1188		[19] = 34650,
1189		[20] = 41580,
1190		[21] = 45045,
1191		[22] = 51975,
1192		[23] = 62370,
1193		[24] = 67568, /* 6756.75 mbps */
1194		/* LP-SC PHY */
1195		[25] =  6260,
1196		[26] =  8340,
1197		[27] = 11120,
1198		[28] = 12510,
1199		[29] = 16680,
1200		[30] = 22240,
1201		[31] = 25030,
1202	};
1203
1204	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1205		return 0;
1206
1207	return __mcs2bitrate[rate->mcs];
1208}
1209
1210static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1211{
1212	static const u32 __mcs2bitrate[] = {
1213		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1214		[7 - 6] = 50050, /* MCS 12.1 */
1215		[8 - 6] = 53900,
1216		[9 - 6] = 57750,
1217		[10 - 6] = 63900,
1218		[11 - 6] = 75075,
1219		[12 - 6] = 80850,
1220	};
1221
1222	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1223	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1224		return 0;
1225
1226	return __mcs2bitrate[rate->mcs - 6];
1227}
1228
1229static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1230{
1231	static const u32 __mcs2bitrate[] = {
1232		/* control PHY */
1233		[0] =   275,
1234		/* SC PHY */
1235		[1] =  3850,
1236		[2] =  7700,
1237		[3] =  9625,
1238		[4] = 11550,
1239		[5] = 12512, /* 1251.25 mbps */
1240		[6] = 13475,
1241		[7] = 15400,
1242		[8] = 19250,
1243		[9] = 23100,
1244		[10] = 25025,
1245		[11] = 26950,
1246		[12] = 30800,
1247		[13] = 38500,
1248		[14] = 46200,
1249		[15] = 50050,
1250		[16] = 53900,
1251		[17] = 57750,
1252		[18] = 69300,
1253		[19] = 75075,
1254		[20] = 80850,
1255	};
1256
1257	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1258		return 0;
1259
1260	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1261}
1262
1263static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1264{
1265	static const u32 base[4][12] = {
1266		{   6500000,
1267		   13000000,
1268		   19500000,
1269		   26000000,
1270		   39000000,
1271		   52000000,
1272		   58500000,
1273		   65000000,
1274		   78000000,
1275		/* not in the spec, but some devices use this: */
1276		   86700000,
1277		   97500000,
1278		  108300000,
1279		},
1280		{  13500000,
1281		   27000000,
1282		   40500000,
1283		   54000000,
1284		   81000000,
1285		  108000000,
1286		  121500000,
1287		  135000000,
1288		  162000000,
1289		  180000000,
1290		  202500000,
1291		  225000000,
1292		},
1293		{  29300000,
1294		   58500000,
1295		   87800000,
1296		  117000000,
1297		  175500000,
1298		  234000000,
1299		  263300000,
1300		  292500000,
1301		  351000000,
1302		  390000000,
1303		  438800000,
1304		  487500000,
1305		},
1306		{  58500000,
1307		  117000000,
1308		  175500000,
1309		  234000000,
1310		  351000000,
1311		  468000000,
1312		  526500000,
1313		  585000000,
1314		  702000000,
1315		  780000000,
1316		  877500000,
1317		  975000000,
1318		},
1319	};
1320	u32 bitrate;
1321	int idx;
1322
1323	if (rate->mcs > 11)
1324		goto warn;
1325
1326	switch (rate->bw) {
1327	case RATE_INFO_BW_160:
1328		idx = 3;
1329		break;
1330	case RATE_INFO_BW_80:
1331		idx = 2;
1332		break;
1333	case RATE_INFO_BW_40:
1334		idx = 1;
1335		break;
1336	case RATE_INFO_BW_5:
1337	case RATE_INFO_BW_10:
1338	default:
1339		goto warn;
 
1340	case RATE_INFO_BW_20:
1341		idx = 0;
1342	}
1343
1344	bitrate = base[idx][rate->mcs];
1345	bitrate *= rate->nss;
1346
1347	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1348		bitrate = (bitrate / 9) * 10;
1349
1350	/* do NOT round down here */
1351	return (bitrate + 50000) / 100000;
1352 warn:
1353	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1354		  rate->bw, rate->mcs, rate->nss);
1355	return 0;
1356}
1357
1358static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1359{
1360#define SCALE 6144
1361	u32 mcs_divisors[14] = {
1362		102399, /* 16.666666... */
1363		 51201, /*  8.333333... */
1364		 34134, /*  5.555555... */
1365		 25599, /*  4.166666... */
1366		 17067, /*  2.777777... */
1367		 12801, /*  2.083333... */
1368		 11377, /*  1.851725... */
1369		 10239, /*  1.666666... */
1370		  8532, /*  1.388888... */
1371		  7680, /*  1.250000... */
1372		  6828, /*  1.111111... */
1373		  6144, /*  1.000000... */
1374		  5690, /*  0.926106... */
1375		  5120, /*  0.833333... */
1376	};
1377	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1378	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1379	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1380	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1381	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1382	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1383	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1384	u64 tmp;
1385	u32 result;
1386
1387	if (WARN_ON_ONCE(rate->mcs > 13))
1388		return 0;
 
 
 
 
 
1389
1390	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1391		return 0;
1392	if (WARN_ON_ONCE(rate->he_ru_alloc >
1393			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1394		return 0;
1395	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1396		return 0;
1397
1398	if (rate->bw == RATE_INFO_BW_160)
1399		result = rates_160M[rate->he_gi];
1400	else if (rate->bw == RATE_INFO_BW_80 ||
1401		 (rate->bw == RATE_INFO_BW_HE_RU &&
1402		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1403		result = rates_969[rate->he_gi];
1404	else if (rate->bw == RATE_INFO_BW_40 ||
1405		 (rate->bw == RATE_INFO_BW_HE_RU &&
1406		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1407		result = rates_484[rate->he_gi];
1408	else if (rate->bw == RATE_INFO_BW_20 ||
1409		 (rate->bw == RATE_INFO_BW_HE_RU &&
1410		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1411		result = rates_242[rate->he_gi];
1412	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1413		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1414		result = rates_106[rate->he_gi];
1415	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1416		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1417		result = rates_52[rate->he_gi];
1418	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1419		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1420		result = rates_26[rate->he_gi];
1421	else {
1422		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1423		     rate->bw, rate->he_ru_alloc);
1424		return 0;
1425	}
1426
1427	/* now scale to the appropriate MCS */
1428	tmp = result;
1429	tmp *= SCALE;
1430	do_div(tmp, mcs_divisors[rate->mcs]);
1431	result = tmp;
1432
1433	/* and take NSS, DCM into account */
1434	result = (result * rate->nss) / 8;
1435	if (rate->he_dcm)
1436		result /= 2;
1437
1438	return result / 10000;
1439}
1440
1441static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1442{
1443#define SCALE 6144
1444	static const u32 mcs_divisors[16] = {
1445		102399, /* 16.666666... */
1446		 51201, /*  8.333333... */
1447		 34134, /*  5.555555... */
1448		 25599, /*  4.166666... */
1449		 17067, /*  2.777777... */
1450		 12801, /*  2.083333... */
1451		 11377, /*  1.851725... */
1452		 10239, /*  1.666666... */
1453		  8532, /*  1.388888... */
1454		  7680, /*  1.250000... */
1455		  6828, /*  1.111111... */
1456		  6144, /*  1.000000... */
1457		  5690, /*  0.926106... */
1458		  5120, /*  0.833333... */
1459		409600, /* 66.666666... */
1460		204800, /* 33.333333... */
1461	};
1462	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1463	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1464	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1465	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1466	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1467	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1468	u64 tmp;
1469	u32 result;
1470
1471	if (WARN_ON_ONCE(rate->mcs > 15))
1472		return 0;
1473	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1474		return 0;
1475	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1476			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1477		return 0;
1478	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1479		return 0;
1480
1481	/* Bandwidth checks for MCS 14 */
1482	if (rate->mcs == 14) {
1483		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1484		     rate->bw != RATE_INFO_BW_80 &&
1485		     rate->bw != RATE_INFO_BW_160 &&
1486		     rate->bw != RATE_INFO_BW_320) ||
1487		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1488		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1489		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1490		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1491			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1492			     rate->bw, rate->eht_ru_alloc);
1493			return 0;
1494		}
1495	}
1496
1497	if (rate->bw == RATE_INFO_BW_320 ||
1498	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1499	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1500		result = 4 * rates_996[rate->eht_gi];
1501	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1502		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1503		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1504	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1505		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1506		result = 3 * rates_996[rate->eht_gi];
1507	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1508		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1509		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1510	else if (rate->bw == RATE_INFO_BW_160 ||
1511		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1512		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1513		result = 2 * rates_996[rate->eht_gi];
1514	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1515		 rate->eht_ru_alloc ==
1516		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1517		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1518			 + rates_242[rate->eht_gi];
1519	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1520		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1521		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1522	else if (rate->bw == RATE_INFO_BW_80 ||
1523		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1524		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1525		result = rates_996[rate->eht_gi];
1526	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1527		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1528		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1529	else if (rate->bw == RATE_INFO_BW_40 ||
1530		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1531		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1532		result = rates_484[rate->eht_gi];
1533	else if (rate->bw == RATE_INFO_BW_20 ||
1534		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1535		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1536		result = rates_242[rate->eht_gi];
1537	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1538		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1539		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1540	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1541		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1542		result = rates_106[rate->eht_gi];
1543	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1544		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1545		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1546	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1547		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1548		result = rates_52[rate->eht_gi];
1549	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1550		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1551		result = rates_26[rate->eht_gi];
1552	else {
1553		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1554		     rate->bw, rate->eht_ru_alloc);
1555		return 0;
1556	}
1557
1558	/* now scale to the appropriate MCS */
1559	tmp = result;
1560	tmp *= SCALE;
1561	do_div(tmp, mcs_divisors[rate->mcs]);
1562
1563	/* and take NSS */
1564	tmp *= rate->nss;
1565	do_div(tmp, 8);
1566
1567	result = tmp;
1568
1569	return result / 10000;
1570}
1571
1572u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1573{
1574	if (rate->flags & RATE_INFO_FLAGS_MCS)
1575		return cfg80211_calculate_bitrate_ht(rate);
1576	if (rate->flags & RATE_INFO_FLAGS_DMG)
1577		return cfg80211_calculate_bitrate_dmg(rate);
1578	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1579		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1580	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1581		return cfg80211_calculate_bitrate_edmg(rate);
1582	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1583		return cfg80211_calculate_bitrate_vht(rate);
1584	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1585		return cfg80211_calculate_bitrate_he(rate);
1586	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1587		return cfg80211_calculate_bitrate_eht(rate);
1588
1589	return rate->legacy;
1590}
1591EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1592
1593int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1594			  enum ieee80211_p2p_attr_id attr,
1595			  u8 *buf, unsigned int bufsize)
1596{
1597	u8 *out = buf;
1598	u16 attr_remaining = 0;
1599	bool desired_attr = false;
1600	u16 desired_len = 0;
1601
1602	while (len > 0) {
1603		unsigned int iedatalen;
1604		unsigned int copy;
1605		const u8 *iedata;
1606
1607		if (len < 2)
1608			return -EILSEQ;
1609		iedatalen = ies[1];
1610		if (iedatalen + 2 > len)
1611			return -EILSEQ;
1612
1613		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1614			goto cont;
1615
1616		if (iedatalen < 4)
1617			goto cont;
1618
1619		iedata = ies + 2;
1620
1621		/* check WFA OUI, P2P subtype */
1622		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1623		    iedata[2] != 0x9a || iedata[3] != 0x09)
1624			goto cont;
1625
1626		iedatalen -= 4;
1627		iedata += 4;
1628
1629		/* check attribute continuation into this IE */
1630		copy = min_t(unsigned int, attr_remaining, iedatalen);
1631		if (copy && desired_attr) {
1632			desired_len += copy;
1633			if (out) {
1634				memcpy(out, iedata, min(bufsize, copy));
1635				out += min(bufsize, copy);
1636				bufsize -= min(bufsize, copy);
1637			}
1638
1639
1640			if (copy == attr_remaining)
1641				return desired_len;
1642		}
1643
1644		attr_remaining -= copy;
1645		if (attr_remaining)
1646			goto cont;
1647
1648		iedatalen -= copy;
1649		iedata += copy;
1650
1651		while (iedatalen > 0) {
1652			u16 attr_len;
1653
1654			/* P2P attribute ID & size must fit */
1655			if (iedatalen < 3)
1656				return -EILSEQ;
1657			desired_attr = iedata[0] == attr;
1658			attr_len = get_unaligned_le16(iedata + 1);
1659			iedatalen -= 3;
1660			iedata += 3;
1661
1662			copy = min_t(unsigned int, attr_len, iedatalen);
1663
1664			if (desired_attr) {
1665				desired_len += copy;
1666				if (out) {
1667					memcpy(out, iedata, min(bufsize, copy));
1668					out += min(bufsize, copy);
1669					bufsize -= min(bufsize, copy);
1670				}
1671
1672				if (copy == attr_len)
1673					return desired_len;
1674			}
1675
1676			iedata += copy;
1677			iedatalen -= copy;
1678			attr_remaining = attr_len - copy;
1679		}
1680
1681 cont:
1682		len -= ies[1] + 2;
1683		ies += ies[1] + 2;
1684	}
1685
1686	if (attr_remaining && desired_attr)
1687		return -EILSEQ;
1688
1689	return -ENOENT;
1690}
1691EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1692
1693static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1694{
1695	int i;
1696
1697	/* Make sure array values are legal */
1698	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1699		return false;
1700
1701	i = 0;
1702	while (i < n_ids) {
1703		if (ids[i] == WLAN_EID_EXTENSION) {
1704			if (id_ext && (ids[i + 1] == id))
1705				return true;
1706
1707			i += 2;
1708			continue;
1709		}
1710
1711		if (ids[i] == id && !id_ext)
1712			return true;
1713
1714		i++;
1715	}
1716	return false;
1717}
1718
1719static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1720{
1721	/* we assume a validly formed IEs buffer */
1722	u8 len = ies[pos + 1];
1723
1724	pos += 2 + len;
1725
1726	/* the IE itself must have 255 bytes for fragments to follow */
1727	if (len < 255)
1728		return pos;
1729
1730	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1731		len = ies[pos + 1];
1732		pos += 2 + len;
1733	}
1734
1735	return pos;
1736}
1737
1738size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1739			      const u8 *ids, int n_ids,
1740			      const u8 *after_ric, int n_after_ric,
1741			      size_t offset)
1742{
1743	size_t pos = offset;
1744
1745	while (pos < ielen) {
1746		u8 ext = 0;
1747
1748		if (ies[pos] == WLAN_EID_EXTENSION)
1749			ext = 2;
1750		if ((pos + ext) >= ielen)
1751			break;
1752
1753		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1754					  ies[pos] == WLAN_EID_EXTENSION))
1755			break;
1756
1757		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1758			pos = skip_ie(ies, ielen, pos);
1759
1760			while (pos < ielen) {
1761				if (ies[pos] == WLAN_EID_EXTENSION)
1762					ext = 2;
1763				else
1764					ext = 0;
1765
1766				if ((pos + ext) >= ielen)
1767					break;
1768
1769				if (!ieee80211_id_in_list(after_ric,
1770							  n_after_ric,
1771							  ies[pos + ext],
1772							  ext == 2))
1773					pos = skip_ie(ies, ielen, pos);
1774				else
1775					break;
1776			}
1777		} else {
1778			pos = skip_ie(ies, ielen, pos);
1779		}
1780	}
1781
1782	return pos;
1783}
1784EXPORT_SYMBOL(ieee80211_ie_split_ric);
1785
1786bool ieee80211_operating_class_to_band(u8 operating_class,
1787				       enum nl80211_band *band)
1788{
1789	switch (operating_class) {
1790	case 112:
1791	case 115 ... 127:
1792	case 128 ... 130:
1793		*band = NL80211_BAND_5GHZ;
1794		return true;
1795	case 131 ... 135:
1796		*band = NL80211_BAND_6GHZ;
1797		return true;
1798	case 81:
1799	case 82:
1800	case 83:
1801	case 84:
1802		*band = NL80211_BAND_2GHZ;
1803		return true;
1804	case 180:
1805		*band = NL80211_BAND_60GHZ;
1806		return true;
1807	}
1808
1809	return false;
1810}
1811EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1812
1813bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1814					  u8 *op_class)
1815{
1816	u8 vht_opclass;
1817	u32 freq = chandef->center_freq1;
1818
1819	if (freq >= 2412 && freq <= 2472) {
1820		if (chandef->width > NL80211_CHAN_WIDTH_40)
1821			return false;
1822
1823		/* 2.407 GHz, channels 1..13 */
1824		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1825			if (freq > chandef->chan->center_freq)
1826				*op_class = 83; /* HT40+ */
1827			else
1828				*op_class = 84; /* HT40- */
1829		} else {
1830			*op_class = 81;
1831		}
1832
1833		return true;
1834	}
1835
1836	if (freq == 2484) {
1837		/* channel 14 is only for IEEE 802.11b */
1838		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1839			return false;
1840
1841		*op_class = 82; /* channel 14 */
1842		return true;
1843	}
1844
1845	switch (chandef->width) {
1846	case NL80211_CHAN_WIDTH_80:
1847		vht_opclass = 128;
1848		break;
1849	case NL80211_CHAN_WIDTH_160:
1850		vht_opclass = 129;
1851		break;
1852	case NL80211_CHAN_WIDTH_80P80:
1853		vht_opclass = 130;
1854		break;
1855	case NL80211_CHAN_WIDTH_10:
1856	case NL80211_CHAN_WIDTH_5:
1857		return false; /* unsupported for now */
1858	default:
1859		vht_opclass = 0;
1860		break;
1861	}
1862
1863	/* 5 GHz, channels 36..48 */
1864	if (freq >= 5180 && freq <= 5240) {
1865		if (vht_opclass) {
1866			*op_class = vht_opclass;
1867		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1868			if (freq > chandef->chan->center_freq)
1869				*op_class = 116;
1870			else
1871				*op_class = 117;
1872		} else {
1873			*op_class = 115;
1874		}
1875
1876		return true;
1877	}
1878
1879	/* 5 GHz, channels 52..64 */
1880	if (freq >= 5260 && freq <= 5320) {
1881		if (vht_opclass) {
1882			*op_class = vht_opclass;
1883		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1884			if (freq > chandef->chan->center_freq)
1885				*op_class = 119;
1886			else
1887				*op_class = 120;
1888		} else {
1889			*op_class = 118;
1890		}
1891
1892		return true;
1893	}
1894
1895	/* 5 GHz, channels 100..144 */
1896	if (freq >= 5500 && freq <= 5720) {
1897		if (vht_opclass) {
1898			*op_class = vht_opclass;
1899		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1900			if (freq > chandef->chan->center_freq)
1901				*op_class = 122;
1902			else
1903				*op_class = 123;
1904		} else {
1905			*op_class = 121;
1906		}
1907
1908		return true;
1909	}
1910
1911	/* 5 GHz, channels 149..169 */
1912	if (freq >= 5745 && freq <= 5845) {
1913		if (vht_opclass) {
1914			*op_class = vht_opclass;
1915		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1916			if (freq > chandef->chan->center_freq)
1917				*op_class = 126;
1918			else
1919				*op_class = 127;
1920		} else if (freq <= 5805) {
1921			*op_class = 124;
1922		} else {
1923			*op_class = 125;
1924		}
1925
1926		return true;
1927	}
1928
1929	/* 56.16 GHz, channel 1..4 */
1930	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1931		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1932			return false;
1933
1934		*op_class = 180;
1935		return true;
1936	}
1937
1938	/* not supported yet */
1939	return false;
1940}
1941EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1942
1943static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1944{
1945	switch (wdev->iftype) {
1946	case NL80211_IFTYPE_AP:
1947	case NL80211_IFTYPE_P2P_GO:
1948		WARN_ON(wdev->valid_links);
1949		return wdev->links[0].ap.beacon_interval;
1950	case NL80211_IFTYPE_MESH_POINT:
1951		return wdev->u.mesh.beacon_interval;
1952	case NL80211_IFTYPE_ADHOC:
1953		return wdev->u.ibss.beacon_interval;
1954	default:
1955		break;
1956	}
1957
1958	return 0;
1959}
1960
1961static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1962				       u32 *beacon_int_gcd,
1963				       bool *beacon_int_different)
1964{
1965	struct wireless_dev *wdev;
1966
1967	*beacon_int_gcd = 0;
1968	*beacon_int_different = false;
1969
1970	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1971		int wdev_bi;
1972
1973		/* this feature isn't supported with MLO */
1974		if (wdev->valid_links)
1975			continue;
1976
1977		wdev_bi = cfg80211_wdev_bi(wdev);
1978
1979		if (!wdev_bi)
1980			continue;
1981
1982		if (!*beacon_int_gcd) {
1983			*beacon_int_gcd = wdev_bi;
1984			continue;
1985		}
1986
1987		if (wdev_bi == *beacon_int_gcd)
1988			continue;
1989
1990		*beacon_int_different = true;
1991		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1992	}
1993
1994	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1995		if (*beacon_int_gcd)
1996			*beacon_int_different = true;
1997		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1998	}
1999}
2000
2001int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2002				 enum nl80211_iftype iftype, u32 beacon_int)
2003{
2004	/*
2005	 * This is just a basic pre-condition check; if interface combinations
2006	 * are possible the driver must already be checking those with a call
2007	 * to cfg80211_check_combinations(), in which case we'll validate more
2008	 * through the cfg80211_calculate_bi_data() call and code in
2009	 * cfg80211_iter_combinations().
2010	 */
2011
2012	if (beacon_int < 10 || beacon_int > 10000)
2013		return -EINVAL;
2014
2015	return 0;
2016}
2017
2018int cfg80211_iter_combinations(struct wiphy *wiphy,
2019			       struct iface_combination_params *params,
2020			       void (*iter)(const struct ieee80211_iface_combination *c,
2021					    void *data),
2022			       void *data)
2023{
2024	const struct ieee80211_regdomain *regdom;
2025	enum nl80211_dfs_regions region = 0;
2026	int i, j, iftype;
2027	int num_interfaces = 0;
2028	u32 used_iftypes = 0;
2029	u32 beacon_int_gcd;
2030	bool beacon_int_different;
2031
2032	/*
2033	 * This is a bit strange, since the iteration used to rely only on
2034	 * the data given by the driver, but here it now relies on context,
2035	 * in form of the currently operating interfaces.
2036	 * This is OK for all current users, and saves us from having to
2037	 * push the GCD calculations into all the drivers.
2038	 * In the future, this should probably rely more on data that's in
2039	 * cfg80211 already - the only thing not would appear to be any new
2040	 * interfaces (while being brought up) and channel/radar data.
2041	 */
2042	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2043				   &beacon_int_gcd, &beacon_int_different);
2044
2045	if (params->radar_detect) {
2046		rcu_read_lock();
2047		regdom = rcu_dereference(cfg80211_regdomain);
2048		if (regdom)
2049			region = regdom->dfs_region;
2050		rcu_read_unlock();
2051	}
2052
2053	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2054		num_interfaces += params->iftype_num[iftype];
2055		if (params->iftype_num[iftype] > 0 &&
2056		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2057			used_iftypes |= BIT(iftype);
2058	}
2059
2060	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2061		const struct ieee80211_iface_combination *c;
2062		struct ieee80211_iface_limit *limits;
2063		u32 all_iftypes = 0;
2064
2065		c = &wiphy->iface_combinations[i];
2066
2067		if (num_interfaces > c->max_interfaces)
2068			continue;
2069		if (params->num_different_channels > c->num_different_channels)
2070			continue;
2071
2072		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2073				 GFP_KERNEL);
2074		if (!limits)
2075			return -ENOMEM;
2076
2077		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2078			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2079				continue;
2080			for (j = 0; j < c->n_limits; j++) {
2081				all_iftypes |= limits[j].types;
2082				if (!(limits[j].types & BIT(iftype)))
2083					continue;
2084				if (limits[j].max < params->iftype_num[iftype])
2085					goto cont;
2086				limits[j].max -= params->iftype_num[iftype];
2087			}
2088		}
2089
2090		if (params->radar_detect !=
2091			(c->radar_detect_widths & params->radar_detect))
2092			goto cont;
2093
2094		if (params->radar_detect && c->radar_detect_regions &&
2095		    !(c->radar_detect_regions & BIT(region)))
2096			goto cont;
2097
2098		/* Finally check that all iftypes that we're currently
2099		 * using are actually part of this combination. If they
2100		 * aren't then we can't use this combination and have
2101		 * to continue to the next.
2102		 */
2103		if ((all_iftypes & used_iftypes) != used_iftypes)
2104			goto cont;
2105
2106		if (beacon_int_gcd) {
2107			if (c->beacon_int_min_gcd &&
2108			    beacon_int_gcd < c->beacon_int_min_gcd)
2109				goto cont;
2110			if (!c->beacon_int_min_gcd && beacon_int_different)
2111				goto cont;
2112		}
2113
2114		/* This combination covered all interface types and
2115		 * supported the requested numbers, so we're good.
2116		 */
2117
2118		(*iter)(c, data);
2119 cont:
2120		kfree(limits);
2121	}
2122
2123	return 0;
2124}
2125EXPORT_SYMBOL(cfg80211_iter_combinations);
2126
2127static void
2128cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2129			  void *data)
2130{
2131	int *num = data;
2132	(*num)++;
2133}
2134
2135int cfg80211_check_combinations(struct wiphy *wiphy,
2136				struct iface_combination_params *params)
2137{
2138	int err, num = 0;
2139
2140	err = cfg80211_iter_combinations(wiphy, params,
2141					 cfg80211_iter_sum_ifcombs, &num);
2142	if (err)
2143		return err;
2144	if (num == 0)
2145		return -EBUSY;
2146
2147	return 0;
2148}
2149EXPORT_SYMBOL(cfg80211_check_combinations);
2150
2151int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2152			   const u8 *rates, unsigned int n_rates,
2153			   u32 *mask)
2154{
2155	int i, j;
2156
2157	if (!sband)
2158		return -EINVAL;
2159
2160	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2161		return -EINVAL;
2162
2163	*mask = 0;
2164
2165	for (i = 0; i < n_rates; i++) {
2166		int rate = (rates[i] & 0x7f) * 5;
2167		bool found = false;
2168
2169		for (j = 0; j < sband->n_bitrates; j++) {
2170			if (sband->bitrates[j].bitrate == rate) {
2171				found = true;
2172				*mask |= BIT(j);
2173				break;
2174			}
2175		}
2176		if (!found)
2177			return -EINVAL;
2178	}
2179
2180	/*
2181	 * mask must have at least one bit set here since we
2182	 * didn't accept a 0-length rates array nor allowed
2183	 * entries in the array that didn't exist
2184	 */
2185
2186	return 0;
2187}
2188
2189unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2190{
2191	enum nl80211_band band;
2192	unsigned int n_channels = 0;
2193
2194	for (band = 0; band < NUM_NL80211_BANDS; band++)
2195		if (wiphy->bands[band])
2196			n_channels += wiphy->bands[band]->n_channels;
2197
2198	return n_channels;
2199}
2200EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2201
2202int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2203			 struct station_info *sinfo)
2204{
2205	struct cfg80211_registered_device *rdev;
2206	struct wireless_dev *wdev;
2207
2208	wdev = dev->ieee80211_ptr;
2209	if (!wdev)
2210		return -EOPNOTSUPP;
2211
2212	rdev = wiphy_to_rdev(wdev->wiphy);
2213	if (!rdev->ops->get_station)
2214		return -EOPNOTSUPP;
2215
2216	memset(sinfo, 0, sizeof(*sinfo));
2217
2218	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2219}
2220EXPORT_SYMBOL(cfg80211_get_station);
2221
2222void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2223{
2224	int i;
2225
2226	if (!f)
2227		return;
2228
2229	kfree(f->serv_spec_info);
2230	kfree(f->srf_bf);
2231	kfree(f->srf_macs);
2232	for (i = 0; i < f->num_rx_filters; i++)
2233		kfree(f->rx_filters[i].filter);
2234
2235	for (i = 0; i < f->num_tx_filters; i++)
2236		kfree(f->tx_filters[i].filter);
2237
2238	kfree(f->rx_filters);
2239	kfree(f->tx_filters);
2240	kfree(f);
2241}
2242EXPORT_SYMBOL(cfg80211_free_nan_func);
2243
2244bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2245				u32 center_freq_khz, u32 bw_khz)
2246{
2247	u32 start_freq_khz, end_freq_khz;
2248
2249	start_freq_khz = center_freq_khz - (bw_khz / 2);
2250	end_freq_khz = center_freq_khz + (bw_khz / 2);
2251
2252	if (start_freq_khz >= freq_range->start_freq_khz &&
2253	    end_freq_khz <= freq_range->end_freq_khz)
2254		return true;
2255
2256	return false;
2257}
2258
2259int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2260{
2261	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2262				sizeof(*(sinfo->pertid)),
2263				gfp);
2264	if (!sinfo->pertid)
2265		return -ENOMEM;
2266
2267	return 0;
2268}
2269EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2270
2271/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2272/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2273const unsigned char rfc1042_header[] __aligned(2) =
2274	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2275EXPORT_SYMBOL(rfc1042_header);
2276
2277/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2278const unsigned char bridge_tunnel_header[] __aligned(2) =
2279	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2280EXPORT_SYMBOL(bridge_tunnel_header);
2281
2282/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2283struct iapp_layer2_update {
2284	u8 da[ETH_ALEN];	/* broadcast */
2285	u8 sa[ETH_ALEN];	/* STA addr */
2286	__be16 len;		/* 6 */
2287	u8 dsap;		/* 0 */
2288	u8 ssap;		/* 0 */
2289	u8 control;
2290	u8 xid_info[3];
2291} __packed;
2292
2293void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2294{
2295	struct iapp_layer2_update *msg;
2296	struct sk_buff *skb;
2297
2298	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2299	 * bridge devices */
2300
2301	skb = dev_alloc_skb(sizeof(*msg));
2302	if (!skb)
2303		return;
2304	msg = skb_put(skb, sizeof(*msg));
2305
2306	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2307	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2308
2309	eth_broadcast_addr(msg->da);
2310	ether_addr_copy(msg->sa, addr);
2311	msg->len = htons(6);
2312	msg->dsap = 0;
2313	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2314	msg->control = 0xaf;	/* XID response lsb.1111F101.
2315				 * F=0 (no poll command; unsolicited frame) */
2316	msg->xid_info[0] = 0x81;	/* XID format identifier */
2317	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2318	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2319
2320	skb->dev = dev;
2321	skb->protocol = eth_type_trans(skb, dev);
2322	memset(skb->cb, 0, sizeof(skb->cb));
2323	netif_rx(skb);
2324}
2325EXPORT_SYMBOL(cfg80211_send_layer2_update);
2326
2327int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2328			      enum ieee80211_vht_chanwidth bw,
2329			      int mcs, bool ext_nss_bw_capable,
2330			      unsigned int max_vht_nss)
2331{
2332	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2333	int ext_nss_bw;
2334	int supp_width;
2335	int i, mcs_encoding;
2336
2337	if (map == 0xffff)
2338		return 0;
2339
2340	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2341		return 0;
2342	if (mcs <= 7)
2343		mcs_encoding = 0;
2344	else if (mcs == 8)
2345		mcs_encoding = 1;
2346	else
2347		mcs_encoding = 2;
2348
2349	if (!max_vht_nss) {
2350		/* find max_vht_nss for the given MCS */
2351		for (i = 7; i >= 0; i--) {
2352			int supp = (map >> (2 * i)) & 3;
2353
2354			if (supp == 3)
2355				continue;
2356
2357			if (supp >= mcs_encoding) {
2358				max_vht_nss = i + 1;
2359				break;
2360			}
2361		}
2362	}
2363
2364	if (!(cap->supp_mcs.tx_mcs_map &
2365			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2366		return max_vht_nss;
2367
2368	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2369				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2370	supp_width = le32_get_bits(cap->vht_cap_info,
2371				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2372
2373	/* if not capable, treat ext_nss_bw as 0 */
2374	if (!ext_nss_bw_capable)
2375		ext_nss_bw = 0;
2376
2377	/* This is invalid */
2378	if (supp_width == 3)
2379		return 0;
2380
2381	/* This is an invalid combination so pretend nothing is supported */
2382	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2383		return 0;
2384
2385	/*
2386	 * Cover all the special cases according to IEEE 802.11-2016
2387	 * Table 9-250. All other cases are either factor of 1 or not
2388	 * valid/supported.
2389	 */
2390	switch (bw) {
2391	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2392	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2393		if ((supp_width == 1 || supp_width == 2) &&
2394		    ext_nss_bw == 3)
2395			return 2 * max_vht_nss;
2396		break;
2397	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2398		if (supp_width == 0 &&
2399		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2400			return max_vht_nss / 2;
2401		if (supp_width == 0 &&
2402		    ext_nss_bw == 3)
2403			return (3 * max_vht_nss) / 4;
2404		if (supp_width == 1 &&
2405		    ext_nss_bw == 3)
2406			return 2 * max_vht_nss;
2407		break;
2408	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2409		if (supp_width == 0 && ext_nss_bw == 1)
2410			return 0; /* not possible */
2411		if (supp_width == 0 &&
2412		    ext_nss_bw == 2)
2413			return max_vht_nss / 2;
2414		if (supp_width == 0 &&
2415		    ext_nss_bw == 3)
2416			return (3 * max_vht_nss) / 4;
2417		if (supp_width == 1 &&
2418		    ext_nss_bw == 0)
2419			return 0; /* not possible */
2420		if (supp_width == 1 &&
2421		    ext_nss_bw == 1)
2422			return max_vht_nss / 2;
2423		if (supp_width == 1 &&
2424		    ext_nss_bw == 2)
2425			return (3 * max_vht_nss) / 4;
2426		break;
2427	}
2428
2429	/* not covered or invalid combination received */
2430	return max_vht_nss;
2431}
2432EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2433
2434bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2435			     bool is_4addr, u8 check_swif)
2436
2437{
2438	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2439
2440	switch (check_swif) {
2441	case 0:
2442		if (is_vlan && is_4addr)
2443			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2444		return wiphy->interface_modes & BIT(iftype);
2445	case 1:
2446		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2447			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2448		return wiphy->software_iftypes & BIT(iftype);
2449	default:
2450		break;
2451	}
2452
2453	return false;
2454}
2455EXPORT_SYMBOL(cfg80211_iftype_allowed);
2456
2457void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2458{
2459	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2460
2461	ASSERT_WDEV_LOCK(wdev);
2462
2463	switch (wdev->iftype) {
2464	case NL80211_IFTYPE_AP:
2465	case NL80211_IFTYPE_P2P_GO:
2466		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2467		break;
2468	default:
2469		/* per-link not relevant */
2470		break;
2471	}
2472
2473	wdev->valid_links &= ~BIT(link_id);
2474
2475	rdev_del_intf_link(rdev, wdev, link_id);
2476
2477	eth_zero_addr(wdev->links[link_id].addr);
2478}
2479
2480void cfg80211_remove_links(struct wireless_dev *wdev)
2481{
2482	unsigned int link_id;
2483
2484	wdev_lock(wdev);
2485	if (wdev->valid_links) {
2486		for_each_valid_link(wdev, link_id)
2487			cfg80211_remove_link(wdev, link_id);
2488	}
2489	wdev_unlock(wdev);
2490}
2491
2492int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2493				 struct wireless_dev *wdev)
2494{
2495	cfg80211_remove_links(wdev);
2496
2497	return rdev_del_virtual_intf(rdev, wdev);
2498}
2499
2500const struct wiphy_iftype_ext_capab *
2501cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2502{
2503	int i;
2504
2505	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2506		if (wiphy->iftype_ext_capab[i].iftype == type)
2507			return &wiphy->iftype_ext_capab[i];
2508	}
2509
2510	return NULL;
2511}
2512EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);