Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
 
  14#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
 
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
 
 
 
 
 
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <linux/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;	/* Handle normal Linux uptimes. */
 106int nr_threads;			/* The idle threads do not count.. */
 107
 108int max_threads;		/* tunable limit on nr_threads */
 
 
 
 
 
 
 
 
 
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117	return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124	int cpu;
 125	int total = 0;
 126
 127	for_each_possible_cpu(cpu)
 128		total += per_cpu(process_counts, cpu);
 129
 130	return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147	kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_stack(unsigned long *stack)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 162
 163#ifdef CONFIG_VMAP_STACK
 164/*
 165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 166 * flush.  Try to minimize the number of calls by caching stacks.
 167 */
 168#define NR_CACHED_STACKS 2
 169static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170#endif
 171
 172static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 173{
 174#ifdef CONFIG_VMAP_STACK
 175	void *stack;
 176	int i;
 177
 178	local_irq_disable();
 179	for (i = 0; i < NR_CACHED_STACKS; i++) {
 180		struct vm_struct *s = this_cpu_read(cached_stacks[i]);
 
 
 181
 182		if (!s)
 183			continue;
 184		this_cpu_write(cached_stacks[i], NULL);
 
 
 
 
 
 185
 186		tsk->stack_vm_area = s;
 187		local_irq_enable();
 188		return s->addr;
 189	}
 190	local_irq_enable();
 191
 192	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
 
 
 
 
 
 193				     VMALLOC_START, VMALLOC_END,
 194				     THREADINFO_GFP | __GFP_HIGHMEM,
 195				     PAGE_KERNEL,
 196				     0, node, __builtin_return_address(0));
 197
 198	/*
 199	 * We can't call find_vm_area() in interrupt context, and
 200	 * free_thread_stack() can be called in interrupt context,
 201	 * so cache the vm_struct.
 202	 */
 203	if (stack)
 204		tsk->stack_vm_area = find_vm_area(stack);
 
 
 205	return stack;
 206#else
 207	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 208					     THREAD_SIZE_ORDER);
 209
 210	return page ? page_address(page) : NULL;
 
 
 
 
 211#endif
 212}
 213
 214static inline void free_thread_stack(struct task_struct *tsk)
 215{
 216#ifdef CONFIG_VMAP_STACK
 217	if (task_stack_vm_area(tsk)) {
 218		unsigned long flags;
 
 219		int i;
 220
 221		local_irq_save(flags);
 
 
 222		for (i = 0; i < NR_CACHED_STACKS; i++) {
 223			if (this_cpu_read(cached_stacks[i]))
 
 224				continue;
 225
 226			this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
 227			local_irq_restore(flags);
 228			return;
 229		}
 230		local_irq_restore(flags);
 231
 232		vfree_atomic(tsk->stack);
 233		return;
 234	}
 235#endif
 236
 237	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 238}
 239# else
 240static struct kmem_cache *thread_stack_cache;
 241
 242static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 243						  int node)
 244{
 245	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 
 
 
 
 246}
 247
 248static void free_thread_stack(struct task_struct *tsk)
 249{
 250	kmem_cache_free(thread_stack_cache, tsk->stack);
 251}
 252
 253void thread_stack_cache_init(void)
 254{
 255	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 256					      THREAD_SIZE, 0, NULL);
 
 257	BUG_ON(thread_stack_cache == NULL);
 258}
 259# endif
 260#endif
 261
 262/* SLAB cache for signal_struct structures (tsk->signal) */
 263static struct kmem_cache *signal_cachep;
 264
 265/* SLAB cache for sighand_struct structures (tsk->sighand) */
 266struct kmem_cache *sighand_cachep;
 267
 268/* SLAB cache for files_struct structures (tsk->files) */
 269struct kmem_cache *files_cachep;
 270
 271/* SLAB cache for fs_struct structures (tsk->fs) */
 272struct kmem_cache *fs_cachep;
 273
 274/* SLAB cache for vm_area_struct structures */
 275struct kmem_cache *vm_area_cachep;
 276
 277/* SLAB cache for mm_struct structures (tsk->mm) */
 278static struct kmem_cache *mm_cachep;
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280static void account_kernel_stack(struct task_struct *tsk, int account)
 281{
 282	void *stack = task_stack_page(tsk);
 283	struct vm_struct *vm = task_stack_vm_area(tsk);
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 286
 287	if (vm) {
 288		int i;
 289
 290		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 291
 292		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 293			mod_zone_page_state(page_zone(vm->pages[i]),
 294					    NR_KERNEL_STACK_KB,
 295					    PAGE_SIZE / 1024 * account);
 
 
 
 
 
 
 296		}
 297
 298		/* All stack pages belong to the same memcg. */
 299		memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 300					    account * (THREAD_SIZE / 1024));
 301	} else {
 302		/*
 303		 * All stack pages are in the same zone and belong to the
 304		 * same memcg.
 305		 */
 306		struct page *first_page = virt_to_page(stack);
 307
 308		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 309				    THREAD_SIZE / 1024 * account);
 310
 311		memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
 312					    account * (THREAD_SIZE / 1024));
 313	}
 
 
 314}
 315
 316static void release_task_stack(struct task_struct *tsk)
 317{
 318	if (WARN_ON(tsk->state != TASK_DEAD))
 319		return;  /* Better to leak the stack than to free prematurely */
 320
 321	account_kernel_stack(tsk, -1);
 322	arch_release_thread_stack(tsk->stack);
 323	free_thread_stack(tsk);
 324	tsk->stack = NULL;
 325#ifdef CONFIG_VMAP_STACK
 326	tsk->stack_vm_area = NULL;
 327#endif
 328}
 329
 330#ifdef CONFIG_THREAD_INFO_IN_TASK
 331void put_task_stack(struct task_struct *tsk)
 332{
 333	if (atomic_dec_and_test(&tsk->stack_refcount))
 334		release_task_stack(tsk);
 335}
 336#endif
 337
 338void free_task(struct task_struct *tsk)
 339{
 
 
 340#ifndef CONFIG_THREAD_INFO_IN_TASK
 341	/*
 342	 * The task is finally done with both the stack and thread_info,
 343	 * so free both.
 344	 */
 345	release_task_stack(tsk);
 346#else
 347	/*
 348	 * If the task had a separate stack allocation, it should be gone
 349	 * by now.
 350	 */
 351	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 352#endif
 353	rt_mutex_debug_task_free(tsk);
 354	ftrace_graph_exit_task(tsk);
 355	put_seccomp_filter(tsk);
 356	arch_release_task_struct(tsk);
 357	if (tsk->flags & PF_KTHREAD)
 358		free_kthread_struct(tsk);
 359	free_task_struct(tsk);
 360}
 361EXPORT_SYMBOL(free_task);
 362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363static inline void free_signal_struct(struct signal_struct *sig)
 364{
 365	taskstats_tgid_free(sig);
 366	sched_autogroup_exit(sig);
 367	/*
 368	 * __mmdrop is not safe to call from softirq context on x86 due to
 369	 * pgd_dtor so postpone it to the async context
 370	 */
 371	if (sig->oom_mm)
 372		mmdrop_async(sig->oom_mm);
 373	kmem_cache_free(signal_cachep, sig);
 374}
 375
 376static inline void put_signal_struct(struct signal_struct *sig)
 377{
 378	if (atomic_dec_and_test(&sig->sigcnt))
 379		free_signal_struct(sig);
 380}
 381
 382void __put_task_struct(struct task_struct *tsk)
 383{
 384	WARN_ON(!tsk->exit_state);
 385	WARN_ON(atomic_read(&tsk->usage));
 386	WARN_ON(tsk == current);
 387
 388	cgroup_free(tsk);
 389	task_numa_free(tsk);
 390	security_task_free(tsk);
 391	exit_creds(tsk);
 392	delayacct_tsk_free(tsk);
 393	put_signal_struct(tsk->signal);
 394
 395	if (!profile_handoff_task(tsk))
 396		free_task(tsk);
 397}
 398EXPORT_SYMBOL_GPL(__put_task_struct);
 399
 400void __init __weak arch_task_cache_init(void) { }
 401
 402/*
 403 * set_max_threads
 404 */
 405static void set_max_threads(unsigned int max_threads_suggested)
 406{
 407	u64 threads;
 
 408
 409	/*
 410	 * The number of threads shall be limited such that the thread
 411	 * structures may only consume a small part of the available memory.
 412	 */
 413	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 414		threads = MAX_THREADS;
 415	else
 416		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 417				    (u64) THREAD_SIZE * 8UL);
 418
 419	if (threads > max_threads_suggested)
 420		threads = max_threads_suggested;
 421
 422	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 423}
 424
 425#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 426/* Initialized by the architecture: */
 427int arch_task_struct_size __read_mostly;
 428#endif
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430void __init fork_init(void)
 431{
 432	int i;
 433#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 434#ifndef ARCH_MIN_TASKALIGN
 435#define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
 436#endif
 
 
 
 437	/* create a slab on which task_structs can be allocated */
 438	task_struct_cachep = kmem_cache_create("task_struct",
 439			arch_task_struct_size, ARCH_MIN_TASKALIGN,
 440			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 
 
 441#endif
 442
 443	/* do the arch specific task caches init */
 444	arch_task_cache_init();
 445
 446	set_max_threads(MAX_THREADS);
 447
 448	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 449	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 450	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 451		init_task.signal->rlim[RLIMIT_NPROC];
 452
 453	for (i = 0; i < UCOUNT_COUNTS; i++) {
 454		init_user_ns.ucount_max[i] = max_threads/2;
 455	}
 
 
 
 
 
 
 
 
 
 
 456}
 457
 458int __weak arch_dup_task_struct(struct task_struct *dst,
 459					       struct task_struct *src)
 460{
 461	*dst = *src;
 462	return 0;
 463}
 464
 465void set_task_stack_end_magic(struct task_struct *tsk)
 466{
 467	unsigned long *stackend;
 468
 469	stackend = end_of_stack(tsk);
 470	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 471}
 472
 473static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 474{
 475	struct task_struct *tsk;
 476	unsigned long *stack;
 477	struct vm_struct *stack_vm_area;
 478	int err;
 479
 480	if (node == NUMA_NO_NODE)
 481		node = tsk_fork_get_node(orig);
 482	tsk = alloc_task_struct_node(node);
 483	if (!tsk)
 484		return NULL;
 485
 486	stack = alloc_thread_stack_node(tsk, node);
 487	if (!stack)
 488		goto free_tsk;
 489
 
 
 
 490	stack_vm_area = task_stack_vm_area(tsk);
 491
 492	err = arch_dup_task_struct(tsk, orig);
 493
 494	/*
 495	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 496	 * sure they're properly initialized before using any stack-related
 497	 * functions again.
 498	 */
 499	tsk->stack = stack;
 500#ifdef CONFIG_VMAP_STACK
 501	tsk->stack_vm_area = stack_vm_area;
 502#endif
 503#ifdef CONFIG_THREAD_INFO_IN_TASK
 504	atomic_set(&tsk->stack_refcount, 1);
 505#endif
 506
 507	if (err)
 508		goto free_stack;
 509
 
 
 
 
 510#ifdef CONFIG_SECCOMP
 511	/*
 512	 * We must handle setting up seccomp filters once we're under
 513	 * the sighand lock in case orig has changed between now and
 514	 * then. Until then, filter must be NULL to avoid messing up
 515	 * the usage counts on the error path calling free_task.
 516	 */
 517	tsk->seccomp.filter = NULL;
 518#endif
 519
 520	setup_thread_stack(tsk, orig);
 521	clear_user_return_notifier(tsk);
 522	clear_tsk_need_resched(tsk);
 523	set_task_stack_end_magic(tsk);
 524
 525#ifdef CONFIG_CC_STACKPROTECTOR
 526	tsk->stack_canary = get_random_int();
 527#endif
 
 
 528
 529	/*
 530	 * One for us, one for whoever does the "release_task()" (usually
 531	 * parent)
 532	 */
 533	atomic_set(&tsk->usage, 2);
 
 
 534#ifdef CONFIG_BLK_DEV_IO_TRACE
 535	tsk->btrace_seq = 0;
 536#endif
 537	tsk->splice_pipe = NULL;
 538	tsk->task_frag.page = NULL;
 539	tsk->wake_q.next = NULL;
 540
 541	account_kernel_stack(tsk, 1);
 542
 543	kcov_task_init(tsk);
 544
 
 
 
 
 
 
 
 
 
 
 
 
 545	return tsk;
 546
 547free_stack:
 548	free_thread_stack(tsk);
 549free_tsk:
 550	free_task_struct(tsk);
 551	return NULL;
 552}
 553
 554#ifdef CONFIG_MMU
 555static __latent_entropy int dup_mmap(struct mm_struct *mm,
 556					struct mm_struct *oldmm)
 557{
 558	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 559	struct rb_node **rb_link, *rb_parent;
 560	int retval;
 561	unsigned long charge;
 562
 563	uprobe_start_dup_mmap();
 564	if (down_write_killable(&oldmm->mmap_sem)) {
 565		retval = -EINTR;
 566		goto fail_uprobe_end;
 567	}
 568	flush_cache_dup_mm(oldmm);
 569	uprobe_dup_mmap(oldmm, mm);
 570	/*
 571	 * Not linked in yet - no deadlock potential:
 572	 */
 573	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 574
 575	/* No ordering required: file already has been exposed. */
 576	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 577
 578	mm->total_vm = oldmm->total_vm;
 579	mm->data_vm = oldmm->data_vm;
 580	mm->exec_vm = oldmm->exec_vm;
 581	mm->stack_vm = oldmm->stack_vm;
 582
 583	rb_link = &mm->mm_rb.rb_node;
 584	rb_parent = NULL;
 585	pprev = &mm->mmap;
 586	retval = ksm_fork(mm, oldmm);
 587	if (retval)
 588		goto out;
 589	retval = khugepaged_fork(mm, oldmm);
 590	if (retval)
 591		goto out;
 592
 593	prev = NULL;
 594	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 595		struct file *file;
 596
 597		if (mpnt->vm_flags & VM_DONTCOPY) {
 598			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 599			continue;
 600		}
 601		charge = 0;
 602		if (mpnt->vm_flags & VM_ACCOUNT) {
 603			unsigned long len = vma_pages(mpnt);
 604
 605			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 606				goto fail_nomem;
 607			charge = len;
 608		}
 609		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 610		if (!tmp)
 611			goto fail_nomem;
 612		*tmp = *mpnt;
 613		INIT_LIST_HEAD(&tmp->anon_vma_chain);
 614		retval = vma_dup_policy(mpnt, tmp);
 615		if (retval)
 616			goto fail_nomem_policy;
 617		tmp->vm_mm = mm;
 618		if (anon_vma_fork(tmp, mpnt))
 619			goto fail_nomem_anon_vma_fork;
 620		tmp->vm_flags &=
 621			~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 622		tmp->vm_next = tmp->vm_prev = NULL;
 623		tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 624		file = tmp->vm_file;
 625		if (file) {
 626			struct inode *inode = file_inode(file);
 627			struct address_space *mapping = file->f_mapping;
 628
 629			get_file(file);
 630			if (tmp->vm_flags & VM_DENYWRITE)
 631				atomic_dec(&inode->i_writecount);
 632			i_mmap_lock_write(mapping);
 633			if (tmp->vm_flags & VM_SHARED)
 634				atomic_inc(&mapping->i_mmap_writable);
 635			flush_dcache_mmap_lock(mapping);
 636			/* insert tmp into the share list, just after mpnt */
 637			vma_interval_tree_insert_after(tmp, mpnt,
 638					&mapping->i_mmap);
 639			flush_dcache_mmap_unlock(mapping);
 640			i_mmap_unlock_write(mapping);
 641		}
 642
 643		/*
 644		 * Clear hugetlb-related page reserves for children. This only
 645		 * affects MAP_PRIVATE mappings. Faults generated by the child
 646		 * are not guaranteed to succeed, even if read-only
 647		 */
 648		if (is_vm_hugetlb_page(tmp))
 649			reset_vma_resv_huge_pages(tmp);
 650
 651		/*
 652		 * Link in the new vma and copy the page table entries.
 653		 */
 654		*pprev = tmp;
 655		pprev = &tmp->vm_next;
 656		tmp->vm_prev = prev;
 657		prev = tmp;
 658
 659		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 660		rb_link = &tmp->vm_rb.rb_right;
 661		rb_parent = &tmp->vm_rb;
 662
 663		mm->map_count++;
 664		retval = copy_page_range(mm, oldmm, mpnt);
 665
 666		if (tmp->vm_ops && tmp->vm_ops->open)
 667			tmp->vm_ops->open(tmp);
 668
 669		if (retval)
 670			goto out;
 671	}
 672	/* a new mm has just been created */
 673	arch_dup_mmap(oldmm, mm);
 674	retval = 0;
 675out:
 676	up_write(&mm->mmap_sem);
 677	flush_tlb_mm(oldmm);
 678	up_write(&oldmm->mmap_sem);
 679fail_uprobe_end:
 680	uprobe_end_dup_mmap();
 681	return retval;
 682fail_nomem_anon_vma_fork:
 683	mpol_put(vma_policy(tmp));
 684fail_nomem_policy:
 685	kmem_cache_free(vm_area_cachep, tmp);
 686fail_nomem:
 687	retval = -ENOMEM;
 688	vm_unacct_memory(charge);
 689	goto out;
 690}
 691
 692static inline int mm_alloc_pgd(struct mm_struct *mm)
 693{
 694	mm->pgd = pgd_alloc(mm);
 695	if (unlikely(!mm->pgd))
 696		return -ENOMEM;
 697	return 0;
 698}
 699
 700static inline void mm_free_pgd(struct mm_struct *mm)
 701{
 702	pgd_free(mm, mm->pgd);
 703}
 704#else
 705static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 706{
 707	down_write(&oldmm->mmap_sem);
 708	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 709	up_write(&oldmm->mmap_sem);
 710	return 0;
 711}
 712#define mm_alloc_pgd(mm)	(0)
 713#define mm_free_pgd(mm)
 714#endif /* CONFIG_MMU */
 715
 716__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 717
 718#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 719#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 720
 721static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 722
 723static int __init coredump_filter_setup(char *s)
 724{
 725	default_dump_filter =
 726		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 727		MMF_DUMP_FILTER_MASK;
 728	return 1;
 729}
 730
 731__setup("coredump_filter=", coredump_filter_setup);
 732
 733#include <linux/init_task.h>
 734
 735static void mm_init_aio(struct mm_struct *mm)
 736{
 737#ifdef CONFIG_AIO
 738	spin_lock_init(&mm->ioctx_lock);
 739	mm->ioctx_table = NULL;
 740#endif
 741}
 742
 
 
 
 
 
 
 
 
 
 743static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 744{
 745#ifdef CONFIG_MEMCG
 746	mm->owner = p;
 747#endif
 748}
 749
 
 
 
 
 
 
 
 750static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 751	struct user_namespace *user_ns)
 752{
 753	mm->mmap = NULL;
 754	mm->mm_rb = RB_ROOT;
 755	mm->vmacache_seqnum = 0;
 756	atomic_set(&mm->mm_users, 1);
 757	atomic_set(&mm->mm_count, 1);
 758	init_rwsem(&mm->mmap_sem);
 759	INIT_LIST_HEAD(&mm->mmlist);
 760	mm->core_state = NULL;
 761	atomic_long_set(&mm->nr_ptes, 0);
 762	mm_nr_pmds_init(mm);
 763	mm->map_count = 0;
 764	mm->locked_vm = 0;
 765	mm->pinned_vm = 0;
 
 766	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 767	spin_lock_init(&mm->page_table_lock);
 
 768	mm_init_cpumask(mm);
 769	mm_init_aio(mm);
 770	mm_init_owner(mm, p);
 771	mmu_notifier_mm_init(mm);
 772	clear_tlb_flush_pending(mm);
 
 773#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 774	mm->pmd_huge_pte = NULL;
 775#endif
 
 776
 777	if (current->mm) {
 778		mm->flags = current->mm->flags & MMF_INIT_MASK;
 779		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 780	} else {
 781		mm->flags = default_dump_filter;
 782		mm->def_flags = 0;
 783	}
 784
 785	if (mm_alloc_pgd(mm))
 786		goto fail_nopgd;
 787
 788	if (init_new_context(p, mm))
 789		goto fail_nocontext;
 790
 791	mm->user_ns = get_user_ns(user_ns);
 792	return mm;
 793
 794fail_nocontext:
 795	mm_free_pgd(mm);
 796fail_nopgd:
 797	free_mm(mm);
 798	return NULL;
 799}
 800
 801static void check_mm(struct mm_struct *mm)
 802{
 803	int i;
 804
 805	for (i = 0; i < NR_MM_COUNTERS; i++) {
 806		long x = atomic_long_read(&mm->rss_stat.count[i]);
 807
 808		if (unlikely(x))
 809			printk(KERN_ALERT "BUG: Bad rss-counter state "
 810					  "mm:%p idx:%d val:%ld\n", mm, i, x);
 811	}
 812
 813	if (atomic_long_read(&mm->nr_ptes))
 814		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 815				atomic_long_read(&mm->nr_ptes));
 816	if (mm_nr_pmds(mm))
 817		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 818				mm_nr_pmds(mm));
 819
 820#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 821	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 822#endif
 823}
 824
 825/*
 826 * Allocate and initialize an mm_struct.
 827 */
 828struct mm_struct *mm_alloc(void)
 829{
 830	struct mm_struct *mm;
 831
 832	mm = allocate_mm();
 833	if (!mm)
 834		return NULL;
 835
 836	memset(mm, 0, sizeof(*mm));
 837	return mm_init(mm, current, current_user_ns());
 838}
 839
 840/*
 841 * Called when the last reference to the mm
 842 * is dropped: either by a lazy thread or by
 843 * mmput. Free the page directory and the mm.
 844 */
 845void __mmdrop(struct mm_struct *mm)
 846{
 847	BUG_ON(mm == &init_mm);
 848	mm_free_pgd(mm);
 849	destroy_context(mm);
 850	mmu_notifier_mm_destroy(mm);
 851	check_mm(mm);
 852	put_user_ns(mm->user_ns);
 853	free_mm(mm);
 854}
 855EXPORT_SYMBOL_GPL(__mmdrop);
 856
 857static inline void __mmput(struct mm_struct *mm)
 858{
 859	VM_BUG_ON(atomic_read(&mm->mm_users));
 860
 861	uprobe_clear_state(mm);
 862	exit_aio(mm);
 863	ksm_exit(mm);
 864	khugepaged_exit(mm); /* must run before exit_mmap */
 865	exit_mmap(mm);
 866	mm_put_huge_zero_page(mm);
 867	set_mm_exe_file(mm, NULL);
 868	if (!list_empty(&mm->mmlist)) {
 869		spin_lock(&mmlist_lock);
 870		list_del(&mm->mmlist);
 871		spin_unlock(&mmlist_lock);
 872	}
 873	if (mm->binfmt)
 874		module_put(mm->binfmt->module);
 875	set_bit(MMF_OOM_SKIP, &mm->flags);
 876	mmdrop(mm);
 877}
 878
 879/*
 880 * Decrement the use count and release all resources for an mm.
 881 */
 882void mmput(struct mm_struct *mm)
 883{
 884	might_sleep();
 885
 886	if (atomic_dec_and_test(&mm->mm_users))
 887		__mmput(mm);
 888}
 889EXPORT_SYMBOL_GPL(mmput);
 890
 891#ifdef CONFIG_MMU
 892static void mmput_async_fn(struct work_struct *work)
 893{
 894	struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
 
 
 895	__mmput(mm);
 896}
 897
 898void mmput_async(struct mm_struct *mm)
 899{
 900	if (atomic_dec_and_test(&mm->mm_users)) {
 901		INIT_WORK(&mm->async_put_work, mmput_async_fn);
 902		schedule_work(&mm->async_put_work);
 903	}
 904}
 905#endif
 906
 907/**
 908 * set_mm_exe_file - change a reference to the mm's executable file
 909 *
 910 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 911 *
 912 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 913 * invocations: in mmput() nobody alive left, in execve task is single
 914 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 915 * mm->exe_file, but does so without using set_mm_exe_file() in order
 916 * to do avoid the need for any locks.
 917 */
 918void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 919{
 920	struct file *old_exe_file;
 921
 922	/*
 923	 * It is safe to dereference the exe_file without RCU as
 924	 * this function is only called if nobody else can access
 925	 * this mm -- see comment above for justification.
 926	 */
 927	old_exe_file = rcu_dereference_raw(mm->exe_file);
 928
 929	if (new_exe_file)
 930		get_file(new_exe_file);
 931	rcu_assign_pointer(mm->exe_file, new_exe_file);
 932	if (old_exe_file)
 933		fput(old_exe_file);
 934}
 935
 936/**
 937 * get_mm_exe_file - acquire a reference to the mm's executable file
 938 *
 939 * Returns %NULL if mm has no associated executable file.
 940 * User must release file via fput().
 941 */
 942struct file *get_mm_exe_file(struct mm_struct *mm)
 943{
 944	struct file *exe_file;
 945
 946	rcu_read_lock();
 947	exe_file = rcu_dereference(mm->exe_file);
 948	if (exe_file && !get_file_rcu(exe_file))
 949		exe_file = NULL;
 950	rcu_read_unlock();
 951	return exe_file;
 952}
 953EXPORT_SYMBOL(get_mm_exe_file);
 954
 955/**
 956 * get_task_exe_file - acquire a reference to the task's executable file
 957 *
 958 * Returns %NULL if task's mm (if any) has no associated executable file or
 959 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
 960 * User must release file via fput().
 961 */
 962struct file *get_task_exe_file(struct task_struct *task)
 963{
 964	struct file *exe_file = NULL;
 965	struct mm_struct *mm;
 966
 967	task_lock(task);
 968	mm = task->mm;
 969	if (mm) {
 970		if (!(task->flags & PF_KTHREAD))
 971			exe_file = get_mm_exe_file(mm);
 972	}
 973	task_unlock(task);
 974	return exe_file;
 975}
 976EXPORT_SYMBOL(get_task_exe_file);
 977
 978/**
 979 * get_task_mm - acquire a reference to the task's mm
 980 *
 981 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 982 * this kernel workthread has transiently adopted a user mm with use_mm,
 983 * to do its AIO) is not set and if so returns a reference to it, after
 984 * bumping up the use count.  User must release the mm via mmput()
 985 * after use.  Typically used by /proc and ptrace.
 986 */
 987struct mm_struct *get_task_mm(struct task_struct *task)
 988{
 989	struct mm_struct *mm;
 990
 991	task_lock(task);
 992	mm = task->mm;
 993	if (mm) {
 994		if (task->flags & PF_KTHREAD)
 995			mm = NULL;
 996		else
 997			atomic_inc(&mm->mm_users);
 998	}
 999	task_unlock(task);
1000	return mm;
1001}
1002EXPORT_SYMBOL_GPL(get_task_mm);
1003
1004struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1005{
1006	struct mm_struct *mm;
1007	int err;
1008
1009	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1010	if (err)
1011		return ERR_PTR(err);
1012
1013	mm = get_task_mm(task);
1014	if (mm && mm != current->mm &&
1015			!ptrace_may_access(task, mode)) {
1016		mmput(mm);
1017		mm = ERR_PTR(-EACCES);
1018	}
1019	mutex_unlock(&task->signal->cred_guard_mutex);
1020
1021	return mm;
1022}
1023
1024static void complete_vfork_done(struct task_struct *tsk)
1025{
1026	struct completion *vfork;
1027
1028	task_lock(tsk);
1029	vfork = tsk->vfork_done;
1030	if (likely(vfork)) {
1031		tsk->vfork_done = NULL;
1032		complete(vfork);
1033	}
1034	task_unlock(tsk);
1035}
1036
1037static int wait_for_vfork_done(struct task_struct *child,
1038				struct completion *vfork)
1039{
1040	int killed;
1041
1042	freezer_do_not_count();
 
1043	killed = wait_for_completion_killable(vfork);
 
1044	freezer_count();
1045
1046	if (killed) {
1047		task_lock(child);
1048		child->vfork_done = NULL;
1049		task_unlock(child);
1050	}
1051
1052	put_task_struct(child);
1053	return killed;
1054}
1055
1056/* Please note the differences between mmput and mm_release.
1057 * mmput is called whenever we stop holding onto a mm_struct,
1058 * error success whatever.
1059 *
1060 * mm_release is called after a mm_struct has been removed
1061 * from the current process.
1062 *
1063 * This difference is important for error handling, when we
1064 * only half set up a mm_struct for a new process and need to restore
1065 * the old one.  Because we mmput the new mm_struct before
1066 * restoring the old one. . .
1067 * Eric Biederman 10 January 1998
1068 */
1069void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1070{
1071	/* Get rid of any futexes when releasing the mm */
1072#ifdef CONFIG_FUTEX
1073	if (unlikely(tsk->robust_list)) {
1074		exit_robust_list(tsk);
1075		tsk->robust_list = NULL;
1076	}
1077#ifdef CONFIG_COMPAT
1078	if (unlikely(tsk->compat_robust_list)) {
1079		compat_exit_robust_list(tsk);
1080		tsk->compat_robust_list = NULL;
1081	}
1082#endif
1083	if (unlikely(!list_empty(&tsk->pi_state_list)))
1084		exit_pi_state_list(tsk);
1085#endif
1086
1087	uprobe_free_utask(tsk);
1088
1089	/* Get rid of any cached register state */
1090	deactivate_mm(tsk, mm);
1091
1092	/*
1093	 * Signal userspace if we're not exiting with a core dump
1094	 * because we want to leave the value intact for debugging
1095	 * purposes.
1096	 */
1097	if (tsk->clear_child_tid) {
1098		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1099		    atomic_read(&mm->mm_users) > 1) {
1100			/*
1101			 * We don't check the error code - if userspace has
1102			 * not set up a proper pointer then tough luck.
1103			 */
1104			put_user(0, tsk->clear_child_tid);
1105			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1106					1, NULL, NULL, 0);
1107		}
1108		tsk->clear_child_tid = NULL;
1109	}
1110
1111	/*
1112	 * All done, finally we can wake up parent and return this mm to him.
1113	 * Also kthread_stop() uses this completion for synchronization.
1114	 */
1115	if (tsk->vfork_done)
1116		complete_vfork_done(tsk);
1117}
1118
1119/*
1120 * Allocate a new mm structure and copy contents from the
1121 * mm structure of the passed in task structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122 */
1123static struct mm_struct *dup_mm(struct task_struct *tsk)
 
1124{
1125	struct mm_struct *mm, *oldmm = current->mm;
1126	int err;
1127
1128	mm = allocate_mm();
1129	if (!mm)
1130		goto fail_nomem;
1131
1132	memcpy(mm, oldmm, sizeof(*mm));
1133
1134	if (!mm_init(mm, tsk, mm->user_ns))
1135		goto fail_nomem;
1136
1137	err = dup_mmap(mm, oldmm);
1138	if (err)
1139		goto free_pt;
1140
1141	mm->hiwater_rss = get_mm_rss(mm);
1142	mm->hiwater_vm = mm->total_vm;
1143
1144	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1145		goto free_pt;
1146
1147	return mm;
1148
1149free_pt:
1150	/* don't put binfmt in mmput, we haven't got module yet */
1151	mm->binfmt = NULL;
 
1152	mmput(mm);
1153
1154fail_nomem:
1155	return NULL;
1156}
1157
1158static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1159{
1160	struct mm_struct *mm, *oldmm;
1161	int retval;
1162
1163	tsk->min_flt = tsk->maj_flt = 0;
1164	tsk->nvcsw = tsk->nivcsw = 0;
1165#ifdef CONFIG_DETECT_HUNG_TASK
1166	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 
1167#endif
1168
1169	tsk->mm = NULL;
1170	tsk->active_mm = NULL;
1171
1172	/*
1173	 * Are we cloning a kernel thread?
1174	 *
1175	 * We need to steal a active VM for that..
1176	 */
1177	oldmm = current->mm;
1178	if (!oldmm)
1179		return 0;
1180
1181	/* initialize the new vmacache entries */
1182	vmacache_flush(tsk);
1183
1184	if (clone_flags & CLONE_VM) {
1185		atomic_inc(&oldmm->mm_users);
1186		mm = oldmm;
1187		goto good_mm;
1188	}
1189
1190	retval = -ENOMEM;
1191	mm = dup_mm(tsk);
1192	if (!mm)
1193		goto fail_nomem;
1194
1195good_mm:
1196	tsk->mm = mm;
1197	tsk->active_mm = mm;
1198	return 0;
1199
1200fail_nomem:
1201	return retval;
1202}
1203
1204static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1205{
1206	struct fs_struct *fs = current->fs;
1207	if (clone_flags & CLONE_FS) {
1208		/* tsk->fs is already what we want */
1209		spin_lock(&fs->lock);
1210		if (fs->in_exec) {
1211			spin_unlock(&fs->lock);
1212			return -EAGAIN;
1213		}
1214		fs->users++;
1215		spin_unlock(&fs->lock);
1216		return 0;
1217	}
1218	tsk->fs = copy_fs_struct(fs);
1219	if (!tsk->fs)
1220		return -ENOMEM;
1221	return 0;
1222}
1223
1224static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1225{
1226	struct files_struct *oldf, *newf;
1227	int error = 0;
1228
1229	/*
1230	 * A background process may not have any files ...
1231	 */
1232	oldf = current->files;
1233	if (!oldf)
1234		goto out;
1235
1236	if (clone_flags & CLONE_FILES) {
1237		atomic_inc(&oldf->count);
1238		goto out;
1239	}
1240
1241	newf = dup_fd(oldf, &error);
1242	if (!newf)
1243		goto out;
1244
1245	tsk->files = newf;
1246	error = 0;
1247out:
1248	return error;
1249}
1250
1251static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1252{
1253#ifdef CONFIG_BLOCK
1254	struct io_context *ioc = current->io_context;
1255	struct io_context *new_ioc;
1256
1257	if (!ioc)
1258		return 0;
1259	/*
1260	 * Share io context with parent, if CLONE_IO is set
1261	 */
1262	if (clone_flags & CLONE_IO) {
1263		ioc_task_link(ioc);
1264		tsk->io_context = ioc;
1265	} else if (ioprio_valid(ioc->ioprio)) {
1266		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1267		if (unlikely(!new_ioc))
1268			return -ENOMEM;
1269
1270		new_ioc->ioprio = ioc->ioprio;
1271		put_io_context(new_ioc);
1272	}
1273#endif
1274	return 0;
1275}
1276
1277static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1278{
1279	struct sighand_struct *sig;
1280
1281	if (clone_flags & CLONE_SIGHAND) {
1282		atomic_inc(&current->sighand->count);
1283		return 0;
1284	}
1285	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1286	rcu_assign_pointer(tsk->sighand, sig);
1287	if (!sig)
1288		return -ENOMEM;
1289
1290	atomic_set(&sig->count, 1);
 
1291	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 
 
 
 
 
 
1292	return 0;
1293}
1294
1295void __cleanup_sighand(struct sighand_struct *sighand)
1296{
1297	if (atomic_dec_and_test(&sighand->count)) {
1298		signalfd_cleanup(sighand);
1299		/*
1300		 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1301		 * without an RCU grace period, see __lock_task_sighand().
1302		 */
1303		kmem_cache_free(sighand_cachep, sighand);
1304	}
1305}
1306
1307/*
1308 * Initialize POSIX timer handling for a thread group.
1309 */
1310static void posix_cpu_timers_init_group(struct signal_struct *sig)
1311{
 
1312	unsigned long cpu_limit;
1313
1314	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1315	if (cpu_limit != RLIM_INFINITY) {
1316		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1317		sig->cputimer.running = true;
1318	}
1319
1320	/* The timer lists. */
1321	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1322	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1323	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1324}
1325
1326static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1327{
1328	struct signal_struct *sig;
1329
1330	if (clone_flags & CLONE_THREAD)
1331		return 0;
1332
1333	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1334	tsk->signal = sig;
1335	if (!sig)
1336		return -ENOMEM;
1337
1338	sig->nr_threads = 1;
1339	atomic_set(&sig->live, 1);
1340	atomic_set(&sig->sigcnt, 1);
1341
1342	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1343	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1344	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1345
1346	init_waitqueue_head(&sig->wait_chldexit);
1347	sig->curr_target = tsk;
1348	init_sigpending(&sig->shared_pending);
1349	INIT_LIST_HEAD(&sig->posix_timers);
1350	seqlock_init(&sig->stats_lock);
1351	prev_cputime_init(&sig->prev_cputime);
1352
1353#ifdef CONFIG_POSIX_TIMERS
 
1354	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1355	sig->real_timer.function = it_real_fn;
1356#endif
1357
1358	task_lock(current->group_leader);
1359	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1360	task_unlock(current->group_leader);
1361
1362	posix_cpu_timers_init_group(sig);
1363
1364	tty_audit_fork(sig);
1365	sched_autogroup_fork(sig);
1366
1367	sig->oom_score_adj = current->signal->oom_score_adj;
1368	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1369
1370	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1371				   current->signal->is_child_subreaper;
1372
1373	mutex_init(&sig->cred_guard_mutex);
 
1374
1375	return 0;
1376}
1377
1378static void copy_seccomp(struct task_struct *p)
1379{
1380#ifdef CONFIG_SECCOMP
1381	/*
1382	 * Must be called with sighand->lock held, which is common to
1383	 * all threads in the group. Holding cred_guard_mutex is not
1384	 * needed because this new task is not yet running and cannot
1385	 * be racing exec.
1386	 */
1387	assert_spin_locked(&current->sighand->siglock);
1388
1389	/* Ref-count the new filter user, and assign it. */
1390	get_seccomp_filter(current);
1391	p->seccomp = current->seccomp;
1392
1393	/*
1394	 * Explicitly enable no_new_privs here in case it got set
1395	 * between the task_struct being duplicated and holding the
1396	 * sighand lock. The seccomp state and nnp must be in sync.
1397	 */
1398	if (task_no_new_privs(current))
1399		task_set_no_new_privs(p);
1400
1401	/*
1402	 * If the parent gained a seccomp mode after copying thread
1403	 * flags and between before we held the sighand lock, we have
1404	 * to manually enable the seccomp thread flag here.
1405	 */
1406	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1407		set_tsk_thread_flag(p, TIF_SECCOMP);
1408#endif
1409}
1410
1411SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1412{
1413	current->clear_child_tid = tidptr;
1414
1415	return task_pid_vnr(current);
1416}
1417
1418static void rt_mutex_init_task(struct task_struct *p)
1419{
1420	raw_spin_lock_init(&p->pi_lock);
1421#ifdef CONFIG_RT_MUTEXES
1422	p->pi_waiters = RB_ROOT;
1423	p->pi_waiters_leftmost = NULL;
1424	p->pi_blocked_on = NULL;
1425#endif
1426}
1427
1428/*
1429 * Initialize POSIX timer handling for a single task.
1430 */
1431static void posix_cpu_timers_init(struct task_struct *tsk)
1432{
1433	tsk->cputime_expires.prof_exp = 0;
1434	tsk->cputime_expires.virt_exp = 0;
1435	tsk->cputime_expires.sched_exp = 0;
1436	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1437	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1438	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1439}
1440
1441static inline void
1442init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1443{
1444	 task->pids[type].pid = pid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445}
1446
1447/*
1448 * This creates a new process as a copy of the old one,
1449 * but does not actually start it yet.
1450 *
1451 * It copies the registers, and all the appropriate
1452 * parts of the process environment (as per the clone
1453 * flags). The actual kick-off is left to the caller.
1454 */
1455static __latent_entropy struct task_struct *copy_process(
1456					unsigned long clone_flags,
1457					unsigned long stack_start,
1458					unsigned long stack_size,
1459					int __user *child_tidptr,
1460					struct pid *pid,
1461					int trace,
1462					unsigned long tls,
1463					int node)
1464{
1465	int retval;
1466	struct task_struct *p;
 
 
 
 
1467
 
 
 
 
1468	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1469		return ERR_PTR(-EINVAL);
1470
1471	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1472		return ERR_PTR(-EINVAL);
1473
1474	/*
1475	 * Thread groups must share signals as well, and detached threads
1476	 * can only be started up within the thread group.
1477	 */
1478	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1479		return ERR_PTR(-EINVAL);
1480
1481	/*
1482	 * Shared signal handlers imply shared VM. By way of the above,
1483	 * thread groups also imply shared VM. Blocking this case allows
1484	 * for various simplifications in other code.
1485	 */
1486	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1487		return ERR_PTR(-EINVAL);
1488
1489	/*
1490	 * Siblings of global init remain as zombies on exit since they are
1491	 * not reaped by their parent (swapper). To solve this and to avoid
1492	 * multi-rooted process trees, prevent global and container-inits
1493	 * from creating siblings.
1494	 */
1495	if ((clone_flags & CLONE_PARENT) &&
1496				current->signal->flags & SIGNAL_UNKILLABLE)
1497		return ERR_PTR(-EINVAL);
1498
1499	/*
1500	 * If the new process will be in a different pid or user namespace
1501	 * do not allow it to share a thread group with the forking task.
1502	 */
1503	if (clone_flags & CLONE_THREAD) {
1504		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1505		    (task_active_pid_ns(current) !=
1506				current->nsproxy->pid_ns_for_children))
1507			return ERR_PTR(-EINVAL);
1508	}
1509
1510	retval = security_task_create(clone_flags);
1511	if (retval)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512		goto fork_out;
1513
1514	retval = -ENOMEM;
1515	p = dup_task_struct(current, node);
1516	if (!p)
1517		goto fork_out;
1518
 
 
 
 
 
 
 
 
 
 
 
 
1519	ftrace_graph_init_task(p);
1520
1521	rt_mutex_init_task(p);
1522
 
1523#ifdef CONFIG_PROVE_LOCKING
1524	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1525	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1526#endif
1527	retval = -EAGAIN;
1528	if (atomic_read(&p->real_cred->user->processes) >=
1529			task_rlimit(p, RLIMIT_NPROC)) {
1530		if (p->real_cred->user != INIT_USER &&
1531		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1532			goto bad_fork_free;
1533	}
1534	current->flags &= ~PF_NPROC_EXCEEDED;
1535
1536	retval = copy_creds(p, clone_flags);
1537	if (retval < 0)
1538		goto bad_fork_free;
1539
1540	/*
1541	 * If multiple threads are within copy_process(), then this check
1542	 * triggers too late. This doesn't hurt, the check is only there
1543	 * to stop root fork bombs.
1544	 */
1545	retval = -EAGAIN;
1546	if (nr_threads >= max_threads)
1547		goto bad_fork_cleanup_count;
1548
1549	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1550	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1551	p->flags |= PF_FORKNOEXEC;
1552	INIT_LIST_HEAD(&p->children);
1553	INIT_LIST_HEAD(&p->sibling);
1554	rcu_copy_process(p);
1555	p->vfork_done = NULL;
1556	spin_lock_init(&p->alloc_lock);
1557
1558	init_sigpending(&p->pending);
1559
1560	p->utime = p->stime = p->gtime = 0;
1561#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1562	p->utimescaled = p->stimescaled = 0;
1563#endif
1564	prev_cputime_init(&p->prev_cputime);
1565
1566#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1567	seqcount_init(&p->vtime_seqcount);
1568	p->vtime_snap = 0;
1569	p->vtime_snap_whence = VTIME_INACTIVE;
1570#endif
1571
1572#if defined(SPLIT_RSS_COUNTING)
1573	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1574#endif
1575
1576	p->default_timer_slack_ns = current->timer_slack_ns;
1577
 
 
 
 
1578	task_io_accounting_init(&p->ioac);
1579	acct_clear_integrals(p);
1580
1581	posix_cpu_timers_init(p);
1582
1583	p->start_time = ktime_get_ns();
1584	p->real_start_time = ktime_get_boot_ns();
1585	p->io_context = NULL;
1586	p->audit_context = NULL;
1587	cgroup_fork(p);
1588#ifdef CONFIG_NUMA
1589	p->mempolicy = mpol_dup(p->mempolicy);
1590	if (IS_ERR(p->mempolicy)) {
1591		retval = PTR_ERR(p->mempolicy);
1592		p->mempolicy = NULL;
1593		goto bad_fork_cleanup_threadgroup_lock;
1594	}
1595#endif
1596#ifdef CONFIG_CPUSETS
1597	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1598	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1599	seqcount_init(&p->mems_allowed_seq);
1600#endif
1601#ifdef CONFIG_TRACE_IRQFLAGS
1602	p->irq_events = 0;
1603	p->hardirqs_enabled = 0;
1604	p->hardirq_enable_ip = 0;
1605	p->hardirq_enable_event = 0;
1606	p->hardirq_disable_ip = _THIS_IP_;
1607	p->hardirq_disable_event = 0;
1608	p->softirqs_enabled = 1;
1609	p->softirq_enable_ip = _THIS_IP_;
1610	p->softirq_enable_event = 0;
1611	p->softirq_disable_ip = 0;
1612	p->softirq_disable_event = 0;
1613	p->hardirq_context = 0;
1614	p->softirq_context = 0;
1615#endif
1616
1617	p->pagefault_disabled = 0;
1618
1619#ifdef CONFIG_LOCKDEP
1620	p->lockdep_depth = 0; /* no locks held yet */
1621	p->curr_chain_key = 0;
1622	p->lockdep_recursion = 0;
1623#endif
1624
1625#ifdef CONFIG_DEBUG_MUTEXES
1626	p->blocked_on = NULL; /* not blocked yet */
1627#endif
1628#ifdef CONFIG_BCACHE
1629	p->sequential_io	= 0;
1630	p->sequential_io_avg	= 0;
1631#endif
1632
1633	/* Perform scheduler related setup. Assign this task to a CPU. */
1634	retval = sched_fork(clone_flags, p);
1635	if (retval)
1636		goto bad_fork_cleanup_policy;
1637
1638	retval = perf_event_init_task(p);
1639	if (retval)
1640		goto bad_fork_cleanup_policy;
1641	retval = audit_alloc(p);
1642	if (retval)
1643		goto bad_fork_cleanup_perf;
1644	/* copy all the process information */
1645	shm_init_task(p);
1646	retval = copy_semundo(clone_flags, p);
1647	if (retval)
1648		goto bad_fork_cleanup_audit;
 
 
 
1649	retval = copy_files(clone_flags, p);
1650	if (retval)
1651		goto bad_fork_cleanup_semundo;
1652	retval = copy_fs(clone_flags, p);
1653	if (retval)
1654		goto bad_fork_cleanup_files;
1655	retval = copy_sighand(clone_flags, p);
1656	if (retval)
1657		goto bad_fork_cleanup_fs;
1658	retval = copy_signal(clone_flags, p);
1659	if (retval)
1660		goto bad_fork_cleanup_sighand;
1661	retval = copy_mm(clone_flags, p);
1662	if (retval)
1663		goto bad_fork_cleanup_signal;
1664	retval = copy_namespaces(clone_flags, p);
1665	if (retval)
1666		goto bad_fork_cleanup_mm;
1667	retval = copy_io(clone_flags, p);
1668	if (retval)
1669		goto bad_fork_cleanup_namespaces;
1670	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1671	if (retval)
1672		goto bad_fork_cleanup_io;
1673
 
 
1674	if (pid != &init_struct_pid) {
1675		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
 
1676		if (IS_ERR(pid)) {
1677			retval = PTR_ERR(pid);
1678			goto bad_fork_cleanup_thread;
1679		}
1680	}
1681
1682	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1683	/*
1684	 * Clear TID on mm_release()?
1685	 */
1686	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687#ifdef CONFIG_BLOCK
1688	p->plug = NULL;
1689#endif
1690#ifdef CONFIG_FUTEX
1691	p->robust_list = NULL;
1692#ifdef CONFIG_COMPAT
1693	p->compat_robust_list = NULL;
1694#endif
1695	INIT_LIST_HEAD(&p->pi_state_list);
1696	p->pi_state_cache = NULL;
1697#endif
1698	/*
1699	 * sigaltstack should be cleared when sharing the same VM
1700	 */
1701	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1702		sas_ss_reset(p);
1703
1704	/*
1705	 * Syscall tracing and stepping should be turned off in the
1706	 * child regardless of CLONE_PTRACE.
1707	 */
1708	user_disable_single_step(p);
1709	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1710#ifdef TIF_SYSCALL_EMU
1711	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1712#endif
1713	clear_all_latency_tracing(p);
1714
1715	/* ok, now we should be set up.. */
1716	p->pid = pid_nr(pid);
1717	if (clone_flags & CLONE_THREAD) {
1718		p->exit_signal = -1;
1719		p->group_leader = current->group_leader;
1720		p->tgid = current->tgid;
1721	} else {
1722		if (clone_flags & CLONE_PARENT)
1723			p->exit_signal = current->group_leader->exit_signal;
1724		else
1725			p->exit_signal = (clone_flags & CSIGNAL);
1726		p->group_leader = p;
1727		p->tgid = p->pid;
1728	}
1729
1730	p->nr_dirtied = 0;
1731	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1732	p->dirty_paused_when = 0;
1733
1734	p->pdeath_signal = 0;
1735	INIT_LIST_HEAD(&p->thread_group);
1736	p->task_works = NULL;
1737
1738	threadgroup_change_begin(current);
1739	/*
1740	 * Ensure that the cgroup subsystem policies allow the new process to be
1741	 * forked. It should be noted the the new process's css_set can be changed
1742	 * between here and cgroup_post_fork() if an organisation operation is in
1743	 * progress.
1744	 */
1745	retval = cgroup_can_fork(p);
1746	if (retval)
1747		goto bad_fork_free_pid;
 
 
 
 
 
 
 
 
 
 
 
1748
1749	/*
1750	 * Make it visible to the rest of the system, but dont wake it up yet.
1751	 * Need tasklist lock for parent etc handling!
1752	 */
1753	write_lock_irq(&tasklist_lock);
1754
1755	/* CLONE_PARENT re-uses the old parent */
1756	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1757		p->real_parent = current->real_parent;
1758		p->parent_exec_id = current->parent_exec_id;
1759	} else {
1760		p->real_parent = current;
1761		p->parent_exec_id = current->self_exec_id;
1762	}
1763
 
 
1764	spin_lock(&current->sighand->siglock);
1765
1766	/*
1767	 * Copy seccomp details explicitly here, in case they were changed
1768	 * before holding sighand lock.
1769	 */
1770	copy_seccomp(p);
1771
1772	/*
1773	 * Process group and session signals need to be delivered to just the
1774	 * parent before the fork or both the parent and the child after the
1775	 * fork. Restart if a signal comes in before we add the new process to
1776	 * it's process group.
1777	 * A fatal signal pending means that current will exit, so the new
1778	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1779	*/
1780	recalc_sigpending();
1781	if (signal_pending(current)) {
1782		spin_unlock(&current->sighand->siglock);
1783		write_unlock_irq(&tasklist_lock);
1784		retval = -ERESTARTNOINTR;
1785		goto bad_fork_cancel_cgroup;
1786	}
1787
 
 
 
 
 
 
 
 
 
 
 
1788	if (likely(p->pid)) {
1789		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1790
1791		init_task_pid(p, PIDTYPE_PID, pid);
1792		if (thread_group_leader(p)) {
 
1793			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1794			init_task_pid(p, PIDTYPE_SID, task_session(current));
1795
1796			if (is_child_reaper(pid)) {
1797				ns_of_pid(pid)->child_reaper = p;
1798				p->signal->flags |= SIGNAL_UNKILLABLE;
1799			}
1800
1801			p->signal->leader_pid = pid;
1802			p->signal->tty = tty_kref_get(current->signal->tty);
 
 
 
 
 
 
 
1803			list_add_tail(&p->sibling, &p->real_parent->children);
1804			list_add_tail_rcu(&p->tasks, &init_task.tasks);
 
1805			attach_pid(p, PIDTYPE_PGID);
1806			attach_pid(p, PIDTYPE_SID);
1807			__this_cpu_inc(process_counts);
1808		} else {
1809			current->signal->nr_threads++;
1810			atomic_inc(&current->signal->live);
1811			atomic_inc(&current->signal->sigcnt);
 
1812			list_add_tail_rcu(&p->thread_group,
1813					  &p->group_leader->thread_group);
1814			list_add_tail_rcu(&p->thread_node,
1815					  &p->signal->thread_head);
1816		}
1817		attach_pid(p, PIDTYPE_PID);
1818		nr_threads++;
1819	}
1820
1821	total_forks++;
 
1822	spin_unlock(&current->sighand->siglock);
1823	syscall_tracepoint_update(p);
1824	write_unlock_irq(&tasklist_lock);
1825
1826	proc_fork_connector(p);
1827	cgroup_post_fork(p);
1828	threadgroup_change_end(current);
1829	perf_event_fork(p);
1830
1831	trace_task_newtask(p, clone_flags);
1832	uprobe_copy_process(p, clone_flags);
1833
1834	return p;
1835
1836bad_fork_cancel_cgroup:
1837	cgroup_cancel_fork(p);
 
 
 
 
 
 
 
1838bad_fork_free_pid:
1839	threadgroup_change_end(current);
1840	if (pid != &init_struct_pid)
1841		free_pid(pid);
1842bad_fork_cleanup_thread:
1843	exit_thread(p);
1844bad_fork_cleanup_io:
1845	if (p->io_context)
1846		exit_io_context(p);
1847bad_fork_cleanup_namespaces:
1848	exit_task_namespaces(p);
1849bad_fork_cleanup_mm:
1850	if (p->mm)
 
1851		mmput(p->mm);
 
1852bad_fork_cleanup_signal:
1853	if (!(clone_flags & CLONE_THREAD))
1854		free_signal_struct(p->signal);
1855bad_fork_cleanup_sighand:
1856	__cleanup_sighand(p->sighand);
1857bad_fork_cleanup_fs:
1858	exit_fs(p); /* blocking */
1859bad_fork_cleanup_files:
1860	exit_files(p); /* blocking */
1861bad_fork_cleanup_semundo:
1862	exit_sem(p);
 
 
1863bad_fork_cleanup_audit:
1864	audit_free(p);
1865bad_fork_cleanup_perf:
1866	perf_event_free_task(p);
1867bad_fork_cleanup_policy:
 
1868#ifdef CONFIG_NUMA
1869	mpol_put(p->mempolicy);
1870bad_fork_cleanup_threadgroup_lock:
1871#endif
1872	delayacct_tsk_free(p);
1873bad_fork_cleanup_count:
1874	atomic_dec(&p->cred->user->processes);
1875	exit_creds(p);
1876bad_fork_free:
1877	p->state = TASK_DEAD;
1878	put_task_stack(p);
1879	free_task(p);
1880fork_out:
 
 
 
1881	return ERR_PTR(retval);
1882}
1883
1884static inline void init_idle_pids(struct pid_link *links)
1885{
1886	enum pid_type type;
1887
1888	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1889		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1890		links[type].pid = &init_struct_pid;
1891	}
1892}
1893
1894struct task_struct *fork_idle(int cpu)
1895{
1896	struct task_struct *task;
1897	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1898			    cpu_to_node(cpu));
 
 
 
1899	if (!IS_ERR(task)) {
1900		init_idle_pids(task->pids);
1901		init_idle(task, cpu);
1902	}
1903
1904	return task;
1905}
1906
 
 
 
 
 
1907/*
1908 *  Ok, this is the main fork-routine.
1909 *
1910 * It copies the process, and if successful kick-starts
1911 * it and waits for it to finish using the VM if required.
 
 
1912 */
1913long _do_fork(unsigned long clone_flags,
1914	      unsigned long stack_start,
1915	      unsigned long stack_size,
1916	      int __user *parent_tidptr,
1917	      int __user *child_tidptr,
1918	      unsigned long tls)
1919{
 
 
 
1920	struct task_struct *p;
1921	int trace = 0;
1922	long nr;
1923
1924	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925	 * Determine whether and which event to report to ptracer.  When
1926	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1927	 * requested, no event is reported; otherwise, report if the event
1928	 * for the type of forking is enabled.
1929	 */
1930	if (!(clone_flags & CLONE_UNTRACED)) {
1931		if (clone_flags & CLONE_VFORK)
1932			trace = PTRACE_EVENT_VFORK;
1933		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1934			trace = PTRACE_EVENT_CLONE;
1935		else
1936			trace = PTRACE_EVENT_FORK;
1937
1938		if (likely(!ptrace_event_enabled(current, trace)))
1939			trace = 0;
1940	}
1941
1942	p = copy_process(clone_flags, stack_start, stack_size,
1943			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1944	add_latent_entropy();
 
 
 
 
1945	/*
1946	 * Do this prior waking up the new thread - the thread pointer
1947	 * might get invalid after that point, if the thread exits quickly.
1948	 */
1949	if (!IS_ERR(p)) {
1950		struct completion vfork;
1951		struct pid *pid;
1952
1953		trace_sched_process_fork(current, p);
1954
1955		pid = get_task_pid(p, PIDTYPE_PID);
1956		nr = pid_vnr(pid);
1957
1958		if (clone_flags & CLONE_PARENT_SETTID)
1959			put_user(nr, parent_tidptr);
1960
1961		if (clone_flags & CLONE_VFORK) {
1962			p->vfork_done = &vfork;
1963			init_completion(&vfork);
1964			get_task_struct(p);
1965		}
1966
1967		wake_up_new_task(p);
 
1968
1969		/* forking complete and child started to run, tell ptracer */
1970		if (unlikely(trace))
1971			ptrace_event_pid(trace, pid);
1972
1973		if (clone_flags & CLONE_VFORK) {
1974			if (!wait_for_vfork_done(p, &vfork))
1975				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1976		}
1977
1978		put_pid(pid);
1979	} else {
1980		nr = PTR_ERR(p);
 
1981	}
1982	return nr;
1983}
1984
1985#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1986/* For compatibility with architectures that call do_fork directly rather than
1987 * using the syscall entry points below. */
1988long do_fork(unsigned long clone_flags,
1989	      unsigned long stack_start,
1990	      unsigned long stack_size,
1991	      int __user *parent_tidptr,
1992	      int __user *child_tidptr)
1993{
1994	return _do_fork(clone_flags, stack_start, stack_size,
1995			parent_tidptr, child_tidptr, 0);
 
 
1996}
1997#endif
1998
1999/*
2000 * Create a kernel thread.
2001 */
2002pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2003{
2004	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2005		(unsigned long)arg, NULL, NULL, 0);
 
 
 
 
 
 
 
2006}
2007
2008#ifdef __ARCH_WANT_SYS_FORK
2009SYSCALL_DEFINE0(fork)
2010{
2011#ifdef CONFIG_MMU
2012	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
 
 
 
 
2013#else
2014	/* can not support in nommu mode */
2015	return -EINVAL;
2016#endif
2017}
2018#endif
2019
2020#ifdef __ARCH_WANT_SYS_VFORK
2021SYSCALL_DEFINE0(vfork)
2022{
2023	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2024			0, NULL, NULL, 0);
 
 
 
 
2025}
2026#endif
2027
2028#ifdef __ARCH_WANT_SYS_CLONE
2029#ifdef CONFIG_CLONE_BACKWARDS
2030SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2031		 int __user *, parent_tidptr,
2032		 unsigned long, tls,
2033		 int __user *, child_tidptr)
2034#elif defined(CONFIG_CLONE_BACKWARDS2)
2035SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2036		 int __user *, parent_tidptr,
2037		 int __user *, child_tidptr,
2038		 unsigned long, tls)
2039#elif defined(CONFIG_CLONE_BACKWARDS3)
2040SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2041		int, stack_size,
2042		int __user *, parent_tidptr,
2043		int __user *, child_tidptr,
2044		unsigned long, tls)
2045#else
2046SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2047		 int __user *, parent_tidptr,
2048		 int __user *, child_tidptr,
2049		 unsigned long, tls)
2050#endif
2051{
2052	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
2054#endif
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2057#define ARCH_MIN_MMSTRUCT_ALIGN 0
2058#endif
2059
2060static void sighand_ctor(void *data)
2061{
2062	struct sighand_struct *sighand = data;
2063
2064	spin_lock_init(&sighand->siglock);
2065	init_waitqueue_head(&sighand->signalfd_wqh);
2066}
2067
2068void __init proc_caches_init(void)
2069{
 
 
2070	sighand_cachep = kmem_cache_create("sighand_cache",
2071			sizeof(struct sighand_struct), 0,
2072			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2073			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2074	signal_cachep = kmem_cache_create("signal_cache",
2075			sizeof(struct signal_struct), 0,
2076			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2077			NULL);
2078	files_cachep = kmem_cache_create("files_cache",
2079			sizeof(struct files_struct), 0,
2080			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2081			NULL);
2082	fs_cachep = kmem_cache_create("fs_cache",
2083			sizeof(struct fs_struct), 0,
2084			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2085			NULL);
 
2086	/*
2087	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2088	 * whole struct cpumask for the OFFSTACK case. We could change
2089	 * this to *only* allocate as much of it as required by the
2090	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2091	 * is at the end of the structure, exactly for that reason.
2092	 */
2093	mm_cachep = kmem_cache_create("mm_struct",
2094			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2095			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
 
 
2096			NULL);
2097	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2098	mmap_init();
2099	nsproxy_cache_init();
2100}
2101
2102/*
2103 * Check constraints on flags passed to the unshare system call.
2104 */
2105static int check_unshare_flags(unsigned long unshare_flags)
2106{
2107	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2108				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2109				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2110				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
 
2111		return -EINVAL;
2112	/*
2113	 * Not implemented, but pretend it works if there is nothing
2114	 * to unshare.  Note that unsharing the address space or the
2115	 * signal handlers also need to unshare the signal queues (aka
2116	 * CLONE_THREAD).
2117	 */
2118	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2119		if (!thread_group_empty(current))
2120			return -EINVAL;
2121	}
2122	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2123		if (atomic_read(&current->sighand->count) > 1)
2124			return -EINVAL;
2125	}
2126	if (unshare_flags & CLONE_VM) {
2127		if (!current_is_single_threaded())
2128			return -EINVAL;
2129	}
2130
2131	return 0;
2132}
2133
2134/*
2135 * Unshare the filesystem structure if it is being shared
2136 */
2137static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2138{
2139	struct fs_struct *fs = current->fs;
2140
2141	if (!(unshare_flags & CLONE_FS) || !fs)
2142		return 0;
2143
2144	/* don't need lock here; in the worst case we'll do useless copy */
2145	if (fs->users == 1)
2146		return 0;
2147
2148	*new_fsp = copy_fs_struct(fs);
2149	if (!*new_fsp)
2150		return -ENOMEM;
2151
2152	return 0;
2153}
2154
2155/*
2156 * Unshare file descriptor table if it is being shared
2157 */
2158static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
 
2159{
2160	struct files_struct *fd = current->files;
2161	int error = 0;
2162
2163	if ((unshare_flags & CLONE_FILES) &&
2164	    (fd && atomic_read(&fd->count) > 1)) {
2165		*new_fdp = dup_fd(fd, &error);
2166		if (!*new_fdp)
2167			return error;
2168	}
2169
2170	return 0;
2171}
2172
2173/*
2174 * unshare allows a process to 'unshare' part of the process
2175 * context which was originally shared using clone.  copy_*
2176 * functions used by do_fork() cannot be used here directly
2177 * because they modify an inactive task_struct that is being
2178 * constructed. Here we are modifying the current, active,
2179 * task_struct.
2180 */
2181SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2182{
2183	struct fs_struct *fs, *new_fs = NULL;
2184	struct files_struct *fd, *new_fd = NULL;
2185	struct cred *new_cred = NULL;
2186	struct nsproxy *new_nsproxy = NULL;
2187	int do_sysvsem = 0;
2188	int err;
2189
2190	/*
2191	 * If unsharing a user namespace must also unshare the thread group
2192	 * and unshare the filesystem root and working directories.
2193	 */
2194	if (unshare_flags & CLONE_NEWUSER)
2195		unshare_flags |= CLONE_THREAD | CLONE_FS;
2196	/*
2197	 * If unsharing vm, must also unshare signal handlers.
2198	 */
2199	if (unshare_flags & CLONE_VM)
2200		unshare_flags |= CLONE_SIGHAND;
2201	/*
2202	 * If unsharing a signal handlers, must also unshare the signal queues.
2203	 */
2204	if (unshare_flags & CLONE_SIGHAND)
2205		unshare_flags |= CLONE_THREAD;
2206	/*
2207	 * If unsharing namespace, must also unshare filesystem information.
2208	 */
2209	if (unshare_flags & CLONE_NEWNS)
2210		unshare_flags |= CLONE_FS;
2211
2212	err = check_unshare_flags(unshare_flags);
2213	if (err)
2214		goto bad_unshare_out;
2215	/*
2216	 * CLONE_NEWIPC must also detach from the undolist: after switching
2217	 * to a new ipc namespace, the semaphore arrays from the old
2218	 * namespace are unreachable.
2219	 */
2220	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2221		do_sysvsem = 1;
2222	err = unshare_fs(unshare_flags, &new_fs);
2223	if (err)
2224		goto bad_unshare_out;
2225	err = unshare_fd(unshare_flags, &new_fd);
2226	if (err)
2227		goto bad_unshare_cleanup_fs;
2228	err = unshare_userns(unshare_flags, &new_cred);
2229	if (err)
2230		goto bad_unshare_cleanup_fd;
2231	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2232					 new_cred, new_fs);
2233	if (err)
2234		goto bad_unshare_cleanup_cred;
2235
2236	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2237		if (do_sysvsem) {
2238			/*
2239			 * CLONE_SYSVSEM is equivalent to sys_exit().
2240			 */
2241			exit_sem(current);
2242		}
2243		if (unshare_flags & CLONE_NEWIPC) {
2244			/* Orphan segments in old ns (see sem above). */
2245			exit_shm(current);
2246			shm_init_task(current);
2247		}
2248
2249		if (new_nsproxy)
2250			switch_task_namespaces(current, new_nsproxy);
2251
2252		task_lock(current);
2253
2254		if (new_fs) {
2255			fs = current->fs;
2256			spin_lock(&fs->lock);
2257			current->fs = new_fs;
2258			if (--fs->users)
2259				new_fs = NULL;
2260			else
2261				new_fs = fs;
2262			spin_unlock(&fs->lock);
2263		}
2264
2265		if (new_fd) {
2266			fd = current->files;
2267			current->files = new_fd;
2268			new_fd = fd;
2269		}
2270
2271		task_unlock(current);
2272
2273		if (new_cred) {
2274			/* Install the new user namespace */
2275			commit_creds(new_cred);
2276			new_cred = NULL;
2277		}
2278	}
2279
 
 
2280bad_unshare_cleanup_cred:
2281	if (new_cred)
2282		put_cred(new_cred);
2283bad_unshare_cleanup_fd:
2284	if (new_fd)
2285		put_files_struct(new_fd);
2286
2287bad_unshare_cleanup_fs:
2288	if (new_fs)
2289		free_fs_struct(new_fs);
2290
2291bad_unshare_out:
2292	return err;
2293}
2294
 
 
 
 
 
2295/*
2296 *	Helper to unshare the files of the current task.
2297 *	We don't want to expose copy_files internals to
2298 *	the exec layer of the kernel.
2299 */
2300
2301int unshare_files(struct files_struct **displaced)
2302{
2303	struct task_struct *task = current;
2304	struct files_struct *copy = NULL;
2305	int error;
2306
2307	error = unshare_fd(CLONE_FILES, &copy);
2308	if (error || !copy) {
2309		*displaced = NULL;
2310		return error;
2311	}
2312	*displaced = task->files;
2313	task_lock(task);
2314	task->files = copy;
2315	task_unlock(task);
2316	return 0;
2317}
2318
2319int sysctl_max_threads(struct ctl_table *table, int write,
2320		       void __user *buffer, size_t *lenp, loff_t *ppos)
2321{
2322	struct ctl_table t;
2323	int ret;
2324	int threads = max_threads;
2325	int min = MIN_THREADS;
2326	int max = MAX_THREADS;
2327
2328	t = *table;
2329	t.data = &threads;
2330	t.extra1 = &min;
2331	t.extra2 = &max;
2332
2333	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2334	if (ret || !write)
2335		return ret;
2336
2337	set_max_threads(threads);
2338
2339	return 0;
2340}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98
 
  99#include <asm/pgalloc.h>
 100#include <linux/uaccess.h>
 101#include <asm/mmu_context.h>
 102#include <asm/cacheflush.h>
 103#include <asm/tlbflush.h>
 104
 105#include <trace/events/sched.h>
 106
 107#define CREATE_TRACE_POINTS
 108#include <trace/events/task.h>
 109
 110/*
 111 * Minimum number of threads to boot the kernel
 112 */
 113#define MIN_THREADS 20
 114
 115/*
 116 * Maximum number of threads
 117 */
 118#define MAX_THREADS FUTEX_TID_MASK
 119
 120/*
 121 * Protected counters by write_lock_irq(&tasklist_lock)
 122 */
 123unsigned long total_forks;	/* Handle normal Linux uptimes. */
 124int nr_threads;			/* The idle threads do not count.. */
 125
 126static int max_threads;		/* tunable limit on nr_threads */
 127
 128#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 129
 130static const char * const resident_page_types[] = {
 131	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 132	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 133	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 134	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 135};
 136
 137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 138
 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 140
 141#ifdef CONFIG_PROVE_RCU
 142int lockdep_tasklist_lock_is_held(void)
 143{
 144	return lockdep_is_held(&tasklist_lock);
 145}
 146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 147#endif /* #ifdef CONFIG_PROVE_RCU */
 148
 149int nr_processes(void)
 150{
 151	int cpu;
 152	int total = 0;
 153
 154	for_each_possible_cpu(cpu)
 155		total += per_cpu(process_counts, cpu);
 156
 157	return total;
 158}
 159
 160void __weak arch_release_task_struct(struct task_struct *tsk)
 161{
 162}
 163
 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 165static struct kmem_cache *task_struct_cachep;
 166
 167static inline struct task_struct *alloc_task_struct_node(int node)
 168{
 169	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 170}
 171
 172static inline void free_task_struct(struct task_struct *tsk)
 173{
 174	kmem_cache_free(task_struct_cachep, tsk);
 175}
 176#endif
 177
 
 
 
 
 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 179
 180/*
 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 182 * kmemcache based allocator.
 183 */
 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 185
 186#ifdef CONFIG_VMAP_STACK
 187/*
 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 189 * flush.  Try to minimize the number of calls by caching stacks.
 190 */
 191#define NR_CACHED_STACKS 2
 192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 193
 194static int free_vm_stack_cache(unsigned int cpu)
 195{
 196	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 197	int i;
 198
 199	for (i = 0; i < NR_CACHED_STACKS; i++) {
 200		struct vm_struct *vm_stack = cached_vm_stacks[i];
 201
 202		if (!vm_stack)
 203			continue;
 204
 205		vfree(vm_stack->addr);
 206		cached_vm_stacks[i] = NULL;
 207	}
 208
 209	return 0;
 210}
 211#endif
 212
 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 214{
 215#ifdef CONFIG_VMAP_STACK
 216	void *stack;
 217	int i;
 218
 
 219	for (i = 0; i < NR_CACHED_STACKS; i++) {
 220		struct vm_struct *s;
 221
 222		s = this_cpu_xchg(cached_stacks[i], NULL);
 223
 224		if (!s)
 225			continue;
 226
 227		/* Clear the KASAN shadow of the stack. */
 228		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
 229
 230		/* Clear stale pointers from reused stack. */
 231		memset(s->addr, 0, THREAD_SIZE);
 232
 233		tsk->stack_vm_area = s;
 234		tsk->stack = s->addr;
 235		return s->addr;
 236	}
 
 237
 238	/*
 239	 * Allocated stacks are cached and later reused by new threads,
 240	 * so memcg accounting is performed manually on assigning/releasing
 241	 * stacks to tasks. Drop __GFP_ACCOUNT.
 242	 */
 243	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 244				     VMALLOC_START, VMALLOC_END,
 245				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 246				     PAGE_KERNEL,
 247				     0, node, __builtin_return_address(0));
 248
 249	/*
 250	 * We can't call find_vm_area() in interrupt context, and
 251	 * free_thread_stack() can be called in interrupt context,
 252	 * so cache the vm_struct.
 253	 */
 254	if (stack) {
 255		tsk->stack_vm_area = find_vm_area(stack);
 256		tsk->stack = stack;
 257	}
 258	return stack;
 259#else
 260	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 261					     THREAD_SIZE_ORDER);
 262
 263	if (likely(page)) {
 264		tsk->stack = kasan_reset_tag(page_address(page));
 265		return tsk->stack;
 266	}
 267	return NULL;
 268#endif
 269}
 270
 271static inline void free_thread_stack(struct task_struct *tsk)
 272{
 273#ifdef CONFIG_VMAP_STACK
 274	struct vm_struct *vm = task_stack_vm_area(tsk);
 275
 276	if (vm) {
 277		int i;
 278
 279		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 280			memcg_kmem_uncharge_page(vm->pages[i], 0);
 281
 282		for (i = 0; i < NR_CACHED_STACKS; i++) {
 283			if (this_cpu_cmpxchg(cached_stacks[i],
 284					NULL, tsk->stack_vm_area) != NULL)
 285				continue;
 286
 
 
 287			return;
 288		}
 
 289
 290		vfree_atomic(tsk->stack);
 291		return;
 292	}
 293#endif
 294
 295	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 296}
 297# else
 298static struct kmem_cache *thread_stack_cache;
 299
 300static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 301						  int node)
 302{
 303	unsigned long *stack;
 304	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 305	stack = kasan_reset_tag(stack);
 306	tsk->stack = stack;
 307	return stack;
 308}
 309
 310static void free_thread_stack(struct task_struct *tsk)
 311{
 312	kmem_cache_free(thread_stack_cache, tsk->stack);
 313}
 314
 315void thread_stack_cache_init(void)
 316{
 317	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 318					THREAD_SIZE, THREAD_SIZE, 0, 0,
 319					THREAD_SIZE, NULL);
 320	BUG_ON(thread_stack_cache == NULL);
 321}
 322# endif
 323#endif
 324
 325/* SLAB cache for signal_struct structures (tsk->signal) */
 326static struct kmem_cache *signal_cachep;
 327
 328/* SLAB cache for sighand_struct structures (tsk->sighand) */
 329struct kmem_cache *sighand_cachep;
 330
 331/* SLAB cache for files_struct structures (tsk->files) */
 332struct kmem_cache *files_cachep;
 333
 334/* SLAB cache for fs_struct structures (tsk->fs) */
 335struct kmem_cache *fs_cachep;
 336
 337/* SLAB cache for vm_area_struct structures */
 338static struct kmem_cache *vm_area_cachep;
 339
 340/* SLAB cache for mm_struct structures (tsk->mm) */
 341static struct kmem_cache *mm_cachep;
 342
 343struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 344{
 345	struct vm_area_struct *vma;
 346
 347	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 348	if (vma)
 349		vma_init(vma, mm);
 350	return vma;
 351}
 352
 353struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 354{
 355	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 356
 357	if (new) {
 358		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 359		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 360		/*
 361		 * orig->shared.rb may be modified concurrently, but the clone
 362		 * will be reinitialized.
 363		 */
 364		*new = data_race(*orig);
 365		INIT_LIST_HEAD(&new->anon_vma_chain);
 366		new->vm_next = new->vm_prev = NULL;
 367	}
 368	return new;
 369}
 370
 371void vm_area_free(struct vm_area_struct *vma)
 372{
 373	kmem_cache_free(vm_area_cachep, vma);
 374}
 375
 376static void account_kernel_stack(struct task_struct *tsk, int account)
 377{
 378	void *stack = task_stack_page(tsk);
 379	struct vm_struct *vm = task_stack_vm_area(tsk);
 380
 381
 382	/* All stack pages are in the same node. */
 383	if (vm)
 384		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
 385				      account * (THREAD_SIZE / 1024));
 386	else
 387		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
 388				      account * (THREAD_SIZE / 1024));
 389}
 390
 391static int memcg_charge_kernel_stack(struct task_struct *tsk)
 392{
 393#ifdef CONFIG_VMAP_STACK
 394	struct vm_struct *vm = task_stack_vm_area(tsk);
 395	int ret;
 396
 397	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 398
 399	if (vm) {
 400		int i;
 401
 402		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 403
 404		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 405			/*
 406			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
 407			 * pointer is NULL, and memcg_kmem_uncharge_page() in
 408			 * free_thread_stack() will ignore this page.
 409			 */
 410			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 411						     0);
 412			if (ret)
 413				return ret;
 414		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415	}
 416#endif
 417	return 0;
 418}
 419
 420static void release_task_stack(struct task_struct *tsk)
 421{
 422	if (WARN_ON(tsk->state != TASK_DEAD))
 423		return;  /* Better to leak the stack than to free prematurely */
 424
 425	account_kernel_stack(tsk, -1);
 
 426	free_thread_stack(tsk);
 427	tsk->stack = NULL;
 428#ifdef CONFIG_VMAP_STACK
 429	tsk->stack_vm_area = NULL;
 430#endif
 431}
 432
 433#ifdef CONFIG_THREAD_INFO_IN_TASK
 434void put_task_stack(struct task_struct *tsk)
 435{
 436	if (refcount_dec_and_test(&tsk->stack_refcount))
 437		release_task_stack(tsk);
 438}
 439#endif
 440
 441void free_task(struct task_struct *tsk)
 442{
 443	scs_release(tsk);
 444
 445#ifndef CONFIG_THREAD_INFO_IN_TASK
 446	/*
 447	 * The task is finally done with both the stack and thread_info,
 448	 * so free both.
 449	 */
 450	release_task_stack(tsk);
 451#else
 452	/*
 453	 * If the task had a separate stack allocation, it should be gone
 454	 * by now.
 455	 */
 456	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 457#endif
 458	rt_mutex_debug_task_free(tsk);
 459	ftrace_graph_exit_task(tsk);
 
 460	arch_release_task_struct(tsk);
 461	if (tsk->flags & PF_KTHREAD)
 462		free_kthread_struct(tsk);
 463	free_task_struct(tsk);
 464}
 465EXPORT_SYMBOL(free_task);
 466
 467#ifdef CONFIG_MMU
 468static __latent_entropy int dup_mmap(struct mm_struct *mm,
 469					struct mm_struct *oldmm)
 470{
 471	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 472	struct rb_node **rb_link, *rb_parent;
 473	int retval;
 474	unsigned long charge;
 475	LIST_HEAD(uf);
 476
 477	uprobe_start_dup_mmap();
 478	if (mmap_write_lock_killable(oldmm)) {
 479		retval = -EINTR;
 480		goto fail_uprobe_end;
 481	}
 482	flush_cache_dup_mm(oldmm);
 483	uprobe_dup_mmap(oldmm, mm);
 484	/*
 485	 * Not linked in yet - no deadlock potential:
 486	 */
 487	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 488
 489	/* No ordering required: file already has been exposed. */
 490	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 491
 492	mm->total_vm = oldmm->total_vm;
 493	mm->data_vm = oldmm->data_vm;
 494	mm->exec_vm = oldmm->exec_vm;
 495	mm->stack_vm = oldmm->stack_vm;
 496
 497	rb_link = &mm->mm_rb.rb_node;
 498	rb_parent = NULL;
 499	pprev = &mm->mmap;
 500	retval = ksm_fork(mm, oldmm);
 501	if (retval)
 502		goto out;
 503	retval = khugepaged_fork(mm, oldmm);
 504	if (retval)
 505		goto out;
 506
 507	prev = NULL;
 508	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 509		struct file *file;
 510
 511		if (mpnt->vm_flags & VM_DONTCOPY) {
 512			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 513			continue;
 514		}
 515		charge = 0;
 516		/*
 517		 * Don't duplicate many vmas if we've been oom-killed (for
 518		 * example)
 519		 */
 520		if (fatal_signal_pending(current)) {
 521			retval = -EINTR;
 522			goto out;
 523		}
 524		if (mpnt->vm_flags & VM_ACCOUNT) {
 525			unsigned long len = vma_pages(mpnt);
 526
 527			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 528				goto fail_nomem;
 529			charge = len;
 530		}
 531		tmp = vm_area_dup(mpnt);
 532		if (!tmp)
 533			goto fail_nomem;
 534		retval = vma_dup_policy(mpnt, tmp);
 535		if (retval)
 536			goto fail_nomem_policy;
 537		tmp->vm_mm = mm;
 538		retval = dup_userfaultfd(tmp, &uf);
 539		if (retval)
 540			goto fail_nomem_anon_vma_fork;
 541		if (tmp->vm_flags & VM_WIPEONFORK) {
 542			/*
 543			 * VM_WIPEONFORK gets a clean slate in the child.
 544			 * Don't prepare anon_vma until fault since we don't
 545			 * copy page for current vma.
 546			 */
 547			tmp->anon_vma = NULL;
 548		} else if (anon_vma_fork(tmp, mpnt))
 549			goto fail_nomem_anon_vma_fork;
 550		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 551		file = tmp->vm_file;
 552		if (file) {
 553			struct inode *inode = file_inode(file);
 554			struct address_space *mapping = file->f_mapping;
 555
 556			get_file(file);
 557			if (tmp->vm_flags & VM_DENYWRITE)
 558				atomic_dec(&inode->i_writecount);
 559			i_mmap_lock_write(mapping);
 560			if (tmp->vm_flags & VM_SHARED)
 561				atomic_inc(&mapping->i_mmap_writable);
 562			flush_dcache_mmap_lock(mapping);
 563			/* insert tmp into the share list, just after mpnt */
 564			vma_interval_tree_insert_after(tmp, mpnt,
 565					&mapping->i_mmap);
 566			flush_dcache_mmap_unlock(mapping);
 567			i_mmap_unlock_write(mapping);
 568		}
 569
 570		/*
 571		 * Clear hugetlb-related page reserves for children. This only
 572		 * affects MAP_PRIVATE mappings. Faults generated by the child
 573		 * are not guaranteed to succeed, even if read-only
 574		 */
 575		if (is_vm_hugetlb_page(tmp))
 576			reset_vma_resv_huge_pages(tmp);
 577
 578		/*
 579		 * Link in the new vma and copy the page table entries.
 580		 */
 581		*pprev = tmp;
 582		pprev = &tmp->vm_next;
 583		tmp->vm_prev = prev;
 584		prev = tmp;
 585
 586		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 587		rb_link = &tmp->vm_rb.rb_right;
 588		rb_parent = &tmp->vm_rb;
 589
 590		mm->map_count++;
 591		if (!(tmp->vm_flags & VM_WIPEONFORK))
 592			retval = copy_page_range(mm, oldmm, mpnt, tmp);
 593
 594		if (tmp->vm_ops && tmp->vm_ops->open)
 595			tmp->vm_ops->open(tmp);
 596
 597		if (retval)
 598			goto out;
 599	}
 600	/* a new mm has just been created */
 601	retval = arch_dup_mmap(oldmm, mm);
 602out:
 603	mmap_write_unlock(mm);
 604	flush_tlb_mm(oldmm);
 605	mmap_write_unlock(oldmm);
 606	dup_userfaultfd_complete(&uf);
 607fail_uprobe_end:
 608	uprobe_end_dup_mmap();
 609	return retval;
 610fail_nomem_anon_vma_fork:
 611	mpol_put(vma_policy(tmp));
 612fail_nomem_policy:
 613	vm_area_free(tmp);
 614fail_nomem:
 615	retval = -ENOMEM;
 616	vm_unacct_memory(charge);
 617	goto out;
 618}
 619
 620static inline int mm_alloc_pgd(struct mm_struct *mm)
 621{
 622	mm->pgd = pgd_alloc(mm);
 623	if (unlikely(!mm->pgd))
 624		return -ENOMEM;
 625	return 0;
 626}
 627
 628static inline void mm_free_pgd(struct mm_struct *mm)
 629{
 630	pgd_free(mm, mm->pgd);
 631}
 632#else
 633static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 634{
 635	mmap_write_lock(oldmm);
 636	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 637	mmap_write_unlock(oldmm);
 638	return 0;
 639}
 640#define mm_alloc_pgd(mm)	(0)
 641#define mm_free_pgd(mm)
 642#endif /* CONFIG_MMU */
 643
 644static void check_mm(struct mm_struct *mm)
 645{
 646	int i;
 647
 648	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 649			 "Please make sure 'struct resident_page_types[]' is updated as well");
 650
 651	for (i = 0; i < NR_MM_COUNTERS; i++) {
 652		long x = atomic_long_read(&mm->rss_stat.count[i]);
 653
 654		if (unlikely(x))
 655			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 656				 mm, resident_page_types[i], x);
 657	}
 658
 659	if (mm_pgtables_bytes(mm))
 660		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 661				mm_pgtables_bytes(mm));
 662
 663#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 664	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 665#endif
 666}
 667
 668#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 669#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 670
 671/*
 672 * Called when the last reference to the mm
 673 * is dropped: either by a lazy thread or by
 674 * mmput. Free the page directory and the mm.
 675 */
 676void __mmdrop(struct mm_struct *mm)
 677{
 678	BUG_ON(mm == &init_mm);
 679	WARN_ON_ONCE(mm == current->mm);
 680	WARN_ON_ONCE(mm == current->active_mm);
 681	mm_free_pgd(mm);
 682	destroy_context(mm);
 683	mmu_notifier_subscriptions_destroy(mm);
 684	check_mm(mm);
 685	put_user_ns(mm->user_ns);
 686	free_mm(mm);
 687}
 688EXPORT_SYMBOL_GPL(__mmdrop);
 689
 690static void mmdrop_async_fn(struct work_struct *work)
 691{
 692	struct mm_struct *mm;
 693
 694	mm = container_of(work, struct mm_struct, async_put_work);
 695	__mmdrop(mm);
 696}
 697
 698static void mmdrop_async(struct mm_struct *mm)
 699{
 700	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 701		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 702		schedule_work(&mm->async_put_work);
 703	}
 704}
 705
 706static inline void free_signal_struct(struct signal_struct *sig)
 707{
 708	taskstats_tgid_free(sig);
 709	sched_autogroup_exit(sig);
 710	/*
 711	 * __mmdrop is not safe to call from softirq context on x86 due to
 712	 * pgd_dtor so postpone it to the async context
 713	 */
 714	if (sig->oom_mm)
 715		mmdrop_async(sig->oom_mm);
 716	kmem_cache_free(signal_cachep, sig);
 717}
 718
 719static inline void put_signal_struct(struct signal_struct *sig)
 720{
 721	if (refcount_dec_and_test(&sig->sigcnt))
 722		free_signal_struct(sig);
 723}
 724
 725void __put_task_struct(struct task_struct *tsk)
 726{
 727	WARN_ON(!tsk->exit_state);
 728	WARN_ON(refcount_read(&tsk->usage));
 729	WARN_ON(tsk == current);
 730
 731	cgroup_free(tsk);
 732	task_numa_free(tsk, true);
 733	security_task_free(tsk);
 734	exit_creds(tsk);
 735	delayacct_tsk_free(tsk);
 736	put_signal_struct(tsk->signal);
 737
 738	if (!profile_handoff_task(tsk))
 739		free_task(tsk);
 740}
 741EXPORT_SYMBOL_GPL(__put_task_struct);
 742
 743void __init __weak arch_task_cache_init(void) { }
 744
 745/*
 746 * set_max_threads
 747 */
 748static void set_max_threads(unsigned int max_threads_suggested)
 749{
 750	u64 threads;
 751	unsigned long nr_pages = totalram_pages();
 752
 753	/*
 754	 * The number of threads shall be limited such that the thread
 755	 * structures may only consume a small part of the available memory.
 756	 */
 757	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 758		threads = MAX_THREADS;
 759	else
 760		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 761				    (u64) THREAD_SIZE * 8UL);
 762
 763	if (threads > max_threads_suggested)
 764		threads = max_threads_suggested;
 765
 766	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 767}
 768
 769#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 770/* Initialized by the architecture: */
 771int arch_task_struct_size __read_mostly;
 772#endif
 773
 774#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 775static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 776{
 777	/* Fetch thread_struct whitelist for the architecture. */
 778	arch_thread_struct_whitelist(offset, size);
 779
 780	/*
 781	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 782	 * adjust offset to position of thread_struct in task_struct.
 783	 */
 784	if (unlikely(*size == 0))
 785		*offset = 0;
 786	else
 787		*offset += offsetof(struct task_struct, thread);
 788}
 789#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 790
 791void __init fork_init(void)
 792{
 793	int i;
 794#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 795#ifndef ARCH_MIN_TASKALIGN
 796#define ARCH_MIN_TASKALIGN	0
 797#endif
 798	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 799	unsigned long useroffset, usersize;
 800
 801	/* create a slab on which task_structs can be allocated */
 802	task_struct_whitelist(&useroffset, &usersize);
 803	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 804			arch_task_struct_size, align,
 805			SLAB_PANIC|SLAB_ACCOUNT,
 806			useroffset, usersize, NULL);
 807#endif
 808
 809	/* do the arch specific task caches init */
 810	arch_task_cache_init();
 811
 812	set_max_threads(MAX_THREADS);
 813
 814	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 815	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 816	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 817		init_task.signal->rlim[RLIMIT_NPROC];
 818
 819	for (i = 0; i < UCOUNT_COUNTS; i++) {
 820		init_user_ns.ucount_max[i] = max_threads/2;
 821	}
 822
 823#ifdef CONFIG_VMAP_STACK
 824	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 825			  NULL, free_vm_stack_cache);
 826#endif
 827
 828	scs_init();
 829
 830	lockdep_init_task(&init_task);
 831	uprobes_init();
 832}
 833
 834int __weak arch_dup_task_struct(struct task_struct *dst,
 835					       struct task_struct *src)
 836{
 837	*dst = *src;
 838	return 0;
 839}
 840
 841void set_task_stack_end_magic(struct task_struct *tsk)
 842{
 843	unsigned long *stackend;
 844
 845	stackend = end_of_stack(tsk);
 846	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 847}
 848
 849static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 850{
 851	struct task_struct *tsk;
 852	unsigned long *stack;
 853	struct vm_struct *stack_vm_area __maybe_unused;
 854	int err;
 855
 856	if (node == NUMA_NO_NODE)
 857		node = tsk_fork_get_node(orig);
 858	tsk = alloc_task_struct_node(node);
 859	if (!tsk)
 860		return NULL;
 861
 862	stack = alloc_thread_stack_node(tsk, node);
 863	if (!stack)
 864		goto free_tsk;
 865
 866	if (memcg_charge_kernel_stack(tsk))
 867		goto free_stack;
 868
 869	stack_vm_area = task_stack_vm_area(tsk);
 870
 871	err = arch_dup_task_struct(tsk, orig);
 872
 873	/*
 874	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 875	 * sure they're properly initialized before using any stack-related
 876	 * functions again.
 877	 */
 878	tsk->stack = stack;
 879#ifdef CONFIG_VMAP_STACK
 880	tsk->stack_vm_area = stack_vm_area;
 881#endif
 882#ifdef CONFIG_THREAD_INFO_IN_TASK
 883	refcount_set(&tsk->stack_refcount, 1);
 884#endif
 885
 886	if (err)
 887		goto free_stack;
 888
 889	err = scs_prepare(tsk, node);
 890	if (err)
 891		goto free_stack;
 892
 893#ifdef CONFIG_SECCOMP
 894	/*
 895	 * We must handle setting up seccomp filters once we're under
 896	 * the sighand lock in case orig has changed between now and
 897	 * then. Until then, filter must be NULL to avoid messing up
 898	 * the usage counts on the error path calling free_task.
 899	 */
 900	tsk->seccomp.filter = NULL;
 901#endif
 902
 903	setup_thread_stack(tsk, orig);
 904	clear_user_return_notifier(tsk);
 905	clear_tsk_need_resched(tsk);
 906	set_task_stack_end_magic(tsk);
 907
 908#ifdef CONFIG_STACKPROTECTOR
 909	tsk->stack_canary = get_random_canary();
 910#endif
 911	if (orig->cpus_ptr == &orig->cpus_mask)
 912		tsk->cpus_ptr = &tsk->cpus_mask;
 913
 914	/*
 915	 * One for the user space visible state that goes away when reaped.
 916	 * One for the scheduler.
 917	 */
 918	refcount_set(&tsk->rcu_users, 2);
 919	/* One for the rcu users */
 920	refcount_set(&tsk->usage, 1);
 921#ifdef CONFIG_BLK_DEV_IO_TRACE
 922	tsk->btrace_seq = 0;
 923#endif
 924	tsk->splice_pipe = NULL;
 925	tsk->task_frag.page = NULL;
 926	tsk->wake_q.next = NULL;
 927
 928	account_kernel_stack(tsk, 1);
 929
 930	kcov_task_init(tsk);
 931
 932#ifdef CONFIG_FAULT_INJECTION
 933	tsk->fail_nth = 0;
 934#endif
 935
 936#ifdef CONFIG_BLK_CGROUP
 937	tsk->throttle_queue = NULL;
 938	tsk->use_memdelay = 0;
 939#endif
 940
 941#ifdef CONFIG_MEMCG
 942	tsk->active_memcg = NULL;
 943#endif
 944	return tsk;
 945
 946free_stack:
 947	free_thread_stack(tsk);
 948free_tsk:
 949	free_task_struct(tsk);
 950	return NULL;
 951}
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 954
 
 
 
 955static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 956
 957static int __init coredump_filter_setup(char *s)
 958{
 959	default_dump_filter =
 960		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 961		MMF_DUMP_FILTER_MASK;
 962	return 1;
 963}
 964
 965__setup("coredump_filter=", coredump_filter_setup);
 966
 967#include <linux/init_task.h>
 968
 969static void mm_init_aio(struct mm_struct *mm)
 970{
 971#ifdef CONFIG_AIO
 972	spin_lock_init(&mm->ioctx_lock);
 973	mm->ioctx_table = NULL;
 974#endif
 975}
 976
 977static __always_inline void mm_clear_owner(struct mm_struct *mm,
 978					   struct task_struct *p)
 979{
 980#ifdef CONFIG_MEMCG
 981	if (mm->owner == p)
 982		WRITE_ONCE(mm->owner, NULL);
 983#endif
 984}
 985
 986static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 987{
 988#ifdef CONFIG_MEMCG
 989	mm->owner = p;
 990#endif
 991}
 992
 993static void mm_init_uprobes_state(struct mm_struct *mm)
 994{
 995#ifdef CONFIG_UPROBES
 996	mm->uprobes_state.xol_area = NULL;
 997#endif
 998}
 999
1000static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001	struct user_namespace *user_ns)
1002{
1003	mm->mmap = NULL;
1004	mm->mm_rb = RB_ROOT;
1005	mm->vmacache_seqnum = 0;
1006	atomic_set(&mm->mm_users, 1);
1007	atomic_set(&mm->mm_count, 1);
1008	mmap_init_lock(mm);
1009	INIT_LIST_HEAD(&mm->mmlist);
1010	mm->core_state = NULL;
1011	mm_pgtables_bytes_init(mm);
 
1012	mm->map_count = 0;
1013	mm->locked_vm = 0;
1014	atomic_set(&mm->has_pinned, 0);
1015	atomic64_set(&mm->pinned_vm, 0);
1016	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017	spin_lock_init(&mm->page_table_lock);
1018	spin_lock_init(&mm->arg_lock);
1019	mm_init_cpumask(mm);
1020	mm_init_aio(mm);
1021	mm_init_owner(mm, p);
1022	RCU_INIT_POINTER(mm->exe_file, NULL);
1023	mmu_notifier_subscriptions_init(mm);
1024	init_tlb_flush_pending(mm);
1025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026	mm->pmd_huge_pte = NULL;
1027#endif
1028	mm_init_uprobes_state(mm);
1029
1030	if (current->mm) {
1031		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033	} else {
1034		mm->flags = default_dump_filter;
1035		mm->def_flags = 0;
1036	}
1037
1038	if (mm_alloc_pgd(mm))
1039		goto fail_nopgd;
1040
1041	if (init_new_context(p, mm))
1042		goto fail_nocontext;
1043
1044	mm->user_ns = get_user_ns(user_ns);
1045	return mm;
1046
1047fail_nocontext:
1048	mm_free_pgd(mm);
1049fail_nopgd:
1050	free_mm(mm);
1051	return NULL;
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054/*
1055 * Allocate and initialize an mm_struct.
1056 */
1057struct mm_struct *mm_alloc(void)
1058{
1059	struct mm_struct *mm;
1060
1061	mm = allocate_mm();
1062	if (!mm)
1063		return NULL;
1064
1065	memset(mm, 0, sizeof(*mm));
1066	return mm_init(mm, current, current_user_ns());
1067}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069static inline void __mmput(struct mm_struct *mm)
1070{
1071	VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073	uprobe_clear_state(mm);
1074	exit_aio(mm);
1075	ksm_exit(mm);
1076	khugepaged_exit(mm); /* must run before exit_mmap */
1077	exit_mmap(mm);
1078	mm_put_huge_zero_page(mm);
1079	set_mm_exe_file(mm, NULL);
1080	if (!list_empty(&mm->mmlist)) {
1081		spin_lock(&mmlist_lock);
1082		list_del(&mm->mmlist);
1083		spin_unlock(&mmlist_lock);
1084	}
1085	if (mm->binfmt)
1086		module_put(mm->binfmt->module);
 
1087	mmdrop(mm);
1088}
1089
1090/*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093void mmput(struct mm_struct *mm)
1094{
1095	might_sleep();
1096
1097	if (atomic_dec_and_test(&mm->mm_users))
1098		__mmput(mm);
1099}
1100EXPORT_SYMBOL_GPL(mmput);
1101
1102#ifdef CONFIG_MMU
1103static void mmput_async_fn(struct work_struct *work)
1104{
1105	struct mm_struct *mm = container_of(work, struct mm_struct,
1106					    async_put_work);
1107
1108	__mmput(mm);
1109}
1110
1111void mmput_async(struct mm_struct *mm)
1112{
1113	if (atomic_dec_and_test(&mm->mm_users)) {
1114		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115		schedule_work(&mm->async_put_work);
1116	}
1117}
1118#endif
1119
1120/**
1121 * set_mm_exe_file - change a reference to the mm's executable file
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132{
1133	struct file *old_exe_file;
1134
1135	/*
1136	 * It is safe to dereference the exe_file without RCU as
1137	 * this function is only called if nobody else can access
1138	 * this mm -- see comment above for justification.
1139	 */
1140	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142	if (new_exe_file)
1143		get_file(new_exe_file);
1144	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145	if (old_exe_file)
1146		fput(old_exe_file);
1147}
1148
1149/**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155struct file *get_mm_exe_file(struct mm_struct *mm)
1156{
1157	struct file *exe_file;
1158
1159	rcu_read_lock();
1160	exe_file = rcu_dereference(mm->exe_file);
1161	if (exe_file && !get_file_rcu(exe_file))
1162		exe_file = NULL;
1163	rcu_read_unlock();
1164	return exe_file;
1165}
1166EXPORT_SYMBOL(get_mm_exe_file);
1167
1168/**
1169 * get_task_exe_file - acquire a reference to the task's executable file
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175struct file *get_task_exe_file(struct task_struct *task)
1176{
1177	struct file *exe_file = NULL;
1178	struct mm_struct *mm;
1179
1180	task_lock(task);
1181	mm = task->mm;
1182	if (mm) {
1183		if (!(task->flags & PF_KTHREAD))
1184			exe_file = get_mm_exe_file(mm);
1185	}
1186	task_unlock(task);
1187	return exe_file;
1188}
1189EXPORT_SYMBOL(get_task_exe_file);
1190
1191/**
1192 * get_task_mm - acquire a reference to the task's mm
1193 *
1194 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count.  User must release the mm via mmput()
1198 * after use.  Typically used by /proc and ptrace.
1199 */
1200struct mm_struct *get_task_mm(struct task_struct *task)
1201{
1202	struct mm_struct *mm;
1203
1204	task_lock(task);
1205	mm = task->mm;
1206	if (mm) {
1207		if (task->flags & PF_KTHREAD)
1208			mm = NULL;
1209		else
1210			mmget(mm);
1211	}
1212	task_unlock(task);
1213	return mm;
1214}
1215EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218{
1219	struct mm_struct *mm;
1220	int err;
1221
1222	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1223	if (err)
1224		return ERR_PTR(err);
1225
1226	mm = get_task_mm(task);
1227	if (mm && mm != current->mm &&
1228			!ptrace_may_access(task, mode)) {
1229		mmput(mm);
1230		mm = ERR_PTR(-EACCES);
1231	}
1232	mutex_unlock(&task->signal->exec_update_mutex);
1233
1234	return mm;
1235}
1236
1237static void complete_vfork_done(struct task_struct *tsk)
1238{
1239	struct completion *vfork;
1240
1241	task_lock(tsk);
1242	vfork = tsk->vfork_done;
1243	if (likely(vfork)) {
1244		tsk->vfork_done = NULL;
1245		complete(vfork);
1246	}
1247	task_unlock(tsk);
1248}
1249
1250static int wait_for_vfork_done(struct task_struct *child,
1251				struct completion *vfork)
1252{
1253	int killed;
1254
1255	freezer_do_not_count();
1256	cgroup_enter_frozen();
1257	killed = wait_for_completion_killable(vfork);
1258	cgroup_leave_frozen(false);
1259	freezer_count();
1260
1261	if (killed) {
1262		task_lock(child);
1263		child->vfork_done = NULL;
1264		task_unlock(child);
1265	}
1266
1267	put_task_struct(child);
1268	return killed;
1269}
1270
1271/* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one.  Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286	uprobe_free_utask(tsk);
1287
1288	/* Get rid of any cached register state */
1289	deactivate_mm(tsk, mm);
1290
1291	/*
1292	 * Signal userspace if we're not exiting with a core dump
1293	 * because we want to leave the value intact for debugging
1294	 * purposes.
1295	 */
1296	if (tsk->clear_child_tid) {
1297		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1298		    atomic_read(&mm->mm_users) > 1) {
1299			/*
1300			 * We don't check the error code - if userspace has
1301			 * not set up a proper pointer then tough luck.
1302			 */
1303			put_user(0, tsk->clear_child_tid);
1304			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1305					1, NULL, NULL, 0, 0);
1306		}
1307		tsk->clear_child_tid = NULL;
1308	}
1309
1310	/*
1311	 * All done, finally we can wake up parent and return this mm to him.
1312	 * Also kthread_stop() uses this completion for synchronization.
1313	 */
1314	if (tsk->vfork_done)
1315		complete_vfork_done(tsk);
1316}
1317
1318void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319{
1320	futex_exit_release(tsk);
1321	mm_release(tsk, mm);
1322}
1323
1324void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325{
1326	futex_exec_release(tsk);
1327	mm_release(tsk, mm);
1328}
1329
1330/**
1331 * dup_mm() - duplicates an existing mm structure
1332 * @tsk: the task_struct with which the new mm will be associated.
1333 * @oldmm: the mm to duplicate.
1334 *
1335 * Allocates a new mm structure and duplicates the provided @oldmm structure
1336 * content into it.
1337 *
1338 * Return: the duplicated mm or NULL on failure.
1339 */
1340static struct mm_struct *dup_mm(struct task_struct *tsk,
1341				struct mm_struct *oldmm)
1342{
1343	struct mm_struct *mm;
1344	int err;
1345
1346	mm = allocate_mm();
1347	if (!mm)
1348		goto fail_nomem;
1349
1350	memcpy(mm, oldmm, sizeof(*mm));
1351
1352	if (!mm_init(mm, tsk, mm->user_ns))
1353		goto fail_nomem;
1354
1355	err = dup_mmap(mm, oldmm);
1356	if (err)
1357		goto free_pt;
1358
1359	mm->hiwater_rss = get_mm_rss(mm);
1360	mm->hiwater_vm = mm->total_vm;
1361
1362	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1363		goto free_pt;
1364
1365	return mm;
1366
1367free_pt:
1368	/* don't put binfmt in mmput, we haven't got module yet */
1369	mm->binfmt = NULL;
1370	mm_init_owner(mm, NULL);
1371	mmput(mm);
1372
1373fail_nomem:
1374	return NULL;
1375}
1376
1377static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379	struct mm_struct *mm, *oldmm;
1380	int retval;
1381
1382	tsk->min_flt = tsk->maj_flt = 0;
1383	tsk->nvcsw = tsk->nivcsw = 0;
1384#ifdef CONFIG_DETECT_HUNG_TASK
1385	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1386	tsk->last_switch_time = 0;
1387#endif
1388
1389	tsk->mm = NULL;
1390	tsk->active_mm = NULL;
1391
1392	/*
1393	 * Are we cloning a kernel thread?
1394	 *
1395	 * We need to steal a active VM for that..
1396	 */
1397	oldmm = current->mm;
1398	if (!oldmm)
1399		return 0;
1400
1401	/* initialize the new vmacache entries */
1402	vmacache_flush(tsk);
1403
1404	if (clone_flags & CLONE_VM) {
1405		mmget(oldmm);
1406		mm = oldmm;
1407		goto good_mm;
1408	}
1409
1410	retval = -ENOMEM;
1411	mm = dup_mm(tsk, current->mm);
1412	if (!mm)
1413		goto fail_nomem;
1414
1415good_mm:
1416	tsk->mm = mm;
1417	tsk->active_mm = mm;
1418	return 0;
1419
1420fail_nomem:
1421	return retval;
1422}
1423
1424static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1425{
1426	struct fs_struct *fs = current->fs;
1427	if (clone_flags & CLONE_FS) {
1428		/* tsk->fs is already what we want */
1429		spin_lock(&fs->lock);
1430		if (fs->in_exec) {
1431			spin_unlock(&fs->lock);
1432			return -EAGAIN;
1433		}
1434		fs->users++;
1435		spin_unlock(&fs->lock);
1436		return 0;
1437	}
1438	tsk->fs = copy_fs_struct(fs);
1439	if (!tsk->fs)
1440		return -ENOMEM;
1441	return 0;
1442}
1443
1444static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1445{
1446	struct files_struct *oldf, *newf;
1447	int error = 0;
1448
1449	/*
1450	 * A background process may not have any files ...
1451	 */
1452	oldf = current->files;
1453	if (!oldf)
1454		goto out;
1455
1456	if (clone_flags & CLONE_FILES) {
1457		atomic_inc(&oldf->count);
1458		goto out;
1459	}
1460
1461	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1462	if (!newf)
1463		goto out;
1464
1465	tsk->files = newf;
1466	error = 0;
1467out:
1468	return error;
1469}
1470
1471static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1472{
1473#ifdef CONFIG_BLOCK
1474	struct io_context *ioc = current->io_context;
1475	struct io_context *new_ioc;
1476
1477	if (!ioc)
1478		return 0;
1479	/*
1480	 * Share io context with parent, if CLONE_IO is set
1481	 */
1482	if (clone_flags & CLONE_IO) {
1483		ioc_task_link(ioc);
1484		tsk->io_context = ioc;
1485	} else if (ioprio_valid(ioc->ioprio)) {
1486		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1487		if (unlikely(!new_ioc))
1488			return -ENOMEM;
1489
1490		new_ioc->ioprio = ioc->ioprio;
1491		put_io_context(new_ioc);
1492	}
1493#endif
1494	return 0;
1495}
1496
1497static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1498{
1499	struct sighand_struct *sig;
1500
1501	if (clone_flags & CLONE_SIGHAND) {
1502		refcount_inc(&current->sighand->count);
1503		return 0;
1504	}
1505	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1506	RCU_INIT_POINTER(tsk->sighand, sig);
1507	if (!sig)
1508		return -ENOMEM;
1509
1510	refcount_set(&sig->count, 1);
1511	spin_lock_irq(&current->sighand->siglock);
1512	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1513	spin_unlock_irq(&current->sighand->siglock);
1514
1515	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1516	if (clone_flags & CLONE_CLEAR_SIGHAND)
1517		flush_signal_handlers(tsk, 0);
1518
1519	return 0;
1520}
1521
1522void __cleanup_sighand(struct sighand_struct *sighand)
1523{
1524	if (refcount_dec_and_test(&sighand->count)) {
1525		signalfd_cleanup(sighand);
1526		/*
1527		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1528		 * without an RCU grace period, see __lock_task_sighand().
1529		 */
1530		kmem_cache_free(sighand_cachep, sighand);
1531	}
1532}
1533
1534/*
1535 * Initialize POSIX timer handling for a thread group.
1536 */
1537static void posix_cpu_timers_init_group(struct signal_struct *sig)
1538{
1539	struct posix_cputimers *pct = &sig->posix_cputimers;
1540	unsigned long cpu_limit;
1541
1542	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1543	posix_cputimers_group_init(pct, cpu_limit);
 
 
 
 
 
 
 
 
1544}
1545
1546static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1547{
1548	struct signal_struct *sig;
1549
1550	if (clone_flags & CLONE_THREAD)
1551		return 0;
1552
1553	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1554	tsk->signal = sig;
1555	if (!sig)
1556		return -ENOMEM;
1557
1558	sig->nr_threads = 1;
1559	atomic_set(&sig->live, 1);
1560	refcount_set(&sig->sigcnt, 1);
1561
1562	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1563	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1564	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1565
1566	init_waitqueue_head(&sig->wait_chldexit);
1567	sig->curr_target = tsk;
1568	init_sigpending(&sig->shared_pending);
1569	INIT_HLIST_HEAD(&sig->multiprocess);
1570	seqlock_init(&sig->stats_lock);
1571	prev_cputime_init(&sig->prev_cputime);
1572
1573#ifdef CONFIG_POSIX_TIMERS
1574	INIT_LIST_HEAD(&sig->posix_timers);
1575	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576	sig->real_timer.function = it_real_fn;
1577#endif
1578
1579	task_lock(current->group_leader);
1580	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1581	task_unlock(current->group_leader);
1582
1583	posix_cpu_timers_init_group(sig);
1584
1585	tty_audit_fork(sig);
1586	sched_autogroup_fork(sig);
1587
1588	sig->oom_score_adj = current->signal->oom_score_adj;
1589	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1590
 
 
 
1591	mutex_init(&sig->cred_guard_mutex);
1592	mutex_init(&sig->exec_update_mutex);
1593
1594	return 0;
1595}
1596
1597static void copy_seccomp(struct task_struct *p)
1598{
1599#ifdef CONFIG_SECCOMP
1600	/*
1601	 * Must be called with sighand->lock held, which is common to
1602	 * all threads in the group. Holding cred_guard_mutex is not
1603	 * needed because this new task is not yet running and cannot
1604	 * be racing exec.
1605	 */
1606	assert_spin_locked(&current->sighand->siglock);
1607
1608	/* Ref-count the new filter user, and assign it. */
1609	get_seccomp_filter(current);
1610	p->seccomp = current->seccomp;
1611
1612	/*
1613	 * Explicitly enable no_new_privs here in case it got set
1614	 * between the task_struct being duplicated and holding the
1615	 * sighand lock. The seccomp state and nnp must be in sync.
1616	 */
1617	if (task_no_new_privs(current))
1618		task_set_no_new_privs(p);
1619
1620	/*
1621	 * If the parent gained a seccomp mode after copying thread
1622	 * flags and between before we held the sighand lock, we have
1623	 * to manually enable the seccomp thread flag here.
1624	 */
1625	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1626		set_tsk_thread_flag(p, TIF_SECCOMP);
1627#endif
1628}
1629
1630SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1631{
1632	current->clear_child_tid = tidptr;
1633
1634	return task_pid_vnr(current);
1635}
1636
1637static void rt_mutex_init_task(struct task_struct *p)
1638{
1639	raw_spin_lock_init(&p->pi_lock);
1640#ifdef CONFIG_RT_MUTEXES
1641	p->pi_waiters = RB_ROOT_CACHED;
1642	p->pi_top_task = NULL;
1643	p->pi_blocked_on = NULL;
1644#endif
1645}
1646
1647static inline void init_task_pid_links(struct task_struct *task)
 
 
 
1648{
1649	enum pid_type type;
1650
1651	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1652		INIT_HLIST_NODE(&task->pid_links[type]);
1653	}
 
1654}
1655
1656static inline void
1657init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1658{
1659	if (type == PIDTYPE_PID)
1660		task->thread_pid = pid;
1661	else
1662		task->signal->pids[type] = pid;
1663}
1664
1665static inline void rcu_copy_process(struct task_struct *p)
1666{
1667#ifdef CONFIG_PREEMPT_RCU
1668	p->rcu_read_lock_nesting = 0;
1669	p->rcu_read_unlock_special.s = 0;
1670	p->rcu_blocked_node = NULL;
1671	INIT_LIST_HEAD(&p->rcu_node_entry);
1672#endif /* #ifdef CONFIG_PREEMPT_RCU */
1673#ifdef CONFIG_TASKS_RCU
1674	p->rcu_tasks_holdout = false;
1675	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1676	p->rcu_tasks_idle_cpu = -1;
1677#endif /* #ifdef CONFIG_TASKS_RCU */
1678#ifdef CONFIG_TASKS_TRACE_RCU
1679	p->trc_reader_nesting = 0;
1680	p->trc_reader_special.s = 0;
1681	INIT_LIST_HEAD(&p->trc_holdout_list);
1682#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1683}
1684
1685struct pid *pidfd_pid(const struct file *file)
1686{
1687	if (file->f_op == &pidfd_fops)
1688		return file->private_data;
1689
1690	return ERR_PTR(-EBADF);
1691}
1692
1693static int pidfd_release(struct inode *inode, struct file *file)
1694{
1695	struct pid *pid = file->private_data;
1696
1697	file->private_data = NULL;
1698	put_pid(pid);
1699	return 0;
1700}
1701
1702#ifdef CONFIG_PROC_FS
1703/**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the  pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 *   namespace (also take care to create new mount namespaces in the
1732 *   new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 *   have exactly one entry, which is 0
1737 */
1738static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739{
1740	struct pid *pid = f->private_data;
1741	struct pid_namespace *ns;
1742	pid_t nr = -1;
1743
1744	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1746		nr = pid_nr_ns(pid, ns);
1747	}
1748
1749	seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751#ifdef CONFIG_PID_NS
1752	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753	if (nr > 0) {
1754		int i;
1755
1756		/* If nr is non-zero it means that 'pid' is valid and that
1757		 * ns, i.e. the pid namespace associated with the procfs
1758		 * instance, is in the pid namespace hierarchy of pid.
1759		 * Start at one below the already printed level.
1760		 */
1761		for (i = ns->level + 1; i <= pid->level; i++)
1762			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763	}
1764#endif
1765	seq_putc(m, '\n');
1766}
1767#endif
1768
1769/*
1770 * Poll support for process exit notification.
1771 */
1772static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773{
1774	struct pid *pid = file->private_data;
1775	__poll_t poll_flags = 0;
1776
1777	poll_wait(file, &pid->wait_pidfd, pts);
1778
1779	/*
1780	 * Inform pollers only when the whole thread group exits.
1781	 * If the thread group leader exits before all other threads in the
1782	 * group, then poll(2) should block, similar to the wait(2) family.
1783	 */
1784	if (thread_group_exited(pid))
1785		poll_flags = EPOLLIN | EPOLLRDNORM;
1786
1787	return poll_flags;
1788}
1789
1790const struct file_operations pidfd_fops = {
1791	.release = pidfd_release,
1792	.poll = pidfd_poll,
1793#ifdef CONFIG_PROC_FS
1794	.show_fdinfo = pidfd_show_fdinfo,
1795#endif
1796};
1797
1798static void __delayed_free_task(struct rcu_head *rhp)
1799{
1800	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1801
1802	free_task(tsk);
1803}
1804
1805static __always_inline void delayed_free_task(struct task_struct *tsk)
1806{
1807	if (IS_ENABLED(CONFIG_MEMCG))
1808		call_rcu(&tsk->rcu, __delayed_free_task);
1809	else
1810		free_task(tsk);
1811}
1812
1813/*
1814 * This creates a new process as a copy of the old one,
1815 * but does not actually start it yet.
1816 *
1817 * It copies the registers, and all the appropriate
1818 * parts of the process environment (as per the clone
1819 * flags). The actual kick-off is left to the caller.
1820 */
1821static __latent_entropy struct task_struct *copy_process(
 
 
 
 
1822					struct pid *pid,
1823					int trace,
1824					int node,
1825					struct kernel_clone_args *args)
1826{
1827	int pidfd = -1, retval;
1828	struct task_struct *p;
1829	struct multiprocess_signals delayed;
1830	struct file *pidfile = NULL;
1831	u64 clone_flags = args->flags;
1832	struct nsproxy *nsp = current->nsproxy;
1833
1834	/*
1835	 * Don't allow sharing the root directory with processes in a different
1836	 * namespace
1837	 */
1838	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1839		return ERR_PTR(-EINVAL);
1840
1841	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1842		return ERR_PTR(-EINVAL);
1843
1844	/*
1845	 * Thread groups must share signals as well, and detached threads
1846	 * can only be started up within the thread group.
1847	 */
1848	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1849		return ERR_PTR(-EINVAL);
1850
1851	/*
1852	 * Shared signal handlers imply shared VM. By way of the above,
1853	 * thread groups also imply shared VM. Blocking this case allows
1854	 * for various simplifications in other code.
1855	 */
1856	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1857		return ERR_PTR(-EINVAL);
1858
1859	/*
1860	 * Siblings of global init remain as zombies on exit since they are
1861	 * not reaped by their parent (swapper). To solve this and to avoid
1862	 * multi-rooted process trees, prevent global and container-inits
1863	 * from creating siblings.
1864	 */
1865	if ((clone_flags & CLONE_PARENT) &&
1866				current->signal->flags & SIGNAL_UNKILLABLE)
1867		return ERR_PTR(-EINVAL);
1868
1869	/*
1870	 * If the new process will be in a different pid or user namespace
1871	 * do not allow it to share a thread group with the forking task.
1872	 */
1873	if (clone_flags & CLONE_THREAD) {
1874		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1875		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
 
1876			return ERR_PTR(-EINVAL);
1877	}
1878
1879	/*
1880	 * If the new process will be in a different time namespace
1881	 * do not allow it to share VM or a thread group with the forking task.
1882	 */
1883	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1884		if (nsp->time_ns != nsp->time_ns_for_children)
1885			return ERR_PTR(-EINVAL);
1886	}
1887
1888	if (clone_flags & CLONE_PIDFD) {
1889		/*
1890		 * - CLONE_DETACHED is blocked so that we can potentially
1891		 *   reuse it later for CLONE_PIDFD.
1892		 * - CLONE_THREAD is blocked until someone really needs it.
1893		 */
1894		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1895			return ERR_PTR(-EINVAL);
1896	}
1897
1898	/*
1899	 * Force any signals received before this point to be delivered
1900	 * before the fork happens.  Collect up signals sent to multiple
1901	 * processes that happen during the fork and delay them so that
1902	 * they appear to happen after the fork.
1903	 */
1904	sigemptyset(&delayed.signal);
1905	INIT_HLIST_NODE(&delayed.node);
1906
1907	spin_lock_irq(&current->sighand->siglock);
1908	if (!(clone_flags & CLONE_THREAD))
1909		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1910	recalc_sigpending();
1911	spin_unlock_irq(&current->sighand->siglock);
1912	retval = -ERESTARTNOINTR;
1913	if (signal_pending(current))
1914		goto fork_out;
1915
1916	retval = -ENOMEM;
1917	p = dup_task_struct(current, node);
1918	if (!p)
1919		goto fork_out;
1920
1921	/*
1922	 * This _must_ happen before we call free_task(), i.e. before we jump
1923	 * to any of the bad_fork_* labels. This is to avoid freeing
1924	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1925	 * kernel threads (PF_KTHREAD).
1926	 */
1927	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1928	/*
1929	 * Clear TID on mm_release()?
1930	 */
1931	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1932
1933	ftrace_graph_init_task(p);
1934
1935	rt_mutex_init_task(p);
1936
1937	lockdep_assert_irqs_enabled();
1938#ifdef CONFIG_PROVE_LOCKING
 
1939	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1940#endif
1941	retval = -EAGAIN;
1942	if (atomic_read(&p->real_cred->user->processes) >=
1943			task_rlimit(p, RLIMIT_NPROC)) {
1944		if (p->real_cred->user != INIT_USER &&
1945		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1946			goto bad_fork_free;
1947	}
1948	current->flags &= ~PF_NPROC_EXCEEDED;
1949
1950	retval = copy_creds(p, clone_flags);
1951	if (retval < 0)
1952		goto bad_fork_free;
1953
1954	/*
1955	 * If multiple threads are within copy_process(), then this check
1956	 * triggers too late. This doesn't hurt, the check is only there
1957	 * to stop root fork bombs.
1958	 */
1959	retval = -EAGAIN;
1960	if (data_race(nr_threads >= max_threads))
1961		goto bad_fork_cleanup_count;
1962
1963	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1964	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1965	p->flags |= PF_FORKNOEXEC;
1966	INIT_LIST_HEAD(&p->children);
1967	INIT_LIST_HEAD(&p->sibling);
1968	rcu_copy_process(p);
1969	p->vfork_done = NULL;
1970	spin_lock_init(&p->alloc_lock);
1971
1972	init_sigpending(&p->pending);
1973
1974	p->utime = p->stime = p->gtime = 0;
1975#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1976	p->utimescaled = p->stimescaled = 0;
1977#endif
1978	prev_cputime_init(&p->prev_cputime);
1979
1980#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1981	seqcount_init(&p->vtime.seqcount);
1982	p->vtime.starttime = 0;
1983	p->vtime.state = VTIME_INACTIVE;
1984#endif
1985
1986#if defined(SPLIT_RSS_COUNTING)
1987	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1988#endif
1989
1990	p->default_timer_slack_ns = current->timer_slack_ns;
1991
1992#ifdef CONFIG_PSI
1993	p->psi_flags = 0;
1994#endif
1995
1996	task_io_accounting_init(&p->ioac);
1997	acct_clear_integrals(p);
1998
1999	posix_cputimers_init(&p->posix_cputimers);
2000
 
 
2001	p->io_context = NULL;
2002	audit_set_context(p, NULL);
2003	cgroup_fork(p);
2004#ifdef CONFIG_NUMA
2005	p->mempolicy = mpol_dup(p->mempolicy);
2006	if (IS_ERR(p->mempolicy)) {
2007		retval = PTR_ERR(p->mempolicy);
2008		p->mempolicy = NULL;
2009		goto bad_fork_cleanup_threadgroup_lock;
2010	}
2011#endif
2012#ifdef CONFIG_CPUSETS
2013	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2014	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2015	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2016#endif
2017#ifdef CONFIG_TRACE_IRQFLAGS
2018	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2019	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2020	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2021	p->softirqs_enabled		= 1;
2022	p->softirq_context		= 0;
 
 
 
 
 
 
 
 
2023#endif
2024
2025	p->pagefault_disabled = 0;
2026
2027#ifdef CONFIG_LOCKDEP
2028	lockdep_init_task(p);
 
 
2029#endif
2030
2031#ifdef CONFIG_DEBUG_MUTEXES
2032	p->blocked_on = NULL; /* not blocked yet */
2033#endif
2034#ifdef CONFIG_BCACHE
2035	p->sequential_io	= 0;
2036	p->sequential_io_avg	= 0;
2037#endif
2038
2039	/* Perform scheduler related setup. Assign this task to a CPU. */
2040	retval = sched_fork(clone_flags, p);
2041	if (retval)
2042		goto bad_fork_cleanup_policy;
2043
2044	retval = perf_event_init_task(p);
2045	if (retval)
2046		goto bad_fork_cleanup_policy;
2047	retval = audit_alloc(p);
2048	if (retval)
2049		goto bad_fork_cleanup_perf;
2050	/* copy all the process information */
2051	shm_init_task(p);
2052	retval = security_task_alloc(p, clone_flags);
2053	if (retval)
2054		goto bad_fork_cleanup_audit;
2055	retval = copy_semundo(clone_flags, p);
2056	if (retval)
2057		goto bad_fork_cleanup_security;
2058	retval = copy_files(clone_flags, p);
2059	if (retval)
2060		goto bad_fork_cleanup_semundo;
2061	retval = copy_fs(clone_flags, p);
2062	if (retval)
2063		goto bad_fork_cleanup_files;
2064	retval = copy_sighand(clone_flags, p);
2065	if (retval)
2066		goto bad_fork_cleanup_fs;
2067	retval = copy_signal(clone_flags, p);
2068	if (retval)
2069		goto bad_fork_cleanup_sighand;
2070	retval = copy_mm(clone_flags, p);
2071	if (retval)
2072		goto bad_fork_cleanup_signal;
2073	retval = copy_namespaces(clone_flags, p);
2074	if (retval)
2075		goto bad_fork_cleanup_mm;
2076	retval = copy_io(clone_flags, p);
2077	if (retval)
2078		goto bad_fork_cleanup_namespaces;
2079	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2080	if (retval)
2081		goto bad_fork_cleanup_io;
2082
2083	stackleak_task_init(p);
2084
2085	if (pid != &init_struct_pid) {
2086		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2087				args->set_tid_size);
2088		if (IS_ERR(pid)) {
2089			retval = PTR_ERR(pid);
2090			goto bad_fork_cleanup_thread;
2091		}
2092	}
2093
 
2094	/*
2095	 * This has to happen after we've potentially unshared the file
2096	 * descriptor table (so that the pidfd doesn't leak into the child
2097	 * if the fd table isn't shared).
2098	 */
2099	if (clone_flags & CLONE_PIDFD) {
2100		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2101		if (retval < 0)
2102			goto bad_fork_free_pid;
2103
2104		pidfd = retval;
2105
2106		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2107					      O_RDWR | O_CLOEXEC);
2108		if (IS_ERR(pidfile)) {
2109			put_unused_fd(pidfd);
2110			retval = PTR_ERR(pidfile);
2111			goto bad_fork_free_pid;
2112		}
2113		get_pid(pid);	/* held by pidfile now */
2114
2115		retval = put_user(pidfd, args->pidfd);
2116		if (retval)
2117			goto bad_fork_put_pidfd;
2118	}
2119
2120#ifdef CONFIG_BLOCK
2121	p->plug = NULL;
2122#endif
2123	futex_init_task(p);
2124
 
 
 
 
 
 
2125	/*
2126	 * sigaltstack should be cleared when sharing the same VM
2127	 */
2128	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2129		sas_ss_reset(p);
2130
2131	/*
2132	 * Syscall tracing and stepping should be turned off in the
2133	 * child regardless of CLONE_PTRACE.
2134	 */
2135	user_disable_single_step(p);
2136	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2137#ifdef TIF_SYSCALL_EMU
2138	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2139#endif
2140	clear_tsk_latency_tracing(p);
2141
2142	/* ok, now we should be set up.. */
2143	p->pid = pid_nr(pid);
2144	if (clone_flags & CLONE_THREAD) {
2145		p->exit_signal = -1;
2146		p->group_leader = current->group_leader;
2147		p->tgid = current->tgid;
2148	} else {
2149		if (clone_flags & CLONE_PARENT)
2150			p->exit_signal = current->group_leader->exit_signal;
2151		else
2152			p->exit_signal = args->exit_signal;
2153		p->group_leader = p;
2154		p->tgid = p->pid;
2155	}
2156
2157	p->nr_dirtied = 0;
2158	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2159	p->dirty_paused_when = 0;
2160
2161	p->pdeath_signal = 0;
2162	INIT_LIST_HEAD(&p->thread_group);
2163	p->task_works = NULL;
2164
 
2165	/*
2166	 * Ensure that the cgroup subsystem policies allow the new process to be
2167	 * forked. It should be noted the the new process's css_set can be changed
2168	 * between here and cgroup_post_fork() if an organisation operation is in
2169	 * progress.
2170	 */
2171	retval = cgroup_can_fork(p, args);
2172	if (retval)
2173		goto bad_fork_put_pidfd;
2174
2175	/*
2176	 * From this point on we must avoid any synchronous user-space
2177	 * communication until we take the tasklist-lock. In particular, we do
2178	 * not want user-space to be able to predict the process start-time by
2179	 * stalling fork(2) after we recorded the start_time but before it is
2180	 * visible to the system.
2181	 */
2182
2183	p->start_time = ktime_get_ns();
2184	p->start_boottime = ktime_get_boottime_ns();
2185
2186	/*
2187	 * Make it visible to the rest of the system, but dont wake it up yet.
2188	 * Need tasklist lock for parent etc handling!
2189	 */
2190	write_lock_irq(&tasklist_lock);
2191
2192	/* CLONE_PARENT re-uses the old parent */
2193	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2194		p->real_parent = current->real_parent;
2195		p->parent_exec_id = current->parent_exec_id;
2196	} else {
2197		p->real_parent = current;
2198		p->parent_exec_id = current->self_exec_id;
2199	}
2200
2201	klp_copy_process(p);
2202
2203	spin_lock(&current->sighand->siglock);
2204
2205	/*
2206	 * Copy seccomp details explicitly here, in case they were changed
2207	 * before holding sighand lock.
2208	 */
2209	copy_seccomp(p);
2210
2211	rseq_fork(p, clone_flags);
2212
2213	/* Don't start children in a dying pid namespace */
2214	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2215		retval = -ENOMEM;
 
 
 
 
 
 
 
 
2216		goto bad_fork_cancel_cgroup;
2217	}
2218
2219	/* Let kill terminate clone/fork in the middle */
2220	if (fatal_signal_pending(current)) {
2221		retval = -EINTR;
2222		goto bad_fork_cancel_cgroup;
2223	}
2224
2225	/* past the last point of failure */
2226	if (pidfile)
2227		fd_install(pidfd, pidfile);
2228
2229	init_task_pid_links(p);
2230	if (likely(p->pid)) {
2231		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2232
2233		init_task_pid(p, PIDTYPE_PID, pid);
2234		if (thread_group_leader(p)) {
2235			init_task_pid(p, PIDTYPE_TGID, pid);
2236			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2237			init_task_pid(p, PIDTYPE_SID, task_session(current));
2238
2239			if (is_child_reaper(pid)) {
2240				ns_of_pid(pid)->child_reaper = p;
2241				p->signal->flags |= SIGNAL_UNKILLABLE;
2242			}
2243			p->signal->shared_pending.signal = delayed.signal;
 
2244			p->signal->tty = tty_kref_get(current->signal->tty);
2245			/*
2246			 * Inherit has_child_subreaper flag under the same
2247			 * tasklist_lock with adding child to the process tree
2248			 * for propagate_has_child_subreaper optimization.
2249			 */
2250			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2251							 p->real_parent->signal->is_child_subreaper;
2252			list_add_tail(&p->sibling, &p->real_parent->children);
2253			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2254			attach_pid(p, PIDTYPE_TGID);
2255			attach_pid(p, PIDTYPE_PGID);
2256			attach_pid(p, PIDTYPE_SID);
2257			__this_cpu_inc(process_counts);
2258		} else {
2259			current->signal->nr_threads++;
2260			atomic_inc(&current->signal->live);
2261			refcount_inc(&current->signal->sigcnt);
2262			task_join_group_stop(p);
2263			list_add_tail_rcu(&p->thread_group,
2264					  &p->group_leader->thread_group);
2265			list_add_tail_rcu(&p->thread_node,
2266					  &p->signal->thread_head);
2267		}
2268		attach_pid(p, PIDTYPE_PID);
2269		nr_threads++;
2270	}
 
2271	total_forks++;
2272	hlist_del_init(&delayed.node);
2273	spin_unlock(&current->sighand->siglock);
2274	syscall_tracepoint_update(p);
2275	write_unlock_irq(&tasklist_lock);
2276
2277	proc_fork_connector(p);
2278	sched_post_fork(p);
2279	cgroup_post_fork(p, args);
2280	perf_event_fork(p);
2281
2282	trace_task_newtask(p, clone_flags);
2283	uprobe_copy_process(p, clone_flags);
2284
2285	return p;
2286
2287bad_fork_cancel_cgroup:
2288	spin_unlock(&current->sighand->siglock);
2289	write_unlock_irq(&tasklist_lock);
2290	cgroup_cancel_fork(p, args);
2291bad_fork_put_pidfd:
2292	if (clone_flags & CLONE_PIDFD) {
2293		fput(pidfile);
2294		put_unused_fd(pidfd);
2295	}
2296bad_fork_free_pid:
 
2297	if (pid != &init_struct_pid)
2298		free_pid(pid);
2299bad_fork_cleanup_thread:
2300	exit_thread(p);
2301bad_fork_cleanup_io:
2302	if (p->io_context)
2303		exit_io_context(p);
2304bad_fork_cleanup_namespaces:
2305	exit_task_namespaces(p);
2306bad_fork_cleanup_mm:
2307	if (p->mm) {
2308		mm_clear_owner(p->mm, p);
2309		mmput(p->mm);
2310	}
2311bad_fork_cleanup_signal:
2312	if (!(clone_flags & CLONE_THREAD))
2313		free_signal_struct(p->signal);
2314bad_fork_cleanup_sighand:
2315	__cleanup_sighand(p->sighand);
2316bad_fork_cleanup_fs:
2317	exit_fs(p); /* blocking */
2318bad_fork_cleanup_files:
2319	exit_files(p); /* blocking */
2320bad_fork_cleanup_semundo:
2321	exit_sem(p);
2322bad_fork_cleanup_security:
2323	security_task_free(p);
2324bad_fork_cleanup_audit:
2325	audit_free(p);
2326bad_fork_cleanup_perf:
2327	perf_event_free_task(p);
2328bad_fork_cleanup_policy:
2329	lockdep_free_task(p);
2330#ifdef CONFIG_NUMA
2331	mpol_put(p->mempolicy);
2332bad_fork_cleanup_threadgroup_lock:
2333#endif
2334	delayacct_tsk_free(p);
2335bad_fork_cleanup_count:
2336	atomic_dec(&p->cred->user->processes);
2337	exit_creds(p);
2338bad_fork_free:
2339	p->state = TASK_DEAD;
2340	put_task_stack(p);
2341	delayed_free_task(p);
2342fork_out:
2343	spin_lock_irq(&current->sighand->siglock);
2344	hlist_del_init(&delayed.node);
2345	spin_unlock_irq(&current->sighand->siglock);
2346	return ERR_PTR(retval);
2347}
2348
2349static inline void init_idle_pids(struct task_struct *idle)
2350{
2351	enum pid_type type;
2352
2353	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2354		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2355		init_task_pid(idle, type, &init_struct_pid);
2356	}
2357}
2358
2359struct task_struct *fork_idle(int cpu)
2360{
2361	struct task_struct *task;
2362	struct kernel_clone_args args = {
2363		.flags = CLONE_VM,
2364	};
2365
2366	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2367	if (!IS_ERR(task)) {
2368		init_idle_pids(task);
2369		init_idle(task, cpu);
2370	}
2371
2372	return task;
2373}
2374
2375struct mm_struct *copy_init_mm(void)
2376{
2377	return dup_mm(NULL, &init_mm);
2378}
2379
2380/*
2381 *  Ok, this is the main fork-routine.
2382 *
2383 * It copies the process, and if successful kick-starts
2384 * it and waits for it to finish using the VM if required.
2385 *
2386 * args->exit_signal is expected to be checked for sanity by the caller.
2387 */
2388long _do_fork(struct kernel_clone_args *args)
 
 
 
 
 
2389{
2390	u64 clone_flags = args->flags;
2391	struct completion vfork;
2392	struct pid *pid;
2393	struct task_struct *p;
2394	int trace = 0;
2395	long nr;
2396
2397	/*
2398	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2399	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2400	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2401	 * field in struct clone_args and it still doesn't make sense to have
2402	 * them both point at the same memory location. Performing this check
2403	 * here has the advantage that we don't need to have a separate helper
2404	 * to check for legacy clone().
2405	 */
2406	if ((args->flags & CLONE_PIDFD) &&
2407	    (args->flags & CLONE_PARENT_SETTID) &&
2408	    (args->pidfd == args->parent_tid))
2409		return -EINVAL;
2410
2411	/*
2412	 * Determine whether and which event to report to ptracer.  When
2413	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2414	 * requested, no event is reported; otherwise, report if the event
2415	 * for the type of forking is enabled.
2416	 */
2417	if (!(clone_flags & CLONE_UNTRACED)) {
2418		if (clone_flags & CLONE_VFORK)
2419			trace = PTRACE_EVENT_VFORK;
2420		else if (args->exit_signal != SIGCHLD)
2421			trace = PTRACE_EVENT_CLONE;
2422		else
2423			trace = PTRACE_EVENT_FORK;
2424
2425		if (likely(!ptrace_event_enabled(current, trace)))
2426			trace = 0;
2427	}
2428
2429	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
 
2430	add_latent_entropy();
2431
2432	if (IS_ERR(p))
2433		return PTR_ERR(p);
2434
2435	/*
2436	 * Do this prior waking up the new thread - the thread pointer
2437	 * might get invalid after that point, if the thread exits quickly.
2438	 */
2439	trace_sched_process_fork(current, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2440
2441	pid = get_task_pid(p, PIDTYPE_PID);
2442	nr = pid_vnr(pid);
2443
2444	if (clone_flags & CLONE_PARENT_SETTID)
2445		put_user(nr, args->parent_tid);
 
 
 
 
 
 
2446
2447	if (clone_flags & CLONE_VFORK) {
2448		p->vfork_done = &vfork;
2449		init_completion(&vfork);
2450		get_task_struct(p);
2451	}
 
 
2452
2453	wake_up_new_task(p);
2454
2455	/* forking complete and child started to run, tell ptracer */
2456	if (unlikely(trace))
2457		ptrace_event_pid(trace, pid);
2458
2459	if (clone_flags & CLONE_VFORK) {
2460		if (!wait_for_vfork_done(p, &vfork))
2461			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2462	}
2463
2464	put_pid(pid);
2465	return nr;
2466}
 
2467
2468/*
2469 * Create a kernel thread.
2470 */
2471pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2472{
2473	struct kernel_clone_args args = {
2474		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2475				    CLONE_UNTRACED) & ~CSIGNAL),
2476		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2477		.stack		= (unsigned long)fn,
2478		.stack_size	= (unsigned long)arg,
2479	};
2480
2481	return _do_fork(&args);
2482}
2483
2484#ifdef __ARCH_WANT_SYS_FORK
2485SYSCALL_DEFINE0(fork)
2486{
2487#ifdef CONFIG_MMU
2488	struct kernel_clone_args args = {
2489		.exit_signal = SIGCHLD,
2490	};
2491
2492	return _do_fork(&args);
2493#else
2494	/* can not support in nommu mode */
2495	return -EINVAL;
2496#endif
2497}
2498#endif
2499
2500#ifdef __ARCH_WANT_SYS_VFORK
2501SYSCALL_DEFINE0(vfork)
2502{
2503	struct kernel_clone_args args = {
2504		.flags		= CLONE_VFORK | CLONE_VM,
2505		.exit_signal	= SIGCHLD,
2506	};
2507
2508	return _do_fork(&args);
2509}
2510#endif
2511
2512#ifdef __ARCH_WANT_SYS_CLONE
2513#ifdef CONFIG_CLONE_BACKWARDS
2514SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2515		 int __user *, parent_tidptr,
2516		 unsigned long, tls,
2517		 int __user *, child_tidptr)
2518#elif defined(CONFIG_CLONE_BACKWARDS2)
2519SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2520		 int __user *, parent_tidptr,
2521		 int __user *, child_tidptr,
2522		 unsigned long, tls)
2523#elif defined(CONFIG_CLONE_BACKWARDS3)
2524SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2525		int, stack_size,
2526		int __user *, parent_tidptr,
2527		int __user *, child_tidptr,
2528		unsigned long, tls)
2529#else
2530SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2531		 int __user *, parent_tidptr,
2532		 int __user *, child_tidptr,
2533		 unsigned long, tls)
2534#endif
2535{
2536	struct kernel_clone_args args = {
2537		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2538		.pidfd		= parent_tidptr,
2539		.child_tid	= child_tidptr,
2540		.parent_tid	= parent_tidptr,
2541		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2542		.stack		= newsp,
2543		.tls		= tls,
2544	};
2545
2546	return _do_fork(&args);
2547}
2548#endif
2549
2550#ifdef __ARCH_WANT_SYS_CLONE3
2551
2552noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2553					      struct clone_args __user *uargs,
2554					      size_t usize)
2555{
2556	int err;
2557	struct clone_args args;
2558	pid_t *kset_tid = kargs->set_tid;
2559
2560	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2561		     CLONE_ARGS_SIZE_VER0);
2562	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2563		     CLONE_ARGS_SIZE_VER1);
2564	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2565		     CLONE_ARGS_SIZE_VER2);
2566	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2567
2568	if (unlikely(usize > PAGE_SIZE))
2569		return -E2BIG;
2570	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2571		return -EINVAL;
2572
2573	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2574	if (err)
2575		return err;
2576
2577	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2578		return -EINVAL;
2579
2580	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2581		return -EINVAL;
2582
2583	if (unlikely(args.set_tid && args.set_tid_size == 0))
2584		return -EINVAL;
2585
2586	/*
2587	 * Verify that higher 32bits of exit_signal are unset and that
2588	 * it is a valid signal
2589	 */
2590	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2591		     !valid_signal(args.exit_signal)))
2592		return -EINVAL;
2593
2594	if ((args.flags & CLONE_INTO_CGROUP) &&
2595	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2596		return -EINVAL;
2597
2598	*kargs = (struct kernel_clone_args){
2599		.flags		= args.flags,
2600		.pidfd		= u64_to_user_ptr(args.pidfd),
2601		.child_tid	= u64_to_user_ptr(args.child_tid),
2602		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2603		.exit_signal	= args.exit_signal,
2604		.stack		= args.stack,
2605		.stack_size	= args.stack_size,
2606		.tls		= args.tls,
2607		.set_tid_size	= args.set_tid_size,
2608		.cgroup		= args.cgroup,
2609	};
2610
2611	if (args.set_tid &&
2612		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2613			(kargs->set_tid_size * sizeof(pid_t))))
2614		return -EFAULT;
2615
2616	kargs->set_tid = kset_tid;
2617
2618	return 0;
2619}
2620
2621/**
2622 * clone3_stack_valid - check and prepare stack
2623 * @kargs: kernel clone args
2624 *
2625 * Verify that the stack arguments userspace gave us are sane.
2626 * In addition, set the stack direction for userspace since it's easy for us to
2627 * determine.
2628 */
2629static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2630{
2631	if (kargs->stack == 0) {
2632		if (kargs->stack_size > 0)
2633			return false;
2634	} else {
2635		if (kargs->stack_size == 0)
2636			return false;
2637
2638		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2639			return false;
2640
2641#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2642		kargs->stack += kargs->stack_size;
2643#endif
2644	}
2645
2646	return true;
2647}
2648
2649static bool clone3_args_valid(struct kernel_clone_args *kargs)
2650{
2651	/* Verify that no unknown flags are passed along. */
2652	if (kargs->flags &
2653	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2654		return false;
2655
2656	/*
2657	 * - make the CLONE_DETACHED bit reuseable for clone3
2658	 * - make the CSIGNAL bits reuseable for clone3
2659	 */
2660	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2661		return false;
2662
2663	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2664	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2665		return false;
2666
2667	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2668	    kargs->exit_signal)
2669		return false;
2670
2671	if (!clone3_stack_valid(kargs))
2672		return false;
2673
2674	return true;
2675}
2676
2677/**
2678 * clone3 - create a new process with specific properties
2679 * @uargs: argument structure
2680 * @size:  size of @uargs
2681 *
2682 * clone3() is the extensible successor to clone()/clone2().
2683 * It takes a struct as argument that is versioned by its size.
2684 *
2685 * Return: On success, a positive PID for the child process.
2686 *         On error, a negative errno number.
2687 */
2688SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2689{
2690	int err;
2691
2692	struct kernel_clone_args kargs;
2693	pid_t set_tid[MAX_PID_NS_LEVEL];
2694
2695	kargs.set_tid = set_tid;
2696
2697	err = copy_clone_args_from_user(&kargs, uargs, size);
2698	if (err)
2699		return err;
2700
2701	if (!clone3_args_valid(&kargs))
2702		return -EINVAL;
2703
2704	return _do_fork(&kargs);
2705}
2706#endif
2707
2708void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2709{
2710	struct task_struct *leader, *parent, *child;
2711	int res;
2712
2713	read_lock(&tasklist_lock);
2714	leader = top = top->group_leader;
2715down:
2716	for_each_thread(leader, parent) {
2717		list_for_each_entry(child, &parent->children, sibling) {
2718			res = visitor(child, data);
2719			if (res) {
2720				if (res < 0)
2721					goto out;
2722				leader = child;
2723				goto down;
2724			}
2725up:
2726			;
2727		}
2728	}
2729
2730	if (leader != top) {
2731		child = leader;
2732		parent = child->real_parent;
2733		leader = parent->group_leader;
2734		goto up;
2735	}
2736out:
2737	read_unlock(&tasklist_lock);
2738}
2739
2740#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2741#define ARCH_MIN_MMSTRUCT_ALIGN 0
2742#endif
2743
2744static void sighand_ctor(void *data)
2745{
2746	struct sighand_struct *sighand = data;
2747
2748	spin_lock_init(&sighand->siglock);
2749	init_waitqueue_head(&sighand->signalfd_wqh);
2750}
2751
2752void __init proc_caches_init(void)
2753{
2754	unsigned int mm_size;
2755
2756	sighand_cachep = kmem_cache_create("sighand_cache",
2757			sizeof(struct sighand_struct), 0,
2758			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2759			SLAB_ACCOUNT, sighand_ctor);
2760	signal_cachep = kmem_cache_create("signal_cache",
2761			sizeof(struct signal_struct), 0,
2762			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2763			NULL);
2764	files_cachep = kmem_cache_create("files_cache",
2765			sizeof(struct files_struct), 0,
2766			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2767			NULL);
2768	fs_cachep = kmem_cache_create("fs_cache",
2769			sizeof(struct fs_struct), 0,
2770			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2771			NULL);
2772
2773	/*
2774	 * The mm_cpumask is located at the end of mm_struct, and is
2775	 * dynamically sized based on the maximum CPU number this system
2776	 * can have, taking hotplug into account (nr_cpu_ids).
2777	 */
2778	mm_size = sizeof(struct mm_struct) + cpumask_size();
2779
2780	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2781			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2782			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2783			offsetof(struct mm_struct, saved_auxv),
2784			sizeof_field(struct mm_struct, saved_auxv),
2785			NULL);
2786	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2787	mmap_init();
2788	nsproxy_cache_init();
2789}
2790
2791/*
2792 * Check constraints on flags passed to the unshare system call.
2793 */
2794static int check_unshare_flags(unsigned long unshare_flags)
2795{
2796	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2797				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2798				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2799				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2800				CLONE_NEWTIME))
2801		return -EINVAL;
2802	/*
2803	 * Not implemented, but pretend it works if there is nothing
2804	 * to unshare.  Note that unsharing the address space or the
2805	 * signal handlers also need to unshare the signal queues (aka
2806	 * CLONE_THREAD).
2807	 */
2808	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2809		if (!thread_group_empty(current))
2810			return -EINVAL;
2811	}
2812	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2813		if (refcount_read(&current->sighand->count) > 1)
2814			return -EINVAL;
2815	}
2816	if (unshare_flags & CLONE_VM) {
2817		if (!current_is_single_threaded())
2818			return -EINVAL;
2819	}
2820
2821	return 0;
2822}
2823
2824/*
2825 * Unshare the filesystem structure if it is being shared
2826 */
2827static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2828{
2829	struct fs_struct *fs = current->fs;
2830
2831	if (!(unshare_flags & CLONE_FS) || !fs)
2832		return 0;
2833
2834	/* don't need lock here; in the worst case we'll do useless copy */
2835	if (fs->users == 1)
2836		return 0;
2837
2838	*new_fsp = copy_fs_struct(fs);
2839	if (!*new_fsp)
2840		return -ENOMEM;
2841
2842	return 0;
2843}
2844
2845/*
2846 * Unshare file descriptor table if it is being shared
2847 */
2848int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2849	       struct files_struct **new_fdp)
2850{
2851	struct files_struct *fd = current->files;
2852	int error = 0;
2853
2854	if ((unshare_flags & CLONE_FILES) &&
2855	    (fd && atomic_read(&fd->count) > 1)) {
2856		*new_fdp = dup_fd(fd, max_fds, &error);
2857		if (!*new_fdp)
2858			return error;
2859	}
2860
2861	return 0;
2862}
2863
2864/*
2865 * unshare allows a process to 'unshare' part of the process
2866 * context which was originally shared using clone.  copy_*
2867 * functions used by _do_fork() cannot be used here directly
2868 * because they modify an inactive task_struct that is being
2869 * constructed. Here we are modifying the current, active,
2870 * task_struct.
2871 */
2872int ksys_unshare(unsigned long unshare_flags)
2873{
2874	struct fs_struct *fs, *new_fs = NULL;
2875	struct files_struct *fd, *new_fd = NULL;
2876	struct cred *new_cred = NULL;
2877	struct nsproxy *new_nsproxy = NULL;
2878	int do_sysvsem = 0;
2879	int err;
2880
2881	/*
2882	 * If unsharing a user namespace must also unshare the thread group
2883	 * and unshare the filesystem root and working directories.
2884	 */
2885	if (unshare_flags & CLONE_NEWUSER)
2886		unshare_flags |= CLONE_THREAD | CLONE_FS;
2887	/*
2888	 * If unsharing vm, must also unshare signal handlers.
2889	 */
2890	if (unshare_flags & CLONE_VM)
2891		unshare_flags |= CLONE_SIGHAND;
2892	/*
2893	 * If unsharing a signal handlers, must also unshare the signal queues.
2894	 */
2895	if (unshare_flags & CLONE_SIGHAND)
2896		unshare_flags |= CLONE_THREAD;
2897	/*
2898	 * If unsharing namespace, must also unshare filesystem information.
2899	 */
2900	if (unshare_flags & CLONE_NEWNS)
2901		unshare_flags |= CLONE_FS;
2902
2903	err = check_unshare_flags(unshare_flags);
2904	if (err)
2905		goto bad_unshare_out;
2906	/*
2907	 * CLONE_NEWIPC must also detach from the undolist: after switching
2908	 * to a new ipc namespace, the semaphore arrays from the old
2909	 * namespace are unreachable.
2910	 */
2911	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2912		do_sysvsem = 1;
2913	err = unshare_fs(unshare_flags, &new_fs);
2914	if (err)
2915		goto bad_unshare_out;
2916	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2917	if (err)
2918		goto bad_unshare_cleanup_fs;
2919	err = unshare_userns(unshare_flags, &new_cred);
2920	if (err)
2921		goto bad_unshare_cleanup_fd;
2922	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2923					 new_cred, new_fs);
2924	if (err)
2925		goto bad_unshare_cleanup_cred;
2926
2927	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2928		if (do_sysvsem) {
2929			/*
2930			 * CLONE_SYSVSEM is equivalent to sys_exit().
2931			 */
2932			exit_sem(current);
2933		}
2934		if (unshare_flags & CLONE_NEWIPC) {
2935			/* Orphan segments in old ns (see sem above). */
2936			exit_shm(current);
2937			shm_init_task(current);
2938		}
2939
2940		if (new_nsproxy)
2941			switch_task_namespaces(current, new_nsproxy);
2942
2943		task_lock(current);
2944
2945		if (new_fs) {
2946			fs = current->fs;
2947			spin_lock(&fs->lock);
2948			current->fs = new_fs;
2949			if (--fs->users)
2950				new_fs = NULL;
2951			else
2952				new_fs = fs;
2953			spin_unlock(&fs->lock);
2954		}
2955
2956		if (new_fd) {
2957			fd = current->files;
2958			current->files = new_fd;
2959			new_fd = fd;
2960		}
2961
2962		task_unlock(current);
2963
2964		if (new_cred) {
2965			/* Install the new user namespace */
2966			commit_creds(new_cred);
2967			new_cred = NULL;
2968		}
2969	}
2970
2971	perf_event_namespaces(current);
2972
2973bad_unshare_cleanup_cred:
2974	if (new_cred)
2975		put_cred(new_cred);
2976bad_unshare_cleanup_fd:
2977	if (new_fd)
2978		put_files_struct(new_fd);
2979
2980bad_unshare_cleanup_fs:
2981	if (new_fs)
2982		free_fs_struct(new_fs);
2983
2984bad_unshare_out:
2985	return err;
2986}
2987
2988SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2989{
2990	return ksys_unshare(unshare_flags);
2991}
2992
2993/*
2994 *	Helper to unshare the files of the current task.
2995 *	We don't want to expose copy_files internals to
2996 *	the exec layer of the kernel.
2997 */
2998
2999int unshare_files(struct files_struct **displaced)
3000{
3001	struct task_struct *task = current;
3002	struct files_struct *copy = NULL;
3003	int error;
3004
3005	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3006	if (error || !copy) {
3007		*displaced = NULL;
3008		return error;
3009	}
3010	*displaced = task->files;
3011	task_lock(task);
3012	task->files = copy;
3013	task_unlock(task);
3014	return 0;
3015}
3016
3017int sysctl_max_threads(struct ctl_table *table, int write,
3018		       void *buffer, size_t *lenp, loff_t *ppos)
3019{
3020	struct ctl_table t;
3021	int ret;
3022	int threads = max_threads;
3023	int min = 1;
3024	int max = MAX_THREADS;
3025
3026	t = *table;
3027	t.data = &threads;
3028	t.extra1 = &min;
3029	t.extra2 = &max;
3030
3031	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3032	if (ret || !write)
3033		return ret;
3034
3035	max_threads = threads;
3036
3037	return 0;
3038}