Loading...
Note: File does not exist in v4.10.11.
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15#include <linux/page_table_check.h>
16
17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20#endif
21
22/*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28#ifndef USER_PGTABLES_CEILING
29#define USER_PGTABLES_CEILING 0UL
30#endif
31
32/*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37#ifndef FIRST_USER_ADDRESS
38#define FIRST_USER_ADDRESS 0UL
39#endif
40
41/*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46#ifndef pmd_pgtable
47#define pmd_pgtable(pmd) pmd_page(pmd)
48#endif
49
50/*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
62static inline unsigned long pte_index(unsigned long address)
63{
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65}
66#define pte_index pte_index
67
68#ifndef pmd_index
69static inline unsigned long pmd_index(unsigned long address)
70{
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72}
73#define pmd_index pmd_index
74#endif
75
76#ifndef pud_index
77static inline unsigned long pud_index(unsigned long address)
78{
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80}
81#define pud_index pud_index
82#endif
83
84#ifndef pgd_index
85/* Must be a compile-time constant, so implement it as a macro */
86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87#endif
88
89#ifndef pte_offset_kernel
90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91{
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93}
94#define pte_offset_kernel pte_offset_kernel
95#endif
96
97#if defined(CONFIG_HIGHPTE)
98#define pte_offset_map(dir, address) \
99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
100 pte_index((address)))
101#define pte_unmap(pte) kunmap_atomic((pte))
102#else
103#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
104#define pte_unmap(pte) ((void)(pte)) /* NOP */
105#endif
106
107/* Find an entry in the second-level page table.. */
108#ifndef pmd_offset
109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110{
111 return pud_pgtable(*pud) + pmd_index(address);
112}
113#define pmd_offset pmd_offset
114#endif
115
116#ifndef pud_offset
117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118{
119 return p4d_pgtable(*p4d) + pud_index(address);
120}
121#define pud_offset pud_offset
122#endif
123
124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125{
126 return (pgd + pgd_index(address));
127};
128
129/*
130 * a shortcut to get a pgd_t in a given mm
131 */
132#ifndef pgd_offset
133#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
134#endif
135
136/*
137 * a shortcut which implies the use of the kernel's pgd, instead
138 * of a process's
139 */
140#ifndef pgd_offset_k
141#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
142#endif
143
144/*
145 * In many cases it is known that a virtual address is mapped at PMD or PTE
146 * level, so instead of traversing all the page table levels, we can get a
147 * pointer to the PMD entry in user or kernel page table or translate a virtual
148 * address to the pointer in the PTE in the kernel page tables with simple
149 * helpers.
150 */
151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152{
153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154}
155
156static inline pmd_t *pmd_off_k(unsigned long va)
157{
158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159}
160
161static inline pte_t *virt_to_kpte(unsigned long vaddr)
162{
163 pmd_t *pmd = pmd_off_k(vaddr);
164
165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166}
167
168#ifndef pmd_young
169static inline int pmd_young(pmd_t pmd)
170{
171 return 0;
172}
173#endif
174
175#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
176extern int ptep_set_access_flags(struct vm_area_struct *vma,
177 unsigned long address, pte_t *ptep,
178 pte_t entry, int dirty);
179#endif
180
181#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
182#ifdef CONFIG_TRANSPARENT_HUGEPAGE
183extern int pmdp_set_access_flags(struct vm_area_struct *vma,
184 unsigned long address, pmd_t *pmdp,
185 pmd_t entry, int dirty);
186extern int pudp_set_access_flags(struct vm_area_struct *vma,
187 unsigned long address, pud_t *pudp,
188 pud_t entry, int dirty);
189#else
190static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
191 unsigned long address, pmd_t *pmdp,
192 pmd_t entry, int dirty)
193{
194 BUILD_BUG();
195 return 0;
196}
197static inline int pudp_set_access_flags(struct vm_area_struct *vma,
198 unsigned long address, pud_t *pudp,
199 pud_t entry, int dirty)
200{
201 BUILD_BUG();
202 return 0;
203}
204#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
205#endif
206
207#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
208static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
209 unsigned long address,
210 pte_t *ptep)
211{
212 pte_t pte = *ptep;
213 int r = 1;
214 if (!pte_young(pte))
215 r = 0;
216 else
217 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
218 return r;
219}
220#endif
221
222#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
223#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
224static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
225 unsigned long address,
226 pmd_t *pmdp)
227{
228 pmd_t pmd = *pmdp;
229 int r = 1;
230 if (!pmd_young(pmd))
231 r = 0;
232 else
233 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
234 return r;
235}
236#else
237static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
238 unsigned long address,
239 pmd_t *pmdp)
240{
241 BUILD_BUG();
242 return 0;
243}
244#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
245#endif
246
247#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
248int ptep_clear_flush_young(struct vm_area_struct *vma,
249 unsigned long address, pte_t *ptep);
250#endif
251
252#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
253#ifdef CONFIG_TRANSPARENT_HUGEPAGE
254extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp);
256#else
257/*
258 * Despite relevant to THP only, this API is called from generic rmap code
259 * under PageTransHuge(), hence needs a dummy implementation for !THP
260 */
261static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
262 unsigned long address, pmd_t *pmdp)
263{
264 BUILD_BUG();
265 return 0;
266}
267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268#endif
269
270#ifndef arch_has_hw_nonleaf_pmd_young
271/*
272 * Return whether the accessed bit in non-leaf PMD entries is supported on the
273 * local CPU.
274 */
275static inline bool arch_has_hw_nonleaf_pmd_young(void)
276{
277 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
278}
279#endif
280
281#ifndef arch_has_hw_pte_young
282/*
283 * Return whether the accessed bit is supported on the local CPU.
284 *
285 * This stub assumes accessing through an old PTE triggers a page fault.
286 * Architectures that automatically set the access bit should overwrite it.
287 */
288static inline bool arch_has_hw_pte_young(void)
289{
290 return false;
291}
292#endif
293
294#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
295static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
296 unsigned long address,
297 pte_t *ptep)
298{
299 pte_t pte = *ptep;
300 pte_clear(mm, address, ptep);
301 page_table_check_pte_clear(mm, address, pte);
302 return pte;
303}
304#endif
305
306static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
307 pte_t *ptep)
308{
309 ptep_get_and_clear(mm, addr, ptep);
310}
311
312#ifndef ptep_get
313static inline pte_t ptep_get(pte_t *ptep)
314{
315 return READ_ONCE(*ptep);
316}
317#endif
318
319#ifndef pmdp_get
320static inline pmd_t pmdp_get(pmd_t *pmdp)
321{
322 return READ_ONCE(*pmdp);
323}
324#endif
325
326#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
327/*
328 * For walking the pagetables without holding any locks. Some architectures
329 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
330 * instructions. We are guaranteed that a PTE will only either go from not
331 * present to present, or present to not present -- it will not switch to a
332 * completely different present page without a TLB flush inbetween; which we
333 * are blocking by holding interrupts off.
334 *
335 * Setting ptes from not present to present goes:
336 *
337 * ptep->pte_high = h;
338 * smp_wmb();
339 * ptep->pte_low = l;
340 *
341 * And present to not present goes:
342 *
343 * ptep->pte_low = 0;
344 * smp_wmb();
345 * ptep->pte_high = 0;
346 *
347 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
348 * We load pte_high *after* loading pte_low, which ensures we don't see an older
349 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
350 * picked up a changed pte high. We might have gotten rubbish values from
351 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
352 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
353 * operates on present ptes we're safe.
354 */
355static inline pte_t ptep_get_lockless(pte_t *ptep)
356{
357 pte_t pte;
358
359 do {
360 pte.pte_low = ptep->pte_low;
361 smp_rmb();
362 pte.pte_high = ptep->pte_high;
363 smp_rmb();
364 } while (unlikely(pte.pte_low != ptep->pte_low));
365
366 return pte;
367}
368#define ptep_get_lockless ptep_get_lockless
369
370#if CONFIG_PGTABLE_LEVELS > 2
371static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
372{
373 pmd_t pmd;
374
375 do {
376 pmd.pmd_low = pmdp->pmd_low;
377 smp_rmb();
378 pmd.pmd_high = pmdp->pmd_high;
379 smp_rmb();
380 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
381
382 return pmd;
383}
384#define pmdp_get_lockless pmdp_get_lockless
385#endif /* CONFIG_PGTABLE_LEVELS > 2 */
386#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
387
388/*
389 * We require that the PTE can be read atomically.
390 */
391#ifndef ptep_get_lockless
392static inline pte_t ptep_get_lockless(pte_t *ptep)
393{
394 return ptep_get(ptep);
395}
396#endif
397
398#ifndef pmdp_get_lockless
399static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
400{
401 return pmdp_get(pmdp);
402}
403#endif
404
405#ifdef CONFIG_TRANSPARENT_HUGEPAGE
406#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
407static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
408 unsigned long address,
409 pmd_t *pmdp)
410{
411 pmd_t pmd = *pmdp;
412
413 pmd_clear(pmdp);
414 page_table_check_pmd_clear(mm, address, pmd);
415
416 return pmd;
417}
418#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
419#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
420static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
421 unsigned long address,
422 pud_t *pudp)
423{
424 pud_t pud = *pudp;
425
426 pud_clear(pudp);
427 page_table_check_pud_clear(mm, address, pud);
428
429 return pud;
430}
431#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433
434#ifdef CONFIG_TRANSPARENT_HUGEPAGE
435#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
436static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
437 unsigned long address, pmd_t *pmdp,
438 int full)
439{
440 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
441}
442#endif
443
444#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
445static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
446 unsigned long address, pud_t *pudp,
447 int full)
448{
449 return pudp_huge_get_and_clear(mm, address, pudp);
450}
451#endif
452#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
453
454#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
455static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
456 unsigned long address, pte_t *ptep,
457 int full)
458{
459 return ptep_get_and_clear(mm, address, ptep);
460}
461#endif
462
463
464/*
465 * If two threads concurrently fault at the same page, the thread that
466 * won the race updates the PTE and its local TLB/Cache. The other thread
467 * gives up, simply does nothing, and continues; on architectures where
468 * software can update TLB, local TLB can be updated here to avoid next page
469 * fault. This function updates TLB only, do nothing with cache or others.
470 * It is the difference with function update_mmu_cache.
471 */
472#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
473static inline void update_mmu_tlb(struct vm_area_struct *vma,
474 unsigned long address, pte_t *ptep)
475{
476}
477#define __HAVE_ARCH_UPDATE_MMU_TLB
478#endif
479
480/*
481 * Some architectures may be able to avoid expensive synchronization
482 * primitives when modifications are made to PTE's which are already
483 * not present, or in the process of an address space destruction.
484 */
485#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
486static inline void pte_clear_not_present_full(struct mm_struct *mm,
487 unsigned long address,
488 pte_t *ptep,
489 int full)
490{
491 pte_clear(mm, address, ptep);
492}
493#endif
494
495#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
496extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
497 unsigned long address,
498 pte_t *ptep);
499#endif
500
501#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
502extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
503 unsigned long address,
504 pmd_t *pmdp);
505extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
506 unsigned long address,
507 pud_t *pudp);
508#endif
509
510#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
511struct mm_struct;
512static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
513{
514 pte_t old_pte = *ptep;
515 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
516}
517#endif
518
519/*
520 * On some architectures hardware does not set page access bit when accessing
521 * memory page, it is responsibility of software setting this bit. It brings
522 * out extra page fault penalty to track page access bit. For optimization page
523 * access bit can be set during all page fault flow on these arches.
524 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
525 * where software maintains page access bit.
526 */
527#ifndef pte_sw_mkyoung
528static inline pte_t pte_sw_mkyoung(pte_t pte)
529{
530 return pte;
531}
532#define pte_sw_mkyoung pte_sw_mkyoung
533#endif
534
535#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
536#ifdef CONFIG_TRANSPARENT_HUGEPAGE
537static inline void pmdp_set_wrprotect(struct mm_struct *mm,
538 unsigned long address, pmd_t *pmdp)
539{
540 pmd_t old_pmd = *pmdp;
541 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
542}
543#else
544static inline void pmdp_set_wrprotect(struct mm_struct *mm,
545 unsigned long address, pmd_t *pmdp)
546{
547 BUILD_BUG();
548}
549#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
550#endif
551#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
552#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
553static inline void pudp_set_wrprotect(struct mm_struct *mm,
554 unsigned long address, pud_t *pudp)
555{
556 pud_t old_pud = *pudp;
557
558 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
559}
560#else
561static inline void pudp_set_wrprotect(struct mm_struct *mm,
562 unsigned long address, pud_t *pudp)
563{
564 BUILD_BUG();
565}
566#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
567#endif
568
569#ifndef pmdp_collapse_flush
570#ifdef CONFIG_TRANSPARENT_HUGEPAGE
571extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
572 unsigned long address, pmd_t *pmdp);
573#else
574static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
575 unsigned long address,
576 pmd_t *pmdp)
577{
578 BUILD_BUG();
579 return *pmdp;
580}
581#define pmdp_collapse_flush pmdp_collapse_flush
582#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
583#endif
584
585#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
586extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
587 pgtable_t pgtable);
588#endif
589
590#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
591extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
592#endif
593
594#ifdef CONFIG_TRANSPARENT_HUGEPAGE
595/*
596 * This is an implementation of pmdp_establish() that is only suitable for an
597 * architecture that doesn't have hardware dirty/accessed bits. In this case we
598 * can't race with CPU which sets these bits and non-atomic approach is fine.
599 */
600static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
601 unsigned long address, pmd_t *pmdp, pmd_t pmd)
602{
603 pmd_t old_pmd = *pmdp;
604 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
605 return old_pmd;
606}
607#endif
608
609#ifndef __HAVE_ARCH_PMDP_INVALIDATE
610extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
611 pmd_t *pmdp);
612#endif
613
614#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
615
616/*
617 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
618 * hugepage mapping in the page tables. This function is similar to
619 * pmdp_invalidate(), but should only be used if the access and dirty bits would
620 * not be cleared by the software in the new PMD value. The function ensures
621 * that hardware changes of the access and dirty bits updates would not be lost.
622 *
623 * Doing so can allow in certain architectures to avoid a TLB flush in most
624 * cases. Yet, another TLB flush might be necessary later if the PMD update
625 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
626 * even when a TLB flush is needed because of the update, the caller may be able
627 * to batch these TLB flushing operations, so fewer TLB flush operations are
628 * needed.
629 */
630extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
631 unsigned long address, pmd_t *pmdp);
632#endif
633
634#ifndef __HAVE_ARCH_PTE_SAME
635static inline int pte_same(pte_t pte_a, pte_t pte_b)
636{
637 return pte_val(pte_a) == pte_val(pte_b);
638}
639#endif
640
641#ifndef __HAVE_ARCH_PTE_UNUSED
642/*
643 * Some architectures provide facilities to virtualization guests
644 * so that they can flag allocated pages as unused. This allows the
645 * host to transparently reclaim unused pages. This function returns
646 * whether the pte's page is unused.
647 */
648static inline int pte_unused(pte_t pte)
649{
650 return 0;
651}
652#endif
653
654#ifndef pte_access_permitted
655#define pte_access_permitted(pte, write) \
656 (pte_present(pte) && (!(write) || pte_write(pte)))
657#endif
658
659#ifndef pmd_access_permitted
660#define pmd_access_permitted(pmd, write) \
661 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
662#endif
663
664#ifndef pud_access_permitted
665#define pud_access_permitted(pud, write) \
666 (pud_present(pud) && (!(write) || pud_write(pud)))
667#endif
668
669#ifndef p4d_access_permitted
670#define p4d_access_permitted(p4d, write) \
671 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
672#endif
673
674#ifndef pgd_access_permitted
675#define pgd_access_permitted(pgd, write) \
676 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
677#endif
678
679#ifndef __HAVE_ARCH_PMD_SAME
680static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
681{
682 return pmd_val(pmd_a) == pmd_val(pmd_b);
683}
684
685static inline int pud_same(pud_t pud_a, pud_t pud_b)
686{
687 return pud_val(pud_a) == pud_val(pud_b);
688}
689#endif
690
691#ifndef __HAVE_ARCH_P4D_SAME
692static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
693{
694 return p4d_val(p4d_a) == p4d_val(p4d_b);
695}
696#endif
697
698#ifndef __HAVE_ARCH_PGD_SAME
699static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
700{
701 return pgd_val(pgd_a) == pgd_val(pgd_b);
702}
703#endif
704
705/*
706 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
707 * TLB flush will be required as a result of the "set". For example, use
708 * in scenarios where it is known ahead of time that the routine is
709 * setting non-present entries, or re-setting an existing entry to the
710 * same value. Otherwise, use the typical "set" helpers and flush the
711 * TLB.
712 */
713#define set_pte_safe(ptep, pte) \
714({ \
715 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
716 set_pte(ptep, pte); \
717})
718
719#define set_pmd_safe(pmdp, pmd) \
720({ \
721 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
722 set_pmd(pmdp, pmd); \
723})
724
725#define set_pud_safe(pudp, pud) \
726({ \
727 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
728 set_pud(pudp, pud); \
729})
730
731#define set_p4d_safe(p4dp, p4d) \
732({ \
733 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
734 set_p4d(p4dp, p4d); \
735})
736
737#define set_pgd_safe(pgdp, pgd) \
738({ \
739 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
740 set_pgd(pgdp, pgd); \
741})
742
743#ifndef __HAVE_ARCH_DO_SWAP_PAGE
744/*
745 * Some architectures support metadata associated with a page. When a
746 * page is being swapped out, this metadata must be saved so it can be
747 * restored when the page is swapped back in. SPARC M7 and newer
748 * processors support an ADI (Application Data Integrity) tag for the
749 * page as metadata for the page. arch_do_swap_page() can restore this
750 * metadata when a page is swapped back in.
751 */
752static inline void arch_do_swap_page(struct mm_struct *mm,
753 struct vm_area_struct *vma,
754 unsigned long addr,
755 pte_t pte, pte_t oldpte)
756{
757
758}
759#endif
760
761#ifndef __HAVE_ARCH_UNMAP_ONE
762/*
763 * Some architectures support metadata associated with a page. When a
764 * page is being swapped out, this metadata must be saved so it can be
765 * restored when the page is swapped back in. SPARC M7 and newer
766 * processors support an ADI (Application Data Integrity) tag for the
767 * page as metadata for the page. arch_unmap_one() can save this
768 * metadata on a swap-out of a page.
769 */
770static inline int arch_unmap_one(struct mm_struct *mm,
771 struct vm_area_struct *vma,
772 unsigned long addr,
773 pte_t orig_pte)
774{
775 return 0;
776}
777#endif
778
779/*
780 * Allow architectures to preserve additional metadata associated with
781 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
782 * prototypes must be defined in the arch-specific asm/pgtable.h file.
783 */
784#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
785static inline int arch_prepare_to_swap(struct page *page)
786{
787 return 0;
788}
789#endif
790
791#ifndef __HAVE_ARCH_SWAP_INVALIDATE
792static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
793{
794}
795
796static inline void arch_swap_invalidate_area(int type)
797{
798}
799#endif
800
801#ifndef __HAVE_ARCH_SWAP_RESTORE
802static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
803{
804}
805#endif
806
807#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
808#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
809#endif
810
811#ifndef __HAVE_ARCH_MOVE_PTE
812#define move_pte(pte, prot, old_addr, new_addr) (pte)
813#endif
814
815#ifndef pte_accessible
816# define pte_accessible(mm, pte) ((void)(pte), 1)
817#endif
818
819#ifndef flush_tlb_fix_spurious_fault
820#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
821#endif
822
823/*
824 * When walking page tables, get the address of the next boundary,
825 * or the end address of the range if that comes earlier. Although no
826 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
827 */
828
829#define pgd_addr_end(addr, end) \
830({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
831 (__boundary - 1 < (end) - 1)? __boundary: (end); \
832})
833
834#ifndef p4d_addr_end
835#define p4d_addr_end(addr, end) \
836({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
837 (__boundary - 1 < (end) - 1)? __boundary: (end); \
838})
839#endif
840
841#ifndef pud_addr_end
842#define pud_addr_end(addr, end) \
843({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
844 (__boundary - 1 < (end) - 1)? __boundary: (end); \
845})
846#endif
847
848#ifndef pmd_addr_end
849#define pmd_addr_end(addr, end) \
850({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
851 (__boundary - 1 < (end) - 1)? __boundary: (end); \
852})
853#endif
854
855/*
856 * When walking page tables, we usually want to skip any p?d_none entries;
857 * and any p?d_bad entries - reporting the error before resetting to none.
858 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
859 */
860void pgd_clear_bad(pgd_t *);
861
862#ifndef __PAGETABLE_P4D_FOLDED
863void p4d_clear_bad(p4d_t *);
864#else
865#define p4d_clear_bad(p4d) do { } while (0)
866#endif
867
868#ifndef __PAGETABLE_PUD_FOLDED
869void pud_clear_bad(pud_t *);
870#else
871#define pud_clear_bad(p4d) do { } while (0)
872#endif
873
874void pmd_clear_bad(pmd_t *);
875
876static inline int pgd_none_or_clear_bad(pgd_t *pgd)
877{
878 if (pgd_none(*pgd))
879 return 1;
880 if (unlikely(pgd_bad(*pgd))) {
881 pgd_clear_bad(pgd);
882 return 1;
883 }
884 return 0;
885}
886
887static inline int p4d_none_or_clear_bad(p4d_t *p4d)
888{
889 if (p4d_none(*p4d))
890 return 1;
891 if (unlikely(p4d_bad(*p4d))) {
892 p4d_clear_bad(p4d);
893 return 1;
894 }
895 return 0;
896}
897
898static inline int pud_none_or_clear_bad(pud_t *pud)
899{
900 if (pud_none(*pud))
901 return 1;
902 if (unlikely(pud_bad(*pud))) {
903 pud_clear_bad(pud);
904 return 1;
905 }
906 return 0;
907}
908
909static inline int pmd_none_or_clear_bad(pmd_t *pmd)
910{
911 if (pmd_none(*pmd))
912 return 1;
913 if (unlikely(pmd_bad(*pmd))) {
914 pmd_clear_bad(pmd);
915 return 1;
916 }
917 return 0;
918}
919
920static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
921 unsigned long addr,
922 pte_t *ptep)
923{
924 /*
925 * Get the current pte state, but zero it out to make it
926 * non-present, preventing the hardware from asynchronously
927 * updating it.
928 */
929 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
930}
931
932static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
933 unsigned long addr,
934 pte_t *ptep, pte_t pte)
935{
936 /*
937 * The pte is non-present, so there's no hardware state to
938 * preserve.
939 */
940 set_pte_at(vma->vm_mm, addr, ptep, pte);
941}
942
943#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
944/*
945 * Start a pte protection read-modify-write transaction, which
946 * protects against asynchronous hardware modifications to the pte.
947 * The intention is not to prevent the hardware from making pte
948 * updates, but to prevent any updates it may make from being lost.
949 *
950 * This does not protect against other software modifications of the
951 * pte; the appropriate pte lock must be held over the transaction.
952 *
953 * Note that this interface is intended to be batchable, meaning that
954 * ptep_modify_prot_commit may not actually update the pte, but merely
955 * queue the update to be done at some later time. The update must be
956 * actually committed before the pte lock is released, however.
957 */
958static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
959 unsigned long addr,
960 pte_t *ptep)
961{
962 return __ptep_modify_prot_start(vma, addr, ptep);
963}
964
965/*
966 * Commit an update to a pte, leaving any hardware-controlled bits in
967 * the PTE unmodified.
968 */
969static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
970 unsigned long addr,
971 pte_t *ptep, pte_t old_pte, pte_t pte)
972{
973 __ptep_modify_prot_commit(vma, addr, ptep, pte);
974}
975#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
976#endif /* CONFIG_MMU */
977
978/*
979 * No-op macros that just return the current protection value. Defined here
980 * because these macros can be used even if CONFIG_MMU is not defined.
981 */
982
983#ifndef pgprot_nx
984#define pgprot_nx(prot) (prot)
985#endif
986
987#ifndef pgprot_noncached
988#define pgprot_noncached(prot) (prot)
989#endif
990
991#ifndef pgprot_writecombine
992#define pgprot_writecombine pgprot_noncached
993#endif
994
995#ifndef pgprot_writethrough
996#define pgprot_writethrough pgprot_noncached
997#endif
998
999#ifndef pgprot_device
1000#define pgprot_device pgprot_noncached
1001#endif
1002
1003#ifndef pgprot_mhp
1004#define pgprot_mhp(prot) (prot)
1005#endif
1006
1007#ifdef CONFIG_MMU
1008#ifndef pgprot_modify
1009#define pgprot_modify pgprot_modify
1010static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1011{
1012 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1013 newprot = pgprot_noncached(newprot);
1014 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1015 newprot = pgprot_writecombine(newprot);
1016 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1017 newprot = pgprot_device(newprot);
1018 return newprot;
1019}
1020#endif
1021#endif /* CONFIG_MMU */
1022
1023#ifndef pgprot_encrypted
1024#define pgprot_encrypted(prot) (prot)
1025#endif
1026
1027#ifndef pgprot_decrypted
1028#define pgprot_decrypted(prot) (prot)
1029#endif
1030
1031/*
1032 * A facility to provide lazy MMU batching. This allows PTE updates and
1033 * page invalidations to be delayed until a call to leave lazy MMU mode
1034 * is issued. Some architectures may benefit from doing this, and it is
1035 * beneficial for both shadow and direct mode hypervisors, which may batch
1036 * the PTE updates which happen during this window. Note that using this
1037 * interface requires that read hazards be removed from the code. A read
1038 * hazard could result in the direct mode hypervisor case, since the actual
1039 * write to the page tables may not yet have taken place, so reads though
1040 * a raw PTE pointer after it has been modified are not guaranteed to be
1041 * up to date. This mode can only be entered and left under the protection of
1042 * the page table locks for all page tables which may be modified. In the UP
1043 * case, this is required so that preemption is disabled, and in the SMP case,
1044 * it must synchronize the delayed page table writes properly on other CPUs.
1045 */
1046#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1047#define arch_enter_lazy_mmu_mode() do {} while (0)
1048#define arch_leave_lazy_mmu_mode() do {} while (0)
1049#define arch_flush_lazy_mmu_mode() do {} while (0)
1050#endif
1051
1052/*
1053 * A facility to provide batching of the reload of page tables and
1054 * other process state with the actual context switch code for
1055 * paravirtualized guests. By convention, only one of the batched
1056 * update (lazy) modes (CPU, MMU) should be active at any given time,
1057 * entry should never be nested, and entry and exits should always be
1058 * paired. This is for sanity of maintaining and reasoning about the
1059 * kernel code. In this case, the exit (end of the context switch) is
1060 * in architecture-specific code, and so doesn't need a generic
1061 * definition.
1062 */
1063#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1064#define arch_start_context_switch(prev) do {} while (0)
1065#endif
1066
1067/*
1068 * When replacing an anonymous page by a real (!non) swap entry, we clear
1069 * PG_anon_exclusive from the page and instead remember whether the flag was
1070 * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1071 * (possibly shared). On swapin, we use that information to restore
1072 * PG_anon_exclusive, which is very helpful in cases where we might have
1073 * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1074 * detect exclusivity.
1075 *
1076 * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1077 * ...).
1078 */
1079#ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1080static inline pte_t pte_swp_mkexclusive(pte_t pte)
1081{
1082 return pte;
1083}
1084
1085static inline int pte_swp_exclusive(pte_t pte)
1086{
1087 return false;
1088}
1089
1090static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1091{
1092 return pte;
1093}
1094#endif
1095
1096#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1097#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1098static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1099{
1100 return pmd;
1101}
1102
1103static inline int pmd_swp_soft_dirty(pmd_t pmd)
1104{
1105 return 0;
1106}
1107
1108static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1109{
1110 return pmd;
1111}
1112#endif
1113#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1114static inline int pte_soft_dirty(pte_t pte)
1115{
1116 return 0;
1117}
1118
1119static inline int pmd_soft_dirty(pmd_t pmd)
1120{
1121 return 0;
1122}
1123
1124static inline pte_t pte_mksoft_dirty(pte_t pte)
1125{
1126 return pte;
1127}
1128
1129static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1130{
1131 return pmd;
1132}
1133
1134static inline pte_t pte_clear_soft_dirty(pte_t pte)
1135{
1136 return pte;
1137}
1138
1139static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1140{
1141 return pmd;
1142}
1143
1144static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1145{
1146 return pte;
1147}
1148
1149static inline int pte_swp_soft_dirty(pte_t pte)
1150{
1151 return 0;
1152}
1153
1154static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1155{
1156 return pte;
1157}
1158
1159static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1160{
1161 return pmd;
1162}
1163
1164static inline int pmd_swp_soft_dirty(pmd_t pmd)
1165{
1166 return 0;
1167}
1168
1169static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1170{
1171 return pmd;
1172}
1173#endif
1174
1175#ifndef __HAVE_PFNMAP_TRACKING
1176/*
1177 * Interfaces that can be used by architecture code to keep track of
1178 * memory type of pfn mappings specified by the remap_pfn_range,
1179 * vmf_insert_pfn.
1180 */
1181
1182/*
1183 * track_pfn_remap is called when a _new_ pfn mapping is being established
1184 * by remap_pfn_range() for physical range indicated by pfn and size.
1185 */
1186static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1187 unsigned long pfn, unsigned long addr,
1188 unsigned long size)
1189{
1190 return 0;
1191}
1192
1193/*
1194 * track_pfn_insert is called when a _new_ single pfn is established
1195 * by vmf_insert_pfn().
1196 */
1197static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1198 pfn_t pfn)
1199{
1200}
1201
1202/*
1203 * track_pfn_copy is called when vma that is covering the pfnmap gets
1204 * copied through copy_page_range().
1205 */
1206static inline int track_pfn_copy(struct vm_area_struct *vma)
1207{
1208 return 0;
1209}
1210
1211/*
1212 * untrack_pfn is called while unmapping a pfnmap for a region.
1213 * untrack can be called for a specific region indicated by pfn and size or
1214 * can be for the entire vma (in which case pfn, size are zero).
1215 */
1216static inline void untrack_pfn(struct vm_area_struct *vma,
1217 unsigned long pfn, unsigned long size)
1218{
1219}
1220
1221/*
1222 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1223 */
1224static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1225{
1226}
1227#else
1228extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1229 unsigned long pfn, unsigned long addr,
1230 unsigned long size);
1231extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1232 pfn_t pfn);
1233extern int track_pfn_copy(struct vm_area_struct *vma);
1234extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1235 unsigned long size);
1236extern void untrack_pfn_moved(struct vm_area_struct *vma);
1237#endif
1238
1239#ifdef CONFIG_MMU
1240#ifdef __HAVE_COLOR_ZERO_PAGE
1241static inline int is_zero_pfn(unsigned long pfn)
1242{
1243 extern unsigned long zero_pfn;
1244 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1245 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1246}
1247
1248#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1249
1250#else
1251static inline int is_zero_pfn(unsigned long pfn)
1252{
1253 extern unsigned long zero_pfn;
1254 return pfn == zero_pfn;
1255}
1256
1257static inline unsigned long my_zero_pfn(unsigned long addr)
1258{
1259 extern unsigned long zero_pfn;
1260 return zero_pfn;
1261}
1262#endif
1263#else
1264static inline int is_zero_pfn(unsigned long pfn)
1265{
1266 return 0;
1267}
1268
1269static inline unsigned long my_zero_pfn(unsigned long addr)
1270{
1271 return 0;
1272}
1273#endif /* CONFIG_MMU */
1274
1275#ifdef CONFIG_MMU
1276
1277#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1278static inline int pmd_trans_huge(pmd_t pmd)
1279{
1280 return 0;
1281}
1282#ifndef pmd_write
1283static inline int pmd_write(pmd_t pmd)
1284{
1285 BUG();
1286 return 0;
1287}
1288#endif /* pmd_write */
1289#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1290
1291#ifndef pud_write
1292static inline int pud_write(pud_t pud)
1293{
1294 BUG();
1295 return 0;
1296}
1297#endif /* pud_write */
1298
1299#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1300static inline int pmd_devmap(pmd_t pmd)
1301{
1302 return 0;
1303}
1304static inline int pud_devmap(pud_t pud)
1305{
1306 return 0;
1307}
1308static inline int pgd_devmap(pgd_t pgd)
1309{
1310 return 0;
1311}
1312#endif
1313
1314#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1315 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1316static inline int pud_trans_huge(pud_t pud)
1317{
1318 return 0;
1319}
1320#endif
1321
1322/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1323static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1324{
1325 pud_t pudval = READ_ONCE(*pud);
1326
1327 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1328 return 1;
1329 if (unlikely(pud_bad(pudval))) {
1330 pud_clear_bad(pud);
1331 return 1;
1332 }
1333 return 0;
1334}
1335
1336/* See pmd_trans_unstable for discussion. */
1337static inline int pud_trans_unstable(pud_t *pud)
1338{
1339#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1340 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1341 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1342#else
1343 return 0;
1344#endif
1345}
1346
1347#ifndef arch_needs_pgtable_deposit
1348#define arch_needs_pgtable_deposit() (false)
1349#endif
1350/*
1351 * This function is meant to be used by sites walking pagetables with
1352 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1353 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1354 * into a null pmd and the transhuge page fault can convert a null pmd
1355 * into an hugepmd or into a regular pmd (if the hugepage allocation
1356 * fails). While holding the mmap_lock in read mode the pmd becomes
1357 * stable and stops changing under us only if it's not null and not a
1358 * transhuge pmd. When those races occurs and this function makes a
1359 * difference vs the standard pmd_none_or_clear_bad, the result is
1360 * undefined so behaving like if the pmd was none is safe (because it
1361 * can return none anyway). The compiler level barrier() is critically
1362 * important to compute the two checks atomically on the same pmdval.
1363 *
1364 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1365 * care of reading the pmd atomically to avoid SMP race conditions
1366 * against pmd_populate() when the mmap_lock is hold for reading by the
1367 * caller (a special atomic read not done by "gcc" as in the generic
1368 * version above, is also needed when THP is disabled because the page
1369 * fault can populate the pmd from under us).
1370 */
1371static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1372{
1373 pmd_t pmdval = pmdp_get_lockless(pmd);
1374 /*
1375 * The barrier will stabilize the pmdval in a register or on
1376 * the stack so that it will stop changing under the code.
1377 *
1378 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1379 * pmdp_get_lockless is allowed to return a not atomic pmdval
1380 * (for example pointing to an hugepage that has never been
1381 * mapped in the pmd). The below checks will only care about
1382 * the low part of the pmd with 32bit PAE x86 anyway, with the
1383 * exception of pmd_none(). So the important thing is that if
1384 * the low part of the pmd is found null, the high part will
1385 * be also null or the pmd_none() check below would be
1386 * confused.
1387 */
1388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1389 barrier();
1390#endif
1391 /*
1392 * !pmd_present() checks for pmd migration entries
1393 *
1394 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1395 * But using that requires moving current function and pmd_trans_unstable()
1396 * to linux/swapops.h to resolve dependency, which is too much code move.
1397 *
1398 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1399 * because !pmd_present() pages can only be under migration not swapped
1400 * out.
1401 *
1402 * pmd_none() is preserved for future condition checks on pmd migration
1403 * entries and not confusing with this function name, although it is
1404 * redundant with !pmd_present().
1405 */
1406 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1407 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1408 return 1;
1409 if (unlikely(pmd_bad(pmdval))) {
1410 pmd_clear_bad(pmd);
1411 return 1;
1412 }
1413 return 0;
1414}
1415
1416/*
1417 * This is a noop if Transparent Hugepage Support is not built into
1418 * the kernel. Otherwise it is equivalent to
1419 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1420 * places that already verified the pmd is not none and they want to
1421 * walk ptes while holding the mmap sem in read mode (write mode don't
1422 * need this). If THP is not enabled, the pmd can't go away under the
1423 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1424 * run a pmd_trans_unstable before walking the ptes after
1425 * split_huge_pmd returns (because it may have run when the pmd become
1426 * null, but then a page fault can map in a THP and not a regular page).
1427 */
1428static inline int pmd_trans_unstable(pmd_t *pmd)
1429{
1430#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1431 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1432#else
1433 return 0;
1434#endif
1435}
1436
1437/*
1438 * the ordering of these checks is important for pmds with _page_devmap set.
1439 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1440 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1441 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1442 */
1443static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1444{
1445 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1446}
1447
1448#ifndef CONFIG_NUMA_BALANCING
1449/*
1450 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1451 * the only case the kernel cares is for NUMA balancing and is only ever set
1452 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1453 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1454 * is the responsibility of the caller to distinguish between PROT_NONE
1455 * protections and NUMA hinting fault protections.
1456 */
1457static inline int pte_protnone(pte_t pte)
1458{
1459 return 0;
1460}
1461
1462static inline int pmd_protnone(pmd_t pmd)
1463{
1464 return 0;
1465}
1466#endif /* CONFIG_NUMA_BALANCING */
1467
1468#endif /* CONFIG_MMU */
1469
1470#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1471
1472#ifndef __PAGETABLE_P4D_FOLDED
1473int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1474void p4d_clear_huge(p4d_t *p4d);
1475#else
1476static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1477{
1478 return 0;
1479}
1480static inline void p4d_clear_huge(p4d_t *p4d) { }
1481#endif /* !__PAGETABLE_P4D_FOLDED */
1482
1483int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1484int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1485int pud_clear_huge(pud_t *pud);
1486int pmd_clear_huge(pmd_t *pmd);
1487int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1488int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1489int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1490#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1491static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1492{
1493 return 0;
1494}
1495static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1496{
1497 return 0;
1498}
1499static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1500{
1501 return 0;
1502}
1503static inline void p4d_clear_huge(p4d_t *p4d) { }
1504static inline int pud_clear_huge(pud_t *pud)
1505{
1506 return 0;
1507}
1508static inline int pmd_clear_huge(pmd_t *pmd)
1509{
1510 return 0;
1511}
1512static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1513{
1514 return 0;
1515}
1516static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1517{
1518 return 0;
1519}
1520static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1521{
1522 return 0;
1523}
1524#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1525
1526#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528/*
1529 * ARCHes with special requirements for evicting THP backing TLB entries can
1530 * implement this. Otherwise also, it can help optimize normal TLB flush in
1531 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1532 * entire TLB if flush span is greater than a threshold, which will
1533 * likely be true for a single huge page. Thus a single THP flush will
1534 * invalidate the entire TLB which is not desirable.
1535 * e.g. see arch/arc: flush_pmd_tlb_range
1536 */
1537#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1538#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1539#else
1540#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1541#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1542#endif
1543#endif
1544
1545struct file;
1546int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1547 unsigned long size, pgprot_t *vma_prot);
1548
1549#ifndef CONFIG_X86_ESPFIX64
1550static inline void init_espfix_bsp(void) { }
1551#endif
1552
1553extern void __init pgtable_cache_init(void);
1554
1555#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1556static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1557{
1558 return true;
1559}
1560
1561static inline bool arch_has_pfn_modify_check(void)
1562{
1563 return false;
1564}
1565#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1566
1567/*
1568 * Architecture PAGE_KERNEL_* fallbacks
1569 *
1570 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1571 * because they really don't support them, or the port needs to be updated to
1572 * reflect the required functionality. Below are a set of relatively safe
1573 * fallbacks, as best effort, which we can count on in lieu of the architectures
1574 * not defining them on their own yet.
1575 */
1576
1577#ifndef PAGE_KERNEL_RO
1578# define PAGE_KERNEL_RO PAGE_KERNEL
1579#endif
1580
1581#ifndef PAGE_KERNEL_EXEC
1582# define PAGE_KERNEL_EXEC PAGE_KERNEL
1583#endif
1584
1585/*
1586 * Page Table Modification bits for pgtbl_mod_mask.
1587 *
1588 * These are used by the p?d_alloc_track*() set of functions an in the generic
1589 * vmalloc/ioremap code to track at which page-table levels entries have been
1590 * modified. Based on that the code can better decide when vmalloc and ioremap
1591 * mapping changes need to be synchronized to other page-tables in the system.
1592 */
1593#define __PGTBL_PGD_MODIFIED 0
1594#define __PGTBL_P4D_MODIFIED 1
1595#define __PGTBL_PUD_MODIFIED 2
1596#define __PGTBL_PMD_MODIFIED 3
1597#define __PGTBL_PTE_MODIFIED 4
1598
1599#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1600#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1601#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1602#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1603#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1604
1605/* Page-Table Modification Mask */
1606typedef unsigned int pgtbl_mod_mask;
1607
1608#endif /* !__ASSEMBLY__ */
1609
1610#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1611#ifdef CONFIG_PHYS_ADDR_T_64BIT
1612/*
1613 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1614 * with physical address space extension, but falls back to
1615 * BITS_PER_LONG otherwise.
1616 */
1617#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1618#else
1619#define MAX_POSSIBLE_PHYSMEM_BITS 32
1620#endif
1621#endif
1622
1623#ifndef has_transparent_hugepage
1624#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1625#endif
1626
1627/*
1628 * On some architectures it depends on the mm if the p4d/pud or pmd
1629 * layer of the page table hierarchy is folded or not.
1630 */
1631#ifndef mm_p4d_folded
1632#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1633#endif
1634
1635#ifndef mm_pud_folded
1636#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1637#endif
1638
1639#ifndef mm_pmd_folded
1640#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1641#endif
1642
1643#ifndef p4d_offset_lockless
1644#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1645#endif
1646#ifndef pud_offset_lockless
1647#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1648#endif
1649#ifndef pmd_offset_lockless
1650#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1651#endif
1652
1653/*
1654 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1655 * This differs from p?d_huge() by the fact that they are always available (if
1656 * the architecture supports large pages at the appropriate level) even
1657 * if CONFIG_HUGETLB_PAGE is not defined.
1658 * Only meaningful when called on a valid entry.
1659 */
1660#ifndef pgd_leaf
1661#define pgd_leaf(x) 0
1662#endif
1663#ifndef p4d_leaf
1664#define p4d_leaf(x) 0
1665#endif
1666#ifndef pud_leaf
1667#define pud_leaf(x) 0
1668#endif
1669#ifndef pmd_leaf
1670#define pmd_leaf(x) 0
1671#endif
1672
1673#ifndef pgd_leaf_size
1674#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1675#endif
1676#ifndef p4d_leaf_size
1677#define p4d_leaf_size(x) P4D_SIZE
1678#endif
1679#ifndef pud_leaf_size
1680#define pud_leaf_size(x) PUD_SIZE
1681#endif
1682#ifndef pmd_leaf_size
1683#define pmd_leaf_size(x) PMD_SIZE
1684#endif
1685#ifndef pte_leaf_size
1686#define pte_leaf_size(x) PAGE_SIZE
1687#endif
1688
1689/*
1690 * Some architectures have MMUs that are configurable or selectable at boot
1691 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1692 * helps to have a static maximum value.
1693 */
1694
1695#ifndef MAX_PTRS_PER_PTE
1696#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1697#endif
1698
1699#ifndef MAX_PTRS_PER_PMD
1700#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1701#endif
1702
1703#ifndef MAX_PTRS_PER_PUD
1704#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1705#endif
1706
1707#ifndef MAX_PTRS_PER_P4D
1708#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1709#endif
1710
1711/* description of effects of mapping type and prot in current implementation.
1712 * this is due to the limited x86 page protection hardware. The expected
1713 * behavior is in parens:
1714 *
1715 * map_type prot
1716 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1717 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1718 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1719 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1720 *
1721 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1722 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1723 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1724 *
1725 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1726 * MAP_PRIVATE (with Enhanced PAN supported):
1727 * r: (no) no
1728 * w: (no) no
1729 * x: (yes) yes
1730 */
1731#define DECLARE_VM_GET_PAGE_PROT \
1732pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1733{ \
1734 return protection_map[vm_flags & \
1735 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1736} \
1737EXPORT_SYMBOL(vm_get_page_prot);
1738
1739#endif /* _LINUX_PGTABLE_H */