Loading...
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <crypto/hash.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/wait.h>
59#include <linux/time.h>
60#include <linux/ip.h>
61#include <linux/capability.h>
62#include <linux/fcntl.h>
63#include <linux/poll.h>
64#include <linux/init.h>
65#include <linux/slab.h>
66#include <linux/file.h>
67#include <linux/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74#include <net/busy_poll.h>
75
76#include <linux/socket.h> /* for sa_family_t */
77#include <linux/export.h>
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* Forward declarations for internal helper functions. */
83static int sctp_writeable(struct sock *sk);
84static void sctp_wfree(struct sk_buff *skb);
85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89static int sctp_wait_for_accept(struct sock *sk, long timeo);
90static void sctp_wait_for_close(struct sock *sk, long timeo);
91static void sctp_destruct_sock(struct sock *sk);
92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101static int sctp_autobind(struct sock *sk);
102static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105static int sctp_memory_pressure;
106static atomic_long_t sctp_memory_allocated;
107struct percpu_counter sctp_sockets_allocated;
108
109static void sctp_enter_memory_pressure(struct sock *sk)
110{
111 sctp_memory_pressure = 1;
112}
113
114
115/* Get the sndbuf space available at the time on the association. */
116static inline int sctp_wspace(struct sctp_association *asoc)
117{
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137}
138
139/* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149{
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169}
170
171/* Verify that this is a valid address. */
172static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174{
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190}
191
192/* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196{
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227}
228
229/* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236{
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240 struct sctp_transport *transport;
241
242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 return NULL;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260}
261
262/* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273{
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291}
292
293static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295/* Verify this is a valid sockaddr. */
296static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298{
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323}
324
325/* Bind a local address either to an endpoint or to an association. */
326static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327{
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < PROT_SOCK &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 sp->pf->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403}
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417{
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437out:
438 return retval;
439}
440
441/* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454{
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491}
492
493/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506{
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 sizeof(saveaddr),
586 SCTP_ADDR_NEW, GFP_ATOMIC);
587 addr_buf += af->sockaddr_len;
588 }
589 if (asoc->src_out_of_asoc_ok) {
590 struct sctp_transport *trans;
591
592 list_for_each_entry(trans,
593 &asoc->peer.transport_addr_list, transports) {
594 /* Clear the source and route cache */
595 dst_release(trans->dst);
596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 2*asoc->pathmtu, 4380));
598 trans->ssthresh = asoc->peer.i.a_rwnd;
599 trans->rto = asoc->rto_initial;
600 sctp_max_rto(asoc, trans);
601 trans->rtt = trans->srtt = trans->rttvar = 0;
602 sctp_transport_route(trans, NULL,
603 sctp_sk(asoc->base.sk));
604 }
605 }
606 retval = sctp_send_asconf(asoc, chunk);
607 }
608
609out:
610 return retval;
611}
612
613/* Remove a list of addresses from bind addresses list. Do not remove the
614 * last address.
615 *
616 * Basically run through each address specified in the addrs/addrcnt
617 * array/length pair, determine if it is IPv6 or IPv4 and call
618 * sctp_del_bind() on it.
619 *
620 * If any of them fails, then the operation will be reversed and the
621 * ones that were removed will be added back.
622 *
623 * At least one address has to be left; if only one address is
624 * available, the operation will return -EBUSY.
625 *
626 * Only sctp_setsockopt_bindx() is supposed to call this function.
627 */
628static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629{
630 struct sctp_sock *sp = sctp_sk(sk);
631 struct sctp_endpoint *ep = sp->ep;
632 int cnt;
633 struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 int retval = 0;
635 void *addr_buf;
636 union sctp_addr *sa_addr;
637 struct sctp_af *af;
638
639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 __func__, sk, addrs, addrcnt);
641
642 addr_buf = addrs;
643 for (cnt = 0; cnt < addrcnt; cnt++) {
644 /* If the bind address list is empty or if there is only one
645 * bind address, there is nothing more to be removed (we need
646 * at least one address here).
647 */
648 if (list_empty(&bp->address_list) ||
649 (sctp_list_single_entry(&bp->address_list))) {
650 retval = -EBUSY;
651 goto err_bindx_rem;
652 }
653
654 sa_addr = addr_buf;
655 af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 if (!af) {
657 retval = -EINVAL;
658 goto err_bindx_rem;
659 }
660
661 if (!af->addr_valid(sa_addr, sp, NULL)) {
662 retval = -EADDRNOTAVAIL;
663 goto err_bindx_rem;
664 }
665
666 if (sa_addr->v4.sin_port &&
667 sa_addr->v4.sin_port != htons(bp->port)) {
668 retval = -EINVAL;
669 goto err_bindx_rem;
670 }
671
672 if (!sa_addr->v4.sin_port)
673 sa_addr->v4.sin_port = htons(bp->port);
674
675 /* FIXME - There is probably a need to check if sk->sk_saddr and
676 * sk->sk_rcv_addr are currently set to one of the addresses to
677 * be removed. This is something which needs to be looked into
678 * when we are fixing the outstanding issues with multi-homing
679 * socket routing and failover schemes. Refer to comments in
680 * sctp_do_bind(). -daisy
681 */
682 retval = sctp_del_bind_addr(bp, sa_addr);
683
684 addr_buf += af->sockaddr_len;
685err_bindx_rem:
686 if (retval < 0) {
687 /* Failed. Add the ones that has been removed back */
688 if (cnt > 0)
689 sctp_bindx_add(sk, addrs, cnt);
690 return retval;
691 }
692 }
693
694 return retval;
695}
696
697/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698 * the associations that are part of the endpoint indicating that a list of
699 * local addresses are removed from the endpoint.
700 *
701 * If any of the addresses is already in the bind address list of the
702 * association, we do not send the chunk for that association. But it will not
703 * affect other associations.
704 *
705 * Only sctp_setsockopt_bindx() is supposed to call this function.
706 */
707static int sctp_send_asconf_del_ip(struct sock *sk,
708 struct sockaddr *addrs,
709 int addrcnt)
710{
711 struct net *net = sock_net(sk);
712 struct sctp_sock *sp;
713 struct sctp_endpoint *ep;
714 struct sctp_association *asoc;
715 struct sctp_transport *transport;
716 struct sctp_bind_addr *bp;
717 struct sctp_chunk *chunk;
718 union sctp_addr *laddr;
719 void *addr_buf;
720 struct sctp_af *af;
721 struct sctp_sockaddr_entry *saddr;
722 int i;
723 int retval = 0;
724 int stored = 0;
725
726 chunk = NULL;
727 if (!net->sctp.addip_enable)
728 return retval;
729
730 sp = sctp_sk(sk);
731 ep = sp->ep;
732
733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 __func__, sk, addrs, addrcnt);
735
736 list_for_each_entry(asoc, &ep->asocs, asocs) {
737
738 if (!asoc->peer.asconf_capable)
739 continue;
740
741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 continue;
743
744 if (!sctp_state(asoc, ESTABLISHED))
745 continue;
746
747 /* Check if any address in the packed array of addresses is
748 * not present in the bind address list of the association.
749 * If so, do not send the asconf chunk to its peer, but
750 * continue with other associations.
751 */
752 addr_buf = addrs;
753 for (i = 0; i < addrcnt; i++) {
754 laddr = addr_buf;
755 af = sctp_get_af_specific(laddr->v4.sin_family);
756 if (!af) {
757 retval = -EINVAL;
758 goto out;
759 }
760
761 if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 break;
763
764 addr_buf += af->sockaddr_len;
765 }
766 if (i < addrcnt)
767 continue;
768
769 /* Find one address in the association's bind address list
770 * that is not in the packed array of addresses. This is to
771 * make sure that we do not delete all the addresses in the
772 * association.
773 */
774 bp = &asoc->base.bind_addr;
775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 addrcnt, sp);
777 if ((laddr == NULL) && (addrcnt == 1)) {
778 if (asoc->asconf_addr_del_pending)
779 continue;
780 asoc->asconf_addr_del_pending =
781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 if (asoc->asconf_addr_del_pending == NULL) {
783 retval = -ENOMEM;
784 goto out;
785 }
786 asoc->asconf_addr_del_pending->sa.sa_family =
787 addrs->sa_family;
788 asoc->asconf_addr_del_pending->v4.sin_port =
789 htons(bp->port);
790 if (addrs->sa_family == AF_INET) {
791 struct sockaddr_in *sin;
792
793 sin = (struct sockaddr_in *)addrs;
794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 } else if (addrs->sa_family == AF_INET6) {
796 struct sockaddr_in6 *sin6;
797
798 sin6 = (struct sockaddr_in6 *)addrs;
799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 }
801
802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 asoc->asconf_addr_del_pending);
805
806 asoc->src_out_of_asoc_ok = 1;
807 stored = 1;
808 goto skip_mkasconf;
809 }
810
811 if (laddr == NULL)
812 return -EINVAL;
813
814 /* We do not need RCU protection throughout this loop
815 * because this is done under a socket lock from the
816 * setsockopt call.
817 */
818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 SCTP_PARAM_DEL_IP);
820 if (!chunk) {
821 retval = -ENOMEM;
822 goto out;
823 }
824
825skip_mkasconf:
826 /* Reset use_as_src flag for the addresses in the bind address
827 * list that are to be deleted.
828 */
829 addr_buf = addrs;
830 for (i = 0; i < addrcnt; i++) {
831 laddr = addr_buf;
832 af = sctp_get_af_specific(laddr->v4.sin_family);
833 list_for_each_entry(saddr, &bp->address_list, list) {
834 if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 saddr->state = SCTP_ADDR_DEL;
836 }
837 addr_buf += af->sockaddr_len;
838 }
839
840 /* Update the route and saddr entries for all the transports
841 * as some of the addresses in the bind address list are
842 * about to be deleted and cannot be used as source addresses.
843 */
844 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 transports) {
846 dst_release(transport->dst);
847 sctp_transport_route(transport, NULL,
848 sctp_sk(asoc->base.sk));
849 }
850
851 if (stored)
852 /* We don't need to transmit ASCONF */
853 continue;
854 retval = sctp_send_asconf(asoc, chunk);
855 }
856out:
857 return retval;
858}
859
860/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
861int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862{
863 struct sock *sk = sctp_opt2sk(sp);
864 union sctp_addr *addr;
865 struct sctp_af *af;
866
867 /* It is safe to write port space in caller. */
868 addr = &addrw->a;
869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 af = sctp_get_af_specific(addr->sa.sa_family);
871 if (!af)
872 return -EINVAL;
873 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 return -EINVAL;
875
876 if (addrw->state == SCTP_ADDR_NEW)
877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 else
879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880}
881
882/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883 *
884 * API 8.1
885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886 * int flags);
887 *
888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890 * or IPv6 addresses.
891 *
892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893 * Section 3.1.2 for this usage.
894 *
895 * addrs is a pointer to an array of one or more socket addresses. Each
896 * address is contained in its appropriate structure (i.e. struct
897 * sockaddr_in or struct sockaddr_in6) the family of the address type
898 * must be used to distinguish the address length (note that this
899 * representation is termed a "packed array" of addresses). The caller
900 * specifies the number of addresses in the array with addrcnt.
901 *
902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903 * -1, and sets errno to the appropriate error code.
904 *
905 * For SCTP, the port given in each socket address must be the same, or
906 * sctp_bindx() will fail, setting errno to EINVAL.
907 *
908 * The flags parameter is formed from the bitwise OR of zero or more of
909 * the following currently defined flags:
910 *
911 * SCTP_BINDX_ADD_ADDR
912 *
913 * SCTP_BINDX_REM_ADDR
914 *
915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917 * addresses from the association. The two flags are mutually exclusive;
918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919 * not remove all addresses from an association; sctp_bindx() will
920 * reject such an attempt with EINVAL.
921 *
922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923 * additional addresses with an endpoint after calling bind(). Or use
924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925 * socket is associated with so that no new association accepted will be
926 * associated with those addresses. If the endpoint supports dynamic
927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928 * endpoint to send the appropriate message to the peer to change the
929 * peers address lists.
930 *
931 * Adding and removing addresses from a connected association is
932 * optional functionality. Implementations that do not support this
933 * functionality should return EOPNOTSUPP.
934 *
935 * Basically do nothing but copying the addresses from user to kernel
936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938 * from userspace.
939 *
940 * We don't use copy_from_user() for optimization: we first do the
941 * sanity checks (buffer size -fast- and access check-healthy
942 * pointer); if all of those succeed, then we can alloc the memory
943 * (expensive operation) needed to copy the data to kernel. Then we do
944 * the copying without checking the user space area
945 * (__copy_from_user()).
946 *
947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948 * it.
949 *
950 * sk The sk of the socket
951 * addrs The pointer to the addresses in user land
952 * addrssize Size of the addrs buffer
953 * op Operation to perform (add or remove, see the flags of
954 * sctp_bindx)
955 *
956 * Returns 0 if ok, <0 errno code on error.
957 */
958static int sctp_setsockopt_bindx(struct sock *sk,
959 struct sockaddr __user *addrs,
960 int addrs_size, int op)
961{
962 struct sockaddr *kaddrs;
963 int err;
964 int addrcnt = 0;
965 int walk_size = 0;
966 struct sockaddr *sa_addr;
967 void *addr_buf;
968 struct sctp_af *af;
969
970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 __func__, sk, addrs, addrs_size, op);
972
973 if (unlikely(addrs_size <= 0))
974 return -EINVAL;
975
976 /* Check the user passed a healthy pointer. */
977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 return -EFAULT;
979
980 /* Alloc space for the address array in kernel memory. */
981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 if (unlikely(!kaddrs))
983 return -ENOMEM;
984
985 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 kfree(kaddrs);
987 return -EFAULT;
988 }
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 if (err)
1018 goto out;
1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 break;
1021
1022 case SCTP_BINDX_REM_ADDR:
1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034out:
1035 kfree(kaddrs);
1036
1037 return err;
1038}
1039
1040/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041 *
1042 * Common routine for handling connect() and sctp_connectx().
1043 * Connect will come in with just a single address.
1044 */
1045static int __sctp_connect(struct sock *sk,
1046 struct sockaddr *kaddrs,
1047 int addrs_size,
1048 sctp_assoc_t *assoc_id)
1049{
1050 struct net *net = sock_net(sk);
1051 struct sctp_sock *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *asoc = NULL;
1054 struct sctp_association *asoc2;
1055 struct sctp_transport *transport;
1056 union sctp_addr to;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 struct sctp_af *af;
1085
1086 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 err = -EINVAL;
1088 goto out_free;
1089 }
1090
1091 sa_addr = addr_buf;
1092 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094 /* If the address family is not supported or if this address
1095 * causes the address buffer to overflow return EINVAL.
1096 */
1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 err = -EINVAL;
1099 goto out_free;
1100 }
1101
1102 port = ntohs(sa_addr->v4.sin_port);
1103
1104 /* Save current address so we can work with it */
1105 memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 if (err)
1109 goto out_free;
1110
1111 /* Make sure the destination port is correctly set
1112 * in all addresses.
1113 */
1114 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port < PROT_SOCK &&
1160 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1161 err = -EACCES;
1162 goto out_free;
1163 }
1164 }
1165
1166 scope = sctp_scope(&to);
1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 if (!asoc) {
1169 err = -ENOMEM;
1170 goto out_free;
1171 }
1172
1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 GFP_KERNEL);
1175 if (err < 0) {
1176 goto out_free;
1177 }
1178
1179 }
1180
1181 /* Prime the peer's transport structures. */
1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 SCTP_UNKNOWN);
1184 if (!transport) {
1185 err = -ENOMEM;
1186 goto out_free;
1187 }
1188
1189 addrcnt++;
1190 addr_buf += af->sockaddr_len;
1191 walk_size += af->sockaddr_len;
1192 }
1193
1194 /* In case the user of sctp_connectx() wants an association
1195 * id back, assign one now.
1196 */
1197 if (assoc_id) {
1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 if (err < 0)
1200 goto out_free;
1201 }
1202
1203 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1204 if (err < 0) {
1205 goto out_free;
1206 }
1207
1208 /* Initialize sk's dport and daddr for getpeername() */
1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 sp->pf->to_sk_daddr(sa_addr, sk);
1211 sk->sk_err = 0;
1212
1213 /* in-kernel sockets don't generally have a file allocated to them
1214 * if all they do is call sock_create_kern().
1215 */
1216 if (sk->sk_socket->file)
1217 f_flags = sk->sk_socket->file->f_flags;
1218
1219 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221 if (assoc_id)
1222 *assoc_id = asoc->assoc_id;
1223 err = sctp_wait_for_connect(asoc, &timeo);
1224 /* Note: the asoc may be freed after the return of
1225 * sctp_wait_for_connect.
1226 */
1227
1228 /* Don't free association on exit. */
1229 asoc = NULL;
1230
1231out_free:
1232 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1233 __func__, asoc, kaddrs, err);
1234
1235 if (asoc) {
1236 /* sctp_primitive_ASSOCIATE may have added this association
1237 * To the hash table, try to unhash it, just in case, its a noop
1238 * if it wasn't hashed so we're safe
1239 */
1240 sctp_association_free(asoc);
1241 }
1242 return err;
1243}
1244
1245/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association. On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code. The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached. The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent. This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association. It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association. If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk The sk of the socket
1302 * addrs The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307static int __sctp_setsockopt_connectx(struct sock *sk,
1308 struct sockaddr __user *addrs,
1309 int addrs_size,
1310 sctp_assoc_t *assoc_id)
1311{
1312 struct sockaddr *kaddrs;
1313 gfp_t gfp = GFP_KERNEL;
1314 int err = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, addrs, addrs_size);
1318
1319 if (unlikely(addrs_size <= 0))
1320 return -EINVAL;
1321
1322 /* Check the user passed a healthy pointer. */
1323 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1324 return -EFAULT;
1325
1326 /* Alloc space for the address array in kernel memory. */
1327 if (sk->sk_socket->file)
1328 gfp = GFP_USER | __GFP_NOWARN;
1329 kaddrs = kmalloc(addrs_size, gfp);
1330 if (unlikely(!kaddrs))
1331 return -ENOMEM;
1332
1333 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1334 err = -EFAULT;
1335 } else {
1336 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1337 }
1338
1339 kfree(kaddrs);
1340
1341 return err;
1342}
1343
1344/*
1345 * This is an older interface. It's kept for backward compatibility
1346 * to the option that doesn't provide association id.
1347 */
1348static int sctp_setsockopt_connectx_old(struct sock *sk,
1349 struct sockaddr __user *addrs,
1350 int addrs_size)
1351{
1352 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1353}
1354
1355/*
1356 * New interface for the API. The since the API is done with a socket
1357 * option, to make it simple we feed back the association id is as a return
1358 * indication to the call. Error is always negative and association id is
1359 * always positive.
1360 */
1361static int sctp_setsockopt_connectx(struct sock *sk,
1362 struct sockaddr __user *addrs,
1363 int addrs_size)
1364{
1365 sctp_assoc_t assoc_id = 0;
1366 int err = 0;
1367
1368 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1369
1370 if (err)
1371 return err;
1372 else
1373 return assoc_id;
1374}
1375
1376/*
1377 * New (hopefully final) interface for the API.
1378 * We use the sctp_getaddrs_old structure so that use-space library
1379 * can avoid any unnecessary allocations. The only different part
1380 * is that we store the actual length of the address buffer into the
1381 * addrs_num structure member. That way we can re-use the existing
1382 * code.
1383 */
1384#ifdef CONFIG_COMPAT
1385struct compat_sctp_getaddrs_old {
1386 sctp_assoc_t assoc_id;
1387 s32 addr_num;
1388 compat_uptr_t addrs; /* struct sockaddr * */
1389};
1390#endif
1391
1392static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1393 char __user *optval,
1394 int __user *optlen)
1395{
1396 struct sctp_getaddrs_old param;
1397 sctp_assoc_t assoc_id = 0;
1398 int err = 0;
1399
1400#ifdef CONFIG_COMPAT
1401 if (in_compat_syscall()) {
1402 struct compat_sctp_getaddrs_old param32;
1403
1404 if (len < sizeof(param32))
1405 return -EINVAL;
1406 if (copy_from_user(¶m32, optval, sizeof(param32)))
1407 return -EFAULT;
1408
1409 param.assoc_id = param32.assoc_id;
1410 param.addr_num = param32.addr_num;
1411 param.addrs = compat_ptr(param32.addrs);
1412 } else
1413#endif
1414 {
1415 if (len < sizeof(param))
1416 return -EINVAL;
1417 if (copy_from_user(¶m, optval, sizeof(param)))
1418 return -EFAULT;
1419 }
1420
1421 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1422 param.addrs, param.addr_num,
1423 &assoc_id);
1424 if (err == 0 || err == -EINPROGRESS) {
1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1426 return -EFAULT;
1427 if (put_user(sizeof(assoc_id), optlen))
1428 return -EFAULT;
1429 }
1430
1431 return err;
1432}
1433
1434/* API 3.1.4 close() - UDP Style Syntax
1435 * Applications use close() to perform graceful shutdown (as described in
1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1437 * by a UDP-style socket.
1438 *
1439 * The syntax is
1440 *
1441 * ret = close(int sd);
1442 *
1443 * sd - the socket descriptor of the associations to be closed.
1444 *
1445 * To gracefully shutdown a specific association represented by the
1446 * UDP-style socket, an application should use the sendmsg() call,
1447 * passing no user data, but including the appropriate flag in the
1448 * ancillary data (see Section xxxx).
1449 *
1450 * If sd in the close() call is a branched-off socket representing only
1451 * one association, the shutdown is performed on that association only.
1452 *
1453 * 4.1.6 close() - TCP Style Syntax
1454 *
1455 * Applications use close() to gracefully close down an association.
1456 *
1457 * The syntax is:
1458 *
1459 * int close(int sd);
1460 *
1461 * sd - the socket descriptor of the association to be closed.
1462 *
1463 * After an application calls close() on a socket descriptor, no further
1464 * socket operations will succeed on that descriptor.
1465 *
1466 * API 7.1.4 SO_LINGER
1467 *
1468 * An application using the TCP-style socket can use this option to
1469 * perform the SCTP ABORT primitive. The linger option structure is:
1470 *
1471 * struct linger {
1472 * int l_onoff; // option on/off
1473 * int l_linger; // linger time
1474 * };
1475 *
1476 * To enable the option, set l_onoff to 1. If the l_linger value is set
1477 * to 0, calling close() is the same as the ABORT primitive. If the
1478 * value is set to a negative value, the setsockopt() call will return
1479 * an error. If the value is set to a positive value linger_time, the
1480 * close() can be blocked for at most linger_time ms. If the graceful
1481 * shutdown phase does not finish during this period, close() will
1482 * return but the graceful shutdown phase continues in the system.
1483 */
1484static void sctp_close(struct sock *sk, long timeout)
1485{
1486 struct net *net = sock_net(sk);
1487 struct sctp_endpoint *ep;
1488 struct sctp_association *asoc;
1489 struct list_head *pos, *temp;
1490 unsigned int data_was_unread;
1491
1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1493
1494 lock_sock(sk);
1495 sk->sk_shutdown = SHUTDOWN_MASK;
1496 sk->sk_state = SCTP_SS_CLOSING;
1497
1498 ep = sctp_sk(sk)->ep;
1499
1500 /* Clean up any skbs sitting on the receive queue. */
1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503
1504 /* Walk all associations on an endpoint. */
1505 list_for_each_safe(pos, temp, &ep->asocs) {
1506 asoc = list_entry(pos, struct sctp_association, asocs);
1507
1508 if (sctp_style(sk, TCP)) {
1509 /* A closed association can still be in the list if
1510 * it belongs to a TCP-style listening socket that is
1511 * not yet accepted. If so, free it. If not, send an
1512 * ABORT or SHUTDOWN based on the linger options.
1513 */
1514 if (sctp_state(asoc, CLOSED)) {
1515 sctp_association_free(asoc);
1516 continue;
1517 }
1518 }
1519
1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1521 !skb_queue_empty(&asoc->ulpq.reasm) ||
1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, 0);
1526 sctp_primitive_ABORT(net, asoc, chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(&net->sctp.addr_wq_lock);
1544 bh_lock_sock(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(&net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558}
1559
1560/* Handle EPIPE error. */
1561static int sctp_error(struct sock *sk, int flags, int err)
1562{
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568}
1569
1570/* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1594
1595static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1596{
1597 struct net *net = sock_net(sk);
1598 struct sctp_sock *sp;
1599 struct sctp_endpoint *ep;
1600 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1601 struct sctp_transport *transport, *chunk_tp;
1602 struct sctp_chunk *chunk;
1603 union sctp_addr to;
1604 struct sockaddr *msg_name = NULL;
1605 struct sctp_sndrcvinfo default_sinfo;
1606 struct sctp_sndrcvinfo *sinfo;
1607 struct sctp_initmsg *sinit;
1608 sctp_assoc_t associd = 0;
1609 sctp_cmsgs_t cmsgs = { NULL };
1610 sctp_scope_t scope;
1611 bool fill_sinfo_ttl = false, wait_connect = false;
1612 struct sctp_datamsg *datamsg;
1613 int msg_flags = msg->msg_flags;
1614 __u16 sinfo_flags = 0;
1615 long timeo;
1616 int err;
1617
1618 err = 0;
1619 sp = sctp_sk(sk);
1620 ep = sp->ep;
1621
1622 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1623 msg, msg_len, ep);
1624
1625 /* We cannot send a message over a TCP-style listening socket. */
1626 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1627 err = -EPIPE;
1628 goto out_nounlock;
1629 }
1630
1631 /* Parse out the SCTP CMSGs. */
1632 err = sctp_msghdr_parse(msg, &cmsgs);
1633 if (err) {
1634 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1635 goto out_nounlock;
1636 }
1637
1638 /* Fetch the destination address for this packet. This
1639 * address only selects the association--it is not necessarily
1640 * the address we will send to.
1641 * For a peeled-off socket, msg_name is ignored.
1642 */
1643 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1644 int msg_namelen = msg->msg_namelen;
1645
1646 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1647 msg_namelen);
1648 if (err)
1649 return err;
1650
1651 if (msg_namelen > sizeof(to))
1652 msg_namelen = sizeof(to);
1653 memcpy(&to, msg->msg_name, msg_namelen);
1654 msg_name = msg->msg_name;
1655 }
1656
1657 sinit = cmsgs.init;
1658 if (cmsgs.sinfo != NULL) {
1659 memset(&default_sinfo, 0, sizeof(default_sinfo));
1660 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1661 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1662 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1663 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1664 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1665
1666 sinfo = &default_sinfo;
1667 fill_sinfo_ttl = true;
1668 } else {
1669 sinfo = cmsgs.srinfo;
1670 }
1671 /* Did the user specify SNDINFO/SNDRCVINFO? */
1672 if (sinfo) {
1673 sinfo_flags = sinfo->sinfo_flags;
1674 associd = sinfo->sinfo_assoc_id;
1675 }
1676
1677 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1678 msg_len, sinfo_flags);
1679
1680 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1681 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1682 err = -EINVAL;
1683 goto out_nounlock;
1684 }
1685
1686 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1687 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1688 * If SCTP_ABORT is set, the message length could be non zero with
1689 * the msg_iov set to the user abort reason.
1690 */
1691 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1692 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1693 err = -EINVAL;
1694 goto out_nounlock;
1695 }
1696
1697 /* If SCTP_ADDR_OVER is set, there must be an address
1698 * specified in msg_name.
1699 */
1700 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1701 err = -EINVAL;
1702 goto out_nounlock;
1703 }
1704
1705 transport = NULL;
1706
1707 pr_debug("%s: about to look up association\n", __func__);
1708
1709 lock_sock(sk);
1710
1711 /* If a msg_name has been specified, assume this is to be used. */
1712 if (msg_name) {
1713 /* Look for a matching association on the endpoint. */
1714 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1715
1716 /* If we could not find a matching association on the
1717 * endpoint, make sure that it is not a TCP-style
1718 * socket that already has an association or there is
1719 * no peeled-off association on another socket.
1720 */
1721 if (!asoc &&
1722 ((sctp_style(sk, TCP) &&
1723 (sctp_sstate(sk, ESTABLISHED) ||
1724 sctp_sstate(sk, CLOSING))) ||
1725 sctp_endpoint_is_peeled_off(ep, &to))) {
1726 err = -EADDRNOTAVAIL;
1727 goto out_unlock;
1728 }
1729 } else {
1730 asoc = sctp_id2assoc(sk, associd);
1731 if (!asoc) {
1732 err = -EPIPE;
1733 goto out_unlock;
1734 }
1735 }
1736
1737 if (asoc) {
1738 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1739
1740 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1741 * socket that has an association in CLOSED state. This can
1742 * happen when an accepted socket has an association that is
1743 * already CLOSED.
1744 */
1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1746 err = -EPIPE;
1747 goto out_unlock;
1748 }
1749
1750 if (sinfo_flags & SCTP_EOF) {
1751 pr_debug("%s: shutting down association:%p\n",
1752 __func__, asoc);
1753
1754 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1755 err = 0;
1756 goto out_unlock;
1757 }
1758 if (sinfo_flags & SCTP_ABORT) {
1759
1760 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1761 if (!chunk) {
1762 err = -ENOMEM;
1763 goto out_unlock;
1764 }
1765
1766 pr_debug("%s: aborting association:%p\n",
1767 __func__, asoc);
1768
1769 sctp_primitive_ABORT(net, asoc, chunk);
1770 err = 0;
1771 goto out_unlock;
1772 }
1773 }
1774
1775 /* Do we need to create the association? */
1776 if (!asoc) {
1777 pr_debug("%s: there is no association yet\n", __func__);
1778
1779 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1780 err = -EINVAL;
1781 goto out_unlock;
1782 }
1783
1784 /* Check for invalid stream against the stream counts,
1785 * either the default or the user specified stream counts.
1786 */
1787 if (sinfo) {
1788 if (!sinit || !sinit->sinit_num_ostreams) {
1789 /* Check against the defaults. */
1790 if (sinfo->sinfo_stream >=
1791 sp->initmsg.sinit_num_ostreams) {
1792 err = -EINVAL;
1793 goto out_unlock;
1794 }
1795 } else {
1796 /* Check against the requested. */
1797 if (sinfo->sinfo_stream >=
1798 sinit->sinit_num_ostreams) {
1799 err = -EINVAL;
1800 goto out_unlock;
1801 }
1802 }
1803 }
1804
1805 /*
1806 * API 3.1.2 bind() - UDP Style Syntax
1807 * If a bind() or sctp_bindx() is not called prior to a
1808 * sendmsg() call that initiates a new association, the
1809 * system picks an ephemeral port and will choose an address
1810 * set equivalent to binding with a wildcard address.
1811 */
1812 if (!ep->base.bind_addr.port) {
1813 if (sctp_autobind(sk)) {
1814 err = -EAGAIN;
1815 goto out_unlock;
1816 }
1817 } else {
1818 /*
1819 * If an unprivileged user inherits a one-to-many
1820 * style socket with open associations on a privileged
1821 * port, it MAY be permitted to accept new associations,
1822 * but it SHOULD NOT be permitted to open new
1823 * associations.
1824 */
1825 if (ep->base.bind_addr.port < PROT_SOCK &&
1826 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1827 err = -EACCES;
1828 goto out_unlock;
1829 }
1830 }
1831
1832 scope = sctp_scope(&to);
1833 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1834 if (!new_asoc) {
1835 err = -ENOMEM;
1836 goto out_unlock;
1837 }
1838 asoc = new_asoc;
1839 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1840 if (err < 0) {
1841 err = -ENOMEM;
1842 goto out_free;
1843 }
1844
1845 /* If the SCTP_INIT ancillary data is specified, set all
1846 * the association init values accordingly.
1847 */
1848 if (sinit) {
1849 if (sinit->sinit_num_ostreams) {
1850 asoc->c.sinit_num_ostreams =
1851 sinit->sinit_num_ostreams;
1852 }
1853 if (sinit->sinit_max_instreams) {
1854 asoc->c.sinit_max_instreams =
1855 sinit->sinit_max_instreams;
1856 }
1857 if (sinit->sinit_max_attempts) {
1858 asoc->max_init_attempts
1859 = sinit->sinit_max_attempts;
1860 }
1861 if (sinit->sinit_max_init_timeo) {
1862 asoc->max_init_timeo =
1863 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1864 }
1865 }
1866
1867 /* Prime the peer's transport structures. */
1868 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1869 if (!transport) {
1870 err = -ENOMEM;
1871 goto out_free;
1872 }
1873 }
1874
1875 /* ASSERT: we have a valid association at this point. */
1876 pr_debug("%s: we have a valid association\n", __func__);
1877
1878 if (!sinfo) {
1879 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1880 * one with some defaults.
1881 */
1882 memset(&default_sinfo, 0, sizeof(default_sinfo));
1883 default_sinfo.sinfo_stream = asoc->default_stream;
1884 default_sinfo.sinfo_flags = asoc->default_flags;
1885 default_sinfo.sinfo_ppid = asoc->default_ppid;
1886 default_sinfo.sinfo_context = asoc->default_context;
1887 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1888 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1889
1890 sinfo = &default_sinfo;
1891 } else if (fill_sinfo_ttl) {
1892 /* In case SNDINFO was specified, we still need to fill
1893 * it with a default ttl from the assoc here.
1894 */
1895 sinfo->sinfo_timetolive = asoc->default_timetolive;
1896 }
1897
1898 /* API 7.1.7, the sndbuf size per association bounds the
1899 * maximum size of data that can be sent in a single send call.
1900 */
1901 if (msg_len > sk->sk_sndbuf) {
1902 err = -EMSGSIZE;
1903 goto out_free;
1904 }
1905
1906 if (asoc->pmtu_pending)
1907 sctp_assoc_pending_pmtu(sk, asoc);
1908
1909 /* If fragmentation is disabled and the message length exceeds the
1910 * association fragmentation point, return EMSGSIZE. The I-D
1911 * does not specify what this error is, but this looks like
1912 * a great fit.
1913 */
1914 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1915 err = -EMSGSIZE;
1916 goto out_free;
1917 }
1918
1919 /* Check for invalid stream. */
1920 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1921 err = -EINVAL;
1922 goto out_free;
1923 }
1924
1925 if (sctp_wspace(asoc) < msg_len)
1926 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1927
1928 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1929 if (!sctp_wspace(asoc)) {
1930 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1931 if (err)
1932 goto out_free;
1933 }
1934
1935 /* If an address is passed with the sendto/sendmsg call, it is used
1936 * to override the primary destination address in the TCP model, or
1937 * when SCTP_ADDR_OVER flag is set in the UDP model.
1938 */
1939 if ((sctp_style(sk, TCP) && msg_name) ||
1940 (sinfo_flags & SCTP_ADDR_OVER)) {
1941 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1942 if (!chunk_tp) {
1943 err = -EINVAL;
1944 goto out_free;
1945 }
1946 } else
1947 chunk_tp = NULL;
1948
1949 /* Auto-connect, if we aren't connected already. */
1950 if (sctp_state(asoc, CLOSED)) {
1951 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1952 if (err < 0)
1953 goto out_free;
1954
1955 wait_connect = true;
1956 pr_debug("%s: we associated primitively\n", __func__);
1957 }
1958
1959 /* Break the message into multiple chunks of maximum size. */
1960 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1961 if (IS_ERR(datamsg)) {
1962 err = PTR_ERR(datamsg);
1963 goto out_free;
1964 }
1965
1966 /* Now send the (possibly) fragmented message. */
1967 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1968 sctp_chunk_hold(chunk);
1969
1970 /* Do accounting for the write space. */
1971 sctp_set_owner_w(chunk);
1972
1973 chunk->transport = chunk_tp;
1974 }
1975
1976 /* Send it to the lower layers. Note: all chunks
1977 * must either fail or succeed. The lower layer
1978 * works that way today. Keep it that way or this
1979 * breaks.
1980 */
1981 err = sctp_primitive_SEND(net, asoc, datamsg);
1982 /* Did the lower layer accept the chunk? */
1983 if (err) {
1984 sctp_datamsg_free(datamsg);
1985 goto out_free;
1986 }
1987
1988 pr_debug("%s: we sent primitively\n", __func__);
1989
1990 sctp_datamsg_put(datamsg);
1991 err = msg_len;
1992
1993 if (unlikely(wait_connect)) {
1994 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1995 sctp_wait_for_connect(asoc, &timeo);
1996 }
1997
1998 /* If we are already past ASSOCIATE, the lower
1999 * layers are responsible for association cleanup.
2000 */
2001 goto out_unlock;
2002
2003out_free:
2004 if (new_asoc)
2005 sctp_association_free(asoc);
2006out_unlock:
2007 release_sock(sk);
2008
2009out_nounlock:
2010 return sctp_error(sk, msg_flags, err);
2011
2012#if 0
2013do_sock_err:
2014 if (msg_len)
2015 err = msg_len;
2016 else
2017 err = sock_error(sk);
2018 goto out;
2019
2020do_interrupted:
2021 if (msg_len)
2022 err = msg_len;
2023 goto out;
2024#endif /* 0 */
2025}
2026
2027/* This is an extended version of skb_pull() that removes the data from the
2028 * start of a skb even when data is spread across the list of skb's in the
2029 * frag_list. len specifies the total amount of data that needs to be removed.
2030 * when 'len' bytes could be removed from the skb, it returns 0.
2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2032 * could not be removed.
2033 */
2034static int sctp_skb_pull(struct sk_buff *skb, int len)
2035{
2036 struct sk_buff *list;
2037 int skb_len = skb_headlen(skb);
2038 int rlen;
2039
2040 if (len <= skb_len) {
2041 __skb_pull(skb, len);
2042 return 0;
2043 }
2044 len -= skb_len;
2045 __skb_pull(skb, skb_len);
2046
2047 skb_walk_frags(skb, list) {
2048 rlen = sctp_skb_pull(list, len);
2049 skb->len -= (len-rlen);
2050 skb->data_len -= (len-rlen);
2051
2052 if (!rlen)
2053 return 0;
2054
2055 len = rlen;
2056 }
2057
2058 return len;
2059}
2060
2061/* API 3.1.3 recvmsg() - UDP Style Syntax
2062 *
2063 * ssize_t recvmsg(int socket, struct msghdr *message,
2064 * int flags);
2065 *
2066 * socket - the socket descriptor of the endpoint.
2067 * message - pointer to the msghdr structure which contains a single
2068 * user message and possibly some ancillary data.
2069 *
2070 * See Section 5 for complete description of the data
2071 * structures.
2072 *
2073 * flags - flags sent or received with the user message, see Section
2074 * 5 for complete description of the flags.
2075 */
2076static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2077 int noblock, int flags, int *addr_len)
2078{
2079 struct sctp_ulpevent *event = NULL;
2080 struct sctp_sock *sp = sctp_sk(sk);
2081 struct sk_buff *skb, *head_skb;
2082 int copied;
2083 int err = 0;
2084 int skb_len;
2085
2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2088 addr_len);
2089
2090 lock_sock(sk);
2091
2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2094 err = -ENOTCONN;
2095 goto out;
2096 }
2097
2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2099 if (!skb)
2100 goto out;
2101
2102 /* Get the total length of the skb including any skb's in the
2103 * frag_list.
2104 */
2105 skb_len = skb->len;
2106
2107 copied = skb_len;
2108 if (copied > len)
2109 copied = len;
2110
2111 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2112
2113 event = sctp_skb2event(skb);
2114
2115 if (err)
2116 goto out_free;
2117
2118 if (event->chunk && event->chunk->head_skb)
2119 head_skb = event->chunk->head_skb;
2120 else
2121 head_skb = skb;
2122 sock_recv_ts_and_drops(msg, sk, head_skb);
2123 if (sctp_ulpevent_is_notification(event)) {
2124 msg->msg_flags |= MSG_NOTIFICATION;
2125 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2126 } else {
2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2128 }
2129
2130 /* Check if we allow SCTP_NXTINFO. */
2131 if (sp->recvnxtinfo)
2132 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2133 /* Check if we allow SCTP_RCVINFO. */
2134 if (sp->recvrcvinfo)
2135 sctp_ulpevent_read_rcvinfo(event, msg);
2136 /* Check if we allow SCTP_SNDRCVINFO. */
2137 if (sp->subscribe.sctp_data_io_event)
2138 sctp_ulpevent_read_sndrcvinfo(event, msg);
2139
2140 err = copied;
2141
2142 /* If skb's length exceeds the user's buffer, update the skb and
2143 * push it back to the receive_queue so that the next call to
2144 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2145 */
2146 if (skb_len > copied) {
2147 msg->msg_flags &= ~MSG_EOR;
2148 if (flags & MSG_PEEK)
2149 goto out_free;
2150 sctp_skb_pull(skb, copied);
2151 skb_queue_head(&sk->sk_receive_queue, skb);
2152
2153 /* When only partial message is copied to the user, increase
2154 * rwnd by that amount. If all the data in the skb is read,
2155 * rwnd is updated when the event is freed.
2156 */
2157 if (!sctp_ulpevent_is_notification(event))
2158 sctp_assoc_rwnd_increase(event->asoc, copied);
2159 goto out;
2160 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2161 (event->msg_flags & MSG_EOR))
2162 msg->msg_flags |= MSG_EOR;
2163 else
2164 msg->msg_flags &= ~MSG_EOR;
2165
2166out_free:
2167 if (flags & MSG_PEEK) {
2168 /* Release the skb reference acquired after peeking the skb in
2169 * sctp_skb_recv_datagram().
2170 */
2171 kfree_skb(skb);
2172 } else {
2173 /* Free the event which includes releasing the reference to
2174 * the owner of the skb, freeing the skb and updating the
2175 * rwnd.
2176 */
2177 sctp_ulpevent_free(event);
2178 }
2179out:
2180 release_sock(sk);
2181 return err;
2182}
2183
2184/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2185 *
2186 * This option is a on/off flag. If enabled no SCTP message
2187 * fragmentation will be performed. Instead if a message being sent
2188 * exceeds the current PMTU size, the message will NOT be sent and
2189 * instead a error will be indicated to the user.
2190 */
2191static int sctp_setsockopt_disable_fragments(struct sock *sk,
2192 char __user *optval,
2193 unsigned int optlen)
2194{
2195 int val;
2196
2197 if (optlen < sizeof(int))
2198 return -EINVAL;
2199
2200 if (get_user(val, (int __user *)optval))
2201 return -EFAULT;
2202
2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2204
2205 return 0;
2206}
2207
2208static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210{
2211 struct sctp_association *asoc;
2212 struct sctp_ulpevent *event;
2213
2214 if (optlen > sizeof(struct sctp_event_subscribe))
2215 return -EINVAL;
2216 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2217 return -EFAULT;
2218
2219 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2220 * if there is no data to be sent or retransmit, the stack will
2221 * immediately send up this notification.
2222 */
2223 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2224 &sctp_sk(sk)->subscribe)) {
2225 asoc = sctp_id2assoc(sk, 0);
2226
2227 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2228 event = sctp_ulpevent_make_sender_dry_event(asoc,
2229 GFP_ATOMIC);
2230 if (!event)
2231 return -ENOMEM;
2232
2233 sctp_ulpq_tail_event(&asoc->ulpq, event);
2234 }
2235 }
2236
2237 return 0;
2238}
2239
2240/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2241 *
2242 * This socket option is applicable to the UDP-style socket only. When
2243 * set it will cause associations that are idle for more than the
2244 * specified number of seconds to automatically close. An association
2245 * being idle is defined an association that has NOT sent or received
2246 * user data. The special value of '0' indicates that no automatic
2247 * close of any associations should be performed. The option expects an
2248 * integer defining the number of seconds of idle time before an
2249 * association is closed.
2250 */
2251static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2252 unsigned int optlen)
2253{
2254 struct sctp_sock *sp = sctp_sk(sk);
2255 struct net *net = sock_net(sk);
2256
2257 /* Applicable to UDP-style socket only */
2258 if (sctp_style(sk, TCP))
2259 return -EOPNOTSUPP;
2260 if (optlen != sizeof(int))
2261 return -EINVAL;
2262 if (copy_from_user(&sp->autoclose, optval, optlen))
2263 return -EFAULT;
2264
2265 if (sp->autoclose > net->sctp.max_autoclose)
2266 sp->autoclose = net->sctp.max_autoclose;
2267
2268 return 0;
2269}
2270
2271/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2272 *
2273 * Applications can enable or disable heartbeats for any peer address of
2274 * an association, modify an address's heartbeat interval, force a
2275 * heartbeat to be sent immediately, and adjust the address's maximum
2276 * number of retransmissions sent before an address is considered
2277 * unreachable. The following structure is used to access and modify an
2278 * address's parameters:
2279 *
2280 * struct sctp_paddrparams {
2281 * sctp_assoc_t spp_assoc_id;
2282 * struct sockaddr_storage spp_address;
2283 * uint32_t spp_hbinterval;
2284 * uint16_t spp_pathmaxrxt;
2285 * uint32_t spp_pathmtu;
2286 * uint32_t spp_sackdelay;
2287 * uint32_t spp_flags;
2288 * };
2289 *
2290 * spp_assoc_id - (one-to-many style socket) This is filled in the
2291 * application, and identifies the association for
2292 * this query.
2293 * spp_address - This specifies which address is of interest.
2294 * spp_hbinterval - This contains the value of the heartbeat interval,
2295 * in milliseconds. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmaxrxt - This contains the maximum number of
2299 * retransmissions before this address shall be
2300 * considered unreachable. If a value of zero
2301 * is present in this field then no changes are to
2302 * be made to this parameter.
2303 * spp_pathmtu - When Path MTU discovery is disabled the value
2304 * specified here will be the "fixed" path mtu.
2305 * Note that if the spp_address field is empty
2306 * then all associations on this address will
2307 * have this fixed path mtu set upon them.
2308 *
2309 * spp_sackdelay - When delayed sack is enabled, this value specifies
2310 * the number of milliseconds that sacks will be delayed
2311 * for. This value will apply to all addresses of an
2312 * association if the spp_address field is empty. Note
2313 * also, that if delayed sack is enabled and this
2314 * value is set to 0, no change is made to the last
2315 * recorded delayed sack timer value.
2316 *
2317 * spp_flags - These flags are used to control various features
2318 * on an association. The flag field may contain
2319 * zero or more of the following options.
2320 *
2321 * SPP_HB_ENABLE - Enable heartbeats on the
2322 * specified address. Note that if the address
2323 * field is empty all addresses for the association
2324 * have heartbeats enabled upon them.
2325 *
2326 * SPP_HB_DISABLE - Disable heartbeats on the
2327 * speicifed address. Note that if the address
2328 * field is empty all addresses for the association
2329 * will have their heartbeats disabled. Note also
2330 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2331 * mutually exclusive, only one of these two should
2332 * be specified. Enabling both fields will have
2333 * undetermined results.
2334 *
2335 * SPP_HB_DEMAND - Request a user initiated heartbeat
2336 * to be made immediately.
2337 *
2338 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2339 * heartbeat delayis to be set to the value of 0
2340 * milliseconds.
2341 *
2342 * SPP_PMTUD_ENABLE - This field will enable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected.
2346 *
2347 * SPP_PMTUD_DISABLE - This field will disable PMTU
2348 * discovery upon the specified address. Note that
2349 * if the address feild is empty then all addresses
2350 * on the association are effected. Not also that
2351 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2352 * exclusive. Enabling both will have undetermined
2353 * results.
2354 *
2355 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2356 * on delayed sack. The time specified in spp_sackdelay
2357 * is used to specify the sack delay for this address. Note
2358 * that if spp_address is empty then all addresses will
2359 * enable delayed sack and take on the sack delay
2360 * value specified in spp_sackdelay.
2361 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2362 * off delayed sack. If the spp_address field is blank then
2363 * delayed sack is disabled for the entire association. Note
2364 * also that this field is mutually exclusive to
2365 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2366 * results.
2367 */
2368static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2369 struct sctp_transport *trans,
2370 struct sctp_association *asoc,
2371 struct sctp_sock *sp,
2372 int hb_change,
2373 int pmtud_change,
2374 int sackdelay_change)
2375{
2376 int error;
2377
2378 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2379 struct net *net = sock_net(trans->asoc->base.sk);
2380
2381 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2382 if (error)
2383 return error;
2384 }
2385
2386 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2387 * this field is ignored. Note also that a value of zero indicates
2388 * the current setting should be left unchanged.
2389 */
2390 if (params->spp_flags & SPP_HB_ENABLE) {
2391
2392 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2393 * set. This lets us use 0 value when this flag
2394 * is set.
2395 */
2396 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2397 params->spp_hbinterval = 0;
2398
2399 if (params->spp_hbinterval ||
2400 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2401 if (trans) {
2402 trans->hbinterval =
2403 msecs_to_jiffies(params->spp_hbinterval);
2404 } else if (asoc) {
2405 asoc->hbinterval =
2406 msecs_to_jiffies(params->spp_hbinterval);
2407 } else {
2408 sp->hbinterval = params->spp_hbinterval;
2409 }
2410 }
2411 }
2412
2413 if (hb_change) {
2414 if (trans) {
2415 trans->param_flags =
2416 (trans->param_flags & ~SPP_HB) | hb_change;
2417 } else if (asoc) {
2418 asoc->param_flags =
2419 (asoc->param_flags & ~SPP_HB) | hb_change;
2420 } else {
2421 sp->param_flags =
2422 (sp->param_flags & ~SPP_HB) | hb_change;
2423 }
2424 }
2425
2426 /* When Path MTU discovery is disabled the value specified here will
2427 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2428 * include the flag SPP_PMTUD_DISABLE for this field to have any
2429 * effect).
2430 */
2431 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2432 if (trans) {
2433 trans->pathmtu = params->spp_pathmtu;
2434 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2435 } else if (asoc) {
2436 asoc->pathmtu = params->spp_pathmtu;
2437 sctp_frag_point(asoc, params->spp_pathmtu);
2438 } else {
2439 sp->pathmtu = params->spp_pathmtu;
2440 }
2441 }
2442
2443 if (pmtud_change) {
2444 if (trans) {
2445 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2446 (params->spp_flags & SPP_PMTUD_ENABLE);
2447 trans->param_flags =
2448 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2449 if (update) {
2450 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2451 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2452 }
2453 } else if (asoc) {
2454 asoc->param_flags =
2455 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2456 } else {
2457 sp->param_flags =
2458 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2459 }
2460 }
2461
2462 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2463 * value of this field is ignored. Note also that a value of zero
2464 * indicates the current setting should be left unchanged.
2465 */
2466 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2467 if (trans) {
2468 trans->sackdelay =
2469 msecs_to_jiffies(params->spp_sackdelay);
2470 } else if (asoc) {
2471 asoc->sackdelay =
2472 msecs_to_jiffies(params->spp_sackdelay);
2473 } else {
2474 sp->sackdelay = params->spp_sackdelay;
2475 }
2476 }
2477
2478 if (sackdelay_change) {
2479 if (trans) {
2480 trans->param_flags =
2481 (trans->param_flags & ~SPP_SACKDELAY) |
2482 sackdelay_change;
2483 } else if (asoc) {
2484 asoc->param_flags =
2485 (asoc->param_flags & ~SPP_SACKDELAY) |
2486 sackdelay_change;
2487 } else {
2488 sp->param_flags =
2489 (sp->param_flags & ~SPP_SACKDELAY) |
2490 sackdelay_change;
2491 }
2492 }
2493
2494 /* Note that a value of zero indicates the current setting should be
2495 left unchanged.
2496 */
2497 if (params->spp_pathmaxrxt) {
2498 if (trans) {
2499 trans->pathmaxrxt = params->spp_pathmaxrxt;
2500 } else if (asoc) {
2501 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2502 } else {
2503 sp->pathmaxrxt = params->spp_pathmaxrxt;
2504 }
2505 }
2506
2507 return 0;
2508}
2509
2510static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2511 char __user *optval,
2512 unsigned int optlen)
2513{
2514 struct sctp_paddrparams params;
2515 struct sctp_transport *trans = NULL;
2516 struct sctp_association *asoc = NULL;
2517 struct sctp_sock *sp = sctp_sk(sk);
2518 int error;
2519 int hb_change, pmtud_change, sackdelay_change;
2520
2521 if (optlen != sizeof(struct sctp_paddrparams))
2522 return -EINVAL;
2523
2524 if (copy_from_user(¶ms, optval, optlen))
2525 return -EFAULT;
2526
2527 /* Validate flags and value parameters. */
2528 hb_change = params.spp_flags & SPP_HB;
2529 pmtud_change = params.spp_flags & SPP_PMTUD;
2530 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2531
2532 if (hb_change == SPP_HB ||
2533 pmtud_change == SPP_PMTUD ||
2534 sackdelay_change == SPP_SACKDELAY ||
2535 params.spp_sackdelay > 500 ||
2536 (params.spp_pathmtu &&
2537 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2538 return -EINVAL;
2539
2540 /* If an address other than INADDR_ANY is specified, and
2541 * no transport is found, then the request is invalid.
2542 */
2543 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2544 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2545 params.spp_assoc_id);
2546 if (!trans)
2547 return -EINVAL;
2548 }
2549
2550 /* Get association, if assoc_id != 0 and the socket is a one
2551 * to many style socket, and an association was not found, then
2552 * the id was invalid.
2553 */
2554 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2555 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2556 return -EINVAL;
2557
2558 /* Heartbeat demand can only be sent on a transport or
2559 * association, but not a socket.
2560 */
2561 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2562 return -EINVAL;
2563
2564 /* Process parameters. */
2565 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2566 hb_change, pmtud_change,
2567 sackdelay_change);
2568
2569 if (error)
2570 return error;
2571
2572 /* If changes are for association, also apply parameters to each
2573 * transport.
2574 */
2575 if (!trans && asoc) {
2576 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2577 transports) {
2578 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2579 hb_change, pmtud_change,
2580 sackdelay_change);
2581 }
2582 }
2583
2584 return 0;
2585}
2586
2587static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2588{
2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2590}
2591
2592static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2593{
2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2595}
2596
2597/*
2598 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2599 *
2600 * This option will effect the way delayed acks are performed. This
2601 * option allows you to get or set the delayed ack time, in
2602 * milliseconds. It also allows changing the delayed ack frequency.
2603 * Changing the frequency to 1 disables the delayed sack algorithm. If
2604 * the assoc_id is 0, then this sets or gets the endpoints default
2605 * values. If the assoc_id field is non-zero, then the set or get
2606 * effects the specified association for the one to many model (the
2607 * assoc_id field is ignored by the one to one model). Note that if
2608 * sack_delay or sack_freq are 0 when setting this option, then the
2609 * current values will remain unchanged.
2610 *
2611 * struct sctp_sack_info {
2612 * sctp_assoc_t sack_assoc_id;
2613 * uint32_t sack_delay;
2614 * uint32_t sack_freq;
2615 * };
2616 *
2617 * sack_assoc_id - This parameter, indicates which association the user
2618 * is performing an action upon. Note that if this field's value is
2619 * zero then the endpoints default value is changed (effecting future
2620 * associations only).
2621 *
2622 * sack_delay - This parameter contains the number of milliseconds that
2623 * the user is requesting the delayed ACK timer be set to. Note that
2624 * this value is defined in the standard to be between 200 and 500
2625 * milliseconds.
2626 *
2627 * sack_freq - This parameter contains the number of packets that must
2628 * be received before a sack is sent without waiting for the delay
2629 * timer to expire. The default value for this is 2, setting this
2630 * value to 1 will disable the delayed sack algorithm.
2631 */
2632
2633static int sctp_setsockopt_delayed_ack(struct sock *sk,
2634 char __user *optval, unsigned int optlen)
2635{
2636 struct sctp_sack_info params;
2637 struct sctp_transport *trans = NULL;
2638 struct sctp_association *asoc = NULL;
2639 struct sctp_sock *sp = sctp_sk(sk);
2640
2641 if (optlen == sizeof(struct sctp_sack_info)) {
2642 if (copy_from_user(¶ms, optval, optlen))
2643 return -EFAULT;
2644
2645 if (params.sack_delay == 0 && params.sack_freq == 0)
2646 return 0;
2647 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2648 pr_warn_ratelimited(DEPRECATED
2649 "%s (pid %d) "
2650 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2651 "Use struct sctp_sack_info instead\n",
2652 current->comm, task_pid_nr(current));
2653 if (copy_from_user(¶ms, optval, optlen))
2654 return -EFAULT;
2655
2656 if (params.sack_delay == 0)
2657 params.sack_freq = 1;
2658 else
2659 params.sack_freq = 0;
2660 } else
2661 return -EINVAL;
2662
2663 /* Validate value parameter. */
2664 if (params.sack_delay > 500)
2665 return -EINVAL;
2666
2667 /* Get association, if sack_assoc_id != 0 and the socket is a one
2668 * to many style socket, and an association was not found, then
2669 * the id was invalid.
2670 */
2671 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2672 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2673 return -EINVAL;
2674
2675 if (params.sack_delay) {
2676 if (asoc) {
2677 asoc->sackdelay =
2678 msecs_to_jiffies(params.sack_delay);
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackdelay = params.sack_delay;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 if (params.sack_freq == 1) {
2689 if (asoc) {
2690 asoc->param_flags =
2691 sctp_spp_sackdelay_disable(asoc->param_flags);
2692 } else {
2693 sp->param_flags =
2694 sctp_spp_sackdelay_disable(sp->param_flags);
2695 }
2696 } else if (params.sack_freq > 1) {
2697 if (asoc) {
2698 asoc->sackfreq = params.sack_freq;
2699 asoc->param_flags =
2700 sctp_spp_sackdelay_enable(asoc->param_flags);
2701 } else {
2702 sp->sackfreq = params.sack_freq;
2703 sp->param_flags =
2704 sctp_spp_sackdelay_enable(sp->param_flags);
2705 }
2706 }
2707
2708 /* If change is for association, also apply to each transport. */
2709 if (asoc) {
2710 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2711 transports) {
2712 if (params.sack_delay) {
2713 trans->sackdelay =
2714 msecs_to_jiffies(params.sack_delay);
2715 trans->param_flags =
2716 sctp_spp_sackdelay_enable(trans->param_flags);
2717 }
2718 if (params.sack_freq == 1) {
2719 trans->param_flags =
2720 sctp_spp_sackdelay_disable(trans->param_flags);
2721 } else if (params.sack_freq > 1) {
2722 trans->sackfreq = params.sack_freq;
2723 trans->param_flags =
2724 sctp_spp_sackdelay_enable(trans->param_flags);
2725 }
2726 }
2727 }
2728
2729 return 0;
2730}
2731
2732/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2733 *
2734 * Applications can specify protocol parameters for the default association
2735 * initialization. The option name argument to setsockopt() and getsockopt()
2736 * is SCTP_INITMSG.
2737 *
2738 * Setting initialization parameters is effective only on an unconnected
2739 * socket (for UDP-style sockets only future associations are effected
2740 * by the change). With TCP-style sockets, this option is inherited by
2741 * sockets derived from a listener socket.
2742 */
2743static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2744{
2745 struct sctp_initmsg sinit;
2746 struct sctp_sock *sp = sctp_sk(sk);
2747
2748 if (optlen != sizeof(struct sctp_initmsg))
2749 return -EINVAL;
2750 if (copy_from_user(&sinit, optval, optlen))
2751 return -EFAULT;
2752
2753 if (sinit.sinit_num_ostreams)
2754 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2755 if (sinit.sinit_max_instreams)
2756 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2757 if (sinit.sinit_max_attempts)
2758 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2759 if (sinit.sinit_max_init_timeo)
2760 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2761
2762 return 0;
2763}
2764
2765/*
2766 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2767 *
2768 * Applications that wish to use the sendto() system call may wish to
2769 * specify a default set of parameters that would normally be supplied
2770 * through the inclusion of ancillary data. This socket option allows
2771 * such an application to set the default sctp_sndrcvinfo structure.
2772 * The application that wishes to use this socket option simply passes
2773 * in to this call the sctp_sndrcvinfo structure defined in Section
2774 * 5.2.2) The input parameters accepted by this call include
2775 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2776 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2777 * to this call if the caller is using the UDP model.
2778 */
2779static int sctp_setsockopt_default_send_param(struct sock *sk,
2780 char __user *optval,
2781 unsigned int optlen)
2782{
2783 struct sctp_sock *sp = sctp_sk(sk);
2784 struct sctp_association *asoc;
2785 struct sctp_sndrcvinfo info;
2786
2787 if (optlen != sizeof(info))
2788 return -EINVAL;
2789 if (copy_from_user(&info, optval, optlen))
2790 return -EFAULT;
2791 if (info.sinfo_flags &
2792 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2793 SCTP_ABORT | SCTP_EOF))
2794 return -EINVAL;
2795
2796 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2797 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2798 return -EINVAL;
2799 if (asoc) {
2800 asoc->default_stream = info.sinfo_stream;
2801 asoc->default_flags = info.sinfo_flags;
2802 asoc->default_ppid = info.sinfo_ppid;
2803 asoc->default_context = info.sinfo_context;
2804 asoc->default_timetolive = info.sinfo_timetolive;
2805 } else {
2806 sp->default_stream = info.sinfo_stream;
2807 sp->default_flags = info.sinfo_flags;
2808 sp->default_ppid = info.sinfo_ppid;
2809 sp->default_context = info.sinfo_context;
2810 sp->default_timetolive = info.sinfo_timetolive;
2811 }
2812
2813 return 0;
2814}
2815
2816/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2817 * (SCTP_DEFAULT_SNDINFO)
2818 */
2819static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2820 char __user *optval,
2821 unsigned int optlen)
2822{
2823 struct sctp_sock *sp = sctp_sk(sk);
2824 struct sctp_association *asoc;
2825 struct sctp_sndinfo info;
2826
2827 if (optlen != sizeof(info))
2828 return -EINVAL;
2829 if (copy_from_user(&info, optval, optlen))
2830 return -EFAULT;
2831 if (info.snd_flags &
2832 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2833 SCTP_ABORT | SCTP_EOF))
2834 return -EINVAL;
2835
2836 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2837 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2838 return -EINVAL;
2839 if (asoc) {
2840 asoc->default_stream = info.snd_sid;
2841 asoc->default_flags = info.snd_flags;
2842 asoc->default_ppid = info.snd_ppid;
2843 asoc->default_context = info.snd_context;
2844 } else {
2845 sp->default_stream = info.snd_sid;
2846 sp->default_flags = info.snd_flags;
2847 sp->default_ppid = info.snd_ppid;
2848 sp->default_context = info.snd_context;
2849 }
2850
2851 return 0;
2852}
2853
2854/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2855 *
2856 * Requests that the local SCTP stack use the enclosed peer address as
2857 * the association primary. The enclosed address must be one of the
2858 * association peer's addresses.
2859 */
2860static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2861 unsigned int optlen)
2862{
2863 struct sctp_prim prim;
2864 struct sctp_transport *trans;
2865
2866 if (optlen != sizeof(struct sctp_prim))
2867 return -EINVAL;
2868
2869 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2870 return -EFAULT;
2871
2872 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2873 if (!trans)
2874 return -EINVAL;
2875
2876 sctp_assoc_set_primary(trans->asoc, trans);
2877
2878 return 0;
2879}
2880
2881/*
2882 * 7.1.5 SCTP_NODELAY
2883 *
2884 * Turn on/off any Nagle-like algorithm. This means that packets are
2885 * generally sent as soon as possible and no unnecessary delays are
2886 * introduced, at the cost of more packets in the network. Expects an
2887 * integer boolean flag.
2888 */
2889static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2890 unsigned int optlen)
2891{
2892 int val;
2893
2894 if (optlen < sizeof(int))
2895 return -EINVAL;
2896 if (get_user(val, (int __user *)optval))
2897 return -EFAULT;
2898
2899 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2900 return 0;
2901}
2902
2903/*
2904 *
2905 * 7.1.1 SCTP_RTOINFO
2906 *
2907 * The protocol parameters used to initialize and bound retransmission
2908 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2909 * and modify these parameters.
2910 * All parameters are time values, in milliseconds. A value of 0, when
2911 * modifying the parameters, indicates that the current value should not
2912 * be changed.
2913 *
2914 */
2915static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2916{
2917 struct sctp_rtoinfo rtoinfo;
2918 struct sctp_association *asoc;
2919 unsigned long rto_min, rto_max;
2920 struct sctp_sock *sp = sctp_sk(sk);
2921
2922 if (optlen != sizeof (struct sctp_rtoinfo))
2923 return -EINVAL;
2924
2925 if (copy_from_user(&rtoinfo, optval, optlen))
2926 return -EFAULT;
2927
2928 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2929
2930 /* Set the values to the specific association */
2931 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2932 return -EINVAL;
2933
2934 rto_max = rtoinfo.srto_max;
2935 rto_min = rtoinfo.srto_min;
2936
2937 if (rto_max)
2938 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2939 else
2940 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2941
2942 if (rto_min)
2943 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2944 else
2945 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2946
2947 if (rto_min > rto_max)
2948 return -EINVAL;
2949
2950 if (asoc) {
2951 if (rtoinfo.srto_initial != 0)
2952 asoc->rto_initial =
2953 msecs_to_jiffies(rtoinfo.srto_initial);
2954 asoc->rto_max = rto_max;
2955 asoc->rto_min = rto_min;
2956 } else {
2957 /* If there is no association or the association-id = 0
2958 * set the values to the endpoint.
2959 */
2960 if (rtoinfo.srto_initial != 0)
2961 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2962 sp->rtoinfo.srto_max = rto_max;
2963 sp->rtoinfo.srto_min = rto_min;
2964 }
2965
2966 return 0;
2967}
2968
2969/*
2970 *
2971 * 7.1.2 SCTP_ASSOCINFO
2972 *
2973 * This option is used to tune the maximum retransmission attempts
2974 * of the association.
2975 * Returns an error if the new association retransmission value is
2976 * greater than the sum of the retransmission value of the peer.
2977 * See [SCTP] for more information.
2978 *
2979 */
2980static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2981{
2982
2983 struct sctp_assocparams assocparams;
2984 struct sctp_association *asoc;
2985
2986 if (optlen != sizeof(struct sctp_assocparams))
2987 return -EINVAL;
2988 if (copy_from_user(&assocparams, optval, optlen))
2989 return -EFAULT;
2990
2991 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2992
2993 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2994 return -EINVAL;
2995
2996 /* Set the values to the specific association */
2997 if (asoc) {
2998 if (assocparams.sasoc_asocmaxrxt != 0) {
2999 __u32 path_sum = 0;
3000 int paths = 0;
3001 struct sctp_transport *peer_addr;
3002
3003 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3004 transports) {
3005 path_sum += peer_addr->pathmaxrxt;
3006 paths++;
3007 }
3008
3009 /* Only validate asocmaxrxt if we have more than
3010 * one path/transport. We do this because path
3011 * retransmissions are only counted when we have more
3012 * then one path.
3013 */
3014 if (paths > 1 &&
3015 assocparams.sasoc_asocmaxrxt > path_sum)
3016 return -EINVAL;
3017
3018 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3019 }
3020
3021 if (assocparams.sasoc_cookie_life != 0)
3022 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3023 } else {
3024 /* Set the values to the endpoint */
3025 struct sctp_sock *sp = sctp_sk(sk);
3026
3027 if (assocparams.sasoc_asocmaxrxt != 0)
3028 sp->assocparams.sasoc_asocmaxrxt =
3029 assocparams.sasoc_asocmaxrxt;
3030 if (assocparams.sasoc_cookie_life != 0)
3031 sp->assocparams.sasoc_cookie_life =
3032 assocparams.sasoc_cookie_life;
3033 }
3034 return 0;
3035}
3036
3037/*
3038 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3039 *
3040 * This socket option is a boolean flag which turns on or off mapped V4
3041 * addresses. If this option is turned on and the socket is type
3042 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3043 * If this option is turned off, then no mapping will be done of V4
3044 * addresses and a user will receive both PF_INET6 and PF_INET type
3045 * addresses on the socket.
3046 */
3047static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3048{
3049 int val;
3050 struct sctp_sock *sp = sctp_sk(sk);
3051
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 if (get_user(val, (int __user *)optval))
3055 return -EFAULT;
3056 if (val)
3057 sp->v4mapped = 1;
3058 else
3059 sp->v4mapped = 0;
3060
3061 return 0;
3062}
3063
3064/*
3065 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3066 * This option will get or set the maximum size to put in any outgoing
3067 * SCTP DATA chunk. If a message is larger than this size it will be
3068 * fragmented by SCTP into the specified size. Note that the underlying
3069 * SCTP implementation may fragment into smaller sized chunks when the
3070 * PMTU of the underlying association is smaller than the value set by
3071 * the user. The default value for this option is '0' which indicates
3072 * the user is NOT limiting fragmentation and only the PMTU will effect
3073 * SCTP's choice of DATA chunk size. Note also that values set larger
3074 * than the maximum size of an IP datagram will effectively let SCTP
3075 * control fragmentation (i.e. the same as setting this option to 0).
3076 *
3077 * The following structure is used to access and modify this parameter:
3078 *
3079 * struct sctp_assoc_value {
3080 * sctp_assoc_t assoc_id;
3081 * uint32_t assoc_value;
3082 * };
3083 *
3084 * assoc_id: This parameter is ignored for one-to-one style sockets.
3085 * For one-to-many style sockets this parameter indicates which
3086 * association the user is performing an action upon. Note that if
3087 * this field's value is zero then the endpoints default value is
3088 * changed (effecting future associations only).
3089 * assoc_value: This parameter specifies the maximum size in bytes.
3090 */
3091static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3092{
3093 struct sctp_assoc_value params;
3094 struct sctp_association *asoc;
3095 struct sctp_sock *sp = sctp_sk(sk);
3096 int val;
3097
3098 if (optlen == sizeof(int)) {
3099 pr_warn_ratelimited(DEPRECATED
3100 "%s (pid %d) "
3101 "Use of int in maxseg socket option.\n"
3102 "Use struct sctp_assoc_value instead\n",
3103 current->comm, task_pid_nr(current));
3104 if (copy_from_user(&val, optval, optlen))
3105 return -EFAULT;
3106 params.assoc_id = 0;
3107 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3108 if (copy_from_user(¶ms, optval, optlen))
3109 return -EFAULT;
3110 val = params.assoc_value;
3111 } else
3112 return -EINVAL;
3113
3114 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3115 return -EINVAL;
3116
3117 asoc = sctp_id2assoc(sk, params.assoc_id);
3118 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3119 return -EINVAL;
3120
3121 if (asoc) {
3122 if (val == 0) {
3123 val = asoc->pathmtu;
3124 val -= sp->pf->af->net_header_len;
3125 val -= sizeof(struct sctphdr) +
3126 sizeof(struct sctp_data_chunk);
3127 }
3128 asoc->user_frag = val;
3129 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3130 } else {
3131 sp->user_frag = val;
3132 }
3133
3134 return 0;
3135}
3136
3137
3138/*
3139 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3140 *
3141 * Requests that the peer mark the enclosed address as the association
3142 * primary. The enclosed address must be one of the association's
3143 * locally bound addresses. The following structure is used to make a
3144 * set primary request:
3145 */
3146static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3147 unsigned int optlen)
3148{
3149 struct net *net = sock_net(sk);
3150 struct sctp_sock *sp;
3151 struct sctp_association *asoc = NULL;
3152 struct sctp_setpeerprim prim;
3153 struct sctp_chunk *chunk;
3154 struct sctp_af *af;
3155 int err;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (!net->sctp.addip_enable)
3160 return -EPERM;
3161
3162 if (optlen != sizeof(struct sctp_setpeerprim))
3163 return -EINVAL;
3164
3165 if (copy_from_user(&prim, optval, optlen))
3166 return -EFAULT;
3167
3168 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3169 if (!asoc)
3170 return -EINVAL;
3171
3172 if (!asoc->peer.asconf_capable)
3173 return -EPERM;
3174
3175 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3176 return -EPERM;
3177
3178 if (!sctp_state(asoc, ESTABLISHED))
3179 return -ENOTCONN;
3180
3181 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3182 if (!af)
3183 return -EINVAL;
3184
3185 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3186 return -EADDRNOTAVAIL;
3187
3188 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3189 return -EADDRNOTAVAIL;
3190
3191 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3192 chunk = sctp_make_asconf_set_prim(asoc,
3193 (union sctp_addr *)&prim.sspp_addr);
3194 if (!chunk)
3195 return -ENOMEM;
3196
3197 err = sctp_send_asconf(asoc, chunk);
3198
3199 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3200
3201 return err;
3202}
3203
3204static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3205 unsigned int optlen)
3206{
3207 struct sctp_setadaptation adaptation;
3208
3209 if (optlen != sizeof(struct sctp_setadaptation))
3210 return -EINVAL;
3211 if (copy_from_user(&adaptation, optval, optlen))
3212 return -EFAULT;
3213
3214 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3215
3216 return 0;
3217}
3218
3219/*
3220 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3221 *
3222 * The context field in the sctp_sndrcvinfo structure is normally only
3223 * used when a failed message is retrieved holding the value that was
3224 * sent down on the actual send call. This option allows the setting of
3225 * a default context on an association basis that will be received on
3226 * reading messages from the peer. This is especially helpful in the
3227 * one-2-many model for an application to keep some reference to an
3228 * internal state machine that is processing messages on the
3229 * association. Note that the setting of this value only effects
3230 * received messages from the peer and does not effect the value that is
3231 * saved with outbound messages.
3232 */
3233static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3234 unsigned int optlen)
3235{
3236 struct sctp_assoc_value params;
3237 struct sctp_sock *sp;
3238 struct sctp_association *asoc;
3239
3240 if (optlen != sizeof(struct sctp_assoc_value))
3241 return -EINVAL;
3242 if (copy_from_user(¶ms, optval, optlen))
3243 return -EFAULT;
3244
3245 sp = sctp_sk(sk);
3246
3247 if (params.assoc_id != 0) {
3248 asoc = sctp_id2assoc(sk, params.assoc_id);
3249 if (!asoc)
3250 return -EINVAL;
3251 asoc->default_rcv_context = params.assoc_value;
3252 } else {
3253 sp->default_rcv_context = params.assoc_value;
3254 }
3255
3256 return 0;
3257}
3258
3259/*
3260 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3261 *
3262 * This options will at a minimum specify if the implementation is doing
3263 * fragmented interleave. Fragmented interleave, for a one to many
3264 * socket, is when subsequent calls to receive a message may return
3265 * parts of messages from different associations. Some implementations
3266 * may allow you to turn this value on or off. If so, when turned off,
3267 * no fragment interleave will occur (which will cause a head of line
3268 * blocking amongst multiple associations sharing the same one to many
3269 * socket). When this option is turned on, then each receive call may
3270 * come from a different association (thus the user must receive data
3271 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3272 * association each receive belongs to.
3273 *
3274 * This option takes a boolean value. A non-zero value indicates that
3275 * fragmented interleave is on. A value of zero indicates that
3276 * fragmented interleave is off.
3277 *
3278 * Note that it is important that an implementation that allows this
3279 * option to be turned on, have it off by default. Otherwise an unaware
3280 * application using the one to many model may become confused and act
3281 * incorrectly.
3282 */
3283static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3284 char __user *optval,
3285 unsigned int optlen)
3286{
3287 int val;
3288
3289 if (optlen != sizeof(int))
3290 return -EINVAL;
3291 if (get_user(val, (int __user *)optval))
3292 return -EFAULT;
3293
3294 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3295
3296 return 0;
3297}
3298
3299/*
3300 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3301 * (SCTP_PARTIAL_DELIVERY_POINT)
3302 *
3303 * This option will set or get the SCTP partial delivery point. This
3304 * point is the size of a message where the partial delivery API will be
3305 * invoked to help free up rwnd space for the peer. Setting this to a
3306 * lower value will cause partial deliveries to happen more often. The
3307 * calls argument is an integer that sets or gets the partial delivery
3308 * point. Note also that the call will fail if the user attempts to set
3309 * this value larger than the socket receive buffer size.
3310 *
3311 * Note that any single message having a length smaller than or equal to
3312 * the SCTP partial delivery point will be delivered in one single read
3313 * call as long as the user provided buffer is large enough to hold the
3314 * message.
3315 */
3316static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3317 char __user *optval,
3318 unsigned int optlen)
3319{
3320 u32 val;
3321
3322 if (optlen != sizeof(u32))
3323 return -EINVAL;
3324 if (get_user(val, (int __user *)optval))
3325 return -EFAULT;
3326
3327 /* Note: We double the receive buffer from what the user sets
3328 * it to be, also initial rwnd is based on rcvbuf/2.
3329 */
3330 if (val > (sk->sk_rcvbuf >> 1))
3331 return -EINVAL;
3332
3333 sctp_sk(sk)->pd_point = val;
3334
3335 return 0; /* is this the right error code? */
3336}
3337
3338/*
3339 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3340 *
3341 * This option will allow a user to change the maximum burst of packets
3342 * that can be emitted by this association. Note that the default value
3343 * is 4, and some implementations may restrict this setting so that it
3344 * can only be lowered.
3345 *
3346 * NOTE: This text doesn't seem right. Do this on a socket basis with
3347 * future associations inheriting the socket value.
3348 */
3349static int sctp_setsockopt_maxburst(struct sock *sk,
3350 char __user *optval,
3351 unsigned int optlen)
3352{
3353 struct sctp_assoc_value params;
3354 struct sctp_sock *sp;
3355 struct sctp_association *asoc;
3356 int val;
3357 int assoc_id = 0;
3358
3359 if (optlen == sizeof(int)) {
3360 pr_warn_ratelimited(DEPRECATED
3361 "%s (pid %d) "
3362 "Use of int in max_burst socket option deprecated.\n"
3363 "Use struct sctp_assoc_value instead\n",
3364 current->comm, task_pid_nr(current));
3365 if (copy_from_user(&val, optval, optlen))
3366 return -EFAULT;
3367 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3368 if (copy_from_user(¶ms, optval, optlen))
3369 return -EFAULT;
3370 val = params.assoc_value;
3371 assoc_id = params.assoc_id;
3372 } else
3373 return -EINVAL;
3374
3375 sp = sctp_sk(sk);
3376
3377 if (assoc_id != 0) {
3378 asoc = sctp_id2assoc(sk, assoc_id);
3379 if (!asoc)
3380 return -EINVAL;
3381 asoc->max_burst = val;
3382 } else
3383 sp->max_burst = val;
3384
3385 return 0;
3386}
3387
3388/*
3389 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3390 *
3391 * This set option adds a chunk type that the user is requesting to be
3392 * received only in an authenticated way. Changes to the list of chunks
3393 * will only effect future associations on the socket.
3394 */
3395static int sctp_setsockopt_auth_chunk(struct sock *sk,
3396 char __user *optval,
3397 unsigned int optlen)
3398{
3399 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3400 struct sctp_authchunk val;
3401
3402 if (!ep->auth_enable)
3403 return -EACCES;
3404
3405 if (optlen != sizeof(struct sctp_authchunk))
3406 return -EINVAL;
3407 if (copy_from_user(&val, optval, optlen))
3408 return -EFAULT;
3409
3410 switch (val.sauth_chunk) {
3411 case SCTP_CID_INIT:
3412 case SCTP_CID_INIT_ACK:
3413 case SCTP_CID_SHUTDOWN_COMPLETE:
3414 case SCTP_CID_AUTH:
3415 return -EINVAL;
3416 }
3417
3418 /* add this chunk id to the endpoint */
3419 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3420}
3421
3422/*
3423 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3424 *
3425 * This option gets or sets the list of HMAC algorithms that the local
3426 * endpoint requires the peer to use.
3427 */
3428static int sctp_setsockopt_hmac_ident(struct sock *sk,
3429 char __user *optval,
3430 unsigned int optlen)
3431{
3432 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3433 struct sctp_hmacalgo *hmacs;
3434 u32 idents;
3435 int err;
3436
3437 if (!ep->auth_enable)
3438 return -EACCES;
3439
3440 if (optlen < sizeof(struct sctp_hmacalgo))
3441 return -EINVAL;
3442
3443 hmacs = memdup_user(optval, optlen);
3444 if (IS_ERR(hmacs))
3445 return PTR_ERR(hmacs);
3446
3447 idents = hmacs->shmac_num_idents;
3448 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3449 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3450 err = -EINVAL;
3451 goto out;
3452 }
3453
3454 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3455out:
3456 kfree(hmacs);
3457 return err;
3458}
3459
3460/*
3461 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3462 *
3463 * This option will set a shared secret key which is used to build an
3464 * association shared key.
3465 */
3466static int sctp_setsockopt_auth_key(struct sock *sk,
3467 char __user *optval,
3468 unsigned int optlen)
3469{
3470 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3471 struct sctp_authkey *authkey;
3472 struct sctp_association *asoc;
3473 int ret;
3474
3475 if (!ep->auth_enable)
3476 return -EACCES;
3477
3478 if (optlen <= sizeof(struct sctp_authkey))
3479 return -EINVAL;
3480
3481 authkey = memdup_user(optval, optlen);
3482 if (IS_ERR(authkey))
3483 return PTR_ERR(authkey);
3484
3485 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3486 ret = -EINVAL;
3487 goto out;
3488 }
3489
3490 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3491 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3492 ret = -EINVAL;
3493 goto out;
3494 }
3495
3496 ret = sctp_auth_set_key(ep, asoc, authkey);
3497out:
3498 kzfree(authkey);
3499 return ret;
3500}
3501
3502/*
3503 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3504 *
3505 * This option will get or set the active shared key to be used to build
3506 * the association shared key.
3507 */
3508static int sctp_setsockopt_active_key(struct sock *sk,
3509 char __user *optval,
3510 unsigned int optlen)
3511{
3512 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3513 struct sctp_authkeyid val;
3514 struct sctp_association *asoc;
3515
3516 if (!ep->auth_enable)
3517 return -EACCES;
3518
3519 if (optlen != sizeof(struct sctp_authkeyid))
3520 return -EINVAL;
3521 if (copy_from_user(&val, optval, optlen))
3522 return -EFAULT;
3523
3524 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3525 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3526 return -EINVAL;
3527
3528 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3529}
3530
3531/*
3532 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3533 *
3534 * This set option will delete a shared secret key from use.
3535 */
3536static int sctp_setsockopt_del_key(struct sock *sk,
3537 char __user *optval,
3538 unsigned int optlen)
3539{
3540 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3541 struct sctp_authkeyid val;
3542 struct sctp_association *asoc;
3543
3544 if (!ep->auth_enable)
3545 return -EACCES;
3546
3547 if (optlen != sizeof(struct sctp_authkeyid))
3548 return -EINVAL;
3549 if (copy_from_user(&val, optval, optlen))
3550 return -EFAULT;
3551
3552 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3553 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3554 return -EINVAL;
3555
3556 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3557
3558}
3559
3560/*
3561 * 8.1.23 SCTP_AUTO_ASCONF
3562 *
3563 * This option will enable or disable the use of the automatic generation of
3564 * ASCONF chunks to add and delete addresses to an existing association. Note
3565 * that this option has two caveats namely: a) it only affects sockets that
3566 * are bound to all addresses available to the SCTP stack, and b) the system
3567 * administrator may have an overriding control that turns the ASCONF feature
3568 * off no matter what setting the socket option may have.
3569 * This option expects an integer boolean flag, where a non-zero value turns on
3570 * the option, and a zero value turns off the option.
3571 * Note. In this implementation, socket operation overrides default parameter
3572 * being set by sysctl as well as FreeBSD implementation
3573 */
3574static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3575 unsigned int optlen)
3576{
3577 int val;
3578 struct sctp_sock *sp = sctp_sk(sk);
3579
3580 if (optlen < sizeof(int))
3581 return -EINVAL;
3582 if (get_user(val, (int __user *)optval))
3583 return -EFAULT;
3584 if (!sctp_is_ep_boundall(sk) && val)
3585 return -EINVAL;
3586 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3587 return 0;
3588
3589 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3590 if (val == 0 && sp->do_auto_asconf) {
3591 list_del(&sp->auto_asconf_list);
3592 sp->do_auto_asconf = 0;
3593 } else if (val && !sp->do_auto_asconf) {
3594 list_add_tail(&sp->auto_asconf_list,
3595 &sock_net(sk)->sctp.auto_asconf_splist);
3596 sp->do_auto_asconf = 1;
3597 }
3598 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3599 return 0;
3600}
3601
3602/*
3603 * SCTP_PEER_ADDR_THLDS
3604 *
3605 * This option allows us to alter the partially failed threshold for one or all
3606 * transports in an association. See Section 6.1 of:
3607 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3608 */
3609static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3610 char __user *optval,
3611 unsigned int optlen)
3612{
3613 struct sctp_paddrthlds val;
3614 struct sctp_transport *trans;
3615 struct sctp_association *asoc;
3616
3617 if (optlen < sizeof(struct sctp_paddrthlds))
3618 return -EINVAL;
3619 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3620 sizeof(struct sctp_paddrthlds)))
3621 return -EFAULT;
3622
3623
3624 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3625 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3626 if (!asoc)
3627 return -ENOENT;
3628 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3629 transports) {
3630 if (val.spt_pathmaxrxt)
3631 trans->pathmaxrxt = val.spt_pathmaxrxt;
3632 trans->pf_retrans = val.spt_pathpfthld;
3633 }
3634
3635 if (val.spt_pathmaxrxt)
3636 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3637 asoc->pf_retrans = val.spt_pathpfthld;
3638 } else {
3639 trans = sctp_addr_id2transport(sk, &val.spt_address,
3640 val.spt_assoc_id);
3641 if (!trans)
3642 return -ENOENT;
3643
3644 if (val.spt_pathmaxrxt)
3645 trans->pathmaxrxt = val.spt_pathmaxrxt;
3646 trans->pf_retrans = val.spt_pathpfthld;
3647 }
3648
3649 return 0;
3650}
3651
3652static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3653 char __user *optval,
3654 unsigned int optlen)
3655{
3656 int val;
3657
3658 if (optlen < sizeof(int))
3659 return -EINVAL;
3660 if (get_user(val, (int __user *) optval))
3661 return -EFAULT;
3662
3663 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3664
3665 return 0;
3666}
3667
3668static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3669 char __user *optval,
3670 unsigned int optlen)
3671{
3672 int val;
3673
3674 if (optlen < sizeof(int))
3675 return -EINVAL;
3676 if (get_user(val, (int __user *) optval))
3677 return -EFAULT;
3678
3679 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3680
3681 return 0;
3682}
3683
3684static int sctp_setsockopt_pr_supported(struct sock *sk,
3685 char __user *optval,
3686 unsigned int optlen)
3687{
3688 struct sctp_assoc_value params;
3689 struct sctp_association *asoc;
3690 int retval = -EINVAL;
3691
3692 if (optlen != sizeof(params))
3693 goto out;
3694
3695 if (copy_from_user(¶ms, optval, optlen)) {
3696 retval = -EFAULT;
3697 goto out;
3698 }
3699
3700 asoc = sctp_id2assoc(sk, params.assoc_id);
3701 if (asoc) {
3702 asoc->prsctp_enable = !!params.assoc_value;
3703 } else if (!params.assoc_id) {
3704 struct sctp_sock *sp = sctp_sk(sk);
3705
3706 sp->ep->prsctp_enable = !!params.assoc_value;
3707 } else {
3708 goto out;
3709 }
3710
3711 retval = 0;
3712
3713out:
3714 return retval;
3715}
3716
3717static int sctp_setsockopt_default_prinfo(struct sock *sk,
3718 char __user *optval,
3719 unsigned int optlen)
3720{
3721 struct sctp_default_prinfo info;
3722 struct sctp_association *asoc;
3723 int retval = -EINVAL;
3724
3725 if (optlen != sizeof(info))
3726 goto out;
3727
3728 if (copy_from_user(&info, optval, sizeof(info))) {
3729 retval = -EFAULT;
3730 goto out;
3731 }
3732
3733 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3734 goto out;
3735
3736 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3737 info.pr_value = 0;
3738
3739 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3740 if (asoc) {
3741 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3742 asoc->default_timetolive = info.pr_value;
3743 } else if (!info.pr_assoc_id) {
3744 struct sctp_sock *sp = sctp_sk(sk);
3745
3746 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3747 sp->default_timetolive = info.pr_value;
3748 } else {
3749 goto out;
3750 }
3751
3752 retval = 0;
3753
3754out:
3755 return retval;
3756}
3757
3758/* API 6.2 setsockopt(), getsockopt()
3759 *
3760 * Applications use setsockopt() and getsockopt() to set or retrieve
3761 * socket options. Socket options are used to change the default
3762 * behavior of sockets calls. They are described in Section 7.
3763 *
3764 * The syntax is:
3765 *
3766 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3767 * int __user *optlen);
3768 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3769 * int optlen);
3770 *
3771 * sd - the socket descript.
3772 * level - set to IPPROTO_SCTP for all SCTP options.
3773 * optname - the option name.
3774 * optval - the buffer to store the value of the option.
3775 * optlen - the size of the buffer.
3776 */
3777static int sctp_setsockopt(struct sock *sk, int level, int optname,
3778 char __user *optval, unsigned int optlen)
3779{
3780 int retval = 0;
3781
3782 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3783
3784 /* I can hardly begin to describe how wrong this is. This is
3785 * so broken as to be worse than useless. The API draft
3786 * REALLY is NOT helpful here... I am not convinced that the
3787 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3788 * are at all well-founded.
3789 */
3790 if (level != SOL_SCTP) {
3791 struct sctp_af *af = sctp_sk(sk)->pf->af;
3792 retval = af->setsockopt(sk, level, optname, optval, optlen);
3793 goto out_nounlock;
3794 }
3795
3796 lock_sock(sk);
3797
3798 switch (optname) {
3799 case SCTP_SOCKOPT_BINDX_ADD:
3800 /* 'optlen' is the size of the addresses buffer. */
3801 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3802 optlen, SCTP_BINDX_ADD_ADDR);
3803 break;
3804
3805 case SCTP_SOCKOPT_BINDX_REM:
3806 /* 'optlen' is the size of the addresses buffer. */
3807 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3808 optlen, SCTP_BINDX_REM_ADDR);
3809 break;
3810
3811 case SCTP_SOCKOPT_CONNECTX_OLD:
3812 /* 'optlen' is the size of the addresses buffer. */
3813 retval = sctp_setsockopt_connectx_old(sk,
3814 (struct sockaddr __user *)optval,
3815 optlen);
3816 break;
3817
3818 case SCTP_SOCKOPT_CONNECTX:
3819 /* 'optlen' is the size of the addresses buffer. */
3820 retval = sctp_setsockopt_connectx(sk,
3821 (struct sockaddr __user *)optval,
3822 optlen);
3823 break;
3824
3825 case SCTP_DISABLE_FRAGMENTS:
3826 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3827 break;
3828
3829 case SCTP_EVENTS:
3830 retval = sctp_setsockopt_events(sk, optval, optlen);
3831 break;
3832
3833 case SCTP_AUTOCLOSE:
3834 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3835 break;
3836
3837 case SCTP_PEER_ADDR_PARAMS:
3838 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3839 break;
3840
3841 case SCTP_DELAYED_SACK:
3842 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3843 break;
3844 case SCTP_PARTIAL_DELIVERY_POINT:
3845 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3846 break;
3847
3848 case SCTP_INITMSG:
3849 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3850 break;
3851 case SCTP_DEFAULT_SEND_PARAM:
3852 retval = sctp_setsockopt_default_send_param(sk, optval,
3853 optlen);
3854 break;
3855 case SCTP_DEFAULT_SNDINFO:
3856 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3857 break;
3858 case SCTP_PRIMARY_ADDR:
3859 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3860 break;
3861 case SCTP_SET_PEER_PRIMARY_ADDR:
3862 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3863 break;
3864 case SCTP_NODELAY:
3865 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3866 break;
3867 case SCTP_RTOINFO:
3868 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3869 break;
3870 case SCTP_ASSOCINFO:
3871 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3872 break;
3873 case SCTP_I_WANT_MAPPED_V4_ADDR:
3874 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3875 break;
3876 case SCTP_MAXSEG:
3877 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3878 break;
3879 case SCTP_ADAPTATION_LAYER:
3880 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3881 break;
3882 case SCTP_CONTEXT:
3883 retval = sctp_setsockopt_context(sk, optval, optlen);
3884 break;
3885 case SCTP_FRAGMENT_INTERLEAVE:
3886 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3887 break;
3888 case SCTP_MAX_BURST:
3889 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3890 break;
3891 case SCTP_AUTH_CHUNK:
3892 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3893 break;
3894 case SCTP_HMAC_IDENT:
3895 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3896 break;
3897 case SCTP_AUTH_KEY:
3898 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3899 break;
3900 case SCTP_AUTH_ACTIVE_KEY:
3901 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3902 break;
3903 case SCTP_AUTH_DELETE_KEY:
3904 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3905 break;
3906 case SCTP_AUTO_ASCONF:
3907 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3908 break;
3909 case SCTP_PEER_ADDR_THLDS:
3910 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3911 break;
3912 case SCTP_RECVRCVINFO:
3913 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3914 break;
3915 case SCTP_RECVNXTINFO:
3916 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3917 break;
3918 case SCTP_PR_SUPPORTED:
3919 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3920 break;
3921 case SCTP_DEFAULT_PRINFO:
3922 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3923 break;
3924 default:
3925 retval = -ENOPROTOOPT;
3926 break;
3927 }
3928
3929 release_sock(sk);
3930
3931out_nounlock:
3932 return retval;
3933}
3934
3935/* API 3.1.6 connect() - UDP Style Syntax
3936 *
3937 * An application may use the connect() call in the UDP model to initiate an
3938 * association without sending data.
3939 *
3940 * The syntax is:
3941 *
3942 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3943 *
3944 * sd: the socket descriptor to have a new association added to.
3945 *
3946 * nam: the address structure (either struct sockaddr_in or struct
3947 * sockaddr_in6 defined in RFC2553 [7]).
3948 *
3949 * len: the size of the address.
3950 */
3951static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3952 int addr_len)
3953{
3954 int err = 0;
3955 struct sctp_af *af;
3956
3957 lock_sock(sk);
3958
3959 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3960 addr, addr_len);
3961
3962 /* Validate addr_len before calling common connect/connectx routine. */
3963 af = sctp_get_af_specific(addr->sa_family);
3964 if (!af || addr_len < af->sockaddr_len) {
3965 err = -EINVAL;
3966 } else {
3967 /* Pass correct addr len to common routine (so it knows there
3968 * is only one address being passed.
3969 */
3970 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3971 }
3972
3973 release_sock(sk);
3974 return err;
3975}
3976
3977/* FIXME: Write comments. */
3978static int sctp_disconnect(struct sock *sk, int flags)
3979{
3980 return -EOPNOTSUPP; /* STUB */
3981}
3982
3983/* 4.1.4 accept() - TCP Style Syntax
3984 *
3985 * Applications use accept() call to remove an established SCTP
3986 * association from the accept queue of the endpoint. A new socket
3987 * descriptor will be returned from accept() to represent the newly
3988 * formed association.
3989 */
3990static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3991{
3992 struct sctp_sock *sp;
3993 struct sctp_endpoint *ep;
3994 struct sock *newsk = NULL;
3995 struct sctp_association *asoc;
3996 long timeo;
3997 int error = 0;
3998
3999 lock_sock(sk);
4000
4001 sp = sctp_sk(sk);
4002 ep = sp->ep;
4003
4004 if (!sctp_style(sk, TCP)) {
4005 error = -EOPNOTSUPP;
4006 goto out;
4007 }
4008
4009 if (!sctp_sstate(sk, LISTENING)) {
4010 error = -EINVAL;
4011 goto out;
4012 }
4013
4014 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4015
4016 error = sctp_wait_for_accept(sk, timeo);
4017 if (error)
4018 goto out;
4019
4020 /* We treat the list of associations on the endpoint as the accept
4021 * queue and pick the first association on the list.
4022 */
4023 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4024
4025 newsk = sp->pf->create_accept_sk(sk, asoc);
4026 if (!newsk) {
4027 error = -ENOMEM;
4028 goto out;
4029 }
4030
4031 /* Populate the fields of the newsk from the oldsk and migrate the
4032 * asoc to the newsk.
4033 */
4034 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4035
4036out:
4037 release_sock(sk);
4038 *err = error;
4039 return newsk;
4040}
4041
4042/* The SCTP ioctl handler. */
4043static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4044{
4045 int rc = -ENOTCONN;
4046
4047 lock_sock(sk);
4048
4049 /*
4050 * SEQPACKET-style sockets in LISTENING state are valid, for
4051 * SCTP, so only discard TCP-style sockets in LISTENING state.
4052 */
4053 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4054 goto out;
4055
4056 switch (cmd) {
4057 case SIOCINQ: {
4058 struct sk_buff *skb;
4059 unsigned int amount = 0;
4060
4061 skb = skb_peek(&sk->sk_receive_queue);
4062 if (skb != NULL) {
4063 /*
4064 * We will only return the amount of this packet since
4065 * that is all that will be read.
4066 */
4067 amount = skb->len;
4068 }
4069 rc = put_user(amount, (int __user *)arg);
4070 break;
4071 }
4072 default:
4073 rc = -ENOIOCTLCMD;
4074 break;
4075 }
4076out:
4077 release_sock(sk);
4078 return rc;
4079}
4080
4081/* This is the function which gets called during socket creation to
4082 * initialized the SCTP-specific portion of the sock.
4083 * The sock structure should already be zero-filled memory.
4084 */
4085static int sctp_init_sock(struct sock *sk)
4086{
4087 struct net *net = sock_net(sk);
4088 struct sctp_sock *sp;
4089
4090 pr_debug("%s: sk:%p\n", __func__, sk);
4091
4092 sp = sctp_sk(sk);
4093
4094 /* Initialize the SCTP per socket area. */
4095 switch (sk->sk_type) {
4096 case SOCK_SEQPACKET:
4097 sp->type = SCTP_SOCKET_UDP;
4098 break;
4099 case SOCK_STREAM:
4100 sp->type = SCTP_SOCKET_TCP;
4101 break;
4102 default:
4103 return -ESOCKTNOSUPPORT;
4104 }
4105
4106 sk->sk_gso_type = SKB_GSO_SCTP;
4107
4108 /* Initialize default send parameters. These parameters can be
4109 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4110 */
4111 sp->default_stream = 0;
4112 sp->default_ppid = 0;
4113 sp->default_flags = 0;
4114 sp->default_context = 0;
4115 sp->default_timetolive = 0;
4116
4117 sp->default_rcv_context = 0;
4118 sp->max_burst = net->sctp.max_burst;
4119
4120 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4121
4122 /* Initialize default setup parameters. These parameters
4123 * can be modified with the SCTP_INITMSG socket option or
4124 * overridden by the SCTP_INIT CMSG.
4125 */
4126 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4127 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4128 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4129 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4130
4131 /* Initialize default RTO related parameters. These parameters can
4132 * be modified for with the SCTP_RTOINFO socket option.
4133 */
4134 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4135 sp->rtoinfo.srto_max = net->sctp.rto_max;
4136 sp->rtoinfo.srto_min = net->sctp.rto_min;
4137
4138 /* Initialize default association related parameters. These parameters
4139 * can be modified with the SCTP_ASSOCINFO socket option.
4140 */
4141 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4142 sp->assocparams.sasoc_number_peer_destinations = 0;
4143 sp->assocparams.sasoc_peer_rwnd = 0;
4144 sp->assocparams.sasoc_local_rwnd = 0;
4145 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4146
4147 /* Initialize default event subscriptions. By default, all the
4148 * options are off.
4149 */
4150 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4151
4152 /* Default Peer Address Parameters. These defaults can
4153 * be modified via SCTP_PEER_ADDR_PARAMS
4154 */
4155 sp->hbinterval = net->sctp.hb_interval;
4156 sp->pathmaxrxt = net->sctp.max_retrans_path;
4157 sp->pathmtu = 0; /* allow default discovery */
4158 sp->sackdelay = net->sctp.sack_timeout;
4159 sp->sackfreq = 2;
4160 sp->param_flags = SPP_HB_ENABLE |
4161 SPP_PMTUD_ENABLE |
4162 SPP_SACKDELAY_ENABLE;
4163
4164 /* If enabled no SCTP message fragmentation will be performed.
4165 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4166 */
4167 sp->disable_fragments = 0;
4168
4169 /* Enable Nagle algorithm by default. */
4170 sp->nodelay = 0;
4171
4172 sp->recvrcvinfo = 0;
4173 sp->recvnxtinfo = 0;
4174
4175 /* Enable by default. */
4176 sp->v4mapped = 1;
4177
4178 /* Auto-close idle associations after the configured
4179 * number of seconds. A value of 0 disables this
4180 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4181 * for UDP-style sockets only.
4182 */
4183 sp->autoclose = 0;
4184
4185 /* User specified fragmentation limit. */
4186 sp->user_frag = 0;
4187
4188 sp->adaptation_ind = 0;
4189
4190 sp->pf = sctp_get_pf_specific(sk->sk_family);
4191
4192 /* Control variables for partial data delivery. */
4193 atomic_set(&sp->pd_mode, 0);
4194 skb_queue_head_init(&sp->pd_lobby);
4195 sp->frag_interleave = 0;
4196
4197 /* Create a per socket endpoint structure. Even if we
4198 * change the data structure relationships, this may still
4199 * be useful for storing pre-connect address information.
4200 */
4201 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4202 if (!sp->ep)
4203 return -ENOMEM;
4204
4205 sp->hmac = NULL;
4206
4207 sk->sk_destruct = sctp_destruct_sock;
4208
4209 SCTP_DBG_OBJCNT_INC(sock);
4210
4211 local_bh_disable();
4212 percpu_counter_inc(&sctp_sockets_allocated);
4213 sock_prot_inuse_add(net, sk->sk_prot, 1);
4214
4215 /* Nothing can fail after this block, otherwise
4216 * sctp_destroy_sock() will be called without addr_wq_lock held
4217 */
4218 if (net->sctp.default_auto_asconf) {
4219 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4220 list_add_tail(&sp->auto_asconf_list,
4221 &net->sctp.auto_asconf_splist);
4222 sp->do_auto_asconf = 1;
4223 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4224 } else {
4225 sp->do_auto_asconf = 0;
4226 }
4227
4228 local_bh_enable();
4229
4230 return 0;
4231}
4232
4233/* Cleanup any SCTP per socket resources. Must be called with
4234 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4235 */
4236static void sctp_destroy_sock(struct sock *sk)
4237{
4238 struct sctp_sock *sp;
4239
4240 pr_debug("%s: sk:%p\n", __func__, sk);
4241
4242 /* Release our hold on the endpoint. */
4243 sp = sctp_sk(sk);
4244 /* This could happen during socket init, thus we bail out
4245 * early, since the rest of the below is not setup either.
4246 */
4247 if (sp->ep == NULL)
4248 return;
4249
4250 if (sp->do_auto_asconf) {
4251 sp->do_auto_asconf = 0;
4252 list_del(&sp->auto_asconf_list);
4253 }
4254 sctp_endpoint_free(sp->ep);
4255 local_bh_disable();
4256 percpu_counter_dec(&sctp_sockets_allocated);
4257 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4258 local_bh_enable();
4259}
4260
4261/* Triggered when there are no references on the socket anymore */
4262static void sctp_destruct_sock(struct sock *sk)
4263{
4264 struct sctp_sock *sp = sctp_sk(sk);
4265
4266 /* Free up the HMAC transform. */
4267 crypto_free_shash(sp->hmac);
4268
4269 inet_sock_destruct(sk);
4270}
4271
4272/* API 4.1.7 shutdown() - TCP Style Syntax
4273 * int shutdown(int socket, int how);
4274 *
4275 * sd - the socket descriptor of the association to be closed.
4276 * how - Specifies the type of shutdown. The values are
4277 * as follows:
4278 * SHUT_RD
4279 * Disables further receive operations. No SCTP
4280 * protocol action is taken.
4281 * SHUT_WR
4282 * Disables further send operations, and initiates
4283 * the SCTP shutdown sequence.
4284 * SHUT_RDWR
4285 * Disables further send and receive operations
4286 * and initiates the SCTP shutdown sequence.
4287 */
4288static void sctp_shutdown(struct sock *sk, int how)
4289{
4290 struct net *net = sock_net(sk);
4291 struct sctp_endpoint *ep;
4292
4293 if (!sctp_style(sk, TCP))
4294 return;
4295
4296 ep = sctp_sk(sk)->ep;
4297 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4298 struct sctp_association *asoc;
4299
4300 sk->sk_state = SCTP_SS_CLOSING;
4301 asoc = list_entry(ep->asocs.next,
4302 struct sctp_association, asocs);
4303 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4304 }
4305}
4306
4307int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4308 struct sctp_info *info)
4309{
4310 struct sctp_transport *prim;
4311 struct list_head *pos;
4312 int mask;
4313
4314 memset(info, 0, sizeof(*info));
4315 if (!asoc) {
4316 struct sctp_sock *sp = sctp_sk(sk);
4317
4318 info->sctpi_s_autoclose = sp->autoclose;
4319 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4320 info->sctpi_s_pd_point = sp->pd_point;
4321 info->sctpi_s_nodelay = sp->nodelay;
4322 info->sctpi_s_disable_fragments = sp->disable_fragments;
4323 info->sctpi_s_v4mapped = sp->v4mapped;
4324 info->sctpi_s_frag_interleave = sp->frag_interleave;
4325 info->sctpi_s_type = sp->type;
4326
4327 return 0;
4328 }
4329
4330 info->sctpi_tag = asoc->c.my_vtag;
4331 info->sctpi_state = asoc->state;
4332 info->sctpi_rwnd = asoc->a_rwnd;
4333 info->sctpi_unackdata = asoc->unack_data;
4334 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4335 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4336 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4337 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4338 info->sctpi_inqueue++;
4339 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4340 info->sctpi_outqueue++;
4341 info->sctpi_overall_error = asoc->overall_error_count;
4342 info->sctpi_max_burst = asoc->max_burst;
4343 info->sctpi_maxseg = asoc->frag_point;
4344 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4345 info->sctpi_peer_tag = asoc->c.peer_vtag;
4346
4347 mask = asoc->peer.ecn_capable << 1;
4348 mask = (mask | asoc->peer.ipv4_address) << 1;
4349 mask = (mask | asoc->peer.ipv6_address) << 1;
4350 mask = (mask | asoc->peer.hostname_address) << 1;
4351 mask = (mask | asoc->peer.asconf_capable) << 1;
4352 mask = (mask | asoc->peer.prsctp_capable) << 1;
4353 mask = (mask | asoc->peer.auth_capable);
4354 info->sctpi_peer_capable = mask;
4355 mask = asoc->peer.sack_needed << 1;
4356 mask = (mask | asoc->peer.sack_generation) << 1;
4357 mask = (mask | asoc->peer.zero_window_announced);
4358 info->sctpi_peer_sack = mask;
4359
4360 info->sctpi_isacks = asoc->stats.isacks;
4361 info->sctpi_osacks = asoc->stats.osacks;
4362 info->sctpi_opackets = asoc->stats.opackets;
4363 info->sctpi_ipackets = asoc->stats.ipackets;
4364 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4365 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4366 info->sctpi_idupchunks = asoc->stats.idupchunks;
4367 info->sctpi_gapcnt = asoc->stats.gapcnt;
4368 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4369 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4370 info->sctpi_oodchunks = asoc->stats.oodchunks;
4371 info->sctpi_iodchunks = asoc->stats.iodchunks;
4372 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4373 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4374
4375 prim = asoc->peer.primary_path;
4376 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4377 sizeof(struct sockaddr_storage));
4378 info->sctpi_p_state = prim->state;
4379 info->sctpi_p_cwnd = prim->cwnd;
4380 info->sctpi_p_srtt = prim->srtt;
4381 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4382 info->sctpi_p_hbinterval = prim->hbinterval;
4383 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4384 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4385 info->sctpi_p_ssthresh = prim->ssthresh;
4386 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4387 info->sctpi_p_flight_size = prim->flight_size;
4388 info->sctpi_p_error = prim->error_count;
4389
4390 return 0;
4391}
4392EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4393
4394/* use callback to avoid exporting the core structure */
4395int sctp_transport_walk_start(struct rhashtable_iter *iter)
4396{
4397 int err;
4398
4399 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4400
4401 err = rhashtable_walk_start(iter);
4402 if (err && err != -EAGAIN) {
4403 rhashtable_walk_stop(iter);
4404 rhashtable_walk_exit(iter);
4405 return err;
4406 }
4407
4408 return 0;
4409}
4410
4411void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4412{
4413 rhashtable_walk_stop(iter);
4414 rhashtable_walk_exit(iter);
4415}
4416
4417struct sctp_transport *sctp_transport_get_next(struct net *net,
4418 struct rhashtable_iter *iter)
4419{
4420 struct sctp_transport *t;
4421
4422 t = rhashtable_walk_next(iter);
4423 for (; t; t = rhashtable_walk_next(iter)) {
4424 if (IS_ERR(t)) {
4425 if (PTR_ERR(t) == -EAGAIN)
4426 continue;
4427 break;
4428 }
4429
4430 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4431 t->asoc->peer.primary_path == t)
4432 break;
4433 }
4434
4435 return t;
4436}
4437
4438struct sctp_transport *sctp_transport_get_idx(struct net *net,
4439 struct rhashtable_iter *iter,
4440 int pos)
4441{
4442 void *obj = SEQ_START_TOKEN;
4443
4444 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4445 !IS_ERR(obj))
4446 pos--;
4447
4448 return obj;
4449}
4450
4451int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4452 void *p) {
4453 int err = 0;
4454 int hash = 0;
4455 struct sctp_ep_common *epb;
4456 struct sctp_hashbucket *head;
4457
4458 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4459 hash++, head++) {
4460 read_lock(&head->lock);
4461 sctp_for_each_hentry(epb, &head->chain) {
4462 err = cb(sctp_ep(epb), p);
4463 if (err)
4464 break;
4465 }
4466 read_unlock(&head->lock);
4467 }
4468
4469 return err;
4470}
4471EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4472
4473int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4474 struct net *net,
4475 const union sctp_addr *laddr,
4476 const union sctp_addr *paddr, void *p)
4477{
4478 struct sctp_transport *transport;
4479 int err;
4480
4481 rcu_read_lock();
4482 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4483 rcu_read_unlock();
4484 if (!transport)
4485 return -ENOENT;
4486
4487 err = cb(transport, p);
4488 sctp_transport_put(transport);
4489
4490 return err;
4491}
4492EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4493
4494int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4495 struct net *net, int pos, void *p) {
4496 struct rhashtable_iter hti;
4497 void *obj;
4498 int err;
4499
4500 err = sctp_transport_walk_start(&hti);
4501 if (err)
4502 return err;
4503
4504 sctp_transport_get_idx(net, &hti, pos);
4505 obj = sctp_transport_get_next(net, &hti);
4506 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4507 struct sctp_transport *transport = obj;
4508
4509 if (!sctp_transport_hold(transport))
4510 continue;
4511 err = cb(transport, p);
4512 sctp_transport_put(transport);
4513 if (err)
4514 break;
4515 }
4516 sctp_transport_walk_stop(&hti);
4517
4518 return err;
4519}
4520EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4521
4522/* 7.2.1 Association Status (SCTP_STATUS)
4523
4524 * Applications can retrieve current status information about an
4525 * association, including association state, peer receiver window size,
4526 * number of unacked data chunks, and number of data chunks pending
4527 * receipt. This information is read-only.
4528 */
4529static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4530 char __user *optval,
4531 int __user *optlen)
4532{
4533 struct sctp_status status;
4534 struct sctp_association *asoc = NULL;
4535 struct sctp_transport *transport;
4536 sctp_assoc_t associd;
4537 int retval = 0;
4538
4539 if (len < sizeof(status)) {
4540 retval = -EINVAL;
4541 goto out;
4542 }
4543
4544 len = sizeof(status);
4545 if (copy_from_user(&status, optval, len)) {
4546 retval = -EFAULT;
4547 goto out;
4548 }
4549
4550 associd = status.sstat_assoc_id;
4551 asoc = sctp_id2assoc(sk, associd);
4552 if (!asoc) {
4553 retval = -EINVAL;
4554 goto out;
4555 }
4556
4557 transport = asoc->peer.primary_path;
4558
4559 status.sstat_assoc_id = sctp_assoc2id(asoc);
4560 status.sstat_state = sctp_assoc_to_state(asoc);
4561 status.sstat_rwnd = asoc->peer.rwnd;
4562 status.sstat_unackdata = asoc->unack_data;
4563
4564 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4565 status.sstat_instrms = asoc->c.sinit_max_instreams;
4566 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4567 status.sstat_fragmentation_point = asoc->frag_point;
4568 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4569 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4570 transport->af_specific->sockaddr_len);
4571 /* Map ipv4 address into v4-mapped-on-v6 address. */
4572 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4573 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4574 status.sstat_primary.spinfo_state = transport->state;
4575 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4576 status.sstat_primary.spinfo_srtt = transport->srtt;
4577 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4578 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4579
4580 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4581 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4582
4583 if (put_user(len, optlen)) {
4584 retval = -EFAULT;
4585 goto out;
4586 }
4587
4588 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4589 __func__, len, status.sstat_state, status.sstat_rwnd,
4590 status.sstat_assoc_id);
4591
4592 if (copy_to_user(optval, &status, len)) {
4593 retval = -EFAULT;
4594 goto out;
4595 }
4596
4597out:
4598 return retval;
4599}
4600
4601
4602/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4603 *
4604 * Applications can retrieve information about a specific peer address
4605 * of an association, including its reachability state, congestion
4606 * window, and retransmission timer values. This information is
4607 * read-only.
4608 */
4609static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4610 char __user *optval,
4611 int __user *optlen)
4612{
4613 struct sctp_paddrinfo pinfo;
4614 struct sctp_transport *transport;
4615 int retval = 0;
4616
4617 if (len < sizeof(pinfo)) {
4618 retval = -EINVAL;
4619 goto out;
4620 }
4621
4622 len = sizeof(pinfo);
4623 if (copy_from_user(&pinfo, optval, len)) {
4624 retval = -EFAULT;
4625 goto out;
4626 }
4627
4628 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4629 pinfo.spinfo_assoc_id);
4630 if (!transport)
4631 return -EINVAL;
4632
4633 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 pinfo.spinfo_state = transport->state;
4635 pinfo.spinfo_cwnd = transport->cwnd;
4636 pinfo.spinfo_srtt = transport->srtt;
4637 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4638 pinfo.spinfo_mtu = transport->pathmtu;
4639
4640 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4641 pinfo.spinfo_state = SCTP_ACTIVE;
4642
4643 if (put_user(len, optlen)) {
4644 retval = -EFAULT;
4645 goto out;
4646 }
4647
4648 if (copy_to_user(optval, &pinfo, len)) {
4649 retval = -EFAULT;
4650 goto out;
4651 }
4652
4653out:
4654 return retval;
4655}
4656
4657/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4658 *
4659 * This option is a on/off flag. If enabled no SCTP message
4660 * fragmentation will be performed. Instead if a message being sent
4661 * exceeds the current PMTU size, the message will NOT be sent and
4662 * instead a error will be indicated to the user.
4663 */
4664static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4665 char __user *optval, int __user *optlen)
4666{
4667 int val;
4668
4669 if (len < sizeof(int))
4670 return -EINVAL;
4671
4672 len = sizeof(int);
4673 val = (sctp_sk(sk)->disable_fragments == 1);
4674 if (put_user(len, optlen))
4675 return -EFAULT;
4676 if (copy_to_user(optval, &val, len))
4677 return -EFAULT;
4678 return 0;
4679}
4680
4681/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4682 *
4683 * This socket option is used to specify various notifications and
4684 * ancillary data the user wishes to receive.
4685 */
4686static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4687 int __user *optlen)
4688{
4689 if (len == 0)
4690 return -EINVAL;
4691 if (len > sizeof(struct sctp_event_subscribe))
4692 len = sizeof(struct sctp_event_subscribe);
4693 if (put_user(len, optlen))
4694 return -EFAULT;
4695 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4696 return -EFAULT;
4697 return 0;
4698}
4699
4700/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4701 *
4702 * This socket option is applicable to the UDP-style socket only. When
4703 * set it will cause associations that are idle for more than the
4704 * specified number of seconds to automatically close. An association
4705 * being idle is defined an association that has NOT sent or received
4706 * user data. The special value of '0' indicates that no automatic
4707 * close of any associations should be performed. The option expects an
4708 * integer defining the number of seconds of idle time before an
4709 * association is closed.
4710 */
4711static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4712{
4713 /* Applicable to UDP-style socket only */
4714 if (sctp_style(sk, TCP))
4715 return -EOPNOTSUPP;
4716 if (len < sizeof(int))
4717 return -EINVAL;
4718 len = sizeof(int);
4719 if (put_user(len, optlen))
4720 return -EFAULT;
4721 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4722 return -EFAULT;
4723 return 0;
4724}
4725
4726/* Helper routine to branch off an association to a new socket. */
4727int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4728{
4729 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4730 struct sctp_sock *sp = sctp_sk(sk);
4731 struct socket *sock;
4732 int err = 0;
4733
4734 if (!asoc)
4735 return -EINVAL;
4736
4737 /* If there is a thread waiting on more sndbuf space for
4738 * sending on this asoc, it cannot be peeled.
4739 */
4740 if (waitqueue_active(&asoc->wait))
4741 return -EBUSY;
4742
4743 /* An association cannot be branched off from an already peeled-off
4744 * socket, nor is this supported for tcp style sockets.
4745 */
4746 if (!sctp_style(sk, UDP))
4747 return -EINVAL;
4748
4749 /* Create a new socket. */
4750 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4751 if (err < 0)
4752 return err;
4753
4754 sctp_copy_sock(sock->sk, sk, asoc);
4755
4756 /* Make peeled-off sockets more like 1-1 accepted sockets.
4757 * Set the daddr and initialize id to something more random
4758 */
4759 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4760
4761 /* Populate the fields of the newsk from the oldsk and migrate the
4762 * asoc to the newsk.
4763 */
4764 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4765
4766 *sockp = sock;
4767
4768 return err;
4769}
4770EXPORT_SYMBOL(sctp_do_peeloff);
4771
4772static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4773{
4774 sctp_peeloff_arg_t peeloff;
4775 struct socket *newsock;
4776 struct file *newfile;
4777 int retval = 0;
4778
4779 if (len < sizeof(sctp_peeloff_arg_t))
4780 return -EINVAL;
4781 len = sizeof(sctp_peeloff_arg_t);
4782 if (copy_from_user(&peeloff, optval, len))
4783 return -EFAULT;
4784
4785 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4786 if (retval < 0)
4787 goto out;
4788
4789 /* Map the socket to an unused fd that can be returned to the user. */
4790 retval = get_unused_fd_flags(0);
4791 if (retval < 0) {
4792 sock_release(newsock);
4793 goto out;
4794 }
4795
4796 newfile = sock_alloc_file(newsock, 0, NULL);
4797 if (IS_ERR(newfile)) {
4798 put_unused_fd(retval);
4799 sock_release(newsock);
4800 return PTR_ERR(newfile);
4801 }
4802
4803 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4804 retval);
4805
4806 /* Return the fd mapped to the new socket. */
4807 if (put_user(len, optlen)) {
4808 fput(newfile);
4809 put_unused_fd(retval);
4810 return -EFAULT;
4811 }
4812 peeloff.sd = retval;
4813 if (copy_to_user(optval, &peeloff, len)) {
4814 fput(newfile);
4815 put_unused_fd(retval);
4816 return -EFAULT;
4817 }
4818 fd_install(retval, newfile);
4819out:
4820 return retval;
4821}
4822
4823/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4824 *
4825 * Applications can enable or disable heartbeats for any peer address of
4826 * an association, modify an address's heartbeat interval, force a
4827 * heartbeat to be sent immediately, and adjust the address's maximum
4828 * number of retransmissions sent before an address is considered
4829 * unreachable. The following structure is used to access and modify an
4830 * address's parameters:
4831 *
4832 * struct sctp_paddrparams {
4833 * sctp_assoc_t spp_assoc_id;
4834 * struct sockaddr_storage spp_address;
4835 * uint32_t spp_hbinterval;
4836 * uint16_t spp_pathmaxrxt;
4837 * uint32_t spp_pathmtu;
4838 * uint32_t spp_sackdelay;
4839 * uint32_t spp_flags;
4840 * };
4841 *
4842 * spp_assoc_id - (one-to-many style socket) This is filled in the
4843 * application, and identifies the association for
4844 * this query.
4845 * spp_address - This specifies which address is of interest.
4846 * spp_hbinterval - This contains the value of the heartbeat interval,
4847 * in milliseconds. If a value of zero
4848 * is present in this field then no changes are to
4849 * be made to this parameter.
4850 * spp_pathmaxrxt - This contains the maximum number of
4851 * retransmissions before this address shall be
4852 * considered unreachable. If a value of zero
4853 * is present in this field then no changes are to
4854 * be made to this parameter.
4855 * spp_pathmtu - When Path MTU discovery is disabled the value
4856 * specified here will be the "fixed" path mtu.
4857 * Note that if the spp_address field is empty
4858 * then all associations on this address will
4859 * have this fixed path mtu set upon them.
4860 *
4861 * spp_sackdelay - When delayed sack is enabled, this value specifies
4862 * the number of milliseconds that sacks will be delayed
4863 * for. This value will apply to all addresses of an
4864 * association if the spp_address field is empty. Note
4865 * also, that if delayed sack is enabled and this
4866 * value is set to 0, no change is made to the last
4867 * recorded delayed sack timer value.
4868 *
4869 * spp_flags - These flags are used to control various features
4870 * on an association. The flag field may contain
4871 * zero or more of the following options.
4872 *
4873 * SPP_HB_ENABLE - Enable heartbeats on the
4874 * specified address. Note that if the address
4875 * field is empty all addresses for the association
4876 * have heartbeats enabled upon them.
4877 *
4878 * SPP_HB_DISABLE - Disable heartbeats on the
4879 * speicifed address. Note that if the address
4880 * field is empty all addresses for the association
4881 * will have their heartbeats disabled. Note also
4882 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4883 * mutually exclusive, only one of these two should
4884 * be specified. Enabling both fields will have
4885 * undetermined results.
4886 *
4887 * SPP_HB_DEMAND - Request a user initiated heartbeat
4888 * to be made immediately.
4889 *
4890 * SPP_PMTUD_ENABLE - This field will enable PMTU
4891 * discovery upon the specified address. Note that
4892 * if the address feild is empty then all addresses
4893 * on the association are effected.
4894 *
4895 * SPP_PMTUD_DISABLE - This field will disable PMTU
4896 * discovery upon the specified address. Note that
4897 * if the address feild is empty then all addresses
4898 * on the association are effected. Not also that
4899 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4900 * exclusive. Enabling both will have undetermined
4901 * results.
4902 *
4903 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4904 * on delayed sack. The time specified in spp_sackdelay
4905 * is used to specify the sack delay for this address. Note
4906 * that if spp_address is empty then all addresses will
4907 * enable delayed sack and take on the sack delay
4908 * value specified in spp_sackdelay.
4909 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4910 * off delayed sack. If the spp_address field is blank then
4911 * delayed sack is disabled for the entire association. Note
4912 * also that this field is mutually exclusive to
4913 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4914 * results.
4915 */
4916static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4917 char __user *optval, int __user *optlen)
4918{
4919 struct sctp_paddrparams params;
4920 struct sctp_transport *trans = NULL;
4921 struct sctp_association *asoc = NULL;
4922 struct sctp_sock *sp = sctp_sk(sk);
4923
4924 if (len < sizeof(struct sctp_paddrparams))
4925 return -EINVAL;
4926 len = sizeof(struct sctp_paddrparams);
4927 if (copy_from_user(¶ms, optval, len))
4928 return -EFAULT;
4929
4930 /* If an address other than INADDR_ANY is specified, and
4931 * no transport is found, then the request is invalid.
4932 */
4933 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4934 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4935 params.spp_assoc_id);
4936 if (!trans) {
4937 pr_debug("%s: failed no transport\n", __func__);
4938 return -EINVAL;
4939 }
4940 }
4941
4942 /* Get association, if assoc_id != 0 and the socket is a one
4943 * to many style socket, and an association was not found, then
4944 * the id was invalid.
4945 */
4946 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4947 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4948 pr_debug("%s: failed no association\n", __func__);
4949 return -EINVAL;
4950 }
4951
4952 if (trans) {
4953 /* Fetch transport values. */
4954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4955 params.spp_pathmtu = trans->pathmtu;
4956 params.spp_pathmaxrxt = trans->pathmaxrxt;
4957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4958
4959 /*draft-11 doesn't say what to return in spp_flags*/
4960 params.spp_flags = trans->param_flags;
4961 } else if (asoc) {
4962 /* Fetch association values. */
4963 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4964 params.spp_pathmtu = asoc->pathmtu;
4965 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4966 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4967
4968 /*draft-11 doesn't say what to return in spp_flags*/
4969 params.spp_flags = asoc->param_flags;
4970 } else {
4971 /* Fetch socket values. */
4972 params.spp_hbinterval = sp->hbinterval;
4973 params.spp_pathmtu = sp->pathmtu;
4974 params.spp_sackdelay = sp->sackdelay;
4975 params.spp_pathmaxrxt = sp->pathmaxrxt;
4976
4977 /*draft-11 doesn't say what to return in spp_flags*/
4978 params.spp_flags = sp->param_flags;
4979 }
4980
4981 if (copy_to_user(optval, ¶ms, len))
4982 return -EFAULT;
4983
4984 if (put_user(len, optlen))
4985 return -EFAULT;
4986
4987 return 0;
4988}
4989
4990/*
4991 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4992 *
4993 * This option will effect the way delayed acks are performed. This
4994 * option allows you to get or set the delayed ack time, in
4995 * milliseconds. It also allows changing the delayed ack frequency.
4996 * Changing the frequency to 1 disables the delayed sack algorithm. If
4997 * the assoc_id is 0, then this sets or gets the endpoints default
4998 * values. If the assoc_id field is non-zero, then the set or get
4999 * effects the specified association for the one to many model (the
5000 * assoc_id field is ignored by the one to one model). Note that if
5001 * sack_delay or sack_freq are 0 when setting this option, then the
5002 * current values will remain unchanged.
5003 *
5004 * struct sctp_sack_info {
5005 * sctp_assoc_t sack_assoc_id;
5006 * uint32_t sack_delay;
5007 * uint32_t sack_freq;
5008 * };
5009 *
5010 * sack_assoc_id - This parameter, indicates which association the user
5011 * is performing an action upon. Note that if this field's value is
5012 * zero then the endpoints default value is changed (effecting future
5013 * associations only).
5014 *
5015 * sack_delay - This parameter contains the number of milliseconds that
5016 * the user is requesting the delayed ACK timer be set to. Note that
5017 * this value is defined in the standard to be between 200 and 500
5018 * milliseconds.
5019 *
5020 * sack_freq - This parameter contains the number of packets that must
5021 * be received before a sack is sent without waiting for the delay
5022 * timer to expire. The default value for this is 2, setting this
5023 * value to 1 will disable the delayed sack algorithm.
5024 */
5025static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5026 char __user *optval,
5027 int __user *optlen)
5028{
5029 struct sctp_sack_info params;
5030 struct sctp_association *asoc = NULL;
5031 struct sctp_sock *sp = sctp_sk(sk);
5032
5033 if (len >= sizeof(struct sctp_sack_info)) {
5034 len = sizeof(struct sctp_sack_info);
5035
5036 if (copy_from_user(¶ms, optval, len))
5037 return -EFAULT;
5038 } else if (len == sizeof(struct sctp_assoc_value)) {
5039 pr_warn_ratelimited(DEPRECATED
5040 "%s (pid %d) "
5041 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5042 "Use struct sctp_sack_info instead\n",
5043 current->comm, task_pid_nr(current));
5044 if (copy_from_user(¶ms, optval, len))
5045 return -EFAULT;
5046 } else
5047 return -EINVAL;
5048
5049 /* Get association, if sack_assoc_id != 0 and the socket is a one
5050 * to many style socket, and an association was not found, then
5051 * the id was invalid.
5052 */
5053 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5054 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5055 return -EINVAL;
5056
5057 if (asoc) {
5058 /* Fetch association values. */
5059 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5060 params.sack_delay = jiffies_to_msecs(
5061 asoc->sackdelay);
5062 params.sack_freq = asoc->sackfreq;
5063
5064 } else {
5065 params.sack_delay = 0;
5066 params.sack_freq = 1;
5067 }
5068 } else {
5069 /* Fetch socket values. */
5070 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5071 params.sack_delay = sp->sackdelay;
5072 params.sack_freq = sp->sackfreq;
5073 } else {
5074 params.sack_delay = 0;
5075 params.sack_freq = 1;
5076 }
5077 }
5078
5079 if (copy_to_user(optval, ¶ms, len))
5080 return -EFAULT;
5081
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084
5085 return 0;
5086}
5087
5088/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5089 *
5090 * Applications can specify protocol parameters for the default association
5091 * initialization. The option name argument to setsockopt() and getsockopt()
5092 * is SCTP_INITMSG.
5093 *
5094 * Setting initialization parameters is effective only on an unconnected
5095 * socket (for UDP-style sockets only future associations are effected
5096 * by the change). With TCP-style sockets, this option is inherited by
5097 * sockets derived from a listener socket.
5098 */
5099static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5100{
5101 if (len < sizeof(struct sctp_initmsg))
5102 return -EINVAL;
5103 len = sizeof(struct sctp_initmsg);
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5107 return -EFAULT;
5108 return 0;
5109}
5110
5111
5112static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5113 char __user *optval, int __user *optlen)
5114{
5115 struct sctp_association *asoc;
5116 int cnt = 0;
5117 struct sctp_getaddrs getaddrs;
5118 struct sctp_transport *from;
5119 void __user *to;
5120 union sctp_addr temp;
5121 struct sctp_sock *sp = sctp_sk(sk);
5122 int addrlen;
5123 size_t space_left;
5124 int bytes_copied;
5125
5126 if (len < sizeof(struct sctp_getaddrs))
5127 return -EINVAL;
5128
5129 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5130 return -EFAULT;
5131
5132 /* For UDP-style sockets, id specifies the association to query. */
5133 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5134 if (!asoc)
5135 return -EINVAL;
5136
5137 to = optval + offsetof(struct sctp_getaddrs, addrs);
5138 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5139
5140 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5141 transports) {
5142 memcpy(&temp, &from->ipaddr, sizeof(temp));
5143 addrlen = sctp_get_pf_specific(sk->sk_family)
5144 ->addr_to_user(sp, &temp);
5145 if (space_left < addrlen)
5146 return -ENOMEM;
5147 if (copy_to_user(to, &temp, addrlen))
5148 return -EFAULT;
5149 to += addrlen;
5150 cnt++;
5151 space_left -= addrlen;
5152 }
5153
5154 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5155 return -EFAULT;
5156 bytes_copied = ((char __user *)to) - optval;
5157 if (put_user(bytes_copied, optlen))
5158 return -EFAULT;
5159
5160 return 0;
5161}
5162
5163static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5164 size_t space_left, int *bytes_copied)
5165{
5166 struct sctp_sockaddr_entry *addr;
5167 union sctp_addr temp;
5168 int cnt = 0;
5169 int addrlen;
5170 struct net *net = sock_net(sk);
5171
5172 rcu_read_lock();
5173 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5174 if (!addr->valid)
5175 continue;
5176
5177 if ((PF_INET == sk->sk_family) &&
5178 (AF_INET6 == addr->a.sa.sa_family))
5179 continue;
5180 if ((PF_INET6 == sk->sk_family) &&
5181 inet_v6_ipv6only(sk) &&
5182 (AF_INET == addr->a.sa.sa_family))
5183 continue;
5184 memcpy(&temp, &addr->a, sizeof(temp));
5185 if (!temp.v4.sin_port)
5186 temp.v4.sin_port = htons(port);
5187
5188 addrlen = sctp_get_pf_specific(sk->sk_family)
5189 ->addr_to_user(sctp_sk(sk), &temp);
5190
5191 if (space_left < addrlen) {
5192 cnt = -ENOMEM;
5193 break;
5194 }
5195 memcpy(to, &temp, addrlen);
5196
5197 to += addrlen;
5198 cnt++;
5199 space_left -= addrlen;
5200 *bytes_copied += addrlen;
5201 }
5202 rcu_read_unlock();
5203
5204 return cnt;
5205}
5206
5207
5208static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5209 char __user *optval, int __user *optlen)
5210{
5211 struct sctp_bind_addr *bp;
5212 struct sctp_association *asoc;
5213 int cnt = 0;
5214 struct sctp_getaddrs getaddrs;
5215 struct sctp_sockaddr_entry *addr;
5216 void __user *to;
5217 union sctp_addr temp;
5218 struct sctp_sock *sp = sctp_sk(sk);
5219 int addrlen;
5220 int err = 0;
5221 size_t space_left;
5222 int bytes_copied = 0;
5223 void *addrs;
5224 void *buf;
5225
5226 if (len < sizeof(struct sctp_getaddrs))
5227 return -EINVAL;
5228
5229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5230 return -EFAULT;
5231
5232 /*
5233 * For UDP-style sockets, id specifies the association to query.
5234 * If the id field is set to the value '0' then the locally bound
5235 * addresses are returned without regard to any particular
5236 * association.
5237 */
5238 if (0 == getaddrs.assoc_id) {
5239 bp = &sctp_sk(sk)->ep->base.bind_addr;
5240 } else {
5241 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5242 if (!asoc)
5243 return -EINVAL;
5244 bp = &asoc->base.bind_addr;
5245 }
5246
5247 to = optval + offsetof(struct sctp_getaddrs, addrs);
5248 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5249
5250 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5251 if (!addrs)
5252 return -ENOMEM;
5253
5254 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5255 * addresses from the global local address list.
5256 */
5257 if (sctp_list_single_entry(&bp->address_list)) {
5258 addr = list_entry(bp->address_list.next,
5259 struct sctp_sockaddr_entry, list);
5260 if (sctp_is_any(sk, &addr->a)) {
5261 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5262 space_left, &bytes_copied);
5263 if (cnt < 0) {
5264 err = cnt;
5265 goto out;
5266 }
5267 goto copy_getaddrs;
5268 }
5269 }
5270
5271 buf = addrs;
5272 /* Protection on the bound address list is not needed since
5273 * in the socket option context we hold a socket lock and
5274 * thus the bound address list can't change.
5275 */
5276 list_for_each_entry(addr, &bp->address_list, list) {
5277 memcpy(&temp, &addr->a, sizeof(temp));
5278 addrlen = sctp_get_pf_specific(sk->sk_family)
5279 ->addr_to_user(sp, &temp);
5280 if (space_left < addrlen) {
5281 err = -ENOMEM; /*fixme: right error?*/
5282 goto out;
5283 }
5284 memcpy(buf, &temp, addrlen);
5285 buf += addrlen;
5286 bytes_copied += addrlen;
5287 cnt++;
5288 space_left -= addrlen;
5289 }
5290
5291copy_getaddrs:
5292 if (copy_to_user(to, addrs, bytes_copied)) {
5293 err = -EFAULT;
5294 goto out;
5295 }
5296 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5297 err = -EFAULT;
5298 goto out;
5299 }
5300 if (put_user(bytes_copied, optlen))
5301 err = -EFAULT;
5302out:
5303 kfree(addrs);
5304 return err;
5305}
5306
5307/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5308 *
5309 * Requests that the local SCTP stack use the enclosed peer address as
5310 * the association primary. The enclosed address must be one of the
5311 * association peer's addresses.
5312 */
5313static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5314 char __user *optval, int __user *optlen)
5315{
5316 struct sctp_prim prim;
5317 struct sctp_association *asoc;
5318 struct sctp_sock *sp = sctp_sk(sk);
5319
5320 if (len < sizeof(struct sctp_prim))
5321 return -EINVAL;
5322
5323 len = sizeof(struct sctp_prim);
5324
5325 if (copy_from_user(&prim, optval, len))
5326 return -EFAULT;
5327
5328 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5329 if (!asoc)
5330 return -EINVAL;
5331
5332 if (!asoc->peer.primary_path)
5333 return -ENOTCONN;
5334
5335 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5336 asoc->peer.primary_path->af_specific->sockaddr_len);
5337
5338 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5339 (union sctp_addr *)&prim.ssp_addr);
5340
5341 if (put_user(len, optlen))
5342 return -EFAULT;
5343 if (copy_to_user(optval, &prim, len))
5344 return -EFAULT;
5345
5346 return 0;
5347}
5348
5349/*
5350 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5351 *
5352 * Requests that the local endpoint set the specified Adaptation Layer
5353 * Indication parameter for all future INIT and INIT-ACK exchanges.
5354 */
5355static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5356 char __user *optval, int __user *optlen)
5357{
5358 struct sctp_setadaptation adaptation;
5359
5360 if (len < sizeof(struct sctp_setadaptation))
5361 return -EINVAL;
5362
5363 len = sizeof(struct sctp_setadaptation);
5364
5365 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5366
5367 if (put_user(len, optlen))
5368 return -EFAULT;
5369 if (copy_to_user(optval, &adaptation, len))
5370 return -EFAULT;
5371
5372 return 0;
5373}
5374
5375/*
5376 *
5377 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5378 *
5379 * Applications that wish to use the sendto() system call may wish to
5380 * specify a default set of parameters that would normally be supplied
5381 * through the inclusion of ancillary data. This socket option allows
5382 * such an application to set the default sctp_sndrcvinfo structure.
5383
5384
5385 * The application that wishes to use this socket option simply passes
5386 * in to this call the sctp_sndrcvinfo structure defined in Section
5387 * 5.2.2) The input parameters accepted by this call include
5388 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5389 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5390 * to this call if the caller is using the UDP model.
5391 *
5392 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5393 */
5394static int sctp_getsockopt_default_send_param(struct sock *sk,
5395 int len, char __user *optval,
5396 int __user *optlen)
5397{
5398 struct sctp_sock *sp = sctp_sk(sk);
5399 struct sctp_association *asoc;
5400 struct sctp_sndrcvinfo info;
5401
5402 if (len < sizeof(info))
5403 return -EINVAL;
5404
5405 len = sizeof(info);
5406
5407 if (copy_from_user(&info, optval, len))
5408 return -EFAULT;
5409
5410 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5411 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5412 return -EINVAL;
5413 if (asoc) {
5414 info.sinfo_stream = asoc->default_stream;
5415 info.sinfo_flags = asoc->default_flags;
5416 info.sinfo_ppid = asoc->default_ppid;
5417 info.sinfo_context = asoc->default_context;
5418 info.sinfo_timetolive = asoc->default_timetolive;
5419 } else {
5420 info.sinfo_stream = sp->default_stream;
5421 info.sinfo_flags = sp->default_flags;
5422 info.sinfo_ppid = sp->default_ppid;
5423 info.sinfo_context = sp->default_context;
5424 info.sinfo_timetolive = sp->default_timetolive;
5425 }
5426
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (copy_to_user(optval, &info, len))
5430 return -EFAULT;
5431
5432 return 0;
5433}
5434
5435/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5436 * (SCTP_DEFAULT_SNDINFO)
5437 */
5438static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5439 char __user *optval,
5440 int __user *optlen)
5441{
5442 struct sctp_sock *sp = sctp_sk(sk);
5443 struct sctp_association *asoc;
5444 struct sctp_sndinfo info;
5445
5446 if (len < sizeof(info))
5447 return -EINVAL;
5448
5449 len = sizeof(info);
5450
5451 if (copy_from_user(&info, optval, len))
5452 return -EFAULT;
5453
5454 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5455 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5456 return -EINVAL;
5457 if (asoc) {
5458 info.snd_sid = asoc->default_stream;
5459 info.snd_flags = asoc->default_flags;
5460 info.snd_ppid = asoc->default_ppid;
5461 info.snd_context = asoc->default_context;
5462 } else {
5463 info.snd_sid = sp->default_stream;
5464 info.snd_flags = sp->default_flags;
5465 info.snd_ppid = sp->default_ppid;
5466 info.snd_context = sp->default_context;
5467 }
5468
5469 if (put_user(len, optlen))
5470 return -EFAULT;
5471 if (copy_to_user(optval, &info, len))
5472 return -EFAULT;
5473
5474 return 0;
5475}
5476
5477/*
5478 *
5479 * 7.1.5 SCTP_NODELAY
5480 *
5481 * Turn on/off any Nagle-like algorithm. This means that packets are
5482 * generally sent as soon as possible and no unnecessary delays are
5483 * introduced, at the cost of more packets in the network. Expects an
5484 * integer boolean flag.
5485 */
5486
5487static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5488 char __user *optval, int __user *optlen)
5489{
5490 int val;
5491
5492 if (len < sizeof(int))
5493 return -EINVAL;
5494
5495 len = sizeof(int);
5496 val = (sctp_sk(sk)->nodelay == 1);
5497 if (put_user(len, optlen))
5498 return -EFAULT;
5499 if (copy_to_user(optval, &val, len))
5500 return -EFAULT;
5501 return 0;
5502}
5503
5504/*
5505 *
5506 * 7.1.1 SCTP_RTOINFO
5507 *
5508 * The protocol parameters used to initialize and bound retransmission
5509 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5510 * and modify these parameters.
5511 * All parameters are time values, in milliseconds. A value of 0, when
5512 * modifying the parameters, indicates that the current value should not
5513 * be changed.
5514 *
5515 */
5516static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5517 char __user *optval,
5518 int __user *optlen) {
5519 struct sctp_rtoinfo rtoinfo;
5520 struct sctp_association *asoc;
5521
5522 if (len < sizeof (struct sctp_rtoinfo))
5523 return -EINVAL;
5524
5525 len = sizeof(struct sctp_rtoinfo);
5526
5527 if (copy_from_user(&rtoinfo, optval, len))
5528 return -EFAULT;
5529
5530 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5531
5532 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5533 return -EINVAL;
5534
5535 /* Values corresponding to the specific association. */
5536 if (asoc) {
5537 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5538 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5539 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5540 } else {
5541 /* Values corresponding to the endpoint. */
5542 struct sctp_sock *sp = sctp_sk(sk);
5543
5544 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5545 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5546 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5547 }
5548
5549 if (put_user(len, optlen))
5550 return -EFAULT;
5551
5552 if (copy_to_user(optval, &rtoinfo, len))
5553 return -EFAULT;
5554
5555 return 0;
5556}
5557
5558/*
5559 *
5560 * 7.1.2 SCTP_ASSOCINFO
5561 *
5562 * This option is used to tune the maximum retransmission attempts
5563 * of the association.
5564 * Returns an error if the new association retransmission value is
5565 * greater than the sum of the retransmission value of the peer.
5566 * See [SCTP] for more information.
5567 *
5568 */
5569static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5570 char __user *optval,
5571 int __user *optlen)
5572{
5573
5574 struct sctp_assocparams assocparams;
5575 struct sctp_association *asoc;
5576 struct list_head *pos;
5577 int cnt = 0;
5578
5579 if (len < sizeof (struct sctp_assocparams))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_assocparams);
5583
5584 if (copy_from_user(&assocparams, optval, len))
5585 return -EFAULT;
5586
5587 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5588
5589 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5590 return -EINVAL;
5591
5592 /* Values correspoinding to the specific association */
5593 if (asoc) {
5594 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5595 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5596 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5597 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5598
5599 list_for_each(pos, &asoc->peer.transport_addr_list) {
5600 cnt++;
5601 }
5602
5603 assocparams.sasoc_number_peer_destinations = cnt;
5604 } else {
5605 /* Values corresponding to the endpoint */
5606 struct sctp_sock *sp = sctp_sk(sk);
5607
5608 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5609 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5610 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5611 assocparams.sasoc_cookie_life =
5612 sp->assocparams.sasoc_cookie_life;
5613 assocparams.sasoc_number_peer_destinations =
5614 sp->assocparams.
5615 sasoc_number_peer_destinations;
5616 }
5617
5618 if (put_user(len, optlen))
5619 return -EFAULT;
5620
5621 if (copy_to_user(optval, &assocparams, len))
5622 return -EFAULT;
5623
5624 return 0;
5625}
5626
5627/*
5628 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5629 *
5630 * This socket option is a boolean flag which turns on or off mapped V4
5631 * addresses. If this option is turned on and the socket is type
5632 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5633 * If this option is turned off, then no mapping will be done of V4
5634 * addresses and a user will receive both PF_INET6 and PF_INET type
5635 * addresses on the socket.
5636 */
5637static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5638 char __user *optval, int __user *optlen)
5639{
5640 int val;
5641 struct sctp_sock *sp = sctp_sk(sk);
5642
5643 if (len < sizeof(int))
5644 return -EINVAL;
5645
5646 len = sizeof(int);
5647 val = sp->v4mapped;
5648 if (put_user(len, optlen))
5649 return -EFAULT;
5650 if (copy_to_user(optval, &val, len))
5651 return -EFAULT;
5652
5653 return 0;
5654}
5655
5656/*
5657 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5658 * (chapter and verse is quoted at sctp_setsockopt_context())
5659 */
5660static int sctp_getsockopt_context(struct sock *sk, int len,
5661 char __user *optval, int __user *optlen)
5662{
5663 struct sctp_assoc_value params;
5664 struct sctp_sock *sp;
5665 struct sctp_association *asoc;
5666
5667 if (len < sizeof(struct sctp_assoc_value))
5668 return -EINVAL;
5669
5670 len = sizeof(struct sctp_assoc_value);
5671
5672 if (copy_from_user(¶ms, optval, len))
5673 return -EFAULT;
5674
5675 sp = sctp_sk(sk);
5676
5677 if (params.assoc_id != 0) {
5678 asoc = sctp_id2assoc(sk, params.assoc_id);
5679 if (!asoc)
5680 return -EINVAL;
5681 params.assoc_value = asoc->default_rcv_context;
5682 } else {
5683 params.assoc_value = sp->default_rcv_context;
5684 }
5685
5686 if (put_user(len, optlen))
5687 return -EFAULT;
5688 if (copy_to_user(optval, ¶ms, len))
5689 return -EFAULT;
5690
5691 return 0;
5692}
5693
5694/*
5695 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5696 * This option will get or set the maximum size to put in any outgoing
5697 * SCTP DATA chunk. If a message is larger than this size it will be
5698 * fragmented by SCTP into the specified size. Note that the underlying
5699 * SCTP implementation may fragment into smaller sized chunks when the
5700 * PMTU of the underlying association is smaller than the value set by
5701 * the user. The default value for this option is '0' which indicates
5702 * the user is NOT limiting fragmentation and only the PMTU will effect
5703 * SCTP's choice of DATA chunk size. Note also that values set larger
5704 * than the maximum size of an IP datagram will effectively let SCTP
5705 * control fragmentation (i.e. the same as setting this option to 0).
5706 *
5707 * The following structure is used to access and modify this parameter:
5708 *
5709 * struct sctp_assoc_value {
5710 * sctp_assoc_t assoc_id;
5711 * uint32_t assoc_value;
5712 * };
5713 *
5714 * assoc_id: This parameter is ignored for one-to-one style sockets.
5715 * For one-to-many style sockets this parameter indicates which
5716 * association the user is performing an action upon. Note that if
5717 * this field's value is zero then the endpoints default value is
5718 * changed (effecting future associations only).
5719 * assoc_value: This parameter specifies the maximum size in bytes.
5720 */
5721static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5722 char __user *optval, int __user *optlen)
5723{
5724 struct sctp_assoc_value params;
5725 struct sctp_association *asoc;
5726
5727 if (len == sizeof(int)) {
5728 pr_warn_ratelimited(DEPRECATED
5729 "%s (pid %d) "
5730 "Use of int in maxseg socket option.\n"
5731 "Use struct sctp_assoc_value instead\n",
5732 current->comm, task_pid_nr(current));
5733 params.assoc_id = 0;
5734 } else if (len >= sizeof(struct sctp_assoc_value)) {
5735 len = sizeof(struct sctp_assoc_value);
5736 if (copy_from_user(¶ms, optval, sizeof(params)))
5737 return -EFAULT;
5738 } else
5739 return -EINVAL;
5740
5741 asoc = sctp_id2assoc(sk, params.assoc_id);
5742 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5743 return -EINVAL;
5744
5745 if (asoc)
5746 params.assoc_value = asoc->frag_point;
5747 else
5748 params.assoc_value = sctp_sk(sk)->user_frag;
5749
5750 if (put_user(len, optlen))
5751 return -EFAULT;
5752 if (len == sizeof(int)) {
5753 if (copy_to_user(optval, ¶ms.assoc_value, len))
5754 return -EFAULT;
5755 } else {
5756 if (copy_to_user(optval, ¶ms, len))
5757 return -EFAULT;
5758 }
5759
5760 return 0;
5761}
5762
5763/*
5764 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5765 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5766 */
5767static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5768 char __user *optval, int __user *optlen)
5769{
5770 int val;
5771
5772 if (len < sizeof(int))
5773 return -EINVAL;
5774
5775 len = sizeof(int);
5776
5777 val = sctp_sk(sk)->frag_interleave;
5778 if (put_user(len, optlen))
5779 return -EFAULT;
5780 if (copy_to_user(optval, &val, len))
5781 return -EFAULT;
5782
5783 return 0;
5784}
5785
5786/*
5787 * 7.1.25. Set or Get the sctp partial delivery point
5788 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5789 */
5790static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5791 char __user *optval,
5792 int __user *optlen)
5793{
5794 u32 val;
5795
5796 if (len < sizeof(u32))
5797 return -EINVAL;
5798
5799 len = sizeof(u32);
5800
5801 val = sctp_sk(sk)->pd_point;
5802 if (put_user(len, optlen))
5803 return -EFAULT;
5804 if (copy_to_user(optval, &val, len))
5805 return -EFAULT;
5806
5807 return 0;
5808}
5809
5810/*
5811 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5812 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5813 */
5814static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5815 char __user *optval,
5816 int __user *optlen)
5817{
5818 struct sctp_assoc_value params;
5819 struct sctp_sock *sp;
5820 struct sctp_association *asoc;
5821
5822 if (len == sizeof(int)) {
5823 pr_warn_ratelimited(DEPRECATED
5824 "%s (pid %d) "
5825 "Use of int in max_burst socket option.\n"
5826 "Use struct sctp_assoc_value instead\n",
5827 current->comm, task_pid_nr(current));
5828 params.assoc_id = 0;
5829 } else if (len >= sizeof(struct sctp_assoc_value)) {
5830 len = sizeof(struct sctp_assoc_value);
5831 if (copy_from_user(¶ms, optval, len))
5832 return -EFAULT;
5833 } else
5834 return -EINVAL;
5835
5836 sp = sctp_sk(sk);
5837
5838 if (params.assoc_id != 0) {
5839 asoc = sctp_id2assoc(sk, params.assoc_id);
5840 if (!asoc)
5841 return -EINVAL;
5842 params.assoc_value = asoc->max_burst;
5843 } else
5844 params.assoc_value = sp->max_burst;
5845
5846 if (len == sizeof(int)) {
5847 if (copy_to_user(optval, ¶ms.assoc_value, len))
5848 return -EFAULT;
5849 } else {
5850 if (copy_to_user(optval, ¶ms, len))
5851 return -EFAULT;
5852 }
5853
5854 return 0;
5855
5856}
5857
5858static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5859 char __user *optval, int __user *optlen)
5860{
5861 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5862 struct sctp_hmacalgo __user *p = (void __user *)optval;
5863 struct sctp_hmac_algo_param *hmacs;
5864 __u16 data_len = 0;
5865 u32 num_idents;
5866 int i;
5867
5868 if (!ep->auth_enable)
5869 return -EACCES;
5870
5871 hmacs = ep->auth_hmacs_list;
5872 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5873
5874 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5875 return -EINVAL;
5876
5877 len = sizeof(struct sctp_hmacalgo) + data_len;
5878 num_idents = data_len / sizeof(u16);
5879
5880 if (put_user(len, optlen))
5881 return -EFAULT;
5882 if (put_user(num_idents, &p->shmac_num_idents))
5883 return -EFAULT;
5884 for (i = 0; i < num_idents; i++) {
5885 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5886
5887 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5888 return -EFAULT;
5889 }
5890 return 0;
5891}
5892
5893static int sctp_getsockopt_active_key(struct sock *sk, int len,
5894 char __user *optval, int __user *optlen)
5895{
5896 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5897 struct sctp_authkeyid val;
5898 struct sctp_association *asoc;
5899
5900 if (!ep->auth_enable)
5901 return -EACCES;
5902
5903 if (len < sizeof(struct sctp_authkeyid))
5904 return -EINVAL;
5905 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5906 return -EFAULT;
5907
5908 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5909 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5910 return -EINVAL;
5911
5912 if (asoc)
5913 val.scact_keynumber = asoc->active_key_id;
5914 else
5915 val.scact_keynumber = ep->active_key_id;
5916
5917 len = sizeof(struct sctp_authkeyid);
5918 if (put_user(len, optlen))
5919 return -EFAULT;
5920 if (copy_to_user(optval, &val, len))
5921 return -EFAULT;
5922
5923 return 0;
5924}
5925
5926static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5927 char __user *optval, int __user *optlen)
5928{
5929 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5930 struct sctp_authchunks __user *p = (void __user *)optval;
5931 struct sctp_authchunks val;
5932 struct sctp_association *asoc;
5933 struct sctp_chunks_param *ch;
5934 u32 num_chunks = 0;
5935 char __user *to;
5936
5937 if (!ep->auth_enable)
5938 return -EACCES;
5939
5940 if (len < sizeof(struct sctp_authchunks))
5941 return -EINVAL;
5942
5943 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5944 return -EFAULT;
5945
5946 to = p->gauth_chunks;
5947 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5948 if (!asoc)
5949 return -EINVAL;
5950
5951 ch = asoc->peer.peer_chunks;
5952 if (!ch)
5953 goto num;
5954
5955 /* See if the user provided enough room for all the data */
5956 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5957 if (len < num_chunks)
5958 return -EINVAL;
5959
5960 if (copy_to_user(to, ch->chunks, num_chunks))
5961 return -EFAULT;
5962num:
5963 len = sizeof(struct sctp_authchunks) + num_chunks;
5964 if (put_user(len, optlen))
5965 return -EFAULT;
5966 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5967 return -EFAULT;
5968 return 0;
5969}
5970
5971static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5972 char __user *optval, int __user *optlen)
5973{
5974 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5975 struct sctp_authchunks __user *p = (void __user *)optval;
5976 struct sctp_authchunks val;
5977 struct sctp_association *asoc;
5978 struct sctp_chunks_param *ch;
5979 u32 num_chunks = 0;
5980 char __user *to;
5981
5982 if (!ep->auth_enable)
5983 return -EACCES;
5984
5985 if (len < sizeof(struct sctp_authchunks))
5986 return -EINVAL;
5987
5988 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5989 return -EFAULT;
5990
5991 to = p->gauth_chunks;
5992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5993 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5994 return -EINVAL;
5995
5996 if (asoc)
5997 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5998 else
5999 ch = ep->auth_chunk_list;
6000
6001 if (!ch)
6002 goto num;
6003
6004 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6005 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6006 return -EINVAL;
6007
6008 if (copy_to_user(to, ch->chunks, num_chunks))
6009 return -EFAULT;
6010num:
6011 len = sizeof(struct sctp_authchunks) + num_chunks;
6012 if (put_user(len, optlen))
6013 return -EFAULT;
6014 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6015 return -EFAULT;
6016
6017 return 0;
6018}
6019
6020/*
6021 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6022 * This option gets the current number of associations that are attached
6023 * to a one-to-many style socket. The option value is an uint32_t.
6024 */
6025static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6026 char __user *optval, int __user *optlen)
6027{
6028 struct sctp_sock *sp = sctp_sk(sk);
6029 struct sctp_association *asoc;
6030 u32 val = 0;
6031
6032 if (sctp_style(sk, TCP))
6033 return -EOPNOTSUPP;
6034
6035 if (len < sizeof(u32))
6036 return -EINVAL;
6037
6038 len = sizeof(u32);
6039
6040 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6041 val++;
6042 }
6043
6044 if (put_user(len, optlen))
6045 return -EFAULT;
6046 if (copy_to_user(optval, &val, len))
6047 return -EFAULT;
6048
6049 return 0;
6050}
6051
6052/*
6053 * 8.1.23 SCTP_AUTO_ASCONF
6054 * See the corresponding setsockopt entry as description
6055 */
6056static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6057 char __user *optval, int __user *optlen)
6058{
6059 int val = 0;
6060
6061 if (len < sizeof(int))
6062 return -EINVAL;
6063
6064 len = sizeof(int);
6065 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6066 val = 1;
6067 if (put_user(len, optlen))
6068 return -EFAULT;
6069 if (copy_to_user(optval, &val, len))
6070 return -EFAULT;
6071 return 0;
6072}
6073
6074/*
6075 * 8.2.6. Get the Current Identifiers of Associations
6076 * (SCTP_GET_ASSOC_ID_LIST)
6077 *
6078 * This option gets the current list of SCTP association identifiers of
6079 * the SCTP associations handled by a one-to-many style socket.
6080 */
6081static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6082 char __user *optval, int __user *optlen)
6083{
6084 struct sctp_sock *sp = sctp_sk(sk);
6085 struct sctp_association *asoc;
6086 struct sctp_assoc_ids *ids;
6087 u32 num = 0;
6088
6089 if (sctp_style(sk, TCP))
6090 return -EOPNOTSUPP;
6091
6092 if (len < sizeof(struct sctp_assoc_ids))
6093 return -EINVAL;
6094
6095 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6096 num++;
6097 }
6098
6099 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6100 return -EINVAL;
6101
6102 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6103
6104 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6105 if (unlikely(!ids))
6106 return -ENOMEM;
6107
6108 ids->gaids_number_of_ids = num;
6109 num = 0;
6110 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6111 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6112 }
6113
6114 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6115 kfree(ids);
6116 return -EFAULT;
6117 }
6118
6119 kfree(ids);
6120 return 0;
6121}
6122
6123/*
6124 * SCTP_PEER_ADDR_THLDS
6125 *
6126 * This option allows us to fetch the partially failed threshold for one or all
6127 * transports in an association. See Section 6.1 of:
6128 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6129 */
6130static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6131 char __user *optval,
6132 int len,
6133 int __user *optlen)
6134{
6135 struct sctp_paddrthlds val;
6136 struct sctp_transport *trans;
6137 struct sctp_association *asoc;
6138
6139 if (len < sizeof(struct sctp_paddrthlds))
6140 return -EINVAL;
6141 len = sizeof(struct sctp_paddrthlds);
6142 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6143 return -EFAULT;
6144
6145 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6146 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6147 if (!asoc)
6148 return -ENOENT;
6149
6150 val.spt_pathpfthld = asoc->pf_retrans;
6151 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6152 } else {
6153 trans = sctp_addr_id2transport(sk, &val.spt_address,
6154 val.spt_assoc_id);
6155 if (!trans)
6156 return -ENOENT;
6157
6158 val.spt_pathmaxrxt = trans->pathmaxrxt;
6159 val.spt_pathpfthld = trans->pf_retrans;
6160 }
6161
6162 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6163 return -EFAULT;
6164
6165 return 0;
6166}
6167
6168/*
6169 * SCTP_GET_ASSOC_STATS
6170 *
6171 * This option retrieves local per endpoint statistics. It is modeled
6172 * after OpenSolaris' implementation
6173 */
6174static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6175 char __user *optval,
6176 int __user *optlen)
6177{
6178 struct sctp_assoc_stats sas;
6179 struct sctp_association *asoc = NULL;
6180
6181 /* User must provide at least the assoc id */
6182 if (len < sizeof(sctp_assoc_t))
6183 return -EINVAL;
6184
6185 /* Allow the struct to grow and fill in as much as possible */
6186 len = min_t(size_t, len, sizeof(sas));
6187
6188 if (copy_from_user(&sas, optval, len))
6189 return -EFAULT;
6190
6191 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6192 if (!asoc)
6193 return -EINVAL;
6194
6195 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6196 sas.sas_gapcnt = asoc->stats.gapcnt;
6197 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6198 sas.sas_osacks = asoc->stats.osacks;
6199 sas.sas_isacks = asoc->stats.isacks;
6200 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6201 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6202 sas.sas_oodchunks = asoc->stats.oodchunks;
6203 sas.sas_iodchunks = asoc->stats.iodchunks;
6204 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6205 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6206 sas.sas_idupchunks = asoc->stats.idupchunks;
6207 sas.sas_opackets = asoc->stats.opackets;
6208 sas.sas_ipackets = asoc->stats.ipackets;
6209
6210 /* New high max rto observed, will return 0 if not a single
6211 * RTO update took place. obs_rto_ipaddr will be bogus
6212 * in such a case
6213 */
6214 sas.sas_maxrto = asoc->stats.max_obs_rto;
6215 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6216 sizeof(struct sockaddr_storage));
6217
6218 /* Mark beginning of a new observation period */
6219 asoc->stats.max_obs_rto = asoc->rto_min;
6220
6221 if (put_user(len, optlen))
6222 return -EFAULT;
6223
6224 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6225
6226 if (copy_to_user(optval, &sas, len))
6227 return -EFAULT;
6228
6229 return 0;
6230}
6231
6232static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6233 char __user *optval,
6234 int __user *optlen)
6235{
6236 int val = 0;
6237
6238 if (len < sizeof(int))
6239 return -EINVAL;
6240
6241 len = sizeof(int);
6242 if (sctp_sk(sk)->recvrcvinfo)
6243 val = 1;
6244 if (put_user(len, optlen))
6245 return -EFAULT;
6246 if (copy_to_user(optval, &val, len))
6247 return -EFAULT;
6248
6249 return 0;
6250}
6251
6252static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6253 char __user *optval,
6254 int __user *optlen)
6255{
6256 int val = 0;
6257
6258 if (len < sizeof(int))
6259 return -EINVAL;
6260
6261 len = sizeof(int);
6262 if (sctp_sk(sk)->recvnxtinfo)
6263 val = 1;
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268
6269 return 0;
6270}
6271
6272static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6273 char __user *optval,
6274 int __user *optlen)
6275{
6276 struct sctp_assoc_value params;
6277 struct sctp_association *asoc;
6278 int retval = -EFAULT;
6279
6280 if (len < sizeof(params)) {
6281 retval = -EINVAL;
6282 goto out;
6283 }
6284
6285 len = sizeof(params);
6286 if (copy_from_user(¶ms, optval, len))
6287 goto out;
6288
6289 asoc = sctp_id2assoc(sk, params.assoc_id);
6290 if (asoc) {
6291 params.assoc_value = asoc->prsctp_enable;
6292 } else if (!params.assoc_id) {
6293 struct sctp_sock *sp = sctp_sk(sk);
6294
6295 params.assoc_value = sp->ep->prsctp_enable;
6296 } else {
6297 retval = -EINVAL;
6298 goto out;
6299 }
6300
6301 if (put_user(len, optlen))
6302 goto out;
6303
6304 if (copy_to_user(optval, ¶ms, len))
6305 goto out;
6306
6307 retval = 0;
6308
6309out:
6310 return retval;
6311}
6312
6313static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6314 char __user *optval,
6315 int __user *optlen)
6316{
6317 struct sctp_default_prinfo info;
6318 struct sctp_association *asoc;
6319 int retval = -EFAULT;
6320
6321 if (len < sizeof(info)) {
6322 retval = -EINVAL;
6323 goto out;
6324 }
6325
6326 len = sizeof(info);
6327 if (copy_from_user(&info, optval, len))
6328 goto out;
6329
6330 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6331 if (asoc) {
6332 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6333 info.pr_value = asoc->default_timetolive;
6334 } else if (!info.pr_assoc_id) {
6335 struct sctp_sock *sp = sctp_sk(sk);
6336
6337 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6338 info.pr_value = sp->default_timetolive;
6339 } else {
6340 retval = -EINVAL;
6341 goto out;
6342 }
6343
6344 if (put_user(len, optlen))
6345 goto out;
6346
6347 if (copy_to_user(optval, &info, len))
6348 goto out;
6349
6350 retval = 0;
6351
6352out:
6353 return retval;
6354}
6355
6356static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6357 char __user *optval,
6358 int __user *optlen)
6359{
6360 struct sctp_prstatus params;
6361 struct sctp_association *asoc;
6362 int policy;
6363 int retval = -EINVAL;
6364
6365 if (len < sizeof(params))
6366 goto out;
6367
6368 len = sizeof(params);
6369 if (copy_from_user(¶ms, optval, len)) {
6370 retval = -EFAULT;
6371 goto out;
6372 }
6373
6374 policy = params.sprstat_policy;
6375 if (policy & ~SCTP_PR_SCTP_MASK)
6376 goto out;
6377
6378 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6379 if (!asoc)
6380 goto out;
6381
6382 if (policy == SCTP_PR_SCTP_NONE) {
6383 params.sprstat_abandoned_unsent = 0;
6384 params.sprstat_abandoned_sent = 0;
6385 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6386 params.sprstat_abandoned_unsent +=
6387 asoc->abandoned_unsent[policy];
6388 params.sprstat_abandoned_sent +=
6389 asoc->abandoned_sent[policy];
6390 }
6391 } else {
6392 params.sprstat_abandoned_unsent =
6393 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6394 params.sprstat_abandoned_sent =
6395 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6396 }
6397
6398 if (put_user(len, optlen)) {
6399 retval = -EFAULT;
6400 goto out;
6401 }
6402
6403 if (copy_to_user(optval, ¶ms, len)) {
6404 retval = -EFAULT;
6405 goto out;
6406 }
6407
6408 retval = 0;
6409
6410out:
6411 return retval;
6412}
6413
6414static int sctp_getsockopt(struct sock *sk, int level, int optname,
6415 char __user *optval, int __user *optlen)
6416{
6417 int retval = 0;
6418 int len;
6419
6420 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6421
6422 /* I can hardly begin to describe how wrong this is. This is
6423 * so broken as to be worse than useless. The API draft
6424 * REALLY is NOT helpful here... I am not convinced that the
6425 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6426 * are at all well-founded.
6427 */
6428 if (level != SOL_SCTP) {
6429 struct sctp_af *af = sctp_sk(sk)->pf->af;
6430
6431 retval = af->getsockopt(sk, level, optname, optval, optlen);
6432 return retval;
6433 }
6434
6435 if (get_user(len, optlen))
6436 return -EFAULT;
6437
6438 if (len < 0)
6439 return -EINVAL;
6440
6441 lock_sock(sk);
6442
6443 switch (optname) {
6444 case SCTP_STATUS:
6445 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6446 break;
6447 case SCTP_DISABLE_FRAGMENTS:
6448 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6449 optlen);
6450 break;
6451 case SCTP_EVENTS:
6452 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6453 break;
6454 case SCTP_AUTOCLOSE:
6455 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6456 break;
6457 case SCTP_SOCKOPT_PEELOFF:
6458 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6459 break;
6460 case SCTP_PEER_ADDR_PARAMS:
6461 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6462 optlen);
6463 break;
6464 case SCTP_DELAYED_SACK:
6465 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6466 optlen);
6467 break;
6468 case SCTP_INITMSG:
6469 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6470 break;
6471 case SCTP_GET_PEER_ADDRS:
6472 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6473 optlen);
6474 break;
6475 case SCTP_GET_LOCAL_ADDRS:
6476 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6477 optlen);
6478 break;
6479 case SCTP_SOCKOPT_CONNECTX3:
6480 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6481 break;
6482 case SCTP_DEFAULT_SEND_PARAM:
6483 retval = sctp_getsockopt_default_send_param(sk, len,
6484 optval, optlen);
6485 break;
6486 case SCTP_DEFAULT_SNDINFO:
6487 retval = sctp_getsockopt_default_sndinfo(sk, len,
6488 optval, optlen);
6489 break;
6490 case SCTP_PRIMARY_ADDR:
6491 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6492 break;
6493 case SCTP_NODELAY:
6494 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6495 break;
6496 case SCTP_RTOINFO:
6497 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6498 break;
6499 case SCTP_ASSOCINFO:
6500 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6501 break;
6502 case SCTP_I_WANT_MAPPED_V4_ADDR:
6503 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6504 break;
6505 case SCTP_MAXSEG:
6506 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6507 break;
6508 case SCTP_GET_PEER_ADDR_INFO:
6509 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6510 optlen);
6511 break;
6512 case SCTP_ADAPTATION_LAYER:
6513 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6514 optlen);
6515 break;
6516 case SCTP_CONTEXT:
6517 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6518 break;
6519 case SCTP_FRAGMENT_INTERLEAVE:
6520 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6521 optlen);
6522 break;
6523 case SCTP_PARTIAL_DELIVERY_POINT:
6524 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6525 optlen);
6526 break;
6527 case SCTP_MAX_BURST:
6528 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6529 break;
6530 case SCTP_AUTH_KEY:
6531 case SCTP_AUTH_CHUNK:
6532 case SCTP_AUTH_DELETE_KEY:
6533 retval = -EOPNOTSUPP;
6534 break;
6535 case SCTP_HMAC_IDENT:
6536 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6537 break;
6538 case SCTP_AUTH_ACTIVE_KEY:
6539 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6540 break;
6541 case SCTP_PEER_AUTH_CHUNKS:
6542 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6543 optlen);
6544 break;
6545 case SCTP_LOCAL_AUTH_CHUNKS:
6546 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6547 optlen);
6548 break;
6549 case SCTP_GET_ASSOC_NUMBER:
6550 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6551 break;
6552 case SCTP_GET_ASSOC_ID_LIST:
6553 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6554 break;
6555 case SCTP_AUTO_ASCONF:
6556 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6557 break;
6558 case SCTP_PEER_ADDR_THLDS:
6559 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6560 break;
6561 case SCTP_GET_ASSOC_STATS:
6562 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6563 break;
6564 case SCTP_RECVRCVINFO:
6565 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6566 break;
6567 case SCTP_RECVNXTINFO:
6568 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6569 break;
6570 case SCTP_PR_SUPPORTED:
6571 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6572 break;
6573 case SCTP_DEFAULT_PRINFO:
6574 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6575 optlen);
6576 break;
6577 case SCTP_PR_ASSOC_STATUS:
6578 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6579 optlen);
6580 break;
6581 default:
6582 retval = -ENOPROTOOPT;
6583 break;
6584 }
6585
6586 release_sock(sk);
6587 return retval;
6588}
6589
6590static int sctp_hash(struct sock *sk)
6591{
6592 /* STUB */
6593 return 0;
6594}
6595
6596static void sctp_unhash(struct sock *sk)
6597{
6598 /* STUB */
6599}
6600
6601/* Check if port is acceptable. Possibly find first available port.
6602 *
6603 * The port hash table (contained in the 'global' SCTP protocol storage
6604 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6605 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6606 * list (the list number is the port number hashed out, so as you
6607 * would expect from a hash function, all the ports in a given list have
6608 * such a number that hashes out to the same list number; you were
6609 * expecting that, right?); so each list has a set of ports, with a
6610 * link to the socket (struct sock) that uses it, the port number and
6611 * a fastreuse flag (FIXME: NPI ipg).
6612 */
6613static struct sctp_bind_bucket *sctp_bucket_create(
6614 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6615
6616static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6617{
6618 struct sctp_bind_hashbucket *head; /* hash list */
6619 struct sctp_bind_bucket *pp;
6620 unsigned short snum;
6621 int ret;
6622
6623 snum = ntohs(addr->v4.sin_port);
6624
6625 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6626
6627 local_bh_disable();
6628
6629 if (snum == 0) {
6630 /* Search for an available port. */
6631 int low, high, remaining, index;
6632 unsigned int rover;
6633 struct net *net = sock_net(sk);
6634
6635 inet_get_local_port_range(net, &low, &high);
6636 remaining = (high - low) + 1;
6637 rover = prandom_u32() % remaining + low;
6638
6639 do {
6640 rover++;
6641 if ((rover < low) || (rover > high))
6642 rover = low;
6643 if (inet_is_local_reserved_port(net, rover))
6644 continue;
6645 index = sctp_phashfn(sock_net(sk), rover);
6646 head = &sctp_port_hashtable[index];
6647 spin_lock(&head->lock);
6648 sctp_for_each_hentry(pp, &head->chain)
6649 if ((pp->port == rover) &&
6650 net_eq(sock_net(sk), pp->net))
6651 goto next;
6652 break;
6653 next:
6654 spin_unlock(&head->lock);
6655 } while (--remaining > 0);
6656
6657 /* Exhausted local port range during search? */
6658 ret = 1;
6659 if (remaining <= 0)
6660 goto fail;
6661
6662 /* OK, here is the one we will use. HEAD (the port
6663 * hash table list entry) is non-NULL and we hold it's
6664 * mutex.
6665 */
6666 snum = rover;
6667 } else {
6668 /* We are given an specific port number; we verify
6669 * that it is not being used. If it is used, we will
6670 * exahust the search in the hash list corresponding
6671 * to the port number (snum) - we detect that with the
6672 * port iterator, pp being NULL.
6673 */
6674 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6675 spin_lock(&head->lock);
6676 sctp_for_each_hentry(pp, &head->chain) {
6677 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6678 goto pp_found;
6679 }
6680 }
6681 pp = NULL;
6682 goto pp_not_found;
6683pp_found:
6684 if (!hlist_empty(&pp->owner)) {
6685 /* We had a port hash table hit - there is an
6686 * available port (pp != NULL) and it is being
6687 * used by other socket (pp->owner not empty); that other
6688 * socket is going to be sk2.
6689 */
6690 int reuse = sk->sk_reuse;
6691 struct sock *sk2;
6692
6693 pr_debug("%s: found a possible match\n", __func__);
6694
6695 if (pp->fastreuse && sk->sk_reuse &&
6696 sk->sk_state != SCTP_SS_LISTENING)
6697 goto success;
6698
6699 /* Run through the list of sockets bound to the port
6700 * (pp->port) [via the pointers bind_next and
6701 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6702 * we get the endpoint they describe and run through
6703 * the endpoint's list of IP (v4 or v6) addresses,
6704 * comparing each of the addresses with the address of
6705 * the socket sk. If we find a match, then that means
6706 * that this port/socket (sk) combination are already
6707 * in an endpoint.
6708 */
6709 sk_for_each_bound(sk2, &pp->owner) {
6710 struct sctp_endpoint *ep2;
6711 ep2 = sctp_sk(sk2)->ep;
6712
6713 if (sk == sk2 ||
6714 (reuse && sk2->sk_reuse &&
6715 sk2->sk_state != SCTP_SS_LISTENING))
6716 continue;
6717
6718 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6719 sctp_sk(sk2), sctp_sk(sk))) {
6720 ret = (long)sk2;
6721 goto fail_unlock;
6722 }
6723 }
6724
6725 pr_debug("%s: found a match\n", __func__);
6726 }
6727pp_not_found:
6728 /* If there was a hash table miss, create a new port. */
6729 ret = 1;
6730 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6731 goto fail_unlock;
6732
6733 /* In either case (hit or miss), make sure fastreuse is 1 only
6734 * if sk->sk_reuse is too (that is, if the caller requested
6735 * SO_REUSEADDR on this socket -sk-).
6736 */
6737 if (hlist_empty(&pp->owner)) {
6738 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6739 pp->fastreuse = 1;
6740 else
6741 pp->fastreuse = 0;
6742 } else if (pp->fastreuse &&
6743 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6744 pp->fastreuse = 0;
6745
6746 /* We are set, so fill up all the data in the hash table
6747 * entry, tie the socket list information with the rest of the
6748 * sockets FIXME: Blurry, NPI (ipg).
6749 */
6750success:
6751 if (!sctp_sk(sk)->bind_hash) {
6752 inet_sk(sk)->inet_num = snum;
6753 sk_add_bind_node(sk, &pp->owner);
6754 sctp_sk(sk)->bind_hash = pp;
6755 }
6756 ret = 0;
6757
6758fail_unlock:
6759 spin_unlock(&head->lock);
6760
6761fail:
6762 local_bh_enable();
6763 return ret;
6764}
6765
6766/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6767 * port is requested.
6768 */
6769static int sctp_get_port(struct sock *sk, unsigned short snum)
6770{
6771 union sctp_addr addr;
6772 struct sctp_af *af = sctp_sk(sk)->pf->af;
6773
6774 /* Set up a dummy address struct from the sk. */
6775 af->from_sk(&addr, sk);
6776 addr.v4.sin_port = htons(snum);
6777
6778 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6779 return !!sctp_get_port_local(sk, &addr);
6780}
6781
6782/*
6783 * Move a socket to LISTENING state.
6784 */
6785static int sctp_listen_start(struct sock *sk, int backlog)
6786{
6787 struct sctp_sock *sp = sctp_sk(sk);
6788 struct sctp_endpoint *ep = sp->ep;
6789 struct crypto_shash *tfm = NULL;
6790 char alg[32];
6791
6792 /* Allocate HMAC for generating cookie. */
6793 if (!sp->hmac && sp->sctp_hmac_alg) {
6794 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6795 tfm = crypto_alloc_shash(alg, 0, 0);
6796 if (IS_ERR(tfm)) {
6797 net_info_ratelimited("failed to load transform for %s: %ld\n",
6798 sp->sctp_hmac_alg, PTR_ERR(tfm));
6799 return -ENOSYS;
6800 }
6801 sctp_sk(sk)->hmac = tfm;
6802 }
6803
6804 /*
6805 * If a bind() or sctp_bindx() is not called prior to a listen()
6806 * call that allows new associations to be accepted, the system
6807 * picks an ephemeral port and will choose an address set equivalent
6808 * to binding with a wildcard address.
6809 *
6810 * This is not currently spelled out in the SCTP sockets
6811 * extensions draft, but follows the practice as seen in TCP
6812 * sockets.
6813 *
6814 */
6815 sk->sk_state = SCTP_SS_LISTENING;
6816 if (!ep->base.bind_addr.port) {
6817 if (sctp_autobind(sk))
6818 return -EAGAIN;
6819 } else {
6820 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6821 sk->sk_state = SCTP_SS_CLOSED;
6822 return -EADDRINUSE;
6823 }
6824 }
6825
6826 sk->sk_max_ack_backlog = backlog;
6827 sctp_hash_endpoint(ep);
6828 return 0;
6829}
6830
6831/*
6832 * 4.1.3 / 5.1.3 listen()
6833 *
6834 * By default, new associations are not accepted for UDP style sockets.
6835 * An application uses listen() to mark a socket as being able to
6836 * accept new associations.
6837 *
6838 * On TCP style sockets, applications use listen() to ready the SCTP
6839 * endpoint for accepting inbound associations.
6840 *
6841 * On both types of endpoints a backlog of '0' disables listening.
6842 *
6843 * Move a socket to LISTENING state.
6844 */
6845int sctp_inet_listen(struct socket *sock, int backlog)
6846{
6847 struct sock *sk = sock->sk;
6848 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6849 int err = -EINVAL;
6850
6851 if (unlikely(backlog < 0))
6852 return err;
6853
6854 lock_sock(sk);
6855
6856 /* Peeled-off sockets are not allowed to listen(). */
6857 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6858 goto out;
6859
6860 if (sock->state != SS_UNCONNECTED)
6861 goto out;
6862
6863 /* If backlog is zero, disable listening. */
6864 if (!backlog) {
6865 if (sctp_sstate(sk, CLOSED))
6866 goto out;
6867
6868 err = 0;
6869 sctp_unhash_endpoint(ep);
6870 sk->sk_state = SCTP_SS_CLOSED;
6871 if (sk->sk_reuse)
6872 sctp_sk(sk)->bind_hash->fastreuse = 1;
6873 goto out;
6874 }
6875
6876 /* If we are already listening, just update the backlog */
6877 if (sctp_sstate(sk, LISTENING))
6878 sk->sk_max_ack_backlog = backlog;
6879 else {
6880 err = sctp_listen_start(sk, backlog);
6881 if (err)
6882 goto out;
6883 }
6884
6885 err = 0;
6886out:
6887 release_sock(sk);
6888 return err;
6889}
6890
6891/*
6892 * This function is done by modeling the current datagram_poll() and the
6893 * tcp_poll(). Note that, based on these implementations, we don't
6894 * lock the socket in this function, even though it seems that,
6895 * ideally, locking or some other mechanisms can be used to ensure
6896 * the integrity of the counters (sndbuf and wmem_alloc) used
6897 * in this place. We assume that we don't need locks either until proven
6898 * otherwise.
6899 *
6900 * Another thing to note is that we include the Async I/O support
6901 * here, again, by modeling the current TCP/UDP code. We don't have
6902 * a good way to test with it yet.
6903 */
6904unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6905{
6906 struct sock *sk = sock->sk;
6907 struct sctp_sock *sp = sctp_sk(sk);
6908 unsigned int mask;
6909
6910 poll_wait(file, sk_sleep(sk), wait);
6911
6912 sock_rps_record_flow(sk);
6913
6914 /* A TCP-style listening socket becomes readable when the accept queue
6915 * is not empty.
6916 */
6917 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6918 return (!list_empty(&sp->ep->asocs)) ?
6919 (POLLIN | POLLRDNORM) : 0;
6920
6921 mask = 0;
6922
6923 /* Is there any exceptional events? */
6924 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6925 mask |= POLLERR |
6926 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6927 if (sk->sk_shutdown & RCV_SHUTDOWN)
6928 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6929 if (sk->sk_shutdown == SHUTDOWN_MASK)
6930 mask |= POLLHUP;
6931
6932 /* Is it readable? Reconsider this code with TCP-style support. */
6933 if (!skb_queue_empty(&sk->sk_receive_queue))
6934 mask |= POLLIN | POLLRDNORM;
6935
6936 /* The association is either gone or not ready. */
6937 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6938 return mask;
6939
6940 /* Is it writable? */
6941 if (sctp_writeable(sk)) {
6942 mask |= POLLOUT | POLLWRNORM;
6943 } else {
6944 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6945 /*
6946 * Since the socket is not locked, the buffer
6947 * might be made available after the writeable check and
6948 * before the bit is set. This could cause a lost I/O
6949 * signal. tcp_poll() has a race breaker for this race
6950 * condition. Based on their implementation, we put
6951 * in the following code to cover it as well.
6952 */
6953 if (sctp_writeable(sk))
6954 mask |= POLLOUT | POLLWRNORM;
6955 }
6956 return mask;
6957}
6958
6959/********************************************************************
6960 * 2nd Level Abstractions
6961 ********************************************************************/
6962
6963static struct sctp_bind_bucket *sctp_bucket_create(
6964 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6965{
6966 struct sctp_bind_bucket *pp;
6967
6968 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6969 if (pp) {
6970 SCTP_DBG_OBJCNT_INC(bind_bucket);
6971 pp->port = snum;
6972 pp->fastreuse = 0;
6973 INIT_HLIST_HEAD(&pp->owner);
6974 pp->net = net;
6975 hlist_add_head(&pp->node, &head->chain);
6976 }
6977 return pp;
6978}
6979
6980/* Caller must hold hashbucket lock for this tb with local BH disabled */
6981static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6982{
6983 if (pp && hlist_empty(&pp->owner)) {
6984 __hlist_del(&pp->node);
6985 kmem_cache_free(sctp_bucket_cachep, pp);
6986 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6987 }
6988}
6989
6990/* Release this socket's reference to a local port. */
6991static inline void __sctp_put_port(struct sock *sk)
6992{
6993 struct sctp_bind_hashbucket *head =
6994 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6995 inet_sk(sk)->inet_num)];
6996 struct sctp_bind_bucket *pp;
6997
6998 spin_lock(&head->lock);
6999 pp = sctp_sk(sk)->bind_hash;
7000 __sk_del_bind_node(sk);
7001 sctp_sk(sk)->bind_hash = NULL;
7002 inet_sk(sk)->inet_num = 0;
7003 sctp_bucket_destroy(pp);
7004 spin_unlock(&head->lock);
7005}
7006
7007void sctp_put_port(struct sock *sk)
7008{
7009 local_bh_disable();
7010 __sctp_put_port(sk);
7011 local_bh_enable();
7012}
7013
7014/*
7015 * The system picks an ephemeral port and choose an address set equivalent
7016 * to binding with a wildcard address.
7017 * One of those addresses will be the primary address for the association.
7018 * This automatically enables the multihoming capability of SCTP.
7019 */
7020static int sctp_autobind(struct sock *sk)
7021{
7022 union sctp_addr autoaddr;
7023 struct sctp_af *af;
7024 __be16 port;
7025
7026 /* Initialize a local sockaddr structure to INADDR_ANY. */
7027 af = sctp_sk(sk)->pf->af;
7028
7029 port = htons(inet_sk(sk)->inet_num);
7030 af->inaddr_any(&autoaddr, port);
7031
7032 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7033}
7034
7035/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7036 *
7037 * From RFC 2292
7038 * 4.2 The cmsghdr Structure *
7039 *
7040 * When ancillary data is sent or received, any number of ancillary data
7041 * objects can be specified by the msg_control and msg_controllen members of
7042 * the msghdr structure, because each object is preceded by
7043 * a cmsghdr structure defining the object's length (the cmsg_len member).
7044 * Historically Berkeley-derived implementations have passed only one object
7045 * at a time, but this API allows multiple objects to be
7046 * passed in a single call to sendmsg() or recvmsg(). The following example
7047 * shows two ancillary data objects in a control buffer.
7048 *
7049 * |<--------------------------- msg_controllen -------------------------->|
7050 * | |
7051 *
7052 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7053 *
7054 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7055 * | | |
7056 *
7057 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7058 *
7059 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7060 * | | | | |
7061 *
7062 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7063 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7064 *
7065 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7066 *
7067 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7068 * ^
7069 * |
7070 *
7071 * msg_control
7072 * points here
7073 */
7074static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7075{
7076 struct cmsghdr *cmsg;
7077 struct msghdr *my_msg = (struct msghdr *)msg;
7078
7079 for_each_cmsghdr(cmsg, my_msg) {
7080 if (!CMSG_OK(my_msg, cmsg))
7081 return -EINVAL;
7082
7083 /* Should we parse this header or ignore? */
7084 if (cmsg->cmsg_level != IPPROTO_SCTP)
7085 continue;
7086
7087 /* Strictly check lengths following example in SCM code. */
7088 switch (cmsg->cmsg_type) {
7089 case SCTP_INIT:
7090 /* SCTP Socket API Extension
7091 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7092 *
7093 * This cmsghdr structure provides information for
7094 * initializing new SCTP associations with sendmsg().
7095 * The SCTP_INITMSG socket option uses this same data
7096 * structure. This structure is not used for
7097 * recvmsg().
7098 *
7099 * cmsg_level cmsg_type cmsg_data[]
7100 * ------------ ------------ ----------------------
7101 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7102 */
7103 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7104 return -EINVAL;
7105
7106 cmsgs->init = CMSG_DATA(cmsg);
7107 break;
7108
7109 case SCTP_SNDRCV:
7110 /* SCTP Socket API Extension
7111 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7112 *
7113 * This cmsghdr structure specifies SCTP options for
7114 * sendmsg() and describes SCTP header information
7115 * about a received message through recvmsg().
7116 *
7117 * cmsg_level cmsg_type cmsg_data[]
7118 * ------------ ------------ ----------------------
7119 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7120 */
7121 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7122 return -EINVAL;
7123
7124 cmsgs->srinfo = CMSG_DATA(cmsg);
7125
7126 if (cmsgs->srinfo->sinfo_flags &
7127 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7128 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7129 SCTP_ABORT | SCTP_EOF))
7130 return -EINVAL;
7131 break;
7132
7133 case SCTP_SNDINFO:
7134 /* SCTP Socket API Extension
7135 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7136 *
7137 * This cmsghdr structure specifies SCTP options for
7138 * sendmsg(). This structure and SCTP_RCVINFO replaces
7139 * SCTP_SNDRCV which has been deprecated.
7140 *
7141 * cmsg_level cmsg_type cmsg_data[]
7142 * ------------ ------------ ---------------------
7143 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7144 */
7145 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7146 return -EINVAL;
7147
7148 cmsgs->sinfo = CMSG_DATA(cmsg);
7149
7150 if (cmsgs->sinfo->snd_flags &
7151 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7152 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7153 SCTP_ABORT | SCTP_EOF))
7154 return -EINVAL;
7155 break;
7156 default:
7157 return -EINVAL;
7158 }
7159 }
7160
7161 return 0;
7162}
7163
7164/*
7165 * Wait for a packet..
7166 * Note: This function is the same function as in core/datagram.c
7167 * with a few modifications to make lksctp work.
7168 */
7169static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7170{
7171 int error;
7172 DEFINE_WAIT(wait);
7173
7174 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7175
7176 /* Socket errors? */
7177 error = sock_error(sk);
7178 if (error)
7179 goto out;
7180
7181 if (!skb_queue_empty(&sk->sk_receive_queue))
7182 goto ready;
7183
7184 /* Socket shut down? */
7185 if (sk->sk_shutdown & RCV_SHUTDOWN)
7186 goto out;
7187
7188 /* Sequenced packets can come disconnected. If so we report the
7189 * problem.
7190 */
7191 error = -ENOTCONN;
7192
7193 /* Is there a good reason to think that we may receive some data? */
7194 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7195 goto out;
7196
7197 /* Handle signals. */
7198 if (signal_pending(current))
7199 goto interrupted;
7200
7201 /* Let another process have a go. Since we are going to sleep
7202 * anyway. Note: This may cause odd behaviors if the message
7203 * does not fit in the user's buffer, but this seems to be the
7204 * only way to honor MSG_DONTWAIT realistically.
7205 */
7206 release_sock(sk);
7207 *timeo_p = schedule_timeout(*timeo_p);
7208 lock_sock(sk);
7209
7210ready:
7211 finish_wait(sk_sleep(sk), &wait);
7212 return 0;
7213
7214interrupted:
7215 error = sock_intr_errno(*timeo_p);
7216
7217out:
7218 finish_wait(sk_sleep(sk), &wait);
7219 *err = error;
7220 return error;
7221}
7222
7223/* Receive a datagram.
7224 * Note: This is pretty much the same routine as in core/datagram.c
7225 * with a few changes to make lksctp work.
7226 */
7227struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7228 int noblock, int *err)
7229{
7230 int error;
7231 struct sk_buff *skb;
7232 long timeo;
7233
7234 timeo = sock_rcvtimeo(sk, noblock);
7235
7236 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7237 MAX_SCHEDULE_TIMEOUT);
7238
7239 do {
7240 /* Again only user level code calls this function,
7241 * so nothing interrupt level
7242 * will suddenly eat the receive_queue.
7243 *
7244 * Look at current nfs client by the way...
7245 * However, this function was correct in any case. 8)
7246 */
7247 if (flags & MSG_PEEK) {
7248 skb = skb_peek(&sk->sk_receive_queue);
7249 if (skb)
7250 atomic_inc(&skb->users);
7251 } else {
7252 skb = __skb_dequeue(&sk->sk_receive_queue);
7253 }
7254
7255 if (skb)
7256 return skb;
7257
7258 /* Caller is allowed not to check sk->sk_err before calling. */
7259 error = sock_error(sk);
7260 if (error)
7261 goto no_packet;
7262
7263 if (sk->sk_shutdown & RCV_SHUTDOWN)
7264 break;
7265
7266 if (sk_can_busy_loop(sk) &&
7267 sk_busy_loop(sk, noblock))
7268 continue;
7269
7270 /* User doesn't want to wait. */
7271 error = -EAGAIN;
7272 if (!timeo)
7273 goto no_packet;
7274 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7275
7276 return NULL;
7277
7278no_packet:
7279 *err = error;
7280 return NULL;
7281}
7282
7283/* If sndbuf has changed, wake up per association sndbuf waiters. */
7284static void __sctp_write_space(struct sctp_association *asoc)
7285{
7286 struct sock *sk = asoc->base.sk;
7287
7288 if (sctp_wspace(asoc) <= 0)
7289 return;
7290
7291 if (waitqueue_active(&asoc->wait))
7292 wake_up_interruptible(&asoc->wait);
7293
7294 if (sctp_writeable(sk)) {
7295 struct socket_wq *wq;
7296
7297 rcu_read_lock();
7298 wq = rcu_dereference(sk->sk_wq);
7299 if (wq) {
7300 if (waitqueue_active(&wq->wait))
7301 wake_up_interruptible(&wq->wait);
7302
7303 /* Note that we try to include the Async I/O support
7304 * here by modeling from the current TCP/UDP code.
7305 * We have not tested with it yet.
7306 */
7307 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7308 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7309 }
7310 rcu_read_unlock();
7311 }
7312}
7313
7314static void sctp_wake_up_waiters(struct sock *sk,
7315 struct sctp_association *asoc)
7316{
7317 struct sctp_association *tmp = asoc;
7318
7319 /* We do accounting for the sndbuf space per association,
7320 * so we only need to wake our own association.
7321 */
7322 if (asoc->ep->sndbuf_policy)
7323 return __sctp_write_space(asoc);
7324
7325 /* If association goes down and is just flushing its
7326 * outq, then just normally notify others.
7327 */
7328 if (asoc->base.dead)
7329 return sctp_write_space(sk);
7330
7331 /* Accounting for the sndbuf space is per socket, so we
7332 * need to wake up others, try to be fair and in case of
7333 * other associations, let them have a go first instead
7334 * of just doing a sctp_write_space() call.
7335 *
7336 * Note that we reach sctp_wake_up_waiters() only when
7337 * associations free up queued chunks, thus we are under
7338 * lock and the list of associations on a socket is
7339 * guaranteed not to change.
7340 */
7341 for (tmp = list_next_entry(tmp, asocs); 1;
7342 tmp = list_next_entry(tmp, asocs)) {
7343 /* Manually skip the head element. */
7344 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7345 continue;
7346 /* Wake up association. */
7347 __sctp_write_space(tmp);
7348 /* We've reached the end. */
7349 if (tmp == asoc)
7350 break;
7351 }
7352}
7353
7354/* Do accounting for the sndbuf space.
7355 * Decrement the used sndbuf space of the corresponding association by the
7356 * data size which was just transmitted(freed).
7357 */
7358static void sctp_wfree(struct sk_buff *skb)
7359{
7360 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7361 struct sctp_association *asoc = chunk->asoc;
7362 struct sock *sk = asoc->base.sk;
7363
7364 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7365 sizeof(struct sk_buff) +
7366 sizeof(struct sctp_chunk);
7367
7368 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7369
7370 /*
7371 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7372 */
7373 sk->sk_wmem_queued -= skb->truesize;
7374 sk_mem_uncharge(sk, skb->truesize);
7375
7376 sock_wfree(skb);
7377 sctp_wake_up_waiters(sk, asoc);
7378
7379 sctp_association_put(asoc);
7380}
7381
7382/* Do accounting for the receive space on the socket.
7383 * Accounting for the association is done in ulpevent.c
7384 * We set this as a destructor for the cloned data skbs so that
7385 * accounting is done at the correct time.
7386 */
7387void sctp_sock_rfree(struct sk_buff *skb)
7388{
7389 struct sock *sk = skb->sk;
7390 struct sctp_ulpevent *event = sctp_skb2event(skb);
7391
7392 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7393
7394 /*
7395 * Mimic the behavior of sock_rfree
7396 */
7397 sk_mem_uncharge(sk, event->rmem_len);
7398}
7399
7400
7401/* Helper function to wait for space in the sndbuf. */
7402static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7403 size_t msg_len)
7404{
7405 struct sock *sk = asoc->base.sk;
7406 int err = 0;
7407 long current_timeo = *timeo_p;
7408 DEFINE_WAIT(wait);
7409
7410 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7411 *timeo_p, msg_len);
7412
7413 /* Increment the association's refcnt. */
7414 sctp_association_hold(asoc);
7415
7416 /* Wait on the association specific sndbuf space. */
7417 for (;;) {
7418 prepare_to_wait_exclusive(&asoc->wait, &wait,
7419 TASK_INTERRUPTIBLE);
7420 if (!*timeo_p)
7421 goto do_nonblock;
7422 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7423 asoc->base.dead)
7424 goto do_error;
7425 if (signal_pending(current))
7426 goto do_interrupted;
7427 if (msg_len <= sctp_wspace(asoc))
7428 break;
7429
7430 /* Let another process have a go. Since we are going
7431 * to sleep anyway.
7432 */
7433 release_sock(sk);
7434 current_timeo = schedule_timeout(current_timeo);
7435 lock_sock(sk);
7436
7437 *timeo_p = current_timeo;
7438 }
7439
7440out:
7441 finish_wait(&asoc->wait, &wait);
7442
7443 /* Release the association's refcnt. */
7444 sctp_association_put(asoc);
7445
7446 return err;
7447
7448do_error:
7449 err = -EPIPE;
7450 goto out;
7451
7452do_interrupted:
7453 err = sock_intr_errno(*timeo_p);
7454 goto out;
7455
7456do_nonblock:
7457 err = -EAGAIN;
7458 goto out;
7459}
7460
7461void sctp_data_ready(struct sock *sk)
7462{
7463 struct socket_wq *wq;
7464
7465 rcu_read_lock();
7466 wq = rcu_dereference(sk->sk_wq);
7467 if (skwq_has_sleeper(wq))
7468 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7469 POLLRDNORM | POLLRDBAND);
7470 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7471 rcu_read_unlock();
7472}
7473
7474/* If socket sndbuf has changed, wake up all per association waiters. */
7475void sctp_write_space(struct sock *sk)
7476{
7477 struct sctp_association *asoc;
7478
7479 /* Wake up the tasks in each wait queue. */
7480 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7481 __sctp_write_space(asoc);
7482 }
7483}
7484
7485/* Is there any sndbuf space available on the socket?
7486 *
7487 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7488 * associations on the same socket. For a UDP-style socket with
7489 * multiple associations, it is possible for it to be "unwriteable"
7490 * prematurely. I assume that this is acceptable because
7491 * a premature "unwriteable" is better than an accidental "writeable" which
7492 * would cause an unwanted block under certain circumstances. For the 1-1
7493 * UDP-style sockets or TCP-style sockets, this code should work.
7494 * - Daisy
7495 */
7496static int sctp_writeable(struct sock *sk)
7497{
7498 int amt = 0;
7499
7500 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7501 if (amt < 0)
7502 amt = 0;
7503 return amt;
7504}
7505
7506/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7507 * returns immediately with EINPROGRESS.
7508 */
7509static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7510{
7511 struct sock *sk = asoc->base.sk;
7512 int err = 0;
7513 long current_timeo = *timeo_p;
7514 DEFINE_WAIT(wait);
7515
7516 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7517
7518 /* Increment the association's refcnt. */
7519 sctp_association_hold(asoc);
7520
7521 for (;;) {
7522 prepare_to_wait_exclusive(&asoc->wait, &wait,
7523 TASK_INTERRUPTIBLE);
7524 if (!*timeo_p)
7525 goto do_nonblock;
7526 if (sk->sk_shutdown & RCV_SHUTDOWN)
7527 break;
7528 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7529 asoc->base.dead)
7530 goto do_error;
7531 if (signal_pending(current))
7532 goto do_interrupted;
7533
7534 if (sctp_state(asoc, ESTABLISHED))
7535 break;
7536
7537 /* Let another process have a go. Since we are going
7538 * to sleep anyway.
7539 */
7540 release_sock(sk);
7541 current_timeo = schedule_timeout(current_timeo);
7542 lock_sock(sk);
7543
7544 *timeo_p = current_timeo;
7545 }
7546
7547out:
7548 finish_wait(&asoc->wait, &wait);
7549
7550 /* Release the association's refcnt. */
7551 sctp_association_put(asoc);
7552
7553 return err;
7554
7555do_error:
7556 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7557 err = -ETIMEDOUT;
7558 else
7559 err = -ECONNREFUSED;
7560 goto out;
7561
7562do_interrupted:
7563 err = sock_intr_errno(*timeo_p);
7564 goto out;
7565
7566do_nonblock:
7567 err = -EINPROGRESS;
7568 goto out;
7569}
7570
7571static int sctp_wait_for_accept(struct sock *sk, long timeo)
7572{
7573 struct sctp_endpoint *ep;
7574 int err = 0;
7575 DEFINE_WAIT(wait);
7576
7577 ep = sctp_sk(sk)->ep;
7578
7579
7580 for (;;) {
7581 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7582 TASK_INTERRUPTIBLE);
7583
7584 if (list_empty(&ep->asocs)) {
7585 release_sock(sk);
7586 timeo = schedule_timeout(timeo);
7587 lock_sock(sk);
7588 }
7589
7590 err = -EINVAL;
7591 if (!sctp_sstate(sk, LISTENING))
7592 break;
7593
7594 err = 0;
7595 if (!list_empty(&ep->asocs))
7596 break;
7597
7598 err = sock_intr_errno(timeo);
7599 if (signal_pending(current))
7600 break;
7601
7602 err = -EAGAIN;
7603 if (!timeo)
7604 break;
7605 }
7606
7607 finish_wait(sk_sleep(sk), &wait);
7608
7609 return err;
7610}
7611
7612static void sctp_wait_for_close(struct sock *sk, long timeout)
7613{
7614 DEFINE_WAIT(wait);
7615
7616 do {
7617 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7618 if (list_empty(&sctp_sk(sk)->ep->asocs))
7619 break;
7620 release_sock(sk);
7621 timeout = schedule_timeout(timeout);
7622 lock_sock(sk);
7623 } while (!signal_pending(current) && timeout);
7624
7625 finish_wait(sk_sleep(sk), &wait);
7626}
7627
7628static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7629{
7630 struct sk_buff *frag;
7631
7632 if (!skb->data_len)
7633 goto done;
7634
7635 /* Don't forget the fragments. */
7636 skb_walk_frags(skb, frag)
7637 sctp_skb_set_owner_r_frag(frag, sk);
7638
7639done:
7640 sctp_skb_set_owner_r(skb, sk);
7641}
7642
7643void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7644 struct sctp_association *asoc)
7645{
7646 struct inet_sock *inet = inet_sk(sk);
7647 struct inet_sock *newinet;
7648
7649 newsk->sk_type = sk->sk_type;
7650 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7651 newsk->sk_flags = sk->sk_flags;
7652 newsk->sk_tsflags = sk->sk_tsflags;
7653 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7654 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7655 newsk->sk_reuse = sk->sk_reuse;
7656
7657 newsk->sk_shutdown = sk->sk_shutdown;
7658 newsk->sk_destruct = sctp_destruct_sock;
7659 newsk->sk_family = sk->sk_family;
7660 newsk->sk_protocol = IPPROTO_SCTP;
7661 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7662 newsk->sk_sndbuf = sk->sk_sndbuf;
7663 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7664 newsk->sk_lingertime = sk->sk_lingertime;
7665 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7666 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7667 newsk->sk_rxhash = sk->sk_rxhash;
7668
7669 newinet = inet_sk(newsk);
7670
7671 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7672 * getsockname() and getpeername()
7673 */
7674 newinet->inet_sport = inet->inet_sport;
7675 newinet->inet_saddr = inet->inet_saddr;
7676 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7677 newinet->inet_dport = htons(asoc->peer.port);
7678 newinet->pmtudisc = inet->pmtudisc;
7679 newinet->inet_id = asoc->next_tsn ^ jiffies;
7680
7681 newinet->uc_ttl = inet->uc_ttl;
7682 newinet->mc_loop = 1;
7683 newinet->mc_ttl = 1;
7684 newinet->mc_index = 0;
7685 newinet->mc_list = NULL;
7686
7687 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7688 net_enable_timestamp();
7689
7690 security_sk_clone(sk, newsk);
7691}
7692
7693static inline void sctp_copy_descendant(struct sock *sk_to,
7694 const struct sock *sk_from)
7695{
7696 int ancestor_size = sizeof(struct inet_sock) +
7697 sizeof(struct sctp_sock) -
7698 offsetof(struct sctp_sock, auto_asconf_list);
7699
7700 if (sk_from->sk_family == PF_INET6)
7701 ancestor_size += sizeof(struct ipv6_pinfo);
7702
7703 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7704}
7705
7706/* Populate the fields of the newsk from the oldsk and migrate the assoc
7707 * and its messages to the newsk.
7708 */
7709static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7710 struct sctp_association *assoc,
7711 sctp_socket_type_t type)
7712{
7713 struct sctp_sock *oldsp = sctp_sk(oldsk);
7714 struct sctp_sock *newsp = sctp_sk(newsk);
7715 struct sctp_bind_bucket *pp; /* hash list port iterator */
7716 struct sctp_endpoint *newep = newsp->ep;
7717 struct sk_buff *skb, *tmp;
7718 struct sctp_ulpevent *event;
7719 struct sctp_bind_hashbucket *head;
7720
7721 /* Migrate socket buffer sizes and all the socket level options to the
7722 * new socket.
7723 */
7724 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7725 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7726 /* Brute force copy old sctp opt. */
7727 sctp_copy_descendant(newsk, oldsk);
7728
7729 /* Restore the ep value that was overwritten with the above structure
7730 * copy.
7731 */
7732 newsp->ep = newep;
7733 newsp->hmac = NULL;
7734
7735 /* Hook this new socket in to the bind_hash list. */
7736 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7737 inet_sk(oldsk)->inet_num)];
7738 spin_lock_bh(&head->lock);
7739 pp = sctp_sk(oldsk)->bind_hash;
7740 sk_add_bind_node(newsk, &pp->owner);
7741 sctp_sk(newsk)->bind_hash = pp;
7742 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7743 spin_unlock_bh(&head->lock);
7744
7745 /* Copy the bind_addr list from the original endpoint to the new
7746 * endpoint so that we can handle restarts properly
7747 */
7748 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7749 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7750
7751 /* Move any messages in the old socket's receive queue that are for the
7752 * peeled off association to the new socket's receive queue.
7753 */
7754 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7755 event = sctp_skb2event(skb);
7756 if (event->asoc == assoc) {
7757 __skb_unlink(skb, &oldsk->sk_receive_queue);
7758 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7759 sctp_skb_set_owner_r_frag(skb, newsk);
7760 }
7761 }
7762
7763 /* Clean up any messages pending delivery due to partial
7764 * delivery. Three cases:
7765 * 1) No partial deliver; no work.
7766 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7767 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7768 */
7769 skb_queue_head_init(&newsp->pd_lobby);
7770 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7771
7772 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7773 struct sk_buff_head *queue;
7774
7775 /* Decide which queue to move pd_lobby skbs to. */
7776 if (assoc->ulpq.pd_mode) {
7777 queue = &newsp->pd_lobby;
7778 } else
7779 queue = &newsk->sk_receive_queue;
7780
7781 /* Walk through the pd_lobby, looking for skbs that
7782 * need moved to the new socket.
7783 */
7784 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7785 event = sctp_skb2event(skb);
7786 if (event->asoc == assoc) {
7787 __skb_unlink(skb, &oldsp->pd_lobby);
7788 __skb_queue_tail(queue, skb);
7789 sctp_skb_set_owner_r_frag(skb, newsk);
7790 }
7791 }
7792
7793 /* Clear up any skbs waiting for the partial
7794 * delivery to finish.
7795 */
7796 if (assoc->ulpq.pd_mode)
7797 sctp_clear_pd(oldsk, NULL);
7798
7799 }
7800
7801 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7802 sctp_skb_set_owner_r_frag(skb, newsk);
7803
7804 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7805 sctp_skb_set_owner_r_frag(skb, newsk);
7806
7807 /* Set the type of socket to indicate that it is peeled off from the
7808 * original UDP-style socket or created with the accept() call on a
7809 * TCP-style socket..
7810 */
7811 newsp->type = type;
7812
7813 /* Mark the new socket "in-use" by the user so that any packets
7814 * that may arrive on the association after we've moved it are
7815 * queued to the backlog. This prevents a potential race between
7816 * backlog processing on the old socket and new-packet processing
7817 * on the new socket.
7818 *
7819 * The caller has just allocated newsk so we can guarantee that other
7820 * paths won't try to lock it and then oldsk.
7821 */
7822 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7823 sctp_assoc_migrate(assoc, newsk);
7824
7825 /* If the association on the newsk is already closed before accept()
7826 * is called, set RCV_SHUTDOWN flag.
7827 */
7828 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7829 newsk->sk_state = SCTP_SS_CLOSED;
7830 newsk->sk_shutdown |= RCV_SHUTDOWN;
7831 } else {
7832 newsk->sk_state = SCTP_SS_ESTABLISHED;
7833 }
7834
7835 release_sock(newsk);
7836}
7837
7838
7839/* This proto struct describes the ULP interface for SCTP. */
7840struct proto sctp_prot = {
7841 .name = "SCTP",
7842 .owner = THIS_MODULE,
7843 .close = sctp_close,
7844 .connect = sctp_connect,
7845 .disconnect = sctp_disconnect,
7846 .accept = sctp_accept,
7847 .ioctl = sctp_ioctl,
7848 .init = sctp_init_sock,
7849 .destroy = sctp_destroy_sock,
7850 .shutdown = sctp_shutdown,
7851 .setsockopt = sctp_setsockopt,
7852 .getsockopt = sctp_getsockopt,
7853 .sendmsg = sctp_sendmsg,
7854 .recvmsg = sctp_recvmsg,
7855 .bind = sctp_bind,
7856 .backlog_rcv = sctp_backlog_rcv,
7857 .hash = sctp_hash,
7858 .unhash = sctp_unhash,
7859 .get_port = sctp_get_port,
7860 .obj_size = sizeof(struct sctp_sock),
7861 .sysctl_mem = sysctl_sctp_mem,
7862 .sysctl_rmem = sysctl_sctp_rmem,
7863 .sysctl_wmem = sysctl_sctp_wmem,
7864 .memory_pressure = &sctp_memory_pressure,
7865 .enter_memory_pressure = sctp_enter_memory_pressure,
7866 .memory_allocated = &sctp_memory_allocated,
7867 .sockets_allocated = &sctp_sockets_allocated,
7868};
7869
7870#if IS_ENABLED(CONFIG_IPV6)
7871
7872#include <net/transp_v6.h>
7873static void sctp_v6_destroy_sock(struct sock *sk)
7874{
7875 sctp_destroy_sock(sk);
7876 inet6_destroy_sock(sk);
7877}
7878
7879struct proto sctpv6_prot = {
7880 .name = "SCTPv6",
7881 .owner = THIS_MODULE,
7882 .close = sctp_close,
7883 .connect = sctp_connect,
7884 .disconnect = sctp_disconnect,
7885 .accept = sctp_accept,
7886 .ioctl = sctp_ioctl,
7887 .init = sctp_init_sock,
7888 .destroy = sctp_v6_destroy_sock,
7889 .shutdown = sctp_shutdown,
7890 .setsockopt = sctp_setsockopt,
7891 .getsockopt = sctp_getsockopt,
7892 .sendmsg = sctp_sendmsg,
7893 .recvmsg = sctp_recvmsg,
7894 .bind = sctp_bind,
7895 .backlog_rcv = sctp_backlog_rcv,
7896 .hash = sctp_hash,
7897 .unhash = sctp_unhash,
7898 .get_port = sctp_get_port,
7899 .obj_size = sizeof(struct sctp6_sock),
7900 .sysctl_mem = sysctl_sctp_mem,
7901 .sysctl_rmem = sysctl_sctp_rmem,
7902 .sysctl_wmem = sysctl_sctp_wmem,
7903 .memory_pressure = &sctp_memory_pressure,
7904 .enter_memory_pressure = sctp_enter_memory_pressure,
7905 .memory_allocated = &sctp_memory_allocated,
7906 .sockets_allocated = &sctp_sockets_allocated,
7907};
7908#endif /* IS_ENABLED(CONFIG_IPV6) */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62#include <trace/events/sock.h>
63
64#include <linux/socket.h> /* for sa_family_t */
65#include <linux/export.h>
66#include <net/sock.h>
67#include <net/sctp/sctp.h>
68#include <net/sctp/sm.h>
69#include <net/sctp/stream_sched.h>
70#include <net/rps.h>
71
72/* Forward declarations for internal helper functions. */
73static bool sctp_writeable(const struct sock *sk);
74static void sctp_wfree(struct sk_buff *skb);
75static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
76 size_t msg_len);
77static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
78static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
79static int sctp_wait_for_accept(struct sock *sk, long timeo);
80static void sctp_wait_for_close(struct sock *sk, long timeo);
81static void sctp_destruct_sock(struct sock *sk);
82static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
83 union sctp_addr *addr, int len);
84static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
85static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
87static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
88static int sctp_send_asconf(struct sctp_association *asoc,
89 struct sctp_chunk *chunk);
90static int sctp_do_bind(struct sock *, union sctp_addr *, int);
91static int sctp_autobind(struct sock *sk);
92static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
93 struct sctp_association *assoc,
94 enum sctp_socket_type type);
95
96static unsigned long sctp_memory_pressure;
97static atomic_long_t sctp_memory_allocated;
98static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc);
99struct percpu_counter sctp_sockets_allocated;
100
101static void sctp_enter_memory_pressure(struct sock *sk)
102{
103 WRITE_ONCE(sctp_memory_pressure, 1);
104}
105
106
107/* Get the sndbuf space available at the time on the association. */
108static inline int sctp_wspace(struct sctp_association *asoc)
109{
110 struct sock *sk = asoc->base.sk;
111
112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
113 : sk_stream_wspace(sk);
114}
115
116/* Increment the used sndbuf space count of the corresponding association by
117 * the size of the outgoing data chunk.
118 * Also, set the skb destructor for sndbuf accounting later.
119 *
120 * Since it is always 1-1 between chunk and skb, and also a new skb is always
121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
122 * destructor in the data chunk skb for the purpose of the sndbuf space
123 * tracking.
124 */
125static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
126{
127 struct sctp_association *asoc = chunk->asoc;
128 struct sock *sk = asoc->base.sk;
129
130 /* The sndbuf space is tracked per association. */
131 sctp_association_hold(asoc);
132
133 if (chunk->shkey)
134 sctp_auth_shkey_hold(chunk->shkey);
135
136 skb_set_owner_w(chunk->skb, sk);
137
138 chunk->skb->destructor = sctp_wfree;
139 /* Save the chunk pointer in skb for sctp_wfree to use later. */
140 skb_shinfo(chunk->skb)->destructor_arg = chunk;
141
142 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
144 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk));
145 sk_mem_charge(sk, chunk->skb->truesize);
146}
147
148static void sctp_clear_owner_w(struct sctp_chunk *chunk)
149{
150 skb_orphan(chunk->skb);
151}
152
153#define traverse_and_process() \
154do { \
155 msg = chunk->msg; \
156 if (msg == prev_msg) \
157 continue; \
158 list_for_each_entry(c, &msg->chunks, frag_list) { \
159 if ((clear && asoc->base.sk == c->skb->sk) || \
160 (!clear && asoc->base.sk != c->skb->sk)) \
161 cb(c); \
162 } \
163 prev_msg = msg; \
164} while (0)
165
166static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
167 bool clear,
168 void (*cb)(struct sctp_chunk *))
169
170{
171 struct sctp_datamsg *msg, *prev_msg = NULL;
172 struct sctp_outq *q = &asoc->outqueue;
173 struct sctp_chunk *chunk, *c;
174 struct sctp_transport *t;
175
176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
177 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->sacked, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
187 traverse_and_process();
188
189 list_for_each_entry(chunk, &q->out_chunk_list, list)
190 traverse_and_process();
191}
192
193static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
194 void (*cb)(struct sk_buff *, struct sock *))
195
196{
197 struct sk_buff *skb, *tmp;
198
199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
203 cb(skb, sk);
204
205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
206 cb(skb, sk);
207}
208
209/* Verify that this is a valid address. */
210static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
211 int len)
212{
213 struct sctp_af *af;
214
215 /* Verify basic sockaddr. */
216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
217 if (!af)
218 return -EINVAL;
219
220 /* Is this a valid SCTP address? */
221 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
222 return -EINVAL;
223
224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
225 return -EINVAL;
226
227 return 0;
228}
229
230/* Look up the association by its id. If this is not a UDP-style
231 * socket, the ID field is always ignored.
232 */
233struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
234{
235 struct sctp_association *asoc = NULL;
236
237 /* If this is not a UDP-style socket, assoc id should be ignored. */
238 if (!sctp_style(sk, UDP)) {
239 /* Return NULL if the socket state is not ESTABLISHED. It
240 * could be a TCP-style listening socket or a socket which
241 * hasn't yet called connect() to establish an association.
242 */
243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
244 return NULL;
245
246 /* Get the first and the only association from the list. */
247 if (!list_empty(&sctp_sk(sk)->ep->asocs))
248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
249 struct sctp_association, asocs);
250 return asoc;
251 }
252
253 /* Otherwise this is a UDP-style socket. */
254 if (id <= SCTP_ALL_ASSOC)
255 return NULL;
256
257 spin_lock_bh(&sctp_assocs_id_lock);
258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
259 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
260 asoc = NULL;
261 spin_unlock_bh(&sctp_assocs_id_lock);
262
263 return asoc;
264}
265
266/* Look up the transport from an address and an assoc id. If both address and
267 * id are specified, the associations matching the address and the id should be
268 * the same.
269 */
270static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
271 struct sockaddr_storage *addr,
272 sctp_assoc_t id)
273{
274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
276 union sctp_addr *laddr = (union sctp_addr *)addr;
277 struct sctp_transport *transport;
278
279 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
280 return NULL;
281
282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
283 laddr,
284 &transport);
285
286 if (!addr_asoc)
287 return NULL;
288
289 id_asoc = sctp_id2assoc(sk, id);
290 if (id_asoc && (id_asoc != addr_asoc))
291 return NULL;
292
293 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
294 (union sctp_addr *)addr);
295
296 return transport;
297}
298
299/* API 3.1.2 bind() - UDP Style Syntax
300 * The syntax of bind() is,
301 *
302 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
303 *
304 * sd - the socket descriptor returned by socket().
305 * addr - the address structure (struct sockaddr_in or struct
306 * sockaddr_in6 [RFC 2553]),
307 * addr_len - the size of the address structure.
308 */
309static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
310{
311 int retval = 0;
312
313 lock_sock(sk);
314
315 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
316 addr, addr_len);
317
318 /* Disallow binding twice. */
319 if (!sctp_sk(sk)->ep->base.bind_addr.port)
320 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
321 addr_len);
322 else
323 retval = -EINVAL;
324
325 release_sock(sk);
326
327 return retval;
328}
329
330static int sctp_get_port_local(struct sock *, union sctp_addr *);
331
332/* Verify this is a valid sockaddr. */
333static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
334 union sctp_addr *addr, int len)
335{
336 struct sctp_af *af;
337
338 /* Check minimum size. */
339 if (len < sizeof (struct sockaddr))
340 return NULL;
341
342 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
343 return NULL;
344
345 if (addr->sa.sa_family == AF_INET6) {
346 if (len < SIN6_LEN_RFC2133)
347 return NULL;
348 /* V4 mapped address are really of AF_INET family */
349 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
350 !opt->pf->af_supported(AF_INET, opt))
351 return NULL;
352 }
353
354 /* If we get this far, af is valid. */
355 af = sctp_get_af_specific(addr->sa.sa_family);
356
357 if (len < af->sockaddr_len)
358 return NULL;
359
360 return af;
361}
362
363static void sctp_auto_asconf_init(struct sctp_sock *sp)
364{
365 struct net *net = sock_net(&sp->inet.sk);
366
367 if (net->sctp.default_auto_asconf) {
368 spin_lock_bh(&net->sctp.addr_wq_lock);
369 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
370 spin_unlock_bh(&net->sctp.addr_wq_lock);
371 sp->do_auto_asconf = 1;
372 }
373}
374
375/* Bind a local address either to an endpoint or to an association. */
376static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
377{
378 struct net *net = sock_net(sk);
379 struct sctp_sock *sp = sctp_sk(sk);
380 struct sctp_endpoint *ep = sp->ep;
381 struct sctp_bind_addr *bp = &ep->base.bind_addr;
382 struct sctp_af *af;
383 unsigned short snum;
384 int ret = 0;
385
386 /* Common sockaddr verification. */
387 af = sctp_sockaddr_af(sp, addr, len);
388 if (!af) {
389 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
390 __func__, sk, addr, len);
391 return -EINVAL;
392 }
393
394 snum = ntohs(addr->v4.sin_port);
395
396 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
397 __func__, sk, &addr->sa, bp->port, snum, len);
398
399 /* PF specific bind() address verification. */
400 if (!sp->pf->bind_verify(sp, addr))
401 return -EADDRNOTAVAIL;
402
403 /* We must either be unbound, or bind to the same port.
404 * It's OK to allow 0 ports if we are already bound.
405 * We'll just inhert an already bound port in this case
406 */
407 if (bp->port) {
408 if (!snum)
409 snum = bp->port;
410 else if (snum != bp->port) {
411 pr_debug("%s: new port %d doesn't match existing port "
412 "%d\n", __func__, snum, bp->port);
413 return -EINVAL;
414 }
415 }
416
417 if (snum && inet_port_requires_bind_service(net, snum) &&
418 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
419 return -EACCES;
420
421 /* See if the address matches any of the addresses we may have
422 * already bound before checking against other endpoints.
423 */
424 if (sctp_bind_addr_match(bp, addr, sp))
425 return -EINVAL;
426
427 /* Make sure we are allowed to bind here.
428 * The function sctp_get_port_local() does duplicate address
429 * detection.
430 */
431 addr->v4.sin_port = htons(snum);
432 if (sctp_get_port_local(sk, addr))
433 return -EADDRINUSE;
434
435 /* Refresh ephemeral port. */
436 if (!bp->port) {
437 bp->port = inet_sk(sk)->inet_num;
438 sctp_auto_asconf_init(sp);
439 }
440
441 /* Add the address to the bind address list.
442 * Use GFP_ATOMIC since BHs will be disabled.
443 */
444 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
445 SCTP_ADDR_SRC, GFP_ATOMIC);
446
447 if (ret) {
448 sctp_put_port(sk);
449 return ret;
450 }
451 /* Copy back into socket for getsockname() use. */
452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
453 sp->pf->to_sk_saddr(addr, sk);
454
455 return ret;
456}
457
458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
459 *
460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
461 * at any one time. If a sender, after sending an ASCONF chunk, decides
462 * it needs to transfer another ASCONF Chunk, it MUST wait until the
463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
464 * subsequent ASCONF. Note this restriction binds each side, so at any
465 * time two ASCONF may be in-transit on any given association (one sent
466 * from each endpoint).
467 */
468static int sctp_send_asconf(struct sctp_association *asoc,
469 struct sctp_chunk *chunk)
470{
471 int retval = 0;
472
473 /* If there is an outstanding ASCONF chunk, queue it for later
474 * transmission.
475 */
476 if (asoc->addip_last_asconf) {
477 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
478 goto out;
479 }
480
481 /* Hold the chunk until an ASCONF_ACK is received. */
482 sctp_chunk_hold(chunk);
483 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
484 if (retval)
485 sctp_chunk_free(chunk);
486 else
487 asoc->addip_last_asconf = chunk;
488
489out:
490 return retval;
491}
492
493/* Add a list of addresses as bind addresses to local endpoint or
494 * association.
495 *
496 * Basically run through each address specified in the addrs/addrcnt
497 * array/length pair, determine if it is IPv6 or IPv4 and call
498 * sctp_do_bind() on it.
499 *
500 * If any of them fails, then the operation will be reversed and the
501 * ones that were added will be removed.
502 *
503 * Only sctp_setsockopt_bindx() is supposed to call this function.
504 */
505static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
506{
507 int cnt;
508 int retval = 0;
509 void *addr_buf;
510 struct sockaddr *sa_addr;
511 struct sctp_af *af;
512
513 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
514 addrs, addrcnt);
515
516 addr_buf = addrs;
517 for (cnt = 0; cnt < addrcnt; cnt++) {
518 /* The list may contain either IPv4 or IPv6 address;
519 * determine the address length for walking thru the list.
520 */
521 sa_addr = addr_buf;
522 af = sctp_get_af_specific(sa_addr->sa_family);
523 if (!af) {
524 retval = -EINVAL;
525 goto err_bindx_add;
526 }
527
528 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
529 af->sockaddr_len);
530
531 addr_buf += af->sockaddr_len;
532
533err_bindx_add:
534 if (retval < 0) {
535 /* Failed. Cleanup the ones that have been added */
536 if (cnt > 0)
537 sctp_bindx_rem(sk, addrs, cnt);
538 return retval;
539 }
540 }
541
542 return retval;
543}
544
545/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
546 * associations that are part of the endpoint indicating that a list of local
547 * addresses are added to the endpoint.
548 *
549 * If any of the addresses is already in the bind address list of the
550 * association, we do not send the chunk for that association. But it will not
551 * affect other associations.
552 *
553 * Only sctp_setsockopt_bindx() is supposed to call this function.
554 */
555static int sctp_send_asconf_add_ip(struct sock *sk,
556 struct sockaddr *addrs,
557 int addrcnt)
558{
559 struct sctp_sock *sp;
560 struct sctp_endpoint *ep;
561 struct sctp_association *asoc;
562 struct sctp_bind_addr *bp;
563 struct sctp_chunk *chunk;
564 struct sctp_sockaddr_entry *laddr;
565 union sctp_addr *addr;
566 union sctp_addr saveaddr;
567 void *addr_buf;
568 struct sctp_af *af;
569 struct list_head *p;
570 int i;
571 int retval = 0;
572
573 sp = sctp_sk(sk);
574 ep = sp->ep;
575
576 if (!ep->asconf_enable)
577 return retval;
578
579 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
580 __func__, sk, addrs, addrcnt);
581
582 list_for_each_entry(asoc, &ep->asocs, asocs) {
583 if (!asoc->peer.asconf_capable)
584 continue;
585
586 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
587 continue;
588
589 if (!sctp_state(asoc, ESTABLISHED))
590 continue;
591
592 /* Check if any address in the packed array of addresses is
593 * in the bind address list of the association. If so,
594 * do not send the asconf chunk to its peer, but continue with
595 * other associations.
596 */
597 addr_buf = addrs;
598 for (i = 0; i < addrcnt; i++) {
599 addr = addr_buf;
600 af = sctp_get_af_specific(addr->v4.sin_family);
601 if (!af) {
602 retval = -EINVAL;
603 goto out;
604 }
605
606 if (sctp_assoc_lookup_laddr(asoc, addr))
607 break;
608
609 addr_buf += af->sockaddr_len;
610 }
611 if (i < addrcnt)
612 continue;
613
614 /* Use the first valid address in bind addr list of
615 * association as Address Parameter of ASCONF CHUNK.
616 */
617 bp = &asoc->base.bind_addr;
618 p = bp->address_list.next;
619 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
620 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
621 addrcnt, SCTP_PARAM_ADD_IP);
622 if (!chunk) {
623 retval = -ENOMEM;
624 goto out;
625 }
626
627 /* Add the new addresses to the bind address list with
628 * use_as_src set to 0.
629 */
630 addr_buf = addrs;
631 for (i = 0; i < addrcnt; i++) {
632 addr = addr_buf;
633 af = sctp_get_af_specific(addr->v4.sin_family);
634 memcpy(&saveaddr, addr, af->sockaddr_len);
635 retval = sctp_add_bind_addr(bp, &saveaddr,
636 sizeof(saveaddr),
637 SCTP_ADDR_NEW, GFP_ATOMIC);
638 addr_buf += af->sockaddr_len;
639 }
640 if (asoc->src_out_of_asoc_ok) {
641 struct sctp_transport *trans;
642
643 list_for_each_entry(trans,
644 &asoc->peer.transport_addr_list, transports) {
645 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
646 2*asoc->pathmtu, 4380));
647 trans->ssthresh = asoc->peer.i.a_rwnd;
648 trans->rto = asoc->rto_initial;
649 sctp_max_rto(asoc, trans);
650 trans->rtt = trans->srtt = trans->rttvar = 0;
651 /* Clear the source and route cache */
652 sctp_transport_route(trans, NULL,
653 sctp_sk(asoc->base.sk));
654 }
655 }
656 retval = sctp_send_asconf(asoc, chunk);
657 }
658
659out:
660 return retval;
661}
662
663/* Remove a list of addresses from bind addresses list. Do not remove the
664 * last address.
665 *
666 * Basically run through each address specified in the addrs/addrcnt
667 * array/length pair, determine if it is IPv6 or IPv4 and call
668 * sctp_del_bind() on it.
669 *
670 * If any of them fails, then the operation will be reversed and the
671 * ones that were removed will be added back.
672 *
673 * At least one address has to be left; if only one address is
674 * available, the operation will return -EBUSY.
675 *
676 * Only sctp_setsockopt_bindx() is supposed to call this function.
677 */
678static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
679{
680 struct sctp_sock *sp = sctp_sk(sk);
681 struct sctp_endpoint *ep = sp->ep;
682 int cnt;
683 struct sctp_bind_addr *bp = &ep->base.bind_addr;
684 int retval = 0;
685 void *addr_buf;
686 union sctp_addr *sa_addr;
687 struct sctp_af *af;
688
689 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
690 __func__, sk, addrs, addrcnt);
691
692 addr_buf = addrs;
693 for (cnt = 0; cnt < addrcnt; cnt++) {
694 /* If the bind address list is empty or if there is only one
695 * bind address, there is nothing more to be removed (we need
696 * at least one address here).
697 */
698 if (list_empty(&bp->address_list) ||
699 (sctp_list_single_entry(&bp->address_list))) {
700 retval = -EBUSY;
701 goto err_bindx_rem;
702 }
703
704 sa_addr = addr_buf;
705 af = sctp_get_af_specific(sa_addr->sa.sa_family);
706 if (!af) {
707 retval = -EINVAL;
708 goto err_bindx_rem;
709 }
710
711 if (!af->addr_valid(sa_addr, sp, NULL)) {
712 retval = -EADDRNOTAVAIL;
713 goto err_bindx_rem;
714 }
715
716 if (sa_addr->v4.sin_port &&
717 sa_addr->v4.sin_port != htons(bp->port)) {
718 retval = -EINVAL;
719 goto err_bindx_rem;
720 }
721
722 if (!sa_addr->v4.sin_port)
723 sa_addr->v4.sin_port = htons(bp->port);
724
725 /* FIXME - There is probably a need to check if sk->sk_saddr and
726 * sk->sk_rcv_addr are currently set to one of the addresses to
727 * be removed. This is something which needs to be looked into
728 * when we are fixing the outstanding issues with multi-homing
729 * socket routing and failover schemes. Refer to comments in
730 * sctp_do_bind(). -daisy
731 */
732 retval = sctp_del_bind_addr(bp, sa_addr);
733
734 addr_buf += af->sockaddr_len;
735err_bindx_rem:
736 if (retval < 0) {
737 /* Failed. Add the ones that has been removed back */
738 if (cnt > 0)
739 sctp_bindx_add(sk, addrs, cnt);
740 return retval;
741 }
742 }
743
744 return retval;
745}
746
747/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
748 * the associations that are part of the endpoint indicating that a list of
749 * local addresses are removed from the endpoint.
750 *
751 * If any of the addresses is already in the bind address list of the
752 * association, we do not send the chunk for that association. But it will not
753 * affect other associations.
754 *
755 * Only sctp_setsockopt_bindx() is supposed to call this function.
756 */
757static int sctp_send_asconf_del_ip(struct sock *sk,
758 struct sockaddr *addrs,
759 int addrcnt)
760{
761 struct sctp_sock *sp;
762 struct sctp_endpoint *ep;
763 struct sctp_association *asoc;
764 struct sctp_transport *transport;
765 struct sctp_bind_addr *bp;
766 struct sctp_chunk *chunk;
767 union sctp_addr *laddr;
768 void *addr_buf;
769 struct sctp_af *af;
770 struct sctp_sockaddr_entry *saddr;
771 int i;
772 int retval = 0;
773 int stored = 0;
774
775 chunk = NULL;
776 sp = sctp_sk(sk);
777 ep = sp->ep;
778
779 if (!ep->asconf_enable)
780 return retval;
781
782 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
783 __func__, sk, addrs, addrcnt);
784
785 list_for_each_entry(asoc, &ep->asocs, asocs) {
786
787 if (!asoc->peer.asconf_capable)
788 continue;
789
790 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
791 continue;
792
793 if (!sctp_state(asoc, ESTABLISHED))
794 continue;
795
796 /* Check if any address in the packed array of addresses is
797 * not present in the bind address list of the association.
798 * If so, do not send the asconf chunk to its peer, but
799 * continue with other associations.
800 */
801 addr_buf = addrs;
802 for (i = 0; i < addrcnt; i++) {
803 laddr = addr_buf;
804 af = sctp_get_af_specific(laddr->v4.sin_family);
805 if (!af) {
806 retval = -EINVAL;
807 goto out;
808 }
809
810 if (!sctp_assoc_lookup_laddr(asoc, laddr))
811 break;
812
813 addr_buf += af->sockaddr_len;
814 }
815 if (i < addrcnt)
816 continue;
817
818 /* Find one address in the association's bind address list
819 * that is not in the packed array of addresses. This is to
820 * make sure that we do not delete all the addresses in the
821 * association.
822 */
823 bp = &asoc->base.bind_addr;
824 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
825 addrcnt, sp);
826 if ((laddr == NULL) && (addrcnt == 1)) {
827 if (asoc->asconf_addr_del_pending)
828 continue;
829 asoc->asconf_addr_del_pending =
830 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
831 if (asoc->asconf_addr_del_pending == NULL) {
832 retval = -ENOMEM;
833 goto out;
834 }
835 asoc->asconf_addr_del_pending->sa.sa_family =
836 addrs->sa_family;
837 asoc->asconf_addr_del_pending->v4.sin_port =
838 htons(bp->port);
839 if (addrs->sa_family == AF_INET) {
840 struct sockaddr_in *sin;
841
842 sin = (struct sockaddr_in *)addrs;
843 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
844 } else if (addrs->sa_family == AF_INET6) {
845 struct sockaddr_in6 *sin6;
846
847 sin6 = (struct sockaddr_in6 *)addrs;
848 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
849 }
850
851 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
852 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
853 asoc->asconf_addr_del_pending);
854
855 asoc->src_out_of_asoc_ok = 1;
856 stored = 1;
857 goto skip_mkasconf;
858 }
859
860 if (laddr == NULL)
861 return -EINVAL;
862
863 /* We do not need RCU protection throughout this loop
864 * because this is done under a socket lock from the
865 * setsockopt call.
866 */
867 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
868 SCTP_PARAM_DEL_IP);
869 if (!chunk) {
870 retval = -ENOMEM;
871 goto out;
872 }
873
874skip_mkasconf:
875 /* Reset use_as_src flag for the addresses in the bind address
876 * list that are to be deleted.
877 */
878 addr_buf = addrs;
879 for (i = 0; i < addrcnt; i++) {
880 laddr = addr_buf;
881 af = sctp_get_af_specific(laddr->v4.sin_family);
882 list_for_each_entry(saddr, &bp->address_list, list) {
883 if (sctp_cmp_addr_exact(&saddr->a, laddr))
884 saddr->state = SCTP_ADDR_DEL;
885 }
886 addr_buf += af->sockaddr_len;
887 }
888
889 /* Update the route and saddr entries for all the transports
890 * as some of the addresses in the bind address list are
891 * about to be deleted and cannot be used as source addresses.
892 */
893 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
894 transports) {
895 sctp_transport_route(transport, NULL,
896 sctp_sk(asoc->base.sk));
897 }
898
899 if (stored)
900 /* We don't need to transmit ASCONF */
901 continue;
902 retval = sctp_send_asconf(asoc, chunk);
903 }
904out:
905 return retval;
906}
907
908/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
909int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
910{
911 struct sock *sk = sctp_opt2sk(sp);
912 union sctp_addr *addr;
913 struct sctp_af *af;
914
915 /* It is safe to write port space in caller. */
916 addr = &addrw->a;
917 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
918 af = sctp_get_af_specific(addr->sa.sa_family);
919 if (!af)
920 return -EINVAL;
921 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
922 return -EINVAL;
923
924 if (addrw->state == SCTP_ADDR_NEW)
925 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
926 else
927 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
928}
929
930/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
931 *
932 * API 8.1
933 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
934 * int flags);
935 *
936 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
937 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
938 * or IPv6 addresses.
939 *
940 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
941 * Section 3.1.2 for this usage.
942 *
943 * addrs is a pointer to an array of one or more socket addresses. Each
944 * address is contained in its appropriate structure (i.e. struct
945 * sockaddr_in or struct sockaddr_in6) the family of the address type
946 * must be used to distinguish the address length (note that this
947 * representation is termed a "packed array" of addresses). The caller
948 * specifies the number of addresses in the array with addrcnt.
949 *
950 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
951 * -1, and sets errno to the appropriate error code.
952 *
953 * For SCTP, the port given in each socket address must be the same, or
954 * sctp_bindx() will fail, setting errno to EINVAL.
955 *
956 * The flags parameter is formed from the bitwise OR of zero or more of
957 * the following currently defined flags:
958 *
959 * SCTP_BINDX_ADD_ADDR
960 *
961 * SCTP_BINDX_REM_ADDR
962 *
963 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
964 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
965 * addresses from the association. The two flags are mutually exclusive;
966 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
967 * not remove all addresses from an association; sctp_bindx() will
968 * reject such an attempt with EINVAL.
969 *
970 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
971 * additional addresses with an endpoint after calling bind(). Or use
972 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
973 * socket is associated with so that no new association accepted will be
974 * associated with those addresses. If the endpoint supports dynamic
975 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
976 * endpoint to send the appropriate message to the peer to change the
977 * peers address lists.
978 *
979 * Adding and removing addresses from a connected association is
980 * optional functionality. Implementations that do not support this
981 * functionality should return EOPNOTSUPP.
982 *
983 * Basically do nothing but copying the addresses from user to kernel
984 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
985 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
986 * from userspace.
987 *
988 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
989 * it.
990 *
991 * sk The sk of the socket
992 * addrs The pointer to the addresses
993 * addrssize Size of the addrs buffer
994 * op Operation to perform (add or remove, see the flags of
995 * sctp_bindx)
996 *
997 * Returns 0 if ok, <0 errno code on error.
998 */
999static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
1000 int addrs_size, int op)
1001{
1002 int err;
1003 int addrcnt = 0;
1004 int walk_size = 0;
1005 struct sockaddr *sa_addr;
1006 void *addr_buf = addrs;
1007 struct sctp_af *af;
1008
1009 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1010 __func__, sk, addr_buf, addrs_size, op);
1011
1012 if (unlikely(addrs_size <= 0))
1013 return -EINVAL;
1014
1015 /* Walk through the addrs buffer and count the number of addresses. */
1016 while (walk_size < addrs_size) {
1017 if (walk_size + sizeof(sa_family_t) > addrs_size)
1018 return -EINVAL;
1019
1020 sa_addr = addr_buf;
1021 af = sctp_get_af_specific(sa_addr->sa_family);
1022
1023 /* If the address family is not supported or if this address
1024 * causes the address buffer to overflow return EINVAL.
1025 */
1026 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1027 return -EINVAL;
1028 addrcnt++;
1029 addr_buf += af->sockaddr_len;
1030 walk_size += af->sockaddr_len;
1031 }
1032
1033 /* Do the work. */
1034 switch (op) {
1035 case SCTP_BINDX_ADD_ADDR:
1036 /* Allow security module to validate bindx addresses. */
1037 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1038 addrs, addrs_size);
1039 if (err)
1040 return err;
1041 err = sctp_bindx_add(sk, addrs, addrcnt);
1042 if (err)
1043 return err;
1044 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1045 case SCTP_BINDX_REM_ADDR:
1046 err = sctp_bindx_rem(sk, addrs, addrcnt);
1047 if (err)
1048 return err;
1049 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1050
1051 default:
1052 return -EINVAL;
1053 }
1054}
1055
1056static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1057 int addrlen)
1058{
1059 int err;
1060
1061 lock_sock(sk);
1062 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1063 release_sock(sk);
1064 return err;
1065}
1066
1067static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1068 const union sctp_addr *daddr,
1069 const struct sctp_initmsg *init,
1070 struct sctp_transport **tp)
1071{
1072 struct sctp_association *asoc;
1073 struct sock *sk = ep->base.sk;
1074 struct net *net = sock_net(sk);
1075 enum sctp_scope scope;
1076 int err;
1077
1078 if (sctp_endpoint_is_peeled_off(ep, daddr))
1079 return -EADDRNOTAVAIL;
1080
1081 if (!ep->base.bind_addr.port) {
1082 if (sctp_autobind(sk))
1083 return -EAGAIN;
1084 } else {
1085 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1086 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1087 return -EACCES;
1088 }
1089
1090 scope = sctp_scope(daddr);
1091 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1092 if (!asoc)
1093 return -ENOMEM;
1094
1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1096 if (err < 0)
1097 goto free;
1098
1099 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1100 if (!*tp) {
1101 err = -ENOMEM;
1102 goto free;
1103 }
1104
1105 if (!init)
1106 return 0;
1107
1108 if (init->sinit_num_ostreams) {
1109 __u16 outcnt = init->sinit_num_ostreams;
1110
1111 asoc->c.sinit_num_ostreams = outcnt;
1112 /* outcnt has been changed, need to re-init stream */
1113 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1114 if (err)
1115 goto free;
1116 }
1117
1118 if (init->sinit_max_instreams)
1119 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1120
1121 if (init->sinit_max_attempts)
1122 asoc->max_init_attempts = init->sinit_max_attempts;
1123
1124 if (init->sinit_max_init_timeo)
1125 asoc->max_init_timeo =
1126 msecs_to_jiffies(init->sinit_max_init_timeo);
1127
1128 return 0;
1129free:
1130 sctp_association_free(asoc);
1131 return err;
1132}
1133
1134static int sctp_connect_add_peer(struct sctp_association *asoc,
1135 union sctp_addr *daddr, int addr_len)
1136{
1137 struct sctp_endpoint *ep = asoc->ep;
1138 struct sctp_association *old;
1139 struct sctp_transport *t;
1140 int err;
1141
1142 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1143 if (err)
1144 return err;
1145
1146 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1147 if (old && old != asoc)
1148 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1149 : -EALREADY;
1150
1151 if (sctp_endpoint_is_peeled_off(ep, daddr))
1152 return -EADDRNOTAVAIL;
1153
1154 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1155 if (!t)
1156 return -ENOMEM;
1157
1158 return 0;
1159}
1160
1161/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1162 *
1163 * Common routine for handling connect() and sctp_connectx().
1164 * Connect will come in with just a single address.
1165 */
1166static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1167 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1168{
1169 struct sctp_sock *sp = sctp_sk(sk);
1170 struct sctp_endpoint *ep = sp->ep;
1171 struct sctp_transport *transport;
1172 struct sctp_association *asoc;
1173 void *addr_buf = kaddrs;
1174 union sctp_addr *daddr;
1175 struct sctp_af *af;
1176 int walk_size, err;
1177 long timeo;
1178
1179 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1180 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1181 return -EISCONN;
1182
1183 daddr = addr_buf;
1184 af = sctp_get_af_specific(daddr->sa.sa_family);
1185 if (!af || af->sockaddr_len > addrs_size)
1186 return -EINVAL;
1187
1188 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1189 if (err)
1190 return err;
1191
1192 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1193 if (asoc)
1194 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1195 : -EALREADY;
1196
1197 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1198 if (err)
1199 return err;
1200 asoc = transport->asoc;
1201
1202 addr_buf += af->sockaddr_len;
1203 walk_size = af->sockaddr_len;
1204 while (walk_size < addrs_size) {
1205 err = -EINVAL;
1206 if (walk_size + sizeof(sa_family_t) > addrs_size)
1207 goto out_free;
1208
1209 daddr = addr_buf;
1210 af = sctp_get_af_specific(daddr->sa.sa_family);
1211 if (!af || af->sockaddr_len + walk_size > addrs_size)
1212 goto out_free;
1213
1214 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1215 goto out_free;
1216
1217 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1218 if (err)
1219 goto out_free;
1220
1221 addr_buf += af->sockaddr_len;
1222 walk_size += af->sockaddr_len;
1223 }
1224
1225 /* In case the user of sctp_connectx() wants an association
1226 * id back, assign one now.
1227 */
1228 if (assoc_id) {
1229 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1230 if (err < 0)
1231 goto out_free;
1232 }
1233
1234 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1235 if (err < 0)
1236 goto out_free;
1237
1238 /* Initialize sk's dport and daddr for getpeername() */
1239 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1240 sp->pf->to_sk_daddr(daddr, sk);
1241 sk->sk_err = 0;
1242
1243 if (assoc_id)
1244 *assoc_id = asoc->assoc_id;
1245
1246 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1247 return sctp_wait_for_connect(asoc, &timeo);
1248
1249out_free:
1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 __func__, asoc, kaddrs, err);
1252 sctp_association_free(asoc);
1253 return err;
1254}
1255
1256/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1257 *
1258 * API 8.9
1259 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1260 * sctp_assoc_t *asoc);
1261 *
1262 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1263 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1264 * or IPv6 addresses.
1265 *
1266 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1267 * Section 3.1.2 for this usage.
1268 *
1269 * addrs is a pointer to an array of one or more socket addresses. Each
1270 * address is contained in its appropriate structure (i.e. struct
1271 * sockaddr_in or struct sockaddr_in6) the family of the address type
1272 * must be used to distengish the address length (note that this
1273 * representation is termed a "packed array" of addresses). The caller
1274 * specifies the number of addresses in the array with addrcnt.
1275 *
1276 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1277 * the association id of the new association. On failure, sctp_connectx()
1278 * returns -1, and sets errno to the appropriate error code. The assoc_id
1279 * is not touched by the kernel.
1280 *
1281 * For SCTP, the port given in each socket address must be the same, or
1282 * sctp_connectx() will fail, setting errno to EINVAL.
1283 *
1284 * An application can use sctp_connectx to initiate an association with
1285 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1286 * allows a caller to specify multiple addresses at which a peer can be
1287 * reached. The way the SCTP stack uses the list of addresses to set up
1288 * the association is implementation dependent. This function only
1289 * specifies that the stack will try to make use of all the addresses in
1290 * the list when needed.
1291 *
1292 * Note that the list of addresses passed in is only used for setting up
1293 * the association. It does not necessarily equal the set of addresses
1294 * the peer uses for the resulting association. If the caller wants to
1295 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1296 * retrieve them after the association has been set up.
1297 *
1298 * Basically do nothing but copying the addresses from user to kernel
1299 * land and invoking either sctp_connectx(). This is used for tunneling
1300 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1301 *
1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1303 * it.
1304 *
1305 * sk The sk of the socket
1306 * addrs The pointer to the addresses
1307 * addrssize Size of the addrs buffer
1308 *
1309 * Returns >=0 if ok, <0 errno code on error.
1310 */
1311static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1312 int addrs_size, sctp_assoc_t *assoc_id)
1313{
1314 int err = 0, flags = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, kaddrs, addrs_size);
1318
1319 /* make sure the 1st addr's sa_family is accessible later */
1320 if (unlikely(addrs_size < sizeof(sa_family_t)))
1321 return -EINVAL;
1322
1323 /* Allow security module to validate connectx addresses. */
1324 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1325 (struct sockaddr *)kaddrs,
1326 addrs_size);
1327 if (err)
1328 return err;
1329
1330 /* in-kernel sockets don't generally have a file allocated to them
1331 * if all they do is call sock_create_kern().
1332 */
1333 if (sk->sk_socket->file)
1334 flags = sk->sk_socket->file->f_flags;
1335
1336 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1337}
1338
1339/*
1340 * This is an older interface. It's kept for backward compatibility
1341 * to the option that doesn't provide association id.
1342 */
1343static int sctp_setsockopt_connectx_old(struct sock *sk,
1344 struct sockaddr *kaddrs,
1345 int addrs_size)
1346{
1347 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1348}
1349
1350/*
1351 * New interface for the API. The since the API is done with a socket
1352 * option, to make it simple we feed back the association id is as a return
1353 * indication to the call. Error is always negative and association id is
1354 * always positive.
1355 */
1356static int sctp_setsockopt_connectx(struct sock *sk,
1357 struct sockaddr *kaddrs,
1358 int addrs_size)
1359{
1360 sctp_assoc_t assoc_id = 0;
1361 int err = 0;
1362
1363 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1364
1365 if (err)
1366 return err;
1367 else
1368 return assoc_id;
1369}
1370
1371/*
1372 * New (hopefully final) interface for the API.
1373 * We use the sctp_getaddrs_old structure so that use-space library
1374 * can avoid any unnecessary allocations. The only different part
1375 * is that we store the actual length of the address buffer into the
1376 * addrs_num structure member. That way we can re-use the existing
1377 * code.
1378 */
1379#ifdef CONFIG_COMPAT
1380struct compat_sctp_getaddrs_old {
1381 sctp_assoc_t assoc_id;
1382 s32 addr_num;
1383 compat_uptr_t addrs; /* struct sockaddr * */
1384};
1385#endif
1386
1387static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1388 char __user *optval,
1389 int __user *optlen)
1390{
1391 struct sctp_getaddrs_old param;
1392 sctp_assoc_t assoc_id = 0;
1393 struct sockaddr *kaddrs;
1394 int err = 0;
1395
1396#ifdef CONFIG_COMPAT
1397 if (in_compat_syscall()) {
1398 struct compat_sctp_getaddrs_old param32;
1399
1400 if (len < sizeof(param32))
1401 return -EINVAL;
1402 if (copy_from_user(¶m32, optval, sizeof(param32)))
1403 return -EFAULT;
1404
1405 param.assoc_id = param32.assoc_id;
1406 param.addr_num = param32.addr_num;
1407 param.addrs = compat_ptr(param32.addrs);
1408 } else
1409#endif
1410 {
1411 if (len < sizeof(param))
1412 return -EINVAL;
1413 if (copy_from_user(¶m, optval, sizeof(param)))
1414 return -EFAULT;
1415 }
1416
1417 kaddrs = memdup_user(param.addrs, param.addr_num);
1418 if (IS_ERR(kaddrs))
1419 return PTR_ERR(kaddrs);
1420
1421 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1422 kfree(kaddrs);
1423 if (err == 0 || err == -EINPROGRESS) {
1424 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1425 return -EFAULT;
1426 if (put_user(sizeof(assoc_id), optlen))
1427 return -EFAULT;
1428 }
1429
1430 return err;
1431}
1432
1433/* API 3.1.4 close() - UDP Style Syntax
1434 * Applications use close() to perform graceful shutdown (as described in
1435 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1436 * by a UDP-style socket.
1437 *
1438 * The syntax is
1439 *
1440 * ret = close(int sd);
1441 *
1442 * sd - the socket descriptor of the associations to be closed.
1443 *
1444 * To gracefully shutdown a specific association represented by the
1445 * UDP-style socket, an application should use the sendmsg() call,
1446 * passing no user data, but including the appropriate flag in the
1447 * ancillary data (see Section xxxx).
1448 *
1449 * If sd in the close() call is a branched-off socket representing only
1450 * one association, the shutdown is performed on that association only.
1451 *
1452 * 4.1.6 close() - TCP Style Syntax
1453 *
1454 * Applications use close() to gracefully close down an association.
1455 *
1456 * The syntax is:
1457 *
1458 * int close(int sd);
1459 *
1460 * sd - the socket descriptor of the association to be closed.
1461 *
1462 * After an application calls close() on a socket descriptor, no further
1463 * socket operations will succeed on that descriptor.
1464 *
1465 * API 7.1.4 SO_LINGER
1466 *
1467 * An application using the TCP-style socket can use this option to
1468 * perform the SCTP ABORT primitive. The linger option structure is:
1469 *
1470 * struct linger {
1471 * int l_onoff; // option on/off
1472 * int l_linger; // linger time
1473 * };
1474 *
1475 * To enable the option, set l_onoff to 1. If the l_linger value is set
1476 * to 0, calling close() is the same as the ABORT primitive. If the
1477 * value is set to a negative value, the setsockopt() call will return
1478 * an error. If the value is set to a positive value linger_time, the
1479 * close() can be blocked for at most linger_time ms. If the graceful
1480 * shutdown phase does not finish during this period, close() will
1481 * return but the graceful shutdown phase continues in the system.
1482 */
1483static void sctp_close(struct sock *sk, long timeout)
1484{
1485 struct net *net = sock_net(sk);
1486 struct sctp_endpoint *ep;
1487 struct sctp_association *asoc;
1488 struct list_head *pos, *temp;
1489 unsigned int data_was_unread;
1490
1491 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1492
1493 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1494 sk->sk_shutdown = SHUTDOWN_MASK;
1495 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1496
1497 ep = sctp_sk(sk)->ep;
1498
1499 /* Clean up any skbs sitting on the receive queue. */
1500 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1501 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1502
1503 /* Walk all associations on an endpoint. */
1504 list_for_each_safe(pos, temp, &ep->asocs) {
1505 asoc = list_entry(pos, struct sctp_association, asocs);
1506
1507 if (sctp_style(sk, TCP)) {
1508 /* A closed association can still be in the list if
1509 * it belongs to a TCP-style listening socket that is
1510 * not yet accepted. If so, free it. If not, send an
1511 * ABORT or SHUTDOWN based on the linger options.
1512 */
1513 if (sctp_state(asoc, CLOSED)) {
1514 sctp_association_free(asoc);
1515 continue;
1516 }
1517 }
1518
1519 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1520 !skb_queue_empty(&asoc->ulpq.reasm) ||
1521 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, 0);
1526 sctp_primitive_ABORT(net, asoc, chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(&net->sctp.addr_wq_lock);
1544 bh_lock_sock_nested(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(&net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558}
1559
1560/* Handle EPIPE error. */
1561static int sctp_error(struct sock *sk, int flags, int err)
1562{
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568}
1569
1570/* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593static int sctp_msghdr_parse(const struct msghdr *msg,
1594 struct sctp_cmsgs *cmsgs);
1595
1596static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1597 struct sctp_sndrcvinfo *srinfo,
1598 const struct msghdr *msg, size_t msg_len)
1599{
1600 __u16 sflags;
1601 int err;
1602
1603 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1604 return -EPIPE;
1605
1606 if (msg_len > sk->sk_sndbuf)
1607 return -EMSGSIZE;
1608
1609 memset(cmsgs, 0, sizeof(*cmsgs));
1610 err = sctp_msghdr_parse(msg, cmsgs);
1611 if (err) {
1612 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1613 return err;
1614 }
1615
1616 memset(srinfo, 0, sizeof(*srinfo));
1617 if (cmsgs->srinfo) {
1618 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1619 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1620 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1621 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1622 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1623 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1624 }
1625
1626 if (cmsgs->sinfo) {
1627 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1628 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1629 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1630 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1631 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1632 }
1633
1634 if (cmsgs->prinfo) {
1635 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1636 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1637 cmsgs->prinfo->pr_policy);
1638 }
1639
1640 sflags = srinfo->sinfo_flags;
1641 if (!sflags && msg_len)
1642 return 0;
1643
1644 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1645 return -EINVAL;
1646
1647 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1648 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1649 return -EINVAL;
1650
1651 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1652 return -EINVAL;
1653
1654 return 0;
1655}
1656
1657static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1658 struct sctp_cmsgs *cmsgs,
1659 union sctp_addr *daddr,
1660 struct sctp_transport **tp)
1661{
1662 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1663 struct sctp_association *asoc;
1664 struct cmsghdr *cmsg;
1665 __be32 flowinfo = 0;
1666 struct sctp_af *af;
1667 int err;
1668
1669 *tp = NULL;
1670
1671 if (sflags & (SCTP_EOF | SCTP_ABORT))
1672 return -EINVAL;
1673
1674 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1675 sctp_sstate(sk, CLOSING)))
1676 return -EADDRNOTAVAIL;
1677
1678 /* Label connection socket for first association 1-to-many
1679 * style for client sequence socket()->sendmsg(). This
1680 * needs to be done before sctp_assoc_add_peer() as that will
1681 * set up the initial packet that needs to account for any
1682 * security ip options (CIPSO/CALIPSO) added to the packet.
1683 */
1684 af = sctp_get_af_specific(daddr->sa.sa_family);
1685 if (!af)
1686 return -EINVAL;
1687 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1688 (struct sockaddr *)daddr,
1689 af->sockaddr_len);
1690 if (err < 0)
1691 return err;
1692
1693 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1694 if (err)
1695 return err;
1696 asoc = (*tp)->asoc;
1697
1698 if (!cmsgs->addrs_msg)
1699 return 0;
1700
1701 if (daddr->sa.sa_family == AF_INET6)
1702 flowinfo = daddr->v6.sin6_flowinfo;
1703
1704 /* sendv addr list parse */
1705 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1706 union sctp_addr _daddr;
1707 int dlen;
1708
1709 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1710 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1711 cmsg->cmsg_type != SCTP_DSTADDRV6))
1712 continue;
1713
1714 daddr = &_daddr;
1715 memset(daddr, 0, sizeof(*daddr));
1716 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1717 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1718 if (dlen < sizeof(struct in_addr)) {
1719 err = -EINVAL;
1720 goto free;
1721 }
1722
1723 dlen = sizeof(struct in_addr);
1724 daddr->v4.sin_family = AF_INET;
1725 daddr->v4.sin_port = htons(asoc->peer.port);
1726 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1727 } else {
1728 if (dlen < sizeof(struct in6_addr)) {
1729 err = -EINVAL;
1730 goto free;
1731 }
1732
1733 dlen = sizeof(struct in6_addr);
1734 daddr->v6.sin6_flowinfo = flowinfo;
1735 daddr->v6.sin6_family = AF_INET6;
1736 daddr->v6.sin6_port = htons(asoc->peer.port);
1737 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1738 }
1739
1740 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1741 if (err)
1742 goto free;
1743 }
1744
1745 return 0;
1746
1747free:
1748 sctp_association_free(asoc);
1749 return err;
1750}
1751
1752static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1753 __u16 sflags, struct msghdr *msg,
1754 size_t msg_len)
1755{
1756 struct sock *sk = asoc->base.sk;
1757 struct net *net = sock_net(sk);
1758
1759 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1760 return -EPIPE;
1761
1762 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1763 !sctp_state(asoc, ESTABLISHED))
1764 return 0;
1765
1766 if (sflags & SCTP_EOF) {
1767 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1768 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1769
1770 return 0;
1771 }
1772
1773 if (sflags & SCTP_ABORT) {
1774 struct sctp_chunk *chunk;
1775
1776 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1777 if (!chunk)
1778 return -ENOMEM;
1779
1780 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1781 sctp_primitive_ABORT(net, asoc, chunk);
1782 iov_iter_revert(&msg->msg_iter, msg_len);
1783
1784 return 0;
1785 }
1786
1787 return 1;
1788}
1789
1790static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1791 struct msghdr *msg, size_t msg_len,
1792 struct sctp_transport *transport,
1793 struct sctp_sndrcvinfo *sinfo)
1794{
1795 struct sock *sk = asoc->base.sk;
1796 struct sctp_sock *sp = sctp_sk(sk);
1797 struct net *net = sock_net(sk);
1798 struct sctp_datamsg *datamsg;
1799 bool wait_connect = false;
1800 struct sctp_chunk *chunk;
1801 long timeo;
1802 int err;
1803
1804 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1805 err = -EINVAL;
1806 goto err;
1807 }
1808
1809 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1810 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1811 if (err)
1812 goto err;
1813 }
1814
1815 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1816 err = -EMSGSIZE;
1817 goto err;
1818 }
1819
1820 if (asoc->pmtu_pending) {
1821 if (sp->param_flags & SPP_PMTUD_ENABLE)
1822 sctp_assoc_sync_pmtu(asoc);
1823 asoc->pmtu_pending = 0;
1824 }
1825
1826 if (sctp_wspace(asoc) < (int)msg_len)
1827 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1835 err = -EINVAL;
1836 goto err;
1837 }
1838 }
1839
1840 if (sctp_state(asoc, CLOSED)) {
1841 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1842 if (err)
1843 goto err;
1844
1845 if (asoc->ep->intl_enable) {
1846 timeo = sock_sndtimeo(sk, 0);
1847 err = sctp_wait_for_connect(asoc, &timeo);
1848 if (err) {
1849 err = -ESRCH;
1850 goto err;
1851 }
1852 } else {
1853 wait_connect = true;
1854 }
1855
1856 pr_debug("%s: we associated primitively\n", __func__);
1857 }
1858
1859 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1860 if (IS_ERR(datamsg)) {
1861 err = PTR_ERR(datamsg);
1862 goto err;
1863 }
1864
1865 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1866
1867 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1868 sctp_chunk_hold(chunk);
1869 sctp_set_owner_w(chunk);
1870 chunk->transport = transport;
1871 }
1872
1873 err = sctp_primitive_SEND(net, asoc, datamsg);
1874 if (err) {
1875 sctp_datamsg_free(datamsg);
1876 goto err;
1877 }
1878
1879 pr_debug("%s: we sent primitively\n", __func__);
1880
1881 sctp_datamsg_put(datamsg);
1882
1883 if (unlikely(wait_connect)) {
1884 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1885 sctp_wait_for_connect(asoc, &timeo);
1886 }
1887
1888 err = msg_len;
1889
1890err:
1891 return err;
1892}
1893
1894static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1895 const struct msghdr *msg,
1896 struct sctp_cmsgs *cmsgs)
1897{
1898 union sctp_addr *daddr = NULL;
1899 int err;
1900
1901 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1902 int len = msg->msg_namelen;
1903
1904 if (len > sizeof(*daddr))
1905 len = sizeof(*daddr);
1906
1907 daddr = (union sctp_addr *)msg->msg_name;
1908
1909 err = sctp_verify_addr(sk, daddr, len);
1910 if (err)
1911 return ERR_PTR(err);
1912 }
1913
1914 return daddr;
1915}
1916
1917static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1918 struct sctp_sndrcvinfo *sinfo,
1919 struct sctp_cmsgs *cmsgs)
1920{
1921 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1922 sinfo->sinfo_stream = asoc->default_stream;
1923 sinfo->sinfo_ppid = asoc->default_ppid;
1924 sinfo->sinfo_context = asoc->default_context;
1925 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1926
1927 if (!cmsgs->prinfo)
1928 sinfo->sinfo_flags = asoc->default_flags;
1929 }
1930
1931 if (!cmsgs->srinfo && !cmsgs->prinfo)
1932 sinfo->sinfo_timetolive = asoc->default_timetolive;
1933
1934 if (cmsgs->authinfo) {
1935 /* Reuse sinfo_tsn to indicate that authinfo was set and
1936 * sinfo_ssn to save the keyid on tx path.
1937 */
1938 sinfo->sinfo_tsn = 1;
1939 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1940 }
1941}
1942
1943static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1944{
1945 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1946 struct sctp_transport *transport = NULL;
1947 struct sctp_sndrcvinfo _sinfo, *sinfo;
1948 struct sctp_association *asoc, *tmp;
1949 struct sctp_cmsgs cmsgs;
1950 union sctp_addr *daddr;
1951 bool new = false;
1952 __u16 sflags;
1953 int err;
1954
1955 /* Parse and get snd_info */
1956 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1957 if (err)
1958 goto out;
1959
1960 sinfo = &_sinfo;
1961 sflags = sinfo->sinfo_flags;
1962
1963 /* Get daddr from msg */
1964 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1965 if (IS_ERR(daddr)) {
1966 err = PTR_ERR(daddr);
1967 goto out;
1968 }
1969
1970 lock_sock(sk);
1971
1972 /* SCTP_SENDALL process */
1973 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1974 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1975 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1976 msg_len);
1977 if (err == 0)
1978 continue;
1979 if (err < 0)
1980 goto out_unlock;
1981
1982 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1983
1984 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1985 NULL, sinfo);
1986 if (err < 0)
1987 goto out_unlock;
1988
1989 iov_iter_revert(&msg->msg_iter, err);
1990 }
1991
1992 goto out_unlock;
1993 }
1994
1995 /* Get and check or create asoc */
1996 if (daddr) {
1997 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1998 if (asoc) {
1999 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2000 msg_len);
2001 if (err <= 0)
2002 goto out_unlock;
2003 } else {
2004 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2005 &transport);
2006 if (err)
2007 goto out_unlock;
2008
2009 asoc = transport->asoc;
2010 new = true;
2011 }
2012
2013 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2014 transport = NULL;
2015 } else {
2016 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2017 if (!asoc) {
2018 err = -EPIPE;
2019 goto out_unlock;
2020 }
2021
2022 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2023 if (err <= 0)
2024 goto out_unlock;
2025 }
2026
2027 /* Update snd_info with the asoc */
2028 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2029
2030 /* Send msg to the asoc */
2031 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2032 if (err < 0 && err != -ESRCH && new)
2033 sctp_association_free(asoc);
2034
2035out_unlock:
2036 release_sock(sk);
2037out:
2038 return sctp_error(sk, msg->msg_flags, err);
2039}
2040
2041/* This is an extended version of skb_pull() that removes the data from the
2042 * start of a skb even when data is spread across the list of skb's in the
2043 * frag_list. len specifies the total amount of data that needs to be removed.
2044 * when 'len' bytes could be removed from the skb, it returns 0.
2045 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2046 * could not be removed.
2047 */
2048static int sctp_skb_pull(struct sk_buff *skb, int len)
2049{
2050 struct sk_buff *list;
2051 int skb_len = skb_headlen(skb);
2052 int rlen;
2053
2054 if (len <= skb_len) {
2055 __skb_pull(skb, len);
2056 return 0;
2057 }
2058 len -= skb_len;
2059 __skb_pull(skb, skb_len);
2060
2061 skb_walk_frags(skb, list) {
2062 rlen = sctp_skb_pull(list, len);
2063 skb->len -= (len-rlen);
2064 skb->data_len -= (len-rlen);
2065
2066 if (!rlen)
2067 return 0;
2068
2069 len = rlen;
2070 }
2071
2072 return len;
2073}
2074
2075/* API 3.1.3 recvmsg() - UDP Style Syntax
2076 *
2077 * ssize_t recvmsg(int socket, struct msghdr *message,
2078 * int flags);
2079 *
2080 * socket - the socket descriptor of the endpoint.
2081 * message - pointer to the msghdr structure which contains a single
2082 * user message and possibly some ancillary data.
2083 *
2084 * See Section 5 for complete description of the data
2085 * structures.
2086 *
2087 * flags - flags sent or received with the user message, see Section
2088 * 5 for complete description of the flags.
2089 */
2090static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2091 int flags, int *addr_len)
2092{
2093 struct sctp_ulpevent *event = NULL;
2094 struct sctp_sock *sp = sctp_sk(sk);
2095 struct sk_buff *skb, *head_skb;
2096 int copied;
2097 int err = 0;
2098 int skb_len;
2099
2100 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n",
2101 __func__, sk, msg, len, flags, addr_len);
2102
2103 if (unlikely(flags & MSG_ERRQUEUE))
2104 return inet_recv_error(sk, msg, len, addr_len);
2105
2106 if (sk_can_busy_loop(sk) &&
2107 skb_queue_empty_lockless(&sk->sk_receive_queue))
2108 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2109
2110 lock_sock(sk);
2111
2112 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2113 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2114 err = -ENOTCONN;
2115 goto out;
2116 }
2117
2118 skb = sctp_skb_recv_datagram(sk, flags, &err);
2119 if (!skb)
2120 goto out;
2121
2122 /* Get the total length of the skb including any skb's in the
2123 * frag_list.
2124 */
2125 skb_len = skb->len;
2126
2127 copied = skb_len;
2128 if (copied > len)
2129 copied = len;
2130
2131 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2132
2133 event = sctp_skb2event(skb);
2134
2135 if (err)
2136 goto out_free;
2137
2138 if (event->chunk && event->chunk->head_skb)
2139 head_skb = event->chunk->head_skb;
2140 else
2141 head_skb = skb;
2142 sock_recv_cmsgs(msg, sk, head_skb);
2143 if (sctp_ulpevent_is_notification(event)) {
2144 msg->msg_flags |= MSG_NOTIFICATION;
2145 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2146 } else {
2147 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2148 }
2149
2150 /* Check if we allow SCTP_NXTINFO. */
2151 if (sp->recvnxtinfo)
2152 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2153 /* Check if we allow SCTP_RCVINFO. */
2154 if (sp->recvrcvinfo)
2155 sctp_ulpevent_read_rcvinfo(event, msg);
2156 /* Check if we allow SCTP_SNDRCVINFO. */
2157 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2158 sctp_ulpevent_read_sndrcvinfo(event, msg);
2159
2160 err = copied;
2161
2162 /* If skb's length exceeds the user's buffer, update the skb and
2163 * push it back to the receive_queue so that the next call to
2164 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2165 */
2166 if (skb_len > copied) {
2167 msg->msg_flags &= ~MSG_EOR;
2168 if (flags & MSG_PEEK)
2169 goto out_free;
2170 sctp_skb_pull(skb, copied);
2171 skb_queue_head(&sk->sk_receive_queue, skb);
2172
2173 /* When only partial message is copied to the user, increase
2174 * rwnd by that amount. If all the data in the skb is read,
2175 * rwnd is updated when the event is freed.
2176 */
2177 if (!sctp_ulpevent_is_notification(event))
2178 sctp_assoc_rwnd_increase(event->asoc, copied);
2179 goto out;
2180 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2181 (event->msg_flags & MSG_EOR))
2182 msg->msg_flags |= MSG_EOR;
2183 else
2184 msg->msg_flags &= ~MSG_EOR;
2185
2186out_free:
2187 if (flags & MSG_PEEK) {
2188 /* Release the skb reference acquired after peeking the skb in
2189 * sctp_skb_recv_datagram().
2190 */
2191 kfree_skb(skb);
2192 } else {
2193 /* Free the event which includes releasing the reference to
2194 * the owner of the skb, freeing the skb and updating the
2195 * rwnd.
2196 */
2197 sctp_ulpevent_free(event);
2198 }
2199out:
2200 release_sock(sk);
2201 return err;
2202}
2203
2204/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2205 *
2206 * This option is a on/off flag. If enabled no SCTP message
2207 * fragmentation will be performed. Instead if a message being sent
2208 * exceeds the current PMTU size, the message will NOT be sent and
2209 * instead a error will be indicated to the user.
2210 */
2211static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2212 unsigned int optlen)
2213{
2214 if (optlen < sizeof(int))
2215 return -EINVAL;
2216 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2217 return 0;
2218}
2219
2220static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2221 unsigned int optlen)
2222{
2223 struct sctp_sock *sp = sctp_sk(sk);
2224 struct sctp_association *asoc;
2225 int i;
2226
2227 if (optlen > sizeof(struct sctp_event_subscribe))
2228 return -EINVAL;
2229
2230 for (i = 0; i < optlen; i++)
2231 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2232 sn_type[i]);
2233
2234 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2235 asoc->subscribe = sctp_sk(sk)->subscribe;
2236
2237 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2238 * if there is no data to be sent or retransmit, the stack will
2239 * immediately send up this notification.
2240 */
2241 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2242 struct sctp_ulpevent *event;
2243
2244 asoc = sctp_id2assoc(sk, 0);
2245 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2246 event = sctp_ulpevent_make_sender_dry_event(asoc,
2247 GFP_USER | __GFP_NOWARN);
2248 if (!event)
2249 return -ENOMEM;
2250
2251 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2252 }
2253 }
2254
2255 return 0;
2256}
2257
2258/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2259 *
2260 * This socket option is applicable to the UDP-style socket only. When
2261 * set it will cause associations that are idle for more than the
2262 * specified number of seconds to automatically close. An association
2263 * being idle is defined an association that has NOT sent or received
2264 * user data. The special value of '0' indicates that no automatic
2265 * close of any associations should be performed. The option expects an
2266 * integer defining the number of seconds of idle time before an
2267 * association is closed.
2268 */
2269static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2270 unsigned int optlen)
2271{
2272 struct sctp_sock *sp = sctp_sk(sk);
2273 struct net *net = sock_net(sk);
2274
2275 /* Applicable to UDP-style socket only */
2276 if (sctp_style(sk, TCP))
2277 return -EOPNOTSUPP;
2278 if (optlen != sizeof(int))
2279 return -EINVAL;
2280
2281 sp->autoclose = *optval;
2282 if (sp->autoclose > net->sctp.max_autoclose)
2283 sp->autoclose = net->sctp.max_autoclose;
2284
2285 return 0;
2286}
2287
2288/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2289 *
2290 * Applications can enable or disable heartbeats for any peer address of
2291 * an association, modify an address's heartbeat interval, force a
2292 * heartbeat to be sent immediately, and adjust the address's maximum
2293 * number of retransmissions sent before an address is considered
2294 * unreachable. The following structure is used to access and modify an
2295 * address's parameters:
2296 *
2297 * struct sctp_paddrparams {
2298 * sctp_assoc_t spp_assoc_id;
2299 * struct sockaddr_storage spp_address;
2300 * uint32_t spp_hbinterval;
2301 * uint16_t spp_pathmaxrxt;
2302 * uint32_t spp_pathmtu;
2303 * uint32_t spp_sackdelay;
2304 * uint32_t spp_flags;
2305 * uint32_t spp_ipv6_flowlabel;
2306 * uint8_t spp_dscp;
2307 * };
2308 *
2309 * spp_assoc_id - (one-to-many style socket) This is filled in the
2310 * application, and identifies the association for
2311 * this query.
2312 * spp_address - This specifies which address is of interest.
2313 * spp_hbinterval - This contains the value of the heartbeat interval,
2314 * in milliseconds. If a value of zero
2315 * is present in this field then no changes are to
2316 * be made to this parameter.
2317 * spp_pathmaxrxt - This contains the maximum number of
2318 * retransmissions before this address shall be
2319 * considered unreachable. If a value of zero
2320 * is present in this field then no changes are to
2321 * be made to this parameter.
2322 * spp_pathmtu - When Path MTU discovery is disabled the value
2323 * specified here will be the "fixed" path mtu.
2324 * Note that if the spp_address field is empty
2325 * then all associations on this address will
2326 * have this fixed path mtu set upon them.
2327 *
2328 * spp_sackdelay - When delayed sack is enabled, this value specifies
2329 * the number of milliseconds that sacks will be delayed
2330 * for. This value will apply to all addresses of an
2331 * association if the spp_address field is empty. Note
2332 * also, that if delayed sack is enabled and this
2333 * value is set to 0, no change is made to the last
2334 * recorded delayed sack timer value.
2335 *
2336 * spp_flags - These flags are used to control various features
2337 * on an association. The flag field may contain
2338 * zero or more of the following options.
2339 *
2340 * SPP_HB_ENABLE - Enable heartbeats on the
2341 * specified address. Note that if the address
2342 * field is empty all addresses for the association
2343 * have heartbeats enabled upon them.
2344 *
2345 * SPP_HB_DISABLE - Disable heartbeats on the
2346 * speicifed address. Note that if the address
2347 * field is empty all addresses for the association
2348 * will have their heartbeats disabled. Note also
2349 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2350 * mutually exclusive, only one of these two should
2351 * be specified. Enabling both fields will have
2352 * undetermined results.
2353 *
2354 * SPP_HB_DEMAND - Request a user initiated heartbeat
2355 * to be made immediately.
2356 *
2357 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2358 * heartbeat delayis to be set to the value of 0
2359 * milliseconds.
2360 *
2361 * SPP_PMTUD_ENABLE - This field will enable PMTU
2362 * discovery upon the specified address. Note that
2363 * if the address feild is empty then all addresses
2364 * on the association are effected.
2365 *
2366 * SPP_PMTUD_DISABLE - This field will disable PMTU
2367 * discovery upon the specified address. Note that
2368 * if the address feild is empty then all addresses
2369 * on the association are effected. Not also that
2370 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2371 * exclusive. Enabling both will have undetermined
2372 * results.
2373 *
2374 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2375 * on delayed sack. The time specified in spp_sackdelay
2376 * is used to specify the sack delay for this address. Note
2377 * that if spp_address is empty then all addresses will
2378 * enable delayed sack and take on the sack delay
2379 * value specified in spp_sackdelay.
2380 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2381 * off delayed sack. If the spp_address field is blank then
2382 * delayed sack is disabled for the entire association. Note
2383 * also that this field is mutually exclusive to
2384 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2385 * results.
2386 *
2387 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2388 * setting of the IPV6 flow label value. The value is
2389 * contained in the spp_ipv6_flowlabel field.
2390 * Upon retrieval, this flag will be set to indicate that
2391 * the spp_ipv6_flowlabel field has a valid value returned.
2392 * If a specific destination address is set (in the
2393 * spp_address field), then the value returned is that of
2394 * the address. If just an association is specified (and
2395 * no address), then the association's default flow label
2396 * is returned. If neither an association nor a destination
2397 * is specified, then the socket's default flow label is
2398 * returned. For non-IPv6 sockets, this flag will be left
2399 * cleared.
2400 *
2401 * SPP_DSCP: Setting this flag enables the setting of the
2402 * Differentiated Services Code Point (DSCP) value
2403 * associated with either the association or a specific
2404 * address. The value is obtained in the spp_dscp field.
2405 * Upon retrieval, this flag will be set to indicate that
2406 * the spp_dscp field has a valid value returned. If a
2407 * specific destination address is set when called (in the
2408 * spp_address field), then that specific destination
2409 * address's DSCP value is returned. If just an association
2410 * is specified, then the association's default DSCP is
2411 * returned. If neither an association nor a destination is
2412 * specified, then the socket's default DSCP is returned.
2413 *
2414 * spp_ipv6_flowlabel
2415 * - This field is used in conjunction with the
2416 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2417 * The 20 least significant bits are used for the flow
2418 * label. This setting has precedence over any IPv6-layer
2419 * setting.
2420 *
2421 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2422 * and contains the DSCP. The 6 most significant bits are
2423 * used for the DSCP. This setting has precedence over any
2424 * IPv4- or IPv6- layer setting.
2425 */
2426static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2427 struct sctp_transport *trans,
2428 struct sctp_association *asoc,
2429 struct sctp_sock *sp,
2430 int hb_change,
2431 int pmtud_change,
2432 int sackdelay_change)
2433{
2434 int error;
2435
2436 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2437 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2438 trans->asoc, trans);
2439 if (error)
2440 return error;
2441 }
2442
2443 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2444 * this field is ignored. Note also that a value of zero indicates
2445 * the current setting should be left unchanged.
2446 */
2447 if (params->spp_flags & SPP_HB_ENABLE) {
2448
2449 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2450 * set. This lets us use 0 value when this flag
2451 * is set.
2452 */
2453 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2454 params->spp_hbinterval = 0;
2455
2456 if (params->spp_hbinterval ||
2457 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2458 if (trans) {
2459 trans->hbinterval =
2460 msecs_to_jiffies(params->spp_hbinterval);
2461 sctp_transport_reset_hb_timer(trans);
2462 } else if (asoc) {
2463 asoc->hbinterval =
2464 msecs_to_jiffies(params->spp_hbinterval);
2465 } else {
2466 sp->hbinterval = params->spp_hbinterval;
2467 }
2468 }
2469 }
2470
2471 if (hb_change) {
2472 if (trans) {
2473 trans->param_flags =
2474 (trans->param_flags & ~SPP_HB) | hb_change;
2475 } else if (asoc) {
2476 asoc->param_flags =
2477 (asoc->param_flags & ~SPP_HB) | hb_change;
2478 } else {
2479 sp->param_flags =
2480 (sp->param_flags & ~SPP_HB) | hb_change;
2481 }
2482 }
2483
2484 /* When Path MTU discovery is disabled the value specified here will
2485 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2486 * include the flag SPP_PMTUD_DISABLE for this field to have any
2487 * effect).
2488 */
2489 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2490 if (trans) {
2491 trans->pathmtu = params->spp_pathmtu;
2492 sctp_assoc_sync_pmtu(asoc);
2493 } else if (asoc) {
2494 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2495 } else {
2496 sp->pathmtu = params->spp_pathmtu;
2497 }
2498 }
2499
2500 if (pmtud_change) {
2501 if (trans) {
2502 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2503 (params->spp_flags & SPP_PMTUD_ENABLE);
2504 trans->param_flags =
2505 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 if (update) {
2507 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2508 sctp_assoc_sync_pmtu(asoc);
2509 }
2510 sctp_transport_pl_reset(trans);
2511 } else if (asoc) {
2512 asoc->param_flags =
2513 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2514 } else {
2515 sp->param_flags =
2516 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2517 }
2518 }
2519
2520 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2521 * value of this field is ignored. Note also that a value of zero
2522 * indicates the current setting should be left unchanged.
2523 */
2524 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2525 if (trans) {
2526 trans->sackdelay =
2527 msecs_to_jiffies(params->spp_sackdelay);
2528 } else if (asoc) {
2529 asoc->sackdelay =
2530 msecs_to_jiffies(params->spp_sackdelay);
2531 } else {
2532 sp->sackdelay = params->spp_sackdelay;
2533 }
2534 }
2535
2536 if (sackdelay_change) {
2537 if (trans) {
2538 trans->param_flags =
2539 (trans->param_flags & ~SPP_SACKDELAY) |
2540 sackdelay_change;
2541 } else if (asoc) {
2542 asoc->param_flags =
2543 (asoc->param_flags & ~SPP_SACKDELAY) |
2544 sackdelay_change;
2545 } else {
2546 sp->param_flags =
2547 (sp->param_flags & ~SPP_SACKDELAY) |
2548 sackdelay_change;
2549 }
2550 }
2551
2552 /* Note that a value of zero indicates the current setting should be
2553 left unchanged.
2554 */
2555 if (params->spp_pathmaxrxt) {
2556 if (trans) {
2557 trans->pathmaxrxt = params->spp_pathmaxrxt;
2558 } else if (asoc) {
2559 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2560 } else {
2561 sp->pathmaxrxt = params->spp_pathmaxrxt;
2562 }
2563 }
2564
2565 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2566 if (trans) {
2567 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2568 trans->flowlabel = params->spp_ipv6_flowlabel &
2569 SCTP_FLOWLABEL_VAL_MASK;
2570 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2571 }
2572 } else if (asoc) {
2573 struct sctp_transport *t;
2574
2575 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2576 transports) {
2577 if (t->ipaddr.sa.sa_family != AF_INET6)
2578 continue;
2579 t->flowlabel = params->spp_ipv6_flowlabel &
2580 SCTP_FLOWLABEL_VAL_MASK;
2581 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2582 }
2583 asoc->flowlabel = params->spp_ipv6_flowlabel &
2584 SCTP_FLOWLABEL_VAL_MASK;
2585 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2586 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2587 sp->flowlabel = params->spp_ipv6_flowlabel &
2588 SCTP_FLOWLABEL_VAL_MASK;
2589 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2590 }
2591 }
2592
2593 if (params->spp_flags & SPP_DSCP) {
2594 if (trans) {
2595 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 trans->dscp |= SCTP_DSCP_SET_MASK;
2597 } else if (asoc) {
2598 struct sctp_transport *t;
2599
2600 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2601 transports) {
2602 t->dscp = params->spp_dscp &
2603 SCTP_DSCP_VAL_MASK;
2604 t->dscp |= SCTP_DSCP_SET_MASK;
2605 }
2606 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2607 asoc->dscp |= SCTP_DSCP_SET_MASK;
2608 } else {
2609 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2610 sp->dscp |= SCTP_DSCP_SET_MASK;
2611 }
2612 }
2613
2614 return 0;
2615}
2616
2617static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2618 struct sctp_paddrparams *params,
2619 unsigned int optlen)
2620{
2621 struct sctp_transport *trans = NULL;
2622 struct sctp_association *asoc = NULL;
2623 struct sctp_sock *sp = sctp_sk(sk);
2624 int error;
2625 int hb_change, pmtud_change, sackdelay_change;
2626
2627 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2628 spp_ipv6_flowlabel), 4)) {
2629 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2630 return -EINVAL;
2631 } else if (optlen != sizeof(*params)) {
2632 return -EINVAL;
2633 }
2634
2635 /* Validate flags and value parameters. */
2636 hb_change = params->spp_flags & SPP_HB;
2637 pmtud_change = params->spp_flags & SPP_PMTUD;
2638 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2639
2640 if (hb_change == SPP_HB ||
2641 pmtud_change == SPP_PMTUD ||
2642 sackdelay_change == SPP_SACKDELAY ||
2643 params->spp_sackdelay > 500 ||
2644 (params->spp_pathmtu &&
2645 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2646 return -EINVAL;
2647
2648 /* If an address other than INADDR_ANY is specified, and
2649 * no transport is found, then the request is invalid.
2650 */
2651 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2652 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2653 params->spp_assoc_id);
2654 if (!trans)
2655 return -EINVAL;
2656 }
2657
2658 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2659 * socket is a one to many style socket, and an association
2660 * was not found, then the id was invalid.
2661 */
2662 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2663 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2664 sctp_style(sk, UDP))
2665 return -EINVAL;
2666
2667 /* Heartbeat demand can only be sent on a transport or
2668 * association, but not a socket.
2669 */
2670 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2671 return -EINVAL;
2672
2673 /* Process parameters. */
2674 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2675 hb_change, pmtud_change,
2676 sackdelay_change);
2677
2678 if (error)
2679 return error;
2680
2681 /* If changes are for association, also apply parameters to each
2682 * transport.
2683 */
2684 if (!trans && asoc) {
2685 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2686 transports) {
2687 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2688 hb_change, pmtud_change,
2689 sackdelay_change);
2690 }
2691 }
2692
2693 return 0;
2694}
2695
2696static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2697{
2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2699}
2700
2701static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2702{
2703 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2704}
2705
2706static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2707 struct sctp_association *asoc)
2708{
2709 struct sctp_transport *trans;
2710
2711 if (params->sack_delay) {
2712 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2713 asoc->param_flags =
2714 sctp_spp_sackdelay_enable(asoc->param_flags);
2715 }
2716 if (params->sack_freq == 1) {
2717 asoc->param_flags =
2718 sctp_spp_sackdelay_disable(asoc->param_flags);
2719 } else if (params->sack_freq > 1) {
2720 asoc->sackfreq = params->sack_freq;
2721 asoc->param_flags =
2722 sctp_spp_sackdelay_enable(asoc->param_flags);
2723 }
2724
2725 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2726 transports) {
2727 if (params->sack_delay) {
2728 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2729 trans->param_flags =
2730 sctp_spp_sackdelay_enable(trans->param_flags);
2731 }
2732 if (params->sack_freq == 1) {
2733 trans->param_flags =
2734 sctp_spp_sackdelay_disable(trans->param_flags);
2735 } else if (params->sack_freq > 1) {
2736 trans->sackfreq = params->sack_freq;
2737 trans->param_flags =
2738 sctp_spp_sackdelay_enable(trans->param_flags);
2739 }
2740 }
2741}
2742
2743/*
2744 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2745 *
2746 * This option will effect the way delayed acks are performed. This
2747 * option allows you to get or set the delayed ack time, in
2748 * milliseconds. It also allows changing the delayed ack frequency.
2749 * Changing the frequency to 1 disables the delayed sack algorithm. If
2750 * the assoc_id is 0, then this sets or gets the endpoints default
2751 * values. If the assoc_id field is non-zero, then the set or get
2752 * effects the specified association for the one to many model (the
2753 * assoc_id field is ignored by the one to one model). Note that if
2754 * sack_delay or sack_freq are 0 when setting this option, then the
2755 * current values will remain unchanged.
2756 *
2757 * struct sctp_sack_info {
2758 * sctp_assoc_t sack_assoc_id;
2759 * uint32_t sack_delay;
2760 * uint32_t sack_freq;
2761 * };
2762 *
2763 * sack_assoc_id - This parameter, indicates which association the user
2764 * is performing an action upon. Note that if this field's value is
2765 * zero then the endpoints default value is changed (effecting future
2766 * associations only).
2767 *
2768 * sack_delay - This parameter contains the number of milliseconds that
2769 * the user is requesting the delayed ACK timer be set to. Note that
2770 * this value is defined in the standard to be between 200 and 500
2771 * milliseconds.
2772 *
2773 * sack_freq - This parameter contains the number of packets that must
2774 * be received before a sack is sent without waiting for the delay
2775 * timer to expire. The default value for this is 2, setting this
2776 * value to 1 will disable the delayed sack algorithm.
2777 */
2778static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2779 struct sctp_sack_info *params)
2780{
2781 struct sctp_sock *sp = sctp_sk(sk);
2782 struct sctp_association *asoc;
2783
2784 /* Validate value parameter. */
2785 if (params->sack_delay > 500)
2786 return -EINVAL;
2787
2788 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2789 * socket is a one to many style socket, and an association
2790 * was not found, then the id was invalid.
2791 */
2792 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2793 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2794 sctp_style(sk, UDP))
2795 return -EINVAL;
2796
2797 if (asoc) {
2798 sctp_apply_asoc_delayed_ack(params, asoc);
2799
2800 return 0;
2801 }
2802
2803 if (sctp_style(sk, TCP))
2804 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2805
2806 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2807 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2808 if (params->sack_delay) {
2809 sp->sackdelay = params->sack_delay;
2810 sp->param_flags =
2811 sctp_spp_sackdelay_enable(sp->param_flags);
2812 }
2813 if (params->sack_freq == 1) {
2814 sp->param_flags =
2815 sctp_spp_sackdelay_disable(sp->param_flags);
2816 } else if (params->sack_freq > 1) {
2817 sp->sackfreq = params->sack_freq;
2818 sp->param_flags =
2819 sctp_spp_sackdelay_enable(sp->param_flags);
2820 }
2821 }
2822
2823 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2824 params->sack_assoc_id == SCTP_ALL_ASSOC)
2825 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2826 sctp_apply_asoc_delayed_ack(params, asoc);
2827
2828 return 0;
2829}
2830
2831static int sctp_setsockopt_delayed_ack(struct sock *sk,
2832 struct sctp_sack_info *params,
2833 unsigned int optlen)
2834{
2835 if (optlen == sizeof(struct sctp_assoc_value)) {
2836 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2837 struct sctp_sack_info p;
2838
2839 pr_warn_ratelimited(DEPRECATED
2840 "%s (pid %d) "
2841 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2842 "Use struct sctp_sack_info instead\n",
2843 current->comm, task_pid_nr(current));
2844
2845 p.sack_assoc_id = v->assoc_id;
2846 p.sack_delay = v->assoc_value;
2847 p.sack_freq = v->assoc_value ? 0 : 1;
2848 return __sctp_setsockopt_delayed_ack(sk, &p);
2849 }
2850
2851 if (optlen != sizeof(struct sctp_sack_info))
2852 return -EINVAL;
2853 if (params->sack_delay == 0 && params->sack_freq == 0)
2854 return 0;
2855 return __sctp_setsockopt_delayed_ack(sk, params);
2856}
2857
2858/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2859 *
2860 * Applications can specify protocol parameters for the default association
2861 * initialization. The option name argument to setsockopt() and getsockopt()
2862 * is SCTP_INITMSG.
2863 *
2864 * Setting initialization parameters is effective only on an unconnected
2865 * socket (for UDP-style sockets only future associations are effected
2866 * by the change). With TCP-style sockets, this option is inherited by
2867 * sockets derived from a listener socket.
2868 */
2869static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2870 unsigned int optlen)
2871{
2872 struct sctp_sock *sp = sctp_sk(sk);
2873
2874 if (optlen != sizeof(struct sctp_initmsg))
2875 return -EINVAL;
2876
2877 if (sinit->sinit_num_ostreams)
2878 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2879 if (sinit->sinit_max_instreams)
2880 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2881 if (sinit->sinit_max_attempts)
2882 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2883 if (sinit->sinit_max_init_timeo)
2884 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2885
2886 return 0;
2887}
2888
2889/*
2890 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2891 *
2892 * Applications that wish to use the sendto() system call may wish to
2893 * specify a default set of parameters that would normally be supplied
2894 * through the inclusion of ancillary data. This socket option allows
2895 * such an application to set the default sctp_sndrcvinfo structure.
2896 * The application that wishes to use this socket option simply passes
2897 * in to this call the sctp_sndrcvinfo structure defined in Section
2898 * 5.2.2) The input parameters accepted by this call include
2899 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2900 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2901 * to this call if the caller is using the UDP model.
2902 */
2903static int sctp_setsockopt_default_send_param(struct sock *sk,
2904 struct sctp_sndrcvinfo *info,
2905 unsigned int optlen)
2906{
2907 struct sctp_sock *sp = sctp_sk(sk);
2908 struct sctp_association *asoc;
2909
2910 if (optlen != sizeof(*info))
2911 return -EINVAL;
2912 if (info->sinfo_flags &
2913 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2914 SCTP_ABORT | SCTP_EOF))
2915 return -EINVAL;
2916
2917 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2918 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2919 sctp_style(sk, UDP))
2920 return -EINVAL;
2921
2922 if (asoc) {
2923 asoc->default_stream = info->sinfo_stream;
2924 asoc->default_flags = info->sinfo_flags;
2925 asoc->default_ppid = info->sinfo_ppid;
2926 asoc->default_context = info->sinfo_context;
2927 asoc->default_timetolive = info->sinfo_timetolive;
2928
2929 return 0;
2930 }
2931
2932 if (sctp_style(sk, TCP))
2933 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2934
2935 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2936 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2937 sp->default_stream = info->sinfo_stream;
2938 sp->default_flags = info->sinfo_flags;
2939 sp->default_ppid = info->sinfo_ppid;
2940 sp->default_context = info->sinfo_context;
2941 sp->default_timetolive = info->sinfo_timetolive;
2942 }
2943
2944 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2945 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2946 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2947 asoc->default_stream = info->sinfo_stream;
2948 asoc->default_flags = info->sinfo_flags;
2949 asoc->default_ppid = info->sinfo_ppid;
2950 asoc->default_context = info->sinfo_context;
2951 asoc->default_timetolive = info->sinfo_timetolive;
2952 }
2953 }
2954
2955 return 0;
2956}
2957
2958/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2959 * (SCTP_DEFAULT_SNDINFO)
2960 */
2961static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2962 struct sctp_sndinfo *info,
2963 unsigned int optlen)
2964{
2965 struct sctp_sock *sp = sctp_sk(sk);
2966 struct sctp_association *asoc;
2967
2968 if (optlen != sizeof(*info))
2969 return -EINVAL;
2970 if (info->snd_flags &
2971 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2972 SCTP_ABORT | SCTP_EOF))
2973 return -EINVAL;
2974
2975 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2976 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2977 sctp_style(sk, UDP))
2978 return -EINVAL;
2979
2980 if (asoc) {
2981 asoc->default_stream = info->snd_sid;
2982 asoc->default_flags = info->snd_flags;
2983 asoc->default_ppid = info->snd_ppid;
2984 asoc->default_context = info->snd_context;
2985
2986 return 0;
2987 }
2988
2989 if (sctp_style(sk, TCP))
2990 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2991
2992 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2993 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2994 sp->default_stream = info->snd_sid;
2995 sp->default_flags = info->snd_flags;
2996 sp->default_ppid = info->snd_ppid;
2997 sp->default_context = info->snd_context;
2998 }
2999
3000 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
3001 info->snd_assoc_id == SCTP_ALL_ASSOC) {
3002 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3003 asoc->default_stream = info->snd_sid;
3004 asoc->default_flags = info->snd_flags;
3005 asoc->default_ppid = info->snd_ppid;
3006 asoc->default_context = info->snd_context;
3007 }
3008 }
3009
3010 return 0;
3011}
3012
3013/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3014 *
3015 * Requests that the local SCTP stack use the enclosed peer address as
3016 * the association primary. The enclosed address must be one of the
3017 * association peer's addresses.
3018 */
3019static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3020 unsigned int optlen)
3021{
3022 struct sctp_transport *trans;
3023 struct sctp_af *af;
3024 int err;
3025
3026 if (optlen != sizeof(struct sctp_prim))
3027 return -EINVAL;
3028
3029 /* Allow security module to validate address but need address len. */
3030 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3031 if (!af)
3032 return -EINVAL;
3033
3034 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3035 (struct sockaddr *)&prim->ssp_addr,
3036 af->sockaddr_len);
3037 if (err)
3038 return err;
3039
3040 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3041 if (!trans)
3042 return -EINVAL;
3043
3044 sctp_assoc_set_primary(trans->asoc, trans);
3045
3046 return 0;
3047}
3048
3049/*
3050 * 7.1.5 SCTP_NODELAY
3051 *
3052 * Turn on/off any Nagle-like algorithm. This means that packets are
3053 * generally sent as soon as possible and no unnecessary delays are
3054 * introduced, at the cost of more packets in the network. Expects an
3055 * integer boolean flag.
3056 */
3057static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3058 unsigned int optlen)
3059{
3060 if (optlen < sizeof(int))
3061 return -EINVAL;
3062 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3063 return 0;
3064}
3065
3066/*
3067 *
3068 * 7.1.1 SCTP_RTOINFO
3069 *
3070 * The protocol parameters used to initialize and bound retransmission
3071 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3072 * and modify these parameters.
3073 * All parameters are time values, in milliseconds. A value of 0, when
3074 * modifying the parameters, indicates that the current value should not
3075 * be changed.
3076 *
3077 */
3078static int sctp_setsockopt_rtoinfo(struct sock *sk,
3079 struct sctp_rtoinfo *rtoinfo,
3080 unsigned int optlen)
3081{
3082 struct sctp_association *asoc;
3083 unsigned long rto_min, rto_max;
3084 struct sctp_sock *sp = sctp_sk(sk);
3085
3086 if (optlen != sizeof (struct sctp_rtoinfo))
3087 return -EINVAL;
3088
3089 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3090
3091 /* Set the values to the specific association */
3092 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3093 sctp_style(sk, UDP))
3094 return -EINVAL;
3095
3096 rto_max = rtoinfo->srto_max;
3097 rto_min = rtoinfo->srto_min;
3098
3099 if (rto_max)
3100 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3101 else
3102 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3103
3104 if (rto_min)
3105 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3106 else
3107 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3108
3109 if (rto_min > rto_max)
3110 return -EINVAL;
3111
3112 if (asoc) {
3113 if (rtoinfo->srto_initial != 0)
3114 asoc->rto_initial =
3115 msecs_to_jiffies(rtoinfo->srto_initial);
3116 asoc->rto_max = rto_max;
3117 asoc->rto_min = rto_min;
3118 } else {
3119 /* If there is no association or the association-id = 0
3120 * set the values to the endpoint.
3121 */
3122 if (rtoinfo->srto_initial != 0)
3123 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3124 sp->rtoinfo.srto_max = rto_max;
3125 sp->rtoinfo.srto_min = rto_min;
3126 }
3127
3128 return 0;
3129}
3130
3131/*
3132 *
3133 * 7.1.2 SCTP_ASSOCINFO
3134 *
3135 * This option is used to tune the maximum retransmission attempts
3136 * of the association.
3137 * Returns an error if the new association retransmission value is
3138 * greater than the sum of the retransmission value of the peer.
3139 * See [SCTP] for more information.
3140 *
3141 */
3142static int sctp_setsockopt_associnfo(struct sock *sk,
3143 struct sctp_assocparams *assocparams,
3144 unsigned int optlen)
3145{
3146
3147 struct sctp_association *asoc;
3148
3149 if (optlen != sizeof(struct sctp_assocparams))
3150 return -EINVAL;
3151
3152 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3153
3154 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3155 sctp_style(sk, UDP))
3156 return -EINVAL;
3157
3158 /* Set the values to the specific association */
3159 if (asoc) {
3160 if (assocparams->sasoc_asocmaxrxt != 0) {
3161 __u32 path_sum = 0;
3162 int paths = 0;
3163 struct sctp_transport *peer_addr;
3164
3165 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3166 transports) {
3167 path_sum += peer_addr->pathmaxrxt;
3168 paths++;
3169 }
3170
3171 /* Only validate asocmaxrxt if we have more than
3172 * one path/transport. We do this because path
3173 * retransmissions are only counted when we have more
3174 * then one path.
3175 */
3176 if (paths > 1 &&
3177 assocparams->sasoc_asocmaxrxt > path_sum)
3178 return -EINVAL;
3179
3180 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3181 }
3182
3183 if (assocparams->sasoc_cookie_life != 0)
3184 asoc->cookie_life =
3185 ms_to_ktime(assocparams->sasoc_cookie_life);
3186 } else {
3187 /* Set the values to the endpoint */
3188 struct sctp_sock *sp = sctp_sk(sk);
3189
3190 if (assocparams->sasoc_asocmaxrxt != 0)
3191 sp->assocparams.sasoc_asocmaxrxt =
3192 assocparams->sasoc_asocmaxrxt;
3193 if (assocparams->sasoc_cookie_life != 0)
3194 sp->assocparams.sasoc_cookie_life =
3195 assocparams->sasoc_cookie_life;
3196 }
3197 return 0;
3198}
3199
3200/*
3201 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3202 *
3203 * This socket option is a boolean flag which turns on or off mapped V4
3204 * addresses. If this option is turned on and the socket is type
3205 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3206 * If this option is turned off, then no mapping will be done of V4
3207 * addresses and a user will receive both PF_INET6 and PF_INET type
3208 * addresses on the socket.
3209 */
3210static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3211 unsigned int optlen)
3212{
3213 struct sctp_sock *sp = sctp_sk(sk);
3214
3215 if (optlen < sizeof(int))
3216 return -EINVAL;
3217 if (*val)
3218 sp->v4mapped = 1;
3219 else
3220 sp->v4mapped = 0;
3221
3222 return 0;
3223}
3224
3225/*
3226 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3227 * This option will get or set the maximum size to put in any outgoing
3228 * SCTP DATA chunk. If a message is larger than this size it will be
3229 * fragmented by SCTP into the specified size. Note that the underlying
3230 * SCTP implementation may fragment into smaller sized chunks when the
3231 * PMTU of the underlying association is smaller than the value set by
3232 * the user. The default value for this option is '0' which indicates
3233 * the user is NOT limiting fragmentation and only the PMTU will effect
3234 * SCTP's choice of DATA chunk size. Note also that values set larger
3235 * than the maximum size of an IP datagram will effectively let SCTP
3236 * control fragmentation (i.e. the same as setting this option to 0).
3237 *
3238 * The following structure is used to access and modify this parameter:
3239 *
3240 * struct sctp_assoc_value {
3241 * sctp_assoc_t assoc_id;
3242 * uint32_t assoc_value;
3243 * };
3244 *
3245 * assoc_id: This parameter is ignored for one-to-one style sockets.
3246 * For one-to-many style sockets this parameter indicates which
3247 * association the user is performing an action upon. Note that if
3248 * this field's value is zero then the endpoints default value is
3249 * changed (effecting future associations only).
3250 * assoc_value: This parameter specifies the maximum size in bytes.
3251 */
3252static int sctp_setsockopt_maxseg(struct sock *sk,
3253 struct sctp_assoc_value *params,
3254 unsigned int optlen)
3255{
3256 struct sctp_sock *sp = sctp_sk(sk);
3257 struct sctp_association *asoc;
3258 sctp_assoc_t assoc_id;
3259 int val;
3260
3261 if (optlen == sizeof(int)) {
3262 pr_warn_ratelimited(DEPRECATED
3263 "%s (pid %d) "
3264 "Use of int in maxseg socket option.\n"
3265 "Use struct sctp_assoc_value instead\n",
3266 current->comm, task_pid_nr(current));
3267 assoc_id = SCTP_FUTURE_ASSOC;
3268 val = *(int *)params;
3269 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3270 assoc_id = params->assoc_id;
3271 val = params->assoc_value;
3272 } else {
3273 return -EINVAL;
3274 }
3275
3276 asoc = sctp_id2assoc(sk, assoc_id);
3277 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3278 sctp_style(sk, UDP))
3279 return -EINVAL;
3280
3281 if (val) {
3282 int min_len, max_len;
3283 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3284 sizeof(struct sctp_data_chunk);
3285
3286 min_len = sctp_min_frag_point(sp, datasize);
3287 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3288
3289 if (val < min_len || val > max_len)
3290 return -EINVAL;
3291 }
3292
3293 if (asoc) {
3294 asoc->user_frag = val;
3295 sctp_assoc_update_frag_point(asoc);
3296 } else {
3297 sp->user_frag = val;
3298 }
3299
3300 return 0;
3301}
3302
3303
3304/*
3305 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3306 *
3307 * Requests that the peer mark the enclosed address as the association
3308 * primary. The enclosed address must be one of the association's
3309 * locally bound addresses. The following structure is used to make a
3310 * set primary request:
3311 */
3312static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3313 struct sctp_setpeerprim *prim,
3314 unsigned int optlen)
3315{
3316 struct sctp_sock *sp;
3317 struct sctp_association *asoc = NULL;
3318 struct sctp_chunk *chunk;
3319 struct sctp_af *af;
3320 int err;
3321
3322 sp = sctp_sk(sk);
3323
3324 if (!sp->ep->asconf_enable)
3325 return -EPERM;
3326
3327 if (optlen != sizeof(struct sctp_setpeerprim))
3328 return -EINVAL;
3329
3330 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3331 if (!asoc)
3332 return -EINVAL;
3333
3334 if (!asoc->peer.asconf_capable)
3335 return -EPERM;
3336
3337 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3338 return -EPERM;
3339
3340 if (!sctp_state(asoc, ESTABLISHED))
3341 return -ENOTCONN;
3342
3343 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3344 if (!af)
3345 return -EINVAL;
3346
3347 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3348 return -EADDRNOTAVAIL;
3349
3350 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3351 return -EADDRNOTAVAIL;
3352
3353 /* Allow security module to validate address. */
3354 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3355 (struct sockaddr *)&prim->sspp_addr,
3356 af->sockaddr_len);
3357 if (err)
3358 return err;
3359
3360 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3361 chunk = sctp_make_asconf_set_prim(asoc,
3362 (union sctp_addr *)&prim->sspp_addr);
3363 if (!chunk)
3364 return -ENOMEM;
3365
3366 err = sctp_send_asconf(asoc, chunk);
3367
3368 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3369
3370 return err;
3371}
3372
3373static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3374 struct sctp_setadaptation *adapt,
3375 unsigned int optlen)
3376{
3377 if (optlen != sizeof(struct sctp_setadaptation))
3378 return -EINVAL;
3379
3380 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3381
3382 return 0;
3383}
3384
3385/*
3386 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3387 *
3388 * The context field in the sctp_sndrcvinfo structure is normally only
3389 * used when a failed message is retrieved holding the value that was
3390 * sent down on the actual send call. This option allows the setting of
3391 * a default context on an association basis that will be received on
3392 * reading messages from the peer. This is especially helpful in the
3393 * one-2-many model for an application to keep some reference to an
3394 * internal state machine that is processing messages on the
3395 * association. Note that the setting of this value only effects
3396 * received messages from the peer and does not effect the value that is
3397 * saved with outbound messages.
3398 */
3399static int sctp_setsockopt_context(struct sock *sk,
3400 struct sctp_assoc_value *params,
3401 unsigned int optlen)
3402{
3403 struct sctp_sock *sp = sctp_sk(sk);
3404 struct sctp_association *asoc;
3405
3406 if (optlen != sizeof(struct sctp_assoc_value))
3407 return -EINVAL;
3408
3409 asoc = sctp_id2assoc(sk, params->assoc_id);
3410 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3411 sctp_style(sk, UDP))
3412 return -EINVAL;
3413
3414 if (asoc) {
3415 asoc->default_rcv_context = params->assoc_value;
3416
3417 return 0;
3418 }
3419
3420 if (sctp_style(sk, TCP))
3421 params->assoc_id = SCTP_FUTURE_ASSOC;
3422
3423 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3424 params->assoc_id == SCTP_ALL_ASSOC)
3425 sp->default_rcv_context = params->assoc_value;
3426
3427 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3428 params->assoc_id == SCTP_ALL_ASSOC)
3429 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3430 asoc->default_rcv_context = params->assoc_value;
3431
3432 return 0;
3433}
3434
3435/*
3436 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3437 *
3438 * This options will at a minimum specify if the implementation is doing
3439 * fragmented interleave. Fragmented interleave, for a one to many
3440 * socket, is when subsequent calls to receive a message may return
3441 * parts of messages from different associations. Some implementations
3442 * may allow you to turn this value on or off. If so, when turned off,
3443 * no fragment interleave will occur (which will cause a head of line
3444 * blocking amongst multiple associations sharing the same one to many
3445 * socket). When this option is turned on, then each receive call may
3446 * come from a different association (thus the user must receive data
3447 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3448 * association each receive belongs to.
3449 *
3450 * This option takes a boolean value. A non-zero value indicates that
3451 * fragmented interleave is on. A value of zero indicates that
3452 * fragmented interleave is off.
3453 *
3454 * Note that it is important that an implementation that allows this
3455 * option to be turned on, have it off by default. Otherwise an unaware
3456 * application using the one to many model may become confused and act
3457 * incorrectly.
3458 */
3459static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3460 unsigned int optlen)
3461{
3462 if (optlen != sizeof(int))
3463 return -EINVAL;
3464
3465 sctp_sk(sk)->frag_interleave = !!*val;
3466
3467 if (!sctp_sk(sk)->frag_interleave)
3468 sctp_sk(sk)->ep->intl_enable = 0;
3469
3470 return 0;
3471}
3472
3473/*
3474 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3475 * (SCTP_PARTIAL_DELIVERY_POINT)
3476 *
3477 * This option will set or get the SCTP partial delivery point. This
3478 * point is the size of a message where the partial delivery API will be
3479 * invoked to help free up rwnd space for the peer. Setting this to a
3480 * lower value will cause partial deliveries to happen more often. The
3481 * calls argument is an integer that sets or gets the partial delivery
3482 * point. Note also that the call will fail if the user attempts to set
3483 * this value larger than the socket receive buffer size.
3484 *
3485 * Note that any single message having a length smaller than or equal to
3486 * the SCTP partial delivery point will be delivered in one single read
3487 * call as long as the user provided buffer is large enough to hold the
3488 * message.
3489 */
3490static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3491 unsigned int optlen)
3492{
3493 if (optlen != sizeof(u32))
3494 return -EINVAL;
3495
3496 /* Note: We double the receive buffer from what the user sets
3497 * it to be, also initial rwnd is based on rcvbuf/2.
3498 */
3499 if (*val > (sk->sk_rcvbuf >> 1))
3500 return -EINVAL;
3501
3502 sctp_sk(sk)->pd_point = *val;
3503
3504 return 0; /* is this the right error code? */
3505}
3506
3507/*
3508 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3509 *
3510 * This option will allow a user to change the maximum burst of packets
3511 * that can be emitted by this association. Note that the default value
3512 * is 4, and some implementations may restrict this setting so that it
3513 * can only be lowered.
3514 *
3515 * NOTE: This text doesn't seem right. Do this on a socket basis with
3516 * future associations inheriting the socket value.
3517 */
3518static int sctp_setsockopt_maxburst(struct sock *sk,
3519 struct sctp_assoc_value *params,
3520 unsigned int optlen)
3521{
3522 struct sctp_sock *sp = sctp_sk(sk);
3523 struct sctp_association *asoc;
3524 sctp_assoc_t assoc_id;
3525 u32 assoc_value;
3526
3527 if (optlen == sizeof(int)) {
3528 pr_warn_ratelimited(DEPRECATED
3529 "%s (pid %d) "
3530 "Use of int in max_burst socket option deprecated.\n"
3531 "Use struct sctp_assoc_value instead\n",
3532 current->comm, task_pid_nr(current));
3533 assoc_id = SCTP_FUTURE_ASSOC;
3534 assoc_value = *((int *)params);
3535 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3536 assoc_id = params->assoc_id;
3537 assoc_value = params->assoc_value;
3538 } else
3539 return -EINVAL;
3540
3541 asoc = sctp_id2assoc(sk, assoc_id);
3542 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3543 return -EINVAL;
3544
3545 if (asoc) {
3546 asoc->max_burst = assoc_value;
3547
3548 return 0;
3549 }
3550
3551 if (sctp_style(sk, TCP))
3552 assoc_id = SCTP_FUTURE_ASSOC;
3553
3554 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3555 sp->max_burst = assoc_value;
3556
3557 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3558 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3559 asoc->max_burst = assoc_value;
3560
3561 return 0;
3562}
3563
3564/*
3565 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3566 *
3567 * This set option adds a chunk type that the user is requesting to be
3568 * received only in an authenticated way. Changes to the list of chunks
3569 * will only effect future associations on the socket.
3570 */
3571static int sctp_setsockopt_auth_chunk(struct sock *sk,
3572 struct sctp_authchunk *val,
3573 unsigned int optlen)
3574{
3575 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3576
3577 if (!ep->auth_enable)
3578 return -EACCES;
3579
3580 if (optlen != sizeof(struct sctp_authchunk))
3581 return -EINVAL;
3582
3583 switch (val->sauth_chunk) {
3584 case SCTP_CID_INIT:
3585 case SCTP_CID_INIT_ACK:
3586 case SCTP_CID_SHUTDOWN_COMPLETE:
3587 case SCTP_CID_AUTH:
3588 return -EINVAL;
3589 }
3590
3591 /* add this chunk id to the endpoint */
3592 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3593}
3594
3595/*
3596 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3597 *
3598 * This option gets or sets the list of HMAC algorithms that the local
3599 * endpoint requires the peer to use.
3600 */
3601static int sctp_setsockopt_hmac_ident(struct sock *sk,
3602 struct sctp_hmacalgo *hmacs,
3603 unsigned int optlen)
3604{
3605 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3606 u32 idents;
3607
3608 if (!ep->auth_enable)
3609 return -EACCES;
3610
3611 if (optlen < sizeof(struct sctp_hmacalgo))
3612 return -EINVAL;
3613 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3614 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3615
3616 idents = hmacs->shmac_num_idents;
3617 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3618 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3619 return -EINVAL;
3620
3621 return sctp_auth_ep_set_hmacs(ep, hmacs);
3622}
3623
3624/*
3625 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3626 *
3627 * This option will set a shared secret key which is used to build an
3628 * association shared key.
3629 */
3630static int sctp_setsockopt_auth_key(struct sock *sk,
3631 struct sctp_authkey *authkey,
3632 unsigned int optlen)
3633{
3634 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3635 struct sctp_association *asoc;
3636 int ret = -EINVAL;
3637
3638 if (optlen <= sizeof(struct sctp_authkey))
3639 return -EINVAL;
3640 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3641 * this.
3642 */
3643 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3644
3645 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3646 goto out;
3647
3648 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3649 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3650 sctp_style(sk, UDP))
3651 goto out;
3652
3653 if (asoc) {
3654 ret = sctp_auth_set_key(ep, asoc, authkey);
3655 goto out;
3656 }
3657
3658 if (sctp_style(sk, TCP))
3659 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3660
3661 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3662 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3663 ret = sctp_auth_set_key(ep, asoc, authkey);
3664 if (ret)
3665 goto out;
3666 }
3667
3668 ret = 0;
3669
3670 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3671 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3672 list_for_each_entry(asoc, &ep->asocs, asocs) {
3673 int res = sctp_auth_set_key(ep, asoc, authkey);
3674
3675 if (res && !ret)
3676 ret = res;
3677 }
3678 }
3679
3680out:
3681 memzero_explicit(authkey, optlen);
3682 return ret;
3683}
3684
3685/*
3686 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3687 *
3688 * This option will get or set the active shared key to be used to build
3689 * the association shared key.
3690 */
3691static int sctp_setsockopt_active_key(struct sock *sk,
3692 struct sctp_authkeyid *val,
3693 unsigned int optlen)
3694{
3695 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3696 struct sctp_association *asoc;
3697 int ret = 0;
3698
3699 if (optlen != sizeof(struct sctp_authkeyid))
3700 return -EINVAL;
3701
3702 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3703 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3704 sctp_style(sk, UDP))
3705 return -EINVAL;
3706
3707 if (asoc)
3708 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3709
3710 if (sctp_style(sk, TCP))
3711 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3712
3713 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3714 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3715 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3716 if (ret)
3717 return ret;
3718 }
3719
3720 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3721 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3722 list_for_each_entry(asoc, &ep->asocs, asocs) {
3723 int res = sctp_auth_set_active_key(ep, asoc,
3724 val->scact_keynumber);
3725
3726 if (res && !ret)
3727 ret = res;
3728 }
3729 }
3730
3731 return ret;
3732}
3733
3734/*
3735 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3736 *
3737 * This set option will delete a shared secret key from use.
3738 */
3739static int sctp_setsockopt_del_key(struct sock *sk,
3740 struct sctp_authkeyid *val,
3741 unsigned int optlen)
3742{
3743 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3744 struct sctp_association *asoc;
3745 int ret = 0;
3746
3747 if (optlen != sizeof(struct sctp_authkeyid))
3748 return -EINVAL;
3749
3750 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3751 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3752 sctp_style(sk, UDP))
3753 return -EINVAL;
3754
3755 if (asoc)
3756 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3757
3758 if (sctp_style(sk, TCP))
3759 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3760
3761 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3762 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3763 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3764 if (ret)
3765 return ret;
3766 }
3767
3768 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3769 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3770 list_for_each_entry(asoc, &ep->asocs, asocs) {
3771 int res = sctp_auth_del_key_id(ep, asoc,
3772 val->scact_keynumber);
3773
3774 if (res && !ret)
3775 ret = res;
3776 }
3777 }
3778
3779 return ret;
3780}
3781
3782/*
3783 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3784 *
3785 * This set option will deactivate a shared secret key.
3786 */
3787static int sctp_setsockopt_deactivate_key(struct sock *sk,
3788 struct sctp_authkeyid *val,
3789 unsigned int optlen)
3790{
3791 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3792 struct sctp_association *asoc;
3793 int ret = 0;
3794
3795 if (optlen != sizeof(struct sctp_authkeyid))
3796 return -EINVAL;
3797
3798 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3799 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3800 sctp_style(sk, UDP))
3801 return -EINVAL;
3802
3803 if (asoc)
3804 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3805
3806 if (sctp_style(sk, TCP))
3807 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3808
3809 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3810 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3811 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3812 if (ret)
3813 return ret;
3814 }
3815
3816 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3817 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3818 list_for_each_entry(asoc, &ep->asocs, asocs) {
3819 int res = sctp_auth_deact_key_id(ep, asoc,
3820 val->scact_keynumber);
3821
3822 if (res && !ret)
3823 ret = res;
3824 }
3825 }
3826
3827 return ret;
3828}
3829
3830/*
3831 * 8.1.23 SCTP_AUTO_ASCONF
3832 *
3833 * This option will enable or disable the use of the automatic generation of
3834 * ASCONF chunks to add and delete addresses to an existing association. Note
3835 * that this option has two caveats namely: a) it only affects sockets that
3836 * are bound to all addresses available to the SCTP stack, and b) the system
3837 * administrator may have an overriding control that turns the ASCONF feature
3838 * off no matter what setting the socket option may have.
3839 * This option expects an integer boolean flag, where a non-zero value turns on
3840 * the option, and a zero value turns off the option.
3841 * Note. In this implementation, socket operation overrides default parameter
3842 * being set by sysctl as well as FreeBSD implementation
3843 */
3844static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3845 unsigned int optlen)
3846{
3847 struct sctp_sock *sp = sctp_sk(sk);
3848
3849 if (optlen < sizeof(int))
3850 return -EINVAL;
3851 if (!sctp_is_ep_boundall(sk) && *val)
3852 return -EINVAL;
3853 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3854 return 0;
3855
3856 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3857 if (*val == 0 && sp->do_auto_asconf) {
3858 list_del(&sp->auto_asconf_list);
3859 sp->do_auto_asconf = 0;
3860 } else if (*val && !sp->do_auto_asconf) {
3861 list_add_tail(&sp->auto_asconf_list,
3862 &sock_net(sk)->sctp.auto_asconf_splist);
3863 sp->do_auto_asconf = 1;
3864 }
3865 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3866 return 0;
3867}
3868
3869/*
3870 * SCTP_PEER_ADDR_THLDS
3871 *
3872 * This option allows us to alter the partially failed threshold for one or all
3873 * transports in an association. See Section 6.1 of:
3874 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3875 */
3876static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3877 struct sctp_paddrthlds_v2 *val,
3878 unsigned int optlen, bool v2)
3879{
3880 struct sctp_transport *trans;
3881 struct sctp_association *asoc;
3882 int len;
3883
3884 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3885 if (optlen < len)
3886 return -EINVAL;
3887
3888 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3889 return -EINVAL;
3890
3891 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3892 trans = sctp_addr_id2transport(sk, &val->spt_address,
3893 val->spt_assoc_id);
3894 if (!trans)
3895 return -ENOENT;
3896
3897 if (val->spt_pathmaxrxt)
3898 trans->pathmaxrxt = val->spt_pathmaxrxt;
3899 if (v2)
3900 trans->ps_retrans = val->spt_pathcpthld;
3901 trans->pf_retrans = val->spt_pathpfthld;
3902
3903 return 0;
3904 }
3905
3906 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3907 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3908 sctp_style(sk, UDP))
3909 return -EINVAL;
3910
3911 if (asoc) {
3912 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3913 transports) {
3914 if (val->spt_pathmaxrxt)
3915 trans->pathmaxrxt = val->spt_pathmaxrxt;
3916 if (v2)
3917 trans->ps_retrans = val->spt_pathcpthld;
3918 trans->pf_retrans = val->spt_pathpfthld;
3919 }
3920
3921 if (val->spt_pathmaxrxt)
3922 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3923 if (v2)
3924 asoc->ps_retrans = val->spt_pathcpthld;
3925 asoc->pf_retrans = val->spt_pathpfthld;
3926 } else {
3927 struct sctp_sock *sp = sctp_sk(sk);
3928
3929 if (val->spt_pathmaxrxt)
3930 sp->pathmaxrxt = val->spt_pathmaxrxt;
3931 if (v2)
3932 sp->ps_retrans = val->spt_pathcpthld;
3933 sp->pf_retrans = val->spt_pathpfthld;
3934 }
3935
3936 return 0;
3937}
3938
3939static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3940 unsigned int optlen)
3941{
3942 if (optlen < sizeof(int))
3943 return -EINVAL;
3944
3945 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3946
3947 return 0;
3948}
3949
3950static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3951 unsigned int optlen)
3952{
3953 if (optlen < sizeof(int))
3954 return -EINVAL;
3955
3956 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3957
3958 return 0;
3959}
3960
3961static int sctp_setsockopt_pr_supported(struct sock *sk,
3962 struct sctp_assoc_value *params,
3963 unsigned int optlen)
3964{
3965 struct sctp_association *asoc;
3966
3967 if (optlen != sizeof(*params))
3968 return -EINVAL;
3969
3970 asoc = sctp_id2assoc(sk, params->assoc_id);
3971 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3972 sctp_style(sk, UDP))
3973 return -EINVAL;
3974
3975 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3976
3977 return 0;
3978}
3979
3980static int sctp_setsockopt_default_prinfo(struct sock *sk,
3981 struct sctp_default_prinfo *info,
3982 unsigned int optlen)
3983{
3984 struct sctp_sock *sp = sctp_sk(sk);
3985 struct sctp_association *asoc;
3986 int retval = -EINVAL;
3987
3988 if (optlen != sizeof(*info))
3989 goto out;
3990
3991 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3992 goto out;
3993
3994 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3995 info->pr_value = 0;
3996
3997 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3998 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3999 sctp_style(sk, UDP))
4000 goto out;
4001
4002 retval = 0;
4003
4004 if (asoc) {
4005 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
4006 asoc->default_timetolive = info->pr_value;
4007 goto out;
4008 }
4009
4010 if (sctp_style(sk, TCP))
4011 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4012
4013 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4014 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4015 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4016 sp->default_timetolive = info->pr_value;
4017 }
4018
4019 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4020 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4021 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4022 SCTP_PR_SET_POLICY(asoc->default_flags,
4023 info->pr_policy);
4024 asoc->default_timetolive = info->pr_value;
4025 }
4026 }
4027
4028out:
4029 return retval;
4030}
4031
4032static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4033 struct sctp_assoc_value *params,
4034 unsigned int optlen)
4035{
4036 struct sctp_association *asoc;
4037 int retval = -EINVAL;
4038
4039 if (optlen != sizeof(*params))
4040 goto out;
4041
4042 asoc = sctp_id2assoc(sk, params->assoc_id);
4043 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4044 sctp_style(sk, UDP))
4045 goto out;
4046
4047 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4048
4049 retval = 0;
4050
4051out:
4052 return retval;
4053}
4054
4055static int sctp_setsockopt_enable_strreset(struct sock *sk,
4056 struct sctp_assoc_value *params,
4057 unsigned int optlen)
4058{
4059 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4060 struct sctp_association *asoc;
4061 int retval = -EINVAL;
4062
4063 if (optlen != sizeof(*params))
4064 goto out;
4065
4066 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4067 goto out;
4068
4069 asoc = sctp_id2assoc(sk, params->assoc_id);
4070 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4071 sctp_style(sk, UDP))
4072 goto out;
4073
4074 retval = 0;
4075
4076 if (asoc) {
4077 asoc->strreset_enable = params->assoc_value;
4078 goto out;
4079 }
4080
4081 if (sctp_style(sk, TCP))
4082 params->assoc_id = SCTP_FUTURE_ASSOC;
4083
4084 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4085 params->assoc_id == SCTP_ALL_ASSOC)
4086 ep->strreset_enable = params->assoc_value;
4087
4088 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4089 params->assoc_id == SCTP_ALL_ASSOC)
4090 list_for_each_entry(asoc, &ep->asocs, asocs)
4091 asoc->strreset_enable = params->assoc_value;
4092
4093out:
4094 return retval;
4095}
4096
4097static int sctp_setsockopt_reset_streams(struct sock *sk,
4098 struct sctp_reset_streams *params,
4099 unsigned int optlen)
4100{
4101 struct sctp_association *asoc;
4102
4103 if (optlen < sizeof(*params))
4104 return -EINVAL;
4105 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4106 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4107 sizeof(__u16) * sizeof(*params));
4108
4109 if (params->srs_number_streams * sizeof(__u16) >
4110 optlen - sizeof(*params))
4111 return -EINVAL;
4112
4113 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4114 if (!asoc)
4115 return -EINVAL;
4116
4117 return sctp_send_reset_streams(asoc, params);
4118}
4119
4120static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4121 unsigned int optlen)
4122{
4123 struct sctp_association *asoc;
4124
4125 if (optlen != sizeof(*associd))
4126 return -EINVAL;
4127
4128 asoc = sctp_id2assoc(sk, *associd);
4129 if (!asoc)
4130 return -EINVAL;
4131
4132 return sctp_send_reset_assoc(asoc);
4133}
4134
4135static int sctp_setsockopt_add_streams(struct sock *sk,
4136 struct sctp_add_streams *params,
4137 unsigned int optlen)
4138{
4139 struct sctp_association *asoc;
4140
4141 if (optlen != sizeof(*params))
4142 return -EINVAL;
4143
4144 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4145 if (!asoc)
4146 return -EINVAL;
4147
4148 return sctp_send_add_streams(asoc, params);
4149}
4150
4151static int sctp_setsockopt_scheduler(struct sock *sk,
4152 struct sctp_assoc_value *params,
4153 unsigned int optlen)
4154{
4155 struct sctp_sock *sp = sctp_sk(sk);
4156 struct sctp_association *asoc;
4157 int retval = 0;
4158
4159 if (optlen < sizeof(*params))
4160 return -EINVAL;
4161
4162 if (params->assoc_value > SCTP_SS_MAX)
4163 return -EINVAL;
4164
4165 asoc = sctp_id2assoc(sk, params->assoc_id);
4166 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4167 sctp_style(sk, UDP))
4168 return -EINVAL;
4169
4170 if (asoc)
4171 return sctp_sched_set_sched(asoc, params->assoc_value);
4172
4173 if (sctp_style(sk, TCP))
4174 params->assoc_id = SCTP_FUTURE_ASSOC;
4175
4176 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4177 params->assoc_id == SCTP_ALL_ASSOC)
4178 sp->default_ss = params->assoc_value;
4179
4180 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4181 params->assoc_id == SCTP_ALL_ASSOC) {
4182 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4183 int ret = sctp_sched_set_sched(asoc,
4184 params->assoc_value);
4185
4186 if (ret && !retval)
4187 retval = ret;
4188 }
4189 }
4190
4191 return retval;
4192}
4193
4194static int sctp_setsockopt_scheduler_value(struct sock *sk,
4195 struct sctp_stream_value *params,
4196 unsigned int optlen)
4197{
4198 struct sctp_association *asoc;
4199 int retval = -EINVAL;
4200
4201 if (optlen < sizeof(*params))
4202 goto out;
4203
4204 asoc = sctp_id2assoc(sk, params->assoc_id);
4205 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4206 sctp_style(sk, UDP))
4207 goto out;
4208
4209 if (asoc) {
4210 retval = sctp_sched_set_value(asoc, params->stream_id,
4211 params->stream_value, GFP_KERNEL);
4212 goto out;
4213 }
4214
4215 retval = 0;
4216
4217 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4218 int ret = sctp_sched_set_value(asoc, params->stream_id,
4219 params->stream_value,
4220 GFP_KERNEL);
4221 if (ret && !retval) /* try to return the 1st error. */
4222 retval = ret;
4223 }
4224
4225out:
4226 return retval;
4227}
4228
4229static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4230 struct sctp_assoc_value *p,
4231 unsigned int optlen)
4232{
4233 struct sctp_sock *sp = sctp_sk(sk);
4234 struct sctp_association *asoc;
4235
4236 if (optlen < sizeof(*p))
4237 return -EINVAL;
4238
4239 asoc = sctp_id2assoc(sk, p->assoc_id);
4240 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4241 return -EINVAL;
4242
4243 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4244 return -EPERM;
4245 }
4246
4247 sp->ep->intl_enable = !!p->assoc_value;
4248 return 0;
4249}
4250
4251static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4252 unsigned int optlen)
4253{
4254 if (!sctp_style(sk, TCP))
4255 return -EOPNOTSUPP;
4256
4257 if (sctp_sk(sk)->ep->base.bind_addr.port)
4258 return -EFAULT;
4259
4260 if (optlen < sizeof(int))
4261 return -EINVAL;
4262
4263 sctp_sk(sk)->reuse = !!*val;
4264
4265 return 0;
4266}
4267
4268static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4269 struct sctp_association *asoc)
4270{
4271 struct sctp_ulpevent *event;
4272
4273 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4274
4275 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4276 if (sctp_outq_is_empty(&asoc->outqueue)) {
4277 event = sctp_ulpevent_make_sender_dry_event(asoc,
4278 GFP_USER | __GFP_NOWARN);
4279 if (!event)
4280 return -ENOMEM;
4281
4282 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4283 }
4284 }
4285
4286 return 0;
4287}
4288
4289static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4290 unsigned int optlen)
4291{
4292 struct sctp_sock *sp = sctp_sk(sk);
4293 struct sctp_association *asoc;
4294 int retval = 0;
4295
4296 if (optlen < sizeof(*param))
4297 return -EINVAL;
4298
4299 if (param->se_type < SCTP_SN_TYPE_BASE ||
4300 param->se_type > SCTP_SN_TYPE_MAX)
4301 return -EINVAL;
4302
4303 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4304 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4305 sctp_style(sk, UDP))
4306 return -EINVAL;
4307
4308 if (asoc)
4309 return sctp_assoc_ulpevent_type_set(param, asoc);
4310
4311 if (sctp_style(sk, TCP))
4312 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4313
4314 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4315 param->se_assoc_id == SCTP_ALL_ASSOC)
4316 sctp_ulpevent_type_set(&sp->subscribe,
4317 param->se_type, param->se_on);
4318
4319 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4320 param->se_assoc_id == SCTP_ALL_ASSOC) {
4321 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4322 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4323
4324 if (ret && !retval)
4325 retval = ret;
4326 }
4327 }
4328
4329 return retval;
4330}
4331
4332static int sctp_setsockopt_asconf_supported(struct sock *sk,
4333 struct sctp_assoc_value *params,
4334 unsigned int optlen)
4335{
4336 struct sctp_association *asoc;
4337 struct sctp_endpoint *ep;
4338 int retval = -EINVAL;
4339
4340 if (optlen != sizeof(*params))
4341 goto out;
4342
4343 asoc = sctp_id2assoc(sk, params->assoc_id);
4344 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4345 sctp_style(sk, UDP))
4346 goto out;
4347
4348 ep = sctp_sk(sk)->ep;
4349 ep->asconf_enable = !!params->assoc_value;
4350
4351 if (ep->asconf_enable && ep->auth_enable) {
4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4353 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4354 }
4355
4356 retval = 0;
4357
4358out:
4359 return retval;
4360}
4361
4362static int sctp_setsockopt_auth_supported(struct sock *sk,
4363 struct sctp_assoc_value *params,
4364 unsigned int optlen)
4365{
4366 struct sctp_association *asoc;
4367 struct sctp_endpoint *ep;
4368 int retval = -EINVAL;
4369
4370 if (optlen != sizeof(*params))
4371 goto out;
4372
4373 asoc = sctp_id2assoc(sk, params->assoc_id);
4374 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4375 sctp_style(sk, UDP))
4376 goto out;
4377
4378 ep = sctp_sk(sk)->ep;
4379 if (params->assoc_value) {
4380 retval = sctp_auth_init(ep, GFP_KERNEL);
4381 if (retval)
4382 goto out;
4383 if (ep->asconf_enable) {
4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4385 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4386 }
4387 }
4388
4389 ep->auth_enable = !!params->assoc_value;
4390 retval = 0;
4391
4392out:
4393 return retval;
4394}
4395
4396static int sctp_setsockopt_ecn_supported(struct sock *sk,
4397 struct sctp_assoc_value *params,
4398 unsigned int optlen)
4399{
4400 struct sctp_association *asoc;
4401 int retval = -EINVAL;
4402
4403 if (optlen != sizeof(*params))
4404 goto out;
4405
4406 asoc = sctp_id2assoc(sk, params->assoc_id);
4407 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4408 sctp_style(sk, UDP))
4409 goto out;
4410
4411 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4412 retval = 0;
4413
4414out:
4415 return retval;
4416}
4417
4418static int sctp_setsockopt_pf_expose(struct sock *sk,
4419 struct sctp_assoc_value *params,
4420 unsigned int optlen)
4421{
4422 struct sctp_association *asoc;
4423 int retval = -EINVAL;
4424
4425 if (optlen != sizeof(*params))
4426 goto out;
4427
4428 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4429 goto out;
4430
4431 asoc = sctp_id2assoc(sk, params->assoc_id);
4432 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4433 sctp_style(sk, UDP))
4434 goto out;
4435
4436 if (asoc)
4437 asoc->pf_expose = params->assoc_value;
4438 else
4439 sctp_sk(sk)->pf_expose = params->assoc_value;
4440 retval = 0;
4441
4442out:
4443 return retval;
4444}
4445
4446static int sctp_setsockopt_encap_port(struct sock *sk,
4447 struct sctp_udpencaps *encap,
4448 unsigned int optlen)
4449{
4450 struct sctp_association *asoc;
4451 struct sctp_transport *t;
4452 __be16 encap_port;
4453
4454 if (optlen != sizeof(*encap))
4455 return -EINVAL;
4456
4457 /* If an address other than INADDR_ANY is specified, and
4458 * no transport is found, then the request is invalid.
4459 */
4460 encap_port = (__force __be16)encap->sue_port;
4461 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4462 t = sctp_addr_id2transport(sk, &encap->sue_address,
4463 encap->sue_assoc_id);
4464 if (!t)
4465 return -EINVAL;
4466
4467 t->encap_port = encap_port;
4468 return 0;
4469 }
4470
4471 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4472 * socket is a one to many style socket, and an association
4473 * was not found, then the id was invalid.
4474 */
4475 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4476 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4477 sctp_style(sk, UDP))
4478 return -EINVAL;
4479
4480 /* If changes are for association, also apply encap_port to
4481 * each transport.
4482 */
4483 if (asoc) {
4484 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4485 transports)
4486 t->encap_port = encap_port;
4487
4488 asoc->encap_port = encap_port;
4489 return 0;
4490 }
4491
4492 sctp_sk(sk)->encap_port = encap_port;
4493 return 0;
4494}
4495
4496static int sctp_setsockopt_probe_interval(struct sock *sk,
4497 struct sctp_probeinterval *params,
4498 unsigned int optlen)
4499{
4500 struct sctp_association *asoc;
4501 struct sctp_transport *t;
4502 __u32 probe_interval;
4503
4504 if (optlen != sizeof(*params))
4505 return -EINVAL;
4506
4507 probe_interval = params->spi_interval;
4508 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4509 return -EINVAL;
4510
4511 /* If an address other than INADDR_ANY is specified, and
4512 * no transport is found, then the request is invalid.
4513 */
4514 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4515 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4516 params->spi_assoc_id);
4517 if (!t)
4518 return -EINVAL;
4519
4520 t->probe_interval = msecs_to_jiffies(probe_interval);
4521 sctp_transport_pl_reset(t);
4522 return 0;
4523 }
4524
4525 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4526 * socket is a one to many style socket, and an association
4527 * was not found, then the id was invalid.
4528 */
4529 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4530 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4531 sctp_style(sk, UDP))
4532 return -EINVAL;
4533
4534 /* If changes are for association, also apply probe_interval to
4535 * each transport.
4536 */
4537 if (asoc) {
4538 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4539 t->probe_interval = msecs_to_jiffies(probe_interval);
4540 sctp_transport_pl_reset(t);
4541 }
4542
4543 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4544 return 0;
4545 }
4546
4547 sctp_sk(sk)->probe_interval = probe_interval;
4548 return 0;
4549}
4550
4551/* API 6.2 setsockopt(), getsockopt()
4552 *
4553 * Applications use setsockopt() and getsockopt() to set or retrieve
4554 * socket options. Socket options are used to change the default
4555 * behavior of sockets calls. They are described in Section 7.
4556 *
4557 * The syntax is:
4558 *
4559 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4560 * int __user *optlen);
4561 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4562 * int optlen);
4563 *
4564 * sd - the socket descript.
4565 * level - set to IPPROTO_SCTP for all SCTP options.
4566 * optname - the option name.
4567 * optval - the buffer to store the value of the option.
4568 * optlen - the size of the buffer.
4569 */
4570static int sctp_setsockopt(struct sock *sk, int level, int optname,
4571 sockptr_t optval, unsigned int optlen)
4572{
4573 void *kopt = NULL;
4574 int retval = 0;
4575
4576 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4577
4578 /* I can hardly begin to describe how wrong this is. This is
4579 * so broken as to be worse than useless. The API draft
4580 * REALLY is NOT helpful here... I am not convinced that the
4581 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4582 * are at all well-founded.
4583 */
4584 if (level != SOL_SCTP) {
4585 struct sctp_af *af = sctp_sk(sk)->pf->af;
4586
4587 return af->setsockopt(sk, level, optname, optval, optlen);
4588 }
4589
4590 if (optlen > 0) {
4591 /* Trim it to the biggest size sctp sockopt may need if necessary */
4592 optlen = min_t(unsigned int, optlen,
4593 PAGE_ALIGN(USHRT_MAX +
4594 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4595 kopt = memdup_sockptr(optval, optlen);
4596 if (IS_ERR(kopt))
4597 return PTR_ERR(kopt);
4598 }
4599
4600 lock_sock(sk);
4601
4602 switch (optname) {
4603 case SCTP_SOCKOPT_BINDX_ADD:
4604 /* 'optlen' is the size of the addresses buffer. */
4605 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4606 SCTP_BINDX_ADD_ADDR);
4607 break;
4608
4609 case SCTP_SOCKOPT_BINDX_REM:
4610 /* 'optlen' is the size of the addresses buffer. */
4611 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4612 SCTP_BINDX_REM_ADDR);
4613 break;
4614
4615 case SCTP_SOCKOPT_CONNECTX_OLD:
4616 /* 'optlen' is the size of the addresses buffer. */
4617 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4618 break;
4619
4620 case SCTP_SOCKOPT_CONNECTX:
4621 /* 'optlen' is the size of the addresses buffer. */
4622 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4623 break;
4624
4625 case SCTP_DISABLE_FRAGMENTS:
4626 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4627 break;
4628
4629 case SCTP_EVENTS:
4630 retval = sctp_setsockopt_events(sk, kopt, optlen);
4631 break;
4632
4633 case SCTP_AUTOCLOSE:
4634 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4635 break;
4636
4637 case SCTP_PEER_ADDR_PARAMS:
4638 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4639 break;
4640
4641 case SCTP_DELAYED_SACK:
4642 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4643 break;
4644 case SCTP_PARTIAL_DELIVERY_POINT:
4645 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4646 break;
4647
4648 case SCTP_INITMSG:
4649 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4650 break;
4651 case SCTP_DEFAULT_SEND_PARAM:
4652 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4653 break;
4654 case SCTP_DEFAULT_SNDINFO:
4655 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4656 break;
4657 case SCTP_PRIMARY_ADDR:
4658 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4659 break;
4660 case SCTP_SET_PEER_PRIMARY_ADDR:
4661 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4662 break;
4663 case SCTP_NODELAY:
4664 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4665 break;
4666 case SCTP_RTOINFO:
4667 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4668 break;
4669 case SCTP_ASSOCINFO:
4670 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4671 break;
4672 case SCTP_I_WANT_MAPPED_V4_ADDR:
4673 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4674 break;
4675 case SCTP_MAXSEG:
4676 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4677 break;
4678 case SCTP_ADAPTATION_LAYER:
4679 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4680 break;
4681 case SCTP_CONTEXT:
4682 retval = sctp_setsockopt_context(sk, kopt, optlen);
4683 break;
4684 case SCTP_FRAGMENT_INTERLEAVE:
4685 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4686 break;
4687 case SCTP_MAX_BURST:
4688 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4689 break;
4690 case SCTP_AUTH_CHUNK:
4691 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4692 break;
4693 case SCTP_HMAC_IDENT:
4694 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4695 break;
4696 case SCTP_AUTH_KEY:
4697 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4698 break;
4699 case SCTP_AUTH_ACTIVE_KEY:
4700 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4701 break;
4702 case SCTP_AUTH_DELETE_KEY:
4703 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4704 break;
4705 case SCTP_AUTH_DEACTIVATE_KEY:
4706 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4707 break;
4708 case SCTP_AUTO_ASCONF:
4709 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4710 break;
4711 case SCTP_PEER_ADDR_THLDS:
4712 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4713 false);
4714 break;
4715 case SCTP_PEER_ADDR_THLDS_V2:
4716 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4717 true);
4718 break;
4719 case SCTP_RECVRCVINFO:
4720 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4721 break;
4722 case SCTP_RECVNXTINFO:
4723 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4724 break;
4725 case SCTP_PR_SUPPORTED:
4726 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4727 break;
4728 case SCTP_DEFAULT_PRINFO:
4729 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4730 break;
4731 case SCTP_RECONFIG_SUPPORTED:
4732 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4733 break;
4734 case SCTP_ENABLE_STREAM_RESET:
4735 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4736 break;
4737 case SCTP_RESET_STREAMS:
4738 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4739 break;
4740 case SCTP_RESET_ASSOC:
4741 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4742 break;
4743 case SCTP_ADD_STREAMS:
4744 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4745 break;
4746 case SCTP_STREAM_SCHEDULER:
4747 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4748 break;
4749 case SCTP_STREAM_SCHEDULER_VALUE:
4750 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4751 break;
4752 case SCTP_INTERLEAVING_SUPPORTED:
4753 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4754 optlen);
4755 break;
4756 case SCTP_REUSE_PORT:
4757 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4758 break;
4759 case SCTP_EVENT:
4760 retval = sctp_setsockopt_event(sk, kopt, optlen);
4761 break;
4762 case SCTP_ASCONF_SUPPORTED:
4763 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4764 break;
4765 case SCTP_AUTH_SUPPORTED:
4766 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4767 break;
4768 case SCTP_ECN_SUPPORTED:
4769 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4770 break;
4771 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4772 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4773 break;
4774 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4775 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4776 break;
4777 case SCTP_PLPMTUD_PROBE_INTERVAL:
4778 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4779 break;
4780 default:
4781 retval = -ENOPROTOOPT;
4782 break;
4783 }
4784
4785 release_sock(sk);
4786 kfree(kopt);
4787 return retval;
4788}
4789
4790/* API 3.1.6 connect() - UDP Style Syntax
4791 *
4792 * An application may use the connect() call in the UDP model to initiate an
4793 * association without sending data.
4794 *
4795 * The syntax is:
4796 *
4797 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4798 *
4799 * sd: the socket descriptor to have a new association added to.
4800 *
4801 * nam: the address structure (either struct sockaddr_in or struct
4802 * sockaddr_in6 defined in RFC2553 [7]).
4803 *
4804 * len: the size of the address.
4805 */
4806static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4807 int addr_len, int flags)
4808{
4809 struct sctp_af *af;
4810 int err = -EINVAL;
4811
4812 lock_sock(sk);
4813 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4814 addr, addr_len);
4815
4816 /* Validate addr_len before calling common connect/connectx routine. */
4817 af = sctp_get_af_specific(addr->sa_family);
4818 if (af && addr_len >= af->sockaddr_len)
4819 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4820
4821 release_sock(sk);
4822 return err;
4823}
4824
4825int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4826 int addr_len, int flags)
4827{
4828 if (addr_len < sizeof(uaddr->sa_family))
4829 return -EINVAL;
4830
4831 if (uaddr->sa_family == AF_UNSPEC)
4832 return -EOPNOTSUPP;
4833
4834 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4835}
4836
4837/* Only called when shutdown a listening SCTP socket. */
4838static int sctp_disconnect(struct sock *sk, int flags)
4839{
4840 if (!sctp_style(sk, TCP))
4841 return -EOPNOTSUPP;
4842
4843 sk->sk_shutdown |= RCV_SHUTDOWN;
4844 return 0;
4845}
4846
4847/* 4.1.4 accept() - TCP Style Syntax
4848 *
4849 * Applications use accept() call to remove an established SCTP
4850 * association from the accept queue of the endpoint. A new socket
4851 * descriptor will be returned from accept() to represent the newly
4852 * formed association.
4853 */
4854static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg)
4855{
4856 struct sctp_sock *sp;
4857 struct sctp_endpoint *ep;
4858 struct sock *newsk = NULL;
4859 struct sctp_association *asoc;
4860 long timeo;
4861 int error = 0;
4862
4863 lock_sock(sk);
4864
4865 sp = sctp_sk(sk);
4866 ep = sp->ep;
4867
4868 if (!sctp_style(sk, TCP)) {
4869 error = -EOPNOTSUPP;
4870 goto out;
4871 }
4872
4873 if (!sctp_sstate(sk, LISTENING) ||
4874 (sk->sk_shutdown & RCV_SHUTDOWN)) {
4875 error = -EINVAL;
4876 goto out;
4877 }
4878
4879 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
4880
4881 error = sctp_wait_for_accept(sk, timeo);
4882 if (error)
4883 goto out;
4884
4885 /* We treat the list of associations on the endpoint as the accept
4886 * queue and pick the first association on the list.
4887 */
4888 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4889
4890 newsk = sp->pf->create_accept_sk(sk, asoc, arg->kern);
4891 if (!newsk) {
4892 error = -ENOMEM;
4893 goto out;
4894 }
4895
4896 /* Populate the fields of the newsk from the oldsk and migrate the
4897 * asoc to the newsk.
4898 */
4899 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4900 if (error) {
4901 sk_common_release(newsk);
4902 newsk = NULL;
4903 }
4904
4905out:
4906 release_sock(sk);
4907 arg->err = error;
4908 return newsk;
4909}
4910
4911/* The SCTP ioctl handler. */
4912static int sctp_ioctl(struct sock *sk, int cmd, int *karg)
4913{
4914 int rc = -ENOTCONN;
4915
4916 lock_sock(sk);
4917
4918 /*
4919 * SEQPACKET-style sockets in LISTENING state are valid, for
4920 * SCTP, so only discard TCP-style sockets in LISTENING state.
4921 */
4922 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4923 goto out;
4924
4925 switch (cmd) {
4926 case SIOCINQ: {
4927 struct sk_buff *skb;
4928 *karg = 0;
4929
4930 skb = skb_peek(&sk->sk_receive_queue);
4931 if (skb != NULL) {
4932 /*
4933 * We will only return the amount of this packet since
4934 * that is all that will be read.
4935 */
4936 *karg = skb->len;
4937 }
4938 rc = 0;
4939 break;
4940 }
4941 default:
4942 rc = -ENOIOCTLCMD;
4943 break;
4944 }
4945out:
4946 release_sock(sk);
4947 return rc;
4948}
4949
4950/* This is the function which gets called during socket creation to
4951 * initialized the SCTP-specific portion of the sock.
4952 * The sock structure should already be zero-filled memory.
4953 */
4954static int sctp_init_sock(struct sock *sk)
4955{
4956 struct net *net = sock_net(sk);
4957 struct sctp_sock *sp;
4958
4959 pr_debug("%s: sk:%p\n", __func__, sk);
4960
4961 sp = sctp_sk(sk);
4962
4963 /* Initialize the SCTP per socket area. */
4964 switch (sk->sk_type) {
4965 case SOCK_SEQPACKET:
4966 sp->type = SCTP_SOCKET_UDP;
4967 break;
4968 case SOCK_STREAM:
4969 sp->type = SCTP_SOCKET_TCP;
4970 break;
4971 default:
4972 return -ESOCKTNOSUPPORT;
4973 }
4974
4975 sk->sk_gso_type = SKB_GSO_SCTP;
4976
4977 /* Initialize default send parameters. These parameters can be
4978 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4979 */
4980 sp->default_stream = 0;
4981 sp->default_ppid = 0;
4982 sp->default_flags = 0;
4983 sp->default_context = 0;
4984 sp->default_timetolive = 0;
4985
4986 sp->default_rcv_context = 0;
4987 sp->max_burst = net->sctp.max_burst;
4988
4989 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4990
4991 /* Initialize default setup parameters. These parameters
4992 * can be modified with the SCTP_INITMSG socket option or
4993 * overridden by the SCTP_INIT CMSG.
4994 */
4995 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4996 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4997 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4998 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4999
5000 /* Initialize default RTO related parameters. These parameters can
5001 * be modified for with the SCTP_RTOINFO socket option.
5002 */
5003 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5004 sp->rtoinfo.srto_max = net->sctp.rto_max;
5005 sp->rtoinfo.srto_min = net->sctp.rto_min;
5006
5007 /* Initialize default association related parameters. These parameters
5008 * can be modified with the SCTP_ASSOCINFO socket option.
5009 */
5010 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5011 sp->assocparams.sasoc_number_peer_destinations = 0;
5012 sp->assocparams.sasoc_peer_rwnd = 0;
5013 sp->assocparams.sasoc_local_rwnd = 0;
5014 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5015
5016 /* Initialize default event subscriptions. By default, all the
5017 * options are off.
5018 */
5019 sp->subscribe = 0;
5020
5021 /* Default Peer Address Parameters. These defaults can
5022 * be modified via SCTP_PEER_ADDR_PARAMS
5023 */
5024 sp->hbinterval = net->sctp.hb_interval;
5025 sp->udp_port = htons(net->sctp.udp_port);
5026 sp->encap_port = htons(net->sctp.encap_port);
5027 sp->pathmaxrxt = net->sctp.max_retrans_path;
5028 sp->pf_retrans = net->sctp.pf_retrans;
5029 sp->ps_retrans = net->sctp.ps_retrans;
5030 sp->pf_expose = net->sctp.pf_expose;
5031 sp->pathmtu = 0; /* allow default discovery */
5032 sp->sackdelay = net->sctp.sack_timeout;
5033 sp->sackfreq = 2;
5034 sp->param_flags = SPP_HB_ENABLE |
5035 SPP_PMTUD_ENABLE |
5036 SPP_SACKDELAY_ENABLE;
5037 sp->default_ss = SCTP_SS_DEFAULT;
5038
5039 /* If enabled no SCTP message fragmentation will be performed.
5040 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5041 */
5042 sp->disable_fragments = 0;
5043
5044 /* Enable Nagle algorithm by default. */
5045 sp->nodelay = 0;
5046
5047 sp->recvrcvinfo = 0;
5048 sp->recvnxtinfo = 0;
5049
5050 /* Enable by default. */
5051 sp->v4mapped = 1;
5052
5053 /* Auto-close idle associations after the configured
5054 * number of seconds. A value of 0 disables this
5055 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5056 * for UDP-style sockets only.
5057 */
5058 sp->autoclose = 0;
5059
5060 /* User specified fragmentation limit. */
5061 sp->user_frag = 0;
5062
5063 sp->adaptation_ind = 0;
5064
5065 sp->pf = sctp_get_pf_specific(sk->sk_family);
5066
5067 /* Control variables for partial data delivery. */
5068 atomic_set(&sp->pd_mode, 0);
5069 skb_queue_head_init(&sp->pd_lobby);
5070 sp->frag_interleave = 0;
5071 sp->probe_interval = net->sctp.probe_interval;
5072
5073 /* Create a per socket endpoint structure. Even if we
5074 * change the data structure relationships, this may still
5075 * be useful for storing pre-connect address information.
5076 */
5077 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5078 if (!sp->ep)
5079 return -ENOMEM;
5080
5081 sp->hmac = NULL;
5082
5083 sk->sk_destruct = sctp_destruct_sock;
5084
5085 SCTP_DBG_OBJCNT_INC(sock);
5086
5087 sk_sockets_allocated_inc(sk);
5088 sock_prot_inuse_add(net, sk->sk_prot, 1);
5089
5090 return 0;
5091}
5092
5093/* Cleanup any SCTP per socket resources. Must be called with
5094 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5095 */
5096static void sctp_destroy_sock(struct sock *sk)
5097{
5098 struct sctp_sock *sp;
5099
5100 pr_debug("%s: sk:%p\n", __func__, sk);
5101
5102 /* Release our hold on the endpoint. */
5103 sp = sctp_sk(sk);
5104 /* This could happen during socket init, thus we bail out
5105 * early, since the rest of the below is not setup either.
5106 */
5107 if (sp->ep == NULL)
5108 return;
5109
5110 if (sp->do_auto_asconf) {
5111 sp->do_auto_asconf = 0;
5112 list_del(&sp->auto_asconf_list);
5113 }
5114 sctp_endpoint_free(sp->ep);
5115 sk_sockets_allocated_dec(sk);
5116 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5117}
5118
5119/* Triggered when there are no references on the socket anymore */
5120static void sctp_destruct_common(struct sock *sk)
5121{
5122 struct sctp_sock *sp = sctp_sk(sk);
5123
5124 /* Free up the HMAC transform. */
5125 crypto_free_shash(sp->hmac);
5126}
5127
5128static void sctp_destruct_sock(struct sock *sk)
5129{
5130 sctp_destruct_common(sk);
5131 inet_sock_destruct(sk);
5132}
5133
5134/* API 4.1.7 shutdown() - TCP Style Syntax
5135 * int shutdown(int socket, int how);
5136 *
5137 * sd - the socket descriptor of the association to be closed.
5138 * how - Specifies the type of shutdown. The values are
5139 * as follows:
5140 * SHUT_RD
5141 * Disables further receive operations. No SCTP
5142 * protocol action is taken.
5143 * SHUT_WR
5144 * Disables further send operations, and initiates
5145 * the SCTP shutdown sequence.
5146 * SHUT_RDWR
5147 * Disables further send and receive operations
5148 * and initiates the SCTP shutdown sequence.
5149 */
5150static void sctp_shutdown(struct sock *sk, int how)
5151{
5152 struct net *net = sock_net(sk);
5153 struct sctp_endpoint *ep;
5154
5155 if (!sctp_style(sk, TCP))
5156 return;
5157
5158 ep = sctp_sk(sk)->ep;
5159 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5160 struct sctp_association *asoc;
5161
5162 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5163 asoc = list_entry(ep->asocs.next,
5164 struct sctp_association, asocs);
5165 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5166 }
5167}
5168
5169int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5170 struct sctp_info *info)
5171{
5172 struct sctp_transport *prim;
5173 struct list_head *pos;
5174 int mask;
5175
5176 memset(info, 0, sizeof(*info));
5177 if (!asoc) {
5178 struct sctp_sock *sp = sctp_sk(sk);
5179
5180 info->sctpi_s_autoclose = sp->autoclose;
5181 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5182 info->sctpi_s_pd_point = sp->pd_point;
5183 info->sctpi_s_nodelay = sp->nodelay;
5184 info->sctpi_s_disable_fragments = sp->disable_fragments;
5185 info->sctpi_s_v4mapped = sp->v4mapped;
5186 info->sctpi_s_frag_interleave = sp->frag_interleave;
5187 info->sctpi_s_type = sp->type;
5188
5189 return 0;
5190 }
5191
5192 info->sctpi_tag = asoc->c.my_vtag;
5193 info->sctpi_state = asoc->state;
5194 info->sctpi_rwnd = asoc->a_rwnd;
5195 info->sctpi_unackdata = asoc->unack_data;
5196 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5197 info->sctpi_instrms = asoc->stream.incnt;
5198 info->sctpi_outstrms = asoc->stream.outcnt;
5199 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5200 info->sctpi_inqueue++;
5201 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5202 info->sctpi_outqueue++;
5203 info->sctpi_overall_error = asoc->overall_error_count;
5204 info->sctpi_max_burst = asoc->max_burst;
5205 info->sctpi_maxseg = asoc->frag_point;
5206 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5207 info->sctpi_peer_tag = asoc->c.peer_vtag;
5208
5209 mask = asoc->peer.intl_capable << 1;
5210 mask = (mask | asoc->peer.ecn_capable) << 1;
5211 mask = (mask | asoc->peer.ipv4_address) << 1;
5212 mask = (mask | asoc->peer.ipv6_address) << 1;
5213 mask = (mask | asoc->peer.reconf_capable) << 1;
5214 mask = (mask | asoc->peer.asconf_capable) << 1;
5215 mask = (mask | asoc->peer.prsctp_capable) << 1;
5216 mask = (mask | asoc->peer.auth_capable);
5217 info->sctpi_peer_capable = mask;
5218 mask = asoc->peer.sack_needed << 1;
5219 mask = (mask | asoc->peer.sack_generation) << 1;
5220 mask = (mask | asoc->peer.zero_window_announced);
5221 info->sctpi_peer_sack = mask;
5222
5223 info->sctpi_isacks = asoc->stats.isacks;
5224 info->sctpi_osacks = asoc->stats.osacks;
5225 info->sctpi_opackets = asoc->stats.opackets;
5226 info->sctpi_ipackets = asoc->stats.ipackets;
5227 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5228 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5229 info->sctpi_idupchunks = asoc->stats.idupchunks;
5230 info->sctpi_gapcnt = asoc->stats.gapcnt;
5231 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5232 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5233 info->sctpi_oodchunks = asoc->stats.oodchunks;
5234 info->sctpi_iodchunks = asoc->stats.iodchunks;
5235 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5236 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5237
5238 prim = asoc->peer.primary_path;
5239 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5240 info->sctpi_p_state = prim->state;
5241 info->sctpi_p_cwnd = prim->cwnd;
5242 info->sctpi_p_srtt = prim->srtt;
5243 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5244 info->sctpi_p_hbinterval = prim->hbinterval;
5245 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5246 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5247 info->sctpi_p_ssthresh = prim->ssthresh;
5248 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5249 info->sctpi_p_flight_size = prim->flight_size;
5250 info->sctpi_p_error = prim->error_count;
5251
5252 return 0;
5253}
5254EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5255
5256/* use callback to avoid exporting the core structure */
5257void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5258{
5259 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5260
5261 rhashtable_walk_start(iter);
5262}
5263
5264void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5265{
5266 rhashtable_walk_stop(iter);
5267 rhashtable_walk_exit(iter);
5268}
5269
5270struct sctp_transport *sctp_transport_get_next(struct net *net,
5271 struct rhashtable_iter *iter)
5272{
5273 struct sctp_transport *t;
5274
5275 t = rhashtable_walk_next(iter);
5276 for (; t; t = rhashtable_walk_next(iter)) {
5277 if (IS_ERR(t)) {
5278 if (PTR_ERR(t) == -EAGAIN)
5279 continue;
5280 break;
5281 }
5282
5283 if (!sctp_transport_hold(t))
5284 continue;
5285
5286 if (net_eq(t->asoc->base.net, net) &&
5287 t->asoc->peer.primary_path == t)
5288 break;
5289
5290 sctp_transport_put(t);
5291 }
5292
5293 return t;
5294}
5295
5296struct sctp_transport *sctp_transport_get_idx(struct net *net,
5297 struct rhashtable_iter *iter,
5298 int pos)
5299{
5300 struct sctp_transport *t;
5301
5302 if (!pos)
5303 return SEQ_START_TOKEN;
5304
5305 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5306 if (!--pos)
5307 break;
5308 sctp_transport_put(t);
5309 }
5310
5311 return t;
5312}
5313
5314int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5315 void *p) {
5316 int err = 0;
5317 int hash = 0;
5318 struct sctp_endpoint *ep;
5319 struct sctp_hashbucket *head;
5320
5321 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5322 hash++, head++) {
5323 read_lock_bh(&head->lock);
5324 sctp_for_each_hentry(ep, &head->chain) {
5325 err = cb(ep, p);
5326 if (err)
5327 break;
5328 }
5329 read_unlock_bh(&head->lock);
5330 }
5331
5332 return err;
5333}
5334EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5335
5336int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net,
5337 const union sctp_addr *laddr,
5338 const union sctp_addr *paddr, void *p, int dif)
5339{
5340 struct sctp_transport *transport;
5341 struct sctp_endpoint *ep;
5342 int err = -ENOENT;
5343
5344 rcu_read_lock();
5345 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif);
5346 if (!transport) {
5347 rcu_read_unlock();
5348 return err;
5349 }
5350 ep = transport->asoc->ep;
5351 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5352 sctp_transport_put(transport);
5353 rcu_read_unlock();
5354 return err;
5355 }
5356 rcu_read_unlock();
5357
5358 err = cb(ep, transport, p);
5359 sctp_endpoint_put(ep);
5360 sctp_transport_put(transport);
5361 return err;
5362}
5363EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5364
5365int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5366 struct net *net, int *pos, void *p)
5367{
5368 struct rhashtable_iter hti;
5369 struct sctp_transport *tsp;
5370 struct sctp_endpoint *ep;
5371 int ret;
5372
5373again:
5374 ret = 0;
5375 sctp_transport_walk_start(&hti);
5376
5377 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5378 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5379 ep = tsp->asoc->ep;
5380 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5381 ret = cb(ep, tsp, p);
5382 if (ret)
5383 break;
5384 sctp_endpoint_put(ep);
5385 }
5386 (*pos)++;
5387 sctp_transport_put(tsp);
5388 }
5389 sctp_transport_walk_stop(&hti);
5390
5391 if (ret) {
5392 if (cb_done && !cb_done(ep, tsp, p)) {
5393 (*pos)++;
5394 sctp_endpoint_put(ep);
5395 sctp_transport_put(tsp);
5396 goto again;
5397 }
5398 sctp_endpoint_put(ep);
5399 sctp_transport_put(tsp);
5400 }
5401
5402 return ret;
5403}
5404EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5405
5406/* 7.2.1 Association Status (SCTP_STATUS)
5407
5408 * Applications can retrieve current status information about an
5409 * association, including association state, peer receiver window size,
5410 * number of unacked data chunks, and number of data chunks pending
5411 * receipt. This information is read-only.
5412 */
5413static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5414 char __user *optval,
5415 int __user *optlen)
5416{
5417 struct sctp_status status;
5418 struct sctp_association *asoc = NULL;
5419 struct sctp_transport *transport;
5420 sctp_assoc_t associd;
5421 int retval = 0;
5422
5423 if (len < sizeof(status)) {
5424 retval = -EINVAL;
5425 goto out;
5426 }
5427
5428 len = sizeof(status);
5429 if (copy_from_user(&status, optval, len)) {
5430 retval = -EFAULT;
5431 goto out;
5432 }
5433
5434 associd = status.sstat_assoc_id;
5435 asoc = sctp_id2assoc(sk, associd);
5436 if (!asoc) {
5437 retval = -EINVAL;
5438 goto out;
5439 }
5440
5441 transport = asoc->peer.primary_path;
5442
5443 status.sstat_assoc_id = sctp_assoc2id(asoc);
5444 status.sstat_state = sctp_assoc_to_state(asoc);
5445 status.sstat_rwnd = asoc->peer.rwnd;
5446 status.sstat_unackdata = asoc->unack_data;
5447
5448 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5449 status.sstat_instrms = asoc->stream.incnt;
5450 status.sstat_outstrms = asoc->stream.outcnt;
5451 status.sstat_fragmentation_point = asoc->frag_point;
5452 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5453 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5454 transport->af_specific->sockaddr_len);
5455 /* Map ipv4 address into v4-mapped-on-v6 address. */
5456 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5457 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5458 status.sstat_primary.spinfo_state = transport->state;
5459 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5460 status.sstat_primary.spinfo_srtt = transport->srtt;
5461 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5462 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5463
5464 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5465 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5466
5467 if (put_user(len, optlen)) {
5468 retval = -EFAULT;
5469 goto out;
5470 }
5471
5472 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5473 __func__, len, status.sstat_state, status.sstat_rwnd,
5474 status.sstat_assoc_id);
5475
5476 if (copy_to_user(optval, &status, len)) {
5477 retval = -EFAULT;
5478 goto out;
5479 }
5480
5481out:
5482 return retval;
5483}
5484
5485
5486/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5487 *
5488 * Applications can retrieve information about a specific peer address
5489 * of an association, including its reachability state, congestion
5490 * window, and retransmission timer values. This information is
5491 * read-only.
5492 */
5493static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5494 char __user *optval,
5495 int __user *optlen)
5496{
5497 struct sctp_paddrinfo pinfo;
5498 struct sctp_transport *transport;
5499 int retval = 0;
5500
5501 if (len < sizeof(pinfo)) {
5502 retval = -EINVAL;
5503 goto out;
5504 }
5505
5506 len = sizeof(pinfo);
5507 if (copy_from_user(&pinfo, optval, len)) {
5508 retval = -EFAULT;
5509 goto out;
5510 }
5511
5512 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5513 pinfo.spinfo_assoc_id);
5514 if (!transport) {
5515 retval = -EINVAL;
5516 goto out;
5517 }
5518
5519 if (transport->state == SCTP_PF &&
5520 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5521 retval = -EACCES;
5522 goto out;
5523 }
5524
5525 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5526 pinfo.spinfo_state = transport->state;
5527 pinfo.spinfo_cwnd = transport->cwnd;
5528 pinfo.spinfo_srtt = transport->srtt;
5529 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5530 pinfo.spinfo_mtu = transport->pathmtu;
5531
5532 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5533 pinfo.spinfo_state = SCTP_ACTIVE;
5534
5535 if (put_user(len, optlen)) {
5536 retval = -EFAULT;
5537 goto out;
5538 }
5539
5540 if (copy_to_user(optval, &pinfo, len)) {
5541 retval = -EFAULT;
5542 goto out;
5543 }
5544
5545out:
5546 return retval;
5547}
5548
5549/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5550 *
5551 * This option is a on/off flag. If enabled no SCTP message
5552 * fragmentation will be performed. Instead if a message being sent
5553 * exceeds the current PMTU size, the message will NOT be sent and
5554 * instead a error will be indicated to the user.
5555 */
5556static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5557 char __user *optval, int __user *optlen)
5558{
5559 int val;
5560
5561 if (len < sizeof(int))
5562 return -EINVAL;
5563
5564 len = sizeof(int);
5565 val = (sctp_sk(sk)->disable_fragments == 1);
5566 if (put_user(len, optlen))
5567 return -EFAULT;
5568 if (copy_to_user(optval, &val, len))
5569 return -EFAULT;
5570 return 0;
5571}
5572
5573/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5574 *
5575 * This socket option is used to specify various notifications and
5576 * ancillary data the user wishes to receive.
5577 */
5578static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5579 int __user *optlen)
5580{
5581 struct sctp_event_subscribe subscribe;
5582 __u8 *sn_type = (__u8 *)&subscribe;
5583 int i;
5584
5585 if (len == 0)
5586 return -EINVAL;
5587 if (len > sizeof(struct sctp_event_subscribe))
5588 len = sizeof(struct sctp_event_subscribe);
5589 if (put_user(len, optlen))
5590 return -EFAULT;
5591
5592 for (i = 0; i < len; i++)
5593 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5594 SCTP_SN_TYPE_BASE + i);
5595
5596 if (copy_to_user(optval, &subscribe, len))
5597 return -EFAULT;
5598
5599 return 0;
5600}
5601
5602/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5603 *
5604 * This socket option is applicable to the UDP-style socket only. When
5605 * set it will cause associations that are idle for more than the
5606 * specified number of seconds to automatically close. An association
5607 * being idle is defined an association that has NOT sent or received
5608 * user data. The special value of '0' indicates that no automatic
5609 * close of any associations should be performed. The option expects an
5610 * integer defining the number of seconds of idle time before an
5611 * association is closed.
5612 */
5613static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5614{
5615 /* Applicable to UDP-style socket only */
5616 if (sctp_style(sk, TCP))
5617 return -EOPNOTSUPP;
5618 if (len < sizeof(int))
5619 return -EINVAL;
5620 len = sizeof(int);
5621 if (put_user(len, optlen))
5622 return -EFAULT;
5623 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5624 return -EFAULT;
5625 return 0;
5626}
5627
5628/* Helper routine to branch off an association to a new socket. */
5629int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5630{
5631 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5632 struct sctp_sock *sp = sctp_sk(sk);
5633 struct socket *sock;
5634 int err = 0;
5635
5636 /* Do not peel off from one netns to another one. */
5637 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5638 return -EINVAL;
5639
5640 if (!asoc)
5641 return -EINVAL;
5642
5643 /* An association cannot be branched off from an already peeled-off
5644 * socket, nor is this supported for tcp style sockets.
5645 */
5646 if (!sctp_style(sk, UDP))
5647 return -EINVAL;
5648
5649 /* Create a new socket. */
5650 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5651 if (err < 0)
5652 return err;
5653
5654 sctp_copy_sock(sock->sk, sk, asoc);
5655
5656 /* Make peeled-off sockets more like 1-1 accepted sockets.
5657 * Set the daddr and initialize id to something more random and also
5658 * copy over any ip options.
5659 */
5660 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5661 sp->pf->copy_ip_options(sk, sock->sk);
5662
5663 /* Populate the fields of the newsk from the oldsk and migrate the
5664 * asoc to the newsk.
5665 */
5666 err = sctp_sock_migrate(sk, sock->sk, asoc,
5667 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5668 if (err) {
5669 sock_release(sock);
5670 sock = NULL;
5671 }
5672
5673 *sockp = sock;
5674
5675 return err;
5676}
5677EXPORT_SYMBOL(sctp_do_peeloff);
5678
5679static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5680 struct file **newfile, unsigned flags)
5681{
5682 struct socket *newsock;
5683 int retval;
5684
5685 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5686 if (retval < 0)
5687 goto out;
5688
5689 /* Map the socket to an unused fd that can be returned to the user. */
5690 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5691 if (retval < 0) {
5692 sock_release(newsock);
5693 goto out;
5694 }
5695
5696 *newfile = sock_alloc_file(newsock, 0, NULL);
5697 if (IS_ERR(*newfile)) {
5698 put_unused_fd(retval);
5699 retval = PTR_ERR(*newfile);
5700 *newfile = NULL;
5701 return retval;
5702 }
5703
5704 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5705 retval);
5706
5707 peeloff->sd = retval;
5708
5709 if (flags & SOCK_NONBLOCK)
5710 (*newfile)->f_flags |= O_NONBLOCK;
5711out:
5712 return retval;
5713}
5714
5715static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5716{
5717 sctp_peeloff_arg_t peeloff;
5718 struct file *newfile = NULL;
5719 int retval = 0;
5720
5721 if (len < sizeof(sctp_peeloff_arg_t))
5722 return -EINVAL;
5723 len = sizeof(sctp_peeloff_arg_t);
5724 if (copy_from_user(&peeloff, optval, len))
5725 return -EFAULT;
5726
5727 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5728 if (retval < 0)
5729 goto out;
5730
5731 /* Return the fd mapped to the new socket. */
5732 if (put_user(len, optlen)) {
5733 fput(newfile);
5734 put_unused_fd(retval);
5735 return -EFAULT;
5736 }
5737
5738 if (copy_to_user(optval, &peeloff, len)) {
5739 fput(newfile);
5740 put_unused_fd(retval);
5741 return -EFAULT;
5742 }
5743 fd_install(retval, newfile);
5744out:
5745 return retval;
5746}
5747
5748static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5749 char __user *optval, int __user *optlen)
5750{
5751 sctp_peeloff_flags_arg_t peeloff;
5752 struct file *newfile = NULL;
5753 int retval = 0;
5754
5755 if (len < sizeof(sctp_peeloff_flags_arg_t))
5756 return -EINVAL;
5757 len = sizeof(sctp_peeloff_flags_arg_t);
5758 if (copy_from_user(&peeloff, optval, len))
5759 return -EFAULT;
5760
5761 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5762 &newfile, peeloff.flags);
5763 if (retval < 0)
5764 goto out;
5765
5766 /* Return the fd mapped to the new socket. */
5767 if (put_user(len, optlen)) {
5768 fput(newfile);
5769 put_unused_fd(retval);
5770 return -EFAULT;
5771 }
5772
5773 if (copy_to_user(optval, &peeloff, len)) {
5774 fput(newfile);
5775 put_unused_fd(retval);
5776 return -EFAULT;
5777 }
5778 fd_install(retval, newfile);
5779out:
5780 return retval;
5781}
5782
5783/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5784 *
5785 * Applications can enable or disable heartbeats for any peer address of
5786 * an association, modify an address's heartbeat interval, force a
5787 * heartbeat to be sent immediately, and adjust the address's maximum
5788 * number of retransmissions sent before an address is considered
5789 * unreachable. The following structure is used to access and modify an
5790 * address's parameters:
5791 *
5792 * struct sctp_paddrparams {
5793 * sctp_assoc_t spp_assoc_id;
5794 * struct sockaddr_storage spp_address;
5795 * uint32_t spp_hbinterval;
5796 * uint16_t spp_pathmaxrxt;
5797 * uint32_t spp_pathmtu;
5798 * uint32_t spp_sackdelay;
5799 * uint32_t spp_flags;
5800 * };
5801 *
5802 * spp_assoc_id - (one-to-many style socket) This is filled in the
5803 * application, and identifies the association for
5804 * this query.
5805 * spp_address - This specifies which address is of interest.
5806 * spp_hbinterval - This contains the value of the heartbeat interval,
5807 * in milliseconds. If a value of zero
5808 * is present in this field then no changes are to
5809 * be made to this parameter.
5810 * spp_pathmaxrxt - This contains the maximum number of
5811 * retransmissions before this address shall be
5812 * considered unreachable. If a value of zero
5813 * is present in this field then no changes are to
5814 * be made to this parameter.
5815 * spp_pathmtu - When Path MTU discovery is disabled the value
5816 * specified here will be the "fixed" path mtu.
5817 * Note that if the spp_address field is empty
5818 * then all associations on this address will
5819 * have this fixed path mtu set upon them.
5820 *
5821 * spp_sackdelay - When delayed sack is enabled, this value specifies
5822 * the number of milliseconds that sacks will be delayed
5823 * for. This value will apply to all addresses of an
5824 * association if the spp_address field is empty. Note
5825 * also, that if delayed sack is enabled and this
5826 * value is set to 0, no change is made to the last
5827 * recorded delayed sack timer value.
5828 *
5829 * spp_flags - These flags are used to control various features
5830 * on an association. The flag field may contain
5831 * zero or more of the following options.
5832 *
5833 * SPP_HB_ENABLE - Enable heartbeats on the
5834 * specified address. Note that if the address
5835 * field is empty all addresses for the association
5836 * have heartbeats enabled upon them.
5837 *
5838 * SPP_HB_DISABLE - Disable heartbeats on the
5839 * speicifed address. Note that if the address
5840 * field is empty all addresses for the association
5841 * will have their heartbeats disabled. Note also
5842 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5843 * mutually exclusive, only one of these two should
5844 * be specified. Enabling both fields will have
5845 * undetermined results.
5846 *
5847 * SPP_HB_DEMAND - Request a user initiated heartbeat
5848 * to be made immediately.
5849 *
5850 * SPP_PMTUD_ENABLE - This field will enable PMTU
5851 * discovery upon the specified address. Note that
5852 * if the address feild is empty then all addresses
5853 * on the association are effected.
5854 *
5855 * SPP_PMTUD_DISABLE - This field will disable PMTU
5856 * discovery upon the specified address. Note that
5857 * if the address feild is empty then all addresses
5858 * on the association are effected. Not also that
5859 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5860 * exclusive. Enabling both will have undetermined
5861 * results.
5862 *
5863 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5864 * on delayed sack. The time specified in spp_sackdelay
5865 * is used to specify the sack delay for this address. Note
5866 * that if spp_address is empty then all addresses will
5867 * enable delayed sack and take on the sack delay
5868 * value specified in spp_sackdelay.
5869 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5870 * off delayed sack. If the spp_address field is blank then
5871 * delayed sack is disabled for the entire association. Note
5872 * also that this field is mutually exclusive to
5873 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5874 * results.
5875 *
5876 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5877 * setting of the IPV6 flow label value. The value is
5878 * contained in the spp_ipv6_flowlabel field.
5879 * Upon retrieval, this flag will be set to indicate that
5880 * the spp_ipv6_flowlabel field has a valid value returned.
5881 * If a specific destination address is set (in the
5882 * spp_address field), then the value returned is that of
5883 * the address. If just an association is specified (and
5884 * no address), then the association's default flow label
5885 * is returned. If neither an association nor a destination
5886 * is specified, then the socket's default flow label is
5887 * returned. For non-IPv6 sockets, this flag will be left
5888 * cleared.
5889 *
5890 * SPP_DSCP: Setting this flag enables the setting of the
5891 * Differentiated Services Code Point (DSCP) value
5892 * associated with either the association or a specific
5893 * address. The value is obtained in the spp_dscp field.
5894 * Upon retrieval, this flag will be set to indicate that
5895 * the spp_dscp field has a valid value returned. If a
5896 * specific destination address is set when called (in the
5897 * spp_address field), then that specific destination
5898 * address's DSCP value is returned. If just an association
5899 * is specified, then the association's default DSCP is
5900 * returned. If neither an association nor a destination is
5901 * specified, then the socket's default DSCP is returned.
5902 *
5903 * spp_ipv6_flowlabel
5904 * - This field is used in conjunction with the
5905 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5906 * The 20 least significant bits are used for the flow
5907 * label. This setting has precedence over any IPv6-layer
5908 * setting.
5909 *
5910 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5911 * and contains the DSCP. The 6 most significant bits are
5912 * used for the DSCP. This setting has precedence over any
5913 * IPv4- or IPv6- layer setting.
5914 */
5915static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5916 char __user *optval, int __user *optlen)
5917{
5918 struct sctp_paddrparams params;
5919 struct sctp_transport *trans = NULL;
5920 struct sctp_association *asoc = NULL;
5921 struct sctp_sock *sp = sctp_sk(sk);
5922
5923 if (len >= sizeof(params))
5924 len = sizeof(params);
5925 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5926 spp_ipv6_flowlabel), 4))
5927 len = ALIGN(offsetof(struct sctp_paddrparams,
5928 spp_ipv6_flowlabel), 4);
5929 else
5930 return -EINVAL;
5931
5932 if (copy_from_user(¶ms, optval, len))
5933 return -EFAULT;
5934
5935 /* If an address other than INADDR_ANY is specified, and
5936 * no transport is found, then the request is invalid.
5937 */
5938 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5939 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5940 params.spp_assoc_id);
5941 if (!trans) {
5942 pr_debug("%s: failed no transport\n", __func__);
5943 return -EINVAL;
5944 }
5945 }
5946
5947 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5948 * socket is a one to many style socket, and an association
5949 * was not found, then the id was invalid.
5950 */
5951 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5952 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5953 sctp_style(sk, UDP)) {
5954 pr_debug("%s: failed no association\n", __func__);
5955 return -EINVAL;
5956 }
5957
5958 if (trans) {
5959 /* Fetch transport values. */
5960 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5961 params.spp_pathmtu = trans->pathmtu;
5962 params.spp_pathmaxrxt = trans->pathmaxrxt;
5963 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5964
5965 /*draft-11 doesn't say what to return in spp_flags*/
5966 params.spp_flags = trans->param_flags;
5967 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5968 params.spp_ipv6_flowlabel = trans->flowlabel &
5969 SCTP_FLOWLABEL_VAL_MASK;
5970 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5971 }
5972 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5973 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5974 params.spp_flags |= SPP_DSCP;
5975 }
5976 } else if (asoc) {
5977 /* Fetch association values. */
5978 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5979 params.spp_pathmtu = asoc->pathmtu;
5980 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5981 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5982
5983 /*draft-11 doesn't say what to return in spp_flags*/
5984 params.spp_flags = asoc->param_flags;
5985 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5986 params.spp_ipv6_flowlabel = asoc->flowlabel &
5987 SCTP_FLOWLABEL_VAL_MASK;
5988 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5989 }
5990 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5991 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5992 params.spp_flags |= SPP_DSCP;
5993 }
5994 } else {
5995 /* Fetch socket values. */
5996 params.spp_hbinterval = sp->hbinterval;
5997 params.spp_pathmtu = sp->pathmtu;
5998 params.spp_sackdelay = sp->sackdelay;
5999 params.spp_pathmaxrxt = sp->pathmaxrxt;
6000
6001 /*draft-11 doesn't say what to return in spp_flags*/
6002 params.spp_flags = sp->param_flags;
6003 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6004 params.spp_ipv6_flowlabel = sp->flowlabel &
6005 SCTP_FLOWLABEL_VAL_MASK;
6006 params.spp_flags |= SPP_IPV6_FLOWLABEL;
6007 }
6008 if (sp->dscp & SCTP_DSCP_SET_MASK) {
6009 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
6010 params.spp_flags |= SPP_DSCP;
6011 }
6012 }
6013
6014 if (copy_to_user(optval, ¶ms, len))
6015 return -EFAULT;
6016
6017 if (put_user(len, optlen))
6018 return -EFAULT;
6019
6020 return 0;
6021}
6022
6023/*
6024 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6025 *
6026 * This option will effect the way delayed acks are performed. This
6027 * option allows you to get or set the delayed ack time, in
6028 * milliseconds. It also allows changing the delayed ack frequency.
6029 * Changing the frequency to 1 disables the delayed sack algorithm. If
6030 * the assoc_id is 0, then this sets or gets the endpoints default
6031 * values. If the assoc_id field is non-zero, then the set or get
6032 * effects the specified association for the one to many model (the
6033 * assoc_id field is ignored by the one to one model). Note that if
6034 * sack_delay or sack_freq are 0 when setting this option, then the
6035 * current values will remain unchanged.
6036 *
6037 * struct sctp_sack_info {
6038 * sctp_assoc_t sack_assoc_id;
6039 * uint32_t sack_delay;
6040 * uint32_t sack_freq;
6041 * };
6042 *
6043 * sack_assoc_id - This parameter, indicates which association the user
6044 * is performing an action upon. Note that if this field's value is
6045 * zero then the endpoints default value is changed (effecting future
6046 * associations only).
6047 *
6048 * sack_delay - This parameter contains the number of milliseconds that
6049 * the user is requesting the delayed ACK timer be set to. Note that
6050 * this value is defined in the standard to be between 200 and 500
6051 * milliseconds.
6052 *
6053 * sack_freq - This parameter contains the number of packets that must
6054 * be received before a sack is sent without waiting for the delay
6055 * timer to expire. The default value for this is 2, setting this
6056 * value to 1 will disable the delayed sack algorithm.
6057 */
6058static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6059 char __user *optval,
6060 int __user *optlen)
6061{
6062 struct sctp_sack_info params;
6063 struct sctp_association *asoc = NULL;
6064 struct sctp_sock *sp = sctp_sk(sk);
6065
6066 if (len >= sizeof(struct sctp_sack_info)) {
6067 len = sizeof(struct sctp_sack_info);
6068
6069 if (copy_from_user(¶ms, optval, len))
6070 return -EFAULT;
6071 } else if (len == sizeof(struct sctp_assoc_value)) {
6072 pr_warn_ratelimited(DEPRECATED
6073 "%s (pid %d) "
6074 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6075 "Use struct sctp_sack_info instead\n",
6076 current->comm, task_pid_nr(current));
6077 if (copy_from_user(¶ms, optval, len))
6078 return -EFAULT;
6079 } else
6080 return -EINVAL;
6081
6082 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6083 * socket is a one to many style socket, and an association
6084 * was not found, then the id was invalid.
6085 */
6086 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6087 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6088 sctp_style(sk, UDP))
6089 return -EINVAL;
6090
6091 if (asoc) {
6092 /* Fetch association values. */
6093 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6094 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6095 params.sack_freq = asoc->sackfreq;
6096
6097 } else {
6098 params.sack_delay = 0;
6099 params.sack_freq = 1;
6100 }
6101 } else {
6102 /* Fetch socket values. */
6103 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6104 params.sack_delay = sp->sackdelay;
6105 params.sack_freq = sp->sackfreq;
6106 } else {
6107 params.sack_delay = 0;
6108 params.sack_freq = 1;
6109 }
6110 }
6111
6112 if (copy_to_user(optval, ¶ms, len))
6113 return -EFAULT;
6114
6115 if (put_user(len, optlen))
6116 return -EFAULT;
6117
6118 return 0;
6119}
6120
6121/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6122 *
6123 * Applications can specify protocol parameters for the default association
6124 * initialization. The option name argument to setsockopt() and getsockopt()
6125 * is SCTP_INITMSG.
6126 *
6127 * Setting initialization parameters is effective only on an unconnected
6128 * socket (for UDP-style sockets only future associations are effected
6129 * by the change). With TCP-style sockets, this option is inherited by
6130 * sockets derived from a listener socket.
6131 */
6132static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6133{
6134 if (len < sizeof(struct sctp_initmsg))
6135 return -EINVAL;
6136 len = sizeof(struct sctp_initmsg);
6137 if (put_user(len, optlen))
6138 return -EFAULT;
6139 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6140 return -EFAULT;
6141 return 0;
6142}
6143
6144
6145static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6146 char __user *optval, int __user *optlen)
6147{
6148 struct sctp_association *asoc;
6149 int cnt = 0;
6150 struct sctp_getaddrs getaddrs;
6151 struct sctp_transport *from;
6152 void __user *to;
6153 union sctp_addr temp;
6154 struct sctp_sock *sp = sctp_sk(sk);
6155 int addrlen;
6156 size_t space_left;
6157 int bytes_copied;
6158
6159 if (len < sizeof(struct sctp_getaddrs))
6160 return -EINVAL;
6161
6162 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6163 return -EFAULT;
6164
6165 /* For UDP-style sockets, id specifies the association to query. */
6166 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6167 if (!asoc)
6168 return -EINVAL;
6169
6170 to = optval + offsetof(struct sctp_getaddrs, addrs);
6171 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6172
6173 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6174 transports) {
6175 memcpy(&temp, &from->ipaddr, sizeof(temp));
6176 addrlen = sctp_get_pf_specific(sk->sk_family)
6177 ->addr_to_user(sp, &temp);
6178 if (space_left < addrlen)
6179 return -ENOMEM;
6180 if (copy_to_user(to, &temp, addrlen))
6181 return -EFAULT;
6182 to += addrlen;
6183 cnt++;
6184 space_left -= addrlen;
6185 }
6186
6187 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6188 return -EFAULT;
6189 bytes_copied = ((char __user *)to) - optval;
6190 if (put_user(bytes_copied, optlen))
6191 return -EFAULT;
6192
6193 return 0;
6194}
6195
6196static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6197 size_t space_left, int *bytes_copied)
6198{
6199 struct sctp_sockaddr_entry *addr;
6200 union sctp_addr temp;
6201 int cnt = 0;
6202 int addrlen;
6203 struct net *net = sock_net(sk);
6204
6205 rcu_read_lock();
6206 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6207 if (!addr->valid)
6208 continue;
6209
6210 if ((PF_INET == sk->sk_family) &&
6211 (AF_INET6 == addr->a.sa.sa_family))
6212 continue;
6213 if ((PF_INET6 == sk->sk_family) &&
6214 inet_v6_ipv6only(sk) &&
6215 (AF_INET == addr->a.sa.sa_family))
6216 continue;
6217 memcpy(&temp, &addr->a, sizeof(temp));
6218 if (!temp.v4.sin_port)
6219 temp.v4.sin_port = htons(port);
6220
6221 addrlen = sctp_get_pf_specific(sk->sk_family)
6222 ->addr_to_user(sctp_sk(sk), &temp);
6223
6224 if (space_left < addrlen) {
6225 cnt = -ENOMEM;
6226 break;
6227 }
6228 memcpy(to, &temp, addrlen);
6229
6230 to += addrlen;
6231 cnt++;
6232 space_left -= addrlen;
6233 *bytes_copied += addrlen;
6234 }
6235 rcu_read_unlock();
6236
6237 return cnt;
6238}
6239
6240
6241static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6242 char __user *optval, int __user *optlen)
6243{
6244 struct sctp_bind_addr *bp;
6245 struct sctp_association *asoc;
6246 int cnt = 0;
6247 struct sctp_getaddrs getaddrs;
6248 struct sctp_sockaddr_entry *addr;
6249 void __user *to;
6250 union sctp_addr temp;
6251 struct sctp_sock *sp = sctp_sk(sk);
6252 int addrlen;
6253 int err = 0;
6254 size_t space_left;
6255 int bytes_copied = 0;
6256 void *addrs;
6257 void *buf;
6258
6259 if (len < sizeof(struct sctp_getaddrs))
6260 return -EINVAL;
6261
6262 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6263 return -EFAULT;
6264
6265 /*
6266 * For UDP-style sockets, id specifies the association to query.
6267 * If the id field is set to the value '0' then the locally bound
6268 * addresses are returned without regard to any particular
6269 * association.
6270 */
6271 if (0 == getaddrs.assoc_id) {
6272 bp = &sctp_sk(sk)->ep->base.bind_addr;
6273 } else {
6274 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6275 if (!asoc)
6276 return -EINVAL;
6277 bp = &asoc->base.bind_addr;
6278 }
6279
6280 to = optval + offsetof(struct sctp_getaddrs, addrs);
6281 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6282
6283 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6284 if (!addrs)
6285 return -ENOMEM;
6286
6287 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6288 * addresses from the global local address list.
6289 */
6290 if (sctp_list_single_entry(&bp->address_list)) {
6291 addr = list_entry(bp->address_list.next,
6292 struct sctp_sockaddr_entry, list);
6293 if (sctp_is_any(sk, &addr->a)) {
6294 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6295 space_left, &bytes_copied);
6296 if (cnt < 0) {
6297 err = cnt;
6298 goto out;
6299 }
6300 goto copy_getaddrs;
6301 }
6302 }
6303
6304 buf = addrs;
6305 /* Protection on the bound address list is not needed since
6306 * in the socket option context we hold a socket lock and
6307 * thus the bound address list can't change.
6308 */
6309 list_for_each_entry(addr, &bp->address_list, list) {
6310 memcpy(&temp, &addr->a, sizeof(temp));
6311 addrlen = sctp_get_pf_specific(sk->sk_family)
6312 ->addr_to_user(sp, &temp);
6313 if (space_left < addrlen) {
6314 err = -ENOMEM; /*fixme: right error?*/
6315 goto out;
6316 }
6317 memcpy(buf, &temp, addrlen);
6318 buf += addrlen;
6319 bytes_copied += addrlen;
6320 cnt++;
6321 space_left -= addrlen;
6322 }
6323
6324copy_getaddrs:
6325 if (copy_to_user(to, addrs, bytes_copied)) {
6326 err = -EFAULT;
6327 goto out;
6328 }
6329 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6330 err = -EFAULT;
6331 goto out;
6332 }
6333 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6334 * but we can't change it anymore.
6335 */
6336 if (put_user(bytes_copied, optlen))
6337 err = -EFAULT;
6338out:
6339 kfree(addrs);
6340 return err;
6341}
6342
6343/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6344 *
6345 * Requests that the local SCTP stack use the enclosed peer address as
6346 * the association primary. The enclosed address must be one of the
6347 * association peer's addresses.
6348 */
6349static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6350 char __user *optval, int __user *optlen)
6351{
6352 struct sctp_prim prim;
6353 struct sctp_association *asoc;
6354 struct sctp_sock *sp = sctp_sk(sk);
6355
6356 if (len < sizeof(struct sctp_prim))
6357 return -EINVAL;
6358
6359 len = sizeof(struct sctp_prim);
6360
6361 if (copy_from_user(&prim, optval, len))
6362 return -EFAULT;
6363
6364 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6365 if (!asoc)
6366 return -EINVAL;
6367
6368 if (!asoc->peer.primary_path)
6369 return -ENOTCONN;
6370
6371 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6372 asoc->peer.primary_path->af_specific->sockaddr_len);
6373
6374 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6375 (union sctp_addr *)&prim.ssp_addr);
6376
6377 if (put_user(len, optlen))
6378 return -EFAULT;
6379 if (copy_to_user(optval, &prim, len))
6380 return -EFAULT;
6381
6382 return 0;
6383}
6384
6385/*
6386 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6387 *
6388 * Requests that the local endpoint set the specified Adaptation Layer
6389 * Indication parameter for all future INIT and INIT-ACK exchanges.
6390 */
6391static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6392 char __user *optval, int __user *optlen)
6393{
6394 struct sctp_setadaptation adaptation;
6395
6396 if (len < sizeof(struct sctp_setadaptation))
6397 return -EINVAL;
6398
6399 len = sizeof(struct sctp_setadaptation);
6400
6401 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6402
6403 if (put_user(len, optlen))
6404 return -EFAULT;
6405 if (copy_to_user(optval, &adaptation, len))
6406 return -EFAULT;
6407
6408 return 0;
6409}
6410
6411/*
6412 *
6413 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6414 *
6415 * Applications that wish to use the sendto() system call may wish to
6416 * specify a default set of parameters that would normally be supplied
6417 * through the inclusion of ancillary data. This socket option allows
6418 * such an application to set the default sctp_sndrcvinfo structure.
6419
6420
6421 * The application that wishes to use this socket option simply passes
6422 * in to this call the sctp_sndrcvinfo structure defined in Section
6423 * 5.2.2) The input parameters accepted by this call include
6424 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6425 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6426 * to this call if the caller is using the UDP model.
6427 *
6428 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6429 */
6430static int sctp_getsockopt_default_send_param(struct sock *sk,
6431 int len, char __user *optval,
6432 int __user *optlen)
6433{
6434 struct sctp_sock *sp = sctp_sk(sk);
6435 struct sctp_association *asoc;
6436 struct sctp_sndrcvinfo info;
6437
6438 if (len < sizeof(info))
6439 return -EINVAL;
6440
6441 len = sizeof(info);
6442
6443 if (copy_from_user(&info, optval, len))
6444 return -EFAULT;
6445
6446 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6447 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6448 sctp_style(sk, UDP))
6449 return -EINVAL;
6450
6451 if (asoc) {
6452 info.sinfo_stream = asoc->default_stream;
6453 info.sinfo_flags = asoc->default_flags;
6454 info.sinfo_ppid = asoc->default_ppid;
6455 info.sinfo_context = asoc->default_context;
6456 info.sinfo_timetolive = asoc->default_timetolive;
6457 } else {
6458 info.sinfo_stream = sp->default_stream;
6459 info.sinfo_flags = sp->default_flags;
6460 info.sinfo_ppid = sp->default_ppid;
6461 info.sinfo_context = sp->default_context;
6462 info.sinfo_timetolive = sp->default_timetolive;
6463 }
6464
6465 if (put_user(len, optlen))
6466 return -EFAULT;
6467 if (copy_to_user(optval, &info, len))
6468 return -EFAULT;
6469
6470 return 0;
6471}
6472
6473/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6474 * (SCTP_DEFAULT_SNDINFO)
6475 */
6476static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6477 char __user *optval,
6478 int __user *optlen)
6479{
6480 struct sctp_sock *sp = sctp_sk(sk);
6481 struct sctp_association *asoc;
6482 struct sctp_sndinfo info;
6483
6484 if (len < sizeof(info))
6485 return -EINVAL;
6486
6487 len = sizeof(info);
6488
6489 if (copy_from_user(&info, optval, len))
6490 return -EFAULT;
6491
6492 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6493 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6494 sctp_style(sk, UDP))
6495 return -EINVAL;
6496
6497 if (asoc) {
6498 info.snd_sid = asoc->default_stream;
6499 info.snd_flags = asoc->default_flags;
6500 info.snd_ppid = asoc->default_ppid;
6501 info.snd_context = asoc->default_context;
6502 } else {
6503 info.snd_sid = sp->default_stream;
6504 info.snd_flags = sp->default_flags;
6505 info.snd_ppid = sp->default_ppid;
6506 info.snd_context = sp->default_context;
6507 }
6508
6509 if (put_user(len, optlen))
6510 return -EFAULT;
6511 if (copy_to_user(optval, &info, len))
6512 return -EFAULT;
6513
6514 return 0;
6515}
6516
6517/*
6518 *
6519 * 7.1.5 SCTP_NODELAY
6520 *
6521 * Turn on/off any Nagle-like algorithm. This means that packets are
6522 * generally sent as soon as possible and no unnecessary delays are
6523 * introduced, at the cost of more packets in the network. Expects an
6524 * integer boolean flag.
6525 */
6526
6527static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6528 char __user *optval, int __user *optlen)
6529{
6530 int val;
6531
6532 if (len < sizeof(int))
6533 return -EINVAL;
6534
6535 len = sizeof(int);
6536 val = (sctp_sk(sk)->nodelay == 1);
6537 if (put_user(len, optlen))
6538 return -EFAULT;
6539 if (copy_to_user(optval, &val, len))
6540 return -EFAULT;
6541 return 0;
6542}
6543
6544/*
6545 *
6546 * 7.1.1 SCTP_RTOINFO
6547 *
6548 * The protocol parameters used to initialize and bound retransmission
6549 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6550 * and modify these parameters.
6551 * All parameters are time values, in milliseconds. A value of 0, when
6552 * modifying the parameters, indicates that the current value should not
6553 * be changed.
6554 *
6555 */
6556static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6557 char __user *optval,
6558 int __user *optlen) {
6559 struct sctp_rtoinfo rtoinfo;
6560 struct sctp_association *asoc;
6561
6562 if (len < sizeof (struct sctp_rtoinfo))
6563 return -EINVAL;
6564
6565 len = sizeof(struct sctp_rtoinfo);
6566
6567 if (copy_from_user(&rtoinfo, optval, len))
6568 return -EFAULT;
6569
6570 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6571
6572 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6573 sctp_style(sk, UDP))
6574 return -EINVAL;
6575
6576 /* Values corresponding to the specific association. */
6577 if (asoc) {
6578 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6579 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6580 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6581 } else {
6582 /* Values corresponding to the endpoint. */
6583 struct sctp_sock *sp = sctp_sk(sk);
6584
6585 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6586 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6587 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6588 }
6589
6590 if (put_user(len, optlen))
6591 return -EFAULT;
6592
6593 if (copy_to_user(optval, &rtoinfo, len))
6594 return -EFAULT;
6595
6596 return 0;
6597}
6598
6599/*
6600 *
6601 * 7.1.2 SCTP_ASSOCINFO
6602 *
6603 * This option is used to tune the maximum retransmission attempts
6604 * of the association.
6605 * Returns an error if the new association retransmission value is
6606 * greater than the sum of the retransmission value of the peer.
6607 * See [SCTP] for more information.
6608 *
6609 */
6610static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6611 char __user *optval,
6612 int __user *optlen)
6613{
6614
6615 struct sctp_assocparams assocparams;
6616 struct sctp_association *asoc;
6617 struct list_head *pos;
6618 int cnt = 0;
6619
6620 if (len < sizeof (struct sctp_assocparams))
6621 return -EINVAL;
6622
6623 len = sizeof(struct sctp_assocparams);
6624
6625 if (copy_from_user(&assocparams, optval, len))
6626 return -EFAULT;
6627
6628 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6629
6630 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6631 sctp_style(sk, UDP))
6632 return -EINVAL;
6633
6634 /* Values correspoinding to the specific association */
6635 if (asoc) {
6636 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6637 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6638 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6639 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6640
6641 list_for_each(pos, &asoc->peer.transport_addr_list) {
6642 cnt++;
6643 }
6644
6645 assocparams.sasoc_number_peer_destinations = cnt;
6646 } else {
6647 /* Values corresponding to the endpoint */
6648 struct sctp_sock *sp = sctp_sk(sk);
6649
6650 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6651 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6652 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6653 assocparams.sasoc_cookie_life =
6654 sp->assocparams.sasoc_cookie_life;
6655 assocparams.sasoc_number_peer_destinations =
6656 sp->assocparams.
6657 sasoc_number_peer_destinations;
6658 }
6659
6660 if (put_user(len, optlen))
6661 return -EFAULT;
6662
6663 if (copy_to_user(optval, &assocparams, len))
6664 return -EFAULT;
6665
6666 return 0;
6667}
6668
6669/*
6670 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6671 *
6672 * This socket option is a boolean flag which turns on or off mapped V4
6673 * addresses. If this option is turned on and the socket is type
6674 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6675 * If this option is turned off, then no mapping will be done of V4
6676 * addresses and a user will receive both PF_INET6 and PF_INET type
6677 * addresses on the socket.
6678 */
6679static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6680 char __user *optval, int __user *optlen)
6681{
6682 int val;
6683 struct sctp_sock *sp = sctp_sk(sk);
6684
6685 if (len < sizeof(int))
6686 return -EINVAL;
6687
6688 len = sizeof(int);
6689 val = sp->v4mapped;
6690 if (put_user(len, optlen))
6691 return -EFAULT;
6692 if (copy_to_user(optval, &val, len))
6693 return -EFAULT;
6694
6695 return 0;
6696}
6697
6698/*
6699 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6700 * (chapter and verse is quoted at sctp_setsockopt_context())
6701 */
6702static int sctp_getsockopt_context(struct sock *sk, int len,
6703 char __user *optval, int __user *optlen)
6704{
6705 struct sctp_assoc_value params;
6706 struct sctp_association *asoc;
6707
6708 if (len < sizeof(struct sctp_assoc_value))
6709 return -EINVAL;
6710
6711 len = sizeof(struct sctp_assoc_value);
6712
6713 if (copy_from_user(¶ms, optval, len))
6714 return -EFAULT;
6715
6716 asoc = sctp_id2assoc(sk, params.assoc_id);
6717 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6718 sctp_style(sk, UDP))
6719 return -EINVAL;
6720
6721 params.assoc_value = asoc ? asoc->default_rcv_context
6722 : sctp_sk(sk)->default_rcv_context;
6723
6724 if (put_user(len, optlen))
6725 return -EFAULT;
6726 if (copy_to_user(optval, ¶ms, len))
6727 return -EFAULT;
6728
6729 return 0;
6730}
6731
6732/*
6733 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6734 * This option will get or set the maximum size to put in any outgoing
6735 * SCTP DATA chunk. If a message is larger than this size it will be
6736 * fragmented by SCTP into the specified size. Note that the underlying
6737 * SCTP implementation may fragment into smaller sized chunks when the
6738 * PMTU of the underlying association is smaller than the value set by
6739 * the user. The default value for this option is '0' which indicates
6740 * the user is NOT limiting fragmentation and only the PMTU will effect
6741 * SCTP's choice of DATA chunk size. Note also that values set larger
6742 * than the maximum size of an IP datagram will effectively let SCTP
6743 * control fragmentation (i.e. the same as setting this option to 0).
6744 *
6745 * The following structure is used to access and modify this parameter:
6746 *
6747 * struct sctp_assoc_value {
6748 * sctp_assoc_t assoc_id;
6749 * uint32_t assoc_value;
6750 * };
6751 *
6752 * assoc_id: This parameter is ignored for one-to-one style sockets.
6753 * For one-to-many style sockets this parameter indicates which
6754 * association the user is performing an action upon. Note that if
6755 * this field's value is zero then the endpoints default value is
6756 * changed (effecting future associations only).
6757 * assoc_value: This parameter specifies the maximum size in bytes.
6758 */
6759static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6760 char __user *optval, int __user *optlen)
6761{
6762 struct sctp_assoc_value params;
6763 struct sctp_association *asoc;
6764
6765 if (len == sizeof(int)) {
6766 pr_warn_ratelimited(DEPRECATED
6767 "%s (pid %d) "
6768 "Use of int in maxseg socket option.\n"
6769 "Use struct sctp_assoc_value instead\n",
6770 current->comm, task_pid_nr(current));
6771 params.assoc_id = SCTP_FUTURE_ASSOC;
6772 } else if (len >= sizeof(struct sctp_assoc_value)) {
6773 len = sizeof(struct sctp_assoc_value);
6774 if (copy_from_user(¶ms, optval, len))
6775 return -EFAULT;
6776 } else
6777 return -EINVAL;
6778
6779 asoc = sctp_id2assoc(sk, params.assoc_id);
6780 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6781 sctp_style(sk, UDP))
6782 return -EINVAL;
6783
6784 if (asoc)
6785 params.assoc_value = asoc->frag_point;
6786 else
6787 params.assoc_value = sctp_sk(sk)->user_frag;
6788
6789 if (put_user(len, optlen))
6790 return -EFAULT;
6791 if (len == sizeof(int)) {
6792 if (copy_to_user(optval, ¶ms.assoc_value, len))
6793 return -EFAULT;
6794 } else {
6795 if (copy_to_user(optval, ¶ms, len))
6796 return -EFAULT;
6797 }
6798
6799 return 0;
6800}
6801
6802/*
6803 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6804 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6805 */
6806static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6807 char __user *optval, int __user *optlen)
6808{
6809 int val;
6810
6811 if (len < sizeof(int))
6812 return -EINVAL;
6813
6814 len = sizeof(int);
6815
6816 val = sctp_sk(sk)->frag_interleave;
6817 if (put_user(len, optlen))
6818 return -EFAULT;
6819 if (copy_to_user(optval, &val, len))
6820 return -EFAULT;
6821
6822 return 0;
6823}
6824
6825/*
6826 * 7.1.25. Set or Get the sctp partial delivery point
6827 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6828 */
6829static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6830 char __user *optval,
6831 int __user *optlen)
6832{
6833 u32 val;
6834
6835 if (len < sizeof(u32))
6836 return -EINVAL;
6837
6838 len = sizeof(u32);
6839
6840 val = sctp_sk(sk)->pd_point;
6841 if (put_user(len, optlen))
6842 return -EFAULT;
6843 if (copy_to_user(optval, &val, len))
6844 return -EFAULT;
6845
6846 return 0;
6847}
6848
6849/*
6850 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6851 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6852 */
6853static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6854 char __user *optval,
6855 int __user *optlen)
6856{
6857 struct sctp_assoc_value params;
6858 struct sctp_association *asoc;
6859
6860 if (len == sizeof(int)) {
6861 pr_warn_ratelimited(DEPRECATED
6862 "%s (pid %d) "
6863 "Use of int in max_burst socket option.\n"
6864 "Use struct sctp_assoc_value instead\n",
6865 current->comm, task_pid_nr(current));
6866 params.assoc_id = SCTP_FUTURE_ASSOC;
6867 } else if (len >= sizeof(struct sctp_assoc_value)) {
6868 len = sizeof(struct sctp_assoc_value);
6869 if (copy_from_user(¶ms, optval, len))
6870 return -EFAULT;
6871 } else
6872 return -EINVAL;
6873
6874 asoc = sctp_id2assoc(sk, params.assoc_id);
6875 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6876 sctp_style(sk, UDP))
6877 return -EINVAL;
6878
6879 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6880
6881 if (len == sizeof(int)) {
6882 if (copy_to_user(optval, ¶ms.assoc_value, len))
6883 return -EFAULT;
6884 } else {
6885 if (copy_to_user(optval, ¶ms, len))
6886 return -EFAULT;
6887 }
6888
6889 return 0;
6890
6891}
6892
6893static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6894 char __user *optval, int __user *optlen)
6895{
6896 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6897 struct sctp_hmacalgo __user *p = (void __user *)optval;
6898 struct sctp_hmac_algo_param *hmacs;
6899 __u16 data_len = 0;
6900 u32 num_idents;
6901 int i;
6902
6903 if (!ep->auth_enable)
6904 return -EACCES;
6905
6906 hmacs = ep->auth_hmacs_list;
6907 data_len = ntohs(hmacs->param_hdr.length) -
6908 sizeof(struct sctp_paramhdr);
6909
6910 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6911 return -EINVAL;
6912
6913 len = sizeof(struct sctp_hmacalgo) + data_len;
6914 num_idents = data_len / sizeof(u16);
6915
6916 if (put_user(len, optlen))
6917 return -EFAULT;
6918 if (put_user(num_idents, &p->shmac_num_idents))
6919 return -EFAULT;
6920 for (i = 0; i < num_idents; i++) {
6921 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6922
6923 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6924 return -EFAULT;
6925 }
6926 return 0;
6927}
6928
6929static int sctp_getsockopt_active_key(struct sock *sk, int len,
6930 char __user *optval, int __user *optlen)
6931{
6932 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6933 struct sctp_authkeyid val;
6934 struct sctp_association *asoc;
6935
6936 if (len < sizeof(struct sctp_authkeyid))
6937 return -EINVAL;
6938
6939 len = sizeof(struct sctp_authkeyid);
6940 if (copy_from_user(&val, optval, len))
6941 return -EFAULT;
6942
6943 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6944 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6945 return -EINVAL;
6946
6947 if (asoc) {
6948 if (!asoc->peer.auth_capable)
6949 return -EACCES;
6950 val.scact_keynumber = asoc->active_key_id;
6951 } else {
6952 if (!ep->auth_enable)
6953 return -EACCES;
6954 val.scact_keynumber = ep->active_key_id;
6955 }
6956
6957 if (put_user(len, optlen))
6958 return -EFAULT;
6959 if (copy_to_user(optval, &val, len))
6960 return -EFAULT;
6961
6962 return 0;
6963}
6964
6965static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6966 char __user *optval, int __user *optlen)
6967{
6968 struct sctp_authchunks __user *p = (void __user *)optval;
6969 struct sctp_authchunks val;
6970 struct sctp_association *asoc;
6971 struct sctp_chunks_param *ch;
6972 u32 num_chunks = 0;
6973 char __user *to;
6974
6975 if (len < sizeof(struct sctp_authchunks))
6976 return -EINVAL;
6977
6978 if (copy_from_user(&val, optval, sizeof(val)))
6979 return -EFAULT;
6980
6981 to = p->gauth_chunks;
6982 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6983 if (!asoc)
6984 return -EINVAL;
6985
6986 if (!asoc->peer.auth_capable)
6987 return -EACCES;
6988
6989 ch = asoc->peer.peer_chunks;
6990 if (!ch)
6991 goto num;
6992
6993 /* See if the user provided enough room for all the data */
6994 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6995 if (len < num_chunks)
6996 return -EINVAL;
6997
6998 if (copy_to_user(to, ch->chunks, num_chunks))
6999 return -EFAULT;
7000num:
7001 len = sizeof(struct sctp_authchunks) + num_chunks;
7002 if (put_user(len, optlen))
7003 return -EFAULT;
7004 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7005 return -EFAULT;
7006 return 0;
7007}
7008
7009static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7010 char __user *optval, int __user *optlen)
7011{
7012 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7013 struct sctp_authchunks __user *p = (void __user *)optval;
7014 struct sctp_authchunks val;
7015 struct sctp_association *asoc;
7016 struct sctp_chunks_param *ch;
7017 u32 num_chunks = 0;
7018 char __user *to;
7019
7020 if (len < sizeof(struct sctp_authchunks))
7021 return -EINVAL;
7022
7023 if (copy_from_user(&val, optval, sizeof(val)))
7024 return -EFAULT;
7025
7026 to = p->gauth_chunks;
7027 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7028 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7029 sctp_style(sk, UDP))
7030 return -EINVAL;
7031
7032 if (asoc) {
7033 if (!asoc->peer.auth_capable)
7034 return -EACCES;
7035 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7036 } else {
7037 if (!ep->auth_enable)
7038 return -EACCES;
7039 ch = ep->auth_chunk_list;
7040 }
7041 if (!ch)
7042 goto num;
7043
7044 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7045 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7046 return -EINVAL;
7047
7048 if (copy_to_user(to, ch->chunks, num_chunks))
7049 return -EFAULT;
7050num:
7051 len = sizeof(struct sctp_authchunks) + num_chunks;
7052 if (put_user(len, optlen))
7053 return -EFAULT;
7054 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7055 return -EFAULT;
7056
7057 return 0;
7058}
7059
7060/*
7061 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7062 * This option gets the current number of associations that are attached
7063 * to a one-to-many style socket. The option value is an uint32_t.
7064 */
7065static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7066 char __user *optval, int __user *optlen)
7067{
7068 struct sctp_sock *sp = sctp_sk(sk);
7069 struct sctp_association *asoc;
7070 u32 val = 0;
7071
7072 if (sctp_style(sk, TCP))
7073 return -EOPNOTSUPP;
7074
7075 if (len < sizeof(u32))
7076 return -EINVAL;
7077
7078 len = sizeof(u32);
7079
7080 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7081 val++;
7082 }
7083
7084 if (put_user(len, optlen))
7085 return -EFAULT;
7086 if (copy_to_user(optval, &val, len))
7087 return -EFAULT;
7088
7089 return 0;
7090}
7091
7092/*
7093 * 8.1.23 SCTP_AUTO_ASCONF
7094 * See the corresponding setsockopt entry as description
7095 */
7096static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7097 char __user *optval, int __user *optlen)
7098{
7099 int val = 0;
7100
7101 if (len < sizeof(int))
7102 return -EINVAL;
7103
7104 len = sizeof(int);
7105 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7106 val = 1;
7107 if (put_user(len, optlen))
7108 return -EFAULT;
7109 if (copy_to_user(optval, &val, len))
7110 return -EFAULT;
7111 return 0;
7112}
7113
7114/*
7115 * 8.2.6. Get the Current Identifiers of Associations
7116 * (SCTP_GET_ASSOC_ID_LIST)
7117 *
7118 * This option gets the current list of SCTP association identifiers of
7119 * the SCTP associations handled by a one-to-many style socket.
7120 */
7121static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7122 char __user *optval, int __user *optlen)
7123{
7124 struct sctp_sock *sp = sctp_sk(sk);
7125 struct sctp_association *asoc;
7126 struct sctp_assoc_ids *ids;
7127 size_t ids_size;
7128 u32 num = 0;
7129
7130 if (sctp_style(sk, TCP))
7131 return -EOPNOTSUPP;
7132
7133 if (len < sizeof(struct sctp_assoc_ids))
7134 return -EINVAL;
7135
7136 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7137 num++;
7138 }
7139
7140 ids_size = struct_size(ids, gaids_assoc_id, num);
7141 if (len < ids_size)
7142 return -EINVAL;
7143
7144 len = ids_size;
7145 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7146 if (unlikely(!ids))
7147 return -ENOMEM;
7148
7149 ids->gaids_number_of_ids = num;
7150 num = 0;
7151 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7152 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7153 }
7154
7155 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7156 kfree(ids);
7157 return -EFAULT;
7158 }
7159
7160 kfree(ids);
7161 return 0;
7162}
7163
7164/*
7165 * SCTP_PEER_ADDR_THLDS
7166 *
7167 * This option allows us to fetch the partially failed threshold for one or all
7168 * transports in an association. See Section 6.1 of:
7169 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7170 */
7171static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7172 char __user *optval, int len,
7173 int __user *optlen, bool v2)
7174{
7175 struct sctp_paddrthlds_v2 val;
7176 struct sctp_transport *trans;
7177 struct sctp_association *asoc;
7178 int min;
7179
7180 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7181 if (len < min)
7182 return -EINVAL;
7183 len = min;
7184 if (copy_from_user(&val, optval, len))
7185 return -EFAULT;
7186
7187 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7188 trans = sctp_addr_id2transport(sk, &val.spt_address,
7189 val.spt_assoc_id);
7190 if (!trans)
7191 return -ENOENT;
7192
7193 val.spt_pathmaxrxt = trans->pathmaxrxt;
7194 val.spt_pathpfthld = trans->pf_retrans;
7195 val.spt_pathcpthld = trans->ps_retrans;
7196
7197 goto out;
7198 }
7199
7200 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7201 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7202 sctp_style(sk, UDP))
7203 return -EINVAL;
7204
7205 if (asoc) {
7206 val.spt_pathpfthld = asoc->pf_retrans;
7207 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7208 val.spt_pathcpthld = asoc->ps_retrans;
7209 } else {
7210 struct sctp_sock *sp = sctp_sk(sk);
7211
7212 val.spt_pathpfthld = sp->pf_retrans;
7213 val.spt_pathmaxrxt = sp->pathmaxrxt;
7214 val.spt_pathcpthld = sp->ps_retrans;
7215 }
7216
7217out:
7218 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7219 return -EFAULT;
7220
7221 return 0;
7222}
7223
7224/*
7225 * SCTP_GET_ASSOC_STATS
7226 *
7227 * This option retrieves local per endpoint statistics. It is modeled
7228 * after OpenSolaris' implementation
7229 */
7230static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7231 char __user *optval,
7232 int __user *optlen)
7233{
7234 struct sctp_assoc_stats sas;
7235 struct sctp_association *asoc = NULL;
7236
7237 /* User must provide at least the assoc id */
7238 if (len < sizeof(sctp_assoc_t))
7239 return -EINVAL;
7240
7241 /* Allow the struct to grow and fill in as much as possible */
7242 len = min_t(size_t, len, sizeof(sas));
7243
7244 if (copy_from_user(&sas, optval, len))
7245 return -EFAULT;
7246
7247 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7248 if (!asoc)
7249 return -EINVAL;
7250
7251 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7252 sas.sas_gapcnt = asoc->stats.gapcnt;
7253 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7254 sas.sas_osacks = asoc->stats.osacks;
7255 sas.sas_isacks = asoc->stats.isacks;
7256 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7257 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7258 sas.sas_oodchunks = asoc->stats.oodchunks;
7259 sas.sas_iodchunks = asoc->stats.iodchunks;
7260 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7261 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7262 sas.sas_idupchunks = asoc->stats.idupchunks;
7263 sas.sas_opackets = asoc->stats.opackets;
7264 sas.sas_ipackets = asoc->stats.ipackets;
7265
7266 /* New high max rto observed, will return 0 if not a single
7267 * RTO update took place. obs_rto_ipaddr will be bogus
7268 * in such a case
7269 */
7270 sas.sas_maxrto = asoc->stats.max_obs_rto;
7271 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7272 sizeof(struct sockaddr_storage));
7273
7274 /* Mark beginning of a new observation period */
7275 asoc->stats.max_obs_rto = asoc->rto_min;
7276
7277 if (put_user(len, optlen))
7278 return -EFAULT;
7279
7280 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7281
7282 if (copy_to_user(optval, &sas, len))
7283 return -EFAULT;
7284
7285 return 0;
7286}
7287
7288static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7289 char __user *optval,
7290 int __user *optlen)
7291{
7292 int val = 0;
7293
7294 if (len < sizeof(int))
7295 return -EINVAL;
7296
7297 len = sizeof(int);
7298 if (sctp_sk(sk)->recvrcvinfo)
7299 val = 1;
7300 if (put_user(len, optlen))
7301 return -EFAULT;
7302 if (copy_to_user(optval, &val, len))
7303 return -EFAULT;
7304
7305 return 0;
7306}
7307
7308static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7309 char __user *optval,
7310 int __user *optlen)
7311{
7312 int val = 0;
7313
7314 if (len < sizeof(int))
7315 return -EINVAL;
7316
7317 len = sizeof(int);
7318 if (sctp_sk(sk)->recvnxtinfo)
7319 val = 1;
7320 if (put_user(len, optlen))
7321 return -EFAULT;
7322 if (copy_to_user(optval, &val, len))
7323 return -EFAULT;
7324
7325 return 0;
7326}
7327
7328static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7329 char __user *optval,
7330 int __user *optlen)
7331{
7332 struct sctp_assoc_value params;
7333 struct sctp_association *asoc;
7334 int retval = -EFAULT;
7335
7336 if (len < sizeof(params)) {
7337 retval = -EINVAL;
7338 goto out;
7339 }
7340
7341 len = sizeof(params);
7342 if (copy_from_user(¶ms, optval, len))
7343 goto out;
7344
7345 asoc = sctp_id2assoc(sk, params.assoc_id);
7346 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7347 sctp_style(sk, UDP)) {
7348 retval = -EINVAL;
7349 goto out;
7350 }
7351
7352 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7353 : sctp_sk(sk)->ep->prsctp_enable;
7354
7355 if (put_user(len, optlen))
7356 goto out;
7357
7358 if (copy_to_user(optval, ¶ms, len))
7359 goto out;
7360
7361 retval = 0;
7362
7363out:
7364 return retval;
7365}
7366
7367static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7368 char __user *optval,
7369 int __user *optlen)
7370{
7371 struct sctp_default_prinfo info;
7372 struct sctp_association *asoc;
7373 int retval = -EFAULT;
7374
7375 if (len < sizeof(info)) {
7376 retval = -EINVAL;
7377 goto out;
7378 }
7379
7380 len = sizeof(info);
7381 if (copy_from_user(&info, optval, len))
7382 goto out;
7383
7384 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7385 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7386 sctp_style(sk, UDP)) {
7387 retval = -EINVAL;
7388 goto out;
7389 }
7390
7391 if (asoc) {
7392 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7393 info.pr_value = asoc->default_timetolive;
7394 } else {
7395 struct sctp_sock *sp = sctp_sk(sk);
7396
7397 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7398 info.pr_value = sp->default_timetolive;
7399 }
7400
7401 if (put_user(len, optlen))
7402 goto out;
7403
7404 if (copy_to_user(optval, &info, len))
7405 goto out;
7406
7407 retval = 0;
7408
7409out:
7410 return retval;
7411}
7412
7413static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7414 char __user *optval,
7415 int __user *optlen)
7416{
7417 struct sctp_prstatus params;
7418 struct sctp_association *asoc;
7419 int policy;
7420 int retval = -EINVAL;
7421
7422 if (len < sizeof(params))
7423 goto out;
7424
7425 len = sizeof(params);
7426 if (copy_from_user(¶ms, optval, len)) {
7427 retval = -EFAULT;
7428 goto out;
7429 }
7430
7431 policy = params.sprstat_policy;
7432 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7433 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7434 goto out;
7435
7436 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7437 if (!asoc)
7438 goto out;
7439
7440 if (policy == SCTP_PR_SCTP_ALL) {
7441 params.sprstat_abandoned_unsent = 0;
7442 params.sprstat_abandoned_sent = 0;
7443 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7444 params.sprstat_abandoned_unsent +=
7445 asoc->abandoned_unsent[policy];
7446 params.sprstat_abandoned_sent +=
7447 asoc->abandoned_sent[policy];
7448 }
7449 } else {
7450 params.sprstat_abandoned_unsent =
7451 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7452 params.sprstat_abandoned_sent =
7453 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7454 }
7455
7456 if (put_user(len, optlen)) {
7457 retval = -EFAULT;
7458 goto out;
7459 }
7460
7461 if (copy_to_user(optval, ¶ms, len)) {
7462 retval = -EFAULT;
7463 goto out;
7464 }
7465
7466 retval = 0;
7467
7468out:
7469 return retval;
7470}
7471
7472static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7473 char __user *optval,
7474 int __user *optlen)
7475{
7476 struct sctp_stream_out_ext *streamoute;
7477 struct sctp_association *asoc;
7478 struct sctp_prstatus params;
7479 int retval = -EINVAL;
7480 int policy;
7481
7482 if (len < sizeof(params))
7483 goto out;
7484
7485 len = sizeof(params);
7486 if (copy_from_user(¶ms, optval, len)) {
7487 retval = -EFAULT;
7488 goto out;
7489 }
7490
7491 policy = params.sprstat_policy;
7492 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7493 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7494 goto out;
7495
7496 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7497 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7498 goto out;
7499
7500 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7501 if (!streamoute) {
7502 /* Not allocated yet, means all stats are 0 */
7503 params.sprstat_abandoned_unsent = 0;
7504 params.sprstat_abandoned_sent = 0;
7505 retval = 0;
7506 goto out;
7507 }
7508
7509 if (policy == SCTP_PR_SCTP_ALL) {
7510 params.sprstat_abandoned_unsent = 0;
7511 params.sprstat_abandoned_sent = 0;
7512 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7513 params.sprstat_abandoned_unsent +=
7514 streamoute->abandoned_unsent[policy];
7515 params.sprstat_abandoned_sent +=
7516 streamoute->abandoned_sent[policy];
7517 }
7518 } else {
7519 params.sprstat_abandoned_unsent =
7520 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7521 params.sprstat_abandoned_sent =
7522 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7523 }
7524
7525 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7526 retval = -EFAULT;
7527 goto out;
7528 }
7529
7530 retval = 0;
7531
7532out:
7533 return retval;
7534}
7535
7536static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7537 char __user *optval,
7538 int __user *optlen)
7539{
7540 struct sctp_assoc_value params;
7541 struct sctp_association *asoc;
7542 int retval = -EFAULT;
7543
7544 if (len < sizeof(params)) {
7545 retval = -EINVAL;
7546 goto out;
7547 }
7548
7549 len = sizeof(params);
7550 if (copy_from_user(¶ms, optval, len))
7551 goto out;
7552
7553 asoc = sctp_id2assoc(sk, params.assoc_id);
7554 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7555 sctp_style(sk, UDP)) {
7556 retval = -EINVAL;
7557 goto out;
7558 }
7559
7560 params.assoc_value = asoc ? asoc->peer.reconf_capable
7561 : sctp_sk(sk)->ep->reconf_enable;
7562
7563 if (put_user(len, optlen))
7564 goto out;
7565
7566 if (copy_to_user(optval, ¶ms, len))
7567 goto out;
7568
7569 retval = 0;
7570
7571out:
7572 return retval;
7573}
7574
7575static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7576 char __user *optval,
7577 int __user *optlen)
7578{
7579 struct sctp_assoc_value params;
7580 struct sctp_association *asoc;
7581 int retval = -EFAULT;
7582
7583 if (len < sizeof(params)) {
7584 retval = -EINVAL;
7585 goto out;
7586 }
7587
7588 len = sizeof(params);
7589 if (copy_from_user(¶ms, optval, len))
7590 goto out;
7591
7592 asoc = sctp_id2assoc(sk, params.assoc_id);
7593 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7594 sctp_style(sk, UDP)) {
7595 retval = -EINVAL;
7596 goto out;
7597 }
7598
7599 params.assoc_value = asoc ? asoc->strreset_enable
7600 : sctp_sk(sk)->ep->strreset_enable;
7601
7602 if (put_user(len, optlen))
7603 goto out;
7604
7605 if (copy_to_user(optval, ¶ms, len))
7606 goto out;
7607
7608 retval = 0;
7609
7610out:
7611 return retval;
7612}
7613
7614static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7615 char __user *optval,
7616 int __user *optlen)
7617{
7618 struct sctp_assoc_value params;
7619 struct sctp_association *asoc;
7620 int retval = -EFAULT;
7621
7622 if (len < sizeof(params)) {
7623 retval = -EINVAL;
7624 goto out;
7625 }
7626
7627 len = sizeof(params);
7628 if (copy_from_user(¶ms, optval, len))
7629 goto out;
7630
7631 asoc = sctp_id2assoc(sk, params.assoc_id);
7632 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7633 sctp_style(sk, UDP)) {
7634 retval = -EINVAL;
7635 goto out;
7636 }
7637
7638 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7639 : sctp_sk(sk)->default_ss;
7640
7641 if (put_user(len, optlen))
7642 goto out;
7643
7644 if (copy_to_user(optval, ¶ms, len))
7645 goto out;
7646
7647 retval = 0;
7648
7649out:
7650 return retval;
7651}
7652
7653static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7654 char __user *optval,
7655 int __user *optlen)
7656{
7657 struct sctp_stream_value params;
7658 struct sctp_association *asoc;
7659 int retval = -EFAULT;
7660
7661 if (len < sizeof(params)) {
7662 retval = -EINVAL;
7663 goto out;
7664 }
7665
7666 len = sizeof(params);
7667 if (copy_from_user(¶ms, optval, len))
7668 goto out;
7669
7670 asoc = sctp_id2assoc(sk, params.assoc_id);
7671 if (!asoc) {
7672 retval = -EINVAL;
7673 goto out;
7674 }
7675
7676 retval = sctp_sched_get_value(asoc, params.stream_id,
7677 ¶ms.stream_value);
7678 if (retval)
7679 goto out;
7680
7681 if (put_user(len, optlen)) {
7682 retval = -EFAULT;
7683 goto out;
7684 }
7685
7686 if (copy_to_user(optval, ¶ms, len)) {
7687 retval = -EFAULT;
7688 goto out;
7689 }
7690
7691out:
7692 return retval;
7693}
7694
7695static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7696 char __user *optval,
7697 int __user *optlen)
7698{
7699 struct sctp_assoc_value params;
7700 struct sctp_association *asoc;
7701 int retval = -EFAULT;
7702
7703 if (len < sizeof(params)) {
7704 retval = -EINVAL;
7705 goto out;
7706 }
7707
7708 len = sizeof(params);
7709 if (copy_from_user(¶ms, optval, len))
7710 goto out;
7711
7712 asoc = sctp_id2assoc(sk, params.assoc_id);
7713 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7714 sctp_style(sk, UDP)) {
7715 retval = -EINVAL;
7716 goto out;
7717 }
7718
7719 params.assoc_value = asoc ? asoc->peer.intl_capable
7720 : sctp_sk(sk)->ep->intl_enable;
7721
7722 if (put_user(len, optlen))
7723 goto out;
7724
7725 if (copy_to_user(optval, ¶ms, len))
7726 goto out;
7727
7728 retval = 0;
7729
7730out:
7731 return retval;
7732}
7733
7734static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7735 char __user *optval,
7736 int __user *optlen)
7737{
7738 int val;
7739
7740 if (len < sizeof(int))
7741 return -EINVAL;
7742
7743 len = sizeof(int);
7744 val = sctp_sk(sk)->reuse;
7745 if (put_user(len, optlen))
7746 return -EFAULT;
7747
7748 if (copy_to_user(optval, &val, len))
7749 return -EFAULT;
7750
7751 return 0;
7752}
7753
7754static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7755 int __user *optlen)
7756{
7757 struct sctp_association *asoc;
7758 struct sctp_event param;
7759 __u16 subscribe;
7760
7761 if (len < sizeof(param))
7762 return -EINVAL;
7763
7764 len = sizeof(param);
7765 if (copy_from_user(¶m, optval, len))
7766 return -EFAULT;
7767
7768 if (param.se_type < SCTP_SN_TYPE_BASE ||
7769 param.se_type > SCTP_SN_TYPE_MAX)
7770 return -EINVAL;
7771
7772 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7773 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7774 sctp_style(sk, UDP))
7775 return -EINVAL;
7776
7777 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7778 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7779
7780 if (put_user(len, optlen))
7781 return -EFAULT;
7782
7783 if (copy_to_user(optval, ¶m, len))
7784 return -EFAULT;
7785
7786 return 0;
7787}
7788
7789static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7790 char __user *optval,
7791 int __user *optlen)
7792{
7793 struct sctp_assoc_value params;
7794 struct sctp_association *asoc;
7795 int retval = -EFAULT;
7796
7797 if (len < sizeof(params)) {
7798 retval = -EINVAL;
7799 goto out;
7800 }
7801
7802 len = sizeof(params);
7803 if (copy_from_user(¶ms, optval, len))
7804 goto out;
7805
7806 asoc = sctp_id2assoc(sk, params.assoc_id);
7807 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7808 sctp_style(sk, UDP)) {
7809 retval = -EINVAL;
7810 goto out;
7811 }
7812
7813 params.assoc_value = asoc ? asoc->peer.asconf_capable
7814 : sctp_sk(sk)->ep->asconf_enable;
7815
7816 if (put_user(len, optlen))
7817 goto out;
7818
7819 if (copy_to_user(optval, ¶ms, len))
7820 goto out;
7821
7822 retval = 0;
7823
7824out:
7825 return retval;
7826}
7827
7828static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7829 char __user *optval,
7830 int __user *optlen)
7831{
7832 struct sctp_assoc_value params;
7833 struct sctp_association *asoc;
7834 int retval = -EFAULT;
7835
7836 if (len < sizeof(params)) {
7837 retval = -EINVAL;
7838 goto out;
7839 }
7840
7841 len = sizeof(params);
7842 if (copy_from_user(¶ms, optval, len))
7843 goto out;
7844
7845 asoc = sctp_id2assoc(sk, params.assoc_id);
7846 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7847 sctp_style(sk, UDP)) {
7848 retval = -EINVAL;
7849 goto out;
7850 }
7851
7852 params.assoc_value = asoc ? asoc->peer.auth_capable
7853 : sctp_sk(sk)->ep->auth_enable;
7854
7855 if (put_user(len, optlen))
7856 goto out;
7857
7858 if (copy_to_user(optval, ¶ms, len))
7859 goto out;
7860
7861 retval = 0;
7862
7863out:
7864 return retval;
7865}
7866
7867static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7868 char __user *optval,
7869 int __user *optlen)
7870{
7871 struct sctp_assoc_value params;
7872 struct sctp_association *asoc;
7873 int retval = -EFAULT;
7874
7875 if (len < sizeof(params)) {
7876 retval = -EINVAL;
7877 goto out;
7878 }
7879
7880 len = sizeof(params);
7881 if (copy_from_user(¶ms, optval, len))
7882 goto out;
7883
7884 asoc = sctp_id2assoc(sk, params.assoc_id);
7885 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7886 sctp_style(sk, UDP)) {
7887 retval = -EINVAL;
7888 goto out;
7889 }
7890
7891 params.assoc_value = asoc ? asoc->peer.ecn_capable
7892 : sctp_sk(sk)->ep->ecn_enable;
7893
7894 if (put_user(len, optlen))
7895 goto out;
7896
7897 if (copy_to_user(optval, ¶ms, len))
7898 goto out;
7899
7900 retval = 0;
7901
7902out:
7903 return retval;
7904}
7905
7906static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7907 char __user *optval,
7908 int __user *optlen)
7909{
7910 struct sctp_assoc_value params;
7911 struct sctp_association *asoc;
7912 int retval = -EFAULT;
7913
7914 if (len < sizeof(params)) {
7915 retval = -EINVAL;
7916 goto out;
7917 }
7918
7919 len = sizeof(params);
7920 if (copy_from_user(¶ms, optval, len))
7921 goto out;
7922
7923 asoc = sctp_id2assoc(sk, params.assoc_id);
7924 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7925 sctp_style(sk, UDP)) {
7926 retval = -EINVAL;
7927 goto out;
7928 }
7929
7930 params.assoc_value = asoc ? asoc->pf_expose
7931 : sctp_sk(sk)->pf_expose;
7932
7933 if (put_user(len, optlen))
7934 goto out;
7935
7936 if (copy_to_user(optval, ¶ms, len))
7937 goto out;
7938
7939 retval = 0;
7940
7941out:
7942 return retval;
7943}
7944
7945static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7946 char __user *optval, int __user *optlen)
7947{
7948 struct sctp_association *asoc;
7949 struct sctp_udpencaps encap;
7950 struct sctp_transport *t;
7951 __be16 encap_port;
7952
7953 if (len < sizeof(encap))
7954 return -EINVAL;
7955
7956 len = sizeof(encap);
7957 if (copy_from_user(&encap, optval, len))
7958 return -EFAULT;
7959
7960 /* If an address other than INADDR_ANY is specified, and
7961 * no transport is found, then the request is invalid.
7962 */
7963 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7964 t = sctp_addr_id2transport(sk, &encap.sue_address,
7965 encap.sue_assoc_id);
7966 if (!t) {
7967 pr_debug("%s: failed no transport\n", __func__);
7968 return -EINVAL;
7969 }
7970
7971 encap_port = t->encap_port;
7972 goto out;
7973 }
7974
7975 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7976 * socket is a one to many style socket, and an association
7977 * was not found, then the id was invalid.
7978 */
7979 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7980 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7981 sctp_style(sk, UDP)) {
7982 pr_debug("%s: failed no association\n", __func__);
7983 return -EINVAL;
7984 }
7985
7986 if (asoc) {
7987 encap_port = asoc->encap_port;
7988 goto out;
7989 }
7990
7991 encap_port = sctp_sk(sk)->encap_port;
7992
7993out:
7994 encap.sue_port = (__force uint16_t)encap_port;
7995 if (copy_to_user(optval, &encap, len))
7996 return -EFAULT;
7997
7998 if (put_user(len, optlen))
7999 return -EFAULT;
8000
8001 return 0;
8002}
8003
8004static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
8005 char __user *optval,
8006 int __user *optlen)
8007{
8008 struct sctp_probeinterval params;
8009 struct sctp_association *asoc;
8010 struct sctp_transport *t;
8011 __u32 probe_interval;
8012
8013 if (len < sizeof(params))
8014 return -EINVAL;
8015
8016 len = sizeof(params);
8017 if (copy_from_user(¶ms, optval, len))
8018 return -EFAULT;
8019
8020 /* If an address other than INADDR_ANY is specified, and
8021 * no transport is found, then the request is invalid.
8022 */
8023 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
8024 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
8025 params.spi_assoc_id);
8026 if (!t) {
8027 pr_debug("%s: failed no transport\n", __func__);
8028 return -EINVAL;
8029 }
8030
8031 probe_interval = jiffies_to_msecs(t->probe_interval);
8032 goto out;
8033 }
8034
8035 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8036 * socket is a one to many style socket, and an association
8037 * was not found, then the id was invalid.
8038 */
8039 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8040 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8041 sctp_style(sk, UDP)) {
8042 pr_debug("%s: failed no association\n", __func__);
8043 return -EINVAL;
8044 }
8045
8046 if (asoc) {
8047 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8048 goto out;
8049 }
8050
8051 probe_interval = sctp_sk(sk)->probe_interval;
8052
8053out:
8054 params.spi_interval = probe_interval;
8055 if (copy_to_user(optval, ¶ms, len))
8056 return -EFAULT;
8057
8058 if (put_user(len, optlen))
8059 return -EFAULT;
8060
8061 return 0;
8062}
8063
8064static int sctp_getsockopt(struct sock *sk, int level, int optname,
8065 char __user *optval, int __user *optlen)
8066{
8067 int retval = 0;
8068 int len;
8069
8070 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8071
8072 /* I can hardly begin to describe how wrong this is. This is
8073 * so broken as to be worse than useless. The API draft
8074 * REALLY is NOT helpful here... I am not convinced that the
8075 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8076 * are at all well-founded.
8077 */
8078 if (level != SOL_SCTP) {
8079 struct sctp_af *af = sctp_sk(sk)->pf->af;
8080
8081 retval = af->getsockopt(sk, level, optname, optval, optlen);
8082 return retval;
8083 }
8084
8085 if (get_user(len, optlen))
8086 return -EFAULT;
8087
8088 if (len < 0)
8089 return -EINVAL;
8090
8091 lock_sock(sk);
8092
8093 switch (optname) {
8094 case SCTP_STATUS:
8095 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8096 break;
8097 case SCTP_DISABLE_FRAGMENTS:
8098 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8099 optlen);
8100 break;
8101 case SCTP_EVENTS:
8102 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8103 break;
8104 case SCTP_AUTOCLOSE:
8105 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8106 break;
8107 case SCTP_SOCKOPT_PEELOFF:
8108 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8109 break;
8110 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8111 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8112 break;
8113 case SCTP_PEER_ADDR_PARAMS:
8114 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8115 optlen);
8116 break;
8117 case SCTP_DELAYED_SACK:
8118 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8119 optlen);
8120 break;
8121 case SCTP_INITMSG:
8122 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8123 break;
8124 case SCTP_GET_PEER_ADDRS:
8125 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8126 optlen);
8127 break;
8128 case SCTP_GET_LOCAL_ADDRS:
8129 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8130 optlen);
8131 break;
8132 case SCTP_SOCKOPT_CONNECTX3:
8133 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8134 break;
8135 case SCTP_DEFAULT_SEND_PARAM:
8136 retval = sctp_getsockopt_default_send_param(sk, len,
8137 optval, optlen);
8138 break;
8139 case SCTP_DEFAULT_SNDINFO:
8140 retval = sctp_getsockopt_default_sndinfo(sk, len,
8141 optval, optlen);
8142 break;
8143 case SCTP_PRIMARY_ADDR:
8144 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8145 break;
8146 case SCTP_NODELAY:
8147 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8148 break;
8149 case SCTP_RTOINFO:
8150 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8151 break;
8152 case SCTP_ASSOCINFO:
8153 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8154 break;
8155 case SCTP_I_WANT_MAPPED_V4_ADDR:
8156 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8157 break;
8158 case SCTP_MAXSEG:
8159 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8160 break;
8161 case SCTP_GET_PEER_ADDR_INFO:
8162 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8163 optlen);
8164 break;
8165 case SCTP_ADAPTATION_LAYER:
8166 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8167 optlen);
8168 break;
8169 case SCTP_CONTEXT:
8170 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8171 break;
8172 case SCTP_FRAGMENT_INTERLEAVE:
8173 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8174 optlen);
8175 break;
8176 case SCTP_PARTIAL_DELIVERY_POINT:
8177 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8178 optlen);
8179 break;
8180 case SCTP_MAX_BURST:
8181 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8182 break;
8183 case SCTP_AUTH_KEY:
8184 case SCTP_AUTH_CHUNK:
8185 case SCTP_AUTH_DELETE_KEY:
8186 case SCTP_AUTH_DEACTIVATE_KEY:
8187 retval = -EOPNOTSUPP;
8188 break;
8189 case SCTP_HMAC_IDENT:
8190 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8191 break;
8192 case SCTP_AUTH_ACTIVE_KEY:
8193 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8194 break;
8195 case SCTP_PEER_AUTH_CHUNKS:
8196 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8197 optlen);
8198 break;
8199 case SCTP_LOCAL_AUTH_CHUNKS:
8200 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8201 optlen);
8202 break;
8203 case SCTP_GET_ASSOC_NUMBER:
8204 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8205 break;
8206 case SCTP_GET_ASSOC_ID_LIST:
8207 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8208 break;
8209 case SCTP_AUTO_ASCONF:
8210 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8211 break;
8212 case SCTP_PEER_ADDR_THLDS:
8213 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8214 optlen, false);
8215 break;
8216 case SCTP_PEER_ADDR_THLDS_V2:
8217 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8218 optlen, true);
8219 break;
8220 case SCTP_GET_ASSOC_STATS:
8221 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8222 break;
8223 case SCTP_RECVRCVINFO:
8224 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8225 break;
8226 case SCTP_RECVNXTINFO:
8227 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8228 break;
8229 case SCTP_PR_SUPPORTED:
8230 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8231 break;
8232 case SCTP_DEFAULT_PRINFO:
8233 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8234 optlen);
8235 break;
8236 case SCTP_PR_ASSOC_STATUS:
8237 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8238 optlen);
8239 break;
8240 case SCTP_PR_STREAM_STATUS:
8241 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8242 optlen);
8243 break;
8244 case SCTP_RECONFIG_SUPPORTED:
8245 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8246 optlen);
8247 break;
8248 case SCTP_ENABLE_STREAM_RESET:
8249 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8250 optlen);
8251 break;
8252 case SCTP_STREAM_SCHEDULER:
8253 retval = sctp_getsockopt_scheduler(sk, len, optval,
8254 optlen);
8255 break;
8256 case SCTP_STREAM_SCHEDULER_VALUE:
8257 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8258 optlen);
8259 break;
8260 case SCTP_INTERLEAVING_SUPPORTED:
8261 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8262 optlen);
8263 break;
8264 case SCTP_REUSE_PORT:
8265 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8266 break;
8267 case SCTP_EVENT:
8268 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8269 break;
8270 case SCTP_ASCONF_SUPPORTED:
8271 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8272 optlen);
8273 break;
8274 case SCTP_AUTH_SUPPORTED:
8275 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8276 optlen);
8277 break;
8278 case SCTP_ECN_SUPPORTED:
8279 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8280 break;
8281 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8282 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8283 break;
8284 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8285 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8286 break;
8287 case SCTP_PLPMTUD_PROBE_INTERVAL:
8288 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8289 break;
8290 default:
8291 retval = -ENOPROTOOPT;
8292 break;
8293 }
8294
8295 release_sock(sk);
8296 return retval;
8297}
8298
8299static bool sctp_bpf_bypass_getsockopt(int level, int optname)
8300{
8301 if (level == SOL_SCTP) {
8302 switch (optname) {
8303 case SCTP_SOCKOPT_PEELOFF:
8304 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8305 case SCTP_SOCKOPT_CONNECTX3:
8306 return true;
8307 default:
8308 return false;
8309 }
8310 }
8311
8312 return false;
8313}
8314
8315static int sctp_hash(struct sock *sk)
8316{
8317 /* STUB */
8318 return 0;
8319}
8320
8321static void sctp_unhash(struct sock *sk)
8322{
8323 /* STUB */
8324}
8325
8326/* Check if port is acceptable. Possibly find first available port.
8327 *
8328 * The port hash table (contained in the 'global' SCTP protocol storage
8329 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8330 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8331 * list (the list number is the port number hashed out, so as you
8332 * would expect from a hash function, all the ports in a given list have
8333 * such a number that hashes out to the same list number; you were
8334 * expecting that, right?); so each list has a set of ports, with a
8335 * link to the socket (struct sock) that uses it, the port number and
8336 * a fastreuse flag (FIXME: NPI ipg).
8337 */
8338static struct sctp_bind_bucket *sctp_bucket_create(
8339 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8340
8341static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8342{
8343 struct sctp_sock *sp = sctp_sk(sk);
8344 bool reuse = (sk->sk_reuse || sp->reuse);
8345 struct sctp_bind_hashbucket *head; /* hash list */
8346 struct net *net = sock_net(sk);
8347 kuid_t uid = sock_i_uid(sk);
8348 struct sctp_bind_bucket *pp;
8349 unsigned short snum;
8350 int ret;
8351
8352 snum = ntohs(addr->v4.sin_port);
8353
8354 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8355
8356 if (snum == 0) {
8357 /* Search for an available port. */
8358 int low, high, remaining, index;
8359 unsigned int rover;
8360
8361 inet_sk_get_local_port_range(sk, &low, &high);
8362 remaining = (high - low) + 1;
8363 rover = get_random_u32_below(remaining) + low;
8364
8365 do {
8366 rover++;
8367 if ((rover < low) || (rover > high))
8368 rover = low;
8369 if (inet_is_local_reserved_port(net, rover))
8370 continue;
8371 index = sctp_phashfn(net, rover);
8372 head = &sctp_port_hashtable[index];
8373 spin_lock_bh(&head->lock);
8374 sctp_for_each_hentry(pp, &head->chain)
8375 if ((pp->port == rover) &&
8376 net_eq(net, pp->net))
8377 goto next;
8378 break;
8379 next:
8380 spin_unlock_bh(&head->lock);
8381 cond_resched();
8382 } while (--remaining > 0);
8383
8384 /* Exhausted local port range during search? */
8385 ret = 1;
8386 if (remaining <= 0)
8387 return ret;
8388
8389 /* OK, here is the one we will use. HEAD (the port
8390 * hash table list entry) is non-NULL and we hold it's
8391 * mutex.
8392 */
8393 snum = rover;
8394 } else {
8395 /* We are given an specific port number; we verify
8396 * that it is not being used. If it is used, we will
8397 * exahust the search in the hash list corresponding
8398 * to the port number (snum) - we detect that with the
8399 * port iterator, pp being NULL.
8400 */
8401 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8402 spin_lock_bh(&head->lock);
8403 sctp_for_each_hentry(pp, &head->chain) {
8404 if ((pp->port == snum) && net_eq(pp->net, net))
8405 goto pp_found;
8406 }
8407 }
8408 pp = NULL;
8409 goto pp_not_found;
8410pp_found:
8411 if (!hlist_empty(&pp->owner)) {
8412 /* We had a port hash table hit - there is an
8413 * available port (pp != NULL) and it is being
8414 * used by other socket (pp->owner not empty); that other
8415 * socket is going to be sk2.
8416 */
8417 struct sock *sk2;
8418
8419 pr_debug("%s: found a possible match\n", __func__);
8420
8421 if ((pp->fastreuse && reuse &&
8422 sk->sk_state != SCTP_SS_LISTENING) ||
8423 (pp->fastreuseport && sk->sk_reuseport &&
8424 uid_eq(pp->fastuid, uid)))
8425 goto success;
8426
8427 /* Run through the list of sockets bound to the port
8428 * (pp->port) [via the pointers bind_next and
8429 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8430 * we get the endpoint they describe and run through
8431 * the endpoint's list of IP (v4 or v6) addresses,
8432 * comparing each of the addresses with the address of
8433 * the socket sk. If we find a match, then that means
8434 * that this port/socket (sk) combination are already
8435 * in an endpoint.
8436 */
8437 sk_for_each_bound(sk2, &pp->owner) {
8438 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
8439 struct sctp_sock *sp2 = sctp_sk(sk2);
8440 struct sctp_endpoint *ep2 = sp2->ep;
8441
8442 if (sk == sk2 ||
8443 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8444 sk2->sk_state != SCTP_SS_LISTENING) ||
8445 (sk->sk_reuseport && sk2->sk_reuseport &&
8446 uid_eq(uid, sock_i_uid(sk2))))
8447 continue;
8448
8449 if ((!sk->sk_bound_dev_if || !bound_dev_if2 ||
8450 sk->sk_bound_dev_if == bound_dev_if2) &&
8451 sctp_bind_addr_conflict(&ep2->base.bind_addr,
8452 addr, sp2, sp)) {
8453 ret = 1;
8454 goto fail_unlock;
8455 }
8456 }
8457
8458 pr_debug("%s: found a match\n", __func__);
8459 }
8460pp_not_found:
8461 /* If there was a hash table miss, create a new port. */
8462 ret = 1;
8463 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8464 goto fail_unlock;
8465
8466 /* In either case (hit or miss), make sure fastreuse is 1 only
8467 * if sk->sk_reuse is too (that is, if the caller requested
8468 * SO_REUSEADDR on this socket -sk-).
8469 */
8470 if (hlist_empty(&pp->owner)) {
8471 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8472 pp->fastreuse = 1;
8473 else
8474 pp->fastreuse = 0;
8475
8476 if (sk->sk_reuseport) {
8477 pp->fastreuseport = 1;
8478 pp->fastuid = uid;
8479 } else {
8480 pp->fastreuseport = 0;
8481 }
8482 } else {
8483 if (pp->fastreuse &&
8484 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8485 pp->fastreuse = 0;
8486
8487 if (pp->fastreuseport &&
8488 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8489 pp->fastreuseport = 0;
8490 }
8491
8492 /* We are set, so fill up all the data in the hash table
8493 * entry, tie the socket list information with the rest of the
8494 * sockets FIXME: Blurry, NPI (ipg).
8495 */
8496success:
8497 if (!sp->bind_hash) {
8498 inet_sk(sk)->inet_num = snum;
8499 sk_add_bind_node(sk, &pp->owner);
8500 sp->bind_hash = pp;
8501 }
8502 ret = 0;
8503
8504fail_unlock:
8505 spin_unlock_bh(&head->lock);
8506 return ret;
8507}
8508
8509/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8510 * port is requested.
8511 */
8512static int sctp_get_port(struct sock *sk, unsigned short snum)
8513{
8514 union sctp_addr addr;
8515 struct sctp_af *af = sctp_sk(sk)->pf->af;
8516
8517 /* Set up a dummy address struct from the sk. */
8518 af->from_sk(&addr, sk);
8519 addr.v4.sin_port = htons(snum);
8520
8521 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8522 return sctp_get_port_local(sk, &addr);
8523}
8524
8525/*
8526 * Move a socket to LISTENING state.
8527 */
8528static int sctp_listen_start(struct sock *sk, int backlog)
8529{
8530 struct sctp_sock *sp = sctp_sk(sk);
8531 struct sctp_endpoint *ep = sp->ep;
8532 struct crypto_shash *tfm = NULL;
8533 char alg[32];
8534 int err;
8535
8536 /* Allocate HMAC for generating cookie. */
8537 if (!sp->hmac && sp->sctp_hmac_alg) {
8538 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8539 tfm = crypto_alloc_shash(alg, 0, 0);
8540 if (IS_ERR(tfm)) {
8541 net_info_ratelimited("failed to load transform for %s: %ld\n",
8542 sp->sctp_hmac_alg, PTR_ERR(tfm));
8543 return -ENOSYS;
8544 }
8545 sctp_sk(sk)->hmac = tfm;
8546 }
8547
8548 /*
8549 * If a bind() or sctp_bindx() is not called prior to a listen()
8550 * call that allows new associations to be accepted, the system
8551 * picks an ephemeral port and will choose an address set equivalent
8552 * to binding with a wildcard address.
8553 *
8554 * This is not currently spelled out in the SCTP sockets
8555 * extensions draft, but follows the practice as seen in TCP
8556 * sockets.
8557 *
8558 */
8559 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8560 if (!ep->base.bind_addr.port) {
8561 if (sctp_autobind(sk)) {
8562 err = -EAGAIN;
8563 goto err;
8564 }
8565 } else {
8566 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8567 err = -EADDRINUSE;
8568 goto err;
8569 }
8570 }
8571
8572 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8573 err = sctp_hash_endpoint(ep);
8574 if (err)
8575 goto err;
8576
8577 return 0;
8578err:
8579 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8580 return err;
8581}
8582
8583/*
8584 * 4.1.3 / 5.1.3 listen()
8585 *
8586 * By default, new associations are not accepted for UDP style sockets.
8587 * An application uses listen() to mark a socket as being able to
8588 * accept new associations.
8589 *
8590 * On TCP style sockets, applications use listen() to ready the SCTP
8591 * endpoint for accepting inbound associations.
8592 *
8593 * On both types of endpoints a backlog of '0' disables listening.
8594 *
8595 * Move a socket to LISTENING state.
8596 */
8597int sctp_inet_listen(struct socket *sock, int backlog)
8598{
8599 struct sock *sk = sock->sk;
8600 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8601 int err = -EINVAL;
8602
8603 if (unlikely(backlog < 0))
8604 return err;
8605
8606 lock_sock(sk);
8607
8608 /* Peeled-off sockets are not allowed to listen(). */
8609 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8610 goto out;
8611
8612 if (sock->state != SS_UNCONNECTED)
8613 goto out;
8614
8615 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8616 goto out;
8617
8618 /* If backlog is zero, disable listening. */
8619 if (!backlog) {
8620 if (sctp_sstate(sk, CLOSED))
8621 goto out;
8622
8623 err = 0;
8624 sctp_unhash_endpoint(ep);
8625 sk->sk_state = SCTP_SS_CLOSED;
8626 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8627 sctp_sk(sk)->bind_hash->fastreuse = 1;
8628 goto out;
8629 }
8630
8631 /* If we are already listening, just update the backlog */
8632 if (sctp_sstate(sk, LISTENING))
8633 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8634 else {
8635 err = sctp_listen_start(sk, backlog);
8636 if (err)
8637 goto out;
8638 }
8639
8640 err = 0;
8641out:
8642 release_sock(sk);
8643 return err;
8644}
8645
8646/*
8647 * This function is done by modeling the current datagram_poll() and the
8648 * tcp_poll(). Note that, based on these implementations, we don't
8649 * lock the socket in this function, even though it seems that,
8650 * ideally, locking or some other mechanisms can be used to ensure
8651 * the integrity of the counters (sndbuf and wmem_alloc) used
8652 * in this place. We assume that we don't need locks either until proven
8653 * otherwise.
8654 *
8655 * Another thing to note is that we include the Async I/O support
8656 * here, again, by modeling the current TCP/UDP code. We don't have
8657 * a good way to test with it yet.
8658 */
8659__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8660{
8661 struct sock *sk = sock->sk;
8662 struct sctp_sock *sp = sctp_sk(sk);
8663 __poll_t mask;
8664
8665 poll_wait(file, sk_sleep(sk), wait);
8666
8667 sock_rps_record_flow(sk);
8668
8669 /* A TCP-style listening socket becomes readable when the accept queue
8670 * is not empty.
8671 */
8672 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8673 return (!list_empty(&sp->ep->asocs)) ?
8674 (EPOLLIN | EPOLLRDNORM) : 0;
8675
8676 mask = 0;
8677
8678 /* Is there any exceptional events? */
8679 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8680 mask |= EPOLLERR |
8681 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8682 if (sk->sk_shutdown & RCV_SHUTDOWN)
8683 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8684 if (sk->sk_shutdown == SHUTDOWN_MASK)
8685 mask |= EPOLLHUP;
8686
8687 /* Is it readable? Reconsider this code with TCP-style support. */
8688 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8689 mask |= EPOLLIN | EPOLLRDNORM;
8690
8691 /* The association is either gone or not ready. */
8692 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8693 return mask;
8694
8695 /* Is it writable? */
8696 if (sctp_writeable(sk)) {
8697 mask |= EPOLLOUT | EPOLLWRNORM;
8698 } else {
8699 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8700 /*
8701 * Since the socket is not locked, the buffer
8702 * might be made available after the writeable check and
8703 * before the bit is set. This could cause a lost I/O
8704 * signal. tcp_poll() has a race breaker for this race
8705 * condition. Based on their implementation, we put
8706 * in the following code to cover it as well.
8707 */
8708 if (sctp_writeable(sk))
8709 mask |= EPOLLOUT | EPOLLWRNORM;
8710 }
8711 return mask;
8712}
8713
8714/********************************************************************
8715 * 2nd Level Abstractions
8716 ********************************************************************/
8717
8718static struct sctp_bind_bucket *sctp_bucket_create(
8719 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8720{
8721 struct sctp_bind_bucket *pp;
8722
8723 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8724 if (pp) {
8725 SCTP_DBG_OBJCNT_INC(bind_bucket);
8726 pp->port = snum;
8727 pp->fastreuse = 0;
8728 INIT_HLIST_HEAD(&pp->owner);
8729 pp->net = net;
8730 hlist_add_head(&pp->node, &head->chain);
8731 }
8732 return pp;
8733}
8734
8735/* Caller must hold hashbucket lock for this tb with local BH disabled */
8736static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8737{
8738 if (pp && hlist_empty(&pp->owner)) {
8739 __hlist_del(&pp->node);
8740 kmem_cache_free(sctp_bucket_cachep, pp);
8741 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8742 }
8743}
8744
8745/* Release this socket's reference to a local port. */
8746static inline void __sctp_put_port(struct sock *sk)
8747{
8748 struct sctp_bind_hashbucket *head =
8749 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8750 inet_sk(sk)->inet_num)];
8751 struct sctp_bind_bucket *pp;
8752
8753 spin_lock(&head->lock);
8754 pp = sctp_sk(sk)->bind_hash;
8755 __sk_del_bind_node(sk);
8756 sctp_sk(sk)->bind_hash = NULL;
8757 inet_sk(sk)->inet_num = 0;
8758 sctp_bucket_destroy(pp);
8759 spin_unlock(&head->lock);
8760}
8761
8762void sctp_put_port(struct sock *sk)
8763{
8764 local_bh_disable();
8765 __sctp_put_port(sk);
8766 local_bh_enable();
8767}
8768
8769/*
8770 * The system picks an ephemeral port and choose an address set equivalent
8771 * to binding with a wildcard address.
8772 * One of those addresses will be the primary address for the association.
8773 * This automatically enables the multihoming capability of SCTP.
8774 */
8775static int sctp_autobind(struct sock *sk)
8776{
8777 union sctp_addr autoaddr;
8778 struct sctp_af *af;
8779 __be16 port;
8780
8781 /* Initialize a local sockaddr structure to INADDR_ANY. */
8782 af = sctp_sk(sk)->pf->af;
8783
8784 port = htons(inet_sk(sk)->inet_num);
8785 af->inaddr_any(&autoaddr, port);
8786
8787 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8788}
8789
8790/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8791 *
8792 * From RFC 2292
8793 * 4.2 The cmsghdr Structure *
8794 *
8795 * When ancillary data is sent or received, any number of ancillary data
8796 * objects can be specified by the msg_control and msg_controllen members of
8797 * the msghdr structure, because each object is preceded by
8798 * a cmsghdr structure defining the object's length (the cmsg_len member).
8799 * Historically Berkeley-derived implementations have passed only one object
8800 * at a time, but this API allows multiple objects to be
8801 * passed in a single call to sendmsg() or recvmsg(). The following example
8802 * shows two ancillary data objects in a control buffer.
8803 *
8804 * |<--------------------------- msg_controllen -------------------------->|
8805 * | |
8806 *
8807 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8808 *
8809 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8810 * | | |
8811 *
8812 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8813 *
8814 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8815 * | | | | |
8816 *
8817 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8818 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8819 *
8820 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8821 *
8822 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8823 * ^
8824 * |
8825 *
8826 * msg_control
8827 * points here
8828 */
8829static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8830{
8831 struct msghdr *my_msg = (struct msghdr *)msg;
8832 struct cmsghdr *cmsg;
8833
8834 for_each_cmsghdr(cmsg, my_msg) {
8835 if (!CMSG_OK(my_msg, cmsg))
8836 return -EINVAL;
8837
8838 /* Should we parse this header or ignore? */
8839 if (cmsg->cmsg_level != IPPROTO_SCTP)
8840 continue;
8841
8842 /* Strictly check lengths following example in SCM code. */
8843 switch (cmsg->cmsg_type) {
8844 case SCTP_INIT:
8845 /* SCTP Socket API Extension
8846 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8847 *
8848 * This cmsghdr structure provides information for
8849 * initializing new SCTP associations with sendmsg().
8850 * The SCTP_INITMSG socket option uses this same data
8851 * structure. This structure is not used for
8852 * recvmsg().
8853 *
8854 * cmsg_level cmsg_type cmsg_data[]
8855 * ------------ ------------ ----------------------
8856 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8857 */
8858 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8859 return -EINVAL;
8860
8861 cmsgs->init = CMSG_DATA(cmsg);
8862 break;
8863
8864 case SCTP_SNDRCV:
8865 /* SCTP Socket API Extension
8866 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8867 *
8868 * This cmsghdr structure specifies SCTP options for
8869 * sendmsg() and describes SCTP header information
8870 * about a received message through recvmsg().
8871 *
8872 * cmsg_level cmsg_type cmsg_data[]
8873 * ------------ ------------ ----------------------
8874 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8875 */
8876 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8877 return -EINVAL;
8878
8879 cmsgs->srinfo = CMSG_DATA(cmsg);
8880
8881 if (cmsgs->srinfo->sinfo_flags &
8882 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8883 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8884 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8885 return -EINVAL;
8886 break;
8887
8888 case SCTP_SNDINFO:
8889 /* SCTP Socket API Extension
8890 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8891 *
8892 * This cmsghdr structure specifies SCTP options for
8893 * sendmsg(). This structure and SCTP_RCVINFO replaces
8894 * SCTP_SNDRCV which has been deprecated.
8895 *
8896 * cmsg_level cmsg_type cmsg_data[]
8897 * ------------ ------------ ---------------------
8898 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8899 */
8900 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8901 return -EINVAL;
8902
8903 cmsgs->sinfo = CMSG_DATA(cmsg);
8904
8905 if (cmsgs->sinfo->snd_flags &
8906 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8907 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8908 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8909 return -EINVAL;
8910 break;
8911 case SCTP_PRINFO:
8912 /* SCTP Socket API Extension
8913 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8914 *
8915 * This cmsghdr structure specifies SCTP options for sendmsg().
8916 *
8917 * cmsg_level cmsg_type cmsg_data[]
8918 * ------------ ------------ ---------------------
8919 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8920 */
8921 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8922 return -EINVAL;
8923
8924 cmsgs->prinfo = CMSG_DATA(cmsg);
8925 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8926 return -EINVAL;
8927
8928 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8929 cmsgs->prinfo->pr_value = 0;
8930 break;
8931 case SCTP_AUTHINFO:
8932 /* SCTP Socket API Extension
8933 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8934 *
8935 * This cmsghdr structure specifies SCTP options for sendmsg().
8936 *
8937 * cmsg_level cmsg_type cmsg_data[]
8938 * ------------ ------------ ---------------------
8939 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8940 */
8941 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8942 return -EINVAL;
8943
8944 cmsgs->authinfo = CMSG_DATA(cmsg);
8945 break;
8946 case SCTP_DSTADDRV4:
8947 case SCTP_DSTADDRV6:
8948 /* SCTP Socket API Extension
8949 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8950 *
8951 * This cmsghdr structure specifies SCTP options for sendmsg().
8952 *
8953 * cmsg_level cmsg_type cmsg_data[]
8954 * ------------ ------------ ---------------------
8955 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8956 * ------------ ------------ ---------------------
8957 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8958 */
8959 cmsgs->addrs_msg = my_msg;
8960 break;
8961 default:
8962 return -EINVAL;
8963 }
8964 }
8965
8966 return 0;
8967}
8968
8969/*
8970 * Wait for a packet..
8971 * Note: This function is the same function as in core/datagram.c
8972 * with a few modifications to make lksctp work.
8973 */
8974static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8975{
8976 int error;
8977 DEFINE_WAIT(wait);
8978
8979 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8980
8981 /* Socket errors? */
8982 error = sock_error(sk);
8983 if (error)
8984 goto out;
8985
8986 if (!skb_queue_empty(&sk->sk_receive_queue))
8987 goto ready;
8988
8989 /* Socket shut down? */
8990 if (sk->sk_shutdown & RCV_SHUTDOWN)
8991 goto out;
8992
8993 /* Sequenced packets can come disconnected. If so we report the
8994 * problem.
8995 */
8996 error = -ENOTCONN;
8997
8998 /* Is there a good reason to think that we may receive some data? */
8999 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
9000 goto out;
9001
9002 /* Handle signals. */
9003 if (signal_pending(current))
9004 goto interrupted;
9005
9006 /* Let another process have a go. Since we are going to sleep
9007 * anyway. Note: This may cause odd behaviors if the message
9008 * does not fit in the user's buffer, but this seems to be the
9009 * only way to honor MSG_DONTWAIT realistically.
9010 */
9011 release_sock(sk);
9012 *timeo_p = schedule_timeout(*timeo_p);
9013 lock_sock(sk);
9014
9015ready:
9016 finish_wait(sk_sleep(sk), &wait);
9017 return 0;
9018
9019interrupted:
9020 error = sock_intr_errno(*timeo_p);
9021
9022out:
9023 finish_wait(sk_sleep(sk), &wait);
9024 *err = error;
9025 return error;
9026}
9027
9028/* Receive a datagram.
9029 * Note: This is pretty much the same routine as in core/datagram.c
9030 * with a few changes to make lksctp work.
9031 */
9032struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err)
9033{
9034 int error;
9035 struct sk_buff *skb;
9036 long timeo;
9037
9038 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
9039
9040 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
9041 MAX_SCHEDULE_TIMEOUT);
9042
9043 do {
9044 /* Again only user level code calls this function,
9045 * so nothing interrupt level
9046 * will suddenly eat the receive_queue.
9047 *
9048 * Look at current nfs client by the way...
9049 * However, this function was correct in any case. 8)
9050 */
9051 if (flags & MSG_PEEK) {
9052 skb = skb_peek(&sk->sk_receive_queue);
9053 if (skb)
9054 refcount_inc(&skb->users);
9055 } else {
9056 skb = __skb_dequeue(&sk->sk_receive_queue);
9057 }
9058
9059 if (skb)
9060 return skb;
9061
9062 /* Caller is allowed not to check sk->sk_err before calling. */
9063 error = sock_error(sk);
9064 if (error)
9065 goto no_packet;
9066
9067 if (sk->sk_shutdown & RCV_SHUTDOWN)
9068 break;
9069
9070
9071 /* User doesn't want to wait. */
9072 error = -EAGAIN;
9073 if (!timeo)
9074 goto no_packet;
9075 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9076
9077 return NULL;
9078
9079no_packet:
9080 *err = error;
9081 return NULL;
9082}
9083
9084/* If sndbuf has changed, wake up per association sndbuf waiters. */
9085static void __sctp_write_space(struct sctp_association *asoc)
9086{
9087 struct sock *sk = asoc->base.sk;
9088
9089 if (sctp_wspace(asoc) <= 0)
9090 return;
9091
9092 if (waitqueue_active(&asoc->wait))
9093 wake_up_interruptible(&asoc->wait);
9094
9095 if (sctp_writeable(sk)) {
9096 struct socket_wq *wq;
9097
9098 rcu_read_lock();
9099 wq = rcu_dereference(sk->sk_wq);
9100 if (wq) {
9101 if (waitqueue_active(&wq->wait))
9102 wake_up_interruptible(&wq->wait);
9103
9104 /* Note that we try to include the Async I/O support
9105 * here by modeling from the current TCP/UDP code.
9106 * We have not tested with it yet.
9107 */
9108 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9109 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9110 }
9111 rcu_read_unlock();
9112 }
9113}
9114
9115static void sctp_wake_up_waiters(struct sock *sk,
9116 struct sctp_association *asoc)
9117{
9118 struct sctp_association *tmp = asoc;
9119
9120 /* We do accounting for the sndbuf space per association,
9121 * so we only need to wake our own association.
9122 */
9123 if (asoc->ep->sndbuf_policy)
9124 return __sctp_write_space(asoc);
9125
9126 /* If association goes down and is just flushing its
9127 * outq, then just normally notify others.
9128 */
9129 if (asoc->base.dead)
9130 return sctp_write_space(sk);
9131
9132 /* Accounting for the sndbuf space is per socket, so we
9133 * need to wake up others, try to be fair and in case of
9134 * other associations, let them have a go first instead
9135 * of just doing a sctp_write_space() call.
9136 *
9137 * Note that we reach sctp_wake_up_waiters() only when
9138 * associations free up queued chunks, thus we are under
9139 * lock and the list of associations on a socket is
9140 * guaranteed not to change.
9141 */
9142 for (tmp = list_next_entry(tmp, asocs); 1;
9143 tmp = list_next_entry(tmp, asocs)) {
9144 /* Manually skip the head element. */
9145 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9146 continue;
9147 /* Wake up association. */
9148 __sctp_write_space(tmp);
9149 /* We've reached the end. */
9150 if (tmp == asoc)
9151 break;
9152 }
9153}
9154
9155/* Do accounting for the sndbuf space.
9156 * Decrement the used sndbuf space of the corresponding association by the
9157 * data size which was just transmitted(freed).
9158 */
9159static void sctp_wfree(struct sk_buff *skb)
9160{
9161 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9162 struct sctp_association *asoc = chunk->asoc;
9163 struct sock *sk = asoc->base.sk;
9164
9165 sk_mem_uncharge(sk, skb->truesize);
9166 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk)));
9167 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9168 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9169 &sk->sk_wmem_alloc));
9170
9171 if (chunk->shkey) {
9172 struct sctp_shared_key *shkey = chunk->shkey;
9173
9174 /* refcnt == 2 and !list_empty mean after this release, it's
9175 * not being used anywhere, and it's time to notify userland
9176 * that this shkey can be freed if it's been deactivated.
9177 */
9178 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9179 refcount_read(&shkey->refcnt) == 2) {
9180 struct sctp_ulpevent *ev;
9181
9182 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9183 SCTP_AUTH_FREE_KEY,
9184 GFP_KERNEL);
9185 if (ev)
9186 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9187 }
9188 sctp_auth_shkey_release(chunk->shkey);
9189 }
9190
9191 sock_wfree(skb);
9192 sctp_wake_up_waiters(sk, asoc);
9193
9194 sctp_association_put(asoc);
9195}
9196
9197/* Do accounting for the receive space on the socket.
9198 * Accounting for the association is done in ulpevent.c
9199 * We set this as a destructor for the cloned data skbs so that
9200 * accounting is done at the correct time.
9201 */
9202void sctp_sock_rfree(struct sk_buff *skb)
9203{
9204 struct sock *sk = skb->sk;
9205 struct sctp_ulpevent *event = sctp_skb2event(skb);
9206
9207 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9208
9209 /*
9210 * Mimic the behavior of sock_rfree
9211 */
9212 sk_mem_uncharge(sk, event->rmem_len);
9213}
9214
9215
9216/* Helper function to wait for space in the sndbuf. */
9217static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9218 size_t msg_len)
9219{
9220 struct sock *sk = asoc->base.sk;
9221 long current_timeo = *timeo_p;
9222 DEFINE_WAIT(wait);
9223 int err = 0;
9224
9225 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9226 *timeo_p, msg_len);
9227
9228 /* Increment the association's refcnt. */
9229 sctp_association_hold(asoc);
9230
9231 /* Wait on the association specific sndbuf space. */
9232 for (;;) {
9233 prepare_to_wait_exclusive(&asoc->wait, &wait,
9234 TASK_INTERRUPTIBLE);
9235 if (asoc->base.dead)
9236 goto do_dead;
9237 if (!*timeo_p)
9238 goto do_nonblock;
9239 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9240 goto do_error;
9241 if (signal_pending(current))
9242 goto do_interrupted;
9243 if ((int)msg_len <= sctp_wspace(asoc) &&
9244 sk_wmem_schedule(sk, msg_len))
9245 break;
9246
9247 /* Let another process have a go. Since we are going
9248 * to sleep anyway.
9249 */
9250 release_sock(sk);
9251 current_timeo = schedule_timeout(current_timeo);
9252 lock_sock(sk);
9253 if (sk != asoc->base.sk)
9254 goto do_error;
9255
9256 *timeo_p = current_timeo;
9257 }
9258
9259out:
9260 finish_wait(&asoc->wait, &wait);
9261
9262 /* Release the association's refcnt. */
9263 sctp_association_put(asoc);
9264
9265 return err;
9266
9267do_dead:
9268 err = -ESRCH;
9269 goto out;
9270
9271do_error:
9272 err = -EPIPE;
9273 goto out;
9274
9275do_interrupted:
9276 err = sock_intr_errno(*timeo_p);
9277 goto out;
9278
9279do_nonblock:
9280 err = -EAGAIN;
9281 goto out;
9282}
9283
9284void sctp_data_ready(struct sock *sk)
9285{
9286 struct socket_wq *wq;
9287
9288 trace_sk_data_ready(sk);
9289
9290 rcu_read_lock();
9291 wq = rcu_dereference(sk->sk_wq);
9292 if (skwq_has_sleeper(wq))
9293 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9294 EPOLLRDNORM | EPOLLRDBAND);
9295 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
9296 rcu_read_unlock();
9297}
9298
9299/* If socket sndbuf has changed, wake up all per association waiters. */
9300void sctp_write_space(struct sock *sk)
9301{
9302 struct sctp_association *asoc;
9303
9304 /* Wake up the tasks in each wait queue. */
9305 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9306 __sctp_write_space(asoc);
9307 }
9308}
9309
9310/* Is there any sndbuf space available on the socket?
9311 *
9312 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9313 * associations on the same socket. For a UDP-style socket with
9314 * multiple associations, it is possible for it to be "unwriteable"
9315 * prematurely. I assume that this is acceptable because
9316 * a premature "unwriteable" is better than an accidental "writeable" which
9317 * would cause an unwanted block under certain circumstances. For the 1-1
9318 * UDP-style sockets or TCP-style sockets, this code should work.
9319 * - Daisy
9320 */
9321static bool sctp_writeable(const struct sock *sk)
9322{
9323 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued);
9324}
9325
9326/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9327 * returns immediately with EINPROGRESS.
9328 */
9329static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9330{
9331 struct sock *sk = asoc->base.sk;
9332 int err = 0;
9333 long current_timeo = *timeo_p;
9334 DEFINE_WAIT(wait);
9335
9336 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9337
9338 /* Increment the association's refcnt. */
9339 sctp_association_hold(asoc);
9340
9341 for (;;) {
9342 prepare_to_wait_exclusive(&asoc->wait, &wait,
9343 TASK_INTERRUPTIBLE);
9344 if (!*timeo_p)
9345 goto do_nonblock;
9346 if (sk->sk_shutdown & RCV_SHUTDOWN)
9347 break;
9348 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9349 asoc->base.dead)
9350 goto do_error;
9351 if (signal_pending(current))
9352 goto do_interrupted;
9353
9354 if (sctp_state(asoc, ESTABLISHED))
9355 break;
9356
9357 /* Let another process have a go. Since we are going
9358 * to sleep anyway.
9359 */
9360 release_sock(sk);
9361 current_timeo = schedule_timeout(current_timeo);
9362 lock_sock(sk);
9363
9364 *timeo_p = current_timeo;
9365 }
9366
9367out:
9368 finish_wait(&asoc->wait, &wait);
9369
9370 /* Release the association's refcnt. */
9371 sctp_association_put(asoc);
9372
9373 return err;
9374
9375do_error:
9376 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9377 err = -ETIMEDOUT;
9378 else
9379 err = -ECONNREFUSED;
9380 goto out;
9381
9382do_interrupted:
9383 err = sock_intr_errno(*timeo_p);
9384 goto out;
9385
9386do_nonblock:
9387 err = -EINPROGRESS;
9388 goto out;
9389}
9390
9391static int sctp_wait_for_accept(struct sock *sk, long timeo)
9392{
9393 struct sctp_endpoint *ep;
9394 int err = 0;
9395 DEFINE_WAIT(wait);
9396
9397 ep = sctp_sk(sk)->ep;
9398
9399
9400 for (;;) {
9401 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9402 TASK_INTERRUPTIBLE);
9403
9404 if (list_empty(&ep->asocs)) {
9405 release_sock(sk);
9406 timeo = schedule_timeout(timeo);
9407 lock_sock(sk);
9408 }
9409
9410 err = -EINVAL;
9411 if (!sctp_sstate(sk, LISTENING) ||
9412 (sk->sk_shutdown & RCV_SHUTDOWN))
9413 break;
9414
9415 err = 0;
9416 if (!list_empty(&ep->asocs))
9417 break;
9418
9419 err = sock_intr_errno(timeo);
9420 if (signal_pending(current))
9421 break;
9422
9423 err = -EAGAIN;
9424 if (!timeo)
9425 break;
9426 }
9427
9428 finish_wait(sk_sleep(sk), &wait);
9429
9430 return err;
9431}
9432
9433static void sctp_wait_for_close(struct sock *sk, long timeout)
9434{
9435 DEFINE_WAIT(wait);
9436
9437 do {
9438 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9439 if (list_empty(&sctp_sk(sk)->ep->asocs))
9440 break;
9441 release_sock(sk);
9442 timeout = schedule_timeout(timeout);
9443 lock_sock(sk);
9444 } while (!signal_pending(current) && timeout);
9445
9446 finish_wait(sk_sleep(sk), &wait);
9447}
9448
9449static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9450{
9451 struct sk_buff *frag;
9452
9453 if (!skb->data_len)
9454 goto done;
9455
9456 /* Don't forget the fragments. */
9457 skb_walk_frags(skb, frag)
9458 sctp_skb_set_owner_r_frag(frag, sk);
9459
9460done:
9461 sctp_skb_set_owner_r(skb, sk);
9462}
9463
9464void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9465 struct sctp_association *asoc)
9466{
9467 struct inet_sock *inet = inet_sk(sk);
9468 struct inet_sock *newinet;
9469 struct sctp_sock *sp = sctp_sk(sk);
9470
9471 newsk->sk_type = sk->sk_type;
9472 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9473 newsk->sk_flags = sk->sk_flags;
9474 newsk->sk_tsflags = sk->sk_tsflags;
9475 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9476 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9477 newsk->sk_reuse = sk->sk_reuse;
9478 sctp_sk(newsk)->reuse = sp->reuse;
9479
9480 newsk->sk_shutdown = sk->sk_shutdown;
9481 newsk->sk_destruct = sk->sk_destruct;
9482 newsk->sk_family = sk->sk_family;
9483 newsk->sk_protocol = IPPROTO_SCTP;
9484 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9485 newsk->sk_sndbuf = sk->sk_sndbuf;
9486 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9487 newsk->sk_lingertime = sk->sk_lingertime;
9488 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9489 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9490 newsk->sk_rxhash = sk->sk_rxhash;
9491
9492 newinet = inet_sk(newsk);
9493
9494 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9495 * getsockname() and getpeername()
9496 */
9497 newinet->inet_sport = inet->inet_sport;
9498 newinet->inet_saddr = inet->inet_saddr;
9499 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9500 newinet->inet_dport = htons(asoc->peer.port);
9501 newinet->pmtudisc = inet->pmtudisc;
9502 atomic_set(&newinet->inet_id, get_random_u16());
9503
9504 newinet->uc_ttl = inet->uc_ttl;
9505 inet_set_bit(MC_LOOP, newsk);
9506 newinet->mc_ttl = 1;
9507 newinet->mc_index = 0;
9508 newinet->mc_list = NULL;
9509
9510 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9511 net_enable_timestamp();
9512
9513 /* Set newsk security attributes from original sk and connection
9514 * security attribute from asoc.
9515 */
9516 security_sctp_sk_clone(asoc, sk, newsk);
9517}
9518
9519static inline void sctp_copy_descendant(struct sock *sk_to,
9520 const struct sock *sk_from)
9521{
9522 size_t ancestor_size = sizeof(struct inet_sock);
9523
9524 ancestor_size += sk_from->sk_prot->obj_size;
9525 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9526 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9527}
9528
9529/* Populate the fields of the newsk from the oldsk and migrate the assoc
9530 * and its messages to the newsk.
9531 */
9532static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9533 struct sctp_association *assoc,
9534 enum sctp_socket_type type)
9535{
9536 struct sctp_sock *oldsp = sctp_sk(oldsk);
9537 struct sctp_sock *newsp = sctp_sk(newsk);
9538 struct sctp_bind_bucket *pp; /* hash list port iterator */
9539 struct sctp_endpoint *newep = newsp->ep;
9540 struct sk_buff *skb, *tmp;
9541 struct sctp_ulpevent *event;
9542 struct sctp_bind_hashbucket *head;
9543 int err;
9544
9545 /* Migrate socket buffer sizes and all the socket level options to the
9546 * new socket.
9547 */
9548 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9549 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9550 /* Brute force copy old sctp opt. */
9551 sctp_copy_descendant(newsk, oldsk);
9552
9553 /* Restore the ep value that was overwritten with the above structure
9554 * copy.
9555 */
9556 newsp->ep = newep;
9557 newsp->hmac = NULL;
9558
9559 /* Hook this new socket in to the bind_hash list. */
9560 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9561 inet_sk(oldsk)->inet_num)];
9562 spin_lock_bh(&head->lock);
9563 pp = sctp_sk(oldsk)->bind_hash;
9564 sk_add_bind_node(newsk, &pp->owner);
9565 sctp_sk(newsk)->bind_hash = pp;
9566 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9567 spin_unlock_bh(&head->lock);
9568
9569 /* Copy the bind_addr list from the original endpoint to the new
9570 * endpoint so that we can handle restarts properly
9571 */
9572 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9573 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9574 if (err)
9575 return err;
9576
9577 /* New ep's auth_hmacs should be set if old ep's is set, in case
9578 * that net->sctp.auth_enable has been changed to 0 by users and
9579 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9580 */
9581 if (oldsp->ep->auth_hmacs) {
9582 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9583 if (err)
9584 return err;
9585 }
9586
9587 sctp_auto_asconf_init(newsp);
9588
9589 /* Move any messages in the old socket's receive queue that are for the
9590 * peeled off association to the new socket's receive queue.
9591 */
9592 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9593 event = sctp_skb2event(skb);
9594 if (event->asoc == assoc) {
9595 __skb_unlink(skb, &oldsk->sk_receive_queue);
9596 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9597 sctp_skb_set_owner_r_frag(skb, newsk);
9598 }
9599 }
9600
9601 /* Clean up any messages pending delivery due to partial
9602 * delivery. Three cases:
9603 * 1) No partial deliver; no work.
9604 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9605 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9606 */
9607 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9608
9609 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9610 struct sk_buff_head *queue;
9611
9612 /* Decide which queue to move pd_lobby skbs to. */
9613 if (assoc->ulpq.pd_mode) {
9614 queue = &newsp->pd_lobby;
9615 } else
9616 queue = &newsk->sk_receive_queue;
9617
9618 /* Walk through the pd_lobby, looking for skbs that
9619 * need moved to the new socket.
9620 */
9621 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9622 event = sctp_skb2event(skb);
9623 if (event->asoc == assoc) {
9624 __skb_unlink(skb, &oldsp->pd_lobby);
9625 __skb_queue_tail(queue, skb);
9626 sctp_skb_set_owner_r_frag(skb, newsk);
9627 }
9628 }
9629
9630 /* Clear up any skbs waiting for the partial
9631 * delivery to finish.
9632 */
9633 if (assoc->ulpq.pd_mode)
9634 sctp_clear_pd(oldsk, NULL);
9635
9636 }
9637
9638 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9639
9640 /* Set the type of socket to indicate that it is peeled off from the
9641 * original UDP-style socket or created with the accept() call on a
9642 * TCP-style socket..
9643 */
9644 newsp->type = type;
9645
9646 /* Mark the new socket "in-use" by the user so that any packets
9647 * that may arrive on the association after we've moved it are
9648 * queued to the backlog. This prevents a potential race between
9649 * backlog processing on the old socket and new-packet processing
9650 * on the new socket.
9651 *
9652 * The caller has just allocated newsk so we can guarantee that other
9653 * paths won't try to lock it and then oldsk.
9654 */
9655 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9656 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9657 sctp_assoc_migrate(assoc, newsk);
9658 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9659
9660 /* If the association on the newsk is already closed before accept()
9661 * is called, set RCV_SHUTDOWN flag.
9662 */
9663 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9664 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9665 newsk->sk_shutdown |= RCV_SHUTDOWN;
9666 } else {
9667 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9668 }
9669
9670 release_sock(newsk);
9671
9672 return 0;
9673}
9674
9675
9676/* This proto struct describes the ULP interface for SCTP. */
9677struct proto sctp_prot = {
9678 .name = "SCTP",
9679 .owner = THIS_MODULE,
9680 .close = sctp_close,
9681 .disconnect = sctp_disconnect,
9682 .accept = sctp_accept,
9683 .ioctl = sctp_ioctl,
9684 .init = sctp_init_sock,
9685 .destroy = sctp_destroy_sock,
9686 .shutdown = sctp_shutdown,
9687 .setsockopt = sctp_setsockopt,
9688 .getsockopt = sctp_getsockopt,
9689 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9690 .sendmsg = sctp_sendmsg,
9691 .recvmsg = sctp_recvmsg,
9692 .bind = sctp_bind,
9693 .bind_add = sctp_bind_add,
9694 .backlog_rcv = sctp_backlog_rcv,
9695 .hash = sctp_hash,
9696 .unhash = sctp_unhash,
9697 .no_autobind = true,
9698 .obj_size = sizeof(struct sctp_sock),
9699 .useroffset = offsetof(struct sctp_sock, subscribe),
9700 .usersize = offsetof(struct sctp_sock, initmsg) -
9701 offsetof(struct sctp_sock, subscribe) +
9702 sizeof_field(struct sctp_sock, initmsg),
9703 .sysctl_mem = sysctl_sctp_mem,
9704 .sysctl_rmem = sysctl_sctp_rmem,
9705 .sysctl_wmem = sysctl_sctp_wmem,
9706 .memory_pressure = &sctp_memory_pressure,
9707 .enter_memory_pressure = sctp_enter_memory_pressure,
9708
9709 .memory_allocated = &sctp_memory_allocated,
9710 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9711
9712 .sockets_allocated = &sctp_sockets_allocated,
9713};
9714
9715#if IS_ENABLED(CONFIG_IPV6)
9716
9717static void sctp_v6_destruct_sock(struct sock *sk)
9718{
9719 sctp_destruct_common(sk);
9720 inet6_sock_destruct(sk);
9721}
9722
9723static int sctp_v6_init_sock(struct sock *sk)
9724{
9725 int ret = sctp_init_sock(sk);
9726
9727 if (!ret)
9728 sk->sk_destruct = sctp_v6_destruct_sock;
9729
9730 return ret;
9731}
9732
9733struct proto sctpv6_prot = {
9734 .name = "SCTPv6",
9735 .owner = THIS_MODULE,
9736 .close = sctp_close,
9737 .disconnect = sctp_disconnect,
9738 .accept = sctp_accept,
9739 .ioctl = sctp_ioctl,
9740 .init = sctp_v6_init_sock,
9741 .destroy = sctp_destroy_sock,
9742 .shutdown = sctp_shutdown,
9743 .setsockopt = sctp_setsockopt,
9744 .getsockopt = sctp_getsockopt,
9745 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt,
9746 .sendmsg = sctp_sendmsg,
9747 .recvmsg = sctp_recvmsg,
9748 .bind = sctp_bind,
9749 .bind_add = sctp_bind_add,
9750 .backlog_rcv = sctp_backlog_rcv,
9751 .hash = sctp_hash,
9752 .unhash = sctp_unhash,
9753 .no_autobind = true,
9754 .obj_size = sizeof(struct sctp6_sock),
9755 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6),
9756 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9757 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9758 offsetof(struct sctp6_sock, sctp.subscribe) +
9759 sizeof_field(struct sctp6_sock, sctp.initmsg),
9760 .sysctl_mem = sysctl_sctp_mem,
9761 .sysctl_rmem = sysctl_sctp_rmem,
9762 .sysctl_wmem = sysctl_sctp_wmem,
9763 .memory_pressure = &sctp_memory_pressure,
9764 .enter_memory_pressure = sctp_enter_memory_pressure,
9765
9766 .memory_allocated = &sctp_memory_allocated,
9767 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc,
9768
9769 .sockets_allocated = &sctp_sockets_allocated,
9770};
9771#endif /* IS_ENABLED(CONFIG_IPV6) */