Loading...
Note: File does not exist in v4.10.11.
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11#ifndef __ASSEMBLY__
12#ifdef CONFIG_MMU
13
14#include <linux/mm_types.h>
15#include <linux/bug.h>
16#include <linux/errno.h>
17#include <asm-generic/pgtable_uffd.h>
18#include <linux/page_table_check.h>
19
20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23#endif
24
25/*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31#ifndef USER_PGTABLES_CEILING
32#define USER_PGTABLES_CEILING 0UL
33#endif
34
35/*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40#ifndef FIRST_USER_ADDRESS
41#define FIRST_USER_ADDRESS 0UL
42#endif
43
44/*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49#ifndef pmd_pgtable
50#define pmd_pgtable(pmd) pmd_page(pmd)
51#endif
52
53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55/*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
67static inline unsigned long pte_index(unsigned long address)
68{
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70}
71
72#ifndef pmd_index
73static inline unsigned long pmd_index(unsigned long address)
74{
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76}
77#define pmd_index pmd_index
78#endif
79
80#ifndef pud_index
81static inline unsigned long pud_index(unsigned long address)
82{
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84}
85#define pud_index pud_index
86#endif
87
88#ifndef pgd_index
89/* Must be a compile-time constant, so implement it as a macro */
90#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91#endif
92
93#ifndef kernel_pte_init
94static inline void kernel_pte_init(void *addr)
95{
96}
97#define kernel_pte_init kernel_pte_init
98#endif
99
100#ifndef pmd_init
101static inline void pmd_init(void *addr)
102{
103}
104#define pmd_init pmd_init
105#endif
106
107#ifndef pud_init
108static inline void pud_init(void *addr)
109{
110}
111#define pud_init pud_init
112#endif
113
114#ifndef pte_offset_kernel
115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116{
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118}
119#define pte_offset_kernel pte_offset_kernel
120#endif
121
122#ifdef CONFIG_HIGHPTE
123#define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125#define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128} while (0)
129#else
130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131{
132 return pte_offset_kernel(pmd, address);
133}
134static inline void pte_unmap(pte_t *pte)
135{
136 rcu_read_unlock();
137}
138#endif
139
140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142/* Find an entry in the second-level page table.. */
143#ifndef pmd_offset
144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145{
146 return pud_pgtable(*pud) + pmd_index(address);
147}
148#define pmd_offset pmd_offset
149#endif
150
151#ifndef pud_offset
152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153{
154 return p4d_pgtable(*p4d) + pud_index(address);
155}
156#define pud_offset pud_offset
157#endif
158
159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160{
161 return (pgd + pgd_index(address));
162};
163
164/*
165 * a shortcut to get a pgd_t in a given mm
166 */
167#ifndef pgd_offset
168#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169#endif
170
171/*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177/*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185{
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187}
188
189static inline pmd_t *pmd_off_k(unsigned long va)
190{
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192}
193
194static inline pte_t *virt_to_kpte(unsigned long vaddr)
195{
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199}
200
201#ifndef pmd_young
202static inline int pmd_young(pmd_t pmd)
203{
204 return 0;
205}
206#endif
207
208#ifndef pmd_dirty
209static inline int pmd_dirty(pmd_t pmd)
210{
211 return 0;
212}
213#endif
214
215/*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date. This mode can only be entered and left under the protection of
226 * the page table locks for all page tables which may be modified. In the UP
227 * case, this is required so that preemption is disabled, and in the SMP case,
228 * it must synchronize the delayed page table writes properly on other CPUs.
229 */
230#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
231#define arch_enter_lazy_mmu_mode() do {} while (0)
232#define arch_leave_lazy_mmu_mode() do {} while (0)
233#define arch_flush_lazy_mmu_mode() do {} while (0)
234#endif
235
236#ifndef pte_batch_hint
237/**
238 * pte_batch_hint - Number of pages that can be added to batch without scanning.
239 * @ptep: Page table pointer for the entry.
240 * @pte: Page table entry.
241 *
242 * Some architectures know that a set of contiguous ptes all map the same
243 * contiguous memory with the same permissions. In this case, it can provide a
244 * hint to aid pte batching without the core code needing to scan every pte.
245 *
246 * An architecture implementation may ignore the PTE accessed state. Further,
247 * the dirty state must apply atomically to all the PTEs described by the hint.
248 *
249 * May be overridden by the architecture, else pte_batch_hint is always 1.
250 */
251static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
252{
253 return 1;
254}
255#endif
256
257#ifndef pte_advance_pfn
258static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
259{
260 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
261}
262#endif
263
264#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
265
266#ifndef set_ptes
267/**
268 * set_ptes - Map consecutive pages to a contiguous range of addresses.
269 * @mm: Address space to map the pages into.
270 * @addr: Address to map the first page at.
271 * @ptep: Page table pointer for the first entry.
272 * @pte: Page table entry for the first page.
273 * @nr: Number of pages to map.
274 *
275 * When nr==1, initial state of pte may be present or not present, and new state
276 * may be present or not present. When nr>1, initial state of all ptes must be
277 * not present, and new state must be present.
278 *
279 * May be overridden by the architecture, or the architecture can define
280 * set_pte() and PFN_PTE_SHIFT.
281 *
282 * Context: The caller holds the page table lock. The pages all belong
283 * to the same folio. The PTEs are all in the same PMD.
284 */
285static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
286 pte_t *ptep, pte_t pte, unsigned int nr)
287{
288 page_table_check_ptes_set(mm, ptep, pte, nr);
289
290 arch_enter_lazy_mmu_mode();
291 for (;;) {
292 set_pte(ptep, pte);
293 if (--nr == 0)
294 break;
295 ptep++;
296 pte = pte_next_pfn(pte);
297 }
298 arch_leave_lazy_mmu_mode();
299}
300#endif
301#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
302
303#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304extern int ptep_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pte_t *ptep,
306 pte_t entry, int dirty);
307#endif
308
309#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
311extern int pmdp_set_access_flags(struct vm_area_struct *vma,
312 unsigned long address, pmd_t *pmdp,
313 pmd_t entry, int dirty);
314extern int pudp_set_access_flags(struct vm_area_struct *vma,
315 unsigned long address, pud_t *pudp,
316 pud_t entry, int dirty);
317#else
318static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp,
320 pmd_t entry, int dirty)
321{
322 BUILD_BUG();
323 return 0;
324}
325static inline int pudp_set_access_flags(struct vm_area_struct *vma,
326 unsigned long address, pud_t *pudp,
327 pud_t entry, int dirty)
328{
329 BUILD_BUG();
330 return 0;
331}
332#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
333#endif
334
335#ifndef ptep_get
336static inline pte_t ptep_get(pte_t *ptep)
337{
338 return READ_ONCE(*ptep);
339}
340#endif
341
342#ifndef pmdp_get
343static inline pmd_t pmdp_get(pmd_t *pmdp)
344{
345 return READ_ONCE(*pmdp);
346}
347#endif
348
349#ifndef pudp_get
350static inline pud_t pudp_get(pud_t *pudp)
351{
352 return READ_ONCE(*pudp);
353}
354#endif
355
356#ifndef p4dp_get
357static inline p4d_t p4dp_get(p4d_t *p4dp)
358{
359 return READ_ONCE(*p4dp);
360}
361#endif
362
363#ifndef pgdp_get
364static inline pgd_t pgdp_get(pgd_t *pgdp)
365{
366 return READ_ONCE(*pgdp);
367}
368#endif
369
370#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long address,
373 pte_t *ptep)
374{
375 pte_t pte = ptep_get(ptep);
376 int r = 1;
377 if (!pte_young(pte))
378 r = 0;
379 else
380 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
381 return r;
382}
383#endif
384
385#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
386#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
387static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 unsigned long address,
389 pmd_t *pmdp)
390{
391 pmd_t pmd = *pmdp;
392 int r = 1;
393 if (!pmd_young(pmd))
394 r = 0;
395 else
396 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
397 return r;
398}
399#else
400static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
401 unsigned long address,
402 pmd_t *pmdp)
403{
404 BUILD_BUG();
405 return 0;
406}
407#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
408#endif
409
410#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411int ptep_clear_flush_young(struct vm_area_struct *vma,
412 unsigned long address, pte_t *ptep);
413#endif
414
415#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416#ifdef CONFIG_TRANSPARENT_HUGEPAGE
417extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
418 unsigned long address, pmd_t *pmdp);
419#else
420/*
421 * Despite relevant to THP only, this API is called from generic rmap code
422 * under PageTransHuge(), hence needs a dummy implementation for !THP
423 */
424static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
426{
427 BUILD_BUG();
428 return 0;
429}
430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
431#endif
432
433#ifndef arch_has_hw_nonleaf_pmd_young
434/*
435 * Return whether the accessed bit in non-leaf PMD entries is supported on the
436 * local CPU.
437 */
438static inline bool arch_has_hw_nonleaf_pmd_young(void)
439{
440 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
441}
442#endif
443
444#ifndef arch_has_hw_pte_young
445/*
446 * Return whether the accessed bit is supported on the local CPU.
447 *
448 * This stub assumes accessing through an old PTE triggers a page fault.
449 * Architectures that automatically set the access bit should overwrite it.
450 */
451static inline bool arch_has_hw_pte_young(void)
452{
453 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
454}
455#endif
456
457#ifndef arch_check_zapped_pte
458static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
459 pte_t pte)
460{
461}
462#endif
463
464#ifndef arch_check_zapped_pmd
465static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
466 pmd_t pmd)
467{
468}
469#endif
470
471#ifndef arch_check_zapped_pud
472static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
473{
474}
475#endif
476
477#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
478static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long address,
480 pte_t *ptep)
481{
482 pte_t pte = ptep_get(ptep);
483 pte_clear(mm, address, ptep);
484 page_table_check_pte_clear(mm, pte);
485 return pte;
486}
487#endif
488
489#ifndef clear_young_dirty_ptes
490/**
491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
492 * same folio as old/clean.
493 * @mm: Address space the pages are mapped into.
494 * @addr: Address the first page is mapped at.
495 * @ptep: Page table pointer for the first entry.
496 * @nr: Number of entries to mark old/clean.
497 * @flags: Flags to modify the PTE batch semantics.
498 *
499 * May be overridden by the architecture; otherwise, implemented by
500 * get_and_clear/modify/set for each pte in the range.
501 *
502 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
503 * some PTEs might be write-protected.
504 *
505 * Context: The caller holds the page table lock. The PTEs map consecutive
506 * pages that belong to the same folio. The PTEs are all in the same PMD.
507 */
508static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
509 unsigned long addr, pte_t *ptep,
510 unsigned int nr, cydp_t flags)
511{
512 pte_t pte;
513
514 for (;;) {
515 if (flags == CYDP_CLEAR_YOUNG)
516 ptep_test_and_clear_young(vma, addr, ptep);
517 else {
518 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
519 if (flags & CYDP_CLEAR_YOUNG)
520 pte = pte_mkold(pte);
521 if (flags & CYDP_CLEAR_DIRTY)
522 pte = pte_mkclean(pte);
523 set_pte_at(vma->vm_mm, addr, ptep, pte);
524 }
525 if (--nr == 0)
526 break;
527 ptep++;
528 addr += PAGE_SIZE;
529 }
530}
531#endif
532
533static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
534 pte_t *ptep)
535{
536 ptep_get_and_clear(mm, addr, ptep);
537}
538
539#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
540/*
541 * For walking the pagetables without holding any locks. Some architectures
542 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
543 * instructions. We are guaranteed that a PTE will only either go from not
544 * present to present, or present to not present -- it will not switch to a
545 * completely different present page without a TLB flush inbetween; which we
546 * are blocking by holding interrupts off.
547 *
548 * Setting ptes from not present to present goes:
549 *
550 * ptep->pte_high = h;
551 * smp_wmb();
552 * ptep->pte_low = l;
553 *
554 * And present to not present goes:
555 *
556 * ptep->pte_low = 0;
557 * smp_wmb();
558 * ptep->pte_high = 0;
559 *
560 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
561 * We load pte_high *after* loading pte_low, which ensures we don't see an older
562 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
563 * picked up a changed pte high. We might have gotten rubbish values from
564 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
565 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
566 * operates on present ptes we're safe.
567 */
568static inline pte_t ptep_get_lockless(pte_t *ptep)
569{
570 pte_t pte;
571
572 do {
573 pte.pte_low = ptep->pte_low;
574 smp_rmb();
575 pte.pte_high = ptep->pte_high;
576 smp_rmb();
577 } while (unlikely(pte.pte_low != ptep->pte_low));
578
579 return pte;
580}
581#define ptep_get_lockless ptep_get_lockless
582
583#if CONFIG_PGTABLE_LEVELS > 2
584static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
585{
586 pmd_t pmd;
587
588 do {
589 pmd.pmd_low = pmdp->pmd_low;
590 smp_rmb();
591 pmd.pmd_high = pmdp->pmd_high;
592 smp_rmb();
593 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
594
595 return pmd;
596}
597#define pmdp_get_lockless pmdp_get_lockless
598#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
599#endif /* CONFIG_PGTABLE_LEVELS > 2 */
600#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
601
602/*
603 * We require that the PTE can be read atomically.
604 */
605#ifndef ptep_get_lockless
606static inline pte_t ptep_get_lockless(pte_t *ptep)
607{
608 return ptep_get(ptep);
609}
610#endif
611
612#ifndef pmdp_get_lockless
613static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
614{
615 return pmdp_get(pmdp);
616}
617static inline void pmdp_get_lockless_sync(void)
618{
619}
620#endif
621
622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
623#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
624static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
625 unsigned long address,
626 pmd_t *pmdp)
627{
628 pmd_t pmd = *pmdp;
629
630 pmd_clear(pmdp);
631 page_table_check_pmd_clear(mm, pmd);
632
633 return pmd;
634}
635#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
636#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
637static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
638 unsigned long address,
639 pud_t *pudp)
640{
641 pud_t pud = *pudp;
642
643 pud_clear(pudp);
644 page_table_check_pud_clear(mm, pud);
645
646 return pud;
647}
648#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
649#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
650
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
653static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
654 unsigned long address, pmd_t *pmdp,
655 int full)
656{
657 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
658}
659#endif
660
661#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
662static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
663 unsigned long address, pud_t *pudp,
664 int full)
665{
666 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
667}
668#endif
669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
670
671#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
672static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
673 unsigned long address, pte_t *ptep,
674 int full)
675{
676 return ptep_get_and_clear(mm, address, ptep);
677}
678#endif
679
680#ifndef get_and_clear_full_ptes
681/**
682 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
683 * the same folio, collecting dirty/accessed bits.
684 * @mm: Address space the pages are mapped into.
685 * @addr: Address the first page is mapped at.
686 * @ptep: Page table pointer for the first entry.
687 * @nr: Number of entries to clear.
688 * @full: Whether we are clearing a full mm.
689 *
690 * May be overridden by the architecture; otherwise, implemented as a simple
691 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
692 * returned PTE.
693 *
694 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
695 * some PTEs might be write-protected.
696 *
697 * Context: The caller holds the page table lock. The PTEs map consecutive
698 * pages that belong to the same folio. The PTEs are all in the same PMD.
699 */
700static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
701 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
702{
703 pte_t pte, tmp_pte;
704
705 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
706 while (--nr) {
707 ptep++;
708 addr += PAGE_SIZE;
709 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
710 if (pte_dirty(tmp_pte))
711 pte = pte_mkdirty(pte);
712 if (pte_young(tmp_pte))
713 pte = pte_mkyoung(pte);
714 }
715 return pte;
716}
717#endif
718
719#ifndef clear_full_ptes
720/**
721 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
722 * folio.
723 * @mm: Address space the pages are mapped into.
724 * @addr: Address the first page is mapped at.
725 * @ptep: Page table pointer for the first entry.
726 * @nr: Number of entries to clear.
727 * @full: Whether we are clearing a full mm.
728 *
729 * May be overridden by the architecture; otherwise, implemented as a simple
730 * loop over ptep_get_and_clear_full().
731 *
732 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
733 * some PTEs might be write-protected.
734 *
735 * Context: The caller holds the page table lock. The PTEs map consecutive
736 * pages that belong to the same folio. The PTEs are all in the same PMD.
737 */
738static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
739 pte_t *ptep, unsigned int nr, int full)
740{
741 for (;;) {
742 ptep_get_and_clear_full(mm, addr, ptep, full);
743 if (--nr == 0)
744 break;
745 ptep++;
746 addr += PAGE_SIZE;
747 }
748}
749#endif
750
751/*
752 * If two threads concurrently fault at the same page, the thread that
753 * won the race updates the PTE and its local TLB/Cache. The other thread
754 * gives up, simply does nothing, and continues; on architectures where
755 * software can update TLB, local TLB can be updated here to avoid next page
756 * fault. This function updates TLB only, do nothing with cache or others.
757 * It is the difference with function update_mmu_cache.
758 */
759#ifndef update_mmu_tlb_range
760static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
761 unsigned long address, pte_t *ptep, unsigned int nr)
762{
763}
764#endif
765
766static inline void update_mmu_tlb(struct vm_area_struct *vma,
767 unsigned long address, pte_t *ptep)
768{
769 update_mmu_tlb_range(vma, address, ptep, 1);
770}
771
772/*
773 * Some architectures may be able to avoid expensive synchronization
774 * primitives when modifications are made to PTE's which are already
775 * not present, or in the process of an address space destruction.
776 */
777#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
778static inline void pte_clear_not_present_full(struct mm_struct *mm,
779 unsigned long address,
780 pte_t *ptep,
781 int full)
782{
783 pte_clear(mm, address, ptep);
784}
785#endif
786
787#ifndef clear_not_present_full_ptes
788/**
789 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
790 * consecutive in the pgtable.
791 * @mm: Address space the ptes represent.
792 * @addr: Address of the first pte.
793 * @ptep: Page table pointer for the first entry.
794 * @nr: Number of entries to clear.
795 * @full: Whether we are clearing a full mm.
796 *
797 * May be overridden by the architecture; otherwise, implemented as a simple
798 * loop over pte_clear_not_present_full().
799 *
800 * Context: The caller holds the page table lock. The PTEs are all not present.
801 * The PTEs are all in the same PMD.
802 */
803static inline void clear_not_present_full_ptes(struct mm_struct *mm,
804 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
805{
806 for (;;) {
807 pte_clear_not_present_full(mm, addr, ptep, full);
808 if (--nr == 0)
809 break;
810 ptep++;
811 addr += PAGE_SIZE;
812 }
813}
814#endif
815
816#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
817extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
818 unsigned long address,
819 pte_t *ptep);
820#endif
821
822#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
823extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
824 unsigned long address,
825 pmd_t *pmdp);
826extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
827 unsigned long address,
828 pud_t *pudp);
829#endif
830
831#ifndef pte_mkwrite
832static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
833{
834 return pte_mkwrite_novma(pte);
835}
836#endif
837
838#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
839static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
840{
841 return pmd_mkwrite_novma(pmd);
842}
843#endif
844
845#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
846struct mm_struct;
847static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
848{
849 pte_t old_pte = ptep_get(ptep);
850 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
851}
852#endif
853
854#ifndef wrprotect_ptes
855/**
856 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
857 * folio.
858 * @mm: Address space the pages are mapped into.
859 * @addr: Address the first page is mapped at.
860 * @ptep: Page table pointer for the first entry.
861 * @nr: Number of entries to write-protect.
862 *
863 * May be overridden by the architecture; otherwise, implemented as a simple
864 * loop over ptep_set_wrprotect().
865 *
866 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
867 * some PTEs might be write-protected.
868 *
869 * Context: The caller holds the page table lock. The PTEs map consecutive
870 * pages that belong to the same folio. The PTEs are all in the same PMD.
871 */
872static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
873 pte_t *ptep, unsigned int nr)
874{
875 for (;;) {
876 ptep_set_wrprotect(mm, addr, ptep);
877 if (--nr == 0)
878 break;
879 ptep++;
880 addr += PAGE_SIZE;
881 }
882}
883#endif
884
885/*
886 * On some architectures hardware does not set page access bit when accessing
887 * memory page, it is responsibility of software setting this bit. It brings
888 * out extra page fault penalty to track page access bit. For optimization page
889 * access bit can be set during all page fault flow on these arches.
890 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
891 * where software maintains page access bit.
892 */
893#ifndef pte_sw_mkyoung
894static inline pte_t pte_sw_mkyoung(pte_t pte)
895{
896 return pte;
897}
898#define pte_sw_mkyoung pte_sw_mkyoung
899#endif
900
901#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
902#ifdef CONFIG_TRANSPARENT_HUGEPAGE
903static inline void pmdp_set_wrprotect(struct mm_struct *mm,
904 unsigned long address, pmd_t *pmdp)
905{
906 pmd_t old_pmd = *pmdp;
907 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
908}
909#else
910static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 unsigned long address, pmd_t *pmdp)
912{
913 BUILD_BUG();
914}
915#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
916#endif
917#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
918#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
920static inline void pudp_set_wrprotect(struct mm_struct *mm,
921 unsigned long address, pud_t *pudp)
922{
923 pud_t old_pud = *pudp;
924
925 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
926}
927#else
928static inline void pudp_set_wrprotect(struct mm_struct *mm,
929 unsigned long address, pud_t *pudp)
930{
931 BUILD_BUG();
932}
933#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
934#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935#endif
936
937#ifndef pmdp_collapse_flush
938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
939extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
940 unsigned long address, pmd_t *pmdp);
941#else
942static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
943 unsigned long address,
944 pmd_t *pmdp)
945{
946 BUILD_BUG();
947 return *pmdp;
948}
949#define pmdp_collapse_flush pmdp_collapse_flush
950#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
951#endif
952
953#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
954extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
955 pgtable_t pgtable);
956#endif
957
958#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
959extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
960#endif
961
962#ifndef arch_needs_pgtable_deposit
963#define arch_needs_pgtable_deposit() (false)
964#endif
965
966#ifdef CONFIG_TRANSPARENT_HUGEPAGE
967/*
968 * This is an implementation of pmdp_establish() that is only suitable for an
969 * architecture that doesn't have hardware dirty/accessed bits. In this case we
970 * can't race with CPU which sets these bits and non-atomic approach is fine.
971 */
972static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
973 unsigned long address, pmd_t *pmdp, pmd_t pmd)
974{
975 pmd_t old_pmd = *pmdp;
976 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
977 return old_pmd;
978}
979#endif
980
981#ifndef __HAVE_ARCH_PMDP_INVALIDATE
982extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
983 pmd_t *pmdp);
984#endif
985
986#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
987
988/*
989 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
990 * hugepage mapping in the page tables. This function is similar to
991 * pmdp_invalidate(), but should only be used if the access and dirty bits would
992 * not be cleared by the software in the new PMD value. The function ensures
993 * that hardware changes of the access and dirty bits updates would not be lost.
994 *
995 * Doing so can allow in certain architectures to avoid a TLB flush in most
996 * cases. Yet, another TLB flush might be necessary later if the PMD update
997 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
998 * even when a TLB flush is needed because of the update, the caller may be able
999 * to batch these TLB flushing operations, so fewer TLB flush operations are
1000 * needed.
1001 */
1002extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1003 unsigned long address, pmd_t *pmdp);
1004#endif
1005
1006#ifndef __HAVE_ARCH_PTE_SAME
1007static inline int pte_same(pte_t pte_a, pte_t pte_b)
1008{
1009 return pte_val(pte_a) == pte_val(pte_b);
1010}
1011#endif
1012
1013#ifndef __HAVE_ARCH_PTE_UNUSED
1014/*
1015 * Some architectures provide facilities to virtualization guests
1016 * so that they can flag allocated pages as unused. This allows the
1017 * host to transparently reclaim unused pages. This function returns
1018 * whether the pte's page is unused.
1019 */
1020static inline int pte_unused(pte_t pte)
1021{
1022 return 0;
1023}
1024#endif
1025
1026#ifndef pte_access_permitted
1027#define pte_access_permitted(pte, write) \
1028 (pte_present(pte) && (!(write) || pte_write(pte)))
1029#endif
1030
1031#ifndef pmd_access_permitted
1032#define pmd_access_permitted(pmd, write) \
1033 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1034#endif
1035
1036#ifndef pud_access_permitted
1037#define pud_access_permitted(pud, write) \
1038 (pud_present(pud) && (!(write) || pud_write(pud)))
1039#endif
1040
1041#ifndef p4d_access_permitted
1042#define p4d_access_permitted(p4d, write) \
1043 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1044#endif
1045
1046#ifndef pgd_access_permitted
1047#define pgd_access_permitted(pgd, write) \
1048 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1049#endif
1050
1051#ifndef __HAVE_ARCH_PMD_SAME
1052static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1053{
1054 return pmd_val(pmd_a) == pmd_val(pmd_b);
1055}
1056#endif
1057
1058#ifndef pud_same
1059static inline int pud_same(pud_t pud_a, pud_t pud_b)
1060{
1061 return pud_val(pud_a) == pud_val(pud_b);
1062}
1063#define pud_same pud_same
1064#endif
1065
1066#ifndef __HAVE_ARCH_P4D_SAME
1067static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1068{
1069 return p4d_val(p4d_a) == p4d_val(p4d_b);
1070}
1071#endif
1072
1073#ifndef __HAVE_ARCH_PGD_SAME
1074static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1075{
1076 return pgd_val(pgd_a) == pgd_val(pgd_b);
1077}
1078#endif
1079
1080#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1081static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1082 struct vm_area_struct *vma,
1083 unsigned long addr,
1084 pte_t pte, pte_t oldpte,
1085 int nr)
1086{
1087
1088}
1089#else
1090/*
1091 * Some architectures support metadata associated with a page. When a
1092 * page is being swapped out, this metadata must be saved so it can be
1093 * restored when the page is swapped back in. SPARC M7 and newer
1094 * processors support an ADI (Application Data Integrity) tag for the
1095 * page as metadata for the page. arch_do_swap_page() can restore this
1096 * metadata when a page is swapped back in.
1097 */
1098static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1099 struct vm_area_struct *vma,
1100 unsigned long addr,
1101 pte_t pte, pte_t oldpte,
1102 int nr)
1103{
1104 for (int i = 0; i < nr; i++) {
1105 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1106 pte_advance_pfn(pte, i),
1107 pte_advance_pfn(oldpte, i));
1108 }
1109}
1110#endif
1111
1112#ifndef __HAVE_ARCH_UNMAP_ONE
1113/*
1114 * Some architectures support metadata associated with a page. When a
1115 * page is being swapped out, this metadata must be saved so it can be
1116 * restored when the page is swapped back in. SPARC M7 and newer
1117 * processors support an ADI (Application Data Integrity) tag for the
1118 * page as metadata for the page. arch_unmap_one() can save this
1119 * metadata on a swap-out of a page.
1120 */
1121static inline int arch_unmap_one(struct mm_struct *mm,
1122 struct vm_area_struct *vma,
1123 unsigned long addr,
1124 pte_t orig_pte)
1125{
1126 return 0;
1127}
1128#endif
1129
1130/*
1131 * Allow architectures to preserve additional metadata associated with
1132 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1133 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1134 */
1135#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1136static inline int arch_prepare_to_swap(struct folio *folio)
1137{
1138 return 0;
1139}
1140#endif
1141
1142#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1143static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1144{
1145}
1146
1147static inline void arch_swap_invalidate_area(int type)
1148{
1149}
1150#endif
1151
1152#ifndef __HAVE_ARCH_SWAP_RESTORE
1153static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1154{
1155}
1156#endif
1157
1158#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1159#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1160#endif
1161
1162#ifndef __HAVE_ARCH_MOVE_PTE
1163#define move_pte(pte, old_addr, new_addr) (pte)
1164#endif
1165
1166#ifndef pte_accessible
1167# define pte_accessible(mm, pte) ((void)(pte), 1)
1168#endif
1169
1170#ifndef flush_tlb_fix_spurious_fault
1171#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1172#endif
1173
1174/*
1175 * When walking page tables, get the address of the next boundary,
1176 * or the end address of the range if that comes earlier. Although no
1177 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1178 */
1179
1180#define pgd_addr_end(addr, end) \
1181({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1182 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1183})
1184
1185#ifndef p4d_addr_end
1186#define p4d_addr_end(addr, end) \
1187({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1188 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1189})
1190#endif
1191
1192#ifndef pud_addr_end
1193#define pud_addr_end(addr, end) \
1194({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1195 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1196})
1197#endif
1198
1199#ifndef pmd_addr_end
1200#define pmd_addr_end(addr, end) \
1201({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1202 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1203})
1204#endif
1205
1206/*
1207 * When walking page tables, we usually want to skip any p?d_none entries;
1208 * and any p?d_bad entries - reporting the error before resetting to none.
1209 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1210 */
1211void pgd_clear_bad(pgd_t *);
1212
1213#ifndef __PAGETABLE_P4D_FOLDED
1214void p4d_clear_bad(p4d_t *);
1215#else
1216#define p4d_clear_bad(p4d) do { } while (0)
1217#endif
1218
1219#ifndef __PAGETABLE_PUD_FOLDED
1220void pud_clear_bad(pud_t *);
1221#else
1222#define pud_clear_bad(p4d) do { } while (0)
1223#endif
1224
1225void pmd_clear_bad(pmd_t *);
1226
1227static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1228{
1229 if (pgd_none(*pgd))
1230 return 1;
1231 if (unlikely(pgd_bad(*pgd))) {
1232 pgd_clear_bad(pgd);
1233 return 1;
1234 }
1235 return 0;
1236}
1237
1238static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1239{
1240 if (p4d_none(*p4d))
1241 return 1;
1242 if (unlikely(p4d_bad(*p4d))) {
1243 p4d_clear_bad(p4d);
1244 return 1;
1245 }
1246 return 0;
1247}
1248
1249static inline int pud_none_or_clear_bad(pud_t *pud)
1250{
1251 if (pud_none(*pud))
1252 return 1;
1253 if (unlikely(pud_bad(*pud))) {
1254 pud_clear_bad(pud);
1255 return 1;
1256 }
1257 return 0;
1258}
1259
1260static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1261{
1262 if (pmd_none(*pmd))
1263 return 1;
1264 if (unlikely(pmd_bad(*pmd))) {
1265 pmd_clear_bad(pmd);
1266 return 1;
1267 }
1268 return 0;
1269}
1270
1271static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1272 unsigned long addr,
1273 pte_t *ptep)
1274{
1275 /*
1276 * Get the current pte state, but zero it out to make it
1277 * non-present, preventing the hardware from asynchronously
1278 * updating it.
1279 */
1280 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1281}
1282
1283static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1284 unsigned long addr,
1285 pte_t *ptep, pte_t pte)
1286{
1287 /*
1288 * The pte is non-present, so there's no hardware state to
1289 * preserve.
1290 */
1291 set_pte_at(vma->vm_mm, addr, ptep, pte);
1292}
1293
1294#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1295/*
1296 * Start a pte protection read-modify-write transaction, which
1297 * protects against asynchronous hardware modifications to the pte.
1298 * The intention is not to prevent the hardware from making pte
1299 * updates, but to prevent any updates it may make from being lost.
1300 *
1301 * This does not protect against other software modifications of the
1302 * pte; the appropriate pte lock must be held over the transaction.
1303 *
1304 * Note that this interface is intended to be batchable, meaning that
1305 * ptep_modify_prot_commit may not actually update the pte, but merely
1306 * queue the update to be done at some later time. The update must be
1307 * actually committed before the pte lock is released, however.
1308 */
1309static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1310 unsigned long addr,
1311 pte_t *ptep)
1312{
1313 return __ptep_modify_prot_start(vma, addr, ptep);
1314}
1315
1316/*
1317 * Commit an update to a pte, leaving any hardware-controlled bits in
1318 * the PTE unmodified.
1319 */
1320static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1321 unsigned long addr,
1322 pte_t *ptep, pte_t old_pte, pte_t pte)
1323{
1324 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1325}
1326#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1327#endif /* CONFIG_MMU */
1328
1329/*
1330 * No-op macros that just return the current protection value. Defined here
1331 * because these macros can be used even if CONFIG_MMU is not defined.
1332 */
1333
1334#ifndef pgprot_nx
1335#define pgprot_nx(prot) (prot)
1336#endif
1337
1338#ifndef pgprot_noncached
1339#define pgprot_noncached(prot) (prot)
1340#endif
1341
1342#ifndef pgprot_writecombine
1343#define pgprot_writecombine pgprot_noncached
1344#endif
1345
1346#ifndef pgprot_writethrough
1347#define pgprot_writethrough pgprot_noncached
1348#endif
1349
1350#ifndef pgprot_device
1351#define pgprot_device pgprot_noncached
1352#endif
1353
1354#ifndef pgprot_mhp
1355#define pgprot_mhp(prot) (prot)
1356#endif
1357
1358#ifdef CONFIG_MMU
1359#ifndef pgprot_modify
1360#define pgprot_modify pgprot_modify
1361static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1362{
1363 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1364 newprot = pgprot_noncached(newprot);
1365 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1366 newprot = pgprot_writecombine(newprot);
1367 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1368 newprot = pgprot_device(newprot);
1369 return newprot;
1370}
1371#endif
1372#endif /* CONFIG_MMU */
1373
1374#ifndef pgprot_encrypted
1375#define pgprot_encrypted(prot) (prot)
1376#endif
1377
1378#ifndef pgprot_decrypted
1379#define pgprot_decrypted(prot) (prot)
1380#endif
1381
1382/*
1383 * A facility to provide batching of the reload of page tables and
1384 * other process state with the actual context switch code for
1385 * paravirtualized guests. By convention, only one of the batched
1386 * update (lazy) modes (CPU, MMU) should be active at any given time,
1387 * entry should never be nested, and entry and exits should always be
1388 * paired. This is for sanity of maintaining and reasoning about the
1389 * kernel code. In this case, the exit (end of the context switch) is
1390 * in architecture-specific code, and so doesn't need a generic
1391 * definition.
1392 */
1393#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1394#define arch_start_context_switch(prev) do {} while (0)
1395#endif
1396
1397#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1398#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1399static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1400{
1401 return pmd;
1402}
1403
1404static inline int pmd_swp_soft_dirty(pmd_t pmd)
1405{
1406 return 0;
1407}
1408
1409static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1410{
1411 return pmd;
1412}
1413#endif
1414#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1415static inline int pte_soft_dirty(pte_t pte)
1416{
1417 return 0;
1418}
1419
1420static inline int pmd_soft_dirty(pmd_t pmd)
1421{
1422 return 0;
1423}
1424
1425static inline pte_t pte_mksoft_dirty(pte_t pte)
1426{
1427 return pte;
1428}
1429
1430static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1431{
1432 return pmd;
1433}
1434
1435static inline pte_t pte_clear_soft_dirty(pte_t pte)
1436{
1437 return pte;
1438}
1439
1440static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1441{
1442 return pmd;
1443}
1444
1445static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1446{
1447 return pte;
1448}
1449
1450static inline int pte_swp_soft_dirty(pte_t pte)
1451{
1452 return 0;
1453}
1454
1455static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1456{
1457 return pte;
1458}
1459
1460static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1461{
1462 return pmd;
1463}
1464
1465static inline int pmd_swp_soft_dirty(pmd_t pmd)
1466{
1467 return 0;
1468}
1469
1470static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1471{
1472 return pmd;
1473}
1474#endif
1475
1476#ifndef __HAVE_PFNMAP_TRACKING
1477/*
1478 * Interfaces that can be used by architecture code to keep track of
1479 * memory type of pfn mappings specified by the remap_pfn_range,
1480 * vmf_insert_pfn.
1481 */
1482
1483/*
1484 * track_pfn_remap is called when a _new_ pfn mapping is being established
1485 * by remap_pfn_range() for physical range indicated by pfn and size.
1486 */
1487static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1488 unsigned long pfn, unsigned long addr,
1489 unsigned long size)
1490{
1491 return 0;
1492}
1493
1494/*
1495 * track_pfn_insert is called when a _new_ single pfn is established
1496 * by vmf_insert_pfn().
1497 */
1498static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1499 pfn_t pfn)
1500{
1501}
1502
1503/*
1504 * track_pfn_copy is called when vma that is covering the pfnmap gets
1505 * copied through copy_page_range().
1506 */
1507static inline int track_pfn_copy(struct vm_area_struct *vma)
1508{
1509 return 0;
1510}
1511
1512/*
1513 * untrack_pfn is called while unmapping a pfnmap for a region.
1514 * untrack can be called for a specific region indicated by pfn and size or
1515 * can be for the entire vma (in which case pfn, size are zero).
1516 */
1517static inline void untrack_pfn(struct vm_area_struct *vma,
1518 unsigned long pfn, unsigned long size,
1519 bool mm_wr_locked)
1520{
1521}
1522
1523/*
1524 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1525 * or fails to copy pgtable during duplicate vm area.
1526 */
1527static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1528{
1529}
1530#else
1531extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1532 unsigned long pfn, unsigned long addr,
1533 unsigned long size);
1534extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1535 pfn_t pfn);
1536extern int track_pfn_copy(struct vm_area_struct *vma);
1537extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1538 unsigned long size, bool mm_wr_locked);
1539extern void untrack_pfn_clear(struct vm_area_struct *vma);
1540#endif
1541
1542#ifdef CONFIG_MMU
1543#ifdef __HAVE_COLOR_ZERO_PAGE
1544static inline int is_zero_pfn(unsigned long pfn)
1545{
1546 extern unsigned long zero_pfn;
1547 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1548 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1549}
1550
1551#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1552
1553#else
1554static inline int is_zero_pfn(unsigned long pfn)
1555{
1556 extern unsigned long zero_pfn;
1557 return pfn == zero_pfn;
1558}
1559
1560static inline unsigned long my_zero_pfn(unsigned long addr)
1561{
1562 extern unsigned long zero_pfn;
1563 return zero_pfn;
1564}
1565#endif
1566#else
1567static inline int is_zero_pfn(unsigned long pfn)
1568{
1569 return 0;
1570}
1571
1572static inline unsigned long my_zero_pfn(unsigned long addr)
1573{
1574 return 0;
1575}
1576#endif /* CONFIG_MMU */
1577
1578#ifdef CONFIG_MMU
1579
1580#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1581static inline int pmd_trans_huge(pmd_t pmd)
1582{
1583 return 0;
1584}
1585#ifndef pmd_write
1586static inline int pmd_write(pmd_t pmd)
1587{
1588 BUG();
1589 return 0;
1590}
1591#endif /* pmd_write */
1592#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1593
1594#ifndef pud_write
1595static inline int pud_write(pud_t pud)
1596{
1597 BUG();
1598 return 0;
1599}
1600#endif /* pud_write */
1601
1602#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1603static inline int pmd_devmap(pmd_t pmd)
1604{
1605 return 0;
1606}
1607static inline int pud_devmap(pud_t pud)
1608{
1609 return 0;
1610}
1611static inline int pgd_devmap(pgd_t pgd)
1612{
1613 return 0;
1614}
1615#endif
1616
1617#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1618 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1619static inline int pud_trans_huge(pud_t pud)
1620{
1621 return 0;
1622}
1623#endif
1624
1625static inline int pud_trans_unstable(pud_t *pud)
1626{
1627#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1628 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1629 pud_t pudval = READ_ONCE(*pud);
1630
1631 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1632 return 1;
1633 if (unlikely(pud_bad(pudval))) {
1634 pud_clear_bad(pud);
1635 return 1;
1636 }
1637#endif
1638 return 0;
1639}
1640
1641#ifndef CONFIG_NUMA_BALANCING
1642/*
1643 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1644 * perfectly valid to indicate "no" in that case, which is why our default
1645 * implementation defaults to "always no".
1646 *
1647 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1648 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1649 * accessible VMAs.
1650 *
1651 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1652 * looking at the VMA accessibility is sufficient.
1653 */
1654static inline int pte_protnone(pte_t pte)
1655{
1656 return 0;
1657}
1658
1659static inline int pmd_protnone(pmd_t pmd)
1660{
1661 return 0;
1662}
1663#endif /* CONFIG_NUMA_BALANCING */
1664
1665#endif /* CONFIG_MMU */
1666
1667#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1668
1669#ifndef __PAGETABLE_P4D_FOLDED
1670int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1671void p4d_clear_huge(p4d_t *p4d);
1672#else
1673static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1674{
1675 return 0;
1676}
1677static inline void p4d_clear_huge(p4d_t *p4d) { }
1678#endif /* !__PAGETABLE_P4D_FOLDED */
1679
1680int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1681int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1682int pud_clear_huge(pud_t *pud);
1683int pmd_clear_huge(pmd_t *pmd);
1684int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1685int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1686int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1687#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1688static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1689{
1690 return 0;
1691}
1692static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1693{
1694 return 0;
1695}
1696static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1697{
1698 return 0;
1699}
1700static inline void p4d_clear_huge(p4d_t *p4d) { }
1701static inline int pud_clear_huge(pud_t *pud)
1702{
1703 return 0;
1704}
1705static inline int pmd_clear_huge(pmd_t *pmd)
1706{
1707 return 0;
1708}
1709static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1710{
1711 return 0;
1712}
1713static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1714{
1715 return 0;
1716}
1717static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1718{
1719 return 0;
1720}
1721#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1722
1723#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1724#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1725/*
1726 * ARCHes with special requirements for evicting THP backing TLB entries can
1727 * implement this. Otherwise also, it can help optimize normal TLB flush in
1728 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1729 * entire TLB if flush span is greater than a threshold, which will
1730 * likely be true for a single huge page. Thus a single THP flush will
1731 * invalidate the entire TLB which is not desirable.
1732 * e.g. see arch/arc: flush_pmd_tlb_range
1733 */
1734#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1735#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1736#else
1737#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1738#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1739#endif
1740#endif
1741
1742struct file;
1743int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1744 unsigned long size, pgprot_t *vma_prot);
1745
1746#ifndef CONFIG_X86_ESPFIX64
1747static inline void init_espfix_bsp(void) { }
1748#endif
1749
1750extern void __init pgtable_cache_init(void);
1751
1752#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1753static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1754{
1755 return true;
1756}
1757
1758static inline bool arch_has_pfn_modify_check(void)
1759{
1760 return false;
1761}
1762#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1763
1764/*
1765 * Architecture PAGE_KERNEL_* fallbacks
1766 *
1767 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1768 * because they really don't support them, or the port needs to be updated to
1769 * reflect the required functionality. Below are a set of relatively safe
1770 * fallbacks, as best effort, which we can count on in lieu of the architectures
1771 * not defining them on their own yet.
1772 */
1773
1774#ifndef PAGE_KERNEL_RO
1775# define PAGE_KERNEL_RO PAGE_KERNEL
1776#endif
1777
1778#ifndef PAGE_KERNEL_EXEC
1779# define PAGE_KERNEL_EXEC PAGE_KERNEL
1780#endif
1781
1782/*
1783 * Page Table Modification bits for pgtbl_mod_mask.
1784 *
1785 * These are used by the p?d_alloc_track*() set of functions an in the generic
1786 * vmalloc/ioremap code to track at which page-table levels entries have been
1787 * modified. Based on that the code can better decide when vmalloc and ioremap
1788 * mapping changes need to be synchronized to other page-tables in the system.
1789 */
1790#define __PGTBL_PGD_MODIFIED 0
1791#define __PGTBL_P4D_MODIFIED 1
1792#define __PGTBL_PUD_MODIFIED 2
1793#define __PGTBL_PMD_MODIFIED 3
1794#define __PGTBL_PTE_MODIFIED 4
1795
1796#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1797#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1798#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1799#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1800#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1801
1802/* Page-Table Modification Mask */
1803typedef unsigned int pgtbl_mod_mask;
1804
1805#endif /* !__ASSEMBLY__ */
1806
1807#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1808#ifdef CONFIG_PHYS_ADDR_T_64BIT
1809/*
1810 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1811 * with physical address space extension, but falls back to
1812 * BITS_PER_LONG otherwise.
1813 */
1814#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1815#else
1816#define MAX_POSSIBLE_PHYSMEM_BITS 32
1817#endif
1818#endif
1819
1820#ifndef has_transparent_hugepage
1821#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1822#endif
1823
1824#ifndef has_transparent_pud_hugepage
1825#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1826#endif
1827/*
1828 * On some architectures it depends on the mm if the p4d/pud or pmd
1829 * layer of the page table hierarchy is folded or not.
1830 */
1831#ifndef mm_p4d_folded
1832#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1833#endif
1834
1835#ifndef mm_pud_folded
1836#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1837#endif
1838
1839#ifndef mm_pmd_folded
1840#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1841#endif
1842
1843#ifndef p4d_offset_lockless
1844#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1845#endif
1846#ifndef pud_offset_lockless
1847#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1848#endif
1849#ifndef pmd_offset_lockless
1850#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1851#endif
1852
1853/*
1854 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1855 * mapping. It should work globally across all archs, without any
1856 * dependency on CONFIG_* options. For architectures that do not support
1857 * huge mappings on specific levels, below fallbacks will be used.
1858 *
1859 * A leaf pgtable entry should always imply the following:
1860 *
1861 * - It is a "present" entry. IOW, before using this API, please check it
1862 * with pXd_present() first. NOTE: it may not always mean the "present
1863 * bit" is set. For example, PROT_NONE entries are always "present".
1864 *
1865 * - It should _never_ be a swap entry of any type. Above "present" check
1866 * should have guarded this, but let's be crystal clear on this.
1867 *
1868 * - It should contain a huge PFN, which points to a huge page larger than
1869 * PAGE_SIZE of the platform. The PFN format isn't important here.
1870 *
1871 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1872 * pXd_devmap(), or hugetlb mappings).
1873 */
1874#ifndef pgd_leaf
1875#define pgd_leaf(x) false
1876#endif
1877#ifndef p4d_leaf
1878#define p4d_leaf(x) false
1879#endif
1880#ifndef pud_leaf
1881#define pud_leaf(x) false
1882#endif
1883#ifndef pmd_leaf
1884#define pmd_leaf(x) false
1885#endif
1886
1887#ifndef pgd_leaf_size
1888#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1889#endif
1890#ifndef p4d_leaf_size
1891#define p4d_leaf_size(x) P4D_SIZE
1892#endif
1893#ifndef pud_leaf_size
1894#define pud_leaf_size(x) PUD_SIZE
1895#endif
1896#ifndef pmd_leaf_size
1897#define pmd_leaf_size(x) PMD_SIZE
1898#endif
1899#ifndef __pte_leaf_size
1900#ifndef pte_leaf_size
1901#define pte_leaf_size(x) PAGE_SIZE
1902#endif
1903#define __pte_leaf_size(x,y) pte_leaf_size(y)
1904#endif
1905
1906/*
1907 * We always define pmd_pfn for all archs as it's used in lots of generic
1908 * code. Now it happens too for pud_pfn (and can happen for larger
1909 * mappings too in the future; we're not there yet). Instead of defining
1910 * it for all archs (like pmd_pfn), provide a fallback.
1911 *
1912 * Note that returning 0 here means any arch that didn't define this can
1913 * get severely wrong when it hits a real pud leaf. It's arch's
1914 * responsibility to properly define it when a huge pud is possible.
1915 */
1916#ifndef pud_pfn
1917#define pud_pfn(x) 0
1918#endif
1919
1920/*
1921 * Some architectures have MMUs that are configurable or selectable at boot
1922 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1923 * helps to have a static maximum value.
1924 */
1925
1926#ifndef MAX_PTRS_PER_PTE
1927#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1928#endif
1929
1930#ifndef MAX_PTRS_PER_PMD
1931#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1932#endif
1933
1934#ifndef MAX_PTRS_PER_PUD
1935#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1936#endif
1937
1938#ifndef MAX_PTRS_PER_P4D
1939#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1940#endif
1941
1942#ifndef pte_pgprot
1943#define pte_pgprot(x) ((pgprot_t) {0})
1944#endif
1945
1946#ifndef pmd_pgprot
1947#define pmd_pgprot(x) ((pgprot_t) {0})
1948#endif
1949
1950#ifndef pud_pgprot
1951#define pud_pgprot(x) ((pgprot_t) {0})
1952#endif
1953
1954/* description of effects of mapping type and prot in current implementation.
1955 * this is due to the limited x86 page protection hardware. The expected
1956 * behavior is in parens:
1957 *
1958 * map_type prot
1959 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1960 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1961 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1962 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1963 *
1964 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1965 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1966 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1967 *
1968 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1969 * MAP_PRIVATE (with Enhanced PAN supported):
1970 * r: (no) no
1971 * w: (no) no
1972 * x: (yes) yes
1973 */
1974#define DECLARE_VM_GET_PAGE_PROT \
1975pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1976{ \
1977 return protection_map[vm_flags & \
1978 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1979} \
1980EXPORT_SYMBOL(vm_get_page_prot);
1981
1982#endif /* _LINUX_PGTABLE_H */