Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_PGTABLE_H
   3#define _LINUX_PGTABLE_H
   4
   5#include <linux/pfn.h>
   6#include <asm/pgtable.h>
   7
   8#define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
   9#define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
  10
  11#ifndef __ASSEMBLY__
  12#ifdef CONFIG_MMU
  13
  14#include <linux/mm_types.h>
  15#include <linux/bug.h>
  16#include <linux/errno.h>
  17#include <asm-generic/pgtable_uffd.h>
  18#include <linux/page_table_check.h>
  19
  20#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
  21	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
  22#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
  23#endif
  24
  25/*
  26 * On almost all architectures and configurations, 0 can be used as the
  27 * upper ceiling to free_pgtables(): on many architectures it has the same
  28 * effect as using TASK_SIZE.  However, there is one configuration which
  29 * must impose a more careful limit, to avoid freeing kernel pgtables.
  30 */
  31#ifndef USER_PGTABLES_CEILING
  32#define USER_PGTABLES_CEILING	0UL
  33#endif
  34
  35/*
  36 * This defines the first usable user address. Platforms
  37 * can override its value with custom FIRST_USER_ADDRESS
  38 * defined in their respective <asm/pgtable.h>.
  39 */
  40#ifndef FIRST_USER_ADDRESS
  41#define FIRST_USER_ADDRESS	0UL
  42#endif
  43
  44/*
  45 * This defines the generic helper for accessing PMD page
  46 * table page. Although platforms can still override this
  47 * via their respective <asm/pgtable.h>.
  48 */
  49#ifndef pmd_pgtable
  50#define pmd_pgtable(pmd) pmd_page(pmd)
  51#endif
  52
  53#define pmd_folio(pmd) page_folio(pmd_page(pmd))
  54
  55/*
  56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
  57 *
  58 * The pXx_index() functions return the index of the entry in the page
  59 * table page which would control the given virtual address
  60 *
  61 * As these functions may be used by the same code for different levels of
  62 * the page table folding, they are always available, regardless of
  63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
  64 * because in such cases PTRS_PER_PxD equals 1.
  65 */
  66
  67static inline unsigned long pte_index(unsigned long address)
  68{
  69	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  70}
  71
  72#ifndef pmd_index
  73static inline unsigned long pmd_index(unsigned long address)
  74{
  75	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
  76}
  77#define pmd_index pmd_index
  78#endif
  79
  80#ifndef pud_index
  81static inline unsigned long pud_index(unsigned long address)
  82{
  83	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
  84}
  85#define pud_index pud_index
  86#endif
  87
  88#ifndef pgd_index
  89/* Must be a compile-time constant, so implement it as a macro */
  90#define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
  91#endif
  92
  93#ifndef kernel_pte_init
  94static inline void kernel_pte_init(void *addr)
  95{
  96}
  97#define kernel_pte_init kernel_pte_init
  98#endif
  99
 100#ifndef pmd_init
 101static inline void pmd_init(void *addr)
 102{
 103}
 104#define pmd_init pmd_init
 105#endif
 106
 107#ifndef pud_init
 108static inline void pud_init(void *addr)
 109{
 110}
 111#define pud_init pud_init
 112#endif
 113
 114#ifndef pte_offset_kernel
 115static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
 116{
 117	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
 118}
 119#define pte_offset_kernel pte_offset_kernel
 120#endif
 121
 122#ifdef CONFIG_HIGHPTE
 123#define __pte_map(pmd, address) \
 124	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
 125#define pte_unmap(pte)	do {	\
 126	kunmap_local((pte));	\
 127	rcu_read_unlock();	\
 128} while (0)
 129#else
 130static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
 131{
 132	return pte_offset_kernel(pmd, address);
 133}
 134static inline void pte_unmap(pte_t *pte)
 135{
 136	rcu_read_unlock();
 137}
 138#endif
 139
 140void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
 141
 142/* Find an entry in the second-level page table.. */
 143#ifndef pmd_offset
 144static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 145{
 146	return pud_pgtable(*pud) + pmd_index(address);
 147}
 148#define pmd_offset pmd_offset
 149#endif
 150
 151#ifndef pud_offset
 152static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
 153{
 154	return p4d_pgtable(*p4d) + pud_index(address);
 155}
 156#define pud_offset pud_offset
 157#endif
 158
 159static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
 160{
 161	return (pgd + pgd_index(address));
 162};
 163
 164/*
 165 * a shortcut to get a pgd_t in a given mm
 166 */
 167#ifndef pgd_offset
 168#define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
 169#endif
 170
 171/*
 172 * a shortcut which implies the use of the kernel's pgd, instead
 173 * of a process's
 174 */
 175#define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
 176
 177/*
 178 * In many cases it is known that a virtual address is mapped at PMD or PTE
 179 * level, so instead of traversing all the page table levels, we can get a
 180 * pointer to the PMD entry in user or kernel page table or translate a virtual
 181 * address to the pointer in the PTE in the kernel page tables with simple
 182 * helpers.
 183 */
 184static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
 185{
 186	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
 187}
 188
 189static inline pmd_t *pmd_off_k(unsigned long va)
 190{
 191	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
 192}
 193
 194static inline pte_t *virt_to_kpte(unsigned long vaddr)
 195{
 196	pmd_t *pmd = pmd_off_k(vaddr);
 197
 198	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
 199}
 200
 201#ifndef pmd_young
 202static inline int pmd_young(pmd_t pmd)
 203{
 204	return 0;
 205}
 206#endif
 207
 208#ifndef pmd_dirty
 209static inline int pmd_dirty(pmd_t pmd)
 210{
 211	return 0;
 212}
 213#endif
 214
 215/*
 216 * A facility to provide lazy MMU batching.  This allows PTE updates and
 217 * page invalidations to be delayed until a call to leave lazy MMU mode
 218 * is issued.  Some architectures may benefit from doing this, and it is
 219 * beneficial for both shadow and direct mode hypervisors, which may batch
 220 * the PTE updates which happen during this window.  Note that using this
 221 * interface requires that read hazards be removed from the code.  A read
 222 * hazard could result in the direct mode hypervisor case, since the actual
 223 * write to the page tables may not yet have taken place, so reads though
 224 * a raw PTE pointer after it has been modified are not guaranteed to be
 225 * up to date.  This mode can only be entered and left under the protection of
 226 * the page table locks for all page tables which may be modified.  In the UP
 227 * case, this is required so that preemption is disabled, and in the SMP case,
 228 * it must synchronize the delayed page table writes properly on other CPUs.
 229 */
 230#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
 231#define arch_enter_lazy_mmu_mode()	do {} while (0)
 232#define arch_leave_lazy_mmu_mode()	do {} while (0)
 233#define arch_flush_lazy_mmu_mode()	do {} while (0)
 234#endif
 235
 236#ifndef pte_batch_hint
 237/**
 238 * pte_batch_hint - Number of pages that can be added to batch without scanning.
 239 * @ptep: Page table pointer for the entry.
 240 * @pte: Page table entry.
 241 *
 242 * Some architectures know that a set of contiguous ptes all map the same
 243 * contiguous memory with the same permissions. In this case, it can provide a
 244 * hint to aid pte batching without the core code needing to scan every pte.
 245 *
 246 * An architecture implementation may ignore the PTE accessed state. Further,
 247 * the dirty state must apply atomically to all the PTEs described by the hint.
 248 *
 249 * May be overridden by the architecture, else pte_batch_hint is always 1.
 250 */
 251static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
 252{
 253	return 1;
 254}
 255#endif
 256
 257#ifndef pte_advance_pfn
 258static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
 259{
 260	return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
 261}
 262#endif
 263
 264#define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
 265
 266#ifndef set_ptes
 267/**
 268 * set_ptes - Map consecutive pages to a contiguous range of addresses.
 269 * @mm: Address space to map the pages into.
 270 * @addr: Address to map the first page at.
 271 * @ptep: Page table pointer for the first entry.
 272 * @pte: Page table entry for the first page.
 273 * @nr: Number of pages to map.
 274 *
 275 * When nr==1, initial state of pte may be present or not present, and new state
 276 * may be present or not present. When nr>1, initial state of all ptes must be
 277 * not present, and new state must be present.
 278 *
 279 * May be overridden by the architecture, or the architecture can define
 280 * set_pte() and PFN_PTE_SHIFT.
 281 *
 282 * Context: The caller holds the page table lock.  The pages all belong
 283 * to the same folio.  The PTEs are all in the same PMD.
 284 */
 285static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
 286		pte_t *ptep, pte_t pte, unsigned int nr)
 287{
 288	page_table_check_ptes_set(mm, ptep, pte, nr);
 289
 290	arch_enter_lazy_mmu_mode();
 291	for (;;) {
 292		set_pte(ptep, pte);
 293		if (--nr == 0)
 294			break;
 295		ptep++;
 296		pte = pte_next_pfn(pte);
 297	}
 298	arch_leave_lazy_mmu_mode();
 299}
 300#endif
 301#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
 302
 303#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 304extern int ptep_set_access_flags(struct vm_area_struct *vma,
 305				 unsigned long address, pte_t *ptep,
 306				 pte_t entry, int dirty);
 307#endif
 308
 309#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 311extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 312				 unsigned long address, pmd_t *pmdp,
 313				 pmd_t entry, int dirty);
 314extern int pudp_set_access_flags(struct vm_area_struct *vma,
 315				 unsigned long address, pud_t *pudp,
 316				 pud_t entry, int dirty);
 317#else
 318static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 319					unsigned long address, pmd_t *pmdp,
 320					pmd_t entry, int dirty)
 321{
 322	BUILD_BUG();
 323	return 0;
 324}
 325static inline int pudp_set_access_flags(struct vm_area_struct *vma,
 326					unsigned long address, pud_t *pudp,
 327					pud_t entry, int dirty)
 328{
 329	BUILD_BUG();
 330	return 0;
 331}
 332#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 333#endif
 334
 335#ifndef ptep_get
 336static inline pte_t ptep_get(pte_t *ptep)
 337{
 338	return READ_ONCE(*ptep);
 339}
 340#endif
 341
 342#ifndef pmdp_get
 343static inline pmd_t pmdp_get(pmd_t *pmdp)
 344{
 345	return READ_ONCE(*pmdp);
 346}
 347#endif
 348
 349#ifndef pudp_get
 350static inline pud_t pudp_get(pud_t *pudp)
 351{
 352	return READ_ONCE(*pudp);
 353}
 354#endif
 355
 356#ifndef p4dp_get
 357static inline p4d_t p4dp_get(p4d_t *p4dp)
 358{
 359	return READ_ONCE(*p4dp);
 360}
 361#endif
 362
 363#ifndef pgdp_get
 364static inline pgd_t pgdp_get(pgd_t *pgdp)
 365{
 366	return READ_ONCE(*pgdp);
 367}
 368#endif
 369
 370#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 371static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 372					    unsigned long address,
 373					    pte_t *ptep)
 374{
 375	pte_t pte = ptep_get(ptep);
 376	int r = 1;
 377	if (!pte_young(pte))
 378		r = 0;
 379	else
 380		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 381	return r;
 382}
 383#endif
 384
 385#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 386#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
 387static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 388					    unsigned long address,
 389					    pmd_t *pmdp)
 390{
 391	pmd_t pmd = *pmdp;
 392	int r = 1;
 393	if (!pmd_young(pmd))
 394		r = 0;
 395	else
 396		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 397	return r;
 398}
 399#else
 400static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 401					    unsigned long address,
 402					    pmd_t *pmdp)
 403{
 404	BUILD_BUG();
 405	return 0;
 406}
 407#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
 408#endif
 409
 410#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 411int ptep_clear_flush_young(struct vm_area_struct *vma,
 412			   unsigned long address, pte_t *ptep);
 413#endif
 414
 415#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 416#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 417extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 418				  unsigned long address, pmd_t *pmdp);
 419#else
 420/*
 421 * Despite relevant to THP only, this API is called from generic rmap code
 422 * under PageTransHuge(), hence needs a dummy implementation for !THP
 423 */
 424static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
 425					 unsigned long address, pmd_t *pmdp)
 426{
 427	BUILD_BUG();
 428	return 0;
 429}
 430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 431#endif
 432
 433#ifndef arch_has_hw_nonleaf_pmd_young
 434/*
 435 * Return whether the accessed bit in non-leaf PMD entries is supported on the
 436 * local CPU.
 437 */
 438static inline bool arch_has_hw_nonleaf_pmd_young(void)
 439{
 440	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
 441}
 442#endif
 443
 444#ifndef arch_has_hw_pte_young
 445/*
 446 * Return whether the accessed bit is supported on the local CPU.
 447 *
 448 * This stub assumes accessing through an old PTE triggers a page fault.
 449 * Architectures that automatically set the access bit should overwrite it.
 450 */
 451static inline bool arch_has_hw_pte_young(void)
 452{
 453	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
 454}
 455#endif
 456
 457#ifndef arch_check_zapped_pte
 458static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
 459					 pte_t pte)
 460{
 461}
 462#endif
 463
 464#ifndef arch_check_zapped_pmd
 465static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
 466					 pmd_t pmd)
 467{
 468}
 469#endif
 470
 471#ifndef arch_check_zapped_pud
 472static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
 473{
 474}
 475#endif
 476
 477#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 478static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 479				       unsigned long address,
 480				       pte_t *ptep)
 481{
 482	pte_t pte = ptep_get(ptep);
 483	pte_clear(mm, address, ptep);
 484	page_table_check_pte_clear(mm, pte);
 485	return pte;
 486}
 487#endif
 488
 489#ifndef clear_young_dirty_ptes
 490/**
 491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
 492 *		same folio as old/clean.
 493 * @mm: Address space the pages are mapped into.
 494 * @addr: Address the first page is mapped at.
 495 * @ptep: Page table pointer for the first entry.
 496 * @nr: Number of entries to mark old/clean.
 497 * @flags: Flags to modify the PTE batch semantics.
 498 *
 499 * May be overridden by the architecture; otherwise, implemented by
 500 * get_and_clear/modify/set for each pte in the range.
 501 *
 502 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
 503 * some PTEs might be write-protected.
 504 *
 505 * Context: The caller holds the page table lock.  The PTEs map consecutive
 506 * pages that belong to the same folio.  The PTEs are all in the same PMD.
 507 */
 508static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
 509					  unsigned long addr, pte_t *ptep,
 510					  unsigned int nr, cydp_t flags)
 511{
 512	pte_t pte;
 513
 514	for (;;) {
 515		if (flags == CYDP_CLEAR_YOUNG)
 516			ptep_test_and_clear_young(vma, addr, ptep);
 517		else {
 518			pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
 519			if (flags & CYDP_CLEAR_YOUNG)
 520				pte = pte_mkold(pte);
 521			if (flags & CYDP_CLEAR_DIRTY)
 522				pte = pte_mkclean(pte);
 523			set_pte_at(vma->vm_mm, addr, ptep, pte);
 524		}
 525		if (--nr == 0)
 526			break;
 527		ptep++;
 528		addr += PAGE_SIZE;
 529	}
 530}
 531#endif
 532
 533static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
 534			      pte_t *ptep)
 535{
 536	ptep_get_and_clear(mm, addr, ptep);
 537}
 538
 539#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
 540/*
 541 * For walking the pagetables without holding any locks.  Some architectures
 542 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
 543 * instructions.  We are guaranteed that a PTE will only either go from not
 544 * present to present, or present to not present -- it will not switch to a
 545 * completely different present page without a TLB flush inbetween; which we
 546 * are blocking by holding interrupts off.
 547 *
 548 * Setting ptes from not present to present goes:
 549 *
 550 *   ptep->pte_high = h;
 551 *   smp_wmb();
 552 *   ptep->pte_low = l;
 553 *
 554 * And present to not present goes:
 555 *
 556 *   ptep->pte_low = 0;
 557 *   smp_wmb();
 558 *   ptep->pte_high = 0;
 559 *
 560 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 561 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 562 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 563 * picked up a changed pte high. We might have gotten rubbish values from
 564 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 565 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 566 * operates on present ptes we're safe.
 567 */
 568static inline pte_t ptep_get_lockless(pte_t *ptep)
 569{
 570	pte_t pte;
 571
 572	do {
 573		pte.pte_low = ptep->pte_low;
 574		smp_rmb();
 575		pte.pte_high = ptep->pte_high;
 576		smp_rmb();
 577	} while (unlikely(pte.pte_low != ptep->pte_low));
 578
 579	return pte;
 580}
 581#define ptep_get_lockless ptep_get_lockless
 582
 583#if CONFIG_PGTABLE_LEVELS > 2
 584static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 585{
 586	pmd_t pmd;
 587
 588	do {
 589		pmd.pmd_low = pmdp->pmd_low;
 590		smp_rmb();
 591		pmd.pmd_high = pmdp->pmd_high;
 592		smp_rmb();
 593	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
 594
 595	return pmd;
 596}
 597#define pmdp_get_lockless pmdp_get_lockless
 598#define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
 599#endif /* CONFIG_PGTABLE_LEVELS > 2 */
 600#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
 601
 602/*
 603 * We require that the PTE can be read atomically.
 604 */
 605#ifndef ptep_get_lockless
 606static inline pte_t ptep_get_lockless(pte_t *ptep)
 607{
 608	return ptep_get(ptep);
 609}
 610#endif
 611
 612#ifndef pmdp_get_lockless
 613static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
 614{
 615	return pmdp_get(pmdp);
 616}
 617static inline void pmdp_get_lockless_sync(void)
 618{
 619}
 620#endif
 621
 622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 623#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
 624static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
 625					    unsigned long address,
 626					    pmd_t *pmdp)
 627{
 628	pmd_t pmd = *pmdp;
 629
 630	pmd_clear(pmdp);
 631	page_table_check_pmd_clear(mm, pmd);
 632
 633	return pmd;
 634}
 635#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
 636#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
 637static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
 638					    unsigned long address,
 639					    pud_t *pudp)
 640{
 641	pud_t pud = *pudp;
 642
 643	pud_clear(pudp);
 644	page_table_check_pud_clear(mm, pud);
 645
 646	return pud;
 647}
 648#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
 649#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 650
 651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 652#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
 653static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 654					    unsigned long address, pmd_t *pmdp,
 655					    int full)
 656{
 657	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
 658}
 659#endif
 660
 661#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
 662static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
 663					    unsigned long address, pud_t *pudp,
 664					    int full)
 665{
 666	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
 667}
 668#endif
 669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 670
 671#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 672static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 673					    unsigned long address, pte_t *ptep,
 674					    int full)
 675{
 676	return ptep_get_and_clear(mm, address, ptep);
 677}
 678#endif
 679
 680#ifndef get_and_clear_full_ptes
 681/**
 682 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
 683 *			     the same folio, collecting dirty/accessed bits.
 684 * @mm: Address space the pages are mapped into.
 685 * @addr: Address the first page is mapped at.
 686 * @ptep: Page table pointer for the first entry.
 687 * @nr: Number of entries to clear.
 688 * @full: Whether we are clearing a full mm.
 689 *
 690 * May be overridden by the architecture; otherwise, implemented as a simple
 691 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
 692 * returned PTE.
 693 *
 694 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
 695 * some PTEs might be write-protected.
 696 *
 697 * Context: The caller holds the page table lock.  The PTEs map consecutive
 698 * pages that belong to the same folio.  The PTEs are all in the same PMD.
 699 */
 700static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
 701		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
 702{
 703	pte_t pte, tmp_pte;
 704
 705	pte = ptep_get_and_clear_full(mm, addr, ptep, full);
 706	while (--nr) {
 707		ptep++;
 708		addr += PAGE_SIZE;
 709		tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
 710		if (pte_dirty(tmp_pte))
 711			pte = pte_mkdirty(pte);
 712		if (pte_young(tmp_pte))
 713			pte = pte_mkyoung(pte);
 714	}
 715	return pte;
 716}
 717#endif
 718
 719#ifndef clear_full_ptes
 720/**
 721 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
 722 *		     folio.
 723 * @mm: Address space the pages are mapped into.
 724 * @addr: Address the first page is mapped at.
 725 * @ptep: Page table pointer for the first entry.
 726 * @nr: Number of entries to clear.
 727 * @full: Whether we are clearing a full mm.
 728 *
 729 * May be overridden by the architecture; otherwise, implemented as a simple
 730 * loop over ptep_get_and_clear_full().
 731 *
 732 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
 733 * some PTEs might be write-protected.
 734 *
 735 * Context: The caller holds the page table lock.  The PTEs map consecutive
 736 * pages that belong to the same folio.  The PTEs are all in the same PMD.
 737 */
 738static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
 739		pte_t *ptep, unsigned int nr, int full)
 740{
 741	for (;;) {
 742		ptep_get_and_clear_full(mm, addr, ptep, full);
 743		if (--nr == 0)
 744			break;
 745		ptep++;
 746		addr += PAGE_SIZE;
 747	}
 748}
 749#endif
 750
 751/*
 752 * If two threads concurrently fault at the same page, the thread that
 753 * won the race updates the PTE and its local TLB/Cache. The other thread
 754 * gives up, simply does nothing, and continues; on architectures where
 755 * software can update TLB,  local TLB can be updated here to avoid next page
 756 * fault. This function updates TLB only, do nothing with cache or others.
 757 * It is the difference with function update_mmu_cache.
 758 */
 759#ifndef update_mmu_tlb_range
 760static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
 761				unsigned long address, pte_t *ptep, unsigned int nr)
 762{
 763}
 764#endif
 765
 766static inline void update_mmu_tlb(struct vm_area_struct *vma,
 767				unsigned long address, pte_t *ptep)
 768{
 769	update_mmu_tlb_range(vma, address, ptep, 1);
 770}
 771
 772/*
 773 * Some architectures may be able to avoid expensive synchronization
 774 * primitives when modifications are made to PTE's which are already
 775 * not present, or in the process of an address space destruction.
 776 */
 777#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
 778static inline void pte_clear_not_present_full(struct mm_struct *mm,
 779					      unsigned long address,
 780					      pte_t *ptep,
 781					      int full)
 782{
 783	pte_clear(mm, address, ptep);
 784}
 785#endif
 786
 787#ifndef clear_not_present_full_ptes
 788/**
 789 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
 790 *				 consecutive in the pgtable.
 791 * @mm: Address space the ptes represent.
 792 * @addr: Address of the first pte.
 793 * @ptep: Page table pointer for the first entry.
 794 * @nr: Number of entries to clear.
 795 * @full: Whether we are clearing a full mm.
 796 *
 797 * May be overridden by the architecture; otherwise, implemented as a simple
 798 * loop over pte_clear_not_present_full().
 799 *
 800 * Context: The caller holds the page table lock.  The PTEs are all not present.
 801 * The PTEs are all in the same PMD.
 802 */
 803static inline void clear_not_present_full_ptes(struct mm_struct *mm,
 804		unsigned long addr, pte_t *ptep, unsigned int nr, int full)
 805{
 806	for (;;) {
 807		pte_clear_not_present_full(mm, addr, ptep, full);
 808		if (--nr == 0)
 809			break;
 810		ptep++;
 811		addr += PAGE_SIZE;
 812	}
 813}
 814#endif
 815
 816#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
 817extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
 818			      unsigned long address,
 819			      pte_t *ptep);
 820#endif
 821
 822#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
 823extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
 824			      unsigned long address,
 825			      pmd_t *pmdp);
 826extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
 827			      unsigned long address,
 828			      pud_t *pudp);
 829#endif
 830
 831#ifndef pte_mkwrite
 832static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
 833{
 834	return pte_mkwrite_novma(pte);
 835}
 836#endif
 837
 838#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
 839static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 840{
 841	return pmd_mkwrite_novma(pmd);
 842}
 843#endif
 844
 845#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
 846struct mm_struct;
 847static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
 848{
 849	pte_t old_pte = ptep_get(ptep);
 850	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
 851}
 852#endif
 853
 854#ifndef wrprotect_ptes
 855/**
 856 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
 857 *		    folio.
 858 * @mm: Address space the pages are mapped into.
 859 * @addr: Address the first page is mapped at.
 860 * @ptep: Page table pointer for the first entry.
 861 * @nr: Number of entries to write-protect.
 862 *
 863 * May be overridden by the architecture; otherwise, implemented as a simple
 864 * loop over ptep_set_wrprotect().
 865 *
 866 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
 867 * some PTEs might be write-protected.
 868 *
 869 * Context: The caller holds the page table lock.  The PTEs map consecutive
 870 * pages that belong to the same folio.  The PTEs are all in the same PMD.
 871 */
 872static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
 873		pte_t *ptep, unsigned int nr)
 874{
 875	for (;;) {
 876		ptep_set_wrprotect(mm, addr, ptep);
 877		if (--nr == 0)
 878			break;
 879		ptep++;
 880		addr += PAGE_SIZE;
 881	}
 882}
 883#endif
 884
 885/*
 886 * On some architectures hardware does not set page access bit when accessing
 887 * memory page, it is responsibility of software setting this bit. It brings
 888 * out extra page fault penalty to track page access bit. For optimization page
 889 * access bit can be set during all page fault flow on these arches.
 890 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
 891 * where software maintains page access bit.
 892 */
 893#ifndef pte_sw_mkyoung
 894static inline pte_t pte_sw_mkyoung(pte_t pte)
 895{
 896	return pte;
 897}
 898#define pte_sw_mkyoung	pte_sw_mkyoung
 899#endif
 900
 901#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
 902#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 903static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 904				      unsigned long address, pmd_t *pmdp)
 905{
 906	pmd_t old_pmd = *pmdp;
 907	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
 908}
 909#else
 910static inline void pmdp_set_wrprotect(struct mm_struct *mm,
 911				      unsigned long address, pmd_t *pmdp)
 912{
 913	BUILD_BUG();
 914}
 915#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 916#endif
 917#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
 918#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 919#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 920static inline void pudp_set_wrprotect(struct mm_struct *mm,
 921				      unsigned long address, pud_t *pudp)
 922{
 923	pud_t old_pud = *pudp;
 924
 925	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
 926}
 927#else
 928static inline void pudp_set_wrprotect(struct mm_struct *mm,
 929				      unsigned long address, pud_t *pudp)
 930{
 931	BUILD_BUG();
 932}
 933#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 934#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 935#endif
 936
 937#ifndef pmdp_collapse_flush
 938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 939extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 940				 unsigned long address, pmd_t *pmdp);
 941#else
 942static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
 943					unsigned long address,
 944					pmd_t *pmdp)
 945{
 946	BUILD_BUG();
 947	return *pmdp;
 948}
 949#define pmdp_collapse_flush pmdp_collapse_flush
 950#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 951#endif
 952
 953#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
 954extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 955				       pgtable_t pgtable);
 956#endif
 957
 958#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
 959extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
 960#endif
 961
 962#ifndef arch_needs_pgtable_deposit
 963#define arch_needs_pgtable_deposit() (false)
 964#endif
 965
 966#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 967/*
 968 * This is an implementation of pmdp_establish() that is only suitable for an
 969 * architecture that doesn't have hardware dirty/accessed bits. In this case we
 970 * can't race with CPU which sets these bits and non-atomic approach is fine.
 971 */
 972static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
 973		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 974{
 975	pmd_t old_pmd = *pmdp;
 976	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
 977	return old_pmd;
 978}
 979#endif
 980
 981#ifndef __HAVE_ARCH_PMDP_INVALIDATE
 982extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 983			    pmd_t *pmdp);
 984#endif
 985
 986#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
 987
 988/*
 989 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
 990 * hugepage mapping in the page tables. This function is similar to
 991 * pmdp_invalidate(), but should only be used if the access and dirty bits would
 992 * not be cleared by the software in the new PMD value. The function ensures
 993 * that hardware changes of the access and dirty bits updates would not be lost.
 994 *
 995 * Doing so can allow in certain architectures to avoid a TLB flush in most
 996 * cases. Yet, another TLB flush might be necessary later if the PMD update
 997 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
 998 * even when a TLB flush is needed because of the update, the caller may be able
 999 * to batch these TLB flushing operations, so fewer TLB flush operations are
1000 * needed.
1001 */
1002extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1003				unsigned long address, pmd_t *pmdp);
1004#endif
1005
1006#ifndef __HAVE_ARCH_PTE_SAME
1007static inline int pte_same(pte_t pte_a, pte_t pte_b)
1008{
1009	return pte_val(pte_a) == pte_val(pte_b);
1010}
1011#endif
1012
1013#ifndef __HAVE_ARCH_PTE_UNUSED
1014/*
1015 * Some architectures provide facilities to virtualization guests
1016 * so that they can flag allocated pages as unused. This allows the
1017 * host to transparently reclaim unused pages. This function returns
1018 * whether the pte's page is unused.
1019 */
1020static inline int pte_unused(pte_t pte)
1021{
1022	return 0;
1023}
1024#endif
1025
1026#ifndef pte_access_permitted
1027#define pte_access_permitted(pte, write) \
1028	(pte_present(pte) && (!(write) || pte_write(pte)))
1029#endif
1030
1031#ifndef pmd_access_permitted
1032#define pmd_access_permitted(pmd, write) \
1033	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1034#endif
1035
1036#ifndef pud_access_permitted
1037#define pud_access_permitted(pud, write) \
1038	(pud_present(pud) && (!(write) || pud_write(pud)))
1039#endif
1040
1041#ifndef p4d_access_permitted
1042#define p4d_access_permitted(p4d, write) \
1043	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1044#endif
1045
1046#ifndef pgd_access_permitted
1047#define pgd_access_permitted(pgd, write) \
1048	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1049#endif
1050
1051#ifndef __HAVE_ARCH_PMD_SAME
1052static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1053{
1054	return pmd_val(pmd_a) == pmd_val(pmd_b);
1055}
1056#endif
1057
1058#ifndef pud_same
1059static inline int pud_same(pud_t pud_a, pud_t pud_b)
1060{
1061	return pud_val(pud_a) == pud_val(pud_b);
1062}
1063#define pud_same pud_same
1064#endif
1065
1066#ifndef __HAVE_ARCH_P4D_SAME
1067static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1068{
1069	return p4d_val(p4d_a) == p4d_val(p4d_b);
1070}
1071#endif
1072
1073#ifndef __HAVE_ARCH_PGD_SAME
1074static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1075{
1076	return pgd_val(pgd_a) == pgd_val(pgd_b);
1077}
1078#endif
1079
1080#ifndef __HAVE_ARCH_DO_SWAP_PAGE
1081static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1082				     struct vm_area_struct *vma,
1083				     unsigned long addr,
1084				     pte_t pte, pte_t oldpte,
1085				     int nr)
1086{
1087
1088}
1089#else
1090/*
1091 * Some architectures support metadata associated with a page. When a
1092 * page is being swapped out, this metadata must be saved so it can be
1093 * restored when the page is swapped back in. SPARC M7 and newer
1094 * processors support an ADI (Application Data Integrity) tag for the
1095 * page as metadata for the page. arch_do_swap_page() can restore this
1096 * metadata when a page is swapped back in.
1097 */
1098static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1099					struct vm_area_struct *vma,
1100					unsigned long addr,
1101					pte_t pte, pte_t oldpte,
1102					int nr)
1103{
1104	for (int i = 0; i < nr; i++) {
1105		arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1106				pte_advance_pfn(pte, i),
1107				pte_advance_pfn(oldpte, i));
1108	}
1109}
1110#endif
1111
1112#ifndef __HAVE_ARCH_UNMAP_ONE
1113/*
1114 * Some architectures support metadata associated with a page. When a
1115 * page is being swapped out, this metadata must be saved so it can be
1116 * restored when the page is swapped back in. SPARC M7 and newer
1117 * processors support an ADI (Application Data Integrity) tag for the
1118 * page as metadata for the page. arch_unmap_one() can save this
1119 * metadata on a swap-out of a page.
1120 */
1121static inline int arch_unmap_one(struct mm_struct *mm,
1122				  struct vm_area_struct *vma,
1123				  unsigned long addr,
1124				  pte_t orig_pte)
1125{
1126	return 0;
1127}
1128#endif
1129
1130/*
1131 * Allow architectures to preserve additional metadata associated with
1132 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1133 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1134 */
1135#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1136static inline int arch_prepare_to_swap(struct folio *folio)
1137{
1138	return 0;
1139}
1140#endif
1141
1142#ifndef __HAVE_ARCH_SWAP_INVALIDATE
1143static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1144{
1145}
1146
1147static inline void arch_swap_invalidate_area(int type)
1148{
1149}
1150#endif
1151
1152#ifndef __HAVE_ARCH_SWAP_RESTORE
1153static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1154{
1155}
1156#endif
1157
1158#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1159#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
1160#endif
1161
1162#ifndef __HAVE_ARCH_MOVE_PTE
1163#define move_pte(pte, old_addr, new_addr)	(pte)
1164#endif
1165
1166#ifndef pte_accessible
1167# define pte_accessible(mm, pte)	((void)(pte), 1)
1168#endif
1169
1170#ifndef flush_tlb_fix_spurious_fault
1171#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1172#endif
1173
1174/*
1175 * When walking page tables, get the address of the next boundary,
1176 * or the end address of the range if that comes earlier.  Although no
1177 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1178 */
1179
1180#define pgd_addr_end(addr, end)						\
1181({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
1182	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1183})
1184
1185#ifndef p4d_addr_end
1186#define p4d_addr_end(addr, end)						\
1187({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
1188	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1189})
1190#endif
1191
1192#ifndef pud_addr_end
1193#define pud_addr_end(addr, end)						\
1194({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
1195	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1196})
1197#endif
1198
1199#ifndef pmd_addr_end
1200#define pmd_addr_end(addr, end)						\
1201({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
1202	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
1203})
1204#endif
1205
1206/*
1207 * When walking page tables, we usually want to skip any p?d_none entries;
1208 * and any p?d_bad entries - reporting the error before resetting to none.
1209 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1210 */
1211void pgd_clear_bad(pgd_t *);
1212
1213#ifndef __PAGETABLE_P4D_FOLDED
1214void p4d_clear_bad(p4d_t *);
1215#else
1216#define p4d_clear_bad(p4d)        do { } while (0)
1217#endif
1218
1219#ifndef __PAGETABLE_PUD_FOLDED
1220void pud_clear_bad(pud_t *);
1221#else
1222#define pud_clear_bad(p4d)        do { } while (0)
1223#endif
1224
1225void pmd_clear_bad(pmd_t *);
1226
1227static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1228{
1229	if (pgd_none(*pgd))
1230		return 1;
1231	if (unlikely(pgd_bad(*pgd))) {
1232		pgd_clear_bad(pgd);
1233		return 1;
1234	}
1235	return 0;
1236}
1237
1238static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1239{
1240	if (p4d_none(*p4d))
1241		return 1;
1242	if (unlikely(p4d_bad(*p4d))) {
1243		p4d_clear_bad(p4d);
1244		return 1;
1245	}
1246	return 0;
1247}
1248
1249static inline int pud_none_or_clear_bad(pud_t *pud)
1250{
1251	if (pud_none(*pud))
1252		return 1;
1253	if (unlikely(pud_bad(*pud))) {
1254		pud_clear_bad(pud);
1255		return 1;
1256	}
1257	return 0;
1258}
1259
1260static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1261{
1262	if (pmd_none(*pmd))
1263		return 1;
1264	if (unlikely(pmd_bad(*pmd))) {
1265		pmd_clear_bad(pmd);
1266		return 1;
1267	}
1268	return 0;
1269}
1270
1271static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1272					     unsigned long addr,
1273					     pte_t *ptep)
1274{
1275	/*
1276	 * Get the current pte state, but zero it out to make it
1277	 * non-present, preventing the hardware from asynchronously
1278	 * updating it.
1279	 */
1280	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1281}
1282
1283static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1284					     unsigned long addr,
1285					     pte_t *ptep, pte_t pte)
1286{
1287	/*
1288	 * The pte is non-present, so there's no hardware state to
1289	 * preserve.
1290	 */
1291	set_pte_at(vma->vm_mm, addr, ptep, pte);
1292}
1293
1294#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1295/*
1296 * Start a pte protection read-modify-write transaction, which
1297 * protects against asynchronous hardware modifications to the pte.
1298 * The intention is not to prevent the hardware from making pte
1299 * updates, but to prevent any updates it may make from being lost.
1300 *
1301 * This does not protect against other software modifications of the
1302 * pte; the appropriate pte lock must be held over the transaction.
1303 *
1304 * Note that this interface is intended to be batchable, meaning that
1305 * ptep_modify_prot_commit may not actually update the pte, but merely
1306 * queue the update to be done at some later time.  The update must be
1307 * actually committed before the pte lock is released, however.
1308 */
1309static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1310					   unsigned long addr,
1311					   pte_t *ptep)
1312{
1313	return __ptep_modify_prot_start(vma, addr, ptep);
1314}
1315
1316/*
1317 * Commit an update to a pte, leaving any hardware-controlled bits in
1318 * the PTE unmodified.
1319 */
1320static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1321					   unsigned long addr,
1322					   pte_t *ptep, pte_t old_pte, pte_t pte)
1323{
1324	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1325}
1326#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1327#endif /* CONFIG_MMU */
1328
1329/*
1330 * No-op macros that just return the current protection value. Defined here
1331 * because these macros can be used even if CONFIG_MMU is not defined.
1332 */
1333
1334#ifndef pgprot_nx
1335#define pgprot_nx(prot)	(prot)
1336#endif
1337
1338#ifndef pgprot_noncached
1339#define pgprot_noncached(prot)	(prot)
1340#endif
1341
1342#ifndef pgprot_writecombine
1343#define pgprot_writecombine pgprot_noncached
1344#endif
1345
1346#ifndef pgprot_writethrough
1347#define pgprot_writethrough pgprot_noncached
1348#endif
1349
1350#ifndef pgprot_device
1351#define pgprot_device pgprot_noncached
1352#endif
1353
1354#ifndef pgprot_mhp
1355#define pgprot_mhp(prot)	(prot)
1356#endif
1357
1358#ifdef CONFIG_MMU
1359#ifndef pgprot_modify
1360#define pgprot_modify pgprot_modify
1361static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1362{
1363	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1364		newprot = pgprot_noncached(newprot);
1365	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1366		newprot = pgprot_writecombine(newprot);
1367	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1368		newprot = pgprot_device(newprot);
1369	return newprot;
1370}
1371#endif
1372#endif /* CONFIG_MMU */
1373
1374#ifndef pgprot_encrypted
1375#define pgprot_encrypted(prot)	(prot)
1376#endif
1377
1378#ifndef pgprot_decrypted
1379#define pgprot_decrypted(prot)	(prot)
1380#endif
1381
1382/*
1383 * A facility to provide batching of the reload of page tables and
1384 * other process state with the actual context switch code for
1385 * paravirtualized guests.  By convention, only one of the batched
1386 * update (lazy) modes (CPU, MMU) should be active at any given time,
1387 * entry should never be nested, and entry and exits should always be
1388 * paired.  This is for sanity of maintaining and reasoning about the
1389 * kernel code.  In this case, the exit (end of the context switch) is
1390 * in architecture-specific code, and so doesn't need a generic
1391 * definition.
1392 */
1393#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1394#define arch_start_context_switch(prev)	do {} while (0)
1395#endif
1396
1397#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1398#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1399static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1400{
1401	return pmd;
1402}
1403
1404static inline int pmd_swp_soft_dirty(pmd_t pmd)
1405{
1406	return 0;
1407}
1408
1409static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1410{
1411	return pmd;
1412}
1413#endif
1414#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1415static inline int pte_soft_dirty(pte_t pte)
1416{
1417	return 0;
1418}
1419
1420static inline int pmd_soft_dirty(pmd_t pmd)
1421{
1422	return 0;
1423}
1424
1425static inline pte_t pte_mksoft_dirty(pte_t pte)
1426{
1427	return pte;
1428}
1429
1430static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1431{
1432	return pmd;
1433}
1434
1435static inline pte_t pte_clear_soft_dirty(pte_t pte)
1436{
1437	return pte;
1438}
1439
1440static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1441{
1442	return pmd;
1443}
1444
1445static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1446{
1447	return pte;
1448}
1449
1450static inline int pte_swp_soft_dirty(pte_t pte)
1451{
1452	return 0;
1453}
1454
1455static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1456{
1457	return pte;
1458}
1459
1460static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1461{
1462	return pmd;
1463}
1464
1465static inline int pmd_swp_soft_dirty(pmd_t pmd)
1466{
1467	return 0;
1468}
1469
1470static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1471{
1472	return pmd;
1473}
1474#endif
1475
1476#ifndef __HAVE_PFNMAP_TRACKING
1477/*
1478 * Interfaces that can be used by architecture code to keep track of
1479 * memory type of pfn mappings specified by the remap_pfn_range,
1480 * vmf_insert_pfn.
1481 */
1482
1483/*
1484 * track_pfn_remap is called when a _new_ pfn mapping is being established
1485 * by remap_pfn_range() for physical range indicated by pfn and size.
1486 */
1487static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1488				  unsigned long pfn, unsigned long addr,
1489				  unsigned long size)
1490{
1491	return 0;
1492}
1493
1494/*
1495 * track_pfn_insert is called when a _new_ single pfn is established
1496 * by vmf_insert_pfn().
1497 */
1498static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1499				    pfn_t pfn)
1500{
1501}
1502
1503/*
1504 * track_pfn_copy is called when vma that is covering the pfnmap gets
1505 * copied through copy_page_range().
1506 */
1507static inline int track_pfn_copy(struct vm_area_struct *vma)
1508{
1509	return 0;
1510}
1511
1512/*
1513 * untrack_pfn is called while unmapping a pfnmap for a region.
1514 * untrack can be called for a specific region indicated by pfn and size or
1515 * can be for the entire vma (in which case pfn, size are zero).
1516 */
1517static inline void untrack_pfn(struct vm_area_struct *vma,
1518			       unsigned long pfn, unsigned long size,
1519			       bool mm_wr_locked)
1520{
1521}
1522
1523/*
1524 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1525 * or fails to copy pgtable during duplicate vm area.
1526 */
1527static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1528{
1529}
1530#else
1531extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1532			   unsigned long pfn, unsigned long addr,
1533			   unsigned long size);
1534extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1535			     pfn_t pfn);
1536extern int track_pfn_copy(struct vm_area_struct *vma);
1537extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1538			unsigned long size, bool mm_wr_locked);
1539extern void untrack_pfn_clear(struct vm_area_struct *vma);
1540#endif
1541
1542#ifdef CONFIG_MMU
1543#ifdef __HAVE_COLOR_ZERO_PAGE
1544static inline int is_zero_pfn(unsigned long pfn)
1545{
1546	extern unsigned long zero_pfn;
1547	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1548	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1549}
1550
1551#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1552
1553#else
1554static inline int is_zero_pfn(unsigned long pfn)
1555{
1556	extern unsigned long zero_pfn;
1557	return pfn == zero_pfn;
1558}
1559
1560static inline unsigned long my_zero_pfn(unsigned long addr)
1561{
1562	extern unsigned long zero_pfn;
1563	return zero_pfn;
1564}
1565#endif
1566#else
1567static inline int is_zero_pfn(unsigned long pfn)
1568{
1569	return 0;
1570}
1571
1572static inline unsigned long my_zero_pfn(unsigned long addr)
1573{
1574	return 0;
1575}
1576#endif /* CONFIG_MMU */
1577
1578#ifdef CONFIG_MMU
1579
1580#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1581static inline int pmd_trans_huge(pmd_t pmd)
1582{
1583	return 0;
1584}
1585#ifndef pmd_write
1586static inline int pmd_write(pmd_t pmd)
1587{
1588	BUG();
1589	return 0;
1590}
1591#endif /* pmd_write */
1592#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1593
1594#ifndef pud_write
1595static inline int pud_write(pud_t pud)
1596{
1597	BUG();
1598	return 0;
1599}
1600#endif /* pud_write */
1601
1602#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1603static inline int pmd_devmap(pmd_t pmd)
1604{
1605	return 0;
1606}
1607static inline int pud_devmap(pud_t pud)
1608{
1609	return 0;
1610}
1611static inline int pgd_devmap(pgd_t pgd)
1612{
1613	return 0;
1614}
1615#endif
1616
1617#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1618	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1619static inline int pud_trans_huge(pud_t pud)
1620{
1621	return 0;
1622}
1623#endif
1624
1625static inline int pud_trans_unstable(pud_t *pud)
1626{
1627#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1628	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1629	pud_t pudval = READ_ONCE(*pud);
1630
1631	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1632		return 1;
1633	if (unlikely(pud_bad(pudval))) {
1634		pud_clear_bad(pud);
1635		return 1;
1636	}
1637#endif
1638	return 0;
1639}
1640
1641#ifndef CONFIG_NUMA_BALANCING
1642/*
1643 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1644 * perfectly valid to indicate "no" in that case, which is why our default
1645 * implementation defaults to "always no".
1646 *
1647 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1648 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1649 * accessible VMAs.
1650 *
1651 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1652 * looking at the VMA accessibility is sufficient.
1653 */
1654static inline int pte_protnone(pte_t pte)
1655{
1656	return 0;
1657}
1658
1659static inline int pmd_protnone(pmd_t pmd)
1660{
1661	return 0;
1662}
1663#endif /* CONFIG_NUMA_BALANCING */
1664
1665#endif /* CONFIG_MMU */
1666
1667#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1668
1669#ifndef __PAGETABLE_P4D_FOLDED
1670int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1671void p4d_clear_huge(p4d_t *p4d);
1672#else
1673static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1674{
1675	return 0;
1676}
1677static inline void p4d_clear_huge(p4d_t *p4d) { }
1678#endif /* !__PAGETABLE_P4D_FOLDED */
1679
1680int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1681int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1682int pud_clear_huge(pud_t *pud);
1683int pmd_clear_huge(pmd_t *pmd);
1684int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1685int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1686int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1687#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1688static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1689{
1690	return 0;
1691}
1692static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1693{
1694	return 0;
1695}
1696static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1697{
1698	return 0;
1699}
1700static inline void p4d_clear_huge(p4d_t *p4d) { }
1701static inline int pud_clear_huge(pud_t *pud)
1702{
1703	return 0;
1704}
1705static inline int pmd_clear_huge(pmd_t *pmd)
1706{
1707	return 0;
1708}
1709static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1710{
1711	return 0;
1712}
1713static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1714{
1715	return 0;
1716}
1717static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1718{
1719	return 0;
1720}
1721#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1722
1723#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1724#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1725/*
1726 * ARCHes with special requirements for evicting THP backing TLB entries can
1727 * implement this. Otherwise also, it can help optimize normal TLB flush in
1728 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1729 * entire TLB if flush span is greater than a threshold, which will
1730 * likely be true for a single huge page. Thus a single THP flush will
1731 * invalidate the entire TLB which is not desirable.
1732 * e.g. see arch/arc: flush_pmd_tlb_range
1733 */
1734#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1735#define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1736#else
1737#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1738#define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1739#endif
1740#endif
1741
1742struct file;
1743int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1744			unsigned long size, pgprot_t *vma_prot);
1745
1746#ifndef CONFIG_X86_ESPFIX64
1747static inline void init_espfix_bsp(void) { }
1748#endif
1749
1750extern void __init pgtable_cache_init(void);
1751
1752#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1753static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1754{
1755	return true;
1756}
1757
1758static inline bool arch_has_pfn_modify_check(void)
1759{
1760	return false;
1761}
1762#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1763
1764/*
1765 * Architecture PAGE_KERNEL_* fallbacks
1766 *
1767 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1768 * because they really don't support them, or the port needs to be updated to
1769 * reflect the required functionality. Below are a set of relatively safe
1770 * fallbacks, as best effort, which we can count on in lieu of the architectures
1771 * not defining them on their own yet.
1772 */
1773
1774#ifndef PAGE_KERNEL_RO
1775# define PAGE_KERNEL_RO PAGE_KERNEL
1776#endif
1777
1778#ifndef PAGE_KERNEL_EXEC
1779# define PAGE_KERNEL_EXEC PAGE_KERNEL
1780#endif
1781
1782/*
1783 * Page Table Modification bits for pgtbl_mod_mask.
1784 *
1785 * These are used by the p?d_alloc_track*() set of functions an in the generic
1786 * vmalloc/ioremap code to track at which page-table levels entries have been
1787 * modified. Based on that the code can better decide when vmalloc and ioremap
1788 * mapping changes need to be synchronized to other page-tables in the system.
1789 */
1790#define		__PGTBL_PGD_MODIFIED	0
1791#define		__PGTBL_P4D_MODIFIED	1
1792#define		__PGTBL_PUD_MODIFIED	2
1793#define		__PGTBL_PMD_MODIFIED	3
1794#define		__PGTBL_PTE_MODIFIED	4
1795
1796#define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1797#define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1798#define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1799#define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1800#define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1801
1802/* Page-Table Modification Mask */
1803typedef unsigned int pgtbl_mod_mask;
1804
1805#endif /* !__ASSEMBLY__ */
1806
1807#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1808#ifdef CONFIG_PHYS_ADDR_T_64BIT
1809/*
1810 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1811 * with physical address space extension, but falls back to
1812 * BITS_PER_LONG otherwise.
1813 */
1814#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1815#else
1816#define MAX_POSSIBLE_PHYSMEM_BITS 32
1817#endif
1818#endif
1819
1820#ifndef has_transparent_hugepage
1821#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1822#endif
1823
1824#ifndef has_transparent_pud_hugepage
1825#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1826#endif
1827/*
1828 * On some architectures it depends on the mm if the p4d/pud or pmd
1829 * layer of the page table hierarchy is folded or not.
1830 */
1831#ifndef mm_p4d_folded
1832#define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1833#endif
1834
1835#ifndef mm_pud_folded
1836#define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1837#endif
1838
1839#ifndef mm_pmd_folded
1840#define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1841#endif
1842
1843#ifndef p4d_offset_lockless
1844#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1845#endif
1846#ifndef pud_offset_lockless
1847#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1848#endif
1849#ifndef pmd_offset_lockless
1850#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1851#endif
1852
1853/*
1854 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1855 * mapping.  It should work globally across all archs, without any
1856 * dependency on CONFIG_* options.  For architectures that do not support
1857 * huge mappings on specific levels, below fallbacks will be used.
1858 *
1859 * A leaf pgtable entry should always imply the following:
1860 *
1861 * - It is a "present" entry.  IOW, before using this API, please check it
1862 *   with pXd_present() first. NOTE: it may not always mean the "present
1863 *   bit" is set.  For example, PROT_NONE entries are always "present".
1864 *
1865 * - It should _never_ be a swap entry of any type.  Above "present" check
1866 *   should have guarded this, but let's be crystal clear on this.
1867 *
1868 * - It should contain a huge PFN, which points to a huge page larger than
1869 *   PAGE_SIZE of the platform.  The PFN format isn't important here.
1870 *
1871 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1872 *   pXd_devmap(), or hugetlb mappings).
1873 */
1874#ifndef pgd_leaf
1875#define pgd_leaf(x)	false
1876#endif
1877#ifndef p4d_leaf
1878#define p4d_leaf(x)	false
1879#endif
1880#ifndef pud_leaf
1881#define pud_leaf(x)	false
1882#endif
1883#ifndef pmd_leaf
1884#define pmd_leaf(x)	false
1885#endif
1886
1887#ifndef pgd_leaf_size
1888#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1889#endif
1890#ifndef p4d_leaf_size
1891#define p4d_leaf_size(x) P4D_SIZE
1892#endif
1893#ifndef pud_leaf_size
1894#define pud_leaf_size(x) PUD_SIZE
1895#endif
1896#ifndef pmd_leaf_size
1897#define pmd_leaf_size(x) PMD_SIZE
1898#endif
1899#ifndef __pte_leaf_size
1900#ifndef pte_leaf_size
1901#define pte_leaf_size(x) PAGE_SIZE
1902#endif
1903#define __pte_leaf_size(x,y) pte_leaf_size(y)
1904#endif
1905
1906/*
1907 * We always define pmd_pfn for all archs as it's used in lots of generic
1908 * code.  Now it happens too for pud_pfn (and can happen for larger
1909 * mappings too in the future; we're not there yet).  Instead of defining
1910 * it for all archs (like pmd_pfn), provide a fallback.
1911 *
1912 * Note that returning 0 here means any arch that didn't define this can
1913 * get severely wrong when it hits a real pud leaf.  It's arch's
1914 * responsibility to properly define it when a huge pud is possible.
1915 */
1916#ifndef pud_pfn
1917#define pud_pfn(x) 0
1918#endif
1919
1920/*
1921 * Some architectures have MMUs that are configurable or selectable at boot
1922 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1923 * helps to have a static maximum value.
1924 */
1925
1926#ifndef MAX_PTRS_PER_PTE
1927#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1928#endif
1929
1930#ifndef MAX_PTRS_PER_PMD
1931#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1932#endif
1933
1934#ifndef MAX_PTRS_PER_PUD
1935#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1936#endif
1937
1938#ifndef MAX_PTRS_PER_P4D
1939#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1940#endif
1941
1942#ifndef pte_pgprot
1943#define pte_pgprot(x) ((pgprot_t) {0})
1944#endif
1945
1946#ifndef pmd_pgprot
1947#define pmd_pgprot(x) ((pgprot_t) {0})
1948#endif
1949
1950#ifndef pud_pgprot
1951#define pud_pgprot(x) ((pgprot_t) {0})
1952#endif
1953
1954/* description of effects of mapping type and prot in current implementation.
1955 * this is due to the limited x86 page protection hardware.  The expected
1956 * behavior is in parens:
1957 *
1958 * map_type	prot
1959 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1960 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1961 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1962 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1963 *
1964 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1965 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1966 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1967 *
1968 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1969 * MAP_PRIVATE (with Enhanced PAN supported):
1970 *								r: (no) no
1971 *								w: (no) no
1972 *								x: (yes) yes
1973 */
1974#define DECLARE_VM_GET_PAGE_PROT					\
1975pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1976{									\
1977		return protection_map[vm_flags &			\
1978			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1979}									\
1980EXPORT_SYMBOL(vm_get_page_prot);
1981
1982#endif /* _LINUX_PGTABLE_H */