Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  Digital Audio (PCM) abstract layer
   3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4 *                   Abramo Bagnara <abramo@alsa-project.org>
   5 *
   6 *
   7 *   This program is free software; you can redistribute it and/or modify
   8 *   it under the terms of the GNU General Public License as published by
   9 *   the Free Software Foundation; either version 2 of the License, or
  10 *   (at your option) any later version.
  11 *
  12 *   This program is distributed in the hope that it will be useful,
  13 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *   GNU General Public License for more details.
  16 *
  17 *   You should have received a copy of the GNU General Public License
  18 *   along with this program; if not, write to the Free Software
  19 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 *
  21 */
  22
  23#include <linux/slab.h>
 
  24#include <linux/time.h>
  25#include <linux/math64.h>
  26#include <linux/export.h>
  27#include <sound/core.h>
  28#include <sound/control.h>
  29#include <sound/tlv.h>
  30#include <sound/info.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/timer.h>
  34
 
 
  35#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  36#define CREATE_TRACE_POINTS
  37#include "pcm_trace.h"
  38#else
  39#define trace_hwptr(substream, pos, in_interrupt)
  40#define trace_xrun(substream)
  41#define trace_hw_ptr_error(substream, reason)
 
  42#endif
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44/*
  45 * fill ring buffer with silence
  46 * runtime->silence_start: starting pointer to silence area
  47 * runtime->silence_filled: size filled with silence
  48 * runtime->silence_threshold: threshold from application
  49 * runtime->silence_size: maximal size from application
  50 *
  51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  52 */
  53void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  54{
  55	struct snd_pcm_runtime *runtime = substream->runtime;
  56	snd_pcm_uframes_t frames, ofs, transfer;
 
  57
  58	if (runtime->silence_size < runtime->boundary) {
  59		snd_pcm_sframes_t noise_dist, n;
  60		if (runtime->silence_start != runtime->control->appl_ptr) {
  61			n = runtime->control->appl_ptr - runtime->silence_start;
  62			if (n < 0)
  63				n += runtime->boundary;
  64			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
  65				runtime->silence_filled -= n;
  66			else
  67				runtime->silence_filled = 0;
  68			runtime->silence_start = runtime->control->appl_ptr;
  69		}
  70		if (runtime->silence_filled >= runtime->buffer_size)
  71			return;
  72		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
  73		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  74			return;
  75		frames = runtime->silence_threshold - noise_dist;
  76		if (frames > runtime->silence_size)
  77			frames = runtime->silence_size;
  78	} else {
  79		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
  80			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
  81			if (avail > runtime->buffer_size)
  82				avail = runtime->buffer_size;
  83			runtime->silence_filled = avail > 0 ? avail : 0;
  84			runtime->silence_start = (runtime->status->hw_ptr +
  85						  runtime->silence_filled) %
  86						 runtime->boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87		} else {
  88			ofs = runtime->status->hw_ptr;
  89			frames = new_hw_ptr - ofs;
  90			if ((snd_pcm_sframes_t)frames < 0)
  91				frames += runtime->boundary;
  92			runtime->silence_filled -= frames;
  93			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
  94				runtime->silence_filled = 0;
  95				runtime->silence_start = new_hw_ptr;
  96			} else {
  97				runtime->silence_start = ofs;
  98			}
  99		}
 
 
 
 
 100		frames = runtime->buffer_size - runtime->silence_filled;
 101	}
 102	if (snd_BUG_ON(frames > runtime->buffer_size))
 103		return;
 104	if (frames == 0)
 105		return;
 106	ofs = runtime->silence_start % runtime->buffer_size;
 107	while (frames > 0) {
 108		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 109		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
 110		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
 111			if (substream->ops->silence) {
 112				int err;
 113				err = substream->ops->silence(substream, -1, ofs, transfer);
 114				snd_BUG_ON(err < 0);
 115			} else {
 116				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
 117				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
 118			}
 119		} else {
 120			unsigned int c;
 121			unsigned int channels = runtime->channels;
 122			if (substream->ops->silence) {
 123				for (c = 0; c < channels; ++c) {
 124					int err;
 125					err = substream->ops->silence(substream, c, ofs, transfer);
 126					snd_BUG_ON(err < 0);
 127				}
 128			} else {
 129				size_t dma_csize = runtime->dma_bytes / channels;
 130				for (c = 0; c < channels; ++c) {
 131					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
 132					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
 133				}
 134			}
 135		}
 136		runtime->silence_filled += transfer;
 137		frames -= transfer;
 138		ofs = 0;
 139	}
 
 140}
 141
 142#ifdef CONFIG_SND_DEBUG
 143void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 144			   char *name, size_t len)
 145{
 146	snprintf(name, len, "pcmC%dD%d%c:%d",
 147		 substream->pcm->card->number,
 148		 substream->pcm->device,
 149		 substream->stream ? 'c' : 'p',
 150		 substream->number);
 151}
 152EXPORT_SYMBOL(snd_pcm_debug_name);
 153#endif
 154
 155#define XRUN_DEBUG_BASIC	(1<<0)
 156#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 157#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 158
 159#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 160
 161#define xrun_debug(substream, mask) \
 162			((substream)->pstr->xrun_debug & (mask))
 163#else
 164#define xrun_debug(substream, mask)	0
 165#endif
 166
 167#define dump_stack_on_xrun(substream) do {			\
 168		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 169			dump_stack();				\
 170	} while (0)
 171
 172static void xrun(struct snd_pcm_substream *substream)
 
 173{
 174	struct snd_pcm_runtime *runtime = substream->runtime;
 175
 176	trace_xrun(substream);
 177	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
 178		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
 
 
 
 
 
 179	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 180	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 181		char name[16];
 182		snd_pcm_debug_name(substream, name, sizeof(name));
 183		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 184		dump_stack_on_xrun(substream);
 185	}
 
 
 
 186}
 187
 188#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 189#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 190	do {								\
 191		trace_hw_ptr_error(substream, reason);	\
 192		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 193			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 194					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 195			dump_stack_on_xrun(substream);			\
 196		}							\
 197	} while (0)
 198
 199#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 200
 201#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 202
 203#endif
 204
 205int snd_pcm_update_state(struct snd_pcm_substream *substream,
 206			 struct snd_pcm_runtime *runtime)
 207{
 208	snd_pcm_uframes_t avail;
 209
 210	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 211		avail = snd_pcm_playback_avail(runtime);
 212	else
 213		avail = snd_pcm_capture_avail(runtime);
 214	if (avail > runtime->avail_max)
 215		runtime->avail_max = avail;
 216	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
 217		if (avail >= runtime->buffer_size) {
 218			snd_pcm_drain_done(substream);
 219			return -EPIPE;
 220		}
 221	} else {
 222		if (avail >= runtime->stop_threshold) {
 223			xrun(substream);
 224			return -EPIPE;
 225		}
 226	}
 227	if (runtime->twake) {
 228		if (avail >= runtime->twake)
 229			wake_up(&runtime->tsleep);
 230	} else if (avail >= runtime->control->avail_min)
 231		wake_up(&runtime->sleep);
 232	return 0;
 233}
 234
 235static void update_audio_tstamp(struct snd_pcm_substream *substream,
 236				struct timespec *curr_tstamp,
 237				struct timespec *audio_tstamp)
 238{
 239	struct snd_pcm_runtime *runtime = substream->runtime;
 240	u64 audio_frames, audio_nsecs;
 241	struct timespec driver_tstamp;
 242
 243	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 244		return;
 245
 246	if (!(substream->ops->get_time_info) ||
 247		(runtime->audio_tstamp_report.actual_type ==
 248			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 249
 250		/*
 251		 * provide audio timestamp derived from pointer position
 252		 * add delay only if requested
 253		 */
 254
 255		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 256
 257		if (runtime->audio_tstamp_config.report_delay) {
 258			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 259				audio_frames -=  runtime->delay;
 260			else
 261				audio_frames +=  runtime->delay;
 262		}
 263		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 264				runtime->rate);
 265		*audio_tstamp = ns_to_timespec(audio_nsecs);
 266	}
 267	runtime->status->audio_tstamp = *audio_tstamp;
 268	runtime->status->tstamp = *curr_tstamp;
 
 
 
 
 
 
 
 269
 270	/*
 271	 * re-take a driver timestamp to let apps detect if the reference tstamp
 272	 * read by low-level hardware was provided with a delay
 273	 */
 274	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
 275	runtime->driver_tstamp = driver_tstamp;
 276}
 277
 278static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 279				  unsigned int in_interrupt)
 280{
 281	struct snd_pcm_runtime *runtime = substream->runtime;
 282	snd_pcm_uframes_t pos;
 283	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 284	snd_pcm_sframes_t hdelta, delta;
 285	unsigned long jdelta;
 286	unsigned long curr_jiffies;
 287	struct timespec curr_tstamp;
 288	struct timespec audio_tstamp;
 289	int crossed_boundary = 0;
 290
 291	old_hw_ptr = runtime->status->hw_ptr;
 292
 293	/*
 294	 * group pointer, time and jiffies reads to allow for more
 295	 * accurate correlations/corrections.
 296	 * The values are stored at the end of this routine after
 297	 * corrections for hw_ptr position
 298	 */
 299	pos = substream->ops->pointer(substream);
 300	curr_jiffies = jiffies;
 301	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 302		if ((substream->ops->get_time_info) &&
 303			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 304			substream->ops->get_time_info(substream, &curr_tstamp,
 305						&audio_tstamp,
 306						&runtime->audio_tstamp_config,
 307						&runtime->audio_tstamp_report);
 308
 309			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 310			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 311				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 312		} else
 313			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
 314	}
 315
 316	if (pos == SNDRV_PCM_POS_XRUN) {
 317		xrun(substream);
 318		return -EPIPE;
 319	}
 320	if (pos >= runtime->buffer_size) {
 321		if (printk_ratelimit()) {
 322			char name[16];
 323			snd_pcm_debug_name(substream, name, sizeof(name));
 324			pcm_err(substream->pcm,
 325				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 326				name, pos, runtime->buffer_size,
 327				runtime->period_size);
 328		}
 329		pos = 0;
 330	}
 331	pos -= pos % runtime->min_align;
 332	trace_hwptr(substream, pos, in_interrupt);
 333	hw_base = runtime->hw_ptr_base;
 334	new_hw_ptr = hw_base + pos;
 335	if (in_interrupt) {
 336		/* we know that one period was processed */
 337		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 338		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 339		if (delta > new_hw_ptr) {
 340			/* check for double acknowledged interrupts */
 341			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 342			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 343				hw_base += runtime->buffer_size;
 344				if (hw_base >= runtime->boundary) {
 345					hw_base = 0;
 346					crossed_boundary++;
 347				}
 348				new_hw_ptr = hw_base + pos;
 349				goto __delta;
 350			}
 351		}
 352	}
 353	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 354	/* pointer crosses the end of the ring buffer */
 355	if (new_hw_ptr < old_hw_ptr) {
 356		hw_base += runtime->buffer_size;
 357		if (hw_base >= runtime->boundary) {
 358			hw_base = 0;
 359			crossed_boundary++;
 360		}
 361		new_hw_ptr = hw_base + pos;
 362	}
 363      __delta:
 364	delta = new_hw_ptr - old_hw_ptr;
 365	if (delta < 0)
 366		delta += runtime->boundary;
 367
 368	if (runtime->no_period_wakeup) {
 369		snd_pcm_sframes_t xrun_threshold;
 370		/*
 371		 * Without regular period interrupts, we have to check
 372		 * the elapsed time to detect xruns.
 373		 */
 374		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 375		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 376			goto no_delta_check;
 377		hdelta = jdelta - delta * HZ / runtime->rate;
 378		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 379		while (hdelta > xrun_threshold) {
 380			delta += runtime->buffer_size;
 381			hw_base += runtime->buffer_size;
 382			if (hw_base >= runtime->boundary) {
 383				hw_base = 0;
 384				crossed_boundary++;
 385			}
 386			new_hw_ptr = hw_base + pos;
 387			hdelta -= runtime->hw_ptr_buffer_jiffies;
 388		}
 389		goto no_delta_check;
 390	}
 391
 392	/* something must be really wrong */
 393	if (delta >= runtime->buffer_size + runtime->period_size) {
 394		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 395			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 396			     substream->stream, (long)pos,
 397			     (long)new_hw_ptr, (long)old_hw_ptr);
 398		return 0;
 399	}
 400
 401	/* Do jiffies check only in xrun_debug mode */
 402	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 403		goto no_jiffies_check;
 404
 405	/* Skip the jiffies check for hardwares with BATCH flag.
 406	 * Such hardware usually just increases the position at each IRQ,
 407	 * thus it can't give any strange position.
 408	 */
 409	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 410		goto no_jiffies_check;
 411	hdelta = delta;
 412	if (hdelta < runtime->delay)
 413		goto no_jiffies_check;
 414	hdelta -= runtime->delay;
 415	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 416	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 417		delta = jdelta /
 418			(((runtime->period_size * HZ) / runtime->rate)
 419								+ HZ/100);
 420		/* move new_hw_ptr according jiffies not pos variable */
 421		new_hw_ptr = old_hw_ptr;
 422		hw_base = delta;
 423		/* use loop to avoid checks for delta overflows */
 424		/* the delta value is small or zero in most cases */
 425		while (delta > 0) {
 426			new_hw_ptr += runtime->period_size;
 427			if (new_hw_ptr >= runtime->boundary) {
 428				new_hw_ptr -= runtime->boundary;
 429				crossed_boundary--;
 430			}
 431			delta--;
 432		}
 433		/* align hw_base to buffer_size */
 434		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 435			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 436			     (long)pos, (long)hdelta,
 437			     (long)runtime->period_size, jdelta,
 438			     ((hdelta * HZ) / runtime->rate), hw_base,
 439			     (unsigned long)old_hw_ptr,
 440			     (unsigned long)new_hw_ptr);
 441		/* reset values to proper state */
 442		delta = 0;
 443		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 444	}
 445 no_jiffies_check:
 446	if (delta > runtime->period_size + runtime->period_size / 2) {
 447		hw_ptr_error(substream, in_interrupt,
 448			     "Lost interrupts?",
 449			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 450			     substream->stream, (long)delta,
 451			     (long)new_hw_ptr,
 452			     (long)old_hw_ptr);
 453	}
 454
 455 no_delta_check:
 456	if (runtime->status->hw_ptr == new_hw_ptr) {
 
 457		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 458		return 0;
 459	}
 460
 461	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 462	    runtime->silence_size > 0)
 463		snd_pcm_playback_silence(substream, new_hw_ptr);
 464
 465	if (in_interrupt) {
 466		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 467		if (delta < 0)
 468			delta += runtime->boundary;
 469		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 470		runtime->hw_ptr_interrupt += delta;
 471		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 472			runtime->hw_ptr_interrupt -= runtime->boundary;
 473	}
 474	runtime->hw_ptr_base = hw_base;
 475	runtime->status->hw_ptr = new_hw_ptr;
 476	runtime->hw_ptr_jiffies = curr_jiffies;
 477	if (crossed_boundary) {
 478		snd_BUG_ON(crossed_boundary != 1);
 479		runtime->hw_ptr_wrap += runtime->boundary;
 480	}
 481
 482	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 483
 484	return snd_pcm_update_state(substream, runtime);
 485}
 486
 487/* CAUTION: call it with irq disabled */
 488int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 489{
 490	return snd_pcm_update_hw_ptr0(substream, 0);
 491}
 492
 493/**
 494 * snd_pcm_set_ops - set the PCM operators
 495 * @pcm: the pcm instance
 496 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 497 * @ops: the operator table
 498 *
 499 * Sets the given PCM operators to the pcm instance.
 500 */
 501void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 502		     const struct snd_pcm_ops *ops)
 503{
 504	struct snd_pcm_str *stream = &pcm->streams[direction];
 505	struct snd_pcm_substream *substream;
 506	
 507	for (substream = stream->substream; substream != NULL; substream = substream->next)
 508		substream->ops = ops;
 509}
 510
 511EXPORT_SYMBOL(snd_pcm_set_ops);
 512
 513/**
 514 * snd_pcm_sync - set the PCM sync id
 515 * @substream: the pcm substream
 516 *
 517 * Sets the PCM sync identifier for the card.
 518 */
 519void snd_pcm_set_sync(struct snd_pcm_substream *substream)
 520{
 521	struct snd_pcm_runtime *runtime = substream->runtime;
 522	
 523	runtime->sync.id32[0] = substream->pcm->card->number;
 524	runtime->sync.id32[1] = -1;
 525	runtime->sync.id32[2] = -1;
 526	runtime->sync.id32[3] = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527}
 528
 529EXPORT_SYMBOL(snd_pcm_set_sync);
 530
 531/*
 532 *  Standard ioctl routine
 533 */
 534
 535static inline unsigned int div32(unsigned int a, unsigned int b, 
 536				 unsigned int *r)
 537{
 538	if (b == 0) {
 539		*r = 0;
 540		return UINT_MAX;
 541	}
 542	*r = a % b;
 543	return a / b;
 544}
 545
 546static inline unsigned int div_down(unsigned int a, unsigned int b)
 547{
 548	if (b == 0)
 549		return UINT_MAX;
 550	return a / b;
 551}
 552
 553static inline unsigned int div_up(unsigned int a, unsigned int b)
 554{
 555	unsigned int r;
 556	unsigned int q;
 557	if (b == 0)
 558		return UINT_MAX;
 559	q = div32(a, b, &r);
 560	if (r)
 561		++q;
 562	return q;
 563}
 564
 565static inline unsigned int mul(unsigned int a, unsigned int b)
 566{
 567	if (a == 0)
 568		return 0;
 569	if (div_down(UINT_MAX, a) < b)
 570		return UINT_MAX;
 571	return a * b;
 572}
 573
 574static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 575				    unsigned int c, unsigned int *r)
 576{
 577	u_int64_t n = (u_int64_t) a * b;
 578	if (c == 0) {
 579		snd_BUG_ON(!n);
 580		*r = 0;
 581		return UINT_MAX;
 582	}
 583	n = div_u64_rem(n, c, r);
 584	if (n >= UINT_MAX) {
 585		*r = 0;
 586		return UINT_MAX;
 587	}
 588	return n;
 589}
 590
 591/**
 592 * snd_interval_refine - refine the interval value of configurator
 593 * @i: the interval value to refine
 594 * @v: the interval value to refer to
 595 *
 596 * Refines the interval value with the reference value.
 597 * The interval is changed to the range satisfying both intervals.
 598 * The interval status (min, max, integer, etc.) are evaluated.
 599 *
 600 * Return: Positive if the value is changed, zero if it's not changed, or a
 601 * negative error code.
 602 */
 603int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 604{
 605	int changed = 0;
 606	if (snd_BUG_ON(snd_interval_empty(i)))
 607		return -EINVAL;
 608	if (i->min < v->min) {
 609		i->min = v->min;
 610		i->openmin = v->openmin;
 611		changed = 1;
 612	} else if (i->min == v->min && !i->openmin && v->openmin) {
 613		i->openmin = 1;
 614		changed = 1;
 615	}
 616	if (i->max > v->max) {
 617		i->max = v->max;
 618		i->openmax = v->openmax;
 619		changed = 1;
 620	} else if (i->max == v->max && !i->openmax && v->openmax) {
 621		i->openmax = 1;
 622		changed = 1;
 623	}
 624	if (!i->integer && v->integer) {
 625		i->integer = 1;
 626		changed = 1;
 627	}
 628	if (i->integer) {
 629		if (i->openmin) {
 630			i->min++;
 631			i->openmin = 0;
 632		}
 633		if (i->openmax) {
 634			i->max--;
 635			i->openmax = 0;
 636		}
 637	} else if (!i->openmin && !i->openmax && i->min == i->max)
 638		i->integer = 1;
 639	if (snd_interval_checkempty(i)) {
 640		snd_interval_none(i);
 641		return -EINVAL;
 642	}
 643	return changed;
 644}
 645
 646EXPORT_SYMBOL(snd_interval_refine);
 647
 648static int snd_interval_refine_first(struct snd_interval *i)
 649{
 
 
 650	if (snd_BUG_ON(snd_interval_empty(i)))
 651		return -EINVAL;
 652	if (snd_interval_single(i))
 653		return 0;
 654	i->max = i->min;
 655	i->openmax = i->openmin;
 656	if (i->openmax)
 657		i->max++;
 
 
 658	return 1;
 659}
 660
 661static int snd_interval_refine_last(struct snd_interval *i)
 662{
 
 
 663	if (snd_BUG_ON(snd_interval_empty(i)))
 664		return -EINVAL;
 665	if (snd_interval_single(i))
 666		return 0;
 667	i->min = i->max;
 668	i->openmin = i->openmax;
 669	if (i->openmin)
 670		i->min--;
 
 
 671	return 1;
 672}
 673
 674void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 675{
 676	if (a->empty || b->empty) {
 677		snd_interval_none(c);
 678		return;
 679	}
 680	c->empty = 0;
 681	c->min = mul(a->min, b->min);
 682	c->openmin = (a->openmin || b->openmin);
 683	c->max = mul(a->max,  b->max);
 684	c->openmax = (a->openmax || b->openmax);
 685	c->integer = (a->integer && b->integer);
 686}
 687
 688/**
 689 * snd_interval_div - refine the interval value with division
 690 * @a: dividend
 691 * @b: divisor
 692 * @c: quotient
 693 *
 694 * c = a / b
 695 *
 696 * Returns non-zero if the value is changed, zero if not changed.
 697 */
 698void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 699{
 700	unsigned int r;
 701	if (a->empty || b->empty) {
 702		snd_interval_none(c);
 703		return;
 704	}
 705	c->empty = 0;
 706	c->min = div32(a->min, b->max, &r);
 707	c->openmin = (r || a->openmin || b->openmax);
 708	if (b->min > 0) {
 709		c->max = div32(a->max, b->min, &r);
 710		if (r) {
 711			c->max++;
 712			c->openmax = 1;
 713		} else
 714			c->openmax = (a->openmax || b->openmin);
 715	} else {
 716		c->max = UINT_MAX;
 717		c->openmax = 0;
 718	}
 719	c->integer = 0;
 720}
 721
 722/**
 723 * snd_interval_muldivk - refine the interval value
 724 * @a: dividend 1
 725 * @b: dividend 2
 726 * @k: divisor (as integer)
 727 * @c: result
 728  *
 729 * c = a * b / k
 730 *
 731 * Returns non-zero if the value is changed, zero if not changed.
 732 */
 733void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 734		      unsigned int k, struct snd_interval *c)
 735{
 736	unsigned int r;
 737	if (a->empty || b->empty) {
 738		snd_interval_none(c);
 739		return;
 740	}
 741	c->empty = 0;
 742	c->min = muldiv32(a->min, b->min, k, &r);
 743	c->openmin = (r || a->openmin || b->openmin);
 744	c->max = muldiv32(a->max, b->max, k, &r);
 745	if (r) {
 746		c->max++;
 747		c->openmax = 1;
 748	} else
 749		c->openmax = (a->openmax || b->openmax);
 750	c->integer = 0;
 751}
 752
 753/**
 754 * snd_interval_mulkdiv - refine the interval value
 755 * @a: dividend 1
 756 * @k: dividend 2 (as integer)
 757 * @b: divisor
 758 * @c: result
 759 *
 760 * c = a * k / b
 761 *
 762 * Returns non-zero if the value is changed, zero if not changed.
 763 */
 764void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 765		      const struct snd_interval *b, struct snd_interval *c)
 766{
 767	unsigned int r;
 768	if (a->empty || b->empty) {
 769		snd_interval_none(c);
 770		return;
 771	}
 772	c->empty = 0;
 773	c->min = muldiv32(a->min, k, b->max, &r);
 774	c->openmin = (r || a->openmin || b->openmax);
 775	if (b->min > 0) {
 776		c->max = muldiv32(a->max, k, b->min, &r);
 777		if (r) {
 778			c->max++;
 779			c->openmax = 1;
 780		} else
 781			c->openmax = (a->openmax || b->openmin);
 782	} else {
 783		c->max = UINT_MAX;
 784		c->openmax = 0;
 785	}
 786	c->integer = 0;
 787}
 788
 789/* ---- */
 790
 791
 792/**
 793 * snd_interval_ratnum - refine the interval value
 794 * @i: interval to refine
 795 * @rats_count: number of ratnum_t 
 796 * @rats: ratnum_t array
 797 * @nump: pointer to store the resultant numerator
 798 * @denp: pointer to store the resultant denominator
 799 *
 800 * Return: Positive if the value is changed, zero if it's not changed, or a
 801 * negative error code.
 802 */
 803int snd_interval_ratnum(struct snd_interval *i,
 804			unsigned int rats_count, const struct snd_ratnum *rats,
 805			unsigned int *nump, unsigned int *denp)
 806{
 807	unsigned int best_num, best_den;
 808	int best_diff;
 809	unsigned int k;
 810	struct snd_interval t;
 811	int err;
 812	unsigned int result_num, result_den;
 813	int result_diff;
 814
 815	best_num = best_den = best_diff = 0;
 816	for (k = 0; k < rats_count; ++k) {
 817		unsigned int num = rats[k].num;
 818		unsigned int den;
 819		unsigned int q = i->min;
 820		int diff;
 821		if (q == 0)
 822			q = 1;
 823		den = div_up(num, q);
 824		if (den < rats[k].den_min)
 825			continue;
 826		if (den > rats[k].den_max)
 827			den = rats[k].den_max;
 828		else {
 829			unsigned int r;
 830			r = (den - rats[k].den_min) % rats[k].den_step;
 831			if (r != 0)
 832				den -= r;
 833		}
 834		diff = num - q * den;
 835		if (diff < 0)
 836			diff = -diff;
 837		if (best_num == 0 ||
 838		    diff * best_den < best_diff * den) {
 839			best_diff = diff;
 840			best_den = den;
 841			best_num = num;
 842		}
 843	}
 844	if (best_den == 0) {
 845		i->empty = 1;
 846		return -EINVAL;
 847	}
 848	t.min = div_down(best_num, best_den);
 849	t.openmin = !!(best_num % best_den);
 850	
 851	result_num = best_num;
 852	result_diff = best_diff;
 853	result_den = best_den;
 854	best_num = best_den = best_diff = 0;
 855	for (k = 0; k < rats_count; ++k) {
 856		unsigned int num = rats[k].num;
 857		unsigned int den;
 858		unsigned int q = i->max;
 859		int diff;
 860		if (q == 0) {
 861			i->empty = 1;
 862			return -EINVAL;
 863		}
 864		den = div_down(num, q);
 865		if (den > rats[k].den_max)
 866			continue;
 867		if (den < rats[k].den_min)
 868			den = rats[k].den_min;
 869		else {
 870			unsigned int r;
 871			r = (den - rats[k].den_min) % rats[k].den_step;
 872			if (r != 0)
 873				den += rats[k].den_step - r;
 874		}
 875		diff = q * den - num;
 876		if (diff < 0)
 877			diff = -diff;
 878		if (best_num == 0 ||
 879		    diff * best_den < best_diff * den) {
 880			best_diff = diff;
 881			best_den = den;
 882			best_num = num;
 883		}
 884	}
 885	if (best_den == 0) {
 886		i->empty = 1;
 887		return -EINVAL;
 888	}
 889	t.max = div_up(best_num, best_den);
 890	t.openmax = !!(best_num % best_den);
 891	t.integer = 0;
 892	err = snd_interval_refine(i, &t);
 893	if (err < 0)
 894		return err;
 895
 896	if (snd_interval_single(i)) {
 897		if (best_diff * result_den < result_diff * best_den) {
 898			result_num = best_num;
 899			result_den = best_den;
 900		}
 901		if (nump)
 902			*nump = result_num;
 903		if (denp)
 904			*denp = result_den;
 905	}
 906	return err;
 907}
 908
 909EXPORT_SYMBOL(snd_interval_ratnum);
 910
 911/**
 912 * snd_interval_ratden - refine the interval value
 913 * @i: interval to refine
 914 * @rats_count: number of struct ratden
 915 * @rats: struct ratden array
 916 * @nump: pointer to store the resultant numerator
 917 * @denp: pointer to store the resultant denominator
 918 *
 919 * Return: Positive if the value is changed, zero if it's not changed, or a
 920 * negative error code.
 921 */
 922static int snd_interval_ratden(struct snd_interval *i,
 923			       unsigned int rats_count,
 924			       const struct snd_ratden *rats,
 925			       unsigned int *nump, unsigned int *denp)
 926{
 927	unsigned int best_num, best_diff, best_den;
 928	unsigned int k;
 929	struct snd_interval t;
 930	int err;
 931
 932	best_num = best_den = best_diff = 0;
 933	for (k = 0; k < rats_count; ++k) {
 934		unsigned int num;
 935		unsigned int den = rats[k].den;
 936		unsigned int q = i->min;
 937		int diff;
 938		num = mul(q, den);
 939		if (num > rats[k].num_max)
 940			continue;
 941		if (num < rats[k].num_min)
 942			num = rats[k].num_max;
 943		else {
 944			unsigned int r;
 945			r = (num - rats[k].num_min) % rats[k].num_step;
 946			if (r != 0)
 947				num += rats[k].num_step - r;
 948		}
 949		diff = num - q * den;
 950		if (best_num == 0 ||
 951		    diff * best_den < best_diff * den) {
 952			best_diff = diff;
 953			best_den = den;
 954			best_num = num;
 955		}
 956	}
 957	if (best_den == 0) {
 958		i->empty = 1;
 959		return -EINVAL;
 960	}
 961	t.min = div_down(best_num, best_den);
 962	t.openmin = !!(best_num % best_den);
 963	
 964	best_num = best_den = best_diff = 0;
 965	for (k = 0; k < rats_count; ++k) {
 966		unsigned int num;
 967		unsigned int den = rats[k].den;
 968		unsigned int q = i->max;
 969		int diff;
 970		num = mul(q, den);
 971		if (num < rats[k].num_min)
 972			continue;
 973		if (num > rats[k].num_max)
 974			num = rats[k].num_max;
 975		else {
 976			unsigned int r;
 977			r = (num - rats[k].num_min) % rats[k].num_step;
 978			if (r != 0)
 979				num -= r;
 980		}
 981		diff = q * den - num;
 982		if (best_num == 0 ||
 983		    diff * best_den < best_diff * den) {
 984			best_diff = diff;
 985			best_den = den;
 986			best_num = num;
 987		}
 988	}
 989	if (best_den == 0) {
 990		i->empty = 1;
 991		return -EINVAL;
 992	}
 993	t.max = div_up(best_num, best_den);
 994	t.openmax = !!(best_num % best_den);
 995	t.integer = 0;
 996	err = snd_interval_refine(i, &t);
 997	if (err < 0)
 998		return err;
 999
1000	if (snd_interval_single(i)) {
1001		if (nump)
1002			*nump = best_num;
1003		if (denp)
1004			*denp = best_den;
1005	}
1006	return err;
1007}
1008
1009/**
1010 * snd_interval_list - refine the interval value from the list
1011 * @i: the interval value to refine
1012 * @count: the number of elements in the list
1013 * @list: the value list
1014 * @mask: the bit-mask to evaluate
1015 *
1016 * Refines the interval value from the list.
1017 * When mask is non-zero, only the elements corresponding to bit 1 are
1018 * evaluated.
1019 *
1020 * Return: Positive if the value is changed, zero if it's not changed, or a
1021 * negative error code.
1022 */
1023int snd_interval_list(struct snd_interval *i, unsigned int count,
1024		      const unsigned int *list, unsigned int mask)
1025{
1026        unsigned int k;
1027	struct snd_interval list_range;
1028
1029	if (!count) {
1030		i->empty = 1;
1031		return -EINVAL;
1032	}
1033	snd_interval_any(&list_range);
1034	list_range.min = UINT_MAX;
1035	list_range.max = 0;
1036        for (k = 0; k < count; k++) {
1037		if (mask && !(mask & (1 << k)))
1038			continue;
1039		if (!snd_interval_test(i, list[k]))
1040			continue;
1041		list_range.min = min(list_range.min, list[k]);
1042		list_range.max = max(list_range.max, list[k]);
1043        }
1044	return snd_interval_refine(i, &list_range);
1045}
1046
1047EXPORT_SYMBOL(snd_interval_list);
1048
1049/**
1050 * snd_interval_ranges - refine the interval value from the list of ranges
1051 * @i: the interval value to refine
1052 * @count: the number of elements in the list of ranges
1053 * @ranges: the ranges list
1054 * @mask: the bit-mask to evaluate
1055 *
1056 * Refines the interval value from the list of ranges.
1057 * When mask is non-zero, only the elements corresponding to bit 1 are
1058 * evaluated.
1059 *
1060 * Return: Positive if the value is changed, zero if it's not changed, or a
1061 * negative error code.
1062 */
1063int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1064			const struct snd_interval *ranges, unsigned int mask)
1065{
1066	unsigned int k;
1067	struct snd_interval range_union;
1068	struct snd_interval range;
1069
1070	if (!count) {
1071		snd_interval_none(i);
1072		return -EINVAL;
1073	}
1074	snd_interval_any(&range_union);
1075	range_union.min = UINT_MAX;
1076	range_union.max = 0;
1077	for (k = 0; k < count; k++) {
1078		if (mask && !(mask & (1 << k)))
1079			continue;
1080		snd_interval_copy(&range, &ranges[k]);
1081		if (snd_interval_refine(&range, i) < 0)
1082			continue;
1083		if (snd_interval_empty(&range))
1084			continue;
1085
1086		if (range.min < range_union.min) {
1087			range_union.min = range.min;
1088			range_union.openmin = 1;
1089		}
1090		if (range.min == range_union.min && !range.openmin)
1091			range_union.openmin = 0;
1092		if (range.max > range_union.max) {
1093			range_union.max = range.max;
1094			range_union.openmax = 1;
1095		}
1096		if (range.max == range_union.max && !range.openmax)
1097			range_union.openmax = 0;
1098	}
1099	return snd_interval_refine(i, &range_union);
1100}
1101EXPORT_SYMBOL(snd_interval_ranges);
1102
1103static int snd_interval_step(struct snd_interval *i, unsigned int step)
1104{
1105	unsigned int n;
1106	int changed = 0;
1107	n = i->min % step;
1108	if (n != 0 || i->openmin) {
1109		i->min += step - n;
1110		i->openmin = 0;
1111		changed = 1;
1112	}
1113	n = i->max % step;
1114	if (n != 0 || i->openmax) {
1115		i->max -= n;
1116		i->openmax = 0;
1117		changed = 1;
1118	}
1119	if (snd_interval_checkempty(i)) {
1120		i->empty = 1;
1121		return -EINVAL;
1122	}
1123	return changed;
1124}
1125
1126/* Info constraints helpers */
1127
1128/**
1129 * snd_pcm_hw_rule_add - add the hw-constraint rule
1130 * @runtime: the pcm runtime instance
1131 * @cond: condition bits
1132 * @var: the variable to evaluate
1133 * @func: the evaluation function
1134 * @private: the private data pointer passed to function
1135 * @dep: the dependent variables
1136 *
1137 * Return: Zero if successful, or a negative error code on failure.
1138 */
1139int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1140			int var,
1141			snd_pcm_hw_rule_func_t func, void *private,
1142			int dep, ...)
1143{
1144	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1145	struct snd_pcm_hw_rule *c;
1146	unsigned int k;
1147	va_list args;
1148	va_start(args, dep);
1149	if (constrs->rules_num >= constrs->rules_all) {
1150		struct snd_pcm_hw_rule *new;
1151		unsigned int new_rules = constrs->rules_all + 16;
1152		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
 
1153		if (!new) {
1154			va_end(args);
1155			return -ENOMEM;
1156		}
1157		if (constrs->rules) {
1158			memcpy(new, constrs->rules,
1159			       constrs->rules_num * sizeof(*c));
1160			kfree(constrs->rules);
1161		}
1162		constrs->rules = new;
1163		constrs->rules_all = new_rules;
1164	}
1165	c = &constrs->rules[constrs->rules_num];
1166	c->cond = cond;
1167	c->func = func;
1168	c->var = var;
1169	c->private = private;
1170	k = 0;
1171	while (1) {
1172		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1173			va_end(args);
1174			return -EINVAL;
1175		}
1176		c->deps[k++] = dep;
1177		if (dep < 0)
1178			break;
1179		dep = va_arg(args, int);
1180	}
1181	constrs->rules_num++;
1182	va_end(args);
1183	return 0;
1184}
1185
1186EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1187
1188/**
1189 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1190 * @runtime: PCM runtime instance
1191 * @var: hw_params variable to apply the mask
1192 * @mask: the bitmap mask
1193 *
1194 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1195 *
1196 * Return: Zero if successful, or a negative error code on failure.
1197 */
1198int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1199			       u_int32_t mask)
1200{
1201	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1202	struct snd_mask *maskp = constrs_mask(constrs, var);
1203	*maskp->bits &= mask;
1204	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1205	if (*maskp->bits == 0)
1206		return -EINVAL;
1207	return 0;
1208}
1209
1210/**
1211 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the mask
1214 * @mask: the 64bit bitmap mask
1215 *
1216 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1217 *
1218 * Return: Zero if successful, or a negative error code on failure.
1219 */
1220int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1221				 u_int64_t mask)
1222{
1223	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1224	struct snd_mask *maskp = constrs_mask(constrs, var);
1225	maskp->bits[0] &= (u_int32_t)mask;
1226	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1227	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1228	if (! maskp->bits[0] && ! maskp->bits[1])
1229		return -EINVAL;
1230	return 0;
1231}
1232EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1233
1234/**
1235 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1236 * @runtime: PCM runtime instance
1237 * @var: hw_params variable to apply the integer constraint
1238 *
1239 * Apply the constraint of integer to an interval parameter.
1240 *
1241 * Return: Positive if the value is changed, zero if it's not changed, or a
1242 * negative error code.
1243 */
1244int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1245{
1246	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247	return snd_interval_setinteger(constrs_interval(constrs, var));
1248}
1249
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 * 
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265				 unsigned int min, unsigned int max)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	struct snd_interval t;
1269	t.min = min;
1270	t.max = max;
1271	t.openmin = t.openmax = 0;
1272	t.integer = 0;
1273	return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275
1276EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1277
1278static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1279				struct snd_pcm_hw_rule *rule)
1280{
1281	struct snd_pcm_hw_constraint_list *list = rule->private;
1282	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1283}		
1284
1285
1286/**
1287 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1288 * @runtime: PCM runtime instance
1289 * @cond: condition bits
1290 * @var: hw_params variable to apply the list constraint
1291 * @l: list
1292 * 
1293 * Apply the list of constraints to an interval parameter.
1294 *
1295 * Return: Zero if successful, or a negative error code on failure.
1296 */
1297int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1298			       unsigned int cond,
1299			       snd_pcm_hw_param_t var,
1300			       const struct snd_pcm_hw_constraint_list *l)
1301{
1302	return snd_pcm_hw_rule_add(runtime, cond, var,
1303				   snd_pcm_hw_rule_list, (void *)l,
1304				   var, -1);
1305}
1306
1307EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1308
1309static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1310				  struct snd_pcm_hw_rule *rule)
1311{
1312	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1313	return snd_interval_ranges(hw_param_interval(params, rule->var),
1314				   r->count, r->ranges, r->mask);
1315}
1316
1317
1318/**
1319 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1320 * @runtime: PCM runtime instance
1321 * @cond: condition bits
1322 * @var: hw_params variable to apply the list of range constraints
1323 * @r: ranges
1324 *
1325 * Apply the list of range constraints to an interval parameter.
1326 *
1327 * Return: Zero if successful, or a negative error code on failure.
1328 */
1329int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1330				 unsigned int cond,
1331				 snd_pcm_hw_param_t var,
1332				 const struct snd_pcm_hw_constraint_ranges *r)
1333{
1334	return snd_pcm_hw_rule_add(runtime, cond, var,
1335				   snd_pcm_hw_rule_ranges, (void *)r,
1336				   var, -1);
1337}
1338EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1339
1340static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1341				   struct snd_pcm_hw_rule *rule)
1342{
1343	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1344	unsigned int num = 0, den = 0;
1345	int err;
1346	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1347				  r->nrats, r->rats, &num, &den);
1348	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1349		params->rate_num = num;
1350		params->rate_den = den;
1351	}
1352	return err;
1353}
1354
1355/**
1356 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1357 * @runtime: PCM runtime instance
1358 * @cond: condition bits
1359 * @var: hw_params variable to apply the ratnums constraint
1360 * @r: struct snd_ratnums constriants
1361 *
1362 * Return: Zero if successful, or a negative error code on failure.
1363 */
1364int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1365				  unsigned int cond,
1366				  snd_pcm_hw_param_t var,
1367				  const struct snd_pcm_hw_constraint_ratnums *r)
1368{
1369	return snd_pcm_hw_rule_add(runtime, cond, var,
1370				   snd_pcm_hw_rule_ratnums, (void *)r,
1371				   var, -1);
1372}
1373
1374EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1375
1376static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1377				   struct snd_pcm_hw_rule *rule)
1378{
1379	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1380	unsigned int num = 0, den = 0;
1381	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1382				  r->nrats, r->rats, &num, &den);
1383	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1384		params->rate_num = num;
1385		params->rate_den = den;
1386	}
1387	return err;
1388}
1389
1390/**
1391 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1392 * @runtime: PCM runtime instance
1393 * @cond: condition bits
1394 * @var: hw_params variable to apply the ratdens constraint
1395 * @r: struct snd_ratdens constriants
1396 *
1397 * Return: Zero if successful, or a negative error code on failure.
1398 */
1399int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1400				  unsigned int cond,
1401				  snd_pcm_hw_param_t var,
1402				  const struct snd_pcm_hw_constraint_ratdens *r)
1403{
1404	return snd_pcm_hw_rule_add(runtime, cond, var,
1405				   snd_pcm_hw_rule_ratdens, (void *)r,
1406				   var, -1);
1407}
1408
1409EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1410
1411static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1412				  struct snd_pcm_hw_rule *rule)
1413{
1414	unsigned int l = (unsigned long) rule->private;
1415	int width = l & 0xffff;
1416	unsigned int msbits = l >> 16;
1417	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
 
1418
1419	if (!snd_interval_single(i))
1420		return 0;
1421
1422	if ((snd_interval_value(i) == width) ||
1423	    (width == 0 && snd_interval_value(i) > msbits))
1424		params->msbits = min_not_zero(params->msbits, msbits);
1425
1426	return 0;
1427}
1428
1429/**
1430 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1431 * @runtime: PCM runtime instance
1432 * @cond: condition bits
1433 * @width: sample bits width
1434 * @msbits: msbits width
1435 *
1436 * This constraint will set the number of most significant bits (msbits) if a
1437 * sample format with the specified width has been select. If width is set to 0
1438 * the msbits will be set for any sample format with a width larger than the
1439 * specified msbits.
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
1443int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1444				 unsigned int cond,
1445				 unsigned int width,
1446				 unsigned int msbits)
1447{
1448	unsigned long l = (msbits << 16) | width;
1449	return snd_pcm_hw_rule_add(runtime, cond, -1,
1450				    snd_pcm_hw_rule_msbits,
1451				    (void*) l,
1452				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1453}
1454
1455EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1456
1457static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1458				struct snd_pcm_hw_rule *rule)
1459{
1460	unsigned long step = (unsigned long) rule->private;
1461	return snd_interval_step(hw_param_interval(params, rule->var), step);
1462}
1463
1464/**
1465 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1466 * @runtime: PCM runtime instance
1467 * @cond: condition bits
1468 * @var: hw_params variable to apply the step constraint
1469 * @step: step size
1470 *
1471 * Return: Zero if successful, or a negative error code on failure.
1472 */
1473int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1474			       unsigned int cond,
1475			       snd_pcm_hw_param_t var,
1476			       unsigned long step)
1477{
1478	return snd_pcm_hw_rule_add(runtime, cond, var, 
1479				   snd_pcm_hw_rule_step, (void *) step,
1480				   var, -1);
1481}
1482
1483EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1484
1485static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1486{
1487	static unsigned int pow2_sizes[] = {
1488		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1489		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1490		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1491		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1492	};
1493	return snd_interval_list(hw_param_interval(params, rule->var),
1494				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1495}		
1496
1497/**
1498 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1499 * @runtime: PCM runtime instance
1500 * @cond: condition bits
1501 * @var: hw_params variable to apply the power-of-2 constraint
1502 *
1503 * Return: Zero if successful, or a negative error code on failure.
1504 */
1505int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1506			       unsigned int cond,
1507			       snd_pcm_hw_param_t var)
1508{
1509	return snd_pcm_hw_rule_add(runtime, cond, var, 
1510				   snd_pcm_hw_rule_pow2, NULL,
1511				   var, -1);
1512}
1513
1514EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1515
1516static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1517					   struct snd_pcm_hw_rule *rule)
1518{
1519	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1520	struct snd_interval *rate;
1521
1522	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1523	return snd_interval_list(rate, 1, &base_rate, 0);
1524}
1525
1526/**
1527 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1528 * @runtime: PCM runtime instance
1529 * @base_rate: the rate at which the hardware does not resample
1530 *
1531 * Return: Zero if successful, or a negative error code on failure.
1532 */
1533int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1534			       unsigned int base_rate)
1535{
1536	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1537				   SNDRV_PCM_HW_PARAM_RATE,
1538				   snd_pcm_hw_rule_noresample_func,
1539				   (void *)(uintptr_t)base_rate,
1540				   SNDRV_PCM_HW_PARAM_RATE, -1);
1541}
1542EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1543
1544static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1545				  snd_pcm_hw_param_t var)
1546{
1547	if (hw_is_mask(var)) {
1548		snd_mask_any(hw_param_mask(params, var));
1549		params->cmask |= 1 << var;
1550		params->rmask |= 1 << var;
1551		return;
1552	}
1553	if (hw_is_interval(var)) {
1554		snd_interval_any(hw_param_interval(params, var));
1555		params->cmask |= 1 << var;
1556		params->rmask |= 1 << var;
1557		return;
1558	}
1559	snd_BUG();
1560}
1561
1562void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1563{
1564	unsigned int k;
1565	memset(params, 0, sizeof(*params));
1566	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1567		_snd_pcm_hw_param_any(params, k);
1568	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1569		_snd_pcm_hw_param_any(params, k);
1570	params->info = ~0U;
1571}
1572
1573EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1574
1575/**
1576 * snd_pcm_hw_param_value - return @params field @var value
1577 * @params: the hw_params instance
1578 * @var: parameter to retrieve
1579 * @dir: pointer to the direction (-1,0,1) or %NULL
1580 *
1581 * Return: The value for field @var if it's fixed in configuration space
1582 * defined by @params. -%EINVAL otherwise.
1583 */
1584int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1585			   snd_pcm_hw_param_t var, int *dir)
1586{
1587	if (hw_is_mask(var)) {
1588		const struct snd_mask *mask = hw_param_mask_c(params, var);
1589		if (!snd_mask_single(mask))
1590			return -EINVAL;
1591		if (dir)
1592			*dir = 0;
1593		return snd_mask_value(mask);
1594	}
1595	if (hw_is_interval(var)) {
1596		const struct snd_interval *i = hw_param_interval_c(params, var);
1597		if (!snd_interval_single(i))
1598			return -EINVAL;
1599		if (dir)
1600			*dir = i->openmin;
1601		return snd_interval_value(i);
1602	}
1603	return -EINVAL;
1604}
1605
1606EXPORT_SYMBOL(snd_pcm_hw_param_value);
1607
1608void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1609				snd_pcm_hw_param_t var)
1610{
1611	if (hw_is_mask(var)) {
1612		snd_mask_none(hw_param_mask(params, var));
1613		params->cmask |= 1 << var;
1614		params->rmask |= 1 << var;
1615	} else if (hw_is_interval(var)) {
1616		snd_interval_none(hw_param_interval(params, var));
1617		params->cmask |= 1 << var;
1618		params->rmask |= 1 << var;
1619	} else {
1620		snd_BUG();
1621	}
1622}
1623
1624EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1625
1626static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1627				   snd_pcm_hw_param_t var)
1628{
1629	int changed;
1630	if (hw_is_mask(var))
1631		changed = snd_mask_refine_first(hw_param_mask(params, var));
1632	else if (hw_is_interval(var))
1633		changed = snd_interval_refine_first(hw_param_interval(params, var));
1634	else
1635		return -EINVAL;
1636	if (changed) {
1637		params->cmask |= 1 << var;
1638		params->rmask |= 1 << var;
1639	}
1640	return changed;
1641}
1642
1643
1644/**
1645 * snd_pcm_hw_param_first - refine config space and return minimum value
1646 * @pcm: PCM instance
1647 * @params: the hw_params instance
1648 * @var: parameter to retrieve
1649 * @dir: pointer to the direction (-1,0,1) or %NULL
1650 *
1651 * Inside configuration space defined by @params remove from @var all
1652 * values > minimum. Reduce configuration space accordingly.
1653 *
1654 * Return: The minimum, or a negative error code on failure.
1655 */
1656int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1657			   struct snd_pcm_hw_params *params, 
1658			   snd_pcm_hw_param_t var, int *dir)
1659{
1660	int changed = _snd_pcm_hw_param_first(params, var);
1661	if (changed < 0)
1662		return changed;
1663	if (params->rmask) {
1664		int err = snd_pcm_hw_refine(pcm, params);
1665		if (snd_BUG_ON(err < 0))
1666			return err;
1667	}
1668	return snd_pcm_hw_param_value(params, var, dir);
1669}
1670
1671EXPORT_SYMBOL(snd_pcm_hw_param_first);
1672
1673static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1674				  snd_pcm_hw_param_t var)
1675{
1676	int changed;
1677	if (hw_is_mask(var))
1678		changed = snd_mask_refine_last(hw_param_mask(params, var));
1679	else if (hw_is_interval(var))
1680		changed = snd_interval_refine_last(hw_param_interval(params, var));
1681	else
1682		return -EINVAL;
1683	if (changed) {
1684		params->cmask |= 1 << var;
1685		params->rmask |= 1 << var;
1686	}
1687	return changed;
1688}
1689
1690
1691/**
1692 * snd_pcm_hw_param_last - refine config space and return maximum value
1693 * @pcm: PCM instance
1694 * @params: the hw_params instance
1695 * @var: parameter to retrieve
1696 * @dir: pointer to the direction (-1,0,1) or %NULL
1697 *
1698 * Inside configuration space defined by @params remove from @var all
1699 * values < maximum. Reduce configuration space accordingly.
1700 *
1701 * Return: The maximum, or a negative error code on failure.
1702 */
1703int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1704			  struct snd_pcm_hw_params *params,
1705			  snd_pcm_hw_param_t var, int *dir)
1706{
1707	int changed = _snd_pcm_hw_param_last(params, var);
1708	if (changed < 0)
1709		return changed;
1710	if (params->rmask) {
1711		int err = snd_pcm_hw_refine(pcm, params);
1712		if (snd_BUG_ON(err < 0))
1713			return err;
1714	}
1715	return snd_pcm_hw_param_value(params, var, dir);
1716}
1717
1718EXPORT_SYMBOL(snd_pcm_hw_param_last);
1719
1720/**
1721 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1722 * @pcm: PCM instance
1723 * @params: the hw_params instance
1724 *
1725 * Choose one configuration from configuration space defined by @params.
1726 * The configuration chosen is that obtained fixing in this order:
1727 * first access, first format, first subformat, min channels,
1728 * min rate, min period time, max buffer size, min tick time
1729 *
1730 * Return: Zero if successful, or a negative error code on failure.
 
1731 */
1732int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1733			     struct snd_pcm_hw_params *params)
1734{
1735	static int vars[] = {
1736		SNDRV_PCM_HW_PARAM_ACCESS,
1737		SNDRV_PCM_HW_PARAM_FORMAT,
1738		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1739		SNDRV_PCM_HW_PARAM_CHANNELS,
1740		SNDRV_PCM_HW_PARAM_RATE,
1741		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1742		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1743		SNDRV_PCM_HW_PARAM_TICK_TIME,
1744		-1
1745	};
1746	int err, *v;
1747
1748	for (v = vars; *v != -1; v++) {
1749		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1750			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1751		else
1752			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1753		if (snd_BUG_ON(err < 0))
1754			return err;
 
1755	}
1756	return 0;
1757}
 
1758
1759static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1760				   void *arg)
1761{
1762	struct snd_pcm_runtime *runtime = substream->runtime;
1763	unsigned long flags;
1764	snd_pcm_stream_lock_irqsave(substream, flags);
1765	if (snd_pcm_running(substream) &&
1766	    snd_pcm_update_hw_ptr(substream) >= 0)
1767		runtime->status->hw_ptr %= runtime->buffer_size;
1768	else {
1769		runtime->status->hw_ptr = 0;
1770		runtime->hw_ptr_wrap = 0;
1771	}
1772	snd_pcm_stream_unlock_irqrestore(substream, flags);
1773	return 0;
1774}
1775
1776static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1777					  void *arg)
1778{
1779	struct snd_pcm_channel_info *info = arg;
1780	struct snd_pcm_runtime *runtime = substream->runtime;
1781	int width;
1782	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1783		info->offset = -1;
1784		return 0;
1785	}
1786	width = snd_pcm_format_physical_width(runtime->format);
1787	if (width < 0)
1788		return width;
1789	info->offset = 0;
1790	switch (runtime->access) {
1791	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1792	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1793		info->first = info->channel * width;
1794		info->step = runtime->channels * width;
1795		break;
1796	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1797	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1798	{
1799		size_t size = runtime->dma_bytes / runtime->channels;
1800		info->first = info->channel * size * 8;
1801		info->step = width;
1802		break;
1803	}
1804	default:
1805		snd_BUG();
1806		break;
1807	}
1808	return 0;
1809}
1810
1811static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1812				       void *arg)
1813{
1814	struct snd_pcm_hw_params *params = arg;
1815	snd_pcm_format_t format;
1816	int channels;
1817	ssize_t frame_size;
1818
1819	params->fifo_size = substream->runtime->hw.fifo_size;
1820	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1821		format = params_format(params);
1822		channels = params_channels(params);
1823		frame_size = snd_pcm_format_size(format, channels);
1824		if (frame_size > 0)
1825			params->fifo_size /= (unsigned)frame_size;
1826	}
1827	return 0;
1828}
1829
 
 
 
 
 
 
 
 
 
 
 
 
1830/**
1831 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1832 * @substream: the pcm substream instance
1833 * @cmd: ioctl command
1834 * @arg: ioctl argument
1835 *
1836 * Processes the generic ioctl commands for PCM.
1837 * Can be passed as the ioctl callback for PCM ops.
1838 *
1839 * Return: Zero if successful, or a negative error code on failure.
1840 */
1841int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1842		      unsigned int cmd, void *arg)
1843{
1844	switch (cmd) {
1845	case SNDRV_PCM_IOCTL1_INFO:
1846		return 0;
1847	case SNDRV_PCM_IOCTL1_RESET:
1848		return snd_pcm_lib_ioctl_reset(substream, arg);
1849	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1850		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1851	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1852		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
 
 
1853	}
1854	return -ENXIO;
1855}
1856
1857EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1858
1859/**
1860 * snd_pcm_period_elapsed - update the pcm status for the next period
1861 * @substream: the pcm substream instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862 *
1863 * This function is called from the interrupt handler when the
1864 * PCM has processed the period size.  It will update the current
1865 * pointer, wake up sleepers, etc.
1866 *
1867 * Even if more than one periods have elapsed since the last call, you
1868 * have to call this only once.
 
 
 
1869 */
1870void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1871{
1872	struct snd_pcm_runtime *runtime;
1873	unsigned long flags;
1874
1875	if (PCM_RUNTIME_CHECK(substream))
1876		return;
1877	runtime = substream->runtime;
1878
1879	snd_pcm_stream_lock_irqsave(substream, flags);
1880	if (!snd_pcm_running(substream) ||
1881	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1882		goto _end;
1883
1884#ifdef CONFIG_SND_PCM_TIMER
1885	if (substream->timer_running)
1886		snd_timer_interrupt(substream->timer, 1);
1887#endif
1888 _end:
1889	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1890	snd_pcm_stream_unlock_irqrestore(substream, flags);
1891}
 
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893EXPORT_SYMBOL(snd_pcm_period_elapsed);
1894
1895/*
1896 * Wait until avail_min data becomes available
1897 * Returns a negative error code if any error occurs during operation.
1898 * The available space is stored on availp.  When err = 0 and avail = 0
1899 * on the capture stream, it indicates the stream is in DRAINING state.
1900 */
1901static int wait_for_avail(struct snd_pcm_substream *substream,
1902			      snd_pcm_uframes_t *availp)
1903{
1904	struct snd_pcm_runtime *runtime = substream->runtime;
1905	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1906	wait_queue_t wait;
1907	int err = 0;
1908	snd_pcm_uframes_t avail = 0;
1909	long wait_time, tout;
1910
1911	init_waitqueue_entry(&wait, current);
1912	set_current_state(TASK_INTERRUPTIBLE);
1913	add_wait_queue(&runtime->tsleep, &wait);
1914
1915	if (runtime->no_period_wakeup)
1916		wait_time = MAX_SCHEDULE_TIMEOUT;
1917	else {
1918		wait_time = 10;
1919		if (runtime->rate) {
1920			long t = runtime->period_size * 2 / runtime->rate;
1921			wait_time = max(t, wait_time);
 
 
 
 
 
 
1922		}
1923		wait_time = msecs_to_jiffies(wait_time * 1000);
1924	}
1925
1926	for (;;) {
1927		if (signal_pending(current)) {
1928			err = -ERESTARTSYS;
1929			break;
1930		}
1931
1932		/*
1933		 * We need to check if space became available already
1934		 * (and thus the wakeup happened already) first to close
1935		 * the race of space already having become available.
1936		 * This check must happen after been added to the waitqueue
1937		 * and having current state be INTERRUPTIBLE.
1938		 */
1939		if (is_playback)
1940			avail = snd_pcm_playback_avail(runtime);
1941		else
1942			avail = snd_pcm_capture_avail(runtime);
1943		if (avail >= runtime->twake)
1944			break;
1945		snd_pcm_stream_unlock_irq(substream);
1946
1947		tout = schedule_timeout(wait_time);
1948
1949		snd_pcm_stream_lock_irq(substream);
1950		set_current_state(TASK_INTERRUPTIBLE);
1951		switch (runtime->status->state) {
1952		case SNDRV_PCM_STATE_SUSPENDED:
1953			err = -ESTRPIPE;
1954			goto _endloop;
1955		case SNDRV_PCM_STATE_XRUN:
1956			err = -EPIPE;
1957			goto _endloop;
1958		case SNDRV_PCM_STATE_DRAINING:
1959			if (is_playback)
1960				err = -EPIPE;
1961			else 
1962				avail = 0; /* indicate draining */
1963			goto _endloop;
1964		case SNDRV_PCM_STATE_OPEN:
1965		case SNDRV_PCM_STATE_SETUP:
1966		case SNDRV_PCM_STATE_DISCONNECTED:
1967			err = -EBADFD;
1968			goto _endloop;
1969		case SNDRV_PCM_STATE_PAUSED:
1970			continue;
1971		}
1972		if (!tout) {
1973			pcm_dbg(substream->pcm,
1974				"%s write error (DMA or IRQ trouble?)\n",
1975				is_playback ? "playback" : "capture");
1976			err = -EIO;
1977			break;
1978		}
1979	}
1980 _endloop:
1981	set_current_state(TASK_RUNNING);
1982	remove_wait_queue(&runtime->tsleep, &wait);
1983	*availp = avail;
1984	return err;
1985}
1986	
1987static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1988				      unsigned int hwoff,
1989				      unsigned long data, unsigned int off,
1990				      snd_pcm_uframes_t frames)
 
 
 
 
 
 
 
1991{
1992	struct snd_pcm_runtime *runtime = substream->runtime;
1993	int err;
1994	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1995	if (substream->ops->copy) {
1996		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1997			return err;
1998	} else {
1999		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2000		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2001			return -EFAULT;
2002	}
 
2003	return 0;
2004}
2005 
2006typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2007			  unsigned long data, unsigned int off,
2008			  snd_pcm_uframes_t size);
2009
2010static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2011					    unsigned long data,
2012					    snd_pcm_uframes_t size,
2013					    int nonblock,
2014					    transfer_f transfer)
2015{
2016	struct snd_pcm_runtime *runtime = substream->runtime;
2017	snd_pcm_uframes_t xfer = 0;
2018	snd_pcm_uframes_t offset = 0;
2019	snd_pcm_uframes_t avail;
2020	int err = 0;
2021
2022	if (size == 0)
2023		return 0;
 
 
 
 
 
 
 
 
 
2024
2025	snd_pcm_stream_lock_irq(substream);
2026	switch (runtime->status->state) {
2027	case SNDRV_PCM_STATE_PREPARED:
2028	case SNDRV_PCM_STATE_RUNNING:
2029	case SNDRV_PCM_STATE_PAUSED:
2030		break;
2031	case SNDRV_PCM_STATE_XRUN:
2032		err = -EPIPE;
2033		goto _end_unlock;
2034	case SNDRV_PCM_STATE_SUSPENDED:
2035		err = -ESTRPIPE;
2036		goto _end_unlock;
2037	default:
2038		err = -EBADFD;
2039		goto _end_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040	}
2041
2042	runtime->twake = runtime->control->avail_min ? : 1;
2043	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044		snd_pcm_update_hw_ptr(substream);
2045	avail = snd_pcm_playback_avail(runtime);
2046	while (size > 0) {
2047		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2048		snd_pcm_uframes_t cont;
2049		if (!avail) {
2050			if (nonblock) {
2051				err = -EAGAIN;
2052				goto _end_unlock;
2053			}
2054			runtime->twake = min_t(snd_pcm_uframes_t, size,
2055					runtime->control->avail_min ? : 1);
2056			err = wait_for_avail(substream, &avail);
2057			if (err < 0)
2058				goto _end_unlock;
2059		}
2060		frames = size > avail ? avail : size;
2061		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2062		if (frames > cont)
2063			frames = cont;
2064		if (snd_BUG_ON(!frames)) {
2065			runtime->twake = 0;
2066			snd_pcm_stream_unlock_irq(substream);
2067			return -EINVAL;
2068		}
2069		appl_ptr = runtime->control->appl_ptr;
2070		appl_ofs = appl_ptr % runtime->buffer_size;
2071		snd_pcm_stream_unlock_irq(substream);
2072		err = transfer(substream, appl_ofs, data, offset, frames);
2073		snd_pcm_stream_lock_irq(substream);
2074		if (err < 0)
2075			goto _end_unlock;
2076		switch (runtime->status->state) {
2077		case SNDRV_PCM_STATE_XRUN:
2078			err = -EPIPE;
2079			goto _end_unlock;
2080		case SNDRV_PCM_STATE_SUSPENDED:
2081			err = -ESTRPIPE;
2082			goto _end_unlock;
2083		default:
2084			break;
2085		}
2086		appl_ptr += frames;
2087		if (appl_ptr >= runtime->boundary)
2088			appl_ptr -= runtime->boundary;
2089		runtime->control->appl_ptr = appl_ptr;
2090		if (substream->ops->ack)
2091			substream->ops->ack(substream);
2092
2093		offset += frames;
2094		size -= frames;
2095		xfer += frames;
2096		avail -= frames;
2097		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2098		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2099			err = snd_pcm_start(substream);
2100			if (err < 0)
2101				goto _end_unlock;
2102		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103	}
2104 _end_unlock:
2105	runtime->twake = 0;
2106	if (xfer > 0 && err >= 0)
2107		snd_pcm_update_state(substream, runtime);
2108	snd_pcm_stream_unlock_irq(substream);
2109	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
 
 
 
 
 
 
 
 
 
 
2110}
2111
2112/* sanity-check for read/write methods */
2113static int pcm_sanity_check(struct snd_pcm_substream *substream)
2114{
2115	struct snd_pcm_runtime *runtime;
2116	if (PCM_RUNTIME_CHECK(substream))
2117		return -ENXIO;
2118	runtime = substream->runtime;
2119	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2120		return -EINVAL;
2121	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122		return -EBADFD;
2123	return 0;
2124}
2125
2126snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2127{
2128	struct snd_pcm_runtime *runtime;
2129	int nonblock;
2130	int err;
2131
2132	err = pcm_sanity_check(substream);
2133	if (err < 0)
2134		return err;
2135	runtime = substream->runtime;
2136	nonblock = !!(substream->f_flags & O_NONBLOCK);
2137
2138	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2139	    runtime->channels > 1)
2140		return -EINVAL;
2141	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2142				  snd_pcm_lib_write_transfer);
2143}
2144
2145EXPORT_SYMBOL(snd_pcm_lib_write);
2146
2147static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2148				       unsigned int hwoff,
2149				       unsigned long data, unsigned int off,
2150				       snd_pcm_uframes_t frames)
2151{
2152	struct snd_pcm_runtime *runtime = substream->runtime;
2153	int err;
2154	void __user **bufs = (void __user **)data;
2155	int channels = runtime->channels;
2156	int c;
2157	if (substream->ops->copy) {
2158		if (snd_BUG_ON(!substream->ops->silence))
2159			return -EINVAL;
2160		for (c = 0; c < channels; ++c, ++bufs) {
2161			if (*bufs == NULL) {
2162				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2163					return err;
2164			} else {
2165				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2166				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2167					return err;
2168			}
 
 
 
 
2169		}
2170	} else {
2171		/* default transfer behaviour */
2172		size_t dma_csize = runtime->dma_bytes / channels;
2173		for (c = 0; c < channels; ++c, ++bufs) {
2174			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2175			if (*bufs == NULL) {
2176				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2177			} else {
2178				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2179				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2180					return -EFAULT;
2181			}
2182		}
2183	}
 
 
 
2184	return 0;
2185}
2186 
2187snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2188				     void __user **bufs,
2189				     snd_pcm_uframes_t frames)
 
2190{
2191	struct snd_pcm_runtime *runtime;
2192	int nonblock;
 
 
 
 
 
 
2193	int err;
2194
2195	err = pcm_sanity_check(substream);
2196	if (err < 0)
2197		return err;
2198	runtime = substream->runtime;
2199	nonblock = !!(substream->f_flags & O_NONBLOCK);
2200
2201	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2202		return -EINVAL;
2203	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2204				  nonblock, snd_pcm_lib_writev_transfer);
2205}
2206
2207EXPORT_SYMBOL(snd_pcm_lib_writev);
2208
2209static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2210				     unsigned int hwoff,
2211				     unsigned long data, unsigned int off,
2212				     snd_pcm_uframes_t frames)
2213{
2214	struct snd_pcm_runtime *runtime = substream->runtime;
2215	int err;
2216	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2217	if (substream->ops->copy) {
2218		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2219			return err;
2220	} else {
2221		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2222		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2223			return -EFAULT;
2224	}
2225	return 0;
2226}
2227
2228static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2229					   unsigned long data,
2230					   snd_pcm_uframes_t size,
2231					   int nonblock,
2232					   transfer_f transfer)
2233{
2234	struct snd_pcm_runtime *runtime = substream->runtime;
2235	snd_pcm_uframes_t xfer = 0;
2236	snd_pcm_uframes_t offset = 0;
2237	snd_pcm_uframes_t avail;
2238	int err = 0;
 
2239
2240	if (size == 0)
2241		return 0;
2242
 
 
2243	snd_pcm_stream_lock_irq(substream);
2244	switch (runtime->status->state) {
2245	case SNDRV_PCM_STATE_PREPARED:
2246		if (size >= runtime->start_threshold) {
2247			err = snd_pcm_start(substream);
2248			if (err < 0)
2249				goto _end_unlock;
2250		}
2251		break;
2252	case SNDRV_PCM_STATE_DRAINING:
2253	case SNDRV_PCM_STATE_RUNNING:
2254	case SNDRV_PCM_STATE_PAUSED:
2255		break;
2256	case SNDRV_PCM_STATE_XRUN:
2257		err = -EPIPE;
2258		goto _end_unlock;
2259	case SNDRV_PCM_STATE_SUSPENDED:
2260		err = -ESTRPIPE;
2261		goto _end_unlock;
2262	default:
2263		err = -EBADFD;
2264		goto _end_unlock;
2265	}
2266
2267	runtime->twake = runtime->control->avail_min ? : 1;
2268	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2269		snd_pcm_update_hw_ptr(substream);
2270	avail = snd_pcm_capture_avail(runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271	while (size > 0) {
2272		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2273		snd_pcm_uframes_t cont;
2274		if (!avail) {
2275			if (runtime->status->state ==
2276			    SNDRV_PCM_STATE_DRAINING) {
2277				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2278				goto _end_unlock;
2279			}
2280			if (nonblock) {
2281				err = -EAGAIN;
2282				goto _end_unlock;
2283			}
2284			runtime->twake = min_t(snd_pcm_uframes_t, size,
2285					runtime->control->avail_min ? : 1);
2286			err = wait_for_avail(substream, &avail);
2287			if (err < 0)
2288				goto _end_unlock;
2289			if (!avail)
2290				continue; /* draining */
2291		}
2292		frames = size > avail ? avail : size;
2293		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
 
 
2294		if (frames > cont)
2295			frames = cont;
2296		if (snd_BUG_ON(!frames)) {
2297			runtime->twake = 0;
2298			snd_pcm_stream_unlock_irq(substream);
2299			return -EINVAL;
 
 
 
2300		}
2301		appl_ptr = runtime->control->appl_ptr;
2302		appl_ofs = appl_ptr % runtime->buffer_size;
2303		snd_pcm_stream_unlock_irq(substream);
2304		err = transfer(substream, appl_ofs, data, offset, frames);
 
 
 
 
 
2305		snd_pcm_stream_lock_irq(substream);
 
2306		if (err < 0)
2307			goto _end_unlock;
2308		switch (runtime->status->state) {
2309		case SNDRV_PCM_STATE_XRUN:
2310			err = -EPIPE;
2311			goto _end_unlock;
2312		case SNDRV_PCM_STATE_SUSPENDED:
2313			err = -ESTRPIPE;
2314			goto _end_unlock;
2315		default:
2316			break;
2317		}
2318		appl_ptr += frames;
2319		if (appl_ptr >= runtime->boundary)
2320			appl_ptr -= runtime->boundary;
2321		runtime->control->appl_ptr = appl_ptr;
2322		if (substream->ops->ack)
2323			substream->ops->ack(substream);
2324
2325		offset += frames;
2326		size -= frames;
2327		xfer += frames;
2328		avail -= frames;
 
 
 
 
 
 
 
2329	}
2330 _end_unlock:
2331	runtime->twake = 0;
2332	if (xfer > 0 && err >= 0)
2333		snd_pcm_update_state(substream, runtime);
2334	snd_pcm_stream_unlock_irq(substream);
2335	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2336}
2337
2338snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2339{
2340	struct snd_pcm_runtime *runtime;
2341	int nonblock;
2342	int err;
2343	
2344	err = pcm_sanity_check(substream);
2345	if (err < 0)
2346		return err;
2347	runtime = substream->runtime;
2348	nonblock = !!(substream->f_flags & O_NONBLOCK);
2349	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2350		return -EINVAL;
2351	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2352}
2353
2354EXPORT_SYMBOL(snd_pcm_lib_read);
2355
2356static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2357				      unsigned int hwoff,
2358				      unsigned long data, unsigned int off,
2359				      snd_pcm_uframes_t frames)
2360{
2361	struct snd_pcm_runtime *runtime = substream->runtime;
2362	int err;
2363	void __user **bufs = (void __user **)data;
2364	int channels = runtime->channels;
2365	int c;
2366	if (substream->ops->copy) {
2367		for (c = 0; c < channels; ++c, ++bufs) {
2368			char __user *buf;
2369			if (*bufs == NULL)
2370				continue;
2371			buf = *bufs + samples_to_bytes(runtime, off);
2372			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2373				return err;
2374		}
2375	} else {
2376		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2377		for (c = 0; c < channels; ++c, ++bufs) {
2378			char *hwbuf;
2379			char __user *buf;
2380			if (*bufs == NULL)
2381				continue;
2382
2383			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2384			buf = *bufs + samples_to_bytes(runtime, off);
2385			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2386				return -EFAULT;
2387		}
2388	}
2389	return 0;
2390}
2391 
2392snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2393				    void __user **bufs,
2394				    snd_pcm_uframes_t frames)
2395{
2396	struct snd_pcm_runtime *runtime;
2397	int nonblock;
2398	int err;
2399
2400	err = pcm_sanity_check(substream);
2401	if (err < 0)
2402		return err;
2403	runtime = substream->runtime;
2404	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2405		return -EBADFD;
2406
2407	nonblock = !!(substream->f_flags & O_NONBLOCK);
2408	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2409		return -EINVAL;
2410	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2411}
2412
2413EXPORT_SYMBOL(snd_pcm_lib_readv);
2414
2415/*
2416 * standard channel mapping helpers
2417 */
2418
2419/* default channel maps for multi-channel playbacks, up to 8 channels */
2420const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2421	{ .channels = 1,
2422	  .map = { SNDRV_CHMAP_MONO } },
2423	{ .channels = 2,
2424	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2425	{ .channels = 4,
2426	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2427		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2428	{ .channels = 6,
2429	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2430		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2432	{ .channels = 8,
2433	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2436		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2437	{ }
2438};
2439EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2440
2441/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2442const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2443	{ .channels = 1,
2444	  .map = { SNDRV_CHMAP_MONO } },
2445	{ .channels = 2,
2446	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2447	{ .channels = 4,
2448	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2449		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2450	{ .channels = 6,
2451	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2452		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2453		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454	{ .channels = 8,
2455	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2458		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2459	{ }
2460};
2461EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2462
2463static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2464{
2465	if (ch > info->max_channels)
2466		return false;
2467	return !info->channel_mask || (info->channel_mask & (1U << ch));
2468}
2469
2470static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2471			      struct snd_ctl_elem_info *uinfo)
2472{
2473	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2474
2475	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2476	uinfo->count = 0;
2477	uinfo->count = info->max_channels;
2478	uinfo->value.integer.min = 0;
2479	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2480	return 0;
2481}
2482
2483/* get callback for channel map ctl element
2484 * stores the channel position firstly matching with the current channels
2485 */
2486static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2487			     struct snd_ctl_elem_value *ucontrol)
2488{
2489	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2490	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2491	struct snd_pcm_substream *substream;
2492	const struct snd_pcm_chmap_elem *map;
2493
2494	if (snd_BUG_ON(!info->chmap))
2495		return -EINVAL;
2496	substream = snd_pcm_chmap_substream(info, idx);
2497	if (!substream)
2498		return -ENODEV;
2499	memset(ucontrol->value.integer.value, 0,
2500	       sizeof(ucontrol->value.integer.value));
2501	if (!substream->runtime)
2502		return 0; /* no channels set */
2503	for (map = info->chmap; map->channels; map++) {
2504		int i;
2505		if (map->channels == substream->runtime->channels &&
2506		    valid_chmap_channels(info, map->channels)) {
2507			for (i = 0; i < map->channels; i++)
2508				ucontrol->value.integer.value[i] = map->map[i];
2509			return 0;
2510		}
2511	}
2512	return -EINVAL;
2513}
2514
2515/* tlv callback for channel map ctl element
2516 * expands the pre-defined channel maps in a form of TLV
2517 */
2518static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2519			     unsigned int size, unsigned int __user *tlv)
2520{
2521	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2522	const struct snd_pcm_chmap_elem *map;
2523	unsigned int __user *dst;
2524	int c, count = 0;
2525
2526	if (snd_BUG_ON(!info->chmap))
2527		return -EINVAL;
2528	if (size < 8)
2529		return -ENOMEM;
2530	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2531		return -EFAULT;
2532	size -= 8;
2533	dst = tlv + 2;
2534	for (map = info->chmap; map->channels; map++) {
2535		int chs_bytes = map->channels * 4;
2536		if (!valid_chmap_channels(info, map->channels))
2537			continue;
2538		if (size < 8)
2539			return -ENOMEM;
2540		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2541		    put_user(chs_bytes, dst + 1))
2542			return -EFAULT;
2543		dst += 2;
2544		size -= 8;
2545		count += 8;
2546		if (size < chs_bytes)
2547			return -ENOMEM;
2548		size -= chs_bytes;
2549		count += chs_bytes;
2550		for (c = 0; c < map->channels; c++) {
2551			if (put_user(map->map[c], dst))
2552				return -EFAULT;
2553			dst++;
2554		}
2555	}
2556	if (put_user(count, tlv + 1))
2557		return -EFAULT;
2558	return 0;
2559}
2560
2561static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2562{
2563	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2564	info->pcm->streams[info->stream].chmap_kctl = NULL;
2565	kfree(info);
2566}
2567
2568/**
2569 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2570 * @pcm: the assigned PCM instance
2571 * @stream: stream direction
2572 * @chmap: channel map elements (for query)
2573 * @max_channels: the max number of channels for the stream
2574 * @private_value: the value passed to each kcontrol's private_value field
2575 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2576 *
2577 * Create channel-mapping control elements assigned to the given PCM stream(s).
2578 * Return: Zero if successful, or a negative error value.
2579 */
2580int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2581			   const struct snd_pcm_chmap_elem *chmap,
2582			   int max_channels,
2583			   unsigned long private_value,
2584			   struct snd_pcm_chmap **info_ret)
2585{
2586	struct snd_pcm_chmap *info;
2587	struct snd_kcontrol_new knew = {
2588		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2589		.access = SNDRV_CTL_ELEM_ACCESS_READ |
 
2590			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2591			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2592		.info = pcm_chmap_ctl_info,
2593		.get = pcm_chmap_ctl_get,
2594		.tlv.c = pcm_chmap_ctl_tlv,
2595	};
2596	int err;
2597
2598	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2599		return -EBUSY;
2600	info = kzalloc(sizeof(*info), GFP_KERNEL);
2601	if (!info)
2602		return -ENOMEM;
2603	info->pcm = pcm;
2604	info->stream = stream;
2605	info->chmap = chmap;
2606	info->max_channels = max_channels;
2607	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2608		knew.name = "Playback Channel Map";
2609	else
2610		knew.name = "Capture Channel Map";
2611	knew.device = pcm->device;
2612	knew.count = pcm->streams[stream].substream_count;
2613	knew.private_value = private_value;
2614	info->kctl = snd_ctl_new1(&knew, info);
2615	if (!info->kctl) {
2616		kfree(info);
2617		return -ENOMEM;
2618	}
2619	info->kctl->private_free = pcm_chmap_ctl_private_free;
2620	err = snd_ctl_add(pcm->card, info->kctl);
2621	if (err < 0)
2622		return err;
2623	pcm->streams[stream].chmap_kctl = info->kctl;
2624	if (info_ret)
2625		*info_ret = info;
2626	return 0;
2627}
2628EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Digital Audio (PCM) abstract layer
   4 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   5 *                   Abramo Bagnara <abramo@alsa-project.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/sched/signal.h>
  10#include <linux/time.h>
  11#include <linux/math64.h>
  12#include <linux/export.h>
  13#include <sound/core.h>
  14#include <sound/control.h>
  15#include <sound/tlv.h>
  16#include <sound/info.h>
  17#include <sound/pcm.h>
  18#include <sound/pcm_params.h>
  19#include <sound/timer.h>
  20
  21#include "pcm_local.h"
  22
  23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
  24#define CREATE_TRACE_POINTS
  25#include "pcm_trace.h"
  26#else
  27#define trace_hwptr(substream, pos, in_interrupt)
  28#define trace_xrun(substream)
  29#define trace_hw_ptr_error(substream, reason)
  30#define trace_applptr(substream, prev, curr)
  31#endif
  32
  33static int fill_silence_frames(struct snd_pcm_substream *substream,
  34			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
  35
  36
  37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
  38				       snd_pcm_uframes_t ptr,
  39				       snd_pcm_uframes_t new_ptr)
  40{
  41	snd_pcm_sframes_t delta;
  42
  43	delta = new_ptr - ptr;
  44	if (delta == 0)
  45		return;
  46	if (delta < 0)
  47		delta += runtime->boundary;
  48	if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
  49		runtime->silence_filled -= delta;
  50	else
  51		runtime->silence_filled = 0;
  52	runtime->silence_start = new_ptr;
  53}
  54
  55/*
  56 * fill ring buffer with silence
  57 * runtime->silence_start: starting pointer to silence area
  58 * runtime->silence_filled: size filled with silence
  59 * runtime->silence_threshold: threshold from application
  60 * runtime->silence_size: maximal size from application
  61 *
  62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
  63 */
  64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
  65{
  66	struct snd_pcm_runtime *runtime = substream->runtime;
  67	snd_pcm_uframes_t frames, ofs, transfer;
  68	int err;
  69
  70	if (runtime->silence_size < runtime->boundary) {
  71		snd_pcm_sframes_t noise_dist;
  72		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
  73		update_silence_vars(runtime, runtime->silence_start, appl_ptr);
  74		/* initialization outside pointer updates */
  75		if (new_hw_ptr == ULONG_MAX)
  76			new_hw_ptr = runtime->status->hw_ptr;
  77		/* get hw_avail with the boundary crossing */
  78		noise_dist = appl_ptr - new_hw_ptr;
  79		if (noise_dist < 0)
  80			noise_dist += runtime->boundary;
  81		/* total noise distance */
  82		noise_dist += runtime->silence_filled;
 
 
  83		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
  84			return;
  85		frames = runtime->silence_threshold - noise_dist;
  86		if (frames > runtime->silence_size)
  87			frames = runtime->silence_size;
  88	} else {
  89		/*
  90		 * This filling mode aims at free-running mode (used for example by dmix),
  91		 * which doesn't update the application pointer.
  92		 */
  93		snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
  94		if (new_hw_ptr == ULONG_MAX) {
  95			/*
  96			 * Initialization, fill the whole unused buffer with silence.
  97			 *
  98			 * Usually, this is entered while stopped, before data is queued,
  99			 * so both pointers are expected to be zero.
 100			 */
 101			snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
 102			if (avail < 0)
 103				avail += runtime->boundary;
 104			/*
 105			 * In free-running mode, appl_ptr will be zero even while running,
 106			 * so we end up with a huge number. There is no useful way to
 107			 * handle this, so we just clear the whole buffer.
 108			 */
 109			runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
 110			runtime->silence_start = hw_ptr;
 111		} else {
 112			/* Silence the just played area immediately */
 113			update_silence_vars(runtime, hw_ptr, new_hw_ptr);
 
 
 
 
 
 
 
 
 
 114		}
 115		/*
 116		 * In this mode, silence_filled actually includes the valid
 117		 * sample data from the user.
 118		 */
 119		frames = runtime->buffer_size - runtime->silence_filled;
 120	}
 121	if (snd_BUG_ON(frames > runtime->buffer_size))
 122		return;
 123	if (frames == 0)
 124		return;
 125	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
 126	do {
 127		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
 128		err = fill_silence_frames(substream, ofs, transfer);
 129		snd_BUG_ON(err < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130		runtime->silence_filled += transfer;
 131		frames -= transfer;
 132		ofs = 0;
 133	} while (frames > 0);
 134	snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
 135}
 136
 137#ifdef CONFIG_SND_DEBUG
 138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
 139			   char *name, size_t len)
 140{
 141	snprintf(name, len, "pcmC%dD%d%c:%d",
 142		 substream->pcm->card->number,
 143		 substream->pcm->device,
 144		 substream->stream ? 'c' : 'p',
 145		 substream->number);
 146}
 147EXPORT_SYMBOL(snd_pcm_debug_name);
 148#endif
 149
 150#define XRUN_DEBUG_BASIC	(1<<0)
 151#define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
 152#define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
 153
 154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 155
 156#define xrun_debug(substream, mask) \
 157			((substream)->pstr->xrun_debug & (mask))
 158#else
 159#define xrun_debug(substream, mask)	0
 160#endif
 161
 162#define dump_stack_on_xrun(substream) do {			\
 163		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
 164			dump_stack();				\
 165	} while (0)
 166
 167/* call with stream lock held */
 168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
 169{
 170	struct snd_pcm_runtime *runtime = substream->runtime;
 171
 172	trace_xrun(substream);
 173	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 174		struct timespec64 tstamp;
 175
 176		snd_pcm_gettime(runtime, &tstamp);
 177		runtime->status->tstamp.tv_sec = tstamp.tv_sec;
 178		runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
 179	}
 180	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 181	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
 182		char name[16];
 183		snd_pcm_debug_name(substream, name, sizeof(name));
 184		pcm_warn(substream->pcm, "XRUN: %s\n", name);
 185		dump_stack_on_xrun(substream);
 186	}
 187#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 188	substream->xrun_counter++;
 189#endif
 190}
 191
 192#ifdef CONFIG_SND_PCM_XRUN_DEBUG
 193#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
 194	do {								\
 195		trace_hw_ptr_error(substream, reason);	\
 196		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
 197			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
 198					   (in_interrupt) ? 'Q' : 'P', ##args);	\
 199			dump_stack_on_xrun(substream);			\
 200		}							\
 201	} while (0)
 202
 203#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
 204
 205#define hw_ptr_error(substream, fmt, args...) do { } while (0)
 206
 207#endif
 208
 209int snd_pcm_update_state(struct snd_pcm_substream *substream,
 210			 struct snd_pcm_runtime *runtime)
 211{
 212	snd_pcm_uframes_t avail;
 213
 214	avail = snd_pcm_avail(substream);
 
 
 
 215	if (avail > runtime->avail_max)
 216		runtime->avail_max = avail;
 217	if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
 218		if (avail >= runtime->buffer_size) {
 219			snd_pcm_drain_done(substream);
 220			return -EPIPE;
 221		}
 222	} else {
 223		if (avail >= runtime->stop_threshold) {
 224			__snd_pcm_xrun(substream);
 225			return -EPIPE;
 226		}
 227	}
 228	if (runtime->twake) {
 229		if (avail >= runtime->twake)
 230			wake_up(&runtime->tsleep);
 231	} else if (avail >= runtime->control->avail_min)
 232		wake_up(&runtime->sleep);
 233	return 0;
 234}
 235
 236static void update_audio_tstamp(struct snd_pcm_substream *substream,
 237				struct timespec64 *curr_tstamp,
 238				struct timespec64 *audio_tstamp)
 239{
 240	struct snd_pcm_runtime *runtime = substream->runtime;
 241	u64 audio_frames, audio_nsecs;
 242	struct timespec64 driver_tstamp;
 243
 244	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
 245		return;
 246
 247	if (!(substream->ops->get_time_info) ||
 248		(runtime->audio_tstamp_report.actual_type ==
 249			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 250
 251		/*
 252		 * provide audio timestamp derived from pointer position
 253		 * add delay only if requested
 254		 */
 255
 256		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
 257
 258		if (runtime->audio_tstamp_config.report_delay) {
 259			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 260				audio_frames -=  runtime->delay;
 261			else
 262				audio_frames +=  runtime->delay;
 263		}
 264		audio_nsecs = div_u64(audio_frames * 1000000000LL,
 265				runtime->rate);
 266		*audio_tstamp = ns_to_timespec64(audio_nsecs);
 267	}
 268
 269	if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
 270	    runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
 271		runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
 272		runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
 273		runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
 274		runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
 275	}
 276
 277
 278	/*
 279	 * re-take a driver timestamp to let apps detect if the reference tstamp
 280	 * read by low-level hardware was provided with a delay
 281	 */
 282	snd_pcm_gettime(substream->runtime, &driver_tstamp);
 283	runtime->driver_tstamp = driver_tstamp;
 284}
 285
 286static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
 287				  unsigned int in_interrupt)
 288{
 289	struct snd_pcm_runtime *runtime = substream->runtime;
 290	snd_pcm_uframes_t pos;
 291	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
 292	snd_pcm_sframes_t hdelta, delta;
 293	unsigned long jdelta;
 294	unsigned long curr_jiffies;
 295	struct timespec64 curr_tstamp;
 296	struct timespec64 audio_tstamp;
 297	int crossed_boundary = 0;
 298
 299	old_hw_ptr = runtime->status->hw_ptr;
 300
 301	/*
 302	 * group pointer, time and jiffies reads to allow for more
 303	 * accurate correlations/corrections.
 304	 * The values are stored at the end of this routine after
 305	 * corrections for hw_ptr position
 306	 */
 307	pos = substream->ops->pointer(substream);
 308	curr_jiffies = jiffies;
 309	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
 310		if ((substream->ops->get_time_info) &&
 311			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
 312			substream->ops->get_time_info(substream, &curr_tstamp,
 313						&audio_tstamp,
 314						&runtime->audio_tstamp_config,
 315						&runtime->audio_tstamp_report);
 316
 317			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
 318			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
 319				snd_pcm_gettime(runtime, &curr_tstamp);
 320		} else
 321			snd_pcm_gettime(runtime, &curr_tstamp);
 322	}
 323
 324	if (pos == SNDRV_PCM_POS_XRUN) {
 325		__snd_pcm_xrun(substream);
 326		return -EPIPE;
 327	}
 328	if (pos >= runtime->buffer_size) {
 329		if (printk_ratelimit()) {
 330			char name[16];
 331			snd_pcm_debug_name(substream, name, sizeof(name));
 332			pcm_err(substream->pcm,
 333				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
 334				name, pos, runtime->buffer_size,
 335				runtime->period_size);
 336		}
 337		pos = 0;
 338	}
 339	pos -= pos % runtime->min_align;
 340	trace_hwptr(substream, pos, in_interrupt);
 341	hw_base = runtime->hw_ptr_base;
 342	new_hw_ptr = hw_base + pos;
 343	if (in_interrupt) {
 344		/* we know that one period was processed */
 345		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
 346		delta = runtime->hw_ptr_interrupt + runtime->period_size;
 347		if (delta > new_hw_ptr) {
 348			/* check for double acknowledged interrupts */
 349			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 350			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
 351				hw_base += runtime->buffer_size;
 352				if (hw_base >= runtime->boundary) {
 353					hw_base = 0;
 354					crossed_boundary++;
 355				}
 356				new_hw_ptr = hw_base + pos;
 357				goto __delta;
 358			}
 359		}
 360	}
 361	/* new_hw_ptr might be lower than old_hw_ptr in case when */
 362	/* pointer crosses the end of the ring buffer */
 363	if (new_hw_ptr < old_hw_ptr) {
 364		hw_base += runtime->buffer_size;
 365		if (hw_base >= runtime->boundary) {
 366			hw_base = 0;
 367			crossed_boundary++;
 368		}
 369		new_hw_ptr = hw_base + pos;
 370	}
 371      __delta:
 372	delta = new_hw_ptr - old_hw_ptr;
 373	if (delta < 0)
 374		delta += runtime->boundary;
 375
 376	if (runtime->no_period_wakeup) {
 377		snd_pcm_sframes_t xrun_threshold;
 378		/*
 379		 * Without regular period interrupts, we have to check
 380		 * the elapsed time to detect xruns.
 381		 */
 382		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 383		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
 384			goto no_delta_check;
 385		hdelta = jdelta - delta * HZ / runtime->rate;
 386		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
 387		while (hdelta > xrun_threshold) {
 388			delta += runtime->buffer_size;
 389			hw_base += runtime->buffer_size;
 390			if (hw_base >= runtime->boundary) {
 391				hw_base = 0;
 392				crossed_boundary++;
 393			}
 394			new_hw_ptr = hw_base + pos;
 395			hdelta -= runtime->hw_ptr_buffer_jiffies;
 396		}
 397		goto no_delta_check;
 398	}
 399
 400	/* something must be really wrong */
 401	if (delta >= runtime->buffer_size + runtime->period_size) {
 402		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
 403			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 404			     substream->stream, (long)pos,
 405			     (long)new_hw_ptr, (long)old_hw_ptr);
 406		return 0;
 407	}
 408
 409	/* Do jiffies check only in xrun_debug mode */
 410	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
 411		goto no_jiffies_check;
 412
 413	/* Skip the jiffies check for hardwares with BATCH flag.
 414	 * Such hardware usually just increases the position at each IRQ,
 415	 * thus it can't give any strange position.
 416	 */
 417	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
 418		goto no_jiffies_check;
 419	hdelta = delta;
 420	if (hdelta < runtime->delay)
 421		goto no_jiffies_check;
 422	hdelta -= runtime->delay;
 423	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
 424	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
 425		delta = jdelta /
 426			(((runtime->period_size * HZ) / runtime->rate)
 427								+ HZ/100);
 428		/* move new_hw_ptr according jiffies not pos variable */
 429		new_hw_ptr = old_hw_ptr;
 430		hw_base = delta;
 431		/* use loop to avoid checks for delta overflows */
 432		/* the delta value is small or zero in most cases */
 433		while (delta > 0) {
 434			new_hw_ptr += runtime->period_size;
 435			if (new_hw_ptr >= runtime->boundary) {
 436				new_hw_ptr -= runtime->boundary;
 437				crossed_boundary--;
 438			}
 439			delta--;
 440		}
 441		/* align hw_base to buffer_size */
 442		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
 443			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
 444			     (long)pos, (long)hdelta,
 445			     (long)runtime->period_size, jdelta,
 446			     ((hdelta * HZ) / runtime->rate), hw_base,
 447			     (unsigned long)old_hw_ptr,
 448			     (unsigned long)new_hw_ptr);
 449		/* reset values to proper state */
 450		delta = 0;
 451		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
 452	}
 453 no_jiffies_check:
 454	if (delta > runtime->period_size + runtime->period_size / 2) {
 455		hw_ptr_error(substream, in_interrupt,
 456			     "Lost interrupts?",
 457			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
 458			     substream->stream, (long)delta,
 459			     (long)new_hw_ptr,
 460			     (long)old_hw_ptr);
 461	}
 462
 463 no_delta_check:
 464	if (runtime->status->hw_ptr == new_hw_ptr) {
 465		runtime->hw_ptr_jiffies = curr_jiffies;
 466		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 467		return 0;
 468	}
 469
 470	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
 471	    runtime->silence_size > 0)
 472		snd_pcm_playback_silence(substream, new_hw_ptr);
 473
 474	if (in_interrupt) {
 475		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
 476		if (delta < 0)
 477			delta += runtime->boundary;
 478		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
 479		runtime->hw_ptr_interrupt += delta;
 480		if (runtime->hw_ptr_interrupt >= runtime->boundary)
 481			runtime->hw_ptr_interrupt -= runtime->boundary;
 482	}
 483	runtime->hw_ptr_base = hw_base;
 484	runtime->status->hw_ptr = new_hw_ptr;
 485	runtime->hw_ptr_jiffies = curr_jiffies;
 486	if (crossed_boundary) {
 487		snd_BUG_ON(crossed_boundary != 1);
 488		runtime->hw_ptr_wrap += runtime->boundary;
 489	}
 490
 491	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
 492
 493	return snd_pcm_update_state(substream, runtime);
 494}
 495
 496/* CAUTION: call it with irq disabled */
 497int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
 498{
 499	return snd_pcm_update_hw_ptr0(substream, 0);
 500}
 501
 502/**
 503 * snd_pcm_set_ops - set the PCM operators
 504 * @pcm: the pcm instance
 505 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 506 * @ops: the operator table
 507 *
 508 * Sets the given PCM operators to the pcm instance.
 509 */
 510void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
 511		     const struct snd_pcm_ops *ops)
 512{
 513	struct snd_pcm_str *stream = &pcm->streams[direction];
 514	struct snd_pcm_substream *substream;
 515	
 516	for (substream = stream->substream; substream != NULL; substream = substream->next)
 517		substream->ops = ops;
 518}
 
 519EXPORT_SYMBOL(snd_pcm_set_ops);
 520
 521/**
 522 * snd_pcm_set_sync_per_card - set the PCM sync id with card number
 523 * @substream: the pcm substream
 524 * @params: modified hardware parameters
 525 * @id: identifier (max 12 bytes)
 526 * @len: identifier length (max 12 bytes)
 527 *
 528 * Sets the PCM sync identifier for the card with zero padding.
 529 *
 530 * User space or any user should use this 16-byte identifier for a comparison only
 531 * to check if two IDs are similar or different. Special case is the identifier
 532 * containing only zeros. Interpretation for this combination is - empty (not set).
 533 * The contents of the identifier should not be interpreted in any other way.
 534 *
 535 * The synchronization ID must be unique per clock source (usually one sound card,
 536 * but multiple soundcard may use one PCM word clock source which means that they
 537 * are fully synchronized).
 538 *
 539 * This routine composes this ID using card number in first four bytes and
 540 * 12-byte additional ID. When other ID composition is used (e.g. for multiple
 541 * sound cards), make sure that the composition does not clash with this
 542 * composition scheme.
 543 */
 544void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream,
 545			       struct snd_pcm_hw_params *params,
 546			       const unsigned char *id, unsigned int len)
 547{
 548	*(__u32 *)params->sync = cpu_to_le32(substream->pcm->card->number);
 549	len = min(12, len);
 550	memcpy(params->sync + 4, id, len);
 551	memset(params->sync + 4 + len, 0, 12 - len);
 552}
 553EXPORT_SYMBOL_GPL(snd_pcm_set_sync_per_card);
 
 554
 555/*
 556 *  Standard ioctl routine
 557 */
 558
 559static inline unsigned int div32(unsigned int a, unsigned int b, 
 560				 unsigned int *r)
 561{
 562	if (b == 0) {
 563		*r = 0;
 564		return UINT_MAX;
 565	}
 566	*r = a % b;
 567	return a / b;
 568}
 569
 570static inline unsigned int div_down(unsigned int a, unsigned int b)
 571{
 572	if (b == 0)
 573		return UINT_MAX;
 574	return a / b;
 575}
 576
 577static inline unsigned int div_up(unsigned int a, unsigned int b)
 578{
 579	unsigned int r;
 580	unsigned int q;
 581	if (b == 0)
 582		return UINT_MAX;
 583	q = div32(a, b, &r);
 584	if (r)
 585		++q;
 586	return q;
 587}
 588
 589static inline unsigned int mul(unsigned int a, unsigned int b)
 590{
 591	if (a == 0)
 592		return 0;
 593	if (div_down(UINT_MAX, a) < b)
 594		return UINT_MAX;
 595	return a * b;
 596}
 597
 598static inline unsigned int muldiv32(unsigned int a, unsigned int b,
 599				    unsigned int c, unsigned int *r)
 600{
 601	u_int64_t n = (u_int64_t) a * b;
 602	if (c == 0) {
 
 603		*r = 0;
 604		return UINT_MAX;
 605	}
 606	n = div_u64_rem(n, c, r);
 607	if (n >= UINT_MAX) {
 608		*r = 0;
 609		return UINT_MAX;
 610	}
 611	return n;
 612}
 613
 614/**
 615 * snd_interval_refine - refine the interval value of configurator
 616 * @i: the interval value to refine
 617 * @v: the interval value to refer to
 618 *
 619 * Refines the interval value with the reference value.
 620 * The interval is changed to the range satisfying both intervals.
 621 * The interval status (min, max, integer, etc.) are evaluated.
 622 *
 623 * Return: Positive if the value is changed, zero if it's not changed, or a
 624 * negative error code.
 625 */
 626int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
 627{
 628	int changed = 0;
 629	if (snd_BUG_ON(snd_interval_empty(i)))
 630		return -EINVAL;
 631	if (i->min < v->min) {
 632		i->min = v->min;
 633		i->openmin = v->openmin;
 634		changed = 1;
 635	} else if (i->min == v->min && !i->openmin && v->openmin) {
 636		i->openmin = 1;
 637		changed = 1;
 638	}
 639	if (i->max > v->max) {
 640		i->max = v->max;
 641		i->openmax = v->openmax;
 642		changed = 1;
 643	} else if (i->max == v->max && !i->openmax && v->openmax) {
 644		i->openmax = 1;
 645		changed = 1;
 646	}
 647	if (!i->integer && v->integer) {
 648		i->integer = 1;
 649		changed = 1;
 650	}
 651	if (i->integer) {
 652		if (i->openmin) {
 653			i->min++;
 654			i->openmin = 0;
 655		}
 656		if (i->openmax) {
 657			i->max--;
 658			i->openmax = 0;
 659		}
 660	} else if (!i->openmin && !i->openmax && i->min == i->max)
 661		i->integer = 1;
 662	if (snd_interval_checkempty(i)) {
 663		snd_interval_none(i);
 664		return -EINVAL;
 665	}
 666	return changed;
 667}
 
 668EXPORT_SYMBOL(snd_interval_refine);
 669
 670static int snd_interval_refine_first(struct snd_interval *i)
 671{
 672	const unsigned int last_max = i->max;
 673
 674	if (snd_BUG_ON(snd_interval_empty(i)))
 675		return -EINVAL;
 676	if (snd_interval_single(i))
 677		return 0;
 678	i->max = i->min;
 679	if (i->openmin)
 
 680		i->max++;
 681	/* only exclude max value if also excluded before refine */
 682	i->openmax = (i->openmax && i->max >= last_max);
 683	return 1;
 684}
 685
 686static int snd_interval_refine_last(struct snd_interval *i)
 687{
 688	const unsigned int last_min = i->min;
 689
 690	if (snd_BUG_ON(snd_interval_empty(i)))
 691		return -EINVAL;
 692	if (snd_interval_single(i))
 693		return 0;
 694	i->min = i->max;
 695	if (i->openmax)
 
 696		i->min--;
 697	/* only exclude min value if also excluded before refine */
 698	i->openmin = (i->openmin && i->min <= last_min);
 699	return 1;
 700}
 701
 702void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 703{
 704	if (a->empty || b->empty) {
 705		snd_interval_none(c);
 706		return;
 707	}
 708	c->empty = 0;
 709	c->min = mul(a->min, b->min);
 710	c->openmin = (a->openmin || b->openmin);
 711	c->max = mul(a->max,  b->max);
 712	c->openmax = (a->openmax || b->openmax);
 713	c->integer = (a->integer && b->integer);
 714}
 715
 716/**
 717 * snd_interval_div - refine the interval value with division
 718 * @a: dividend
 719 * @b: divisor
 720 * @c: quotient
 721 *
 722 * c = a / b
 723 *
 724 * Returns non-zero if the value is changed, zero if not changed.
 725 */
 726void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
 727{
 728	unsigned int r;
 729	if (a->empty || b->empty) {
 730		snd_interval_none(c);
 731		return;
 732	}
 733	c->empty = 0;
 734	c->min = div32(a->min, b->max, &r);
 735	c->openmin = (r || a->openmin || b->openmax);
 736	if (b->min > 0) {
 737		c->max = div32(a->max, b->min, &r);
 738		if (r) {
 739			c->max++;
 740			c->openmax = 1;
 741		} else
 742			c->openmax = (a->openmax || b->openmin);
 743	} else {
 744		c->max = UINT_MAX;
 745		c->openmax = 0;
 746	}
 747	c->integer = 0;
 748}
 749
 750/**
 751 * snd_interval_muldivk - refine the interval value
 752 * @a: dividend 1
 753 * @b: dividend 2
 754 * @k: divisor (as integer)
 755 * @c: result
 756  *
 757 * c = a * b / k
 758 *
 759 * Returns non-zero if the value is changed, zero if not changed.
 760 */
 761void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
 762		      unsigned int k, struct snd_interval *c)
 763{
 764	unsigned int r;
 765	if (a->empty || b->empty) {
 766		snd_interval_none(c);
 767		return;
 768	}
 769	c->empty = 0;
 770	c->min = muldiv32(a->min, b->min, k, &r);
 771	c->openmin = (r || a->openmin || b->openmin);
 772	c->max = muldiv32(a->max, b->max, k, &r);
 773	if (r) {
 774		c->max++;
 775		c->openmax = 1;
 776	} else
 777		c->openmax = (a->openmax || b->openmax);
 778	c->integer = 0;
 779}
 780
 781/**
 782 * snd_interval_mulkdiv - refine the interval value
 783 * @a: dividend 1
 784 * @k: dividend 2 (as integer)
 785 * @b: divisor
 786 * @c: result
 787 *
 788 * c = a * k / b
 789 *
 790 * Returns non-zero if the value is changed, zero if not changed.
 791 */
 792void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
 793		      const struct snd_interval *b, struct snd_interval *c)
 794{
 795	unsigned int r;
 796	if (a->empty || b->empty) {
 797		snd_interval_none(c);
 798		return;
 799	}
 800	c->empty = 0;
 801	c->min = muldiv32(a->min, k, b->max, &r);
 802	c->openmin = (r || a->openmin || b->openmax);
 803	if (b->min > 0) {
 804		c->max = muldiv32(a->max, k, b->min, &r);
 805		if (r) {
 806			c->max++;
 807			c->openmax = 1;
 808		} else
 809			c->openmax = (a->openmax || b->openmin);
 810	} else {
 811		c->max = UINT_MAX;
 812		c->openmax = 0;
 813	}
 814	c->integer = 0;
 815}
 816
 817/* ---- */
 818
 819
 820/**
 821 * snd_interval_ratnum - refine the interval value
 822 * @i: interval to refine
 823 * @rats_count: number of ratnum_t 
 824 * @rats: ratnum_t array
 825 * @nump: pointer to store the resultant numerator
 826 * @denp: pointer to store the resultant denominator
 827 *
 828 * Return: Positive if the value is changed, zero if it's not changed, or a
 829 * negative error code.
 830 */
 831int snd_interval_ratnum(struct snd_interval *i,
 832			unsigned int rats_count, const struct snd_ratnum *rats,
 833			unsigned int *nump, unsigned int *denp)
 834{
 835	unsigned int best_num, best_den;
 836	int best_diff;
 837	unsigned int k;
 838	struct snd_interval t;
 839	int err;
 840	unsigned int result_num, result_den;
 841	int result_diff;
 842
 843	best_num = best_den = best_diff = 0;
 844	for (k = 0; k < rats_count; ++k) {
 845		unsigned int num = rats[k].num;
 846		unsigned int den;
 847		unsigned int q = i->min;
 848		int diff;
 849		if (q == 0)
 850			q = 1;
 851		den = div_up(num, q);
 852		if (den < rats[k].den_min)
 853			continue;
 854		if (den > rats[k].den_max)
 855			den = rats[k].den_max;
 856		else {
 857			unsigned int r;
 858			r = (den - rats[k].den_min) % rats[k].den_step;
 859			if (r != 0)
 860				den -= r;
 861		}
 862		diff = num - q * den;
 863		if (diff < 0)
 864			diff = -diff;
 865		if (best_num == 0 ||
 866		    diff * best_den < best_diff * den) {
 867			best_diff = diff;
 868			best_den = den;
 869			best_num = num;
 870		}
 871	}
 872	if (best_den == 0) {
 873		i->empty = 1;
 874		return -EINVAL;
 875	}
 876	t.min = div_down(best_num, best_den);
 877	t.openmin = !!(best_num % best_den);
 878	
 879	result_num = best_num;
 880	result_diff = best_diff;
 881	result_den = best_den;
 882	best_num = best_den = best_diff = 0;
 883	for (k = 0; k < rats_count; ++k) {
 884		unsigned int num = rats[k].num;
 885		unsigned int den;
 886		unsigned int q = i->max;
 887		int diff;
 888		if (q == 0) {
 889			i->empty = 1;
 890			return -EINVAL;
 891		}
 892		den = div_down(num, q);
 893		if (den > rats[k].den_max)
 894			continue;
 895		if (den < rats[k].den_min)
 896			den = rats[k].den_min;
 897		else {
 898			unsigned int r;
 899			r = (den - rats[k].den_min) % rats[k].den_step;
 900			if (r != 0)
 901				den += rats[k].den_step - r;
 902		}
 903		diff = q * den - num;
 904		if (diff < 0)
 905			diff = -diff;
 906		if (best_num == 0 ||
 907		    diff * best_den < best_diff * den) {
 908			best_diff = diff;
 909			best_den = den;
 910			best_num = num;
 911		}
 912	}
 913	if (best_den == 0) {
 914		i->empty = 1;
 915		return -EINVAL;
 916	}
 917	t.max = div_up(best_num, best_den);
 918	t.openmax = !!(best_num % best_den);
 919	t.integer = 0;
 920	err = snd_interval_refine(i, &t);
 921	if (err < 0)
 922		return err;
 923
 924	if (snd_interval_single(i)) {
 925		if (best_diff * result_den < result_diff * best_den) {
 926			result_num = best_num;
 927			result_den = best_den;
 928		}
 929		if (nump)
 930			*nump = result_num;
 931		if (denp)
 932			*denp = result_den;
 933	}
 934	return err;
 935}
 
 936EXPORT_SYMBOL(snd_interval_ratnum);
 937
 938/**
 939 * snd_interval_ratden - refine the interval value
 940 * @i: interval to refine
 941 * @rats_count: number of struct ratden
 942 * @rats: struct ratden array
 943 * @nump: pointer to store the resultant numerator
 944 * @denp: pointer to store the resultant denominator
 945 *
 946 * Return: Positive if the value is changed, zero if it's not changed, or a
 947 * negative error code.
 948 */
 949static int snd_interval_ratden(struct snd_interval *i,
 950			       unsigned int rats_count,
 951			       const struct snd_ratden *rats,
 952			       unsigned int *nump, unsigned int *denp)
 953{
 954	unsigned int best_num, best_diff, best_den;
 955	unsigned int k;
 956	struct snd_interval t;
 957	int err;
 958
 959	best_num = best_den = best_diff = 0;
 960	for (k = 0; k < rats_count; ++k) {
 961		unsigned int num;
 962		unsigned int den = rats[k].den;
 963		unsigned int q = i->min;
 964		int diff;
 965		num = mul(q, den);
 966		if (num > rats[k].num_max)
 967			continue;
 968		if (num < rats[k].num_min)
 969			num = rats[k].num_max;
 970		else {
 971			unsigned int r;
 972			r = (num - rats[k].num_min) % rats[k].num_step;
 973			if (r != 0)
 974				num += rats[k].num_step - r;
 975		}
 976		diff = num - q * den;
 977		if (best_num == 0 ||
 978		    diff * best_den < best_diff * den) {
 979			best_diff = diff;
 980			best_den = den;
 981			best_num = num;
 982		}
 983	}
 984	if (best_den == 0) {
 985		i->empty = 1;
 986		return -EINVAL;
 987	}
 988	t.min = div_down(best_num, best_den);
 989	t.openmin = !!(best_num % best_den);
 990	
 991	best_num = best_den = best_diff = 0;
 992	for (k = 0; k < rats_count; ++k) {
 993		unsigned int num;
 994		unsigned int den = rats[k].den;
 995		unsigned int q = i->max;
 996		int diff;
 997		num = mul(q, den);
 998		if (num < rats[k].num_min)
 999			continue;
1000		if (num > rats[k].num_max)
1001			num = rats[k].num_max;
1002		else {
1003			unsigned int r;
1004			r = (num - rats[k].num_min) % rats[k].num_step;
1005			if (r != 0)
1006				num -= r;
1007		}
1008		diff = q * den - num;
1009		if (best_num == 0 ||
1010		    diff * best_den < best_diff * den) {
1011			best_diff = diff;
1012			best_den = den;
1013			best_num = num;
1014		}
1015	}
1016	if (best_den == 0) {
1017		i->empty = 1;
1018		return -EINVAL;
1019	}
1020	t.max = div_up(best_num, best_den);
1021	t.openmax = !!(best_num % best_den);
1022	t.integer = 0;
1023	err = snd_interval_refine(i, &t);
1024	if (err < 0)
1025		return err;
1026
1027	if (snd_interval_single(i)) {
1028		if (nump)
1029			*nump = best_num;
1030		if (denp)
1031			*denp = best_den;
1032	}
1033	return err;
1034}
1035
1036/**
1037 * snd_interval_list - refine the interval value from the list
1038 * @i: the interval value to refine
1039 * @count: the number of elements in the list
1040 * @list: the value list
1041 * @mask: the bit-mask to evaluate
1042 *
1043 * Refines the interval value from the list.
1044 * When mask is non-zero, only the elements corresponding to bit 1 are
1045 * evaluated.
1046 *
1047 * Return: Positive if the value is changed, zero if it's not changed, or a
1048 * negative error code.
1049 */
1050int snd_interval_list(struct snd_interval *i, unsigned int count,
1051		      const unsigned int *list, unsigned int mask)
1052{
1053        unsigned int k;
1054	struct snd_interval list_range;
1055
1056	if (!count) {
1057		i->empty = 1;
1058		return -EINVAL;
1059	}
1060	snd_interval_any(&list_range);
1061	list_range.min = UINT_MAX;
1062	list_range.max = 0;
1063        for (k = 0; k < count; k++) {
1064		if (mask && !(mask & (1 << k)))
1065			continue;
1066		if (!snd_interval_test(i, list[k]))
1067			continue;
1068		list_range.min = min(list_range.min, list[k]);
1069		list_range.max = max(list_range.max, list[k]);
1070        }
1071	return snd_interval_refine(i, &list_range);
1072}
 
1073EXPORT_SYMBOL(snd_interval_list);
1074
1075/**
1076 * snd_interval_ranges - refine the interval value from the list of ranges
1077 * @i: the interval value to refine
1078 * @count: the number of elements in the list of ranges
1079 * @ranges: the ranges list
1080 * @mask: the bit-mask to evaluate
1081 *
1082 * Refines the interval value from the list of ranges.
1083 * When mask is non-zero, only the elements corresponding to bit 1 are
1084 * evaluated.
1085 *
1086 * Return: Positive if the value is changed, zero if it's not changed, or a
1087 * negative error code.
1088 */
1089int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1090			const struct snd_interval *ranges, unsigned int mask)
1091{
1092	unsigned int k;
1093	struct snd_interval range_union;
1094	struct snd_interval range;
1095
1096	if (!count) {
1097		snd_interval_none(i);
1098		return -EINVAL;
1099	}
1100	snd_interval_any(&range_union);
1101	range_union.min = UINT_MAX;
1102	range_union.max = 0;
1103	for (k = 0; k < count; k++) {
1104		if (mask && !(mask & (1 << k)))
1105			continue;
1106		snd_interval_copy(&range, &ranges[k]);
1107		if (snd_interval_refine(&range, i) < 0)
1108			continue;
1109		if (snd_interval_empty(&range))
1110			continue;
1111
1112		if (range.min < range_union.min) {
1113			range_union.min = range.min;
1114			range_union.openmin = 1;
1115		}
1116		if (range.min == range_union.min && !range.openmin)
1117			range_union.openmin = 0;
1118		if (range.max > range_union.max) {
1119			range_union.max = range.max;
1120			range_union.openmax = 1;
1121		}
1122		if (range.max == range_union.max && !range.openmax)
1123			range_union.openmax = 0;
1124	}
1125	return snd_interval_refine(i, &range_union);
1126}
1127EXPORT_SYMBOL(snd_interval_ranges);
1128
1129static int snd_interval_step(struct snd_interval *i, unsigned int step)
1130{
1131	unsigned int n;
1132	int changed = 0;
1133	n = i->min % step;
1134	if (n != 0 || i->openmin) {
1135		i->min += step - n;
1136		i->openmin = 0;
1137		changed = 1;
1138	}
1139	n = i->max % step;
1140	if (n != 0 || i->openmax) {
1141		i->max -= n;
1142		i->openmax = 0;
1143		changed = 1;
1144	}
1145	if (snd_interval_checkempty(i)) {
1146		i->empty = 1;
1147		return -EINVAL;
1148	}
1149	return changed;
1150}
1151
1152/* Info constraints helpers */
1153
1154/**
1155 * snd_pcm_hw_rule_add - add the hw-constraint rule
1156 * @runtime: the pcm runtime instance
1157 * @cond: condition bits
1158 * @var: the variable to evaluate
1159 * @func: the evaluation function
1160 * @private: the private data pointer passed to function
1161 * @dep: the dependent variables
1162 *
1163 * Return: Zero if successful, or a negative error code on failure.
1164 */
1165int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1166			int var,
1167			snd_pcm_hw_rule_func_t func, void *private,
1168			int dep, ...)
1169{
1170	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171	struct snd_pcm_hw_rule *c;
1172	unsigned int k;
1173	va_list args;
1174	va_start(args, dep);
1175	if (constrs->rules_num >= constrs->rules_all) {
1176		struct snd_pcm_hw_rule *new;
1177		unsigned int new_rules = constrs->rules_all + 16;
1178		new = krealloc_array(constrs->rules, new_rules,
1179				     sizeof(*c), GFP_KERNEL);
1180		if (!new) {
1181			va_end(args);
1182			return -ENOMEM;
1183		}
 
 
 
 
 
1184		constrs->rules = new;
1185		constrs->rules_all = new_rules;
1186	}
1187	c = &constrs->rules[constrs->rules_num];
1188	c->cond = cond;
1189	c->func = func;
1190	c->var = var;
1191	c->private = private;
1192	k = 0;
1193	while (1) {
1194		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1195			va_end(args);
1196			return -EINVAL;
1197		}
1198		c->deps[k++] = dep;
1199		if (dep < 0)
1200			break;
1201		dep = va_arg(args, int);
1202	}
1203	constrs->rules_num++;
1204	va_end(args);
1205	return 0;
1206}
 
1207EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1208
1209/**
1210 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1211 * @runtime: PCM runtime instance
1212 * @var: hw_params variable to apply the mask
1213 * @mask: the bitmap mask
1214 *
1215 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1216 *
1217 * Return: Zero if successful, or a negative error code on failure.
1218 */
1219int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220			       u_int32_t mask)
1221{
1222	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223	struct snd_mask *maskp = constrs_mask(constrs, var);
1224	*maskp->bits &= mask;
1225	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1226	if (*maskp->bits == 0)
1227		return -EINVAL;
1228	return 0;
1229}
1230
1231/**
1232 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1233 * @runtime: PCM runtime instance
1234 * @var: hw_params variable to apply the mask
1235 * @mask: the 64bit bitmap mask
1236 *
1237 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1238 *
1239 * Return: Zero if successful, or a negative error code on failure.
1240 */
1241int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1242				 u_int64_t mask)
1243{
1244	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1245	struct snd_mask *maskp = constrs_mask(constrs, var);
1246	maskp->bits[0] &= (u_int32_t)mask;
1247	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1248	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1249	if (! maskp->bits[0] && ! maskp->bits[1])
1250		return -EINVAL;
1251	return 0;
1252}
1253EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1254
1255/**
1256 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1257 * @runtime: PCM runtime instance
1258 * @var: hw_params variable to apply the integer constraint
1259 *
1260 * Apply the constraint of integer to an interval parameter.
1261 *
1262 * Return: Positive if the value is changed, zero if it's not changed, or a
1263 * negative error code.
1264 */
1265int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1266{
1267	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268	return snd_interval_setinteger(constrs_interval(constrs, var));
1269}
 
1270EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1271
1272/**
1273 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1274 * @runtime: PCM runtime instance
1275 * @var: hw_params variable to apply the range
1276 * @min: the minimal value
1277 * @max: the maximal value
1278 * 
1279 * Apply the min/max range constraint to an interval parameter.
1280 *
1281 * Return: Positive if the value is changed, zero if it's not changed, or a
1282 * negative error code.
1283 */
1284int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1285				 unsigned int min, unsigned int max)
1286{
1287	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1288	struct snd_interval t;
1289	t.min = min;
1290	t.max = max;
1291	t.openmin = t.openmax = 0;
1292	t.integer = 0;
1293	return snd_interval_refine(constrs_interval(constrs, var), &t);
1294}
 
1295EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1296
1297static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1298				struct snd_pcm_hw_rule *rule)
1299{
1300	struct snd_pcm_hw_constraint_list *list = rule->private;
1301	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1302}		
1303
1304
1305/**
1306 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1307 * @runtime: PCM runtime instance
1308 * @cond: condition bits
1309 * @var: hw_params variable to apply the list constraint
1310 * @l: list
1311 * 
1312 * Apply the list of constraints to an interval parameter.
1313 *
1314 * Return: Zero if successful, or a negative error code on failure.
1315 */
1316int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1317			       unsigned int cond,
1318			       snd_pcm_hw_param_t var,
1319			       const struct snd_pcm_hw_constraint_list *l)
1320{
1321	return snd_pcm_hw_rule_add(runtime, cond, var,
1322				   snd_pcm_hw_rule_list, (void *)l,
1323				   var, -1);
1324}
 
1325EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1326
1327static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1328				  struct snd_pcm_hw_rule *rule)
1329{
1330	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1331	return snd_interval_ranges(hw_param_interval(params, rule->var),
1332				   r->count, r->ranges, r->mask);
1333}
1334
1335
1336/**
1337 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1338 * @runtime: PCM runtime instance
1339 * @cond: condition bits
1340 * @var: hw_params variable to apply the list of range constraints
1341 * @r: ranges
1342 *
1343 * Apply the list of range constraints to an interval parameter.
1344 *
1345 * Return: Zero if successful, or a negative error code on failure.
1346 */
1347int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1348				 unsigned int cond,
1349				 snd_pcm_hw_param_t var,
1350				 const struct snd_pcm_hw_constraint_ranges *r)
1351{
1352	return snd_pcm_hw_rule_add(runtime, cond, var,
1353				   snd_pcm_hw_rule_ranges, (void *)r,
1354				   var, -1);
1355}
1356EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1357
1358static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1359				   struct snd_pcm_hw_rule *rule)
1360{
1361	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1362	unsigned int num = 0, den = 0;
1363	int err;
1364	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1365				  r->nrats, r->rats, &num, &den);
1366	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1367		params->rate_num = num;
1368		params->rate_den = den;
1369	}
1370	return err;
1371}
1372
1373/**
1374 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1375 * @runtime: PCM runtime instance
1376 * @cond: condition bits
1377 * @var: hw_params variable to apply the ratnums constraint
1378 * @r: struct snd_ratnums constriants
1379 *
1380 * Return: Zero if successful, or a negative error code on failure.
1381 */
1382int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1383				  unsigned int cond,
1384				  snd_pcm_hw_param_t var,
1385				  const struct snd_pcm_hw_constraint_ratnums *r)
1386{
1387	return snd_pcm_hw_rule_add(runtime, cond, var,
1388				   snd_pcm_hw_rule_ratnums, (void *)r,
1389				   var, -1);
1390}
 
1391EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1392
1393static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1394				   struct snd_pcm_hw_rule *rule)
1395{
1396	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1397	unsigned int num = 0, den = 0;
1398	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1399				  r->nrats, r->rats, &num, &den);
1400	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1401		params->rate_num = num;
1402		params->rate_den = den;
1403	}
1404	return err;
1405}
1406
1407/**
1408 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1409 * @runtime: PCM runtime instance
1410 * @cond: condition bits
1411 * @var: hw_params variable to apply the ratdens constraint
1412 * @r: struct snd_ratdens constriants
1413 *
1414 * Return: Zero if successful, or a negative error code on failure.
1415 */
1416int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1417				  unsigned int cond,
1418				  snd_pcm_hw_param_t var,
1419				  const struct snd_pcm_hw_constraint_ratdens *r)
1420{
1421	return snd_pcm_hw_rule_add(runtime, cond, var,
1422				   snd_pcm_hw_rule_ratdens, (void *)r,
1423				   var, -1);
1424}
 
1425EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1426
1427static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1428				  struct snd_pcm_hw_rule *rule)
1429{
1430	unsigned int l = (unsigned long) rule->private;
1431	int width = l & 0xffff;
1432	unsigned int msbits = l >> 16;
1433	const struct snd_interval *i =
1434		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1435
1436	if (!snd_interval_single(i))
1437		return 0;
1438
1439	if ((snd_interval_value(i) == width) ||
1440	    (width == 0 && snd_interval_value(i) > msbits))
1441		params->msbits = min_not_zero(params->msbits, msbits);
1442
1443	return 0;
1444}
1445
1446/**
1447 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1448 * @runtime: PCM runtime instance
1449 * @cond: condition bits
1450 * @width: sample bits width
1451 * @msbits: msbits width
1452 *
1453 * This constraint will set the number of most significant bits (msbits) if a
1454 * sample format with the specified width has been select. If width is set to 0
1455 * the msbits will be set for any sample format with a width larger than the
1456 * specified msbits.
1457 *
1458 * Return: Zero if successful, or a negative error code on failure.
1459 */
1460int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1461				 unsigned int cond,
1462				 unsigned int width,
1463				 unsigned int msbits)
1464{
1465	unsigned long l = (msbits << 16) | width;
1466	return snd_pcm_hw_rule_add(runtime, cond, -1,
1467				    snd_pcm_hw_rule_msbits,
1468				    (void*) l,
1469				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1470}
 
1471EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1472
1473static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1474				struct snd_pcm_hw_rule *rule)
1475{
1476	unsigned long step = (unsigned long) rule->private;
1477	return snd_interval_step(hw_param_interval(params, rule->var), step);
1478}
1479
1480/**
1481 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1482 * @runtime: PCM runtime instance
1483 * @cond: condition bits
1484 * @var: hw_params variable to apply the step constraint
1485 * @step: step size
1486 *
1487 * Return: Zero if successful, or a negative error code on failure.
1488 */
1489int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1490			       unsigned int cond,
1491			       snd_pcm_hw_param_t var,
1492			       unsigned long step)
1493{
1494	return snd_pcm_hw_rule_add(runtime, cond, var, 
1495				   snd_pcm_hw_rule_step, (void *) step,
1496				   var, -1);
1497}
 
1498EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1499
1500static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1501{
1502	static const unsigned int pow2_sizes[] = {
1503		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1504		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1505		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1506		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1507	};
1508	return snd_interval_list(hw_param_interval(params, rule->var),
1509				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1510}		
1511
1512/**
1513 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1514 * @runtime: PCM runtime instance
1515 * @cond: condition bits
1516 * @var: hw_params variable to apply the power-of-2 constraint
1517 *
1518 * Return: Zero if successful, or a negative error code on failure.
1519 */
1520int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1521			       unsigned int cond,
1522			       snd_pcm_hw_param_t var)
1523{
1524	return snd_pcm_hw_rule_add(runtime, cond, var, 
1525				   snd_pcm_hw_rule_pow2, NULL,
1526				   var, -1);
1527}
 
1528EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1529
1530static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1531					   struct snd_pcm_hw_rule *rule)
1532{
1533	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1534	struct snd_interval *rate;
1535
1536	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1537	return snd_interval_list(rate, 1, &base_rate, 0);
1538}
1539
1540/**
1541 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1542 * @runtime: PCM runtime instance
1543 * @base_rate: the rate at which the hardware does not resample
1544 *
1545 * Return: Zero if successful, or a negative error code on failure.
1546 */
1547int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1548			       unsigned int base_rate)
1549{
1550	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1551				   SNDRV_PCM_HW_PARAM_RATE,
1552				   snd_pcm_hw_rule_noresample_func,
1553				   (void *)(uintptr_t)base_rate,
1554				   SNDRV_PCM_HW_PARAM_RATE, -1);
1555}
1556EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1557
1558static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1559				  snd_pcm_hw_param_t var)
1560{
1561	if (hw_is_mask(var)) {
1562		snd_mask_any(hw_param_mask(params, var));
1563		params->cmask |= 1 << var;
1564		params->rmask |= 1 << var;
1565		return;
1566	}
1567	if (hw_is_interval(var)) {
1568		snd_interval_any(hw_param_interval(params, var));
1569		params->cmask |= 1 << var;
1570		params->rmask |= 1 << var;
1571		return;
1572	}
1573	snd_BUG();
1574}
1575
1576void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1577{
1578	unsigned int k;
1579	memset(params, 0, sizeof(*params));
1580	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1581		_snd_pcm_hw_param_any(params, k);
1582	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1583		_snd_pcm_hw_param_any(params, k);
1584	params->info = ~0U;
1585}
 
1586EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1587
1588/**
1589 * snd_pcm_hw_param_value - return @params field @var value
1590 * @params: the hw_params instance
1591 * @var: parameter to retrieve
1592 * @dir: pointer to the direction (-1,0,1) or %NULL
1593 *
1594 * Return: The value for field @var if it's fixed in configuration space
1595 * defined by @params. -%EINVAL otherwise.
1596 */
1597int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1598			   snd_pcm_hw_param_t var, int *dir)
1599{
1600	if (hw_is_mask(var)) {
1601		const struct snd_mask *mask = hw_param_mask_c(params, var);
1602		if (!snd_mask_single(mask))
1603			return -EINVAL;
1604		if (dir)
1605			*dir = 0;
1606		return snd_mask_value(mask);
1607	}
1608	if (hw_is_interval(var)) {
1609		const struct snd_interval *i = hw_param_interval_c(params, var);
1610		if (!snd_interval_single(i))
1611			return -EINVAL;
1612		if (dir)
1613			*dir = i->openmin;
1614		return snd_interval_value(i);
1615	}
1616	return -EINVAL;
1617}
 
1618EXPORT_SYMBOL(snd_pcm_hw_param_value);
1619
1620void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1621				snd_pcm_hw_param_t var)
1622{
1623	if (hw_is_mask(var)) {
1624		snd_mask_none(hw_param_mask(params, var));
1625		params->cmask |= 1 << var;
1626		params->rmask |= 1 << var;
1627	} else if (hw_is_interval(var)) {
1628		snd_interval_none(hw_param_interval(params, var));
1629		params->cmask |= 1 << var;
1630		params->rmask |= 1 << var;
1631	} else {
1632		snd_BUG();
1633	}
1634}
 
1635EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1636
1637static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1638				   snd_pcm_hw_param_t var)
1639{
1640	int changed;
1641	if (hw_is_mask(var))
1642		changed = snd_mask_refine_first(hw_param_mask(params, var));
1643	else if (hw_is_interval(var))
1644		changed = snd_interval_refine_first(hw_param_interval(params, var));
1645	else
1646		return -EINVAL;
1647	if (changed > 0) {
1648		params->cmask |= 1 << var;
1649		params->rmask |= 1 << var;
1650	}
1651	return changed;
1652}
1653
1654
1655/**
1656 * snd_pcm_hw_param_first - refine config space and return minimum value
1657 * @pcm: PCM instance
1658 * @params: the hw_params instance
1659 * @var: parameter to retrieve
1660 * @dir: pointer to the direction (-1,0,1) or %NULL
1661 *
1662 * Inside configuration space defined by @params remove from @var all
1663 * values > minimum. Reduce configuration space accordingly.
1664 *
1665 * Return: The minimum, or a negative error code on failure.
1666 */
1667int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1668			   struct snd_pcm_hw_params *params, 
1669			   snd_pcm_hw_param_t var, int *dir)
1670{
1671	int changed = _snd_pcm_hw_param_first(params, var);
1672	if (changed < 0)
1673		return changed;
1674	if (params->rmask) {
1675		int err = snd_pcm_hw_refine(pcm, params);
1676		if (err < 0)
1677			return err;
1678	}
1679	return snd_pcm_hw_param_value(params, var, dir);
1680}
 
1681EXPORT_SYMBOL(snd_pcm_hw_param_first);
1682
1683static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1684				  snd_pcm_hw_param_t var)
1685{
1686	int changed;
1687	if (hw_is_mask(var))
1688		changed = snd_mask_refine_last(hw_param_mask(params, var));
1689	else if (hw_is_interval(var))
1690		changed = snd_interval_refine_last(hw_param_interval(params, var));
1691	else
1692		return -EINVAL;
1693	if (changed > 0) {
1694		params->cmask |= 1 << var;
1695		params->rmask |= 1 << var;
1696	}
1697	return changed;
1698}
1699
1700
1701/**
1702 * snd_pcm_hw_param_last - refine config space and return maximum value
1703 * @pcm: PCM instance
1704 * @params: the hw_params instance
1705 * @var: parameter to retrieve
1706 * @dir: pointer to the direction (-1,0,1) or %NULL
1707 *
1708 * Inside configuration space defined by @params remove from @var all
1709 * values < maximum. Reduce configuration space accordingly.
1710 *
1711 * Return: The maximum, or a negative error code on failure.
1712 */
1713int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1714			  struct snd_pcm_hw_params *params,
1715			  snd_pcm_hw_param_t var, int *dir)
1716{
1717	int changed = _snd_pcm_hw_param_last(params, var);
1718	if (changed < 0)
1719		return changed;
1720	if (params->rmask) {
1721		int err = snd_pcm_hw_refine(pcm, params);
1722		if (err < 0)
1723			return err;
1724	}
1725	return snd_pcm_hw_param_value(params, var, dir);
1726}
 
1727EXPORT_SYMBOL(snd_pcm_hw_param_last);
1728
1729/**
1730 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1731 * @p: hardware parameters
 
 
 
 
 
 
1732 *
1733 * Return: The number of bits per sample based on the format,
1734 * subformat and msbits the specified hw params has.
1735 */
1736int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
 
1737{
1738	snd_pcm_subformat_t subformat = params_subformat(p);
1739	snd_pcm_format_t format = params_format(p);
1740
1741	switch (format) {
1742	case SNDRV_PCM_FORMAT_S32_LE:
1743	case SNDRV_PCM_FORMAT_U32_LE:
1744	case SNDRV_PCM_FORMAT_S32_BE:
1745	case SNDRV_PCM_FORMAT_U32_BE:
1746		switch (subformat) {
1747		case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1748			return 20;
1749		case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1750			return 24;
1751		case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1752		case SNDRV_PCM_SUBFORMAT_STD:
1753		default:
1754			break;
1755		}
1756		fallthrough;
1757	default:
1758		return snd_pcm_format_width(format);
1759	}
 
1760}
1761EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1762
1763static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1764				   void *arg)
1765{
1766	struct snd_pcm_runtime *runtime = substream->runtime;
1767
1768	guard(pcm_stream_lock_irqsave)(substream);
1769	if (snd_pcm_running(substream) &&
1770	    snd_pcm_update_hw_ptr(substream) >= 0)
1771		runtime->status->hw_ptr %= runtime->buffer_size;
1772	else {
1773		runtime->status->hw_ptr = 0;
1774		runtime->hw_ptr_wrap = 0;
1775	}
 
1776	return 0;
1777}
1778
1779static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1780					  void *arg)
1781{
1782	struct snd_pcm_channel_info *info = arg;
1783	struct snd_pcm_runtime *runtime = substream->runtime;
1784	int width;
1785	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1786		info->offset = -1;
1787		return 0;
1788	}
1789	width = snd_pcm_format_physical_width(runtime->format);
1790	if (width < 0)
1791		return width;
1792	info->offset = 0;
1793	switch (runtime->access) {
1794	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1795	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1796		info->first = info->channel * width;
1797		info->step = runtime->channels * width;
1798		break;
1799	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1800	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1801	{
1802		size_t size = runtime->dma_bytes / runtime->channels;
1803		info->first = info->channel * size * 8;
1804		info->step = width;
1805		break;
1806	}
1807	default:
1808		snd_BUG();
1809		break;
1810	}
1811	return 0;
1812}
1813
1814static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1815				       void *arg)
1816{
1817	struct snd_pcm_hw_params *params = arg;
1818	snd_pcm_format_t format;
1819	int channels;
1820	ssize_t frame_size;
1821
1822	params->fifo_size = substream->runtime->hw.fifo_size;
1823	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1824		format = params_format(params);
1825		channels = params_channels(params);
1826		frame_size = snd_pcm_format_size(format, channels);
1827		if (frame_size > 0)
1828			params->fifo_size /= frame_size;
1829	}
1830	return 0;
1831}
1832
1833static int snd_pcm_lib_ioctl_sync_id(struct snd_pcm_substream *substream,
1834				     void *arg)
1835{
1836	static const unsigned char id[12] = { 0xff, 0xff, 0xff, 0xff,
1837					      0xff, 0xff, 0xff, 0xff,
1838					      0xff, 0xff, 0xff, 0xff };
1839
1840	if (substream->runtime->std_sync_id)
1841		snd_pcm_set_sync_per_card(substream, arg, id, sizeof(id));
1842	return 0;
1843}
1844
1845/**
1846 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1847 * @substream: the pcm substream instance
1848 * @cmd: ioctl command
1849 * @arg: ioctl argument
1850 *
1851 * Processes the generic ioctl commands for PCM.
1852 * Can be passed as the ioctl callback for PCM ops.
1853 *
1854 * Return: Zero if successful, or a negative error code on failure.
1855 */
1856int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1857		      unsigned int cmd, void *arg)
1858{
1859	switch (cmd) {
 
 
1860	case SNDRV_PCM_IOCTL1_RESET:
1861		return snd_pcm_lib_ioctl_reset(substream, arg);
1862	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1863		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1864	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1865		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1866	case SNDRV_PCM_IOCTL1_SYNC_ID:
1867		return snd_pcm_lib_ioctl_sync_id(substream, arg);
1868	}
1869	return -ENXIO;
1870}
 
1871EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1872
1873/**
1874 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1875 *						under acquired lock of PCM substream.
1876 * @substream: the instance of pcm substream.
1877 *
1878 * This function is called when the batch of audio data frames as the same size as the period of
1879 * buffer is already processed in audio data transmission.
1880 *
1881 * The call of function updates the status of runtime with the latest position of audio data
1882 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1883 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1884 * substream according to configured threshold.
1885 *
1886 * The function is intended to use for the case that PCM driver operates audio data frames under
1887 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1888 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1889 * since lock of PCM substream should be acquired in advance.
1890 *
1891 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1892 * function:
 
1893 *
1894 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1895 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1896 * - .get_time_info - to retrieve audio time stamp if needed.
1897 *
1898 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1899 */
1900void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1901{
1902	struct snd_pcm_runtime *runtime;
 
1903
1904	if (PCM_RUNTIME_CHECK(substream))
1905		return;
1906	runtime = substream->runtime;
1907
 
1908	if (!snd_pcm_running(substream) ||
1909	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1910		goto _end;
1911
1912#ifdef CONFIG_SND_PCM_TIMER
1913	if (substream->timer_running)
1914		snd_timer_interrupt(substream->timer, 1);
1915#endif
1916 _end:
1917	snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
 
1918}
1919EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1920
1921/**
1922 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1923 *			      PCM substream.
1924 * @substream: the instance of PCM substream.
1925 *
1926 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1927 * acquiring lock of PCM substream voluntarily.
1928 *
1929 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1930 * the batch of audio data frames as the same size as the period of buffer is already processed in
1931 * audio data transmission.
1932 */
1933void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1934{
1935	if (snd_BUG_ON(!substream))
1936		return;
1937
1938	guard(pcm_stream_lock_irqsave)(substream);
1939	snd_pcm_period_elapsed_under_stream_lock(substream);
1940}
1941EXPORT_SYMBOL(snd_pcm_period_elapsed);
1942
1943/*
1944 * Wait until avail_min data becomes available
1945 * Returns a negative error code if any error occurs during operation.
1946 * The available space is stored on availp.  When err = 0 and avail = 0
1947 * on the capture stream, it indicates the stream is in DRAINING state.
1948 */
1949static int wait_for_avail(struct snd_pcm_substream *substream,
1950			      snd_pcm_uframes_t *availp)
1951{
1952	struct snd_pcm_runtime *runtime = substream->runtime;
1953	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1954	wait_queue_entry_t wait;
1955	int err = 0;
1956	snd_pcm_uframes_t avail = 0;
1957	long wait_time, tout;
1958
1959	init_waitqueue_entry(&wait, current);
1960	set_current_state(TASK_INTERRUPTIBLE);
1961	add_wait_queue(&runtime->tsleep, &wait);
1962
1963	if (runtime->no_period_wakeup)
1964		wait_time = MAX_SCHEDULE_TIMEOUT;
1965	else {
1966		/* use wait time from substream if available */
1967		if (substream->wait_time) {
1968			wait_time = substream->wait_time;
1969		} else {
1970			wait_time = 100;
1971
1972			if (runtime->rate) {
1973				long t = runtime->buffer_size * 1100 / runtime->rate;
1974				wait_time = max(t, wait_time);
1975			}
1976		}
1977		wait_time = msecs_to_jiffies(wait_time);
1978	}
1979
1980	for (;;) {
1981		if (signal_pending(current)) {
1982			err = -ERESTARTSYS;
1983			break;
1984		}
1985
1986		/*
1987		 * We need to check if space became available already
1988		 * (and thus the wakeup happened already) first to close
1989		 * the race of space already having become available.
1990		 * This check must happen after been added to the waitqueue
1991		 * and having current state be INTERRUPTIBLE.
1992		 */
1993		avail = snd_pcm_avail(substream);
 
 
 
1994		if (avail >= runtime->twake)
1995			break;
1996		snd_pcm_stream_unlock_irq(substream);
1997
1998		tout = schedule_timeout(wait_time);
1999
2000		snd_pcm_stream_lock_irq(substream);
2001		set_current_state(TASK_INTERRUPTIBLE);
2002		switch (runtime->state) {
2003		case SNDRV_PCM_STATE_SUSPENDED:
2004			err = -ESTRPIPE;
2005			goto _endloop;
2006		case SNDRV_PCM_STATE_XRUN:
2007			err = -EPIPE;
2008			goto _endloop;
2009		case SNDRV_PCM_STATE_DRAINING:
2010			if (is_playback)
2011				err = -EPIPE;
2012			else 
2013				avail = 0; /* indicate draining */
2014			goto _endloop;
2015		case SNDRV_PCM_STATE_OPEN:
2016		case SNDRV_PCM_STATE_SETUP:
2017		case SNDRV_PCM_STATE_DISCONNECTED:
2018			err = -EBADFD;
2019			goto _endloop;
2020		case SNDRV_PCM_STATE_PAUSED:
2021			continue;
2022		}
2023		if (!tout) {
2024			pcm_dbg(substream->pcm,
2025				"%s timeout (DMA or IRQ trouble?)\n",
2026				is_playback ? "playback write" : "capture read");
2027			err = -EIO;
2028			break;
2029		}
2030	}
2031 _endloop:
2032	set_current_state(TASK_RUNNING);
2033	remove_wait_queue(&runtime->tsleep, &wait);
2034	*availp = avail;
2035	return err;
2036}
2037	
2038typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2039			      int channel, unsigned long hwoff,
2040			      struct iov_iter *iter, unsigned long bytes);
2041
2042typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2043			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2044			  bool);
2045
2046/* calculate the target DMA-buffer position to be written/read */
2047static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2048			   int channel, unsigned long hwoff)
2049{
2050	return runtime->dma_area + hwoff +
2051		channel * (runtime->dma_bytes / runtime->channels);
2052}
2053
2054/* default copy ops for write; used for both interleaved and non- modes */
2055static int default_write_copy(struct snd_pcm_substream *substream,
2056			      int channel, unsigned long hwoff,
2057			      struct iov_iter *iter, unsigned long bytes)
2058{
2059	if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2060			   bytes, iter) != bytes)
2061		return -EFAULT;
2062	return 0;
2063}
2064
2065/* fill silence instead of copy data; called as a transfer helper
2066 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2067 * a NULL buffer is passed
2068 */
2069static int fill_silence(struct snd_pcm_substream *substream, int channel,
2070			unsigned long hwoff, struct iov_iter *iter,
2071			unsigned long bytes)
 
 
2072{
2073	struct snd_pcm_runtime *runtime = substream->runtime;
 
 
 
 
2074
2075	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2076		return 0;
2077	if (substream->ops->fill_silence)
2078		return substream->ops->fill_silence(substream, channel,
2079						    hwoff, bytes);
2080
2081	snd_pcm_format_set_silence(runtime->format,
2082				   get_dma_ptr(runtime, channel, hwoff),
2083				   bytes_to_samples(runtime, bytes));
2084	return 0;
2085}
2086
2087/* default copy ops for read; used for both interleaved and non- modes */
2088static int default_read_copy(struct snd_pcm_substream *substream,
2089			     int channel, unsigned long hwoff,
2090			     struct iov_iter *iter, unsigned long bytes)
2091{
2092	if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2093			 bytes, iter) != bytes)
2094		return -EFAULT;
2095	return 0;
2096}
2097
2098/* call transfer with the filled iov_iter */
2099static int do_transfer(struct snd_pcm_substream *substream, int c,
2100		       unsigned long hwoff, void *data, unsigned long bytes,
2101		       pcm_transfer_f transfer, bool in_kernel)
2102{
2103	struct iov_iter iter;
2104	int err, type;
2105
2106	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2107		type = ITER_SOURCE;
2108	else
2109		type = ITER_DEST;
2110
2111	if (in_kernel) {
2112		struct kvec kvec = { data, bytes };
2113
2114		iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2115		return transfer(substream, c, hwoff, &iter, bytes);
2116	}
2117
2118	err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2119	if (err)
2120		return err;
2121	return transfer(substream, c, hwoff, &iter, bytes);
2122}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123
2124/* call transfer function with the converted pointers and sizes;
2125 * for interleaved mode, it's one shot for all samples
2126 */
2127static int interleaved_copy(struct snd_pcm_substream *substream,
2128			    snd_pcm_uframes_t hwoff, void *data,
2129			    snd_pcm_uframes_t off,
2130			    snd_pcm_uframes_t frames,
2131			    pcm_transfer_f transfer,
2132			    bool in_kernel)
2133{
2134	struct snd_pcm_runtime *runtime = substream->runtime;
2135
2136	/* convert to bytes */
2137	hwoff = frames_to_bytes(runtime, hwoff);
2138	off = frames_to_bytes(runtime, off);
2139	frames = frames_to_bytes(runtime, frames);
2140
2141	return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2142			   in_kernel);
2143}
2144
2145/* call transfer function with the converted pointers and sizes for each
2146 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2147 */
2148static int noninterleaved_copy(struct snd_pcm_substream *substream,
2149			       snd_pcm_uframes_t hwoff, void *data,
2150			       snd_pcm_uframes_t off,
2151			       snd_pcm_uframes_t frames,
2152			       pcm_transfer_f transfer,
2153			       bool in_kernel)
2154{
2155	struct snd_pcm_runtime *runtime = substream->runtime;
2156	int channels = runtime->channels;
2157	void **bufs = data;
2158	int c, err;
2159
2160	/* convert to bytes; note that it's not frames_to_bytes() here.
2161	 * in non-interleaved mode, we copy for each channel, thus
2162	 * each copy is n_samples bytes x channels = whole frames.
2163	 */
2164	off = samples_to_bytes(runtime, off);
2165	frames = samples_to_bytes(runtime, frames);
2166	hwoff = samples_to_bytes(runtime, hwoff);
2167	for (c = 0; c < channels; ++c, ++bufs) {
2168		if (!data || !*bufs)
2169			err = fill_silence(substream, c, hwoff, NULL, frames);
2170		else
2171			err = do_transfer(substream, c, hwoff, *bufs + off,
2172					  frames, transfer, in_kernel);
2173		if (err < 0)
2174			return err;
2175	}
2176	return 0;
2177}
2178
2179/* fill silence on the given buffer position;
2180 * called from snd_pcm_playback_silence()
2181 */
2182static int fill_silence_frames(struct snd_pcm_substream *substream,
2183			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2184{
2185	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2186	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2187		return interleaved_copy(substream, off, NULL, 0, frames,
2188					fill_silence, true);
2189	else
2190		return noninterleaved_copy(substream, off, NULL, 0, frames,
2191					   fill_silence, true);
2192}
2193
2194/* sanity-check for read/write methods */
2195static int pcm_sanity_check(struct snd_pcm_substream *substream)
2196{
2197	struct snd_pcm_runtime *runtime;
2198	if (PCM_RUNTIME_CHECK(substream))
2199		return -ENXIO;
2200	runtime = substream->runtime;
2201	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2202		return -EINVAL;
2203	if (runtime->state == SNDRV_PCM_STATE_OPEN)
2204		return -EBADFD;
2205	return 0;
2206}
2207
2208static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2209{
2210	switch (runtime->state) {
2211	case SNDRV_PCM_STATE_PREPARED:
2212	case SNDRV_PCM_STATE_RUNNING:
2213	case SNDRV_PCM_STATE_PAUSED:
2214		return 0;
2215	case SNDRV_PCM_STATE_XRUN:
2216		return -EPIPE;
2217	case SNDRV_PCM_STATE_SUSPENDED:
2218		return -ESTRPIPE;
2219	default:
2220		return -EBADFD;
2221	}
 
 
 
2222}
2223
2224/* update to the given appl_ptr and call ack callback if needed;
2225 * when an error is returned, take back to the original value
2226 */
2227int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2228			   snd_pcm_uframes_t appl_ptr)
 
2229{
2230	struct snd_pcm_runtime *runtime = substream->runtime;
2231	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2232	snd_pcm_sframes_t diff;
2233	int ret;
2234
2235	if (old_appl_ptr == appl_ptr)
2236		return 0;
2237
2238	if (appl_ptr >= runtime->boundary)
2239		return -EINVAL;
2240	/*
2241	 * check if a rewind is requested by the application
2242	 */
2243	if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2244		diff = appl_ptr - old_appl_ptr;
2245		if (diff >= 0) {
2246			if (diff > runtime->buffer_size)
2247				return -EINVAL;
2248		} else {
2249			if (runtime->boundary + diff > runtime->buffer_size)
2250				return -EINVAL;
2251		}
2252	}
2253
2254	runtime->control->appl_ptr = appl_ptr;
2255	if (substream->ops->ack) {
2256		ret = substream->ops->ack(substream);
2257		if (ret < 0) {
2258			runtime->control->appl_ptr = old_appl_ptr;
2259			if (ret == -EPIPE)
2260				__snd_pcm_xrun(substream);
2261			return ret;
 
 
2262		}
2263	}
2264
2265	trace_applptr(substream, old_appl_ptr, appl_ptr);
2266
2267	return 0;
2268}
2269
2270/* the common loop for read/write data */
2271snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2272				     void *data, bool interleaved,
2273				     snd_pcm_uframes_t size, bool in_kernel)
2274{
2275	struct snd_pcm_runtime *runtime = substream->runtime;
2276	snd_pcm_uframes_t xfer = 0;
2277	snd_pcm_uframes_t offset = 0;
2278	snd_pcm_uframes_t avail;
2279	pcm_copy_f writer;
2280	pcm_transfer_f transfer;
2281	bool nonblock;
2282	bool is_playback;
2283	int err;
2284
2285	err = pcm_sanity_check(substream);
2286	if (err < 0)
2287		return err;
 
 
 
 
 
 
 
 
 
 
2288
2289	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2290	if (interleaved) {
2291		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2292		    runtime->channels > 1)
2293			return -EINVAL;
2294		writer = interleaved_copy;
 
 
 
 
 
2295	} else {
2296		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2297			return -EINVAL;
2298		writer = noninterleaved_copy;
2299	}
 
 
2300
2301	if (!data) {
2302		if (is_playback)
2303			transfer = fill_silence;
2304		else
2305			return -EINVAL;
2306	} else {
2307		if (substream->ops->copy)
2308			transfer = substream->ops->copy;
2309		else
2310			transfer = is_playback ?
2311				default_write_copy : default_read_copy;
2312	}
2313
2314	if (size == 0)
2315		return 0;
2316
2317	nonblock = !!(substream->f_flags & O_NONBLOCK);
2318
2319	snd_pcm_stream_lock_irq(substream);
2320	err = pcm_accessible_state(runtime);
2321	if (err < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322		goto _end_unlock;
 
2323
2324	runtime->twake = runtime->control->avail_min ? : 1;
2325	if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2326		snd_pcm_update_hw_ptr(substream);
2327
2328	/*
2329	 * If size < start_threshold, wait indefinitely. Another
2330	 * thread may start capture
2331	 */
2332	if (!is_playback &&
2333	    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2334	    size >= runtime->start_threshold) {
2335		err = snd_pcm_start(substream);
2336		if (err < 0)
2337			goto _end_unlock;
2338	}
2339
2340	avail = snd_pcm_avail(substream);
2341
2342	while (size > 0) {
2343		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2344		snd_pcm_uframes_t cont;
2345		if (!avail) {
2346			if (!is_playback &&
2347			    runtime->state == SNDRV_PCM_STATE_DRAINING) {
2348				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2349				goto _end_unlock;
2350			}
2351			if (nonblock) {
2352				err = -EAGAIN;
2353				goto _end_unlock;
2354			}
2355			runtime->twake = min_t(snd_pcm_uframes_t, size,
2356					runtime->control->avail_min ? : 1);
2357			err = wait_for_avail(substream, &avail);
2358			if (err < 0)
2359				goto _end_unlock;
2360			if (!avail)
2361				continue; /* draining */
2362		}
2363		frames = size > avail ? avail : size;
2364		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2365		appl_ofs = appl_ptr % runtime->buffer_size;
2366		cont = runtime->buffer_size - appl_ofs;
2367		if (frames > cont)
2368			frames = cont;
2369		if (snd_BUG_ON(!frames)) {
2370			err = -EINVAL;
2371			goto _end_unlock;
2372		}
2373		if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2374			err = -EBUSY;
2375			goto _end_unlock;
2376		}
 
 
2377		snd_pcm_stream_unlock_irq(substream);
2378		if (!is_playback)
2379			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2380		err = writer(substream, appl_ofs, data, offset, frames,
2381			     transfer, in_kernel);
2382		if (is_playback)
2383			snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2384		snd_pcm_stream_lock_irq(substream);
2385		atomic_dec(&runtime->buffer_accessing);
2386		if (err < 0)
2387			goto _end_unlock;
2388		err = pcm_accessible_state(runtime);
2389		if (err < 0)
 
 
 
 
2390			goto _end_unlock;
 
 
 
2391		appl_ptr += frames;
2392		if (appl_ptr >= runtime->boundary)
2393			appl_ptr -= runtime->boundary;
2394		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2395		if (err < 0)
2396			goto _end_unlock;
2397
2398		offset += frames;
2399		size -= frames;
2400		xfer += frames;
2401		avail -= frames;
2402		if (is_playback &&
2403		    runtime->state == SNDRV_PCM_STATE_PREPARED &&
2404		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2405			err = snd_pcm_start(substream);
2406			if (err < 0)
2407				goto _end_unlock;
2408		}
2409	}
2410 _end_unlock:
2411	runtime->twake = 0;
2412	if (xfer > 0 && err >= 0)
2413		snd_pcm_update_state(substream, runtime);
2414	snd_pcm_stream_unlock_irq(substream);
2415	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2416}
2417EXPORT_SYMBOL(__snd_pcm_lib_xfer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
2419/*
2420 * standard channel mapping helpers
2421 */
2422
2423/* default channel maps for multi-channel playbacks, up to 8 channels */
2424const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2425	{ .channels = 1,
2426	  .map = { SNDRV_CHMAP_MONO } },
2427	{ .channels = 2,
2428	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2429	{ .channels = 4,
2430	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2431		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2432	{ .channels = 6,
2433	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2434		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2435		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2436	{ .channels = 8,
2437	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2438		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2439		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2440		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2441	{ }
2442};
2443EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2444
2445/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2446const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2447	{ .channels = 1,
2448	  .map = { SNDRV_CHMAP_MONO } },
2449	{ .channels = 2,
2450	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2451	{ .channels = 4,
2452	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2453		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2454	{ .channels = 6,
2455	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2456		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2457		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2458	{ .channels = 8,
2459	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2460		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2461		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2462		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2463	{ }
2464};
2465EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2466
2467static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2468{
2469	if (ch > info->max_channels)
2470		return false;
2471	return !info->channel_mask || (info->channel_mask & (1U << ch));
2472}
2473
2474static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2475			      struct snd_ctl_elem_info *uinfo)
2476{
2477	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2478
2479	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 
2480	uinfo->count = info->max_channels;
2481	uinfo->value.integer.min = 0;
2482	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2483	return 0;
2484}
2485
2486/* get callback for channel map ctl element
2487 * stores the channel position firstly matching with the current channels
2488 */
2489static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2490			     struct snd_ctl_elem_value *ucontrol)
2491{
2492	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2493	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2494	struct snd_pcm_substream *substream;
2495	const struct snd_pcm_chmap_elem *map;
2496
2497	if (!info->chmap)
2498		return -EINVAL;
2499	substream = snd_pcm_chmap_substream(info, idx);
2500	if (!substream)
2501		return -ENODEV;
2502	memset(ucontrol->value.integer.value, 0,
2503	       sizeof(long) * info->max_channels);
2504	if (!substream->runtime)
2505		return 0; /* no channels set */
2506	for (map = info->chmap; map->channels; map++) {
2507		int i;
2508		if (map->channels == substream->runtime->channels &&
2509		    valid_chmap_channels(info, map->channels)) {
2510			for (i = 0; i < map->channels; i++)
2511				ucontrol->value.integer.value[i] = map->map[i];
2512			return 0;
2513		}
2514	}
2515	return -EINVAL;
2516}
2517
2518/* tlv callback for channel map ctl element
2519 * expands the pre-defined channel maps in a form of TLV
2520 */
2521static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2522			     unsigned int size, unsigned int __user *tlv)
2523{
2524	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2525	const struct snd_pcm_chmap_elem *map;
2526	unsigned int __user *dst;
2527	int c, count = 0;
2528
2529	if (!info->chmap)
2530		return -EINVAL;
2531	if (size < 8)
2532		return -ENOMEM;
2533	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2534		return -EFAULT;
2535	size -= 8;
2536	dst = tlv + 2;
2537	for (map = info->chmap; map->channels; map++) {
2538		int chs_bytes = map->channels * 4;
2539		if (!valid_chmap_channels(info, map->channels))
2540			continue;
2541		if (size < 8)
2542			return -ENOMEM;
2543		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2544		    put_user(chs_bytes, dst + 1))
2545			return -EFAULT;
2546		dst += 2;
2547		size -= 8;
2548		count += 8;
2549		if (size < chs_bytes)
2550			return -ENOMEM;
2551		size -= chs_bytes;
2552		count += chs_bytes;
2553		for (c = 0; c < map->channels; c++) {
2554			if (put_user(map->map[c], dst))
2555				return -EFAULT;
2556			dst++;
2557		}
2558	}
2559	if (put_user(count, tlv + 1))
2560		return -EFAULT;
2561	return 0;
2562}
2563
2564static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2565{
2566	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2567	info->pcm->streams[info->stream].chmap_kctl = NULL;
2568	kfree(info);
2569}
2570
2571/**
2572 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2573 * @pcm: the assigned PCM instance
2574 * @stream: stream direction
2575 * @chmap: channel map elements (for query)
2576 * @max_channels: the max number of channels for the stream
2577 * @private_value: the value passed to each kcontrol's private_value field
2578 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2579 *
2580 * Create channel-mapping control elements assigned to the given PCM stream(s).
2581 * Return: Zero if successful, or a negative error value.
2582 */
2583int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2584			   const struct snd_pcm_chmap_elem *chmap,
2585			   int max_channels,
2586			   unsigned long private_value,
2587			   struct snd_pcm_chmap **info_ret)
2588{
2589	struct snd_pcm_chmap *info;
2590	struct snd_kcontrol_new knew = {
2591		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2592		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2593			SNDRV_CTL_ELEM_ACCESS_VOLATILE |
2594			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2595			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2596		.info = pcm_chmap_ctl_info,
2597		.get = pcm_chmap_ctl_get,
2598		.tlv.c = pcm_chmap_ctl_tlv,
2599	};
2600	int err;
2601
2602	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2603		return -EBUSY;
2604	info = kzalloc(sizeof(*info), GFP_KERNEL);
2605	if (!info)
2606		return -ENOMEM;
2607	info->pcm = pcm;
2608	info->stream = stream;
2609	info->chmap = chmap;
2610	info->max_channels = max_channels;
2611	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2612		knew.name = "Playback Channel Map";
2613	else
2614		knew.name = "Capture Channel Map";
2615	knew.device = pcm->device;
2616	knew.count = pcm->streams[stream].substream_count;
2617	knew.private_value = private_value;
2618	info->kctl = snd_ctl_new1(&knew, info);
2619	if (!info->kctl) {
2620		kfree(info);
2621		return -ENOMEM;
2622	}
2623	info->kctl->private_free = pcm_chmap_ctl_private_free;
2624	err = snd_ctl_add(pcm->card, info->kctl);
2625	if (err < 0)
2626		return err;
2627	pcm->streams[stream].chmap_kctl = info->kctl;
2628	if (info_ret)
2629		*info_ret = info;
2630	return 0;
2631}
2632EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);