Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
 
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
  16#include <linux/gcd.h>
 
 
  17#include "core.h"
  18#include "rdev-ops.h"
  19
  20
  21struct ieee80211_rate *
  22ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  23			    u32 basic_rates, int bitrate)
  24{
  25	struct ieee80211_rate *result = &sband->bitrates[0];
  26	int i;
  27
  28	for (i = 0; i < sband->n_bitrates; i++) {
  29		if (!(basic_rates & BIT(i)))
  30			continue;
  31		if (sband->bitrates[i].bitrate > bitrate)
  32			continue;
  33		result = &sband->bitrates[i];
  34	}
  35
  36	return result;
  37}
  38EXPORT_SYMBOL(ieee80211_get_response_rate);
  39
  40u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  41			      enum nl80211_bss_scan_width scan_width)
  42{
  43	struct ieee80211_rate *bitrates;
  44	u32 mandatory_rates = 0;
  45	enum ieee80211_rate_flags mandatory_flag;
  46	int i;
  47
  48	if (WARN_ON(!sband))
  49		return 1;
  50
  51	if (sband->band == NL80211_BAND_2GHZ) {
  52		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  53		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  54			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  55		else
  56			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  57	} else {
  58		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  59	}
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77		if (chan == 14)
  78			return 2484;
  79		else if (chan < 14)
  80			return 2407 + chan * 5;
  81		break;
  82	case NL80211_BAND_5GHZ:
  83		if (chan >= 182 && chan <= 196)
  84			return 4000 + chan * 5;
  85		else
  86			return 5000 + chan * 5;
  87		break;
 
 
 
 
 
  88	case NL80211_BAND_60GHZ:
  89		if (chan < 5)
  90			return 56160 + chan * 2160;
  91		break;
  92	default:
  93		;
  94	}
  95	return 0; /* not supported */
  96}
  97EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  98
  99int ieee80211_frequency_to_channel(int freq)
 100{
 101	/* see 802.11 17.3.8.3.2 and Annex J */
 102	if (freq == 2484)
 103		return 14;
 104	else if (freq < 2484)
 105		return (freq - 2407) / 5;
 106	else if (freq >= 4910 && freq <= 4980)
 107		return (freq - 4000) / 5;
 108	else if (freq <= 45000) /* DMG band lower limit */
 109		return (freq - 5000) / 5;
 110	else if (freq >= 58320 && freq <= 64800)
 
 
 
 111		return (freq - 56160) / 2160;
 112	else
 113		return 0;
 114}
 115EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 116
 117struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 118						  int freq)
 119{
 120	enum nl80211_band band;
 121	struct ieee80211_supported_band *sband;
 122	int i;
 123
 124	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 125		sband = wiphy->bands[band];
 126
 127		if (!sband)
 128			continue;
 129
 130		for (i = 0; i < sband->n_channels; i++) {
 131			if (sband->channels[i].center_freq == freq)
 132				return &sband->channels[i];
 133		}
 134	}
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL(__ieee80211_get_channel);
 139
 140static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 141				     enum nl80211_band band)
 142{
 143	int i, want;
 144
 145	switch (band) {
 146	case NL80211_BAND_5GHZ:
 
 147		want = 3;
 148		for (i = 0; i < sband->n_bitrates; i++) {
 149			if (sband->bitrates[i].bitrate == 60 ||
 150			    sband->bitrates[i].bitrate == 120 ||
 151			    sband->bitrates[i].bitrate == 240) {
 152				sband->bitrates[i].flags |=
 153					IEEE80211_RATE_MANDATORY_A;
 154				want--;
 155			}
 156		}
 157		WARN_ON(want);
 158		break;
 159	case NL80211_BAND_2GHZ:
 160		want = 7;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 10) {
 
 
 
 
 163				sband->bitrates[i].flags |=
 164					IEEE80211_RATE_MANDATORY_B |
 165					IEEE80211_RATE_MANDATORY_G;
 166				want--;
 167			}
 168
 169			if (sband->bitrates[i].bitrate == 20 ||
 170			    sband->bitrates[i].bitrate == 55 ||
 171			    sband->bitrates[i].bitrate == 110 ||
 172			    sband->bitrates[i].bitrate == 60 ||
 173			    sband->bitrates[i].bitrate == 120 ||
 174			    sband->bitrates[i].bitrate == 240) {
 175				sband->bitrates[i].flags |=
 176					IEEE80211_RATE_MANDATORY_G;
 177				want--;
 178			}
 179
 180			if (sband->bitrates[i].bitrate != 10 &&
 181			    sband->bitrates[i].bitrate != 20 &&
 182			    sband->bitrates[i].bitrate != 55 &&
 183			    sband->bitrates[i].bitrate != 110)
 184				sband->bitrates[i].flags |=
 185					IEEE80211_RATE_ERP_G;
 
 
 186		}
 187		WARN_ON(want != 0 && want != 3 && want != 6);
 188		break;
 189	case NL80211_BAND_60GHZ:
 190		/* check for mandatory HT MCS 1..4 */
 191		WARN_ON(!sband->ht_cap.ht_supported);
 192		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 193		break;
 194	case NUM_NL80211_BANDS:
 
 195		WARN_ON(1);
 196		break;
 197	}
 198}
 199
 200void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 201{
 202	enum nl80211_band band;
 203
 204	for (band = 0; band < NUM_NL80211_BANDS; band++)
 205		if (wiphy->bands[band])
 206			set_mandatory_flags_band(wiphy->bands[band], band);
 207}
 208
 209bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 210{
 211	int i;
 212	for (i = 0; i < wiphy->n_cipher_suites; i++)
 213		if (cipher == wiphy->cipher_suites[i])
 214			return true;
 215	return false;
 216}
 217
 218int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 219				   struct key_params *params, int key_idx,
 220				   bool pairwise, const u8 *mac_addr)
 221{
 222	if (key_idx < 0 || key_idx > 5)
 223		return -EINVAL;
 224
 225	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 226		return -EINVAL;
 227
 228	if (pairwise && !mac_addr)
 229		return -EINVAL;
 230
 231	switch (params->cipher) {
 232	case WLAN_CIPHER_SUITE_TKIP:
 
 
 
 
 
 233	case WLAN_CIPHER_SUITE_CCMP:
 234	case WLAN_CIPHER_SUITE_CCMP_256:
 235	case WLAN_CIPHER_SUITE_GCMP:
 236	case WLAN_CIPHER_SUITE_GCMP_256:
 237		/* Disallow pairwise keys with non-zero index unless it's WEP
 238		 * or a vendor specific cipher (because current deployments use
 239		 * pairwise WEP keys with non-zero indices and for vendor
 240		 * specific ciphers this should be validated in the driver or
 241		 * hardware level - but 802.11i clearly specifies to use zero)
 
 242		 */
 243		if (pairwise && key_idx)
 
 
 
 
 
 
 
 244			return -EINVAL;
 
 245		break;
 246	case WLAN_CIPHER_SUITE_AES_CMAC:
 247	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 249	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 250		/* Disallow BIP (group-only) cipher as pairwise cipher */
 251		if (pairwise)
 252			return -EINVAL;
 253		if (key_idx < 4)
 254			return -EINVAL;
 255		break;
 256	case WLAN_CIPHER_SUITE_WEP40:
 257	case WLAN_CIPHER_SUITE_WEP104:
 258		if (key_idx > 3)
 259			return -EINVAL;
 260	default:
 261		break;
 262	}
 263
 264	switch (params->cipher) {
 265	case WLAN_CIPHER_SUITE_WEP40:
 266		if (params->key_len != WLAN_KEY_LEN_WEP40)
 267			return -EINVAL;
 268		break;
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		if (params->key_len != WLAN_KEY_LEN_TKIP)
 271			return -EINVAL;
 272		break;
 273	case WLAN_CIPHER_SUITE_CCMP:
 274		if (params->key_len != WLAN_KEY_LEN_CCMP)
 275			return -EINVAL;
 276		break;
 277	case WLAN_CIPHER_SUITE_CCMP_256:
 278		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 279			return -EINVAL;
 280		break;
 281	case WLAN_CIPHER_SUITE_GCMP:
 282		if (params->key_len != WLAN_KEY_LEN_GCMP)
 283			return -EINVAL;
 284		break;
 285	case WLAN_CIPHER_SUITE_GCMP_256:
 286		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 287			return -EINVAL;
 288		break;
 289	case WLAN_CIPHER_SUITE_WEP104:
 290		if (params->key_len != WLAN_KEY_LEN_WEP104)
 291			return -EINVAL;
 292		break;
 293	case WLAN_CIPHER_SUITE_AES_CMAC:
 294		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 295			return -EINVAL;
 296		break;
 297	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 298		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 299			return -EINVAL;
 300		break;
 301	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 302		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 303			return -EINVAL;
 304		break;
 305	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 306		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 307			return -EINVAL;
 308		break;
 309	default:
 310		/*
 311		 * We don't know anything about this algorithm,
 312		 * allow using it -- but the driver must check
 313		 * all parameters! We still check below whether
 314		 * or not the driver supports this algorithm,
 315		 * of course.
 316		 */
 317		break;
 318	}
 319
 320	if (params->seq) {
 321		switch (params->cipher) {
 322		case WLAN_CIPHER_SUITE_WEP40:
 323		case WLAN_CIPHER_SUITE_WEP104:
 324			/* These ciphers do not use key sequence */
 325			return -EINVAL;
 326		case WLAN_CIPHER_SUITE_TKIP:
 327		case WLAN_CIPHER_SUITE_CCMP:
 328		case WLAN_CIPHER_SUITE_CCMP_256:
 329		case WLAN_CIPHER_SUITE_GCMP:
 330		case WLAN_CIPHER_SUITE_GCMP_256:
 331		case WLAN_CIPHER_SUITE_AES_CMAC:
 332		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 333		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 334		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 335			if (params->seq_len != 6)
 336				return -EINVAL;
 337			break;
 338		}
 339	}
 340
 341	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 342		return -EINVAL;
 343
 344	return 0;
 345}
 346
 347unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 348{
 349	unsigned int hdrlen = 24;
 350
 351	if (ieee80211_is_data(fc)) {
 352		if (ieee80211_has_a4(fc))
 353			hdrlen = 30;
 354		if (ieee80211_is_data_qos(fc)) {
 355			hdrlen += IEEE80211_QOS_CTL_LEN;
 356			if (ieee80211_has_order(fc))
 357				hdrlen += IEEE80211_HT_CTL_LEN;
 358		}
 359		goto out;
 360	}
 361
 362	if (ieee80211_is_mgmt(fc)) {
 363		if (ieee80211_has_order(fc))
 364			hdrlen += IEEE80211_HT_CTL_LEN;
 365		goto out;
 366	}
 367
 368	if (ieee80211_is_ctl(fc)) {
 369		/*
 370		 * ACK and CTS are 10 bytes, all others 16. To see how
 371		 * to get this condition consider
 372		 *   subtype mask:   0b0000000011110000 (0x00F0)
 373		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 374		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 375		 *   bits that matter:         ^^^      (0x00E0)
 376		 *   value of those: 0b0000000011000000 (0x00C0)
 377		 */
 378		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 379			hdrlen = 10;
 380		else
 381			hdrlen = 16;
 382	}
 383out:
 384	return hdrlen;
 385}
 386EXPORT_SYMBOL(ieee80211_hdrlen);
 387
 388unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 389{
 390	const struct ieee80211_hdr *hdr =
 391			(const struct ieee80211_hdr *)skb->data;
 392	unsigned int hdrlen;
 393
 394	if (unlikely(skb->len < 10))
 395		return 0;
 396	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 397	if (unlikely(hdrlen > skb->len))
 398		return 0;
 399	return hdrlen;
 400}
 401EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 402
 403static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 404{
 405	int ae = flags & MESH_FLAGS_AE;
 406	/* 802.11-2012, 8.2.4.7.3 */
 407	switch (ae) {
 408	default:
 409	case 0:
 410		return 6;
 411	case MESH_FLAGS_AE_A4:
 412		return 12;
 413	case MESH_FLAGS_AE_A5_A6:
 414		return 18;
 415	}
 416}
 417
 418unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 419{
 420	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 421}
 422EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 423
 424int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 425				  const u8 *addr, enum nl80211_iftype iftype)
 
 426{
 427	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 428	struct {
 429		u8 hdr[ETH_ALEN] __aligned(2);
 430		__be16 proto;
 431	} payload;
 432	struct ethhdr tmp;
 433	u16 hdrlen;
 434	u8 mesh_flags = 0;
 435
 436	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 437		return -1;
 438
 439	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 440	if (skb->len < hdrlen + 8)
 441		return -1;
 442
 443	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 444	 * header
 445	 * IEEE 802.11 address fields:
 446	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 447	 *   0     0   DA    SA    BSSID n/a
 448	 *   0     1   DA    BSSID SA    n/a
 449	 *   1     0   BSSID SA    DA    n/a
 450	 *   1     1   RA    TA    DA    SA
 451	 */
 452	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 453	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 454
 455	if (iftype == NL80211_IFTYPE_MESH_POINT)
 456		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 457
 
 
 458	switch (hdr->frame_control &
 459		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 460	case cpu_to_le16(IEEE80211_FCTL_TODS):
 461		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_P2P_GO))
 464			return -1;
 465		break;
 466	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 467		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 468			     iftype != NL80211_IFTYPE_MESH_POINT &&
 469			     iftype != NL80211_IFTYPE_AP_VLAN &&
 470			     iftype != NL80211_IFTYPE_STATION))
 471			return -1;
 472		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 473			if (mesh_flags & MESH_FLAGS_AE_A4)
 474				return -1;
 475			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 476				skb_copy_bits(skb, hdrlen +
 477					offsetof(struct ieee80211s_hdr, eaddr1),
 478					tmp.h_dest, 2 * ETH_ALEN);
 479			}
 480			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 481		}
 482		break;
 483	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 484		if ((iftype != NL80211_IFTYPE_STATION &&
 485		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 486		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 487		    (is_multicast_ether_addr(tmp.h_dest) &&
 488		     ether_addr_equal(tmp.h_source, addr)))
 489			return -1;
 490		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 491			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 492				return -1;
 493			if (mesh_flags & MESH_FLAGS_AE_A4)
 494				skb_copy_bits(skb, hdrlen +
 495					offsetof(struct ieee80211s_hdr, eaddr1),
 496					tmp.h_source, ETH_ALEN);
 497			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 498		}
 499		break;
 500	case cpu_to_le16(0):
 501		if (iftype != NL80211_IFTYPE_ADHOC &&
 502		    iftype != NL80211_IFTYPE_STATION &&
 503		    iftype != NL80211_IFTYPE_OCB)
 504				return -1;
 505		break;
 506	}
 507
 508	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 509	tmp.h_proto = payload.proto;
 510
 511	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 512		    tmp.h_proto != htons(ETH_P_AARP) &&
 513		    tmp.h_proto != htons(ETH_P_IPX)) ||
 514		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 515		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 516		 * replace EtherType */
 517		hdrlen += ETH_ALEN + 2;
 518	else
 519		tmp.h_proto = htons(skb->len - hdrlen);
 520
 521	pskb_pull(skb, hdrlen);
 522
 523	if (!ehdr)
 524		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 525	memcpy(ehdr, &tmp, sizeof(tmp));
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 530
 531int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 532			     enum nl80211_iftype iftype,
 533			     const u8 *bssid, bool qos)
 534{
 535	struct ieee80211_hdr hdr;
 536	u16 hdrlen, ethertype;
 537	__le16 fc;
 538	const u8 *encaps_data;
 539	int encaps_len, skip_header_bytes;
 540	int nh_pos, h_pos;
 541	int head_need;
 542
 543	if (unlikely(skb->len < ETH_HLEN))
 544		return -EINVAL;
 545
 546	nh_pos = skb_network_header(skb) - skb->data;
 547	h_pos = skb_transport_header(skb) - skb->data;
 548
 549	/* convert Ethernet header to proper 802.11 header (based on
 550	 * operation mode) */
 551	ethertype = (skb->data[12] << 8) | skb->data[13];
 552	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 553
 554	switch (iftype) {
 555	case NL80211_IFTYPE_AP:
 556	case NL80211_IFTYPE_AP_VLAN:
 557	case NL80211_IFTYPE_P2P_GO:
 558		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 559		/* DA BSSID SA */
 560		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 561		memcpy(hdr.addr2, addr, ETH_ALEN);
 562		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 563		hdrlen = 24;
 564		break;
 565	case NL80211_IFTYPE_STATION:
 566	case NL80211_IFTYPE_P2P_CLIENT:
 567		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 568		/* BSSID SA DA */
 569		memcpy(hdr.addr1, bssid, ETH_ALEN);
 570		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 571		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 572		hdrlen = 24;
 573		break;
 574	case NL80211_IFTYPE_OCB:
 575	case NL80211_IFTYPE_ADHOC:
 576		/* DA SA BSSID */
 577		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 578		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 579		memcpy(hdr.addr3, bssid, ETH_ALEN);
 580		hdrlen = 24;
 581		break;
 582	default:
 583		return -EOPNOTSUPP;
 584	}
 585
 586	if (qos) {
 587		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 588		hdrlen += 2;
 589	}
 590
 591	hdr.frame_control = fc;
 592	hdr.duration_id = 0;
 593	hdr.seq_ctrl = 0;
 594
 595	skip_header_bytes = ETH_HLEN;
 596	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 597		encaps_data = bridge_tunnel_header;
 598		encaps_len = sizeof(bridge_tunnel_header);
 599		skip_header_bytes -= 2;
 600	} else if (ethertype >= ETH_P_802_3_MIN) {
 601		encaps_data = rfc1042_header;
 602		encaps_len = sizeof(rfc1042_header);
 603		skip_header_bytes -= 2;
 604	} else {
 605		encaps_data = NULL;
 606		encaps_len = 0;
 607	}
 608
 609	skb_pull(skb, skip_header_bytes);
 610	nh_pos -= skip_header_bytes;
 611	h_pos -= skip_header_bytes;
 612
 613	head_need = hdrlen + encaps_len - skb_headroom(skb);
 614
 615	if (head_need > 0 || skb_cloned(skb)) {
 616		head_need = max(head_need, 0);
 617		if (head_need)
 618			skb_orphan(skb);
 619
 620		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 621			return -ENOMEM;
 622
 623		skb->truesize += head_need;
 624	}
 625
 626	if (encaps_data) {
 627		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 628		nh_pos += encaps_len;
 629		h_pos += encaps_len;
 630	}
 631
 632	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 633
 634	nh_pos += hdrlen;
 635	h_pos += hdrlen;
 636
 637	/* Update skb pointers to various headers since this modified frame
 638	 * is going to go through Linux networking code that may potentially
 639	 * need things like pointer to IP header. */
 640	skb_reset_mac_header(skb);
 641	skb_set_network_header(skb, nh_pos);
 642	skb_set_transport_header(skb, h_pos);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL(ieee80211_data_from_8023);
 647
 648static void
 649__frame_add_frag(struct sk_buff *skb, struct page *page,
 650		 void *ptr, int len, int size)
 651{
 652	struct skb_shared_info *sh = skb_shinfo(skb);
 653	int page_offset;
 654
 655	page_ref_inc(page);
 656	page_offset = ptr - page_address(page);
 657	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 658}
 659
 660static void
 661__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 662			    int offset, int len)
 663{
 664	struct skb_shared_info *sh = skb_shinfo(skb);
 665	const skb_frag_t *frag = &sh->frags[-1];
 666	struct page *frag_page;
 667	void *frag_ptr;
 668	int frag_len, frag_size;
 669	int head_size = skb->len - skb->data_len;
 670	int cur_len;
 671
 672	frag_page = virt_to_head_page(skb->head);
 673	frag_ptr = skb->data;
 674	frag_size = head_size;
 675
 676	while (offset >= frag_size) {
 677		offset -= frag_size;
 678		frag++;
 679		frag_page = skb_frag_page(frag);
 680		frag_ptr = skb_frag_address(frag);
 681		frag_size = skb_frag_size(frag);
 
 682	}
 683
 684	frag_ptr += offset;
 685	frag_len = frag_size - offset;
 686
 687	cur_len = min(len, frag_len);
 688
 689	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 690	len -= cur_len;
 691
 692	while (len > 0) {
 693		frag++;
 694		frag_len = skb_frag_size(frag);
 695		cur_len = min(len, frag_len);
 696		__frame_add_frag(frame, skb_frag_page(frag),
 697				 skb_frag_address(frag), cur_len, frag_len);
 698		len -= cur_len;
 
 699	}
 700}
 701
 702static struct sk_buff *
 703__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 704		       int offset, int len, bool reuse_frag)
 705{
 706	struct sk_buff *frame;
 707	int cur_len = len;
 708
 709	if (skb->len - offset < len)
 710		return NULL;
 711
 712	/*
 713	 * When reusing framents, copy some data to the head to simplify
 714	 * ethernet header handling and speed up protocol header processing
 715	 * in the stack later.
 716	 */
 717	if (reuse_frag)
 718		cur_len = min_t(int, len, 32);
 719
 720	/*
 721	 * Allocate and reserve two bytes more for payload
 722	 * alignment since sizeof(struct ethhdr) is 14.
 723	 */
 724	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 725	if (!frame)
 726		return NULL;
 727
 728	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 729	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 730
 731	len -= cur_len;
 732	if (!len)
 733		return frame;
 734
 735	offset += cur_len;
 736	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 737
 738	return frame;
 739}
 740
 741void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 742			      const u8 *addr, enum nl80211_iftype iftype,
 743			      const unsigned int extra_headroom,
 744			      const u8 *check_da, const u8 *check_sa)
 745{
 746	unsigned int hlen = ALIGN(extra_headroom, 4);
 747	struct sk_buff *frame = NULL;
 748	u16 ethertype;
 749	u8 *payload;
 750	int offset = 0, remaining;
 751	struct ethhdr eth;
 752	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 753	bool reuse_skb = false;
 754	bool last = false;
 755
 756	while (!last) {
 757		unsigned int subframe_len;
 758		int len;
 759		u8 padding;
 760
 761		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 762		len = ntohs(eth.h_proto);
 763		subframe_len = sizeof(struct ethhdr) + len;
 764		padding = (4 - subframe_len) & 0x3;
 765
 766		/* the last MSDU has no padding */
 767		remaining = skb->len - offset;
 768		if (subframe_len > remaining)
 769			goto purge;
 770
 771		offset += sizeof(struct ethhdr);
 772		last = remaining <= subframe_len + padding;
 773
 774		/* FIXME: should we really accept multicast DA? */
 775		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 776		     !ether_addr_equal(check_da, eth.h_dest)) ||
 777		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 778			offset += len + padding;
 779			continue;
 780		}
 781
 782		/* reuse skb for the last subframe */
 783		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 784			skb_pull(skb, offset);
 785			frame = skb;
 786			reuse_skb = true;
 787		} else {
 788			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 789						       reuse_frag);
 790			if (!frame)
 791				goto purge;
 792
 793			offset += len + padding;
 794		}
 795
 796		skb_reset_network_header(frame);
 797		frame->dev = skb->dev;
 798		frame->priority = skb->priority;
 799
 800		payload = frame->data;
 801		ethertype = (payload[6] << 8) | payload[7];
 802		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 803			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 804			   ether_addr_equal(payload, bridge_tunnel_header))) {
 805			eth.h_proto = htons(ethertype);
 806			skb_pull(frame, ETH_ALEN + 2);
 807		}
 808
 809		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 810		__skb_queue_tail(list, frame);
 811	}
 812
 813	if (!reuse_skb)
 814		dev_kfree_skb(skb);
 815
 816	return;
 817
 818 purge:
 819	__skb_queue_purge(list);
 820	dev_kfree_skb(skb);
 821}
 822EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 823
 824/* Given a data frame determine the 802.1p/1d tag to use. */
 825unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 826				    struct cfg80211_qos_map *qos_map)
 827{
 828	unsigned int dscp;
 829	unsigned char vlan_priority;
 
 830
 831	/* skb->priority values from 256->263 are magic values to
 832	 * directly indicate a specific 802.1d priority.  This is used
 833	 * to allow 802.1d priority to be passed directly in from VLAN
 834	 * tags, etc.
 835	 */
 836	if (skb->priority >= 256 && skb->priority <= 263)
 837		return skb->priority - 256;
 
 
 838
 839	if (skb_vlan_tag_present(skb)) {
 840		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 841			>> VLAN_PRIO_SHIFT;
 842		if (vlan_priority > 0)
 843			return vlan_priority;
 
 
 844	}
 845
 846	switch (skb->protocol) {
 847	case htons(ETH_P_IP):
 848		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 849		break;
 850	case htons(ETH_P_IPV6):
 851		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 852		break;
 853	case htons(ETH_P_MPLS_UC):
 854	case htons(ETH_P_MPLS_MC): {
 855		struct mpls_label mpls_tmp, *mpls;
 856
 857		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 858					  sizeof(*mpls), &mpls_tmp);
 859		if (!mpls)
 860			return 0;
 861
 862		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 863			>> MPLS_LS_TC_SHIFT;
 
 864	}
 865	case htons(ETH_P_80221):
 866		/* 802.21 is always network control traffic */
 867		return 7;
 868	default:
 869		return 0;
 870	}
 871
 872	if (qos_map) {
 873		unsigned int i, tmp_dscp = dscp >> 2;
 874
 875		for (i = 0; i < qos_map->num_des; i++) {
 876			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 877				return qos_map->dscp_exception[i].up;
 
 
 878		}
 879
 880		for (i = 0; i < 8; i++) {
 881			if (tmp_dscp >= qos_map->up[i].low &&
 882			    tmp_dscp <= qos_map->up[i].high)
 883				return i;
 
 
 884		}
 885	}
 886
 887	return dscp >> 5;
 
 
 888}
 889EXPORT_SYMBOL(cfg80211_classify8021d);
 890
 891const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 892{
 893	const struct cfg80211_bss_ies *ies;
 894
 895	ies = rcu_dereference(bss->ies);
 896	if (!ies)
 897		return NULL;
 898
 899	return cfg80211_find_ie(ie, ies->data, ies->len);
 900}
 901EXPORT_SYMBOL(ieee80211_bss_get_ie);
 902
 903void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 904{
 905	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 906	struct net_device *dev = wdev->netdev;
 907	int i;
 908
 909	if (!wdev->connect_keys)
 910		return;
 911
 912	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 913		if (!wdev->connect_keys->params[i].cipher)
 914			continue;
 915		if (rdev_add_key(rdev, dev, i, false, NULL,
 916				 &wdev->connect_keys->params[i])) {
 917			netdev_err(dev, "failed to set key %d\n", i);
 918			continue;
 919		}
 920		if (wdev->connect_keys->def == i)
 921			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 922				netdev_err(dev, "failed to set defkey %d\n", i);
 923				continue;
 924			}
 925	}
 926
 927	kzfree(wdev->connect_keys);
 928	wdev->connect_keys = NULL;
 929}
 930
 931void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 932{
 933	struct cfg80211_event *ev;
 934	unsigned long flags;
 935	const u8 *bssid = NULL;
 936
 937	spin_lock_irqsave(&wdev->event_lock, flags);
 938	while (!list_empty(&wdev->event_list)) {
 939		ev = list_first_entry(&wdev->event_list,
 940				      struct cfg80211_event, list);
 941		list_del(&ev->list);
 942		spin_unlock_irqrestore(&wdev->event_lock, flags);
 943
 944		wdev_lock(wdev);
 945		switch (ev->type) {
 946		case EVENT_CONNECT_RESULT:
 947			if (!is_zero_ether_addr(ev->cr.bssid))
 948				bssid = ev->cr.bssid;
 949			__cfg80211_connect_result(
 950				wdev->netdev, bssid,
 951				ev->cr.req_ie, ev->cr.req_ie_len,
 952				ev->cr.resp_ie, ev->cr.resp_ie_len,
 953				ev->cr.status,
 954				ev->cr.status == WLAN_STATUS_SUCCESS,
 955				ev->cr.bss);
 956			break;
 957		case EVENT_ROAMED:
 958			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 959					  ev->rm.req_ie_len, ev->rm.resp_ie,
 960					  ev->rm.resp_ie_len);
 961			break;
 962		case EVENT_DISCONNECTED:
 963			__cfg80211_disconnected(wdev->netdev,
 964						ev->dc.ie, ev->dc.ie_len,
 965						ev->dc.reason,
 966						!ev->dc.locally_generated);
 967			break;
 968		case EVENT_IBSS_JOINED:
 969			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 970					       ev->ij.channel);
 971			break;
 972		case EVENT_STOPPED:
 973			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 974			break;
 
 
 
 975		}
 976		wdev_unlock(wdev);
 977
 978		kfree(ev);
 979
 980		spin_lock_irqsave(&wdev->event_lock, flags);
 981	}
 982	spin_unlock_irqrestore(&wdev->event_lock, flags);
 983}
 984
 985void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 986{
 987	struct wireless_dev *wdev;
 988
 989	ASSERT_RTNL();
 990
 991	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 992		cfg80211_process_wdev_events(wdev);
 993}
 994
 995int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 996			  struct net_device *dev, enum nl80211_iftype ntype,
 997			  u32 *flags, struct vif_params *params)
 998{
 999	int err;
1000	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002	ASSERT_RTNL();
1003
1004	/* don't support changing VLANs, you just re-create them */
1005	if (otype == NL80211_IFTYPE_AP_VLAN)
1006		return -EOPNOTSUPP;
1007
1008	/* cannot change into P2P device or NAN */
1009	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010	    ntype == NL80211_IFTYPE_NAN)
1011		return -EOPNOTSUPP;
1012
1013	if (!rdev->ops->change_virtual_intf ||
1014	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1015		return -EOPNOTSUPP;
1016
1017	/* if it's part of a bridge, reject changing type to station/ibss */
1018	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019	    (ntype == NL80211_IFTYPE_ADHOC ||
1020	     ntype == NL80211_IFTYPE_STATION ||
1021	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1022		return -EBUSY;
1023
1024	if (ntype != otype) {
1025		dev->ieee80211_ptr->use_4addr = false;
1026		dev->ieee80211_ptr->mesh_id_up_len = 0;
1027		wdev_lock(dev->ieee80211_ptr);
1028		rdev_set_qos_map(rdev, dev, NULL);
1029		wdev_unlock(dev->ieee80211_ptr);
1030
1031		switch (otype) {
1032		case NL80211_IFTYPE_AP:
1033			cfg80211_stop_ap(rdev, dev, true);
1034			break;
1035		case NL80211_IFTYPE_ADHOC:
1036			cfg80211_leave_ibss(rdev, dev, false);
1037			break;
1038		case NL80211_IFTYPE_STATION:
1039		case NL80211_IFTYPE_P2P_CLIENT:
1040			wdev_lock(dev->ieee80211_ptr);
1041			cfg80211_disconnect(rdev, dev,
1042					    WLAN_REASON_DEAUTH_LEAVING, true);
1043			wdev_unlock(dev->ieee80211_ptr);
1044			break;
1045		case NL80211_IFTYPE_MESH_POINT:
1046			/* mesh should be handled? */
1047			break;
1048		default:
1049			break;
1050		}
1051
1052		cfg80211_process_rdev_events(rdev);
 
1053	}
1054
1055	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056
1057	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058
1059	if (!err && params && params->use_4addr != -1)
1060		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061
1062	if (!err) {
1063		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064		switch (ntype) {
1065		case NL80211_IFTYPE_STATION:
1066			if (dev->ieee80211_ptr->use_4addr)
1067				break;
1068			/* fall through */
1069		case NL80211_IFTYPE_OCB:
1070		case NL80211_IFTYPE_P2P_CLIENT:
1071		case NL80211_IFTYPE_ADHOC:
1072			dev->priv_flags |= IFF_DONT_BRIDGE;
1073			break;
1074		case NL80211_IFTYPE_P2P_GO:
1075		case NL80211_IFTYPE_AP:
1076		case NL80211_IFTYPE_AP_VLAN:
1077		case NL80211_IFTYPE_WDS:
1078		case NL80211_IFTYPE_MESH_POINT:
1079			/* bridging OK */
1080			break;
1081		case NL80211_IFTYPE_MONITOR:
1082			/* monitor can't bridge anyway */
1083			break;
1084		case NL80211_IFTYPE_UNSPECIFIED:
1085		case NUM_NL80211_IFTYPES:
1086			/* not happening */
1087			break;
1088		case NL80211_IFTYPE_P2P_DEVICE:
1089		case NL80211_IFTYPE_NAN:
1090			WARN_ON(1);
1091			break;
1092		}
1093	}
1094
1095	if (!err && ntype != otype && netif_running(dev)) {
1096		cfg80211_update_iface_num(rdev, ntype, 1);
1097		cfg80211_update_iface_num(rdev, otype, -1);
1098	}
1099
1100	return err;
1101}
1102
1103static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104{
1105	static const u32 __mcs2bitrate[] = {
1106		/* control PHY */
1107		[0] =   275,
1108		/* SC PHY */
1109		[1] =  3850,
1110		[2] =  7700,
1111		[3] =  9625,
1112		[4] = 11550,
1113		[5] = 12512, /* 1251.25 mbps */
1114		[6] = 15400,
1115		[7] = 19250,
1116		[8] = 23100,
1117		[9] = 25025,
1118		[10] = 30800,
1119		[11] = 38500,
1120		[12] = 46200,
1121		/* OFDM PHY */
1122		[13] =  6930,
1123		[14] =  8662, /* 866.25 mbps */
1124		[15] = 13860,
1125		[16] = 17325,
1126		[17] = 20790,
1127		[18] = 27720,
1128		[19] = 34650,
1129		[20] = 41580,
1130		[21] = 45045,
1131		[22] = 51975,
1132		[23] = 62370,
1133		[24] = 67568, /* 6756.75 mbps */
1134		/* LP-SC PHY */
1135		[25] =  6260,
1136		[26] =  8340,
1137		[27] = 11120,
1138		[28] = 12510,
1139		[29] = 16680,
1140		[30] = 22240,
1141		[31] = 25030,
1142	};
1143
1144	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145		return 0;
1146
1147	return __mcs2bitrate[rate->mcs];
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151{
1152	static const u32 base[4][10] = {
1153		{   6500000,
1154		   13000000,
1155		   19500000,
1156		   26000000,
1157		   39000000,
1158		   52000000,
1159		   58500000,
1160		   65000000,
1161		   78000000,
1162		/* not in the spec, but some devices use this: */
1163		   86500000,
1164		},
1165		{  13500000,
1166		   27000000,
1167		   40500000,
1168		   54000000,
1169		   81000000,
1170		  108000000,
1171		  121500000,
1172		  135000000,
1173		  162000000,
1174		  180000000,
1175		},
1176		{  29300000,
1177		   58500000,
1178		   87800000,
1179		  117000000,
1180		  175500000,
1181		  234000000,
1182		  263300000,
1183		  292500000,
1184		  351000000,
1185		  390000000,
1186		},
1187		{  58500000,
1188		  117000000,
1189		  175500000,
1190		  234000000,
1191		  351000000,
1192		  468000000,
1193		  526500000,
1194		  585000000,
1195		  702000000,
1196		  780000000,
1197		},
1198	};
1199	u32 bitrate;
1200	int idx;
1201
1202	if (WARN_ON_ONCE(rate->mcs > 9))
1203		return 0;
1204
1205	switch (rate->bw) {
1206	case RATE_INFO_BW_160:
1207		idx = 3;
1208		break;
1209	case RATE_INFO_BW_80:
1210		idx = 2;
1211		break;
1212	case RATE_INFO_BW_40:
1213		idx = 1;
1214		break;
1215	case RATE_INFO_BW_5:
1216	case RATE_INFO_BW_10:
1217	default:
1218		WARN_ON(1);
1219		/* fall through */
1220	case RATE_INFO_BW_20:
1221		idx = 0;
1222	}
1223
1224	bitrate = base[idx][rate->mcs];
1225	bitrate *= rate->nss;
1226
1227	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228		bitrate = (bitrate / 9) * 10;
1229
1230	/* do NOT round down here */
1231	return (bitrate + 50000) / 100000;
 
 
 
 
1232}
1233
1234u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235{
1236	int modulation, streams, bitrate;
1237
1238	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240		return rate->legacy;
1241	if (rate->flags & RATE_INFO_FLAGS_60G)
1242		return cfg80211_calculate_bitrate_60g(rate);
1243	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244		return cfg80211_calculate_bitrate_vht(rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245
1246	/* the formula below does only work for MCS values smaller than 32 */
1247	if (WARN_ON_ONCE(rate->mcs >= 32))
1248		return 0;
1249
1250	modulation = rate->mcs & 7;
1251	streams = (rate->mcs >> 3) + 1;
 
 
 
 
 
1252
1253	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254
1255	if (modulation < 4)
1256		bitrate *= (modulation + 1);
1257	else if (modulation == 4)
1258		bitrate *= (modulation + 2);
1259	else
1260		bitrate *= (modulation + 3);
 
 
 
 
1261
1262	bitrate *= streams;
 
1263
1264	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265		bitrate = (bitrate / 9) * 10;
 
 
 
 
 
 
 
 
 
 
1266
1267	/* do NOT round down here */
1268	return (bitrate + 50000) / 100000;
1269}
1270EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271
1272int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273			  enum ieee80211_p2p_attr_id attr,
1274			  u8 *buf, unsigned int bufsize)
1275{
1276	u8 *out = buf;
1277	u16 attr_remaining = 0;
1278	bool desired_attr = false;
1279	u16 desired_len = 0;
1280
1281	while (len > 0) {
1282		unsigned int iedatalen;
1283		unsigned int copy;
1284		const u8 *iedata;
1285
1286		if (len < 2)
1287			return -EILSEQ;
1288		iedatalen = ies[1];
1289		if (iedatalen + 2 > len)
1290			return -EILSEQ;
1291
1292		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293			goto cont;
1294
1295		if (iedatalen < 4)
1296			goto cont;
1297
1298		iedata = ies + 2;
1299
1300		/* check WFA OUI, P2P subtype */
1301		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303			goto cont;
1304
1305		iedatalen -= 4;
1306		iedata += 4;
1307
1308		/* check attribute continuation into this IE */
1309		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310		if (copy && desired_attr) {
1311			desired_len += copy;
1312			if (out) {
1313				memcpy(out, iedata, min(bufsize, copy));
1314				out += min(bufsize, copy);
1315				bufsize -= min(bufsize, copy);
1316			}
1317
1318
1319			if (copy == attr_remaining)
1320				return desired_len;
1321		}
1322
1323		attr_remaining -= copy;
1324		if (attr_remaining)
1325			goto cont;
1326
1327		iedatalen -= copy;
1328		iedata += copy;
1329
1330		while (iedatalen > 0) {
1331			u16 attr_len;
1332
1333			/* P2P attribute ID & size must fit */
1334			if (iedatalen < 3)
1335				return -EILSEQ;
1336			desired_attr = iedata[0] == attr;
1337			attr_len = get_unaligned_le16(iedata + 1);
1338			iedatalen -= 3;
1339			iedata += 3;
1340
1341			copy = min_t(unsigned int, attr_len, iedatalen);
1342
1343			if (desired_attr) {
1344				desired_len += copy;
1345				if (out) {
1346					memcpy(out, iedata, min(bufsize, copy));
1347					out += min(bufsize, copy);
1348					bufsize -= min(bufsize, copy);
1349				}
1350
1351				if (copy == attr_len)
1352					return desired_len;
1353			}
1354
1355			iedata += copy;
1356			iedatalen -= copy;
1357			attr_remaining = attr_len - copy;
1358		}
1359
1360 cont:
1361		len -= ies[1] + 2;
1362		ies += ies[1] + 2;
1363	}
1364
1365	if (attr_remaining && desired_attr)
1366		return -EILSEQ;
1367
1368	return -ENOENT;
1369}
1370EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371
1372static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373{
1374	int i;
1375
1376	for (i = 0; i < n_ids; i++)
1377		if (ids[i] == id)
 
 
 
 
 
 
 
 
 
 
 
 
 
1378			return true;
 
 
 
1379	return false;
1380}
1381
1382static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383{
1384	/* we assume a validly formed IEs buffer */
1385	u8 len = ies[pos + 1];
1386
1387	pos += 2 + len;
1388
1389	/* the IE itself must have 255 bytes for fragments to follow */
1390	if (len < 255)
1391		return pos;
1392
1393	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394		len = ies[pos + 1];
1395		pos += 2 + len;
1396	}
1397
1398	return pos;
1399}
1400
1401size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402			      const u8 *ids, int n_ids,
1403			      const u8 *after_ric, int n_after_ric,
1404			      size_t offset)
1405{
1406	size_t pos = offset;
1407
1408	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
 
 
 
 
 
 
 
 
 
 
 
1409		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410			pos = skip_ie(ies, ielen, pos);
1411
1412			while (pos < ielen &&
1413			       !ieee80211_id_in_list(after_ric, n_after_ric,
1414						     ies[pos]))
1415				pos = skip_ie(ies, ielen, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
1416		} else {
1417			pos = skip_ie(ies, ielen, pos);
1418		}
1419	}
1420
1421	return pos;
1422}
1423EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424
1425bool ieee80211_operating_class_to_band(u8 operating_class,
1426				       enum nl80211_band *band)
1427{
1428	switch (operating_class) {
1429	case 112:
1430	case 115 ... 127:
1431	case 128 ... 130:
1432		*band = NL80211_BAND_5GHZ;
1433		return true;
 
 
 
1434	case 81:
1435	case 82:
1436	case 83:
1437	case 84:
1438		*band = NL80211_BAND_2GHZ;
1439		return true;
1440	case 180:
1441		*band = NL80211_BAND_60GHZ;
1442		return true;
1443	}
1444
1445	return false;
1446}
1447EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448
1449bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450					  u8 *op_class)
1451{
1452	u8 vht_opclass;
1453	u16 freq = chandef->center_freq1;
1454
1455	if (freq >= 2412 && freq <= 2472) {
1456		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457			return false;
1458
1459		/* 2.407 GHz, channels 1..13 */
1460		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461			if (freq > chandef->chan->center_freq)
1462				*op_class = 83; /* HT40+ */
1463			else
1464				*op_class = 84; /* HT40- */
1465		} else {
1466			*op_class = 81;
1467		}
1468
1469		return true;
1470	}
1471
1472	if (freq == 2484) {
1473		if (chandef->width > NL80211_CHAN_WIDTH_40)
 
1474			return false;
1475
1476		*op_class = 82; /* channel 14 */
1477		return true;
1478	}
1479
1480	switch (chandef->width) {
1481	case NL80211_CHAN_WIDTH_80:
1482		vht_opclass = 128;
1483		break;
1484	case NL80211_CHAN_WIDTH_160:
1485		vht_opclass = 129;
1486		break;
1487	case NL80211_CHAN_WIDTH_80P80:
1488		vht_opclass = 130;
1489		break;
1490	case NL80211_CHAN_WIDTH_10:
1491	case NL80211_CHAN_WIDTH_5:
1492		return false; /* unsupported for now */
1493	default:
1494		vht_opclass = 0;
1495		break;
1496	}
1497
1498	/* 5 GHz, channels 36..48 */
1499	if (freq >= 5180 && freq <= 5240) {
1500		if (vht_opclass) {
1501			*op_class = vht_opclass;
1502		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503			if (freq > chandef->chan->center_freq)
1504				*op_class = 116;
1505			else
1506				*op_class = 117;
1507		} else {
1508			*op_class = 115;
1509		}
1510
1511		return true;
1512	}
1513
1514	/* 5 GHz, channels 52..64 */
1515	if (freq >= 5260 && freq <= 5320) {
1516		if (vht_opclass) {
1517			*op_class = vht_opclass;
1518		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519			if (freq > chandef->chan->center_freq)
1520				*op_class = 119;
1521			else
1522				*op_class = 120;
1523		} else {
1524			*op_class = 118;
1525		}
1526
1527		return true;
1528	}
1529
1530	/* 5 GHz, channels 100..144 */
1531	if (freq >= 5500 && freq <= 5720) {
1532		if (vht_opclass) {
1533			*op_class = vht_opclass;
1534		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535			if (freq > chandef->chan->center_freq)
1536				*op_class = 122;
1537			else
1538				*op_class = 123;
1539		} else {
1540			*op_class = 121;
1541		}
1542
1543		return true;
1544	}
1545
1546	/* 5 GHz, channels 149..169 */
1547	if (freq >= 5745 && freq <= 5845) {
1548		if (vht_opclass) {
1549			*op_class = vht_opclass;
1550		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551			if (freq > chandef->chan->center_freq)
1552				*op_class = 126;
1553			else
1554				*op_class = 127;
1555		} else if (freq <= 5805) {
1556			*op_class = 124;
1557		} else {
1558			*op_class = 125;
1559		}
1560
1561		return true;
1562	}
1563
1564	/* 56.16 GHz, channel 1..4 */
1565	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567			return false;
1568
1569		*op_class = 180;
1570		return true;
1571	}
1572
1573	/* not supported yet */
1574	return false;
1575}
1576EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577
1578static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579				       u32 *beacon_int_gcd,
1580				       bool *beacon_int_different)
1581{
1582	struct wireless_dev *wdev;
1583
1584	*beacon_int_gcd = 0;
1585	*beacon_int_different = false;
1586
1587	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588		if (!wdev->beacon_interval)
1589			continue;
1590
1591		if (!*beacon_int_gcd) {
1592			*beacon_int_gcd = wdev->beacon_interval;
1593			continue;
1594		}
1595
1596		if (wdev->beacon_interval == *beacon_int_gcd)
1597			continue;
1598
1599		*beacon_int_different = true;
1600		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601	}
1602
1603	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604		if (*beacon_int_gcd)
1605			*beacon_int_different = true;
1606		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607	}
1608}
1609
1610int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611				 enum nl80211_iftype iftype, u32 beacon_int)
1612{
1613	/*
1614	 * This is just a basic pre-condition check; if interface combinations
1615	 * are possible the driver must already be checking those with a call
1616	 * to cfg80211_check_combinations(), in which case we'll validate more
1617	 * through the cfg80211_calculate_bi_data() call and code in
1618	 * cfg80211_iter_combinations().
1619	 */
1620
1621	if (beacon_int < 10 || beacon_int > 10000)
1622		return -EINVAL;
1623
1624	return 0;
1625}
1626
1627int cfg80211_iter_combinations(struct wiphy *wiphy,
1628			       struct iface_combination_params *params,
1629			       void (*iter)(const struct ieee80211_iface_combination *c,
1630					    void *data),
1631			       void *data)
1632{
1633	const struct ieee80211_regdomain *regdom;
1634	enum nl80211_dfs_regions region = 0;
1635	int i, j, iftype;
1636	int num_interfaces = 0;
1637	u32 used_iftypes = 0;
1638	u32 beacon_int_gcd;
1639	bool beacon_int_different;
1640
1641	/*
1642	 * This is a bit strange, since the iteration used to rely only on
1643	 * the data given by the driver, but here it now relies on context,
1644	 * in form of the currently operating interfaces.
1645	 * This is OK for all current users, and saves us from having to
1646	 * push the GCD calculations into all the drivers.
1647	 * In the future, this should probably rely more on data that's in
1648	 * cfg80211 already - the only thing not would appear to be any new
1649	 * interfaces (while being brought up) and channel/radar data.
1650	 */
1651	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652				   &beacon_int_gcd, &beacon_int_different);
1653
1654	if (params->radar_detect) {
1655		rcu_read_lock();
1656		regdom = rcu_dereference(cfg80211_regdomain);
1657		if (regdom)
1658			region = regdom->dfs_region;
1659		rcu_read_unlock();
1660	}
1661
1662	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663		num_interfaces += params->iftype_num[iftype];
1664		if (params->iftype_num[iftype] > 0 &&
1665		    !(wiphy->software_iftypes & BIT(iftype)))
1666			used_iftypes |= BIT(iftype);
1667	}
1668
1669	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670		const struct ieee80211_iface_combination *c;
1671		struct ieee80211_iface_limit *limits;
1672		u32 all_iftypes = 0;
1673
1674		c = &wiphy->iface_combinations[i];
1675
1676		if (num_interfaces > c->max_interfaces)
1677			continue;
1678		if (params->num_different_channels > c->num_different_channels)
1679			continue;
1680
1681		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682				 GFP_KERNEL);
1683		if (!limits)
1684			return -ENOMEM;
1685
1686		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687			if (wiphy->software_iftypes & BIT(iftype))
1688				continue;
1689			for (j = 0; j < c->n_limits; j++) {
1690				all_iftypes |= limits[j].types;
1691				if (!(limits[j].types & BIT(iftype)))
1692					continue;
1693				if (limits[j].max < params->iftype_num[iftype])
1694					goto cont;
1695				limits[j].max -= params->iftype_num[iftype];
1696			}
1697		}
1698
1699		if (params->radar_detect !=
1700			(c->radar_detect_widths & params->radar_detect))
1701			goto cont;
1702
1703		if (params->radar_detect && c->radar_detect_regions &&
1704		    !(c->radar_detect_regions & BIT(region)))
1705			goto cont;
1706
1707		/* Finally check that all iftypes that we're currently
1708		 * using are actually part of this combination. If they
1709		 * aren't then we can't use this combination and have
1710		 * to continue to the next.
1711		 */
1712		if ((all_iftypes & used_iftypes) != used_iftypes)
1713			goto cont;
1714
1715		if (beacon_int_gcd) {
1716			if (c->beacon_int_min_gcd &&
1717			    beacon_int_gcd < c->beacon_int_min_gcd)
1718				goto cont;
1719			if (!c->beacon_int_min_gcd && beacon_int_different)
1720				goto cont;
1721		}
1722
1723		/* This combination covered all interface types and
1724		 * supported the requested numbers, so we're good.
1725		 */
1726
1727		(*iter)(c, data);
1728 cont:
1729		kfree(limits);
1730	}
1731
1732	return 0;
1733}
1734EXPORT_SYMBOL(cfg80211_iter_combinations);
1735
1736static void
1737cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738			  void *data)
1739{
1740	int *num = data;
1741	(*num)++;
1742}
1743
1744int cfg80211_check_combinations(struct wiphy *wiphy,
1745				struct iface_combination_params *params)
1746{
1747	int err, num = 0;
1748
1749	err = cfg80211_iter_combinations(wiphy, params,
1750					 cfg80211_iter_sum_ifcombs, &num);
1751	if (err)
1752		return err;
1753	if (num == 0)
1754		return -EBUSY;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(cfg80211_check_combinations);
1759
1760int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761			   const u8 *rates, unsigned int n_rates,
1762			   u32 *mask)
1763{
1764	int i, j;
1765
1766	if (!sband)
1767		return -EINVAL;
1768
1769	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770		return -EINVAL;
1771
1772	*mask = 0;
1773
1774	for (i = 0; i < n_rates; i++) {
1775		int rate = (rates[i] & 0x7f) * 5;
1776		bool found = false;
1777
1778		for (j = 0; j < sband->n_bitrates; j++) {
1779			if (sband->bitrates[j].bitrate == rate) {
1780				found = true;
1781				*mask |= BIT(j);
1782				break;
1783			}
1784		}
1785		if (!found)
1786			return -EINVAL;
1787	}
1788
1789	/*
1790	 * mask must have at least one bit set here since we
1791	 * didn't accept a 0-length rates array nor allowed
1792	 * entries in the array that didn't exist
1793	 */
1794
1795	return 0;
1796}
1797
1798unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799{
1800	enum nl80211_band band;
1801	unsigned int n_channels = 0;
1802
1803	for (band = 0; band < NUM_NL80211_BANDS; band++)
1804		if (wiphy->bands[band])
1805			n_channels += wiphy->bands[band]->n_channels;
1806
1807	return n_channels;
1808}
1809EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810
1811int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812			 struct station_info *sinfo)
1813{
1814	struct cfg80211_registered_device *rdev;
1815	struct wireless_dev *wdev;
1816
1817	wdev = dev->ieee80211_ptr;
1818	if (!wdev)
1819		return -EOPNOTSUPP;
1820
1821	rdev = wiphy_to_rdev(wdev->wiphy);
1822	if (!rdev->ops->get_station)
1823		return -EOPNOTSUPP;
1824
 
 
1825	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826}
1827EXPORT_SYMBOL(cfg80211_get_station);
1828
1829void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830{
1831	int i;
1832
1833	if (!f)
1834		return;
1835
1836	kfree(f->serv_spec_info);
1837	kfree(f->srf_bf);
1838	kfree(f->srf_macs);
1839	for (i = 0; i < f->num_rx_filters; i++)
1840		kfree(f->rx_filters[i].filter);
1841
1842	for (i = 0; i < f->num_tx_filters; i++)
1843		kfree(f->tx_filters[i].filter);
1844
1845	kfree(f->rx_filters);
1846	kfree(f->tx_filters);
1847	kfree(f);
1848}
1849EXPORT_SYMBOL(cfg80211_free_nan_func);
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853const unsigned char rfc1042_header[] __aligned(2) =
1854	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855EXPORT_SYMBOL(rfc1042_header);
1856
1857/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858const unsigned char bridge_tunnel_header[] __aligned(2) =
1859	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860EXPORT_SYMBOL(bridge_tunnel_header);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2019 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
  83		if (chan == 14)
  84			return 2484;
  85		else if (chan < 14)
  86			return 2407 + chan * 5;
  87		break;
  88	case NL80211_BAND_5GHZ:
  89		if (chan >= 182 && chan <= 196)
  90			return 4000 + chan * 5;
  91		else
  92			return 5000 + chan * 5;
  93		break;
  94	case NL80211_BAND_6GHZ:
  95		/* see 802.11ax D4.1 27.3.22.2 */
  96		if (chan <= 253)
  97			return 5940 + chan * 5;
  98		break;
  99	case NL80211_BAND_60GHZ:
 100		if (chan < 7)
 101			return 56160 + chan * 2160;
 102		break;
 103	default:
 104		;
 105	}
 106	return 0; /* not supported */
 107}
 108EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 109
 110int ieee80211_frequency_to_channel(int freq)
 111{
 112	/* see 802.11 17.3.8.3.2 and Annex J */
 113	if (freq == 2484)
 114		return 14;
 115	else if (freq < 2484)
 116		return (freq - 2407) / 5;
 117	else if (freq >= 4910 && freq <= 4980)
 118		return (freq - 4000) / 5;
 119	else if (freq < 5945)
 120		return (freq - 5000) / 5;
 121	else if (freq <= 45000) /* DMG band lower limit */
 122		/* see 802.11ax D4.1 27.3.22.2 */
 123		return (freq - 5940) / 5;
 124	else if (freq >= 58320 && freq <= 70200)
 125		return (freq - 56160) / 2160;
 126	else
 127		return 0;
 128}
 129EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 130
 131struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
 
 132{
 133	enum nl80211_band band;
 134	struct ieee80211_supported_band *sband;
 135	int i;
 136
 137	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 138		sband = wiphy->bands[band];
 139
 140		if (!sband)
 141			continue;
 142
 143		for (i = 0; i < sband->n_channels; i++) {
 144			if (sband->channels[i].center_freq == freq)
 145				return &sband->channels[i];
 146		}
 147	}
 148
 149	return NULL;
 150}
 151EXPORT_SYMBOL(ieee80211_get_channel);
 152
 153static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 
 154{
 155	int i, want;
 156
 157	switch (sband->band) {
 158	case NL80211_BAND_5GHZ:
 159	case NL80211_BAND_6GHZ:
 160		want = 3;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 60 ||
 163			    sband->bitrates[i].bitrate == 120 ||
 164			    sband->bitrates[i].bitrate == 240) {
 165				sband->bitrates[i].flags |=
 166					IEEE80211_RATE_MANDATORY_A;
 167				want--;
 168			}
 169		}
 170		WARN_ON(want);
 171		break;
 172	case NL80211_BAND_2GHZ:
 173		want = 7;
 174		for (i = 0; i < sband->n_bitrates; i++) {
 175			switch (sband->bitrates[i].bitrate) {
 176			case 10:
 177			case 20:
 178			case 55:
 179			case 110:
 180				sband->bitrates[i].flags |=
 181					IEEE80211_RATE_MANDATORY_B |
 182					IEEE80211_RATE_MANDATORY_G;
 183				want--;
 184				break;
 185			case 60:
 186			case 120:
 187			case 240:
 
 
 
 
 188				sband->bitrates[i].flags |=
 189					IEEE80211_RATE_MANDATORY_G;
 190				want--;
 191				/* fall through */
 192			default:
 
 
 
 
 193				sband->bitrates[i].flags |=
 194					IEEE80211_RATE_ERP_G;
 195				break;
 196			}
 197		}
 198		WARN_ON(want != 0 && want != 3);
 199		break;
 200	case NL80211_BAND_60GHZ:
 201		/* check for mandatory HT MCS 1..4 */
 202		WARN_ON(!sband->ht_cap.ht_supported);
 203		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 204		break;
 205	case NUM_NL80211_BANDS:
 206	default:
 207		WARN_ON(1);
 208		break;
 209	}
 210}
 211
 212void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 213{
 214	enum nl80211_band band;
 215
 216	for (band = 0; band < NUM_NL80211_BANDS; band++)
 217		if (wiphy->bands[band])
 218			set_mandatory_flags_band(wiphy->bands[band]);
 219}
 220
 221bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 222{
 223	int i;
 224	for (i = 0; i < wiphy->n_cipher_suites; i++)
 225		if (cipher == wiphy->cipher_suites[i])
 226			return true;
 227	return false;
 228}
 229
 230int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 231				   struct key_params *params, int key_idx,
 232				   bool pairwise, const u8 *mac_addr)
 233{
 234	if (key_idx < 0 || key_idx > 5)
 235		return -EINVAL;
 236
 237	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 238		return -EINVAL;
 239
 240	if (pairwise && !mac_addr)
 241		return -EINVAL;
 242
 243	switch (params->cipher) {
 244	case WLAN_CIPHER_SUITE_TKIP:
 245		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 246		if ((pairwise && key_idx) ||
 247		    params->mode != NL80211_KEY_RX_TX)
 248			return -EINVAL;
 249		break;
 250	case WLAN_CIPHER_SUITE_CCMP:
 251	case WLAN_CIPHER_SUITE_CCMP_256:
 252	case WLAN_CIPHER_SUITE_GCMP:
 253	case WLAN_CIPHER_SUITE_GCMP_256:
 254		/* IEEE802.11-2016 allows only 0 and - when supporting
 255		 * Extended Key ID - 1 as index for pairwise keys.
 256		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 257		 * the driver supports Extended Key ID.
 258		 * @NL80211_KEY_SET_TX can't be set when installing and
 259		 * validating a key.
 260		 */
 261		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 262		    params->mode == NL80211_KEY_SET_TX)
 263			return -EINVAL;
 264		if (wiphy_ext_feature_isset(&rdev->wiphy,
 265					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 266			if (pairwise && (key_idx < 0 || key_idx > 1))
 267				return -EINVAL;
 268		} else if (pairwise && key_idx) {
 269			return -EINVAL;
 270		}
 271		break;
 272	case WLAN_CIPHER_SUITE_AES_CMAC:
 273	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 274	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 275	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 276		/* Disallow BIP (group-only) cipher as pairwise cipher */
 277		if (pairwise)
 278			return -EINVAL;
 279		if (key_idx < 4)
 280			return -EINVAL;
 281		break;
 282	case WLAN_CIPHER_SUITE_WEP40:
 283	case WLAN_CIPHER_SUITE_WEP104:
 284		if (key_idx > 3)
 285			return -EINVAL;
 286	default:
 287		break;
 288	}
 289
 290	switch (params->cipher) {
 291	case WLAN_CIPHER_SUITE_WEP40:
 292		if (params->key_len != WLAN_KEY_LEN_WEP40)
 293			return -EINVAL;
 294		break;
 295	case WLAN_CIPHER_SUITE_TKIP:
 296		if (params->key_len != WLAN_KEY_LEN_TKIP)
 297			return -EINVAL;
 298		break;
 299	case WLAN_CIPHER_SUITE_CCMP:
 300		if (params->key_len != WLAN_KEY_LEN_CCMP)
 301			return -EINVAL;
 302		break;
 303	case WLAN_CIPHER_SUITE_CCMP_256:
 304		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 305			return -EINVAL;
 306		break;
 307	case WLAN_CIPHER_SUITE_GCMP:
 308		if (params->key_len != WLAN_KEY_LEN_GCMP)
 309			return -EINVAL;
 310		break;
 311	case WLAN_CIPHER_SUITE_GCMP_256:
 312		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 313			return -EINVAL;
 314		break;
 315	case WLAN_CIPHER_SUITE_WEP104:
 316		if (params->key_len != WLAN_KEY_LEN_WEP104)
 317			return -EINVAL;
 318		break;
 319	case WLAN_CIPHER_SUITE_AES_CMAC:
 320		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 321			return -EINVAL;
 322		break;
 323	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 324		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 325			return -EINVAL;
 326		break;
 327	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 328		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 329			return -EINVAL;
 330		break;
 331	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 332		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 333			return -EINVAL;
 334		break;
 335	default:
 336		/*
 337		 * We don't know anything about this algorithm,
 338		 * allow using it -- but the driver must check
 339		 * all parameters! We still check below whether
 340		 * or not the driver supports this algorithm,
 341		 * of course.
 342		 */
 343		break;
 344	}
 345
 346	if (params->seq) {
 347		switch (params->cipher) {
 348		case WLAN_CIPHER_SUITE_WEP40:
 349		case WLAN_CIPHER_SUITE_WEP104:
 350			/* These ciphers do not use key sequence */
 351			return -EINVAL;
 352		case WLAN_CIPHER_SUITE_TKIP:
 353		case WLAN_CIPHER_SUITE_CCMP:
 354		case WLAN_CIPHER_SUITE_CCMP_256:
 355		case WLAN_CIPHER_SUITE_GCMP:
 356		case WLAN_CIPHER_SUITE_GCMP_256:
 357		case WLAN_CIPHER_SUITE_AES_CMAC:
 358		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 359		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 360		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 361			if (params->seq_len != 6)
 362				return -EINVAL;
 363			break;
 364		}
 365	}
 366
 367	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 368		return -EINVAL;
 369
 370	return 0;
 371}
 372
 373unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 374{
 375	unsigned int hdrlen = 24;
 376
 377	if (ieee80211_is_data(fc)) {
 378		if (ieee80211_has_a4(fc))
 379			hdrlen = 30;
 380		if (ieee80211_is_data_qos(fc)) {
 381			hdrlen += IEEE80211_QOS_CTL_LEN;
 382			if (ieee80211_has_order(fc))
 383				hdrlen += IEEE80211_HT_CTL_LEN;
 384		}
 385		goto out;
 386	}
 387
 388	if (ieee80211_is_mgmt(fc)) {
 389		if (ieee80211_has_order(fc))
 390			hdrlen += IEEE80211_HT_CTL_LEN;
 391		goto out;
 392	}
 393
 394	if (ieee80211_is_ctl(fc)) {
 395		/*
 396		 * ACK and CTS are 10 bytes, all others 16. To see how
 397		 * to get this condition consider
 398		 *   subtype mask:   0b0000000011110000 (0x00F0)
 399		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 400		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 401		 *   bits that matter:         ^^^      (0x00E0)
 402		 *   value of those: 0b0000000011000000 (0x00C0)
 403		 */
 404		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 405			hdrlen = 10;
 406		else
 407			hdrlen = 16;
 408	}
 409out:
 410	return hdrlen;
 411}
 412EXPORT_SYMBOL(ieee80211_hdrlen);
 413
 414unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 415{
 416	const struct ieee80211_hdr *hdr =
 417			(const struct ieee80211_hdr *)skb->data;
 418	unsigned int hdrlen;
 419
 420	if (unlikely(skb->len < 10))
 421		return 0;
 422	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 423	if (unlikely(hdrlen > skb->len))
 424		return 0;
 425	return hdrlen;
 426}
 427EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 428
 429static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 430{
 431	int ae = flags & MESH_FLAGS_AE;
 432	/* 802.11-2012, 8.2.4.7.3 */
 433	switch (ae) {
 434	default:
 435	case 0:
 436		return 6;
 437	case MESH_FLAGS_AE_A4:
 438		return 12;
 439	case MESH_FLAGS_AE_A5_A6:
 440		return 18;
 441	}
 442}
 443
 444unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 445{
 446	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 447}
 448EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 449
 450int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 451				  const u8 *addr, enum nl80211_iftype iftype,
 452				  u8 data_offset)
 453{
 454	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 455	struct {
 456		u8 hdr[ETH_ALEN] __aligned(2);
 457		__be16 proto;
 458	} payload;
 459	struct ethhdr tmp;
 460	u16 hdrlen;
 461	u8 mesh_flags = 0;
 462
 463	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 464		return -1;
 465
 466	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 467	if (skb->len < hdrlen + 8)
 468		return -1;
 469
 470	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 471	 * header
 472	 * IEEE 802.11 address fields:
 473	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 474	 *   0     0   DA    SA    BSSID n/a
 475	 *   0     1   DA    BSSID SA    n/a
 476	 *   1     0   BSSID SA    DA    n/a
 477	 *   1     1   RA    TA    DA    SA
 478	 */
 479	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 480	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 481
 482	if (iftype == NL80211_IFTYPE_MESH_POINT)
 483		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 484
 485	mesh_flags &= MESH_FLAGS_AE;
 486
 487	switch (hdr->frame_control &
 488		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 489	case cpu_to_le16(IEEE80211_FCTL_TODS):
 490		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 491			     iftype != NL80211_IFTYPE_AP_VLAN &&
 492			     iftype != NL80211_IFTYPE_P2P_GO))
 493			return -1;
 494		break;
 495	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 496		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 497			     iftype != NL80211_IFTYPE_MESH_POINT &&
 498			     iftype != NL80211_IFTYPE_AP_VLAN &&
 499			     iftype != NL80211_IFTYPE_STATION))
 500			return -1;
 501		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 502			if (mesh_flags == MESH_FLAGS_AE_A4)
 503				return -1;
 504			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 505				skb_copy_bits(skb, hdrlen +
 506					offsetof(struct ieee80211s_hdr, eaddr1),
 507					tmp.h_dest, 2 * ETH_ALEN);
 508			}
 509			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 510		}
 511		break;
 512	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 513		if ((iftype != NL80211_IFTYPE_STATION &&
 514		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 515		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 516		    (is_multicast_ether_addr(tmp.h_dest) &&
 517		     ether_addr_equal(tmp.h_source, addr)))
 518			return -1;
 519		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 520			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 521				return -1;
 522			if (mesh_flags == MESH_FLAGS_AE_A4)
 523				skb_copy_bits(skb, hdrlen +
 524					offsetof(struct ieee80211s_hdr, eaddr1),
 525					tmp.h_source, ETH_ALEN);
 526			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 527		}
 528		break;
 529	case cpu_to_le16(0):
 530		if (iftype != NL80211_IFTYPE_ADHOC &&
 531		    iftype != NL80211_IFTYPE_STATION &&
 532		    iftype != NL80211_IFTYPE_OCB)
 533				return -1;
 534		break;
 535	}
 536
 537	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 538	tmp.h_proto = payload.proto;
 539
 540	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 541		    tmp.h_proto != htons(ETH_P_AARP) &&
 542		    tmp.h_proto != htons(ETH_P_IPX)) ||
 543		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 544		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 545		 * replace EtherType */
 546		hdrlen += ETH_ALEN + 2;
 547	else
 548		tmp.h_proto = htons(skb->len - hdrlen);
 549
 550	pskb_pull(skb, hdrlen);
 551
 552	if (!ehdr)
 553		ehdr = skb_push(skb, sizeof(struct ethhdr));
 554	memcpy(ehdr, &tmp, sizeof(tmp));
 555
 556	return 0;
 557}
 558EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560static void
 561__frame_add_frag(struct sk_buff *skb, struct page *page,
 562		 void *ptr, int len, int size)
 563{
 564	struct skb_shared_info *sh = skb_shinfo(skb);
 565	int page_offset;
 566
 567	page_ref_inc(page);
 568	page_offset = ptr - page_address(page);
 569	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 570}
 571
 572static void
 573__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 574			    int offset, int len)
 575{
 576	struct skb_shared_info *sh = skb_shinfo(skb);
 577	const skb_frag_t *frag = &sh->frags[0];
 578	struct page *frag_page;
 579	void *frag_ptr;
 580	int frag_len, frag_size;
 581	int head_size = skb->len - skb->data_len;
 582	int cur_len;
 583
 584	frag_page = virt_to_head_page(skb->head);
 585	frag_ptr = skb->data;
 586	frag_size = head_size;
 587
 588	while (offset >= frag_size) {
 589		offset -= frag_size;
 
 590		frag_page = skb_frag_page(frag);
 591		frag_ptr = skb_frag_address(frag);
 592		frag_size = skb_frag_size(frag);
 593		frag++;
 594	}
 595
 596	frag_ptr += offset;
 597	frag_len = frag_size - offset;
 598
 599	cur_len = min(len, frag_len);
 600
 601	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 602	len -= cur_len;
 603
 604	while (len > 0) {
 
 605		frag_len = skb_frag_size(frag);
 606		cur_len = min(len, frag_len);
 607		__frame_add_frag(frame, skb_frag_page(frag),
 608				 skb_frag_address(frag), cur_len, frag_len);
 609		len -= cur_len;
 610		frag++;
 611	}
 612}
 613
 614static struct sk_buff *
 615__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 616		       int offset, int len, bool reuse_frag)
 617{
 618	struct sk_buff *frame;
 619	int cur_len = len;
 620
 621	if (skb->len - offset < len)
 622		return NULL;
 623
 624	/*
 625	 * When reusing framents, copy some data to the head to simplify
 626	 * ethernet header handling and speed up protocol header processing
 627	 * in the stack later.
 628	 */
 629	if (reuse_frag)
 630		cur_len = min_t(int, len, 32);
 631
 632	/*
 633	 * Allocate and reserve two bytes more for payload
 634	 * alignment since sizeof(struct ethhdr) is 14.
 635	 */
 636	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 637	if (!frame)
 638		return NULL;
 639
 640	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 641	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 642
 643	len -= cur_len;
 644	if (!len)
 645		return frame;
 646
 647	offset += cur_len;
 648	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 649
 650	return frame;
 651}
 652
 653void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 654			      const u8 *addr, enum nl80211_iftype iftype,
 655			      const unsigned int extra_headroom,
 656			      const u8 *check_da, const u8 *check_sa)
 657{
 658	unsigned int hlen = ALIGN(extra_headroom, 4);
 659	struct sk_buff *frame = NULL;
 660	u16 ethertype;
 661	u8 *payload;
 662	int offset = 0, remaining;
 663	struct ethhdr eth;
 664	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 665	bool reuse_skb = false;
 666	bool last = false;
 667
 668	while (!last) {
 669		unsigned int subframe_len;
 670		int len;
 671		u8 padding;
 672
 673		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 674		len = ntohs(eth.h_proto);
 675		subframe_len = sizeof(struct ethhdr) + len;
 676		padding = (4 - subframe_len) & 0x3;
 677
 678		/* the last MSDU has no padding */
 679		remaining = skb->len - offset;
 680		if (subframe_len > remaining)
 681			goto purge;
 682
 683		offset += sizeof(struct ethhdr);
 684		last = remaining <= subframe_len + padding;
 685
 686		/* FIXME: should we really accept multicast DA? */
 687		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 688		     !ether_addr_equal(check_da, eth.h_dest)) ||
 689		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 690			offset += len + padding;
 691			continue;
 692		}
 693
 694		/* reuse skb for the last subframe */
 695		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 696			skb_pull(skb, offset);
 697			frame = skb;
 698			reuse_skb = true;
 699		} else {
 700			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 701						       reuse_frag);
 702			if (!frame)
 703				goto purge;
 704
 705			offset += len + padding;
 706		}
 707
 708		skb_reset_network_header(frame);
 709		frame->dev = skb->dev;
 710		frame->priority = skb->priority;
 711
 712		payload = frame->data;
 713		ethertype = (payload[6] << 8) | payload[7];
 714		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 715			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 716			   ether_addr_equal(payload, bridge_tunnel_header))) {
 717			eth.h_proto = htons(ethertype);
 718			skb_pull(frame, ETH_ALEN + 2);
 719		}
 720
 721		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 722		__skb_queue_tail(list, frame);
 723	}
 724
 725	if (!reuse_skb)
 726		dev_kfree_skb(skb);
 727
 728	return;
 729
 730 purge:
 731	__skb_queue_purge(list);
 732	dev_kfree_skb(skb);
 733}
 734EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 735
 736/* Given a data frame determine the 802.1p/1d tag to use. */
 737unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 738				    struct cfg80211_qos_map *qos_map)
 739{
 740	unsigned int dscp;
 741	unsigned char vlan_priority;
 742	unsigned int ret;
 743
 744	/* skb->priority values from 256->263 are magic values to
 745	 * directly indicate a specific 802.1d priority.  This is used
 746	 * to allow 802.1d priority to be passed directly in from VLAN
 747	 * tags, etc.
 748	 */
 749	if (skb->priority >= 256 && skb->priority <= 263) {
 750		ret = skb->priority - 256;
 751		goto out;
 752	}
 753
 754	if (skb_vlan_tag_present(skb)) {
 755		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 756			>> VLAN_PRIO_SHIFT;
 757		if (vlan_priority > 0) {
 758			ret = vlan_priority;
 759			goto out;
 760		}
 761	}
 762
 763	switch (skb->protocol) {
 764	case htons(ETH_P_IP):
 765		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 766		break;
 767	case htons(ETH_P_IPV6):
 768		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 769		break;
 770	case htons(ETH_P_MPLS_UC):
 771	case htons(ETH_P_MPLS_MC): {
 772		struct mpls_label mpls_tmp, *mpls;
 773
 774		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 775					  sizeof(*mpls), &mpls_tmp);
 776		if (!mpls)
 777			return 0;
 778
 779		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 780			>> MPLS_LS_TC_SHIFT;
 781		goto out;
 782	}
 783	case htons(ETH_P_80221):
 784		/* 802.21 is always network control traffic */
 785		return 7;
 786	default:
 787		return 0;
 788	}
 789
 790	if (qos_map) {
 791		unsigned int i, tmp_dscp = dscp >> 2;
 792
 793		for (i = 0; i < qos_map->num_des; i++) {
 794			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 795				ret = qos_map->dscp_exception[i].up;
 796				goto out;
 797			}
 798		}
 799
 800		for (i = 0; i < 8; i++) {
 801			if (tmp_dscp >= qos_map->up[i].low &&
 802			    tmp_dscp <= qos_map->up[i].high) {
 803				ret = i;
 804				goto out;
 805			}
 806		}
 807	}
 808
 809	ret = dscp >> 5;
 810out:
 811	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 812}
 813EXPORT_SYMBOL(cfg80211_classify8021d);
 814
 815const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 816{
 817	const struct cfg80211_bss_ies *ies;
 818
 819	ies = rcu_dereference(bss->ies);
 820	if (!ies)
 821		return NULL;
 822
 823	return cfg80211_find_elem(id, ies->data, ies->len);
 824}
 825EXPORT_SYMBOL(ieee80211_bss_get_elem);
 826
 827void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 828{
 829	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 830	struct net_device *dev = wdev->netdev;
 831	int i;
 832
 833	if (!wdev->connect_keys)
 834		return;
 835
 836	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 837		if (!wdev->connect_keys->params[i].cipher)
 838			continue;
 839		if (rdev_add_key(rdev, dev, i, false, NULL,
 840				 &wdev->connect_keys->params[i])) {
 841			netdev_err(dev, "failed to set key %d\n", i);
 842			continue;
 843		}
 844		if (wdev->connect_keys->def == i &&
 845		    rdev_set_default_key(rdev, dev, i, true, true)) {
 846			netdev_err(dev, "failed to set defkey %d\n", i);
 847			continue;
 848		}
 849	}
 850
 851	kzfree(wdev->connect_keys);
 852	wdev->connect_keys = NULL;
 853}
 854
 855void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 856{
 857	struct cfg80211_event *ev;
 858	unsigned long flags;
 
 859
 860	spin_lock_irqsave(&wdev->event_lock, flags);
 861	while (!list_empty(&wdev->event_list)) {
 862		ev = list_first_entry(&wdev->event_list,
 863				      struct cfg80211_event, list);
 864		list_del(&ev->list);
 865		spin_unlock_irqrestore(&wdev->event_lock, flags);
 866
 867		wdev_lock(wdev);
 868		switch (ev->type) {
 869		case EVENT_CONNECT_RESULT:
 
 
 870			__cfg80211_connect_result(
 871				wdev->netdev,
 872				&ev->cr,
 873				ev->cr.status == WLAN_STATUS_SUCCESS);
 
 
 
 874			break;
 875		case EVENT_ROAMED:
 876			__cfg80211_roamed(wdev, &ev->rm);
 
 
 877			break;
 878		case EVENT_DISCONNECTED:
 879			__cfg80211_disconnected(wdev->netdev,
 880						ev->dc.ie, ev->dc.ie_len,
 881						ev->dc.reason,
 882						!ev->dc.locally_generated);
 883			break;
 884		case EVENT_IBSS_JOINED:
 885			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 886					       ev->ij.channel);
 887			break;
 888		case EVENT_STOPPED:
 889			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 890			break;
 891		case EVENT_PORT_AUTHORIZED:
 892			__cfg80211_port_authorized(wdev, ev->pa.bssid);
 893			break;
 894		}
 895		wdev_unlock(wdev);
 896
 897		kfree(ev);
 898
 899		spin_lock_irqsave(&wdev->event_lock, flags);
 900	}
 901	spin_unlock_irqrestore(&wdev->event_lock, flags);
 902}
 903
 904void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 905{
 906	struct wireless_dev *wdev;
 907
 908	ASSERT_RTNL();
 909
 910	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 911		cfg80211_process_wdev_events(wdev);
 912}
 913
 914int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 915			  struct net_device *dev, enum nl80211_iftype ntype,
 916			  struct vif_params *params)
 917{
 918	int err;
 919	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 920
 921	ASSERT_RTNL();
 922
 923	/* don't support changing VLANs, you just re-create them */
 924	if (otype == NL80211_IFTYPE_AP_VLAN)
 925		return -EOPNOTSUPP;
 926
 927	/* cannot change into P2P device or NAN */
 928	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 929	    ntype == NL80211_IFTYPE_NAN)
 930		return -EOPNOTSUPP;
 931
 932	if (!rdev->ops->change_virtual_intf ||
 933	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 934		return -EOPNOTSUPP;
 935
 936	/* if it's part of a bridge, reject changing type to station/ibss */
 937	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
 938	    (ntype == NL80211_IFTYPE_ADHOC ||
 939	     ntype == NL80211_IFTYPE_STATION ||
 940	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 941		return -EBUSY;
 942
 943	if (ntype != otype) {
 944		dev->ieee80211_ptr->use_4addr = false;
 945		dev->ieee80211_ptr->mesh_id_up_len = 0;
 946		wdev_lock(dev->ieee80211_ptr);
 947		rdev_set_qos_map(rdev, dev, NULL);
 948		wdev_unlock(dev->ieee80211_ptr);
 949
 950		switch (otype) {
 951		case NL80211_IFTYPE_AP:
 952			cfg80211_stop_ap(rdev, dev, true);
 953			break;
 954		case NL80211_IFTYPE_ADHOC:
 955			cfg80211_leave_ibss(rdev, dev, false);
 956			break;
 957		case NL80211_IFTYPE_STATION:
 958		case NL80211_IFTYPE_P2P_CLIENT:
 959			wdev_lock(dev->ieee80211_ptr);
 960			cfg80211_disconnect(rdev, dev,
 961					    WLAN_REASON_DEAUTH_LEAVING, true);
 962			wdev_unlock(dev->ieee80211_ptr);
 963			break;
 964		case NL80211_IFTYPE_MESH_POINT:
 965			/* mesh should be handled? */
 966			break;
 967		default:
 968			break;
 969		}
 970
 971		cfg80211_process_rdev_events(rdev);
 972		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 973	}
 974
 975	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
 976
 977	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
 978
 979	if (!err && params && params->use_4addr != -1)
 980		dev->ieee80211_ptr->use_4addr = params->use_4addr;
 981
 982	if (!err) {
 983		dev->priv_flags &= ~IFF_DONT_BRIDGE;
 984		switch (ntype) {
 985		case NL80211_IFTYPE_STATION:
 986			if (dev->ieee80211_ptr->use_4addr)
 987				break;
 988			/* fall through */
 989		case NL80211_IFTYPE_OCB:
 990		case NL80211_IFTYPE_P2P_CLIENT:
 991		case NL80211_IFTYPE_ADHOC:
 992			dev->priv_flags |= IFF_DONT_BRIDGE;
 993			break;
 994		case NL80211_IFTYPE_P2P_GO:
 995		case NL80211_IFTYPE_AP:
 996		case NL80211_IFTYPE_AP_VLAN:
 997		case NL80211_IFTYPE_WDS:
 998		case NL80211_IFTYPE_MESH_POINT:
 999			/* bridging OK */
1000			break;
1001		case NL80211_IFTYPE_MONITOR:
1002			/* monitor can't bridge anyway */
1003			break;
1004		case NL80211_IFTYPE_UNSPECIFIED:
1005		case NUM_NL80211_IFTYPES:
1006			/* not happening */
1007			break;
1008		case NL80211_IFTYPE_P2P_DEVICE:
1009		case NL80211_IFTYPE_NAN:
1010			WARN_ON(1);
1011			break;
1012		}
1013	}
1014
1015	if (!err && ntype != otype && netif_running(dev)) {
1016		cfg80211_update_iface_num(rdev, ntype, 1);
1017		cfg80211_update_iface_num(rdev, otype, -1);
1018	}
1019
1020	return err;
1021}
1022
1023static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1024{
1025	int modulation, streams, bitrate;
1026
1027	/* the formula below does only work for MCS values smaller than 32 */
1028	if (WARN_ON_ONCE(rate->mcs >= 32))
1029		return 0;
1030
1031	modulation = rate->mcs & 7;
1032	streams = (rate->mcs >> 3) + 1;
1033
1034	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1035
1036	if (modulation < 4)
1037		bitrate *= (modulation + 1);
1038	else if (modulation == 4)
1039		bitrate *= (modulation + 2);
1040	else
1041		bitrate *= (modulation + 3);
1042
1043	bitrate *= streams;
1044
1045	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1046		bitrate = (bitrate / 9) * 10;
1047
1048	/* do NOT round down here */
1049	return (bitrate + 50000) / 100000;
1050}
1051
1052static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1053{
1054	static const u32 __mcs2bitrate[] = {
1055		/* control PHY */
1056		[0] =   275,
1057		/* SC PHY */
1058		[1] =  3850,
1059		[2] =  7700,
1060		[3] =  9625,
1061		[4] = 11550,
1062		[5] = 12512, /* 1251.25 mbps */
1063		[6] = 15400,
1064		[7] = 19250,
1065		[8] = 23100,
1066		[9] = 25025,
1067		[10] = 30800,
1068		[11] = 38500,
1069		[12] = 46200,
1070		/* OFDM PHY */
1071		[13] =  6930,
1072		[14] =  8662, /* 866.25 mbps */
1073		[15] = 13860,
1074		[16] = 17325,
1075		[17] = 20790,
1076		[18] = 27720,
1077		[19] = 34650,
1078		[20] = 41580,
1079		[21] = 45045,
1080		[22] = 51975,
1081		[23] = 62370,
1082		[24] = 67568, /* 6756.75 mbps */
1083		/* LP-SC PHY */
1084		[25] =  6260,
1085		[26] =  8340,
1086		[27] = 11120,
1087		[28] = 12510,
1088		[29] = 16680,
1089		[30] = 22240,
1090		[31] = 25030,
1091	};
1092
1093	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1094		return 0;
1095
1096	return __mcs2bitrate[rate->mcs];
1097}
1098
1099static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1100{
1101	static const u32 __mcs2bitrate[] = {
1102		/* control PHY */
1103		[0] =   275,
1104		/* SC PHY */
1105		[1] =  3850,
1106		[2] =  7700,
1107		[3] =  9625,
1108		[4] = 11550,
1109		[5] = 12512, /* 1251.25 mbps */
1110		[6] = 13475,
1111		[7] = 15400,
1112		[8] = 19250,
1113		[9] = 23100,
1114		[10] = 25025,
1115		[11] = 26950,
1116		[12] = 30800,
1117		[13] = 38500,
1118		[14] = 46200,
1119		[15] = 50050,
1120		[16] = 53900,
1121		[17] = 57750,
1122		[18] = 69300,
1123		[19] = 75075,
1124		[20] = 80850,
1125	};
1126
1127	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1128		return 0;
1129
1130	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1131}
1132
1133static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1134{
1135	static const u32 base[4][10] = {
1136		{   6500000,
1137		   13000000,
1138		   19500000,
1139		   26000000,
1140		   39000000,
1141		   52000000,
1142		   58500000,
1143		   65000000,
1144		   78000000,
1145		/* not in the spec, but some devices use this: */
1146		   86500000,
1147		},
1148		{  13500000,
1149		   27000000,
1150		   40500000,
1151		   54000000,
1152		   81000000,
1153		  108000000,
1154		  121500000,
1155		  135000000,
1156		  162000000,
1157		  180000000,
1158		},
1159		{  29300000,
1160		   58500000,
1161		   87800000,
1162		  117000000,
1163		  175500000,
1164		  234000000,
1165		  263300000,
1166		  292500000,
1167		  351000000,
1168		  390000000,
1169		},
1170		{  58500000,
1171		  117000000,
1172		  175500000,
1173		  234000000,
1174		  351000000,
1175		  468000000,
1176		  526500000,
1177		  585000000,
1178		  702000000,
1179		  780000000,
1180		},
1181	};
1182	u32 bitrate;
1183	int idx;
1184
1185	if (rate->mcs > 9)
1186		goto warn;
1187
1188	switch (rate->bw) {
1189	case RATE_INFO_BW_160:
1190		idx = 3;
1191		break;
1192	case RATE_INFO_BW_80:
1193		idx = 2;
1194		break;
1195	case RATE_INFO_BW_40:
1196		idx = 1;
1197		break;
1198	case RATE_INFO_BW_5:
1199	case RATE_INFO_BW_10:
1200	default:
1201		goto warn;
 
1202	case RATE_INFO_BW_20:
1203		idx = 0;
1204	}
1205
1206	bitrate = base[idx][rate->mcs];
1207	bitrate *= rate->nss;
1208
1209	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1210		bitrate = (bitrate / 9) * 10;
1211
1212	/* do NOT round down here */
1213	return (bitrate + 50000) / 100000;
1214 warn:
1215	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1216		  rate->bw, rate->mcs, rate->nss);
1217	return 0;
1218}
1219
1220static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1221{
1222#define SCALE 2048
1223	u16 mcs_divisors[12] = {
1224		34133, /* 16.666666... */
1225		17067, /*  8.333333... */
1226		11378, /*  5.555555... */
1227		 8533, /*  4.166666... */
1228		 5689, /*  2.777777... */
1229		 4267, /*  2.083333... */
1230		 3923, /*  1.851851... */
1231		 3413, /*  1.666666... */
1232		 2844, /*  1.388888... */
1233		 2560, /*  1.250000... */
1234		 2276, /*  1.111111... */
1235		 2048, /*  1.000000... */
1236	};
1237	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1238	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1239	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1240	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1241	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1242	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1243	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1244	u64 tmp;
1245	u32 result;
1246
1247	if (WARN_ON_ONCE(rate->mcs > 11))
 
1248		return 0;
1249
1250	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1251		return 0;
1252	if (WARN_ON_ONCE(rate->he_ru_alloc >
1253			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1254		return 0;
1255	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1256		return 0;
1257
1258	if (rate->bw == RATE_INFO_BW_160)
1259		result = rates_160M[rate->he_gi];
1260	else if (rate->bw == RATE_INFO_BW_80 ||
1261		 (rate->bw == RATE_INFO_BW_HE_RU &&
1262		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1263		result = rates_969[rate->he_gi];
1264	else if (rate->bw == RATE_INFO_BW_40 ||
1265		 (rate->bw == RATE_INFO_BW_HE_RU &&
1266		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1267		result = rates_484[rate->he_gi];
1268	else if (rate->bw == RATE_INFO_BW_20 ||
1269		 (rate->bw == RATE_INFO_BW_HE_RU &&
1270		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1271		result = rates_242[rate->he_gi];
1272	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1274		result = rates_106[rate->he_gi];
1275	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1276		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1277		result = rates_52[rate->he_gi];
1278	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1279		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1280		result = rates_26[rate->he_gi];
1281	else {
1282		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1283		     rate->bw, rate->he_ru_alloc);
1284		return 0;
1285	}
1286
1287	/* now scale to the appropriate MCS */
1288	tmp = result;
1289	tmp *= SCALE;
1290	do_div(tmp, mcs_divisors[rate->mcs]);
1291	result = tmp;
1292
1293	/* and take NSS, DCM into account */
1294	result = (result * rate->nss) / 8;
1295	if (rate->he_dcm)
1296		result /= 2;
1297
1298	return result / 10000;
1299}
1300
1301u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1302{
1303	if (rate->flags & RATE_INFO_FLAGS_MCS)
1304		return cfg80211_calculate_bitrate_ht(rate);
1305	if (rate->flags & RATE_INFO_FLAGS_DMG)
1306		return cfg80211_calculate_bitrate_dmg(rate);
1307	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1308		return cfg80211_calculate_bitrate_edmg(rate);
1309	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1310		return cfg80211_calculate_bitrate_vht(rate);
1311	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1312		return cfg80211_calculate_bitrate_he(rate);
1313
1314	return rate->legacy;
 
1315}
1316EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1317
1318int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1319			  enum ieee80211_p2p_attr_id attr,
1320			  u8 *buf, unsigned int bufsize)
1321{
1322	u8 *out = buf;
1323	u16 attr_remaining = 0;
1324	bool desired_attr = false;
1325	u16 desired_len = 0;
1326
1327	while (len > 0) {
1328		unsigned int iedatalen;
1329		unsigned int copy;
1330		const u8 *iedata;
1331
1332		if (len < 2)
1333			return -EILSEQ;
1334		iedatalen = ies[1];
1335		if (iedatalen + 2 > len)
1336			return -EILSEQ;
1337
1338		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1339			goto cont;
1340
1341		if (iedatalen < 4)
1342			goto cont;
1343
1344		iedata = ies + 2;
1345
1346		/* check WFA OUI, P2P subtype */
1347		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1348		    iedata[2] != 0x9a || iedata[3] != 0x09)
1349			goto cont;
1350
1351		iedatalen -= 4;
1352		iedata += 4;
1353
1354		/* check attribute continuation into this IE */
1355		copy = min_t(unsigned int, attr_remaining, iedatalen);
1356		if (copy && desired_attr) {
1357			desired_len += copy;
1358			if (out) {
1359				memcpy(out, iedata, min(bufsize, copy));
1360				out += min(bufsize, copy);
1361				bufsize -= min(bufsize, copy);
1362			}
1363
1364
1365			if (copy == attr_remaining)
1366				return desired_len;
1367		}
1368
1369		attr_remaining -= copy;
1370		if (attr_remaining)
1371			goto cont;
1372
1373		iedatalen -= copy;
1374		iedata += copy;
1375
1376		while (iedatalen > 0) {
1377			u16 attr_len;
1378
1379			/* P2P attribute ID & size must fit */
1380			if (iedatalen < 3)
1381				return -EILSEQ;
1382			desired_attr = iedata[0] == attr;
1383			attr_len = get_unaligned_le16(iedata + 1);
1384			iedatalen -= 3;
1385			iedata += 3;
1386
1387			copy = min_t(unsigned int, attr_len, iedatalen);
1388
1389			if (desired_attr) {
1390				desired_len += copy;
1391				if (out) {
1392					memcpy(out, iedata, min(bufsize, copy));
1393					out += min(bufsize, copy);
1394					bufsize -= min(bufsize, copy);
1395				}
1396
1397				if (copy == attr_len)
1398					return desired_len;
1399			}
1400
1401			iedata += copy;
1402			iedatalen -= copy;
1403			attr_remaining = attr_len - copy;
1404		}
1405
1406 cont:
1407		len -= ies[1] + 2;
1408		ies += ies[1] + 2;
1409	}
1410
1411	if (attr_remaining && desired_attr)
1412		return -EILSEQ;
1413
1414	return -ENOENT;
1415}
1416EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1417
1418static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1419{
1420	int i;
1421
1422	/* Make sure array values are legal */
1423	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1424		return false;
1425
1426	i = 0;
1427	while (i < n_ids) {
1428		if (ids[i] == WLAN_EID_EXTENSION) {
1429			if (id_ext && (ids[i + 1] == id))
1430				return true;
1431
1432			i += 2;
1433			continue;
1434		}
1435
1436		if (ids[i] == id && !id_ext)
1437			return true;
1438
1439		i++;
1440	}
1441	return false;
1442}
1443
1444static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1445{
1446	/* we assume a validly formed IEs buffer */
1447	u8 len = ies[pos + 1];
1448
1449	pos += 2 + len;
1450
1451	/* the IE itself must have 255 bytes for fragments to follow */
1452	if (len < 255)
1453		return pos;
1454
1455	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1456		len = ies[pos + 1];
1457		pos += 2 + len;
1458	}
1459
1460	return pos;
1461}
1462
1463size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1464			      const u8 *ids, int n_ids,
1465			      const u8 *after_ric, int n_after_ric,
1466			      size_t offset)
1467{
1468	size_t pos = offset;
1469
1470	while (pos < ielen) {
1471		u8 ext = 0;
1472
1473		if (ies[pos] == WLAN_EID_EXTENSION)
1474			ext = 2;
1475		if ((pos + ext) >= ielen)
1476			break;
1477
1478		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1479					  ies[pos] == WLAN_EID_EXTENSION))
1480			break;
1481
1482		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1483			pos = skip_ie(ies, ielen, pos);
1484
1485			while (pos < ielen) {
1486				if (ies[pos] == WLAN_EID_EXTENSION)
1487					ext = 2;
1488				else
1489					ext = 0;
1490
1491				if ((pos + ext) >= ielen)
1492					break;
1493
1494				if (!ieee80211_id_in_list(after_ric,
1495							  n_after_ric,
1496							  ies[pos + ext],
1497							  ext == 2))
1498					pos = skip_ie(ies, ielen, pos);
1499				else
1500					break;
1501			}
1502		} else {
1503			pos = skip_ie(ies, ielen, pos);
1504		}
1505	}
1506
1507	return pos;
1508}
1509EXPORT_SYMBOL(ieee80211_ie_split_ric);
1510
1511bool ieee80211_operating_class_to_band(u8 operating_class,
1512				       enum nl80211_band *band)
1513{
1514	switch (operating_class) {
1515	case 112:
1516	case 115 ... 127:
1517	case 128 ... 130:
1518		*band = NL80211_BAND_5GHZ;
1519		return true;
1520	case 131 ... 135:
1521		*band = NL80211_BAND_6GHZ;
1522		return true;
1523	case 81:
1524	case 82:
1525	case 83:
1526	case 84:
1527		*band = NL80211_BAND_2GHZ;
1528		return true;
1529	case 180:
1530		*band = NL80211_BAND_60GHZ;
1531		return true;
1532	}
1533
1534	return false;
1535}
1536EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1537
1538bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1539					  u8 *op_class)
1540{
1541	u8 vht_opclass;
1542	u32 freq = chandef->center_freq1;
1543
1544	if (freq >= 2412 && freq <= 2472) {
1545		if (chandef->width > NL80211_CHAN_WIDTH_40)
1546			return false;
1547
1548		/* 2.407 GHz, channels 1..13 */
1549		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550			if (freq > chandef->chan->center_freq)
1551				*op_class = 83; /* HT40+ */
1552			else
1553				*op_class = 84; /* HT40- */
1554		} else {
1555			*op_class = 81;
1556		}
1557
1558		return true;
1559	}
1560
1561	if (freq == 2484) {
1562		/* channel 14 is only for IEEE 802.11b */
1563		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1564			return false;
1565
1566		*op_class = 82; /* channel 14 */
1567		return true;
1568	}
1569
1570	switch (chandef->width) {
1571	case NL80211_CHAN_WIDTH_80:
1572		vht_opclass = 128;
1573		break;
1574	case NL80211_CHAN_WIDTH_160:
1575		vht_opclass = 129;
1576		break;
1577	case NL80211_CHAN_WIDTH_80P80:
1578		vht_opclass = 130;
1579		break;
1580	case NL80211_CHAN_WIDTH_10:
1581	case NL80211_CHAN_WIDTH_5:
1582		return false; /* unsupported for now */
1583	default:
1584		vht_opclass = 0;
1585		break;
1586	}
1587
1588	/* 5 GHz, channels 36..48 */
1589	if (freq >= 5180 && freq <= 5240) {
1590		if (vht_opclass) {
1591			*op_class = vht_opclass;
1592		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1593			if (freq > chandef->chan->center_freq)
1594				*op_class = 116;
1595			else
1596				*op_class = 117;
1597		} else {
1598			*op_class = 115;
1599		}
1600
1601		return true;
1602	}
1603
1604	/* 5 GHz, channels 52..64 */
1605	if (freq >= 5260 && freq <= 5320) {
1606		if (vht_opclass) {
1607			*op_class = vht_opclass;
1608		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1609			if (freq > chandef->chan->center_freq)
1610				*op_class = 119;
1611			else
1612				*op_class = 120;
1613		} else {
1614			*op_class = 118;
1615		}
1616
1617		return true;
1618	}
1619
1620	/* 5 GHz, channels 100..144 */
1621	if (freq >= 5500 && freq <= 5720) {
1622		if (vht_opclass) {
1623			*op_class = vht_opclass;
1624		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1625			if (freq > chandef->chan->center_freq)
1626				*op_class = 122;
1627			else
1628				*op_class = 123;
1629		} else {
1630			*op_class = 121;
1631		}
1632
1633		return true;
1634	}
1635
1636	/* 5 GHz, channels 149..169 */
1637	if (freq >= 5745 && freq <= 5845) {
1638		if (vht_opclass) {
1639			*op_class = vht_opclass;
1640		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1641			if (freq > chandef->chan->center_freq)
1642				*op_class = 126;
1643			else
1644				*op_class = 127;
1645		} else if (freq <= 5805) {
1646			*op_class = 124;
1647		} else {
1648			*op_class = 125;
1649		}
1650
1651		return true;
1652	}
1653
1654	/* 56.16 GHz, channel 1..4 */
1655	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1656		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1657			return false;
1658
1659		*op_class = 180;
1660		return true;
1661	}
1662
1663	/* not supported yet */
1664	return false;
1665}
1666EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1667
1668static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1669				       u32 *beacon_int_gcd,
1670				       bool *beacon_int_different)
1671{
1672	struct wireless_dev *wdev;
1673
1674	*beacon_int_gcd = 0;
1675	*beacon_int_different = false;
1676
1677	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1678		if (!wdev->beacon_interval)
1679			continue;
1680
1681		if (!*beacon_int_gcd) {
1682			*beacon_int_gcd = wdev->beacon_interval;
1683			continue;
1684		}
1685
1686		if (wdev->beacon_interval == *beacon_int_gcd)
1687			continue;
1688
1689		*beacon_int_different = true;
1690		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1691	}
1692
1693	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1694		if (*beacon_int_gcd)
1695			*beacon_int_different = true;
1696		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1697	}
1698}
1699
1700int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1701				 enum nl80211_iftype iftype, u32 beacon_int)
1702{
1703	/*
1704	 * This is just a basic pre-condition check; if interface combinations
1705	 * are possible the driver must already be checking those with a call
1706	 * to cfg80211_check_combinations(), in which case we'll validate more
1707	 * through the cfg80211_calculate_bi_data() call and code in
1708	 * cfg80211_iter_combinations().
1709	 */
1710
1711	if (beacon_int < 10 || beacon_int > 10000)
1712		return -EINVAL;
1713
1714	return 0;
1715}
1716
1717int cfg80211_iter_combinations(struct wiphy *wiphy,
1718			       struct iface_combination_params *params,
1719			       void (*iter)(const struct ieee80211_iface_combination *c,
1720					    void *data),
1721			       void *data)
1722{
1723	const struct ieee80211_regdomain *regdom;
1724	enum nl80211_dfs_regions region = 0;
1725	int i, j, iftype;
1726	int num_interfaces = 0;
1727	u32 used_iftypes = 0;
1728	u32 beacon_int_gcd;
1729	bool beacon_int_different;
1730
1731	/*
1732	 * This is a bit strange, since the iteration used to rely only on
1733	 * the data given by the driver, but here it now relies on context,
1734	 * in form of the currently operating interfaces.
1735	 * This is OK for all current users, and saves us from having to
1736	 * push the GCD calculations into all the drivers.
1737	 * In the future, this should probably rely more on data that's in
1738	 * cfg80211 already - the only thing not would appear to be any new
1739	 * interfaces (while being brought up) and channel/radar data.
1740	 */
1741	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1742				   &beacon_int_gcd, &beacon_int_different);
1743
1744	if (params->radar_detect) {
1745		rcu_read_lock();
1746		regdom = rcu_dereference(cfg80211_regdomain);
1747		if (regdom)
1748			region = regdom->dfs_region;
1749		rcu_read_unlock();
1750	}
1751
1752	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1753		num_interfaces += params->iftype_num[iftype];
1754		if (params->iftype_num[iftype] > 0 &&
1755		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1756			used_iftypes |= BIT(iftype);
1757	}
1758
1759	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1760		const struct ieee80211_iface_combination *c;
1761		struct ieee80211_iface_limit *limits;
1762		u32 all_iftypes = 0;
1763
1764		c = &wiphy->iface_combinations[i];
1765
1766		if (num_interfaces > c->max_interfaces)
1767			continue;
1768		if (params->num_different_channels > c->num_different_channels)
1769			continue;
1770
1771		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1772				 GFP_KERNEL);
1773		if (!limits)
1774			return -ENOMEM;
1775
1776		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1777			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1778				continue;
1779			for (j = 0; j < c->n_limits; j++) {
1780				all_iftypes |= limits[j].types;
1781				if (!(limits[j].types & BIT(iftype)))
1782					continue;
1783				if (limits[j].max < params->iftype_num[iftype])
1784					goto cont;
1785				limits[j].max -= params->iftype_num[iftype];
1786			}
1787		}
1788
1789		if (params->radar_detect !=
1790			(c->radar_detect_widths & params->radar_detect))
1791			goto cont;
1792
1793		if (params->radar_detect && c->radar_detect_regions &&
1794		    !(c->radar_detect_regions & BIT(region)))
1795			goto cont;
1796
1797		/* Finally check that all iftypes that we're currently
1798		 * using are actually part of this combination. If they
1799		 * aren't then we can't use this combination and have
1800		 * to continue to the next.
1801		 */
1802		if ((all_iftypes & used_iftypes) != used_iftypes)
1803			goto cont;
1804
1805		if (beacon_int_gcd) {
1806			if (c->beacon_int_min_gcd &&
1807			    beacon_int_gcd < c->beacon_int_min_gcd)
1808				goto cont;
1809			if (!c->beacon_int_min_gcd && beacon_int_different)
1810				goto cont;
1811		}
1812
1813		/* This combination covered all interface types and
1814		 * supported the requested numbers, so we're good.
1815		 */
1816
1817		(*iter)(c, data);
1818 cont:
1819		kfree(limits);
1820	}
1821
1822	return 0;
1823}
1824EXPORT_SYMBOL(cfg80211_iter_combinations);
1825
1826static void
1827cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1828			  void *data)
1829{
1830	int *num = data;
1831	(*num)++;
1832}
1833
1834int cfg80211_check_combinations(struct wiphy *wiphy,
1835				struct iface_combination_params *params)
1836{
1837	int err, num = 0;
1838
1839	err = cfg80211_iter_combinations(wiphy, params,
1840					 cfg80211_iter_sum_ifcombs, &num);
1841	if (err)
1842		return err;
1843	if (num == 0)
1844		return -EBUSY;
1845
1846	return 0;
1847}
1848EXPORT_SYMBOL(cfg80211_check_combinations);
1849
1850int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1851			   const u8 *rates, unsigned int n_rates,
1852			   u32 *mask)
1853{
1854	int i, j;
1855
1856	if (!sband)
1857		return -EINVAL;
1858
1859	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1860		return -EINVAL;
1861
1862	*mask = 0;
1863
1864	for (i = 0; i < n_rates; i++) {
1865		int rate = (rates[i] & 0x7f) * 5;
1866		bool found = false;
1867
1868		for (j = 0; j < sband->n_bitrates; j++) {
1869			if (sband->bitrates[j].bitrate == rate) {
1870				found = true;
1871				*mask |= BIT(j);
1872				break;
1873			}
1874		}
1875		if (!found)
1876			return -EINVAL;
1877	}
1878
1879	/*
1880	 * mask must have at least one bit set here since we
1881	 * didn't accept a 0-length rates array nor allowed
1882	 * entries in the array that didn't exist
1883	 */
1884
1885	return 0;
1886}
1887
1888unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1889{
1890	enum nl80211_band band;
1891	unsigned int n_channels = 0;
1892
1893	for (band = 0; band < NUM_NL80211_BANDS; band++)
1894		if (wiphy->bands[band])
1895			n_channels += wiphy->bands[band]->n_channels;
1896
1897	return n_channels;
1898}
1899EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1900
1901int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1902			 struct station_info *sinfo)
1903{
1904	struct cfg80211_registered_device *rdev;
1905	struct wireless_dev *wdev;
1906
1907	wdev = dev->ieee80211_ptr;
1908	if (!wdev)
1909		return -EOPNOTSUPP;
1910
1911	rdev = wiphy_to_rdev(wdev->wiphy);
1912	if (!rdev->ops->get_station)
1913		return -EOPNOTSUPP;
1914
1915	memset(sinfo, 0, sizeof(*sinfo));
1916
1917	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1918}
1919EXPORT_SYMBOL(cfg80211_get_station);
1920
1921void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1922{
1923	int i;
1924
1925	if (!f)
1926		return;
1927
1928	kfree(f->serv_spec_info);
1929	kfree(f->srf_bf);
1930	kfree(f->srf_macs);
1931	for (i = 0; i < f->num_rx_filters; i++)
1932		kfree(f->rx_filters[i].filter);
1933
1934	for (i = 0; i < f->num_tx_filters; i++)
1935		kfree(f->tx_filters[i].filter);
1936
1937	kfree(f->rx_filters);
1938	kfree(f->tx_filters);
1939	kfree(f);
1940}
1941EXPORT_SYMBOL(cfg80211_free_nan_func);
1942
1943bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1944				u32 center_freq_khz, u32 bw_khz)
1945{
1946	u32 start_freq_khz, end_freq_khz;
1947
1948	start_freq_khz = center_freq_khz - (bw_khz / 2);
1949	end_freq_khz = center_freq_khz + (bw_khz / 2);
1950
1951	if (start_freq_khz >= freq_range->start_freq_khz &&
1952	    end_freq_khz <= freq_range->end_freq_khz)
1953		return true;
1954
1955	return false;
1956}
1957
1958int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1959{
1960	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1961				sizeof(*(sinfo->pertid)),
1962				gfp);
1963	if (!sinfo->pertid)
1964		return -ENOMEM;
1965
1966	return 0;
1967}
1968EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1969
1970/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1971/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1972const unsigned char rfc1042_header[] __aligned(2) =
1973	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1974EXPORT_SYMBOL(rfc1042_header);
1975
1976/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1977const unsigned char bridge_tunnel_header[] __aligned(2) =
1978	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1979EXPORT_SYMBOL(bridge_tunnel_header);
1980
1981/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1982struct iapp_layer2_update {
1983	u8 da[ETH_ALEN];	/* broadcast */
1984	u8 sa[ETH_ALEN];	/* STA addr */
1985	__be16 len;		/* 6 */
1986	u8 dsap;		/* 0 */
1987	u8 ssap;		/* 0 */
1988	u8 control;
1989	u8 xid_info[3];
1990} __packed;
1991
1992void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1993{
1994	struct iapp_layer2_update *msg;
1995	struct sk_buff *skb;
1996
1997	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1998	 * bridge devices */
1999
2000	skb = dev_alloc_skb(sizeof(*msg));
2001	if (!skb)
2002		return;
2003	msg = skb_put(skb, sizeof(*msg));
2004
2005	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2006	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2007
2008	eth_broadcast_addr(msg->da);
2009	ether_addr_copy(msg->sa, addr);
2010	msg->len = htons(6);
2011	msg->dsap = 0;
2012	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2013	msg->control = 0xaf;	/* XID response lsb.1111F101.
2014				 * F=0 (no poll command; unsolicited frame) */
2015	msg->xid_info[0] = 0x81;	/* XID format identifier */
2016	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2017	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2018
2019	skb->dev = dev;
2020	skb->protocol = eth_type_trans(skb, dev);
2021	memset(skb->cb, 0, sizeof(skb->cb));
2022	netif_rx_ni(skb);
2023}
2024EXPORT_SYMBOL(cfg80211_send_layer2_update);
2025
2026int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2027			      enum ieee80211_vht_chanwidth bw,
2028			      int mcs, bool ext_nss_bw_capable)
2029{
2030	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2031	int max_vht_nss = 0;
2032	int ext_nss_bw;
2033	int supp_width;
2034	int i, mcs_encoding;
2035
2036	if (map == 0xffff)
2037		return 0;
2038
2039	if (WARN_ON(mcs > 9))
2040		return 0;
2041	if (mcs <= 7)
2042		mcs_encoding = 0;
2043	else if (mcs == 8)
2044		mcs_encoding = 1;
2045	else
2046		mcs_encoding = 2;
2047
2048	/* find max_vht_nss for the given MCS */
2049	for (i = 7; i >= 0; i--) {
2050		int supp = (map >> (2 * i)) & 3;
2051
2052		if (supp == 3)
2053			continue;
2054
2055		if (supp >= mcs_encoding) {
2056			max_vht_nss = i + 1;
2057			break;
2058		}
2059	}
2060
2061	if (!(cap->supp_mcs.tx_mcs_map &
2062			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2063		return max_vht_nss;
2064
2065	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2066				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2067	supp_width = le32_get_bits(cap->vht_cap_info,
2068				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2069
2070	/* if not capable, treat ext_nss_bw as 0 */
2071	if (!ext_nss_bw_capable)
2072		ext_nss_bw = 0;
2073
2074	/* This is invalid */
2075	if (supp_width == 3)
2076		return 0;
2077
2078	/* This is an invalid combination so pretend nothing is supported */
2079	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2080		return 0;
2081
2082	/*
2083	 * Cover all the special cases according to IEEE 802.11-2016
2084	 * Table 9-250. All other cases are either factor of 1 or not
2085	 * valid/supported.
2086	 */
2087	switch (bw) {
2088	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2089	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2090		if ((supp_width == 1 || supp_width == 2) &&
2091		    ext_nss_bw == 3)
2092			return 2 * max_vht_nss;
2093		break;
2094	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2095		if (supp_width == 0 &&
2096		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2097			return max_vht_nss / 2;
2098		if (supp_width == 0 &&
2099		    ext_nss_bw == 3)
2100			return (3 * max_vht_nss) / 4;
2101		if (supp_width == 1 &&
2102		    ext_nss_bw == 3)
2103			return 2 * max_vht_nss;
2104		break;
2105	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2106		if (supp_width == 0 && ext_nss_bw == 1)
2107			return 0; /* not possible */
2108		if (supp_width == 0 &&
2109		    ext_nss_bw == 2)
2110			return max_vht_nss / 2;
2111		if (supp_width == 0 &&
2112		    ext_nss_bw == 3)
2113			return (3 * max_vht_nss) / 4;
2114		if (supp_width == 1 &&
2115		    ext_nss_bw == 0)
2116			return 0; /* not possible */
2117		if (supp_width == 1 &&
2118		    ext_nss_bw == 1)
2119			return max_vht_nss / 2;
2120		if (supp_width == 1 &&
2121		    ext_nss_bw == 2)
2122			return (3 * max_vht_nss) / 4;
2123		break;
2124	}
2125
2126	/* not covered or invalid combination received */
2127	return max_vht_nss;
2128}
2129EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2130
2131bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2132			     bool is_4addr, u8 check_swif)
2133
2134{
2135	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2136
2137	switch (check_swif) {
2138	case 0:
2139		if (is_vlan && is_4addr)
2140			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2141		return wiphy->interface_modes & BIT(iftype);
2142	case 1:
2143		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2144			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2145		return wiphy->software_iftypes & BIT(iftype);
2146	default:
2147		break;
2148	}
2149
2150	return false;
2151}
2152EXPORT_SYMBOL(cfg80211_iftype_allowed);