Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
 
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
 
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
 
 
 
 
 
 
 
 
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <linux/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;	/* Handle normal Linux uptimes. */
 106int nr_threads;			/* The idle threads do not count.. */
 107
 108int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117	return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124	int cpu;
 125	int total = 0;
 126
 127	for_each_possible_cpu(cpu)
 128		total += per_cpu(process_counts, cpu);
 129
 130	return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147	kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_stack(unsigned long *stack)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 162
 163#ifdef CONFIG_VMAP_STACK
 164/*
 165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 166 * flush.  Try to minimize the number of calls by caching stacks.
 167 */
 168#define NR_CACHED_STACKS 2
 169static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 170#endif
 171
 172static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 
 
 
 
 173{
 174#ifdef CONFIG_VMAP_STACK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175	void *stack;
 176	int i;
 177
 178	local_irq_disable();
 179	for (i = 0; i < NR_CACHED_STACKS; i++) {
 180		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
 
 
 181
 182		if (!s)
 183			continue;
 184		this_cpu_write(cached_stacks[i], NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186		tsk->stack_vm_area = s;
 187		local_irq_enable();
 188		return s->addr;
 189	}
 190	local_irq_enable();
 191
 192	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
 
 
 
 
 
 193				     VMALLOC_START, VMALLOC_END,
 194				     THREADINFO_GFP | __GFP_HIGHMEM,
 195				     PAGE_KERNEL,
 196				     0, node, __builtin_return_address(0));
 
 
 197
 
 
 
 
 
 198	/*
 199	 * We can't call find_vm_area() in interrupt context, and
 200	 * free_thread_stack() can be called in interrupt context,
 201	 * so cache the vm_struct.
 202	 */
 203	if (stack)
 204		tsk->stack_vm_area = find_vm_area(stack);
 205	return stack;
 206#else
 207	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 208					     THREAD_SIZE_ORDER);
 209
 210	return page ? page_address(page) : NULL;
 211#endif
 
 
 
 
 
 212}
 213
 214static inline void free_thread_stack(struct task_struct *tsk)
 
 
 215{
 216#ifdef CONFIG_VMAP_STACK
 217	if (task_stack_vm_area(tsk)) {
 218		unsigned long flags;
 219		int i;
 220
 221		local_irq_save(flags);
 222		for (i = 0; i < NR_CACHED_STACKS; i++) {
 223			if (this_cpu_read(cached_stacks[i]))
 224				continue;
 225
 226			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
 227			local_irq_restore(flags);
 228			return;
 229		}
 230		local_irq_restore(flags);
 231
 232		vfree_atomic(tsk->stack);
 233		return;
 
 
 
 
 
 
 234	}
 235#endif
 
 236
 237	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 
 
 
 238}
 239# else
 
 
 
 240static struct kmem_cache *thread_stack_cache;
 241
 242static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 243						  int node)
 
 
 
 
 244{
 245	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 
 
 
 
 
 
 
 
 
 
 
 246}
 247
 248static void free_thread_stack(struct task_struct *tsk)
 249{
 250	kmem_cache_free(thread_stack_cache, tsk->stack);
 
 251}
 252
 253void thread_stack_cache_init(void)
 254{
 255	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 256					      THREAD_SIZE, 0, NULL);
 
 257	BUG_ON(thread_stack_cache == NULL);
 258}
 259# endif
 260#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261
 262/* SLAB cache for signal_struct structures (tsk->signal) */
 263static struct kmem_cache *signal_cachep;
 264
 265/* SLAB cache for sighand_struct structures (tsk->sighand) */
 266struct kmem_cache *sighand_cachep;
 267
 268/* SLAB cache for files_struct structures (tsk->files) */
 269struct kmem_cache *files_cachep;
 270
 271/* SLAB cache for fs_struct structures (tsk->fs) */
 272struct kmem_cache *fs_cachep;
 273
 274/* SLAB cache for vm_area_struct structures */
 275struct kmem_cache *vm_area_cachep;
 276
 277/* SLAB cache for mm_struct structures (tsk->mm) */
 278static struct kmem_cache *mm_cachep;
 279
 280static void account_kernel_stack(struct task_struct *tsk, int account)
 281{
 282	void *stack = task_stack_page(tsk);
 283	struct vm_struct *vm = task_stack_vm_area(tsk);
 284
 285	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 
 
 
 
 286
 287	if (vm) {
 288		int i;
 
 289
 290		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 293			mod_zone_page_state(page_zone(vm->pages[i]),
 294					    NR_KERNEL_STACK_KB,
 295					    PAGE_SIZE / 1024 * account);
 296		}
 297
 298		/* All stack pages belong to the same memcg. */
 299		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 300					    account * (THREAD_SIZE / 1024));
 
 
 
 
 
 
 301	} else {
 302		/*
 303		 * All stack pages are in the same zone and belong to the
 304		 * same memcg.
 305		 */
 306		struct page *first_page = virt_to_page(stack);
 
 
 307
 308		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 309				    THREAD_SIZE / 1024 * account);
 
 310
 311		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
 312					    account * (THREAD_SIZE / 1024));
 
 
 
 
 
 313	}
 314}
 315
 316static void release_task_stack(struct task_struct *tsk)
 317{
 318	if (WARN_ON(tsk->state != TASK_DEAD))
 319		return;  /* Better to leak the stack than to free prematurely */
 320
 321	account_kernel_stack(tsk, -1);
 322	arch_release_thread_stack(tsk->stack);
 323	free_thread_stack(tsk);
 324	tsk->stack = NULL;
 325#ifdef CONFIG_VMAP_STACK
 326	tsk->stack_vm_area = NULL;
 327#endif
 328}
 329
 330#ifdef CONFIG_THREAD_INFO_IN_TASK
 331void put_task_stack(struct task_struct *tsk)
 332{
 333	if (atomic_dec_and_test(&tsk->stack_refcount))
 334		release_task_stack(tsk);
 335}
 336#endif
 337
 338void free_task(struct task_struct *tsk)
 339{
 
 
 
 
 
 
 340#ifndef CONFIG_THREAD_INFO_IN_TASK
 341	/*
 342	 * The task is finally done with both the stack and thread_info,
 343	 * so free both.
 344	 */
 345	release_task_stack(tsk);
 346#else
 347	/*
 348	 * If the task had a separate stack allocation, it should be gone
 349	 * by now.
 350	 */
 351	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 352#endif
 353	rt_mutex_debug_task_free(tsk);
 354	ftrace_graph_exit_task(tsk);
 355	put_seccomp_filter(tsk);
 356	arch_release_task_struct(tsk);
 357	if (tsk->flags & PF_KTHREAD)
 358		free_kthread_struct(tsk);
 359	free_task_struct(tsk);
 360}
 361EXPORT_SYMBOL(free_task);
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363static inline void free_signal_struct(struct signal_struct *sig)
 364{
 365	taskstats_tgid_free(sig);
 366	sched_autogroup_exit(sig);
 367	/*
 368	 * __mmdrop is not safe to call from softirq context on x86 due to
 369	 * pgd_dtor so postpone it to the async context
 370	 */
 371	if (sig->oom_mm)
 372		mmdrop_async(sig->oom_mm);
 373	kmem_cache_free(signal_cachep, sig);
 374}
 375
 376static inline void put_signal_struct(struct signal_struct *sig)
 377{
 378	if (atomic_dec_and_test(&sig->sigcnt))
 379		free_signal_struct(sig);
 380}
 381
 382void __put_task_struct(struct task_struct *tsk)
 383{
 384	WARN_ON(!tsk->exit_state);
 385	WARN_ON(atomic_read(&tsk->usage));
 386	WARN_ON(tsk == current);
 387
 
 388	cgroup_free(tsk);
 389	task_numa_free(tsk);
 390	security_task_free(tsk);
 
 391	exit_creds(tsk);
 392	delayacct_tsk_free(tsk);
 393	put_signal_struct(tsk->signal);
 394
 395	if (!profile_handoff_task(tsk))
 396		free_task(tsk);
 397}
 398EXPORT_SYMBOL_GPL(__put_task_struct);
 399
 400void __init __weak arch_task_cache_init(void) { }
 401
 402/*
 403 * set_max_threads
 404 */
 405static void set_max_threads(unsigned int max_threads_suggested)
 406{
 407	u64 threads;
 
 408
 409	/*
 410	 * The number of threads shall be limited such that the thread
 411	 * structures may only consume a small part of the available memory.
 412	 */
 413	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 414		threads = MAX_THREADS;
 415	else
 416		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 417				    (u64) THREAD_SIZE * 8UL);
 418
 419	if (threads > max_threads_suggested)
 420		threads = max_threads_suggested;
 421
 422	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 423}
 424
 425#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 426/* Initialized by the architecture: */
 427int arch_task_struct_size __read_mostly;
 428#endif
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430void __init fork_init(void)
 431{
 432	int i;
 433#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 434#ifndef ARCH_MIN_TASKALIGN
 435#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 436#endif
 
 
 
 437	/* create a slab on which task_structs can be allocated */
 438	task_struct_cachep = kmem_cache_create("task_struct",
 439			arch_task_struct_size, ARCH_MIN_TASKALIGN,
 440			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 
 
 441#endif
 442
 443	/* do the arch specific task caches init */
 444	arch_task_cache_init();
 445
 446	set_max_threads(MAX_THREADS);
 447
 448	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 449	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 450	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 451		init_task.signal->rlim[RLIMIT_NPROC];
 452
 453	for (i = 0; i < UCOUNT_COUNTS; i++) {
 454		init_user_ns.ucount_max[i] = max_threads/2;
 455	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456}
 457
 458int __weak arch_dup_task_struct(struct task_struct *dst,
 459					       struct task_struct *src)
 460{
 461	*dst = *src;
 462	return 0;
 463}
 464
 465void set_task_stack_end_magic(struct task_struct *tsk)
 466{
 467	unsigned long *stackend;
 468
 469	stackend = end_of_stack(tsk);
 470	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 471}
 472
 473static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 474{
 475	struct task_struct *tsk;
 476	unsigned long *stack;
 477	struct vm_struct *stack_vm_area;
 478	int err;
 479
 480	if (node == NUMA_NO_NODE)
 481		node = tsk_fork_get_node(orig);
 482	tsk = alloc_task_struct_node(node);
 483	if (!tsk)
 484		return NULL;
 485
 486	stack = alloc_thread_stack_node(tsk, node);
 487	if (!stack)
 488		goto free_tsk;
 489
 490	stack_vm_area = task_stack_vm_area(tsk);
 491
 492	err = arch_dup_task_struct(tsk, orig);
 493
 494	/*
 495	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 496	 * sure they're properly initialized before using any stack-related
 497	 * functions again.
 498	 */
 499	tsk->stack = stack;
 500#ifdef CONFIG_VMAP_STACK
 501	tsk->stack_vm_area = stack_vm_area;
 502#endif
 503#ifdef CONFIG_THREAD_INFO_IN_TASK
 504	atomic_set(&tsk->stack_refcount, 1);
 505#endif
 
 506
 
 507	if (err)
 508		goto free_stack;
 509
 510#ifdef CONFIG_SECCOMP
 511	/*
 512	 * We must handle setting up seccomp filters once we're under
 513	 * the sighand lock in case orig has changed between now and
 514	 * then. Until then, filter must be NULL to avoid messing up
 515	 * the usage counts on the error path calling free_task.
 516	 */
 517	tsk->seccomp.filter = NULL;
 518#endif
 519
 520	setup_thread_stack(tsk, orig);
 521	clear_user_return_notifier(tsk);
 522	clear_tsk_need_resched(tsk);
 523	set_task_stack_end_magic(tsk);
 
 524
 525#ifdef CONFIG_CC_STACKPROTECTOR
 526	tsk->stack_canary = get_random_int();
 527#endif
 
 
 
 528
 529	/*
 530	 * One for us, one for whoever does the "release_task()" (usually
 531	 * parent)
 532	 */
 533	atomic_set(&tsk->usage, 2);
 
 
 534#ifdef CONFIG_BLK_DEV_IO_TRACE
 535	tsk->btrace_seq = 0;
 536#endif
 537	tsk->splice_pipe = NULL;
 538	tsk->task_frag.page = NULL;
 539	tsk->wake_q.next = NULL;
 540
 541	account_kernel_stack(tsk, 1);
 542
 543	kcov_task_init(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544
 545	return tsk;
 546
 547free_stack:
 
 548	free_thread_stack(tsk);
 549free_tsk:
 550	free_task_struct(tsk);
 551	return NULL;
 552}
 553
 554#ifdef CONFIG_MMU
 555static __latent_entropy int dup_mmap(struct mm_struct *mm,
 556					struct mm_struct *oldmm)
 557{
 558	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 559	struct rb_node **rb_link, *rb_parent;
 560	int retval;
 561	unsigned long charge;
 562
 563	uprobe_start_dup_mmap();
 564	if (down_write_killable(&oldmm->mmap_sem)) {
 565		retval = -EINTR;
 566		goto fail_uprobe_end;
 567	}
 568	flush_cache_dup_mm(oldmm);
 569	uprobe_dup_mmap(oldmm, mm);
 570	/*
 571	 * Not linked in yet - no deadlock potential:
 572	 */
 573	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 574
 575	/* No ordering required: file already has been exposed. */
 576	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 577
 578	mm->total_vm = oldmm->total_vm;
 579	mm->data_vm = oldmm->data_vm;
 580	mm->exec_vm = oldmm->exec_vm;
 581	mm->stack_vm = oldmm->stack_vm;
 582
 583	rb_link = &mm->mm_rb.rb_node;
 584	rb_parent = NULL;
 585	pprev = &mm->mmap;
 586	retval = ksm_fork(mm, oldmm);
 587	if (retval)
 588		goto out;
 589	retval = khugepaged_fork(mm, oldmm);
 590	if (retval)
 591		goto out;
 592
 593	prev = NULL;
 594	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 595		struct file *file;
 596
 597		if (mpnt->vm_flags & VM_DONTCOPY) {
 598			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 599			continue;
 600		}
 601		charge = 0;
 602		if (mpnt->vm_flags & VM_ACCOUNT) {
 603			unsigned long len = vma_pages(mpnt);
 604
 605			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 606				goto fail_nomem;
 607			charge = len;
 608		}
 609		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 610		if (!tmp)
 611			goto fail_nomem;
 612		*tmp = *mpnt;
 613		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 614		retval = vma_dup_policy(mpnt, tmp);
 615		if (retval)
 616			goto fail_nomem_policy;
 617		tmp->vm_mm = mm;
 618		if (anon_vma_fork(tmp, mpnt))
 619			goto fail_nomem_anon_vma_fork;
 620		tmp->vm_flags &=
 621			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 622		tmp->vm_next = tmp->vm_prev = NULL;
 623		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 624		file = tmp->vm_file;
 625		if (file) {
 626			struct inode *inode = file_inode(file);
 627			struct address_space *mapping = file->f_mapping;
 628
 629			get_file(file);
 630			if (tmp->vm_flags & VM_DENYWRITE)
 631				atomic_dec(&inode->i_writecount);
 632			i_mmap_lock_write(mapping);
 633			if (tmp->vm_flags & VM_SHARED)
 634				atomic_inc(&mapping->i_mmap_writable);
 635			flush_dcache_mmap_lock(mapping);
 636			/* insert tmp into the share list, just after mpnt */
 637			vma_interval_tree_insert_after(tmp, mpnt,
 638					&mapping->i_mmap);
 639			flush_dcache_mmap_unlock(mapping);
 640			i_mmap_unlock_write(mapping);
 641		}
 642
 643		/*
 644		 * Clear hugetlb-related page reserves for children. This only
 645		 * affects MAP_PRIVATE mappings. Faults generated by the child
 646		 * are not guaranteed to succeed, even if read-only
 647		 */
 648		if (is_vm_hugetlb_page(tmp))
 649			reset_vma_resv_huge_pages(tmp);
 650
 651		/*
 652		 * Link in the new vma and copy the page table entries.
 653		 */
 654		*pprev = tmp;
 655		pprev = &tmp->vm_next;
 656		tmp->vm_prev = prev;
 657		prev = tmp;
 658
 659		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 660		rb_link = &tmp->vm_rb.rb_right;
 661		rb_parent = &tmp->vm_rb;
 662
 663		mm->map_count++;
 664		retval = copy_page_range(mm, oldmm, mpnt);
 665
 666		if (tmp->vm_ops && tmp->vm_ops->open)
 667			tmp->vm_ops->open(tmp);
 668
 669		if (retval)
 670			goto out;
 671	}
 672	/* a new mm has just been created */
 673	arch_dup_mmap(oldmm, mm);
 674	retval = 0;
 675out:
 676	up_write(&mm->mmap_sem);
 677	flush_tlb_mm(oldmm);
 678	up_write(&oldmm->mmap_sem);
 679fail_uprobe_end:
 680	uprobe_end_dup_mmap();
 681	return retval;
 682fail_nomem_anon_vma_fork:
 683	mpol_put(vma_policy(tmp));
 684fail_nomem_policy:
 685	kmem_cache_free(vm_area_cachep, tmp);
 686fail_nomem:
 687	retval = -ENOMEM;
 688	vm_unacct_memory(charge);
 689	goto out;
 690}
 691
 692static inline int mm_alloc_pgd(struct mm_struct *mm)
 693{
 694	mm->pgd = pgd_alloc(mm);
 695	if (unlikely(!mm->pgd))
 696		return -ENOMEM;
 697	return 0;
 698}
 699
 700static inline void mm_free_pgd(struct mm_struct *mm)
 701{
 702	pgd_free(mm, mm->pgd);
 703}
 704#else
 705static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 706{
 707	down_write(&oldmm->mmap_sem);
 708	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 709	up_write(&oldmm->mmap_sem);
 710	return 0;
 711}
 712#define mm_alloc_pgd(mm)	(0)
 713#define mm_free_pgd(mm)
 714#endif /* CONFIG_MMU */
 715
 716__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 717
 718#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 719#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 720
 721static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 722
 723static int __init coredump_filter_setup(char *s)
 724{
 725	default_dump_filter =
 726		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 727		MMF_DUMP_FILTER_MASK;
 728	return 1;
 729}
 730
 731__setup("coredump_filter=", coredump_filter_setup);
 732
 733#include <linux/init_task.h>
 734
 735static void mm_init_aio(struct mm_struct *mm)
 736{
 737#ifdef CONFIG_AIO
 738	spin_lock_init(&mm->ioctx_lock);
 739	mm->ioctx_table = NULL;
 740#endif
 741}
 742
 
 
 
 
 
 
 
 
 
 743static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 744{
 745#ifdef CONFIG_MEMCG
 746	mm->owner = p;
 747#endif
 748}
 749
 
 
 
 
 
 
 
 750static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 751	struct user_namespace *user_ns)
 752{
 753	mm->mmap = NULL;
 754	mm->mm_rb = RB_ROOT;
 755	mm->vmacache_seqnum = 0;
 
 756	atomic_set(&mm->mm_users, 1);
 757	atomic_set(&mm->mm_count, 1);
 758	init_rwsem(&mm->mmap_sem);
 
 759	INIT_LIST_HEAD(&mm->mmlist);
 760	mm->core_state = NULL;
 761	atomic_long_set(&mm->nr_ptes, 0);
 762	mm_nr_pmds_init(mm);
 763	mm->map_count = 0;
 764	mm->locked_vm = 0;
 765	mm->pinned_vm = 0;
 766	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 767	spin_lock_init(&mm->page_table_lock);
 
 768	mm_init_cpumask(mm);
 769	mm_init_aio(mm);
 770	mm_init_owner(mm, p);
 771	mmu_notifier_mm_init(mm);
 772	clear_tlb_flush_pending(mm);
 
 
 773#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 774	mm->pmd_huge_pte = NULL;
 775#endif
 
 
 776
 777	if (current->mm) {
 778		mm->flags = current->mm->flags & MMF_INIT_MASK;
 779		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 780	} else {
 781		mm->flags = default_dump_filter;
 782		mm->def_flags = 0;
 783	}
 784
 785	if (mm_alloc_pgd(mm))
 786		goto fail_nopgd;
 787
 788	if (init_new_context(p, mm))
 789		goto fail_nocontext;
 790
 
 
 
 
 791	mm->user_ns = get_user_ns(user_ns);
 
 792	return mm;
 793
 
 
 
 794fail_nocontext:
 795	mm_free_pgd(mm);
 796fail_nopgd:
 797	free_mm(mm);
 798	return NULL;
 799}
 800
 801static void check_mm(struct mm_struct *mm)
 802{
 803	int i;
 804
 805	for (i = 0; i < NR_MM_COUNTERS; i++) {
 806		long x = atomic_long_read(&mm->rss_stat.count[i]);
 807
 808		if (unlikely(x))
 809			printk(KERN_ALERT "BUG: Bad rss-counter state "
 810					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 811	}
 812
 813	if (atomic_long_read(&mm->nr_ptes))
 814		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 815				atomic_long_read(&mm->nr_ptes));
 816	if (mm_nr_pmds(mm))
 817		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 818				mm_nr_pmds(mm));
 819
 820#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 821	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 822#endif
 823}
 824
 825/*
 826 * Allocate and initialize an mm_struct.
 827 */
 828struct mm_struct *mm_alloc(void)
 829{
 830	struct mm_struct *mm;
 831
 832	mm = allocate_mm();
 833	if (!mm)
 834		return NULL;
 835
 836	memset(mm, 0, sizeof(*mm));
 837	return mm_init(mm, current, current_user_ns());
 838}
 839
 840/*
 841 * Called when the last reference to the mm
 842 * is dropped: either by a lazy thread or by
 843 * mmput. Free the page directory and the mm.
 844 */
 845void __mmdrop(struct mm_struct *mm)
 846{
 847	BUG_ON(mm == &init_mm);
 848	mm_free_pgd(mm);
 849	destroy_context(mm);
 850	mmu_notifier_mm_destroy(mm);
 851	check_mm(mm);
 852	put_user_ns(mm->user_ns);
 853	free_mm(mm);
 854}
 855EXPORT_SYMBOL_GPL(__mmdrop);
 856
 857static inline void __mmput(struct mm_struct *mm)
 858{
 859	VM_BUG_ON(atomic_read(&mm->mm_users));
 860
 861	uprobe_clear_state(mm);
 862	exit_aio(mm);
 863	ksm_exit(mm);
 864	khugepaged_exit(mm); /* must run before exit_mmap */
 865	exit_mmap(mm);
 866	mm_put_huge_zero_page(mm);
 867	set_mm_exe_file(mm, NULL);
 868	if (!list_empty(&mm->mmlist)) {
 869		spin_lock(&mmlist_lock);
 870		list_del(&mm->mmlist);
 871		spin_unlock(&mmlist_lock);
 872	}
 873	if (mm->binfmt)
 874		module_put(mm->binfmt->module);
 875	set_bit(MMF_OOM_SKIP, &mm->flags);
 876	mmdrop(mm);
 877}
 878
 879/*
 880 * Decrement the use count and release all resources for an mm.
 881 */
 882void mmput(struct mm_struct *mm)
 883{
 884	might_sleep();
 885
 886	if (atomic_dec_and_test(&mm->mm_users))
 887		__mmput(mm);
 888}
 889EXPORT_SYMBOL_GPL(mmput);
 890
 891#ifdef CONFIG_MMU
 892static void mmput_async_fn(struct work_struct *work)
 893{
 894	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
 
 
 895	__mmput(mm);
 896}
 897
 898void mmput_async(struct mm_struct *mm)
 899{
 900	if (atomic_dec_and_test(&mm->mm_users)) {
 901		INIT_WORK(&mm->async_put_work, mmput_async_fn);
 902		schedule_work(&mm->async_put_work);
 903	}
 904}
 
 905#endif
 906
 907/**
 908 * set_mm_exe_file - change a reference to the mm's executable file
 909 *
 910 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 911 *
 912 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 913 * invocations: in mmput() nobody alive left, in execve task is single
 914 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 915 * mm->exe_file, but does so without using set_mm_exe_file() in order
 916 * to do avoid the need for any locks.
 917 */
 918void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 919{
 920	struct file *old_exe_file;
 921
 922	/*
 923	 * It is safe to dereference the exe_file without RCU as
 924	 * this function is only called if nobody else can access
 925	 * this mm -- see comment above for justification.
 926	 */
 927	old_exe_file = rcu_dereference_raw(mm->exe_file);
 928
 929	if (new_exe_file)
 
 
 
 
 
 
 930		get_file(new_exe_file);
 
 931	rcu_assign_pointer(mm->exe_file, new_exe_file);
 932	if (old_exe_file)
 
 933		fput(old_exe_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934}
 935
 936/**
 937 * get_mm_exe_file - acquire a reference to the mm's executable file
 938 *
 939 * Returns %NULL if mm has no associated executable file.
 940 * User must release file via fput().
 941 */
 942struct file *get_mm_exe_file(struct mm_struct *mm)
 943{
 944	struct file *exe_file;
 945
 946	rcu_read_lock();
 947	exe_file = rcu_dereference(mm->exe_file);
 948	if (exe_file && !get_file_rcu(exe_file))
 949		exe_file = NULL;
 950	rcu_read_unlock();
 951	return exe_file;
 952}
 953EXPORT_SYMBOL(get_mm_exe_file);
 954
 955/**
 956 * get_task_exe_file - acquire a reference to the task's executable file
 957 *
 958 * Returns %NULL if task's mm (if any) has no associated executable file or
 959 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 960 * User must release file via fput().
 961 */
 962struct file *get_task_exe_file(struct task_struct *task)
 963{
 964	struct file *exe_file = NULL;
 965	struct mm_struct *mm;
 966
 967	task_lock(task);
 968	mm = task->mm;
 969	if (mm) {
 970		if (!(task->flags & PF_KTHREAD))
 971			exe_file = get_mm_exe_file(mm);
 972	}
 973	task_unlock(task);
 974	return exe_file;
 975}
 976EXPORT_SYMBOL(get_task_exe_file);
 977
 978/**
 979 * get_task_mm - acquire a reference to the task's mm
 980 *
 981 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 982 * this kernel workthread has transiently adopted a user mm with use_mm,
 983 * to do its AIO) is not set and if so returns a reference to it, after
 984 * bumping up the use count.  User must release the mm via mmput()
 985 * after use.  Typically used by /proc and ptrace.
 986 */
 987struct mm_struct *get_task_mm(struct task_struct *task)
 988{
 989	struct mm_struct *mm;
 990
 991	task_lock(task);
 992	mm = task->mm;
 993	if (mm) {
 994		if (task->flags & PF_KTHREAD)
 995			mm = NULL;
 996		else
 997			atomic_inc(&mm->mm_users);
 998	}
 999	task_unlock(task);
1000	return mm;
1001}
1002EXPORT_SYMBOL_GPL(get_task_mm);
1003
1004struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1005{
1006	struct mm_struct *mm;
1007	int err;
1008
1009	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1010	if (err)
1011		return ERR_PTR(err);
1012
1013	mm = get_task_mm(task);
1014	if (mm && mm != current->mm &&
1015			!ptrace_may_access(task, mode)) {
1016		mmput(mm);
1017		mm = ERR_PTR(-EACCES);
1018	}
1019	mutex_unlock(&task->signal->cred_guard_mutex);
1020
1021	return mm;
1022}
1023
1024static void complete_vfork_done(struct task_struct *tsk)
1025{
1026	struct completion *vfork;
1027
1028	task_lock(tsk);
1029	vfork = tsk->vfork_done;
1030	if (likely(vfork)) {
1031		tsk->vfork_done = NULL;
1032		complete(vfork);
1033	}
1034	task_unlock(tsk);
1035}
1036
1037static int wait_for_vfork_done(struct task_struct *child,
1038				struct completion *vfork)
1039{
 
1040	int killed;
1041
1042	freezer_do_not_count();
1043	killed = wait_for_completion_killable(vfork);
1044	freezer_count();
1045
1046	if (killed) {
1047		task_lock(child);
1048		child->vfork_done = NULL;
1049		task_unlock(child);
1050	}
1051
1052	put_task_struct(child);
1053	return killed;
1054}
1055
1056/* Please note the differences between mmput and mm_release.
1057 * mmput is called whenever we stop holding onto a mm_struct,
1058 * error success whatever.
1059 *
1060 * mm_release is called after a mm_struct has been removed
1061 * from the current process.
1062 *
1063 * This difference is important for error handling, when we
1064 * only half set up a mm_struct for a new process and need to restore
1065 * the old one.  Because we mmput the new mm_struct before
1066 * restoring the old one. . .
1067 * Eric Biederman 10 January 1998
1068 */
1069void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1070{
1071	/* Get rid of any futexes when releasing the mm */
1072#ifdef CONFIG_FUTEX
1073	if (unlikely(tsk->robust_list)) {
1074		exit_robust_list(tsk);
1075		tsk->robust_list = NULL;
1076	}
1077#ifdef CONFIG_COMPAT
1078	if (unlikely(tsk->compat_robust_list)) {
1079		compat_exit_robust_list(tsk);
1080		tsk->compat_robust_list = NULL;
1081	}
1082#endif
1083	if (unlikely(!list_empty(&tsk->pi_state_list)))
1084		exit_pi_state_list(tsk);
1085#endif
1086
1087	uprobe_free_utask(tsk);
1088
1089	/* Get rid of any cached register state */
1090	deactivate_mm(tsk, mm);
1091
1092	/*
1093	 * Signal userspace if we're not exiting with a core dump
1094	 * because we want to leave the value intact for debugging
1095	 * purposes.
1096	 */
1097	if (tsk->clear_child_tid) {
1098		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1099		    atomic_read(&mm->mm_users) > 1) {
1100			/*
1101			 * We don't check the error code - if userspace has
1102			 * not set up a proper pointer then tough luck.
1103			 */
1104			put_user(0, tsk->clear_child_tid);
1105			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1106					1, NULL, NULL, 0);
1107		}
1108		tsk->clear_child_tid = NULL;
1109	}
1110
1111	/*
1112	 * All done, finally we can wake up parent and return this mm to him.
1113	 * Also kthread_stop() uses this completion for synchronization.
1114	 */
1115	if (tsk->vfork_done)
1116		complete_vfork_done(tsk);
1117}
1118
1119/*
1120 * Allocate a new mm structure and copy contents from the
1121 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122 */
1123static struct mm_struct *dup_mm(struct task_struct *tsk)
 
1124{
1125	struct mm_struct *mm, *oldmm = current->mm;
1126	int err;
1127
1128	mm = allocate_mm();
1129	if (!mm)
1130		goto fail_nomem;
1131
1132	memcpy(mm, oldmm, sizeof(*mm));
1133
1134	if (!mm_init(mm, tsk, mm->user_ns))
1135		goto fail_nomem;
1136
1137	err = dup_mmap(mm, oldmm);
1138	if (err)
1139		goto free_pt;
1140
1141	mm->hiwater_rss = get_mm_rss(mm);
1142	mm->hiwater_vm = mm->total_vm;
1143
1144	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1145		goto free_pt;
1146
1147	return mm;
1148
1149free_pt:
1150	/* don't put binfmt in mmput, we haven't got module yet */
1151	mm->binfmt = NULL;
 
1152	mmput(mm);
1153
1154fail_nomem:
1155	return NULL;
1156}
1157
1158static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1159{
1160	struct mm_struct *mm, *oldmm;
1161	int retval;
1162
1163	tsk->min_flt = tsk->maj_flt = 0;
1164	tsk->nvcsw = tsk->nivcsw = 0;
1165#ifdef CONFIG_DETECT_HUNG_TASK
1166	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
1167#endif
1168
1169	tsk->mm = NULL;
1170	tsk->active_mm = NULL;
1171
1172	/*
1173	 * Are we cloning a kernel thread?
1174	 *
1175	 * We need to steal a active VM for that..
1176	 */
1177	oldmm = current->mm;
1178	if (!oldmm)
1179		return 0;
1180
1181	/* initialize the new vmacache entries */
1182	vmacache_flush(tsk);
1183
1184	if (clone_flags & CLONE_VM) {
1185		atomic_inc(&oldmm->mm_users);
1186		mm = oldmm;
1187		goto good_mm;
 
 
 
1188	}
1189
1190	retval = -ENOMEM;
1191	mm = dup_mm(tsk);
1192	if (!mm)
1193		goto fail_nomem;
1194
1195good_mm:
1196	tsk->mm = mm;
1197	tsk->active_mm = mm;
1198	return 0;
1199
1200fail_nomem:
1201	return retval;
1202}
1203
1204static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1205{
1206	struct fs_struct *fs = current->fs;
1207	if (clone_flags & CLONE_FS) {
1208		/* tsk->fs is already what we want */
1209		spin_lock(&fs->lock);
1210		if (fs->in_exec) {
1211			spin_unlock(&fs->lock);
1212			return -EAGAIN;
1213		}
1214		fs->users++;
1215		spin_unlock(&fs->lock);
1216		return 0;
1217	}
1218	tsk->fs = copy_fs_struct(fs);
1219	if (!tsk->fs)
1220		return -ENOMEM;
1221	return 0;
1222}
1223
1224static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1225{
1226	struct files_struct *oldf, *newf;
1227	int error = 0;
1228
1229	/*
1230	 * A background process may not have any files ...
1231	 */
1232	oldf = current->files;
1233	if (!oldf)
1234		goto out;
1235
1236	if (clone_flags & CLONE_FILES) {
1237		atomic_inc(&oldf->count);
1238		goto out;
1239	}
1240
1241	newf = dup_fd(oldf, &error);
1242	if (!newf)
1243		goto out;
1244
1245	tsk->files = newf;
1246	error = 0;
1247out:
1248	return error;
1249}
1250
1251static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1252{
1253#ifdef CONFIG_BLOCK
1254	struct io_context *ioc = current->io_context;
1255	struct io_context *new_ioc;
1256
1257	if (!ioc)
1258		return 0;
1259	/*
1260	 * Share io context with parent, if CLONE_IO is set
1261	 */
1262	if (clone_flags & CLONE_IO) {
1263		ioc_task_link(ioc);
1264		tsk->io_context = ioc;
1265	} else if (ioprio_valid(ioc->ioprio)) {
1266		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1267		if (unlikely(!new_ioc))
1268			return -ENOMEM;
1269
1270		new_ioc->ioprio = ioc->ioprio;
1271		put_io_context(new_ioc);
1272	}
1273#endif
1274	return 0;
1275}
1276
1277static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1278{
1279	struct sighand_struct *sig;
1280
1281	if (clone_flags & CLONE_SIGHAND) {
1282		atomic_inc(&current->sighand->count);
1283		return 0;
1284	}
1285	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1286	rcu_assign_pointer(tsk->sighand, sig);
1287	if (!sig)
1288		return -ENOMEM;
1289
1290	atomic_set(&sig->count, 1);
 
1291	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
1292	return 0;
1293}
1294
1295void __cleanup_sighand(struct sighand_struct *sighand)
1296{
1297	if (atomic_dec_and_test(&sighand->count)) {
1298		signalfd_cleanup(sighand);
1299		/*
1300		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1301		 * without an RCU grace period, see __lock_task_sighand().
1302		 */
1303		kmem_cache_free(sighand_cachep, sighand);
1304	}
1305}
1306
1307/*
1308 * Initialize POSIX timer handling for a thread group.
1309 */
1310static void posix_cpu_timers_init_group(struct signal_struct *sig)
1311{
 
1312	unsigned long cpu_limit;
1313
1314	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1315	if (cpu_limit != RLIM_INFINITY) {
1316		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1317		sig->cputimer.running = true;
1318	}
1319
1320	/* The timer lists. */
1321	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1322	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1323	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1324}
1325
1326static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1327{
1328	struct signal_struct *sig;
1329
1330	if (clone_flags & CLONE_THREAD)
1331		return 0;
1332
1333	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1334	tsk->signal = sig;
1335	if (!sig)
1336		return -ENOMEM;
1337
1338	sig->nr_threads = 1;
 
1339	atomic_set(&sig->live, 1);
1340	atomic_set(&sig->sigcnt, 1);
1341
1342	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1343	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1344	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1345
1346	init_waitqueue_head(&sig->wait_chldexit);
1347	sig->curr_target = tsk;
1348	init_sigpending(&sig->shared_pending);
1349	INIT_LIST_HEAD(&sig->posix_timers);
1350	seqlock_init(&sig->stats_lock);
1351	prev_cputime_init(&sig->prev_cputime);
1352
1353#ifdef CONFIG_POSIX_TIMERS
 
1354	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1355	sig->real_timer.function = it_real_fn;
1356#endif
1357
1358	task_lock(current->group_leader);
1359	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1360	task_unlock(current->group_leader);
1361
1362	posix_cpu_timers_init_group(sig);
1363
1364	tty_audit_fork(sig);
1365	sched_autogroup_fork(sig);
1366
1367	sig->oom_score_adj = current->signal->oom_score_adj;
1368	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1369
1370	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1371				   current->signal->is_child_subreaper;
1372
1373	mutex_init(&sig->cred_guard_mutex);
 
1374
1375	return 0;
1376}
1377
1378static void copy_seccomp(struct task_struct *p)
1379{
1380#ifdef CONFIG_SECCOMP
1381	/*
1382	 * Must be called with sighand->lock held, which is common to
1383	 * all threads in the group. Holding cred_guard_mutex is not
1384	 * needed because this new task is not yet running and cannot
1385	 * be racing exec.
1386	 */
1387	assert_spin_locked(&current->sighand->siglock);
1388
1389	/* Ref-count the new filter user, and assign it. */
1390	get_seccomp_filter(current);
1391	p->seccomp = current->seccomp;
1392
1393	/*
1394	 * Explicitly enable no_new_privs here in case it got set
1395	 * between the task_struct being duplicated and holding the
1396	 * sighand lock. The seccomp state and nnp must be in sync.
1397	 */
1398	if (task_no_new_privs(current))
1399		task_set_no_new_privs(p);
1400
1401	/*
1402	 * If the parent gained a seccomp mode after copying thread
1403	 * flags and between before we held the sighand lock, we have
1404	 * to manually enable the seccomp thread flag here.
1405	 */
1406	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1407		set_tsk_thread_flag(p, TIF_SECCOMP);
1408#endif
1409}
1410
1411SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1412{
1413	current->clear_child_tid = tidptr;
1414
1415	return task_pid_vnr(current);
1416}
1417
1418static void rt_mutex_init_task(struct task_struct *p)
1419{
1420	raw_spin_lock_init(&p->pi_lock);
1421#ifdef CONFIG_RT_MUTEXES
1422	p->pi_waiters = RB_ROOT;
1423	p->pi_waiters_leftmost = NULL;
1424	p->pi_blocked_on = NULL;
1425#endif
1426}
1427
1428/*
1429 * Initialize POSIX timer handling for a single task.
1430 */
1431static void posix_cpu_timers_init(struct task_struct *tsk)
1432{
1433	tsk->cputime_expires.prof_exp = 0;
1434	tsk->cputime_expires.virt_exp = 0;
1435	tsk->cputime_expires.sched_exp = 0;
1436	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1437	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1438	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1439}
1440
1441static inline void
1442init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1443{
1444	 task->pids[type].pid = pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447/*
1448 * This creates a new process as a copy of the old one,
1449 * but does not actually start it yet.
1450 *
1451 * It copies the registers, and all the appropriate
1452 * parts of the process environment (as per the clone
1453 * flags). The actual kick-off is left to the caller.
1454 */
1455static __latent_entropy struct task_struct *copy_process(
1456					unsigned long clone_flags,
1457					unsigned long stack_start,
1458					unsigned long stack_size,
1459					int __user *child_tidptr,
1460					struct pid *pid,
1461					int trace,
1462					unsigned long tls,
1463					int node)
1464{
1465	int retval;
1466	struct task_struct *p;
 
 
 
 
1467
 
 
 
 
1468	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1469		return ERR_PTR(-EINVAL);
1470
1471	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1472		return ERR_PTR(-EINVAL);
1473
1474	/*
1475	 * Thread groups must share signals as well, and detached threads
1476	 * can only be started up within the thread group.
1477	 */
1478	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1479		return ERR_PTR(-EINVAL);
1480
1481	/*
1482	 * Shared signal handlers imply shared VM. By way of the above,
1483	 * thread groups also imply shared VM. Blocking this case allows
1484	 * for various simplifications in other code.
1485	 */
1486	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1487		return ERR_PTR(-EINVAL);
1488
1489	/*
1490	 * Siblings of global init remain as zombies on exit since they are
1491	 * not reaped by their parent (swapper). To solve this and to avoid
1492	 * multi-rooted process trees, prevent global and container-inits
1493	 * from creating siblings.
1494	 */
1495	if ((clone_flags & CLONE_PARENT) &&
1496				current->signal->flags & SIGNAL_UNKILLABLE)
1497		return ERR_PTR(-EINVAL);
1498
1499	/*
1500	 * If the new process will be in a different pid or user namespace
1501	 * do not allow it to share a thread group with the forking task.
1502	 */
1503	if (clone_flags & CLONE_THREAD) {
1504		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1505		    (task_active_pid_ns(current) !=
1506				current->nsproxy->pid_ns_for_children))
1507			return ERR_PTR(-EINVAL);
1508	}
1509
1510	retval = security_task_create(clone_flags);
1511	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512		goto fork_out;
1513
1514	retval = -ENOMEM;
1515	p = dup_task_struct(current, node);
1516	if (!p)
1517		goto fork_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518
1519	ftrace_graph_init_task(p);
1520
1521	rt_mutex_init_task(p);
1522
 
1523#ifdef CONFIG_PROVE_LOCKING
1524	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1525	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1526#endif
 
 
 
 
1527	retval = -EAGAIN;
1528	if (atomic_read(&p->real_cred->user->processes) >=
1529			task_rlimit(p, RLIMIT_NPROC)) {
1530		if (p->real_cred->user != INIT_USER &&
1531		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1532			goto bad_fork_free;
1533	}
1534	current->flags &= ~PF_NPROC_EXCEEDED;
1535
1536	retval = copy_creds(p, clone_flags);
1537	if (retval < 0)
1538		goto bad_fork_free;
1539
1540	/*
1541	 * If multiple threads are within copy_process(), then this check
1542	 * triggers too late. This doesn't hurt, the check is only there
1543	 * to stop root fork bombs.
1544	 */
1545	retval = -EAGAIN;
1546	if (nr_threads >= max_threads)
1547		goto bad_fork_cleanup_count;
1548
1549	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1550	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1551	p->flags |= PF_FORKNOEXEC;
1552	INIT_LIST_HEAD(&p->children);
1553	INIT_LIST_HEAD(&p->sibling);
1554	rcu_copy_process(p);
1555	p->vfork_done = NULL;
1556	spin_lock_init(&p->alloc_lock);
1557
1558	init_sigpending(&p->pending);
1559
1560	p->utime = p->stime = p->gtime = 0;
1561#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1562	p->utimescaled = p->stimescaled = 0;
1563#endif
1564	prev_cputime_init(&p->prev_cputime);
1565
1566#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1567	seqcount_init(&p->vtime_seqcount);
1568	p->vtime_snap = 0;
1569	p->vtime_snap_whence = VTIME_INACTIVE;
 
 
 
 
1570#endif
1571
1572#if defined(SPLIT_RSS_COUNTING)
1573	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1574#endif
1575
1576	p->default_timer_slack_ns = current->timer_slack_ns;
1577
 
 
 
 
1578	task_io_accounting_init(&p->ioac);
1579	acct_clear_integrals(p);
1580
1581	posix_cpu_timers_init(p);
1582
1583	p->start_time = ktime_get_ns();
1584	p->real_start_time = ktime_get_boot_ns();
1585	p->io_context = NULL;
1586	p->audit_context = NULL;
1587	cgroup_fork(p);
 
 
 
 
1588#ifdef CONFIG_NUMA
1589	p->mempolicy = mpol_dup(p->mempolicy);
1590	if (IS_ERR(p->mempolicy)) {
1591		retval = PTR_ERR(p->mempolicy);
1592		p->mempolicy = NULL;
1593		goto bad_fork_cleanup_threadgroup_lock;
1594	}
1595#endif
1596#ifdef CONFIG_CPUSETS
1597	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1598	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1599	seqcount_init(&p->mems_allowed_seq);
1600#endif
1601#ifdef CONFIG_TRACE_IRQFLAGS
1602	p->irq_events = 0;
1603	p->hardirqs_enabled = 0;
1604	p->hardirq_enable_ip = 0;
1605	p->hardirq_enable_event = 0;
1606	p->hardirq_disable_ip = _THIS_IP_;
1607	p->hardirq_disable_event = 0;
1608	p->softirqs_enabled = 1;
1609	p->softirq_enable_ip = _THIS_IP_;
1610	p->softirq_enable_event = 0;
1611	p->softirq_disable_ip = 0;
1612	p->softirq_disable_event = 0;
1613	p->hardirq_context = 0;
1614	p->softirq_context = 0;
1615#endif
1616
1617	p->pagefault_disabled = 0;
1618
1619#ifdef CONFIG_LOCKDEP
1620	p->lockdep_depth = 0; /* no locks held yet */
1621	p->curr_chain_key = 0;
1622	p->lockdep_recursion = 0;
1623#endif
1624
1625#ifdef CONFIG_DEBUG_MUTEXES
1626	p->blocked_on = NULL; /* not blocked yet */
1627#endif
1628#ifdef CONFIG_BCACHE
1629	p->sequential_io	= 0;
1630	p->sequential_io_avg	= 0;
1631#endif
 
 
 
 
1632
1633	/* Perform scheduler related setup. Assign this task to a CPU. */
1634	retval = sched_fork(clone_flags, p);
1635	if (retval)
1636		goto bad_fork_cleanup_policy;
1637
1638	retval = perf_event_init_task(p);
1639	if (retval)
1640		goto bad_fork_cleanup_policy;
1641	retval = audit_alloc(p);
1642	if (retval)
1643		goto bad_fork_cleanup_perf;
1644	/* copy all the process information */
1645	shm_init_task(p);
1646	retval = copy_semundo(clone_flags, p);
1647	if (retval)
1648		goto bad_fork_cleanup_audit;
 
 
 
1649	retval = copy_files(clone_flags, p);
1650	if (retval)
1651		goto bad_fork_cleanup_semundo;
1652	retval = copy_fs(clone_flags, p);
1653	if (retval)
1654		goto bad_fork_cleanup_files;
1655	retval = copy_sighand(clone_flags, p);
1656	if (retval)
1657		goto bad_fork_cleanup_fs;
1658	retval = copy_signal(clone_flags, p);
1659	if (retval)
1660		goto bad_fork_cleanup_sighand;
1661	retval = copy_mm(clone_flags, p);
1662	if (retval)
1663		goto bad_fork_cleanup_signal;
1664	retval = copy_namespaces(clone_flags, p);
1665	if (retval)
1666		goto bad_fork_cleanup_mm;
1667	retval = copy_io(clone_flags, p);
1668	if (retval)
1669		goto bad_fork_cleanup_namespaces;
1670	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1671	if (retval)
1672		goto bad_fork_cleanup_io;
1673
 
 
1674	if (pid != &init_struct_pid) {
1675		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
 
1676		if (IS_ERR(pid)) {
1677			retval = PTR_ERR(pid);
1678			goto bad_fork_cleanup_thread;
1679		}
1680	}
1681
1682	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1683	/*
1684	 * Clear TID on mm_release()?
1685	 */
1686	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687#ifdef CONFIG_BLOCK
1688	p->plug = NULL;
1689#endif
1690#ifdef CONFIG_FUTEX
1691	p->robust_list = NULL;
1692#ifdef CONFIG_COMPAT
1693	p->compat_robust_list = NULL;
1694#endif
1695	INIT_LIST_HEAD(&p->pi_state_list);
1696	p->pi_state_cache = NULL;
1697#endif
1698	/*
1699	 * sigaltstack should be cleared when sharing the same VM
1700	 */
1701	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1702		sas_ss_reset(p);
1703
1704	/*
1705	 * Syscall tracing and stepping should be turned off in the
1706	 * child regardless of CLONE_PTRACE.
1707	 */
1708	user_disable_single_step(p);
1709	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1710#ifdef TIF_SYSCALL_EMU
1711	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1712#endif
1713	clear_all_latency_tracing(p);
1714
1715	/* ok, now we should be set up.. */
1716	p->pid = pid_nr(pid);
1717	if (clone_flags & CLONE_THREAD) {
1718		p->exit_signal = -1;
1719		p->group_leader = current->group_leader;
1720		p->tgid = current->tgid;
1721	} else {
1722		if (clone_flags & CLONE_PARENT)
1723			p->exit_signal = current->group_leader->exit_signal;
1724		else
1725			p->exit_signal = (clone_flags & CSIGNAL);
1726		p->group_leader = p;
1727		p->tgid = p->pid;
1728	}
1729
1730	p->nr_dirtied = 0;
1731	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1732	p->dirty_paused_when = 0;
1733
1734	p->pdeath_signal = 0;
1735	INIT_LIST_HEAD(&p->thread_group);
1736	p->task_works = NULL;
 
 
 
 
 
 
 
 
1737
1738	threadgroup_change_begin(current);
1739	/*
1740	 * Ensure that the cgroup subsystem policies allow the new process to be
1741	 * forked. It should be noted the the new process's css_set can be changed
1742	 * between here and cgroup_post_fork() if an organisation operation is in
1743	 * progress.
1744	 */
1745	retval = cgroup_can_fork(p);
1746	if (retval)
1747		goto bad_fork_free_pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748
1749	/*
1750	 * Make it visible to the rest of the system, but dont wake it up yet.
1751	 * Need tasklist lock for parent etc handling!
1752	 */
1753	write_lock_irq(&tasklist_lock);
1754
1755	/* CLONE_PARENT re-uses the old parent */
1756	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1757		p->real_parent = current->real_parent;
1758		p->parent_exec_id = current->parent_exec_id;
 
 
 
 
1759	} else {
1760		p->real_parent = current;
1761		p->parent_exec_id = current->self_exec_id;
 
1762	}
1763
 
 
 
 
1764	spin_lock(&current->sighand->siglock);
1765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766	/*
1767	 * Copy seccomp details explicitly here, in case they were changed
1768	 * before holding sighand lock.
1769	 */
1770	copy_seccomp(p);
1771
1772	/*
1773	 * Process group and session signals need to be delivered to just the
1774	 * parent before the fork or both the parent and the child after the
1775	 * fork. Restart if a signal comes in before we add the new process to
1776	 * it's process group.
1777	 * A fatal signal pending means that current will exit, so the new
1778	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1779	*/
1780	recalc_sigpending();
1781	if (signal_pending(current)) {
1782		spin_unlock(&current->sighand->siglock);
1783		write_unlock_irq(&tasklist_lock);
1784		retval = -ERESTARTNOINTR;
1785		goto bad_fork_cancel_cgroup;
1786	}
1787
1788	if (likely(p->pid)) {
1789		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1790
1791		init_task_pid(p, PIDTYPE_PID, pid);
1792		if (thread_group_leader(p)) {
 
1793			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1794			init_task_pid(p, PIDTYPE_SID, task_session(current));
1795
1796			if (is_child_reaper(pid)) {
1797				ns_of_pid(pid)->child_reaper = p;
1798				p->signal->flags |= SIGNAL_UNKILLABLE;
1799			}
1800
1801			p->signal->leader_pid = pid;
1802			p->signal->tty = tty_kref_get(current->signal->tty);
 
 
 
 
 
 
 
1803			list_add_tail(&p->sibling, &p->real_parent->children);
1804			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
1805			attach_pid(p, PIDTYPE_PGID);
1806			attach_pid(p, PIDTYPE_SID);
1807			__this_cpu_inc(process_counts);
1808		} else {
1809			current->signal->nr_threads++;
 
1810			atomic_inc(&current->signal->live);
1811			atomic_inc(&current->signal->sigcnt);
 
1812			list_add_tail_rcu(&p->thread_group,
1813					  &p->group_leader->thread_group);
1814			list_add_tail_rcu(&p->thread_node,
1815					  &p->signal->thread_head);
1816		}
1817		attach_pid(p, PIDTYPE_PID);
1818		nr_threads++;
1819	}
1820
1821	total_forks++;
 
1822	spin_unlock(&current->sighand->siglock);
1823	syscall_tracepoint_update(p);
1824	write_unlock_irq(&tasklist_lock);
1825
 
 
 
1826	proc_fork_connector(p);
1827	cgroup_post_fork(p);
1828	threadgroup_change_end(current);
1829	perf_event_fork(p);
1830
1831	trace_task_newtask(p, clone_flags);
1832	uprobe_copy_process(p, clone_flags);
1833
 
 
1834	return p;
1835
1836bad_fork_cancel_cgroup:
1837	cgroup_cancel_fork(p);
 
 
 
 
 
 
 
 
1838bad_fork_free_pid:
1839	threadgroup_change_end(current);
1840	if (pid != &init_struct_pid)
1841		free_pid(pid);
1842bad_fork_cleanup_thread:
1843	exit_thread(p);
1844bad_fork_cleanup_io:
1845	if (p->io_context)
1846		exit_io_context(p);
1847bad_fork_cleanup_namespaces:
1848	exit_task_namespaces(p);
1849bad_fork_cleanup_mm:
1850	if (p->mm)
 
1851		mmput(p->mm);
 
1852bad_fork_cleanup_signal:
1853	if (!(clone_flags & CLONE_THREAD))
1854		free_signal_struct(p->signal);
1855bad_fork_cleanup_sighand:
1856	__cleanup_sighand(p->sighand);
1857bad_fork_cleanup_fs:
1858	exit_fs(p); /* blocking */
1859bad_fork_cleanup_files:
1860	exit_files(p); /* blocking */
1861bad_fork_cleanup_semundo:
1862	exit_sem(p);
 
 
1863bad_fork_cleanup_audit:
1864	audit_free(p);
1865bad_fork_cleanup_perf:
1866	perf_event_free_task(p);
1867bad_fork_cleanup_policy:
 
1868#ifdef CONFIG_NUMA
1869	mpol_put(p->mempolicy);
1870bad_fork_cleanup_threadgroup_lock:
1871#endif
 
1872	delayacct_tsk_free(p);
1873bad_fork_cleanup_count:
1874	atomic_dec(&p->cred->user->processes);
1875	exit_creds(p);
1876bad_fork_free:
1877	p->state = TASK_DEAD;
 
1878	put_task_stack(p);
1879	free_task(p);
1880fork_out:
 
 
 
1881	return ERR_PTR(retval);
1882}
1883
1884static inline void init_idle_pids(struct pid_link *links)
1885{
1886	enum pid_type type;
1887
1888	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1889		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1890		links[type].pid = &init_struct_pid;
1891	}
1892}
1893
1894struct task_struct *fork_idle(int cpu)
 
 
 
 
 
 
1895{
1896	struct task_struct *task;
1897	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1898			    cpu_to_node(cpu));
 
 
 
 
 
 
 
1899	if (!IS_ERR(task)) {
1900		init_idle_pids(task->pids);
1901		init_idle(task, cpu);
1902	}
1903
1904	return task;
1905}
1906
1907/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908 *  Ok, this is the main fork-routine.
1909 *
1910 * It copies the process, and if successful kick-starts
1911 * it and waits for it to finish using the VM if required.
 
 
1912 */
1913long _do_fork(unsigned long clone_flags,
1914	      unsigned long stack_start,
1915	      unsigned long stack_size,
1916	      int __user *parent_tidptr,
1917	      int __user *child_tidptr,
1918	      unsigned long tls)
1919{
 
 
 
1920	struct task_struct *p;
1921	int trace = 0;
1922	long nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924	/*
1925	 * Determine whether and which event to report to ptracer.  When
1926	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1927	 * requested, no event is reported; otherwise, report if the event
1928	 * for the type of forking is enabled.
1929	 */
1930	if (!(clone_flags & CLONE_UNTRACED)) {
1931		if (clone_flags & CLONE_VFORK)
1932			trace = PTRACE_EVENT_VFORK;
1933		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1934			trace = PTRACE_EVENT_CLONE;
1935		else
1936			trace = PTRACE_EVENT_FORK;
1937
1938		if (likely(!ptrace_event_enabled(current, trace)))
1939			trace = 0;
1940	}
1941
1942	p = copy_process(clone_flags, stack_start, stack_size,
1943			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1944	add_latent_entropy();
 
 
 
 
1945	/*
1946	 * Do this prior waking up the new thread - the thread pointer
1947	 * might get invalid after that point, if the thread exits quickly.
1948	 */
1949	if (!IS_ERR(p)) {
1950		struct completion vfork;
1951		struct pid *pid;
1952
1953		trace_sched_process_fork(current, p);
1954
1955		pid = get_task_pid(p, PIDTYPE_PID);
1956		nr = pid_vnr(pid);
1957
1958		if (clone_flags & CLONE_PARENT_SETTID)
1959			put_user(nr, parent_tidptr);
1960
1961		if (clone_flags & CLONE_VFORK) {
1962			p->vfork_done = &vfork;
1963			init_completion(&vfork);
1964			get_task_struct(p);
1965		}
1966
1967		wake_up_new_task(p);
 
1968
1969		/* forking complete and child started to run, tell ptracer */
1970		if (unlikely(trace))
1971			ptrace_event_pid(trace, pid);
1972
1973		if (clone_flags & CLONE_VFORK) {
1974			if (!wait_for_vfork_done(p, &vfork))
1975				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1976		}
1977
1978		put_pid(pid);
1979	} else {
1980		nr = PTR_ERR(p);
 
1981	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982	return nr;
1983}
1984
1985#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1986/* For compatibility with architectures that call do_fork directly rather than
1987 * using the syscall entry points below. */
1988long do_fork(unsigned long clone_flags,
1989	      unsigned long stack_start,
1990	      unsigned long stack_size,
1991	      int __user *parent_tidptr,
1992	      int __user *child_tidptr)
1993{
1994	return _do_fork(clone_flags, stack_start, stack_size,
1995			parent_tidptr, child_tidptr, 0);
 
 
 
 
 
 
 
 
1996}
1997#endif
1998
1999/*
2000 * Create a kernel thread.
2001 */
2002pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2003{
2004	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2005		(unsigned long)arg, NULL, NULL, 0);
 
 
 
 
 
 
 
2006}
2007
2008#ifdef __ARCH_WANT_SYS_FORK
2009SYSCALL_DEFINE0(fork)
2010{
2011#ifdef CONFIG_MMU
2012	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
 
 
 
 
2013#else
2014	/* can not support in nommu mode */
2015	return -EINVAL;
2016#endif
2017}
2018#endif
2019
2020#ifdef __ARCH_WANT_SYS_VFORK
2021SYSCALL_DEFINE0(vfork)
2022{
2023	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2024			0, NULL, NULL, 0);
 
 
 
 
2025}
2026#endif
2027
2028#ifdef __ARCH_WANT_SYS_CLONE
2029#ifdef CONFIG_CLONE_BACKWARDS
2030SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2031		 int __user *, parent_tidptr,
2032		 unsigned long, tls,
2033		 int __user *, child_tidptr)
2034#elif defined(CONFIG_CLONE_BACKWARDS2)
2035SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2036		 int __user *, parent_tidptr,
2037		 int __user *, child_tidptr,
2038		 unsigned long, tls)
2039#elif defined(CONFIG_CLONE_BACKWARDS3)
2040SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2041		int, stack_size,
2042		int __user *, parent_tidptr,
2043		int __user *, child_tidptr,
2044		unsigned long, tls)
2045#else
2046SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2047		 int __user *, parent_tidptr,
2048		 int __user *, child_tidptr,
2049		 unsigned long, tls)
2050#endif
2051{
2052	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
2054#endif
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2057#define ARCH_MIN_MMSTRUCT_ALIGN 0
2058#endif
2059
2060static void sighand_ctor(void *data)
2061{
2062	struct sighand_struct *sighand = data;
2063
2064	spin_lock_init(&sighand->siglock);
2065	init_waitqueue_head(&sighand->signalfd_wqh);
2066}
2067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068void __init proc_caches_init(void)
2069{
2070	sighand_cachep = kmem_cache_create("sighand_cache",
2071			sizeof(struct sighand_struct), 0,
2072			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2073			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2074	signal_cachep = kmem_cache_create("signal_cache",
2075			sizeof(struct signal_struct), 0,
2076			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2077			NULL);
2078	files_cachep = kmem_cache_create("files_cache",
2079			sizeof(struct files_struct), 0,
2080			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2081			NULL);
2082	fs_cachep = kmem_cache_create("fs_cache",
2083			sizeof(struct fs_struct), 0,
2084			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2085			NULL);
2086	/*
2087	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2088	 * whole struct cpumask for the OFFSTACK case. We could change
2089	 * this to *only* allocate as much of it as required by the
2090	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2091	 * is at the end of the structure, exactly for that reason.
2092	 */
2093	mm_cachep = kmem_cache_create("mm_struct",
2094			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2095			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2096			NULL);
 
2097	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2098	mmap_init();
2099	nsproxy_cache_init();
2100}
2101
2102/*
2103 * Check constraints on flags passed to the unshare system call.
2104 */
2105static int check_unshare_flags(unsigned long unshare_flags)
2106{
2107	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2108				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2109				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2110				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
 
2111		return -EINVAL;
2112	/*
2113	 * Not implemented, but pretend it works if there is nothing
2114	 * to unshare.  Note that unsharing the address space or the
2115	 * signal handlers also need to unshare the signal queues (aka
2116	 * CLONE_THREAD).
2117	 */
2118	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2119		if (!thread_group_empty(current))
2120			return -EINVAL;
2121	}
2122	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2123		if (atomic_read(&current->sighand->count) > 1)
2124			return -EINVAL;
2125	}
2126	if (unshare_flags & CLONE_VM) {
2127		if (!current_is_single_threaded())
2128			return -EINVAL;
2129	}
2130
2131	return 0;
2132}
2133
2134/*
2135 * Unshare the filesystem structure if it is being shared
2136 */
2137static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2138{
2139	struct fs_struct *fs = current->fs;
2140
2141	if (!(unshare_flags & CLONE_FS) || !fs)
2142		return 0;
2143
2144	/* don't need lock here; in the worst case we'll do useless copy */
2145	if (fs->users == 1)
2146		return 0;
2147
2148	*new_fsp = copy_fs_struct(fs);
2149	if (!*new_fsp)
2150		return -ENOMEM;
2151
2152	return 0;
2153}
2154
2155/*
2156 * Unshare file descriptor table if it is being shared
2157 */
2158static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
2159{
2160	struct files_struct *fd = current->files;
2161	int error = 0;
2162
2163	if ((unshare_flags & CLONE_FILES) &&
2164	    (fd && atomic_read(&fd->count) > 1)) {
2165		*new_fdp = dup_fd(fd, &error);
2166		if (!*new_fdp)
2167			return error;
2168	}
2169
2170	return 0;
2171}
2172
2173/*
2174 * unshare allows a process to 'unshare' part of the process
2175 * context which was originally shared using clone.  copy_*
2176 * functions used by do_fork() cannot be used here directly
2177 * because they modify an inactive task_struct that is being
2178 * constructed. Here we are modifying the current, active,
2179 * task_struct.
2180 */
2181SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2182{
2183	struct fs_struct *fs, *new_fs = NULL;
2184	struct files_struct *fd, *new_fd = NULL;
2185	struct cred *new_cred = NULL;
2186	struct nsproxy *new_nsproxy = NULL;
2187	int do_sysvsem = 0;
2188	int err;
2189
2190	/*
2191	 * If unsharing a user namespace must also unshare the thread group
2192	 * and unshare the filesystem root and working directories.
2193	 */
2194	if (unshare_flags & CLONE_NEWUSER)
2195		unshare_flags |= CLONE_THREAD | CLONE_FS;
2196	/*
2197	 * If unsharing vm, must also unshare signal handlers.
2198	 */
2199	if (unshare_flags & CLONE_VM)
2200		unshare_flags |= CLONE_SIGHAND;
2201	/*
2202	 * If unsharing a signal handlers, must also unshare the signal queues.
2203	 */
2204	if (unshare_flags & CLONE_SIGHAND)
2205		unshare_flags |= CLONE_THREAD;
2206	/*
2207	 * If unsharing namespace, must also unshare filesystem information.
2208	 */
2209	if (unshare_flags & CLONE_NEWNS)
2210		unshare_flags |= CLONE_FS;
2211
2212	err = check_unshare_flags(unshare_flags);
2213	if (err)
2214		goto bad_unshare_out;
2215	/*
2216	 * CLONE_NEWIPC must also detach from the undolist: after switching
2217	 * to a new ipc namespace, the semaphore arrays from the old
2218	 * namespace are unreachable.
2219	 */
2220	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2221		do_sysvsem = 1;
2222	err = unshare_fs(unshare_flags, &new_fs);
2223	if (err)
2224		goto bad_unshare_out;
2225	err = unshare_fd(unshare_flags, &new_fd);
2226	if (err)
2227		goto bad_unshare_cleanup_fs;
2228	err = unshare_userns(unshare_flags, &new_cred);
2229	if (err)
2230		goto bad_unshare_cleanup_fd;
2231	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2232					 new_cred, new_fs);
2233	if (err)
2234		goto bad_unshare_cleanup_cred;
2235
 
 
 
 
 
 
2236	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2237		if (do_sysvsem) {
2238			/*
2239			 * CLONE_SYSVSEM is equivalent to sys_exit().
2240			 */
2241			exit_sem(current);
2242		}
2243		if (unshare_flags & CLONE_NEWIPC) {
2244			/* Orphan segments in old ns (see sem above). */
2245			exit_shm(current);
2246			shm_init_task(current);
2247		}
2248
2249		if (new_nsproxy)
2250			switch_task_namespaces(current, new_nsproxy);
2251
2252		task_lock(current);
2253
2254		if (new_fs) {
2255			fs = current->fs;
2256			spin_lock(&fs->lock);
2257			current->fs = new_fs;
2258			if (--fs->users)
2259				new_fs = NULL;
2260			else
2261				new_fs = fs;
2262			spin_unlock(&fs->lock);
2263		}
2264
2265		if (new_fd) {
2266			fd = current->files;
2267			current->files = new_fd;
2268			new_fd = fd;
2269		}
2270
2271		task_unlock(current);
2272
2273		if (new_cred) {
2274			/* Install the new user namespace */
2275			commit_creds(new_cred);
2276			new_cred = NULL;
2277		}
2278	}
2279
 
 
2280bad_unshare_cleanup_cred:
2281	if (new_cred)
2282		put_cred(new_cred);
2283bad_unshare_cleanup_fd:
2284	if (new_fd)
2285		put_files_struct(new_fd);
2286
2287bad_unshare_cleanup_fs:
2288	if (new_fs)
2289		free_fs_struct(new_fs);
2290
2291bad_unshare_out:
2292	return err;
2293}
2294
 
 
 
 
 
2295/*
2296 *	Helper to unshare the files of the current task.
2297 *	We don't want to expose copy_files internals to
2298 *	the exec layer of the kernel.
2299 */
2300
2301int unshare_files(struct files_struct **displaced)
2302{
2303	struct task_struct *task = current;
2304	struct files_struct *copy = NULL;
2305	int error;
2306
2307	error = unshare_fd(CLONE_FILES, &copy);
2308	if (error || !copy) {
2309		*displaced = NULL;
2310		return error;
2311	}
2312	*displaced = task->files;
2313	task_lock(task);
2314	task->files = copy;
2315	task_unlock(task);
 
2316	return 0;
2317}
2318
2319int sysctl_max_threads(struct ctl_table *table, int write,
2320		       void __user *buffer, size_t *lenp, loff_t *ppos)
2321{
2322	struct ctl_table t;
2323	int ret;
2324	int threads = max_threads;
2325	int min = MIN_THREADS;
2326	int max = MAX_THREADS;
2327
2328	t = *table;
2329	t.data = &threads;
2330	t.extra1 = &min;
2331	t.extra2 = &max;
2332
2333	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2334	if (ret || !write)
2335		return ret;
2336
2337	set_max_threads(threads);
2338
2339	return 0;
2340}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
 
  78#include <linux/tty.h>
 
  79#include <linux/fs_struct.h>
  80#include <linux/magic.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
  94#include <linux/stackleak.h>
  95#include <linux/kasan.h>
  96#include <linux/scs.h>
  97#include <linux/io_uring.h>
  98#include <linux/bpf.h>
  99#include <linux/stackprotector.h>
 100
 
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 
 
 
 
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#  ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 
 195
 196struct vm_stack {
 197	struct rcu_head rcu;
 198	struct vm_struct *stack_vm_area;
 199};
 200
 201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < NR_CACHED_STACKS; i++) {
 206		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
 207			continue;
 208		return true;
 209	}
 210	return false;
 211}
 212
 213static void thread_stack_free_rcu(struct rcu_head *rh)
 214{
 215	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 216
 217	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 218		return;
 219
 220	vfree(vm_stack);
 221}
 222
 223static void thread_stack_delayed_free(struct task_struct *tsk)
 224{
 225	struct vm_stack *vm_stack = tsk->stack;
 226
 227	vm_stack->stack_vm_area = tsk->stack_vm_area;
 228	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 229}
 230
 231static int free_vm_stack_cache(unsigned int cpu)
 232{
 233	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 234	int i;
 235
 236	for (i = 0; i < NR_CACHED_STACKS; i++) {
 237		struct vm_struct *vm_stack = cached_vm_stacks[i];
 238
 239		if (!vm_stack)
 240			continue;
 241
 242		vfree(vm_stack->addr);
 243		cached_vm_stacks[i] = NULL;
 244	}
 245
 246	return 0;
 247}
 248
 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
 250{
 251	int i;
 252	int ret;
 253
 254	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 255	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 256
 257	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 258		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 259		if (ret)
 260			goto err;
 261	}
 262	return 0;
 263err:
 264	/*
 265	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
 266	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
 267	 * ignore this page.
 268	 */
 269	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 270		memcg_kmem_uncharge_page(vm->pages[i], 0);
 271	return ret;
 272}
 273
 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 275{
 276	struct vm_struct *vm;
 277	void *stack;
 278	int i;
 279
 
 280	for (i = 0; i < NR_CACHED_STACKS; i++) {
 281		struct vm_struct *s;
 282
 283		s = this_cpu_xchg(cached_stacks[i], NULL);
 284
 285		if (!s)
 286			continue;
 287
 288		/* Reset stack metadata. */
 289		kasan_unpoison_range(s->addr, THREAD_SIZE);
 290
 291		stack = kasan_reset_tag(s->addr);
 292
 293		/* Clear stale pointers from reused stack. */
 294		memset(stack, 0, THREAD_SIZE);
 295
 296		if (memcg_charge_kernel_stack(s)) {
 297			vfree(s->addr);
 298			return -ENOMEM;
 299		}
 300
 301		tsk->stack_vm_area = s;
 302		tsk->stack = stack;
 303		return 0;
 304	}
 
 305
 306	/*
 307	 * Allocated stacks are cached and later reused by new threads,
 308	 * so memcg accounting is performed manually on assigning/releasing
 309	 * stacks to tasks. Drop __GFP_ACCOUNT.
 310	 */
 311	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 312				     VMALLOC_START, VMALLOC_END,
 313				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 314				     PAGE_KERNEL,
 315				     0, node, __builtin_return_address(0));
 316	if (!stack)
 317		return -ENOMEM;
 318
 319	vm = find_vm_area(stack);
 320	if (memcg_charge_kernel_stack(vm)) {
 321		vfree(stack);
 322		return -ENOMEM;
 323	}
 324	/*
 325	 * We can't call find_vm_area() in interrupt context, and
 326	 * free_thread_stack() can be called in interrupt context,
 327	 * so cache the vm_struct.
 328	 */
 329	tsk->stack_vm_area = vm;
 330	stack = kasan_reset_tag(stack);
 331	tsk->stack = stack;
 332	return 0;
 333}
 
 334
 335static void free_thread_stack(struct task_struct *tsk)
 336{
 337	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 338		thread_stack_delayed_free(tsk);
 339
 340	tsk->stack = NULL;
 341	tsk->stack_vm_area = NULL;
 342}
 343
 344#  else /* !CONFIG_VMAP_STACK */
 345
 346static void thread_stack_free_rcu(struct rcu_head *rh)
 347{
 348	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 349}
 
 
 350
 351static void thread_stack_delayed_free(struct task_struct *tsk)
 352{
 353	struct rcu_head *rh = tsk->stack;
 
 354
 355	call_rcu(rh, thread_stack_free_rcu);
 356}
 
 
 
 357
 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 359{
 360	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 361					     THREAD_SIZE_ORDER);
 362
 363	if (likely(page)) {
 364		tsk->stack = kasan_reset_tag(page_address(page));
 365		return 0;
 366	}
 367	return -ENOMEM;
 368}
 369
 370static void free_thread_stack(struct task_struct *tsk)
 371{
 372	thread_stack_delayed_free(tsk);
 373	tsk->stack = NULL;
 374}
 375
 376#  endif /* CONFIG_VMAP_STACK */
 377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 378
 379static struct kmem_cache *thread_stack_cache;
 380
 381static void thread_stack_free_rcu(struct rcu_head *rh)
 382{
 383	kmem_cache_free(thread_stack_cache, rh);
 384}
 385
 386static void thread_stack_delayed_free(struct task_struct *tsk)
 387{
 388	struct rcu_head *rh = tsk->stack;
 389
 390	call_rcu(rh, thread_stack_free_rcu);
 391}
 392
 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 394{
 395	unsigned long *stack;
 396	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 397	stack = kasan_reset_tag(stack);
 398	tsk->stack = stack;
 399	return stack ? 0 : -ENOMEM;
 400}
 401
 402static void free_thread_stack(struct task_struct *tsk)
 403{
 404	thread_stack_delayed_free(tsk);
 405	tsk->stack = NULL;
 406}
 407
 408void thread_stack_cache_init(void)
 409{
 410	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 411					THREAD_SIZE, THREAD_SIZE, 0, 0,
 412					THREAD_SIZE, NULL);
 413	BUG_ON(thread_stack_cache == NULL);
 414}
 415
 416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 418
 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 420{
 421	unsigned long *stack;
 422
 423	stack = arch_alloc_thread_stack_node(tsk, node);
 424	tsk->stack = stack;
 425	return stack ? 0 : -ENOMEM;
 426}
 427
 428static void free_thread_stack(struct task_struct *tsk)
 429{
 430	arch_free_thread_stack(tsk);
 431	tsk->stack = NULL;
 432}
 433
 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 435
 436/* SLAB cache for signal_struct structures (tsk->signal) */
 437static struct kmem_cache *signal_cachep;
 438
 439/* SLAB cache for sighand_struct structures (tsk->sighand) */
 440struct kmem_cache *sighand_cachep;
 441
 442/* SLAB cache for files_struct structures (tsk->files) */
 443struct kmem_cache *files_cachep;
 444
 445/* SLAB cache for fs_struct structures (tsk->fs) */
 446struct kmem_cache *fs_cachep;
 447
 448/* SLAB cache for vm_area_struct structures */
 449static struct kmem_cache *vm_area_cachep;
 450
 451/* SLAB cache for mm_struct structures (tsk->mm) */
 452static struct kmem_cache *mm_cachep;
 453
 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 455{
 456	struct vm_area_struct *vma;
 
 457
 458	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 459	if (vma)
 460		vma_init(vma, mm);
 461	return vma;
 462}
 463
 464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 465{
 466	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 467
 468	if (new) {
 469		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 470		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 471		/*
 472		 * orig->shared.rb may be modified concurrently, but the clone
 473		 * will be reinitialized.
 474		 */
 475		*new = data_race(*orig);
 476		INIT_LIST_HEAD(&new->anon_vma_chain);
 477		dup_anon_vma_name(orig, new);
 478	}
 479	return new;
 480}
 481
 482void vm_area_free(struct vm_area_struct *vma)
 483{
 484	free_anon_vma_name(vma);
 485	kmem_cache_free(vm_area_cachep, vma);
 486}
 487
 488static void account_kernel_stack(struct task_struct *tsk, int account)
 489{
 490	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 491		struct vm_struct *vm = task_stack_vm_area(tsk);
 492		int i;
 493
 494		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 495			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 496					      account * (PAGE_SIZE / 1024));
 497	} else {
 498		void *stack = task_stack_page(tsk);
 499
 500		/* All stack pages are in the same node. */
 501		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 502				      account * (THREAD_SIZE / 1024));
 503	}
 504}
 505
 506void exit_task_stack_account(struct task_struct *tsk)
 507{
 508	account_kernel_stack(tsk, -1);
 509
 510	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 511		struct vm_struct *vm;
 512		int i;
 513
 514		vm = task_stack_vm_area(tsk);
 515		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 516			memcg_kmem_uncharge_page(vm->pages[i], 0);
 517	}
 518}
 519
 520static void release_task_stack(struct task_struct *tsk)
 521{
 522	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 523		return;  /* Better to leak the stack than to free prematurely */
 524
 
 
 525	free_thread_stack(tsk);
 
 
 
 
 526}
 527
 528#ifdef CONFIG_THREAD_INFO_IN_TASK
 529void put_task_stack(struct task_struct *tsk)
 530{
 531	if (refcount_dec_and_test(&tsk->stack_refcount))
 532		release_task_stack(tsk);
 533}
 534#endif
 535
 536void free_task(struct task_struct *tsk)
 537{
 538#ifdef CONFIG_SECCOMP
 539	WARN_ON_ONCE(tsk->seccomp.filter);
 540#endif
 541	release_user_cpus_ptr(tsk);
 542	scs_release(tsk);
 543
 544#ifndef CONFIG_THREAD_INFO_IN_TASK
 545	/*
 546	 * The task is finally done with both the stack and thread_info,
 547	 * so free both.
 548	 */
 549	release_task_stack(tsk);
 550#else
 551	/*
 552	 * If the task had a separate stack allocation, it should be gone
 553	 * by now.
 554	 */
 555	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 556#endif
 557	rt_mutex_debug_task_free(tsk);
 558	ftrace_graph_exit_task(tsk);
 
 559	arch_release_task_struct(tsk);
 560	if (tsk->flags & PF_KTHREAD)
 561		free_kthread_struct(tsk);
 562	free_task_struct(tsk);
 563}
 564EXPORT_SYMBOL(free_task);
 565
 566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 567{
 568	struct file *exe_file;
 569
 570	exe_file = get_mm_exe_file(oldmm);
 571	RCU_INIT_POINTER(mm->exe_file, exe_file);
 572	/*
 573	 * We depend on the oldmm having properly denied write access to the
 574	 * exe_file already.
 575	 */
 576	if (exe_file && deny_write_access(exe_file))
 577		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 578}
 579
 580#ifdef CONFIG_MMU
 581static __latent_entropy int dup_mmap(struct mm_struct *mm,
 582					struct mm_struct *oldmm)
 583{
 584	struct vm_area_struct *mpnt, *tmp;
 585	int retval;
 586	unsigned long charge = 0;
 587	LIST_HEAD(uf);
 588	MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
 589	MA_STATE(mas, &mm->mm_mt, 0, 0);
 590
 591	uprobe_start_dup_mmap();
 592	if (mmap_write_lock_killable(oldmm)) {
 593		retval = -EINTR;
 594		goto fail_uprobe_end;
 595	}
 596	flush_cache_dup_mm(oldmm);
 597	uprobe_dup_mmap(oldmm, mm);
 598	/*
 599	 * Not linked in yet - no deadlock potential:
 600	 */
 601	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 602
 603	/* No ordering required: file already has been exposed. */
 604	dup_mm_exe_file(mm, oldmm);
 605
 606	mm->total_vm = oldmm->total_vm;
 607	mm->data_vm = oldmm->data_vm;
 608	mm->exec_vm = oldmm->exec_vm;
 609	mm->stack_vm = oldmm->stack_vm;
 610
 611	retval = ksm_fork(mm, oldmm);
 612	if (retval)
 613		goto out;
 614	khugepaged_fork(mm, oldmm);
 615
 616	retval = mas_expected_entries(&mas, oldmm->map_count);
 617	if (retval)
 618		goto out;
 619
 620	mas_for_each(&old_mas, mpnt, ULONG_MAX) {
 621		struct file *file;
 622
 623		if (mpnt->vm_flags & VM_DONTCOPY) {
 624			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 625			continue;
 626		}
 627		charge = 0;
 628		/*
 629		 * Don't duplicate many vmas if we've been oom-killed (for
 630		 * example)
 631		 */
 632		if (fatal_signal_pending(current)) {
 633			retval = -EINTR;
 634			goto loop_out;
 635		}
 636		if (mpnt->vm_flags & VM_ACCOUNT) {
 637			unsigned long len = vma_pages(mpnt);
 638
 639			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 640				goto fail_nomem;
 641			charge = len;
 642		}
 643		tmp = vm_area_dup(mpnt);
 644		if (!tmp)
 645			goto fail_nomem;
 646		retval = vma_dup_policy(mpnt, tmp);
 647		if (retval)
 648			goto fail_nomem_policy;
 649		tmp->vm_mm = mm;
 650		retval = dup_userfaultfd(tmp, &uf);
 651		if (retval)
 652			goto fail_nomem_anon_vma_fork;
 653		if (tmp->vm_flags & VM_WIPEONFORK) {
 654			/*
 655			 * VM_WIPEONFORK gets a clean slate in the child.
 656			 * Don't prepare anon_vma until fault since we don't
 657			 * copy page for current vma.
 658			 */
 659			tmp->anon_vma = NULL;
 660		} else if (anon_vma_fork(tmp, mpnt))
 661			goto fail_nomem_anon_vma_fork;
 662		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 663		file = tmp->vm_file;
 664		if (file) {
 665			struct address_space *mapping = file->f_mapping;
 666
 667			get_file(file);
 668			i_mmap_lock_write(mapping);
 669			if (tmp->vm_flags & VM_SHARED)
 670				mapping_allow_writable(mapping);
 671			flush_dcache_mmap_lock(mapping);
 672			/* insert tmp into the share list, just after mpnt */
 673			vma_interval_tree_insert_after(tmp, mpnt,
 674					&mapping->i_mmap);
 675			flush_dcache_mmap_unlock(mapping);
 676			i_mmap_unlock_write(mapping);
 677		}
 678
 679		/*
 680		 * Copy/update hugetlb private vma information.
 681		 */
 682		if (is_vm_hugetlb_page(tmp))
 683			hugetlb_dup_vma_private(tmp);
 684
 685		/* Link the vma into the MT */
 686		mas.index = tmp->vm_start;
 687		mas.last = tmp->vm_end - 1;
 688		mas_store(&mas, tmp);
 689		if (mas_is_err(&mas))
 690			goto fail_nomem_mas_store;
 691
 692		mm->map_count++;
 693		if (!(tmp->vm_flags & VM_WIPEONFORK))
 694			retval = copy_page_range(tmp, mpnt);
 695
 696		if (tmp->vm_ops && tmp->vm_ops->open)
 697			tmp->vm_ops->open(tmp);
 698
 699		if (retval)
 700			goto loop_out;
 701	}
 702	/* a new mm has just been created */
 703	retval = arch_dup_mmap(oldmm, mm);
 704loop_out:
 705	mas_destroy(&mas);
 706out:
 707	mmap_write_unlock(mm);
 708	flush_tlb_mm(oldmm);
 709	mmap_write_unlock(oldmm);
 710	dup_userfaultfd_complete(&uf);
 711fail_uprobe_end:
 712	uprobe_end_dup_mmap();
 713	return retval;
 714
 715fail_nomem_mas_store:
 716	unlink_anon_vmas(tmp);
 717fail_nomem_anon_vma_fork:
 718	mpol_put(vma_policy(tmp));
 719fail_nomem_policy:
 720	vm_area_free(tmp);
 721fail_nomem:
 722	retval = -ENOMEM;
 723	vm_unacct_memory(charge);
 724	goto loop_out;
 725}
 726
 727static inline int mm_alloc_pgd(struct mm_struct *mm)
 728{
 729	mm->pgd = pgd_alloc(mm);
 730	if (unlikely(!mm->pgd))
 731		return -ENOMEM;
 732	return 0;
 733}
 734
 735static inline void mm_free_pgd(struct mm_struct *mm)
 736{
 737	pgd_free(mm, mm->pgd);
 738}
 739#else
 740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 741{
 742	mmap_write_lock(oldmm);
 743	dup_mm_exe_file(mm, oldmm);
 744	mmap_write_unlock(oldmm);
 745	return 0;
 746}
 747#define mm_alloc_pgd(mm)	(0)
 748#define mm_free_pgd(mm)
 749#endif /* CONFIG_MMU */
 750
 751static void check_mm(struct mm_struct *mm)
 752{
 753	int i;
 754
 755	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 756			 "Please make sure 'struct resident_page_types[]' is updated as well");
 757
 758	for (i = 0; i < NR_MM_COUNTERS; i++) {
 759		long x = percpu_counter_sum(&mm->rss_stat[i]);
 760
 761		if (likely(!x))
 762			continue;
 763
 764		/* Making sure this is not due to race with CPU offlining. */
 765		x = percpu_counter_sum_all(&mm->rss_stat[i]);
 766		if (unlikely(x))
 767			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 768				 mm, resident_page_types[i], x);
 769	}
 770
 771	if (mm_pgtables_bytes(mm))
 772		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 773				mm_pgtables_bytes(mm));
 774
 775#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 776	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 777#endif
 778}
 779
 780#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 781#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 782
 783/*
 784 * Called when the last reference to the mm
 785 * is dropped: either by a lazy thread or by
 786 * mmput. Free the page directory and the mm.
 787 */
 788void __mmdrop(struct mm_struct *mm)
 789{
 790	int i;
 791
 792	BUG_ON(mm == &init_mm);
 793	WARN_ON_ONCE(mm == current->mm);
 794	WARN_ON_ONCE(mm == current->active_mm);
 795	mm_free_pgd(mm);
 796	destroy_context(mm);
 797	mmu_notifier_subscriptions_destroy(mm);
 798	check_mm(mm);
 799	put_user_ns(mm->user_ns);
 800	mm_pasid_drop(mm);
 801
 802	for (i = 0; i < NR_MM_COUNTERS; i++)
 803		percpu_counter_destroy(&mm->rss_stat[i]);
 804	free_mm(mm);
 805}
 806EXPORT_SYMBOL_GPL(__mmdrop);
 807
 808static void mmdrop_async_fn(struct work_struct *work)
 809{
 810	struct mm_struct *mm;
 811
 812	mm = container_of(work, struct mm_struct, async_put_work);
 813	__mmdrop(mm);
 814}
 815
 816static void mmdrop_async(struct mm_struct *mm)
 817{
 818	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 819		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 820		schedule_work(&mm->async_put_work);
 821	}
 822}
 823
 824static inline void free_signal_struct(struct signal_struct *sig)
 825{
 826	taskstats_tgid_free(sig);
 827	sched_autogroup_exit(sig);
 828	/*
 829	 * __mmdrop is not safe to call from softirq context on x86 due to
 830	 * pgd_dtor so postpone it to the async context
 831	 */
 832	if (sig->oom_mm)
 833		mmdrop_async(sig->oom_mm);
 834	kmem_cache_free(signal_cachep, sig);
 835}
 836
 837static inline void put_signal_struct(struct signal_struct *sig)
 838{
 839	if (refcount_dec_and_test(&sig->sigcnt))
 840		free_signal_struct(sig);
 841}
 842
 843void __put_task_struct(struct task_struct *tsk)
 844{
 845	WARN_ON(!tsk->exit_state);
 846	WARN_ON(refcount_read(&tsk->usage));
 847	WARN_ON(tsk == current);
 848
 849	io_uring_free(tsk);
 850	cgroup_free(tsk);
 851	task_numa_free(tsk, true);
 852	security_task_free(tsk);
 853	bpf_task_storage_free(tsk);
 854	exit_creds(tsk);
 855	delayacct_tsk_free(tsk);
 856	put_signal_struct(tsk->signal);
 857	sched_core_free(tsk);
 858	free_task(tsk);
 
 859}
 860EXPORT_SYMBOL_GPL(__put_task_struct);
 861
 862void __init __weak arch_task_cache_init(void) { }
 863
 864/*
 865 * set_max_threads
 866 */
 867static void set_max_threads(unsigned int max_threads_suggested)
 868{
 869	u64 threads;
 870	unsigned long nr_pages = totalram_pages();
 871
 872	/*
 873	 * The number of threads shall be limited such that the thread
 874	 * structures may only consume a small part of the available memory.
 875	 */
 876	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 877		threads = MAX_THREADS;
 878	else
 879		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 880				    (u64) THREAD_SIZE * 8UL);
 881
 882	if (threads > max_threads_suggested)
 883		threads = max_threads_suggested;
 884
 885	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 886}
 887
 888#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 889/* Initialized by the architecture: */
 890int arch_task_struct_size __read_mostly;
 891#endif
 892
 893#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 894static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 895{
 896	/* Fetch thread_struct whitelist for the architecture. */
 897	arch_thread_struct_whitelist(offset, size);
 898
 899	/*
 900	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 901	 * adjust offset to position of thread_struct in task_struct.
 902	 */
 903	if (unlikely(*size == 0))
 904		*offset = 0;
 905	else
 906		*offset += offsetof(struct task_struct, thread);
 907}
 908#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 909
 910void __init fork_init(void)
 911{
 912	int i;
 913#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 914#ifndef ARCH_MIN_TASKALIGN
 915#define ARCH_MIN_TASKALIGN	0
 916#endif
 917	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 918	unsigned long useroffset, usersize;
 919
 920	/* create a slab on which task_structs can be allocated */
 921	task_struct_whitelist(&useroffset, &usersize);
 922	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 923			arch_task_struct_size, align,
 924			SLAB_PANIC|SLAB_ACCOUNT,
 925			useroffset, usersize, NULL);
 926#endif
 927
 928	/* do the arch specific task caches init */
 929	arch_task_cache_init();
 930
 931	set_max_threads(MAX_THREADS);
 932
 933	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 934	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 935	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 936		init_task.signal->rlim[RLIMIT_NPROC];
 937
 938	for (i = 0; i < UCOUNT_COUNTS; i++)
 939		init_user_ns.ucount_max[i] = max_threads/2;
 940
 941	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 942	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 943	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 944	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 945
 946#ifdef CONFIG_VMAP_STACK
 947	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 948			  NULL, free_vm_stack_cache);
 949#endif
 950
 951	scs_init();
 952
 953	lockdep_init_task(&init_task);
 954	uprobes_init();
 955}
 956
 957int __weak arch_dup_task_struct(struct task_struct *dst,
 958					       struct task_struct *src)
 959{
 960	*dst = *src;
 961	return 0;
 962}
 963
 964void set_task_stack_end_magic(struct task_struct *tsk)
 965{
 966	unsigned long *stackend;
 967
 968	stackend = end_of_stack(tsk);
 969	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 970}
 971
 972static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 973{
 974	struct task_struct *tsk;
 
 
 975	int err;
 976
 977	if (node == NUMA_NO_NODE)
 978		node = tsk_fork_get_node(orig);
 979	tsk = alloc_task_struct_node(node);
 980	if (!tsk)
 981		return NULL;
 982
 983	err = arch_dup_task_struct(tsk, orig);
 984	if (err)
 985		goto free_tsk;
 986
 987	err = alloc_thread_stack_node(tsk, node);
 988	if (err)
 989		goto free_tsk;
 990
 
 
 
 
 
 
 
 
 
 991#ifdef CONFIG_THREAD_INFO_IN_TASK
 992	refcount_set(&tsk->stack_refcount, 1);
 993#endif
 994	account_kernel_stack(tsk, 1);
 995
 996	err = scs_prepare(tsk, node);
 997	if (err)
 998		goto free_stack;
 999
1000#ifdef CONFIG_SECCOMP
1001	/*
1002	 * We must handle setting up seccomp filters once we're under
1003	 * the sighand lock in case orig has changed between now and
1004	 * then. Until then, filter must be NULL to avoid messing up
1005	 * the usage counts on the error path calling free_task.
1006	 */
1007	tsk->seccomp.filter = NULL;
1008#endif
1009
1010	setup_thread_stack(tsk, orig);
1011	clear_user_return_notifier(tsk);
1012	clear_tsk_need_resched(tsk);
1013	set_task_stack_end_magic(tsk);
1014	clear_syscall_work_syscall_user_dispatch(tsk);
1015
1016#ifdef CONFIG_STACKPROTECTOR
1017	tsk->stack_canary = get_random_canary();
1018#endif
1019	if (orig->cpus_ptr == &orig->cpus_mask)
1020		tsk->cpus_ptr = &tsk->cpus_mask;
1021	dup_user_cpus_ptr(tsk, orig, node);
1022
1023	/*
1024	 * One for the user space visible state that goes away when reaped.
1025	 * One for the scheduler.
1026	 */
1027	refcount_set(&tsk->rcu_users, 2);
1028	/* One for the rcu users */
1029	refcount_set(&tsk->usage, 1);
1030#ifdef CONFIG_BLK_DEV_IO_TRACE
1031	tsk->btrace_seq = 0;
1032#endif
1033	tsk->splice_pipe = NULL;
1034	tsk->task_frag.page = NULL;
1035	tsk->wake_q.next = NULL;
1036	tsk->worker_private = NULL;
 
1037
1038	kcov_task_init(tsk);
1039	kmsan_task_create(tsk);
1040	kmap_local_fork(tsk);
1041
1042#ifdef CONFIG_FAULT_INJECTION
1043	tsk->fail_nth = 0;
1044#endif
1045
1046#ifdef CONFIG_BLK_CGROUP
1047	tsk->throttle_queue = NULL;
1048	tsk->use_memdelay = 0;
1049#endif
1050
1051#ifdef CONFIG_IOMMU_SVA
1052	tsk->pasid_activated = 0;
1053#endif
1054
1055#ifdef CONFIG_MEMCG
1056	tsk->active_memcg = NULL;
1057#endif
1058
1059#ifdef CONFIG_CPU_SUP_INTEL
1060	tsk->reported_split_lock = 0;
1061#endif
1062
1063	return tsk;
1064
1065free_stack:
1066	exit_task_stack_account(tsk);
1067	free_thread_stack(tsk);
1068free_tsk:
1069	free_task_struct(tsk);
1070	return NULL;
1071}
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1074
 
 
 
1075static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1076
1077static int __init coredump_filter_setup(char *s)
1078{
1079	default_dump_filter =
1080		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1081		MMF_DUMP_FILTER_MASK;
1082	return 1;
1083}
1084
1085__setup("coredump_filter=", coredump_filter_setup);
1086
1087#include <linux/init_task.h>
1088
1089static void mm_init_aio(struct mm_struct *mm)
1090{
1091#ifdef CONFIG_AIO
1092	spin_lock_init(&mm->ioctx_lock);
1093	mm->ioctx_table = NULL;
1094#endif
1095}
1096
1097static __always_inline void mm_clear_owner(struct mm_struct *mm,
1098					   struct task_struct *p)
1099{
1100#ifdef CONFIG_MEMCG
1101	if (mm->owner == p)
1102		WRITE_ONCE(mm->owner, NULL);
1103#endif
1104}
1105
1106static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1107{
1108#ifdef CONFIG_MEMCG
1109	mm->owner = p;
1110#endif
1111}
1112
1113static void mm_init_uprobes_state(struct mm_struct *mm)
1114{
1115#ifdef CONFIG_UPROBES
1116	mm->uprobes_state.xol_area = NULL;
1117#endif
1118}
1119
1120static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1121	struct user_namespace *user_ns)
1122{
1123	int i;
1124
1125	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1126	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1127	atomic_set(&mm->mm_users, 1);
1128	atomic_set(&mm->mm_count, 1);
1129	seqcount_init(&mm->write_protect_seq);
1130	mmap_init_lock(mm);
1131	INIT_LIST_HEAD(&mm->mmlist);
1132	mm_pgtables_bytes_init(mm);
 
 
1133	mm->map_count = 0;
1134	mm->locked_vm = 0;
1135	atomic64_set(&mm->pinned_vm, 0);
1136	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1137	spin_lock_init(&mm->page_table_lock);
1138	spin_lock_init(&mm->arg_lock);
1139	mm_init_cpumask(mm);
1140	mm_init_aio(mm);
1141	mm_init_owner(mm, p);
1142	mm_pasid_init(mm);
1143	RCU_INIT_POINTER(mm->exe_file, NULL);
1144	mmu_notifier_subscriptions_init(mm);
1145	init_tlb_flush_pending(mm);
1146#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1147	mm->pmd_huge_pte = NULL;
1148#endif
1149	mm_init_uprobes_state(mm);
1150	hugetlb_count_init(mm);
1151
1152	if (current->mm) {
1153		mm->flags = current->mm->flags & MMF_INIT_MASK;
1154		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1155	} else {
1156		mm->flags = default_dump_filter;
1157		mm->def_flags = 0;
1158	}
1159
1160	if (mm_alloc_pgd(mm))
1161		goto fail_nopgd;
1162
1163	if (init_new_context(p, mm))
1164		goto fail_nocontext;
1165
1166	for (i = 0; i < NR_MM_COUNTERS; i++)
1167		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1168			goto fail_pcpu;
1169
1170	mm->user_ns = get_user_ns(user_ns);
1171	lru_gen_init_mm(mm);
1172	return mm;
1173
1174fail_pcpu:
1175	while (i > 0)
1176		percpu_counter_destroy(&mm->rss_stat[--i]);
1177fail_nocontext:
1178	mm_free_pgd(mm);
1179fail_nopgd:
1180	free_mm(mm);
1181	return NULL;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Allocate and initialize an mm_struct.
1186 */
1187struct mm_struct *mm_alloc(void)
1188{
1189	struct mm_struct *mm;
1190
1191	mm = allocate_mm();
1192	if (!mm)
1193		return NULL;
1194
1195	memset(mm, 0, sizeof(*mm));
1196	return mm_init(mm, current, current_user_ns());
1197}
1198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199static inline void __mmput(struct mm_struct *mm)
1200{
1201	VM_BUG_ON(atomic_read(&mm->mm_users));
1202
1203	uprobe_clear_state(mm);
1204	exit_aio(mm);
1205	ksm_exit(mm);
1206	khugepaged_exit(mm); /* must run before exit_mmap */
1207	exit_mmap(mm);
1208	mm_put_huge_zero_page(mm);
1209	set_mm_exe_file(mm, NULL);
1210	if (!list_empty(&mm->mmlist)) {
1211		spin_lock(&mmlist_lock);
1212		list_del(&mm->mmlist);
1213		spin_unlock(&mmlist_lock);
1214	}
1215	if (mm->binfmt)
1216		module_put(mm->binfmt->module);
1217	lru_gen_del_mm(mm);
1218	mmdrop(mm);
1219}
1220
1221/*
1222 * Decrement the use count and release all resources for an mm.
1223 */
1224void mmput(struct mm_struct *mm)
1225{
1226	might_sleep();
1227
1228	if (atomic_dec_and_test(&mm->mm_users))
1229		__mmput(mm);
1230}
1231EXPORT_SYMBOL_GPL(mmput);
1232
1233#ifdef CONFIG_MMU
1234static void mmput_async_fn(struct work_struct *work)
1235{
1236	struct mm_struct *mm = container_of(work, struct mm_struct,
1237					    async_put_work);
1238
1239	__mmput(mm);
1240}
1241
1242void mmput_async(struct mm_struct *mm)
1243{
1244	if (atomic_dec_and_test(&mm->mm_users)) {
1245		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246		schedule_work(&mm->async_put_work);
1247	}
1248}
1249EXPORT_SYMBOL_GPL(mmput_async);
1250#endif
1251
1252/**
1253 * set_mm_exe_file - change a reference to the mm's executable file
1254 *
1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256 *
1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258 * invocations: in mmput() nobody alive left, in execve task is single
1259 * threaded.
1260 *
1261 * Can only fail if new_exe_file != NULL.
1262 */
1263int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1264{
1265	struct file *old_exe_file;
1266
1267	/*
1268	 * It is safe to dereference the exe_file without RCU as
1269	 * this function is only called if nobody else can access
1270	 * this mm -- see comment above for justification.
1271	 */
1272	old_exe_file = rcu_dereference_raw(mm->exe_file);
1273
1274	if (new_exe_file) {
1275		/*
1276		 * We expect the caller (i.e., sys_execve) to already denied
1277		 * write access, so this is unlikely to fail.
1278		 */
1279		if (unlikely(deny_write_access(new_exe_file)))
1280			return -EACCES;
1281		get_file(new_exe_file);
1282	}
1283	rcu_assign_pointer(mm->exe_file, new_exe_file);
1284	if (old_exe_file) {
1285		allow_write_access(old_exe_file);
1286		fput(old_exe_file);
1287	}
1288	return 0;
1289}
1290
1291/**
1292 * replace_mm_exe_file - replace a reference to the mm's executable file
1293 *
1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295 * dealing with concurrent invocation and without grabbing the mmap lock in
1296 * write mode.
1297 *
1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299 */
1300int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301{
1302	struct vm_area_struct *vma;
1303	struct file *old_exe_file;
1304	int ret = 0;
1305
1306	/* Forbid mm->exe_file change if old file still mapped. */
1307	old_exe_file = get_mm_exe_file(mm);
1308	if (old_exe_file) {
1309		VMA_ITERATOR(vmi, mm, 0);
1310		mmap_read_lock(mm);
1311		for_each_vma(vmi, vma) {
1312			if (!vma->vm_file)
1313				continue;
1314			if (path_equal(&vma->vm_file->f_path,
1315				       &old_exe_file->f_path)) {
1316				ret = -EBUSY;
1317				break;
1318			}
1319		}
1320		mmap_read_unlock(mm);
1321		fput(old_exe_file);
1322		if (ret)
1323			return ret;
1324	}
1325
1326	/* set the new file, lockless */
1327	ret = deny_write_access(new_exe_file);
1328	if (ret)
1329		return -EACCES;
1330	get_file(new_exe_file);
1331
1332	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1333	if (old_exe_file) {
1334		/*
1335		 * Don't race with dup_mmap() getting the file and disallowing
1336		 * write access while someone might open the file writable.
1337		 */
1338		mmap_read_lock(mm);
1339		allow_write_access(old_exe_file);
1340		fput(old_exe_file);
1341		mmap_read_unlock(mm);
1342	}
1343	return 0;
1344}
1345
1346/**
1347 * get_mm_exe_file - acquire a reference to the mm's executable file
1348 *
1349 * Returns %NULL if mm has no associated executable file.
1350 * User must release file via fput().
1351 */
1352struct file *get_mm_exe_file(struct mm_struct *mm)
1353{
1354	struct file *exe_file;
1355
1356	rcu_read_lock();
1357	exe_file = rcu_dereference(mm->exe_file);
1358	if (exe_file && !get_file_rcu(exe_file))
1359		exe_file = NULL;
1360	rcu_read_unlock();
1361	return exe_file;
1362}
 
1363
1364/**
1365 * get_task_exe_file - acquire a reference to the task's executable file
1366 *
1367 * Returns %NULL if task's mm (if any) has no associated executable file or
1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369 * User must release file via fput().
1370 */
1371struct file *get_task_exe_file(struct task_struct *task)
1372{
1373	struct file *exe_file = NULL;
1374	struct mm_struct *mm;
1375
1376	task_lock(task);
1377	mm = task->mm;
1378	if (mm) {
1379		if (!(task->flags & PF_KTHREAD))
1380			exe_file = get_mm_exe_file(mm);
1381	}
1382	task_unlock(task);
1383	return exe_file;
1384}
 
1385
1386/**
1387 * get_task_mm - acquire a reference to the task's mm
1388 *
1389 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1390 * this kernel workthread has transiently adopted a user mm with use_mm,
1391 * to do its AIO) is not set and if so returns a reference to it, after
1392 * bumping up the use count.  User must release the mm via mmput()
1393 * after use.  Typically used by /proc and ptrace.
1394 */
1395struct mm_struct *get_task_mm(struct task_struct *task)
1396{
1397	struct mm_struct *mm;
1398
1399	task_lock(task);
1400	mm = task->mm;
1401	if (mm) {
1402		if (task->flags & PF_KTHREAD)
1403			mm = NULL;
1404		else
1405			mmget(mm);
1406	}
1407	task_unlock(task);
1408	return mm;
1409}
1410EXPORT_SYMBOL_GPL(get_task_mm);
1411
1412struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413{
1414	struct mm_struct *mm;
1415	int err;
1416
1417	err =  down_read_killable(&task->signal->exec_update_lock);
1418	if (err)
1419		return ERR_PTR(err);
1420
1421	mm = get_task_mm(task);
1422	if (mm && mm != current->mm &&
1423			!ptrace_may_access(task, mode)) {
1424		mmput(mm);
1425		mm = ERR_PTR(-EACCES);
1426	}
1427	up_read(&task->signal->exec_update_lock);
1428
1429	return mm;
1430}
1431
1432static void complete_vfork_done(struct task_struct *tsk)
1433{
1434	struct completion *vfork;
1435
1436	task_lock(tsk);
1437	vfork = tsk->vfork_done;
1438	if (likely(vfork)) {
1439		tsk->vfork_done = NULL;
1440		complete(vfork);
1441	}
1442	task_unlock(tsk);
1443}
1444
1445static int wait_for_vfork_done(struct task_struct *child,
1446				struct completion *vfork)
1447{
1448	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1449	int killed;
1450
1451	cgroup_enter_frozen();
1452	killed = wait_for_completion_state(vfork, state);
1453	cgroup_leave_frozen(false);
1454
1455	if (killed) {
1456		task_lock(child);
1457		child->vfork_done = NULL;
1458		task_unlock(child);
1459	}
1460
1461	put_task_struct(child);
1462	return killed;
1463}
1464
1465/* Please note the differences between mmput and mm_release.
1466 * mmput is called whenever we stop holding onto a mm_struct,
1467 * error success whatever.
1468 *
1469 * mm_release is called after a mm_struct has been removed
1470 * from the current process.
1471 *
1472 * This difference is important for error handling, when we
1473 * only half set up a mm_struct for a new process and need to restore
1474 * the old one.  Because we mmput the new mm_struct before
1475 * restoring the old one. . .
1476 * Eric Biederman 10 January 1998
1477 */
1478static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1479{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	uprobe_free_utask(tsk);
1481
1482	/* Get rid of any cached register state */
1483	deactivate_mm(tsk, mm);
1484
1485	/*
1486	 * Signal userspace if we're not exiting with a core dump
1487	 * because we want to leave the value intact for debugging
1488	 * purposes.
1489	 */
1490	if (tsk->clear_child_tid) {
1491		if (atomic_read(&mm->mm_users) > 1) {
 
1492			/*
1493			 * We don't check the error code - if userspace has
1494			 * not set up a proper pointer then tough luck.
1495			 */
1496			put_user(0, tsk->clear_child_tid);
1497			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498					1, NULL, NULL, 0, 0);
1499		}
1500		tsk->clear_child_tid = NULL;
1501	}
1502
1503	/*
1504	 * All done, finally we can wake up parent and return this mm to him.
1505	 * Also kthread_stop() uses this completion for synchronization.
1506	 */
1507	if (tsk->vfork_done)
1508		complete_vfork_done(tsk);
1509}
1510
1511void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512{
1513	futex_exit_release(tsk);
1514	mm_release(tsk, mm);
1515}
1516
1517void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518{
1519	futex_exec_release(tsk);
1520	mm_release(tsk, mm);
1521}
1522
1523/**
1524 * dup_mm() - duplicates an existing mm structure
1525 * @tsk: the task_struct with which the new mm will be associated.
1526 * @oldmm: the mm to duplicate.
1527 *
1528 * Allocates a new mm structure and duplicates the provided @oldmm structure
1529 * content into it.
1530 *
1531 * Return: the duplicated mm or NULL on failure.
1532 */
1533static struct mm_struct *dup_mm(struct task_struct *tsk,
1534				struct mm_struct *oldmm)
1535{
1536	struct mm_struct *mm;
1537	int err;
1538
1539	mm = allocate_mm();
1540	if (!mm)
1541		goto fail_nomem;
1542
1543	memcpy(mm, oldmm, sizeof(*mm));
1544
1545	if (!mm_init(mm, tsk, mm->user_ns))
1546		goto fail_nomem;
1547
1548	err = dup_mmap(mm, oldmm);
1549	if (err)
1550		goto free_pt;
1551
1552	mm->hiwater_rss = get_mm_rss(mm);
1553	mm->hiwater_vm = mm->total_vm;
1554
1555	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556		goto free_pt;
1557
1558	return mm;
1559
1560free_pt:
1561	/* don't put binfmt in mmput, we haven't got module yet */
1562	mm->binfmt = NULL;
1563	mm_init_owner(mm, NULL);
1564	mmput(mm);
1565
1566fail_nomem:
1567	return NULL;
1568}
1569
1570static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1571{
1572	struct mm_struct *mm, *oldmm;
 
1573
1574	tsk->min_flt = tsk->maj_flt = 0;
1575	tsk->nvcsw = tsk->nivcsw = 0;
1576#ifdef CONFIG_DETECT_HUNG_TASK
1577	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1578	tsk->last_switch_time = 0;
1579#endif
1580
1581	tsk->mm = NULL;
1582	tsk->active_mm = NULL;
1583
1584	/*
1585	 * Are we cloning a kernel thread?
1586	 *
1587	 * We need to steal a active VM for that..
1588	 */
1589	oldmm = current->mm;
1590	if (!oldmm)
1591		return 0;
1592
 
 
 
1593	if (clone_flags & CLONE_VM) {
1594		mmget(oldmm);
1595		mm = oldmm;
1596	} else {
1597		mm = dup_mm(tsk, current->mm);
1598		if (!mm)
1599			return -ENOMEM;
1600	}
1601
 
 
 
 
 
 
1602	tsk->mm = mm;
1603	tsk->active_mm = mm;
1604	return 0;
 
 
 
1605}
1606
1607static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1608{
1609	struct fs_struct *fs = current->fs;
1610	if (clone_flags & CLONE_FS) {
1611		/* tsk->fs is already what we want */
1612		spin_lock(&fs->lock);
1613		if (fs->in_exec) {
1614			spin_unlock(&fs->lock);
1615			return -EAGAIN;
1616		}
1617		fs->users++;
1618		spin_unlock(&fs->lock);
1619		return 0;
1620	}
1621	tsk->fs = copy_fs_struct(fs);
1622	if (!tsk->fs)
1623		return -ENOMEM;
1624	return 0;
1625}
1626
1627static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1628{
1629	struct files_struct *oldf, *newf;
1630	int error = 0;
1631
1632	/*
1633	 * A background process may not have any files ...
1634	 */
1635	oldf = current->files;
1636	if (!oldf)
1637		goto out;
1638
1639	if (clone_flags & CLONE_FILES) {
1640		atomic_inc(&oldf->count);
1641		goto out;
1642	}
1643
1644	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1645	if (!newf)
1646		goto out;
1647
1648	tsk->files = newf;
1649	error = 0;
1650out:
1651	return error;
1652}
1653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1655{
1656	struct sighand_struct *sig;
1657
1658	if (clone_flags & CLONE_SIGHAND) {
1659		refcount_inc(&current->sighand->count);
1660		return 0;
1661	}
1662	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1663	RCU_INIT_POINTER(tsk->sighand, sig);
1664	if (!sig)
1665		return -ENOMEM;
1666
1667	refcount_set(&sig->count, 1);
1668	spin_lock_irq(&current->sighand->siglock);
1669	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1670	spin_unlock_irq(&current->sighand->siglock);
1671
1672	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1673	if (clone_flags & CLONE_CLEAR_SIGHAND)
1674		flush_signal_handlers(tsk, 0);
1675
1676	return 0;
1677}
1678
1679void __cleanup_sighand(struct sighand_struct *sighand)
1680{
1681	if (refcount_dec_and_test(&sighand->count)) {
1682		signalfd_cleanup(sighand);
1683		/*
1684		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1685		 * without an RCU grace period, see __lock_task_sighand().
1686		 */
1687		kmem_cache_free(sighand_cachep, sighand);
1688	}
1689}
1690
1691/*
1692 * Initialize POSIX timer handling for a thread group.
1693 */
1694static void posix_cpu_timers_init_group(struct signal_struct *sig)
1695{
1696	struct posix_cputimers *pct = &sig->posix_cputimers;
1697	unsigned long cpu_limit;
1698
1699	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1700	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
1701}
1702
1703static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1704{
1705	struct signal_struct *sig;
1706
1707	if (clone_flags & CLONE_THREAD)
1708		return 0;
1709
1710	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1711	tsk->signal = sig;
1712	if (!sig)
1713		return -ENOMEM;
1714
1715	sig->nr_threads = 1;
1716	sig->quick_threads = 1;
1717	atomic_set(&sig->live, 1);
1718	refcount_set(&sig->sigcnt, 1);
1719
1720	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1721	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1722	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1723
1724	init_waitqueue_head(&sig->wait_chldexit);
1725	sig->curr_target = tsk;
1726	init_sigpending(&sig->shared_pending);
1727	INIT_HLIST_HEAD(&sig->multiprocess);
1728	seqlock_init(&sig->stats_lock);
1729	prev_cputime_init(&sig->prev_cputime);
1730
1731#ifdef CONFIG_POSIX_TIMERS
1732	INIT_LIST_HEAD(&sig->posix_timers);
1733	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1734	sig->real_timer.function = it_real_fn;
1735#endif
1736
1737	task_lock(current->group_leader);
1738	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1739	task_unlock(current->group_leader);
1740
1741	posix_cpu_timers_init_group(sig);
1742
1743	tty_audit_fork(sig);
1744	sched_autogroup_fork(sig);
1745
1746	sig->oom_score_adj = current->signal->oom_score_adj;
1747	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1748
 
 
 
1749	mutex_init(&sig->cred_guard_mutex);
1750	init_rwsem(&sig->exec_update_lock);
1751
1752	return 0;
1753}
1754
1755static void copy_seccomp(struct task_struct *p)
1756{
1757#ifdef CONFIG_SECCOMP
1758	/*
1759	 * Must be called with sighand->lock held, which is common to
1760	 * all threads in the group. Holding cred_guard_mutex is not
1761	 * needed because this new task is not yet running and cannot
1762	 * be racing exec.
1763	 */
1764	assert_spin_locked(&current->sighand->siglock);
1765
1766	/* Ref-count the new filter user, and assign it. */
1767	get_seccomp_filter(current);
1768	p->seccomp = current->seccomp;
1769
1770	/*
1771	 * Explicitly enable no_new_privs here in case it got set
1772	 * between the task_struct being duplicated and holding the
1773	 * sighand lock. The seccomp state and nnp must be in sync.
1774	 */
1775	if (task_no_new_privs(current))
1776		task_set_no_new_privs(p);
1777
1778	/*
1779	 * If the parent gained a seccomp mode after copying thread
1780	 * flags and between before we held the sighand lock, we have
1781	 * to manually enable the seccomp thread flag here.
1782	 */
1783	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1784		set_task_syscall_work(p, SECCOMP);
1785#endif
1786}
1787
1788SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1789{
1790	current->clear_child_tid = tidptr;
1791
1792	return task_pid_vnr(current);
1793}
1794
1795static void rt_mutex_init_task(struct task_struct *p)
1796{
1797	raw_spin_lock_init(&p->pi_lock);
1798#ifdef CONFIG_RT_MUTEXES
1799	p->pi_waiters = RB_ROOT_CACHED;
1800	p->pi_top_task = NULL;
1801	p->pi_blocked_on = NULL;
1802#endif
1803}
1804
1805static inline void init_task_pid_links(struct task_struct *task)
 
 
 
1806{
1807	enum pid_type type;
1808
1809	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1810		INIT_HLIST_NODE(&task->pid_links[type]);
 
 
1811}
1812
1813static inline void
1814init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1815{
1816	if (type == PIDTYPE_PID)
1817		task->thread_pid = pid;
1818	else
1819		task->signal->pids[type] = pid;
1820}
1821
1822static inline void rcu_copy_process(struct task_struct *p)
1823{
1824#ifdef CONFIG_PREEMPT_RCU
1825	p->rcu_read_lock_nesting = 0;
1826	p->rcu_read_unlock_special.s = 0;
1827	p->rcu_blocked_node = NULL;
1828	INIT_LIST_HEAD(&p->rcu_node_entry);
1829#endif /* #ifdef CONFIG_PREEMPT_RCU */
1830#ifdef CONFIG_TASKS_RCU
1831	p->rcu_tasks_holdout = false;
1832	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1833	p->rcu_tasks_idle_cpu = -1;
1834#endif /* #ifdef CONFIG_TASKS_RCU */
1835#ifdef CONFIG_TASKS_TRACE_RCU
1836	p->trc_reader_nesting = 0;
1837	p->trc_reader_special.s = 0;
1838	INIT_LIST_HEAD(&p->trc_holdout_list);
1839	INIT_LIST_HEAD(&p->trc_blkd_node);
1840#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1841}
1842
1843struct pid *pidfd_pid(const struct file *file)
1844{
1845	if (file->f_op == &pidfd_fops)
1846		return file->private_data;
1847
1848	return ERR_PTR(-EBADF);
1849}
1850
1851static int pidfd_release(struct inode *inode, struct file *file)
1852{
1853	struct pid *pid = file->private_data;
1854
1855	file->private_data = NULL;
1856	put_pid(pid);
1857	return 0;
1858}
1859
1860#ifdef CONFIG_PROC_FS
1861/**
1862 * pidfd_show_fdinfo - print information about a pidfd
1863 * @m: proc fdinfo file
1864 * @f: file referencing a pidfd
1865 *
1866 * Pid:
1867 * This function will print the pid that a given pidfd refers to in the
1868 * pid namespace of the procfs instance.
1869 * If the pid namespace of the process is not a descendant of the pid
1870 * namespace of the procfs instance 0 will be shown as its pid. This is
1871 * similar to calling getppid() on a process whose parent is outside of
1872 * its pid namespace.
1873 *
1874 * NSpid:
1875 * If pid namespaces are supported then this function will also print
1876 * the pid of a given pidfd refers to for all descendant pid namespaces
1877 * starting from the current pid namespace of the instance, i.e. the
1878 * Pid field and the first entry in the NSpid field will be identical.
1879 * If the pid namespace of the process is not a descendant of the pid
1880 * namespace of the procfs instance 0 will be shown as its first NSpid
1881 * entry and no others will be shown.
1882 * Note that this differs from the Pid and NSpid fields in
1883 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1884 * the  pid namespace of the procfs instance. The difference becomes
1885 * obvious when sending around a pidfd between pid namespaces from a
1886 * different branch of the tree, i.e. where no ancestral relation is
1887 * present between the pid namespaces:
1888 * - create two new pid namespaces ns1 and ns2 in the initial pid
1889 *   namespace (also take care to create new mount namespaces in the
1890 *   new pid namespace and mount procfs)
1891 * - create a process with a pidfd in ns1
1892 * - send pidfd from ns1 to ns2
1893 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1894 *   have exactly one entry, which is 0
1895 */
1896static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1897{
1898	struct pid *pid = f->private_data;
1899	struct pid_namespace *ns;
1900	pid_t nr = -1;
1901
1902	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1903		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1904		nr = pid_nr_ns(pid, ns);
1905	}
1906
1907	seq_put_decimal_ll(m, "Pid:\t", nr);
1908
1909#ifdef CONFIG_PID_NS
1910	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1911	if (nr > 0) {
1912		int i;
1913
1914		/* If nr is non-zero it means that 'pid' is valid and that
1915		 * ns, i.e. the pid namespace associated with the procfs
1916		 * instance, is in the pid namespace hierarchy of pid.
1917		 * Start at one below the already printed level.
1918		 */
1919		for (i = ns->level + 1; i <= pid->level; i++)
1920			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1921	}
1922#endif
1923	seq_putc(m, '\n');
1924}
1925#endif
1926
1927/*
1928 * Poll support for process exit notification.
1929 */
1930static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1931{
1932	struct pid *pid = file->private_data;
1933	__poll_t poll_flags = 0;
1934
1935	poll_wait(file, &pid->wait_pidfd, pts);
1936
1937	/*
1938	 * Inform pollers only when the whole thread group exits.
1939	 * If the thread group leader exits before all other threads in the
1940	 * group, then poll(2) should block, similar to the wait(2) family.
1941	 */
1942	if (thread_group_exited(pid))
1943		poll_flags = EPOLLIN | EPOLLRDNORM;
1944
1945	return poll_flags;
1946}
1947
1948const struct file_operations pidfd_fops = {
1949	.release = pidfd_release,
1950	.poll = pidfd_poll,
1951#ifdef CONFIG_PROC_FS
1952	.show_fdinfo = pidfd_show_fdinfo,
1953#endif
1954};
1955
1956static void __delayed_free_task(struct rcu_head *rhp)
1957{
1958	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1959
1960	free_task(tsk);
1961}
1962
1963static __always_inline void delayed_free_task(struct task_struct *tsk)
1964{
1965	if (IS_ENABLED(CONFIG_MEMCG))
1966		call_rcu(&tsk->rcu, __delayed_free_task);
1967	else
1968		free_task(tsk);
1969}
1970
1971static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1972{
1973	/* Skip if kernel thread */
1974	if (!tsk->mm)
1975		return;
1976
1977	/* Skip if spawning a thread or using vfork */
1978	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1979		return;
1980
1981	/* We need to synchronize with __set_oom_adj */
1982	mutex_lock(&oom_adj_mutex);
1983	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1984	/* Update the values in case they were changed after copy_signal */
1985	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1986	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1987	mutex_unlock(&oom_adj_mutex);
1988}
1989
1990#ifdef CONFIG_RV
1991static void rv_task_fork(struct task_struct *p)
1992{
1993	int i;
1994
1995	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1996		p->rv[i].da_mon.monitoring = false;
1997}
1998#else
1999#define rv_task_fork(p) do {} while (0)
2000#endif
2001
2002/*
2003 * This creates a new process as a copy of the old one,
2004 * but does not actually start it yet.
2005 *
2006 * It copies the registers, and all the appropriate
2007 * parts of the process environment (as per the clone
2008 * flags). The actual kick-off is left to the caller.
2009 */
2010static __latent_entropy struct task_struct *copy_process(
 
 
 
 
2011					struct pid *pid,
2012					int trace,
2013					int node,
2014					struct kernel_clone_args *args)
2015{
2016	int pidfd = -1, retval;
2017	struct task_struct *p;
2018	struct multiprocess_signals delayed;
2019	struct file *pidfile = NULL;
2020	const u64 clone_flags = args->flags;
2021	struct nsproxy *nsp = current->nsproxy;
2022
2023	/*
2024	 * Don't allow sharing the root directory with processes in a different
2025	 * namespace
2026	 */
2027	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2028		return ERR_PTR(-EINVAL);
2029
2030	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2031		return ERR_PTR(-EINVAL);
2032
2033	/*
2034	 * Thread groups must share signals as well, and detached threads
2035	 * can only be started up within the thread group.
2036	 */
2037	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2038		return ERR_PTR(-EINVAL);
2039
2040	/*
2041	 * Shared signal handlers imply shared VM. By way of the above,
2042	 * thread groups also imply shared VM. Blocking this case allows
2043	 * for various simplifications in other code.
2044	 */
2045	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2046		return ERR_PTR(-EINVAL);
2047
2048	/*
2049	 * Siblings of global init remain as zombies on exit since they are
2050	 * not reaped by their parent (swapper). To solve this and to avoid
2051	 * multi-rooted process trees, prevent global and container-inits
2052	 * from creating siblings.
2053	 */
2054	if ((clone_flags & CLONE_PARENT) &&
2055				current->signal->flags & SIGNAL_UNKILLABLE)
2056		return ERR_PTR(-EINVAL);
2057
2058	/*
2059	 * If the new process will be in a different pid or user namespace
2060	 * do not allow it to share a thread group with the forking task.
2061	 */
2062	if (clone_flags & CLONE_THREAD) {
2063		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2064		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 
2065			return ERR_PTR(-EINVAL);
2066	}
2067
2068	if (clone_flags & CLONE_PIDFD) {
2069		/*
2070		 * - CLONE_DETACHED is blocked so that we can potentially
2071		 *   reuse it later for CLONE_PIDFD.
2072		 * - CLONE_THREAD is blocked until someone really needs it.
2073		 */
2074		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2075			return ERR_PTR(-EINVAL);
2076	}
2077
2078	/*
2079	 * Force any signals received before this point to be delivered
2080	 * before the fork happens.  Collect up signals sent to multiple
2081	 * processes that happen during the fork and delay them so that
2082	 * they appear to happen after the fork.
2083	 */
2084	sigemptyset(&delayed.signal);
2085	INIT_HLIST_NODE(&delayed.node);
2086
2087	spin_lock_irq(&current->sighand->siglock);
2088	if (!(clone_flags & CLONE_THREAD))
2089		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2090	recalc_sigpending();
2091	spin_unlock_irq(&current->sighand->siglock);
2092	retval = -ERESTARTNOINTR;
2093	if (task_sigpending(current))
2094		goto fork_out;
2095
2096	retval = -ENOMEM;
2097	p = dup_task_struct(current, node);
2098	if (!p)
2099		goto fork_out;
2100	p->flags &= ~PF_KTHREAD;
2101	if (args->kthread)
2102		p->flags |= PF_KTHREAD;
2103	if (args->io_thread) {
2104		/*
2105		 * Mark us an IO worker, and block any signal that isn't
2106		 * fatal or STOP
2107		 */
2108		p->flags |= PF_IO_WORKER;
2109		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2110	}
2111
2112	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2113	/*
2114	 * Clear TID on mm_release()?
2115	 */
2116	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2117
2118	ftrace_graph_init_task(p);
2119
2120	rt_mutex_init_task(p);
2121
2122	lockdep_assert_irqs_enabled();
2123#ifdef CONFIG_PROVE_LOCKING
 
2124	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2125#endif
2126	retval = copy_creds(p, clone_flags);
2127	if (retval < 0)
2128		goto bad_fork_free;
2129
2130	retval = -EAGAIN;
2131	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
 
2132		if (p->real_cred->user != INIT_USER &&
2133		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2134			goto bad_fork_cleanup_count;
2135	}
2136	current->flags &= ~PF_NPROC_EXCEEDED;
2137
 
 
 
 
2138	/*
2139	 * If multiple threads are within copy_process(), then this check
2140	 * triggers too late. This doesn't hurt, the check is only there
2141	 * to stop root fork bombs.
2142	 */
2143	retval = -EAGAIN;
2144	if (data_race(nr_threads >= max_threads))
2145		goto bad_fork_cleanup_count;
2146
2147	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2148	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2149	p->flags |= PF_FORKNOEXEC;
2150	INIT_LIST_HEAD(&p->children);
2151	INIT_LIST_HEAD(&p->sibling);
2152	rcu_copy_process(p);
2153	p->vfork_done = NULL;
2154	spin_lock_init(&p->alloc_lock);
2155
2156	init_sigpending(&p->pending);
2157
2158	p->utime = p->stime = p->gtime = 0;
2159#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2160	p->utimescaled = p->stimescaled = 0;
2161#endif
2162	prev_cputime_init(&p->prev_cputime);
2163
2164#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2165	seqcount_init(&p->vtime.seqcount);
2166	p->vtime.starttime = 0;
2167	p->vtime.state = VTIME_INACTIVE;
2168#endif
2169
2170#ifdef CONFIG_IO_URING
2171	p->io_uring = NULL;
2172#endif
2173
2174#if defined(SPLIT_RSS_COUNTING)
2175	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2176#endif
2177
2178	p->default_timer_slack_ns = current->timer_slack_ns;
2179
2180#ifdef CONFIG_PSI
2181	p->psi_flags = 0;
2182#endif
2183
2184	task_io_accounting_init(&p->ioac);
2185	acct_clear_integrals(p);
2186
2187	posix_cputimers_init(&p->posix_cputimers);
2188
 
 
2189	p->io_context = NULL;
2190	audit_set_context(p, NULL);
2191	cgroup_fork(p);
2192	if (args->kthread) {
2193		if (!set_kthread_struct(p))
2194			goto bad_fork_cleanup_delayacct;
2195	}
2196#ifdef CONFIG_NUMA
2197	p->mempolicy = mpol_dup(p->mempolicy);
2198	if (IS_ERR(p->mempolicy)) {
2199		retval = PTR_ERR(p->mempolicy);
2200		p->mempolicy = NULL;
2201		goto bad_fork_cleanup_delayacct;
2202	}
2203#endif
2204#ifdef CONFIG_CPUSETS
2205	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2206	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2207	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2208#endif
2209#ifdef CONFIG_TRACE_IRQFLAGS
2210	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2211	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2212	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2213	p->softirqs_enabled		= 1;
2214	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
2215#endif
2216
2217	p->pagefault_disabled = 0;
2218
2219#ifdef CONFIG_LOCKDEP
2220	lockdep_init_task(p);
 
 
2221#endif
2222
2223#ifdef CONFIG_DEBUG_MUTEXES
2224	p->blocked_on = NULL; /* not blocked yet */
2225#endif
2226#ifdef CONFIG_BCACHE
2227	p->sequential_io	= 0;
2228	p->sequential_io_avg	= 0;
2229#endif
2230#ifdef CONFIG_BPF_SYSCALL
2231	RCU_INIT_POINTER(p->bpf_storage, NULL);
2232	p->bpf_ctx = NULL;
2233#endif
2234
2235	/* Perform scheduler related setup. Assign this task to a CPU. */
2236	retval = sched_fork(clone_flags, p);
2237	if (retval)
2238		goto bad_fork_cleanup_policy;
2239
2240	retval = perf_event_init_task(p, clone_flags);
2241	if (retval)
2242		goto bad_fork_cleanup_policy;
2243	retval = audit_alloc(p);
2244	if (retval)
2245		goto bad_fork_cleanup_perf;
2246	/* copy all the process information */
2247	shm_init_task(p);
2248	retval = security_task_alloc(p, clone_flags);
2249	if (retval)
2250		goto bad_fork_cleanup_audit;
2251	retval = copy_semundo(clone_flags, p);
2252	if (retval)
2253		goto bad_fork_cleanup_security;
2254	retval = copy_files(clone_flags, p);
2255	if (retval)
2256		goto bad_fork_cleanup_semundo;
2257	retval = copy_fs(clone_flags, p);
2258	if (retval)
2259		goto bad_fork_cleanup_files;
2260	retval = copy_sighand(clone_flags, p);
2261	if (retval)
2262		goto bad_fork_cleanup_fs;
2263	retval = copy_signal(clone_flags, p);
2264	if (retval)
2265		goto bad_fork_cleanup_sighand;
2266	retval = copy_mm(clone_flags, p);
2267	if (retval)
2268		goto bad_fork_cleanup_signal;
2269	retval = copy_namespaces(clone_flags, p);
2270	if (retval)
2271		goto bad_fork_cleanup_mm;
2272	retval = copy_io(clone_flags, p);
2273	if (retval)
2274		goto bad_fork_cleanup_namespaces;
2275	retval = copy_thread(p, args);
2276	if (retval)
2277		goto bad_fork_cleanup_io;
2278
2279	stackleak_task_init(p);
2280
2281	if (pid != &init_struct_pid) {
2282		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2283				args->set_tid_size);
2284		if (IS_ERR(pid)) {
2285			retval = PTR_ERR(pid);
2286			goto bad_fork_cleanup_thread;
2287		}
2288	}
2289
 
2290	/*
2291	 * This has to happen after we've potentially unshared the file
2292	 * descriptor table (so that the pidfd doesn't leak into the child
2293	 * if the fd table isn't shared).
2294	 */
2295	if (clone_flags & CLONE_PIDFD) {
2296		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2297		if (retval < 0)
2298			goto bad_fork_free_pid;
2299
2300		pidfd = retval;
2301
2302		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2303					      O_RDWR | O_CLOEXEC);
2304		if (IS_ERR(pidfile)) {
2305			put_unused_fd(pidfd);
2306			retval = PTR_ERR(pidfile);
2307			goto bad_fork_free_pid;
2308		}
2309		get_pid(pid);	/* held by pidfile now */
2310
2311		retval = put_user(pidfd, args->pidfd);
2312		if (retval)
2313			goto bad_fork_put_pidfd;
2314	}
2315
2316#ifdef CONFIG_BLOCK
2317	p->plug = NULL;
2318#endif
2319	futex_init_task(p);
2320
 
 
 
 
 
 
2321	/*
2322	 * sigaltstack should be cleared when sharing the same VM
2323	 */
2324	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2325		sas_ss_reset(p);
2326
2327	/*
2328	 * Syscall tracing and stepping should be turned off in the
2329	 * child regardless of CLONE_PTRACE.
2330	 */
2331	user_disable_single_step(p);
2332	clear_task_syscall_work(p, SYSCALL_TRACE);
2333#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2334	clear_task_syscall_work(p, SYSCALL_EMU);
2335#endif
2336	clear_tsk_latency_tracing(p);
2337
2338	/* ok, now we should be set up.. */
2339	p->pid = pid_nr(pid);
2340	if (clone_flags & CLONE_THREAD) {
 
2341		p->group_leader = current->group_leader;
2342		p->tgid = current->tgid;
2343	} else {
 
 
 
 
2344		p->group_leader = p;
2345		p->tgid = p->pid;
2346	}
2347
2348	p->nr_dirtied = 0;
2349	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2350	p->dirty_paused_when = 0;
2351
2352	p->pdeath_signal = 0;
2353	INIT_LIST_HEAD(&p->thread_group);
2354	p->task_works = NULL;
2355	clear_posix_cputimers_work(p);
2356
2357#ifdef CONFIG_KRETPROBES
2358	p->kretprobe_instances.first = NULL;
2359#endif
2360#ifdef CONFIG_RETHOOK
2361	p->rethooks.first = NULL;
2362#endif
2363
 
2364	/*
2365	 * Ensure that the cgroup subsystem policies allow the new process to be
2366	 * forked. It should be noted that the new process's css_set can be changed
2367	 * between here and cgroup_post_fork() if an organisation operation is in
2368	 * progress.
2369	 */
2370	retval = cgroup_can_fork(p, args);
2371	if (retval)
2372		goto bad_fork_put_pidfd;
2373
2374	/*
2375	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2376	 * the new task on the correct runqueue. All this *before* the task
2377	 * becomes visible.
2378	 *
2379	 * This isn't part of ->can_fork() because while the re-cloning is
2380	 * cgroup specific, it unconditionally needs to place the task on a
2381	 * runqueue.
2382	 */
2383	sched_cgroup_fork(p, args);
2384
2385	/*
2386	 * From this point on we must avoid any synchronous user-space
2387	 * communication until we take the tasklist-lock. In particular, we do
2388	 * not want user-space to be able to predict the process start-time by
2389	 * stalling fork(2) after we recorded the start_time but before it is
2390	 * visible to the system.
2391	 */
2392
2393	p->start_time = ktime_get_ns();
2394	p->start_boottime = ktime_get_boottime_ns();
2395
2396	/*
2397	 * Make it visible to the rest of the system, but dont wake it up yet.
2398	 * Need tasklist lock for parent etc handling!
2399	 */
2400	write_lock_irq(&tasklist_lock);
2401
2402	/* CLONE_PARENT re-uses the old parent */
2403	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2404		p->real_parent = current->real_parent;
2405		p->parent_exec_id = current->parent_exec_id;
2406		if (clone_flags & CLONE_THREAD)
2407			p->exit_signal = -1;
2408		else
2409			p->exit_signal = current->group_leader->exit_signal;
2410	} else {
2411		p->real_parent = current;
2412		p->parent_exec_id = current->self_exec_id;
2413		p->exit_signal = args->exit_signal;
2414	}
2415
2416	klp_copy_process(p);
2417
2418	sched_core_fork(p);
2419
2420	spin_lock(&current->sighand->siglock);
2421
2422	rv_task_fork(p);
2423
2424	rseq_fork(p, clone_flags);
2425
2426	/* Don't start children in a dying pid namespace */
2427	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2428		retval = -ENOMEM;
2429		goto bad_fork_cancel_cgroup;
2430	}
2431
2432	/* Let kill terminate clone/fork in the middle */
2433	if (fatal_signal_pending(current)) {
2434		retval = -EINTR;
2435		goto bad_fork_cancel_cgroup;
2436	}
2437
2438	/* No more failure paths after this point. */
2439
2440	/*
2441	 * Copy seccomp details explicitly here, in case they were changed
2442	 * before holding sighand lock.
2443	 */
2444	copy_seccomp(p);
2445
2446	init_task_pid_links(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447	if (likely(p->pid)) {
2448		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2449
2450		init_task_pid(p, PIDTYPE_PID, pid);
2451		if (thread_group_leader(p)) {
2452			init_task_pid(p, PIDTYPE_TGID, pid);
2453			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2454			init_task_pid(p, PIDTYPE_SID, task_session(current));
2455
2456			if (is_child_reaper(pid)) {
2457				ns_of_pid(pid)->child_reaper = p;
2458				p->signal->flags |= SIGNAL_UNKILLABLE;
2459			}
2460			p->signal->shared_pending.signal = delayed.signal;
 
2461			p->signal->tty = tty_kref_get(current->signal->tty);
2462			/*
2463			 * Inherit has_child_subreaper flag under the same
2464			 * tasklist_lock with adding child to the process tree
2465			 * for propagate_has_child_subreaper optimization.
2466			 */
2467			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2468							 p->real_parent->signal->is_child_subreaper;
2469			list_add_tail(&p->sibling, &p->real_parent->children);
2470			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2471			attach_pid(p, PIDTYPE_TGID);
2472			attach_pid(p, PIDTYPE_PGID);
2473			attach_pid(p, PIDTYPE_SID);
2474			__this_cpu_inc(process_counts);
2475		} else {
2476			current->signal->nr_threads++;
2477			current->signal->quick_threads++;
2478			atomic_inc(&current->signal->live);
2479			refcount_inc(&current->signal->sigcnt);
2480			task_join_group_stop(p);
2481			list_add_tail_rcu(&p->thread_group,
2482					  &p->group_leader->thread_group);
2483			list_add_tail_rcu(&p->thread_node,
2484					  &p->signal->thread_head);
2485		}
2486		attach_pid(p, PIDTYPE_PID);
2487		nr_threads++;
2488	}
 
2489	total_forks++;
2490	hlist_del_init(&delayed.node);
2491	spin_unlock(&current->sighand->siglock);
2492	syscall_tracepoint_update(p);
2493	write_unlock_irq(&tasklist_lock);
2494
2495	if (pidfile)
2496		fd_install(pidfd, pidfile);
2497
2498	proc_fork_connector(p);
2499	sched_post_fork(p);
2500	cgroup_post_fork(p, args);
2501	perf_event_fork(p);
2502
2503	trace_task_newtask(p, clone_flags);
2504	uprobe_copy_process(p, clone_flags);
2505
2506	copy_oom_score_adj(clone_flags, p);
2507
2508	return p;
2509
2510bad_fork_cancel_cgroup:
2511	sched_core_free(p);
2512	spin_unlock(&current->sighand->siglock);
2513	write_unlock_irq(&tasklist_lock);
2514	cgroup_cancel_fork(p, args);
2515bad_fork_put_pidfd:
2516	if (clone_flags & CLONE_PIDFD) {
2517		fput(pidfile);
2518		put_unused_fd(pidfd);
2519	}
2520bad_fork_free_pid:
 
2521	if (pid != &init_struct_pid)
2522		free_pid(pid);
2523bad_fork_cleanup_thread:
2524	exit_thread(p);
2525bad_fork_cleanup_io:
2526	if (p->io_context)
2527		exit_io_context(p);
2528bad_fork_cleanup_namespaces:
2529	exit_task_namespaces(p);
2530bad_fork_cleanup_mm:
2531	if (p->mm) {
2532		mm_clear_owner(p->mm, p);
2533		mmput(p->mm);
2534	}
2535bad_fork_cleanup_signal:
2536	if (!(clone_flags & CLONE_THREAD))
2537		free_signal_struct(p->signal);
2538bad_fork_cleanup_sighand:
2539	__cleanup_sighand(p->sighand);
2540bad_fork_cleanup_fs:
2541	exit_fs(p); /* blocking */
2542bad_fork_cleanup_files:
2543	exit_files(p); /* blocking */
2544bad_fork_cleanup_semundo:
2545	exit_sem(p);
2546bad_fork_cleanup_security:
2547	security_task_free(p);
2548bad_fork_cleanup_audit:
2549	audit_free(p);
2550bad_fork_cleanup_perf:
2551	perf_event_free_task(p);
2552bad_fork_cleanup_policy:
2553	lockdep_free_task(p);
2554#ifdef CONFIG_NUMA
2555	mpol_put(p->mempolicy);
 
2556#endif
2557bad_fork_cleanup_delayacct:
2558	delayacct_tsk_free(p);
2559bad_fork_cleanup_count:
2560	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2561	exit_creds(p);
2562bad_fork_free:
2563	WRITE_ONCE(p->__state, TASK_DEAD);
2564	exit_task_stack_account(p);
2565	put_task_stack(p);
2566	delayed_free_task(p);
2567fork_out:
2568	spin_lock_irq(&current->sighand->siglock);
2569	hlist_del_init(&delayed.node);
2570	spin_unlock_irq(&current->sighand->siglock);
2571	return ERR_PTR(retval);
2572}
2573
2574static inline void init_idle_pids(struct task_struct *idle)
2575{
2576	enum pid_type type;
2577
2578	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2579		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2580		init_task_pid(idle, type, &init_struct_pid);
2581	}
2582}
2583
2584static int idle_dummy(void *dummy)
2585{
2586	/* This function is never called */
2587	return 0;
2588}
2589
2590struct task_struct * __init fork_idle(int cpu)
2591{
2592	struct task_struct *task;
2593	struct kernel_clone_args args = {
2594		.flags		= CLONE_VM,
2595		.fn		= &idle_dummy,
2596		.fn_arg		= NULL,
2597		.kthread	= 1,
2598		.idle		= 1,
2599	};
2600
2601	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2602	if (!IS_ERR(task)) {
2603		init_idle_pids(task);
2604		init_idle(task, cpu);
2605	}
2606
2607	return task;
2608}
2609
2610/*
2611 * This is like kernel_clone(), but shaved down and tailored to just
2612 * creating io_uring workers. It returns a created task, or an error pointer.
2613 * The returned task is inactive, and the caller must fire it up through
2614 * wake_up_new_task(p). All signals are blocked in the created task.
2615 */
2616struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2617{
2618	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2619				CLONE_IO;
2620	struct kernel_clone_args args = {
2621		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2622				    CLONE_UNTRACED) & ~CSIGNAL),
2623		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2624		.fn		= fn,
2625		.fn_arg		= arg,
2626		.io_thread	= 1,
2627	};
2628
2629	return copy_process(NULL, 0, node, &args);
2630}
2631
2632/*
2633 *  Ok, this is the main fork-routine.
2634 *
2635 * It copies the process, and if successful kick-starts
2636 * it and waits for it to finish using the VM if required.
2637 *
2638 * args->exit_signal is expected to be checked for sanity by the caller.
2639 */
2640pid_t kernel_clone(struct kernel_clone_args *args)
 
 
 
 
 
2641{
2642	u64 clone_flags = args->flags;
2643	struct completion vfork;
2644	struct pid *pid;
2645	struct task_struct *p;
2646	int trace = 0;
2647	pid_t nr;
2648
2649	/*
2650	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2651	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2652	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2653	 * field in struct clone_args and it still doesn't make sense to have
2654	 * them both point at the same memory location. Performing this check
2655	 * here has the advantage that we don't need to have a separate helper
2656	 * to check for legacy clone().
2657	 */
2658	if ((args->flags & CLONE_PIDFD) &&
2659	    (args->flags & CLONE_PARENT_SETTID) &&
2660	    (args->pidfd == args->parent_tid))
2661		return -EINVAL;
2662
2663	/*
2664	 * Determine whether and which event to report to ptracer.  When
2665	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2666	 * requested, no event is reported; otherwise, report if the event
2667	 * for the type of forking is enabled.
2668	 */
2669	if (!(clone_flags & CLONE_UNTRACED)) {
2670		if (clone_flags & CLONE_VFORK)
2671			trace = PTRACE_EVENT_VFORK;
2672		else if (args->exit_signal != SIGCHLD)
2673			trace = PTRACE_EVENT_CLONE;
2674		else
2675			trace = PTRACE_EVENT_FORK;
2676
2677		if (likely(!ptrace_event_enabled(current, trace)))
2678			trace = 0;
2679	}
2680
2681	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
 
2682	add_latent_entropy();
2683
2684	if (IS_ERR(p))
2685		return PTR_ERR(p);
2686
2687	/*
2688	 * Do this prior waking up the new thread - the thread pointer
2689	 * might get invalid after that point, if the thread exits quickly.
2690	 */
2691	trace_sched_process_fork(current, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692
2693	pid = get_task_pid(p, PIDTYPE_PID);
2694	nr = pid_vnr(pid);
2695
2696	if (clone_flags & CLONE_PARENT_SETTID)
2697		put_user(nr, args->parent_tid);
 
 
 
 
 
 
2698
2699	if (clone_flags & CLONE_VFORK) {
2700		p->vfork_done = &vfork;
2701		init_completion(&vfork);
2702		get_task_struct(p);
2703	}
2704
2705	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2706		/* lock the task to synchronize with memcg migration */
2707		task_lock(p);
2708		lru_gen_add_mm(p->mm);
2709		task_unlock(p);
2710	}
2711
2712	wake_up_new_task(p);
2713
2714	/* forking complete and child started to run, tell ptracer */
2715	if (unlikely(trace))
2716		ptrace_event_pid(trace, pid);
2717
2718	if (clone_flags & CLONE_VFORK) {
2719		if (!wait_for_vfork_done(p, &vfork))
2720			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2721	}
2722
2723	put_pid(pid);
2724	return nr;
2725}
2726
2727/*
2728 * Create a kernel thread.
2729 */
2730pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
 
 
 
 
2731{
2732	struct kernel_clone_args args = {
2733		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2734				    CLONE_UNTRACED) & ~CSIGNAL),
2735		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2736		.fn		= fn,
2737		.fn_arg		= arg,
2738		.kthread	= 1,
2739	};
2740
2741	return kernel_clone(&args);
2742}
 
2743
2744/*
2745 * Create a user mode thread.
2746 */
2747pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2748{
2749	struct kernel_clone_args args = {
2750		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2751				    CLONE_UNTRACED) & ~CSIGNAL),
2752		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2753		.fn		= fn,
2754		.fn_arg		= arg,
2755	};
2756
2757	return kernel_clone(&args);
2758}
2759
2760#ifdef __ARCH_WANT_SYS_FORK
2761SYSCALL_DEFINE0(fork)
2762{
2763#ifdef CONFIG_MMU
2764	struct kernel_clone_args args = {
2765		.exit_signal = SIGCHLD,
2766	};
2767
2768	return kernel_clone(&args);
2769#else
2770	/* can not support in nommu mode */
2771	return -EINVAL;
2772#endif
2773}
2774#endif
2775
2776#ifdef __ARCH_WANT_SYS_VFORK
2777SYSCALL_DEFINE0(vfork)
2778{
2779	struct kernel_clone_args args = {
2780		.flags		= CLONE_VFORK | CLONE_VM,
2781		.exit_signal	= SIGCHLD,
2782	};
2783
2784	return kernel_clone(&args);
2785}
2786#endif
2787
2788#ifdef __ARCH_WANT_SYS_CLONE
2789#ifdef CONFIG_CLONE_BACKWARDS
2790SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2791		 int __user *, parent_tidptr,
2792		 unsigned long, tls,
2793		 int __user *, child_tidptr)
2794#elif defined(CONFIG_CLONE_BACKWARDS2)
2795SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2796		 int __user *, parent_tidptr,
2797		 int __user *, child_tidptr,
2798		 unsigned long, tls)
2799#elif defined(CONFIG_CLONE_BACKWARDS3)
2800SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2801		int, stack_size,
2802		int __user *, parent_tidptr,
2803		int __user *, child_tidptr,
2804		unsigned long, tls)
2805#else
2806SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2807		 int __user *, parent_tidptr,
2808		 int __user *, child_tidptr,
2809		 unsigned long, tls)
2810#endif
2811{
2812	struct kernel_clone_args args = {
2813		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2814		.pidfd		= parent_tidptr,
2815		.child_tid	= child_tidptr,
2816		.parent_tid	= parent_tidptr,
2817		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2818		.stack		= newsp,
2819		.tls		= tls,
2820	};
2821
2822	return kernel_clone(&args);
2823}
2824#endif
2825
2826#ifdef __ARCH_WANT_SYS_CLONE3
2827
2828noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2829					      struct clone_args __user *uargs,
2830					      size_t usize)
2831{
2832	int err;
2833	struct clone_args args;
2834	pid_t *kset_tid = kargs->set_tid;
2835
2836	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2837		     CLONE_ARGS_SIZE_VER0);
2838	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2839		     CLONE_ARGS_SIZE_VER1);
2840	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2841		     CLONE_ARGS_SIZE_VER2);
2842	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2843
2844	if (unlikely(usize > PAGE_SIZE))
2845		return -E2BIG;
2846	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2847		return -EINVAL;
2848
2849	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2850	if (err)
2851		return err;
2852
2853	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2854		return -EINVAL;
2855
2856	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2857		return -EINVAL;
2858
2859	if (unlikely(args.set_tid && args.set_tid_size == 0))
2860		return -EINVAL;
2861
2862	/*
2863	 * Verify that higher 32bits of exit_signal are unset and that
2864	 * it is a valid signal
2865	 */
2866	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2867		     !valid_signal(args.exit_signal)))
2868		return -EINVAL;
2869
2870	if ((args.flags & CLONE_INTO_CGROUP) &&
2871	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2872		return -EINVAL;
2873
2874	*kargs = (struct kernel_clone_args){
2875		.flags		= args.flags,
2876		.pidfd		= u64_to_user_ptr(args.pidfd),
2877		.child_tid	= u64_to_user_ptr(args.child_tid),
2878		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2879		.exit_signal	= args.exit_signal,
2880		.stack		= args.stack,
2881		.stack_size	= args.stack_size,
2882		.tls		= args.tls,
2883		.set_tid_size	= args.set_tid_size,
2884		.cgroup		= args.cgroup,
2885	};
2886
2887	if (args.set_tid &&
2888		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2889			(kargs->set_tid_size * sizeof(pid_t))))
2890		return -EFAULT;
2891
2892	kargs->set_tid = kset_tid;
2893
2894	return 0;
2895}
2896
2897/**
2898 * clone3_stack_valid - check and prepare stack
2899 * @kargs: kernel clone args
2900 *
2901 * Verify that the stack arguments userspace gave us are sane.
2902 * In addition, set the stack direction for userspace since it's easy for us to
2903 * determine.
2904 */
2905static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2906{
2907	if (kargs->stack == 0) {
2908		if (kargs->stack_size > 0)
2909			return false;
2910	} else {
2911		if (kargs->stack_size == 0)
2912			return false;
2913
2914		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2915			return false;
2916
2917#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2918		kargs->stack += kargs->stack_size;
2919#endif
2920	}
2921
2922	return true;
2923}
2924
2925static bool clone3_args_valid(struct kernel_clone_args *kargs)
2926{
2927	/* Verify that no unknown flags are passed along. */
2928	if (kargs->flags &
2929	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2930		return false;
2931
2932	/*
2933	 * - make the CLONE_DETACHED bit reusable for clone3
2934	 * - make the CSIGNAL bits reusable for clone3
2935	 */
2936	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2937		return false;
2938
2939	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2940	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2941		return false;
2942
2943	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2944	    kargs->exit_signal)
2945		return false;
2946
2947	if (!clone3_stack_valid(kargs))
2948		return false;
2949
2950	return true;
2951}
2952
2953/**
2954 * clone3 - create a new process with specific properties
2955 * @uargs: argument structure
2956 * @size:  size of @uargs
2957 *
2958 * clone3() is the extensible successor to clone()/clone2().
2959 * It takes a struct as argument that is versioned by its size.
2960 *
2961 * Return: On success, a positive PID for the child process.
2962 *         On error, a negative errno number.
2963 */
2964SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2965{
2966	int err;
2967
2968	struct kernel_clone_args kargs;
2969	pid_t set_tid[MAX_PID_NS_LEVEL];
2970
2971	kargs.set_tid = set_tid;
2972
2973	err = copy_clone_args_from_user(&kargs, uargs, size);
2974	if (err)
2975		return err;
2976
2977	if (!clone3_args_valid(&kargs))
2978		return -EINVAL;
2979
2980	return kernel_clone(&kargs);
2981}
2982#endif
2983
2984void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2985{
2986	struct task_struct *leader, *parent, *child;
2987	int res;
2988
2989	read_lock(&tasklist_lock);
2990	leader = top = top->group_leader;
2991down:
2992	for_each_thread(leader, parent) {
2993		list_for_each_entry(child, &parent->children, sibling) {
2994			res = visitor(child, data);
2995			if (res) {
2996				if (res < 0)
2997					goto out;
2998				leader = child;
2999				goto down;
3000			}
3001up:
3002			;
3003		}
3004	}
3005
3006	if (leader != top) {
3007		child = leader;
3008		parent = child->real_parent;
3009		leader = parent->group_leader;
3010		goto up;
3011	}
3012out:
3013	read_unlock(&tasklist_lock);
3014}
3015
3016#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3017#define ARCH_MIN_MMSTRUCT_ALIGN 0
3018#endif
3019
3020static void sighand_ctor(void *data)
3021{
3022	struct sighand_struct *sighand = data;
3023
3024	spin_lock_init(&sighand->siglock);
3025	init_waitqueue_head(&sighand->signalfd_wqh);
3026}
3027
3028void __init mm_cache_init(void)
3029{
3030	unsigned int mm_size;
3031
3032	/*
3033	 * The mm_cpumask is located at the end of mm_struct, and is
3034	 * dynamically sized based on the maximum CPU number this system
3035	 * can have, taking hotplug into account (nr_cpu_ids).
3036	 */
3037	mm_size = sizeof(struct mm_struct) + cpumask_size();
3038
3039	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3040			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3041			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3042			offsetof(struct mm_struct, saved_auxv),
3043			sizeof_field(struct mm_struct, saved_auxv),
3044			NULL);
3045}
3046
3047void __init proc_caches_init(void)
3048{
3049	sighand_cachep = kmem_cache_create("sighand_cache",
3050			sizeof(struct sighand_struct), 0,
3051			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3052			SLAB_ACCOUNT, sighand_ctor);
3053	signal_cachep = kmem_cache_create("signal_cache",
3054			sizeof(struct signal_struct), 0,
3055			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3056			NULL);
3057	files_cachep = kmem_cache_create("files_cache",
3058			sizeof(struct files_struct), 0,
3059			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3060			NULL);
3061	fs_cachep = kmem_cache_create("fs_cache",
3062			sizeof(struct fs_struct), 0,
3063			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
 
 
 
 
 
 
 
 
 
 
 
3064			NULL);
3065
3066	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3067	mmap_init();
3068	nsproxy_cache_init();
3069}
3070
3071/*
3072 * Check constraints on flags passed to the unshare system call.
3073 */
3074static int check_unshare_flags(unsigned long unshare_flags)
3075{
3076	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3077				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3078				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3079				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3080				CLONE_NEWTIME))
3081		return -EINVAL;
3082	/*
3083	 * Not implemented, but pretend it works if there is nothing
3084	 * to unshare.  Note that unsharing the address space or the
3085	 * signal handlers also need to unshare the signal queues (aka
3086	 * CLONE_THREAD).
3087	 */
3088	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3089		if (!thread_group_empty(current))
3090			return -EINVAL;
3091	}
3092	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3093		if (refcount_read(&current->sighand->count) > 1)
3094			return -EINVAL;
3095	}
3096	if (unshare_flags & CLONE_VM) {
3097		if (!current_is_single_threaded())
3098			return -EINVAL;
3099	}
3100
3101	return 0;
3102}
3103
3104/*
3105 * Unshare the filesystem structure if it is being shared
3106 */
3107static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3108{
3109	struct fs_struct *fs = current->fs;
3110
3111	if (!(unshare_flags & CLONE_FS) || !fs)
3112		return 0;
3113
3114	/* don't need lock here; in the worst case we'll do useless copy */
3115	if (fs->users == 1)
3116		return 0;
3117
3118	*new_fsp = copy_fs_struct(fs);
3119	if (!*new_fsp)
3120		return -ENOMEM;
3121
3122	return 0;
3123}
3124
3125/*
3126 * Unshare file descriptor table if it is being shared
3127 */
3128int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3129	       struct files_struct **new_fdp)
3130{
3131	struct files_struct *fd = current->files;
3132	int error = 0;
3133
3134	if ((unshare_flags & CLONE_FILES) &&
3135	    (fd && atomic_read(&fd->count) > 1)) {
3136		*new_fdp = dup_fd(fd, max_fds, &error);
3137		if (!*new_fdp)
3138			return error;
3139	}
3140
3141	return 0;
3142}
3143
3144/*
3145 * unshare allows a process to 'unshare' part of the process
3146 * context which was originally shared using clone.  copy_*
3147 * functions used by kernel_clone() cannot be used here directly
3148 * because they modify an inactive task_struct that is being
3149 * constructed. Here we are modifying the current, active,
3150 * task_struct.
3151 */
3152int ksys_unshare(unsigned long unshare_flags)
3153{
3154	struct fs_struct *fs, *new_fs = NULL;
3155	struct files_struct *new_fd = NULL;
3156	struct cred *new_cred = NULL;
3157	struct nsproxy *new_nsproxy = NULL;
3158	int do_sysvsem = 0;
3159	int err;
3160
3161	/*
3162	 * If unsharing a user namespace must also unshare the thread group
3163	 * and unshare the filesystem root and working directories.
3164	 */
3165	if (unshare_flags & CLONE_NEWUSER)
3166		unshare_flags |= CLONE_THREAD | CLONE_FS;
3167	/*
3168	 * If unsharing vm, must also unshare signal handlers.
3169	 */
3170	if (unshare_flags & CLONE_VM)
3171		unshare_flags |= CLONE_SIGHAND;
3172	/*
3173	 * If unsharing a signal handlers, must also unshare the signal queues.
3174	 */
3175	if (unshare_flags & CLONE_SIGHAND)
3176		unshare_flags |= CLONE_THREAD;
3177	/*
3178	 * If unsharing namespace, must also unshare filesystem information.
3179	 */
3180	if (unshare_flags & CLONE_NEWNS)
3181		unshare_flags |= CLONE_FS;
3182
3183	err = check_unshare_flags(unshare_flags);
3184	if (err)
3185		goto bad_unshare_out;
3186	/*
3187	 * CLONE_NEWIPC must also detach from the undolist: after switching
3188	 * to a new ipc namespace, the semaphore arrays from the old
3189	 * namespace are unreachable.
3190	 */
3191	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3192		do_sysvsem = 1;
3193	err = unshare_fs(unshare_flags, &new_fs);
3194	if (err)
3195		goto bad_unshare_out;
3196	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3197	if (err)
3198		goto bad_unshare_cleanup_fs;
3199	err = unshare_userns(unshare_flags, &new_cred);
3200	if (err)
3201		goto bad_unshare_cleanup_fd;
3202	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3203					 new_cred, new_fs);
3204	if (err)
3205		goto bad_unshare_cleanup_cred;
3206
3207	if (new_cred) {
3208		err = set_cred_ucounts(new_cred);
3209		if (err)
3210			goto bad_unshare_cleanup_cred;
3211	}
3212
3213	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3214		if (do_sysvsem) {
3215			/*
3216			 * CLONE_SYSVSEM is equivalent to sys_exit().
3217			 */
3218			exit_sem(current);
3219		}
3220		if (unshare_flags & CLONE_NEWIPC) {
3221			/* Orphan segments in old ns (see sem above). */
3222			exit_shm(current);
3223			shm_init_task(current);
3224		}
3225
3226		if (new_nsproxy)
3227			switch_task_namespaces(current, new_nsproxy);
3228
3229		task_lock(current);
3230
3231		if (new_fs) {
3232			fs = current->fs;
3233			spin_lock(&fs->lock);
3234			current->fs = new_fs;
3235			if (--fs->users)
3236				new_fs = NULL;
3237			else
3238				new_fs = fs;
3239			spin_unlock(&fs->lock);
3240		}
3241
3242		if (new_fd)
3243			swap(current->files, new_fd);
 
 
 
3244
3245		task_unlock(current);
3246
3247		if (new_cred) {
3248			/* Install the new user namespace */
3249			commit_creds(new_cred);
3250			new_cred = NULL;
3251		}
3252	}
3253
3254	perf_event_namespaces(current);
3255
3256bad_unshare_cleanup_cred:
3257	if (new_cred)
3258		put_cred(new_cred);
3259bad_unshare_cleanup_fd:
3260	if (new_fd)
3261		put_files_struct(new_fd);
3262
3263bad_unshare_cleanup_fs:
3264	if (new_fs)
3265		free_fs_struct(new_fs);
3266
3267bad_unshare_out:
3268	return err;
3269}
3270
3271SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3272{
3273	return ksys_unshare(unshare_flags);
3274}
3275
3276/*
3277 *	Helper to unshare the files of the current task.
3278 *	We don't want to expose copy_files internals to
3279 *	the exec layer of the kernel.
3280 */
3281
3282int unshare_files(void)
3283{
3284	struct task_struct *task = current;
3285	struct files_struct *old, *copy = NULL;
3286	int error;
3287
3288	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3289	if (error || !copy)
 
3290		return error;
3291
3292	old = task->files;
3293	task_lock(task);
3294	task->files = copy;
3295	task_unlock(task);
3296	put_files_struct(old);
3297	return 0;
3298}
3299
3300int sysctl_max_threads(struct ctl_table *table, int write,
3301		       void *buffer, size_t *lenp, loff_t *ppos)
3302{
3303	struct ctl_table t;
3304	int ret;
3305	int threads = max_threads;
3306	int min = 1;
3307	int max = MAX_THREADS;
3308
3309	t = *table;
3310	t.data = &threads;
3311	t.extra1 = &min;
3312	t.extra2 = &max;
3313
3314	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3315	if (ret || !write)
3316		return ret;
3317
3318	max_threads = threads;
3319
3320	return 0;
3321}