Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 20
 21#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 
 22
 23/* L: Logical segment # in volume, R: Relative segment # in main area */
 24#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 25#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 
 
 
 
 26
 27#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 28#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 
 
 
 
 
 
 
 29
 30#define IS_CURSEG(sbi, seg)						\
 31	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 33	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 34	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 35	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 36	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 
 
 37
 38#define IS_CURSEC(sbi, secno)						\
 39	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 40	  sbi->segs_per_sec) ||	\
 41	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 42	  sbi->segs_per_sec) ||	\
 43	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 44	  sbi->segs_per_sec) ||	\
 45	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 46	  sbi->segs_per_sec) ||	\
 47	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 48	  sbi->segs_per_sec) ||	\
 49	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 50	  sbi->segs_per_sec))	\
 51
 52#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
 53#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
 
 
 
 
 
 
 
 
 54
 55#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 56#define MAIN_SECS(sbi)	(sbi->total_sections)
 57
 58#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
 59#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
 
 
 60
 61#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 62#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
 63					sbi->log_blocks_per_seg))
 64
 65#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 66	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 67
 68#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 69	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 70
 71#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 72#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 73	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 74#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 75	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 76
 77#define GET_SEGNO(sbi, blk_addr)					\
 78	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 79	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 80		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 81#define GET_SECNO(sbi, segno)					\
 82	((segno) / sbi->segs_per_sec)
 83#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 84	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 
 
 
 
 
 
 
 
 
 85
 86#define GET_SUM_BLOCK(sbi, segno)				\
 87	((sbi->sm_info->ssa_blkaddr) + segno)
 88
 89#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 90#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 91
 92#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 93	(segno % sit_i->sents_per_block)
 94#define SIT_BLOCK_OFFSET(segno)					\
 95	(segno / SIT_ENTRY_PER_BLOCK)
 96#define	START_SEGNO(segno)		\
 97	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 98#define SIT_BLK_CNT(sbi)			\
 99	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100#define f2fs_bitmap_size(nr)			\
101	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
102
103#define SECTOR_FROM_BLOCK(blk_addr)					\
104	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105#define SECTOR_TO_BLOCK(sectors)					\
106	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107
108/*
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
112 */
113enum {
114	ALLOC_RIGHT = 0,
115	ALLOC_LEFT
116};
117
118/*
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 
 
122 */
123enum {
124	LFS = 0,
125	SSR
 
126};
127
128/*
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
 
132 */
133enum {
134	GC_CB = 0,
135	GC_GREEDY
 
 
 
 
136};
137
138/*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
142 */
143enum {
144	BG_GC = 0,
145	FG_GC,
146	FORCE_FG_GC,
147};
148
149/* for a function parameter to select a victim segment */
150struct victim_sel_policy {
151	int alloc_mode;			/* LFS or SSR */
152	int gc_mode;			/* GC_CB or GC_GREEDY */
153	unsigned long *dirty_segmap;	/* dirty segment bitmap */
154	unsigned int max_search;	/* maximum # of segments to search */
 
 
 
155	unsigned int offset;		/* last scanned bitmap offset */
156	unsigned int ofs_unit;		/* bitmap search unit */
157	unsigned int min_cost;		/* minimum cost */
 
158	unsigned int min_segno;		/* segment # having min. cost */
 
 
159};
160
161struct seg_entry {
162	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
163	unsigned int valid_blocks:10;	/* # of valid blocks */
164	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
165	unsigned int padding:6;		/* padding */
166	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 
 
 
167	/*
168	 * # of valid blocks and the validity bitmap stored in the the last
169	 * checkpoint pack. This information is used by the SSR mode.
170	 */
171	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
172	unsigned char *discard_map;
173	unsigned long long mtime;	/* modification time of the segment */
174};
175
176struct sec_entry {
177	unsigned int valid_blocks;	/* # of valid blocks in a section */
178};
179
180struct segment_allocation {
181	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182};
183
184/*
185 * this value is set in page as a private data which indicate that
186 * the page is atomically written, and it is in inmem_pages list.
187 */
188#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
189
190#define IS_ATOMIC_WRITTEN_PAGE(page)			\
191		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192
193struct inmem_pages {
194	struct list_head list;
195	struct page *page;
196	block_t old_addr;		/* for revoking when fail to commit */
 
197};
198
199struct sit_info {
200	const struct segment_allocation *s_ops;
201
202	block_t sit_base_addr;		/* start block address of SIT area */
203	block_t sit_blocks;		/* # of blocks used by SIT area */
204	block_t written_valid_blocks;	/* # of valid blocks in main area */
 
205	char *sit_bitmap;		/* SIT bitmap pointer */
 
 
 
 
 
 
206	unsigned int bitmap_size;	/* SIT bitmap size */
207
208	unsigned long *tmp_map;			/* bitmap for temporal use */
209	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
210	unsigned int dirty_sentries;		/* # of dirty sentries */
211	unsigned int sents_per_block;		/* # of SIT entries per block */
212	struct mutex sentry_lock;		/* to protect SIT cache */
213	struct seg_entry *sentries;		/* SIT segment-level cache */
214	struct sec_entry *sec_entries;		/* SIT section-level cache */
215
216	/* for cost-benefit algorithm in cleaning procedure */
217	unsigned long long elapsed_time;	/* elapsed time after mount */
218	unsigned long long mounted_time;	/* mount time */
219	unsigned long long min_mtime;		/* min. modification time */
220	unsigned long long max_mtime;		/* max. modification time */
 
 
 
 
221};
222
223struct free_segmap_info {
224	unsigned int start_segno;	/* start segment number logically */
225	unsigned int free_segments;	/* # of free segments */
226	unsigned int free_sections;	/* # of free sections */
227	spinlock_t segmap_lock;		/* free segmap lock */
228	unsigned long *free_segmap;	/* free segment bitmap */
229	unsigned long *free_secmap;	/* free section bitmap */
230};
231
232/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233enum dirty_type {
234	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
235	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
236	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
237	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
238	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
239	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
240	DIRTY,			/* to count # of dirty segments */
241	PRE,			/* to count # of entirely obsolete segments */
242	NR_DIRTY_TYPE
243};
244
245struct dirty_seglist_info {
246	const struct victim_selection *v_ops;	/* victim selction operation */
247	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 
248	struct mutex seglist_lock;		/* lock for segment bitmaps */
249	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
250	unsigned long *victim_secmap;		/* background GC victims */
 
 
 
251};
252
253/* victim selection function for cleaning and SSR */
254struct victim_selection {
255	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256							int, int, char);
257};
258
259/* for active log information */
260struct curseg_info {
261	struct mutex curseg_mutex;		/* lock for consistency */
262	struct f2fs_summary_block *sum_blk;	/* cached summary block */
263	struct rw_semaphore journal_rwsem;	/* protect journal area */
264	struct f2fs_journal *journal;		/* cached journal info */
265	unsigned char alloc_type;		/* current allocation type */
 
266	unsigned int segno;			/* current segment number */
267	unsigned short next_blkoff;		/* next block offset to write */
268	unsigned int zone;			/* current zone number */
269	unsigned int next_segno;		/* preallocated segment */
 
 
270};
271
272struct sit_entry_set {
273	struct list_head set_list;	/* link with all sit sets */
274	unsigned int start_segno;	/* start segno of sits in set */
275	unsigned int entry_cnt;		/* the # of sit entries in set */
276};
277
278/*
279 * inline functions
280 */
281static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282{
283	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284}
285
286static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287						unsigned int segno)
288{
289	struct sit_info *sit_i = SIT_I(sbi);
290	return &sit_i->sentries[segno];
291}
292
293static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294						unsigned int segno)
295{
296	struct sit_info *sit_i = SIT_I(sbi);
297	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298}
299
300static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301				unsigned int segno, int section)
302{
303	/*
304	 * In order to get # of valid blocks in a section instantly from many
305	 * segments, f2fs manages two counting structures separately.
306	 */
307	if (section > 1)
308		return get_sec_entry(sbi, segno)->valid_blocks;
309	else
310		return get_seg_entry(sbi, segno)->valid_blocks;
311}
312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313static inline void seg_info_from_raw_sit(struct seg_entry *se,
314					struct f2fs_sit_entry *rs)
315{
316	se->valid_blocks = GET_SIT_VBLOCKS(rs);
317	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
320	se->type = GET_SIT_TYPE(rs);
321	se->mtime = le64_to_cpu(rs->mtime);
322}
323
324static inline void seg_info_to_raw_sit(struct seg_entry *se,
325					struct f2fs_sit_entry *rs)
326{
327	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328					se->valid_blocks;
329	rs->vblocks = cpu_to_le16(raw_vblocks);
330	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332	se->ckpt_valid_blocks = se->valid_blocks;
333	rs->mtime = cpu_to_le64(se->mtime);
334}
335
336static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337		unsigned int max, unsigned int segno)
338{
339	unsigned int ret;
340	spin_lock(&free_i->segmap_lock);
341	ret = find_next_bit(free_i->free_segmap, max, segno);
342	spin_unlock(&free_i->segmap_lock);
343	return ret;
344}
345
346static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347{
348	struct free_segmap_info *free_i = FREE_I(sbi);
349	unsigned int secno = segno / sbi->segs_per_sec;
350	unsigned int start_segno = secno * sbi->segs_per_sec;
351	unsigned int next;
 
352
353	spin_lock(&free_i->segmap_lock);
354	clear_bit(segno, free_i->free_segmap);
355	free_i->free_segments++;
356
357	next = find_next_bit(free_i->free_segmap,
358			start_segno + sbi->segs_per_sec, start_segno);
359	if (next >= start_segno + sbi->segs_per_sec) {
360		clear_bit(secno, free_i->free_secmap);
361		free_i->free_sections++;
362	}
363	spin_unlock(&free_i->segmap_lock);
364}
365
366static inline void __set_inuse(struct f2fs_sb_info *sbi,
367		unsigned int segno)
368{
369	struct free_segmap_info *free_i = FREE_I(sbi);
370	unsigned int secno = segno / sbi->segs_per_sec;
 
371	set_bit(segno, free_i->free_segmap);
372	free_i->free_segments--;
373	if (!test_and_set_bit(secno, free_i->free_secmap))
374		free_i->free_sections--;
375}
376
377static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378		unsigned int segno)
379{
380	struct free_segmap_info *free_i = FREE_I(sbi);
381	unsigned int secno = segno / sbi->segs_per_sec;
382	unsigned int start_segno = secno * sbi->segs_per_sec;
383	unsigned int next;
 
384
385	spin_lock(&free_i->segmap_lock);
386	if (test_and_clear_bit(segno, free_i->free_segmap)) {
387		free_i->free_segments++;
388
 
 
389		next = find_next_bit(free_i->free_segmap,
390				start_segno + sbi->segs_per_sec, start_segno);
391		if (next >= start_segno + sbi->segs_per_sec) {
392			if (test_and_clear_bit(secno, free_i->free_secmap))
393				free_i->free_sections++;
394		}
395	}
 
396	spin_unlock(&free_i->segmap_lock);
397}
398
399static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400		unsigned int segno)
401{
402	struct free_segmap_info *free_i = FREE_I(sbi);
403	unsigned int secno = segno / sbi->segs_per_sec;
 
404	spin_lock(&free_i->segmap_lock);
405	if (!test_and_set_bit(segno, free_i->free_segmap)) {
406		free_i->free_segments--;
407		if (!test_and_set_bit(secno, free_i->free_secmap))
408			free_i->free_sections--;
409	}
410	spin_unlock(&free_i->segmap_lock);
411}
412
413static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414		void *dst_addr)
415{
416	struct sit_info *sit_i = SIT_I(sbi);
 
 
 
 
 
 
417	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418}
419
420static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421{
422	return SIT_I(sbi)->written_valid_blocks;
423}
424
425static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426{
427	return FREE_I(sbi)->free_segments;
428}
429
430static inline int reserved_segments(struct f2fs_sb_info *sbi)
431{
432	return SM_I(sbi)->reserved_segments;
 
433}
434
435static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436{
437	return FREE_I(sbi)->free_sections;
438}
439
440static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441{
442	return DIRTY_I(sbi)->nr_dirty[PRE];
443}
444
445static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446{
447	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453}
454
455static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456{
457	return SM_I(sbi)->ovp_segments;
458}
459
460static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461{
462	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463}
464
465static inline int reserved_sections(struct f2fs_sb_info *sbi)
466{
467	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468}
469
470static inline bool need_SSR(struct f2fs_sb_info *sbi)
 
471{
472	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
475
476	if (test_opt(sbi, LFS))
477		return false;
 
 
 
 
 
 
478
479	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
480						reserved_sections(sbi) + 1);
 
 
 
 
 
 
 
 
 
481}
482
483static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
484					int freed, int needed)
485{
486	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
487	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
488	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 
 
 
 
 
 
489
490	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491		return false;
492
493	return (free_sections(sbi) + freed) <=
494		(node_secs + 2 * dent_secs + imeta_secs +
495		reserved_sections(sbi) + needed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496}
497
498static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
499{
500	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
501}
502
503static inline int utilization(struct f2fs_sb_info *sbi)
504{
505	return div_u64((u64)valid_user_blocks(sbi) * 100,
506					sbi->user_block_count);
507}
508
509/*
510 * Sometimes f2fs may be better to drop out-of-place update policy.
511 * And, users can control the policy through sysfs entries.
512 * There are five policies with triggering conditions as follows.
513 * F2FS_IPU_FORCE - all the time,
514 * F2FS_IPU_SSR - if SSR mode is activated,
515 * F2FS_IPU_UTIL - if FS utilization is over threashold,
516 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
517 *                     threashold,
518 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
519 *                     storages. IPU will be triggered only if the # of dirty
520 *                     pages over min_fsync_blocks.
521 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 
 
 
 
522 */
523#define DEF_MIN_IPU_UTIL	70
524#define DEF_MIN_FSYNC_BLOCKS	8
 
 
 
525
526enum {
527	F2FS_IPU_FORCE,
528	F2FS_IPU_SSR,
529	F2FS_IPU_UTIL,
530	F2FS_IPU_SSR_UTIL,
531	F2FS_IPU_FSYNC,
 
 
 
532};
533
534static inline bool need_inplace_update(struct inode *inode)
535{
536	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
537	unsigned int policy = SM_I(sbi)->ipu_policy;
538
539	/* IPU can be done only for the user data */
540	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
541		return false;
542
543	if (test_opt(sbi, LFS))
544		return false;
545
546	if (policy & (0x1 << F2FS_IPU_FORCE))
547		return true;
548	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
549		return true;
550	if (policy & (0x1 << F2FS_IPU_UTIL) &&
551			utilization(sbi) > SM_I(sbi)->min_ipu_util)
552		return true;
553	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
554			utilization(sbi) > SM_I(sbi)->min_ipu_util)
555		return true;
556
557	/* this is only set during fdatasync */
558	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
559			is_inode_flag_set(inode, FI_NEED_IPU))
560		return true;
561
562	return false;
563}
564
565static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
566		int type)
567{
568	struct curseg_info *curseg = CURSEG_I(sbi, type);
569	return curseg->segno;
570}
571
572static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
573		int type)
574{
575	struct curseg_info *curseg = CURSEG_I(sbi, type);
576	return curseg->alloc_type;
577}
578
579static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
580{
581	struct curseg_info *curseg = CURSEG_I(sbi, type);
582	return curseg->next_blkoff;
583}
584
585static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
586{
587	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
588}
589
590static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
591{
592	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
593			|| blk_addr >= MAX_BLKADDR(sbi));
 
 
 
 
 
594}
595
596/*
597 * Summary block is always treated as an invalid block
598 */
599static inline void check_block_count(struct f2fs_sb_info *sbi,
600		int segno, struct f2fs_sit_entry *raw_sit)
601{
602#ifdef CONFIG_F2FS_CHECK_FS
603	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
604	int valid_blocks = 0;
605	int cur_pos = 0, next_pos;
 
606
607	/* check bitmap with valid block count */
608	do {
609		if (is_valid) {
610			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
611					sbi->blocks_per_seg,
612					cur_pos);
613			valid_blocks += next_pos - cur_pos;
614		} else
615			next_pos = find_next_bit_le(&raw_sit->valid_map,
616					sbi->blocks_per_seg,
617					cur_pos);
618		cur_pos = next_pos;
619		is_valid = !is_valid;
620	} while (cur_pos < sbi->blocks_per_seg);
621	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
622#endif
 
 
 
 
 
 
 
 
 
 
 
 
623	/* check segment usage, and check boundary of a given segment number */
624	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
625					|| segno > TOTAL_SEGS(sbi) - 1);
 
 
 
 
 
 
 
626}
627
628static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629						unsigned int start)
630{
631	struct sit_info *sit_i = SIT_I(sbi);
632	unsigned int offset = SIT_BLOCK_OFFSET(start);
633	block_t blk_addr = sit_i->sit_base_addr + offset;
634
635	check_seg_range(sbi, start);
636
 
 
 
 
 
 
637	/* calculate sit block address */
638	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639		blk_addr += sit_i->sit_blocks;
640
641	return blk_addr;
642}
643
644static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645						pgoff_t block_addr)
646{
647	struct sit_info *sit_i = SIT_I(sbi);
648	block_addr -= sit_i->sit_base_addr;
649	if (block_addr < sit_i->sit_blocks)
650		block_addr += sit_i->sit_blocks;
651	else
652		block_addr -= sit_i->sit_blocks;
653
654	return block_addr + sit_i->sit_base_addr;
655}
656
657static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
658{
659	unsigned int block_off = SIT_BLOCK_OFFSET(start);
660
661	f2fs_change_bit(block_off, sit_i->sit_bitmap);
 
 
 
662}
663
664static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 
665{
666	struct sit_info *sit_i = SIT_I(sbi);
667	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668						sit_i->mounted_time;
 
 
 
 
 
 
 
 
 
 
 
669}
670
671static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672			unsigned int ofs_in_node, unsigned char version)
673{
674	sum->nid = cpu_to_le32(nid);
675	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676	sum->version = version;
677}
678
679static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
680{
681	return __start_cp_addr(sbi) +
682		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
683}
684
685static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
686{
687	return __start_cp_addr(sbi) +
688		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689				- (base + 1) + type;
690}
691
692static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
693						unsigned int secno)
694{
695	if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
696						sbi->fggc_threshold)
697		return true;
698	return false;
699}
700
701static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
702{
703	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
704		return true;
705	return false;
706}
707
708/*
709 * It is very important to gather dirty pages and write at once, so that we can
710 * submit a big bio without interfering other data writes.
711 * By default, 512 pages for directory data,
712 * 512 pages (2MB) * 3 for three types of nodes, and
713 * max_bio_blocks for meta are set.
714 */
715static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716{
717	if (sbi->sb->s_bdi->wb.dirty_exceeded)
718		return 0;
719
720	if (type == DATA)
721		return sbi->blocks_per_seg;
722	else if (type == NODE)
723		return 8 * sbi->blocks_per_seg;
724	else if (type == META)
725		return 8 * BIO_MAX_PAGES;
726	else
727		return 0;
728}
729
730/*
731 * When writing pages, it'd better align nr_to_write for segment size.
732 */
733static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
734					struct writeback_control *wbc)
735{
736	long nr_to_write, desired;
737
738	if (wbc->sync_mode != WB_SYNC_NONE)
739		return 0;
740
741	nr_to_write = wbc->nr_to_write;
742	desired = BIO_MAX_PAGES;
743	if (type == NODE)
744		desired <<= 1;
745
746	wbc->nr_to_write = desired;
747	return desired - nr_to_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748}
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20
 21/* L: Logical segment # in volume, R: Relative segment # in main area */
 22#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 23#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 24
 25#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 26#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 27#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
 28
 29static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 30						unsigned short seg_type)
 31{
 32	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 33}
 34
 35#define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
 36#define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
 37#define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
 38
 39#define IS_CURSEG(sbi, seg)						\
 40	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 41	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 42	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 43	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 44	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 45	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
 46	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
 47	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 48
 49#define IS_CURSEC(sbi, secno)						\
 50	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 51	  (sbi)->segs_per_sec) ||	\
 52	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 53	  (sbi)->segs_per_sec) ||	\
 54	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 55	  (sbi)->segs_per_sec) ||	\
 56	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 57	  (sbi)->segs_per_sec) ||	\
 58	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 59	  (sbi)->segs_per_sec) ||	\
 60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 61	  (sbi)->segs_per_sec) ||	\
 62	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
 63	  (sbi)->segs_per_sec) ||	\
 64	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
 65	  (sbi)->segs_per_sec))
 66
 67#define MAIN_BLKADDR(sbi)						\
 68	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 69		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 70#define SEG0_BLKADDR(sbi)						\
 71	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 72		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 73
 74#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 75#define MAIN_SECS(sbi)	((sbi)->total_sections)
 76
 77#define TOTAL_SEGS(sbi)							\
 78	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 79		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 80#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
 81
 82#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 83#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 84					(sbi)->log_blocks_per_seg))
 85
 86#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 87	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
 88
 89#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 90	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 91
 92#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 93#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
 95#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 96	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
 97
 98#define GET_SEGNO(sbi, blk_addr)					\
 99	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102#define BLKS_PER_SEC(sbi)					\
103	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104#define CAP_BLKS_PER_SEC(sbi)					\
105	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106	 (sbi)->unusable_blocks_per_sec)
107#define GET_SEC_FROM_SEG(sbi, segno)				\
108	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109#define GET_SEG_FROM_SEC(sbi, secno)				\
110	((secno) * (sbi)->segs_per_sec)
111#define GET_ZONE_FROM_SEC(sbi, secno)				\
112	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113#define GET_ZONE_FROM_SEG(sbi, segno)				\
114	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116#define GET_SUM_BLOCK(sbi, segno)				\
117	((sbi)->sm_info->ssa_blkaddr + (segno))
118
119#define GET_SUM_TYPE(footer) ((footer)->entry_type)
120#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122#define SIT_ENTRY_OFFSET(sit_i, segno)					\
123	((segno) % (sit_i)->sents_per_block)
124#define SIT_BLOCK_OFFSET(segno)					\
125	((segno) / SIT_ENTRY_PER_BLOCK)
126#define	START_SEGNO(segno)		\
127	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128#define SIT_BLK_CNT(sbi)			\
129	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130#define f2fs_bitmap_size(nr)			\
131	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133#define SECTOR_FROM_BLOCK(blk_addr)					\
134	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135#define SECTOR_TO_BLOCK(sectors)					\
136	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138/*
139 * indicate a block allocation direction: RIGHT and LEFT.
140 * RIGHT means allocating new sections towards the end of volume.
141 * LEFT means the opposite direction.
142 */
143enum {
144	ALLOC_RIGHT = 0,
145	ALLOC_LEFT
146};
147
148/*
149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150 * LFS writes data sequentially with cleaning operations.
151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153 * fragmented segment which has similar aging degree.
154 */
155enum {
156	LFS = 0,
157	SSR,
158	AT_SSR,
159};
160
161/*
162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163 * GC_CB is based on cost-benefit algorithm.
164 * GC_GREEDY is based on greedy algorithm.
165 * GC_AT is based on age-threshold algorithm.
166 */
167enum {
168	GC_CB = 0,
169	GC_GREEDY,
170	GC_AT,
171	ALLOC_NEXT,
172	FLUSH_DEVICE,
173	MAX_GC_POLICY,
174};
175
176/*
177 * BG_GC means the background cleaning job.
178 * FG_GC means the on-demand cleaning job.
 
179 */
180enum {
181	BG_GC = 0,
182	FG_GC,
 
183};
184
185/* for a function parameter to select a victim segment */
186struct victim_sel_policy {
187	int alloc_mode;			/* LFS or SSR */
188	int gc_mode;			/* GC_CB or GC_GREEDY */
189	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
190	unsigned int max_search;	/*
191					 * maximum # of segments/sections
192					 * to search
193					 */
194	unsigned int offset;		/* last scanned bitmap offset */
195	unsigned int ofs_unit;		/* bitmap search unit */
196	unsigned int min_cost;		/* minimum cost */
197	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
198	unsigned int min_segno;		/* segment # having min. cost */
199	unsigned long long age;		/* mtime of GCed section*/
200	unsigned long long age_threshold;/* age threshold */
201};
202
203struct seg_entry {
204	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
205	unsigned int valid_blocks:10;	/* # of valid blocks */
206	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
207	unsigned int padding:6;		/* padding */
208	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
209#ifdef CONFIG_F2FS_CHECK_FS
210	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
211#endif
212	/*
213	 * # of valid blocks and the validity bitmap stored in the last
214	 * checkpoint pack. This information is used by the SSR mode.
215	 */
216	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
217	unsigned char *discard_map;
218	unsigned long long mtime;	/* modification time of the segment */
219};
220
221struct sec_entry {
222	unsigned int valid_blocks;	/* # of valid blocks in a section */
223};
224
225#define MAX_SKIP_GC_COUNT			16
 
 
226
227struct revoke_entry {
 
 
 
 
 
 
 
 
 
228	struct list_head list;
 
229	block_t old_addr;		/* for revoking when fail to commit */
230	pgoff_t index;
231};
232
233struct sit_info {
 
 
234	block_t sit_base_addr;		/* start block address of SIT area */
235	block_t sit_blocks;		/* # of blocks used by SIT area */
236	block_t written_valid_blocks;	/* # of valid blocks in main area */
237	char *bitmap;			/* all bitmaps pointer */
238	char *sit_bitmap;		/* SIT bitmap pointer */
239#ifdef CONFIG_F2FS_CHECK_FS
240	char *sit_bitmap_mir;		/* SIT bitmap mirror */
241
242	/* bitmap of segments to be ignored by GC in case of errors */
243	unsigned long *invalid_segmap;
244#endif
245	unsigned int bitmap_size;	/* SIT bitmap size */
246
247	unsigned long *tmp_map;			/* bitmap for temporal use */
248	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
249	unsigned int dirty_sentries;		/* # of dirty sentries */
250	unsigned int sents_per_block;		/* # of SIT entries per block */
251	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
252	struct seg_entry *sentries;		/* SIT segment-level cache */
253	struct sec_entry *sec_entries;		/* SIT section-level cache */
254
255	/* for cost-benefit algorithm in cleaning procedure */
256	unsigned long long elapsed_time;	/* elapsed time after mount */
257	unsigned long long mounted_time;	/* mount time */
258	unsigned long long min_mtime;		/* min. modification time */
259	unsigned long long max_mtime;		/* max. modification time */
260	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
261	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
262
263	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
264};
265
266struct free_segmap_info {
267	unsigned int start_segno;	/* start segment number logically */
268	unsigned int free_segments;	/* # of free segments */
269	unsigned int free_sections;	/* # of free sections */
270	spinlock_t segmap_lock;		/* free segmap lock */
271	unsigned long *free_segmap;	/* free segment bitmap */
272	unsigned long *free_secmap;	/* free section bitmap */
273};
274
275/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
276enum dirty_type {
277	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
278	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
279	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
280	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
281	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
282	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
283	DIRTY,			/* to count # of dirty segments */
284	PRE,			/* to count # of entirely obsolete segments */
285	NR_DIRTY_TYPE
286};
287
288struct dirty_seglist_info {
289	const struct victim_selection *v_ops;	/* victim selction operation */
290	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291	unsigned long *dirty_secmap;
292	struct mutex seglist_lock;		/* lock for segment bitmaps */
293	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
294	unsigned long *victim_secmap;		/* background GC victims */
295	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
296	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
297	bool enable_pin_section;		/* enable pinning section */
298};
299
300/* victim selection function for cleaning and SSR */
301struct victim_selection {
302	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303					int, int, char, unsigned long long);
304};
305
306/* for active log information */
307struct curseg_info {
308	struct mutex curseg_mutex;		/* lock for consistency */
309	struct f2fs_summary_block *sum_blk;	/* cached summary block */
310	struct rw_semaphore journal_rwsem;	/* protect journal area */
311	struct f2fs_journal *journal;		/* cached journal info */
312	unsigned char alloc_type;		/* current allocation type */
313	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
314	unsigned int segno;			/* current segment number */
315	unsigned short next_blkoff;		/* next block offset to write */
316	unsigned int zone;			/* current zone number */
317	unsigned int next_segno;		/* preallocated segment */
318	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
319	bool inited;				/* indicate inmem log is inited */
320};
321
322struct sit_entry_set {
323	struct list_head set_list;	/* link with all sit sets */
324	unsigned int start_segno;	/* start segno of sits in set */
325	unsigned int entry_cnt;		/* the # of sit entries in set */
326};
327
328/*
329 * inline functions
330 */
331static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332{
333	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334}
335
336static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337						unsigned int segno)
338{
339	struct sit_info *sit_i = SIT_I(sbi);
340	return &sit_i->sentries[segno];
341}
342
343static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344						unsigned int segno)
345{
346	struct sit_info *sit_i = SIT_I(sbi);
347	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348}
349
350static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351				unsigned int segno, bool use_section)
352{
353	/*
354	 * In order to get # of valid blocks in a section instantly from many
355	 * segments, f2fs manages two counting structures separately.
356	 */
357	if (use_section && __is_large_section(sbi))
358		return get_sec_entry(sbi, segno)->valid_blocks;
359	else
360		return get_seg_entry(sbi, segno)->valid_blocks;
361}
362
363static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364				unsigned int segno, bool use_section)
365{
366	if (use_section && __is_large_section(sbi)) {
367		unsigned int start_segno = START_SEGNO(segno);
368		unsigned int blocks = 0;
369		int i;
370
371		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372			struct seg_entry *se = get_seg_entry(sbi, start_segno);
373
374			blocks += se->ckpt_valid_blocks;
375		}
376		return blocks;
377	}
378	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
379}
380
381static inline void seg_info_from_raw_sit(struct seg_entry *se,
382					struct f2fs_sit_entry *rs)
383{
384	se->valid_blocks = GET_SIT_VBLOCKS(rs);
385	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388#ifdef CONFIG_F2FS_CHECK_FS
389	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390#endif
391	se->type = GET_SIT_TYPE(rs);
392	se->mtime = le64_to_cpu(rs->mtime);
393}
394
395static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396					struct f2fs_sit_entry *rs)
397{
398	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
399					se->valid_blocks;
400	rs->vblocks = cpu_to_le16(raw_vblocks);
401	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402	rs->mtime = cpu_to_le64(se->mtime);
403}
404
405static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406				struct page *page, unsigned int start)
407{
408	struct f2fs_sit_block *raw_sit;
409	struct seg_entry *se;
410	struct f2fs_sit_entry *rs;
411	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412					(unsigned long)MAIN_SEGS(sbi));
413	int i;
414
415	raw_sit = (struct f2fs_sit_block *)page_address(page);
416	memset(raw_sit, 0, PAGE_SIZE);
417	for (i = 0; i < end - start; i++) {
418		rs = &raw_sit->entries[i];
419		se = get_seg_entry(sbi, start + i);
420		__seg_info_to_raw_sit(se, rs);
421	}
422}
423
424static inline void seg_info_to_raw_sit(struct seg_entry *se,
425					struct f2fs_sit_entry *rs)
426{
427	__seg_info_to_raw_sit(se, rs);
428
429	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430	se->ckpt_valid_blocks = se->valid_blocks;
 
431}
432
433static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434		unsigned int max, unsigned int segno)
435{
436	unsigned int ret;
437	spin_lock(&free_i->segmap_lock);
438	ret = find_next_bit(free_i->free_segmap, max, segno);
439	spin_unlock(&free_i->segmap_lock);
440	return ret;
441}
442
443static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
444{
445	struct free_segmap_info *free_i = FREE_I(sbi);
446	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448	unsigned int next;
449	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
450
451	spin_lock(&free_i->segmap_lock);
452	clear_bit(segno, free_i->free_segmap);
453	free_i->free_segments++;
454
455	next = find_next_bit(free_i->free_segmap,
456			start_segno + sbi->segs_per_sec, start_segno);
457	if (next >= start_segno + usable_segs) {
458		clear_bit(secno, free_i->free_secmap);
459		free_i->free_sections++;
460	}
461	spin_unlock(&free_i->segmap_lock);
462}
463
464static inline void __set_inuse(struct f2fs_sb_info *sbi,
465		unsigned int segno)
466{
467	struct free_segmap_info *free_i = FREE_I(sbi);
468	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470	set_bit(segno, free_i->free_segmap);
471	free_i->free_segments--;
472	if (!test_and_set_bit(secno, free_i->free_secmap))
473		free_i->free_sections--;
474}
475
476static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477		unsigned int segno, bool inmem)
478{
479	struct free_segmap_info *free_i = FREE_I(sbi);
480	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
482	unsigned int next;
483	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
484
485	spin_lock(&free_i->segmap_lock);
486	if (test_and_clear_bit(segno, free_i->free_segmap)) {
487		free_i->free_segments++;
488
489		if (!inmem && IS_CURSEC(sbi, secno))
490			goto skip_free;
491		next = find_next_bit(free_i->free_segmap,
492				start_segno + sbi->segs_per_sec, start_segno);
493		if (next >= start_segno + usable_segs) {
494			if (test_and_clear_bit(secno, free_i->free_secmap))
495				free_i->free_sections++;
496		}
497	}
498skip_free:
499	spin_unlock(&free_i->segmap_lock);
500}
501
502static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
503		unsigned int segno)
504{
505	struct free_segmap_info *free_i = FREE_I(sbi);
506	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
507
508	spin_lock(&free_i->segmap_lock);
509	if (!test_and_set_bit(segno, free_i->free_segmap)) {
510		free_i->free_segments--;
511		if (!test_and_set_bit(secno, free_i->free_secmap))
512			free_i->free_sections--;
513	}
514	spin_unlock(&free_i->segmap_lock);
515}
516
517static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
518		void *dst_addr)
519{
520	struct sit_info *sit_i = SIT_I(sbi);
521
522#ifdef CONFIG_F2FS_CHECK_FS
523	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
524						sit_i->bitmap_size))
525		f2fs_bug_on(sbi, 1);
526#endif
527	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
528}
529
530static inline block_t written_block_count(struct f2fs_sb_info *sbi)
531{
532	return SIT_I(sbi)->written_valid_blocks;
533}
534
535static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
536{
537	return FREE_I(sbi)->free_segments;
538}
539
540static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
541{
542	return SM_I(sbi)->reserved_segments +
543			SM_I(sbi)->additional_reserved_segments;
544}
545
546static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
547{
548	return FREE_I(sbi)->free_sections;
549}
550
551static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
552{
553	return DIRTY_I(sbi)->nr_dirty[PRE];
554}
555
556static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
557{
558	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
564}
565
566static inline int overprovision_segments(struct f2fs_sb_info *sbi)
567{
568	return SM_I(sbi)->ovp_segments;
569}
570
 
 
 
 
 
571static inline int reserved_sections(struct f2fs_sb_info *sbi)
572{
573	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
574}
575
576static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577			unsigned int node_blocks, unsigned int dent_blocks)
578{
 
 
 
579
580	unsigned int segno, left_blocks;
581	int i;
582
583	/* check current node segment */
584	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585		segno = CURSEG_I(sbi, i)->segno;
586		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589		if (node_blocks > left_blocks)
590			return false;
591	}
592
593	/* check current data segment */
594	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597	if (dent_blocks > left_blocks)
598		return false;
599	return true;
600}
601
602static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603					int freed, int needed)
604{
605	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606					get_pages(sbi, F2FS_DIRTY_DENTS) +
607					get_pages(sbi, F2FS_DIRTY_IMETA);
608	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613	unsigned int free, need_lower, need_upper;
614
615	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
616		return false;
617
618	free = free_sections(sbi) + freed;
619	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
621
622	if (free > need_upper)
623		return false;
624	else if (free <= need_lower)
625		return true;
626	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
627}
628
629static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
630{
631	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
632		return true;
633	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
634		return true;
635	return false;
636}
637
638static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
639{
640	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
641}
642
643static inline int utilization(struct f2fs_sb_info *sbi)
644{
645	return div_u64((u64)valid_user_blocks(sbi) * 100,
646					sbi->user_block_count);
647}
648
649/*
650 * Sometimes f2fs may be better to drop out-of-place update policy.
651 * And, users can control the policy through sysfs entries.
652 * There are five policies with triggering conditions as follows.
653 * F2FS_IPU_FORCE - all the time,
654 * F2FS_IPU_SSR - if SSR mode is activated,
655 * F2FS_IPU_UTIL - if FS utilization is over threashold,
656 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
657 *                     threashold,
658 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659 *                     storages. IPU will be triggered only if the # of dirty
660 *                     pages over min_fsync_blocks. (=default option)
661 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662 * F2FS_IPU_NOCACHE - disable IPU bio cache.
663 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
664 *                            FI_OPU_WRITE flag.
665 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
666 */
667#define DEF_MIN_IPU_UTIL	70
668#define DEF_MIN_FSYNC_BLOCKS	8
669#define DEF_MIN_HOT_BLOCKS	16
670
671#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
672
673enum {
674	F2FS_IPU_FORCE,
675	F2FS_IPU_SSR,
676	F2FS_IPU_UTIL,
677	F2FS_IPU_SSR_UTIL,
678	F2FS_IPU_FSYNC,
679	F2FS_IPU_ASYNC,
680	F2FS_IPU_NOCACHE,
681	F2FS_IPU_HONOR_OPU_WRITE,
682};
683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
685		int type)
686{
687	struct curseg_info *curseg = CURSEG_I(sbi, type);
688	return curseg->segno;
689}
690
691static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
692		int type)
693{
694	struct curseg_info *curseg = CURSEG_I(sbi, type);
695	return curseg->alloc_type;
696}
697
698static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
699{
700	struct curseg_info *curseg = CURSEG_I(sbi, type);
701	return curseg->next_blkoff;
702}
703
704static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
705{
706	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
707}
708
709static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
710{
711	struct f2fs_sb_info *sbi = fio->sbi;
712
713	if (__is_valid_data_blkaddr(fio->old_blkaddr))
714		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
715					META_GENERIC : DATA_GENERIC);
716	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
717					META_GENERIC : DATA_GENERIC_ENHANCE);
718}
719
720/*
721 * Summary block is always treated as an invalid block
722 */
723static inline int check_block_count(struct f2fs_sb_info *sbi,
724		int segno, struct f2fs_sit_entry *raw_sit)
725{
 
726	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
727	int valid_blocks = 0;
728	int cur_pos = 0, next_pos;
729	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
730
731	/* check bitmap with valid block count */
732	do {
733		if (is_valid) {
734			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
735					usable_blks_per_seg,
736					cur_pos);
737			valid_blocks += next_pos - cur_pos;
738		} else
739			next_pos = find_next_bit_le(&raw_sit->valid_map,
740					usable_blks_per_seg,
741					cur_pos);
742		cur_pos = next_pos;
743		is_valid = !is_valid;
744	} while (cur_pos < usable_blks_per_seg);
745
746	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
747		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
748			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
749		set_sbi_flag(sbi, SBI_NEED_FSCK);
750		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
751		return -EFSCORRUPTED;
752	}
753
754	if (usable_blks_per_seg < sbi->blocks_per_seg)
755		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
756				sbi->blocks_per_seg,
757				usable_blks_per_seg) != sbi->blocks_per_seg);
758
759	/* check segment usage, and check boundary of a given segment number */
760	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
761					|| segno > TOTAL_SEGS(sbi) - 1)) {
762		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
763			 GET_SIT_VBLOCKS(raw_sit), segno);
764		set_sbi_flag(sbi, SBI_NEED_FSCK);
765		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
766		return -EFSCORRUPTED;
767	}
768	return 0;
769}
770
771static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
772						unsigned int start)
773{
774	struct sit_info *sit_i = SIT_I(sbi);
775	unsigned int offset = SIT_BLOCK_OFFSET(start);
776	block_t blk_addr = sit_i->sit_base_addr + offset;
777
778	check_seg_range(sbi, start);
779
780#ifdef CONFIG_F2FS_CHECK_FS
781	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
782			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
783		f2fs_bug_on(sbi, 1);
784#endif
785
786	/* calculate sit block address */
787	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
788		blk_addr += sit_i->sit_blocks;
789
790	return blk_addr;
791}
792
793static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
794						pgoff_t block_addr)
795{
796	struct sit_info *sit_i = SIT_I(sbi);
797	block_addr -= sit_i->sit_base_addr;
798	if (block_addr < sit_i->sit_blocks)
799		block_addr += sit_i->sit_blocks;
800	else
801		block_addr -= sit_i->sit_blocks;
802
803	return block_addr + sit_i->sit_base_addr;
804}
805
806static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
807{
808	unsigned int block_off = SIT_BLOCK_OFFSET(start);
809
810	f2fs_change_bit(block_off, sit_i->sit_bitmap);
811#ifdef CONFIG_F2FS_CHECK_FS
812	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
813#endif
814}
815
816static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
817						bool base_time)
818{
819	struct sit_info *sit_i = SIT_I(sbi);
820	time64_t diff, now = ktime_get_boottime_seconds();
821
822	if (now >= sit_i->mounted_time)
823		return sit_i->elapsed_time + now - sit_i->mounted_time;
824
825	/* system time is set to the past */
826	if (!base_time) {
827		diff = sit_i->mounted_time - now;
828		if (sit_i->elapsed_time >= diff)
829			return sit_i->elapsed_time - diff;
830		return 0;
831	}
832	return sit_i->elapsed_time;
833}
834
835static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
836			unsigned int ofs_in_node, unsigned char version)
837{
838	sum->nid = cpu_to_le32(nid);
839	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
840	sum->version = version;
841}
842
843static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
844{
845	return __start_cp_addr(sbi) +
846		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
847}
848
849static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
850{
851	return __start_cp_addr(sbi) +
852		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
853				- (base + 1) + type;
854}
855
 
 
 
 
 
 
 
 
 
856static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
857{
858	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
859		return true;
860	return false;
861}
862
863/*
864 * It is very important to gather dirty pages and write at once, so that we can
865 * submit a big bio without interfering other data writes.
866 * By default, 512 pages for directory data,
867 * 512 pages (2MB) * 8 for nodes, and
868 * 256 pages * 8 for meta are set.
869 */
870static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
871{
872	if (sbi->sb->s_bdi->wb.dirty_exceeded)
873		return 0;
874
875	if (type == DATA)
876		return sbi->blocks_per_seg;
877	else if (type == NODE)
878		return 8 * sbi->blocks_per_seg;
879	else if (type == META)
880		return 8 * BIO_MAX_VECS;
881	else
882		return 0;
883}
884
885/*
886 * When writing pages, it'd better align nr_to_write for segment size.
887 */
888static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
889					struct writeback_control *wbc)
890{
891	long nr_to_write, desired;
892
893	if (wbc->sync_mode != WB_SYNC_NONE)
894		return 0;
895
896	nr_to_write = wbc->nr_to_write;
897	desired = BIO_MAX_VECS;
898	if (type == NODE)
899		desired <<= 1;
900
901	wbc->nr_to_write = desired;
902	return desired - nr_to_write;
903}
904
905static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
906{
907	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
908	bool wakeup = false;
909	int i;
910
911	if (force)
912		goto wake_up;
913
914	mutex_lock(&dcc->cmd_lock);
915	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
916		if (i + 1 < dcc->discard_granularity)
917			break;
918		if (!list_empty(&dcc->pend_list[i])) {
919			wakeup = true;
920			break;
921		}
922	}
923	mutex_unlock(&dcc->cmd_lock);
924	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
925		return;
926wake_up:
927	dcc->discard_wake = 1;
928	wake_up_interruptible_all(&dcc->discard_wait_queue);
929}