Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PGTABLE_H
   3#define _LINUX_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6#include <asm/pgtable.h>
   7
   8#ifndef __ASSEMBLY__
   9#ifdef CONFIG_MMU
  10
  11#include <linux/mm_types.h>
  12#include <linux/bug.h>
  13#include <linux/errno.h>
  14#include <asm-generic/pgtable_uffd.h>
  15#include <linux/page_table_check.h>
  16
  17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  18	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  20#endif
  21
  22/*
  23 * On almost all architectures and configurations, 0 can be used as the
  24 * upper ceiling to free_pgtables(): on many architectures it has the same
  25 * effect as using TASK_SIZE.  However, there is one configuration which
  26 * must impose a more careful limit, to avoid freeing kernel pgtables.
  27 */
  28#ifndef USER_PGTABLES_CEILING
  29#define USER_PGTABLES_CEILING	0UL
  30#endif
  31
  32/*
  33 * This defines the first usable user address. Platforms
  34 * can override its value with custom FIRST_USER_ADDRESS
  35 * defined in their respective <asm/pgtable.h>.
  36 */
  37#ifndef FIRST_USER_ADDRESS
  38#define FIRST_USER_ADDRESS	0UL
  39#endif
  40
  41/*
  42 * This defines the generic helper for accessing PMD page
  43 * table page. Although platforms can still override this
  44 * via their respective <asm/pgtable.h>.
  45 */
  46#ifndef pmd_pgtable
  47#define pmd_pgtable(pmd) pmd_page(pmd)
  48#endif
  49
  50/*
  51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
  52 *
  53 * The pXx_index() functions return the index of the entry in the page
  54 * table page which would control the given virtual address
  55 *
  56 * As these functions may be used by the same code for different levels of
  57 * the page table folding, they are always available, regardless of
  58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
  59 * because in such cases PTRS_PER_PxD equals 1.
  60 */
  61
  62static inline unsigned long pte_index(unsigned long address)
  63{
  64	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  65}
  66#define pte_index pte_index
  67
  68#ifndef pmd_index
  69static inline unsigned long pmd_index(unsigned long address)
  70{
  71	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
  72}
  73#define pmd_index pmd_index
  74#endif
  75
  76#ifndef pud_index
  77static inline unsigned long pud_index(unsigned long address)
  78{
  79	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
  80}
  81#define pud_index pud_index
  82#endif
  83
  84#ifndef pgd_index
  85/* Must be a compile-time constant, so implement it as a macro */
  86#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  87#endif
  88
  89#ifndef pte_offset_kernel
  90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
  91{
  92	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
  93}
  94#define pte_offset_kernel pte_offset_kernel
  95#endif
  96
  97#if defined(CONFIG_HIGHPTE)
  98#define pte_offset_map(dir, address)				\
  99	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
 100	 pte_index((address)))
 101#define pte_unmap(pte) kunmap_atomic((pte))
 102#else
 103#define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
 104#define pte_unmap(pte) ((void)(pte))	/* NOP */
 105#endif
 106
 107/* Find an entry in the second-level page table.. */
 108#ifndef pmd_offset
 109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 110{
 111	return pud_pgtable(*pud) + pmd_index(address);
 112}
 113#define pmd_offset pmd_offset
 114#endif
 115
 116#ifndef pud_offset
 117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 118{
 119	return p4d_pgtable(*p4d) + pud_index(address);
 120}
 121#define pud_offset pud_offset
 122#endif
 123
 124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 125{
 126	return (pgd + pgd_index(address));
 127};
 128
 129/*
 130 * a shortcut to get a pgd_t in a given mm
 131 */
 132#ifndef pgd_offset
 133#define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
 134#endif
 135
 136/*
 137 * a shortcut which implies the use of the kernel's pgd, instead
 138 * of a process's
 139 */
 140#ifndef pgd_offset_k
 141#define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
 142#endif
 143
 144/*
 145 * In many cases it is known that a virtual address is mapped at PMD or PTE
 146 * level, so instead of traversing all the page table levels, we can get a
 147 * pointer to the PMD entry in user or kernel page table or translate a virtual
 148 * address to the pointer in the PTE in the kernel page tables with simple
 149 * helpers.
 150 */
 151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 152{
 153	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 154}
 155
 156static inline pmd_t *pmd_off_k(unsigned long va)
 157{
 158	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 159}
 160
 161static inline pte_t *virt_to_kpte(unsigned long vaddr)
 162{
 163	pmd_t *pmd = pmd_off_k(vaddr);
 164
 165	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 166}
 167
 168#ifndef pmd_young
 169static inline int pmd_young(pmd_t pmd)
 170{
 171	return 0;
 172}
 173#endif
 174
 175#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 176extern int ptep_set_access_flags(struct vm_area_struct *vma,
 177				 unsigned long address, pte_t *ptep,
 178				 pte_t entry, int dirty);
 179#endif
 180
 181#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 182#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 183extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 184				 unsigned long address, pmd_t *pmdp,
 185				 pmd_t entry, int dirty);
 186extern int pudp_set_access_flags(struct vm_area_struct *vma,
 187				 unsigned long address, pud_t *pudp,
 188				 pud_t entry, int dirty);
 189#else
 190static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 191					unsigned long address, pmd_t *pmdp,
 192					pmd_t entry, int dirty)
 193{
 194	BUILD_BUG();
 195	return 0;
 196}
 197static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 198					unsigned long address, pud_t *pudp,
 199					pud_t entry, int dirty)
 200{
 201	BUILD_BUG();
 202	return 0;
 203}
 204#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 205#endif
 206
 207#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 208static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 209					    unsigned long address,
 210					    pte_t *ptep)
 211{
 212	pte_t pte = *ptep;
 213	int r = 1;
 214	if (!pte_young(pte))
 215		r = 0;
 216	else
 217		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 218	return r;
 219}
 220#endif
 221
 222#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 223#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
 224static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 225					    unsigned long address,
 226					    pmd_t *pmdp)
 227{
 228	pmd_t pmd = *pmdp;
 229	int r = 1;
 230	if (!pmd_young(pmd))
 231		r = 0;
 232	else
 233		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 234	return r;
 235}
 236#else
 237static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 238					    unsigned long address,
 239					    pmd_t *pmdp)
 240{
 241	BUILD_BUG();
 242	return 0;
 243}
 244#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
 245#endif
 246
 247#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 248int ptep_clear_flush_young(struct vm_area_struct *vma,
 249			   unsigned long address, pte_t *ptep);
 250#endif
 251
 252#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 254extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 255				  unsigned long address, pmd_t *pmdp);
 256#else
 257/*
 258 * Despite relevant to THP only, this API is called from generic rmap code
 259 * under PageTransHuge(), hence needs a dummy implementation for !THP
 260 */
 261static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 262					 unsigned long address, pmd_t *pmdp)
 263{
 264	BUILD_BUG();
 265	return 0;
 266}
 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 268#endif
 269
 270#ifndef arch_has_hw_nonleaf_pmd_young
 271/*
 272 * Return whether the accessed bit in non-leaf PMD entries is supported on the
 273 * local CPU.
 274 */
 275static inline bool arch_has_hw_nonleaf_pmd_young(void)
 276{
 277	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
 278}
 279#endif
 280
 281#ifndef arch_has_hw_pte_young
 282/*
 283 * Return whether the accessed bit is supported on the local CPU.
 284 *
 285 * This stub assumes accessing through an old PTE triggers a page fault.
 286 * Architectures that automatically set the access bit should overwrite it.
 287 */
 288static inline bool arch_has_hw_pte_young(void)
 289{
 290	return false;
 291}
 292#endif
 293
 294#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 295static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 296				       unsigned long address,
 297				       pte_t *ptep)
 298{
 299	pte_t pte = *ptep;
 300	pte_clear(mm, address, ptep);
 301	page_table_check_pte_clear(mm, address, pte);
 302	return pte;
 303}
 304#endif
 305
 306static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
 307			      pte_t *ptep)
 308{
 309	ptep_get_and_clear(mm, addr, ptep);
 310}
 311
 312#ifndef ptep_get
 313static inline pte_t ptep_get(pte_t *ptep)
 314{
 315	return READ_ONCE(*ptep);
 316}
 317#endif
 318
 319#ifndef pmdp_get
 320static inline pmd_t pmdp_get(pmd_t *pmdp)
 321{
 322	return READ_ONCE(*pmdp);
 323}
 324#endif
 325
 326#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
 327/*
 328 * For walking the pagetables without holding any locks.  Some architectures
 329 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
 330 * instructions.  We are guaranteed that a PTE will only either go from not
 331 * present to present, or present to not present -- it will not switch to a
 332 * completely different present page without a TLB flush inbetween; which we
 333 * are blocking by holding interrupts off.
 334 *
 335 * Setting ptes from not present to present goes:
 336 *
 337 *   ptep->pte_high = h;
 338 *   smp_wmb();
 339 *   ptep->pte_low = l;
 340 *
 341 * And present to not present goes:
 342 *
 343 *   ptep->pte_low = 0;
 344 *   smp_wmb();
 345 *   ptep->pte_high = 0;
 346 *
 347 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 348 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 349 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 350 * picked up a changed pte high. We might have gotten rubbish values from
 351 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 352 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 353 * operates on present ptes we're safe.
 354 */
 355static inline pte_t ptep_get_lockless(pte_t *ptep)
 356{
 357	pte_t pte;
 358
 359	do {
 360		pte.pte_low = ptep->pte_low;
 361		smp_rmb();
 362		pte.pte_high = ptep->pte_high;
 363		smp_rmb();
 364	} while (unlikely(pte.pte_low != ptep->pte_low));
 365
 366	return pte;
 367}
 368#define ptep_get_lockless ptep_get_lockless
 369
 370#if CONFIG_PGTABLE_LEVELS > 2
 371static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 372{
 373	pmd_t pmd;
 374
 375	do {
 376		pmd.pmd_low = pmdp->pmd_low;
 377		smp_rmb();
 378		pmd.pmd_high = pmdp->pmd_high;
 379		smp_rmb();
 380	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
 381
 382	return pmd;
 383}
 384#define pmdp_get_lockless pmdp_get_lockless
 385#endif /* CONFIG_PGTABLE_LEVELS > 2 */
 386#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
 387
 388/*
 389 * We require that the PTE can be read atomically.
 390 */
 391#ifndef ptep_get_lockless
 392static inline pte_t ptep_get_lockless(pte_t *ptep)
 393{
 394	return ptep_get(ptep);
 395}
 396#endif
 397
 398#ifndef pmdp_get_lockless
 399static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 400{
 401	return pmdp_get(pmdp);
 402}
 403#endif
 404
 405#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 406#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 407static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 408					    unsigned long address,
 409					    pmd_t *pmdp)
 410{
 411	pmd_t pmd = *pmdp;
 412
 413	pmd_clear(pmdp);
 414	page_table_check_pmd_clear(mm, address, pmd);
 415
 416	return pmd;
 417}
 418#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 419#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 420static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 421					    unsigned long address,
 422					    pud_t *pudp)
 423{
 424	pud_t pud = *pudp;
 425
 426	pud_clear(pudp);
 427	page_table_check_pud_clear(mm, address, pud);
 428
 429	return pud;
 430}
 431#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 433
 434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 435#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 436static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 437					    unsigned long address, pmd_t *pmdp,
 438					    int full)
 439{
 440	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 441}
 442#endif
 443
 444#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 445static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
 446					    unsigned long address, pud_t *pudp,
 447					    int full)
 448{
 449	return pudp_huge_get_and_clear(mm, address, pudp);
 450}
 451#endif
 452#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 453
 454#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 455static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 456					    unsigned long address, pte_t *ptep,
 457					    int full)
 458{
 459	return ptep_get_and_clear(mm, address, ptep);
 460}
 461#endif
 462
 463
 464/*
 465 * If two threads concurrently fault at the same page, the thread that
 466 * won the race updates the PTE and its local TLB/Cache. The other thread
 467 * gives up, simply does nothing, and continues; on architectures where
 468 * software can update TLB,  local TLB can be updated here to avoid next page
 469 * fault. This function updates TLB only, do nothing with cache or others.
 470 * It is the difference with function update_mmu_cache.
 471 */
 472#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
 473static inline void update_mmu_tlb(struct vm_area_struct *vma,
 474				unsigned long address, pte_t *ptep)
 475{
 476}
 477#define __HAVE_ARCH_UPDATE_MMU_TLB
 478#endif
 479
 480/*
 481 * Some architectures may be able to avoid expensive synchronization
 482 * primitives when modifications are made to PTE's which are already
 483 * not present, or in the process of an address space destruction.
 484 */
 485#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 486static inline void pte_clear_not_present_full(struct mm_struct *mm,
 487					      unsigned long address,
 488					      pte_t *ptep,
 489					      int full)
 490{
 491	pte_clear(mm, address, ptep);
 492}
 493#endif
 494
 495#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 496extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 497			      unsigned long address,
 498			      pte_t *ptep);
 499#endif
 500
 501#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 502extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 503			      unsigned long address,
 504			      pmd_t *pmdp);
 505extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 506			      unsigned long address,
 507			      pud_t *pudp);
 508#endif
 509
 510#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 511struct mm_struct;
 512static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 513{
 514	pte_t old_pte = *ptep;
 515	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 516}
 517#endif
 518
 519/*
 520 * On some architectures hardware does not set page access bit when accessing
 521 * memory page, it is responsibility of software setting this bit. It brings
 522 * out extra page fault penalty to track page access bit. For optimization page
 523 * access bit can be set during all page fault flow on these arches.
 524 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 525 * where software maintains page access bit.
 526 */
 527#ifndef pte_sw_mkyoung
 528static inline pte_t pte_sw_mkyoung(pte_t pte)
 529{
 530	return pte;
 531}
 532#define pte_sw_mkyoung	pte_sw_mkyoung
 533#endif
 534
 535#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 537static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 538				      unsigned long address, pmd_t *pmdp)
 539{
 540	pmd_t old_pmd = *pmdp;
 541	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 542}
 543#else
 544static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 545				      unsigned long address, pmd_t *pmdp)
 546{
 547	BUILD_BUG();
 548}
 549#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 550#endif
 551#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 552#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 553static inline void pudp_set_wrprotect(struct mm_struct *mm,
 554				      unsigned long address, pud_t *pudp)
 555{
 556	pud_t old_pud = *pudp;
 557
 558	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 559}
 560#else
 561static inline void pudp_set_wrprotect(struct mm_struct *mm,
 562				      unsigned long address, pud_t *pudp)
 563{
 564	BUILD_BUG();
 565}
 566#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 567#endif
 568
 569#ifndef pmdp_collapse_flush
 570#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 571extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 572				 unsigned long address, pmd_t *pmdp);
 573#else
 574static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 575					unsigned long address,
 576					pmd_t *pmdp)
 577{
 578	BUILD_BUG();
 579	return *pmdp;
 580}
 581#define pmdp_collapse_flush pmdp_collapse_flush
 582#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 583#endif
 584
 585#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 586extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 587				       pgtable_t pgtable);
 588#endif
 589
 590#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 591extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 592#endif
 593
 594#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 595/*
 596 * This is an implementation of pmdp_establish() that is only suitable for an
 597 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 598 * can't race with CPU which sets these bits and non-atomic approach is fine.
 599 */
 600static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 601		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 602{
 603	pmd_t old_pmd = *pmdp;
 604	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 605	return old_pmd;
 606}
 607#endif
 608
 609#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 610extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 611			    pmd_t *pmdp);
 612#endif
 613
 614#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
 615
 616/*
 617 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
 618 * hugepage mapping in the page tables. This function is similar to
 619 * pmdp_invalidate(), but should only be used if the access and dirty bits would
 620 * not be cleared by the software in the new PMD value. The function ensures
 621 * that hardware changes of the access and dirty bits updates would not be lost.
 622 *
 623 * Doing so can allow in certain architectures to avoid a TLB flush in most
 624 * cases. Yet, another TLB flush might be necessary later if the PMD update
 625 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
 626 * even when a TLB flush is needed because of the update, the caller may be able
 627 * to batch these TLB flushing operations, so fewer TLB flush operations are
 628 * needed.
 629 */
 630extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
 631				unsigned long address, pmd_t *pmdp);
 632#endif
 633
 634#ifndef __HAVE_ARCH_PTE_SAME
 635static inline int pte_same(pte_t pte_a, pte_t pte_b)
 636{
 637	return pte_val(pte_a) == pte_val(pte_b);
 638}
 639#endif
 640
 641#ifndef __HAVE_ARCH_PTE_UNUSED
 642/*
 643 * Some architectures provide facilities to virtualization guests
 644 * so that they can flag allocated pages as unused. This allows the
 645 * host to transparently reclaim unused pages. This function returns
 646 * whether the pte's page is unused.
 647 */
 648static inline int pte_unused(pte_t pte)
 649{
 650	return 0;
 651}
 652#endif
 653
 654#ifndef pte_access_permitted
 655#define pte_access_permitted(pte, write) \
 656	(pte_present(pte) && (!(write) || pte_write(pte)))
 657#endif
 658
 659#ifndef pmd_access_permitted
 660#define pmd_access_permitted(pmd, write) \
 661	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
 662#endif
 663
 664#ifndef pud_access_permitted
 665#define pud_access_permitted(pud, write) \
 666	(pud_present(pud) && (!(write) || pud_write(pud)))
 667#endif
 668
 669#ifndef p4d_access_permitted
 670#define p4d_access_permitted(p4d, write) \
 671	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
 672#endif
 673
 674#ifndef pgd_access_permitted
 675#define pgd_access_permitted(pgd, write) \
 676	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
 677#endif
 678
 679#ifndef __HAVE_ARCH_PMD_SAME
 680static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
 681{
 682	return pmd_val(pmd_a) == pmd_val(pmd_b);
 683}
 684
 685static inline int pud_same(pud_t pud_a, pud_t pud_b)
 686{
 687	return pud_val(pud_a) == pud_val(pud_b);
 688}
 689#endif
 690
 691#ifndef __HAVE_ARCH_P4D_SAME
 692static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
 693{
 694	return p4d_val(p4d_a) == p4d_val(p4d_b);
 695}
 696#endif
 697
 698#ifndef __HAVE_ARCH_PGD_SAME
 699static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
 700{
 701	return pgd_val(pgd_a) == pgd_val(pgd_b);
 702}
 703#endif
 704
 705/*
 706 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
 707 * TLB flush will be required as a result of the "set". For example, use
 708 * in scenarios where it is known ahead of time that the routine is
 709 * setting non-present entries, or re-setting an existing entry to the
 710 * same value. Otherwise, use the typical "set" helpers and flush the
 711 * TLB.
 712 */
 713#define set_pte_safe(ptep, pte) \
 714({ \
 715	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
 716	set_pte(ptep, pte); \
 717})
 718
 719#define set_pmd_safe(pmdp, pmd) \
 720({ \
 721	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
 722	set_pmd(pmdp, pmd); \
 723})
 724
 725#define set_pud_safe(pudp, pud) \
 726({ \
 727	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
 728	set_pud(pudp, pud); \
 729})
 730
 731#define set_p4d_safe(p4dp, p4d) \
 732({ \
 733	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
 734	set_p4d(p4dp, p4d); \
 735})
 736
 737#define set_pgd_safe(pgdp, pgd) \
 738({ \
 739	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
 740	set_pgd(pgdp, pgd); \
 741})
 742
 743#ifndef __HAVE_ARCH_DO_SWAP_PAGE
 744/*
 745 * Some architectures support metadata associated with a page. When a
 746 * page is being swapped out, this metadata must be saved so it can be
 747 * restored when the page is swapped back in. SPARC M7 and newer
 748 * processors support an ADI (Application Data Integrity) tag for the
 749 * page as metadata for the page. arch_do_swap_page() can restore this
 750 * metadata when a page is swapped back in.
 751 */
 752static inline void arch_do_swap_page(struct mm_struct *mm,
 753				     struct vm_area_struct *vma,
 754				     unsigned long addr,
 755				     pte_t pte, pte_t oldpte)
 756{
 757
 758}
 759#endif
 760
 761#ifndef __HAVE_ARCH_UNMAP_ONE
 762/*
 763 * Some architectures support metadata associated with a page. When a
 764 * page is being swapped out, this metadata must be saved so it can be
 765 * restored when the page is swapped back in. SPARC M7 and newer
 766 * processors support an ADI (Application Data Integrity) tag for the
 767 * page as metadata for the page. arch_unmap_one() can save this
 768 * metadata on a swap-out of a page.
 769 */
 770static inline int arch_unmap_one(struct mm_struct *mm,
 771				  struct vm_area_struct *vma,
 772				  unsigned long addr,
 773				  pte_t orig_pte)
 774{
 775	return 0;
 776}
 777#endif
 778
 779/*
 780 * Allow architectures to preserve additional metadata associated with
 781 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
 782 * prototypes must be defined in the arch-specific asm/pgtable.h file.
 783 */
 784#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
 785static inline int arch_prepare_to_swap(struct page *page)
 786{
 787	return 0;
 788}
 789#endif
 790
 791#ifndef __HAVE_ARCH_SWAP_INVALIDATE
 792static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
 793{
 794}
 795
 796static inline void arch_swap_invalidate_area(int type)
 797{
 798}
 799#endif
 800
 801#ifndef __HAVE_ARCH_SWAP_RESTORE
 802static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
 803{
 804}
 805#endif
 806
 807#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
 808#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
 809#endif
 810
 811#ifndef __HAVE_ARCH_MOVE_PTE
 812#define move_pte(pte, prot, old_addr, new_addr)	(pte)
 813#endif
 814
 815#ifndef pte_accessible
 816# define pte_accessible(mm, pte)	((void)(pte), 1)
 817#endif
 818
 819#ifndef flush_tlb_fix_spurious_fault
 820#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
 821#endif
 822
 823/*
 824 * When walking page tables, get the address of the next boundary,
 825 * or the end address of the range if that comes earlier.  Although no
 826 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
 827 */
 828
 829#define pgd_addr_end(addr, end)						\
 830({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
 831	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 832})
 833
 834#ifndef p4d_addr_end
 835#define p4d_addr_end(addr, end)						\
 836({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
 837	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 838})
 839#endif
 840
 841#ifndef pud_addr_end
 842#define pud_addr_end(addr, end)						\
 843({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
 844	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 845})
 846#endif
 847
 848#ifndef pmd_addr_end
 849#define pmd_addr_end(addr, end)						\
 850({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
 851	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
 852})
 853#endif
 854
 855/*
 856 * When walking page tables, we usually want to skip any p?d_none entries;
 857 * and any p?d_bad entries - reporting the error before resetting to none.
 858 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
 859 */
 860void pgd_clear_bad(pgd_t *);
 861
 862#ifndef __PAGETABLE_P4D_FOLDED
 863void p4d_clear_bad(p4d_t *);
 864#else
 865#define p4d_clear_bad(p4d)        do { } while (0)
 866#endif
 867
 868#ifndef __PAGETABLE_PUD_FOLDED
 869void pud_clear_bad(pud_t *);
 870#else
 871#define pud_clear_bad(p4d)        do { } while (0)
 872#endif
 873
 874void pmd_clear_bad(pmd_t *);
 875
 876static inline int pgd_none_or_clear_bad(pgd_t *pgd)
 877{
 878	if (pgd_none(*pgd))
 879		return 1;
 880	if (unlikely(pgd_bad(*pgd))) {
 881		pgd_clear_bad(pgd);
 882		return 1;
 883	}
 884	return 0;
 885}
 886
 887static inline int p4d_none_or_clear_bad(p4d_t *p4d)
 888{
 889	if (p4d_none(*p4d))
 890		return 1;
 891	if (unlikely(p4d_bad(*p4d))) {
 892		p4d_clear_bad(p4d);
 893		return 1;
 894	}
 895	return 0;
 896}
 897
 898static inline int pud_none_or_clear_bad(pud_t *pud)
 899{
 900	if (pud_none(*pud))
 901		return 1;
 902	if (unlikely(pud_bad(*pud))) {
 903		pud_clear_bad(pud);
 904		return 1;
 905	}
 906	return 0;
 907}
 908
 909static inline int pmd_none_or_clear_bad(pmd_t *pmd)
 910{
 911	if (pmd_none(*pmd))
 912		return 1;
 913	if (unlikely(pmd_bad(*pmd))) {
 914		pmd_clear_bad(pmd);
 915		return 1;
 916	}
 917	return 0;
 918}
 919
 920static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
 921					     unsigned long addr,
 922					     pte_t *ptep)
 923{
 924	/*
 925	 * Get the current pte state, but zero it out to make it
 926	 * non-present, preventing the hardware from asynchronously
 927	 * updating it.
 928	 */
 929	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
 930}
 931
 932static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
 933					     unsigned long addr,
 934					     pte_t *ptep, pte_t pte)
 935{
 936	/*
 937	 * The pte is non-present, so there's no hardware state to
 938	 * preserve.
 939	 */
 940	set_pte_at(vma->vm_mm, addr, ptep, pte);
 941}
 942
 943#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
 944/*
 945 * Start a pte protection read-modify-write transaction, which
 946 * protects against asynchronous hardware modifications to the pte.
 947 * The intention is not to prevent the hardware from making pte
 948 * updates, but to prevent any updates it may make from being lost.
 949 *
 950 * This does not protect against other software modifications of the
 951 * pte; the appropriate pte lock must be held over the transaction.
 952 *
 953 * Note that this interface is intended to be batchable, meaning that
 954 * ptep_modify_prot_commit may not actually update the pte, but merely
 955 * queue the update to be done at some later time.  The update must be
 956 * actually committed before the pte lock is released, however.
 957 */
 958static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
 959					   unsigned long addr,
 960					   pte_t *ptep)
 961{
 962	return __ptep_modify_prot_start(vma, addr, ptep);
 963}
 964
 965/*
 966 * Commit an update to a pte, leaving any hardware-controlled bits in
 967 * the PTE unmodified.
 968 */
 969static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
 970					   unsigned long addr,
 971					   pte_t *ptep, pte_t old_pte, pte_t pte)
 972{
 973	__ptep_modify_prot_commit(vma, addr, ptep, pte);
 974}
 975#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
 976#endif /* CONFIG_MMU */
 977
 978/*
 979 * No-op macros that just return the current protection value. Defined here
 980 * because these macros can be used even if CONFIG_MMU is not defined.
 981 */
 982
 983#ifndef pgprot_nx
 984#define pgprot_nx(prot)	(prot)
 985#endif
 986
 987#ifndef pgprot_noncached
 988#define pgprot_noncached(prot)	(prot)
 989#endif
 990
 991#ifndef pgprot_writecombine
 992#define pgprot_writecombine pgprot_noncached
 993#endif
 994
 995#ifndef pgprot_writethrough
 996#define pgprot_writethrough pgprot_noncached
 997#endif
 998
 999#ifndef pgprot_device
1000#define pgprot_device pgprot_noncached
1001#endif
1002
1003#ifndef pgprot_mhp
1004#define pgprot_mhp(prot)	(prot)
1005#endif
1006
1007#ifdef CONFIG_MMU
1008#ifndef pgprot_modify
1009#define pgprot_modify pgprot_modify
1010static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1011{
1012	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1013		newprot = pgprot_noncached(newprot);
1014	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1015		newprot = pgprot_writecombine(newprot);
1016	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1017		newprot = pgprot_device(newprot);
1018	return newprot;
1019}
1020#endif
1021#endif /* CONFIG_MMU */
1022
1023#ifndef pgprot_encrypted
1024#define pgprot_encrypted(prot)	(prot)
1025#endif
1026
1027#ifndef pgprot_decrypted
1028#define pgprot_decrypted(prot)	(prot)
1029#endif
1030
1031/*
1032 * A facility to provide lazy MMU batching.  This allows PTE updates and
1033 * page invalidations to be delayed until a call to leave lazy MMU mode
1034 * is issued.  Some architectures may benefit from doing this, and it is
1035 * beneficial for both shadow and direct mode hypervisors, which may batch
1036 * the PTE updates which happen during this window.  Note that using this
1037 * interface requires that read hazards be removed from the code.  A read
1038 * hazard could result in the direct mode hypervisor case, since the actual
1039 * write to the page tables may not yet have taken place, so reads though
1040 * a raw PTE pointer after it has been modified are not guaranteed to be
1041 * up to date.  This mode can only be entered and left under the protection of
1042 * the page table locks for all page tables which may be modified.  In the UP
1043 * case, this is required so that preemption is disabled, and in the SMP case,
1044 * it must synchronize the delayed page table writes properly on other CPUs.
1045 */
1046#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1047#define arch_enter_lazy_mmu_mode()	do {} while (0)
1048#define arch_leave_lazy_mmu_mode()	do {} while (0)
1049#define arch_flush_lazy_mmu_mode()	do {} while (0)
1050#endif
1051
1052/*
1053 * A facility to provide batching of the reload of page tables and
1054 * other process state with the actual context switch code for
1055 * paravirtualized guests.  By convention, only one of the batched
1056 * update (lazy) modes (CPU, MMU) should be active at any given time,
1057 * entry should never be nested, and entry and exits should always be
1058 * paired.  This is for sanity of maintaining and reasoning about the
1059 * kernel code.  In this case, the exit (end of the context switch) is
1060 * in architecture-specific code, and so doesn't need a generic
1061 * definition.
1062 */
1063#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1064#define arch_start_context_switch(prev)	do {} while (0)
1065#endif
1066
1067/*
1068 * When replacing an anonymous page by a real (!non) swap entry, we clear
1069 * PG_anon_exclusive from the page and instead remember whether the flag was
1070 * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1071 * (possibly shared). On swapin, we use that information to restore
1072 * PG_anon_exclusive, which is very helpful in cases where we might have
1073 * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1074 * detect exclusivity.
1075 *
1076 * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1077 * ...).
1078 */
1079#ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1080static inline pte_t pte_swp_mkexclusive(pte_t pte)
1081{
1082	return pte;
1083}
1084
1085static inline int pte_swp_exclusive(pte_t pte)
1086{
1087	return false;
1088}
1089
1090static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1091{
1092	return pte;
1093}
1094#endif
1095
1096#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1097#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1098static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1099{
1100	return pmd;
1101}
1102
1103static inline int pmd_swp_soft_dirty(pmd_t pmd)
1104{
1105	return 0;
1106}
1107
1108static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1109{
1110	return pmd;
1111}
1112#endif
1113#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1114static inline int pte_soft_dirty(pte_t pte)
1115{
1116	return 0;
1117}
1118
1119static inline int pmd_soft_dirty(pmd_t pmd)
1120{
1121	return 0;
1122}
1123
1124static inline pte_t pte_mksoft_dirty(pte_t pte)
1125{
1126	return pte;
1127}
1128
1129static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1130{
1131	return pmd;
1132}
1133
1134static inline pte_t pte_clear_soft_dirty(pte_t pte)
1135{
1136	return pte;
1137}
1138
1139static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1140{
1141	return pmd;
1142}
1143
1144static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1145{
1146	return pte;
1147}
1148
1149static inline int pte_swp_soft_dirty(pte_t pte)
1150{
1151	return 0;
1152}
1153
1154static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1155{
1156	return pte;
1157}
1158
1159static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1160{
1161	return pmd;
1162}
1163
1164static inline int pmd_swp_soft_dirty(pmd_t pmd)
1165{
1166	return 0;
1167}
1168
1169static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1170{
1171	return pmd;
1172}
1173#endif
1174
1175#ifndef __HAVE_PFNMAP_TRACKING
1176/*
1177 * Interfaces that can be used by architecture code to keep track of
1178 * memory type of pfn mappings specified by the remap_pfn_range,
1179 * vmf_insert_pfn.
1180 */
1181
1182/*
1183 * track_pfn_remap is called when a _new_ pfn mapping is being established
1184 * by remap_pfn_range() for physical range indicated by pfn and size.
1185 */
1186static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1187				  unsigned long pfn, unsigned long addr,
1188				  unsigned long size)
1189{
1190	return 0;
1191}
1192
1193/*
1194 * track_pfn_insert is called when a _new_ single pfn is established
1195 * by vmf_insert_pfn().
1196 */
1197static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1198				    pfn_t pfn)
1199{
1200}
1201
1202/*
1203 * track_pfn_copy is called when vma that is covering the pfnmap gets
1204 * copied through copy_page_range().
1205 */
1206static inline int track_pfn_copy(struct vm_area_struct *vma)
1207{
1208	return 0;
1209}
1210
1211/*
1212 * untrack_pfn is called while unmapping a pfnmap for a region.
1213 * untrack can be called for a specific region indicated by pfn and size or
1214 * can be for the entire vma (in which case pfn, size are zero).
1215 */
1216static inline void untrack_pfn(struct vm_area_struct *vma,
1217			       unsigned long pfn, unsigned long size)
1218{
1219}
1220
1221/*
1222 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1223 */
1224static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1225{
1226}
1227#else
1228extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1229			   unsigned long pfn, unsigned long addr,
1230			   unsigned long size);
1231extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1232			     pfn_t pfn);
1233extern int track_pfn_copy(struct vm_area_struct *vma);
1234extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1235			unsigned long size);
1236extern void untrack_pfn_moved(struct vm_area_struct *vma);
1237#endif
1238
1239#ifdef CONFIG_MMU
1240#ifdef __HAVE_COLOR_ZERO_PAGE
1241static inline int is_zero_pfn(unsigned long pfn)
1242{
1243	extern unsigned long zero_pfn;
1244	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1245	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1246}
1247
1248#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1249
1250#else
1251static inline int is_zero_pfn(unsigned long pfn)
1252{
1253	extern unsigned long zero_pfn;
1254	return pfn == zero_pfn;
1255}
1256
1257static inline unsigned long my_zero_pfn(unsigned long addr)
1258{
1259	extern unsigned long zero_pfn;
1260	return zero_pfn;
1261}
1262#endif
1263#else
1264static inline int is_zero_pfn(unsigned long pfn)
1265{
1266	return 0;
1267}
1268
1269static inline unsigned long my_zero_pfn(unsigned long addr)
1270{
1271	return 0;
1272}
1273#endif /* CONFIG_MMU */
1274
1275#ifdef CONFIG_MMU
1276
1277#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1278static inline int pmd_trans_huge(pmd_t pmd)
1279{
1280	return 0;
1281}
1282#ifndef pmd_write
1283static inline int pmd_write(pmd_t pmd)
1284{
1285	BUG();
1286	return 0;
1287}
1288#endif /* pmd_write */
1289#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1290
1291#ifndef pud_write
1292static inline int pud_write(pud_t pud)
1293{
1294	BUG();
1295	return 0;
1296}
1297#endif /* pud_write */
1298
1299#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1300static inline int pmd_devmap(pmd_t pmd)
1301{
1302	return 0;
1303}
1304static inline int pud_devmap(pud_t pud)
1305{
1306	return 0;
1307}
1308static inline int pgd_devmap(pgd_t pgd)
1309{
1310	return 0;
1311}
1312#endif
1313
1314#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1315	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1316static inline int pud_trans_huge(pud_t pud)
1317{
1318	return 0;
1319}
1320#endif
1321
1322/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1323static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1324{
1325	pud_t pudval = READ_ONCE(*pud);
1326
1327	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1328		return 1;
1329	if (unlikely(pud_bad(pudval))) {
1330		pud_clear_bad(pud);
1331		return 1;
1332	}
1333	return 0;
1334}
1335
1336/* See pmd_trans_unstable for discussion. */
1337static inline int pud_trans_unstable(pud_t *pud)
1338{
1339#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1340	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1341	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1342#else
1343	return 0;
1344#endif
1345}
1346
1347#ifndef arch_needs_pgtable_deposit
1348#define arch_needs_pgtable_deposit() (false)
1349#endif
1350/*
1351 * This function is meant to be used by sites walking pagetables with
1352 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1353 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1354 * into a null pmd and the transhuge page fault can convert a null pmd
1355 * into an hugepmd or into a regular pmd (if the hugepage allocation
1356 * fails). While holding the mmap_lock in read mode the pmd becomes
1357 * stable and stops changing under us only if it's not null and not a
1358 * transhuge pmd. When those races occurs and this function makes a
1359 * difference vs the standard pmd_none_or_clear_bad, the result is
1360 * undefined so behaving like if the pmd was none is safe (because it
1361 * can return none anyway). The compiler level barrier() is critically
1362 * important to compute the two checks atomically on the same pmdval.
1363 *
1364 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1365 * care of reading the pmd atomically to avoid SMP race conditions
1366 * against pmd_populate() when the mmap_lock is hold for reading by the
1367 * caller (a special atomic read not done by "gcc" as in the generic
1368 * version above, is also needed when THP is disabled because the page
1369 * fault can populate the pmd from under us).
1370 */
1371static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1372{
1373	pmd_t pmdval = pmdp_get_lockless(pmd);
1374	/*
1375	 * The barrier will stabilize the pmdval in a register or on
1376	 * the stack so that it will stop changing under the code.
1377	 *
1378	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1379	 * pmdp_get_lockless is allowed to return a not atomic pmdval
1380	 * (for example pointing to an hugepage that has never been
1381	 * mapped in the pmd). The below checks will only care about
1382	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1383	 * exception of pmd_none(). So the important thing is that if
1384	 * the low part of the pmd is found null, the high part will
1385	 * be also null or the pmd_none() check below would be
1386	 * confused.
1387	 */
1388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1389	barrier();
1390#endif
1391	/*
1392	 * !pmd_present() checks for pmd migration entries
1393	 *
1394	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1395	 * But using that requires moving current function and pmd_trans_unstable()
1396	 * to linux/swapops.h to resolve dependency, which is too much code move.
1397	 *
1398	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1399	 * because !pmd_present() pages can only be under migration not swapped
1400	 * out.
1401	 *
1402	 * pmd_none() is preserved for future condition checks on pmd migration
1403	 * entries and not confusing with this function name, although it is
1404	 * redundant with !pmd_present().
1405	 */
1406	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1407		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1408		return 1;
1409	if (unlikely(pmd_bad(pmdval))) {
1410		pmd_clear_bad(pmd);
1411		return 1;
1412	}
1413	return 0;
1414}
1415
1416/*
1417 * This is a noop if Transparent Hugepage Support is not built into
1418 * the kernel. Otherwise it is equivalent to
1419 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1420 * places that already verified the pmd is not none and they want to
1421 * walk ptes while holding the mmap sem in read mode (write mode don't
1422 * need this). If THP is not enabled, the pmd can't go away under the
1423 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1424 * run a pmd_trans_unstable before walking the ptes after
1425 * split_huge_pmd returns (because it may have run when the pmd become
1426 * null, but then a page fault can map in a THP and not a regular page).
1427 */
1428static inline int pmd_trans_unstable(pmd_t *pmd)
1429{
1430#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1431	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1432#else
1433	return 0;
1434#endif
1435}
1436
1437/*
1438 * the ordering of these checks is important for pmds with _page_devmap set.
1439 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1440 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1441 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1442 */
1443static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1444{
1445	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1446}
1447
1448#ifndef CONFIG_NUMA_BALANCING
1449/*
1450 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1451 * the only case the kernel cares is for NUMA balancing and is only ever set
1452 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1453 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1454 * is the responsibility of the caller to distinguish between PROT_NONE
1455 * protections and NUMA hinting fault protections.
1456 */
1457static inline int pte_protnone(pte_t pte)
1458{
1459	return 0;
1460}
1461
1462static inline int pmd_protnone(pmd_t pmd)
1463{
1464	return 0;
1465}
1466#endif /* CONFIG_NUMA_BALANCING */
1467
1468#endif /* CONFIG_MMU */
1469
1470#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1471
1472#ifndef __PAGETABLE_P4D_FOLDED
1473int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1474void p4d_clear_huge(p4d_t *p4d);
1475#else
1476static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1477{
1478	return 0;
1479}
1480static inline void p4d_clear_huge(p4d_t *p4d) { }
1481#endif /* !__PAGETABLE_P4D_FOLDED */
1482
1483int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1484int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1485int pud_clear_huge(pud_t *pud);
1486int pmd_clear_huge(pmd_t *pmd);
1487int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1488int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1489int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1490#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1491static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1492{
1493	return 0;
1494}
1495static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1496{
1497	return 0;
1498}
1499static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1500{
1501	return 0;
1502}
1503static inline void p4d_clear_huge(p4d_t *p4d) { }
1504static inline int pud_clear_huge(pud_t *pud)
1505{
1506	return 0;
1507}
1508static inline int pmd_clear_huge(pmd_t *pmd)
1509{
1510	return 0;
1511}
1512static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1513{
1514	return 0;
1515}
1516static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1517{
1518	return 0;
1519}
1520static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1521{
1522	return 0;
1523}
1524#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1525
1526#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528/*
1529 * ARCHes with special requirements for evicting THP backing TLB entries can
1530 * implement this. Otherwise also, it can help optimize normal TLB flush in
1531 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1532 * entire TLB if flush span is greater than a threshold, which will
1533 * likely be true for a single huge page. Thus a single THP flush will
1534 * invalidate the entire TLB which is not desirable.
1535 * e.g. see arch/arc: flush_pmd_tlb_range
1536 */
1537#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1538#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1539#else
1540#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1541#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1542#endif
1543#endif
1544
1545struct file;
1546int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1547			unsigned long size, pgprot_t *vma_prot);
1548
1549#ifndef CONFIG_X86_ESPFIX64
1550static inline void init_espfix_bsp(void) { }
1551#endif
1552
1553extern void __init pgtable_cache_init(void);
1554
1555#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1556static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1557{
1558	return true;
1559}
1560
1561static inline bool arch_has_pfn_modify_check(void)
1562{
1563	return false;
1564}
1565#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1566
1567/*
1568 * Architecture PAGE_KERNEL_* fallbacks
1569 *
1570 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1571 * because they really don't support them, or the port needs to be updated to
1572 * reflect the required functionality. Below are a set of relatively safe
1573 * fallbacks, as best effort, which we can count on in lieu of the architectures
1574 * not defining them on their own yet.
1575 */
1576
1577#ifndef PAGE_KERNEL_RO
1578# define PAGE_KERNEL_RO PAGE_KERNEL
1579#endif
1580
1581#ifndef PAGE_KERNEL_EXEC
1582# define PAGE_KERNEL_EXEC PAGE_KERNEL
1583#endif
1584
1585/*
1586 * Page Table Modification bits for pgtbl_mod_mask.
1587 *
1588 * These are used by the p?d_alloc_track*() set of functions an in the generic
1589 * vmalloc/ioremap code to track at which page-table levels entries have been
1590 * modified. Based on that the code can better decide when vmalloc and ioremap
1591 * mapping changes need to be synchronized to other page-tables in the system.
1592 */
1593#define		__PGTBL_PGD_MODIFIED	0
1594#define		__PGTBL_P4D_MODIFIED	1
1595#define		__PGTBL_PUD_MODIFIED	2
1596#define		__PGTBL_PMD_MODIFIED	3
1597#define		__PGTBL_PTE_MODIFIED	4
1598
1599#define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1600#define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1601#define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1602#define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1603#define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1604
1605/* Page-Table Modification Mask */
1606typedef unsigned int pgtbl_mod_mask;
1607
1608#endif /* !__ASSEMBLY__ */
1609
1610#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1611#ifdef CONFIG_PHYS_ADDR_T_64BIT
1612/*
1613 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1614 * with physical address space extension, but falls back to
1615 * BITS_PER_LONG otherwise.
1616 */
1617#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1618#else
1619#define MAX_POSSIBLE_PHYSMEM_BITS 32
1620#endif
1621#endif
1622
1623#ifndef has_transparent_hugepage
1624#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1625#endif
1626
1627/*
1628 * On some architectures it depends on the mm if the p4d/pud or pmd
1629 * layer of the page table hierarchy is folded or not.
1630 */
1631#ifndef mm_p4d_folded
1632#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1633#endif
1634
1635#ifndef mm_pud_folded
1636#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1637#endif
1638
1639#ifndef mm_pmd_folded
1640#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1641#endif
1642
1643#ifndef p4d_offset_lockless
1644#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1645#endif
1646#ifndef pud_offset_lockless
1647#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1648#endif
1649#ifndef pmd_offset_lockless
1650#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1651#endif
1652
1653/*
1654 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1655 * This differs from p?d_huge() by the fact that they are always available (if
1656 * the architecture supports large pages at the appropriate level) even
1657 * if CONFIG_HUGETLB_PAGE is not defined.
1658 * Only meaningful when called on a valid entry.
1659 */
1660#ifndef pgd_leaf
1661#define pgd_leaf(x)	0
1662#endif
1663#ifndef p4d_leaf
1664#define p4d_leaf(x)	0
1665#endif
1666#ifndef pud_leaf
1667#define pud_leaf(x)	0
1668#endif
1669#ifndef pmd_leaf
1670#define pmd_leaf(x)	0
1671#endif
1672
1673#ifndef pgd_leaf_size
1674#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1675#endif
1676#ifndef p4d_leaf_size
1677#define p4d_leaf_size(x) P4D_SIZE
1678#endif
1679#ifndef pud_leaf_size
1680#define pud_leaf_size(x) PUD_SIZE
1681#endif
1682#ifndef pmd_leaf_size
1683#define pmd_leaf_size(x) PMD_SIZE
1684#endif
1685#ifndef pte_leaf_size
1686#define pte_leaf_size(x) PAGE_SIZE
1687#endif
1688
1689/*
1690 * Some architectures have MMUs that are configurable or selectable at boot
1691 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1692 * helps to have a static maximum value.
1693 */
1694
1695#ifndef MAX_PTRS_PER_PTE
1696#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1697#endif
1698
1699#ifndef MAX_PTRS_PER_PMD
1700#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1701#endif
1702
1703#ifndef MAX_PTRS_PER_PUD
1704#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1705#endif
1706
1707#ifndef MAX_PTRS_PER_P4D
1708#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1709#endif
1710
1711/* description of effects of mapping type and prot in current implementation.
1712 * this is due to the limited x86 page protection hardware.  The expected
1713 * behavior is in parens:
1714 *
1715 * map_type	prot
1716 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1717 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1718 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1719 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1720 *
1721 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1722 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1723 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1724 *
1725 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1726 * MAP_PRIVATE (with Enhanced PAN supported):
1727 *								r: (no) no
1728 *								w: (no) no
1729 *								x: (yes) yes
1730 */
1731#define DECLARE_VM_GET_PAGE_PROT					\
1732pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1733{									\
1734		return protection_map[vm_flags &			\
1735			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1736}									\
1737EXPORT_SYMBOL(vm_get_page_prot);
1738
1739#endif /* _LINUX_PGTABLE_H */