Loading...
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <crypto/hash.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/wait.h>
59#include <linux/time.h>
60#include <linux/ip.h>
61#include <linux/capability.h>
62#include <linux/fcntl.h>
63#include <linux/poll.h>
64#include <linux/init.h>
65#include <linux/slab.h>
66#include <linux/file.h>
67#include <linux/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74#include <net/busy_poll.h>
75
76#include <linux/socket.h> /* for sa_family_t */
77#include <linux/export.h>
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* Forward declarations for internal helper functions. */
83static int sctp_writeable(struct sock *sk);
84static void sctp_wfree(struct sk_buff *skb);
85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89static int sctp_wait_for_accept(struct sock *sk, long timeo);
90static void sctp_wait_for_close(struct sock *sk, long timeo);
91static void sctp_destruct_sock(struct sock *sk);
92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101static int sctp_autobind(struct sock *sk);
102static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105static int sctp_memory_pressure;
106static atomic_long_t sctp_memory_allocated;
107struct percpu_counter sctp_sockets_allocated;
108
109static void sctp_enter_memory_pressure(struct sock *sk)
110{
111 sctp_memory_pressure = 1;
112}
113
114
115/* Get the sndbuf space available at the time on the association. */
116static inline int sctp_wspace(struct sctp_association *asoc)
117{
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137}
138
139/* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149{
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169}
170
171/* Verify that this is a valid address. */
172static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174{
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190}
191
192/* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196{
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227}
228
229/* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236{
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240 struct sctp_transport *transport;
241
242 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
243 return NULL;
244
245 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 laddr,
247 &transport);
248
249 if (!addr_asoc)
250 return NULL;
251
252 id_asoc = sctp_id2assoc(sk, id);
253 if (id_asoc && (id_asoc != addr_asoc))
254 return NULL;
255
256 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
257 (union sctp_addr *)addr);
258
259 return transport;
260}
261
262/* API 3.1.2 bind() - UDP Style Syntax
263 * The syntax of bind() is,
264 *
265 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
266 *
267 * sd - the socket descriptor returned by socket().
268 * addr - the address structure (struct sockaddr_in or struct
269 * sockaddr_in6 [RFC 2553]),
270 * addr_len - the size of the address structure.
271 */
272static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273{
274 int retval = 0;
275
276 lock_sock(sk);
277
278 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 addr, addr_len);
280
281 /* Disallow binding twice. */
282 if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 addr_len);
285 else
286 retval = -EINVAL;
287
288 release_sock(sk);
289
290 return retval;
291}
292
293static long sctp_get_port_local(struct sock *, union sctp_addr *);
294
295/* Verify this is a valid sockaddr. */
296static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 union sctp_addr *addr, int len)
298{
299 struct sctp_af *af;
300
301 /* Check minimum size. */
302 if (len < sizeof (struct sockaddr))
303 return NULL;
304
305 /* V4 mapped address are really of AF_INET family */
306 if (addr->sa.sa_family == AF_INET6 &&
307 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 if (!opt->pf->af_supported(AF_INET, opt))
309 return NULL;
310 } else {
311 /* Does this PF support this AF? */
312 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 return NULL;
314 }
315
316 /* If we get this far, af is valid. */
317 af = sctp_get_af_specific(addr->sa.sa_family);
318
319 if (len < af->sockaddr_len)
320 return NULL;
321
322 return af;
323}
324
325/* Bind a local address either to an endpoint or to an association. */
326static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327{
328 struct net *net = sock_net(sk);
329 struct sctp_sock *sp = sctp_sk(sk);
330 struct sctp_endpoint *ep = sp->ep;
331 struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 struct sctp_af *af;
333 unsigned short snum;
334 int ret = 0;
335
336 /* Common sockaddr verification. */
337 af = sctp_sockaddr_af(sp, addr, len);
338 if (!af) {
339 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 __func__, sk, addr, len);
341 return -EINVAL;
342 }
343
344 snum = ntohs(addr->v4.sin_port);
345
346 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 __func__, sk, &addr->sa, bp->port, snum, len);
348
349 /* PF specific bind() address verification. */
350 if (!sp->pf->bind_verify(sp, addr))
351 return -EADDRNOTAVAIL;
352
353 /* We must either be unbound, or bind to the same port.
354 * It's OK to allow 0 ports if we are already bound.
355 * We'll just inhert an already bound port in this case
356 */
357 if (bp->port) {
358 if (!snum)
359 snum = bp->port;
360 else if (snum != bp->port) {
361 pr_debug("%s: new port %d doesn't match existing port "
362 "%d\n", __func__, snum, bp->port);
363 return -EINVAL;
364 }
365 }
366
367 if (snum && snum < PROT_SOCK &&
368 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 return -EACCES;
370
371 /* See if the address matches any of the addresses we may have
372 * already bound before checking against other endpoints.
373 */
374 if (sctp_bind_addr_match(bp, addr, sp))
375 return -EINVAL;
376
377 /* Make sure we are allowed to bind here.
378 * The function sctp_get_port_local() does duplicate address
379 * detection.
380 */
381 addr->v4.sin_port = htons(snum);
382 if ((ret = sctp_get_port_local(sk, addr))) {
383 return -EADDRINUSE;
384 }
385
386 /* Refresh ephemeral port. */
387 if (!bp->port)
388 bp->port = inet_sk(sk)->inet_num;
389
390 /* Add the address to the bind address list.
391 * Use GFP_ATOMIC since BHs will be disabled.
392 */
393 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
394 SCTP_ADDR_SRC, GFP_ATOMIC);
395
396 /* Copy back into socket for getsockname() use. */
397 if (!ret) {
398 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
399 sp->pf->to_sk_saddr(addr, sk);
400 }
401
402 return ret;
403}
404
405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
406 *
407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
408 * at any one time. If a sender, after sending an ASCONF chunk, decides
409 * it needs to transfer another ASCONF Chunk, it MUST wait until the
410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
411 * subsequent ASCONF. Note this restriction binds each side, so at any
412 * time two ASCONF may be in-transit on any given association (one sent
413 * from each endpoint).
414 */
415static int sctp_send_asconf(struct sctp_association *asoc,
416 struct sctp_chunk *chunk)
417{
418 struct net *net = sock_net(asoc->base.sk);
419 int retval = 0;
420
421 /* If there is an outstanding ASCONF chunk, queue it for later
422 * transmission.
423 */
424 if (asoc->addip_last_asconf) {
425 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
426 goto out;
427 }
428
429 /* Hold the chunk until an ASCONF_ACK is received. */
430 sctp_chunk_hold(chunk);
431 retval = sctp_primitive_ASCONF(net, asoc, chunk);
432 if (retval)
433 sctp_chunk_free(chunk);
434 else
435 asoc->addip_last_asconf = chunk;
436
437out:
438 return retval;
439}
440
441/* Add a list of addresses as bind addresses to local endpoint or
442 * association.
443 *
444 * Basically run through each address specified in the addrs/addrcnt
445 * array/length pair, determine if it is IPv6 or IPv4 and call
446 * sctp_do_bind() on it.
447 *
448 * If any of them fails, then the operation will be reversed and the
449 * ones that were added will be removed.
450 *
451 * Only sctp_setsockopt_bindx() is supposed to call this function.
452 */
453static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
454{
455 int cnt;
456 int retval = 0;
457 void *addr_buf;
458 struct sockaddr *sa_addr;
459 struct sctp_af *af;
460
461 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
462 addrs, addrcnt);
463
464 addr_buf = addrs;
465 for (cnt = 0; cnt < addrcnt; cnt++) {
466 /* The list may contain either IPv4 or IPv6 address;
467 * determine the address length for walking thru the list.
468 */
469 sa_addr = addr_buf;
470 af = sctp_get_af_specific(sa_addr->sa_family);
471 if (!af) {
472 retval = -EINVAL;
473 goto err_bindx_add;
474 }
475
476 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
477 af->sockaddr_len);
478
479 addr_buf += af->sockaddr_len;
480
481err_bindx_add:
482 if (retval < 0) {
483 /* Failed. Cleanup the ones that have been added */
484 if (cnt > 0)
485 sctp_bindx_rem(sk, addrs, cnt);
486 return retval;
487 }
488 }
489
490 return retval;
491}
492
493/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
494 * associations that are part of the endpoint indicating that a list of local
495 * addresses are added to the endpoint.
496 *
497 * If any of the addresses is already in the bind address list of the
498 * association, we do not send the chunk for that association. But it will not
499 * affect other associations.
500 *
501 * Only sctp_setsockopt_bindx() is supposed to call this function.
502 */
503static int sctp_send_asconf_add_ip(struct sock *sk,
504 struct sockaddr *addrs,
505 int addrcnt)
506{
507 struct net *net = sock_net(sk);
508 struct sctp_sock *sp;
509 struct sctp_endpoint *ep;
510 struct sctp_association *asoc;
511 struct sctp_bind_addr *bp;
512 struct sctp_chunk *chunk;
513 struct sctp_sockaddr_entry *laddr;
514 union sctp_addr *addr;
515 union sctp_addr saveaddr;
516 void *addr_buf;
517 struct sctp_af *af;
518 struct list_head *p;
519 int i;
520 int retval = 0;
521
522 if (!net->sctp.addip_enable)
523 return retval;
524
525 sp = sctp_sk(sk);
526 ep = sp->ep;
527
528 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
529 __func__, sk, addrs, addrcnt);
530
531 list_for_each_entry(asoc, &ep->asocs, asocs) {
532 if (!asoc->peer.asconf_capable)
533 continue;
534
535 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
536 continue;
537
538 if (!sctp_state(asoc, ESTABLISHED))
539 continue;
540
541 /* Check if any address in the packed array of addresses is
542 * in the bind address list of the association. If so,
543 * do not send the asconf chunk to its peer, but continue with
544 * other associations.
545 */
546 addr_buf = addrs;
547 for (i = 0; i < addrcnt; i++) {
548 addr = addr_buf;
549 af = sctp_get_af_specific(addr->v4.sin_family);
550 if (!af) {
551 retval = -EINVAL;
552 goto out;
553 }
554
555 if (sctp_assoc_lookup_laddr(asoc, addr))
556 break;
557
558 addr_buf += af->sockaddr_len;
559 }
560 if (i < addrcnt)
561 continue;
562
563 /* Use the first valid address in bind addr list of
564 * association as Address Parameter of ASCONF CHUNK.
565 */
566 bp = &asoc->base.bind_addr;
567 p = bp->address_list.next;
568 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
569 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
570 addrcnt, SCTP_PARAM_ADD_IP);
571 if (!chunk) {
572 retval = -ENOMEM;
573 goto out;
574 }
575
576 /* Add the new addresses to the bind address list with
577 * use_as_src set to 0.
578 */
579 addr_buf = addrs;
580 for (i = 0; i < addrcnt; i++) {
581 addr = addr_buf;
582 af = sctp_get_af_specific(addr->v4.sin_family);
583 memcpy(&saveaddr, addr, af->sockaddr_len);
584 retval = sctp_add_bind_addr(bp, &saveaddr,
585 sizeof(saveaddr),
586 SCTP_ADDR_NEW, GFP_ATOMIC);
587 addr_buf += af->sockaddr_len;
588 }
589 if (asoc->src_out_of_asoc_ok) {
590 struct sctp_transport *trans;
591
592 list_for_each_entry(trans,
593 &asoc->peer.transport_addr_list, transports) {
594 /* Clear the source and route cache */
595 dst_release(trans->dst);
596 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
597 2*asoc->pathmtu, 4380));
598 trans->ssthresh = asoc->peer.i.a_rwnd;
599 trans->rto = asoc->rto_initial;
600 sctp_max_rto(asoc, trans);
601 trans->rtt = trans->srtt = trans->rttvar = 0;
602 sctp_transport_route(trans, NULL,
603 sctp_sk(asoc->base.sk));
604 }
605 }
606 retval = sctp_send_asconf(asoc, chunk);
607 }
608
609out:
610 return retval;
611}
612
613/* Remove a list of addresses from bind addresses list. Do not remove the
614 * last address.
615 *
616 * Basically run through each address specified in the addrs/addrcnt
617 * array/length pair, determine if it is IPv6 or IPv4 and call
618 * sctp_del_bind() on it.
619 *
620 * If any of them fails, then the operation will be reversed and the
621 * ones that were removed will be added back.
622 *
623 * At least one address has to be left; if only one address is
624 * available, the operation will return -EBUSY.
625 *
626 * Only sctp_setsockopt_bindx() is supposed to call this function.
627 */
628static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
629{
630 struct sctp_sock *sp = sctp_sk(sk);
631 struct sctp_endpoint *ep = sp->ep;
632 int cnt;
633 struct sctp_bind_addr *bp = &ep->base.bind_addr;
634 int retval = 0;
635 void *addr_buf;
636 union sctp_addr *sa_addr;
637 struct sctp_af *af;
638
639 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
640 __func__, sk, addrs, addrcnt);
641
642 addr_buf = addrs;
643 for (cnt = 0; cnt < addrcnt; cnt++) {
644 /* If the bind address list is empty or if there is only one
645 * bind address, there is nothing more to be removed (we need
646 * at least one address here).
647 */
648 if (list_empty(&bp->address_list) ||
649 (sctp_list_single_entry(&bp->address_list))) {
650 retval = -EBUSY;
651 goto err_bindx_rem;
652 }
653
654 sa_addr = addr_buf;
655 af = sctp_get_af_specific(sa_addr->sa.sa_family);
656 if (!af) {
657 retval = -EINVAL;
658 goto err_bindx_rem;
659 }
660
661 if (!af->addr_valid(sa_addr, sp, NULL)) {
662 retval = -EADDRNOTAVAIL;
663 goto err_bindx_rem;
664 }
665
666 if (sa_addr->v4.sin_port &&
667 sa_addr->v4.sin_port != htons(bp->port)) {
668 retval = -EINVAL;
669 goto err_bindx_rem;
670 }
671
672 if (!sa_addr->v4.sin_port)
673 sa_addr->v4.sin_port = htons(bp->port);
674
675 /* FIXME - There is probably a need to check if sk->sk_saddr and
676 * sk->sk_rcv_addr are currently set to one of the addresses to
677 * be removed. This is something which needs to be looked into
678 * when we are fixing the outstanding issues with multi-homing
679 * socket routing and failover schemes. Refer to comments in
680 * sctp_do_bind(). -daisy
681 */
682 retval = sctp_del_bind_addr(bp, sa_addr);
683
684 addr_buf += af->sockaddr_len;
685err_bindx_rem:
686 if (retval < 0) {
687 /* Failed. Add the ones that has been removed back */
688 if (cnt > 0)
689 sctp_bindx_add(sk, addrs, cnt);
690 return retval;
691 }
692 }
693
694 return retval;
695}
696
697/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
698 * the associations that are part of the endpoint indicating that a list of
699 * local addresses are removed from the endpoint.
700 *
701 * If any of the addresses is already in the bind address list of the
702 * association, we do not send the chunk for that association. But it will not
703 * affect other associations.
704 *
705 * Only sctp_setsockopt_bindx() is supposed to call this function.
706 */
707static int sctp_send_asconf_del_ip(struct sock *sk,
708 struct sockaddr *addrs,
709 int addrcnt)
710{
711 struct net *net = sock_net(sk);
712 struct sctp_sock *sp;
713 struct sctp_endpoint *ep;
714 struct sctp_association *asoc;
715 struct sctp_transport *transport;
716 struct sctp_bind_addr *bp;
717 struct sctp_chunk *chunk;
718 union sctp_addr *laddr;
719 void *addr_buf;
720 struct sctp_af *af;
721 struct sctp_sockaddr_entry *saddr;
722 int i;
723 int retval = 0;
724 int stored = 0;
725
726 chunk = NULL;
727 if (!net->sctp.addip_enable)
728 return retval;
729
730 sp = sctp_sk(sk);
731 ep = sp->ep;
732
733 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
734 __func__, sk, addrs, addrcnt);
735
736 list_for_each_entry(asoc, &ep->asocs, asocs) {
737
738 if (!asoc->peer.asconf_capable)
739 continue;
740
741 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
742 continue;
743
744 if (!sctp_state(asoc, ESTABLISHED))
745 continue;
746
747 /* Check if any address in the packed array of addresses is
748 * not present in the bind address list of the association.
749 * If so, do not send the asconf chunk to its peer, but
750 * continue with other associations.
751 */
752 addr_buf = addrs;
753 for (i = 0; i < addrcnt; i++) {
754 laddr = addr_buf;
755 af = sctp_get_af_specific(laddr->v4.sin_family);
756 if (!af) {
757 retval = -EINVAL;
758 goto out;
759 }
760
761 if (!sctp_assoc_lookup_laddr(asoc, laddr))
762 break;
763
764 addr_buf += af->sockaddr_len;
765 }
766 if (i < addrcnt)
767 continue;
768
769 /* Find one address in the association's bind address list
770 * that is not in the packed array of addresses. This is to
771 * make sure that we do not delete all the addresses in the
772 * association.
773 */
774 bp = &asoc->base.bind_addr;
775 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
776 addrcnt, sp);
777 if ((laddr == NULL) && (addrcnt == 1)) {
778 if (asoc->asconf_addr_del_pending)
779 continue;
780 asoc->asconf_addr_del_pending =
781 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
782 if (asoc->asconf_addr_del_pending == NULL) {
783 retval = -ENOMEM;
784 goto out;
785 }
786 asoc->asconf_addr_del_pending->sa.sa_family =
787 addrs->sa_family;
788 asoc->asconf_addr_del_pending->v4.sin_port =
789 htons(bp->port);
790 if (addrs->sa_family == AF_INET) {
791 struct sockaddr_in *sin;
792
793 sin = (struct sockaddr_in *)addrs;
794 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
795 } else if (addrs->sa_family == AF_INET6) {
796 struct sockaddr_in6 *sin6;
797
798 sin6 = (struct sockaddr_in6 *)addrs;
799 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
800 }
801
802 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
803 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
804 asoc->asconf_addr_del_pending);
805
806 asoc->src_out_of_asoc_ok = 1;
807 stored = 1;
808 goto skip_mkasconf;
809 }
810
811 if (laddr == NULL)
812 return -EINVAL;
813
814 /* We do not need RCU protection throughout this loop
815 * because this is done under a socket lock from the
816 * setsockopt call.
817 */
818 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
819 SCTP_PARAM_DEL_IP);
820 if (!chunk) {
821 retval = -ENOMEM;
822 goto out;
823 }
824
825skip_mkasconf:
826 /* Reset use_as_src flag for the addresses in the bind address
827 * list that are to be deleted.
828 */
829 addr_buf = addrs;
830 for (i = 0; i < addrcnt; i++) {
831 laddr = addr_buf;
832 af = sctp_get_af_specific(laddr->v4.sin_family);
833 list_for_each_entry(saddr, &bp->address_list, list) {
834 if (sctp_cmp_addr_exact(&saddr->a, laddr))
835 saddr->state = SCTP_ADDR_DEL;
836 }
837 addr_buf += af->sockaddr_len;
838 }
839
840 /* Update the route and saddr entries for all the transports
841 * as some of the addresses in the bind address list are
842 * about to be deleted and cannot be used as source addresses.
843 */
844 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
845 transports) {
846 dst_release(transport->dst);
847 sctp_transport_route(transport, NULL,
848 sctp_sk(asoc->base.sk));
849 }
850
851 if (stored)
852 /* We don't need to transmit ASCONF */
853 continue;
854 retval = sctp_send_asconf(asoc, chunk);
855 }
856out:
857 return retval;
858}
859
860/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
861int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
862{
863 struct sock *sk = sctp_opt2sk(sp);
864 union sctp_addr *addr;
865 struct sctp_af *af;
866
867 /* It is safe to write port space in caller. */
868 addr = &addrw->a;
869 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
870 af = sctp_get_af_specific(addr->sa.sa_family);
871 if (!af)
872 return -EINVAL;
873 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
874 return -EINVAL;
875
876 if (addrw->state == SCTP_ADDR_NEW)
877 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
878 else
879 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
880}
881
882/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
883 *
884 * API 8.1
885 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
886 * int flags);
887 *
888 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
889 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
890 * or IPv6 addresses.
891 *
892 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
893 * Section 3.1.2 for this usage.
894 *
895 * addrs is a pointer to an array of one or more socket addresses. Each
896 * address is contained in its appropriate structure (i.e. struct
897 * sockaddr_in or struct sockaddr_in6) the family of the address type
898 * must be used to distinguish the address length (note that this
899 * representation is termed a "packed array" of addresses). The caller
900 * specifies the number of addresses in the array with addrcnt.
901 *
902 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
903 * -1, and sets errno to the appropriate error code.
904 *
905 * For SCTP, the port given in each socket address must be the same, or
906 * sctp_bindx() will fail, setting errno to EINVAL.
907 *
908 * The flags parameter is formed from the bitwise OR of zero or more of
909 * the following currently defined flags:
910 *
911 * SCTP_BINDX_ADD_ADDR
912 *
913 * SCTP_BINDX_REM_ADDR
914 *
915 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
916 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
917 * addresses from the association. The two flags are mutually exclusive;
918 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
919 * not remove all addresses from an association; sctp_bindx() will
920 * reject such an attempt with EINVAL.
921 *
922 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
923 * additional addresses with an endpoint after calling bind(). Or use
924 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
925 * socket is associated with so that no new association accepted will be
926 * associated with those addresses. If the endpoint supports dynamic
927 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
928 * endpoint to send the appropriate message to the peer to change the
929 * peers address lists.
930 *
931 * Adding and removing addresses from a connected association is
932 * optional functionality. Implementations that do not support this
933 * functionality should return EOPNOTSUPP.
934 *
935 * Basically do nothing but copying the addresses from user to kernel
936 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
937 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
938 * from userspace.
939 *
940 * We don't use copy_from_user() for optimization: we first do the
941 * sanity checks (buffer size -fast- and access check-healthy
942 * pointer); if all of those succeed, then we can alloc the memory
943 * (expensive operation) needed to copy the data to kernel. Then we do
944 * the copying without checking the user space area
945 * (__copy_from_user()).
946 *
947 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
948 * it.
949 *
950 * sk The sk of the socket
951 * addrs The pointer to the addresses in user land
952 * addrssize Size of the addrs buffer
953 * op Operation to perform (add or remove, see the flags of
954 * sctp_bindx)
955 *
956 * Returns 0 if ok, <0 errno code on error.
957 */
958static int sctp_setsockopt_bindx(struct sock *sk,
959 struct sockaddr __user *addrs,
960 int addrs_size, int op)
961{
962 struct sockaddr *kaddrs;
963 int err;
964 int addrcnt = 0;
965 int walk_size = 0;
966 struct sockaddr *sa_addr;
967 void *addr_buf;
968 struct sctp_af *af;
969
970 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
971 __func__, sk, addrs, addrs_size, op);
972
973 if (unlikely(addrs_size <= 0))
974 return -EINVAL;
975
976 /* Check the user passed a healthy pointer. */
977 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
978 return -EFAULT;
979
980 /* Alloc space for the address array in kernel memory. */
981 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
982 if (unlikely(!kaddrs))
983 return -ENOMEM;
984
985 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
986 kfree(kaddrs);
987 return -EFAULT;
988 }
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1017 if (err)
1018 goto out;
1019 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1020 break;
1021
1022 case SCTP_BINDX_REM_ADDR:
1023 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1024 if (err)
1025 goto out;
1026 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1027 break;
1028
1029 default:
1030 err = -EINVAL;
1031 break;
1032 }
1033
1034out:
1035 kfree(kaddrs);
1036
1037 return err;
1038}
1039
1040/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1041 *
1042 * Common routine for handling connect() and sctp_connectx().
1043 * Connect will come in with just a single address.
1044 */
1045static int __sctp_connect(struct sock *sk,
1046 struct sockaddr *kaddrs,
1047 int addrs_size,
1048 sctp_assoc_t *assoc_id)
1049{
1050 struct net *net = sock_net(sk);
1051 struct sctp_sock *sp;
1052 struct sctp_endpoint *ep;
1053 struct sctp_association *asoc = NULL;
1054 struct sctp_association *asoc2;
1055 struct sctp_transport *transport;
1056 union sctp_addr to;
1057 sctp_scope_t scope;
1058 long timeo;
1059 int err = 0;
1060 int addrcnt = 0;
1061 int walk_size = 0;
1062 union sctp_addr *sa_addr = NULL;
1063 void *addr_buf;
1064 unsigned short port;
1065 unsigned int f_flags = 0;
1066
1067 sp = sctp_sk(sk);
1068 ep = sp->ep;
1069
1070 /* connect() cannot be done on a socket that is already in ESTABLISHED
1071 * state - UDP-style peeled off socket or a TCP-style socket that
1072 * is already connected.
1073 * It cannot be done even on a TCP-style listening socket.
1074 */
1075 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1076 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1077 err = -EISCONN;
1078 goto out_free;
1079 }
1080
1081 /* Walk through the addrs buffer and count the number of addresses. */
1082 addr_buf = kaddrs;
1083 while (walk_size < addrs_size) {
1084 struct sctp_af *af;
1085
1086 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 err = -EINVAL;
1088 goto out_free;
1089 }
1090
1091 sa_addr = addr_buf;
1092 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093
1094 /* If the address family is not supported or if this address
1095 * causes the address buffer to overflow return EINVAL.
1096 */
1097 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 err = -EINVAL;
1099 goto out_free;
1100 }
1101
1102 port = ntohs(sa_addr->v4.sin_port);
1103
1104 /* Save current address so we can work with it */
1105 memcpy(&to, sa_addr, af->sockaddr_len);
1106
1107 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 if (err)
1109 goto out_free;
1110
1111 /* Make sure the destination port is correctly set
1112 * in all addresses.
1113 */
1114 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 err = -EINVAL;
1116 goto out_free;
1117 }
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port < PROT_SOCK &&
1160 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1161 err = -EACCES;
1162 goto out_free;
1163 }
1164 }
1165
1166 scope = sctp_scope(&to);
1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 if (!asoc) {
1169 err = -ENOMEM;
1170 goto out_free;
1171 }
1172
1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 GFP_KERNEL);
1175 if (err < 0) {
1176 goto out_free;
1177 }
1178
1179 }
1180
1181 /* Prime the peer's transport structures. */
1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 SCTP_UNKNOWN);
1184 if (!transport) {
1185 err = -ENOMEM;
1186 goto out_free;
1187 }
1188
1189 addrcnt++;
1190 addr_buf += af->sockaddr_len;
1191 walk_size += af->sockaddr_len;
1192 }
1193
1194 /* In case the user of sctp_connectx() wants an association
1195 * id back, assign one now.
1196 */
1197 if (assoc_id) {
1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 if (err < 0)
1200 goto out_free;
1201 }
1202
1203 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1204 if (err < 0) {
1205 goto out_free;
1206 }
1207
1208 /* Initialize sk's dport and daddr for getpeername() */
1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 sp->pf->to_sk_daddr(sa_addr, sk);
1211 sk->sk_err = 0;
1212
1213 /* in-kernel sockets don't generally have a file allocated to them
1214 * if all they do is call sock_create_kern().
1215 */
1216 if (sk->sk_socket->file)
1217 f_flags = sk->sk_socket->file->f_flags;
1218
1219 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1220
1221 if (assoc_id)
1222 *assoc_id = asoc->assoc_id;
1223 err = sctp_wait_for_connect(asoc, &timeo);
1224 /* Note: the asoc may be freed after the return of
1225 * sctp_wait_for_connect.
1226 */
1227
1228 /* Don't free association on exit. */
1229 asoc = NULL;
1230
1231out_free:
1232 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1233 __func__, asoc, kaddrs, err);
1234
1235 if (asoc) {
1236 /* sctp_primitive_ASSOCIATE may have added this association
1237 * To the hash table, try to unhash it, just in case, its a noop
1238 * if it wasn't hashed so we're safe
1239 */
1240 sctp_association_free(asoc);
1241 }
1242 return err;
1243}
1244
1245/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association. On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code. The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached. The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent. This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association. It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association. If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk The sk of the socket
1302 * addrs The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307static int __sctp_setsockopt_connectx(struct sock *sk,
1308 struct sockaddr __user *addrs,
1309 int addrs_size,
1310 sctp_assoc_t *assoc_id)
1311{
1312 struct sockaddr *kaddrs;
1313 gfp_t gfp = GFP_KERNEL;
1314 int err = 0;
1315
1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1317 __func__, sk, addrs, addrs_size);
1318
1319 if (unlikely(addrs_size <= 0))
1320 return -EINVAL;
1321
1322 /* Check the user passed a healthy pointer. */
1323 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1324 return -EFAULT;
1325
1326 /* Alloc space for the address array in kernel memory. */
1327 if (sk->sk_socket->file)
1328 gfp = GFP_USER | __GFP_NOWARN;
1329 kaddrs = kmalloc(addrs_size, gfp);
1330 if (unlikely(!kaddrs))
1331 return -ENOMEM;
1332
1333 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1334 err = -EFAULT;
1335 } else {
1336 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1337 }
1338
1339 kfree(kaddrs);
1340
1341 return err;
1342}
1343
1344/*
1345 * This is an older interface. It's kept for backward compatibility
1346 * to the option that doesn't provide association id.
1347 */
1348static int sctp_setsockopt_connectx_old(struct sock *sk,
1349 struct sockaddr __user *addrs,
1350 int addrs_size)
1351{
1352 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1353}
1354
1355/*
1356 * New interface for the API. The since the API is done with a socket
1357 * option, to make it simple we feed back the association id is as a return
1358 * indication to the call. Error is always negative and association id is
1359 * always positive.
1360 */
1361static int sctp_setsockopt_connectx(struct sock *sk,
1362 struct sockaddr __user *addrs,
1363 int addrs_size)
1364{
1365 sctp_assoc_t assoc_id = 0;
1366 int err = 0;
1367
1368 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1369
1370 if (err)
1371 return err;
1372 else
1373 return assoc_id;
1374}
1375
1376/*
1377 * New (hopefully final) interface for the API.
1378 * We use the sctp_getaddrs_old structure so that use-space library
1379 * can avoid any unnecessary allocations. The only different part
1380 * is that we store the actual length of the address buffer into the
1381 * addrs_num structure member. That way we can re-use the existing
1382 * code.
1383 */
1384#ifdef CONFIG_COMPAT
1385struct compat_sctp_getaddrs_old {
1386 sctp_assoc_t assoc_id;
1387 s32 addr_num;
1388 compat_uptr_t addrs; /* struct sockaddr * */
1389};
1390#endif
1391
1392static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1393 char __user *optval,
1394 int __user *optlen)
1395{
1396 struct sctp_getaddrs_old param;
1397 sctp_assoc_t assoc_id = 0;
1398 int err = 0;
1399
1400#ifdef CONFIG_COMPAT
1401 if (in_compat_syscall()) {
1402 struct compat_sctp_getaddrs_old param32;
1403
1404 if (len < sizeof(param32))
1405 return -EINVAL;
1406 if (copy_from_user(¶m32, optval, sizeof(param32)))
1407 return -EFAULT;
1408
1409 param.assoc_id = param32.assoc_id;
1410 param.addr_num = param32.addr_num;
1411 param.addrs = compat_ptr(param32.addrs);
1412 } else
1413#endif
1414 {
1415 if (len < sizeof(param))
1416 return -EINVAL;
1417 if (copy_from_user(¶m, optval, sizeof(param)))
1418 return -EFAULT;
1419 }
1420
1421 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1422 param.addrs, param.addr_num,
1423 &assoc_id);
1424 if (err == 0 || err == -EINPROGRESS) {
1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1426 return -EFAULT;
1427 if (put_user(sizeof(assoc_id), optlen))
1428 return -EFAULT;
1429 }
1430
1431 return err;
1432}
1433
1434/* API 3.1.4 close() - UDP Style Syntax
1435 * Applications use close() to perform graceful shutdown (as described in
1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1437 * by a UDP-style socket.
1438 *
1439 * The syntax is
1440 *
1441 * ret = close(int sd);
1442 *
1443 * sd - the socket descriptor of the associations to be closed.
1444 *
1445 * To gracefully shutdown a specific association represented by the
1446 * UDP-style socket, an application should use the sendmsg() call,
1447 * passing no user data, but including the appropriate flag in the
1448 * ancillary data (see Section xxxx).
1449 *
1450 * If sd in the close() call is a branched-off socket representing only
1451 * one association, the shutdown is performed on that association only.
1452 *
1453 * 4.1.6 close() - TCP Style Syntax
1454 *
1455 * Applications use close() to gracefully close down an association.
1456 *
1457 * The syntax is:
1458 *
1459 * int close(int sd);
1460 *
1461 * sd - the socket descriptor of the association to be closed.
1462 *
1463 * After an application calls close() on a socket descriptor, no further
1464 * socket operations will succeed on that descriptor.
1465 *
1466 * API 7.1.4 SO_LINGER
1467 *
1468 * An application using the TCP-style socket can use this option to
1469 * perform the SCTP ABORT primitive. The linger option structure is:
1470 *
1471 * struct linger {
1472 * int l_onoff; // option on/off
1473 * int l_linger; // linger time
1474 * };
1475 *
1476 * To enable the option, set l_onoff to 1. If the l_linger value is set
1477 * to 0, calling close() is the same as the ABORT primitive. If the
1478 * value is set to a negative value, the setsockopt() call will return
1479 * an error. If the value is set to a positive value linger_time, the
1480 * close() can be blocked for at most linger_time ms. If the graceful
1481 * shutdown phase does not finish during this period, close() will
1482 * return but the graceful shutdown phase continues in the system.
1483 */
1484static void sctp_close(struct sock *sk, long timeout)
1485{
1486 struct net *net = sock_net(sk);
1487 struct sctp_endpoint *ep;
1488 struct sctp_association *asoc;
1489 struct list_head *pos, *temp;
1490 unsigned int data_was_unread;
1491
1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1493
1494 lock_sock(sk);
1495 sk->sk_shutdown = SHUTDOWN_MASK;
1496 sk->sk_state = SCTP_SS_CLOSING;
1497
1498 ep = sctp_sk(sk)->ep;
1499
1500 /* Clean up any skbs sitting on the receive queue. */
1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1503
1504 /* Walk all associations on an endpoint. */
1505 list_for_each_safe(pos, temp, &ep->asocs) {
1506 asoc = list_entry(pos, struct sctp_association, asocs);
1507
1508 if (sctp_style(sk, TCP)) {
1509 /* A closed association can still be in the list if
1510 * it belongs to a TCP-style listening socket that is
1511 * not yet accepted. If so, free it. If not, send an
1512 * ABORT or SHUTDOWN based on the linger options.
1513 */
1514 if (sctp_state(asoc, CLOSED)) {
1515 sctp_association_free(asoc);
1516 continue;
1517 }
1518 }
1519
1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1521 !skb_queue_empty(&asoc->ulpq.reasm) ||
1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1523 struct sctp_chunk *chunk;
1524
1525 chunk = sctp_make_abort_user(asoc, NULL, 0);
1526 sctp_primitive_ABORT(net, asoc, chunk);
1527 } else
1528 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1529 }
1530
1531 /* On a TCP-style socket, block for at most linger_time if set. */
1532 if (sctp_style(sk, TCP) && timeout)
1533 sctp_wait_for_close(sk, timeout);
1534
1535 /* This will run the backlog queue. */
1536 release_sock(sk);
1537
1538 /* Supposedly, no process has access to the socket, but
1539 * the net layers still may.
1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1541 * held and that should be grabbed before socket lock.
1542 */
1543 spin_lock_bh(&net->sctp.addr_wq_lock);
1544 bh_lock_sock(sk);
1545
1546 /* Hold the sock, since sk_common_release() will put sock_put()
1547 * and we have just a little more cleanup.
1548 */
1549 sock_hold(sk);
1550 sk_common_release(sk);
1551
1552 bh_unlock_sock(sk);
1553 spin_unlock_bh(&net->sctp.addr_wq_lock);
1554
1555 sock_put(sk);
1556
1557 SCTP_DBG_OBJCNT_DEC(sock);
1558}
1559
1560/* Handle EPIPE error. */
1561static int sctp_error(struct sock *sk, int flags, int err)
1562{
1563 if (err == -EPIPE)
1564 err = sock_error(sk) ? : -EPIPE;
1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1566 send_sig(SIGPIPE, current, 0);
1567 return err;
1568}
1569
1570/* API 3.1.3 sendmsg() - UDP Style Syntax
1571 *
1572 * An application uses sendmsg() and recvmsg() calls to transmit data to
1573 * and receive data from its peer.
1574 *
1575 * ssize_t sendmsg(int socket, const struct msghdr *message,
1576 * int flags);
1577 *
1578 * socket - the socket descriptor of the endpoint.
1579 * message - pointer to the msghdr structure which contains a single
1580 * user message and possibly some ancillary data.
1581 *
1582 * See Section 5 for complete description of the data
1583 * structures.
1584 *
1585 * flags - flags sent or received with the user message, see Section
1586 * 5 for complete description of the flags.
1587 *
1588 * Note: This function could use a rewrite especially when explicit
1589 * connect support comes in.
1590 */
1591/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1592
1593static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1594
1595static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1596{
1597 struct net *net = sock_net(sk);
1598 struct sctp_sock *sp;
1599 struct sctp_endpoint *ep;
1600 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1601 struct sctp_transport *transport, *chunk_tp;
1602 struct sctp_chunk *chunk;
1603 union sctp_addr to;
1604 struct sockaddr *msg_name = NULL;
1605 struct sctp_sndrcvinfo default_sinfo;
1606 struct sctp_sndrcvinfo *sinfo;
1607 struct sctp_initmsg *sinit;
1608 sctp_assoc_t associd = 0;
1609 sctp_cmsgs_t cmsgs = { NULL };
1610 sctp_scope_t scope;
1611 bool fill_sinfo_ttl = false, wait_connect = false;
1612 struct sctp_datamsg *datamsg;
1613 int msg_flags = msg->msg_flags;
1614 __u16 sinfo_flags = 0;
1615 long timeo;
1616 int err;
1617
1618 err = 0;
1619 sp = sctp_sk(sk);
1620 ep = sp->ep;
1621
1622 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1623 msg, msg_len, ep);
1624
1625 /* We cannot send a message over a TCP-style listening socket. */
1626 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1627 err = -EPIPE;
1628 goto out_nounlock;
1629 }
1630
1631 /* Parse out the SCTP CMSGs. */
1632 err = sctp_msghdr_parse(msg, &cmsgs);
1633 if (err) {
1634 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1635 goto out_nounlock;
1636 }
1637
1638 /* Fetch the destination address for this packet. This
1639 * address only selects the association--it is not necessarily
1640 * the address we will send to.
1641 * For a peeled-off socket, msg_name is ignored.
1642 */
1643 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1644 int msg_namelen = msg->msg_namelen;
1645
1646 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1647 msg_namelen);
1648 if (err)
1649 return err;
1650
1651 if (msg_namelen > sizeof(to))
1652 msg_namelen = sizeof(to);
1653 memcpy(&to, msg->msg_name, msg_namelen);
1654 msg_name = msg->msg_name;
1655 }
1656
1657 sinit = cmsgs.init;
1658 if (cmsgs.sinfo != NULL) {
1659 memset(&default_sinfo, 0, sizeof(default_sinfo));
1660 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1661 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1662 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1663 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1664 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1665
1666 sinfo = &default_sinfo;
1667 fill_sinfo_ttl = true;
1668 } else {
1669 sinfo = cmsgs.srinfo;
1670 }
1671 /* Did the user specify SNDINFO/SNDRCVINFO? */
1672 if (sinfo) {
1673 sinfo_flags = sinfo->sinfo_flags;
1674 associd = sinfo->sinfo_assoc_id;
1675 }
1676
1677 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1678 msg_len, sinfo_flags);
1679
1680 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1681 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1682 err = -EINVAL;
1683 goto out_nounlock;
1684 }
1685
1686 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1687 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1688 * If SCTP_ABORT is set, the message length could be non zero with
1689 * the msg_iov set to the user abort reason.
1690 */
1691 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1692 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1693 err = -EINVAL;
1694 goto out_nounlock;
1695 }
1696
1697 /* If SCTP_ADDR_OVER is set, there must be an address
1698 * specified in msg_name.
1699 */
1700 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1701 err = -EINVAL;
1702 goto out_nounlock;
1703 }
1704
1705 transport = NULL;
1706
1707 pr_debug("%s: about to look up association\n", __func__);
1708
1709 lock_sock(sk);
1710
1711 /* If a msg_name has been specified, assume this is to be used. */
1712 if (msg_name) {
1713 /* Look for a matching association on the endpoint. */
1714 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1715
1716 /* If we could not find a matching association on the
1717 * endpoint, make sure that it is not a TCP-style
1718 * socket that already has an association or there is
1719 * no peeled-off association on another socket.
1720 */
1721 if (!asoc &&
1722 ((sctp_style(sk, TCP) &&
1723 (sctp_sstate(sk, ESTABLISHED) ||
1724 sctp_sstate(sk, CLOSING))) ||
1725 sctp_endpoint_is_peeled_off(ep, &to))) {
1726 err = -EADDRNOTAVAIL;
1727 goto out_unlock;
1728 }
1729 } else {
1730 asoc = sctp_id2assoc(sk, associd);
1731 if (!asoc) {
1732 err = -EPIPE;
1733 goto out_unlock;
1734 }
1735 }
1736
1737 if (asoc) {
1738 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1739
1740 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1741 * socket that has an association in CLOSED state. This can
1742 * happen when an accepted socket has an association that is
1743 * already CLOSED.
1744 */
1745 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1746 err = -EPIPE;
1747 goto out_unlock;
1748 }
1749
1750 if (sinfo_flags & SCTP_EOF) {
1751 pr_debug("%s: shutting down association:%p\n",
1752 __func__, asoc);
1753
1754 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1755 err = 0;
1756 goto out_unlock;
1757 }
1758 if (sinfo_flags & SCTP_ABORT) {
1759
1760 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1761 if (!chunk) {
1762 err = -ENOMEM;
1763 goto out_unlock;
1764 }
1765
1766 pr_debug("%s: aborting association:%p\n",
1767 __func__, asoc);
1768
1769 sctp_primitive_ABORT(net, asoc, chunk);
1770 err = 0;
1771 goto out_unlock;
1772 }
1773 }
1774
1775 /* Do we need to create the association? */
1776 if (!asoc) {
1777 pr_debug("%s: there is no association yet\n", __func__);
1778
1779 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1780 err = -EINVAL;
1781 goto out_unlock;
1782 }
1783
1784 /* Check for invalid stream against the stream counts,
1785 * either the default or the user specified stream counts.
1786 */
1787 if (sinfo) {
1788 if (!sinit || !sinit->sinit_num_ostreams) {
1789 /* Check against the defaults. */
1790 if (sinfo->sinfo_stream >=
1791 sp->initmsg.sinit_num_ostreams) {
1792 err = -EINVAL;
1793 goto out_unlock;
1794 }
1795 } else {
1796 /* Check against the requested. */
1797 if (sinfo->sinfo_stream >=
1798 sinit->sinit_num_ostreams) {
1799 err = -EINVAL;
1800 goto out_unlock;
1801 }
1802 }
1803 }
1804
1805 /*
1806 * API 3.1.2 bind() - UDP Style Syntax
1807 * If a bind() or sctp_bindx() is not called prior to a
1808 * sendmsg() call that initiates a new association, the
1809 * system picks an ephemeral port and will choose an address
1810 * set equivalent to binding with a wildcard address.
1811 */
1812 if (!ep->base.bind_addr.port) {
1813 if (sctp_autobind(sk)) {
1814 err = -EAGAIN;
1815 goto out_unlock;
1816 }
1817 } else {
1818 /*
1819 * If an unprivileged user inherits a one-to-many
1820 * style socket with open associations on a privileged
1821 * port, it MAY be permitted to accept new associations,
1822 * but it SHOULD NOT be permitted to open new
1823 * associations.
1824 */
1825 if (ep->base.bind_addr.port < PROT_SOCK &&
1826 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1827 err = -EACCES;
1828 goto out_unlock;
1829 }
1830 }
1831
1832 scope = sctp_scope(&to);
1833 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1834 if (!new_asoc) {
1835 err = -ENOMEM;
1836 goto out_unlock;
1837 }
1838 asoc = new_asoc;
1839 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1840 if (err < 0) {
1841 err = -ENOMEM;
1842 goto out_free;
1843 }
1844
1845 /* If the SCTP_INIT ancillary data is specified, set all
1846 * the association init values accordingly.
1847 */
1848 if (sinit) {
1849 if (sinit->sinit_num_ostreams) {
1850 asoc->c.sinit_num_ostreams =
1851 sinit->sinit_num_ostreams;
1852 }
1853 if (sinit->sinit_max_instreams) {
1854 asoc->c.sinit_max_instreams =
1855 sinit->sinit_max_instreams;
1856 }
1857 if (sinit->sinit_max_attempts) {
1858 asoc->max_init_attempts
1859 = sinit->sinit_max_attempts;
1860 }
1861 if (sinit->sinit_max_init_timeo) {
1862 asoc->max_init_timeo =
1863 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1864 }
1865 }
1866
1867 /* Prime the peer's transport structures. */
1868 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1869 if (!transport) {
1870 err = -ENOMEM;
1871 goto out_free;
1872 }
1873 }
1874
1875 /* ASSERT: we have a valid association at this point. */
1876 pr_debug("%s: we have a valid association\n", __func__);
1877
1878 if (!sinfo) {
1879 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1880 * one with some defaults.
1881 */
1882 memset(&default_sinfo, 0, sizeof(default_sinfo));
1883 default_sinfo.sinfo_stream = asoc->default_stream;
1884 default_sinfo.sinfo_flags = asoc->default_flags;
1885 default_sinfo.sinfo_ppid = asoc->default_ppid;
1886 default_sinfo.sinfo_context = asoc->default_context;
1887 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1888 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1889
1890 sinfo = &default_sinfo;
1891 } else if (fill_sinfo_ttl) {
1892 /* In case SNDINFO was specified, we still need to fill
1893 * it with a default ttl from the assoc here.
1894 */
1895 sinfo->sinfo_timetolive = asoc->default_timetolive;
1896 }
1897
1898 /* API 7.1.7, the sndbuf size per association bounds the
1899 * maximum size of data that can be sent in a single send call.
1900 */
1901 if (msg_len > sk->sk_sndbuf) {
1902 err = -EMSGSIZE;
1903 goto out_free;
1904 }
1905
1906 if (asoc->pmtu_pending)
1907 sctp_assoc_pending_pmtu(sk, asoc);
1908
1909 /* If fragmentation is disabled and the message length exceeds the
1910 * association fragmentation point, return EMSGSIZE. The I-D
1911 * does not specify what this error is, but this looks like
1912 * a great fit.
1913 */
1914 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1915 err = -EMSGSIZE;
1916 goto out_free;
1917 }
1918
1919 /* Check for invalid stream. */
1920 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1921 err = -EINVAL;
1922 goto out_free;
1923 }
1924
1925 if (sctp_wspace(asoc) < msg_len)
1926 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1927
1928 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1929 if (!sctp_wspace(asoc)) {
1930 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1931 if (err)
1932 goto out_free;
1933 }
1934
1935 /* If an address is passed with the sendto/sendmsg call, it is used
1936 * to override the primary destination address in the TCP model, or
1937 * when SCTP_ADDR_OVER flag is set in the UDP model.
1938 */
1939 if ((sctp_style(sk, TCP) && msg_name) ||
1940 (sinfo_flags & SCTP_ADDR_OVER)) {
1941 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1942 if (!chunk_tp) {
1943 err = -EINVAL;
1944 goto out_free;
1945 }
1946 } else
1947 chunk_tp = NULL;
1948
1949 /* Auto-connect, if we aren't connected already. */
1950 if (sctp_state(asoc, CLOSED)) {
1951 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1952 if (err < 0)
1953 goto out_free;
1954
1955 wait_connect = true;
1956 pr_debug("%s: we associated primitively\n", __func__);
1957 }
1958
1959 /* Break the message into multiple chunks of maximum size. */
1960 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1961 if (IS_ERR(datamsg)) {
1962 err = PTR_ERR(datamsg);
1963 goto out_free;
1964 }
1965
1966 /* Now send the (possibly) fragmented message. */
1967 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1968 sctp_chunk_hold(chunk);
1969
1970 /* Do accounting for the write space. */
1971 sctp_set_owner_w(chunk);
1972
1973 chunk->transport = chunk_tp;
1974 }
1975
1976 /* Send it to the lower layers. Note: all chunks
1977 * must either fail or succeed. The lower layer
1978 * works that way today. Keep it that way or this
1979 * breaks.
1980 */
1981 err = sctp_primitive_SEND(net, asoc, datamsg);
1982 /* Did the lower layer accept the chunk? */
1983 if (err) {
1984 sctp_datamsg_free(datamsg);
1985 goto out_free;
1986 }
1987
1988 pr_debug("%s: we sent primitively\n", __func__);
1989
1990 sctp_datamsg_put(datamsg);
1991 err = msg_len;
1992
1993 if (unlikely(wait_connect)) {
1994 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1995 sctp_wait_for_connect(asoc, &timeo);
1996 }
1997
1998 /* If we are already past ASSOCIATE, the lower
1999 * layers are responsible for association cleanup.
2000 */
2001 goto out_unlock;
2002
2003out_free:
2004 if (new_asoc)
2005 sctp_association_free(asoc);
2006out_unlock:
2007 release_sock(sk);
2008
2009out_nounlock:
2010 return sctp_error(sk, msg_flags, err);
2011
2012#if 0
2013do_sock_err:
2014 if (msg_len)
2015 err = msg_len;
2016 else
2017 err = sock_error(sk);
2018 goto out;
2019
2020do_interrupted:
2021 if (msg_len)
2022 err = msg_len;
2023 goto out;
2024#endif /* 0 */
2025}
2026
2027/* This is an extended version of skb_pull() that removes the data from the
2028 * start of a skb even when data is spread across the list of skb's in the
2029 * frag_list. len specifies the total amount of data that needs to be removed.
2030 * when 'len' bytes could be removed from the skb, it returns 0.
2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2032 * could not be removed.
2033 */
2034static int sctp_skb_pull(struct sk_buff *skb, int len)
2035{
2036 struct sk_buff *list;
2037 int skb_len = skb_headlen(skb);
2038 int rlen;
2039
2040 if (len <= skb_len) {
2041 __skb_pull(skb, len);
2042 return 0;
2043 }
2044 len -= skb_len;
2045 __skb_pull(skb, skb_len);
2046
2047 skb_walk_frags(skb, list) {
2048 rlen = sctp_skb_pull(list, len);
2049 skb->len -= (len-rlen);
2050 skb->data_len -= (len-rlen);
2051
2052 if (!rlen)
2053 return 0;
2054
2055 len = rlen;
2056 }
2057
2058 return len;
2059}
2060
2061/* API 3.1.3 recvmsg() - UDP Style Syntax
2062 *
2063 * ssize_t recvmsg(int socket, struct msghdr *message,
2064 * int flags);
2065 *
2066 * socket - the socket descriptor of the endpoint.
2067 * message - pointer to the msghdr structure which contains a single
2068 * user message and possibly some ancillary data.
2069 *
2070 * See Section 5 for complete description of the data
2071 * structures.
2072 *
2073 * flags - flags sent or received with the user message, see Section
2074 * 5 for complete description of the flags.
2075 */
2076static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2077 int noblock, int flags, int *addr_len)
2078{
2079 struct sctp_ulpevent *event = NULL;
2080 struct sctp_sock *sp = sctp_sk(sk);
2081 struct sk_buff *skb, *head_skb;
2082 int copied;
2083 int err = 0;
2084 int skb_len;
2085
2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2088 addr_len);
2089
2090 lock_sock(sk);
2091
2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2094 err = -ENOTCONN;
2095 goto out;
2096 }
2097
2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2099 if (!skb)
2100 goto out;
2101
2102 /* Get the total length of the skb including any skb's in the
2103 * frag_list.
2104 */
2105 skb_len = skb->len;
2106
2107 copied = skb_len;
2108 if (copied > len)
2109 copied = len;
2110
2111 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2112
2113 event = sctp_skb2event(skb);
2114
2115 if (err)
2116 goto out_free;
2117
2118 if (event->chunk && event->chunk->head_skb)
2119 head_skb = event->chunk->head_skb;
2120 else
2121 head_skb = skb;
2122 sock_recv_ts_and_drops(msg, sk, head_skb);
2123 if (sctp_ulpevent_is_notification(event)) {
2124 msg->msg_flags |= MSG_NOTIFICATION;
2125 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2126 } else {
2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2128 }
2129
2130 /* Check if we allow SCTP_NXTINFO. */
2131 if (sp->recvnxtinfo)
2132 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2133 /* Check if we allow SCTP_RCVINFO. */
2134 if (sp->recvrcvinfo)
2135 sctp_ulpevent_read_rcvinfo(event, msg);
2136 /* Check if we allow SCTP_SNDRCVINFO. */
2137 if (sp->subscribe.sctp_data_io_event)
2138 sctp_ulpevent_read_sndrcvinfo(event, msg);
2139
2140 err = copied;
2141
2142 /* If skb's length exceeds the user's buffer, update the skb and
2143 * push it back to the receive_queue so that the next call to
2144 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2145 */
2146 if (skb_len > copied) {
2147 msg->msg_flags &= ~MSG_EOR;
2148 if (flags & MSG_PEEK)
2149 goto out_free;
2150 sctp_skb_pull(skb, copied);
2151 skb_queue_head(&sk->sk_receive_queue, skb);
2152
2153 /* When only partial message is copied to the user, increase
2154 * rwnd by that amount. If all the data in the skb is read,
2155 * rwnd is updated when the event is freed.
2156 */
2157 if (!sctp_ulpevent_is_notification(event))
2158 sctp_assoc_rwnd_increase(event->asoc, copied);
2159 goto out;
2160 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2161 (event->msg_flags & MSG_EOR))
2162 msg->msg_flags |= MSG_EOR;
2163 else
2164 msg->msg_flags &= ~MSG_EOR;
2165
2166out_free:
2167 if (flags & MSG_PEEK) {
2168 /* Release the skb reference acquired after peeking the skb in
2169 * sctp_skb_recv_datagram().
2170 */
2171 kfree_skb(skb);
2172 } else {
2173 /* Free the event which includes releasing the reference to
2174 * the owner of the skb, freeing the skb and updating the
2175 * rwnd.
2176 */
2177 sctp_ulpevent_free(event);
2178 }
2179out:
2180 release_sock(sk);
2181 return err;
2182}
2183
2184/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2185 *
2186 * This option is a on/off flag. If enabled no SCTP message
2187 * fragmentation will be performed. Instead if a message being sent
2188 * exceeds the current PMTU size, the message will NOT be sent and
2189 * instead a error will be indicated to the user.
2190 */
2191static int sctp_setsockopt_disable_fragments(struct sock *sk,
2192 char __user *optval,
2193 unsigned int optlen)
2194{
2195 int val;
2196
2197 if (optlen < sizeof(int))
2198 return -EINVAL;
2199
2200 if (get_user(val, (int __user *)optval))
2201 return -EFAULT;
2202
2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2204
2205 return 0;
2206}
2207
2208static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210{
2211 struct sctp_association *asoc;
2212 struct sctp_ulpevent *event;
2213
2214 if (optlen > sizeof(struct sctp_event_subscribe))
2215 return -EINVAL;
2216 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2217 return -EFAULT;
2218
2219 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2220 * if there is no data to be sent or retransmit, the stack will
2221 * immediately send up this notification.
2222 */
2223 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2224 &sctp_sk(sk)->subscribe)) {
2225 asoc = sctp_id2assoc(sk, 0);
2226
2227 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2228 event = sctp_ulpevent_make_sender_dry_event(asoc,
2229 GFP_ATOMIC);
2230 if (!event)
2231 return -ENOMEM;
2232
2233 sctp_ulpq_tail_event(&asoc->ulpq, event);
2234 }
2235 }
2236
2237 return 0;
2238}
2239
2240/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2241 *
2242 * This socket option is applicable to the UDP-style socket only. When
2243 * set it will cause associations that are idle for more than the
2244 * specified number of seconds to automatically close. An association
2245 * being idle is defined an association that has NOT sent or received
2246 * user data. The special value of '0' indicates that no automatic
2247 * close of any associations should be performed. The option expects an
2248 * integer defining the number of seconds of idle time before an
2249 * association is closed.
2250 */
2251static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2252 unsigned int optlen)
2253{
2254 struct sctp_sock *sp = sctp_sk(sk);
2255 struct net *net = sock_net(sk);
2256
2257 /* Applicable to UDP-style socket only */
2258 if (sctp_style(sk, TCP))
2259 return -EOPNOTSUPP;
2260 if (optlen != sizeof(int))
2261 return -EINVAL;
2262 if (copy_from_user(&sp->autoclose, optval, optlen))
2263 return -EFAULT;
2264
2265 if (sp->autoclose > net->sctp.max_autoclose)
2266 sp->autoclose = net->sctp.max_autoclose;
2267
2268 return 0;
2269}
2270
2271/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2272 *
2273 * Applications can enable or disable heartbeats for any peer address of
2274 * an association, modify an address's heartbeat interval, force a
2275 * heartbeat to be sent immediately, and adjust the address's maximum
2276 * number of retransmissions sent before an address is considered
2277 * unreachable. The following structure is used to access and modify an
2278 * address's parameters:
2279 *
2280 * struct sctp_paddrparams {
2281 * sctp_assoc_t spp_assoc_id;
2282 * struct sockaddr_storage spp_address;
2283 * uint32_t spp_hbinterval;
2284 * uint16_t spp_pathmaxrxt;
2285 * uint32_t spp_pathmtu;
2286 * uint32_t spp_sackdelay;
2287 * uint32_t spp_flags;
2288 * };
2289 *
2290 * spp_assoc_id - (one-to-many style socket) This is filled in the
2291 * application, and identifies the association for
2292 * this query.
2293 * spp_address - This specifies which address is of interest.
2294 * spp_hbinterval - This contains the value of the heartbeat interval,
2295 * in milliseconds. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmaxrxt - This contains the maximum number of
2299 * retransmissions before this address shall be
2300 * considered unreachable. If a value of zero
2301 * is present in this field then no changes are to
2302 * be made to this parameter.
2303 * spp_pathmtu - When Path MTU discovery is disabled the value
2304 * specified here will be the "fixed" path mtu.
2305 * Note that if the spp_address field is empty
2306 * then all associations on this address will
2307 * have this fixed path mtu set upon them.
2308 *
2309 * spp_sackdelay - When delayed sack is enabled, this value specifies
2310 * the number of milliseconds that sacks will be delayed
2311 * for. This value will apply to all addresses of an
2312 * association if the spp_address field is empty. Note
2313 * also, that if delayed sack is enabled and this
2314 * value is set to 0, no change is made to the last
2315 * recorded delayed sack timer value.
2316 *
2317 * spp_flags - These flags are used to control various features
2318 * on an association. The flag field may contain
2319 * zero or more of the following options.
2320 *
2321 * SPP_HB_ENABLE - Enable heartbeats on the
2322 * specified address. Note that if the address
2323 * field is empty all addresses for the association
2324 * have heartbeats enabled upon them.
2325 *
2326 * SPP_HB_DISABLE - Disable heartbeats on the
2327 * speicifed address. Note that if the address
2328 * field is empty all addresses for the association
2329 * will have their heartbeats disabled. Note also
2330 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2331 * mutually exclusive, only one of these two should
2332 * be specified. Enabling both fields will have
2333 * undetermined results.
2334 *
2335 * SPP_HB_DEMAND - Request a user initiated heartbeat
2336 * to be made immediately.
2337 *
2338 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2339 * heartbeat delayis to be set to the value of 0
2340 * milliseconds.
2341 *
2342 * SPP_PMTUD_ENABLE - This field will enable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected.
2346 *
2347 * SPP_PMTUD_DISABLE - This field will disable PMTU
2348 * discovery upon the specified address. Note that
2349 * if the address feild is empty then all addresses
2350 * on the association are effected. Not also that
2351 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2352 * exclusive. Enabling both will have undetermined
2353 * results.
2354 *
2355 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2356 * on delayed sack. The time specified in spp_sackdelay
2357 * is used to specify the sack delay for this address. Note
2358 * that if spp_address is empty then all addresses will
2359 * enable delayed sack and take on the sack delay
2360 * value specified in spp_sackdelay.
2361 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2362 * off delayed sack. If the spp_address field is blank then
2363 * delayed sack is disabled for the entire association. Note
2364 * also that this field is mutually exclusive to
2365 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2366 * results.
2367 */
2368static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2369 struct sctp_transport *trans,
2370 struct sctp_association *asoc,
2371 struct sctp_sock *sp,
2372 int hb_change,
2373 int pmtud_change,
2374 int sackdelay_change)
2375{
2376 int error;
2377
2378 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2379 struct net *net = sock_net(trans->asoc->base.sk);
2380
2381 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2382 if (error)
2383 return error;
2384 }
2385
2386 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2387 * this field is ignored. Note also that a value of zero indicates
2388 * the current setting should be left unchanged.
2389 */
2390 if (params->spp_flags & SPP_HB_ENABLE) {
2391
2392 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2393 * set. This lets us use 0 value when this flag
2394 * is set.
2395 */
2396 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2397 params->spp_hbinterval = 0;
2398
2399 if (params->spp_hbinterval ||
2400 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2401 if (trans) {
2402 trans->hbinterval =
2403 msecs_to_jiffies(params->spp_hbinterval);
2404 } else if (asoc) {
2405 asoc->hbinterval =
2406 msecs_to_jiffies(params->spp_hbinterval);
2407 } else {
2408 sp->hbinterval = params->spp_hbinterval;
2409 }
2410 }
2411 }
2412
2413 if (hb_change) {
2414 if (trans) {
2415 trans->param_flags =
2416 (trans->param_flags & ~SPP_HB) | hb_change;
2417 } else if (asoc) {
2418 asoc->param_flags =
2419 (asoc->param_flags & ~SPP_HB) | hb_change;
2420 } else {
2421 sp->param_flags =
2422 (sp->param_flags & ~SPP_HB) | hb_change;
2423 }
2424 }
2425
2426 /* When Path MTU discovery is disabled the value specified here will
2427 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2428 * include the flag SPP_PMTUD_DISABLE for this field to have any
2429 * effect).
2430 */
2431 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2432 if (trans) {
2433 trans->pathmtu = params->spp_pathmtu;
2434 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2435 } else if (asoc) {
2436 asoc->pathmtu = params->spp_pathmtu;
2437 sctp_frag_point(asoc, params->spp_pathmtu);
2438 } else {
2439 sp->pathmtu = params->spp_pathmtu;
2440 }
2441 }
2442
2443 if (pmtud_change) {
2444 if (trans) {
2445 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2446 (params->spp_flags & SPP_PMTUD_ENABLE);
2447 trans->param_flags =
2448 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2449 if (update) {
2450 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2451 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2452 }
2453 } else if (asoc) {
2454 asoc->param_flags =
2455 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2456 } else {
2457 sp->param_flags =
2458 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2459 }
2460 }
2461
2462 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2463 * value of this field is ignored. Note also that a value of zero
2464 * indicates the current setting should be left unchanged.
2465 */
2466 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2467 if (trans) {
2468 trans->sackdelay =
2469 msecs_to_jiffies(params->spp_sackdelay);
2470 } else if (asoc) {
2471 asoc->sackdelay =
2472 msecs_to_jiffies(params->spp_sackdelay);
2473 } else {
2474 sp->sackdelay = params->spp_sackdelay;
2475 }
2476 }
2477
2478 if (sackdelay_change) {
2479 if (trans) {
2480 trans->param_flags =
2481 (trans->param_flags & ~SPP_SACKDELAY) |
2482 sackdelay_change;
2483 } else if (asoc) {
2484 asoc->param_flags =
2485 (asoc->param_flags & ~SPP_SACKDELAY) |
2486 sackdelay_change;
2487 } else {
2488 sp->param_flags =
2489 (sp->param_flags & ~SPP_SACKDELAY) |
2490 sackdelay_change;
2491 }
2492 }
2493
2494 /* Note that a value of zero indicates the current setting should be
2495 left unchanged.
2496 */
2497 if (params->spp_pathmaxrxt) {
2498 if (trans) {
2499 trans->pathmaxrxt = params->spp_pathmaxrxt;
2500 } else if (asoc) {
2501 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2502 } else {
2503 sp->pathmaxrxt = params->spp_pathmaxrxt;
2504 }
2505 }
2506
2507 return 0;
2508}
2509
2510static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2511 char __user *optval,
2512 unsigned int optlen)
2513{
2514 struct sctp_paddrparams params;
2515 struct sctp_transport *trans = NULL;
2516 struct sctp_association *asoc = NULL;
2517 struct sctp_sock *sp = sctp_sk(sk);
2518 int error;
2519 int hb_change, pmtud_change, sackdelay_change;
2520
2521 if (optlen != sizeof(struct sctp_paddrparams))
2522 return -EINVAL;
2523
2524 if (copy_from_user(¶ms, optval, optlen))
2525 return -EFAULT;
2526
2527 /* Validate flags and value parameters. */
2528 hb_change = params.spp_flags & SPP_HB;
2529 pmtud_change = params.spp_flags & SPP_PMTUD;
2530 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2531
2532 if (hb_change == SPP_HB ||
2533 pmtud_change == SPP_PMTUD ||
2534 sackdelay_change == SPP_SACKDELAY ||
2535 params.spp_sackdelay > 500 ||
2536 (params.spp_pathmtu &&
2537 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2538 return -EINVAL;
2539
2540 /* If an address other than INADDR_ANY is specified, and
2541 * no transport is found, then the request is invalid.
2542 */
2543 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2544 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2545 params.spp_assoc_id);
2546 if (!trans)
2547 return -EINVAL;
2548 }
2549
2550 /* Get association, if assoc_id != 0 and the socket is a one
2551 * to many style socket, and an association was not found, then
2552 * the id was invalid.
2553 */
2554 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2555 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2556 return -EINVAL;
2557
2558 /* Heartbeat demand can only be sent on a transport or
2559 * association, but not a socket.
2560 */
2561 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2562 return -EINVAL;
2563
2564 /* Process parameters. */
2565 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2566 hb_change, pmtud_change,
2567 sackdelay_change);
2568
2569 if (error)
2570 return error;
2571
2572 /* If changes are for association, also apply parameters to each
2573 * transport.
2574 */
2575 if (!trans && asoc) {
2576 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2577 transports) {
2578 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2579 hb_change, pmtud_change,
2580 sackdelay_change);
2581 }
2582 }
2583
2584 return 0;
2585}
2586
2587static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2588{
2589 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2590}
2591
2592static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2593{
2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2595}
2596
2597/*
2598 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2599 *
2600 * This option will effect the way delayed acks are performed. This
2601 * option allows you to get or set the delayed ack time, in
2602 * milliseconds. It also allows changing the delayed ack frequency.
2603 * Changing the frequency to 1 disables the delayed sack algorithm. If
2604 * the assoc_id is 0, then this sets or gets the endpoints default
2605 * values. If the assoc_id field is non-zero, then the set or get
2606 * effects the specified association for the one to many model (the
2607 * assoc_id field is ignored by the one to one model). Note that if
2608 * sack_delay or sack_freq are 0 when setting this option, then the
2609 * current values will remain unchanged.
2610 *
2611 * struct sctp_sack_info {
2612 * sctp_assoc_t sack_assoc_id;
2613 * uint32_t sack_delay;
2614 * uint32_t sack_freq;
2615 * };
2616 *
2617 * sack_assoc_id - This parameter, indicates which association the user
2618 * is performing an action upon. Note that if this field's value is
2619 * zero then the endpoints default value is changed (effecting future
2620 * associations only).
2621 *
2622 * sack_delay - This parameter contains the number of milliseconds that
2623 * the user is requesting the delayed ACK timer be set to. Note that
2624 * this value is defined in the standard to be between 200 and 500
2625 * milliseconds.
2626 *
2627 * sack_freq - This parameter contains the number of packets that must
2628 * be received before a sack is sent without waiting for the delay
2629 * timer to expire. The default value for this is 2, setting this
2630 * value to 1 will disable the delayed sack algorithm.
2631 */
2632
2633static int sctp_setsockopt_delayed_ack(struct sock *sk,
2634 char __user *optval, unsigned int optlen)
2635{
2636 struct sctp_sack_info params;
2637 struct sctp_transport *trans = NULL;
2638 struct sctp_association *asoc = NULL;
2639 struct sctp_sock *sp = sctp_sk(sk);
2640
2641 if (optlen == sizeof(struct sctp_sack_info)) {
2642 if (copy_from_user(¶ms, optval, optlen))
2643 return -EFAULT;
2644
2645 if (params.sack_delay == 0 && params.sack_freq == 0)
2646 return 0;
2647 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2648 pr_warn_ratelimited(DEPRECATED
2649 "%s (pid %d) "
2650 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2651 "Use struct sctp_sack_info instead\n",
2652 current->comm, task_pid_nr(current));
2653 if (copy_from_user(¶ms, optval, optlen))
2654 return -EFAULT;
2655
2656 if (params.sack_delay == 0)
2657 params.sack_freq = 1;
2658 else
2659 params.sack_freq = 0;
2660 } else
2661 return -EINVAL;
2662
2663 /* Validate value parameter. */
2664 if (params.sack_delay > 500)
2665 return -EINVAL;
2666
2667 /* Get association, if sack_assoc_id != 0 and the socket is a one
2668 * to many style socket, and an association was not found, then
2669 * the id was invalid.
2670 */
2671 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2672 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2673 return -EINVAL;
2674
2675 if (params.sack_delay) {
2676 if (asoc) {
2677 asoc->sackdelay =
2678 msecs_to_jiffies(params.sack_delay);
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackdelay = params.sack_delay;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 if (params.sack_freq == 1) {
2689 if (asoc) {
2690 asoc->param_flags =
2691 sctp_spp_sackdelay_disable(asoc->param_flags);
2692 } else {
2693 sp->param_flags =
2694 sctp_spp_sackdelay_disable(sp->param_flags);
2695 }
2696 } else if (params.sack_freq > 1) {
2697 if (asoc) {
2698 asoc->sackfreq = params.sack_freq;
2699 asoc->param_flags =
2700 sctp_spp_sackdelay_enable(asoc->param_flags);
2701 } else {
2702 sp->sackfreq = params.sack_freq;
2703 sp->param_flags =
2704 sctp_spp_sackdelay_enable(sp->param_flags);
2705 }
2706 }
2707
2708 /* If change is for association, also apply to each transport. */
2709 if (asoc) {
2710 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2711 transports) {
2712 if (params.sack_delay) {
2713 trans->sackdelay =
2714 msecs_to_jiffies(params.sack_delay);
2715 trans->param_flags =
2716 sctp_spp_sackdelay_enable(trans->param_flags);
2717 }
2718 if (params.sack_freq == 1) {
2719 trans->param_flags =
2720 sctp_spp_sackdelay_disable(trans->param_flags);
2721 } else if (params.sack_freq > 1) {
2722 trans->sackfreq = params.sack_freq;
2723 trans->param_flags =
2724 sctp_spp_sackdelay_enable(trans->param_flags);
2725 }
2726 }
2727 }
2728
2729 return 0;
2730}
2731
2732/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2733 *
2734 * Applications can specify protocol parameters for the default association
2735 * initialization. The option name argument to setsockopt() and getsockopt()
2736 * is SCTP_INITMSG.
2737 *
2738 * Setting initialization parameters is effective only on an unconnected
2739 * socket (for UDP-style sockets only future associations are effected
2740 * by the change). With TCP-style sockets, this option is inherited by
2741 * sockets derived from a listener socket.
2742 */
2743static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2744{
2745 struct sctp_initmsg sinit;
2746 struct sctp_sock *sp = sctp_sk(sk);
2747
2748 if (optlen != sizeof(struct sctp_initmsg))
2749 return -EINVAL;
2750 if (copy_from_user(&sinit, optval, optlen))
2751 return -EFAULT;
2752
2753 if (sinit.sinit_num_ostreams)
2754 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2755 if (sinit.sinit_max_instreams)
2756 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2757 if (sinit.sinit_max_attempts)
2758 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2759 if (sinit.sinit_max_init_timeo)
2760 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2761
2762 return 0;
2763}
2764
2765/*
2766 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2767 *
2768 * Applications that wish to use the sendto() system call may wish to
2769 * specify a default set of parameters that would normally be supplied
2770 * through the inclusion of ancillary data. This socket option allows
2771 * such an application to set the default sctp_sndrcvinfo structure.
2772 * The application that wishes to use this socket option simply passes
2773 * in to this call the sctp_sndrcvinfo structure defined in Section
2774 * 5.2.2) The input parameters accepted by this call include
2775 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2776 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2777 * to this call if the caller is using the UDP model.
2778 */
2779static int sctp_setsockopt_default_send_param(struct sock *sk,
2780 char __user *optval,
2781 unsigned int optlen)
2782{
2783 struct sctp_sock *sp = sctp_sk(sk);
2784 struct sctp_association *asoc;
2785 struct sctp_sndrcvinfo info;
2786
2787 if (optlen != sizeof(info))
2788 return -EINVAL;
2789 if (copy_from_user(&info, optval, optlen))
2790 return -EFAULT;
2791 if (info.sinfo_flags &
2792 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2793 SCTP_ABORT | SCTP_EOF))
2794 return -EINVAL;
2795
2796 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2797 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2798 return -EINVAL;
2799 if (asoc) {
2800 asoc->default_stream = info.sinfo_stream;
2801 asoc->default_flags = info.sinfo_flags;
2802 asoc->default_ppid = info.sinfo_ppid;
2803 asoc->default_context = info.sinfo_context;
2804 asoc->default_timetolive = info.sinfo_timetolive;
2805 } else {
2806 sp->default_stream = info.sinfo_stream;
2807 sp->default_flags = info.sinfo_flags;
2808 sp->default_ppid = info.sinfo_ppid;
2809 sp->default_context = info.sinfo_context;
2810 sp->default_timetolive = info.sinfo_timetolive;
2811 }
2812
2813 return 0;
2814}
2815
2816/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2817 * (SCTP_DEFAULT_SNDINFO)
2818 */
2819static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2820 char __user *optval,
2821 unsigned int optlen)
2822{
2823 struct sctp_sock *sp = sctp_sk(sk);
2824 struct sctp_association *asoc;
2825 struct sctp_sndinfo info;
2826
2827 if (optlen != sizeof(info))
2828 return -EINVAL;
2829 if (copy_from_user(&info, optval, optlen))
2830 return -EFAULT;
2831 if (info.snd_flags &
2832 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2833 SCTP_ABORT | SCTP_EOF))
2834 return -EINVAL;
2835
2836 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2837 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2838 return -EINVAL;
2839 if (asoc) {
2840 asoc->default_stream = info.snd_sid;
2841 asoc->default_flags = info.snd_flags;
2842 asoc->default_ppid = info.snd_ppid;
2843 asoc->default_context = info.snd_context;
2844 } else {
2845 sp->default_stream = info.snd_sid;
2846 sp->default_flags = info.snd_flags;
2847 sp->default_ppid = info.snd_ppid;
2848 sp->default_context = info.snd_context;
2849 }
2850
2851 return 0;
2852}
2853
2854/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2855 *
2856 * Requests that the local SCTP stack use the enclosed peer address as
2857 * the association primary. The enclosed address must be one of the
2858 * association peer's addresses.
2859 */
2860static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2861 unsigned int optlen)
2862{
2863 struct sctp_prim prim;
2864 struct sctp_transport *trans;
2865
2866 if (optlen != sizeof(struct sctp_prim))
2867 return -EINVAL;
2868
2869 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2870 return -EFAULT;
2871
2872 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2873 if (!trans)
2874 return -EINVAL;
2875
2876 sctp_assoc_set_primary(trans->asoc, trans);
2877
2878 return 0;
2879}
2880
2881/*
2882 * 7.1.5 SCTP_NODELAY
2883 *
2884 * Turn on/off any Nagle-like algorithm. This means that packets are
2885 * generally sent as soon as possible and no unnecessary delays are
2886 * introduced, at the cost of more packets in the network. Expects an
2887 * integer boolean flag.
2888 */
2889static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2890 unsigned int optlen)
2891{
2892 int val;
2893
2894 if (optlen < sizeof(int))
2895 return -EINVAL;
2896 if (get_user(val, (int __user *)optval))
2897 return -EFAULT;
2898
2899 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2900 return 0;
2901}
2902
2903/*
2904 *
2905 * 7.1.1 SCTP_RTOINFO
2906 *
2907 * The protocol parameters used to initialize and bound retransmission
2908 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2909 * and modify these parameters.
2910 * All parameters are time values, in milliseconds. A value of 0, when
2911 * modifying the parameters, indicates that the current value should not
2912 * be changed.
2913 *
2914 */
2915static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2916{
2917 struct sctp_rtoinfo rtoinfo;
2918 struct sctp_association *asoc;
2919 unsigned long rto_min, rto_max;
2920 struct sctp_sock *sp = sctp_sk(sk);
2921
2922 if (optlen != sizeof (struct sctp_rtoinfo))
2923 return -EINVAL;
2924
2925 if (copy_from_user(&rtoinfo, optval, optlen))
2926 return -EFAULT;
2927
2928 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2929
2930 /* Set the values to the specific association */
2931 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2932 return -EINVAL;
2933
2934 rto_max = rtoinfo.srto_max;
2935 rto_min = rtoinfo.srto_min;
2936
2937 if (rto_max)
2938 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2939 else
2940 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2941
2942 if (rto_min)
2943 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2944 else
2945 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2946
2947 if (rto_min > rto_max)
2948 return -EINVAL;
2949
2950 if (asoc) {
2951 if (rtoinfo.srto_initial != 0)
2952 asoc->rto_initial =
2953 msecs_to_jiffies(rtoinfo.srto_initial);
2954 asoc->rto_max = rto_max;
2955 asoc->rto_min = rto_min;
2956 } else {
2957 /* If there is no association or the association-id = 0
2958 * set the values to the endpoint.
2959 */
2960 if (rtoinfo.srto_initial != 0)
2961 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2962 sp->rtoinfo.srto_max = rto_max;
2963 sp->rtoinfo.srto_min = rto_min;
2964 }
2965
2966 return 0;
2967}
2968
2969/*
2970 *
2971 * 7.1.2 SCTP_ASSOCINFO
2972 *
2973 * This option is used to tune the maximum retransmission attempts
2974 * of the association.
2975 * Returns an error if the new association retransmission value is
2976 * greater than the sum of the retransmission value of the peer.
2977 * See [SCTP] for more information.
2978 *
2979 */
2980static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2981{
2982
2983 struct sctp_assocparams assocparams;
2984 struct sctp_association *asoc;
2985
2986 if (optlen != sizeof(struct sctp_assocparams))
2987 return -EINVAL;
2988 if (copy_from_user(&assocparams, optval, optlen))
2989 return -EFAULT;
2990
2991 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2992
2993 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2994 return -EINVAL;
2995
2996 /* Set the values to the specific association */
2997 if (asoc) {
2998 if (assocparams.sasoc_asocmaxrxt != 0) {
2999 __u32 path_sum = 0;
3000 int paths = 0;
3001 struct sctp_transport *peer_addr;
3002
3003 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3004 transports) {
3005 path_sum += peer_addr->pathmaxrxt;
3006 paths++;
3007 }
3008
3009 /* Only validate asocmaxrxt if we have more than
3010 * one path/transport. We do this because path
3011 * retransmissions are only counted when we have more
3012 * then one path.
3013 */
3014 if (paths > 1 &&
3015 assocparams.sasoc_asocmaxrxt > path_sum)
3016 return -EINVAL;
3017
3018 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3019 }
3020
3021 if (assocparams.sasoc_cookie_life != 0)
3022 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3023 } else {
3024 /* Set the values to the endpoint */
3025 struct sctp_sock *sp = sctp_sk(sk);
3026
3027 if (assocparams.sasoc_asocmaxrxt != 0)
3028 sp->assocparams.sasoc_asocmaxrxt =
3029 assocparams.sasoc_asocmaxrxt;
3030 if (assocparams.sasoc_cookie_life != 0)
3031 sp->assocparams.sasoc_cookie_life =
3032 assocparams.sasoc_cookie_life;
3033 }
3034 return 0;
3035}
3036
3037/*
3038 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3039 *
3040 * This socket option is a boolean flag which turns on or off mapped V4
3041 * addresses. If this option is turned on and the socket is type
3042 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3043 * If this option is turned off, then no mapping will be done of V4
3044 * addresses and a user will receive both PF_INET6 and PF_INET type
3045 * addresses on the socket.
3046 */
3047static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3048{
3049 int val;
3050 struct sctp_sock *sp = sctp_sk(sk);
3051
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 if (get_user(val, (int __user *)optval))
3055 return -EFAULT;
3056 if (val)
3057 sp->v4mapped = 1;
3058 else
3059 sp->v4mapped = 0;
3060
3061 return 0;
3062}
3063
3064/*
3065 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3066 * This option will get or set the maximum size to put in any outgoing
3067 * SCTP DATA chunk. If a message is larger than this size it will be
3068 * fragmented by SCTP into the specified size. Note that the underlying
3069 * SCTP implementation may fragment into smaller sized chunks when the
3070 * PMTU of the underlying association is smaller than the value set by
3071 * the user. The default value for this option is '0' which indicates
3072 * the user is NOT limiting fragmentation and only the PMTU will effect
3073 * SCTP's choice of DATA chunk size. Note also that values set larger
3074 * than the maximum size of an IP datagram will effectively let SCTP
3075 * control fragmentation (i.e. the same as setting this option to 0).
3076 *
3077 * The following structure is used to access and modify this parameter:
3078 *
3079 * struct sctp_assoc_value {
3080 * sctp_assoc_t assoc_id;
3081 * uint32_t assoc_value;
3082 * };
3083 *
3084 * assoc_id: This parameter is ignored for one-to-one style sockets.
3085 * For one-to-many style sockets this parameter indicates which
3086 * association the user is performing an action upon. Note that if
3087 * this field's value is zero then the endpoints default value is
3088 * changed (effecting future associations only).
3089 * assoc_value: This parameter specifies the maximum size in bytes.
3090 */
3091static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3092{
3093 struct sctp_assoc_value params;
3094 struct sctp_association *asoc;
3095 struct sctp_sock *sp = sctp_sk(sk);
3096 int val;
3097
3098 if (optlen == sizeof(int)) {
3099 pr_warn_ratelimited(DEPRECATED
3100 "%s (pid %d) "
3101 "Use of int in maxseg socket option.\n"
3102 "Use struct sctp_assoc_value instead\n",
3103 current->comm, task_pid_nr(current));
3104 if (copy_from_user(&val, optval, optlen))
3105 return -EFAULT;
3106 params.assoc_id = 0;
3107 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3108 if (copy_from_user(¶ms, optval, optlen))
3109 return -EFAULT;
3110 val = params.assoc_value;
3111 } else
3112 return -EINVAL;
3113
3114 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3115 return -EINVAL;
3116
3117 asoc = sctp_id2assoc(sk, params.assoc_id);
3118 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3119 return -EINVAL;
3120
3121 if (asoc) {
3122 if (val == 0) {
3123 val = asoc->pathmtu;
3124 val -= sp->pf->af->net_header_len;
3125 val -= sizeof(struct sctphdr) +
3126 sizeof(struct sctp_data_chunk);
3127 }
3128 asoc->user_frag = val;
3129 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3130 } else {
3131 sp->user_frag = val;
3132 }
3133
3134 return 0;
3135}
3136
3137
3138/*
3139 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3140 *
3141 * Requests that the peer mark the enclosed address as the association
3142 * primary. The enclosed address must be one of the association's
3143 * locally bound addresses. The following structure is used to make a
3144 * set primary request:
3145 */
3146static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3147 unsigned int optlen)
3148{
3149 struct net *net = sock_net(sk);
3150 struct sctp_sock *sp;
3151 struct sctp_association *asoc = NULL;
3152 struct sctp_setpeerprim prim;
3153 struct sctp_chunk *chunk;
3154 struct sctp_af *af;
3155 int err;
3156
3157 sp = sctp_sk(sk);
3158
3159 if (!net->sctp.addip_enable)
3160 return -EPERM;
3161
3162 if (optlen != sizeof(struct sctp_setpeerprim))
3163 return -EINVAL;
3164
3165 if (copy_from_user(&prim, optval, optlen))
3166 return -EFAULT;
3167
3168 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3169 if (!asoc)
3170 return -EINVAL;
3171
3172 if (!asoc->peer.asconf_capable)
3173 return -EPERM;
3174
3175 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3176 return -EPERM;
3177
3178 if (!sctp_state(asoc, ESTABLISHED))
3179 return -ENOTCONN;
3180
3181 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3182 if (!af)
3183 return -EINVAL;
3184
3185 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3186 return -EADDRNOTAVAIL;
3187
3188 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3189 return -EADDRNOTAVAIL;
3190
3191 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3192 chunk = sctp_make_asconf_set_prim(asoc,
3193 (union sctp_addr *)&prim.sspp_addr);
3194 if (!chunk)
3195 return -ENOMEM;
3196
3197 err = sctp_send_asconf(asoc, chunk);
3198
3199 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3200
3201 return err;
3202}
3203
3204static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3205 unsigned int optlen)
3206{
3207 struct sctp_setadaptation adaptation;
3208
3209 if (optlen != sizeof(struct sctp_setadaptation))
3210 return -EINVAL;
3211 if (copy_from_user(&adaptation, optval, optlen))
3212 return -EFAULT;
3213
3214 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3215
3216 return 0;
3217}
3218
3219/*
3220 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3221 *
3222 * The context field in the sctp_sndrcvinfo structure is normally only
3223 * used when a failed message is retrieved holding the value that was
3224 * sent down on the actual send call. This option allows the setting of
3225 * a default context on an association basis that will be received on
3226 * reading messages from the peer. This is especially helpful in the
3227 * one-2-many model for an application to keep some reference to an
3228 * internal state machine that is processing messages on the
3229 * association. Note that the setting of this value only effects
3230 * received messages from the peer and does not effect the value that is
3231 * saved with outbound messages.
3232 */
3233static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3234 unsigned int optlen)
3235{
3236 struct sctp_assoc_value params;
3237 struct sctp_sock *sp;
3238 struct sctp_association *asoc;
3239
3240 if (optlen != sizeof(struct sctp_assoc_value))
3241 return -EINVAL;
3242 if (copy_from_user(¶ms, optval, optlen))
3243 return -EFAULT;
3244
3245 sp = sctp_sk(sk);
3246
3247 if (params.assoc_id != 0) {
3248 asoc = sctp_id2assoc(sk, params.assoc_id);
3249 if (!asoc)
3250 return -EINVAL;
3251 asoc->default_rcv_context = params.assoc_value;
3252 } else {
3253 sp->default_rcv_context = params.assoc_value;
3254 }
3255
3256 return 0;
3257}
3258
3259/*
3260 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3261 *
3262 * This options will at a minimum specify if the implementation is doing
3263 * fragmented interleave. Fragmented interleave, for a one to many
3264 * socket, is when subsequent calls to receive a message may return
3265 * parts of messages from different associations. Some implementations
3266 * may allow you to turn this value on or off. If so, when turned off,
3267 * no fragment interleave will occur (which will cause a head of line
3268 * blocking amongst multiple associations sharing the same one to many
3269 * socket). When this option is turned on, then each receive call may
3270 * come from a different association (thus the user must receive data
3271 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3272 * association each receive belongs to.
3273 *
3274 * This option takes a boolean value. A non-zero value indicates that
3275 * fragmented interleave is on. A value of zero indicates that
3276 * fragmented interleave is off.
3277 *
3278 * Note that it is important that an implementation that allows this
3279 * option to be turned on, have it off by default. Otherwise an unaware
3280 * application using the one to many model may become confused and act
3281 * incorrectly.
3282 */
3283static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3284 char __user *optval,
3285 unsigned int optlen)
3286{
3287 int val;
3288
3289 if (optlen != sizeof(int))
3290 return -EINVAL;
3291 if (get_user(val, (int __user *)optval))
3292 return -EFAULT;
3293
3294 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3295
3296 return 0;
3297}
3298
3299/*
3300 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3301 * (SCTP_PARTIAL_DELIVERY_POINT)
3302 *
3303 * This option will set or get the SCTP partial delivery point. This
3304 * point is the size of a message where the partial delivery API will be
3305 * invoked to help free up rwnd space for the peer. Setting this to a
3306 * lower value will cause partial deliveries to happen more often. The
3307 * calls argument is an integer that sets or gets the partial delivery
3308 * point. Note also that the call will fail if the user attempts to set
3309 * this value larger than the socket receive buffer size.
3310 *
3311 * Note that any single message having a length smaller than or equal to
3312 * the SCTP partial delivery point will be delivered in one single read
3313 * call as long as the user provided buffer is large enough to hold the
3314 * message.
3315 */
3316static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3317 char __user *optval,
3318 unsigned int optlen)
3319{
3320 u32 val;
3321
3322 if (optlen != sizeof(u32))
3323 return -EINVAL;
3324 if (get_user(val, (int __user *)optval))
3325 return -EFAULT;
3326
3327 /* Note: We double the receive buffer from what the user sets
3328 * it to be, also initial rwnd is based on rcvbuf/2.
3329 */
3330 if (val > (sk->sk_rcvbuf >> 1))
3331 return -EINVAL;
3332
3333 sctp_sk(sk)->pd_point = val;
3334
3335 return 0; /* is this the right error code? */
3336}
3337
3338/*
3339 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3340 *
3341 * This option will allow a user to change the maximum burst of packets
3342 * that can be emitted by this association. Note that the default value
3343 * is 4, and some implementations may restrict this setting so that it
3344 * can only be lowered.
3345 *
3346 * NOTE: This text doesn't seem right. Do this on a socket basis with
3347 * future associations inheriting the socket value.
3348 */
3349static int sctp_setsockopt_maxburst(struct sock *sk,
3350 char __user *optval,
3351 unsigned int optlen)
3352{
3353 struct sctp_assoc_value params;
3354 struct sctp_sock *sp;
3355 struct sctp_association *asoc;
3356 int val;
3357 int assoc_id = 0;
3358
3359 if (optlen == sizeof(int)) {
3360 pr_warn_ratelimited(DEPRECATED
3361 "%s (pid %d) "
3362 "Use of int in max_burst socket option deprecated.\n"
3363 "Use struct sctp_assoc_value instead\n",
3364 current->comm, task_pid_nr(current));
3365 if (copy_from_user(&val, optval, optlen))
3366 return -EFAULT;
3367 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3368 if (copy_from_user(¶ms, optval, optlen))
3369 return -EFAULT;
3370 val = params.assoc_value;
3371 assoc_id = params.assoc_id;
3372 } else
3373 return -EINVAL;
3374
3375 sp = sctp_sk(sk);
3376
3377 if (assoc_id != 0) {
3378 asoc = sctp_id2assoc(sk, assoc_id);
3379 if (!asoc)
3380 return -EINVAL;
3381 asoc->max_burst = val;
3382 } else
3383 sp->max_burst = val;
3384
3385 return 0;
3386}
3387
3388/*
3389 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3390 *
3391 * This set option adds a chunk type that the user is requesting to be
3392 * received only in an authenticated way. Changes to the list of chunks
3393 * will only effect future associations on the socket.
3394 */
3395static int sctp_setsockopt_auth_chunk(struct sock *sk,
3396 char __user *optval,
3397 unsigned int optlen)
3398{
3399 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3400 struct sctp_authchunk val;
3401
3402 if (!ep->auth_enable)
3403 return -EACCES;
3404
3405 if (optlen != sizeof(struct sctp_authchunk))
3406 return -EINVAL;
3407 if (copy_from_user(&val, optval, optlen))
3408 return -EFAULT;
3409
3410 switch (val.sauth_chunk) {
3411 case SCTP_CID_INIT:
3412 case SCTP_CID_INIT_ACK:
3413 case SCTP_CID_SHUTDOWN_COMPLETE:
3414 case SCTP_CID_AUTH:
3415 return -EINVAL;
3416 }
3417
3418 /* add this chunk id to the endpoint */
3419 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3420}
3421
3422/*
3423 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3424 *
3425 * This option gets or sets the list of HMAC algorithms that the local
3426 * endpoint requires the peer to use.
3427 */
3428static int sctp_setsockopt_hmac_ident(struct sock *sk,
3429 char __user *optval,
3430 unsigned int optlen)
3431{
3432 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3433 struct sctp_hmacalgo *hmacs;
3434 u32 idents;
3435 int err;
3436
3437 if (!ep->auth_enable)
3438 return -EACCES;
3439
3440 if (optlen < sizeof(struct sctp_hmacalgo))
3441 return -EINVAL;
3442
3443 hmacs = memdup_user(optval, optlen);
3444 if (IS_ERR(hmacs))
3445 return PTR_ERR(hmacs);
3446
3447 idents = hmacs->shmac_num_idents;
3448 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3449 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3450 err = -EINVAL;
3451 goto out;
3452 }
3453
3454 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3455out:
3456 kfree(hmacs);
3457 return err;
3458}
3459
3460/*
3461 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3462 *
3463 * This option will set a shared secret key which is used to build an
3464 * association shared key.
3465 */
3466static int sctp_setsockopt_auth_key(struct sock *sk,
3467 char __user *optval,
3468 unsigned int optlen)
3469{
3470 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3471 struct sctp_authkey *authkey;
3472 struct sctp_association *asoc;
3473 int ret;
3474
3475 if (!ep->auth_enable)
3476 return -EACCES;
3477
3478 if (optlen <= sizeof(struct sctp_authkey))
3479 return -EINVAL;
3480
3481 authkey = memdup_user(optval, optlen);
3482 if (IS_ERR(authkey))
3483 return PTR_ERR(authkey);
3484
3485 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3486 ret = -EINVAL;
3487 goto out;
3488 }
3489
3490 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3491 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3492 ret = -EINVAL;
3493 goto out;
3494 }
3495
3496 ret = sctp_auth_set_key(ep, asoc, authkey);
3497out:
3498 kzfree(authkey);
3499 return ret;
3500}
3501
3502/*
3503 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3504 *
3505 * This option will get or set the active shared key to be used to build
3506 * the association shared key.
3507 */
3508static int sctp_setsockopt_active_key(struct sock *sk,
3509 char __user *optval,
3510 unsigned int optlen)
3511{
3512 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3513 struct sctp_authkeyid val;
3514 struct sctp_association *asoc;
3515
3516 if (!ep->auth_enable)
3517 return -EACCES;
3518
3519 if (optlen != sizeof(struct sctp_authkeyid))
3520 return -EINVAL;
3521 if (copy_from_user(&val, optval, optlen))
3522 return -EFAULT;
3523
3524 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3525 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3526 return -EINVAL;
3527
3528 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3529}
3530
3531/*
3532 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3533 *
3534 * This set option will delete a shared secret key from use.
3535 */
3536static int sctp_setsockopt_del_key(struct sock *sk,
3537 char __user *optval,
3538 unsigned int optlen)
3539{
3540 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3541 struct sctp_authkeyid val;
3542 struct sctp_association *asoc;
3543
3544 if (!ep->auth_enable)
3545 return -EACCES;
3546
3547 if (optlen != sizeof(struct sctp_authkeyid))
3548 return -EINVAL;
3549 if (copy_from_user(&val, optval, optlen))
3550 return -EFAULT;
3551
3552 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3553 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3554 return -EINVAL;
3555
3556 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3557
3558}
3559
3560/*
3561 * 8.1.23 SCTP_AUTO_ASCONF
3562 *
3563 * This option will enable or disable the use of the automatic generation of
3564 * ASCONF chunks to add and delete addresses to an existing association. Note
3565 * that this option has two caveats namely: a) it only affects sockets that
3566 * are bound to all addresses available to the SCTP stack, and b) the system
3567 * administrator may have an overriding control that turns the ASCONF feature
3568 * off no matter what setting the socket option may have.
3569 * This option expects an integer boolean flag, where a non-zero value turns on
3570 * the option, and a zero value turns off the option.
3571 * Note. In this implementation, socket operation overrides default parameter
3572 * being set by sysctl as well as FreeBSD implementation
3573 */
3574static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3575 unsigned int optlen)
3576{
3577 int val;
3578 struct sctp_sock *sp = sctp_sk(sk);
3579
3580 if (optlen < sizeof(int))
3581 return -EINVAL;
3582 if (get_user(val, (int __user *)optval))
3583 return -EFAULT;
3584 if (!sctp_is_ep_boundall(sk) && val)
3585 return -EINVAL;
3586 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3587 return 0;
3588
3589 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3590 if (val == 0 && sp->do_auto_asconf) {
3591 list_del(&sp->auto_asconf_list);
3592 sp->do_auto_asconf = 0;
3593 } else if (val && !sp->do_auto_asconf) {
3594 list_add_tail(&sp->auto_asconf_list,
3595 &sock_net(sk)->sctp.auto_asconf_splist);
3596 sp->do_auto_asconf = 1;
3597 }
3598 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3599 return 0;
3600}
3601
3602/*
3603 * SCTP_PEER_ADDR_THLDS
3604 *
3605 * This option allows us to alter the partially failed threshold for one or all
3606 * transports in an association. See Section 6.1 of:
3607 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3608 */
3609static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3610 char __user *optval,
3611 unsigned int optlen)
3612{
3613 struct sctp_paddrthlds val;
3614 struct sctp_transport *trans;
3615 struct sctp_association *asoc;
3616
3617 if (optlen < sizeof(struct sctp_paddrthlds))
3618 return -EINVAL;
3619 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3620 sizeof(struct sctp_paddrthlds)))
3621 return -EFAULT;
3622
3623
3624 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3625 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3626 if (!asoc)
3627 return -ENOENT;
3628 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3629 transports) {
3630 if (val.spt_pathmaxrxt)
3631 trans->pathmaxrxt = val.spt_pathmaxrxt;
3632 trans->pf_retrans = val.spt_pathpfthld;
3633 }
3634
3635 if (val.spt_pathmaxrxt)
3636 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3637 asoc->pf_retrans = val.spt_pathpfthld;
3638 } else {
3639 trans = sctp_addr_id2transport(sk, &val.spt_address,
3640 val.spt_assoc_id);
3641 if (!trans)
3642 return -ENOENT;
3643
3644 if (val.spt_pathmaxrxt)
3645 trans->pathmaxrxt = val.spt_pathmaxrxt;
3646 trans->pf_retrans = val.spt_pathpfthld;
3647 }
3648
3649 return 0;
3650}
3651
3652static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3653 char __user *optval,
3654 unsigned int optlen)
3655{
3656 int val;
3657
3658 if (optlen < sizeof(int))
3659 return -EINVAL;
3660 if (get_user(val, (int __user *) optval))
3661 return -EFAULT;
3662
3663 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3664
3665 return 0;
3666}
3667
3668static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3669 char __user *optval,
3670 unsigned int optlen)
3671{
3672 int val;
3673
3674 if (optlen < sizeof(int))
3675 return -EINVAL;
3676 if (get_user(val, (int __user *) optval))
3677 return -EFAULT;
3678
3679 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3680
3681 return 0;
3682}
3683
3684static int sctp_setsockopt_pr_supported(struct sock *sk,
3685 char __user *optval,
3686 unsigned int optlen)
3687{
3688 struct sctp_assoc_value params;
3689 struct sctp_association *asoc;
3690 int retval = -EINVAL;
3691
3692 if (optlen != sizeof(params))
3693 goto out;
3694
3695 if (copy_from_user(¶ms, optval, optlen)) {
3696 retval = -EFAULT;
3697 goto out;
3698 }
3699
3700 asoc = sctp_id2assoc(sk, params.assoc_id);
3701 if (asoc) {
3702 asoc->prsctp_enable = !!params.assoc_value;
3703 } else if (!params.assoc_id) {
3704 struct sctp_sock *sp = sctp_sk(sk);
3705
3706 sp->ep->prsctp_enable = !!params.assoc_value;
3707 } else {
3708 goto out;
3709 }
3710
3711 retval = 0;
3712
3713out:
3714 return retval;
3715}
3716
3717static int sctp_setsockopt_default_prinfo(struct sock *sk,
3718 char __user *optval,
3719 unsigned int optlen)
3720{
3721 struct sctp_default_prinfo info;
3722 struct sctp_association *asoc;
3723 int retval = -EINVAL;
3724
3725 if (optlen != sizeof(info))
3726 goto out;
3727
3728 if (copy_from_user(&info, optval, sizeof(info))) {
3729 retval = -EFAULT;
3730 goto out;
3731 }
3732
3733 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3734 goto out;
3735
3736 if (info.pr_policy == SCTP_PR_SCTP_NONE)
3737 info.pr_value = 0;
3738
3739 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3740 if (asoc) {
3741 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3742 asoc->default_timetolive = info.pr_value;
3743 } else if (!info.pr_assoc_id) {
3744 struct sctp_sock *sp = sctp_sk(sk);
3745
3746 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3747 sp->default_timetolive = info.pr_value;
3748 } else {
3749 goto out;
3750 }
3751
3752 retval = 0;
3753
3754out:
3755 return retval;
3756}
3757
3758/* API 6.2 setsockopt(), getsockopt()
3759 *
3760 * Applications use setsockopt() and getsockopt() to set or retrieve
3761 * socket options. Socket options are used to change the default
3762 * behavior of sockets calls. They are described in Section 7.
3763 *
3764 * The syntax is:
3765 *
3766 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3767 * int __user *optlen);
3768 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3769 * int optlen);
3770 *
3771 * sd - the socket descript.
3772 * level - set to IPPROTO_SCTP for all SCTP options.
3773 * optname - the option name.
3774 * optval - the buffer to store the value of the option.
3775 * optlen - the size of the buffer.
3776 */
3777static int sctp_setsockopt(struct sock *sk, int level, int optname,
3778 char __user *optval, unsigned int optlen)
3779{
3780 int retval = 0;
3781
3782 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3783
3784 /* I can hardly begin to describe how wrong this is. This is
3785 * so broken as to be worse than useless. The API draft
3786 * REALLY is NOT helpful here... I am not convinced that the
3787 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3788 * are at all well-founded.
3789 */
3790 if (level != SOL_SCTP) {
3791 struct sctp_af *af = sctp_sk(sk)->pf->af;
3792 retval = af->setsockopt(sk, level, optname, optval, optlen);
3793 goto out_nounlock;
3794 }
3795
3796 lock_sock(sk);
3797
3798 switch (optname) {
3799 case SCTP_SOCKOPT_BINDX_ADD:
3800 /* 'optlen' is the size of the addresses buffer. */
3801 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3802 optlen, SCTP_BINDX_ADD_ADDR);
3803 break;
3804
3805 case SCTP_SOCKOPT_BINDX_REM:
3806 /* 'optlen' is the size of the addresses buffer. */
3807 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3808 optlen, SCTP_BINDX_REM_ADDR);
3809 break;
3810
3811 case SCTP_SOCKOPT_CONNECTX_OLD:
3812 /* 'optlen' is the size of the addresses buffer. */
3813 retval = sctp_setsockopt_connectx_old(sk,
3814 (struct sockaddr __user *)optval,
3815 optlen);
3816 break;
3817
3818 case SCTP_SOCKOPT_CONNECTX:
3819 /* 'optlen' is the size of the addresses buffer. */
3820 retval = sctp_setsockopt_connectx(sk,
3821 (struct sockaddr __user *)optval,
3822 optlen);
3823 break;
3824
3825 case SCTP_DISABLE_FRAGMENTS:
3826 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3827 break;
3828
3829 case SCTP_EVENTS:
3830 retval = sctp_setsockopt_events(sk, optval, optlen);
3831 break;
3832
3833 case SCTP_AUTOCLOSE:
3834 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3835 break;
3836
3837 case SCTP_PEER_ADDR_PARAMS:
3838 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3839 break;
3840
3841 case SCTP_DELAYED_SACK:
3842 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3843 break;
3844 case SCTP_PARTIAL_DELIVERY_POINT:
3845 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3846 break;
3847
3848 case SCTP_INITMSG:
3849 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3850 break;
3851 case SCTP_DEFAULT_SEND_PARAM:
3852 retval = sctp_setsockopt_default_send_param(sk, optval,
3853 optlen);
3854 break;
3855 case SCTP_DEFAULT_SNDINFO:
3856 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3857 break;
3858 case SCTP_PRIMARY_ADDR:
3859 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3860 break;
3861 case SCTP_SET_PEER_PRIMARY_ADDR:
3862 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3863 break;
3864 case SCTP_NODELAY:
3865 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3866 break;
3867 case SCTP_RTOINFO:
3868 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3869 break;
3870 case SCTP_ASSOCINFO:
3871 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3872 break;
3873 case SCTP_I_WANT_MAPPED_V4_ADDR:
3874 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3875 break;
3876 case SCTP_MAXSEG:
3877 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3878 break;
3879 case SCTP_ADAPTATION_LAYER:
3880 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3881 break;
3882 case SCTP_CONTEXT:
3883 retval = sctp_setsockopt_context(sk, optval, optlen);
3884 break;
3885 case SCTP_FRAGMENT_INTERLEAVE:
3886 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3887 break;
3888 case SCTP_MAX_BURST:
3889 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3890 break;
3891 case SCTP_AUTH_CHUNK:
3892 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3893 break;
3894 case SCTP_HMAC_IDENT:
3895 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3896 break;
3897 case SCTP_AUTH_KEY:
3898 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3899 break;
3900 case SCTP_AUTH_ACTIVE_KEY:
3901 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3902 break;
3903 case SCTP_AUTH_DELETE_KEY:
3904 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3905 break;
3906 case SCTP_AUTO_ASCONF:
3907 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3908 break;
3909 case SCTP_PEER_ADDR_THLDS:
3910 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3911 break;
3912 case SCTP_RECVRCVINFO:
3913 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3914 break;
3915 case SCTP_RECVNXTINFO:
3916 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3917 break;
3918 case SCTP_PR_SUPPORTED:
3919 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3920 break;
3921 case SCTP_DEFAULT_PRINFO:
3922 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3923 break;
3924 default:
3925 retval = -ENOPROTOOPT;
3926 break;
3927 }
3928
3929 release_sock(sk);
3930
3931out_nounlock:
3932 return retval;
3933}
3934
3935/* API 3.1.6 connect() - UDP Style Syntax
3936 *
3937 * An application may use the connect() call in the UDP model to initiate an
3938 * association without sending data.
3939 *
3940 * The syntax is:
3941 *
3942 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3943 *
3944 * sd: the socket descriptor to have a new association added to.
3945 *
3946 * nam: the address structure (either struct sockaddr_in or struct
3947 * sockaddr_in6 defined in RFC2553 [7]).
3948 *
3949 * len: the size of the address.
3950 */
3951static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3952 int addr_len)
3953{
3954 int err = 0;
3955 struct sctp_af *af;
3956
3957 lock_sock(sk);
3958
3959 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3960 addr, addr_len);
3961
3962 /* Validate addr_len before calling common connect/connectx routine. */
3963 af = sctp_get_af_specific(addr->sa_family);
3964 if (!af || addr_len < af->sockaddr_len) {
3965 err = -EINVAL;
3966 } else {
3967 /* Pass correct addr len to common routine (so it knows there
3968 * is only one address being passed.
3969 */
3970 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3971 }
3972
3973 release_sock(sk);
3974 return err;
3975}
3976
3977/* FIXME: Write comments. */
3978static int sctp_disconnect(struct sock *sk, int flags)
3979{
3980 return -EOPNOTSUPP; /* STUB */
3981}
3982
3983/* 4.1.4 accept() - TCP Style Syntax
3984 *
3985 * Applications use accept() call to remove an established SCTP
3986 * association from the accept queue of the endpoint. A new socket
3987 * descriptor will be returned from accept() to represent the newly
3988 * formed association.
3989 */
3990static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3991{
3992 struct sctp_sock *sp;
3993 struct sctp_endpoint *ep;
3994 struct sock *newsk = NULL;
3995 struct sctp_association *asoc;
3996 long timeo;
3997 int error = 0;
3998
3999 lock_sock(sk);
4000
4001 sp = sctp_sk(sk);
4002 ep = sp->ep;
4003
4004 if (!sctp_style(sk, TCP)) {
4005 error = -EOPNOTSUPP;
4006 goto out;
4007 }
4008
4009 if (!sctp_sstate(sk, LISTENING)) {
4010 error = -EINVAL;
4011 goto out;
4012 }
4013
4014 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4015
4016 error = sctp_wait_for_accept(sk, timeo);
4017 if (error)
4018 goto out;
4019
4020 /* We treat the list of associations on the endpoint as the accept
4021 * queue and pick the first association on the list.
4022 */
4023 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4024
4025 newsk = sp->pf->create_accept_sk(sk, asoc);
4026 if (!newsk) {
4027 error = -ENOMEM;
4028 goto out;
4029 }
4030
4031 /* Populate the fields of the newsk from the oldsk and migrate the
4032 * asoc to the newsk.
4033 */
4034 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4035
4036out:
4037 release_sock(sk);
4038 *err = error;
4039 return newsk;
4040}
4041
4042/* The SCTP ioctl handler. */
4043static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4044{
4045 int rc = -ENOTCONN;
4046
4047 lock_sock(sk);
4048
4049 /*
4050 * SEQPACKET-style sockets in LISTENING state are valid, for
4051 * SCTP, so only discard TCP-style sockets in LISTENING state.
4052 */
4053 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4054 goto out;
4055
4056 switch (cmd) {
4057 case SIOCINQ: {
4058 struct sk_buff *skb;
4059 unsigned int amount = 0;
4060
4061 skb = skb_peek(&sk->sk_receive_queue);
4062 if (skb != NULL) {
4063 /*
4064 * We will only return the amount of this packet since
4065 * that is all that will be read.
4066 */
4067 amount = skb->len;
4068 }
4069 rc = put_user(amount, (int __user *)arg);
4070 break;
4071 }
4072 default:
4073 rc = -ENOIOCTLCMD;
4074 break;
4075 }
4076out:
4077 release_sock(sk);
4078 return rc;
4079}
4080
4081/* This is the function which gets called during socket creation to
4082 * initialized the SCTP-specific portion of the sock.
4083 * The sock structure should already be zero-filled memory.
4084 */
4085static int sctp_init_sock(struct sock *sk)
4086{
4087 struct net *net = sock_net(sk);
4088 struct sctp_sock *sp;
4089
4090 pr_debug("%s: sk:%p\n", __func__, sk);
4091
4092 sp = sctp_sk(sk);
4093
4094 /* Initialize the SCTP per socket area. */
4095 switch (sk->sk_type) {
4096 case SOCK_SEQPACKET:
4097 sp->type = SCTP_SOCKET_UDP;
4098 break;
4099 case SOCK_STREAM:
4100 sp->type = SCTP_SOCKET_TCP;
4101 break;
4102 default:
4103 return -ESOCKTNOSUPPORT;
4104 }
4105
4106 sk->sk_gso_type = SKB_GSO_SCTP;
4107
4108 /* Initialize default send parameters. These parameters can be
4109 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4110 */
4111 sp->default_stream = 0;
4112 sp->default_ppid = 0;
4113 sp->default_flags = 0;
4114 sp->default_context = 0;
4115 sp->default_timetolive = 0;
4116
4117 sp->default_rcv_context = 0;
4118 sp->max_burst = net->sctp.max_burst;
4119
4120 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4121
4122 /* Initialize default setup parameters. These parameters
4123 * can be modified with the SCTP_INITMSG socket option or
4124 * overridden by the SCTP_INIT CMSG.
4125 */
4126 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4127 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4128 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4129 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4130
4131 /* Initialize default RTO related parameters. These parameters can
4132 * be modified for with the SCTP_RTOINFO socket option.
4133 */
4134 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4135 sp->rtoinfo.srto_max = net->sctp.rto_max;
4136 sp->rtoinfo.srto_min = net->sctp.rto_min;
4137
4138 /* Initialize default association related parameters. These parameters
4139 * can be modified with the SCTP_ASSOCINFO socket option.
4140 */
4141 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4142 sp->assocparams.sasoc_number_peer_destinations = 0;
4143 sp->assocparams.sasoc_peer_rwnd = 0;
4144 sp->assocparams.sasoc_local_rwnd = 0;
4145 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4146
4147 /* Initialize default event subscriptions. By default, all the
4148 * options are off.
4149 */
4150 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4151
4152 /* Default Peer Address Parameters. These defaults can
4153 * be modified via SCTP_PEER_ADDR_PARAMS
4154 */
4155 sp->hbinterval = net->sctp.hb_interval;
4156 sp->pathmaxrxt = net->sctp.max_retrans_path;
4157 sp->pathmtu = 0; /* allow default discovery */
4158 sp->sackdelay = net->sctp.sack_timeout;
4159 sp->sackfreq = 2;
4160 sp->param_flags = SPP_HB_ENABLE |
4161 SPP_PMTUD_ENABLE |
4162 SPP_SACKDELAY_ENABLE;
4163
4164 /* If enabled no SCTP message fragmentation will be performed.
4165 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4166 */
4167 sp->disable_fragments = 0;
4168
4169 /* Enable Nagle algorithm by default. */
4170 sp->nodelay = 0;
4171
4172 sp->recvrcvinfo = 0;
4173 sp->recvnxtinfo = 0;
4174
4175 /* Enable by default. */
4176 sp->v4mapped = 1;
4177
4178 /* Auto-close idle associations after the configured
4179 * number of seconds. A value of 0 disables this
4180 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4181 * for UDP-style sockets only.
4182 */
4183 sp->autoclose = 0;
4184
4185 /* User specified fragmentation limit. */
4186 sp->user_frag = 0;
4187
4188 sp->adaptation_ind = 0;
4189
4190 sp->pf = sctp_get_pf_specific(sk->sk_family);
4191
4192 /* Control variables for partial data delivery. */
4193 atomic_set(&sp->pd_mode, 0);
4194 skb_queue_head_init(&sp->pd_lobby);
4195 sp->frag_interleave = 0;
4196
4197 /* Create a per socket endpoint structure. Even if we
4198 * change the data structure relationships, this may still
4199 * be useful for storing pre-connect address information.
4200 */
4201 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4202 if (!sp->ep)
4203 return -ENOMEM;
4204
4205 sp->hmac = NULL;
4206
4207 sk->sk_destruct = sctp_destruct_sock;
4208
4209 SCTP_DBG_OBJCNT_INC(sock);
4210
4211 local_bh_disable();
4212 percpu_counter_inc(&sctp_sockets_allocated);
4213 sock_prot_inuse_add(net, sk->sk_prot, 1);
4214
4215 /* Nothing can fail after this block, otherwise
4216 * sctp_destroy_sock() will be called without addr_wq_lock held
4217 */
4218 if (net->sctp.default_auto_asconf) {
4219 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4220 list_add_tail(&sp->auto_asconf_list,
4221 &net->sctp.auto_asconf_splist);
4222 sp->do_auto_asconf = 1;
4223 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4224 } else {
4225 sp->do_auto_asconf = 0;
4226 }
4227
4228 local_bh_enable();
4229
4230 return 0;
4231}
4232
4233/* Cleanup any SCTP per socket resources. Must be called with
4234 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4235 */
4236static void sctp_destroy_sock(struct sock *sk)
4237{
4238 struct sctp_sock *sp;
4239
4240 pr_debug("%s: sk:%p\n", __func__, sk);
4241
4242 /* Release our hold on the endpoint. */
4243 sp = sctp_sk(sk);
4244 /* This could happen during socket init, thus we bail out
4245 * early, since the rest of the below is not setup either.
4246 */
4247 if (sp->ep == NULL)
4248 return;
4249
4250 if (sp->do_auto_asconf) {
4251 sp->do_auto_asconf = 0;
4252 list_del(&sp->auto_asconf_list);
4253 }
4254 sctp_endpoint_free(sp->ep);
4255 local_bh_disable();
4256 percpu_counter_dec(&sctp_sockets_allocated);
4257 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4258 local_bh_enable();
4259}
4260
4261/* Triggered when there are no references on the socket anymore */
4262static void sctp_destruct_sock(struct sock *sk)
4263{
4264 struct sctp_sock *sp = sctp_sk(sk);
4265
4266 /* Free up the HMAC transform. */
4267 crypto_free_shash(sp->hmac);
4268
4269 inet_sock_destruct(sk);
4270}
4271
4272/* API 4.1.7 shutdown() - TCP Style Syntax
4273 * int shutdown(int socket, int how);
4274 *
4275 * sd - the socket descriptor of the association to be closed.
4276 * how - Specifies the type of shutdown. The values are
4277 * as follows:
4278 * SHUT_RD
4279 * Disables further receive operations. No SCTP
4280 * protocol action is taken.
4281 * SHUT_WR
4282 * Disables further send operations, and initiates
4283 * the SCTP shutdown sequence.
4284 * SHUT_RDWR
4285 * Disables further send and receive operations
4286 * and initiates the SCTP shutdown sequence.
4287 */
4288static void sctp_shutdown(struct sock *sk, int how)
4289{
4290 struct net *net = sock_net(sk);
4291 struct sctp_endpoint *ep;
4292
4293 if (!sctp_style(sk, TCP))
4294 return;
4295
4296 ep = sctp_sk(sk)->ep;
4297 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4298 struct sctp_association *asoc;
4299
4300 sk->sk_state = SCTP_SS_CLOSING;
4301 asoc = list_entry(ep->asocs.next,
4302 struct sctp_association, asocs);
4303 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4304 }
4305}
4306
4307int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4308 struct sctp_info *info)
4309{
4310 struct sctp_transport *prim;
4311 struct list_head *pos;
4312 int mask;
4313
4314 memset(info, 0, sizeof(*info));
4315 if (!asoc) {
4316 struct sctp_sock *sp = sctp_sk(sk);
4317
4318 info->sctpi_s_autoclose = sp->autoclose;
4319 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4320 info->sctpi_s_pd_point = sp->pd_point;
4321 info->sctpi_s_nodelay = sp->nodelay;
4322 info->sctpi_s_disable_fragments = sp->disable_fragments;
4323 info->sctpi_s_v4mapped = sp->v4mapped;
4324 info->sctpi_s_frag_interleave = sp->frag_interleave;
4325 info->sctpi_s_type = sp->type;
4326
4327 return 0;
4328 }
4329
4330 info->sctpi_tag = asoc->c.my_vtag;
4331 info->sctpi_state = asoc->state;
4332 info->sctpi_rwnd = asoc->a_rwnd;
4333 info->sctpi_unackdata = asoc->unack_data;
4334 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4335 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4336 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4337 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4338 info->sctpi_inqueue++;
4339 list_for_each(pos, &asoc->outqueue.out_chunk_list)
4340 info->sctpi_outqueue++;
4341 info->sctpi_overall_error = asoc->overall_error_count;
4342 info->sctpi_max_burst = asoc->max_burst;
4343 info->sctpi_maxseg = asoc->frag_point;
4344 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4345 info->sctpi_peer_tag = asoc->c.peer_vtag;
4346
4347 mask = asoc->peer.ecn_capable << 1;
4348 mask = (mask | asoc->peer.ipv4_address) << 1;
4349 mask = (mask | asoc->peer.ipv6_address) << 1;
4350 mask = (mask | asoc->peer.hostname_address) << 1;
4351 mask = (mask | asoc->peer.asconf_capable) << 1;
4352 mask = (mask | asoc->peer.prsctp_capable) << 1;
4353 mask = (mask | asoc->peer.auth_capable);
4354 info->sctpi_peer_capable = mask;
4355 mask = asoc->peer.sack_needed << 1;
4356 mask = (mask | asoc->peer.sack_generation) << 1;
4357 mask = (mask | asoc->peer.zero_window_announced);
4358 info->sctpi_peer_sack = mask;
4359
4360 info->sctpi_isacks = asoc->stats.isacks;
4361 info->sctpi_osacks = asoc->stats.osacks;
4362 info->sctpi_opackets = asoc->stats.opackets;
4363 info->sctpi_ipackets = asoc->stats.ipackets;
4364 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4365 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4366 info->sctpi_idupchunks = asoc->stats.idupchunks;
4367 info->sctpi_gapcnt = asoc->stats.gapcnt;
4368 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4369 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4370 info->sctpi_oodchunks = asoc->stats.oodchunks;
4371 info->sctpi_iodchunks = asoc->stats.iodchunks;
4372 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4373 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4374
4375 prim = asoc->peer.primary_path;
4376 memcpy(&info->sctpi_p_address, &prim->ipaddr,
4377 sizeof(struct sockaddr_storage));
4378 info->sctpi_p_state = prim->state;
4379 info->sctpi_p_cwnd = prim->cwnd;
4380 info->sctpi_p_srtt = prim->srtt;
4381 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4382 info->sctpi_p_hbinterval = prim->hbinterval;
4383 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4384 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4385 info->sctpi_p_ssthresh = prim->ssthresh;
4386 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4387 info->sctpi_p_flight_size = prim->flight_size;
4388 info->sctpi_p_error = prim->error_count;
4389
4390 return 0;
4391}
4392EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4393
4394/* use callback to avoid exporting the core structure */
4395int sctp_transport_walk_start(struct rhashtable_iter *iter)
4396{
4397 int err;
4398
4399 rhltable_walk_enter(&sctp_transport_hashtable, iter);
4400
4401 err = rhashtable_walk_start(iter);
4402 if (err && err != -EAGAIN) {
4403 rhashtable_walk_stop(iter);
4404 rhashtable_walk_exit(iter);
4405 return err;
4406 }
4407
4408 return 0;
4409}
4410
4411void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4412{
4413 rhashtable_walk_stop(iter);
4414 rhashtable_walk_exit(iter);
4415}
4416
4417struct sctp_transport *sctp_transport_get_next(struct net *net,
4418 struct rhashtable_iter *iter)
4419{
4420 struct sctp_transport *t;
4421
4422 t = rhashtable_walk_next(iter);
4423 for (; t; t = rhashtable_walk_next(iter)) {
4424 if (IS_ERR(t)) {
4425 if (PTR_ERR(t) == -EAGAIN)
4426 continue;
4427 break;
4428 }
4429
4430 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4431 t->asoc->peer.primary_path == t)
4432 break;
4433 }
4434
4435 return t;
4436}
4437
4438struct sctp_transport *sctp_transport_get_idx(struct net *net,
4439 struct rhashtable_iter *iter,
4440 int pos)
4441{
4442 void *obj = SEQ_START_TOKEN;
4443
4444 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4445 !IS_ERR(obj))
4446 pos--;
4447
4448 return obj;
4449}
4450
4451int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4452 void *p) {
4453 int err = 0;
4454 int hash = 0;
4455 struct sctp_ep_common *epb;
4456 struct sctp_hashbucket *head;
4457
4458 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
4459 hash++, head++) {
4460 read_lock(&head->lock);
4461 sctp_for_each_hentry(epb, &head->chain) {
4462 err = cb(sctp_ep(epb), p);
4463 if (err)
4464 break;
4465 }
4466 read_unlock(&head->lock);
4467 }
4468
4469 return err;
4470}
4471EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
4472
4473int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4474 struct net *net,
4475 const union sctp_addr *laddr,
4476 const union sctp_addr *paddr, void *p)
4477{
4478 struct sctp_transport *transport;
4479 int err;
4480
4481 rcu_read_lock();
4482 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4483 rcu_read_unlock();
4484 if (!transport)
4485 return -ENOENT;
4486
4487 err = cb(transport, p);
4488 sctp_transport_put(transport);
4489
4490 return err;
4491}
4492EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
4493
4494int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4495 struct net *net, int pos, void *p) {
4496 struct rhashtable_iter hti;
4497 void *obj;
4498 int err;
4499
4500 err = sctp_transport_walk_start(&hti);
4501 if (err)
4502 return err;
4503
4504 sctp_transport_get_idx(net, &hti, pos);
4505 obj = sctp_transport_get_next(net, &hti);
4506 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4507 struct sctp_transport *transport = obj;
4508
4509 if (!sctp_transport_hold(transport))
4510 continue;
4511 err = cb(transport, p);
4512 sctp_transport_put(transport);
4513 if (err)
4514 break;
4515 }
4516 sctp_transport_walk_stop(&hti);
4517
4518 return err;
4519}
4520EXPORT_SYMBOL_GPL(sctp_for_each_transport);
4521
4522/* 7.2.1 Association Status (SCTP_STATUS)
4523
4524 * Applications can retrieve current status information about an
4525 * association, including association state, peer receiver window size,
4526 * number of unacked data chunks, and number of data chunks pending
4527 * receipt. This information is read-only.
4528 */
4529static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4530 char __user *optval,
4531 int __user *optlen)
4532{
4533 struct sctp_status status;
4534 struct sctp_association *asoc = NULL;
4535 struct sctp_transport *transport;
4536 sctp_assoc_t associd;
4537 int retval = 0;
4538
4539 if (len < sizeof(status)) {
4540 retval = -EINVAL;
4541 goto out;
4542 }
4543
4544 len = sizeof(status);
4545 if (copy_from_user(&status, optval, len)) {
4546 retval = -EFAULT;
4547 goto out;
4548 }
4549
4550 associd = status.sstat_assoc_id;
4551 asoc = sctp_id2assoc(sk, associd);
4552 if (!asoc) {
4553 retval = -EINVAL;
4554 goto out;
4555 }
4556
4557 transport = asoc->peer.primary_path;
4558
4559 status.sstat_assoc_id = sctp_assoc2id(asoc);
4560 status.sstat_state = sctp_assoc_to_state(asoc);
4561 status.sstat_rwnd = asoc->peer.rwnd;
4562 status.sstat_unackdata = asoc->unack_data;
4563
4564 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4565 status.sstat_instrms = asoc->c.sinit_max_instreams;
4566 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4567 status.sstat_fragmentation_point = asoc->frag_point;
4568 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4569 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4570 transport->af_specific->sockaddr_len);
4571 /* Map ipv4 address into v4-mapped-on-v6 address. */
4572 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4573 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4574 status.sstat_primary.spinfo_state = transport->state;
4575 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4576 status.sstat_primary.spinfo_srtt = transport->srtt;
4577 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4578 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4579
4580 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4581 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4582
4583 if (put_user(len, optlen)) {
4584 retval = -EFAULT;
4585 goto out;
4586 }
4587
4588 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4589 __func__, len, status.sstat_state, status.sstat_rwnd,
4590 status.sstat_assoc_id);
4591
4592 if (copy_to_user(optval, &status, len)) {
4593 retval = -EFAULT;
4594 goto out;
4595 }
4596
4597out:
4598 return retval;
4599}
4600
4601
4602/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4603 *
4604 * Applications can retrieve information about a specific peer address
4605 * of an association, including its reachability state, congestion
4606 * window, and retransmission timer values. This information is
4607 * read-only.
4608 */
4609static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4610 char __user *optval,
4611 int __user *optlen)
4612{
4613 struct sctp_paddrinfo pinfo;
4614 struct sctp_transport *transport;
4615 int retval = 0;
4616
4617 if (len < sizeof(pinfo)) {
4618 retval = -EINVAL;
4619 goto out;
4620 }
4621
4622 len = sizeof(pinfo);
4623 if (copy_from_user(&pinfo, optval, len)) {
4624 retval = -EFAULT;
4625 goto out;
4626 }
4627
4628 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4629 pinfo.spinfo_assoc_id);
4630 if (!transport)
4631 return -EINVAL;
4632
4633 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 pinfo.spinfo_state = transport->state;
4635 pinfo.spinfo_cwnd = transport->cwnd;
4636 pinfo.spinfo_srtt = transport->srtt;
4637 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4638 pinfo.spinfo_mtu = transport->pathmtu;
4639
4640 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4641 pinfo.spinfo_state = SCTP_ACTIVE;
4642
4643 if (put_user(len, optlen)) {
4644 retval = -EFAULT;
4645 goto out;
4646 }
4647
4648 if (copy_to_user(optval, &pinfo, len)) {
4649 retval = -EFAULT;
4650 goto out;
4651 }
4652
4653out:
4654 return retval;
4655}
4656
4657/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4658 *
4659 * This option is a on/off flag. If enabled no SCTP message
4660 * fragmentation will be performed. Instead if a message being sent
4661 * exceeds the current PMTU size, the message will NOT be sent and
4662 * instead a error will be indicated to the user.
4663 */
4664static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4665 char __user *optval, int __user *optlen)
4666{
4667 int val;
4668
4669 if (len < sizeof(int))
4670 return -EINVAL;
4671
4672 len = sizeof(int);
4673 val = (sctp_sk(sk)->disable_fragments == 1);
4674 if (put_user(len, optlen))
4675 return -EFAULT;
4676 if (copy_to_user(optval, &val, len))
4677 return -EFAULT;
4678 return 0;
4679}
4680
4681/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4682 *
4683 * This socket option is used to specify various notifications and
4684 * ancillary data the user wishes to receive.
4685 */
4686static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4687 int __user *optlen)
4688{
4689 if (len == 0)
4690 return -EINVAL;
4691 if (len > sizeof(struct sctp_event_subscribe))
4692 len = sizeof(struct sctp_event_subscribe);
4693 if (put_user(len, optlen))
4694 return -EFAULT;
4695 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4696 return -EFAULT;
4697 return 0;
4698}
4699
4700/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4701 *
4702 * This socket option is applicable to the UDP-style socket only. When
4703 * set it will cause associations that are idle for more than the
4704 * specified number of seconds to automatically close. An association
4705 * being idle is defined an association that has NOT sent or received
4706 * user data. The special value of '0' indicates that no automatic
4707 * close of any associations should be performed. The option expects an
4708 * integer defining the number of seconds of idle time before an
4709 * association is closed.
4710 */
4711static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4712{
4713 /* Applicable to UDP-style socket only */
4714 if (sctp_style(sk, TCP))
4715 return -EOPNOTSUPP;
4716 if (len < sizeof(int))
4717 return -EINVAL;
4718 len = sizeof(int);
4719 if (put_user(len, optlen))
4720 return -EFAULT;
4721 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4722 return -EFAULT;
4723 return 0;
4724}
4725
4726/* Helper routine to branch off an association to a new socket. */
4727int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4728{
4729 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4730 struct sctp_sock *sp = sctp_sk(sk);
4731 struct socket *sock;
4732 int err = 0;
4733
4734 if (!asoc)
4735 return -EINVAL;
4736
4737 /* If there is a thread waiting on more sndbuf space for
4738 * sending on this asoc, it cannot be peeled.
4739 */
4740 if (waitqueue_active(&asoc->wait))
4741 return -EBUSY;
4742
4743 /* An association cannot be branched off from an already peeled-off
4744 * socket, nor is this supported for tcp style sockets.
4745 */
4746 if (!sctp_style(sk, UDP))
4747 return -EINVAL;
4748
4749 /* Create a new socket. */
4750 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4751 if (err < 0)
4752 return err;
4753
4754 sctp_copy_sock(sock->sk, sk, asoc);
4755
4756 /* Make peeled-off sockets more like 1-1 accepted sockets.
4757 * Set the daddr and initialize id to something more random
4758 */
4759 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4760
4761 /* Populate the fields of the newsk from the oldsk and migrate the
4762 * asoc to the newsk.
4763 */
4764 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4765
4766 *sockp = sock;
4767
4768 return err;
4769}
4770EXPORT_SYMBOL(sctp_do_peeloff);
4771
4772static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4773{
4774 sctp_peeloff_arg_t peeloff;
4775 struct socket *newsock;
4776 struct file *newfile;
4777 int retval = 0;
4778
4779 if (len < sizeof(sctp_peeloff_arg_t))
4780 return -EINVAL;
4781 len = sizeof(sctp_peeloff_arg_t);
4782 if (copy_from_user(&peeloff, optval, len))
4783 return -EFAULT;
4784
4785 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4786 if (retval < 0)
4787 goto out;
4788
4789 /* Map the socket to an unused fd that can be returned to the user. */
4790 retval = get_unused_fd_flags(0);
4791 if (retval < 0) {
4792 sock_release(newsock);
4793 goto out;
4794 }
4795
4796 newfile = sock_alloc_file(newsock, 0, NULL);
4797 if (IS_ERR(newfile)) {
4798 put_unused_fd(retval);
4799 sock_release(newsock);
4800 return PTR_ERR(newfile);
4801 }
4802
4803 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4804 retval);
4805
4806 /* Return the fd mapped to the new socket. */
4807 if (put_user(len, optlen)) {
4808 fput(newfile);
4809 put_unused_fd(retval);
4810 return -EFAULT;
4811 }
4812 peeloff.sd = retval;
4813 if (copy_to_user(optval, &peeloff, len)) {
4814 fput(newfile);
4815 put_unused_fd(retval);
4816 return -EFAULT;
4817 }
4818 fd_install(retval, newfile);
4819out:
4820 return retval;
4821}
4822
4823/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4824 *
4825 * Applications can enable or disable heartbeats for any peer address of
4826 * an association, modify an address's heartbeat interval, force a
4827 * heartbeat to be sent immediately, and adjust the address's maximum
4828 * number of retransmissions sent before an address is considered
4829 * unreachable. The following structure is used to access and modify an
4830 * address's parameters:
4831 *
4832 * struct sctp_paddrparams {
4833 * sctp_assoc_t spp_assoc_id;
4834 * struct sockaddr_storage spp_address;
4835 * uint32_t spp_hbinterval;
4836 * uint16_t spp_pathmaxrxt;
4837 * uint32_t spp_pathmtu;
4838 * uint32_t spp_sackdelay;
4839 * uint32_t spp_flags;
4840 * };
4841 *
4842 * spp_assoc_id - (one-to-many style socket) This is filled in the
4843 * application, and identifies the association for
4844 * this query.
4845 * spp_address - This specifies which address is of interest.
4846 * spp_hbinterval - This contains the value of the heartbeat interval,
4847 * in milliseconds. If a value of zero
4848 * is present in this field then no changes are to
4849 * be made to this parameter.
4850 * spp_pathmaxrxt - This contains the maximum number of
4851 * retransmissions before this address shall be
4852 * considered unreachable. If a value of zero
4853 * is present in this field then no changes are to
4854 * be made to this parameter.
4855 * spp_pathmtu - When Path MTU discovery is disabled the value
4856 * specified here will be the "fixed" path mtu.
4857 * Note that if the spp_address field is empty
4858 * then all associations on this address will
4859 * have this fixed path mtu set upon them.
4860 *
4861 * spp_sackdelay - When delayed sack is enabled, this value specifies
4862 * the number of milliseconds that sacks will be delayed
4863 * for. This value will apply to all addresses of an
4864 * association if the spp_address field is empty. Note
4865 * also, that if delayed sack is enabled and this
4866 * value is set to 0, no change is made to the last
4867 * recorded delayed sack timer value.
4868 *
4869 * spp_flags - These flags are used to control various features
4870 * on an association. The flag field may contain
4871 * zero or more of the following options.
4872 *
4873 * SPP_HB_ENABLE - Enable heartbeats on the
4874 * specified address. Note that if the address
4875 * field is empty all addresses for the association
4876 * have heartbeats enabled upon them.
4877 *
4878 * SPP_HB_DISABLE - Disable heartbeats on the
4879 * speicifed address. Note that if the address
4880 * field is empty all addresses for the association
4881 * will have their heartbeats disabled. Note also
4882 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4883 * mutually exclusive, only one of these two should
4884 * be specified. Enabling both fields will have
4885 * undetermined results.
4886 *
4887 * SPP_HB_DEMAND - Request a user initiated heartbeat
4888 * to be made immediately.
4889 *
4890 * SPP_PMTUD_ENABLE - This field will enable PMTU
4891 * discovery upon the specified address. Note that
4892 * if the address feild is empty then all addresses
4893 * on the association are effected.
4894 *
4895 * SPP_PMTUD_DISABLE - This field will disable PMTU
4896 * discovery upon the specified address. Note that
4897 * if the address feild is empty then all addresses
4898 * on the association are effected. Not also that
4899 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4900 * exclusive. Enabling both will have undetermined
4901 * results.
4902 *
4903 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4904 * on delayed sack. The time specified in spp_sackdelay
4905 * is used to specify the sack delay for this address. Note
4906 * that if spp_address is empty then all addresses will
4907 * enable delayed sack and take on the sack delay
4908 * value specified in spp_sackdelay.
4909 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4910 * off delayed sack. If the spp_address field is blank then
4911 * delayed sack is disabled for the entire association. Note
4912 * also that this field is mutually exclusive to
4913 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4914 * results.
4915 */
4916static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4917 char __user *optval, int __user *optlen)
4918{
4919 struct sctp_paddrparams params;
4920 struct sctp_transport *trans = NULL;
4921 struct sctp_association *asoc = NULL;
4922 struct sctp_sock *sp = sctp_sk(sk);
4923
4924 if (len < sizeof(struct sctp_paddrparams))
4925 return -EINVAL;
4926 len = sizeof(struct sctp_paddrparams);
4927 if (copy_from_user(¶ms, optval, len))
4928 return -EFAULT;
4929
4930 /* If an address other than INADDR_ANY is specified, and
4931 * no transport is found, then the request is invalid.
4932 */
4933 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4934 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4935 params.spp_assoc_id);
4936 if (!trans) {
4937 pr_debug("%s: failed no transport\n", __func__);
4938 return -EINVAL;
4939 }
4940 }
4941
4942 /* Get association, if assoc_id != 0 and the socket is a one
4943 * to many style socket, and an association was not found, then
4944 * the id was invalid.
4945 */
4946 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4947 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4948 pr_debug("%s: failed no association\n", __func__);
4949 return -EINVAL;
4950 }
4951
4952 if (trans) {
4953 /* Fetch transport values. */
4954 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4955 params.spp_pathmtu = trans->pathmtu;
4956 params.spp_pathmaxrxt = trans->pathmaxrxt;
4957 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4958
4959 /*draft-11 doesn't say what to return in spp_flags*/
4960 params.spp_flags = trans->param_flags;
4961 } else if (asoc) {
4962 /* Fetch association values. */
4963 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4964 params.spp_pathmtu = asoc->pathmtu;
4965 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4966 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4967
4968 /*draft-11 doesn't say what to return in spp_flags*/
4969 params.spp_flags = asoc->param_flags;
4970 } else {
4971 /* Fetch socket values. */
4972 params.spp_hbinterval = sp->hbinterval;
4973 params.spp_pathmtu = sp->pathmtu;
4974 params.spp_sackdelay = sp->sackdelay;
4975 params.spp_pathmaxrxt = sp->pathmaxrxt;
4976
4977 /*draft-11 doesn't say what to return in spp_flags*/
4978 params.spp_flags = sp->param_flags;
4979 }
4980
4981 if (copy_to_user(optval, ¶ms, len))
4982 return -EFAULT;
4983
4984 if (put_user(len, optlen))
4985 return -EFAULT;
4986
4987 return 0;
4988}
4989
4990/*
4991 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4992 *
4993 * This option will effect the way delayed acks are performed. This
4994 * option allows you to get or set the delayed ack time, in
4995 * milliseconds. It also allows changing the delayed ack frequency.
4996 * Changing the frequency to 1 disables the delayed sack algorithm. If
4997 * the assoc_id is 0, then this sets or gets the endpoints default
4998 * values. If the assoc_id field is non-zero, then the set or get
4999 * effects the specified association for the one to many model (the
5000 * assoc_id field is ignored by the one to one model). Note that if
5001 * sack_delay or sack_freq are 0 when setting this option, then the
5002 * current values will remain unchanged.
5003 *
5004 * struct sctp_sack_info {
5005 * sctp_assoc_t sack_assoc_id;
5006 * uint32_t sack_delay;
5007 * uint32_t sack_freq;
5008 * };
5009 *
5010 * sack_assoc_id - This parameter, indicates which association the user
5011 * is performing an action upon. Note that if this field's value is
5012 * zero then the endpoints default value is changed (effecting future
5013 * associations only).
5014 *
5015 * sack_delay - This parameter contains the number of milliseconds that
5016 * the user is requesting the delayed ACK timer be set to. Note that
5017 * this value is defined in the standard to be between 200 and 500
5018 * milliseconds.
5019 *
5020 * sack_freq - This parameter contains the number of packets that must
5021 * be received before a sack is sent without waiting for the delay
5022 * timer to expire. The default value for this is 2, setting this
5023 * value to 1 will disable the delayed sack algorithm.
5024 */
5025static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5026 char __user *optval,
5027 int __user *optlen)
5028{
5029 struct sctp_sack_info params;
5030 struct sctp_association *asoc = NULL;
5031 struct sctp_sock *sp = sctp_sk(sk);
5032
5033 if (len >= sizeof(struct sctp_sack_info)) {
5034 len = sizeof(struct sctp_sack_info);
5035
5036 if (copy_from_user(¶ms, optval, len))
5037 return -EFAULT;
5038 } else if (len == sizeof(struct sctp_assoc_value)) {
5039 pr_warn_ratelimited(DEPRECATED
5040 "%s (pid %d) "
5041 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5042 "Use struct sctp_sack_info instead\n",
5043 current->comm, task_pid_nr(current));
5044 if (copy_from_user(¶ms, optval, len))
5045 return -EFAULT;
5046 } else
5047 return -EINVAL;
5048
5049 /* Get association, if sack_assoc_id != 0 and the socket is a one
5050 * to many style socket, and an association was not found, then
5051 * the id was invalid.
5052 */
5053 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5054 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5055 return -EINVAL;
5056
5057 if (asoc) {
5058 /* Fetch association values. */
5059 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5060 params.sack_delay = jiffies_to_msecs(
5061 asoc->sackdelay);
5062 params.sack_freq = asoc->sackfreq;
5063
5064 } else {
5065 params.sack_delay = 0;
5066 params.sack_freq = 1;
5067 }
5068 } else {
5069 /* Fetch socket values. */
5070 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5071 params.sack_delay = sp->sackdelay;
5072 params.sack_freq = sp->sackfreq;
5073 } else {
5074 params.sack_delay = 0;
5075 params.sack_freq = 1;
5076 }
5077 }
5078
5079 if (copy_to_user(optval, ¶ms, len))
5080 return -EFAULT;
5081
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084
5085 return 0;
5086}
5087
5088/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5089 *
5090 * Applications can specify protocol parameters for the default association
5091 * initialization. The option name argument to setsockopt() and getsockopt()
5092 * is SCTP_INITMSG.
5093 *
5094 * Setting initialization parameters is effective only on an unconnected
5095 * socket (for UDP-style sockets only future associations are effected
5096 * by the change). With TCP-style sockets, this option is inherited by
5097 * sockets derived from a listener socket.
5098 */
5099static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5100{
5101 if (len < sizeof(struct sctp_initmsg))
5102 return -EINVAL;
5103 len = sizeof(struct sctp_initmsg);
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5107 return -EFAULT;
5108 return 0;
5109}
5110
5111
5112static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5113 char __user *optval, int __user *optlen)
5114{
5115 struct sctp_association *asoc;
5116 int cnt = 0;
5117 struct sctp_getaddrs getaddrs;
5118 struct sctp_transport *from;
5119 void __user *to;
5120 union sctp_addr temp;
5121 struct sctp_sock *sp = sctp_sk(sk);
5122 int addrlen;
5123 size_t space_left;
5124 int bytes_copied;
5125
5126 if (len < sizeof(struct sctp_getaddrs))
5127 return -EINVAL;
5128
5129 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5130 return -EFAULT;
5131
5132 /* For UDP-style sockets, id specifies the association to query. */
5133 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5134 if (!asoc)
5135 return -EINVAL;
5136
5137 to = optval + offsetof(struct sctp_getaddrs, addrs);
5138 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5139
5140 list_for_each_entry(from, &asoc->peer.transport_addr_list,
5141 transports) {
5142 memcpy(&temp, &from->ipaddr, sizeof(temp));
5143 addrlen = sctp_get_pf_specific(sk->sk_family)
5144 ->addr_to_user(sp, &temp);
5145 if (space_left < addrlen)
5146 return -ENOMEM;
5147 if (copy_to_user(to, &temp, addrlen))
5148 return -EFAULT;
5149 to += addrlen;
5150 cnt++;
5151 space_left -= addrlen;
5152 }
5153
5154 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5155 return -EFAULT;
5156 bytes_copied = ((char __user *)to) - optval;
5157 if (put_user(bytes_copied, optlen))
5158 return -EFAULT;
5159
5160 return 0;
5161}
5162
5163static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5164 size_t space_left, int *bytes_copied)
5165{
5166 struct sctp_sockaddr_entry *addr;
5167 union sctp_addr temp;
5168 int cnt = 0;
5169 int addrlen;
5170 struct net *net = sock_net(sk);
5171
5172 rcu_read_lock();
5173 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5174 if (!addr->valid)
5175 continue;
5176
5177 if ((PF_INET == sk->sk_family) &&
5178 (AF_INET6 == addr->a.sa.sa_family))
5179 continue;
5180 if ((PF_INET6 == sk->sk_family) &&
5181 inet_v6_ipv6only(sk) &&
5182 (AF_INET == addr->a.sa.sa_family))
5183 continue;
5184 memcpy(&temp, &addr->a, sizeof(temp));
5185 if (!temp.v4.sin_port)
5186 temp.v4.sin_port = htons(port);
5187
5188 addrlen = sctp_get_pf_specific(sk->sk_family)
5189 ->addr_to_user(sctp_sk(sk), &temp);
5190
5191 if (space_left < addrlen) {
5192 cnt = -ENOMEM;
5193 break;
5194 }
5195 memcpy(to, &temp, addrlen);
5196
5197 to += addrlen;
5198 cnt++;
5199 space_left -= addrlen;
5200 *bytes_copied += addrlen;
5201 }
5202 rcu_read_unlock();
5203
5204 return cnt;
5205}
5206
5207
5208static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5209 char __user *optval, int __user *optlen)
5210{
5211 struct sctp_bind_addr *bp;
5212 struct sctp_association *asoc;
5213 int cnt = 0;
5214 struct sctp_getaddrs getaddrs;
5215 struct sctp_sockaddr_entry *addr;
5216 void __user *to;
5217 union sctp_addr temp;
5218 struct sctp_sock *sp = sctp_sk(sk);
5219 int addrlen;
5220 int err = 0;
5221 size_t space_left;
5222 int bytes_copied = 0;
5223 void *addrs;
5224 void *buf;
5225
5226 if (len < sizeof(struct sctp_getaddrs))
5227 return -EINVAL;
5228
5229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5230 return -EFAULT;
5231
5232 /*
5233 * For UDP-style sockets, id specifies the association to query.
5234 * If the id field is set to the value '0' then the locally bound
5235 * addresses are returned without regard to any particular
5236 * association.
5237 */
5238 if (0 == getaddrs.assoc_id) {
5239 bp = &sctp_sk(sk)->ep->base.bind_addr;
5240 } else {
5241 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5242 if (!asoc)
5243 return -EINVAL;
5244 bp = &asoc->base.bind_addr;
5245 }
5246
5247 to = optval + offsetof(struct sctp_getaddrs, addrs);
5248 space_left = len - offsetof(struct sctp_getaddrs, addrs);
5249
5250 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5251 if (!addrs)
5252 return -ENOMEM;
5253
5254 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5255 * addresses from the global local address list.
5256 */
5257 if (sctp_list_single_entry(&bp->address_list)) {
5258 addr = list_entry(bp->address_list.next,
5259 struct sctp_sockaddr_entry, list);
5260 if (sctp_is_any(sk, &addr->a)) {
5261 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5262 space_left, &bytes_copied);
5263 if (cnt < 0) {
5264 err = cnt;
5265 goto out;
5266 }
5267 goto copy_getaddrs;
5268 }
5269 }
5270
5271 buf = addrs;
5272 /* Protection on the bound address list is not needed since
5273 * in the socket option context we hold a socket lock and
5274 * thus the bound address list can't change.
5275 */
5276 list_for_each_entry(addr, &bp->address_list, list) {
5277 memcpy(&temp, &addr->a, sizeof(temp));
5278 addrlen = sctp_get_pf_specific(sk->sk_family)
5279 ->addr_to_user(sp, &temp);
5280 if (space_left < addrlen) {
5281 err = -ENOMEM; /*fixme: right error?*/
5282 goto out;
5283 }
5284 memcpy(buf, &temp, addrlen);
5285 buf += addrlen;
5286 bytes_copied += addrlen;
5287 cnt++;
5288 space_left -= addrlen;
5289 }
5290
5291copy_getaddrs:
5292 if (copy_to_user(to, addrs, bytes_copied)) {
5293 err = -EFAULT;
5294 goto out;
5295 }
5296 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5297 err = -EFAULT;
5298 goto out;
5299 }
5300 if (put_user(bytes_copied, optlen))
5301 err = -EFAULT;
5302out:
5303 kfree(addrs);
5304 return err;
5305}
5306
5307/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5308 *
5309 * Requests that the local SCTP stack use the enclosed peer address as
5310 * the association primary. The enclosed address must be one of the
5311 * association peer's addresses.
5312 */
5313static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5314 char __user *optval, int __user *optlen)
5315{
5316 struct sctp_prim prim;
5317 struct sctp_association *asoc;
5318 struct sctp_sock *sp = sctp_sk(sk);
5319
5320 if (len < sizeof(struct sctp_prim))
5321 return -EINVAL;
5322
5323 len = sizeof(struct sctp_prim);
5324
5325 if (copy_from_user(&prim, optval, len))
5326 return -EFAULT;
5327
5328 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5329 if (!asoc)
5330 return -EINVAL;
5331
5332 if (!asoc->peer.primary_path)
5333 return -ENOTCONN;
5334
5335 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5336 asoc->peer.primary_path->af_specific->sockaddr_len);
5337
5338 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5339 (union sctp_addr *)&prim.ssp_addr);
5340
5341 if (put_user(len, optlen))
5342 return -EFAULT;
5343 if (copy_to_user(optval, &prim, len))
5344 return -EFAULT;
5345
5346 return 0;
5347}
5348
5349/*
5350 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5351 *
5352 * Requests that the local endpoint set the specified Adaptation Layer
5353 * Indication parameter for all future INIT and INIT-ACK exchanges.
5354 */
5355static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5356 char __user *optval, int __user *optlen)
5357{
5358 struct sctp_setadaptation adaptation;
5359
5360 if (len < sizeof(struct sctp_setadaptation))
5361 return -EINVAL;
5362
5363 len = sizeof(struct sctp_setadaptation);
5364
5365 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5366
5367 if (put_user(len, optlen))
5368 return -EFAULT;
5369 if (copy_to_user(optval, &adaptation, len))
5370 return -EFAULT;
5371
5372 return 0;
5373}
5374
5375/*
5376 *
5377 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5378 *
5379 * Applications that wish to use the sendto() system call may wish to
5380 * specify a default set of parameters that would normally be supplied
5381 * through the inclusion of ancillary data. This socket option allows
5382 * such an application to set the default sctp_sndrcvinfo structure.
5383
5384
5385 * The application that wishes to use this socket option simply passes
5386 * in to this call the sctp_sndrcvinfo structure defined in Section
5387 * 5.2.2) The input parameters accepted by this call include
5388 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5389 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5390 * to this call if the caller is using the UDP model.
5391 *
5392 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5393 */
5394static int sctp_getsockopt_default_send_param(struct sock *sk,
5395 int len, char __user *optval,
5396 int __user *optlen)
5397{
5398 struct sctp_sock *sp = sctp_sk(sk);
5399 struct sctp_association *asoc;
5400 struct sctp_sndrcvinfo info;
5401
5402 if (len < sizeof(info))
5403 return -EINVAL;
5404
5405 len = sizeof(info);
5406
5407 if (copy_from_user(&info, optval, len))
5408 return -EFAULT;
5409
5410 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5411 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5412 return -EINVAL;
5413 if (asoc) {
5414 info.sinfo_stream = asoc->default_stream;
5415 info.sinfo_flags = asoc->default_flags;
5416 info.sinfo_ppid = asoc->default_ppid;
5417 info.sinfo_context = asoc->default_context;
5418 info.sinfo_timetolive = asoc->default_timetolive;
5419 } else {
5420 info.sinfo_stream = sp->default_stream;
5421 info.sinfo_flags = sp->default_flags;
5422 info.sinfo_ppid = sp->default_ppid;
5423 info.sinfo_context = sp->default_context;
5424 info.sinfo_timetolive = sp->default_timetolive;
5425 }
5426
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (copy_to_user(optval, &info, len))
5430 return -EFAULT;
5431
5432 return 0;
5433}
5434
5435/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5436 * (SCTP_DEFAULT_SNDINFO)
5437 */
5438static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5439 char __user *optval,
5440 int __user *optlen)
5441{
5442 struct sctp_sock *sp = sctp_sk(sk);
5443 struct sctp_association *asoc;
5444 struct sctp_sndinfo info;
5445
5446 if (len < sizeof(info))
5447 return -EINVAL;
5448
5449 len = sizeof(info);
5450
5451 if (copy_from_user(&info, optval, len))
5452 return -EFAULT;
5453
5454 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5455 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5456 return -EINVAL;
5457 if (asoc) {
5458 info.snd_sid = asoc->default_stream;
5459 info.snd_flags = asoc->default_flags;
5460 info.snd_ppid = asoc->default_ppid;
5461 info.snd_context = asoc->default_context;
5462 } else {
5463 info.snd_sid = sp->default_stream;
5464 info.snd_flags = sp->default_flags;
5465 info.snd_ppid = sp->default_ppid;
5466 info.snd_context = sp->default_context;
5467 }
5468
5469 if (put_user(len, optlen))
5470 return -EFAULT;
5471 if (copy_to_user(optval, &info, len))
5472 return -EFAULT;
5473
5474 return 0;
5475}
5476
5477/*
5478 *
5479 * 7.1.5 SCTP_NODELAY
5480 *
5481 * Turn on/off any Nagle-like algorithm. This means that packets are
5482 * generally sent as soon as possible and no unnecessary delays are
5483 * introduced, at the cost of more packets in the network. Expects an
5484 * integer boolean flag.
5485 */
5486
5487static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5488 char __user *optval, int __user *optlen)
5489{
5490 int val;
5491
5492 if (len < sizeof(int))
5493 return -EINVAL;
5494
5495 len = sizeof(int);
5496 val = (sctp_sk(sk)->nodelay == 1);
5497 if (put_user(len, optlen))
5498 return -EFAULT;
5499 if (copy_to_user(optval, &val, len))
5500 return -EFAULT;
5501 return 0;
5502}
5503
5504/*
5505 *
5506 * 7.1.1 SCTP_RTOINFO
5507 *
5508 * The protocol parameters used to initialize and bound retransmission
5509 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5510 * and modify these parameters.
5511 * All parameters are time values, in milliseconds. A value of 0, when
5512 * modifying the parameters, indicates that the current value should not
5513 * be changed.
5514 *
5515 */
5516static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5517 char __user *optval,
5518 int __user *optlen) {
5519 struct sctp_rtoinfo rtoinfo;
5520 struct sctp_association *asoc;
5521
5522 if (len < sizeof (struct sctp_rtoinfo))
5523 return -EINVAL;
5524
5525 len = sizeof(struct sctp_rtoinfo);
5526
5527 if (copy_from_user(&rtoinfo, optval, len))
5528 return -EFAULT;
5529
5530 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5531
5532 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5533 return -EINVAL;
5534
5535 /* Values corresponding to the specific association. */
5536 if (asoc) {
5537 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5538 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5539 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5540 } else {
5541 /* Values corresponding to the endpoint. */
5542 struct sctp_sock *sp = sctp_sk(sk);
5543
5544 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5545 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5546 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5547 }
5548
5549 if (put_user(len, optlen))
5550 return -EFAULT;
5551
5552 if (copy_to_user(optval, &rtoinfo, len))
5553 return -EFAULT;
5554
5555 return 0;
5556}
5557
5558/*
5559 *
5560 * 7.1.2 SCTP_ASSOCINFO
5561 *
5562 * This option is used to tune the maximum retransmission attempts
5563 * of the association.
5564 * Returns an error if the new association retransmission value is
5565 * greater than the sum of the retransmission value of the peer.
5566 * See [SCTP] for more information.
5567 *
5568 */
5569static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5570 char __user *optval,
5571 int __user *optlen)
5572{
5573
5574 struct sctp_assocparams assocparams;
5575 struct sctp_association *asoc;
5576 struct list_head *pos;
5577 int cnt = 0;
5578
5579 if (len < sizeof (struct sctp_assocparams))
5580 return -EINVAL;
5581
5582 len = sizeof(struct sctp_assocparams);
5583
5584 if (copy_from_user(&assocparams, optval, len))
5585 return -EFAULT;
5586
5587 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5588
5589 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5590 return -EINVAL;
5591
5592 /* Values correspoinding to the specific association */
5593 if (asoc) {
5594 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5595 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5596 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5597 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5598
5599 list_for_each(pos, &asoc->peer.transport_addr_list) {
5600 cnt++;
5601 }
5602
5603 assocparams.sasoc_number_peer_destinations = cnt;
5604 } else {
5605 /* Values corresponding to the endpoint */
5606 struct sctp_sock *sp = sctp_sk(sk);
5607
5608 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5609 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5610 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5611 assocparams.sasoc_cookie_life =
5612 sp->assocparams.sasoc_cookie_life;
5613 assocparams.sasoc_number_peer_destinations =
5614 sp->assocparams.
5615 sasoc_number_peer_destinations;
5616 }
5617
5618 if (put_user(len, optlen))
5619 return -EFAULT;
5620
5621 if (copy_to_user(optval, &assocparams, len))
5622 return -EFAULT;
5623
5624 return 0;
5625}
5626
5627/*
5628 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5629 *
5630 * This socket option is a boolean flag which turns on or off mapped V4
5631 * addresses. If this option is turned on and the socket is type
5632 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5633 * If this option is turned off, then no mapping will be done of V4
5634 * addresses and a user will receive both PF_INET6 and PF_INET type
5635 * addresses on the socket.
5636 */
5637static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5638 char __user *optval, int __user *optlen)
5639{
5640 int val;
5641 struct sctp_sock *sp = sctp_sk(sk);
5642
5643 if (len < sizeof(int))
5644 return -EINVAL;
5645
5646 len = sizeof(int);
5647 val = sp->v4mapped;
5648 if (put_user(len, optlen))
5649 return -EFAULT;
5650 if (copy_to_user(optval, &val, len))
5651 return -EFAULT;
5652
5653 return 0;
5654}
5655
5656/*
5657 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5658 * (chapter and verse is quoted at sctp_setsockopt_context())
5659 */
5660static int sctp_getsockopt_context(struct sock *sk, int len,
5661 char __user *optval, int __user *optlen)
5662{
5663 struct sctp_assoc_value params;
5664 struct sctp_sock *sp;
5665 struct sctp_association *asoc;
5666
5667 if (len < sizeof(struct sctp_assoc_value))
5668 return -EINVAL;
5669
5670 len = sizeof(struct sctp_assoc_value);
5671
5672 if (copy_from_user(¶ms, optval, len))
5673 return -EFAULT;
5674
5675 sp = sctp_sk(sk);
5676
5677 if (params.assoc_id != 0) {
5678 asoc = sctp_id2assoc(sk, params.assoc_id);
5679 if (!asoc)
5680 return -EINVAL;
5681 params.assoc_value = asoc->default_rcv_context;
5682 } else {
5683 params.assoc_value = sp->default_rcv_context;
5684 }
5685
5686 if (put_user(len, optlen))
5687 return -EFAULT;
5688 if (copy_to_user(optval, ¶ms, len))
5689 return -EFAULT;
5690
5691 return 0;
5692}
5693
5694/*
5695 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5696 * This option will get or set the maximum size to put in any outgoing
5697 * SCTP DATA chunk. If a message is larger than this size it will be
5698 * fragmented by SCTP into the specified size. Note that the underlying
5699 * SCTP implementation may fragment into smaller sized chunks when the
5700 * PMTU of the underlying association is smaller than the value set by
5701 * the user. The default value for this option is '0' which indicates
5702 * the user is NOT limiting fragmentation and only the PMTU will effect
5703 * SCTP's choice of DATA chunk size. Note also that values set larger
5704 * than the maximum size of an IP datagram will effectively let SCTP
5705 * control fragmentation (i.e. the same as setting this option to 0).
5706 *
5707 * The following structure is used to access and modify this parameter:
5708 *
5709 * struct sctp_assoc_value {
5710 * sctp_assoc_t assoc_id;
5711 * uint32_t assoc_value;
5712 * };
5713 *
5714 * assoc_id: This parameter is ignored for one-to-one style sockets.
5715 * For one-to-many style sockets this parameter indicates which
5716 * association the user is performing an action upon. Note that if
5717 * this field's value is zero then the endpoints default value is
5718 * changed (effecting future associations only).
5719 * assoc_value: This parameter specifies the maximum size in bytes.
5720 */
5721static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5722 char __user *optval, int __user *optlen)
5723{
5724 struct sctp_assoc_value params;
5725 struct sctp_association *asoc;
5726
5727 if (len == sizeof(int)) {
5728 pr_warn_ratelimited(DEPRECATED
5729 "%s (pid %d) "
5730 "Use of int in maxseg socket option.\n"
5731 "Use struct sctp_assoc_value instead\n",
5732 current->comm, task_pid_nr(current));
5733 params.assoc_id = 0;
5734 } else if (len >= sizeof(struct sctp_assoc_value)) {
5735 len = sizeof(struct sctp_assoc_value);
5736 if (copy_from_user(¶ms, optval, sizeof(params)))
5737 return -EFAULT;
5738 } else
5739 return -EINVAL;
5740
5741 asoc = sctp_id2assoc(sk, params.assoc_id);
5742 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5743 return -EINVAL;
5744
5745 if (asoc)
5746 params.assoc_value = asoc->frag_point;
5747 else
5748 params.assoc_value = sctp_sk(sk)->user_frag;
5749
5750 if (put_user(len, optlen))
5751 return -EFAULT;
5752 if (len == sizeof(int)) {
5753 if (copy_to_user(optval, ¶ms.assoc_value, len))
5754 return -EFAULT;
5755 } else {
5756 if (copy_to_user(optval, ¶ms, len))
5757 return -EFAULT;
5758 }
5759
5760 return 0;
5761}
5762
5763/*
5764 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5765 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5766 */
5767static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5768 char __user *optval, int __user *optlen)
5769{
5770 int val;
5771
5772 if (len < sizeof(int))
5773 return -EINVAL;
5774
5775 len = sizeof(int);
5776
5777 val = sctp_sk(sk)->frag_interleave;
5778 if (put_user(len, optlen))
5779 return -EFAULT;
5780 if (copy_to_user(optval, &val, len))
5781 return -EFAULT;
5782
5783 return 0;
5784}
5785
5786/*
5787 * 7.1.25. Set or Get the sctp partial delivery point
5788 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5789 */
5790static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5791 char __user *optval,
5792 int __user *optlen)
5793{
5794 u32 val;
5795
5796 if (len < sizeof(u32))
5797 return -EINVAL;
5798
5799 len = sizeof(u32);
5800
5801 val = sctp_sk(sk)->pd_point;
5802 if (put_user(len, optlen))
5803 return -EFAULT;
5804 if (copy_to_user(optval, &val, len))
5805 return -EFAULT;
5806
5807 return 0;
5808}
5809
5810/*
5811 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5812 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5813 */
5814static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5815 char __user *optval,
5816 int __user *optlen)
5817{
5818 struct sctp_assoc_value params;
5819 struct sctp_sock *sp;
5820 struct sctp_association *asoc;
5821
5822 if (len == sizeof(int)) {
5823 pr_warn_ratelimited(DEPRECATED
5824 "%s (pid %d) "
5825 "Use of int in max_burst socket option.\n"
5826 "Use struct sctp_assoc_value instead\n",
5827 current->comm, task_pid_nr(current));
5828 params.assoc_id = 0;
5829 } else if (len >= sizeof(struct sctp_assoc_value)) {
5830 len = sizeof(struct sctp_assoc_value);
5831 if (copy_from_user(¶ms, optval, len))
5832 return -EFAULT;
5833 } else
5834 return -EINVAL;
5835
5836 sp = sctp_sk(sk);
5837
5838 if (params.assoc_id != 0) {
5839 asoc = sctp_id2assoc(sk, params.assoc_id);
5840 if (!asoc)
5841 return -EINVAL;
5842 params.assoc_value = asoc->max_burst;
5843 } else
5844 params.assoc_value = sp->max_burst;
5845
5846 if (len == sizeof(int)) {
5847 if (copy_to_user(optval, ¶ms.assoc_value, len))
5848 return -EFAULT;
5849 } else {
5850 if (copy_to_user(optval, ¶ms, len))
5851 return -EFAULT;
5852 }
5853
5854 return 0;
5855
5856}
5857
5858static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5859 char __user *optval, int __user *optlen)
5860{
5861 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5862 struct sctp_hmacalgo __user *p = (void __user *)optval;
5863 struct sctp_hmac_algo_param *hmacs;
5864 __u16 data_len = 0;
5865 u32 num_idents;
5866 int i;
5867
5868 if (!ep->auth_enable)
5869 return -EACCES;
5870
5871 hmacs = ep->auth_hmacs_list;
5872 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5873
5874 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5875 return -EINVAL;
5876
5877 len = sizeof(struct sctp_hmacalgo) + data_len;
5878 num_idents = data_len / sizeof(u16);
5879
5880 if (put_user(len, optlen))
5881 return -EFAULT;
5882 if (put_user(num_idents, &p->shmac_num_idents))
5883 return -EFAULT;
5884 for (i = 0; i < num_idents; i++) {
5885 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5886
5887 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5888 return -EFAULT;
5889 }
5890 return 0;
5891}
5892
5893static int sctp_getsockopt_active_key(struct sock *sk, int len,
5894 char __user *optval, int __user *optlen)
5895{
5896 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5897 struct sctp_authkeyid val;
5898 struct sctp_association *asoc;
5899
5900 if (!ep->auth_enable)
5901 return -EACCES;
5902
5903 if (len < sizeof(struct sctp_authkeyid))
5904 return -EINVAL;
5905 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5906 return -EFAULT;
5907
5908 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5909 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5910 return -EINVAL;
5911
5912 if (asoc)
5913 val.scact_keynumber = asoc->active_key_id;
5914 else
5915 val.scact_keynumber = ep->active_key_id;
5916
5917 len = sizeof(struct sctp_authkeyid);
5918 if (put_user(len, optlen))
5919 return -EFAULT;
5920 if (copy_to_user(optval, &val, len))
5921 return -EFAULT;
5922
5923 return 0;
5924}
5925
5926static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5927 char __user *optval, int __user *optlen)
5928{
5929 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5930 struct sctp_authchunks __user *p = (void __user *)optval;
5931 struct sctp_authchunks val;
5932 struct sctp_association *asoc;
5933 struct sctp_chunks_param *ch;
5934 u32 num_chunks = 0;
5935 char __user *to;
5936
5937 if (!ep->auth_enable)
5938 return -EACCES;
5939
5940 if (len < sizeof(struct sctp_authchunks))
5941 return -EINVAL;
5942
5943 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5944 return -EFAULT;
5945
5946 to = p->gauth_chunks;
5947 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5948 if (!asoc)
5949 return -EINVAL;
5950
5951 ch = asoc->peer.peer_chunks;
5952 if (!ch)
5953 goto num;
5954
5955 /* See if the user provided enough room for all the data */
5956 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5957 if (len < num_chunks)
5958 return -EINVAL;
5959
5960 if (copy_to_user(to, ch->chunks, num_chunks))
5961 return -EFAULT;
5962num:
5963 len = sizeof(struct sctp_authchunks) + num_chunks;
5964 if (put_user(len, optlen))
5965 return -EFAULT;
5966 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5967 return -EFAULT;
5968 return 0;
5969}
5970
5971static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5972 char __user *optval, int __user *optlen)
5973{
5974 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5975 struct sctp_authchunks __user *p = (void __user *)optval;
5976 struct sctp_authchunks val;
5977 struct sctp_association *asoc;
5978 struct sctp_chunks_param *ch;
5979 u32 num_chunks = 0;
5980 char __user *to;
5981
5982 if (!ep->auth_enable)
5983 return -EACCES;
5984
5985 if (len < sizeof(struct sctp_authchunks))
5986 return -EINVAL;
5987
5988 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5989 return -EFAULT;
5990
5991 to = p->gauth_chunks;
5992 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5993 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5994 return -EINVAL;
5995
5996 if (asoc)
5997 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5998 else
5999 ch = ep->auth_chunk_list;
6000
6001 if (!ch)
6002 goto num;
6003
6004 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
6005 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6006 return -EINVAL;
6007
6008 if (copy_to_user(to, ch->chunks, num_chunks))
6009 return -EFAULT;
6010num:
6011 len = sizeof(struct sctp_authchunks) + num_chunks;
6012 if (put_user(len, optlen))
6013 return -EFAULT;
6014 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6015 return -EFAULT;
6016
6017 return 0;
6018}
6019
6020/*
6021 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6022 * This option gets the current number of associations that are attached
6023 * to a one-to-many style socket. The option value is an uint32_t.
6024 */
6025static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6026 char __user *optval, int __user *optlen)
6027{
6028 struct sctp_sock *sp = sctp_sk(sk);
6029 struct sctp_association *asoc;
6030 u32 val = 0;
6031
6032 if (sctp_style(sk, TCP))
6033 return -EOPNOTSUPP;
6034
6035 if (len < sizeof(u32))
6036 return -EINVAL;
6037
6038 len = sizeof(u32);
6039
6040 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6041 val++;
6042 }
6043
6044 if (put_user(len, optlen))
6045 return -EFAULT;
6046 if (copy_to_user(optval, &val, len))
6047 return -EFAULT;
6048
6049 return 0;
6050}
6051
6052/*
6053 * 8.1.23 SCTP_AUTO_ASCONF
6054 * See the corresponding setsockopt entry as description
6055 */
6056static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6057 char __user *optval, int __user *optlen)
6058{
6059 int val = 0;
6060
6061 if (len < sizeof(int))
6062 return -EINVAL;
6063
6064 len = sizeof(int);
6065 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6066 val = 1;
6067 if (put_user(len, optlen))
6068 return -EFAULT;
6069 if (copy_to_user(optval, &val, len))
6070 return -EFAULT;
6071 return 0;
6072}
6073
6074/*
6075 * 8.2.6. Get the Current Identifiers of Associations
6076 * (SCTP_GET_ASSOC_ID_LIST)
6077 *
6078 * This option gets the current list of SCTP association identifiers of
6079 * the SCTP associations handled by a one-to-many style socket.
6080 */
6081static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6082 char __user *optval, int __user *optlen)
6083{
6084 struct sctp_sock *sp = sctp_sk(sk);
6085 struct sctp_association *asoc;
6086 struct sctp_assoc_ids *ids;
6087 u32 num = 0;
6088
6089 if (sctp_style(sk, TCP))
6090 return -EOPNOTSUPP;
6091
6092 if (len < sizeof(struct sctp_assoc_ids))
6093 return -EINVAL;
6094
6095 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6096 num++;
6097 }
6098
6099 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6100 return -EINVAL;
6101
6102 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6103
6104 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6105 if (unlikely(!ids))
6106 return -ENOMEM;
6107
6108 ids->gaids_number_of_ids = num;
6109 num = 0;
6110 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6111 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6112 }
6113
6114 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6115 kfree(ids);
6116 return -EFAULT;
6117 }
6118
6119 kfree(ids);
6120 return 0;
6121}
6122
6123/*
6124 * SCTP_PEER_ADDR_THLDS
6125 *
6126 * This option allows us to fetch the partially failed threshold for one or all
6127 * transports in an association. See Section 6.1 of:
6128 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6129 */
6130static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6131 char __user *optval,
6132 int len,
6133 int __user *optlen)
6134{
6135 struct sctp_paddrthlds val;
6136 struct sctp_transport *trans;
6137 struct sctp_association *asoc;
6138
6139 if (len < sizeof(struct sctp_paddrthlds))
6140 return -EINVAL;
6141 len = sizeof(struct sctp_paddrthlds);
6142 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6143 return -EFAULT;
6144
6145 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6146 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6147 if (!asoc)
6148 return -ENOENT;
6149
6150 val.spt_pathpfthld = asoc->pf_retrans;
6151 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6152 } else {
6153 trans = sctp_addr_id2transport(sk, &val.spt_address,
6154 val.spt_assoc_id);
6155 if (!trans)
6156 return -ENOENT;
6157
6158 val.spt_pathmaxrxt = trans->pathmaxrxt;
6159 val.spt_pathpfthld = trans->pf_retrans;
6160 }
6161
6162 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6163 return -EFAULT;
6164
6165 return 0;
6166}
6167
6168/*
6169 * SCTP_GET_ASSOC_STATS
6170 *
6171 * This option retrieves local per endpoint statistics. It is modeled
6172 * after OpenSolaris' implementation
6173 */
6174static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6175 char __user *optval,
6176 int __user *optlen)
6177{
6178 struct sctp_assoc_stats sas;
6179 struct sctp_association *asoc = NULL;
6180
6181 /* User must provide at least the assoc id */
6182 if (len < sizeof(sctp_assoc_t))
6183 return -EINVAL;
6184
6185 /* Allow the struct to grow and fill in as much as possible */
6186 len = min_t(size_t, len, sizeof(sas));
6187
6188 if (copy_from_user(&sas, optval, len))
6189 return -EFAULT;
6190
6191 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6192 if (!asoc)
6193 return -EINVAL;
6194
6195 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6196 sas.sas_gapcnt = asoc->stats.gapcnt;
6197 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6198 sas.sas_osacks = asoc->stats.osacks;
6199 sas.sas_isacks = asoc->stats.isacks;
6200 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6201 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6202 sas.sas_oodchunks = asoc->stats.oodchunks;
6203 sas.sas_iodchunks = asoc->stats.iodchunks;
6204 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6205 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6206 sas.sas_idupchunks = asoc->stats.idupchunks;
6207 sas.sas_opackets = asoc->stats.opackets;
6208 sas.sas_ipackets = asoc->stats.ipackets;
6209
6210 /* New high max rto observed, will return 0 if not a single
6211 * RTO update took place. obs_rto_ipaddr will be bogus
6212 * in such a case
6213 */
6214 sas.sas_maxrto = asoc->stats.max_obs_rto;
6215 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6216 sizeof(struct sockaddr_storage));
6217
6218 /* Mark beginning of a new observation period */
6219 asoc->stats.max_obs_rto = asoc->rto_min;
6220
6221 if (put_user(len, optlen))
6222 return -EFAULT;
6223
6224 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6225
6226 if (copy_to_user(optval, &sas, len))
6227 return -EFAULT;
6228
6229 return 0;
6230}
6231
6232static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6233 char __user *optval,
6234 int __user *optlen)
6235{
6236 int val = 0;
6237
6238 if (len < sizeof(int))
6239 return -EINVAL;
6240
6241 len = sizeof(int);
6242 if (sctp_sk(sk)->recvrcvinfo)
6243 val = 1;
6244 if (put_user(len, optlen))
6245 return -EFAULT;
6246 if (copy_to_user(optval, &val, len))
6247 return -EFAULT;
6248
6249 return 0;
6250}
6251
6252static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6253 char __user *optval,
6254 int __user *optlen)
6255{
6256 int val = 0;
6257
6258 if (len < sizeof(int))
6259 return -EINVAL;
6260
6261 len = sizeof(int);
6262 if (sctp_sk(sk)->recvnxtinfo)
6263 val = 1;
6264 if (put_user(len, optlen))
6265 return -EFAULT;
6266 if (copy_to_user(optval, &val, len))
6267 return -EFAULT;
6268
6269 return 0;
6270}
6271
6272static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6273 char __user *optval,
6274 int __user *optlen)
6275{
6276 struct sctp_assoc_value params;
6277 struct sctp_association *asoc;
6278 int retval = -EFAULT;
6279
6280 if (len < sizeof(params)) {
6281 retval = -EINVAL;
6282 goto out;
6283 }
6284
6285 len = sizeof(params);
6286 if (copy_from_user(¶ms, optval, len))
6287 goto out;
6288
6289 asoc = sctp_id2assoc(sk, params.assoc_id);
6290 if (asoc) {
6291 params.assoc_value = asoc->prsctp_enable;
6292 } else if (!params.assoc_id) {
6293 struct sctp_sock *sp = sctp_sk(sk);
6294
6295 params.assoc_value = sp->ep->prsctp_enable;
6296 } else {
6297 retval = -EINVAL;
6298 goto out;
6299 }
6300
6301 if (put_user(len, optlen))
6302 goto out;
6303
6304 if (copy_to_user(optval, ¶ms, len))
6305 goto out;
6306
6307 retval = 0;
6308
6309out:
6310 return retval;
6311}
6312
6313static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6314 char __user *optval,
6315 int __user *optlen)
6316{
6317 struct sctp_default_prinfo info;
6318 struct sctp_association *asoc;
6319 int retval = -EFAULT;
6320
6321 if (len < sizeof(info)) {
6322 retval = -EINVAL;
6323 goto out;
6324 }
6325
6326 len = sizeof(info);
6327 if (copy_from_user(&info, optval, len))
6328 goto out;
6329
6330 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6331 if (asoc) {
6332 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
6333 info.pr_value = asoc->default_timetolive;
6334 } else if (!info.pr_assoc_id) {
6335 struct sctp_sock *sp = sctp_sk(sk);
6336
6337 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
6338 info.pr_value = sp->default_timetolive;
6339 } else {
6340 retval = -EINVAL;
6341 goto out;
6342 }
6343
6344 if (put_user(len, optlen))
6345 goto out;
6346
6347 if (copy_to_user(optval, &info, len))
6348 goto out;
6349
6350 retval = 0;
6351
6352out:
6353 return retval;
6354}
6355
6356static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6357 char __user *optval,
6358 int __user *optlen)
6359{
6360 struct sctp_prstatus params;
6361 struct sctp_association *asoc;
6362 int policy;
6363 int retval = -EINVAL;
6364
6365 if (len < sizeof(params))
6366 goto out;
6367
6368 len = sizeof(params);
6369 if (copy_from_user(¶ms, optval, len)) {
6370 retval = -EFAULT;
6371 goto out;
6372 }
6373
6374 policy = params.sprstat_policy;
6375 if (policy & ~SCTP_PR_SCTP_MASK)
6376 goto out;
6377
6378 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6379 if (!asoc)
6380 goto out;
6381
6382 if (policy == SCTP_PR_SCTP_NONE) {
6383 params.sprstat_abandoned_unsent = 0;
6384 params.sprstat_abandoned_sent = 0;
6385 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
6386 params.sprstat_abandoned_unsent +=
6387 asoc->abandoned_unsent[policy];
6388 params.sprstat_abandoned_sent +=
6389 asoc->abandoned_sent[policy];
6390 }
6391 } else {
6392 params.sprstat_abandoned_unsent =
6393 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
6394 params.sprstat_abandoned_sent =
6395 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
6396 }
6397
6398 if (put_user(len, optlen)) {
6399 retval = -EFAULT;
6400 goto out;
6401 }
6402
6403 if (copy_to_user(optval, ¶ms, len)) {
6404 retval = -EFAULT;
6405 goto out;
6406 }
6407
6408 retval = 0;
6409
6410out:
6411 return retval;
6412}
6413
6414static int sctp_getsockopt(struct sock *sk, int level, int optname,
6415 char __user *optval, int __user *optlen)
6416{
6417 int retval = 0;
6418 int len;
6419
6420 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6421
6422 /* I can hardly begin to describe how wrong this is. This is
6423 * so broken as to be worse than useless. The API draft
6424 * REALLY is NOT helpful here... I am not convinced that the
6425 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6426 * are at all well-founded.
6427 */
6428 if (level != SOL_SCTP) {
6429 struct sctp_af *af = sctp_sk(sk)->pf->af;
6430
6431 retval = af->getsockopt(sk, level, optname, optval, optlen);
6432 return retval;
6433 }
6434
6435 if (get_user(len, optlen))
6436 return -EFAULT;
6437
6438 if (len < 0)
6439 return -EINVAL;
6440
6441 lock_sock(sk);
6442
6443 switch (optname) {
6444 case SCTP_STATUS:
6445 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6446 break;
6447 case SCTP_DISABLE_FRAGMENTS:
6448 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6449 optlen);
6450 break;
6451 case SCTP_EVENTS:
6452 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6453 break;
6454 case SCTP_AUTOCLOSE:
6455 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6456 break;
6457 case SCTP_SOCKOPT_PEELOFF:
6458 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6459 break;
6460 case SCTP_PEER_ADDR_PARAMS:
6461 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6462 optlen);
6463 break;
6464 case SCTP_DELAYED_SACK:
6465 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6466 optlen);
6467 break;
6468 case SCTP_INITMSG:
6469 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6470 break;
6471 case SCTP_GET_PEER_ADDRS:
6472 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6473 optlen);
6474 break;
6475 case SCTP_GET_LOCAL_ADDRS:
6476 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6477 optlen);
6478 break;
6479 case SCTP_SOCKOPT_CONNECTX3:
6480 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6481 break;
6482 case SCTP_DEFAULT_SEND_PARAM:
6483 retval = sctp_getsockopt_default_send_param(sk, len,
6484 optval, optlen);
6485 break;
6486 case SCTP_DEFAULT_SNDINFO:
6487 retval = sctp_getsockopt_default_sndinfo(sk, len,
6488 optval, optlen);
6489 break;
6490 case SCTP_PRIMARY_ADDR:
6491 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6492 break;
6493 case SCTP_NODELAY:
6494 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6495 break;
6496 case SCTP_RTOINFO:
6497 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6498 break;
6499 case SCTP_ASSOCINFO:
6500 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6501 break;
6502 case SCTP_I_WANT_MAPPED_V4_ADDR:
6503 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6504 break;
6505 case SCTP_MAXSEG:
6506 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6507 break;
6508 case SCTP_GET_PEER_ADDR_INFO:
6509 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6510 optlen);
6511 break;
6512 case SCTP_ADAPTATION_LAYER:
6513 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6514 optlen);
6515 break;
6516 case SCTP_CONTEXT:
6517 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6518 break;
6519 case SCTP_FRAGMENT_INTERLEAVE:
6520 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6521 optlen);
6522 break;
6523 case SCTP_PARTIAL_DELIVERY_POINT:
6524 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6525 optlen);
6526 break;
6527 case SCTP_MAX_BURST:
6528 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6529 break;
6530 case SCTP_AUTH_KEY:
6531 case SCTP_AUTH_CHUNK:
6532 case SCTP_AUTH_DELETE_KEY:
6533 retval = -EOPNOTSUPP;
6534 break;
6535 case SCTP_HMAC_IDENT:
6536 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6537 break;
6538 case SCTP_AUTH_ACTIVE_KEY:
6539 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6540 break;
6541 case SCTP_PEER_AUTH_CHUNKS:
6542 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6543 optlen);
6544 break;
6545 case SCTP_LOCAL_AUTH_CHUNKS:
6546 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6547 optlen);
6548 break;
6549 case SCTP_GET_ASSOC_NUMBER:
6550 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6551 break;
6552 case SCTP_GET_ASSOC_ID_LIST:
6553 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6554 break;
6555 case SCTP_AUTO_ASCONF:
6556 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6557 break;
6558 case SCTP_PEER_ADDR_THLDS:
6559 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6560 break;
6561 case SCTP_GET_ASSOC_STATS:
6562 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6563 break;
6564 case SCTP_RECVRCVINFO:
6565 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6566 break;
6567 case SCTP_RECVNXTINFO:
6568 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6569 break;
6570 case SCTP_PR_SUPPORTED:
6571 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6572 break;
6573 case SCTP_DEFAULT_PRINFO:
6574 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6575 optlen);
6576 break;
6577 case SCTP_PR_ASSOC_STATUS:
6578 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6579 optlen);
6580 break;
6581 default:
6582 retval = -ENOPROTOOPT;
6583 break;
6584 }
6585
6586 release_sock(sk);
6587 return retval;
6588}
6589
6590static int sctp_hash(struct sock *sk)
6591{
6592 /* STUB */
6593 return 0;
6594}
6595
6596static void sctp_unhash(struct sock *sk)
6597{
6598 /* STUB */
6599}
6600
6601/* Check if port is acceptable. Possibly find first available port.
6602 *
6603 * The port hash table (contained in the 'global' SCTP protocol storage
6604 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6605 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6606 * list (the list number is the port number hashed out, so as you
6607 * would expect from a hash function, all the ports in a given list have
6608 * such a number that hashes out to the same list number; you were
6609 * expecting that, right?); so each list has a set of ports, with a
6610 * link to the socket (struct sock) that uses it, the port number and
6611 * a fastreuse flag (FIXME: NPI ipg).
6612 */
6613static struct sctp_bind_bucket *sctp_bucket_create(
6614 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6615
6616static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6617{
6618 struct sctp_bind_hashbucket *head; /* hash list */
6619 struct sctp_bind_bucket *pp;
6620 unsigned short snum;
6621 int ret;
6622
6623 snum = ntohs(addr->v4.sin_port);
6624
6625 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6626
6627 local_bh_disable();
6628
6629 if (snum == 0) {
6630 /* Search for an available port. */
6631 int low, high, remaining, index;
6632 unsigned int rover;
6633 struct net *net = sock_net(sk);
6634
6635 inet_get_local_port_range(net, &low, &high);
6636 remaining = (high - low) + 1;
6637 rover = prandom_u32() % remaining + low;
6638
6639 do {
6640 rover++;
6641 if ((rover < low) || (rover > high))
6642 rover = low;
6643 if (inet_is_local_reserved_port(net, rover))
6644 continue;
6645 index = sctp_phashfn(sock_net(sk), rover);
6646 head = &sctp_port_hashtable[index];
6647 spin_lock(&head->lock);
6648 sctp_for_each_hentry(pp, &head->chain)
6649 if ((pp->port == rover) &&
6650 net_eq(sock_net(sk), pp->net))
6651 goto next;
6652 break;
6653 next:
6654 spin_unlock(&head->lock);
6655 } while (--remaining > 0);
6656
6657 /* Exhausted local port range during search? */
6658 ret = 1;
6659 if (remaining <= 0)
6660 goto fail;
6661
6662 /* OK, here is the one we will use. HEAD (the port
6663 * hash table list entry) is non-NULL and we hold it's
6664 * mutex.
6665 */
6666 snum = rover;
6667 } else {
6668 /* We are given an specific port number; we verify
6669 * that it is not being used. If it is used, we will
6670 * exahust the search in the hash list corresponding
6671 * to the port number (snum) - we detect that with the
6672 * port iterator, pp being NULL.
6673 */
6674 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6675 spin_lock(&head->lock);
6676 sctp_for_each_hentry(pp, &head->chain) {
6677 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6678 goto pp_found;
6679 }
6680 }
6681 pp = NULL;
6682 goto pp_not_found;
6683pp_found:
6684 if (!hlist_empty(&pp->owner)) {
6685 /* We had a port hash table hit - there is an
6686 * available port (pp != NULL) and it is being
6687 * used by other socket (pp->owner not empty); that other
6688 * socket is going to be sk2.
6689 */
6690 int reuse = sk->sk_reuse;
6691 struct sock *sk2;
6692
6693 pr_debug("%s: found a possible match\n", __func__);
6694
6695 if (pp->fastreuse && sk->sk_reuse &&
6696 sk->sk_state != SCTP_SS_LISTENING)
6697 goto success;
6698
6699 /* Run through the list of sockets bound to the port
6700 * (pp->port) [via the pointers bind_next and
6701 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6702 * we get the endpoint they describe and run through
6703 * the endpoint's list of IP (v4 or v6) addresses,
6704 * comparing each of the addresses with the address of
6705 * the socket sk. If we find a match, then that means
6706 * that this port/socket (sk) combination are already
6707 * in an endpoint.
6708 */
6709 sk_for_each_bound(sk2, &pp->owner) {
6710 struct sctp_endpoint *ep2;
6711 ep2 = sctp_sk(sk2)->ep;
6712
6713 if (sk == sk2 ||
6714 (reuse && sk2->sk_reuse &&
6715 sk2->sk_state != SCTP_SS_LISTENING))
6716 continue;
6717
6718 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6719 sctp_sk(sk2), sctp_sk(sk))) {
6720 ret = (long)sk2;
6721 goto fail_unlock;
6722 }
6723 }
6724
6725 pr_debug("%s: found a match\n", __func__);
6726 }
6727pp_not_found:
6728 /* If there was a hash table miss, create a new port. */
6729 ret = 1;
6730 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6731 goto fail_unlock;
6732
6733 /* In either case (hit or miss), make sure fastreuse is 1 only
6734 * if sk->sk_reuse is too (that is, if the caller requested
6735 * SO_REUSEADDR on this socket -sk-).
6736 */
6737 if (hlist_empty(&pp->owner)) {
6738 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6739 pp->fastreuse = 1;
6740 else
6741 pp->fastreuse = 0;
6742 } else if (pp->fastreuse &&
6743 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6744 pp->fastreuse = 0;
6745
6746 /* We are set, so fill up all the data in the hash table
6747 * entry, tie the socket list information with the rest of the
6748 * sockets FIXME: Blurry, NPI (ipg).
6749 */
6750success:
6751 if (!sctp_sk(sk)->bind_hash) {
6752 inet_sk(sk)->inet_num = snum;
6753 sk_add_bind_node(sk, &pp->owner);
6754 sctp_sk(sk)->bind_hash = pp;
6755 }
6756 ret = 0;
6757
6758fail_unlock:
6759 spin_unlock(&head->lock);
6760
6761fail:
6762 local_bh_enable();
6763 return ret;
6764}
6765
6766/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6767 * port is requested.
6768 */
6769static int sctp_get_port(struct sock *sk, unsigned short snum)
6770{
6771 union sctp_addr addr;
6772 struct sctp_af *af = sctp_sk(sk)->pf->af;
6773
6774 /* Set up a dummy address struct from the sk. */
6775 af->from_sk(&addr, sk);
6776 addr.v4.sin_port = htons(snum);
6777
6778 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6779 return !!sctp_get_port_local(sk, &addr);
6780}
6781
6782/*
6783 * Move a socket to LISTENING state.
6784 */
6785static int sctp_listen_start(struct sock *sk, int backlog)
6786{
6787 struct sctp_sock *sp = sctp_sk(sk);
6788 struct sctp_endpoint *ep = sp->ep;
6789 struct crypto_shash *tfm = NULL;
6790 char alg[32];
6791
6792 /* Allocate HMAC for generating cookie. */
6793 if (!sp->hmac && sp->sctp_hmac_alg) {
6794 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6795 tfm = crypto_alloc_shash(alg, 0, 0);
6796 if (IS_ERR(tfm)) {
6797 net_info_ratelimited("failed to load transform for %s: %ld\n",
6798 sp->sctp_hmac_alg, PTR_ERR(tfm));
6799 return -ENOSYS;
6800 }
6801 sctp_sk(sk)->hmac = tfm;
6802 }
6803
6804 /*
6805 * If a bind() or sctp_bindx() is not called prior to a listen()
6806 * call that allows new associations to be accepted, the system
6807 * picks an ephemeral port and will choose an address set equivalent
6808 * to binding with a wildcard address.
6809 *
6810 * This is not currently spelled out in the SCTP sockets
6811 * extensions draft, but follows the practice as seen in TCP
6812 * sockets.
6813 *
6814 */
6815 sk->sk_state = SCTP_SS_LISTENING;
6816 if (!ep->base.bind_addr.port) {
6817 if (sctp_autobind(sk))
6818 return -EAGAIN;
6819 } else {
6820 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6821 sk->sk_state = SCTP_SS_CLOSED;
6822 return -EADDRINUSE;
6823 }
6824 }
6825
6826 sk->sk_max_ack_backlog = backlog;
6827 sctp_hash_endpoint(ep);
6828 return 0;
6829}
6830
6831/*
6832 * 4.1.3 / 5.1.3 listen()
6833 *
6834 * By default, new associations are not accepted for UDP style sockets.
6835 * An application uses listen() to mark a socket as being able to
6836 * accept new associations.
6837 *
6838 * On TCP style sockets, applications use listen() to ready the SCTP
6839 * endpoint for accepting inbound associations.
6840 *
6841 * On both types of endpoints a backlog of '0' disables listening.
6842 *
6843 * Move a socket to LISTENING state.
6844 */
6845int sctp_inet_listen(struct socket *sock, int backlog)
6846{
6847 struct sock *sk = sock->sk;
6848 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6849 int err = -EINVAL;
6850
6851 if (unlikely(backlog < 0))
6852 return err;
6853
6854 lock_sock(sk);
6855
6856 /* Peeled-off sockets are not allowed to listen(). */
6857 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6858 goto out;
6859
6860 if (sock->state != SS_UNCONNECTED)
6861 goto out;
6862
6863 /* If backlog is zero, disable listening. */
6864 if (!backlog) {
6865 if (sctp_sstate(sk, CLOSED))
6866 goto out;
6867
6868 err = 0;
6869 sctp_unhash_endpoint(ep);
6870 sk->sk_state = SCTP_SS_CLOSED;
6871 if (sk->sk_reuse)
6872 sctp_sk(sk)->bind_hash->fastreuse = 1;
6873 goto out;
6874 }
6875
6876 /* If we are already listening, just update the backlog */
6877 if (sctp_sstate(sk, LISTENING))
6878 sk->sk_max_ack_backlog = backlog;
6879 else {
6880 err = sctp_listen_start(sk, backlog);
6881 if (err)
6882 goto out;
6883 }
6884
6885 err = 0;
6886out:
6887 release_sock(sk);
6888 return err;
6889}
6890
6891/*
6892 * This function is done by modeling the current datagram_poll() and the
6893 * tcp_poll(). Note that, based on these implementations, we don't
6894 * lock the socket in this function, even though it seems that,
6895 * ideally, locking or some other mechanisms can be used to ensure
6896 * the integrity of the counters (sndbuf and wmem_alloc) used
6897 * in this place. We assume that we don't need locks either until proven
6898 * otherwise.
6899 *
6900 * Another thing to note is that we include the Async I/O support
6901 * here, again, by modeling the current TCP/UDP code. We don't have
6902 * a good way to test with it yet.
6903 */
6904unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6905{
6906 struct sock *sk = sock->sk;
6907 struct sctp_sock *sp = sctp_sk(sk);
6908 unsigned int mask;
6909
6910 poll_wait(file, sk_sleep(sk), wait);
6911
6912 sock_rps_record_flow(sk);
6913
6914 /* A TCP-style listening socket becomes readable when the accept queue
6915 * is not empty.
6916 */
6917 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6918 return (!list_empty(&sp->ep->asocs)) ?
6919 (POLLIN | POLLRDNORM) : 0;
6920
6921 mask = 0;
6922
6923 /* Is there any exceptional events? */
6924 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6925 mask |= POLLERR |
6926 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6927 if (sk->sk_shutdown & RCV_SHUTDOWN)
6928 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6929 if (sk->sk_shutdown == SHUTDOWN_MASK)
6930 mask |= POLLHUP;
6931
6932 /* Is it readable? Reconsider this code with TCP-style support. */
6933 if (!skb_queue_empty(&sk->sk_receive_queue))
6934 mask |= POLLIN | POLLRDNORM;
6935
6936 /* The association is either gone or not ready. */
6937 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6938 return mask;
6939
6940 /* Is it writable? */
6941 if (sctp_writeable(sk)) {
6942 mask |= POLLOUT | POLLWRNORM;
6943 } else {
6944 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6945 /*
6946 * Since the socket is not locked, the buffer
6947 * might be made available after the writeable check and
6948 * before the bit is set. This could cause a lost I/O
6949 * signal. tcp_poll() has a race breaker for this race
6950 * condition. Based on their implementation, we put
6951 * in the following code to cover it as well.
6952 */
6953 if (sctp_writeable(sk))
6954 mask |= POLLOUT | POLLWRNORM;
6955 }
6956 return mask;
6957}
6958
6959/********************************************************************
6960 * 2nd Level Abstractions
6961 ********************************************************************/
6962
6963static struct sctp_bind_bucket *sctp_bucket_create(
6964 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6965{
6966 struct sctp_bind_bucket *pp;
6967
6968 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6969 if (pp) {
6970 SCTP_DBG_OBJCNT_INC(bind_bucket);
6971 pp->port = snum;
6972 pp->fastreuse = 0;
6973 INIT_HLIST_HEAD(&pp->owner);
6974 pp->net = net;
6975 hlist_add_head(&pp->node, &head->chain);
6976 }
6977 return pp;
6978}
6979
6980/* Caller must hold hashbucket lock for this tb with local BH disabled */
6981static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6982{
6983 if (pp && hlist_empty(&pp->owner)) {
6984 __hlist_del(&pp->node);
6985 kmem_cache_free(sctp_bucket_cachep, pp);
6986 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6987 }
6988}
6989
6990/* Release this socket's reference to a local port. */
6991static inline void __sctp_put_port(struct sock *sk)
6992{
6993 struct sctp_bind_hashbucket *head =
6994 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6995 inet_sk(sk)->inet_num)];
6996 struct sctp_bind_bucket *pp;
6997
6998 spin_lock(&head->lock);
6999 pp = sctp_sk(sk)->bind_hash;
7000 __sk_del_bind_node(sk);
7001 sctp_sk(sk)->bind_hash = NULL;
7002 inet_sk(sk)->inet_num = 0;
7003 sctp_bucket_destroy(pp);
7004 spin_unlock(&head->lock);
7005}
7006
7007void sctp_put_port(struct sock *sk)
7008{
7009 local_bh_disable();
7010 __sctp_put_port(sk);
7011 local_bh_enable();
7012}
7013
7014/*
7015 * The system picks an ephemeral port and choose an address set equivalent
7016 * to binding with a wildcard address.
7017 * One of those addresses will be the primary address for the association.
7018 * This automatically enables the multihoming capability of SCTP.
7019 */
7020static int sctp_autobind(struct sock *sk)
7021{
7022 union sctp_addr autoaddr;
7023 struct sctp_af *af;
7024 __be16 port;
7025
7026 /* Initialize a local sockaddr structure to INADDR_ANY. */
7027 af = sctp_sk(sk)->pf->af;
7028
7029 port = htons(inet_sk(sk)->inet_num);
7030 af->inaddr_any(&autoaddr, port);
7031
7032 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7033}
7034
7035/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7036 *
7037 * From RFC 2292
7038 * 4.2 The cmsghdr Structure *
7039 *
7040 * When ancillary data is sent or received, any number of ancillary data
7041 * objects can be specified by the msg_control and msg_controllen members of
7042 * the msghdr structure, because each object is preceded by
7043 * a cmsghdr structure defining the object's length (the cmsg_len member).
7044 * Historically Berkeley-derived implementations have passed only one object
7045 * at a time, but this API allows multiple objects to be
7046 * passed in a single call to sendmsg() or recvmsg(). The following example
7047 * shows two ancillary data objects in a control buffer.
7048 *
7049 * |<--------------------------- msg_controllen -------------------------->|
7050 * | |
7051 *
7052 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7053 *
7054 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7055 * | | |
7056 *
7057 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7058 *
7059 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7060 * | | | | |
7061 *
7062 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7063 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7064 *
7065 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7066 *
7067 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7068 * ^
7069 * |
7070 *
7071 * msg_control
7072 * points here
7073 */
7074static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7075{
7076 struct cmsghdr *cmsg;
7077 struct msghdr *my_msg = (struct msghdr *)msg;
7078
7079 for_each_cmsghdr(cmsg, my_msg) {
7080 if (!CMSG_OK(my_msg, cmsg))
7081 return -EINVAL;
7082
7083 /* Should we parse this header or ignore? */
7084 if (cmsg->cmsg_level != IPPROTO_SCTP)
7085 continue;
7086
7087 /* Strictly check lengths following example in SCM code. */
7088 switch (cmsg->cmsg_type) {
7089 case SCTP_INIT:
7090 /* SCTP Socket API Extension
7091 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7092 *
7093 * This cmsghdr structure provides information for
7094 * initializing new SCTP associations with sendmsg().
7095 * The SCTP_INITMSG socket option uses this same data
7096 * structure. This structure is not used for
7097 * recvmsg().
7098 *
7099 * cmsg_level cmsg_type cmsg_data[]
7100 * ------------ ------------ ----------------------
7101 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7102 */
7103 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
7104 return -EINVAL;
7105
7106 cmsgs->init = CMSG_DATA(cmsg);
7107 break;
7108
7109 case SCTP_SNDRCV:
7110 /* SCTP Socket API Extension
7111 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7112 *
7113 * This cmsghdr structure specifies SCTP options for
7114 * sendmsg() and describes SCTP header information
7115 * about a received message through recvmsg().
7116 *
7117 * cmsg_level cmsg_type cmsg_data[]
7118 * ------------ ------------ ----------------------
7119 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7120 */
7121 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
7122 return -EINVAL;
7123
7124 cmsgs->srinfo = CMSG_DATA(cmsg);
7125
7126 if (cmsgs->srinfo->sinfo_flags &
7127 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7128 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7129 SCTP_ABORT | SCTP_EOF))
7130 return -EINVAL;
7131 break;
7132
7133 case SCTP_SNDINFO:
7134 /* SCTP Socket API Extension
7135 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7136 *
7137 * This cmsghdr structure specifies SCTP options for
7138 * sendmsg(). This structure and SCTP_RCVINFO replaces
7139 * SCTP_SNDRCV which has been deprecated.
7140 *
7141 * cmsg_level cmsg_type cmsg_data[]
7142 * ------------ ------------ ---------------------
7143 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7144 */
7145 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
7146 return -EINVAL;
7147
7148 cmsgs->sinfo = CMSG_DATA(cmsg);
7149
7150 if (cmsgs->sinfo->snd_flags &
7151 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7152 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK |
7153 SCTP_ABORT | SCTP_EOF))
7154 return -EINVAL;
7155 break;
7156 default:
7157 return -EINVAL;
7158 }
7159 }
7160
7161 return 0;
7162}
7163
7164/*
7165 * Wait for a packet..
7166 * Note: This function is the same function as in core/datagram.c
7167 * with a few modifications to make lksctp work.
7168 */
7169static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7170{
7171 int error;
7172 DEFINE_WAIT(wait);
7173
7174 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7175
7176 /* Socket errors? */
7177 error = sock_error(sk);
7178 if (error)
7179 goto out;
7180
7181 if (!skb_queue_empty(&sk->sk_receive_queue))
7182 goto ready;
7183
7184 /* Socket shut down? */
7185 if (sk->sk_shutdown & RCV_SHUTDOWN)
7186 goto out;
7187
7188 /* Sequenced packets can come disconnected. If so we report the
7189 * problem.
7190 */
7191 error = -ENOTCONN;
7192
7193 /* Is there a good reason to think that we may receive some data? */
7194 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
7195 goto out;
7196
7197 /* Handle signals. */
7198 if (signal_pending(current))
7199 goto interrupted;
7200
7201 /* Let another process have a go. Since we are going to sleep
7202 * anyway. Note: This may cause odd behaviors if the message
7203 * does not fit in the user's buffer, but this seems to be the
7204 * only way to honor MSG_DONTWAIT realistically.
7205 */
7206 release_sock(sk);
7207 *timeo_p = schedule_timeout(*timeo_p);
7208 lock_sock(sk);
7209
7210ready:
7211 finish_wait(sk_sleep(sk), &wait);
7212 return 0;
7213
7214interrupted:
7215 error = sock_intr_errno(*timeo_p);
7216
7217out:
7218 finish_wait(sk_sleep(sk), &wait);
7219 *err = error;
7220 return error;
7221}
7222
7223/* Receive a datagram.
7224 * Note: This is pretty much the same routine as in core/datagram.c
7225 * with a few changes to make lksctp work.
7226 */
7227struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7228 int noblock, int *err)
7229{
7230 int error;
7231 struct sk_buff *skb;
7232 long timeo;
7233
7234 timeo = sock_rcvtimeo(sk, noblock);
7235
7236 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
7237 MAX_SCHEDULE_TIMEOUT);
7238
7239 do {
7240 /* Again only user level code calls this function,
7241 * so nothing interrupt level
7242 * will suddenly eat the receive_queue.
7243 *
7244 * Look at current nfs client by the way...
7245 * However, this function was correct in any case. 8)
7246 */
7247 if (flags & MSG_PEEK) {
7248 skb = skb_peek(&sk->sk_receive_queue);
7249 if (skb)
7250 atomic_inc(&skb->users);
7251 } else {
7252 skb = __skb_dequeue(&sk->sk_receive_queue);
7253 }
7254
7255 if (skb)
7256 return skb;
7257
7258 /* Caller is allowed not to check sk->sk_err before calling. */
7259 error = sock_error(sk);
7260 if (error)
7261 goto no_packet;
7262
7263 if (sk->sk_shutdown & RCV_SHUTDOWN)
7264 break;
7265
7266 if (sk_can_busy_loop(sk) &&
7267 sk_busy_loop(sk, noblock))
7268 continue;
7269
7270 /* User doesn't want to wait. */
7271 error = -EAGAIN;
7272 if (!timeo)
7273 goto no_packet;
7274 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7275
7276 return NULL;
7277
7278no_packet:
7279 *err = error;
7280 return NULL;
7281}
7282
7283/* If sndbuf has changed, wake up per association sndbuf waiters. */
7284static void __sctp_write_space(struct sctp_association *asoc)
7285{
7286 struct sock *sk = asoc->base.sk;
7287
7288 if (sctp_wspace(asoc) <= 0)
7289 return;
7290
7291 if (waitqueue_active(&asoc->wait))
7292 wake_up_interruptible(&asoc->wait);
7293
7294 if (sctp_writeable(sk)) {
7295 struct socket_wq *wq;
7296
7297 rcu_read_lock();
7298 wq = rcu_dereference(sk->sk_wq);
7299 if (wq) {
7300 if (waitqueue_active(&wq->wait))
7301 wake_up_interruptible(&wq->wait);
7302
7303 /* Note that we try to include the Async I/O support
7304 * here by modeling from the current TCP/UDP code.
7305 * We have not tested with it yet.
7306 */
7307 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
7308 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
7309 }
7310 rcu_read_unlock();
7311 }
7312}
7313
7314static void sctp_wake_up_waiters(struct sock *sk,
7315 struct sctp_association *asoc)
7316{
7317 struct sctp_association *tmp = asoc;
7318
7319 /* We do accounting for the sndbuf space per association,
7320 * so we only need to wake our own association.
7321 */
7322 if (asoc->ep->sndbuf_policy)
7323 return __sctp_write_space(asoc);
7324
7325 /* If association goes down and is just flushing its
7326 * outq, then just normally notify others.
7327 */
7328 if (asoc->base.dead)
7329 return sctp_write_space(sk);
7330
7331 /* Accounting for the sndbuf space is per socket, so we
7332 * need to wake up others, try to be fair and in case of
7333 * other associations, let them have a go first instead
7334 * of just doing a sctp_write_space() call.
7335 *
7336 * Note that we reach sctp_wake_up_waiters() only when
7337 * associations free up queued chunks, thus we are under
7338 * lock and the list of associations on a socket is
7339 * guaranteed not to change.
7340 */
7341 for (tmp = list_next_entry(tmp, asocs); 1;
7342 tmp = list_next_entry(tmp, asocs)) {
7343 /* Manually skip the head element. */
7344 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7345 continue;
7346 /* Wake up association. */
7347 __sctp_write_space(tmp);
7348 /* We've reached the end. */
7349 if (tmp == asoc)
7350 break;
7351 }
7352}
7353
7354/* Do accounting for the sndbuf space.
7355 * Decrement the used sndbuf space of the corresponding association by the
7356 * data size which was just transmitted(freed).
7357 */
7358static void sctp_wfree(struct sk_buff *skb)
7359{
7360 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
7361 struct sctp_association *asoc = chunk->asoc;
7362 struct sock *sk = asoc->base.sk;
7363
7364 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
7365 sizeof(struct sk_buff) +
7366 sizeof(struct sctp_chunk);
7367
7368 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7369
7370 /*
7371 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7372 */
7373 sk->sk_wmem_queued -= skb->truesize;
7374 sk_mem_uncharge(sk, skb->truesize);
7375
7376 sock_wfree(skb);
7377 sctp_wake_up_waiters(sk, asoc);
7378
7379 sctp_association_put(asoc);
7380}
7381
7382/* Do accounting for the receive space on the socket.
7383 * Accounting for the association is done in ulpevent.c
7384 * We set this as a destructor for the cloned data skbs so that
7385 * accounting is done at the correct time.
7386 */
7387void sctp_sock_rfree(struct sk_buff *skb)
7388{
7389 struct sock *sk = skb->sk;
7390 struct sctp_ulpevent *event = sctp_skb2event(skb);
7391
7392 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
7393
7394 /*
7395 * Mimic the behavior of sock_rfree
7396 */
7397 sk_mem_uncharge(sk, event->rmem_len);
7398}
7399
7400
7401/* Helper function to wait for space in the sndbuf. */
7402static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7403 size_t msg_len)
7404{
7405 struct sock *sk = asoc->base.sk;
7406 int err = 0;
7407 long current_timeo = *timeo_p;
7408 DEFINE_WAIT(wait);
7409
7410 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
7411 *timeo_p, msg_len);
7412
7413 /* Increment the association's refcnt. */
7414 sctp_association_hold(asoc);
7415
7416 /* Wait on the association specific sndbuf space. */
7417 for (;;) {
7418 prepare_to_wait_exclusive(&asoc->wait, &wait,
7419 TASK_INTERRUPTIBLE);
7420 if (!*timeo_p)
7421 goto do_nonblock;
7422 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7423 asoc->base.dead)
7424 goto do_error;
7425 if (signal_pending(current))
7426 goto do_interrupted;
7427 if (msg_len <= sctp_wspace(asoc))
7428 break;
7429
7430 /* Let another process have a go. Since we are going
7431 * to sleep anyway.
7432 */
7433 release_sock(sk);
7434 current_timeo = schedule_timeout(current_timeo);
7435 lock_sock(sk);
7436
7437 *timeo_p = current_timeo;
7438 }
7439
7440out:
7441 finish_wait(&asoc->wait, &wait);
7442
7443 /* Release the association's refcnt. */
7444 sctp_association_put(asoc);
7445
7446 return err;
7447
7448do_error:
7449 err = -EPIPE;
7450 goto out;
7451
7452do_interrupted:
7453 err = sock_intr_errno(*timeo_p);
7454 goto out;
7455
7456do_nonblock:
7457 err = -EAGAIN;
7458 goto out;
7459}
7460
7461void sctp_data_ready(struct sock *sk)
7462{
7463 struct socket_wq *wq;
7464
7465 rcu_read_lock();
7466 wq = rcu_dereference(sk->sk_wq);
7467 if (skwq_has_sleeper(wq))
7468 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7469 POLLRDNORM | POLLRDBAND);
7470 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7471 rcu_read_unlock();
7472}
7473
7474/* If socket sndbuf has changed, wake up all per association waiters. */
7475void sctp_write_space(struct sock *sk)
7476{
7477 struct sctp_association *asoc;
7478
7479 /* Wake up the tasks in each wait queue. */
7480 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7481 __sctp_write_space(asoc);
7482 }
7483}
7484
7485/* Is there any sndbuf space available on the socket?
7486 *
7487 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7488 * associations on the same socket. For a UDP-style socket with
7489 * multiple associations, it is possible for it to be "unwriteable"
7490 * prematurely. I assume that this is acceptable because
7491 * a premature "unwriteable" is better than an accidental "writeable" which
7492 * would cause an unwanted block under certain circumstances. For the 1-1
7493 * UDP-style sockets or TCP-style sockets, this code should work.
7494 * - Daisy
7495 */
7496static int sctp_writeable(struct sock *sk)
7497{
7498 int amt = 0;
7499
7500 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7501 if (amt < 0)
7502 amt = 0;
7503 return amt;
7504}
7505
7506/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7507 * returns immediately with EINPROGRESS.
7508 */
7509static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7510{
7511 struct sock *sk = asoc->base.sk;
7512 int err = 0;
7513 long current_timeo = *timeo_p;
7514 DEFINE_WAIT(wait);
7515
7516 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7517
7518 /* Increment the association's refcnt. */
7519 sctp_association_hold(asoc);
7520
7521 for (;;) {
7522 prepare_to_wait_exclusive(&asoc->wait, &wait,
7523 TASK_INTERRUPTIBLE);
7524 if (!*timeo_p)
7525 goto do_nonblock;
7526 if (sk->sk_shutdown & RCV_SHUTDOWN)
7527 break;
7528 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7529 asoc->base.dead)
7530 goto do_error;
7531 if (signal_pending(current))
7532 goto do_interrupted;
7533
7534 if (sctp_state(asoc, ESTABLISHED))
7535 break;
7536
7537 /* Let another process have a go. Since we are going
7538 * to sleep anyway.
7539 */
7540 release_sock(sk);
7541 current_timeo = schedule_timeout(current_timeo);
7542 lock_sock(sk);
7543
7544 *timeo_p = current_timeo;
7545 }
7546
7547out:
7548 finish_wait(&asoc->wait, &wait);
7549
7550 /* Release the association's refcnt. */
7551 sctp_association_put(asoc);
7552
7553 return err;
7554
7555do_error:
7556 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7557 err = -ETIMEDOUT;
7558 else
7559 err = -ECONNREFUSED;
7560 goto out;
7561
7562do_interrupted:
7563 err = sock_intr_errno(*timeo_p);
7564 goto out;
7565
7566do_nonblock:
7567 err = -EINPROGRESS;
7568 goto out;
7569}
7570
7571static int sctp_wait_for_accept(struct sock *sk, long timeo)
7572{
7573 struct sctp_endpoint *ep;
7574 int err = 0;
7575 DEFINE_WAIT(wait);
7576
7577 ep = sctp_sk(sk)->ep;
7578
7579
7580 for (;;) {
7581 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7582 TASK_INTERRUPTIBLE);
7583
7584 if (list_empty(&ep->asocs)) {
7585 release_sock(sk);
7586 timeo = schedule_timeout(timeo);
7587 lock_sock(sk);
7588 }
7589
7590 err = -EINVAL;
7591 if (!sctp_sstate(sk, LISTENING))
7592 break;
7593
7594 err = 0;
7595 if (!list_empty(&ep->asocs))
7596 break;
7597
7598 err = sock_intr_errno(timeo);
7599 if (signal_pending(current))
7600 break;
7601
7602 err = -EAGAIN;
7603 if (!timeo)
7604 break;
7605 }
7606
7607 finish_wait(sk_sleep(sk), &wait);
7608
7609 return err;
7610}
7611
7612static void sctp_wait_for_close(struct sock *sk, long timeout)
7613{
7614 DEFINE_WAIT(wait);
7615
7616 do {
7617 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7618 if (list_empty(&sctp_sk(sk)->ep->asocs))
7619 break;
7620 release_sock(sk);
7621 timeout = schedule_timeout(timeout);
7622 lock_sock(sk);
7623 } while (!signal_pending(current) && timeout);
7624
7625 finish_wait(sk_sleep(sk), &wait);
7626}
7627
7628static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7629{
7630 struct sk_buff *frag;
7631
7632 if (!skb->data_len)
7633 goto done;
7634
7635 /* Don't forget the fragments. */
7636 skb_walk_frags(skb, frag)
7637 sctp_skb_set_owner_r_frag(frag, sk);
7638
7639done:
7640 sctp_skb_set_owner_r(skb, sk);
7641}
7642
7643void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7644 struct sctp_association *asoc)
7645{
7646 struct inet_sock *inet = inet_sk(sk);
7647 struct inet_sock *newinet;
7648
7649 newsk->sk_type = sk->sk_type;
7650 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7651 newsk->sk_flags = sk->sk_flags;
7652 newsk->sk_tsflags = sk->sk_tsflags;
7653 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7654 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7655 newsk->sk_reuse = sk->sk_reuse;
7656
7657 newsk->sk_shutdown = sk->sk_shutdown;
7658 newsk->sk_destruct = sctp_destruct_sock;
7659 newsk->sk_family = sk->sk_family;
7660 newsk->sk_protocol = IPPROTO_SCTP;
7661 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7662 newsk->sk_sndbuf = sk->sk_sndbuf;
7663 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7664 newsk->sk_lingertime = sk->sk_lingertime;
7665 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7666 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7667 newsk->sk_rxhash = sk->sk_rxhash;
7668
7669 newinet = inet_sk(newsk);
7670
7671 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7672 * getsockname() and getpeername()
7673 */
7674 newinet->inet_sport = inet->inet_sport;
7675 newinet->inet_saddr = inet->inet_saddr;
7676 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7677 newinet->inet_dport = htons(asoc->peer.port);
7678 newinet->pmtudisc = inet->pmtudisc;
7679 newinet->inet_id = asoc->next_tsn ^ jiffies;
7680
7681 newinet->uc_ttl = inet->uc_ttl;
7682 newinet->mc_loop = 1;
7683 newinet->mc_ttl = 1;
7684 newinet->mc_index = 0;
7685 newinet->mc_list = NULL;
7686
7687 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7688 net_enable_timestamp();
7689
7690 security_sk_clone(sk, newsk);
7691}
7692
7693static inline void sctp_copy_descendant(struct sock *sk_to,
7694 const struct sock *sk_from)
7695{
7696 int ancestor_size = sizeof(struct inet_sock) +
7697 sizeof(struct sctp_sock) -
7698 offsetof(struct sctp_sock, auto_asconf_list);
7699
7700 if (sk_from->sk_family == PF_INET6)
7701 ancestor_size += sizeof(struct ipv6_pinfo);
7702
7703 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7704}
7705
7706/* Populate the fields of the newsk from the oldsk and migrate the assoc
7707 * and its messages to the newsk.
7708 */
7709static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7710 struct sctp_association *assoc,
7711 sctp_socket_type_t type)
7712{
7713 struct sctp_sock *oldsp = sctp_sk(oldsk);
7714 struct sctp_sock *newsp = sctp_sk(newsk);
7715 struct sctp_bind_bucket *pp; /* hash list port iterator */
7716 struct sctp_endpoint *newep = newsp->ep;
7717 struct sk_buff *skb, *tmp;
7718 struct sctp_ulpevent *event;
7719 struct sctp_bind_hashbucket *head;
7720
7721 /* Migrate socket buffer sizes and all the socket level options to the
7722 * new socket.
7723 */
7724 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7725 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7726 /* Brute force copy old sctp opt. */
7727 sctp_copy_descendant(newsk, oldsk);
7728
7729 /* Restore the ep value that was overwritten with the above structure
7730 * copy.
7731 */
7732 newsp->ep = newep;
7733 newsp->hmac = NULL;
7734
7735 /* Hook this new socket in to the bind_hash list. */
7736 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7737 inet_sk(oldsk)->inet_num)];
7738 spin_lock_bh(&head->lock);
7739 pp = sctp_sk(oldsk)->bind_hash;
7740 sk_add_bind_node(newsk, &pp->owner);
7741 sctp_sk(newsk)->bind_hash = pp;
7742 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7743 spin_unlock_bh(&head->lock);
7744
7745 /* Copy the bind_addr list from the original endpoint to the new
7746 * endpoint so that we can handle restarts properly
7747 */
7748 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7749 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7750
7751 /* Move any messages in the old socket's receive queue that are for the
7752 * peeled off association to the new socket's receive queue.
7753 */
7754 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7755 event = sctp_skb2event(skb);
7756 if (event->asoc == assoc) {
7757 __skb_unlink(skb, &oldsk->sk_receive_queue);
7758 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7759 sctp_skb_set_owner_r_frag(skb, newsk);
7760 }
7761 }
7762
7763 /* Clean up any messages pending delivery due to partial
7764 * delivery. Three cases:
7765 * 1) No partial deliver; no work.
7766 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7767 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7768 */
7769 skb_queue_head_init(&newsp->pd_lobby);
7770 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7771
7772 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7773 struct sk_buff_head *queue;
7774
7775 /* Decide which queue to move pd_lobby skbs to. */
7776 if (assoc->ulpq.pd_mode) {
7777 queue = &newsp->pd_lobby;
7778 } else
7779 queue = &newsk->sk_receive_queue;
7780
7781 /* Walk through the pd_lobby, looking for skbs that
7782 * need moved to the new socket.
7783 */
7784 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7785 event = sctp_skb2event(skb);
7786 if (event->asoc == assoc) {
7787 __skb_unlink(skb, &oldsp->pd_lobby);
7788 __skb_queue_tail(queue, skb);
7789 sctp_skb_set_owner_r_frag(skb, newsk);
7790 }
7791 }
7792
7793 /* Clear up any skbs waiting for the partial
7794 * delivery to finish.
7795 */
7796 if (assoc->ulpq.pd_mode)
7797 sctp_clear_pd(oldsk, NULL);
7798
7799 }
7800
7801 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7802 sctp_skb_set_owner_r_frag(skb, newsk);
7803
7804 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7805 sctp_skb_set_owner_r_frag(skb, newsk);
7806
7807 /* Set the type of socket to indicate that it is peeled off from the
7808 * original UDP-style socket or created with the accept() call on a
7809 * TCP-style socket..
7810 */
7811 newsp->type = type;
7812
7813 /* Mark the new socket "in-use" by the user so that any packets
7814 * that may arrive on the association after we've moved it are
7815 * queued to the backlog. This prevents a potential race between
7816 * backlog processing on the old socket and new-packet processing
7817 * on the new socket.
7818 *
7819 * The caller has just allocated newsk so we can guarantee that other
7820 * paths won't try to lock it and then oldsk.
7821 */
7822 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7823 sctp_assoc_migrate(assoc, newsk);
7824
7825 /* If the association on the newsk is already closed before accept()
7826 * is called, set RCV_SHUTDOWN flag.
7827 */
7828 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
7829 newsk->sk_state = SCTP_SS_CLOSED;
7830 newsk->sk_shutdown |= RCV_SHUTDOWN;
7831 } else {
7832 newsk->sk_state = SCTP_SS_ESTABLISHED;
7833 }
7834
7835 release_sock(newsk);
7836}
7837
7838
7839/* This proto struct describes the ULP interface for SCTP. */
7840struct proto sctp_prot = {
7841 .name = "SCTP",
7842 .owner = THIS_MODULE,
7843 .close = sctp_close,
7844 .connect = sctp_connect,
7845 .disconnect = sctp_disconnect,
7846 .accept = sctp_accept,
7847 .ioctl = sctp_ioctl,
7848 .init = sctp_init_sock,
7849 .destroy = sctp_destroy_sock,
7850 .shutdown = sctp_shutdown,
7851 .setsockopt = sctp_setsockopt,
7852 .getsockopt = sctp_getsockopt,
7853 .sendmsg = sctp_sendmsg,
7854 .recvmsg = sctp_recvmsg,
7855 .bind = sctp_bind,
7856 .backlog_rcv = sctp_backlog_rcv,
7857 .hash = sctp_hash,
7858 .unhash = sctp_unhash,
7859 .get_port = sctp_get_port,
7860 .obj_size = sizeof(struct sctp_sock),
7861 .sysctl_mem = sysctl_sctp_mem,
7862 .sysctl_rmem = sysctl_sctp_rmem,
7863 .sysctl_wmem = sysctl_sctp_wmem,
7864 .memory_pressure = &sctp_memory_pressure,
7865 .enter_memory_pressure = sctp_enter_memory_pressure,
7866 .memory_allocated = &sctp_memory_allocated,
7867 .sockets_allocated = &sctp_sockets_allocated,
7868};
7869
7870#if IS_ENABLED(CONFIG_IPV6)
7871
7872#include <net/transp_v6.h>
7873static void sctp_v6_destroy_sock(struct sock *sk)
7874{
7875 sctp_destroy_sock(sk);
7876 inet6_destroy_sock(sk);
7877}
7878
7879struct proto sctpv6_prot = {
7880 .name = "SCTPv6",
7881 .owner = THIS_MODULE,
7882 .close = sctp_close,
7883 .connect = sctp_connect,
7884 .disconnect = sctp_disconnect,
7885 .accept = sctp_accept,
7886 .ioctl = sctp_ioctl,
7887 .init = sctp_init_sock,
7888 .destroy = sctp_v6_destroy_sock,
7889 .shutdown = sctp_shutdown,
7890 .setsockopt = sctp_setsockopt,
7891 .getsockopt = sctp_getsockopt,
7892 .sendmsg = sctp_sendmsg,
7893 .recvmsg = sctp_recvmsg,
7894 .bind = sctp_bind,
7895 .backlog_rcv = sctp_backlog_rcv,
7896 .hash = sctp_hash,
7897 .unhash = sctp_unhash,
7898 .get_port = sctp_get_port,
7899 .obj_size = sizeof(struct sctp6_sock),
7900 .sysctl_mem = sysctl_sctp_mem,
7901 .sysctl_rmem = sysctl_sctp_rmem,
7902 .sysctl_wmem = sysctl_sctp_wmem,
7903 .memory_pressure = &sctp_memory_pressure,
7904 .enter_memory_pressure = sctp_enter_memory_pressure,
7905 .memory_allocated = &sctp_memory_allocated,
7906 .sockets_allocated = &sctp_sockets_allocated,
7907};
7908#endif /* IS_ENABLED(CONFIG_IPV6) */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62
63#include <linux/socket.h> /* for sa_family_t */
64#include <linux/export.h>
65#include <net/sock.h>
66#include <net/sctp/sctp.h>
67#include <net/sctp/sm.h>
68#include <net/sctp/stream_sched.h>
69
70/* Forward declarations for internal helper functions. */
71static bool sctp_writeable(struct sock *sk);
72static void sctp_wfree(struct sk_buff *skb);
73static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77static int sctp_wait_for_accept(struct sock *sk, long timeo);
78static void sctp_wait_for_close(struct sock *sk, long timeo);
79static void sctp_destruct_sock(struct sock *sk);
80static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89static int sctp_autobind(struct sock *sk);
90static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94static unsigned long sctp_memory_pressure;
95static atomic_long_t sctp_memory_allocated;
96struct percpu_counter sctp_sockets_allocated;
97
98static void sctp_enter_memory_pressure(struct sock *sk)
99{
100 sctp_memory_pressure = 1;
101}
102
103
104/* Get the sndbuf space available at the time on the association. */
105static inline int sctp_wspace(struct sctp_association *asoc)
106{
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111}
112
113/* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
122static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123{
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143}
144
145static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146{
147 skb_orphan(chunk->skb);
148}
149
150static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
151 void (*cb)(struct sctp_chunk *))
152
153{
154 struct sctp_outq *q = &asoc->outqueue;
155 struct sctp_transport *t;
156 struct sctp_chunk *chunk;
157
158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
159 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
160 cb(chunk);
161
162 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
163 cb(chunk);
164
165 list_for_each_entry(chunk, &q->sacked, transmitted_list)
166 cb(chunk);
167
168 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
169 cb(chunk);
170
171 list_for_each_entry(chunk, &q->out_chunk_list, list)
172 cb(chunk);
173}
174
175static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
176 void (*cb)(struct sk_buff *, struct sock *))
177
178{
179 struct sk_buff *skb, *tmp;
180
181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
182 cb(skb, sk);
183
184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
185 cb(skb, sk);
186
187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
188 cb(skb, sk);
189}
190
191/* Verify that this is a valid address. */
192static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
193 int len)
194{
195 struct sctp_af *af;
196
197 /* Verify basic sockaddr. */
198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
199 if (!af)
200 return -EINVAL;
201
202 /* Is this a valid SCTP address? */
203 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
204 return -EINVAL;
205
206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
207 return -EINVAL;
208
209 return 0;
210}
211
212/* Look up the association by its id. If this is not a UDP-style
213 * socket, the ID field is always ignored.
214 */
215struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
216{
217 struct sctp_association *asoc = NULL;
218
219 /* If this is not a UDP-style socket, assoc id should be ignored. */
220 if (!sctp_style(sk, UDP)) {
221 /* Return NULL if the socket state is not ESTABLISHED. It
222 * could be a TCP-style listening socket or a socket which
223 * hasn't yet called connect() to establish an association.
224 */
225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
226 return NULL;
227
228 /* Get the first and the only association from the list. */
229 if (!list_empty(&sctp_sk(sk)->ep->asocs))
230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
231 struct sctp_association, asocs);
232 return asoc;
233 }
234
235 /* Otherwise this is a UDP-style socket. */
236 if (id <= SCTP_ALL_ASSOC)
237 return NULL;
238
239 spin_lock_bh(&sctp_assocs_id_lock);
240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
241 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
242 asoc = NULL;
243 spin_unlock_bh(&sctp_assocs_id_lock);
244
245 return asoc;
246}
247
248/* Look up the transport from an address and an assoc id. If both address and
249 * id are specified, the associations matching the address and the id should be
250 * the same.
251 */
252static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
253 struct sockaddr_storage *addr,
254 sctp_assoc_t id)
255{
256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
258 union sctp_addr *laddr = (union sctp_addr *)addr;
259 struct sctp_transport *transport;
260
261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
262 return NULL;
263
264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
265 laddr,
266 &transport);
267
268 if (!addr_asoc)
269 return NULL;
270
271 id_asoc = sctp_id2assoc(sk, id);
272 if (id_asoc && (id_asoc != addr_asoc))
273 return NULL;
274
275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
276 (union sctp_addr *)addr);
277
278 return transport;
279}
280
281/* API 3.1.2 bind() - UDP Style Syntax
282 * The syntax of bind() is,
283 *
284 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
285 *
286 * sd - the socket descriptor returned by socket().
287 * addr - the address structure (struct sockaddr_in or struct
288 * sockaddr_in6 [RFC 2553]),
289 * addr_len - the size of the address structure.
290 */
291static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
292{
293 int retval = 0;
294
295 lock_sock(sk);
296
297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
298 addr, addr_len);
299
300 /* Disallow binding twice. */
301 if (!sctp_sk(sk)->ep->base.bind_addr.port)
302 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
303 addr_len);
304 else
305 retval = -EINVAL;
306
307 release_sock(sk);
308
309 return retval;
310}
311
312static int sctp_get_port_local(struct sock *, union sctp_addr *);
313
314/* Verify this is a valid sockaddr. */
315static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
316 union sctp_addr *addr, int len)
317{
318 struct sctp_af *af;
319
320 /* Check minimum size. */
321 if (len < sizeof (struct sockaddr))
322 return NULL;
323
324 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
325 return NULL;
326
327 if (addr->sa.sa_family == AF_INET6) {
328 if (len < SIN6_LEN_RFC2133)
329 return NULL;
330 /* V4 mapped address are really of AF_INET family */
331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
332 !opt->pf->af_supported(AF_INET, opt))
333 return NULL;
334 }
335
336 /* If we get this far, af is valid. */
337 af = sctp_get_af_specific(addr->sa.sa_family);
338
339 if (len < af->sockaddr_len)
340 return NULL;
341
342 return af;
343}
344
345/* Bind a local address either to an endpoint or to an association. */
346static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
347{
348 struct net *net = sock_net(sk);
349 struct sctp_sock *sp = sctp_sk(sk);
350 struct sctp_endpoint *ep = sp->ep;
351 struct sctp_bind_addr *bp = &ep->base.bind_addr;
352 struct sctp_af *af;
353 unsigned short snum;
354 int ret = 0;
355
356 /* Common sockaddr verification. */
357 af = sctp_sockaddr_af(sp, addr, len);
358 if (!af) {
359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
360 __func__, sk, addr, len);
361 return -EINVAL;
362 }
363
364 snum = ntohs(addr->v4.sin_port);
365
366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
367 __func__, sk, &addr->sa, bp->port, snum, len);
368
369 /* PF specific bind() address verification. */
370 if (!sp->pf->bind_verify(sp, addr))
371 return -EADDRNOTAVAIL;
372
373 /* We must either be unbound, or bind to the same port.
374 * It's OK to allow 0 ports if we are already bound.
375 * We'll just inhert an already bound port in this case
376 */
377 if (bp->port) {
378 if (!snum)
379 snum = bp->port;
380 else if (snum != bp->port) {
381 pr_debug("%s: new port %d doesn't match existing port "
382 "%d\n", __func__, snum, bp->port);
383 return -EINVAL;
384 }
385 }
386
387 if (snum && snum < inet_prot_sock(net) &&
388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
389 return -EACCES;
390
391 /* See if the address matches any of the addresses we may have
392 * already bound before checking against other endpoints.
393 */
394 if (sctp_bind_addr_match(bp, addr, sp))
395 return -EINVAL;
396
397 /* Make sure we are allowed to bind here.
398 * The function sctp_get_port_local() does duplicate address
399 * detection.
400 */
401 addr->v4.sin_port = htons(snum);
402 if (sctp_get_port_local(sk, addr))
403 return -EADDRINUSE;
404
405 /* Refresh ephemeral port. */
406 if (!bp->port)
407 bp->port = inet_sk(sk)->inet_num;
408
409 /* Add the address to the bind address list.
410 * Use GFP_ATOMIC since BHs will be disabled.
411 */
412 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
413 SCTP_ADDR_SRC, GFP_ATOMIC);
414
415 if (ret) {
416 sctp_put_port(sk);
417 return ret;
418 }
419 /* Copy back into socket for getsockname() use. */
420 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
421 sp->pf->to_sk_saddr(addr, sk);
422
423 return ret;
424}
425
426 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
427 *
428 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
429 * at any one time. If a sender, after sending an ASCONF chunk, decides
430 * it needs to transfer another ASCONF Chunk, it MUST wait until the
431 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
432 * subsequent ASCONF. Note this restriction binds each side, so at any
433 * time two ASCONF may be in-transit on any given association (one sent
434 * from each endpoint).
435 */
436static int sctp_send_asconf(struct sctp_association *asoc,
437 struct sctp_chunk *chunk)
438{
439 struct net *net = sock_net(asoc->base.sk);
440 int retval = 0;
441
442 /* If there is an outstanding ASCONF chunk, queue it for later
443 * transmission.
444 */
445 if (asoc->addip_last_asconf) {
446 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
447 goto out;
448 }
449
450 /* Hold the chunk until an ASCONF_ACK is received. */
451 sctp_chunk_hold(chunk);
452 retval = sctp_primitive_ASCONF(net, asoc, chunk);
453 if (retval)
454 sctp_chunk_free(chunk);
455 else
456 asoc->addip_last_asconf = chunk;
457
458out:
459 return retval;
460}
461
462/* Add a list of addresses as bind addresses to local endpoint or
463 * association.
464 *
465 * Basically run through each address specified in the addrs/addrcnt
466 * array/length pair, determine if it is IPv6 or IPv4 and call
467 * sctp_do_bind() on it.
468 *
469 * If any of them fails, then the operation will be reversed and the
470 * ones that were added will be removed.
471 *
472 * Only sctp_setsockopt_bindx() is supposed to call this function.
473 */
474static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
475{
476 int cnt;
477 int retval = 0;
478 void *addr_buf;
479 struct sockaddr *sa_addr;
480 struct sctp_af *af;
481
482 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
483 addrs, addrcnt);
484
485 addr_buf = addrs;
486 for (cnt = 0; cnt < addrcnt; cnt++) {
487 /* The list may contain either IPv4 or IPv6 address;
488 * determine the address length for walking thru the list.
489 */
490 sa_addr = addr_buf;
491 af = sctp_get_af_specific(sa_addr->sa_family);
492 if (!af) {
493 retval = -EINVAL;
494 goto err_bindx_add;
495 }
496
497 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
498 af->sockaddr_len);
499
500 addr_buf += af->sockaddr_len;
501
502err_bindx_add:
503 if (retval < 0) {
504 /* Failed. Cleanup the ones that have been added */
505 if (cnt > 0)
506 sctp_bindx_rem(sk, addrs, cnt);
507 return retval;
508 }
509 }
510
511 return retval;
512}
513
514/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
515 * associations that are part of the endpoint indicating that a list of local
516 * addresses are added to the endpoint.
517 *
518 * If any of the addresses is already in the bind address list of the
519 * association, we do not send the chunk for that association. But it will not
520 * affect other associations.
521 *
522 * Only sctp_setsockopt_bindx() is supposed to call this function.
523 */
524static int sctp_send_asconf_add_ip(struct sock *sk,
525 struct sockaddr *addrs,
526 int addrcnt)
527{
528 struct sctp_sock *sp;
529 struct sctp_endpoint *ep;
530 struct sctp_association *asoc;
531 struct sctp_bind_addr *bp;
532 struct sctp_chunk *chunk;
533 struct sctp_sockaddr_entry *laddr;
534 union sctp_addr *addr;
535 union sctp_addr saveaddr;
536 void *addr_buf;
537 struct sctp_af *af;
538 struct list_head *p;
539 int i;
540 int retval = 0;
541
542 sp = sctp_sk(sk);
543 ep = sp->ep;
544
545 if (!ep->asconf_enable)
546 return retval;
547
548 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
549 __func__, sk, addrs, addrcnt);
550
551 list_for_each_entry(asoc, &ep->asocs, asocs) {
552 if (!asoc->peer.asconf_capable)
553 continue;
554
555 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
556 continue;
557
558 if (!sctp_state(asoc, ESTABLISHED))
559 continue;
560
561 /* Check if any address in the packed array of addresses is
562 * in the bind address list of the association. If so,
563 * do not send the asconf chunk to its peer, but continue with
564 * other associations.
565 */
566 addr_buf = addrs;
567 for (i = 0; i < addrcnt; i++) {
568 addr = addr_buf;
569 af = sctp_get_af_specific(addr->v4.sin_family);
570 if (!af) {
571 retval = -EINVAL;
572 goto out;
573 }
574
575 if (sctp_assoc_lookup_laddr(asoc, addr))
576 break;
577
578 addr_buf += af->sockaddr_len;
579 }
580 if (i < addrcnt)
581 continue;
582
583 /* Use the first valid address in bind addr list of
584 * association as Address Parameter of ASCONF CHUNK.
585 */
586 bp = &asoc->base.bind_addr;
587 p = bp->address_list.next;
588 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
589 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
590 addrcnt, SCTP_PARAM_ADD_IP);
591 if (!chunk) {
592 retval = -ENOMEM;
593 goto out;
594 }
595
596 /* Add the new addresses to the bind address list with
597 * use_as_src set to 0.
598 */
599 addr_buf = addrs;
600 for (i = 0; i < addrcnt; i++) {
601 addr = addr_buf;
602 af = sctp_get_af_specific(addr->v4.sin_family);
603 memcpy(&saveaddr, addr, af->sockaddr_len);
604 retval = sctp_add_bind_addr(bp, &saveaddr,
605 sizeof(saveaddr),
606 SCTP_ADDR_NEW, GFP_ATOMIC);
607 addr_buf += af->sockaddr_len;
608 }
609 if (asoc->src_out_of_asoc_ok) {
610 struct sctp_transport *trans;
611
612 list_for_each_entry(trans,
613 &asoc->peer.transport_addr_list, transports) {
614 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
615 2*asoc->pathmtu, 4380));
616 trans->ssthresh = asoc->peer.i.a_rwnd;
617 trans->rto = asoc->rto_initial;
618 sctp_max_rto(asoc, trans);
619 trans->rtt = trans->srtt = trans->rttvar = 0;
620 /* Clear the source and route cache */
621 sctp_transport_route(trans, NULL,
622 sctp_sk(asoc->base.sk));
623 }
624 }
625 retval = sctp_send_asconf(asoc, chunk);
626 }
627
628out:
629 return retval;
630}
631
632/* Remove a list of addresses from bind addresses list. Do not remove the
633 * last address.
634 *
635 * Basically run through each address specified in the addrs/addrcnt
636 * array/length pair, determine if it is IPv6 or IPv4 and call
637 * sctp_del_bind() on it.
638 *
639 * If any of them fails, then the operation will be reversed and the
640 * ones that were removed will be added back.
641 *
642 * At least one address has to be left; if only one address is
643 * available, the operation will return -EBUSY.
644 *
645 * Only sctp_setsockopt_bindx() is supposed to call this function.
646 */
647static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
648{
649 struct sctp_sock *sp = sctp_sk(sk);
650 struct sctp_endpoint *ep = sp->ep;
651 int cnt;
652 struct sctp_bind_addr *bp = &ep->base.bind_addr;
653 int retval = 0;
654 void *addr_buf;
655 union sctp_addr *sa_addr;
656 struct sctp_af *af;
657
658 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
659 __func__, sk, addrs, addrcnt);
660
661 addr_buf = addrs;
662 for (cnt = 0; cnt < addrcnt; cnt++) {
663 /* If the bind address list is empty or if there is only one
664 * bind address, there is nothing more to be removed (we need
665 * at least one address here).
666 */
667 if (list_empty(&bp->address_list) ||
668 (sctp_list_single_entry(&bp->address_list))) {
669 retval = -EBUSY;
670 goto err_bindx_rem;
671 }
672
673 sa_addr = addr_buf;
674 af = sctp_get_af_specific(sa_addr->sa.sa_family);
675 if (!af) {
676 retval = -EINVAL;
677 goto err_bindx_rem;
678 }
679
680 if (!af->addr_valid(sa_addr, sp, NULL)) {
681 retval = -EADDRNOTAVAIL;
682 goto err_bindx_rem;
683 }
684
685 if (sa_addr->v4.sin_port &&
686 sa_addr->v4.sin_port != htons(bp->port)) {
687 retval = -EINVAL;
688 goto err_bindx_rem;
689 }
690
691 if (!sa_addr->v4.sin_port)
692 sa_addr->v4.sin_port = htons(bp->port);
693
694 /* FIXME - There is probably a need to check if sk->sk_saddr and
695 * sk->sk_rcv_addr are currently set to one of the addresses to
696 * be removed. This is something which needs to be looked into
697 * when we are fixing the outstanding issues with multi-homing
698 * socket routing and failover schemes. Refer to comments in
699 * sctp_do_bind(). -daisy
700 */
701 retval = sctp_del_bind_addr(bp, sa_addr);
702
703 addr_buf += af->sockaddr_len;
704err_bindx_rem:
705 if (retval < 0) {
706 /* Failed. Add the ones that has been removed back */
707 if (cnt > 0)
708 sctp_bindx_add(sk, addrs, cnt);
709 return retval;
710 }
711 }
712
713 return retval;
714}
715
716/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
717 * the associations that are part of the endpoint indicating that a list of
718 * local addresses are removed from the endpoint.
719 *
720 * If any of the addresses is already in the bind address list of the
721 * association, we do not send the chunk for that association. But it will not
722 * affect other associations.
723 *
724 * Only sctp_setsockopt_bindx() is supposed to call this function.
725 */
726static int sctp_send_asconf_del_ip(struct sock *sk,
727 struct sockaddr *addrs,
728 int addrcnt)
729{
730 struct sctp_sock *sp;
731 struct sctp_endpoint *ep;
732 struct sctp_association *asoc;
733 struct sctp_transport *transport;
734 struct sctp_bind_addr *bp;
735 struct sctp_chunk *chunk;
736 union sctp_addr *laddr;
737 void *addr_buf;
738 struct sctp_af *af;
739 struct sctp_sockaddr_entry *saddr;
740 int i;
741 int retval = 0;
742 int stored = 0;
743
744 chunk = NULL;
745 sp = sctp_sk(sk);
746 ep = sp->ep;
747
748 if (!ep->asconf_enable)
749 return retval;
750
751 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
752 __func__, sk, addrs, addrcnt);
753
754 list_for_each_entry(asoc, &ep->asocs, asocs) {
755
756 if (!asoc->peer.asconf_capable)
757 continue;
758
759 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
760 continue;
761
762 if (!sctp_state(asoc, ESTABLISHED))
763 continue;
764
765 /* Check if any address in the packed array of addresses is
766 * not present in the bind address list of the association.
767 * If so, do not send the asconf chunk to its peer, but
768 * continue with other associations.
769 */
770 addr_buf = addrs;
771 for (i = 0; i < addrcnt; i++) {
772 laddr = addr_buf;
773 af = sctp_get_af_specific(laddr->v4.sin_family);
774 if (!af) {
775 retval = -EINVAL;
776 goto out;
777 }
778
779 if (!sctp_assoc_lookup_laddr(asoc, laddr))
780 break;
781
782 addr_buf += af->sockaddr_len;
783 }
784 if (i < addrcnt)
785 continue;
786
787 /* Find one address in the association's bind address list
788 * that is not in the packed array of addresses. This is to
789 * make sure that we do not delete all the addresses in the
790 * association.
791 */
792 bp = &asoc->base.bind_addr;
793 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
794 addrcnt, sp);
795 if ((laddr == NULL) && (addrcnt == 1)) {
796 if (asoc->asconf_addr_del_pending)
797 continue;
798 asoc->asconf_addr_del_pending =
799 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
800 if (asoc->asconf_addr_del_pending == NULL) {
801 retval = -ENOMEM;
802 goto out;
803 }
804 asoc->asconf_addr_del_pending->sa.sa_family =
805 addrs->sa_family;
806 asoc->asconf_addr_del_pending->v4.sin_port =
807 htons(bp->port);
808 if (addrs->sa_family == AF_INET) {
809 struct sockaddr_in *sin;
810
811 sin = (struct sockaddr_in *)addrs;
812 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
813 } else if (addrs->sa_family == AF_INET6) {
814 struct sockaddr_in6 *sin6;
815
816 sin6 = (struct sockaddr_in6 *)addrs;
817 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
818 }
819
820 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
821 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
822 asoc->asconf_addr_del_pending);
823
824 asoc->src_out_of_asoc_ok = 1;
825 stored = 1;
826 goto skip_mkasconf;
827 }
828
829 if (laddr == NULL)
830 return -EINVAL;
831
832 /* We do not need RCU protection throughout this loop
833 * because this is done under a socket lock from the
834 * setsockopt call.
835 */
836 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
837 SCTP_PARAM_DEL_IP);
838 if (!chunk) {
839 retval = -ENOMEM;
840 goto out;
841 }
842
843skip_mkasconf:
844 /* Reset use_as_src flag for the addresses in the bind address
845 * list that are to be deleted.
846 */
847 addr_buf = addrs;
848 for (i = 0; i < addrcnt; i++) {
849 laddr = addr_buf;
850 af = sctp_get_af_specific(laddr->v4.sin_family);
851 list_for_each_entry(saddr, &bp->address_list, list) {
852 if (sctp_cmp_addr_exact(&saddr->a, laddr))
853 saddr->state = SCTP_ADDR_DEL;
854 }
855 addr_buf += af->sockaddr_len;
856 }
857
858 /* Update the route and saddr entries for all the transports
859 * as some of the addresses in the bind address list are
860 * about to be deleted and cannot be used as source addresses.
861 */
862 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
863 transports) {
864 sctp_transport_route(transport, NULL,
865 sctp_sk(asoc->base.sk));
866 }
867
868 if (stored)
869 /* We don't need to transmit ASCONF */
870 continue;
871 retval = sctp_send_asconf(asoc, chunk);
872 }
873out:
874 return retval;
875}
876
877/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
878int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
879{
880 struct sock *sk = sctp_opt2sk(sp);
881 union sctp_addr *addr;
882 struct sctp_af *af;
883
884 /* It is safe to write port space in caller. */
885 addr = &addrw->a;
886 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
887 af = sctp_get_af_specific(addr->sa.sa_family);
888 if (!af)
889 return -EINVAL;
890 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
891 return -EINVAL;
892
893 if (addrw->state == SCTP_ADDR_NEW)
894 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
895 else
896 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
897}
898
899/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
900 *
901 * API 8.1
902 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
903 * int flags);
904 *
905 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
906 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
907 * or IPv6 addresses.
908 *
909 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
910 * Section 3.1.2 for this usage.
911 *
912 * addrs is a pointer to an array of one or more socket addresses. Each
913 * address is contained in its appropriate structure (i.e. struct
914 * sockaddr_in or struct sockaddr_in6) the family of the address type
915 * must be used to distinguish the address length (note that this
916 * representation is termed a "packed array" of addresses). The caller
917 * specifies the number of addresses in the array with addrcnt.
918 *
919 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
920 * -1, and sets errno to the appropriate error code.
921 *
922 * For SCTP, the port given in each socket address must be the same, or
923 * sctp_bindx() will fail, setting errno to EINVAL.
924 *
925 * The flags parameter is formed from the bitwise OR of zero or more of
926 * the following currently defined flags:
927 *
928 * SCTP_BINDX_ADD_ADDR
929 *
930 * SCTP_BINDX_REM_ADDR
931 *
932 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
933 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
934 * addresses from the association. The two flags are mutually exclusive;
935 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
936 * not remove all addresses from an association; sctp_bindx() will
937 * reject such an attempt with EINVAL.
938 *
939 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
940 * additional addresses with an endpoint after calling bind(). Or use
941 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
942 * socket is associated with so that no new association accepted will be
943 * associated with those addresses. If the endpoint supports dynamic
944 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
945 * endpoint to send the appropriate message to the peer to change the
946 * peers address lists.
947 *
948 * Adding and removing addresses from a connected association is
949 * optional functionality. Implementations that do not support this
950 * functionality should return EOPNOTSUPP.
951 *
952 * Basically do nothing but copying the addresses from user to kernel
953 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
954 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
955 * from userspace.
956 *
957 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
958 * it.
959 *
960 * sk The sk of the socket
961 * addrs The pointer to the addresses in user land
962 * addrssize Size of the addrs buffer
963 * op Operation to perform (add or remove, see the flags of
964 * sctp_bindx)
965 *
966 * Returns 0 if ok, <0 errno code on error.
967 */
968static int sctp_setsockopt_bindx(struct sock *sk,
969 struct sockaddr __user *addrs,
970 int addrs_size, int op)
971{
972 struct sockaddr *kaddrs;
973 int err;
974 int addrcnt = 0;
975 int walk_size = 0;
976 struct sockaddr *sa_addr;
977 void *addr_buf;
978 struct sctp_af *af;
979
980 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
981 __func__, sk, addrs, addrs_size, op);
982
983 if (unlikely(addrs_size <= 0))
984 return -EINVAL;
985
986 kaddrs = memdup_user(addrs, addrs_size);
987 if (IS_ERR(kaddrs))
988 return PTR_ERR(kaddrs);
989
990 /* Walk through the addrs buffer and count the number of addresses. */
991 addr_buf = kaddrs;
992 while (walk_size < addrs_size) {
993 if (walk_size + sizeof(sa_family_t) > addrs_size) {
994 kfree(kaddrs);
995 return -EINVAL;
996 }
997
998 sa_addr = addr_buf;
999 af = sctp_get_af_specific(sa_addr->sa_family);
1000
1001 /* If the address family is not supported or if this address
1002 * causes the address buffer to overflow return EINVAL.
1003 */
1004 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1005 kfree(kaddrs);
1006 return -EINVAL;
1007 }
1008 addrcnt++;
1009 addr_buf += af->sockaddr_len;
1010 walk_size += af->sockaddr_len;
1011 }
1012
1013 /* Do the work. */
1014 switch (op) {
1015 case SCTP_BINDX_ADD_ADDR:
1016 /* Allow security module to validate bindx addresses. */
1017 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1018 (struct sockaddr *)kaddrs,
1019 addrs_size);
1020 if (err)
1021 goto out;
1022 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1023 if (err)
1024 goto out;
1025 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1026 break;
1027
1028 case SCTP_BINDX_REM_ADDR:
1029 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1030 if (err)
1031 goto out;
1032 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1033 break;
1034
1035 default:
1036 err = -EINVAL;
1037 break;
1038 }
1039
1040out:
1041 kfree(kaddrs);
1042
1043 return err;
1044}
1045
1046static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1047 const union sctp_addr *daddr,
1048 const struct sctp_initmsg *init,
1049 struct sctp_transport **tp)
1050{
1051 struct sctp_association *asoc;
1052 struct sock *sk = ep->base.sk;
1053 struct net *net = sock_net(sk);
1054 enum sctp_scope scope;
1055 int err;
1056
1057 if (sctp_endpoint_is_peeled_off(ep, daddr))
1058 return -EADDRNOTAVAIL;
1059
1060 if (!ep->base.bind_addr.port) {
1061 if (sctp_autobind(sk))
1062 return -EAGAIN;
1063 } else {
1064 if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1065 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1066 return -EACCES;
1067 }
1068
1069 scope = sctp_scope(daddr);
1070 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1071 if (!asoc)
1072 return -ENOMEM;
1073
1074 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1075 if (err < 0)
1076 goto free;
1077
1078 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1079 if (!*tp) {
1080 err = -ENOMEM;
1081 goto free;
1082 }
1083
1084 if (!init)
1085 return 0;
1086
1087 if (init->sinit_num_ostreams) {
1088 __u16 outcnt = init->sinit_num_ostreams;
1089
1090 asoc->c.sinit_num_ostreams = outcnt;
1091 /* outcnt has been changed, need to re-init stream */
1092 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1093 if (err)
1094 goto free;
1095 }
1096
1097 if (init->sinit_max_instreams)
1098 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1099
1100 if (init->sinit_max_attempts)
1101 asoc->max_init_attempts = init->sinit_max_attempts;
1102
1103 if (init->sinit_max_init_timeo)
1104 asoc->max_init_timeo =
1105 msecs_to_jiffies(init->sinit_max_init_timeo);
1106
1107 return 0;
1108free:
1109 sctp_association_free(asoc);
1110 return err;
1111}
1112
1113static int sctp_connect_add_peer(struct sctp_association *asoc,
1114 union sctp_addr *daddr, int addr_len)
1115{
1116 struct sctp_endpoint *ep = asoc->ep;
1117 struct sctp_association *old;
1118 struct sctp_transport *t;
1119 int err;
1120
1121 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1122 if (err)
1123 return err;
1124
1125 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1126 if (old && old != asoc)
1127 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1128 : -EALREADY;
1129
1130 if (sctp_endpoint_is_peeled_off(ep, daddr))
1131 return -EADDRNOTAVAIL;
1132
1133 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1134 if (!t)
1135 return -ENOMEM;
1136
1137 return 0;
1138}
1139
1140/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1141 *
1142 * Common routine for handling connect() and sctp_connectx().
1143 * Connect will come in with just a single address.
1144 */
1145static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1146 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1147{
1148 struct sctp_sock *sp = sctp_sk(sk);
1149 struct sctp_endpoint *ep = sp->ep;
1150 struct sctp_transport *transport;
1151 struct sctp_association *asoc;
1152 void *addr_buf = kaddrs;
1153 union sctp_addr *daddr;
1154 struct sctp_af *af;
1155 int walk_size, err;
1156 long timeo;
1157
1158 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1159 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1160 return -EISCONN;
1161
1162 daddr = addr_buf;
1163 af = sctp_get_af_specific(daddr->sa.sa_family);
1164 if (!af || af->sockaddr_len > addrs_size)
1165 return -EINVAL;
1166
1167 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1168 if (err)
1169 return err;
1170
1171 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1172 if (asoc)
1173 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1174 : -EALREADY;
1175
1176 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1177 if (err)
1178 return err;
1179 asoc = transport->asoc;
1180
1181 addr_buf += af->sockaddr_len;
1182 walk_size = af->sockaddr_len;
1183 while (walk_size < addrs_size) {
1184 err = -EINVAL;
1185 if (walk_size + sizeof(sa_family_t) > addrs_size)
1186 goto out_free;
1187
1188 daddr = addr_buf;
1189 af = sctp_get_af_specific(daddr->sa.sa_family);
1190 if (!af || af->sockaddr_len + walk_size > addrs_size)
1191 goto out_free;
1192
1193 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1194 goto out_free;
1195
1196 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1197 if (err)
1198 goto out_free;
1199
1200 addr_buf += af->sockaddr_len;
1201 walk_size += af->sockaddr_len;
1202 }
1203
1204 /* In case the user of sctp_connectx() wants an association
1205 * id back, assign one now.
1206 */
1207 if (assoc_id) {
1208 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1209 if (err < 0)
1210 goto out_free;
1211 }
1212
1213 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1214 if (err < 0)
1215 goto out_free;
1216
1217 /* Initialize sk's dport and daddr for getpeername() */
1218 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1219 sp->pf->to_sk_daddr(daddr, sk);
1220 sk->sk_err = 0;
1221
1222 if (assoc_id)
1223 *assoc_id = asoc->assoc_id;
1224
1225 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1226 return sctp_wait_for_connect(asoc, &timeo);
1227
1228out_free:
1229 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1230 __func__, asoc, kaddrs, err);
1231 sctp_association_free(asoc);
1232 return err;
1233}
1234
1235/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1236 *
1237 * API 8.9
1238 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1239 * sctp_assoc_t *asoc);
1240 *
1241 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1242 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1243 * or IPv6 addresses.
1244 *
1245 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1246 * Section 3.1.2 for this usage.
1247 *
1248 * addrs is a pointer to an array of one or more socket addresses. Each
1249 * address is contained in its appropriate structure (i.e. struct
1250 * sockaddr_in or struct sockaddr_in6) the family of the address type
1251 * must be used to distengish the address length (note that this
1252 * representation is termed a "packed array" of addresses). The caller
1253 * specifies the number of addresses in the array with addrcnt.
1254 *
1255 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1256 * the association id of the new association. On failure, sctp_connectx()
1257 * returns -1, and sets errno to the appropriate error code. The assoc_id
1258 * is not touched by the kernel.
1259 *
1260 * For SCTP, the port given in each socket address must be the same, or
1261 * sctp_connectx() will fail, setting errno to EINVAL.
1262 *
1263 * An application can use sctp_connectx to initiate an association with
1264 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1265 * allows a caller to specify multiple addresses at which a peer can be
1266 * reached. The way the SCTP stack uses the list of addresses to set up
1267 * the association is implementation dependent. This function only
1268 * specifies that the stack will try to make use of all the addresses in
1269 * the list when needed.
1270 *
1271 * Note that the list of addresses passed in is only used for setting up
1272 * the association. It does not necessarily equal the set of addresses
1273 * the peer uses for the resulting association. If the caller wants to
1274 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1275 * retrieve them after the association has been set up.
1276 *
1277 * Basically do nothing but copying the addresses from user to kernel
1278 * land and invoking either sctp_connectx(). This is used for tunneling
1279 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1280 *
1281 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1282 * it.
1283 *
1284 * sk The sk of the socket
1285 * addrs The pointer to the addresses in user land
1286 * addrssize Size of the addrs buffer
1287 *
1288 * Returns >=0 if ok, <0 errno code on error.
1289 */
1290static int __sctp_setsockopt_connectx(struct sock *sk,
1291 struct sockaddr __user *addrs,
1292 int addrs_size,
1293 sctp_assoc_t *assoc_id)
1294{
1295 struct sockaddr *kaddrs;
1296 int err = 0, flags = 0;
1297
1298 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1299 __func__, sk, addrs, addrs_size);
1300
1301 /* make sure the 1st addr's sa_family is accessible later */
1302 if (unlikely(addrs_size < sizeof(sa_family_t)))
1303 return -EINVAL;
1304
1305 kaddrs = memdup_user(addrs, addrs_size);
1306 if (IS_ERR(kaddrs))
1307 return PTR_ERR(kaddrs);
1308
1309 /* Allow security module to validate connectx addresses. */
1310 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1311 (struct sockaddr *)kaddrs,
1312 addrs_size);
1313 if (err)
1314 goto out_free;
1315
1316 /* in-kernel sockets don't generally have a file allocated to them
1317 * if all they do is call sock_create_kern().
1318 */
1319 if (sk->sk_socket->file)
1320 flags = sk->sk_socket->file->f_flags;
1321
1322 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1323
1324out_free:
1325 kfree(kaddrs);
1326
1327 return err;
1328}
1329
1330/*
1331 * This is an older interface. It's kept for backward compatibility
1332 * to the option that doesn't provide association id.
1333 */
1334static int sctp_setsockopt_connectx_old(struct sock *sk,
1335 struct sockaddr __user *addrs,
1336 int addrs_size)
1337{
1338 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1339}
1340
1341/*
1342 * New interface for the API. The since the API is done with a socket
1343 * option, to make it simple we feed back the association id is as a return
1344 * indication to the call. Error is always negative and association id is
1345 * always positive.
1346 */
1347static int sctp_setsockopt_connectx(struct sock *sk,
1348 struct sockaddr __user *addrs,
1349 int addrs_size)
1350{
1351 sctp_assoc_t assoc_id = 0;
1352 int err = 0;
1353
1354 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1355
1356 if (err)
1357 return err;
1358 else
1359 return assoc_id;
1360}
1361
1362/*
1363 * New (hopefully final) interface for the API.
1364 * We use the sctp_getaddrs_old structure so that use-space library
1365 * can avoid any unnecessary allocations. The only different part
1366 * is that we store the actual length of the address buffer into the
1367 * addrs_num structure member. That way we can re-use the existing
1368 * code.
1369 */
1370#ifdef CONFIG_COMPAT
1371struct compat_sctp_getaddrs_old {
1372 sctp_assoc_t assoc_id;
1373 s32 addr_num;
1374 compat_uptr_t addrs; /* struct sockaddr * */
1375};
1376#endif
1377
1378static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1379 char __user *optval,
1380 int __user *optlen)
1381{
1382 struct sctp_getaddrs_old param;
1383 sctp_assoc_t assoc_id = 0;
1384 int err = 0;
1385
1386#ifdef CONFIG_COMPAT
1387 if (in_compat_syscall()) {
1388 struct compat_sctp_getaddrs_old param32;
1389
1390 if (len < sizeof(param32))
1391 return -EINVAL;
1392 if (copy_from_user(¶m32, optval, sizeof(param32)))
1393 return -EFAULT;
1394
1395 param.assoc_id = param32.assoc_id;
1396 param.addr_num = param32.addr_num;
1397 param.addrs = compat_ptr(param32.addrs);
1398 } else
1399#endif
1400 {
1401 if (len < sizeof(param))
1402 return -EINVAL;
1403 if (copy_from_user(¶m, optval, sizeof(param)))
1404 return -EFAULT;
1405 }
1406
1407 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1408 param.addrs, param.addr_num,
1409 &assoc_id);
1410 if (err == 0 || err == -EINPROGRESS) {
1411 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1412 return -EFAULT;
1413 if (put_user(sizeof(assoc_id), optlen))
1414 return -EFAULT;
1415 }
1416
1417 return err;
1418}
1419
1420/* API 3.1.4 close() - UDP Style Syntax
1421 * Applications use close() to perform graceful shutdown (as described in
1422 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1423 * by a UDP-style socket.
1424 *
1425 * The syntax is
1426 *
1427 * ret = close(int sd);
1428 *
1429 * sd - the socket descriptor of the associations to be closed.
1430 *
1431 * To gracefully shutdown a specific association represented by the
1432 * UDP-style socket, an application should use the sendmsg() call,
1433 * passing no user data, but including the appropriate flag in the
1434 * ancillary data (see Section xxxx).
1435 *
1436 * If sd in the close() call is a branched-off socket representing only
1437 * one association, the shutdown is performed on that association only.
1438 *
1439 * 4.1.6 close() - TCP Style Syntax
1440 *
1441 * Applications use close() to gracefully close down an association.
1442 *
1443 * The syntax is:
1444 *
1445 * int close(int sd);
1446 *
1447 * sd - the socket descriptor of the association to be closed.
1448 *
1449 * After an application calls close() on a socket descriptor, no further
1450 * socket operations will succeed on that descriptor.
1451 *
1452 * API 7.1.4 SO_LINGER
1453 *
1454 * An application using the TCP-style socket can use this option to
1455 * perform the SCTP ABORT primitive. The linger option structure is:
1456 *
1457 * struct linger {
1458 * int l_onoff; // option on/off
1459 * int l_linger; // linger time
1460 * };
1461 *
1462 * To enable the option, set l_onoff to 1. If the l_linger value is set
1463 * to 0, calling close() is the same as the ABORT primitive. If the
1464 * value is set to a negative value, the setsockopt() call will return
1465 * an error. If the value is set to a positive value linger_time, the
1466 * close() can be blocked for at most linger_time ms. If the graceful
1467 * shutdown phase does not finish during this period, close() will
1468 * return but the graceful shutdown phase continues in the system.
1469 */
1470static void sctp_close(struct sock *sk, long timeout)
1471{
1472 struct net *net = sock_net(sk);
1473 struct sctp_endpoint *ep;
1474 struct sctp_association *asoc;
1475 struct list_head *pos, *temp;
1476 unsigned int data_was_unread;
1477
1478 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1479
1480 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1481 sk->sk_shutdown = SHUTDOWN_MASK;
1482 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1483
1484 ep = sctp_sk(sk)->ep;
1485
1486 /* Clean up any skbs sitting on the receive queue. */
1487 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1488 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1489
1490 /* Walk all associations on an endpoint. */
1491 list_for_each_safe(pos, temp, &ep->asocs) {
1492 asoc = list_entry(pos, struct sctp_association, asocs);
1493
1494 if (sctp_style(sk, TCP)) {
1495 /* A closed association can still be in the list if
1496 * it belongs to a TCP-style listening socket that is
1497 * not yet accepted. If so, free it. If not, send an
1498 * ABORT or SHUTDOWN based on the linger options.
1499 */
1500 if (sctp_state(asoc, CLOSED)) {
1501 sctp_association_free(asoc);
1502 continue;
1503 }
1504 }
1505
1506 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1507 !skb_queue_empty(&asoc->ulpq.reasm) ||
1508 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1509 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1510 struct sctp_chunk *chunk;
1511
1512 chunk = sctp_make_abort_user(asoc, NULL, 0);
1513 sctp_primitive_ABORT(net, asoc, chunk);
1514 } else
1515 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1516 }
1517
1518 /* On a TCP-style socket, block for at most linger_time if set. */
1519 if (sctp_style(sk, TCP) && timeout)
1520 sctp_wait_for_close(sk, timeout);
1521
1522 /* This will run the backlog queue. */
1523 release_sock(sk);
1524
1525 /* Supposedly, no process has access to the socket, but
1526 * the net layers still may.
1527 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1528 * held and that should be grabbed before socket lock.
1529 */
1530 spin_lock_bh(&net->sctp.addr_wq_lock);
1531 bh_lock_sock_nested(sk);
1532
1533 /* Hold the sock, since sk_common_release() will put sock_put()
1534 * and we have just a little more cleanup.
1535 */
1536 sock_hold(sk);
1537 sk_common_release(sk);
1538
1539 bh_unlock_sock(sk);
1540 spin_unlock_bh(&net->sctp.addr_wq_lock);
1541
1542 sock_put(sk);
1543
1544 SCTP_DBG_OBJCNT_DEC(sock);
1545}
1546
1547/* Handle EPIPE error. */
1548static int sctp_error(struct sock *sk, int flags, int err)
1549{
1550 if (err == -EPIPE)
1551 err = sock_error(sk) ? : -EPIPE;
1552 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1553 send_sig(SIGPIPE, current, 0);
1554 return err;
1555}
1556
1557/* API 3.1.3 sendmsg() - UDP Style Syntax
1558 *
1559 * An application uses sendmsg() and recvmsg() calls to transmit data to
1560 * and receive data from its peer.
1561 *
1562 * ssize_t sendmsg(int socket, const struct msghdr *message,
1563 * int flags);
1564 *
1565 * socket - the socket descriptor of the endpoint.
1566 * message - pointer to the msghdr structure which contains a single
1567 * user message and possibly some ancillary data.
1568 *
1569 * See Section 5 for complete description of the data
1570 * structures.
1571 *
1572 * flags - flags sent or received with the user message, see Section
1573 * 5 for complete description of the flags.
1574 *
1575 * Note: This function could use a rewrite especially when explicit
1576 * connect support comes in.
1577 */
1578/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1579
1580static int sctp_msghdr_parse(const struct msghdr *msg,
1581 struct sctp_cmsgs *cmsgs);
1582
1583static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1584 struct sctp_sndrcvinfo *srinfo,
1585 const struct msghdr *msg, size_t msg_len)
1586{
1587 __u16 sflags;
1588 int err;
1589
1590 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1591 return -EPIPE;
1592
1593 if (msg_len > sk->sk_sndbuf)
1594 return -EMSGSIZE;
1595
1596 memset(cmsgs, 0, sizeof(*cmsgs));
1597 err = sctp_msghdr_parse(msg, cmsgs);
1598 if (err) {
1599 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1600 return err;
1601 }
1602
1603 memset(srinfo, 0, sizeof(*srinfo));
1604 if (cmsgs->srinfo) {
1605 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1606 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1607 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1608 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1609 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1610 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1611 }
1612
1613 if (cmsgs->sinfo) {
1614 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1615 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1616 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1617 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1618 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1619 }
1620
1621 if (cmsgs->prinfo) {
1622 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1623 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1624 cmsgs->prinfo->pr_policy);
1625 }
1626
1627 sflags = srinfo->sinfo_flags;
1628 if (!sflags && msg_len)
1629 return 0;
1630
1631 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1632 return -EINVAL;
1633
1634 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1635 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1636 return -EINVAL;
1637
1638 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1639 return -EINVAL;
1640
1641 return 0;
1642}
1643
1644static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1645 struct sctp_cmsgs *cmsgs,
1646 union sctp_addr *daddr,
1647 struct sctp_transport **tp)
1648{
1649 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1650 struct sctp_association *asoc;
1651 struct cmsghdr *cmsg;
1652 __be32 flowinfo = 0;
1653 struct sctp_af *af;
1654 int err;
1655
1656 *tp = NULL;
1657
1658 if (sflags & (SCTP_EOF | SCTP_ABORT))
1659 return -EINVAL;
1660
1661 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1662 sctp_sstate(sk, CLOSING)))
1663 return -EADDRNOTAVAIL;
1664
1665 /* Label connection socket for first association 1-to-many
1666 * style for client sequence socket()->sendmsg(). This
1667 * needs to be done before sctp_assoc_add_peer() as that will
1668 * set up the initial packet that needs to account for any
1669 * security ip options (CIPSO/CALIPSO) added to the packet.
1670 */
1671 af = sctp_get_af_specific(daddr->sa.sa_family);
1672 if (!af)
1673 return -EINVAL;
1674 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1675 (struct sockaddr *)daddr,
1676 af->sockaddr_len);
1677 if (err < 0)
1678 return err;
1679
1680 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1681 if (err)
1682 return err;
1683 asoc = (*tp)->asoc;
1684
1685 if (!cmsgs->addrs_msg)
1686 return 0;
1687
1688 if (daddr->sa.sa_family == AF_INET6)
1689 flowinfo = daddr->v6.sin6_flowinfo;
1690
1691 /* sendv addr list parse */
1692 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1693 union sctp_addr _daddr;
1694 int dlen;
1695
1696 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1697 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1698 cmsg->cmsg_type != SCTP_DSTADDRV6))
1699 continue;
1700
1701 daddr = &_daddr;
1702 memset(daddr, 0, sizeof(*daddr));
1703 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1704 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1705 if (dlen < sizeof(struct in_addr)) {
1706 err = -EINVAL;
1707 goto free;
1708 }
1709
1710 dlen = sizeof(struct in_addr);
1711 daddr->v4.sin_family = AF_INET;
1712 daddr->v4.sin_port = htons(asoc->peer.port);
1713 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1714 } else {
1715 if (dlen < sizeof(struct in6_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in6_addr);
1721 daddr->v6.sin6_flowinfo = flowinfo;
1722 daddr->v6.sin6_family = AF_INET6;
1723 daddr->v6.sin6_port = htons(asoc->peer.port);
1724 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1725 }
1726
1727 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1728 if (err)
1729 goto free;
1730 }
1731
1732 return 0;
1733
1734free:
1735 sctp_association_free(asoc);
1736 return err;
1737}
1738
1739static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1740 __u16 sflags, struct msghdr *msg,
1741 size_t msg_len)
1742{
1743 struct sock *sk = asoc->base.sk;
1744 struct net *net = sock_net(sk);
1745
1746 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1747 return -EPIPE;
1748
1749 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1750 !sctp_state(asoc, ESTABLISHED))
1751 return 0;
1752
1753 if (sflags & SCTP_EOF) {
1754 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1755 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1756
1757 return 0;
1758 }
1759
1760 if (sflags & SCTP_ABORT) {
1761 struct sctp_chunk *chunk;
1762
1763 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1764 if (!chunk)
1765 return -ENOMEM;
1766
1767 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1768 sctp_primitive_ABORT(net, asoc, chunk);
1769 iov_iter_revert(&msg->msg_iter, msg_len);
1770
1771 return 0;
1772 }
1773
1774 return 1;
1775}
1776
1777static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1778 struct msghdr *msg, size_t msg_len,
1779 struct sctp_transport *transport,
1780 struct sctp_sndrcvinfo *sinfo)
1781{
1782 struct sock *sk = asoc->base.sk;
1783 struct sctp_sock *sp = sctp_sk(sk);
1784 struct net *net = sock_net(sk);
1785 struct sctp_datamsg *datamsg;
1786 bool wait_connect = false;
1787 struct sctp_chunk *chunk;
1788 long timeo;
1789 int err;
1790
1791 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1792 err = -EINVAL;
1793 goto err;
1794 }
1795
1796 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1797 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1798 if (err)
1799 goto err;
1800 }
1801
1802 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1803 err = -EMSGSIZE;
1804 goto err;
1805 }
1806
1807 if (asoc->pmtu_pending) {
1808 if (sp->param_flags & SPP_PMTUD_ENABLE)
1809 sctp_assoc_sync_pmtu(asoc);
1810 asoc->pmtu_pending = 0;
1811 }
1812
1813 if (sctp_wspace(asoc) < (int)msg_len)
1814 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1815
1816 if (sk_under_memory_pressure(sk))
1817 sk_mem_reclaim(sk);
1818
1819 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1820 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1821 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1822 if (err)
1823 goto err;
1824 }
1825
1826 if (sctp_state(asoc, CLOSED)) {
1827 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1828 if (err)
1829 goto err;
1830
1831 if (asoc->ep->intl_enable) {
1832 timeo = sock_sndtimeo(sk, 0);
1833 err = sctp_wait_for_connect(asoc, &timeo);
1834 if (err) {
1835 err = -ESRCH;
1836 goto err;
1837 }
1838 } else {
1839 wait_connect = true;
1840 }
1841
1842 pr_debug("%s: we associated primitively\n", __func__);
1843 }
1844
1845 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1846 if (IS_ERR(datamsg)) {
1847 err = PTR_ERR(datamsg);
1848 goto err;
1849 }
1850
1851 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1852
1853 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1854 sctp_chunk_hold(chunk);
1855 sctp_set_owner_w(chunk);
1856 chunk->transport = transport;
1857 }
1858
1859 err = sctp_primitive_SEND(net, asoc, datamsg);
1860 if (err) {
1861 sctp_datamsg_free(datamsg);
1862 goto err;
1863 }
1864
1865 pr_debug("%s: we sent primitively\n", __func__);
1866
1867 sctp_datamsg_put(datamsg);
1868
1869 if (unlikely(wait_connect)) {
1870 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1871 sctp_wait_for_connect(asoc, &timeo);
1872 }
1873
1874 err = msg_len;
1875
1876err:
1877 return err;
1878}
1879
1880static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1881 const struct msghdr *msg,
1882 struct sctp_cmsgs *cmsgs)
1883{
1884 union sctp_addr *daddr = NULL;
1885 int err;
1886
1887 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1888 int len = msg->msg_namelen;
1889
1890 if (len > sizeof(*daddr))
1891 len = sizeof(*daddr);
1892
1893 daddr = (union sctp_addr *)msg->msg_name;
1894
1895 err = sctp_verify_addr(sk, daddr, len);
1896 if (err)
1897 return ERR_PTR(err);
1898 }
1899
1900 return daddr;
1901}
1902
1903static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1904 struct sctp_sndrcvinfo *sinfo,
1905 struct sctp_cmsgs *cmsgs)
1906{
1907 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1908 sinfo->sinfo_stream = asoc->default_stream;
1909 sinfo->sinfo_ppid = asoc->default_ppid;
1910 sinfo->sinfo_context = asoc->default_context;
1911 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1912
1913 if (!cmsgs->prinfo)
1914 sinfo->sinfo_flags = asoc->default_flags;
1915 }
1916
1917 if (!cmsgs->srinfo && !cmsgs->prinfo)
1918 sinfo->sinfo_timetolive = asoc->default_timetolive;
1919
1920 if (cmsgs->authinfo) {
1921 /* Reuse sinfo_tsn to indicate that authinfo was set and
1922 * sinfo_ssn to save the keyid on tx path.
1923 */
1924 sinfo->sinfo_tsn = 1;
1925 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1926 }
1927}
1928
1929static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1930{
1931 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1932 struct sctp_transport *transport = NULL;
1933 struct sctp_sndrcvinfo _sinfo, *sinfo;
1934 struct sctp_association *asoc, *tmp;
1935 struct sctp_cmsgs cmsgs;
1936 union sctp_addr *daddr;
1937 bool new = false;
1938 __u16 sflags;
1939 int err;
1940
1941 /* Parse and get snd_info */
1942 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1943 if (err)
1944 goto out;
1945
1946 sinfo = &_sinfo;
1947 sflags = sinfo->sinfo_flags;
1948
1949 /* Get daddr from msg */
1950 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1951 if (IS_ERR(daddr)) {
1952 err = PTR_ERR(daddr);
1953 goto out;
1954 }
1955
1956 lock_sock(sk);
1957
1958 /* SCTP_SENDALL process */
1959 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1960 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1961 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1962 msg_len);
1963 if (err == 0)
1964 continue;
1965 if (err < 0)
1966 goto out_unlock;
1967
1968 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1969
1970 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1971 NULL, sinfo);
1972 if (err < 0)
1973 goto out_unlock;
1974
1975 iov_iter_revert(&msg->msg_iter, err);
1976 }
1977
1978 goto out_unlock;
1979 }
1980
1981 /* Get and check or create asoc */
1982 if (daddr) {
1983 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1984 if (asoc) {
1985 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1986 msg_len);
1987 if (err <= 0)
1988 goto out_unlock;
1989 } else {
1990 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1991 &transport);
1992 if (err)
1993 goto out_unlock;
1994
1995 asoc = transport->asoc;
1996 new = true;
1997 }
1998
1999 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2000 transport = NULL;
2001 } else {
2002 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2003 if (!asoc) {
2004 err = -EPIPE;
2005 goto out_unlock;
2006 }
2007
2008 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2009 if (err <= 0)
2010 goto out_unlock;
2011 }
2012
2013 /* Update snd_info with the asoc */
2014 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2015
2016 /* Send msg to the asoc */
2017 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2018 if (err < 0 && err != -ESRCH && new)
2019 sctp_association_free(asoc);
2020
2021out_unlock:
2022 release_sock(sk);
2023out:
2024 return sctp_error(sk, msg->msg_flags, err);
2025}
2026
2027/* This is an extended version of skb_pull() that removes the data from the
2028 * start of a skb even when data is spread across the list of skb's in the
2029 * frag_list. len specifies the total amount of data that needs to be removed.
2030 * when 'len' bytes could be removed from the skb, it returns 0.
2031 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2032 * could not be removed.
2033 */
2034static int sctp_skb_pull(struct sk_buff *skb, int len)
2035{
2036 struct sk_buff *list;
2037 int skb_len = skb_headlen(skb);
2038 int rlen;
2039
2040 if (len <= skb_len) {
2041 __skb_pull(skb, len);
2042 return 0;
2043 }
2044 len -= skb_len;
2045 __skb_pull(skb, skb_len);
2046
2047 skb_walk_frags(skb, list) {
2048 rlen = sctp_skb_pull(list, len);
2049 skb->len -= (len-rlen);
2050 skb->data_len -= (len-rlen);
2051
2052 if (!rlen)
2053 return 0;
2054
2055 len = rlen;
2056 }
2057
2058 return len;
2059}
2060
2061/* API 3.1.3 recvmsg() - UDP Style Syntax
2062 *
2063 * ssize_t recvmsg(int socket, struct msghdr *message,
2064 * int flags);
2065 *
2066 * socket - the socket descriptor of the endpoint.
2067 * message - pointer to the msghdr structure which contains a single
2068 * user message and possibly some ancillary data.
2069 *
2070 * See Section 5 for complete description of the data
2071 * structures.
2072 *
2073 * flags - flags sent or received with the user message, see Section
2074 * 5 for complete description of the flags.
2075 */
2076static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2077 int noblock, int flags, int *addr_len)
2078{
2079 struct sctp_ulpevent *event = NULL;
2080 struct sctp_sock *sp = sctp_sk(sk);
2081 struct sk_buff *skb, *head_skb;
2082 int copied;
2083 int err = 0;
2084 int skb_len;
2085
2086 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2087 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2088 addr_len);
2089
2090 lock_sock(sk);
2091
2092 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2093 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2094 err = -ENOTCONN;
2095 goto out;
2096 }
2097
2098 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2099 if (!skb)
2100 goto out;
2101
2102 /* Get the total length of the skb including any skb's in the
2103 * frag_list.
2104 */
2105 skb_len = skb->len;
2106
2107 copied = skb_len;
2108 if (copied > len)
2109 copied = len;
2110
2111 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2112
2113 event = sctp_skb2event(skb);
2114
2115 if (err)
2116 goto out_free;
2117
2118 if (event->chunk && event->chunk->head_skb)
2119 head_skb = event->chunk->head_skb;
2120 else
2121 head_skb = skb;
2122 sock_recv_ts_and_drops(msg, sk, head_skb);
2123 if (sctp_ulpevent_is_notification(event)) {
2124 msg->msg_flags |= MSG_NOTIFICATION;
2125 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2126 } else {
2127 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2128 }
2129
2130 /* Check if we allow SCTP_NXTINFO. */
2131 if (sp->recvnxtinfo)
2132 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2133 /* Check if we allow SCTP_RCVINFO. */
2134 if (sp->recvrcvinfo)
2135 sctp_ulpevent_read_rcvinfo(event, msg);
2136 /* Check if we allow SCTP_SNDRCVINFO. */
2137 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2138 sctp_ulpevent_read_sndrcvinfo(event, msg);
2139
2140 err = copied;
2141
2142 /* If skb's length exceeds the user's buffer, update the skb and
2143 * push it back to the receive_queue so that the next call to
2144 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2145 */
2146 if (skb_len > copied) {
2147 msg->msg_flags &= ~MSG_EOR;
2148 if (flags & MSG_PEEK)
2149 goto out_free;
2150 sctp_skb_pull(skb, copied);
2151 skb_queue_head(&sk->sk_receive_queue, skb);
2152
2153 /* When only partial message is copied to the user, increase
2154 * rwnd by that amount. If all the data in the skb is read,
2155 * rwnd is updated when the event is freed.
2156 */
2157 if (!sctp_ulpevent_is_notification(event))
2158 sctp_assoc_rwnd_increase(event->asoc, copied);
2159 goto out;
2160 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2161 (event->msg_flags & MSG_EOR))
2162 msg->msg_flags |= MSG_EOR;
2163 else
2164 msg->msg_flags &= ~MSG_EOR;
2165
2166out_free:
2167 if (flags & MSG_PEEK) {
2168 /* Release the skb reference acquired after peeking the skb in
2169 * sctp_skb_recv_datagram().
2170 */
2171 kfree_skb(skb);
2172 } else {
2173 /* Free the event which includes releasing the reference to
2174 * the owner of the skb, freeing the skb and updating the
2175 * rwnd.
2176 */
2177 sctp_ulpevent_free(event);
2178 }
2179out:
2180 release_sock(sk);
2181 return err;
2182}
2183
2184/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2185 *
2186 * This option is a on/off flag. If enabled no SCTP message
2187 * fragmentation will be performed. Instead if a message being sent
2188 * exceeds the current PMTU size, the message will NOT be sent and
2189 * instead a error will be indicated to the user.
2190 */
2191static int sctp_setsockopt_disable_fragments(struct sock *sk,
2192 char __user *optval,
2193 unsigned int optlen)
2194{
2195 int val;
2196
2197 if (optlen < sizeof(int))
2198 return -EINVAL;
2199
2200 if (get_user(val, (int __user *)optval))
2201 return -EFAULT;
2202
2203 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2204
2205 return 0;
2206}
2207
2208static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210{
2211 struct sctp_event_subscribe subscribe;
2212 __u8 *sn_type = (__u8 *)&subscribe;
2213 struct sctp_sock *sp = sctp_sk(sk);
2214 struct sctp_association *asoc;
2215 int i;
2216
2217 if (optlen > sizeof(struct sctp_event_subscribe))
2218 return -EINVAL;
2219
2220 if (copy_from_user(&subscribe, optval, optlen))
2221 return -EFAULT;
2222
2223 for (i = 0; i < optlen; i++)
2224 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2225 sn_type[i]);
2226
2227 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2228 asoc->subscribe = sctp_sk(sk)->subscribe;
2229
2230 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2231 * if there is no data to be sent or retransmit, the stack will
2232 * immediately send up this notification.
2233 */
2234 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2235 struct sctp_ulpevent *event;
2236
2237 asoc = sctp_id2assoc(sk, 0);
2238 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2239 event = sctp_ulpevent_make_sender_dry_event(asoc,
2240 GFP_USER | __GFP_NOWARN);
2241 if (!event)
2242 return -ENOMEM;
2243
2244 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2245 }
2246 }
2247
2248 return 0;
2249}
2250
2251/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2252 *
2253 * This socket option is applicable to the UDP-style socket only. When
2254 * set it will cause associations that are idle for more than the
2255 * specified number of seconds to automatically close. An association
2256 * being idle is defined an association that has NOT sent or received
2257 * user data. The special value of '0' indicates that no automatic
2258 * close of any associations should be performed. The option expects an
2259 * integer defining the number of seconds of idle time before an
2260 * association is closed.
2261 */
2262static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2263 unsigned int optlen)
2264{
2265 struct sctp_sock *sp = sctp_sk(sk);
2266 struct net *net = sock_net(sk);
2267
2268 /* Applicable to UDP-style socket only */
2269 if (sctp_style(sk, TCP))
2270 return -EOPNOTSUPP;
2271 if (optlen != sizeof(int))
2272 return -EINVAL;
2273 if (copy_from_user(&sp->autoclose, optval, optlen))
2274 return -EFAULT;
2275
2276 if (sp->autoclose > net->sctp.max_autoclose)
2277 sp->autoclose = net->sctp.max_autoclose;
2278
2279 return 0;
2280}
2281
2282/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2283 *
2284 * Applications can enable or disable heartbeats for any peer address of
2285 * an association, modify an address's heartbeat interval, force a
2286 * heartbeat to be sent immediately, and adjust the address's maximum
2287 * number of retransmissions sent before an address is considered
2288 * unreachable. The following structure is used to access and modify an
2289 * address's parameters:
2290 *
2291 * struct sctp_paddrparams {
2292 * sctp_assoc_t spp_assoc_id;
2293 * struct sockaddr_storage spp_address;
2294 * uint32_t spp_hbinterval;
2295 * uint16_t spp_pathmaxrxt;
2296 * uint32_t spp_pathmtu;
2297 * uint32_t spp_sackdelay;
2298 * uint32_t spp_flags;
2299 * uint32_t spp_ipv6_flowlabel;
2300 * uint8_t spp_dscp;
2301 * };
2302 *
2303 * spp_assoc_id - (one-to-many style socket) This is filled in the
2304 * application, and identifies the association for
2305 * this query.
2306 * spp_address - This specifies which address is of interest.
2307 * spp_hbinterval - This contains the value of the heartbeat interval,
2308 * in milliseconds. If a value of zero
2309 * is present in this field then no changes are to
2310 * be made to this parameter.
2311 * spp_pathmaxrxt - This contains the maximum number of
2312 * retransmissions before this address shall be
2313 * considered unreachable. If a value of zero
2314 * is present in this field then no changes are to
2315 * be made to this parameter.
2316 * spp_pathmtu - When Path MTU discovery is disabled the value
2317 * specified here will be the "fixed" path mtu.
2318 * Note that if the spp_address field is empty
2319 * then all associations on this address will
2320 * have this fixed path mtu set upon them.
2321 *
2322 * spp_sackdelay - When delayed sack is enabled, this value specifies
2323 * the number of milliseconds that sacks will be delayed
2324 * for. This value will apply to all addresses of an
2325 * association if the spp_address field is empty. Note
2326 * also, that if delayed sack is enabled and this
2327 * value is set to 0, no change is made to the last
2328 * recorded delayed sack timer value.
2329 *
2330 * spp_flags - These flags are used to control various features
2331 * on an association. The flag field may contain
2332 * zero or more of the following options.
2333 *
2334 * SPP_HB_ENABLE - Enable heartbeats on the
2335 * specified address. Note that if the address
2336 * field is empty all addresses for the association
2337 * have heartbeats enabled upon them.
2338 *
2339 * SPP_HB_DISABLE - Disable heartbeats on the
2340 * speicifed address. Note that if the address
2341 * field is empty all addresses for the association
2342 * will have their heartbeats disabled. Note also
2343 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2344 * mutually exclusive, only one of these two should
2345 * be specified. Enabling both fields will have
2346 * undetermined results.
2347 *
2348 * SPP_HB_DEMAND - Request a user initiated heartbeat
2349 * to be made immediately.
2350 *
2351 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2352 * heartbeat delayis to be set to the value of 0
2353 * milliseconds.
2354 *
2355 * SPP_PMTUD_ENABLE - This field will enable PMTU
2356 * discovery upon the specified address. Note that
2357 * if the address feild is empty then all addresses
2358 * on the association are effected.
2359 *
2360 * SPP_PMTUD_DISABLE - This field will disable PMTU
2361 * discovery upon the specified address. Note that
2362 * if the address feild is empty then all addresses
2363 * on the association are effected. Not also that
2364 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2365 * exclusive. Enabling both will have undetermined
2366 * results.
2367 *
2368 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2369 * on delayed sack. The time specified in spp_sackdelay
2370 * is used to specify the sack delay for this address. Note
2371 * that if spp_address is empty then all addresses will
2372 * enable delayed sack and take on the sack delay
2373 * value specified in spp_sackdelay.
2374 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2375 * off delayed sack. If the spp_address field is blank then
2376 * delayed sack is disabled for the entire association. Note
2377 * also that this field is mutually exclusive to
2378 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2379 * results.
2380 *
2381 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2382 * setting of the IPV6 flow label value. The value is
2383 * contained in the spp_ipv6_flowlabel field.
2384 * Upon retrieval, this flag will be set to indicate that
2385 * the spp_ipv6_flowlabel field has a valid value returned.
2386 * If a specific destination address is set (in the
2387 * spp_address field), then the value returned is that of
2388 * the address. If just an association is specified (and
2389 * no address), then the association's default flow label
2390 * is returned. If neither an association nor a destination
2391 * is specified, then the socket's default flow label is
2392 * returned. For non-IPv6 sockets, this flag will be left
2393 * cleared.
2394 *
2395 * SPP_DSCP: Setting this flag enables the setting of the
2396 * Differentiated Services Code Point (DSCP) value
2397 * associated with either the association or a specific
2398 * address. The value is obtained in the spp_dscp field.
2399 * Upon retrieval, this flag will be set to indicate that
2400 * the spp_dscp field has a valid value returned. If a
2401 * specific destination address is set when called (in the
2402 * spp_address field), then that specific destination
2403 * address's DSCP value is returned. If just an association
2404 * is specified, then the association's default DSCP is
2405 * returned. If neither an association nor a destination is
2406 * specified, then the socket's default DSCP is returned.
2407 *
2408 * spp_ipv6_flowlabel
2409 * - This field is used in conjunction with the
2410 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2411 * The 20 least significant bits are used for the flow
2412 * label. This setting has precedence over any IPv6-layer
2413 * setting.
2414 *
2415 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2416 * and contains the DSCP. The 6 most significant bits are
2417 * used for the DSCP. This setting has precedence over any
2418 * IPv4- or IPv6- layer setting.
2419 */
2420static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2421 struct sctp_transport *trans,
2422 struct sctp_association *asoc,
2423 struct sctp_sock *sp,
2424 int hb_change,
2425 int pmtud_change,
2426 int sackdelay_change)
2427{
2428 int error;
2429
2430 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2431 struct net *net = sock_net(trans->asoc->base.sk);
2432
2433 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2434 if (error)
2435 return error;
2436 }
2437
2438 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2439 * this field is ignored. Note also that a value of zero indicates
2440 * the current setting should be left unchanged.
2441 */
2442 if (params->spp_flags & SPP_HB_ENABLE) {
2443
2444 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2445 * set. This lets us use 0 value when this flag
2446 * is set.
2447 */
2448 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2449 params->spp_hbinterval = 0;
2450
2451 if (params->spp_hbinterval ||
2452 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2453 if (trans) {
2454 trans->hbinterval =
2455 msecs_to_jiffies(params->spp_hbinterval);
2456 } else if (asoc) {
2457 asoc->hbinterval =
2458 msecs_to_jiffies(params->spp_hbinterval);
2459 } else {
2460 sp->hbinterval = params->spp_hbinterval;
2461 }
2462 }
2463 }
2464
2465 if (hb_change) {
2466 if (trans) {
2467 trans->param_flags =
2468 (trans->param_flags & ~SPP_HB) | hb_change;
2469 } else if (asoc) {
2470 asoc->param_flags =
2471 (asoc->param_flags & ~SPP_HB) | hb_change;
2472 } else {
2473 sp->param_flags =
2474 (sp->param_flags & ~SPP_HB) | hb_change;
2475 }
2476 }
2477
2478 /* When Path MTU discovery is disabled the value specified here will
2479 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2480 * include the flag SPP_PMTUD_DISABLE for this field to have any
2481 * effect).
2482 */
2483 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2484 if (trans) {
2485 trans->pathmtu = params->spp_pathmtu;
2486 sctp_assoc_sync_pmtu(asoc);
2487 } else if (asoc) {
2488 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2489 } else {
2490 sp->pathmtu = params->spp_pathmtu;
2491 }
2492 }
2493
2494 if (pmtud_change) {
2495 if (trans) {
2496 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2497 (params->spp_flags & SPP_PMTUD_ENABLE);
2498 trans->param_flags =
2499 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2500 if (update) {
2501 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2502 sctp_assoc_sync_pmtu(asoc);
2503 }
2504 } else if (asoc) {
2505 asoc->param_flags =
2506 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2507 } else {
2508 sp->param_flags =
2509 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2510 }
2511 }
2512
2513 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2514 * value of this field is ignored. Note also that a value of zero
2515 * indicates the current setting should be left unchanged.
2516 */
2517 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2518 if (trans) {
2519 trans->sackdelay =
2520 msecs_to_jiffies(params->spp_sackdelay);
2521 } else if (asoc) {
2522 asoc->sackdelay =
2523 msecs_to_jiffies(params->spp_sackdelay);
2524 } else {
2525 sp->sackdelay = params->spp_sackdelay;
2526 }
2527 }
2528
2529 if (sackdelay_change) {
2530 if (trans) {
2531 trans->param_flags =
2532 (trans->param_flags & ~SPP_SACKDELAY) |
2533 sackdelay_change;
2534 } else if (asoc) {
2535 asoc->param_flags =
2536 (asoc->param_flags & ~SPP_SACKDELAY) |
2537 sackdelay_change;
2538 } else {
2539 sp->param_flags =
2540 (sp->param_flags & ~SPP_SACKDELAY) |
2541 sackdelay_change;
2542 }
2543 }
2544
2545 /* Note that a value of zero indicates the current setting should be
2546 left unchanged.
2547 */
2548 if (params->spp_pathmaxrxt) {
2549 if (trans) {
2550 trans->pathmaxrxt = params->spp_pathmaxrxt;
2551 } else if (asoc) {
2552 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2553 } else {
2554 sp->pathmaxrxt = params->spp_pathmaxrxt;
2555 }
2556 }
2557
2558 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2559 if (trans) {
2560 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2561 trans->flowlabel = params->spp_ipv6_flowlabel &
2562 SCTP_FLOWLABEL_VAL_MASK;
2563 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2564 }
2565 } else if (asoc) {
2566 struct sctp_transport *t;
2567
2568 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2569 transports) {
2570 if (t->ipaddr.sa.sa_family != AF_INET6)
2571 continue;
2572 t->flowlabel = params->spp_ipv6_flowlabel &
2573 SCTP_FLOWLABEL_VAL_MASK;
2574 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2575 }
2576 asoc->flowlabel = params->spp_ipv6_flowlabel &
2577 SCTP_FLOWLABEL_VAL_MASK;
2578 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2579 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2580 sp->flowlabel = params->spp_ipv6_flowlabel &
2581 SCTP_FLOWLABEL_VAL_MASK;
2582 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2583 }
2584 }
2585
2586 if (params->spp_flags & SPP_DSCP) {
2587 if (trans) {
2588 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2589 trans->dscp |= SCTP_DSCP_SET_MASK;
2590 } else if (asoc) {
2591 struct sctp_transport *t;
2592
2593 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2594 transports) {
2595 t->dscp = params->spp_dscp &
2596 SCTP_DSCP_VAL_MASK;
2597 t->dscp |= SCTP_DSCP_SET_MASK;
2598 }
2599 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2600 asoc->dscp |= SCTP_DSCP_SET_MASK;
2601 } else {
2602 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2603 sp->dscp |= SCTP_DSCP_SET_MASK;
2604 }
2605 }
2606
2607 return 0;
2608}
2609
2610static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2611 char __user *optval,
2612 unsigned int optlen)
2613{
2614 struct sctp_paddrparams params;
2615 struct sctp_transport *trans = NULL;
2616 struct sctp_association *asoc = NULL;
2617 struct sctp_sock *sp = sctp_sk(sk);
2618 int error;
2619 int hb_change, pmtud_change, sackdelay_change;
2620
2621 if (optlen == sizeof(params)) {
2622 if (copy_from_user(¶ms, optval, optlen))
2623 return -EFAULT;
2624 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2625 spp_ipv6_flowlabel), 4)) {
2626 if (copy_from_user(¶ms, optval, optlen))
2627 return -EFAULT;
2628 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2629 return -EINVAL;
2630 } else {
2631 return -EINVAL;
2632 }
2633
2634 /* Validate flags and value parameters. */
2635 hb_change = params.spp_flags & SPP_HB;
2636 pmtud_change = params.spp_flags & SPP_PMTUD;
2637 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2638
2639 if (hb_change == SPP_HB ||
2640 pmtud_change == SPP_PMTUD ||
2641 sackdelay_change == SPP_SACKDELAY ||
2642 params.spp_sackdelay > 500 ||
2643 (params.spp_pathmtu &&
2644 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2645 return -EINVAL;
2646
2647 /* If an address other than INADDR_ANY is specified, and
2648 * no transport is found, then the request is invalid.
2649 */
2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2651 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2652 params.spp_assoc_id);
2653 if (!trans)
2654 return -EINVAL;
2655 }
2656
2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2658 * socket is a one to many style socket, and an association
2659 * was not found, then the id was invalid.
2660 */
2661 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2662 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2663 sctp_style(sk, UDP))
2664 return -EINVAL;
2665
2666 /* Heartbeat demand can only be sent on a transport or
2667 * association, but not a socket.
2668 */
2669 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2670 return -EINVAL;
2671
2672 /* Process parameters. */
2673 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2674 hb_change, pmtud_change,
2675 sackdelay_change);
2676
2677 if (error)
2678 return error;
2679
2680 /* If changes are for association, also apply parameters to each
2681 * transport.
2682 */
2683 if (!trans && asoc) {
2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2685 transports) {
2686 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2687 hb_change, pmtud_change,
2688 sackdelay_change);
2689 }
2690 }
2691
2692 return 0;
2693}
2694
2695static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2696{
2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2698}
2699
2700static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2701{
2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2703}
2704
2705static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2706 struct sctp_association *asoc)
2707{
2708 struct sctp_transport *trans;
2709
2710 if (params->sack_delay) {
2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2712 asoc->param_flags =
2713 sctp_spp_sackdelay_enable(asoc->param_flags);
2714 }
2715 if (params->sack_freq == 1) {
2716 asoc->param_flags =
2717 sctp_spp_sackdelay_disable(asoc->param_flags);
2718 } else if (params->sack_freq > 1) {
2719 asoc->sackfreq = params->sack_freq;
2720 asoc->param_flags =
2721 sctp_spp_sackdelay_enable(asoc->param_flags);
2722 }
2723
2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2725 transports) {
2726 if (params->sack_delay) {
2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2728 trans->param_flags =
2729 sctp_spp_sackdelay_enable(trans->param_flags);
2730 }
2731 if (params->sack_freq == 1) {
2732 trans->param_flags =
2733 sctp_spp_sackdelay_disable(trans->param_flags);
2734 } else if (params->sack_freq > 1) {
2735 trans->sackfreq = params->sack_freq;
2736 trans->param_flags =
2737 sctp_spp_sackdelay_enable(trans->param_flags);
2738 }
2739 }
2740}
2741
2742/*
2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2744 *
2745 * This option will effect the way delayed acks are performed. This
2746 * option allows you to get or set the delayed ack time, in
2747 * milliseconds. It also allows changing the delayed ack frequency.
2748 * Changing the frequency to 1 disables the delayed sack algorithm. If
2749 * the assoc_id is 0, then this sets or gets the endpoints default
2750 * values. If the assoc_id field is non-zero, then the set or get
2751 * effects the specified association for the one to many model (the
2752 * assoc_id field is ignored by the one to one model). Note that if
2753 * sack_delay or sack_freq are 0 when setting this option, then the
2754 * current values will remain unchanged.
2755 *
2756 * struct sctp_sack_info {
2757 * sctp_assoc_t sack_assoc_id;
2758 * uint32_t sack_delay;
2759 * uint32_t sack_freq;
2760 * };
2761 *
2762 * sack_assoc_id - This parameter, indicates which association the user
2763 * is performing an action upon. Note that if this field's value is
2764 * zero then the endpoints default value is changed (effecting future
2765 * associations only).
2766 *
2767 * sack_delay - This parameter contains the number of milliseconds that
2768 * the user is requesting the delayed ACK timer be set to. Note that
2769 * this value is defined in the standard to be between 200 and 500
2770 * milliseconds.
2771 *
2772 * sack_freq - This parameter contains the number of packets that must
2773 * be received before a sack is sent without waiting for the delay
2774 * timer to expire. The default value for this is 2, setting this
2775 * value to 1 will disable the delayed sack algorithm.
2776 */
2777
2778static int sctp_setsockopt_delayed_ack(struct sock *sk,
2779 char __user *optval, unsigned int optlen)
2780{
2781 struct sctp_sock *sp = sctp_sk(sk);
2782 struct sctp_association *asoc;
2783 struct sctp_sack_info params;
2784
2785 if (optlen == sizeof(struct sctp_sack_info)) {
2786 if (copy_from_user(¶ms, optval, optlen))
2787 return -EFAULT;
2788
2789 if (params.sack_delay == 0 && params.sack_freq == 0)
2790 return 0;
2791 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2792 pr_warn_ratelimited(DEPRECATED
2793 "%s (pid %d) "
2794 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2795 "Use struct sctp_sack_info instead\n",
2796 current->comm, task_pid_nr(current));
2797 if (copy_from_user(¶ms, optval, optlen))
2798 return -EFAULT;
2799
2800 if (params.sack_delay == 0)
2801 params.sack_freq = 1;
2802 else
2803 params.sack_freq = 0;
2804 } else
2805 return -EINVAL;
2806
2807 /* Validate value parameter. */
2808 if (params.sack_delay > 500)
2809 return -EINVAL;
2810
2811 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2812 * socket is a one to many style socket, and an association
2813 * was not found, then the id was invalid.
2814 */
2815 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2816 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2817 sctp_style(sk, UDP))
2818 return -EINVAL;
2819
2820 if (asoc) {
2821 sctp_apply_asoc_delayed_ack(¶ms, asoc);
2822
2823 return 0;
2824 }
2825
2826 if (sctp_style(sk, TCP))
2827 params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2828
2829 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2830 params.sack_assoc_id == SCTP_ALL_ASSOC) {
2831 if (params.sack_delay) {
2832 sp->sackdelay = params.sack_delay;
2833 sp->param_flags =
2834 sctp_spp_sackdelay_enable(sp->param_flags);
2835 }
2836 if (params.sack_freq == 1) {
2837 sp->param_flags =
2838 sctp_spp_sackdelay_disable(sp->param_flags);
2839 } else if (params.sack_freq > 1) {
2840 sp->sackfreq = params.sack_freq;
2841 sp->param_flags =
2842 sctp_spp_sackdelay_enable(sp->param_flags);
2843 }
2844 }
2845
2846 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2847 params.sack_assoc_id == SCTP_ALL_ASSOC)
2848 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2849 sctp_apply_asoc_delayed_ack(¶ms, asoc);
2850
2851 return 0;
2852}
2853
2854/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2855 *
2856 * Applications can specify protocol parameters for the default association
2857 * initialization. The option name argument to setsockopt() and getsockopt()
2858 * is SCTP_INITMSG.
2859 *
2860 * Setting initialization parameters is effective only on an unconnected
2861 * socket (for UDP-style sockets only future associations are effected
2862 * by the change). With TCP-style sockets, this option is inherited by
2863 * sockets derived from a listener socket.
2864 */
2865static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2866{
2867 struct sctp_initmsg sinit;
2868 struct sctp_sock *sp = sctp_sk(sk);
2869
2870 if (optlen != sizeof(struct sctp_initmsg))
2871 return -EINVAL;
2872 if (copy_from_user(&sinit, optval, optlen))
2873 return -EFAULT;
2874
2875 if (sinit.sinit_num_ostreams)
2876 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2877 if (sinit.sinit_max_instreams)
2878 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2879 if (sinit.sinit_max_attempts)
2880 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2881 if (sinit.sinit_max_init_timeo)
2882 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2883
2884 return 0;
2885}
2886
2887/*
2888 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2889 *
2890 * Applications that wish to use the sendto() system call may wish to
2891 * specify a default set of parameters that would normally be supplied
2892 * through the inclusion of ancillary data. This socket option allows
2893 * such an application to set the default sctp_sndrcvinfo structure.
2894 * The application that wishes to use this socket option simply passes
2895 * in to this call the sctp_sndrcvinfo structure defined in Section
2896 * 5.2.2) The input parameters accepted by this call include
2897 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2898 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2899 * to this call if the caller is using the UDP model.
2900 */
2901static int sctp_setsockopt_default_send_param(struct sock *sk,
2902 char __user *optval,
2903 unsigned int optlen)
2904{
2905 struct sctp_sock *sp = sctp_sk(sk);
2906 struct sctp_association *asoc;
2907 struct sctp_sndrcvinfo info;
2908
2909 if (optlen != sizeof(info))
2910 return -EINVAL;
2911 if (copy_from_user(&info, optval, optlen))
2912 return -EFAULT;
2913 if (info.sinfo_flags &
2914 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2915 SCTP_ABORT | SCTP_EOF))
2916 return -EINVAL;
2917
2918 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2919 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
2920 sctp_style(sk, UDP))
2921 return -EINVAL;
2922
2923 if (asoc) {
2924 asoc->default_stream = info.sinfo_stream;
2925 asoc->default_flags = info.sinfo_flags;
2926 asoc->default_ppid = info.sinfo_ppid;
2927 asoc->default_context = info.sinfo_context;
2928 asoc->default_timetolive = info.sinfo_timetolive;
2929
2930 return 0;
2931 }
2932
2933 if (sctp_style(sk, TCP))
2934 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2935
2936 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2937 info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2938 sp->default_stream = info.sinfo_stream;
2939 sp->default_flags = info.sinfo_flags;
2940 sp->default_ppid = info.sinfo_ppid;
2941 sp->default_context = info.sinfo_context;
2942 sp->default_timetolive = info.sinfo_timetolive;
2943 }
2944
2945 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2946 info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
2947 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2948 asoc->default_stream = info.sinfo_stream;
2949 asoc->default_flags = info.sinfo_flags;
2950 asoc->default_ppid = info.sinfo_ppid;
2951 asoc->default_context = info.sinfo_context;
2952 asoc->default_timetolive = info.sinfo_timetolive;
2953 }
2954 }
2955
2956 return 0;
2957}
2958
2959/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2960 * (SCTP_DEFAULT_SNDINFO)
2961 */
2962static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2963 char __user *optval,
2964 unsigned int optlen)
2965{
2966 struct sctp_sock *sp = sctp_sk(sk);
2967 struct sctp_association *asoc;
2968 struct sctp_sndinfo info;
2969
2970 if (optlen != sizeof(info))
2971 return -EINVAL;
2972 if (copy_from_user(&info, optval, optlen))
2973 return -EFAULT;
2974 if (info.snd_flags &
2975 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2976 SCTP_ABORT | SCTP_EOF))
2977 return -EINVAL;
2978
2979 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2980 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
2981 sctp_style(sk, UDP))
2982 return -EINVAL;
2983
2984 if (asoc) {
2985 asoc->default_stream = info.snd_sid;
2986 asoc->default_flags = info.snd_flags;
2987 asoc->default_ppid = info.snd_ppid;
2988 asoc->default_context = info.snd_context;
2989
2990 return 0;
2991 }
2992
2993 if (sctp_style(sk, TCP))
2994 info.snd_assoc_id = SCTP_FUTURE_ASSOC;
2995
2996 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
2997 info.snd_assoc_id == SCTP_ALL_ASSOC) {
2998 sp->default_stream = info.snd_sid;
2999 sp->default_flags = info.snd_flags;
3000 sp->default_ppid = info.snd_ppid;
3001 sp->default_context = info.snd_context;
3002 }
3003
3004 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3005 info.snd_assoc_id == SCTP_ALL_ASSOC) {
3006 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3007 asoc->default_stream = info.snd_sid;
3008 asoc->default_flags = info.snd_flags;
3009 asoc->default_ppid = info.snd_ppid;
3010 asoc->default_context = info.snd_context;
3011 }
3012 }
3013
3014 return 0;
3015}
3016
3017/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3018 *
3019 * Requests that the local SCTP stack use the enclosed peer address as
3020 * the association primary. The enclosed address must be one of the
3021 * association peer's addresses.
3022 */
3023static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3024 unsigned int optlen)
3025{
3026 struct sctp_prim prim;
3027 struct sctp_transport *trans;
3028 struct sctp_af *af;
3029 int err;
3030
3031 if (optlen != sizeof(struct sctp_prim))
3032 return -EINVAL;
3033
3034 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3035 return -EFAULT;
3036
3037 /* Allow security module to validate address but need address len. */
3038 af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3039 if (!af)
3040 return -EINVAL;
3041
3042 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3043 (struct sockaddr *)&prim.ssp_addr,
3044 af->sockaddr_len);
3045 if (err)
3046 return err;
3047
3048 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3049 if (!trans)
3050 return -EINVAL;
3051
3052 sctp_assoc_set_primary(trans->asoc, trans);
3053
3054 return 0;
3055}
3056
3057/*
3058 * 7.1.5 SCTP_NODELAY
3059 *
3060 * Turn on/off any Nagle-like algorithm. This means that packets are
3061 * generally sent as soon as possible and no unnecessary delays are
3062 * introduced, at the cost of more packets in the network. Expects an
3063 * integer boolean flag.
3064 */
3065static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3066 unsigned int optlen)
3067{
3068 int val;
3069
3070 if (optlen < sizeof(int))
3071 return -EINVAL;
3072 if (get_user(val, (int __user *)optval))
3073 return -EFAULT;
3074
3075 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3076 return 0;
3077}
3078
3079/*
3080 *
3081 * 7.1.1 SCTP_RTOINFO
3082 *
3083 * The protocol parameters used to initialize and bound retransmission
3084 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3085 * and modify these parameters.
3086 * All parameters are time values, in milliseconds. A value of 0, when
3087 * modifying the parameters, indicates that the current value should not
3088 * be changed.
3089 *
3090 */
3091static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3092{
3093 struct sctp_rtoinfo rtoinfo;
3094 struct sctp_association *asoc;
3095 unsigned long rto_min, rto_max;
3096 struct sctp_sock *sp = sctp_sk(sk);
3097
3098 if (optlen != sizeof (struct sctp_rtoinfo))
3099 return -EINVAL;
3100
3101 if (copy_from_user(&rtoinfo, optval, optlen))
3102 return -EFAULT;
3103
3104 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3105
3106 /* Set the values to the specific association */
3107 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3108 sctp_style(sk, UDP))
3109 return -EINVAL;
3110
3111 rto_max = rtoinfo.srto_max;
3112 rto_min = rtoinfo.srto_min;
3113
3114 if (rto_max)
3115 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3116 else
3117 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3118
3119 if (rto_min)
3120 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3121 else
3122 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3123
3124 if (rto_min > rto_max)
3125 return -EINVAL;
3126
3127 if (asoc) {
3128 if (rtoinfo.srto_initial != 0)
3129 asoc->rto_initial =
3130 msecs_to_jiffies(rtoinfo.srto_initial);
3131 asoc->rto_max = rto_max;
3132 asoc->rto_min = rto_min;
3133 } else {
3134 /* If there is no association or the association-id = 0
3135 * set the values to the endpoint.
3136 */
3137 if (rtoinfo.srto_initial != 0)
3138 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3139 sp->rtoinfo.srto_max = rto_max;
3140 sp->rtoinfo.srto_min = rto_min;
3141 }
3142
3143 return 0;
3144}
3145
3146/*
3147 *
3148 * 7.1.2 SCTP_ASSOCINFO
3149 *
3150 * This option is used to tune the maximum retransmission attempts
3151 * of the association.
3152 * Returns an error if the new association retransmission value is
3153 * greater than the sum of the retransmission value of the peer.
3154 * See [SCTP] for more information.
3155 *
3156 */
3157static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3158{
3159
3160 struct sctp_assocparams assocparams;
3161 struct sctp_association *asoc;
3162
3163 if (optlen != sizeof(struct sctp_assocparams))
3164 return -EINVAL;
3165 if (copy_from_user(&assocparams, optval, optlen))
3166 return -EFAULT;
3167
3168 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3169
3170 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3171 sctp_style(sk, UDP))
3172 return -EINVAL;
3173
3174 /* Set the values to the specific association */
3175 if (asoc) {
3176 if (assocparams.sasoc_asocmaxrxt != 0) {
3177 __u32 path_sum = 0;
3178 int paths = 0;
3179 struct sctp_transport *peer_addr;
3180
3181 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3182 transports) {
3183 path_sum += peer_addr->pathmaxrxt;
3184 paths++;
3185 }
3186
3187 /* Only validate asocmaxrxt if we have more than
3188 * one path/transport. We do this because path
3189 * retransmissions are only counted when we have more
3190 * then one path.
3191 */
3192 if (paths > 1 &&
3193 assocparams.sasoc_asocmaxrxt > path_sum)
3194 return -EINVAL;
3195
3196 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3197 }
3198
3199 if (assocparams.sasoc_cookie_life != 0)
3200 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3201 } else {
3202 /* Set the values to the endpoint */
3203 struct sctp_sock *sp = sctp_sk(sk);
3204
3205 if (assocparams.sasoc_asocmaxrxt != 0)
3206 sp->assocparams.sasoc_asocmaxrxt =
3207 assocparams.sasoc_asocmaxrxt;
3208 if (assocparams.sasoc_cookie_life != 0)
3209 sp->assocparams.sasoc_cookie_life =
3210 assocparams.sasoc_cookie_life;
3211 }
3212 return 0;
3213}
3214
3215/*
3216 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3217 *
3218 * This socket option is a boolean flag which turns on or off mapped V4
3219 * addresses. If this option is turned on and the socket is type
3220 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3221 * If this option is turned off, then no mapping will be done of V4
3222 * addresses and a user will receive both PF_INET6 and PF_INET type
3223 * addresses on the socket.
3224 */
3225static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3226{
3227 int val;
3228 struct sctp_sock *sp = sctp_sk(sk);
3229
3230 if (optlen < sizeof(int))
3231 return -EINVAL;
3232 if (get_user(val, (int __user *)optval))
3233 return -EFAULT;
3234 if (val)
3235 sp->v4mapped = 1;
3236 else
3237 sp->v4mapped = 0;
3238
3239 return 0;
3240}
3241
3242/*
3243 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3244 * This option will get or set the maximum size to put in any outgoing
3245 * SCTP DATA chunk. If a message is larger than this size it will be
3246 * fragmented by SCTP into the specified size. Note that the underlying
3247 * SCTP implementation may fragment into smaller sized chunks when the
3248 * PMTU of the underlying association is smaller than the value set by
3249 * the user. The default value for this option is '0' which indicates
3250 * the user is NOT limiting fragmentation and only the PMTU will effect
3251 * SCTP's choice of DATA chunk size. Note also that values set larger
3252 * than the maximum size of an IP datagram will effectively let SCTP
3253 * control fragmentation (i.e. the same as setting this option to 0).
3254 *
3255 * The following structure is used to access and modify this parameter:
3256 *
3257 * struct sctp_assoc_value {
3258 * sctp_assoc_t assoc_id;
3259 * uint32_t assoc_value;
3260 * };
3261 *
3262 * assoc_id: This parameter is ignored for one-to-one style sockets.
3263 * For one-to-many style sockets this parameter indicates which
3264 * association the user is performing an action upon. Note that if
3265 * this field's value is zero then the endpoints default value is
3266 * changed (effecting future associations only).
3267 * assoc_value: This parameter specifies the maximum size in bytes.
3268 */
3269static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3270{
3271 struct sctp_sock *sp = sctp_sk(sk);
3272 struct sctp_assoc_value params;
3273 struct sctp_association *asoc;
3274 int val;
3275
3276 if (optlen == sizeof(int)) {
3277 pr_warn_ratelimited(DEPRECATED
3278 "%s (pid %d) "
3279 "Use of int in maxseg socket option.\n"
3280 "Use struct sctp_assoc_value instead\n",
3281 current->comm, task_pid_nr(current));
3282 if (copy_from_user(&val, optval, optlen))
3283 return -EFAULT;
3284 params.assoc_id = SCTP_FUTURE_ASSOC;
3285 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3286 if (copy_from_user(¶ms, optval, optlen))
3287 return -EFAULT;
3288 val = params.assoc_value;
3289 } else {
3290 return -EINVAL;
3291 }
3292
3293 asoc = sctp_id2assoc(sk, params.assoc_id);
3294 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3295 sctp_style(sk, UDP))
3296 return -EINVAL;
3297
3298 if (val) {
3299 int min_len, max_len;
3300 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3301 sizeof(struct sctp_data_chunk);
3302
3303 min_len = sctp_min_frag_point(sp, datasize);
3304 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3305
3306 if (val < min_len || val > max_len)
3307 return -EINVAL;
3308 }
3309
3310 if (asoc) {
3311 asoc->user_frag = val;
3312 sctp_assoc_update_frag_point(asoc);
3313 } else {
3314 sp->user_frag = val;
3315 }
3316
3317 return 0;
3318}
3319
3320
3321/*
3322 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3323 *
3324 * Requests that the peer mark the enclosed address as the association
3325 * primary. The enclosed address must be one of the association's
3326 * locally bound addresses. The following structure is used to make a
3327 * set primary request:
3328 */
3329static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3330 unsigned int optlen)
3331{
3332 struct sctp_sock *sp;
3333 struct sctp_association *asoc = NULL;
3334 struct sctp_setpeerprim prim;
3335 struct sctp_chunk *chunk;
3336 struct sctp_af *af;
3337 int err;
3338
3339 sp = sctp_sk(sk);
3340
3341 if (!sp->ep->asconf_enable)
3342 return -EPERM;
3343
3344 if (optlen != sizeof(struct sctp_setpeerprim))
3345 return -EINVAL;
3346
3347 if (copy_from_user(&prim, optval, optlen))
3348 return -EFAULT;
3349
3350 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3351 if (!asoc)
3352 return -EINVAL;
3353
3354 if (!asoc->peer.asconf_capable)
3355 return -EPERM;
3356
3357 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3358 return -EPERM;
3359
3360 if (!sctp_state(asoc, ESTABLISHED))
3361 return -ENOTCONN;
3362
3363 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3364 if (!af)
3365 return -EINVAL;
3366
3367 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3368 return -EADDRNOTAVAIL;
3369
3370 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3371 return -EADDRNOTAVAIL;
3372
3373 /* Allow security module to validate address. */
3374 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3375 (struct sockaddr *)&prim.sspp_addr,
3376 af->sockaddr_len);
3377 if (err)
3378 return err;
3379
3380 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3381 chunk = sctp_make_asconf_set_prim(asoc,
3382 (union sctp_addr *)&prim.sspp_addr);
3383 if (!chunk)
3384 return -ENOMEM;
3385
3386 err = sctp_send_asconf(asoc, chunk);
3387
3388 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3389
3390 return err;
3391}
3392
3393static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3394 unsigned int optlen)
3395{
3396 struct sctp_setadaptation adaptation;
3397
3398 if (optlen != sizeof(struct sctp_setadaptation))
3399 return -EINVAL;
3400 if (copy_from_user(&adaptation, optval, optlen))
3401 return -EFAULT;
3402
3403 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3404
3405 return 0;
3406}
3407
3408/*
3409 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3410 *
3411 * The context field in the sctp_sndrcvinfo structure is normally only
3412 * used when a failed message is retrieved holding the value that was
3413 * sent down on the actual send call. This option allows the setting of
3414 * a default context on an association basis that will be received on
3415 * reading messages from the peer. This is especially helpful in the
3416 * one-2-many model for an application to keep some reference to an
3417 * internal state machine that is processing messages on the
3418 * association. Note that the setting of this value only effects
3419 * received messages from the peer and does not effect the value that is
3420 * saved with outbound messages.
3421 */
3422static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3423 unsigned int optlen)
3424{
3425 struct sctp_sock *sp = sctp_sk(sk);
3426 struct sctp_assoc_value params;
3427 struct sctp_association *asoc;
3428
3429 if (optlen != sizeof(struct sctp_assoc_value))
3430 return -EINVAL;
3431 if (copy_from_user(¶ms, optval, optlen))
3432 return -EFAULT;
3433
3434 asoc = sctp_id2assoc(sk, params.assoc_id);
3435 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3436 sctp_style(sk, UDP))
3437 return -EINVAL;
3438
3439 if (asoc) {
3440 asoc->default_rcv_context = params.assoc_value;
3441
3442 return 0;
3443 }
3444
3445 if (sctp_style(sk, TCP))
3446 params.assoc_id = SCTP_FUTURE_ASSOC;
3447
3448 if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3449 params.assoc_id == SCTP_ALL_ASSOC)
3450 sp->default_rcv_context = params.assoc_value;
3451
3452 if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3453 params.assoc_id == SCTP_ALL_ASSOC)
3454 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3455 asoc->default_rcv_context = params.assoc_value;
3456
3457 return 0;
3458}
3459
3460/*
3461 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3462 *
3463 * This options will at a minimum specify if the implementation is doing
3464 * fragmented interleave. Fragmented interleave, for a one to many
3465 * socket, is when subsequent calls to receive a message may return
3466 * parts of messages from different associations. Some implementations
3467 * may allow you to turn this value on or off. If so, when turned off,
3468 * no fragment interleave will occur (which will cause a head of line
3469 * blocking amongst multiple associations sharing the same one to many
3470 * socket). When this option is turned on, then each receive call may
3471 * come from a different association (thus the user must receive data
3472 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3473 * association each receive belongs to.
3474 *
3475 * This option takes a boolean value. A non-zero value indicates that
3476 * fragmented interleave is on. A value of zero indicates that
3477 * fragmented interleave is off.
3478 *
3479 * Note that it is important that an implementation that allows this
3480 * option to be turned on, have it off by default. Otherwise an unaware
3481 * application using the one to many model may become confused and act
3482 * incorrectly.
3483 */
3484static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3485 char __user *optval,
3486 unsigned int optlen)
3487{
3488 int val;
3489
3490 if (optlen != sizeof(int))
3491 return -EINVAL;
3492 if (get_user(val, (int __user *)optval))
3493 return -EFAULT;
3494
3495 sctp_sk(sk)->frag_interleave = !!val;
3496
3497 if (!sctp_sk(sk)->frag_interleave)
3498 sctp_sk(sk)->ep->intl_enable = 0;
3499
3500 return 0;
3501}
3502
3503/*
3504 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3505 * (SCTP_PARTIAL_DELIVERY_POINT)
3506 *
3507 * This option will set or get the SCTP partial delivery point. This
3508 * point is the size of a message where the partial delivery API will be
3509 * invoked to help free up rwnd space for the peer. Setting this to a
3510 * lower value will cause partial deliveries to happen more often. The
3511 * calls argument is an integer that sets or gets the partial delivery
3512 * point. Note also that the call will fail if the user attempts to set
3513 * this value larger than the socket receive buffer size.
3514 *
3515 * Note that any single message having a length smaller than or equal to
3516 * the SCTP partial delivery point will be delivered in one single read
3517 * call as long as the user provided buffer is large enough to hold the
3518 * message.
3519 */
3520static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3521 char __user *optval,
3522 unsigned int optlen)
3523{
3524 u32 val;
3525
3526 if (optlen != sizeof(u32))
3527 return -EINVAL;
3528 if (get_user(val, (int __user *)optval))
3529 return -EFAULT;
3530
3531 /* Note: We double the receive buffer from what the user sets
3532 * it to be, also initial rwnd is based on rcvbuf/2.
3533 */
3534 if (val > (sk->sk_rcvbuf >> 1))
3535 return -EINVAL;
3536
3537 sctp_sk(sk)->pd_point = val;
3538
3539 return 0; /* is this the right error code? */
3540}
3541
3542/*
3543 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3544 *
3545 * This option will allow a user to change the maximum burst of packets
3546 * that can be emitted by this association. Note that the default value
3547 * is 4, and some implementations may restrict this setting so that it
3548 * can only be lowered.
3549 *
3550 * NOTE: This text doesn't seem right. Do this on a socket basis with
3551 * future associations inheriting the socket value.
3552 */
3553static int sctp_setsockopt_maxburst(struct sock *sk,
3554 char __user *optval,
3555 unsigned int optlen)
3556{
3557 struct sctp_sock *sp = sctp_sk(sk);
3558 struct sctp_assoc_value params;
3559 struct sctp_association *asoc;
3560
3561 if (optlen == sizeof(int)) {
3562 pr_warn_ratelimited(DEPRECATED
3563 "%s (pid %d) "
3564 "Use of int in max_burst socket option deprecated.\n"
3565 "Use struct sctp_assoc_value instead\n",
3566 current->comm, task_pid_nr(current));
3567 if (copy_from_user(¶ms.assoc_value, optval, optlen))
3568 return -EFAULT;
3569 params.assoc_id = SCTP_FUTURE_ASSOC;
3570 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3571 if (copy_from_user(¶ms, optval, optlen))
3572 return -EFAULT;
3573 } else
3574 return -EINVAL;
3575
3576 asoc = sctp_id2assoc(sk, params.assoc_id);
3577 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3578 sctp_style(sk, UDP))
3579 return -EINVAL;
3580
3581 if (asoc) {
3582 asoc->max_burst = params.assoc_value;
3583
3584 return 0;
3585 }
3586
3587 if (sctp_style(sk, TCP))
3588 params.assoc_id = SCTP_FUTURE_ASSOC;
3589
3590 if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3591 params.assoc_id == SCTP_ALL_ASSOC)
3592 sp->max_burst = params.assoc_value;
3593
3594 if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3595 params.assoc_id == SCTP_ALL_ASSOC)
3596 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3597 asoc->max_burst = params.assoc_value;
3598
3599 return 0;
3600}
3601
3602/*
3603 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3604 *
3605 * This set option adds a chunk type that the user is requesting to be
3606 * received only in an authenticated way. Changes to the list of chunks
3607 * will only effect future associations on the socket.
3608 */
3609static int sctp_setsockopt_auth_chunk(struct sock *sk,
3610 char __user *optval,
3611 unsigned int optlen)
3612{
3613 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3614 struct sctp_authchunk val;
3615
3616 if (!ep->auth_enable)
3617 return -EACCES;
3618
3619 if (optlen != sizeof(struct sctp_authchunk))
3620 return -EINVAL;
3621 if (copy_from_user(&val, optval, optlen))
3622 return -EFAULT;
3623
3624 switch (val.sauth_chunk) {
3625 case SCTP_CID_INIT:
3626 case SCTP_CID_INIT_ACK:
3627 case SCTP_CID_SHUTDOWN_COMPLETE:
3628 case SCTP_CID_AUTH:
3629 return -EINVAL;
3630 }
3631
3632 /* add this chunk id to the endpoint */
3633 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3634}
3635
3636/*
3637 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3638 *
3639 * This option gets or sets the list of HMAC algorithms that the local
3640 * endpoint requires the peer to use.
3641 */
3642static int sctp_setsockopt_hmac_ident(struct sock *sk,
3643 char __user *optval,
3644 unsigned int optlen)
3645{
3646 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3647 struct sctp_hmacalgo *hmacs;
3648 u32 idents;
3649 int err;
3650
3651 if (!ep->auth_enable)
3652 return -EACCES;
3653
3654 if (optlen < sizeof(struct sctp_hmacalgo))
3655 return -EINVAL;
3656 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3657 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3658
3659 hmacs = memdup_user(optval, optlen);
3660 if (IS_ERR(hmacs))
3661 return PTR_ERR(hmacs);
3662
3663 idents = hmacs->shmac_num_idents;
3664 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3665 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3666 err = -EINVAL;
3667 goto out;
3668 }
3669
3670 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3671out:
3672 kfree(hmacs);
3673 return err;
3674}
3675
3676/*
3677 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3678 *
3679 * This option will set a shared secret key which is used to build an
3680 * association shared key.
3681 */
3682static int sctp_setsockopt_auth_key(struct sock *sk,
3683 char __user *optval,
3684 unsigned int optlen)
3685{
3686 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3687 struct sctp_authkey *authkey;
3688 struct sctp_association *asoc;
3689 int ret = -EINVAL;
3690
3691 if (optlen <= sizeof(struct sctp_authkey))
3692 return -EINVAL;
3693 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3694 * this.
3695 */
3696 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3697
3698 authkey = memdup_user(optval, optlen);
3699 if (IS_ERR(authkey))
3700 return PTR_ERR(authkey);
3701
3702 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3703 goto out;
3704
3705 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3706 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3707 sctp_style(sk, UDP))
3708 goto out;
3709
3710 if (asoc) {
3711 ret = sctp_auth_set_key(ep, asoc, authkey);
3712 goto out;
3713 }
3714
3715 if (sctp_style(sk, TCP))
3716 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3717
3718 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3719 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3720 ret = sctp_auth_set_key(ep, asoc, authkey);
3721 if (ret)
3722 goto out;
3723 }
3724
3725 ret = 0;
3726
3727 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3728 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3729 list_for_each_entry(asoc, &ep->asocs, asocs) {
3730 int res = sctp_auth_set_key(ep, asoc, authkey);
3731
3732 if (res && !ret)
3733 ret = res;
3734 }
3735 }
3736
3737out:
3738 kzfree(authkey);
3739 return ret;
3740}
3741
3742/*
3743 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3744 *
3745 * This option will get or set the active shared key to be used to build
3746 * the association shared key.
3747 */
3748static int sctp_setsockopt_active_key(struct sock *sk,
3749 char __user *optval,
3750 unsigned int optlen)
3751{
3752 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3753 struct sctp_association *asoc;
3754 struct sctp_authkeyid val;
3755 int ret = 0;
3756
3757 if (optlen != sizeof(struct sctp_authkeyid))
3758 return -EINVAL;
3759 if (copy_from_user(&val, optval, optlen))
3760 return -EFAULT;
3761
3762 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3763 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3764 sctp_style(sk, UDP))
3765 return -EINVAL;
3766
3767 if (asoc)
3768 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3769
3770 if (sctp_style(sk, TCP))
3771 val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3772
3773 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3774 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3775 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3776 if (ret)
3777 return ret;
3778 }
3779
3780 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3781 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3782 list_for_each_entry(asoc, &ep->asocs, asocs) {
3783 int res = sctp_auth_set_active_key(ep, asoc,
3784 val.scact_keynumber);
3785
3786 if (res && !ret)
3787 ret = res;
3788 }
3789 }
3790
3791 return ret;
3792}
3793
3794/*
3795 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3796 *
3797 * This set option will delete a shared secret key from use.
3798 */
3799static int sctp_setsockopt_del_key(struct sock *sk,
3800 char __user *optval,
3801 unsigned int optlen)
3802{
3803 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3804 struct sctp_association *asoc;
3805 struct sctp_authkeyid val;
3806 int ret = 0;
3807
3808 if (optlen != sizeof(struct sctp_authkeyid))
3809 return -EINVAL;
3810 if (copy_from_user(&val, optval, optlen))
3811 return -EFAULT;
3812
3813 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3814 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3815 sctp_style(sk, UDP))
3816 return -EINVAL;
3817
3818 if (asoc)
3819 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3820
3821 if (sctp_style(sk, TCP))
3822 val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3823
3824 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3825 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3826 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3827 if (ret)
3828 return ret;
3829 }
3830
3831 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3832 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3833 list_for_each_entry(asoc, &ep->asocs, asocs) {
3834 int res = sctp_auth_del_key_id(ep, asoc,
3835 val.scact_keynumber);
3836
3837 if (res && !ret)
3838 ret = res;
3839 }
3840 }
3841
3842 return ret;
3843}
3844
3845/*
3846 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3847 *
3848 * This set option will deactivate a shared secret key.
3849 */
3850static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3851 unsigned int optlen)
3852{
3853 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3854 struct sctp_association *asoc;
3855 struct sctp_authkeyid val;
3856 int ret = 0;
3857
3858 if (optlen != sizeof(struct sctp_authkeyid))
3859 return -EINVAL;
3860 if (copy_from_user(&val, optval, optlen))
3861 return -EFAULT;
3862
3863 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3864 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3865 sctp_style(sk, UDP))
3866 return -EINVAL;
3867
3868 if (asoc)
3869 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3870
3871 if (sctp_style(sk, TCP))
3872 val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3873
3874 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3875 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3876 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3877 if (ret)
3878 return ret;
3879 }
3880
3881 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3882 val.scact_assoc_id == SCTP_ALL_ASSOC) {
3883 list_for_each_entry(asoc, &ep->asocs, asocs) {
3884 int res = sctp_auth_deact_key_id(ep, asoc,
3885 val.scact_keynumber);
3886
3887 if (res && !ret)
3888 ret = res;
3889 }
3890 }
3891
3892 return ret;
3893}
3894
3895/*
3896 * 8.1.23 SCTP_AUTO_ASCONF
3897 *
3898 * This option will enable or disable the use of the automatic generation of
3899 * ASCONF chunks to add and delete addresses to an existing association. Note
3900 * that this option has two caveats namely: a) it only affects sockets that
3901 * are bound to all addresses available to the SCTP stack, and b) the system
3902 * administrator may have an overriding control that turns the ASCONF feature
3903 * off no matter what setting the socket option may have.
3904 * This option expects an integer boolean flag, where a non-zero value turns on
3905 * the option, and a zero value turns off the option.
3906 * Note. In this implementation, socket operation overrides default parameter
3907 * being set by sysctl as well as FreeBSD implementation
3908 */
3909static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3910 unsigned int optlen)
3911{
3912 int val;
3913 struct sctp_sock *sp = sctp_sk(sk);
3914
3915 if (optlen < sizeof(int))
3916 return -EINVAL;
3917 if (get_user(val, (int __user *)optval))
3918 return -EFAULT;
3919 if (!sctp_is_ep_boundall(sk) && val)
3920 return -EINVAL;
3921 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3922 return 0;
3923
3924 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3925 if (val == 0 && sp->do_auto_asconf) {
3926 list_del(&sp->auto_asconf_list);
3927 sp->do_auto_asconf = 0;
3928 } else if (val && !sp->do_auto_asconf) {
3929 list_add_tail(&sp->auto_asconf_list,
3930 &sock_net(sk)->sctp.auto_asconf_splist);
3931 sp->do_auto_asconf = 1;
3932 }
3933 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3934 return 0;
3935}
3936
3937/*
3938 * SCTP_PEER_ADDR_THLDS
3939 *
3940 * This option allows us to alter the partially failed threshold for one or all
3941 * transports in an association. See Section 6.1 of:
3942 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3943 */
3944static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3945 char __user *optval,
3946 unsigned int optlen)
3947{
3948 struct sctp_paddrthlds val;
3949 struct sctp_transport *trans;
3950 struct sctp_association *asoc;
3951
3952 if (optlen < sizeof(struct sctp_paddrthlds))
3953 return -EINVAL;
3954 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3955 sizeof(struct sctp_paddrthlds)))
3956 return -EFAULT;
3957
3958 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3959 trans = sctp_addr_id2transport(sk, &val.spt_address,
3960 val.spt_assoc_id);
3961 if (!trans)
3962 return -ENOENT;
3963
3964 if (val.spt_pathmaxrxt)
3965 trans->pathmaxrxt = val.spt_pathmaxrxt;
3966 trans->pf_retrans = val.spt_pathpfthld;
3967
3968 return 0;
3969 }
3970
3971 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3972 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
3973 sctp_style(sk, UDP))
3974 return -EINVAL;
3975
3976 if (asoc) {
3977 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3978 transports) {
3979 if (val.spt_pathmaxrxt)
3980 trans->pathmaxrxt = val.spt_pathmaxrxt;
3981 trans->pf_retrans = val.spt_pathpfthld;
3982 }
3983
3984 if (val.spt_pathmaxrxt)
3985 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3986 asoc->pf_retrans = val.spt_pathpfthld;
3987 } else {
3988 struct sctp_sock *sp = sctp_sk(sk);
3989
3990 if (val.spt_pathmaxrxt)
3991 sp->pathmaxrxt = val.spt_pathmaxrxt;
3992 sp->pf_retrans = val.spt_pathpfthld;
3993 }
3994
3995 return 0;
3996}
3997
3998static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3999 char __user *optval,
4000 unsigned int optlen)
4001{
4002 int val;
4003
4004 if (optlen < sizeof(int))
4005 return -EINVAL;
4006 if (get_user(val, (int __user *) optval))
4007 return -EFAULT;
4008
4009 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4010
4011 return 0;
4012}
4013
4014static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4015 char __user *optval,
4016 unsigned int optlen)
4017{
4018 int val;
4019
4020 if (optlen < sizeof(int))
4021 return -EINVAL;
4022 if (get_user(val, (int __user *) optval))
4023 return -EFAULT;
4024
4025 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4026
4027 return 0;
4028}
4029
4030static int sctp_setsockopt_pr_supported(struct sock *sk,
4031 char __user *optval,
4032 unsigned int optlen)
4033{
4034 struct sctp_assoc_value params;
4035 struct sctp_association *asoc;
4036
4037 if (optlen != sizeof(params))
4038 return -EINVAL;
4039
4040 if (copy_from_user(¶ms, optval, optlen))
4041 return -EFAULT;
4042
4043 asoc = sctp_id2assoc(sk, params.assoc_id);
4044 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4045 sctp_style(sk, UDP))
4046 return -EINVAL;
4047
4048 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4049
4050 return 0;
4051}
4052
4053static int sctp_setsockopt_default_prinfo(struct sock *sk,
4054 char __user *optval,
4055 unsigned int optlen)
4056{
4057 struct sctp_sock *sp = sctp_sk(sk);
4058 struct sctp_default_prinfo info;
4059 struct sctp_association *asoc;
4060 int retval = -EINVAL;
4061
4062 if (optlen != sizeof(info))
4063 goto out;
4064
4065 if (copy_from_user(&info, optval, sizeof(info))) {
4066 retval = -EFAULT;
4067 goto out;
4068 }
4069
4070 if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4071 goto out;
4072
4073 if (info.pr_policy == SCTP_PR_SCTP_NONE)
4074 info.pr_value = 0;
4075
4076 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4077 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4078 sctp_style(sk, UDP))
4079 goto out;
4080
4081 retval = 0;
4082
4083 if (asoc) {
4084 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4085 asoc->default_timetolive = info.pr_value;
4086 goto out;
4087 }
4088
4089 if (sctp_style(sk, TCP))
4090 info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4091
4092 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4093 info.pr_assoc_id == SCTP_ALL_ASSOC) {
4094 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4095 sp->default_timetolive = info.pr_value;
4096 }
4097
4098 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4099 info.pr_assoc_id == SCTP_ALL_ASSOC) {
4100 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4101 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4102 asoc->default_timetolive = info.pr_value;
4103 }
4104 }
4105
4106out:
4107 return retval;
4108}
4109
4110static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4111 char __user *optval,
4112 unsigned int optlen)
4113{
4114 struct sctp_assoc_value params;
4115 struct sctp_association *asoc;
4116 int retval = -EINVAL;
4117
4118 if (optlen != sizeof(params))
4119 goto out;
4120
4121 if (copy_from_user(¶ms, optval, optlen)) {
4122 retval = -EFAULT;
4123 goto out;
4124 }
4125
4126 asoc = sctp_id2assoc(sk, params.assoc_id);
4127 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4128 sctp_style(sk, UDP))
4129 goto out;
4130
4131 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4132
4133 retval = 0;
4134
4135out:
4136 return retval;
4137}
4138
4139static int sctp_setsockopt_enable_strreset(struct sock *sk,
4140 char __user *optval,
4141 unsigned int optlen)
4142{
4143 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4144 struct sctp_assoc_value params;
4145 struct sctp_association *asoc;
4146 int retval = -EINVAL;
4147
4148 if (optlen != sizeof(params))
4149 goto out;
4150
4151 if (copy_from_user(¶ms, optval, optlen)) {
4152 retval = -EFAULT;
4153 goto out;
4154 }
4155
4156 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4157 goto out;
4158
4159 asoc = sctp_id2assoc(sk, params.assoc_id);
4160 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4161 sctp_style(sk, UDP))
4162 goto out;
4163
4164 retval = 0;
4165
4166 if (asoc) {
4167 asoc->strreset_enable = params.assoc_value;
4168 goto out;
4169 }
4170
4171 if (sctp_style(sk, TCP))
4172 params.assoc_id = SCTP_FUTURE_ASSOC;
4173
4174 if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4175 params.assoc_id == SCTP_ALL_ASSOC)
4176 ep->strreset_enable = params.assoc_value;
4177
4178 if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4179 params.assoc_id == SCTP_ALL_ASSOC)
4180 list_for_each_entry(asoc, &ep->asocs, asocs)
4181 asoc->strreset_enable = params.assoc_value;
4182
4183out:
4184 return retval;
4185}
4186
4187static int sctp_setsockopt_reset_streams(struct sock *sk,
4188 char __user *optval,
4189 unsigned int optlen)
4190{
4191 struct sctp_reset_streams *params;
4192 struct sctp_association *asoc;
4193 int retval = -EINVAL;
4194
4195 if (optlen < sizeof(*params))
4196 return -EINVAL;
4197 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4198 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4199 sizeof(__u16) * sizeof(*params));
4200
4201 params = memdup_user(optval, optlen);
4202 if (IS_ERR(params))
4203 return PTR_ERR(params);
4204
4205 if (params->srs_number_streams * sizeof(__u16) >
4206 optlen - sizeof(*params))
4207 goto out;
4208
4209 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4210 if (!asoc)
4211 goto out;
4212
4213 retval = sctp_send_reset_streams(asoc, params);
4214
4215out:
4216 kfree(params);
4217 return retval;
4218}
4219
4220static int sctp_setsockopt_reset_assoc(struct sock *sk,
4221 char __user *optval,
4222 unsigned int optlen)
4223{
4224 struct sctp_association *asoc;
4225 sctp_assoc_t associd;
4226 int retval = -EINVAL;
4227
4228 if (optlen != sizeof(associd))
4229 goto out;
4230
4231 if (copy_from_user(&associd, optval, optlen)) {
4232 retval = -EFAULT;
4233 goto out;
4234 }
4235
4236 asoc = sctp_id2assoc(sk, associd);
4237 if (!asoc)
4238 goto out;
4239
4240 retval = sctp_send_reset_assoc(asoc);
4241
4242out:
4243 return retval;
4244}
4245
4246static int sctp_setsockopt_add_streams(struct sock *sk,
4247 char __user *optval,
4248 unsigned int optlen)
4249{
4250 struct sctp_association *asoc;
4251 struct sctp_add_streams params;
4252 int retval = -EINVAL;
4253
4254 if (optlen != sizeof(params))
4255 goto out;
4256
4257 if (copy_from_user(¶ms, optval, optlen)) {
4258 retval = -EFAULT;
4259 goto out;
4260 }
4261
4262 asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4263 if (!asoc)
4264 goto out;
4265
4266 retval = sctp_send_add_streams(asoc, ¶ms);
4267
4268out:
4269 return retval;
4270}
4271
4272static int sctp_setsockopt_scheduler(struct sock *sk,
4273 char __user *optval,
4274 unsigned int optlen)
4275{
4276 struct sctp_sock *sp = sctp_sk(sk);
4277 struct sctp_association *asoc;
4278 struct sctp_assoc_value params;
4279 int retval = 0;
4280
4281 if (optlen < sizeof(params))
4282 return -EINVAL;
4283
4284 optlen = sizeof(params);
4285 if (copy_from_user(¶ms, optval, optlen))
4286 return -EFAULT;
4287
4288 if (params.assoc_value > SCTP_SS_MAX)
4289 return -EINVAL;
4290
4291 asoc = sctp_id2assoc(sk, params.assoc_id);
4292 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4293 sctp_style(sk, UDP))
4294 return -EINVAL;
4295
4296 if (asoc)
4297 return sctp_sched_set_sched(asoc, params.assoc_value);
4298
4299 if (sctp_style(sk, TCP))
4300 params.assoc_id = SCTP_FUTURE_ASSOC;
4301
4302 if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4303 params.assoc_id == SCTP_ALL_ASSOC)
4304 sp->default_ss = params.assoc_value;
4305
4306 if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4307 params.assoc_id == SCTP_ALL_ASSOC) {
4308 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4309 int ret = sctp_sched_set_sched(asoc,
4310 params.assoc_value);
4311
4312 if (ret && !retval)
4313 retval = ret;
4314 }
4315 }
4316
4317 return retval;
4318}
4319
4320static int sctp_setsockopt_scheduler_value(struct sock *sk,
4321 char __user *optval,
4322 unsigned int optlen)
4323{
4324 struct sctp_stream_value params;
4325 struct sctp_association *asoc;
4326 int retval = -EINVAL;
4327
4328 if (optlen < sizeof(params))
4329 goto out;
4330
4331 optlen = sizeof(params);
4332 if (copy_from_user(¶ms, optval, optlen)) {
4333 retval = -EFAULT;
4334 goto out;
4335 }
4336
4337 asoc = sctp_id2assoc(sk, params.assoc_id);
4338 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4339 sctp_style(sk, UDP))
4340 goto out;
4341
4342 if (asoc) {
4343 retval = sctp_sched_set_value(asoc, params.stream_id,
4344 params.stream_value, GFP_KERNEL);
4345 goto out;
4346 }
4347
4348 retval = 0;
4349
4350 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4351 int ret = sctp_sched_set_value(asoc, params.stream_id,
4352 params.stream_value, GFP_KERNEL);
4353 if (ret && !retval) /* try to return the 1st error. */
4354 retval = ret;
4355 }
4356
4357out:
4358 return retval;
4359}
4360
4361static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4362 char __user *optval,
4363 unsigned int optlen)
4364{
4365 struct sctp_sock *sp = sctp_sk(sk);
4366 struct sctp_assoc_value params;
4367 struct sctp_association *asoc;
4368 int retval = -EINVAL;
4369
4370 if (optlen < sizeof(params))
4371 goto out;
4372
4373 optlen = sizeof(params);
4374 if (copy_from_user(¶ms, optval, optlen)) {
4375 retval = -EFAULT;
4376 goto out;
4377 }
4378
4379 asoc = sctp_id2assoc(sk, params.assoc_id);
4380 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4381 sctp_style(sk, UDP))
4382 goto out;
4383
4384 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4385 retval = -EPERM;
4386 goto out;
4387 }
4388
4389 sp->ep->intl_enable = !!params.assoc_value;
4390
4391 retval = 0;
4392
4393out:
4394 return retval;
4395}
4396
4397static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4398 unsigned int optlen)
4399{
4400 int val;
4401
4402 if (!sctp_style(sk, TCP))
4403 return -EOPNOTSUPP;
4404
4405 if (sctp_sk(sk)->ep->base.bind_addr.port)
4406 return -EFAULT;
4407
4408 if (optlen < sizeof(int))
4409 return -EINVAL;
4410
4411 if (get_user(val, (int __user *)optval))
4412 return -EFAULT;
4413
4414 sctp_sk(sk)->reuse = !!val;
4415
4416 return 0;
4417}
4418
4419static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4420 struct sctp_association *asoc)
4421{
4422 struct sctp_ulpevent *event;
4423
4424 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4425
4426 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4427 if (sctp_outq_is_empty(&asoc->outqueue)) {
4428 event = sctp_ulpevent_make_sender_dry_event(asoc,
4429 GFP_USER | __GFP_NOWARN);
4430 if (!event)
4431 return -ENOMEM;
4432
4433 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4434 }
4435 }
4436
4437 return 0;
4438}
4439
4440static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4441 unsigned int optlen)
4442{
4443 struct sctp_sock *sp = sctp_sk(sk);
4444 struct sctp_association *asoc;
4445 struct sctp_event param;
4446 int retval = 0;
4447
4448 if (optlen < sizeof(param))
4449 return -EINVAL;
4450
4451 optlen = sizeof(param);
4452 if (copy_from_user(¶m, optval, optlen))
4453 return -EFAULT;
4454
4455 if (param.se_type < SCTP_SN_TYPE_BASE ||
4456 param.se_type > SCTP_SN_TYPE_MAX)
4457 return -EINVAL;
4458
4459 asoc = sctp_id2assoc(sk, param.se_assoc_id);
4460 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4461 sctp_style(sk, UDP))
4462 return -EINVAL;
4463
4464 if (asoc)
4465 return sctp_assoc_ulpevent_type_set(¶m, asoc);
4466
4467 if (sctp_style(sk, TCP))
4468 param.se_assoc_id = SCTP_FUTURE_ASSOC;
4469
4470 if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4471 param.se_assoc_id == SCTP_ALL_ASSOC)
4472 sctp_ulpevent_type_set(&sp->subscribe,
4473 param.se_type, param.se_on);
4474
4475 if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4476 param.se_assoc_id == SCTP_ALL_ASSOC) {
4477 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4478 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc);
4479
4480 if (ret && !retval)
4481 retval = ret;
4482 }
4483 }
4484
4485 return retval;
4486}
4487
4488static int sctp_setsockopt_asconf_supported(struct sock *sk,
4489 char __user *optval,
4490 unsigned int optlen)
4491{
4492 struct sctp_assoc_value params;
4493 struct sctp_association *asoc;
4494 struct sctp_endpoint *ep;
4495 int retval = -EINVAL;
4496
4497 if (optlen != sizeof(params))
4498 goto out;
4499
4500 if (copy_from_user(¶ms, optval, optlen)) {
4501 retval = -EFAULT;
4502 goto out;
4503 }
4504
4505 asoc = sctp_id2assoc(sk, params.assoc_id);
4506 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4507 sctp_style(sk, UDP))
4508 goto out;
4509
4510 ep = sctp_sk(sk)->ep;
4511 ep->asconf_enable = !!params.assoc_value;
4512
4513 if (ep->asconf_enable && ep->auth_enable) {
4514 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4515 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4516 }
4517
4518 retval = 0;
4519
4520out:
4521 return retval;
4522}
4523
4524static int sctp_setsockopt_auth_supported(struct sock *sk,
4525 char __user *optval,
4526 unsigned int optlen)
4527{
4528 struct sctp_assoc_value params;
4529 struct sctp_association *asoc;
4530 struct sctp_endpoint *ep;
4531 int retval = -EINVAL;
4532
4533 if (optlen != sizeof(params))
4534 goto out;
4535
4536 if (copy_from_user(¶ms, optval, optlen)) {
4537 retval = -EFAULT;
4538 goto out;
4539 }
4540
4541 asoc = sctp_id2assoc(sk, params.assoc_id);
4542 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4543 sctp_style(sk, UDP))
4544 goto out;
4545
4546 ep = sctp_sk(sk)->ep;
4547 if (params.assoc_value) {
4548 retval = sctp_auth_init(ep, GFP_KERNEL);
4549 if (retval)
4550 goto out;
4551 if (ep->asconf_enable) {
4552 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4553 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4554 }
4555 }
4556
4557 ep->auth_enable = !!params.assoc_value;
4558 retval = 0;
4559
4560out:
4561 return retval;
4562}
4563
4564static int sctp_setsockopt_ecn_supported(struct sock *sk,
4565 char __user *optval,
4566 unsigned int optlen)
4567{
4568 struct sctp_assoc_value params;
4569 struct sctp_association *asoc;
4570 int retval = -EINVAL;
4571
4572 if (optlen != sizeof(params))
4573 goto out;
4574
4575 if (copy_from_user(¶ms, optval, optlen)) {
4576 retval = -EFAULT;
4577 goto out;
4578 }
4579
4580 asoc = sctp_id2assoc(sk, params.assoc_id);
4581 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4582 sctp_style(sk, UDP))
4583 goto out;
4584
4585 sctp_sk(sk)->ep->ecn_enable = !!params.assoc_value;
4586 retval = 0;
4587
4588out:
4589 return retval;
4590}
4591
4592/* API 6.2 setsockopt(), getsockopt()
4593 *
4594 * Applications use setsockopt() and getsockopt() to set or retrieve
4595 * socket options. Socket options are used to change the default
4596 * behavior of sockets calls. They are described in Section 7.
4597 *
4598 * The syntax is:
4599 *
4600 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4601 * int __user *optlen);
4602 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4603 * int optlen);
4604 *
4605 * sd - the socket descript.
4606 * level - set to IPPROTO_SCTP for all SCTP options.
4607 * optname - the option name.
4608 * optval - the buffer to store the value of the option.
4609 * optlen - the size of the buffer.
4610 */
4611static int sctp_setsockopt(struct sock *sk, int level, int optname,
4612 char __user *optval, unsigned int optlen)
4613{
4614 int retval = 0;
4615
4616 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4617
4618 /* I can hardly begin to describe how wrong this is. This is
4619 * so broken as to be worse than useless. The API draft
4620 * REALLY is NOT helpful here... I am not convinced that the
4621 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4622 * are at all well-founded.
4623 */
4624 if (level != SOL_SCTP) {
4625 struct sctp_af *af = sctp_sk(sk)->pf->af;
4626 retval = af->setsockopt(sk, level, optname, optval, optlen);
4627 goto out_nounlock;
4628 }
4629
4630 lock_sock(sk);
4631
4632 switch (optname) {
4633 case SCTP_SOCKOPT_BINDX_ADD:
4634 /* 'optlen' is the size of the addresses buffer. */
4635 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4636 optlen, SCTP_BINDX_ADD_ADDR);
4637 break;
4638
4639 case SCTP_SOCKOPT_BINDX_REM:
4640 /* 'optlen' is the size of the addresses buffer. */
4641 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4642 optlen, SCTP_BINDX_REM_ADDR);
4643 break;
4644
4645 case SCTP_SOCKOPT_CONNECTX_OLD:
4646 /* 'optlen' is the size of the addresses buffer. */
4647 retval = sctp_setsockopt_connectx_old(sk,
4648 (struct sockaddr __user *)optval,
4649 optlen);
4650 break;
4651
4652 case SCTP_SOCKOPT_CONNECTX:
4653 /* 'optlen' is the size of the addresses buffer. */
4654 retval = sctp_setsockopt_connectx(sk,
4655 (struct sockaddr __user *)optval,
4656 optlen);
4657 break;
4658
4659 case SCTP_DISABLE_FRAGMENTS:
4660 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4661 break;
4662
4663 case SCTP_EVENTS:
4664 retval = sctp_setsockopt_events(sk, optval, optlen);
4665 break;
4666
4667 case SCTP_AUTOCLOSE:
4668 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4669 break;
4670
4671 case SCTP_PEER_ADDR_PARAMS:
4672 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4673 break;
4674
4675 case SCTP_DELAYED_SACK:
4676 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4677 break;
4678 case SCTP_PARTIAL_DELIVERY_POINT:
4679 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4680 break;
4681
4682 case SCTP_INITMSG:
4683 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4684 break;
4685 case SCTP_DEFAULT_SEND_PARAM:
4686 retval = sctp_setsockopt_default_send_param(sk, optval,
4687 optlen);
4688 break;
4689 case SCTP_DEFAULT_SNDINFO:
4690 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4691 break;
4692 case SCTP_PRIMARY_ADDR:
4693 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4694 break;
4695 case SCTP_SET_PEER_PRIMARY_ADDR:
4696 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4697 break;
4698 case SCTP_NODELAY:
4699 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4700 break;
4701 case SCTP_RTOINFO:
4702 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4703 break;
4704 case SCTP_ASSOCINFO:
4705 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4706 break;
4707 case SCTP_I_WANT_MAPPED_V4_ADDR:
4708 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4709 break;
4710 case SCTP_MAXSEG:
4711 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4712 break;
4713 case SCTP_ADAPTATION_LAYER:
4714 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4715 break;
4716 case SCTP_CONTEXT:
4717 retval = sctp_setsockopt_context(sk, optval, optlen);
4718 break;
4719 case SCTP_FRAGMENT_INTERLEAVE:
4720 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4721 break;
4722 case SCTP_MAX_BURST:
4723 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4724 break;
4725 case SCTP_AUTH_CHUNK:
4726 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4727 break;
4728 case SCTP_HMAC_IDENT:
4729 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4730 break;
4731 case SCTP_AUTH_KEY:
4732 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4733 break;
4734 case SCTP_AUTH_ACTIVE_KEY:
4735 retval = sctp_setsockopt_active_key(sk, optval, optlen);
4736 break;
4737 case SCTP_AUTH_DELETE_KEY:
4738 retval = sctp_setsockopt_del_key(sk, optval, optlen);
4739 break;
4740 case SCTP_AUTH_DEACTIVATE_KEY:
4741 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4742 break;
4743 case SCTP_AUTO_ASCONF:
4744 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4745 break;
4746 case SCTP_PEER_ADDR_THLDS:
4747 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4748 break;
4749 case SCTP_RECVRCVINFO:
4750 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4751 break;
4752 case SCTP_RECVNXTINFO:
4753 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4754 break;
4755 case SCTP_PR_SUPPORTED:
4756 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4757 break;
4758 case SCTP_DEFAULT_PRINFO:
4759 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4760 break;
4761 case SCTP_RECONFIG_SUPPORTED:
4762 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4763 break;
4764 case SCTP_ENABLE_STREAM_RESET:
4765 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4766 break;
4767 case SCTP_RESET_STREAMS:
4768 retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4769 break;
4770 case SCTP_RESET_ASSOC:
4771 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4772 break;
4773 case SCTP_ADD_STREAMS:
4774 retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4775 break;
4776 case SCTP_STREAM_SCHEDULER:
4777 retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4778 break;
4779 case SCTP_STREAM_SCHEDULER_VALUE:
4780 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4781 break;
4782 case SCTP_INTERLEAVING_SUPPORTED:
4783 retval = sctp_setsockopt_interleaving_supported(sk, optval,
4784 optlen);
4785 break;
4786 case SCTP_REUSE_PORT:
4787 retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4788 break;
4789 case SCTP_EVENT:
4790 retval = sctp_setsockopt_event(sk, optval, optlen);
4791 break;
4792 case SCTP_ASCONF_SUPPORTED:
4793 retval = sctp_setsockopt_asconf_supported(sk, optval, optlen);
4794 break;
4795 case SCTP_AUTH_SUPPORTED:
4796 retval = sctp_setsockopt_auth_supported(sk, optval, optlen);
4797 break;
4798 case SCTP_ECN_SUPPORTED:
4799 retval = sctp_setsockopt_ecn_supported(sk, optval, optlen);
4800 break;
4801 default:
4802 retval = -ENOPROTOOPT;
4803 break;
4804 }
4805
4806 release_sock(sk);
4807
4808out_nounlock:
4809 return retval;
4810}
4811
4812/* API 3.1.6 connect() - UDP Style Syntax
4813 *
4814 * An application may use the connect() call in the UDP model to initiate an
4815 * association without sending data.
4816 *
4817 * The syntax is:
4818 *
4819 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4820 *
4821 * sd: the socket descriptor to have a new association added to.
4822 *
4823 * nam: the address structure (either struct sockaddr_in or struct
4824 * sockaddr_in6 defined in RFC2553 [7]).
4825 *
4826 * len: the size of the address.
4827 */
4828static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4829 int addr_len, int flags)
4830{
4831 struct sctp_af *af;
4832 int err = -EINVAL;
4833
4834 lock_sock(sk);
4835 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4836 addr, addr_len);
4837
4838 /* Validate addr_len before calling common connect/connectx routine. */
4839 af = sctp_get_af_specific(addr->sa_family);
4840 if (af && addr_len >= af->sockaddr_len)
4841 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4842
4843 release_sock(sk);
4844 return err;
4845}
4846
4847int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4848 int addr_len, int flags)
4849{
4850 if (addr_len < sizeof(uaddr->sa_family))
4851 return -EINVAL;
4852
4853 if (uaddr->sa_family == AF_UNSPEC)
4854 return -EOPNOTSUPP;
4855
4856 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4857}
4858
4859/* FIXME: Write comments. */
4860static int sctp_disconnect(struct sock *sk, int flags)
4861{
4862 return -EOPNOTSUPP; /* STUB */
4863}
4864
4865/* 4.1.4 accept() - TCP Style Syntax
4866 *
4867 * Applications use accept() call to remove an established SCTP
4868 * association from the accept queue of the endpoint. A new socket
4869 * descriptor will be returned from accept() to represent the newly
4870 * formed association.
4871 */
4872static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4873{
4874 struct sctp_sock *sp;
4875 struct sctp_endpoint *ep;
4876 struct sock *newsk = NULL;
4877 struct sctp_association *asoc;
4878 long timeo;
4879 int error = 0;
4880
4881 lock_sock(sk);
4882
4883 sp = sctp_sk(sk);
4884 ep = sp->ep;
4885
4886 if (!sctp_style(sk, TCP)) {
4887 error = -EOPNOTSUPP;
4888 goto out;
4889 }
4890
4891 if (!sctp_sstate(sk, LISTENING)) {
4892 error = -EINVAL;
4893 goto out;
4894 }
4895
4896 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4897
4898 error = sctp_wait_for_accept(sk, timeo);
4899 if (error)
4900 goto out;
4901
4902 /* We treat the list of associations on the endpoint as the accept
4903 * queue and pick the first association on the list.
4904 */
4905 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4906
4907 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4908 if (!newsk) {
4909 error = -ENOMEM;
4910 goto out;
4911 }
4912
4913 /* Populate the fields of the newsk from the oldsk and migrate the
4914 * asoc to the newsk.
4915 */
4916 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4917 if (error) {
4918 sk_common_release(newsk);
4919 newsk = NULL;
4920 }
4921
4922out:
4923 release_sock(sk);
4924 *err = error;
4925 return newsk;
4926}
4927
4928/* The SCTP ioctl handler. */
4929static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4930{
4931 int rc = -ENOTCONN;
4932
4933 lock_sock(sk);
4934
4935 /*
4936 * SEQPACKET-style sockets in LISTENING state are valid, for
4937 * SCTP, so only discard TCP-style sockets in LISTENING state.
4938 */
4939 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4940 goto out;
4941
4942 switch (cmd) {
4943 case SIOCINQ: {
4944 struct sk_buff *skb;
4945 unsigned int amount = 0;
4946
4947 skb = skb_peek(&sk->sk_receive_queue);
4948 if (skb != NULL) {
4949 /*
4950 * We will only return the amount of this packet since
4951 * that is all that will be read.
4952 */
4953 amount = skb->len;
4954 }
4955 rc = put_user(amount, (int __user *)arg);
4956 break;
4957 }
4958 default:
4959 rc = -ENOIOCTLCMD;
4960 break;
4961 }
4962out:
4963 release_sock(sk);
4964 return rc;
4965}
4966
4967/* This is the function which gets called during socket creation to
4968 * initialized the SCTP-specific portion of the sock.
4969 * The sock structure should already be zero-filled memory.
4970 */
4971static int sctp_init_sock(struct sock *sk)
4972{
4973 struct net *net = sock_net(sk);
4974 struct sctp_sock *sp;
4975
4976 pr_debug("%s: sk:%p\n", __func__, sk);
4977
4978 sp = sctp_sk(sk);
4979
4980 /* Initialize the SCTP per socket area. */
4981 switch (sk->sk_type) {
4982 case SOCK_SEQPACKET:
4983 sp->type = SCTP_SOCKET_UDP;
4984 break;
4985 case SOCK_STREAM:
4986 sp->type = SCTP_SOCKET_TCP;
4987 break;
4988 default:
4989 return -ESOCKTNOSUPPORT;
4990 }
4991
4992 sk->sk_gso_type = SKB_GSO_SCTP;
4993
4994 /* Initialize default send parameters. These parameters can be
4995 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4996 */
4997 sp->default_stream = 0;
4998 sp->default_ppid = 0;
4999 sp->default_flags = 0;
5000 sp->default_context = 0;
5001 sp->default_timetolive = 0;
5002
5003 sp->default_rcv_context = 0;
5004 sp->max_burst = net->sctp.max_burst;
5005
5006 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
5007
5008 /* Initialize default setup parameters. These parameters
5009 * can be modified with the SCTP_INITMSG socket option or
5010 * overridden by the SCTP_INIT CMSG.
5011 */
5012 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
5013 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
5014 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
5015 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
5016
5017 /* Initialize default RTO related parameters. These parameters can
5018 * be modified for with the SCTP_RTOINFO socket option.
5019 */
5020 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5021 sp->rtoinfo.srto_max = net->sctp.rto_max;
5022 sp->rtoinfo.srto_min = net->sctp.rto_min;
5023
5024 /* Initialize default association related parameters. These parameters
5025 * can be modified with the SCTP_ASSOCINFO socket option.
5026 */
5027 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5028 sp->assocparams.sasoc_number_peer_destinations = 0;
5029 sp->assocparams.sasoc_peer_rwnd = 0;
5030 sp->assocparams.sasoc_local_rwnd = 0;
5031 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5032
5033 /* Initialize default event subscriptions. By default, all the
5034 * options are off.
5035 */
5036 sp->subscribe = 0;
5037
5038 /* Default Peer Address Parameters. These defaults can
5039 * be modified via SCTP_PEER_ADDR_PARAMS
5040 */
5041 sp->hbinterval = net->sctp.hb_interval;
5042 sp->pathmaxrxt = net->sctp.max_retrans_path;
5043 sp->pf_retrans = net->sctp.pf_retrans;
5044 sp->pathmtu = 0; /* allow default discovery */
5045 sp->sackdelay = net->sctp.sack_timeout;
5046 sp->sackfreq = 2;
5047 sp->param_flags = SPP_HB_ENABLE |
5048 SPP_PMTUD_ENABLE |
5049 SPP_SACKDELAY_ENABLE;
5050 sp->default_ss = SCTP_SS_DEFAULT;
5051
5052 /* If enabled no SCTP message fragmentation will be performed.
5053 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5054 */
5055 sp->disable_fragments = 0;
5056
5057 /* Enable Nagle algorithm by default. */
5058 sp->nodelay = 0;
5059
5060 sp->recvrcvinfo = 0;
5061 sp->recvnxtinfo = 0;
5062
5063 /* Enable by default. */
5064 sp->v4mapped = 1;
5065
5066 /* Auto-close idle associations after the configured
5067 * number of seconds. A value of 0 disables this
5068 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5069 * for UDP-style sockets only.
5070 */
5071 sp->autoclose = 0;
5072
5073 /* User specified fragmentation limit. */
5074 sp->user_frag = 0;
5075
5076 sp->adaptation_ind = 0;
5077
5078 sp->pf = sctp_get_pf_specific(sk->sk_family);
5079
5080 /* Control variables for partial data delivery. */
5081 atomic_set(&sp->pd_mode, 0);
5082 skb_queue_head_init(&sp->pd_lobby);
5083 sp->frag_interleave = 0;
5084
5085 /* Create a per socket endpoint structure. Even if we
5086 * change the data structure relationships, this may still
5087 * be useful for storing pre-connect address information.
5088 */
5089 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5090 if (!sp->ep)
5091 return -ENOMEM;
5092
5093 sp->hmac = NULL;
5094
5095 sk->sk_destruct = sctp_destruct_sock;
5096
5097 SCTP_DBG_OBJCNT_INC(sock);
5098
5099 local_bh_disable();
5100 sk_sockets_allocated_inc(sk);
5101 sock_prot_inuse_add(net, sk->sk_prot, 1);
5102
5103 /* Nothing can fail after this block, otherwise
5104 * sctp_destroy_sock() will be called without addr_wq_lock held
5105 */
5106 if (net->sctp.default_auto_asconf) {
5107 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5108 list_add_tail(&sp->auto_asconf_list,
5109 &net->sctp.auto_asconf_splist);
5110 sp->do_auto_asconf = 1;
5111 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5112 } else {
5113 sp->do_auto_asconf = 0;
5114 }
5115
5116 local_bh_enable();
5117
5118 return 0;
5119}
5120
5121/* Cleanup any SCTP per socket resources. Must be called with
5122 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5123 */
5124static void sctp_destroy_sock(struct sock *sk)
5125{
5126 struct sctp_sock *sp;
5127
5128 pr_debug("%s: sk:%p\n", __func__, sk);
5129
5130 /* Release our hold on the endpoint. */
5131 sp = sctp_sk(sk);
5132 /* This could happen during socket init, thus we bail out
5133 * early, since the rest of the below is not setup either.
5134 */
5135 if (sp->ep == NULL)
5136 return;
5137
5138 if (sp->do_auto_asconf) {
5139 sp->do_auto_asconf = 0;
5140 list_del(&sp->auto_asconf_list);
5141 }
5142 sctp_endpoint_free(sp->ep);
5143 local_bh_disable();
5144 sk_sockets_allocated_dec(sk);
5145 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5146 local_bh_enable();
5147}
5148
5149/* Triggered when there are no references on the socket anymore */
5150static void sctp_destruct_sock(struct sock *sk)
5151{
5152 struct sctp_sock *sp = sctp_sk(sk);
5153
5154 /* Free up the HMAC transform. */
5155 crypto_free_shash(sp->hmac);
5156
5157 inet_sock_destruct(sk);
5158}
5159
5160/* API 4.1.7 shutdown() - TCP Style Syntax
5161 * int shutdown(int socket, int how);
5162 *
5163 * sd - the socket descriptor of the association to be closed.
5164 * how - Specifies the type of shutdown. The values are
5165 * as follows:
5166 * SHUT_RD
5167 * Disables further receive operations. No SCTP
5168 * protocol action is taken.
5169 * SHUT_WR
5170 * Disables further send operations, and initiates
5171 * the SCTP shutdown sequence.
5172 * SHUT_RDWR
5173 * Disables further send and receive operations
5174 * and initiates the SCTP shutdown sequence.
5175 */
5176static void sctp_shutdown(struct sock *sk, int how)
5177{
5178 struct net *net = sock_net(sk);
5179 struct sctp_endpoint *ep;
5180
5181 if (!sctp_style(sk, TCP))
5182 return;
5183
5184 ep = sctp_sk(sk)->ep;
5185 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5186 struct sctp_association *asoc;
5187
5188 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5189 asoc = list_entry(ep->asocs.next,
5190 struct sctp_association, asocs);
5191 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5192 }
5193}
5194
5195int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5196 struct sctp_info *info)
5197{
5198 struct sctp_transport *prim;
5199 struct list_head *pos;
5200 int mask;
5201
5202 memset(info, 0, sizeof(*info));
5203 if (!asoc) {
5204 struct sctp_sock *sp = sctp_sk(sk);
5205
5206 info->sctpi_s_autoclose = sp->autoclose;
5207 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5208 info->sctpi_s_pd_point = sp->pd_point;
5209 info->sctpi_s_nodelay = sp->nodelay;
5210 info->sctpi_s_disable_fragments = sp->disable_fragments;
5211 info->sctpi_s_v4mapped = sp->v4mapped;
5212 info->sctpi_s_frag_interleave = sp->frag_interleave;
5213 info->sctpi_s_type = sp->type;
5214
5215 return 0;
5216 }
5217
5218 info->sctpi_tag = asoc->c.my_vtag;
5219 info->sctpi_state = asoc->state;
5220 info->sctpi_rwnd = asoc->a_rwnd;
5221 info->sctpi_unackdata = asoc->unack_data;
5222 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5223 info->sctpi_instrms = asoc->stream.incnt;
5224 info->sctpi_outstrms = asoc->stream.outcnt;
5225 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5226 info->sctpi_inqueue++;
5227 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5228 info->sctpi_outqueue++;
5229 info->sctpi_overall_error = asoc->overall_error_count;
5230 info->sctpi_max_burst = asoc->max_burst;
5231 info->sctpi_maxseg = asoc->frag_point;
5232 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5233 info->sctpi_peer_tag = asoc->c.peer_vtag;
5234
5235 mask = asoc->peer.ecn_capable << 1;
5236 mask = (mask | asoc->peer.ipv4_address) << 1;
5237 mask = (mask | asoc->peer.ipv6_address) << 1;
5238 mask = (mask | asoc->peer.hostname_address) << 1;
5239 mask = (mask | asoc->peer.asconf_capable) << 1;
5240 mask = (mask | asoc->peer.prsctp_capable) << 1;
5241 mask = (mask | asoc->peer.auth_capable);
5242 info->sctpi_peer_capable = mask;
5243 mask = asoc->peer.sack_needed << 1;
5244 mask = (mask | asoc->peer.sack_generation) << 1;
5245 mask = (mask | asoc->peer.zero_window_announced);
5246 info->sctpi_peer_sack = mask;
5247
5248 info->sctpi_isacks = asoc->stats.isacks;
5249 info->sctpi_osacks = asoc->stats.osacks;
5250 info->sctpi_opackets = asoc->stats.opackets;
5251 info->sctpi_ipackets = asoc->stats.ipackets;
5252 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5253 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5254 info->sctpi_idupchunks = asoc->stats.idupchunks;
5255 info->sctpi_gapcnt = asoc->stats.gapcnt;
5256 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5257 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5258 info->sctpi_oodchunks = asoc->stats.oodchunks;
5259 info->sctpi_iodchunks = asoc->stats.iodchunks;
5260 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5261 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5262
5263 prim = asoc->peer.primary_path;
5264 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5265 info->sctpi_p_state = prim->state;
5266 info->sctpi_p_cwnd = prim->cwnd;
5267 info->sctpi_p_srtt = prim->srtt;
5268 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5269 info->sctpi_p_hbinterval = prim->hbinterval;
5270 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5271 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5272 info->sctpi_p_ssthresh = prim->ssthresh;
5273 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5274 info->sctpi_p_flight_size = prim->flight_size;
5275 info->sctpi_p_error = prim->error_count;
5276
5277 return 0;
5278}
5279EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5280
5281/* use callback to avoid exporting the core structure */
5282void sctp_transport_walk_start(struct rhashtable_iter *iter)
5283{
5284 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5285
5286 rhashtable_walk_start(iter);
5287}
5288
5289void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5290{
5291 rhashtable_walk_stop(iter);
5292 rhashtable_walk_exit(iter);
5293}
5294
5295struct sctp_transport *sctp_transport_get_next(struct net *net,
5296 struct rhashtable_iter *iter)
5297{
5298 struct sctp_transport *t;
5299
5300 t = rhashtable_walk_next(iter);
5301 for (; t; t = rhashtable_walk_next(iter)) {
5302 if (IS_ERR(t)) {
5303 if (PTR_ERR(t) == -EAGAIN)
5304 continue;
5305 break;
5306 }
5307
5308 if (!sctp_transport_hold(t))
5309 continue;
5310
5311 if (net_eq(sock_net(t->asoc->base.sk), net) &&
5312 t->asoc->peer.primary_path == t)
5313 break;
5314
5315 sctp_transport_put(t);
5316 }
5317
5318 return t;
5319}
5320
5321struct sctp_transport *sctp_transport_get_idx(struct net *net,
5322 struct rhashtable_iter *iter,
5323 int pos)
5324{
5325 struct sctp_transport *t;
5326
5327 if (!pos)
5328 return SEQ_START_TOKEN;
5329
5330 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5331 if (!--pos)
5332 break;
5333 sctp_transport_put(t);
5334 }
5335
5336 return t;
5337}
5338
5339int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5340 void *p) {
5341 int err = 0;
5342 int hash = 0;
5343 struct sctp_ep_common *epb;
5344 struct sctp_hashbucket *head;
5345
5346 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5347 hash++, head++) {
5348 read_lock_bh(&head->lock);
5349 sctp_for_each_hentry(epb, &head->chain) {
5350 err = cb(sctp_ep(epb), p);
5351 if (err)
5352 break;
5353 }
5354 read_unlock_bh(&head->lock);
5355 }
5356
5357 return err;
5358}
5359EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5360
5361int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5362 struct net *net,
5363 const union sctp_addr *laddr,
5364 const union sctp_addr *paddr, void *p)
5365{
5366 struct sctp_transport *transport;
5367 int err;
5368
5369 rcu_read_lock();
5370 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5371 rcu_read_unlock();
5372 if (!transport)
5373 return -ENOENT;
5374
5375 err = cb(transport, p);
5376 sctp_transport_put(transport);
5377
5378 return err;
5379}
5380EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5381
5382int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5383 int (*cb_done)(struct sctp_transport *, void *),
5384 struct net *net, int *pos, void *p) {
5385 struct rhashtable_iter hti;
5386 struct sctp_transport *tsp;
5387 int ret;
5388
5389again:
5390 ret = 0;
5391 sctp_transport_walk_start(&hti);
5392
5393 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5394 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5395 ret = cb(tsp, p);
5396 if (ret)
5397 break;
5398 (*pos)++;
5399 sctp_transport_put(tsp);
5400 }
5401 sctp_transport_walk_stop(&hti);
5402
5403 if (ret) {
5404 if (cb_done && !cb_done(tsp, p)) {
5405 (*pos)++;
5406 sctp_transport_put(tsp);
5407 goto again;
5408 }
5409 sctp_transport_put(tsp);
5410 }
5411
5412 return ret;
5413}
5414EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5415
5416/* 7.2.1 Association Status (SCTP_STATUS)
5417
5418 * Applications can retrieve current status information about an
5419 * association, including association state, peer receiver window size,
5420 * number of unacked data chunks, and number of data chunks pending
5421 * receipt. This information is read-only.
5422 */
5423static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5424 char __user *optval,
5425 int __user *optlen)
5426{
5427 struct sctp_status status;
5428 struct sctp_association *asoc = NULL;
5429 struct sctp_transport *transport;
5430 sctp_assoc_t associd;
5431 int retval = 0;
5432
5433 if (len < sizeof(status)) {
5434 retval = -EINVAL;
5435 goto out;
5436 }
5437
5438 len = sizeof(status);
5439 if (copy_from_user(&status, optval, len)) {
5440 retval = -EFAULT;
5441 goto out;
5442 }
5443
5444 associd = status.sstat_assoc_id;
5445 asoc = sctp_id2assoc(sk, associd);
5446 if (!asoc) {
5447 retval = -EINVAL;
5448 goto out;
5449 }
5450
5451 transport = asoc->peer.primary_path;
5452
5453 status.sstat_assoc_id = sctp_assoc2id(asoc);
5454 status.sstat_state = sctp_assoc_to_state(asoc);
5455 status.sstat_rwnd = asoc->peer.rwnd;
5456 status.sstat_unackdata = asoc->unack_data;
5457
5458 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5459 status.sstat_instrms = asoc->stream.incnt;
5460 status.sstat_outstrms = asoc->stream.outcnt;
5461 status.sstat_fragmentation_point = asoc->frag_point;
5462 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5463 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5464 transport->af_specific->sockaddr_len);
5465 /* Map ipv4 address into v4-mapped-on-v6 address. */
5466 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5467 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5468 status.sstat_primary.spinfo_state = transport->state;
5469 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5470 status.sstat_primary.spinfo_srtt = transport->srtt;
5471 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5472 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5473
5474 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5475 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5476
5477 if (put_user(len, optlen)) {
5478 retval = -EFAULT;
5479 goto out;
5480 }
5481
5482 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5483 __func__, len, status.sstat_state, status.sstat_rwnd,
5484 status.sstat_assoc_id);
5485
5486 if (copy_to_user(optval, &status, len)) {
5487 retval = -EFAULT;
5488 goto out;
5489 }
5490
5491out:
5492 return retval;
5493}
5494
5495
5496/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5497 *
5498 * Applications can retrieve information about a specific peer address
5499 * of an association, including its reachability state, congestion
5500 * window, and retransmission timer values. This information is
5501 * read-only.
5502 */
5503static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5504 char __user *optval,
5505 int __user *optlen)
5506{
5507 struct sctp_paddrinfo pinfo;
5508 struct sctp_transport *transport;
5509 int retval = 0;
5510
5511 if (len < sizeof(pinfo)) {
5512 retval = -EINVAL;
5513 goto out;
5514 }
5515
5516 len = sizeof(pinfo);
5517 if (copy_from_user(&pinfo, optval, len)) {
5518 retval = -EFAULT;
5519 goto out;
5520 }
5521
5522 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5523 pinfo.spinfo_assoc_id);
5524 if (!transport)
5525 return -EINVAL;
5526
5527 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5528 pinfo.spinfo_state = transport->state;
5529 pinfo.spinfo_cwnd = transport->cwnd;
5530 pinfo.spinfo_srtt = transport->srtt;
5531 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5532 pinfo.spinfo_mtu = transport->pathmtu;
5533
5534 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5535 pinfo.spinfo_state = SCTP_ACTIVE;
5536
5537 if (put_user(len, optlen)) {
5538 retval = -EFAULT;
5539 goto out;
5540 }
5541
5542 if (copy_to_user(optval, &pinfo, len)) {
5543 retval = -EFAULT;
5544 goto out;
5545 }
5546
5547out:
5548 return retval;
5549}
5550
5551/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5552 *
5553 * This option is a on/off flag. If enabled no SCTP message
5554 * fragmentation will be performed. Instead if a message being sent
5555 * exceeds the current PMTU size, the message will NOT be sent and
5556 * instead a error will be indicated to the user.
5557 */
5558static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5559 char __user *optval, int __user *optlen)
5560{
5561 int val;
5562
5563 if (len < sizeof(int))
5564 return -EINVAL;
5565
5566 len = sizeof(int);
5567 val = (sctp_sk(sk)->disable_fragments == 1);
5568 if (put_user(len, optlen))
5569 return -EFAULT;
5570 if (copy_to_user(optval, &val, len))
5571 return -EFAULT;
5572 return 0;
5573}
5574
5575/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5576 *
5577 * This socket option is used to specify various notifications and
5578 * ancillary data the user wishes to receive.
5579 */
5580static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5581 int __user *optlen)
5582{
5583 struct sctp_event_subscribe subscribe;
5584 __u8 *sn_type = (__u8 *)&subscribe;
5585 int i;
5586
5587 if (len == 0)
5588 return -EINVAL;
5589 if (len > sizeof(struct sctp_event_subscribe))
5590 len = sizeof(struct sctp_event_subscribe);
5591 if (put_user(len, optlen))
5592 return -EFAULT;
5593
5594 for (i = 0; i < len; i++)
5595 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5596 SCTP_SN_TYPE_BASE + i);
5597
5598 if (copy_to_user(optval, &subscribe, len))
5599 return -EFAULT;
5600
5601 return 0;
5602}
5603
5604/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5605 *
5606 * This socket option is applicable to the UDP-style socket only. When
5607 * set it will cause associations that are idle for more than the
5608 * specified number of seconds to automatically close. An association
5609 * being idle is defined an association that has NOT sent or received
5610 * user data. The special value of '0' indicates that no automatic
5611 * close of any associations should be performed. The option expects an
5612 * integer defining the number of seconds of idle time before an
5613 * association is closed.
5614 */
5615static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5616{
5617 /* Applicable to UDP-style socket only */
5618 if (sctp_style(sk, TCP))
5619 return -EOPNOTSUPP;
5620 if (len < sizeof(int))
5621 return -EINVAL;
5622 len = sizeof(int);
5623 if (put_user(len, optlen))
5624 return -EFAULT;
5625 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5626 return -EFAULT;
5627 return 0;
5628}
5629
5630/* Helper routine to branch off an association to a new socket. */
5631int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5632{
5633 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5634 struct sctp_sock *sp = sctp_sk(sk);
5635 struct socket *sock;
5636 int err = 0;
5637
5638 /* Do not peel off from one netns to another one. */
5639 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5640 return -EINVAL;
5641
5642 if (!asoc)
5643 return -EINVAL;
5644
5645 /* An association cannot be branched off from an already peeled-off
5646 * socket, nor is this supported for tcp style sockets.
5647 */
5648 if (!sctp_style(sk, UDP))
5649 return -EINVAL;
5650
5651 /* Create a new socket. */
5652 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5653 if (err < 0)
5654 return err;
5655
5656 sctp_copy_sock(sock->sk, sk, asoc);
5657
5658 /* Make peeled-off sockets more like 1-1 accepted sockets.
5659 * Set the daddr and initialize id to something more random and also
5660 * copy over any ip options.
5661 */
5662 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5663 sp->pf->copy_ip_options(sk, sock->sk);
5664
5665 /* Populate the fields of the newsk from the oldsk and migrate the
5666 * asoc to the newsk.
5667 */
5668 err = sctp_sock_migrate(sk, sock->sk, asoc,
5669 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5670 if (err) {
5671 sock_release(sock);
5672 sock = NULL;
5673 }
5674
5675 *sockp = sock;
5676
5677 return err;
5678}
5679EXPORT_SYMBOL(sctp_do_peeloff);
5680
5681static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5682 struct file **newfile, unsigned flags)
5683{
5684 struct socket *newsock;
5685 int retval;
5686
5687 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5688 if (retval < 0)
5689 goto out;
5690
5691 /* Map the socket to an unused fd that can be returned to the user. */
5692 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5693 if (retval < 0) {
5694 sock_release(newsock);
5695 goto out;
5696 }
5697
5698 *newfile = sock_alloc_file(newsock, 0, NULL);
5699 if (IS_ERR(*newfile)) {
5700 put_unused_fd(retval);
5701 retval = PTR_ERR(*newfile);
5702 *newfile = NULL;
5703 return retval;
5704 }
5705
5706 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5707 retval);
5708
5709 peeloff->sd = retval;
5710
5711 if (flags & SOCK_NONBLOCK)
5712 (*newfile)->f_flags |= O_NONBLOCK;
5713out:
5714 return retval;
5715}
5716
5717static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5718{
5719 sctp_peeloff_arg_t peeloff;
5720 struct file *newfile = NULL;
5721 int retval = 0;
5722
5723 if (len < sizeof(sctp_peeloff_arg_t))
5724 return -EINVAL;
5725 len = sizeof(sctp_peeloff_arg_t);
5726 if (copy_from_user(&peeloff, optval, len))
5727 return -EFAULT;
5728
5729 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5730 if (retval < 0)
5731 goto out;
5732
5733 /* Return the fd mapped to the new socket. */
5734 if (put_user(len, optlen)) {
5735 fput(newfile);
5736 put_unused_fd(retval);
5737 return -EFAULT;
5738 }
5739
5740 if (copy_to_user(optval, &peeloff, len)) {
5741 fput(newfile);
5742 put_unused_fd(retval);
5743 return -EFAULT;
5744 }
5745 fd_install(retval, newfile);
5746out:
5747 return retval;
5748}
5749
5750static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5751 char __user *optval, int __user *optlen)
5752{
5753 sctp_peeloff_flags_arg_t peeloff;
5754 struct file *newfile = NULL;
5755 int retval = 0;
5756
5757 if (len < sizeof(sctp_peeloff_flags_arg_t))
5758 return -EINVAL;
5759 len = sizeof(sctp_peeloff_flags_arg_t);
5760 if (copy_from_user(&peeloff, optval, len))
5761 return -EFAULT;
5762
5763 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5764 &newfile, peeloff.flags);
5765 if (retval < 0)
5766 goto out;
5767
5768 /* Return the fd mapped to the new socket. */
5769 if (put_user(len, optlen)) {
5770 fput(newfile);
5771 put_unused_fd(retval);
5772 return -EFAULT;
5773 }
5774
5775 if (copy_to_user(optval, &peeloff, len)) {
5776 fput(newfile);
5777 put_unused_fd(retval);
5778 return -EFAULT;
5779 }
5780 fd_install(retval, newfile);
5781out:
5782 return retval;
5783}
5784
5785/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5786 *
5787 * Applications can enable or disable heartbeats for any peer address of
5788 * an association, modify an address's heartbeat interval, force a
5789 * heartbeat to be sent immediately, and adjust the address's maximum
5790 * number of retransmissions sent before an address is considered
5791 * unreachable. The following structure is used to access and modify an
5792 * address's parameters:
5793 *
5794 * struct sctp_paddrparams {
5795 * sctp_assoc_t spp_assoc_id;
5796 * struct sockaddr_storage spp_address;
5797 * uint32_t spp_hbinterval;
5798 * uint16_t spp_pathmaxrxt;
5799 * uint32_t spp_pathmtu;
5800 * uint32_t spp_sackdelay;
5801 * uint32_t spp_flags;
5802 * };
5803 *
5804 * spp_assoc_id - (one-to-many style socket) This is filled in the
5805 * application, and identifies the association for
5806 * this query.
5807 * spp_address - This specifies which address is of interest.
5808 * spp_hbinterval - This contains the value of the heartbeat interval,
5809 * in milliseconds. If a value of zero
5810 * is present in this field then no changes are to
5811 * be made to this parameter.
5812 * spp_pathmaxrxt - This contains the maximum number of
5813 * retransmissions before this address shall be
5814 * considered unreachable. If a value of zero
5815 * is present in this field then no changes are to
5816 * be made to this parameter.
5817 * spp_pathmtu - When Path MTU discovery is disabled the value
5818 * specified here will be the "fixed" path mtu.
5819 * Note that if the spp_address field is empty
5820 * then all associations on this address will
5821 * have this fixed path mtu set upon them.
5822 *
5823 * spp_sackdelay - When delayed sack is enabled, this value specifies
5824 * the number of milliseconds that sacks will be delayed
5825 * for. This value will apply to all addresses of an
5826 * association if the spp_address field is empty. Note
5827 * also, that if delayed sack is enabled and this
5828 * value is set to 0, no change is made to the last
5829 * recorded delayed sack timer value.
5830 *
5831 * spp_flags - These flags are used to control various features
5832 * on an association. The flag field may contain
5833 * zero or more of the following options.
5834 *
5835 * SPP_HB_ENABLE - Enable heartbeats on the
5836 * specified address. Note that if the address
5837 * field is empty all addresses for the association
5838 * have heartbeats enabled upon them.
5839 *
5840 * SPP_HB_DISABLE - Disable heartbeats on the
5841 * speicifed address. Note that if the address
5842 * field is empty all addresses for the association
5843 * will have their heartbeats disabled. Note also
5844 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5845 * mutually exclusive, only one of these two should
5846 * be specified. Enabling both fields will have
5847 * undetermined results.
5848 *
5849 * SPP_HB_DEMAND - Request a user initiated heartbeat
5850 * to be made immediately.
5851 *
5852 * SPP_PMTUD_ENABLE - This field will enable PMTU
5853 * discovery upon the specified address. Note that
5854 * if the address feild is empty then all addresses
5855 * on the association are effected.
5856 *
5857 * SPP_PMTUD_DISABLE - This field will disable PMTU
5858 * discovery upon the specified address. Note that
5859 * if the address feild is empty then all addresses
5860 * on the association are effected. Not also that
5861 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5862 * exclusive. Enabling both will have undetermined
5863 * results.
5864 *
5865 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5866 * on delayed sack. The time specified in spp_sackdelay
5867 * is used to specify the sack delay for this address. Note
5868 * that if spp_address is empty then all addresses will
5869 * enable delayed sack and take on the sack delay
5870 * value specified in spp_sackdelay.
5871 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5872 * off delayed sack. If the spp_address field is blank then
5873 * delayed sack is disabled for the entire association. Note
5874 * also that this field is mutually exclusive to
5875 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5876 * results.
5877 *
5878 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5879 * setting of the IPV6 flow label value. The value is
5880 * contained in the spp_ipv6_flowlabel field.
5881 * Upon retrieval, this flag will be set to indicate that
5882 * the spp_ipv6_flowlabel field has a valid value returned.
5883 * If a specific destination address is set (in the
5884 * spp_address field), then the value returned is that of
5885 * the address. If just an association is specified (and
5886 * no address), then the association's default flow label
5887 * is returned. If neither an association nor a destination
5888 * is specified, then the socket's default flow label is
5889 * returned. For non-IPv6 sockets, this flag will be left
5890 * cleared.
5891 *
5892 * SPP_DSCP: Setting this flag enables the setting of the
5893 * Differentiated Services Code Point (DSCP) value
5894 * associated with either the association or a specific
5895 * address. The value is obtained in the spp_dscp field.
5896 * Upon retrieval, this flag will be set to indicate that
5897 * the spp_dscp field has a valid value returned. If a
5898 * specific destination address is set when called (in the
5899 * spp_address field), then that specific destination
5900 * address's DSCP value is returned. If just an association
5901 * is specified, then the association's default DSCP is
5902 * returned. If neither an association nor a destination is
5903 * specified, then the socket's default DSCP is returned.
5904 *
5905 * spp_ipv6_flowlabel
5906 * - This field is used in conjunction with the
5907 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5908 * The 20 least significant bits are used for the flow
5909 * label. This setting has precedence over any IPv6-layer
5910 * setting.
5911 *
5912 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5913 * and contains the DSCP. The 6 most significant bits are
5914 * used for the DSCP. This setting has precedence over any
5915 * IPv4- or IPv6- layer setting.
5916 */
5917static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5918 char __user *optval, int __user *optlen)
5919{
5920 struct sctp_paddrparams params;
5921 struct sctp_transport *trans = NULL;
5922 struct sctp_association *asoc = NULL;
5923 struct sctp_sock *sp = sctp_sk(sk);
5924
5925 if (len >= sizeof(params))
5926 len = sizeof(params);
5927 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5928 spp_ipv6_flowlabel), 4))
5929 len = ALIGN(offsetof(struct sctp_paddrparams,
5930 spp_ipv6_flowlabel), 4);
5931 else
5932 return -EINVAL;
5933
5934 if (copy_from_user(¶ms, optval, len))
5935 return -EFAULT;
5936
5937 /* If an address other than INADDR_ANY is specified, and
5938 * no transport is found, then the request is invalid.
5939 */
5940 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5941 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5942 params.spp_assoc_id);
5943 if (!trans) {
5944 pr_debug("%s: failed no transport\n", __func__);
5945 return -EINVAL;
5946 }
5947 }
5948
5949 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5950 * socket is a one to many style socket, and an association
5951 * was not found, then the id was invalid.
5952 */
5953 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5954 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5955 sctp_style(sk, UDP)) {
5956 pr_debug("%s: failed no association\n", __func__);
5957 return -EINVAL;
5958 }
5959
5960 if (trans) {
5961 /* Fetch transport values. */
5962 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5963 params.spp_pathmtu = trans->pathmtu;
5964 params.spp_pathmaxrxt = trans->pathmaxrxt;
5965 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5966
5967 /*draft-11 doesn't say what to return in spp_flags*/
5968 params.spp_flags = trans->param_flags;
5969 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5970 params.spp_ipv6_flowlabel = trans->flowlabel &
5971 SCTP_FLOWLABEL_VAL_MASK;
5972 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5973 }
5974 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5975 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5976 params.spp_flags |= SPP_DSCP;
5977 }
5978 } else if (asoc) {
5979 /* Fetch association values. */
5980 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5981 params.spp_pathmtu = asoc->pathmtu;
5982 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5983 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5984
5985 /*draft-11 doesn't say what to return in spp_flags*/
5986 params.spp_flags = asoc->param_flags;
5987 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5988 params.spp_ipv6_flowlabel = asoc->flowlabel &
5989 SCTP_FLOWLABEL_VAL_MASK;
5990 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5991 }
5992 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5993 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5994 params.spp_flags |= SPP_DSCP;
5995 }
5996 } else {
5997 /* Fetch socket values. */
5998 params.spp_hbinterval = sp->hbinterval;
5999 params.spp_pathmtu = sp->pathmtu;
6000 params.spp_sackdelay = sp->sackdelay;
6001 params.spp_pathmaxrxt = sp->pathmaxrxt;
6002
6003 /*draft-11 doesn't say what to return in spp_flags*/
6004 params.spp_flags = sp->param_flags;
6005 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6006 params.spp_ipv6_flowlabel = sp->flowlabel &
6007 SCTP_FLOWLABEL_VAL_MASK;
6008 params.spp_flags |= SPP_IPV6_FLOWLABEL;
6009 }
6010 if (sp->dscp & SCTP_DSCP_SET_MASK) {
6011 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
6012 params.spp_flags |= SPP_DSCP;
6013 }
6014 }
6015
6016 if (copy_to_user(optval, ¶ms, len))
6017 return -EFAULT;
6018
6019 if (put_user(len, optlen))
6020 return -EFAULT;
6021
6022 return 0;
6023}
6024
6025/*
6026 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
6027 *
6028 * This option will effect the way delayed acks are performed. This
6029 * option allows you to get or set the delayed ack time, in
6030 * milliseconds. It also allows changing the delayed ack frequency.
6031 * Changing the frequency to 1 disables the delayed sack algorithm. If
6032 * the assoc_id is 0, then this sets or gets the endpoints default
6033 * values. If the assoc_id field is non-zero, then the set or get
6034 * effects the specified association for the one to many model (the
6035 * assoc_id field is ignored by the one to one model). Note that if
6036 * sack_delay or sack_freq are 0 when setting this option, then the
6037 * current values will remain unchanged.
6038 *
6039 * struct sctp_sack_info {
6040 * sctp_assoc_t sack_assoc_id;
6041 * uint32_t sack_delay;
6042 * uint32_t sack_freq;
6043 * };
6044 *
6045 * sack_assoc_id - This parameter, indicates which association the user
6046 * is performing an action upon. Note that if this field's value is
6047 * zero then the endpoints default value is changed (effecting future
6048 * associations only).
6049 *
6050 * sack_delay - This parameter contains the number of milliseconds that
6051 * the user is requesting the delayed ACK timer be set to. Note that
6052 * this value is defined in the standard to be between 200 and 500
6053 * milliseconds.
6054 *
6055 * sack_freq - This parameter contains the number of packets that must
6056 * be received before a sack is sent without waiting for the delay
6057 * timer to expire. The default value for this is 2, setting this
6058 * value to 1 will disable the delayed sack algorithm.
6059 */
6060static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6061 char __user *optval,
6062 int __user *optlen)
6063{
6064 struct sctp_sack_info params;
6065 struct sctp_association *asoc = NULL;
6066 struct sctp_sock *sp = sctp_sk(sk);
6067
6068 if (len >= sizeof(struct sctp_sack_info)) {
6069 len = sizeof(struct sctp_sack_info);
6070
6071 if (copy_from_user(¶ms, optval, len))
6072 return -EFAULT;
6073 } else if (len == sizeof(struct sctp_assoc_value)) {
6074 pr_warn_ratelimited(DEPRECATED
6075 "%s (pid %d) "
6076 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6077 "Use struct sctp_sack_info instead\n",
6078 current->comm, task_pid_nr(current));
6079 if (copy_from_user(¶ms, optval, len))
6080 return -EFAULT;
6081 } else
6082 return -EINVAL;
6083
6084 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6085 * socket is a one to many style socket, and an association
6086 * was not found, then the id was invalid.
6087 */
6088 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6089 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6090 sctp_style(sk, UDP))
6091 return -EINVAL;
6092
6093 if (asoc) {
6094 /* Fetch association values. */
6095 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6096 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6097 params.sack_freq = asoc->sackfreq;
6098
6099 } else {
6100 params.sack_delay = 0;
6101 params.sack_freq = 1;
6102 }
6103 } else {
6104 /* Fetch socket values. */
6105 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6106 params.sack_delay = sp->sackdelay;
6107 params.sack_freq = sp->sackfreq;
6108 } else {
6109 params.sack_delay = 0;
6110 params.sack_freq = 1;
6111 }
6112 }
6113
6114 if (copy_to_user(optval, ¶ms, len))
6115 return -EFAULT;
6116
6117 if (put_user(len, optlen))
6118 return -EFAULT;
6119
6120 return 0;
6121}
6122
6123/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6124 *
6125 * Applications can specify protocol parameters for the default association
6126 * initialization. The option name argument to setsockopt() and getsockopt()
6127 * is SCTP_INITMSG.
6128 *
6129 * Setting initialization parameters is effective only on an unconnected
6130 * socket (for UDP-style sockets only future associations are effected
6131 * by the change). With TCP-style sockets, this option is inherited by
6132 * sockets derived from a listener socket.
6133 */
6134static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6135{
6136 if (len < sizeof(struct sctp_initmsg))
6137 return -EINVAL;
6138 len = sizeof(struct sctp_initmsg);
6139 if (put_user(len, optlen))
6140 return -EFAULT;
6141 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6142 return -EFAULT;
6143 return 0;
6144}
6145
6146
6147static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6148 char __user *optval, int __user *optlen)
6149{
6150 struct sctp_association *asoc;
6151 int cnt = 0;
6152 struct sctp_getaddrs getaddrs;
6153 struct sctp_transport *from;
6154 void __user *to;
6155 union sctp_addr temp;
6156 struct sctp_sock *sp = sctp_sk(sk);
6157 int addrlen;
6158 size_t space_left;
6159 int bytes_copied;
6160
6161 if (len < sizeof(struct sctp_getaddrs))
6162 return -EINVAL;
6163
6164 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6165 return -EFAULT;
6166
6167 /* For UDP-style sockets, id specifies the association to query. */
6168 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6169 if (!asoc)
6170 return -EINVAL;
6171
6172 to = optval + offsetof(struct sctp_getaddrs, addrs);
6173 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6174
6175 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6176 transports) {
6177 memcpy(&temp, &from->ipaddr, sizeof(temp));
6178 addrlen = sctp_get_pf_specific(sk->sk_family)
6179 ->addr_to_user(sp, &temp);
6180 if (space_left < addrlen)
6181 return -ENOMEM;
6182 if (copy_to_user(to, &temp, addrlen))
6183 return -EFAULT;
6184 to += addrlen;
6185 cnt++;
6186 space_left -= addrlen;
6187 }
6188
6189 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6190 return -EFAULT;
6191 bytes_copied = ((char __user *)to) - optval;
6192 if (put_user(bytes_copied, optlen))
6193 return -EFAULT;
6194
6195 return 0;
6196}
6197
6198static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6199 size_t space_left, int *bytes_copied)
6200{
6201 struct sctp_sockaddr_entry *addr;
6202 union sctp_addr temp;
6203 int cnt = 0;
6204 int addrlen;
6205 struct net *net = sock_net(sk);
6206
6207 rcu_read_lock();
6208 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6209 if (!addr->valid)
6210 continue;
6211
6212 if ((PF_INET == sk->sk_family) &&
6213 (AF_INET6 == addr->a.sa.sa_family))
6214 continue;
6215 if ((PF_INET6 == sk->sk_family) &&
6216 inet_v6_ipv6only(sk) &&
6217 (AF_INET == addr->a.sa.sa_family))
6218 continue;
6219 memcpy(&temp, &addr->a, sizeof(temp));
6220 if (!temp.v4.sin_port)
6221 temp.v4.sin_port = htons(port);
6222
6223 addrlen = sctp_get_pf_specific(sk->sk_family)
6224 ->addr_to_user(sctp_sk(sk), &temp);
6225
6226 if (space_left < addrlen) {
6227 cnt = -ENOMEM;
6228 break;
6229 }
6230 memcpy(to, &temp, addrlen);
6231
6232 to += addrlen;
6233 cnt++;
6234 space_left -= addrlen;
6235 *bytes_copied += addrlen;
6236 }
6237 rcu_read_unlock();
6238
6239 return cnt;
6240}
6241
6242
6243static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6244 char __user *optval, int __user *optlen)
6245{
6246 struct sctp_bind_addr *bp;
6247 struct sctp_association *asoc;
6248 int cnt = 0;
6249 struct sctp_getaddrs getaddrs;
6250 struct sctp_sockaddr_entry *addr;
6251 void __user *to;
6252 union sctp_addr temp;
6253 struct sctp_sock *sp = sctp_sk(sk);
6254 int addrlen;
6255 int err = 0;
6256 size_t space_left;
6257 int bytes_copied = 0;
6258 void *addrs;
6259 void *buf;
6260
6261 if (len < sizeof(struct sctp_getaddrs))
6262 return -EINVAL;
6263
6264 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6265 return -EFAULT;
6266
6267 /*
6268 * For UDP-style sockets, id specifies the association to query.
6269 * If the id field is set to the value '0' then the locally bound
6270 * addresses are returned without regard to any particular
6271 * association.
6272 */
6273 if (0 == getaddrs.assoc_id) {
6274 bp = &sctp_sk(sk)->ep->base.bind_addr;
6275 } else {
6276 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6277 if (!asoc)
6278 return -EINVAL;
6279 bp = &asoc->base.bind_addr;
6280 }
6281
6282 to = optval + offsetof(struct sctp_getaddrs, addrs);
6283 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6284
6285 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6286 if (!addrs)
6287 return -ENOMEM;
6288
6289 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6290 * addresses from the global local address list.
6291 */
6292 if (sctp_list_single_entry(&bp->address_list)) {
6293 addr = list_entry(bp->address_list.next,
6294 struct sctp_sockaddr_entry, list);
6295 if (sctp_is_any(sk, &addr->a)) {
6296 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6297 space_left, &bytes_copied);
6298 if (cnt < 0) {
6299 err = cnt;
6300 goto out;
6301 }
6302 goto copy_getaddrs;
6303 }
6304 }
6305
6306 buf = addrs;
6307 /* Protection on the bound address list is not needed since
6308 * in the socket option context we hold a socket lock and
6309 * thus the bound address list can't change.
6310 */
6311 list_for_each_entry(addr, &bp->address_list, list) {
6312 memcpy(&temp, &addr->a, sizeof(temp));
6313 addrlen = sctp_get_pf_specific(sk->sk_family)
6314 ->addr_to_user(sp, &temp);
6315 if (space_left < addrlen) {
6316 err = -ENOMEM; /*fixme: right error?*/
6317 goto out;
6318 }
6319 memcpy(buf, &temp, addrlen);
6320 buf += addrlen;
6321 bytes_copied += addrlen;
6322 cnt++;
6323 space_left -= addrlen;
6324 }
6325
6326copy_getaddrs:
6327 if (copy_to_user(to, addrs, bytes_copied)) {
6328 err = -EFAULT;
6329 goto out;
6330 }
6331 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6332 err = -EFAULT;
6333 goto out;
6334 }
6335 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6336 * but we can't change it anymore.
6337 */
6338 if (put_user(bytes_copied, optlen))
6339 err = -EFAULT;
6340out:
6341 kfree(addrs);
6342 return err;
6343}
6344
6345/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6346 *
6347 * Requests that the local SCTP stack use the enclosed peer address as
6348 * the association primary. The enclosed address must be one of the
6349 * association peer's addresses.
6350 */
6351static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6352 char __user *optval, int __user *optlen)
6353{
6354 struct sctp_prim prim;
6355 struct sctp_association *asoc;
6356 struct sctp_sock *sp = sctp_sk(sk);
6357
6358 if (len < sizeof(struct sctp_prim))
6359 return -EINVAL;
6360
6361 len = sizeof(struct sctp_prim);
6362
6363 if (copy_from_user(&prim, optval, len))
6364 return -EFAULT;
6365
6366 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6367 if (!asoc)
6368 return -EINVAL;
6369
6370 if (!asoc->peer.primary_path)
6371 return -ENOTCONN;
6372
6373 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6374 asoc->peer.primary_path->af_specific->sockaddr_len);
6375
6376 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6377 (union sctp_addr *)&prim.ssp_addr);
6378
6379 if (put_user(len, optlen))
6380 return -EFAULT;
6381 if (copy_to_user(optval, &prim, len))
6382 return -EFAULT;
6383
6384 return 0;
6385}
6386
6387/*
6388 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6389 *
6390 * Requests that the local endpoint set the specified Adaptation Layer
6391 * Indication parameter for all future INIT and INIT-ACK exchanges.
6392 */
6393static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6394 char __user *optval, int __user *optlen)
6395{
6396 struct sctp_setadaptation adaptation;
6397
6398 if (len < sizeof(struct sctp_setadaptation))
6399 return -EINVAL;
6400
6401 len = sizeof(struct sctp_setadaptation);
6402
6403 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6404
6405 if (put_user(len, optlen))
6406 return -EFAULT;
6407 if (copy_to_user(optval, &adaptation, len))
6408 return -EFAULT;
6409
6410 return 0;
6411}
6412
6413/*
6414 *
6415 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6416 *
6417 * Applications that wish to use the sendto() system call may wish to
6418 * specify a default set of parameters that would normally be supplied
6419 * through the inclusion of ancillary data. This socket option allows
6420 * such an application to set the default sctp_sndrcvinfo structure.
6421
6422
6423 * The application that wishes to use this socket option simply passes
6424 * in to this call the sctp_sndrcvinfo structure defined in Section
6425 * 5.2.2) The input parameters accepted by this call include
6426 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6427 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6428 * to this call if the caller is using the UDP model.
6429 *
6430 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6431 */
6432static int sctp_getsockopt_default_send_param(struct sock *sk,
6433 int len, char __user *optval,
6434 int __user *optlen)
6435{
6436 struct sctp_sock *sp = sctp_sk(sk);
6437 struct sctp_association *asoc;
6438 struct sctp_sndrcvinfo info;
6439
6440 if (len < sizeof(info))
6441 return -EINVAL;
6442
6443 len = sizeof(info);
6444
6445 if (copy_from_user(&info, optval, len))
6446 return -EFAULT;
6447
6448 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6449 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6450 sctp_style(sk, UDP))
6451 return -EINVAL;
6452
6453 if (asoc) {
6454 info.sinfo_stream = asoc->default_stream;
6455 info.sinfo_flags = asoc->default_flags;
6456 info.sinfo_ppid = asoc->default_ppid;
6457 info.sinfo_context = asoc->default_context;
6458 info.sinfo_timetolive = asoc->default_timetolive;
6459 } else {
6460 info.sinfo_stream = sp->default_stream;
6461 info.sinfo_flags = sp->default_flags;
6462 info.sinfo_ppid = sp->default_ppid;
6463 info.sinfo_context = sp->default_context;
6464 info.sinfo_timetolive = sp->default_timetolive;
6465 }
6466
6467 if (put_user(len, optlen))
6468 return -EFAULT;
6469 if (copy_to_user(optval, &info, len))
6470 return -EFAULT;
6471
6472 return 0;
6473}
6474
6475/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6476 * (SCTP_DEFAULT_SNDINFO)
6477 */
6478static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6479 char __user *optval,
6480 int __user *optlen)
6481{
6482 struct sctp_sock *sp = sctp_sk(sk);
6483 struct sctp_association *asoc;
6484 struct sctp_sndinfo info;
6485
6486 if (len < sizeof(info))
6487 return -EINVAL;
6488
6489 len = sizeof(info);
6490
6491 if (copy_from_user(&info, optval, len))
6492 return -EFAULT;
6493
6494 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6495 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6496 sctp_style(sk, UDP))
6497 return -EINVAL;
6498
6499 if (asoc) {
6500 info.snd_sid = asoc->default_stream;
6501 info.snd_flags = asoc->default_flags;
6502 info.snd_ppid = asoc->default_ppid;
6503 info.snd_context = asoc->default_context;
6504 } else {
6505 info.snd_sid = sp->default_stream;
6506 info.snd_flags = sp->default_flags;
6507 info.snd_ppid = sp->default_ppid;
6508 info.snd_context = sp->default_context;
6509 }
6510
6511 if (put_user(len, optlen))
6512 return -EFAULT;
6513 if (copy_to_user(optval, &info, len))
6514 return -EFAULT;
6515
6516 return 0;
6517}
6518
6519/*
6520 *
6521 * 7.1.5 SCTP_NODELAY
6522 *
6523 * Turn on/off any Nagle-like algorithm. This means that packets are
6524 * generally sent as soon as possible and no unnecessary delays are
6525 * introduced, at the cost of more packets in the network. Expects an
6526 * integer boolean flag.
6527 */
6528
6529static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6530 char __user *optval, int __user *optlen)
6531{
6532 int val;
6533
6534 if (len < sizeof(int))
6535 return -EINVAL;
6536
6537 len = sizeof(int);
6538 val = (sctp_sk(sk)->nodelay == 1);
6539 if (put_user(len, optlen))
6540 return -EFAULT;
6541 if (copy_to_user(optval, &val, len))
6542 return -EFAULT;
6543 return 0;
6544}
6545
6546/*
6547 *
6548 * 7.1.1 SCTP_RTOINFO
6549 *
6550 * The protocol parameters used to initialize and bound retransmission
6551 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6552 * and modify these parameters.
6553 * All parameters are time values, in milliseconds. A value of 0, when
6554 * modifying the parameters, indicates that the current value should not
6555 * be changed.
6556 *
6557 */
6558static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6559 char __user *optval,
6560 int __user *optlen) {
6561 struct sctp_rtoinfo rtoinfo;
6562 struct sctp_association *asoc;
6563
6564 if (len < sizeof (struct sctp_rtoinfo))
6565 return -EINVAL;
6566
6567 len = sizeof(struct sctp_rtoinfo);
6568
6569 if (copy_from_user(&rtoinfo, optval, len))
6570 return -EFAULT;
6571
6572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6573
6574 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6575 sctp_style(sk, UDP))
6576 return -EINVAL;
6577
6578 /* Values corresponding to the specific association. */
6579 if (asoc) {
6580 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6581 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6582 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6583 } else {
6584 /* Values corresponding to the endpoint. */
6585 struct sctp_sock *sp = sctp_sk(sk);
6586
6587 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6588 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6589 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6590 }
6591
6592 if (put_user(len, optlen))
6593 return -EFAULT;
6594
6595 if (copy_to_user(optval, &rtoinfo, len))
6596 return -EFAULT;
6597
6598 return 0;
6599}
6600
6601/*
6602 *
6603 * 7.1.2 SCTP_ASSOCINFO
6604 *
6605 * This option is used to tune the maximum retransmission attempts
6606 * of the association.
6607 * Returns an error if the new association retransmission value is
6608 * greater than the sum of the retransmission value of the peer.
6609 * See [SCTP] for more information.
6610 *
6611 */
6612static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6613 char __user *optval,
6614 int __user *optlen)
6615{
6616
6617 struct sctp_assocparams assocparams;
6618 struct sctp_association *asoc;
6619 struct list_head *pos;
6620 int cnt = 0;
6621
6622 if (len < sizeof (struct sctp_assocparams))
6623 return -EINVAL;
6624
6625 len = sizeof(struct sctp_assocparams);
6626
6627 if (copy_from_user(&assocparams, optval, len))
6628 return -EFAULT;
6629
6630 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6631
6632 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6633 sctp_style(sk, UDP))
6634 return -EINVAL;
6635
6636 /* Values correspoinding to the specific association */
6637 if (asoc) {
6638 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6639 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6640 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6641 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6642
6643 list_for_each(pos, &asoc->peer.transport_addr_list) {
6644 cnt++;
6645 }
6646
6647 assocparams.sasoc_number_peer_destinations = cnt;
6648 } else {
6649 /* Values corresponding to the endpoint */
6650 struct sctp_sock *sp = sctp_sk(sk);
6651
6652 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6653 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6654 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6655 assocparams.sasoc_cookie_life =
6656 sp->assocparams.sasoc_cookie_life;
6657 assocparams.sasoc_number_peer_destinations =
6658 sp->assocparams.
6659 sasoc_number_peer_destinations;
6660 }
6661
6662 if (put_user(len, optlen))
6663 return -EFAULT;
6664
6665 if (copy_to_user(optval, &assocparams, len))
6666 return -EFAULT;
6667
6668 return 0;
6669}
6670
6671/*
6672 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6673 *
6674 * This socket option is a boolean flag which turns on or off mapped V4
6675 * addresses. If this option is turned on and the socket is type
6676 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6677 * If this option is turned off, then no mapping will be done of V4
6678 * addresses and a user will receive both PF_INET6 and PF_INET type
6679 * addresses on the socket.
6680 */
6681static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6682 char __user *optval, int __user *optlen)
6683{
6684 int val;
6685 struct sctp_sock *sp = sctp_sk(sk);
6686
6687 if (len < sizeof(int))
6688 return -EINVAL;
6689
6690 len = sizeof(int);
6691 val = sp->v4mapped;
6692 if (put_user(len, optlen))
6693 return -EFAULT;
6694 if (copy_to_user(optval, &val, len))
6695 return -EFAULT;
6696
6697 return 0;
6698}
6699
6700/*
6701 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6702 * (chapter and verse is quoted at sctp_setsockopt_context())
6703 */
6704static int sctp_getsockopt_context(struct sock *sk, int len,
6705 char __user *optval, int __user *optlen)
6706{
6707 struct sctp_assoc_value params;
6708 struct sctp_association *asoc;
6709
6710 if (len < sizeof(struct sctp_assoc_value))
6711 return -EINVAL;
6712
6713 len = sizeof(struct sctp_assoc_value);
6714
6715 if (copy_from_user(¶ms, optval, len))
6716 return -EFAULT;
6717
6718 asoc = sctp_id2assoc(sk, params.assoc_id);
6719 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6720 sctp_style(sk, UDP))
6721 return -EINVAL;
6722
6723 params.assoc_value = asoc ? asoc->default_rcv_context
6724 : sctp_sk(sk)->default_rcv_context;
6725
6726 if (put_user(len, optlen))
6727 return -EFAULT;
6728 if (copy_to_user(optval, ¶ms, len))
6729 return -EFAULT;
6730
6731 return 0;
6732}
6733
6734/*
6735 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6736 * This option will get or set the maximum size to put in any outgoing
6737 * SCTP DATA chunk. If a message is larger than this size it will be
6738 * fragmented by SCTP into the specified size. Note that the underlying
6739 * SCTP implementation may fragment into smaller sized chunks when the
6740 * PMTU of the underlying association is smaller than the value set by
6741 * the user. The default value for this option is '0' which indicates
6742 * the user is NOT limiting fragmentation and only the PMTU will effect
6743 * SCTP's choice of DATA chunk size. Note also that values set larger
6744 * than the maximum size of an IP datagram will effectively let SCTP
6745 * control fragmentation (i.e. the same as setting this option to 0).
6746 *
6747 * The following structure is used to access and modify this parameter:
6748 *
6749 * struct sctp_assoc_value {
6750 * sctp_assoc_t assoc_id;
6751 * uint32_t assoc_value;
6752 * };
6753 *
6754 * assoc_id: This parameter is ignored for one-to-one style sockets.
6755 * For one-to-many style sockets this parameter indicates which
6756 * association the user is performing an action upon. Note that if
6757 * this field's value is zero then the endpoints default value is
6758 * changed (effecting future associations only).
6759 * assoc_value: This parameter specifies the maximum size in bytes.
6760 */
6761static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6762 char __user *optval, int __user *optlen)
6763{
6764 struct sctp_assoc_value params;
6765 struct sctp_association *asoc;
6766
6767 if (len == sizeof(int)) {
6768 pr_warn_ratelimited(DEPRECATED
6769 "%s (pid %d) "
6770 "Use of int in maxseg socket option.\n"
6771 "Use struct sctp_assoc_value instead\n",
6772 current->comm, task_pid_nr(current));
6773 params.assoc_id = SCTP_FUTURE_ASSOC;
6774 } else if (len >= sizeof(struct sctp_assoc_value)) {
6775 len = sizeof(struct sctp_assoc_value);
6776 if (copy_from_user(¶ms, optval, len))
6777 return -EFAULT;
6778 } else
6779 return -EINVAL;
6780
6781 asoc = sctp_id2assoc(sk, params.assoc_id);
6782 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6783 sctp_style(sk, UDP))
6784 return -EINVAL;
6785
6786 if (asoc)
6787 params.assoc_value = asoc->frag_point;
6788 else
6789 params.assoc_value = sctp_sk(sk)->user_frag;
6790
6791 if (put_user(len, optlen))
6792 return -EFAULT;
6793 if (len == sizeof(int)) {
6794 if (copy_to_user(optval, ¶ms.assoc_value, len))
6795 return -EFAULT;
6796 } else {
6797 if (copy_to_user(optval, ¶ms, len))
6798 return -EFAULT;
6799 }
6800
6801 return 0;
6802}
6803
6804/*
6805 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6806 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6807 */
6808static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6809 char __user *optval, int __user *optlen)
6810{
6811 int val;
6812
6813 if (len < sizeof(int))
6814 return -EINVAL;
6815
6816 len = sizeof(int);
6817
6818 val = sctp_sk(sk)->frag_interleave;
6819 if (put_user(len, optlen))
6820 return -EFAULT;
6821 if (copy_to_user(optval, &val, len))
6822 return -EFAULT;
6823
6824 return 0;
6825}
6826
6827/*
6828 * 7.1.25. Set or Get the sctp partial delivery point
6829 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6830 */
6831static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6832 char __user *optval,
6833 int __user *optlen)
6834{
6835 u32 val;
6836
6837 if (len < sizeof(u32))
6838 return -EINVAL;
6839
6840 len = sizeof(u32);
6841
6842 val = sctp_sk(sk)->pd_point;
6843 if (put_user(len, optlen))
6844 return -EFAULT;
6845 if (copy_to_user(optval, &val, len))
6846 return -EFAULT;
6847
6848 return 0;
6849}
6850
6851/*
6852 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6853 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6854 */
6855static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6856 char __user *optval,
6857 int __user *optlen)
6858{
6859 struct sctp_assoc_value params;
6860 struct sctp_association *asoc;
6861
6862 if (len == sizeof(int)) {
6863 pr_warn_ratelimited(DEPRECATED
6864 "%s (pid %d) "
6865 "Use of int in max_burst socket option.\n"
6866 "Use struct sctp_assoc_value instead\n",
6867 current->comm, task_pid_nr(current));
6868 params.assoc_id = SCTP_FUTURE_ASSOC;
6869 } else if (len >= sizeof(struct sctp_assoc_value)) {
6870 len = sizeof(struct sctp_assoc_value);
6871 if (copy_from_user(¶ms, optval, len))
6872 return -EFAULT;
6873 } else
6874 return -EINVAL;
6875
6876 asoc = sctp_id2assoc(sk, params.assoc_id);
6877 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6878 sctp_style(sk, UDP))
6879 return -EINVAL;
6880
6881 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6882
6883 if (len == sizeof(int)) {
6884 if (copy_to_user(optval, ¶ms.assoc_value, len))
6885 return -EFAULT;
6886 } else {
6887 if (copy_to_user(optval, ¶ms, len))
6888 return -EFAULT;
6889 }
6890
6891 return 0;
6892
6893}
6894
6895static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6896 char __user *optval, int __user *optlen)
6897{
6898 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6899 struct sctp_hmacalgo __user *p = (void __user *)optval;
6900 struct sctp_hmac_algo_param *hmacs;
6901 __u16 data_len = 0;
6902 u32 num_idents;
6903 int i;
6904
6905 if (!ep->auth_enable)
6906 return -EACCES;
6907
6908 hmacs = ep->auth_hmacs_list;
6909 data_len = ntohs(hmacs->param_hdr.length) -
6910 sizeof(struct sctp_paramhdr);
6911
6912 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6913 return -EINVAL;
6914
6915 len = sizeof(struct sctp_hmacalgo) + data_len;
6916 num_idents = data_len / sizeof(u16);
6917
6918 if (put_user(len, optlen))
6919 return -EFAULT;
6920 if (put_user(num_idents, &p->shmac_num_idents))
6921 return -EFAULT;
6922 for (i = 0; i < num_idents; i++) {
6923 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6924
6925 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6926 return -EFAULT;
6927 }
6928 return 0;
6929}
6930
6931static int sctp_getsockopt_active_key(struct sock *sk, int len,
6932 char __user *optval, int __user *optlen)
6933{
6934 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6935 struct sctp_authkeyid val;
6936 struct sctp_association *asoc;
6937
6938 if (len < sizeof(struct sctp_authkeyid))
6939 return -EINVAL;
6940
6941 len = sizeof(struct sctp_authkeyid);
6942 if (copy_from_user(&val, optval, len))
6943 return -EFAULT;
6944
6945 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6946 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6947 return -EINVAL;
6948
6949 if (asoc) {
6950 if (!asoc->peer.auth_capable)
6951 return -EACCES;
6952 val.scact_keynumber = asoc->active_key_id;
6953 } else {
6954 if (!ep->auth_enable)
6955 return -EACCES;
6956 val.scact_keynumber = ep->active_key_id;
6957 }
6958
6959 if (put_user(len, optlen))
6960 return -EFAULT;
6961 if (copy_to_user(optval, &val, len))
6962 return -EFAULT;
6963
6964 return 0;
6965}
6966
6967static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6968 char __user *optval, int __user *optlen)
6969{
6970 struct sctp_authchunks __user *p = (void __user *)optval;
6971 struct sctp_authchunks val;
6972 struct sctp_association *asoc;
6973 struct sctp_chunks_param *ch;
6974 u32 num_chunks = 0;
6975 char __user *to;
6976
6977 if (len < sizeof(struct sctp_authchunks))
6978 return -EINVAL;
6979
6980 if (copy_from_user(&val, optval, sizeof(val)))
6981 return -EFAULT;
6982
6983 to = p->gauth_chunks;
6984 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6985 if (!asoc)
6986 return -EINVAL;
6987
6988 if (!asoc->peer.auth_capable)
6989 return -EACCES;
6990
6991 ch = asoc->peer.peer_chunks;
6992 if (!ch)
6993 goto num;
6994
6995 /* See if the user provided enough room for all the data */
6996 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6997 if (len < num_chunks)
6998 return -EINVAL;
6999
7000 if (copy_to_user(to, ch->chunks, num_chunks))
7001 return -EFAULT;
7002num:
7003 len = sizeof(struct sctp_authchunks) + num_chunks;
7004 if (put_user(len, optlen))
7005 return -EFAULT;
7006 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7007 return -EFAULT;
7008 return 0;
7009}
7010
7011static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7012 char __user *optval, int __user *optlen)
7013{
7014 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7015 struct sctp_authchunks __user *p = (void __user *)optval;
7016 struct sctp_authchunks val;
7017 struct sctp_association *asoc;
7018 struct sctp_chunks_param *ch;
7019 u32 num_chunks = 0;
7020 char __user *to;
7021
7022 if (len < sizeof(struct sctp_authchunks))
7023 return -EINVAL;
7024
7025 if (copy_from_user(&val, optval, sizeof(val)))
7026 return -EFAULT;
7027
7028 to = p->gauth_chunks;
7029 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7030 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7031 sctp_style(sk, UDP))
7032 return -EINVAL;
7033
7034 if (asoc) {
7035 if (!asoc->peer.auth_capable)
7036 return -EACCES;
7037 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7038 } else {
7039 if (!ep->auth_enable)
7040 return -EACCES;
7041 ch = ep->auth_chunk_list;
7042 }
7043 if (!ch)
7044 goto num;
7045
7046 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7047 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7048 return -EINVAL;
7049
7050 if (copy_to_user(to, ch->chunks, num_chunks))
7051 return -EFAULT;
7052num:
7053 len = sizeof(struct sctp_authchunks) + num_chunks;
7054 if (put_user(len, optlen))
7055 return -EFAULT;
7056 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7057 return -EFAULT;
7058
7059 return 0;
7060}
7061
7062/*
7063 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7064 * This option gets the current number of associations that are attached
7065 * to a one-to-many style socket. The option value is an uint32_t.
7066 */
7067static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7068 char __user *optval, int __user *optlen)
7069{
7070 struct sctp_sock *sp = sctp_sk(sk);
7071 struct sctp_association *asoc;
7072 u32 val = 0;
7073
7074 if (sctp_style(sk, TCP))
7075 return -EOPNOTSUPP;
7076
7077 if (len < sizeof(u32))
7078 return -EINVAL;
7079
7080 len = sizeof(u32);
7081
7082 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7083 val++;
7084 }
7085
7086 if (put_user(len, optlen))
7087 return -EFAULT;
7088 if (copy_to_user(optval, &val, len))
7089 return -EFAULT;
7090
7091 return 0;
7092}
7093
7094/*
7095 * 8.1.23 SCTP_AUTO_ASCONF
7096 * See the corresponding setsockopt entry as description
7097 */
7098static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7099 char __user *optval, int __user *optlen)
7100{
7101 int val = 0;
7102
7103 if (len < sizeof(int))
7104 return -EINVAL;
7105
7106 len = sizeof(int);
7107 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7108 val = 1;
7109 if (put_user(len, optlen))
7110 return -EFAULT;
7111 if (copy_to_user(optval, &val, len))
7112 return -EFAULT;
7113 return 0;
7114}
7115
7116/*
7117 * 8.2.6. Get the Current Identifiers of Associations
7118 * (SCTP_GET_ASSOC_ID_LIST)
7119 *
7120 * This option gets the current list of SCTP association identifiers of
7121 * the SCTP associations handled by a one-to-many style socket.
7122 */
7123static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7124 char __user *optval, int __user *optlen)
7125{
7126 struct sctp_sock *sp = sctp_sk(sk);
7127 struct sctp_association *asoc;
7128 struct sctp_assoc_ids *ids;
7129 u32 num = 0;
7130
7131 if (sctp_style(sk, TCP))
7132 return -EOPNOTSUPP;
7133
7134 if (len < sizeof(struct sctp_assoc_ids))
7135 return -EINVAL;
7136
7137 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7138 num++;
7139 }
7140
7141 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7142 return -EINVAL;
7143
7144 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7145
7146 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7147 if (unlikely(!ids))
7148 return -ENOMEM;
7149
7150 ids->gaids_number_of_ids = num;
7151 num = 0;
7152 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7153 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7154 }
7155
7156 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7157 kfree(ids);
7158 return -EFAULT;
7159 }
7160
7161 kfree(ids);
7162 return 0;
7163}
7164
7165/*
7166 * SCTP_PEER_ADDR_THLDS
7167 *
7168 * This option allows us to fetch the partially failed threshold for one or all
7169 * transports in an association. See Section 6.1 of:
7170 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7171 */
7172static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7173 char __user *optval,
7174 int len,
7175 int __user *optlen)
7176{
7177 struct sctp_paddrthlds val;
7178 struct sctp_transport *trans;
7179 struct sctp_association *asoc;
7180
7181 if (len < sizeof(struct sctp_paddrthlds))
7182 return -EINVAL;
7183 len = sizeof(struct sctp_paddrthlds);
7184 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7185 return -EFAULT;
7186
7187 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7188 trans = sctp_addr_id2transport(sk, &val.spt_address,
7189 val.spt_assoc_id);
7190 if (!trans)
7191 return -ENOENT;
7192
7193 val.spt_pathmaxrxt = trans->pathmaxrxt;
7194 val.spt_pathpfthld = trans->pf_retrans;
7195
7196 goto out;
7197 }
7198
7199 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7200 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7201 sctp_style(sk, UDP))
7202 return -EINVAL;
7203
7204 if (asoc) {
7205 val.spt_pathpfthld = asoc->pf_retrans;
7206 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7207 } else {
7208 struct sctp_sock *sp = sctp_sk(sk);
7209
7210 val.spt_pathpfthld = sp->pf_retrans;
7211 val.spt_pathmaxrxt = sp->pathmaxrxt;
7212 }
7213
7214out:
7215 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7216 return -EFAULT;
7217
7218 return 0;
7219}
7220
7221/*
7222 * SCTP_GET_ASSOC_STATS
7223 *
7224 * This option retrieves local per endpoint statistics. It is modeled
7225 * after OpenSolaris' implementation
7226 */
7227static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7228 char __user *optval,
7229 int __user *optlen)
7230{
7231 struct sctp_assoc_stats sas;
7232 struct sctp_association *asoc = NULL;
7233
7234 /* User must provide at least the assoc id */
7235 if (len < sizeof(sctp_assoc_t))
7236 return -EINVAL;
7237
7238 /* Allow the struct to grow and fill in as much as possible */
7239 len = min_t(size_t, len, sizeof(sas));
7240
7241 if (copy_from_user(&sas, optval, len))
7242 return -EFAULT;
7243
7244 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7245 if (!asoc)
7246 return -EINVAL;
7247
7248 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7249 sas.sas_gapcnt = asoc->stats.gapcnt;
7250 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7251 sas.sas_osacks = asoc->stats.osacks;
7252 sas.sas_isacks = asoc->stats.isacks;
7253 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7254 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7255 sas.sas_oodchunks = asoc->stats.oodchunks;
7256 sas.sas_iodchunks = asoc->stats.iodchunks;
7257 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7258 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7259 sas.sas_idupchunks = asoc->stats.idupchunks;
7260 sas.sas_opackets = asoc->stats.opackets;
7261 sas.sas_ipackets = asoc->stats.ipackets;
7262
7263 /* New high max rto observed, will return 0 if not a single
7264 * RTO update took place. obs_rto_ipaddr will be bogus
7265 * in such a case
7266 */
7267 sas.sas_maxrto = asoc->stats.max_obs_rto;
7268 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7269 sizeof(struct sockaddr_storage));
7270
7271 /* Mark beginning of a new observation period */
7272 asoc->stats.max_obs_rto = asoc->rto_min;
7273
7274 if (put_user(len, optlen))
7275 return -EFAULT;
7276
7277 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7278
7279 if (copy_to_user(optval, &sas, len))
7280 return -EFAULT;
7281
7282 return 0;
7283}
7284
7285static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7286 char __user *optval,
7287 int __user *optlen)
7288{
7289 int val = 0;
7290
7291 if (len < sizeof(int))
7292 return -EINVAL;
7293
7294 len = sizeof(int);
7295 if (sctp_sk(sk)->recvrcvinfo)
7296 val = 1;
7297 if (put_user(len, optlen))
7298 return -EFAULT;
7299 if (copy_to_user(optval, &val, len))
7300 return -EFAULT;
7301
7302 return 0;
7303}
7304
7305static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7306 char __user *optval,
7307 int __user *optlen)
7308{
7309 int val = 0;
7310
7311 if (len < sizeof(int))
7312 return -EINVAL;
7313
7314 len = sizeof(int);
7315 if (sctp_sk(sk)->recvnxtinfo)
7316 val = 1;
7317 if (put_user(len, optlen))
7318 return -EFAULT;
7319 if (copy_to_user(optval, &val, len))
7320 return -EFAULT;
7321
7322 return 0;
7323}
7324
7325static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7326 char __user *optval,
7327 int __user *optlen)
7328{
7329 struct sctp_assoc_value params;
7330 struct sctp_association *asoc;
7331 int retval = -EFAULT;
7332
7333 if (len < sizeof(params)) {
7334 retval = -EINVAL;
7335 goto out;
7336 }
7337
7338 len = sizeof(params);
7339 if (copy_from_user(¶ms, optval, len))
7340 goto out;
7341
7342 asoc = sctp_id2assoc(sk, params.assoc_id);
7343 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7344 sctp_style(sk, UDP)) {
7345 retval = -EINVAL;
7346 goto out;
7347 }
7348
7349 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7350 : sctp_sk(sk)->ep->prsctp_enable;
7351
7352 if (put_user(len, optlen))
7353 goto out;
7354
7355 if (copy_to_user(optval, ¶ms, len))
7356 goto out;
7357
7358 retval = 0;
7359
7360out:
7361 return retval;
7362}
7363
7364static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7365 char __user *optval,
7366 int __user *optlen)
7367{
7368 struct sctp_default_prinfo info;
7369 struct sctp_association *asoc;
7370 int retval = -EFAULT;
7371
7372 if (len < sizeof(info)) {
7373 retval = -EINVAL;
7374 goto out;
7375 }
7376
7377 len = sizeof(info);
7378 if (copy_from_user(&info, optval, len))
7379 goto out;
7380
7381 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7382 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7383 sctp_style(sk, UDP)) {
7384 retval = -EINVAL;
7385 goto out;
7386 }
7387
7388 if (asoc) {
7389 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7390 info.pr_value = asoc->default_timetolive;
7391 } else {
7392 struct sctp_sock *sp = sctp_sk(sk);
7393
7394 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7395 info.pr_value = sp->default_timetolive;
7396 }
7397
7398 if (put_user(len, optlen))
7399 goto out;
7400
7401 if (copy_to_user(optval, &info, len))
7402 goto out;
7403
7404 retval = 0;
7405
7406out:
7407 return retval;
7408}
7409
7410static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7411 char __user *optval,
7412 int __user *optlen)
7413{
7414 struct sctp_prstatus params;
7415 struct sctp_association *asoc;
7416 int policy;
7417 int retval = -EINVAL;
7418
7419 if (len < sizeof(params))
7420 goto out;
7421
7422 len = sizeof(params);
7423 if (copy_from_user(¶ms, optval, len)) {
7424 retval = -EFAULT;
7425 goto out;
7426 }
7427
7428 policy = params.sprstat_policy;
7429 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7430 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7431 goto out;
7432
7433 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7434 if (!asoc)
7435 goto out;
7436
7437 if (policy == SCTP_PR_SCTP_ALL) {
7438 params.sprstat_abandoned_unsent = 0;
7439 params.sprstat_abandoned_sent = 0;
7440 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7441 params.sprstat_abandoned_unsent +=
7442 asoc->abandoned_unsent[policy];
7443 params.sprstat_abandoned_sent +=
7444 asoc->abandoned_sent[policy];
7445 }
7446 } else {
7447 params.sprstat_abandoned_unsent =
7448 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7449 params.sprstat_abandoned_sent =
7450 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7451 }
7452
7453 if (put_user(len, optlen)) {
7454 retval = -EFAULT;
7455 goto out;
7456 }
7457
7458 if (copy_to_user(optval, ¶ms, len)) {
7459 retval = -EFAULT;
7460 goto out;
7461 }
7462
7463 retval = 0;
7464
7465out:
7466 return retval;
7467}
7468
7469static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7470 char __user *optval,
7471 int __user *optlen)
7472{
7473 struct sctp_stream_out_ext *streamoute;
7474 struct sctp_association *asoc;
7475 struct sctp_prstatus params;
7476 int retval = -EINVAL;
7477 int policy;
7478
7479 if (len < sizeof(params))
7480 goto out;
7481
7482 len = sizeof(params);
7483 if (copy_from_user(¶ms, optval, len)) {
7484 retval = -EFAULT;
7485 goto out;
7486 }
7487
7488 policy = params.sprstat_policy;
7489 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7490 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7491 goto out;
7492
7493 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7494 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7495 goto out;
7496
7497 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7498 if (!streamoute) {
7499 /* Not allocated yet, means all stats are 0 */
7500 params.sprstat_abandoned_unsent = 0;
7501 params.sprstat_abandoned_sent = 0;
7502 retval = 0;
7503 goto out;
7504 }
7505
7506 if (policy == SCTP_PR_SCTP_ALL) {
7507 params.sprstat_abandoned_unsent = 0;
7508 params.sprstat_abandoned_sent = 0;
7509 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7510 params.sprstat_abandoned_unsent +=
7511 streamoute->abandoned_unsent[policy];
7512 params.sprstat_abandoned_sent +=
7513 streamoute->abandoned_sent[policy];
7514 }
7515 } else {
7516 params.sprstat_abandoned_unsent =
7517 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7518 params.sprstat_abandoned_sent =
7519 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7520 }
7521
7522 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7523 retval = -EFAULT;
7524 goto out;
7525 }
7526
7527 retval = 0;
7528
7529out:
7530 return retval;
7531}
7532
7533static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7534 char __user *optval,
7535 int __user *optlen)
7536{
7537 struct sctp_assoc_value params;
7538 struct sctp_association *asoc;
7539 int retval = -EFAULT;
7540
7541 if (len < sizeof(params)) {
7542 retval = -EINVAL;
7543 goto out;
7544 }
7545
7546 len = sizeof(params);
7547 if (copy_from_user(¶ms, optval, len))
7548 goto out;
7549
7550 asoc = sctp_id2assoc(sk, params.assoc_id);
7551 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7552 sctp_style(sk, UDP)) {
7553 retval = -EINVAL;
7554 goto out;
7555 }
7556
7557 params.assoc_value = asoc ? asoc->peer.reconf_capable
7558 : sctp_sk(sk)->ep->reconf_enable;
7559
7560 if (put_user(len, optlen))
7561 goto out;
7562
7563 if (copy_to_user(optval, ¶ms, len))
7564 goto out;
7565
7566 retval = 0;
7567
7568out:
7569 return retval;
7570}
7571
7572static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7573 char __user *optval,
7574 int __user *optlen)
7575{
7576 struct sctp_assoc_value params;
7577 struct sctp_association *asoc;
7578 int retval = -EFAULT;
7579
7580 if (len < sizeof(params)) {
7581 retval = -EINVAL;
7582 goto out;
7583 }
7584
7585 len = sizeof(params);
7586 if (copy_from_user(¶ms, optval, len))
7587 goto out;
7588
7589 asoc = sctp_id2assoc(sk, params.assoc_id);
7590 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7591 sctp_style(sk, UDP)) {
7592 retval = -EINVAL;
7593 goto out;
7594 }
7595
7596 params.assoc_value = asoc ? asoc->strreset_enable
7597 : sctp_sk(sk)->ep->strreset_enable;
7598
7599 if (put_user(len, optlen))
7600 goto out;
7601
7602 if (copy_to_user(optval, ¶ms, len))
7603 goto out;
7604
7605 retval = 0;
7606
7607out:
7608 return retval;
7609}
7610
7611static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7612 char __user *optval,
7613 int __user *optlen)
7614{
7615 struct sctp_assoc_value params;
7616 struct sctp_association *asoc;
7617 int retval = -EFAULT;
7618
7619 if (len < sizeof(params)) {
7620 retval = -EINVAL;
7621 goto out;
7622 }
7623
7624 len = sizeof(params);
7625 if (copy_from_user(¶ms, optval, len))
7626 goto out;
7627
7628 asoc = sctp_id2assoc(sk, params.assoc_id);
7629 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7630 sctp_style(sk, UDP)) {
7631 retval = -EINVAL;
7632 goto out;
7633 }
7634
7635 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7636 : sctp_sk(sk)->default_ss;
7637
7638 if (put_user(len, optlen))
7639 goto out;
7640
7641 if (copy_to_user(optval, ¶ms, len))
7642 goto out;
7643
7644 retval = 0;
7645
7646out:
7647 return retval;
7648}
7649
7650static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7651 char __user *optval,
7652 int __user *optlen)
7653{
7654 struct sctp_stream_value params;
7655 struct sctp_association *asoc;
7656 int retval = -EFAULT;
7657
7658 if (len < sizeof(params)) {
7659 retval = -EINVAL;
7660 goto out;
7661 }
7662
7663 len = sizeof(params);
7664 if (copy_from_user(¶ms, optval, len))
7665 goto out;
7666
7667 asoc = sctp_id2assoc(sk, params.assoc_id);
7668 if (!asoc) {
7669 retval = -EINVAL;
7670 goto out;
7671 }
7672
7673 retval = sctp_sched_get_value(asoc, params.stream_id,
7674 ¶ms.stream_value);
7675 if (retval)
7676 goto out;
7677
7678 if (put_user(len, optlen)) {
7679 retval = -EFAULT;
7680 goto out;
7681 }
7682
7683 if (copy_to_user(optval, ¶ms, len)) {
7684 retval = -EFAULT;
7685 goto out;
7686 }
7687
7688out:
7689 return retval;
7690}
7691
7692static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7693 char __user *optval,
7694 int __user *optlen)
7695{
7696 struct sctp_assoc_value params;
7697 struct sctp_association *asoc;
7698 int retval = -EFAULT;
7699
7700 if (len < sizeof(params)) {
7701 retval = -EINVAL;
7702 goto out;
7703 }
7704
7705 len = sizeof(params);
7706 if (copy_from_user(¶ms, optval, len))
7707 goto out;
7708
7709 asoc = sctp_id2assoc(sk, params.assoc_id);
7710 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7711 sctp_style(sk, UDP)) {
7712 retval = -EINVAL;
7713 goto out;
7714 }
7715
7716 params.assoc_value = asoc ? asoc->peer.intl_capable
7717 : sctp_sk(sk)->ep->intl_enable;
7718
7719 if (put_user(len, optlen))
7720 goto out;
7721
7722 if (copy_to_user(optval, ¶ms, len))
7723 goto out;
7724
7725 retval = 0;
7726
7727out:
7728 return retval;
7729}
7730
7731static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7732 char __user *optval,
7733 int __user *optlen)
7734{
7735 int val;
7736
7737 if (len < sizeof(int))
7738 return -EINVAL;
7739
7740 len = sizeof(int);
7741 val = sctp_sk(sk)->reuse;
7742 if (put_user(len, optlen))
7743 return -EFAULT;
7744
7745 if (copy_to_user(optval, &val, len))
7746 return -EFAULT;
7747
7748 return 0;
7749}
7750
7751static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7752 int __user *optlen)
7753{
7754 struct sctp_association *asoc;
7755 struct sctp_event param;
7756 __u16 subscribe;
7757
7758 if (len < sizeof(param))
7759 return -EINVAL;
7760
7761 len = sizeof(param);
7762 if (copy_from_user(¶m, optval, len))
7763 return -EFAULT;
7764
7765 if (param.se_type < SCTP_SN_TYPE_BASE ||
7766 param.se_type > SCTP_SN_TYPE_MAX)
7767 return -EINVAL;
7768
7769 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7770 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7771 sctp_style(sk, UDP))
7772 return -EINVAL;
7773
7774 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7775 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7776
7777 if (put_user(len, optlen))
7778 return -EFAULT;
7779
7780 if (copy_to_user(optval, ¶m, len))
7781 return -EFAULT;
7782
7783 return 0;
7784}
7785
7786static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7787 char __user *optval,
7788 int __user *optlen)
7789{
7790 struct sctp_assoc_value params;
7791 struct sctp_association *asoc;
7792 int retval = -EFAULT;
7793
7794 if (len < sizeof(params)) {
7795 retval = -EINVAL;
7796 goto out;
7797 }
7798
7799 len = sizeof(params);
7800 if (copy_from_user(¶ms, optval, len))
7801 goto out;
7802
7803 asoc = sctp_id2assoc(sk, params.assoc_id);
7804 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7805 sctp_style(sk, UDP)) {
7806 retval = -EINVAL;
7807 goto out;
7808 }
7809
7810 params.assoc_value = asoc ? asoc->peer.asconf_capable
7811 : sctp_sk(sk)->ep->asconf_enable;
7812
7813 if (put_user(len, optlen))
7814 goto out;
7815
7816 if (copy_to_user(optval, ¶ms, len))
7817 goto out;
7818
7819 retval = 0;
7820
7821out:
7822 return retval;
7823}
7824
7825static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7826 char __user *optval,
7827 int __user *optlen)
7828{
7829 struct sctp_assoc_value params;
7830 struct sctp_association *asoc;
7831 int retval = -EFAULT;
7832
7833 if (len < sizeof(params)) {
7834 retval = -EINVAL;
7835 goto out;
7836 }
7837
7838 len = sizeof(params);
7839 if (copy_from_user(¶ms, optval, len))
7840 goto out;
7841
7842 asoc = sctp_id2assoc(sk, params.assoc_id);
7843 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7844 sctp_style(sk, UDP)) {
7845 retval = -EINVAL;
7846 goto out;
7847 }
7848
7849 params.assoc_value = asoc ? asoc->peer.auth_capable
7850 : sctp_sk(sk)->ep->auth_enable;
7851
7852 if (put_user(len, optlen))
7853 goto out;
7854
7855 if (copy_to_user(optval, ¶ms, len))
7856 goto out;
7857
7858 retval = 0;
7859
7860out:
7861 return retval;
7862}
7863
7864static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7865 char __user *optval,
7866 int __user *optlen)
7867{
7868 struct sctp_assoc_value params;
7869 struct sctp_association *asoc;
7870 int retval = -EFAULT;
7871
7872 if (len < sizeof(params)) {
7873 retval = -EINVAL;
7874 goto out;
7875 }
7876
7877 len = sizeof(params);
7878 if (copy_from_user(¶ms, optval, len))
7879 goto out;
7880
7881 asoc = sctp_id2assoc(sk, params.assoc_id);
7882 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7883 sctp_style(sk, UDP)) {
7884 retval = -EINVAL;
7885 goto out;
7886 }
7887
7888 params.assoc_value = asoc ? asoc->peer.ecn_capable
7889 : sctp_sk(sk)->ep->ecn_enable;
7890
7891 if (put_user(len, optlen))
7892 goto out;
7893
7894 if (copy_to_user(optval, ¶ms, len))
7895 goto out;
7896
7897 retval = 0;
7898
7899out:
7900 return retval;
7901}
7902
7903static int sctp_getsockopt(struct sock *sk, int level, int optname,
7904 char __user *optval, int __user *optlen)
7905{
7906 int retval = 0;
7907 int len;
7908
7909 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7910
7911 /* I can hardly begin to describe how wrong this is. This is
7912 * so broken as to be worse than useless. The API draft
7913 * REALLY is NOT helpful here... I am not convinced that the
7914 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7915 * are at all well-founded.
7916 */
7917 if (level != SOL_SCTP) {
7918 struct sctp_af *af = sctp_sk(sk)->pf->af;
7919
7920 retval = af->getsockopt(sk, level, optname, optval, optlen);
7921 return retval;
7922 }
7923
7924 if (get_user(len, optlen))
7925 return -EFAULT;
7926
7927 if (len < 0)
7928 return -EINVAL;
7929
7930 lock_sock(sk);
7931
7932 switch (optname) {
7933 case SCTP_STATUS:
7934 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7935 break;
7936 case SCTP_DISABLE_FRAGMENTS:
7937 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7938 optlen);
7939 break;
7940 case SCTP_EVENTS:
7941 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7942 break;
7943 case SCTP_AUTOCLOSE:
7944 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7945 break;
7946 case SCTP_SOCKOPT_PEELOFF:
7947 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7948 break;
7949 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7950 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7951 break;
7952 case SCTP_PEER_ADDR_PARAMS:
7953 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7954 optlen);
7955 break;
7956 case SCTP_DELAYED_SACK:
7957 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7958 optlen);
7959 break;
7960 case SCTP_INITMSG:
7961 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7962 break;
7963 case SCTP_GET_PEER_ADDRS:
7964 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7965 optlen);
7966 break;
7967 case SCTP_GET_LOCAL_ADDRS:
7968 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7969 optlen);
7970 break;
7971 case SCTP_SOCKOPT_CONNECTX3:
7972 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7973 break;
7974 case SCTP_DEFAULT_SEND_PARAM:
7975 retval = sctp_getsockopt_default_send_param(sk, len,
7976 optval, optlen);
7977 break;
7978 case SCTP_DEFAULT_SNDINFO:
7979 retval = sctp_getsockopt_default_sndinfo(sk, len,
7980 optval, optlen);
7981 break;
7982 case SCTP_PRIMARY_ADDR:
7983 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7984 break;
7985 case SCTP_NODELAY:
7986 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7987 break;
7988 case SCTP_RTOINFO:
7989 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7990 break;
7991 case SCTP_ASSOCINFO:
7992 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7993 break;
7994 case SCTP_I_WANT_MAPPED_V4_ADDR:
7995 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7996 break;
7997 case SCTP_MAXSEG:
7998 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7999 break;
8000 case SCTP_GET_PEER_ADDR_INFO:
8001 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8002 optlen);
8003 break;
8004 case SCTP_ADAPTATION_LAYER:
8005 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8006 optlen);
8007 break;
8008 case SCTP_CONTEXT:
8009 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8010 break;
8011 case SCTP_FRAGMENT_INTERLEAVE:
8012 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8013 optlen);
8014 break;
8015 case SCTP_PARTIAL_DELIVERY_POINT:
8016 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8017 optlen);
8018 break;
8019 case SCTP_MAX_BURST:
8020 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8021 break;
8022 case SCTP_AUTH_KEY:
8023 case SCTP_AUTH_CHUNK:
8024 case SCTP_AUTH_DELETE_KEY:
8025 case SCTP_AUTH_DEACTIVATE_KEY:
8026 retval = -EOPNOTSUPP;
8027 break;
8028 case SCTP_HMAC_IDENT:
8029 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8030 break;
8031 case SCTP_AUTH_ACTIVE_KEY:
8032 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8033 break;
8034 case SCTP_PEER_AUTH_CHUNKS:
8035 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8036 optlen);
8037 break;
8038 case SCTP_LOCAL_AUTH_CHUNKS:
8039 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8040 optlen);
8041 break;
8042 case SCTP_GET_ASSOC_NUMBER:
8043 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8044 break;
8045 case SCTP_GET_ASSOC_ID_LIST:
8046 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8047 break;
8048 case SCTP_AUTO_ASCONF:
8049 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8050 break;
8051 case SCTP_PEER_ADDR_THLDS:
8052 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
8053 break;
8054 case SCTP_GET_ASSOC_STATS:
8055 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8056 break;
8057 case SCTP_RECVRCVINFO:
8058 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8059 break;
8060 case SCTP_RECVNXTINFO:
8061 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8062 break;
8063 case SCTP_PR_SUPPORTED:
8064 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8065 break;
8066 case SCTP_DEFAULT_PRINFO:
8067 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8068 optlen);
8069 break;
8070 case SCTP_PR_ASSOC_STATUS:
8071 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8072 optlen);
8073 break;
8074 case SCTP_PR_STREAM_STATUS:
8075 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8076 optlen);
8077 break;
8078 case SCTP_RECONFIG_SUPPORTED:
8079 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8080 optlen);
8081 break;
8082 case SCTP_ENABLE_STREAM_RESET:
8083 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8084 optlen);
8085 break;
8086 case SCTP_STREAM_SCHEDULER:
8087 retval = sctp_getsockopt_scheduler(sk, len, optval,
8088 optlen);
8089 break;
8090 case SCTP_STREAM_SCHEDULER_VALUE:
8091 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8092 optlen);
8093 break;
8094 case SCTP_INTERLEAVING_SUPPORTED:
8095 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8096 optlen);
8097 break;
8098 case SCTP_REUSE_PORT:
8099 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8100 break;
8101 case SCTP_EVENT:
8102 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8103 break;
8104 case SCTP_ASCONF_SUPPORTED:
8105 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8106 optlen);
8107 break;
8108 case SCTP_AUTH_SUPPORTED:
8109 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8110 optlen);
8111 break;
8112 case SCTP_ECN_SUPPORTED:
8113 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8114 break;
8115 default:
8116 retval = -ENOPROTOOPT;
8117 break;
8118 }
8119
8120 release_sock(sk);
8121 return retval;
8122}
8123
8124static int sctp_hash(struct sock *sk)
8125{
8126 /* STUB */
8127 return 0;
8128}
8129
8130static void sctp_unhash(struct sock *sk)
8131{
8132 /* STUB */
8133}
8134
8135/* Check if port is acceptable. Possibly find first available port.
8136 *
8137 * The port hash table (contained in the 'global' SCTP protocol storage
8138 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8139 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8140 * list (the list number is the port number hashed out, so as you
8141 * would expect from a hash function, all the ports in a given list have
8142 * such a number that hashes out to the same list number; you were
8143 * expecting that, right?); so each list has a set of ports, with a
8144 * link to the socket (struct sock) that uses it, the port number and
8145 * a fastreuse flag (FIXME: NPI ipg).
8146 */
8147static struct sctp_bind_bucket *sctp_bucket_create(
8148 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8149
8150static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8151{
8152 struct sctp_sock *sp = sctp_sk(sk);
8153 bool reuse = (sk->sk_reuse || sp->reuse);
8154 struct sctp_bind_hashbucket *head; /* hash list */
8155 kuid_t uid = sock_i_uid(sk);
8156 struct sctp_bind_bucket *pp;
8157 unsigned short snum;
8158 int ret;
8159
8160 snum = ntohs(addr->v4.sin_port);
8161
8162 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8163
8164 local_bh_disable();
8165
8166 if (snum == 0) {
8167 /* Search for an available port. */
8168 int low, high, remaining, index;
8169 unsigned int rover;
8170 struct net *net = sock_net(sk);
8171
8172 inet_get_local_port_range(net, &low, &high);
8173 remaining = (high - low) + 1;
8174 rover = prandom_u32() % remaining + low;
8175
8176 do {
8177 rover++;
8178 if ((rover < low) || (rover > high))
8179 rover = low;
8180 if (inet_is_local_reserved_port(net, rover))
8181 continue;
8182 index = sctp_phashfn(sock_net(sk), rover);
8183 head = &sctp_port_hashtable[index];
8184 spin_lock(&head->lock);
8185 sctp_for_each_hentry(pp, &head->chain)
8186 if ((pp->port == rover) &&
8187 net_eq(sock_net(sk), pp->net))
8188 goto next;
8189 break;
8190 next:
8191 spin_unlock(&head->lock);
8192 } while (--remaining > 0);
8193
8194 /* Exhausted local port range during search? */
8195 ret = 1;
8196 if (remaining <= 0)
8197 goto fail;
8198
8199 /* OK, here is the one we will use. HEAD (the port
8200 * hash table list entry) is non-NULL and we hold it's
8201 * mutex.
8202 */
8203 snum = rover;
8204 } else {
8205 /* We are given an specific port number; we verify
8206 * that it is not being used. If it is used, we will
8207 * exahust the search in the hash list corresponding
8208 * to the port number (snum) - we detect that with the
8209 * port iterator, pp being NULL.
8210 */
8211 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8212 spin_lock(&head->lock);
8213 sctp_for_each_hentry(pp, &head->chain) {
8214 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8215 goto pp_found;
8216 }
8217 }
8218 pp = NULL;
8219 goto pp_not_found;
8220pp_found:
8221 if (!hlist_empty(&pp->owner)) {
8222 /* We had a port hash table hit - there is an
8223 * available port (pp != NULL) and it is being
8224 * used by other socket (pp->owner not empty); that other
8225 * socket is going to be sk2.
8226 */
8227 struct sock *sk2;
8228
8229 pr_debug("%s: found a possible match\n", __func__);
8230
8231 if ((pp->fastreuse && reuse &&
8232 sk->sk_state != SCTP_SS_LISTENING) ||
8233 (pp->fastreuseport && sk->sk_reuseport &&
8234 uid_eq(pp->fastuid, uid)))
8235 goto success;
8236
8237 /* Run through the list of sockets bound to the port
8238 * (pp->port) [via the pointers bind_next and
8239 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8240 * we get the endpoint they describe and run through
8241 * the endpoint's list of IP (v4 or v6) addresses,
8242 * comparing each of the addresses with the address of
8243 * the socket sk. If we find a match, then that means
8244 * that this port/socket (sk) combination are already
8245 * in an endpoint.
8246 */
8247 sk_for_each_bound(sk2, &pp->owner) {
8248 struct sctp_sock *sp2 = sctp_sk(sk2);
8249 struct sctp_endpoint *ep2 = sp2->ep;
8250
8251 if (sk == sk2 ||
8252 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8253 sk2->sk_state != SCTP_SS_LISTENING) ||
8254 (sk->sk_reuseport && sk2->sk_reuseport &&
8255 uid_eq(uid, sock_i_uid(sk2))))
8256 continue;
8257
8258 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8259 addr, sp2, sp)) {
8260 ret = 1;
8261 goto fail_unlock;
8262 }
8263 }
8264
8265 pr_debug("%s: found a match\n", __func__);
8266 }
8267pp_not_found:
8268 /* If there was a hash table miss, create a new port. */
8269 ret = 1;
8270 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8271 goto fail_unlock;
8272
8273 /* In either case (hit or miss), make sure fastreuse is 1 only
8274 * if sk->sk_reuse is too (that is, if the caller requested
8275 * SO_REUSEADDR on this socket -sk-).
8276 */
8277 if (hlist_empty(&pp->owner)) {
8278 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8279 pp->fastreuse = 1;
8280 else
8281 pp->fastreuse = 0;
8282
8283 if (sk->sk_reuseport) {
8284 pp->fastreuseport = 1;
8285 pp->fastuid = uid;
8286 } else {
8287 pp->fastreuseport = 0;
8288 }
8289 } else {
8290 if (pp->fastreuse &&
8291 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8292 pp->fastreuse = 0;
8293
8294 if (pp->fastreuseport &&
8295 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8296 pp->fastreuseport = 0;
8297 }
8298
8299 /* We are set, so fill up all the data in the hash table
8300 * entry, tie the socket list information with the rest of the
8301 * sockets FIXME: Blurry, NPI (ipg).
8302 */
8303success:
8304 if (!sp->bind_hash) {
8305 inet_sk(sk)->inet_num = snum;
8306 sk_add_bind_node(sk, &pp->owner);
8307 sp->bind_hash = pp;
8308 }
8309 ret = 0;
8310
8311fail_unlock:
8312 spin_unlock(&head->lock);
8313
8314fail:
8315 local_bh_enable();
8316 return ret;
8317}
8318
8319/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8320 * port is requested.
8321 */
8322static int sctp_get_port(struct sock *sk, unsigned short snum)
8323{
8324 union sctp_addr addr;
8325 struct sctp_af *af = sctp_sk(sk)->pf->af;
8326
8327 /* Set up a dummy address struct from the sk. */
8328 af->from_sk(&addr, sk);
8329 addr.v4.sin_port = htons(snum);
8330
8331 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8332 return sctp_get_port_local(sk, &addr);
8333}
8334
8335/*
8336 * Move a socket to LISTENING state.
8337 */
8338static int sctp_listen_start(struct sock *sk, int backlog)
8339{
8340 struct sctp_sock *sp = sctp_sk(sk);
8341 struct sctp_endpoint *ep = sp->ep;
8342 struct crypto_shash *tfm = NULL;
8343 char alg[32];
8344
8345 /* Allocate HMAC for generating cookie. */
8346 if (!sp->hmac && sp->sctp_hmac_alg) {
8347 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8348 tfm = crypto_alloc_shash(alg, 0, 0);
8349 if (IS_ERR(tfm)) {
8350 net_info_ratelimited("failed to load transform for %s: %ld\n",
8351 sp->sctp_hmac_alg, PTR_ERR(tfm));
8352 return -ENOSYS;
8353 }
8354 sctp_sk(sk)->hmac = tfm;
8355 }
8356
8357 /*
8358 * If a bind() or sctp_bindx() is not called prior to a listen()
8359 * call that allows new associations to be accepted, the system
8360 * picks an ephemeral port and will choose an address set equivalent
8361 * to binding with a wildcard address.
8362 *
8363 * This is not currently spelled out in the SCTP sockets
8364 * extensions draft, but follows the practice as seen in TCP
8365 * sockets.
8366 *
8367 */
8368 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8369 if (!ep->base.bind_addr.port) {
8370 if (sctp_autobind(sk))
8371 return -EAGAIN;
8372 } else {
8373 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8374 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8375 return -EADDRINUSE;
8376 }
8377 }
8378
8379 sk->sk_max_ack_backlog = backlog;
8380 return sctp_hash_endpoint(ep);
8381}
8382
8383/*
8384 * 4.1.3 / 5.1.3 listen()
8385 *
8386 * By default, new associations are not accepted for UDP style sockets.
8387 * An application uses listen() to mark a socket as being able to
8388 * accept new associations.
8389 *
8390 * On TCP style sockets, applications use listen() to ready the SCTP
8391 * endpoint for accepting inbound associations.
8392 *
8393 * On both types of endpoints a backlog of '0' disables listening.
8394 *
8395 * Move a socket to LISTENING state.
8396 */
8397int sctp_inet_listen(struct socket *sock, int backlog)
8398{
8399 struct sock *sk = sock->sk;
8400 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8401 int err = -EINVAL;
8402
8403 if (unlikely(backlog < 0))
8404 return err;
8405
8406 lock_sock(sk);
8407
8408 /* Peeled-off sockets are not allowed to listen(). */
8409 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8410 goto out;
8411
8412 if (sock->state != SS_UNCONNECTED)
8413 goto out;
8414
8415 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8416 goto out;
8417
8418 /* If backlog is zero, disable listening. */
8419 if (!backlog) {
8420 if (sctp_sstate(sk, CLOSED))
8421 goto out;
8422
8423 err = 0;
8424 sctp_unhash_endpoint(ep);
8425 sk->sk_state = SCTP_SS_CLOSED;
8426 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8427 sctp_sk(sk)->bind_hash->fastreuse = 1;
8428 goto out;
8429 }
8430
8431 /* If we are already listening, just update the backlog */
8432 if (sctp_sstate(sk, LISTENING))
8433 sk->sk_max_ack_backlog = backlog;
8434 else {
8435 err = sctp_listen_start(sk, backlog);
8436 if (err)
8437 goto out;
8438 }
8439
8440 err = 0;
8441out:
8442 release_sock(sk);
8443 return err;
8444}
8445
8446/*
8447 * This function is done by modeling the current datagram_poll() and the
8448 * tcp_poll(). Note that, based on these implementations, we don't
8449 * lock the socket in this function, even though it seems that,
8450 * ideally, locking or some other mechanisms can be used to ensure
8451 * the integrity of the counters (sndbuf and wmem_alloc) used
8452 * in this place. We assume that we don't need locks either until proven
8453 * otherwise.
8454 *
8455 * Another thing to note is that we include the Async I/O support
8456 * here, again, by modeling the current TCP/UDP code. We don't have
8457 * a good way to test with it yet.
8458 */
8459__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8460{
8461 struct sock *sk = sock->sk;
8462 struct sctp_sock *sp = sctp_sk(sk);
8463 __poll_t mask;
8464
8465 poll_wait(file, sk_sleep(sk), wait);
8466
8467 sock_rps_record_flow(sk);
8468
8469 /* A TCP-style listening socket becomes readable when the accept queue
8470 * is not empty.
8471 */
8472 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8473 return (!list_empty(&sp->ep->asocs)) ?
8474 (EPOLLIN | EPOLLRDNORM) : 0;
8475
8476 mask = 0;
8477
8478 /* Is there any exceptional events? */
8479 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8480 mask |= EPOLLERR |
8481 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8482 if (sk->sk_shutdown & RCV_SHUTDOWN)
8483 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8484 if (sk->sk_shutdown == SHUTDOWN_MASK)
8485 mask |= EPOLLHUP;
8486
8487 /* Is it readable? Reconsider this code with TCP-style support. */
8488 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8489 mask |= EPOLLIN | EPOLLRDNORM;
8490
8491 /* The association is either gone or not ready. */
8492 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8493 return mask;
8494
8495 /* Is it writable? */
8496 if (sctp_writeable(sk)) {
8497 mask |= EPOLLOUT | EPOLLWRNORM;
8498 } else {
8499 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8500 /*
8501 * Since the socket is not locked, the buffer
8502 * might be made available after the writeable check and
8503 * before the bit is set. This could cause a lost I/O
8504 * signal. tcp_poll() has a race breaker for this race
8505 * condition. Based on their implementation, we put
8506 * in the following code to cover it as well.
8507 */
8508 if (sctp_writeable(sk))
8509 mask |= EPOLLOUT | EPOLLWRNORM;
8510 }
8511 return mask;
8512}
8513
8514/********************************************************************
8515 * 2nd Level Abstractions
8516 ********************************************************************/
8517
8518static struct sctp_bind_bucket *sctp_bucket_create(
8519 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8520{
8521 struct sctp_bind_bucket *pp;
8522
8523 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8524 if (pp) {
8525 SCTP_DBG_OBJCNT_INC(bind_bucket);
8526 pp->port = snum;
8527 pp->fastreuse = 0;
8528 INIT_HLIST_HEAD(&pp->owner);
8529 pp->net = net;
8530 hlist_add_head(&pp->node, &head->chain);
8531 }
8532 return pp;
8533}
8534
8535/* Caller must hold hashbucket lock for this tb with local BH disabled */
8536static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8537{
8538 if (pp && hlist_empty(&pp->owner)) {
8539 __hlist_del(&pp->node);
8540 kmem_cache_free(sctp_bucket_cachep, pp);
8541 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8542 }
8543}
8544
8545/* Release this socket's reference to a local port. */
8546static inline void __sctp_put_port(struct sock *sk)
8547{
8548 struct sctp_bind_hashbucket *head =
8549 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8550 inet_sk(sk)->inet_num)];
8551 struct sctp_bind_bucket *pp;
8552
8553 spin_lock(&head->lock);
8554 pp = sctp_sk(sk)->bind_hash;
8555 __sk_del_bind_node(sk);
8556 sctp_sk(sk)->bind_hash = NULL;
8557 inet_sk(sk)->inet_num = 0;
8558 sctp_bucket_destroy(pp);
8559 spin_unlock(&head->lock);
8560}
8561
8562void sctp_put_port(struct sock *sk)
8563{
8564 local_bh_disable();
8565 __sctp_put_port(sk);
8566 local_bh_enable();
8567}
8568
8569/*
8570 * The system picks an ephemeral port and choose an address set equivalent
8571 * to binding with a wildcard address.
8572 * One of those addresses will be the primary address for the association.
8573 * This automatically enables the multihoming capability of SCTP.
8574 */
8575static int sctp_autobind(struct sock *sk)
8576{
8577 union sctp_addr autoaddr;
8578 struct sctp_af *af;
8579 __be16 port;
8580
8581 /* Initialize a local sockaddr structure to INADDR_ANY. */
8582 af = sctp_sk(sk)->pf->af;
8583
8584 port = htons(inet_sk(sk)->inet_num);
8585 af->inaddr_any(&autoaddr, port);
8586
8587 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8588}
8589
8590/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8591 *
8592 * From RFC 2292
8593 * 4.2 The cmsghdr Structure *
8594 *
8595 * When ancillary data is sent or received, any number of ancillary data
8596 * objects can be specified by the msg_control and msg_controllen members of
8597 * the msghdr structure, because each object is preceded by
8598 * a cmsghdr structure defining the object's length (the cmsg_len member).
8599 * Historically Berkeley-derived implementations have passed only one object
8600 * at a time, but this API allows multiple objects to be
8601 * passed in a single call to sendmsg() or recvmsg(). The following example
8602 * shows two ancillary data objects in a control buffer.
8603 *
8604 * |<--------------------------- msg_controllen -------------------------->|
8605 * | |
8606 *
8607 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8608 *
8609 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8610 * | | |
8611 *
8612 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8613 *
8614 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8615 * | | | | |
8616 *
8617 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8618 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8619 *
8620 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8621 *
8622 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8623 * ^
8624 * |
8625 *
8626 * msg_control
8627 * points here
8628 */
8629static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8630{
8631 struct msghdr *my_msg = (struct msghdr *)msg;
8632 struct cmsghdr *cmsg;
8633
8634 for_each_cmsghdr(cmsg, my_msg) {
8635 if (!CMSG_OK(my_msg, cmsg))
8636 return -EINVAL;
8637
8638 /* Should we parse this header or ignore? */
8639 if (cmsg->cmsg_level != IPPROTO_SCTP)
8640 continue;
8641
8642 /* Strictly check lengths following example in SCM code. */
8643 switch (cmsg->cmsg_type) {
8644 case SCTP_INIT:
8645 /* SCTP Socket API Extension
8646 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8647 *
8648 * This cmsghdr structure provides information for
8649 * initializing new SCTP associations with sendmsg().
8650 * The SCTP_INITMSG socket option uses this same data
8651 * structure. This structure is not used for
8652 * recvmsg().
8653 *
8654 * cmsg_level cmsg_type cmsg_data[]
8655 * ------------ ------------ ----------------------
8656 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8657 */
8658 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8659 return -EINVAL;
8660
8661 cmsgs->init = CMSG_DATA(cmsg);
8662 break;
8663
8664 case SCTP_SNDRCV:
8665 /* SCTP Socket API Extension
8666 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8667 *
8668 * This cmsghdr structure specifies SCTP options for
8669 * sendmsg() and describes SCTP header information
8670 * about a received message through recvmsg().
8671 *
8672 * cmsg_level cmsg_type cmsg_data[]
8673 * ------------ ------------ ----------------------
8674 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8675 */
8676 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8677 return -EINVAL;
8678
8679 cmsgs->srinfo = CMSG_DATA(cmsg);
8680
8681 if (cmsgs->srinfo->sinfo_flags &
8682 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8683 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8684 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8685 return -EINVAL;
8686 break;
8687
8688 case SCTP_SNDINFO:
8689 /* SCTP Socket API Extension
8690 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8691 *
8692 * This cmsghdr structure specifies SCTP options for
8693 * sendmsg(). This structure and SCTP_RCVINFO replaces
8694 * SCTP_SNDRCV which has been deprecated.
8695 *
8696 * cmsg_level cmsg_type cmsg_data[]
8697 * ------------ ------------ ---------------------
8698 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8699 */
8700 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8701 return -EINVAL;
8702
8703 cmsgs->sinfo = CMSG_DATA(cmsg);
8704
8705 if (cmsgs->sinfo->snd_flags &
8706 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8707 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8708 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8709 return -EINVAL;
8710 break;
8711 case SCTP_PRINFO:
8712 /* SCTP Socket API Extension
8713 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8714 *
8715 * This cmsghdr structure specifies SCTP options for sendmsg().
8716 *
8717 * cmsg_level cmsg_type cmsg_data[]
8718 * ------------ ------------ ---------------------
8719 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8720 */
8721 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8722 return -EINVAL;
8723
8724 cmsgs->prinfo = CMSG_DATA(cmsg);
8725 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8726 return -EINVAL;
8727
8728 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8729 cmsgs->prinfo->pr_value = 0;
8730 break;
8731 case SCTP_AUTHINFO:
8732 /* SCTP Socket API Extension
8733 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8734 *
8735 * This cmsghdr structure specifies SCTP options for sendmsg().
8736 *
8737 * cmsg_level cmsg_type cmsg_data[]
8738 * ------------ ------------ ---------------------
8739 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8740 */
8741 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8742 return -EINVAL;
8743
8744 cmsgs->authinfo = CMSG_DATA(cmsg);
8745 break;
8746 case SCTP_DSTADDRV4:
8747 case SCTP_DSTADDRV6:
8748 /* SCTP Socket API Extension
8749 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8750 *
8751 * This cmsghdr structure specifies SCTP options for sendmsg().
8752 *
8753 * cmsg_level cmsg_type cmsg_data[]
8754 * ------------ ------------ ---------------------
8755 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8756 * ------------ ------------ ---------------------
8757 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8758 */
8759 cmsgs->addrs_msg = my_msg;
8760 break;
8761 default:
8762 return -EINVAL;
8763 }
8764 }
8765
8766 return 0;
8767}
8768
8769/*
8770 * Wait for a packet..
8771 * Note: This function is the same function as in core/datagram.c
8772 * with a few modifications to make lksctp work.
8773 */
8774static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8775{
8776 int error;
8777 DEFINE_WAIT(wait);
8778
8779 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8780
8781 /* Socket errors? */
8782 error = sock_error(sk);
8783 if (error)
8784 goto out;
8785
8786 if (!skb_queue_empty(&sk->sk_receive_queue))
8787 goto ready;
8788
8789 /* Socket shut down? */
8790 if (sk->sk_shutdown & RCV_SHUTDOWN)
8791 goto out;
8792
8793 /* Sequenced packets can come disconnected. If so we report the
8794 * problem.
8795 */
8796 error = -ENOTCONN;
8797
8798 /* Is there a good reason to think that we may receive some data? */
8799 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8800 goto out;
8801
8802 /* Handle signals. */
8803 if (signal_pending(current))
8804 goto interrupted;
8805
8806 /* Let another process have a go. Since we are going to sleep
8807 * anyway. Note: This may cause odd behaviors if the message
8808 * does not fit in the user's buffer, but this seems to be the
8809 * only way to honor MSG_DONTWAIT realistically.
8810 */
8811 release_sock(sk);
8812 *timeo_p = schedule_timeout(*timeo_p);
8813 lock_sock(sk);
8814
8815ready:
8816 finish_wait(sk_sleep(sk), &wait);
8817 return 0;
8818
8819interrupted:
8820 error = sock_intr_errno(*timeo_p);
8821
8822out:
8823 finish_wait(sk_sleep(sk), &wait);
8824 *err = error;
8825 return error;
8826}
8827
8828/* Receive a datagram.
8829 * Note: This is pretty much the same routine as in core/datagram.c
8830 * with a few changes to make lksctp work.
8831 */
8832struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8833 int noblock, int *err)
8834{
8835 int error;
8836 struct sk_buff *skb;
8837 long timeo;
8838
8839 timeo = sock_rcvtimeo(sk, noblock);
8840
8841 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8842 MAX_SCHEDULE_TIMEOUT);
8843
8844 do {
8845 /* Again only user level code calls this function,
8846 * so nothing interrupt level
8847 * will suddenly eat the receive_queue.
8848 *
8849 * Look at current nfs client by the way...
8850 * However, this function was correct in any case. 8)
8851 */
8852 if (flags & MSG_PEEK) {
8853 skb = skb_peek(&sk->sk_receive_queue);
8854 if (skb)
8855 refcount_inc(&skb->users);
8856 } else {
8857 skb = __skb_dequeue(&sk->sk_receive_queue);
8858 }
8859
8860 if (skb)
8861 return skb;
8862
8863 /* Caller is allowed not to check sk->sk_err before calling. */
8864 error = sock_error(sk);
8865 if (error)
8866 goto no_packet;
8867
8868 if (sk->sk_shutdown & RCV_SHUTDOWN)
8869 break;
8870
8871 if (sk_can_busy_loop(sk)) {
8872 sk_busy_loop(sk, noblock);
8873
8874 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8875 continue;
8876 }
8877
8878 /* User doesn't want to wait. */
8879 error = -EAGAIN;
8880 if (!timeo)
8881 goto no_packet;
8882 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8883
8884 return NULL;
8885
8886no_packet:
8887 *err = error;
8888 return NULL;
8889}
8890
8891/* If sndbuf has changed, wake up per association sndbuf waiters. */
8892static void __sctp_write_space(struct sctp_association *asoc)
8893{
8894 struct sock *sk = asoc->base.sk;
8895
8896 if (sctp_wspace(asoc) <= 0)
8897 return;
8898
8899 if (waitqueue_active(&asoc->wait))
8900 wake_up_interruptible(&asoc->wait);
8901
8902 if (sctp_writeable(sk)) {
8903 struct socket_wq *wq;
8904
8905 rcu_read_lock();
8906 wq = rcu_dereference(sk->sk_wq);
8907 if (wq) {
8908 if (waitqueue_active(&wq->wait))
8909 wake_up_interruptible(&wq->wait);
8910
8911 /* Note that we try to include the Async I/O support
8912 * here by modeling from the current TCP/UDP code.
8913 * We have not tested with it yet.
8914 */
8915 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8916 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8917 }
8918 rcu_read_unlock();
8919 }
8920}
8921
8922static void sctp_wake_up_waiters(struct sock *sk,
8923 struct sctp_association *asoc)
8924{
8925 struct sctp_association *tmp = asoc;
8926
8927 /* We do accounting for the sndbuf space per association,
8928 * so we only need to wake our own association.
8929 */
8930 if (asoc->ep->sndbuf_policy)
8931 return __sctp_write_space(asoc);
8932
8933 /* If association goes down and is just flushing its
8934 * outq, then just normally notify others.
8935 */
8936 if (asoc->base.dead)
8937 return sctp_write_space(sk);
8938
8939 /* Accounting for the sndbuf space is per socket, so we
8940 * need to wake up others, try to be fair and in case of
8941 * other associations, let them have a go first instead
8942 * of just doing a sctp_write_space() call.
8943 *
8944 * Note that we reach sctp_wake_up_waiters() only when
8945 * associations free up queued chunks, thus we are under
8946 * lock and the list of associations on a socket is
8947 * guaranteed not to change.
8948 */
8949 for (tmp = list_next_entry(tmp, asocs); 1;
8950 tmp = list_next_entry(tmp, asocs)) {
8951 /* Manually skip the head element. */
8952 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8953 continue;
8954 /* Wake up association. */
8955 __sctp_write_space(tmp);
8956 /* We've reached the end. */
8957 if (tmp == asoc)
8958 break;
8959 }
8960}
8961
8962/* Do accounting for the sndbuf space.
8963 * Decrement the used sndbuf space of the corresponding association by the
8964 * data size which was just transmitted(freed).
8965 */
8966static void sctp_wfree(struct sk_buff *skb)
8967{
8968 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8969 struct sctp_association *asoc = chunk->asoc;
8970 struct sock *sk = asoc->base.sk;
8971
8972 sk_mem_uncharge(sk, skb->truesize);
8973 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8974 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8975 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8976 &sk->sk_wmem_alloc));
8977
8978 if (chunk->shkey) {
8979 struct sctp_shared_key *shkey = chunk->shkey;
8980
8981 /* refcnt == 2 and !list_empty mean after this release, it's
8982 * not being used anywhere, and it's time to notify userland
8983 * that this shkey can be freed if it's been deactivated.
8984 */
8985 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8986 refcount_read(&shkey->refcnt) == 2) {
8987 struct sctp_ulpevent *ev;
8988
8989 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8990 SCTP_AUTH_FREE_KEY,
8991 GFP_KERNEL);
8992 if (ev)
8993 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8994 }
8995 sctp_auth_shkey_release(chunk->shkey);
8996 }
8997
8998 sock_wfree(skb);
8999 sctp_wake_up_waiters(sk, asoc);
9000
9001 sctp_association_put(asoc);
9002}
9003
9004/* Do accounting for the receive space on the socket.
9005 * Accounting for the association is done in ulpevent.c
9006 * We set this as a destructor for the cloned data skbs so that
9007 * accounting is done at the correct time.
9008 */
9009void sctp_sock_rfree(struct sk_buff *skb)
9010{
9011 struct sock *sk = skb->sk;
9012 struct sctp_ulpevent *event = sctp_skb2event(skb);
9013
9014 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9015
9016 /*
9017 * Mimic the behavior of sock_rfree
9018 */
9019 sk_mem_uncharge(sk, event->rmem_len);
9020}
9021
9022
9023/* Helper function to wait for space in the sndbuf. */
9024static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9025 size_t msg_len)
9026{
9027 struct sock *sk = asoc->base.sk;
9028 long current_timeo = *timeo_p;
9029 DEFINE_WAIT(wait);
9030 int err = 0;
9031
9032 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9033 *timeo_p, msg_len);
9034
9035 /* Increment the association's refcnt. */
9036 sctp_association_hold(asoc);
9037
9038 /* Wait on the association specific sndbuf space. */
9039 for (;;) {
9040 prepare_to_wait_exclusive(&asoc->wait, &wait,
9041 TASK_INTERRUPTIBLE);
9042 if (asoc->base.dead)
9043 goto do_dead;
9044 if (!*timeo_p)
9045 goto do_nonblock;
9046 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9047 goto do_error;
9048 if (signal_pending(current))
9049 goto do_interrupted;
9050 if (sk_under_memory_pressure(sk))
9051 sk_mem_reclaim(sk);
9052 if ((int)msg_len <= sctp_wspace(asoc) &&
9053 sk_wmem_schedule(sk, msg_len))
9054 break;
9055
9056 /* Let another process have a go. Since we are going
9057 * to sleep anyway.
9058 */
9059 release_sock(sk);
9060 current_timeo = schedule_timeout(current_timeo);
9061 lock_sock(sk);
9062 if (sk != asoc->base.sk)
9063 goto do_error;
9064
9065 *timeo_p = current_timeo;
9066 }
9067
9068out:
9069 finish_wait(&asoc->wait, &wait);
9070
9071 /* Release the association's refcnt. */
9072 sctp_association_put(asoc);
9073
9074 return err;
9075
9076do_dead:
9077 err = -ESRCH;
9078 goto out;
9079
9080do_error:
9081 err = -EPIPE;
9082 goto out;
9083
9084do_interrupted:
9085 err = sock_intr_errno(*timeo_p);
9086 goto out;
9087
9088do_nonblock:
9089 err = -EAGAIN;
9090 goto out;
9091}
9092
9093void sctp_data_ready(struct sock *sk)
9094{
9095 struct socket_wq *wq;
9096
9097 rcu_read_lock();
9098 wq = rcu_dereference(sk->sk_wq);
9099 if (skwq_has_sleeper(wq))
9100 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9101 EPOLLRDNORM | EPOLLRDBAND);
9102 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9103 rcu_read_unlock();
9104}
9105
9106/* If socket sndbuf has changed, wake up all per association waiters. */
9107void sctp_write_space(struct sock *sk)
9108{
9109 struct sctp_association *asoc;
9110
9111 /* Wake up the tasks in each wait queue. */
9112 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9113 __sctp_write_space(asoc);
9114 }
9115}
9116
9117/* Is there any sndbuf space available on the socket?
9118 *
9119 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9120 * associations on the same socket. For a UDP-style socket with
9121 * multiple associations, it is possible for it to be "unwriteable"
9122 * prematurely. I assume that this is acceptable because
9123 * a premature "unwriteable" is better than an accidental "writeable" which
9124 * would cause an unwanted block under certain circumstances. For the 1-1
9125 * UDP-style sockets or TCP-style sockets, this code should work.
9126 * - Daisy
9127 */
9128static bool sctp_writeable(struct sock *sk)
9129{
9130 return sk->sk_sndbuf > sk->sk_wmem_queued;
9131}
9132
9133/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9134 * returns immediately with EINPROGRESS.
9135 */
9136static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9137{
9138 struct sock *sk = asoc->base.sk;
9139 int err = 0;
9140 long current_timeo = *timeo_p;
9141 DEFINE_WAIT(wait);
9142
9143 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9144
9145 /* Increment the association's refcnt. */
9146 sctp_association_hold(asoc);
9147
9148 for (;;) {
9149 prepare_to_wait_exclusive(&asoc->wait, &wait,
9150 TASK_INTERRUPTIBLE);
9151 if (!*timeo_p)
9152 goto do_nonblock;
9153 if (sk->sk_shutdown & RCV_SHUTDOWN)
9154 break;
9155 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9156 asoc->base.dead)
9157 goto do_error;
9158 if (signal_pending(current))
9159 goto do_interrupted;
9160
9161 if (sctp_state(asoc, ESTABLISHED))
9162 break;
9163
9164 /* Let another process have a go. Since we are going
9165 * to sleep anyway.
9166 */
9167 release_sock(sk);
9168 current_timeo = schedule_timeout(current_timeo);
9169 lock_sock(sk);
9170
9171 *timeo_p = current_timeo;
9172 }
9173
9174out:
9175 finish_wait(&asoc->wait, &wait);
9176
9177 /* Release the association's refcnt. */
9178 sctp_association_put(asoc);
9179
9180 return err;
9181
9182do_error:
9183 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9184 err = -ETIMEDOUT;
9185 else
9186 err = -ECONNREFUSED;
9187 goto out;
9188
9189do_interrupted:
9190 err = sock_intr_errno(*timeo_p);
9191 goto out;
9192
9193do_nonblock:
9194 err = -EINPROGRESS;
9195 goto out;
9196}
9197
9198static int sctp_wait_for_accept(struct sock *sk, long timeo)
9199{
9200 struct sctp_endpoint *ep;
9201 int err = 0;
9202 DEFINE_WAIT(wait);
9203
9204 ep = sctp_sk(sk)->ep;
9205
9206
9207 for (;;) {
9208 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9209 TASK_INTERRUPTIBLE);
9210
9211 if (list_empty(&ep->asocs)) {
9212 release_sock(sk);
9213 timeo = schedule_timeout(timeo);
9214 lock_sock(sk);
9215 }
9216
9217 err = -EINVAL;
9218 if (!sctp_sstate(sk, LISTENING))
9219 break;
9220
9221 err = 0;
9222 if (!list_empty(&ep->asocs))
9223 break;
9224
9225 err = sock_intr_errno(timeo);
9226 if (signal_pending(current))
9227 break;
9228
9229 err = -EAGAIN;
9230 if (!timeo)
9231 break;
9232 }
9233
9234 finish_wait(sk_sleep(sk), &wait);
9235
9236 return err;
9237}
9238
9239static void sctp_wait_for_close(struct sock *sk, long timeout)
9240{
9241 DEFINE_WAIT(wait);
9242
9243 do {
9244 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9245 if (list_empty(&sctp_sk(sk)->ep->asocs))
9246 break;
9247 release_sock(sk);
9248 timeout = schedule_timeout(timeout);
9249 lock_sock(sk);
9250 } while (!signal_pending(current) && timeout);
9251
9252 finish_wait(sk_sleep(sk), &wait);
9253}
9254
9255static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9256{
9257 struct sk_buff *frag;
9258
9259 if (!skb->data_len)
9260 goto done;
9261
9262 /* Don't forget the fragments. */
9263 skb_walk_frags(skb, frag)
9264 sctp_skb_set_owner_r_frag(frag, sk);
9265
9266done:
9267 sctp_skb_set_owner_r(skb, sk);
9268}
9269
9270void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9271 struct sctp_association *asoc)
9272{
9273 struct inet_sock *inet = inet_sk(sk);
9274 struct inet_sock *newinet;
9275 struct sctp_sock *sp = sctp_sk(sk);
9276 struct sctp_endpoint *ep = sp->ep;
9277
9278 newsk->sk_type = sk->sk_type;
9279 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9280 newsk->sk_flags = sk->sk_flags;
9281 newsk->sk_tsflags = sk->sk_tsflags;
9282 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9283 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9284 newsk->sk_reuse = sk->sk_reuse;
9285 sctp_sk(newsk)->reuse = sp->reuse;
9286
9287 newsk->sk_shutdown = sk->sk_shutdown;
9288 newsk->sk_destruct = sctp_destruct_sock;
9289 newsk->sk_family = sk->sk_family;
9290 newsk->sk_protocol = IPPROTO_SCTP;
9291 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9292 newsk->sk_sndbuf = sk->sk_sndbuf;
9293 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9294 newsk->sk_lingertime = sk->sk_lingertime;
9295 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9296 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9297 newsk->sk_rxhash = sk->sk_rxhash;
9298
9299 newinet = inet_sk(newsk);
9300
9301 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9302 * getsockname() and getpeername()
9303 */
9304 newinet->inet_sport = inet->inet_sport;
9305 newinet->inet_saddr = inet->inet_saddr;
9306 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9307 newinet->inet_dport = htons(asoc->peer.port);
9308 newinet->pmtudisc = inet->pmtudisc;
9309 newinet->inet_id = prandom_u32();
9310
9311 newinet->uc_ttl = inet->uc_ttl;
9312 newinet->mc_loop = 1;
9313 newinet->mc_ttl = 1;
9314 newinet->mc_index = 0;
9315 newinet->mc_list = NULL;
9316
9317 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9318 net_enable_timestamp();
9319
9320 /* Set newsk security attributes from orginal sk and connection
9321 * security attribute from ep.
9322 */
9323 security_sctp_sk_clone(ep, sk, newsk);
9324}
9325
9326static inline void sctp_copy_descendant(struct sock *sk_to,
9327 const struct sock *sk_from)
9328{
9329 int ancestor_size = sizeof(struct inet_sock) +
9330 sizeof(struct sctp_sock) -
9331 offsetof(struct sctp_sock, pd_lobby);
9332
9333 if (sk_from->sk_family == PF_INET6)
9334 ancestor_size += sizeof(struct ipv6_pinfo);
9335
9336 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9337}
9338
9339/* Populate the fields of the newsk from the oldsk and migrate the assoc
9340 * and its messages to the newsk.
9341 */
9342static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9343 struct sctp_association *assoc,
9344 enum sctp_socket_type type)
9345{
9346 struct sctp_sock *oldsp = sctp_sk(oldsk);
9347 struct sctp_sock *newsp = sctp_sk(newsk);
9348 struct sctp_bind_bucket *pp; /* hash list port iterator */
9349 struct sctp_endpoint *newep = newsp->ep;
9350 struct sk_buff *skb, *tmp;
9351 struct sctp_ulpevent *event;
9352 struct sctp_bind_hashbucket *head;
9353 int err;
9354
9355 /* Migrate socket buffer sizes and all the socket level options to the
9356 * new socket.
9357 */
9358 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9359 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9360 /* Brute force copy old sctp opt. */
9361 sctp_copy_descendant(newsk, oldsk);
9362
9363 /* Restore the ep value that was overwritten with the above structure
9364 * copy.
9365 */
9366 newsp->ep = newep;
9367 newsp->hmac = NULL;
9368
9369 /* Hook this new socket in to the bind_hash list. */
9370 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9371 inet_sk(oldsk)->inet_num)];
9372 spin_lock_bh(&head->lock);
9373 pp = sctp_sk(oldsk)->bind_hash;
9374 sk_add_bind_node(newsk, &pp->owner);
9375 sctp_sk(newsk)->bind_hash = pp;
9376 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9377 spin_unlock_bh(&head->lock);
9378
9379 /* Copy the bind_addr list from the original endpoint to the new
9380 * endpoint so that we can handle restarts properly
9381 */
9382 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9383 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9384 if (err)
9385 return err;
9386
9387 /* New ep's auth_hmacs should be set if old ep's is set, in case
9388 * that net->sctp.auth_enable has been changed to 0 by users and
9389 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9390 */
9391 if (oldsp->ep->auth_hmacs) {
9392 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9393 if (err)
9394 return err;
9395 }
9396
9397 /* Move any messages in the old socket's receive queue that are for the
9398 * peeled off association to the new socket's receive queue.
9399 */
9400 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9401 event = sctp_skb2event(skb);
9402 if (event->asoc == assoc) {
9403 __skb_unlink(skb, &oldsk->sk_receive_queue);
9404 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9405 sctp_skb_set_owner_r_frag(skb, newsk);
9406 }
9407 }
9408
9409 /* Clean up any messages pending delivery due to partial
9410 * delivery. Three cases:
9411 * 1) No partial deliver; no work.
9412 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9413 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9414 */
9415 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9416
9417 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9418 struct sk_buff_head *queue;
9419
9420 /* Decide which queue to move pd_lobby skbs to. */
9421 if (assoc->ulpq.pd_mode) {
9422 queue = &newsp->pd_lobby;
9423 } else
9424 queue = &newsk->sk_receive_queue;
9425
9426 /* Walk through the pd_lobby, looking for skbs that
9427 * need moved to the new socket.
9428 */
9429 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9430 event = sctp_skb2event(skb);
9431 if (event->asoc == assoc) {
9432 __skb_unlink(skb, &oldsp->pd_lobby);
9433 __skb_queue_tail(queue, skb);
9434 sctp_skb_set_owner_r_frag(skb, newsk);
9435 }
9436 }
9437
9438 /* Clear up any skbs waiting for the partial
9439 * delivery to finish.
9440 */
9441 if (assoc->ulpq.pd_mode)
9442 sctp_clear_pd(oldsk, NULL);
9443
9444 }
9445
9446 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9447
9448 /* Set the type of socket to indicate that it is peeled off from the
9449 * original UDP-style socket or created with the accept() call on a
9450 * TCP-style socket..
9451 */
9452 newsp->type = type;
9453
9454 /* Mark the new socket "in-use" by the user so that any packets
9455 * that may arrive on the association after we've moved it are
9456 * queued to the backlog. This prevents a potential race between
9457 * backlog processing on the old socket and new-packet processing
9458 * on the new socket.
9459 *
9460 * The caller has just allocated newsk so we can guarantee that other
9461 * paths won't try to lock it and then oldsk.
9462 */
9463 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9464 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9465 sctp_assoc_migrate(assoc, newsk);
9466 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9467
9468 /* If the association on the newsk is already closed before accept()
9469 * is called, set RCV_SHUTDOWN flag.
9470 */
9471 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9472 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9473 newsk->sk_shutdown |= RCV_SHUTDOWN;
9474 } else {
9475 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9476 }
9477
9478 release_sock(newsk);
9479
9480 return 0;
9481}
9482
9483
9484/* This proto struct describes the ULP interface for SCTP. */
9485struct proto sctp_prot = {
9486 .name = "SCTP",
9487 .owner = THIS_MODULE,
9488 .close = sctp_close,
9489 .disconnect = sctp_disconnect,
9490 .accept = sctp_accept,
9491 .ioctl = sctp_ioctl,
9492 .init = sctp_init_sock,
9493 .destroy = sctp_destroy_sock,
9494 .shutdown = sctp_shutdown,
9495 .setsockopt = sctp_setsockopt,
9496 .getsockopt = sctp_getsockopt,
9497 .sendmsg = sctp_sendmsg,
9498 .recvmsg = sctp_recvmsg,
9499 .bind = sctp_bind,
9500 .backlog_rcv = sctp_backlog_rcv,
9501 .hash = sctp_hash,
9502 .unhash = sctp_unhash,
9503 .no_autobind = true,
9504 .obj_size = sizeof(struct sctp_sock),
9505 .useroffset = offsetof(struct sctp_sock, subscribe),
9506 .usersize = offsetof(struct sctp_sock, initmsg) -
9507 offsetof(struct sctp_sock, subscribe) +
9508 sizeof_field(struct sctp_sock, initmsg),
9509 .sysctl_mem = sysctl_sctp_mem,
9510 .sysctl_rmem = sysctl_sctp_rmem,
9511 .sysctl_wmem = sysctl_sctp_wmem,
9512 .memory_pressure = &sctp_memory_pressure,
9513 .enter_memory_pressure = sctp_enter_memory_pressure,
9514 .memory_allocated = &sctp_memory_allocated,
9515 .sockets_allocated = &sctp_sockets_allocated,
9516};
9517
9518#if IS_ENABLED(CONFIG_IPV6)
9519
9520#include <net/transp_v6.h>
9521static void sctp_v6_destroy_sock(struct sock *sk)
9522{
9523 sctp_destroy_sock(sk);
9524 inet6_destroy_sock(sk);
9525}
9526
9527struct proto sctpv6_prot = {
9528 .name = "SCTPv6",
9529 .owner = THIS_MODULE,
9530 .close = sctp_close,
9531 .disconnect = sctp_disconnect,
9532 .accept = sctp_accept,
9533 .ioctl = sctp_ioctl,
9534 .init = sctp_init_sock,
9535 .destroy = sctp_v6_destroy_sock,
9536 .shutdown = sctp_shutdown,
9537 .setsockopt = sctp_setsockopt,
9538 .getsockopt = sctp_getsockopt,
9539 .sendmsg = sctp_sendmsg,
9540 .recvmsg = sctp_recvmsg,
9541 .bind = sctp_bind,
9542 .backlog_rcv = sctp_backlog_rcv,
9543 .hash = sctp_hash,
9544 .unhash = sctp_unhash,
9545 .no_autobind = true,
9546 .obj_size = sizeof(struct sctp6_sock),
9547 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9548 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9549 offsetof(struct sctp6_sock, sctp.subscribe) +
9550 sizeof_field(struct sctp6_sock, sctp.initmsg),
9551 .sysctl_mem = sysctl_sctp_mem,
9552 .sysctl_rmem = sysctl_sctp_rmem,
9553 .sysctl_wmem = sysctl_sctp_wmem,
9554 .memory_pressure = &sctp_memory_pressure,
9555 .enter_memory_pressure = sctp_enter_memory_pressure,
9556 .memory_allocated = &sctp_memory_allocated,
9557 .sockets_allocated = &sctp_sockets_allocated,
9558};
9559#endif /* IS_ENABLED(CONFIG_IPV6) */