Loading...
1/*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/blkdev.h>
12#include <linux/backing-dev.h>
13
14/* constant macro */
15#define NULL_SEGNO ((unsigned int)(~0))
16#define NULL_SECNO ((unsigned int)(~0))
17
18#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23/* L: Logical segment # in volume, R: Relative segment # in main area */
24#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
25#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
26
27#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
28#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
29
30#define IS_CURSEG(sbi, seg) \
31 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
37
38#define IS_CURSEC(sbi, secno) \
39 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
46 sbi->segs_per_sec) || \
47 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
48 sbi->segs_per_sec) || \
49 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
50 sbi->segs_per_sec)) \
51
52#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
53#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
54
55#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
56#define MAIN_SECS(sbi) (sbi->total_sections)
57
58#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
59#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
60
61#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62#define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
63 sbi->log_blocks_per_seg))
64
65#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
66 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
67
68#define NEXT_FREE_BLKADDR(sbi, curseg) \
69 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
70
71#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
72#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
75 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
76
77#define GET_SEGNO(sbi, blk_addr) \
78 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
79 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
80 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81#define GET_SECNO(sbi, segno) \
82 ((segno) / sbi->segs_per_sec)
83#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
84 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
85
86#define GET_SUM_BLOCK(sbi, segno) \
87 ((sbi->sm_info->ssa_blkaddr) + segno)
88
89#define GET_SUM_TYPE(footer) ((footer)->entry_type)
90#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
91
92#define SIT_ENTRY_OFFSET(sit_i, segno) \
93 (segno % sit_i->sents_per_block)
94#define SIT_BLOCK_OFFSET(segno) \
95 (segno / SIT_ENTRY_PER_BLOCK)
96#define START_SEGNO(segno) \
97 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98#define SIT_BLK_CNT(sbi) \
99 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100#define f2fs_bitmap_size(nr) \
101 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
102
103#define SECTOR_FROM_BLOCK(blk_addr) \
104 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105#define SECTOR_TO_BLOCK(sectors) \
106 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107
108/*
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
112 */
113enum {
114 ALLOC_RIGHT = 0,
115 ALLOC_LEFT
116};
117
118/*
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122 */
123enum {
124 LFS = 0,
125 SSR
126};
127
128/*
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
132 */
133enum {
134 GC_CB = 0,
135 GC_GREEDY
136};
137
138/*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
142 */
143enum {
144 BG_GC = 0,
145 FG_GC,
146 FORCE_FG_GC,
147};
148
149/* for a function parameter to select a victim segment */
150struct victim_sel_policy {
151 int alloc_mode; /* LFS or SSR */
152 int gc_mode; /* GC_CB or GC_GREEDY */
153 unsigned long *dirty_segmap; /* dirty segment bitmap */
154 unsigned int max_search; /* maximum # of segments to search */
155 unsigned int offset; /* last scanned bitmap offset */
156 unsigned int ofs_unit; /* bitmap search unit */
157 unsigned int min_cost; /* minimum cost */
158 unsigned int min_segno; /* segment # having min. cost */
159};
160
161struct seg_entry {
162 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
163 unsigned int valid_blocks:10; /* # of valid blocks */
164 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
165 unsigned int padding:6; /* padding */
166 unsigned char *cur_valid_map; /* validity bitmap of blocks */
167 /*
168 * # of valid blocks and the validity bitmap stored in the the last
169 * checkpoint pack. This information is used by the SSR mode.
170 */
171 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
172 unsigned char *discard_map;
173 unsigned long long mtime; /* modification time of the segment */
174};
175
176struct sec_entry {
177 unsigned int valid_blocks; /* # of valid blocks in a section */
178};
179
180struct segment_allocation {
181 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182};
183
184/*
185 * this value is set in page as a private data which indicate that
186 * the page is atomically written, and it is in inmem_pages list.
187 */
188#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
189
190#define IS_ATOMIC_WRITTEN_PAGE(page) \
191 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192
193struct inmem_pages {
194 struct list_head list;
195 struct page *page;
196 block_t old_addr; /* for revoking when fail to commit */
197};
198
199struct sit_info {
200 const struct segment_allocation *s_ops;
201
202 block_t sit_base_addr; /* start block address of SIT area */
203 block_t sit_blocks; /* # of blocks used by SIT area */
204 block_t written_valid_blocks; /* # of valid blocks in main area */
205 char *sit_bitmap; /* SIT bitmap pointer */
206 unsigned int bitmap_size; /* SIT bitmap size */
207
208 unsigned long *tmp_map; /* bitmap for temporal use */
209 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
210 unsigned int dirty_sentries; /* # of dirty sentries */
211 unsigned int sents_per_block; /* # of SIT entries per block */
212 struct mutex sentry_lock; /* to protect SIT cache */
213 struct seg_entry *sentries; /* SIT segment-level cache */
214 struct sec_entry *sec_entries; /* SIT section-level cache */
215
216 /* for cost-benefit algorithm in cleaning procedure */
217 unsigned long long elapsed_time; /* elapsed time after mount */
218 unsigned long long mounted_time; /* mount time */
219 unsigned long long min_mtime; /* min. modification time */
220 unsigned long long max_mtime; /* max. modification time */
221};
222
223struct free_segmap_info {
224 unsigned int start_segno; /* start segment number logically */
225 unsigned int free_segments; /* # of free segments */
226 unsigned int free_sections; /* # of free sections */
227 spinlock_t segmap_lock; /* free segmap lock */
228 unsigned long *free_segmap; /* free segment bitmap */
229 unsigned long *free_secmap; /* free section bitmap */
230};
231
232/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233enum dirty_type {
234 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
235 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
236 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
237 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
238 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
239 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
240 DIRTY, /* to count # of dirty segments */
241 PRE, /* to count # of entirely obsolete segments */
242 NR_DIRTY_TYPE
243};
244
245struct dirty_seglist_info {
246 const struct victim_selection *v_ops; /* victim selction operation */
247 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
248 struct mutex seglist_lock; /* lock for segment bitmaps */
249 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
250 unsigned long *victim_secmap; /* background GC victims */
251};
252
253/* victim selection function for cleaning and SSR */
254struct victim_selection {
255 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256 int, int, char);
257};
258
259/* for active log information */
260struct curseg_info {
261 struct mutex curseg_mutex; /* lock for consistency */
262 struct f2fs_summary_block *sum_blk; /* cached summary block */
263 struct rw_semaphore journal_rwsem; /* protect journal area */
264 struct f2fs_journal *journal; /* cached journal info */
265 unsigned char alloc_type; /* current allocation type */
266 unsigned int segno; /* current segment number */
267 unsigned short next_blkoff; /* next block offset to write */
268 unsigned int zone; /* current zone number */
269 unsigned int next_segno; /* preallocated segment */
270};
271
272struct sit_entry_set {
273 struct list_head set_list; /* link with all sit sets */
274 unsigned int start_segno; /* start segno of sits in set */
275 unsigned int entry_cnt; /* the # of sit entries in set */
276};
277
278/*
279 * inline functions
280 */
281static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282{
283 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284}
285
286static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287 unsigned int segno)
288{
289 struct sit_info *sit_i = SIT_I(sbi);
290 return &sit_i->sentries[segno];
291}
292
293static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294 unsigned int segno)
295{
296 struct sit_info *sit_i = SIT_I(sbi);
297 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298}
299
300static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301 unsigned int segno, int section)
302{
303 /*
304 * In order to get # of valid blocks in a section instantly from many
305 * segments, f2fs manages two counting structures separately.
306 */
307 if (section > 1)
308 return get_sec_entry(sbi, segno)->valid_blocks;
309 else
310 return get_seg_entry(sbi, segno)->valid_blocks;
311}
312
313static inline void seg_info_from_raw_sit(struct seg_entry *se,
314 struct f2fs_sit_entry *rs)
315{
316 se->valid_blocks = GET_SIT_VBLOCKS(rs);
317 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
320 se->type = GET_SIT_TYPE(rs);
321 se->mtime = le64_to_cpu(rs->mtime);
322}
323
324static inline void seg_info_to_raw_sit(struct seg_entry *se,
325 struct f2fs_sit_entry *rs)
326{
327 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328 se->valid_blocks;
329 rs->vblocks = cpu_to_le16(raw_vblocks);
330 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
331 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332 se->ckpt_valid_blocks = se->valid_blocks;
333 rs->mtime = cpu_to_le64(se->mtime);
334}
335
336static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337 unsigned int max, unsigned int segno)
338{
339 unsigned int ret;
340 spin_lock(&free_i->segmap_lock);
341 ret = find_next_bit(free_i->free_segmap, max, segno);
342 spin_unlock(&free_i->segmap_lock);
343 return ret;
344}
345
346static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347{
348 struct free_segmap_info *free_i = FREE_I(sbi);
349 unsigned int secno = segno / sbi->segs_per_sec;
350 unsigned int start_segno = secno * sbi->segs_per_sec;
351 unsigned int next;
352
353 spin_lock(&free_i->segmap_lock);
354 clear_bit(segno, free_i->free_segmap);
355 free_i->free_segments++;
356
357 next = find_next_bit(free_i->free_segmap,
358 start_segno + sbi->segs_per_sec, start_segno);
359 if (next >= start_segno + sbi->segs_per_sec) {
360 clear_bit(secno, free_i->free_secmap);
361 free_i->free_sections++;
362 }
363 spin_unlock(&free_i->segmap_lock);
364}
365
366static inline void __set_inuse(struct f2fs_sb_info *sbi,
367 unsigned int segno)
368{
369 struct free_segmap_info *free_i = FREE_I(sbi);
370 unsigned int secno = segno / sbi->segs_per_sec;
371 set_bit(segno, free_i->free_segmap);
372 free_i->free_segments--;
373 if (!test_and_set_bit(secno, free_i->free_secmap))
374 free_i->free_sections--;
375}
376
377static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378 unsigned int segno)
379{
380 struct free_segmap_info *free_i = FREE_I(sbi);
381 unsigned int secno = segno / sbi->segs_per_sec;
382 unsigned int start_segno = secno * sbi->segs_per_sec;
383 unsigned int next;
384
385 spin_lock(&free_i->segmap_lock);
386 if (test_and_clear_bit(segno, free_i->free_segmap)) {
387 free_i->free_segments++;
388
389 next = find_next_bit(free_i->free_segmap,
390 start_segno + sbi->segs_per_sec, start_segno);
391 if (next >= start_segno + sbi->segs_per_sec) {
392 if (test_and_clear_bit(secno, free_i->free_secmap))
393 free_i->free_sections++;
394 }
395 }
396 spin_unlock(&free_i->segmap_lock);
397}
398
399static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400 unsigned int segno)
401{
402 struct free_segmap_info *free_i = FREE_I(sbi);
403 unsigned int secno = segno / sbi->segs_per_sec;
404 spin_lock(&free_i->segmap_lock);
405 if (!test_and_set_bit(segno, free_i->free_segmap)) {
406 free_i->free_segments--;
407 if (!test_and_set_bit(secno, free_i->free_secmap))
408 free_i->free_sections--;
409 }
410 spin_unlock(&free_i->segmap_lock);
411}
412
413static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414 void *dst_addr)
415{
416 struct sit_info *sit_i = SIT_I(sbi);
417 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418}
419
420static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421{
422 return SIT_I(sbi)->written_valid_blocks;
423}
424
425static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426{
427 return FREE_I(sbi)->free_segments;
428}
429
430static inline int reserved_segments(struct f2fs_sb_info *sbi)
431{
432 return SM_I(sbi)->reserved_segments;
433}
434
435static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436{
437 return FREE_I(sbi)->free_sections;
438}
439
440static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441{
442 return DIRTY_I(sbi)->nr_dirty[PRE];
443}
444
445static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446{
447 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453}
454
455static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456{
457 return SM_I(sbi)->ovp_segments;
458}
459
460static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461{
462 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463}
464
465static inline int reserved_sections(struct f2fs_sb_info *sbi)
466{
467 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468}
469
470static inline bool need_SSR(struct f2fs_sb_info *sbi)
471{
472 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
475
476 if (test_opt(sbi, LFS))
477 return false;
478
479 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
480 reserved_sections(sbi) + 1);
481}
482
483static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
484 int freed, int needed)
485{
486 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
487 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
488 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
489
490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 return false;
492
493 return (free_sections(sbi) + freed) <=
494 (node_secs + 2 * dent_secs + imeta_secs +
495 reserved_sections(sbi) + needed);
496}
497
498static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
499{
500 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
501}
502
503static inline int utilization(struct f2fs_sb_info *sbi)
504{
505 return div_u64((u64)valid_user_blocks(sbi) * 100,
506 sbi->user_block_count);
507}
508
509/*
510 * Sometimes f2fs may be better to drop out-of-place update policy.
511 * And, users can control the policy through sysfs entries.
512 * There are five policies with triggering conditions as follows.
513 * F2FS_IPU_FORCE - all the time,
514 * F2FS_IPU_SSR - if SSR mode is activated,
515 * F2FS_IPU_UTIL - if FS utilization is over threashold,
516 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
517 * threashold,
518 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
519 * storages. IPU will be triggered only if the # of dirty
520 * pages over min_fsync_blocks.
521 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
522 */
523#define DEF_MIN_IPU_UTIL 70
524#define DEF_MIN_FSYNC_BLOCKS 8
525
526enum {
527 F2FS_IPU_FORCE,
528 F2FS_IPU_SSR,
529 F2FS_IPU_UTIL,
530 F2FS_IPU_SSR_UTIL,
531 F2FS_IPU_FSYNC,
532};
533
534static inline bool need_inplace_update(struct inode *inode)
535{
536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
537 unsigned int policy = SM_I(sbi)->ipu_policy;
538
539 /* IPU can be done only for the user data */
540 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
541 return false;
542
543 if (test_opt(sbi, LFS))
544 return false;
545
546 if (policy & (0x1 << F2FS_IPU_FORCE))
547 return true;
548 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
549 return true;
550 if (policy & (0x1 << F2FS_IPU_UTIL) &&
551 utilization(sbi) > SM_I(sbi)->min_ipu_util)
552 return true;
553 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
554 utilization(sbi) > SM_I(sbi)->min_ipu_util)
555 return true;
556
557 /* this is only set during fdatasync */
558 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
559 is_inode_flag_set(inode, FI_NEED_IPU))
560 return true;
561
562 return false;
563}
564
565static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
566 int type)
567{
568 struct curseg_info *curseg = CURSEG_I(sbi, type);
569 return curseg->segno;
570}
571
572static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
573 int type)
574{
575 struct curseg_info *curseg = CURSEG_I(sbi, type);
576 return curseg->alloc_type;
577}
578
579static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
580{
581 struct curseg_info *curseg = CURSEG_I(sbi, type);
582 return curseg->next_blkoff;
583}
584
585static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
586{
587 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
588}
589
590static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
591{
592 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
593 || blk_addr >= MAX_BLKADDR(sbi));
594}
595
596/*
597 * Summary block is always treated as an invalid block
598 */
599static inline void check_block_count(struct f2fs_sb_info *sbi,
600 int segno, struct f2fs_sit_entry *raw_sit)
601{
602#ifdef CONFIG_F2FS_CHECK_FS
603 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
604 int valid_blocks = 0;
605 int cur_pos = 0, next_pos;
606
607 /* check bitmap with valid block count */
608 do {
609 if (is_valid) {
610 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
611 sbi->blocks_per_seg,
612 cur_pos);
613 valid_blocks += next_pos - cur_pos;
614 } else
615 next_pos = find_next_bit_le(&raw_sit->valid_map,
616 sbi->blocks_per_seg,
617 cur_pos);
618 cur_pos = next_pos;
619 is_valid = !is_valid;
620 } while (cur_pos < sbi->blocks_per_seg);
621 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
622#endif
623 /* check segment usage, and check boundary of a given segment number */
624 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
625 || segno > TOTAL_SEGS(sbi) - 1);
626}
627
628static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629 unsigned int start)
630{
631 struct sit_info *sit_i = SIT_I(sbi);
632 unsigned int offset = SIT_BLOCK_OFFSET(start);
633 block_t blk_addr = sit_i->sit_base_addr + offset;
634
635 check_seg_range(sbi, start);
636
637 /* calculate sit block address */
638 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639 blk_addr += sit_i->sit_blocks;
640
641 return blk_addr;
642}
643
644static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645 pgoff_t block_addr)
646{
647 struct sit_info *sit_i = SIT_I(sbi);
648 block_addr -= sit_i->sit_base_addr;
649 if (block_addr < sit_i->sit_blocks)
650 block_addr += sit_i->sit_blocks;
651 else
652 block_addr -= sit_i->sit_blocks;
653
654 return block_addr + sit_i->sit_base_addr;
655}
656
657static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
658{
659 unsigned int block_off = SIT_BLOCK_OFFSET(start);
660
661 f2fs_change_bit(block_off, sit_i->sit_bitmap);
662}
663
664static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
665{
666 struct sit_info *sit_i = SIT_I(sbi);
667 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668 sit_i->mounted_time;
669}
670
671static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672 unsigned int ofs_in_node, unsigned char version)
673{
674 sum->nid = cpu_to_le32(nid);
675 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676 sum->version = version;
677}
678
679static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
680{
681 return __start_cp_addr(sbi) +
682 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
683}
684
685static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
686{
687 return __start_cp_addr(sbi) +
688 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689 - (base + 1) + type;
690}
691
692static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
693 unsigned int secno)
694{
695 if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
696 sbi->fggc_threshold)
697 return true;
698 return false;
699}
700
701static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
702{
703 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
704 return true;
705 return false;
706}
707
708/*
709 * It is very important to gather dirty pages and write at once, so that we can
710 * submit a big bio without interfering other data writes.
711 * By default, 512 pages for directory data,
712 * 512 pages (2MB) * 3 for three types of nodes, and
713 * max_bio_blocks for meta are set.
714 */
715static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716{
717 if (sbi->sb->s_bdi->wb.dirty_exceeded)
718 return 0;
719
720 if (type == DATA)
721 return sbi->blocks_per_seg;
722 else if (type == NODE)
723 return 8 * sbi->blocks_per_seg;
724 else if (type == META)
725 return 8 * BIO_MAX_PAGES;
726 else
727 return 0;
728}
729
730/*
731 * When writing pages, it'd better align nr_to_write for segment size.
732 */
733static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
734 struct writeback_control *wbc)
735{
736 long nr_to_write, desired;
737
738 if (wbc->sync_mode != WB_SYNC_NONE)
739 return 0;
740
741 nr_to_write = wbc->nr_to_write;
742 desired = BIO_MAX_PAGES;
743 if (type == NODE)
744 desired <<= 1;
745
746 wbc->nr_to_write = desired;
747 return desired - nr_to_write;
748}
1/*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/blkdev.h>
12#include <linux/backing-dev.h>
13
14/* constant macro */
15#define NULL_SEGNO ((unsigned int)(~0))
16#define NULL_SECNO ((unsigned int)(~0))
17
18#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20/* L: Logical segment # in volume, R: Relative segment # in main area */
21#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27#define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35#define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53#define MAIN_SECS(sbi) (sbi->total_sections)
54
55#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59#define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65#define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74#define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78#define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83#define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86#define GET_SUM_TYPE(footer) ((footer)->entry_type)
87#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89#define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91#define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93#define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95#define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97#define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100#define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102#define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104#define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107/*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115};
116
117/*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122enum {
123 LFS = 0,
124 SSR
125};
126
127/*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132enum {
133 GC_CB = 0,
134 GC_GREEDY
135};
136
137/*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142enum {
143 BG_GC = 0,
144 FG_GC,
145 FORCE_FG_GC,
146};
147
148/* for a function parameter to select a victim segment */
149struct victim_sel_policy {
150 int alloc_mode; /* LFS or SSR */
151 int gc_mode; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap; /* dirty segment bitmap */
153 unsigned int max_search; /* maximum # of segments to search */
154 unsigned int offset; /* last scanned bitmap offset */
155 unsigned int ofs_unit; /* bitmap search unit */
156 unsigned int min_cost; /* minimum cost */
157 unsigned int min_segno; /* segment # having min. cost */
158};
159
160struct seg_entry {
161 unsigned short valid_blocks; /* # of valid blocks */
162 unsigned char *cur_valid_map; /* validity bitmap of blocks */
163 /*
164 * # of valid blocks and the validity bitmap stored in the the last
165 * checkpoint pack. This information is used by the SSR mode.
166 */
167 unsigned short ckpt_valid_blocks;
168 unsigned char *ckpt_valid_map;
169 unsigned char *discard_map;
170 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
171 unsigned long long mtime; /* modification time of the segment */
172};
173
174struct sec_entry {
175 unsigned int valid_blocks; /* # of valid blocks in a section */
176};
177
178struct segment_allocation {
179 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180};
181
182/*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186#define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
187
188#define IS_ATOMIC_WRITTEN_PAGE(page) \
189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
191struct inmem_pages {
192 struct list_head list;
193 struct page *page;
194 block_t old_addr; /* for revoking when fail to commit */
195};
196
197struct sit_info {
198 const struct segment_allocation *s_ops;
199
200 block_t sit_base_addr; /* start block address of SIT area */
201 block_t sit_blocks; /* # of blocks used by SIT area */
202 block_t written_valid_blocks; /* # of valid blocks in main area */
203 char *sit_bitmap; /* SIT bitmap pointer */
204 unsigned int bitmap_size; /* SIT bitmap size */
205
206 unsigned long *tmp_map; /* bitmap for temporal use */
207 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
208 unsigned int dirty_sentries; /* # of dirty sentries */
209 unsigned int sents_per_block; /* # of SIT entries per block */
210 struct mutex sentry_lock; /* to protect SIT cache */
211 struct seg_entry *sentries; /* SIT segment-level cache */
212 struct sec_entry *sec_entries; /* SIT section-level cache */
213
214 /* for cost-benefit algorithm in cleaning procedure */
215 unsigned long long elapsed_time; /* elapsed time after mount */
216 unsigned long long mounted_time; /* mount time */
217 unsigned long long min_mtime; /* min. modification time */
218 unsigned long long max_mtime; /* max. modification time */
219};
220
221struct free_segmap_info {
222 unsigned int start_segno; /* start segment number logically */
223 unsigned int free_segments; /* # of free segments */
224 unsigned int free_sections; /* # of free sections */
225 spinlock_t segmap_lock; /* free segmap lock */
226 unsigned long *free_segmap; /* free segment bitmap */
227 unsigned long *free_secmap; /* free section bitmap */
228};
229
230/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
231enum dirty_type {
232 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
233 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
234 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
235 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
236 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
237 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
238 DIRTY, /* to count # of dirty segments */
239 PRE, /* to count # of entirely obsolete segments */
240 NR_DIRTY_TYPE
241};
242
243struct dirty_seglist_info {
244 const struct victim_selection *v_ops; /* victim selction operation */
245 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
246 struct mutex seglist_lock; /* lock for segment bitmaps */
247 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
248 unsigned long *victim_secmap; /* background GC victims */
249};
250
251/* victim selection function for cleaning and SSR */
252struct victim_selection {
253 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
254 int, int, char);
255};
256
257/* for active log information */
258struct curseg_info {
259 struct mutex curseg_mutex; /* lock for consistency */
260 struct f2fs_summary_block *sum_blk; /* cached summary block */
261 struct rw_semaphore journal_rwsem; /* protect journal area */
262 struct f2fs_journal *journal; /* cached journal info */
263 unsigned char alloc_type; /* current allocation type */
264 unsigned int segno; /* current segment number */
265 unsigned short next_blkoff; /* next block offset to write */
266 unsigned int zone; /* current zone number */
267 unsigned int next_segno; /* preallocated segment */
268};
269
270struct sit_entry_set {
271 struct list_head set_list; /* link with all sit sets */
272 unsigned int start_segno; /* start segno of sits in set */
273 unsigned int entry_cnt; /* the # of sit entries in set */
274};
275
276/*
277 * inline functions
278 */
279static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
280{
281 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
282}
283
284static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
285 unsigned int segno)
286{
287 struct sit_info *sit_i = SIT_I(sbi);
288 return &sit_i->sentries[segno];
289}
290
291static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
292 unsigned int segno)
293{
294 struct sit_info *sit_i = SIT_I(sbi);
295 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
296}
297
298static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
299 unsigned int segno, int section)
300{
301 /*
302 * In order to get # of valid blocks in a section instantly from many
303 * segments, f2fs manages two counting structures separately.
304 */
305 if (section > 1)
306 return get_sec_entry(sbi, segno)->valid_blocks;
307 else
308 return get_seg_entry(sbi, segno)->valid_blocks;
309}
310
311static inline void seg_info_from_raw_sit(struct seg_entry *se,
312 struct f2fs_sit_entry *rs)
313{
314 se->valid_blocks = GET_SIT_VBLOCKS(rs);
315 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
316 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
317 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
318 se->type = GET_SIT_TYPE(rs);
319 se->mtime = le64_to_cpu(rs->mtime);
320}
321
322static inline void seg_info_to_raw_sit(struct seg_entry *se,
323 struct f2fs_sit_entry *rs)
324{
325 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
326 se->valid_blocks;
327 rs->vblocks = cpu_to_le16(raw_vblocks);
328 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
329 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
330 se->ckpt_valid_blocks = se->valid_blocks;
331 rs->mtime = cpu_to_le64(se->mtime);
332}
333
334static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
335 unsigned int max, unsigned int segno)
336{
337 unsigned int ret;
338 spin_lock(&free_i->segmap_lock);
339 ret = find_next_bit(free_i->free_segmap, max, segno);
340 spin_unlock(&free_i->segmap_lock);
341 return ret;
342}
343
344static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
345{
346 struct free_segmap_info *free_i = FREE_I(sbi);
347 unsigned int secno = segno / sbi->segs_per_sec;
348 unsigned int start_segno = secno * sbi->segs_per_sec;
349 unsigned int next;
350
351 spin_lock(&free_i->segmap_lock);
352 clear_bit(segno, free_i->free_segmap);
353 free_i->free_segments++;
354
355 next = find_next_bit(free_i->free_segmap,
356 start_segno + sbi->segs_per_sec, start_segno);
357 if (next >= start_segno + sbi->segs_per_sec) {
358 clear_bit(secno, free_i->free_secmap);
359 free_i->free_sections++;
360 }
361 spin_unlock(&free_i->segmap_lock);
362}
363
364static inline void __set_inuse(struct f2fs_sb_info *sbi,
365 unsigned int segno)
366{
367 struct free_segmap_info *free_i = FREE_I(sbi);
368 unsigned int secno = segno / sbi->segs_per_sec;
369 set_bit(segno, free_i->free_segmap);
370 free_i->free_segments--;
371 if (!test_and_set_bit(secno, free_i->free_secmap))
372 free_i->free_sections--;
373}
374
375static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
376 unsigned int segno)
377{
378 struct free_segmap_info *free_i = FREE_I(sbi);
379 unsigned int secno = segno / sbi->segs_per_sec;
380 unsigned int start_segno = secno * sbi->segs_per_sec;
381 unsigned int next;
382
383 spin_lock(&free_i->segmap_lock);
384 if (test_and_clear_bit(segno, free_i->free_segmap)) {
385 free_i->free_segments++;
386
387 next = find_next_bit(free_i->free_segmap,
388 start_segno + sbi->segs_per_sec, start_segno);
389 if (next >= start_segno + sbi->segs_per_sec) {
390 if (test_and_clear_bit(secno, free_i->free_secmap))
391 free_i->free_sections++;
392 }
393 }
394 spin_unlock(&free_i->segmap_lock);
395}
396
397static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
398 unsigned int segno)
399{
400 struct free_segmap_info *free_i = FREE_I(sbi);
401 unsigned int secno = segno / sbi->segs_per_sec;
402 spin_lock(&free_i->segmap_lock);
403 if (!test_and_set_bit(segno, free_i->free_segmap)) {
404 free_i->free_segments--;
405 if (!test_and_set_bit(secno, free_i->free_secmap))
406 free_i->free_sections--;
407 }
408 spin_unlock(&free_i->segmap_lock);
409}
410
411static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
412 void *dst_addr)
413{
414 struct sit_info *sit_i = SIT_I(sbi);
415 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
416}
417
418static inline block_t written_block_count(struct f2fs_sb_info *sbi)
419{
420 return SIT_I(sbi)->written_valid_blocks;
421}
422
423static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
424{
425 return FREE_I(sbi)->free_segments;
426}
427
428static inline int reserved_segments(struct f2fs_sb_info *sbi)
429{
430 return SM_I(sbi)->reserved_segments;
431}
432
433static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
434{
435 return FREE_I(sbi)->free_sections;
436}
437
438static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
439{
440 return DIRTY_I(sbi)->nr_dirty[PRE];
441}
442
443static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
444{
445 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
446 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
447 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
448 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
449 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
450 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
451}
452
453static inline int overprovision_segments(struct f2fs_sb_info *sbi)
454{
455 return SM_I(sbi)->ovp_segments;
456}
457
458static inline int overprovision_sections(struct f2fs_sb_info *sbi)
459{
460 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
461}
462
463static inline int reserved_sections(struct f2fs_sb_info *sbi)
464{
465 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
466}
467
468static inline bool need_SSR(struct f2fs_sb_info *sbi)
469{
470 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
471 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
472 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
473 reserved_sections(sbi) + 1);
474}
475
476static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
477{
478 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
479 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
480
481 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482 return false;
483
484 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
485 reserved_sections(sbi));
486}
487
488static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
489{
490 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
491}
492
493static inline int utilization(struct f2fs_sb_info *sbi)
494{
495 return div_u64((u64)valid_user_blocks(sbi) * 100,
496 sbi->user_block_count);
497}
498
499/*
500 * Sometimes f2fs may be better to drop out-of-place update policy.
501 * And, users can control the policy through sysfs entries.
502 * There are five policies with triggering conditions as follows.
503 * F2FS_IPU_FORCE - all the time,
504 * F2FS_IPU_SSR - if SSR mode is activated,
505 * F2FS_IPU_UTIL - if FS utilization is over threashold,
506 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
507 * threashold,
508 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
509 * storages. IPU will be triggered only if the # of dirty
510 * pages over min_fsync_blocks.
511 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
512 */
513#define DEF_MIN_IPU_UTIL 70
514#define DEF_MIN_FSYNC_BLOCKS 8
515
516enum {
517 F2FS_IPU_FORCE,
518 F2FS_IPU_SSR,
519 F2FS_IPU_UTIL,
520 F2FS_IPU_SSR_UTIL,
521 F2FS_IPU_FSYNC,
522};
523
524static inline bool need_inplace_update(struct inode *inode)
525{
526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
527 unsigned int policy = SM_I(sbi)->ipu_policy;
528
529 /* IPU can be done only for the user data */
530 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
531 return false;
532
533 if (policy & (0x1 << F2FS_IPU_FORCE))
534 return true;
535 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
536 return true;
537 if (policy & (0x1 << F2FS_IPU_UTIL) &&
538 utilization(sbi) > SM_I(sbi)->min_ipu_util)
539 return true;
540 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
541 utilization(sbi) > SM_I(sbi)->min_ipu_util)
542 return true;
543
544 /* this is only set during fdatasync */
545 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
546 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
547 return true;
548
549 return false;
550}
551
552static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
553 int type)
554{
555 struct curseg_info *curseg = CURSEG_I(sbi, type);
556 return curseg->segno;
557}
558
559static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
560 int type)
561{
562 struct curseg_info *curseg = CURSEG_I(sbi, type);
563 return curseg->alloc_type;
564}
565
566static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
567{
568 struct curseg_info *curseg = CURSEG_I(sbi, type);
569 return curseg->next_blkoff;
570}
571
572static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
573{
574 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
575}
576
577static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
578{
579 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
580 || blk_addr >= MAX_BLKADDR(sbi));
581}
582
583/*
584 * Summary block is always treated as an invalid block
585 */
586static inline void check_block_count(struct f2fs_sb_info *sbi,
587 int segno, struct f2fs_sit_entry *raw_sit)
588{
589#ifdef CONFIG_F2FS_CHECK_FS
590 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
591 int valid_blocks = 0;
592 int cur_pos = 0, next_pos;
593
594 /* check bitmap with valid block count */
595 do {
596 if (is_valid) {
597 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
598 sbi->blocks_per_seg,
599 cur_pos);
600 valid_blocks += next_pos - cur_pos;
601 } else
602 next_pos = find_next_bit_le(&raw_sit->valid_map,
603 sbi->blocks_per_seg,
604 cur_pos);
605 cur_pos = next_pos;
606 is_valid = !is_valid;
607 } while (cur_pos < sbi->blocks_per_seg);
608 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
609#endif
610 /* check segment usage, and check boundary of a given segment number */
611 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
612 || segno > TOTAL_SEGS(sbi) - 1);
613}
614
615static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
616 unsigned int start)
617{
618 struct sit_info *sit_i = SIT_I(sbi);
619 unsigned int offset = SIT_BLOCK_OFFSET(start);
620 block_t blk_addr = sit_i->sit_base_addr + offset;
621
622 check_seg_range(sbi, start);
623
624 /* calculate sit block address */
625 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
626 blk_addr += sit_i->sit_blocks;
627
628 return blk_addr;
629}
630
631static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
632 pgoff_t block_addr)
633{
634 struct sit_info *sit_i = SIT_I(sbi);
635 block_addr -= sit_i->sit_base_addr;
636 if (block_addr < sit_i->sit_blocks)
637 block_addr += sit_i->sit_blocks;
638 else
639 block_addr -= sit_i->sit_blocks;
640
641 return block_addr + sit_i->sit_base_addr;
642}
643
644static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
645{
646 unsigned int block_off = SIT_BLOCK_OFFSET(start);
647
648 f2fs_change_bit(block_off, sit_i->sit_bitmap);
649}
650
651static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
652{
653 struct sit_info *sit_i = SIT_I(sbi);
654 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
655 sit_i->mounted_time;
656}
657
658static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
659 unsigned int ofs_in_node, unsigned char version)
660{
661 sum->nid = cpu_to_le32(nid);
662 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
663 sum->version = version;
664}
665
666static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
667{
668 return __start_cp_addr(sbi) +
669 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
670}
671
672static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
673{
674 return __start_cp_addr(sbi) +
675 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
676 - (base + 1) + type;
677}
678
679static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
680{
681 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
682 return true;
683 return false;
684}
685
686static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
687{
688 struct block_device *bdev = sbi->sb->s_bdev;
689 struct request_queue *q = bdev_get_queue(bdev);
690 return SECTOR_TO_BLOCK(queue_max_sectors(q));
691}
692
693/*
694 * It is very important to gather dirty pages and write at once, so that we can
695 * submit a big bio without interfering other data writes.
696 * By default, 512 pages for directory data,
697 * 512 pages (2MB) * 3 for three types of nodes, and
698 * max_bio_blocks for meta are set.
699 */
700static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
701{
702 if (sbi->sb->s_bdi->wb.dirty_exceeded)
703 return 0;
704
705 if (type == DATA)
706 return sbi->blocks_per_seg;
707 else if (type == NODE)
708 return 3 * sbi->blocks_per_seg;
709 else if (type == META)
710 return MAX_BIO_BLOCKS(sbi);
711 else
712 return 0;
713}
714
715/*
716 * When writing pages, it'd better align nr_to_write for segment size.
717 */
718static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
719 struct writeback_control *wbc)
720{
721 long nr_to_write, desired;
722
723 if (wbc->sync_mode != WB_SYNC_NONE)
724 return 0;
725
726 nr_to_write = wbc->nr_to_write;
727
728 if (type == DATA)
729 desired = 4096;
730 else if (type == NODE)
731 desired = 3 * max_hw_blocks(sbi);
732 else
733 desired = MAX_BIO_BLOCKS(sbi);
734
735 wbc->nr_to_write = desired;
736 return desired - nr_to_write;
737}