Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
 
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
 
 
 
 
 
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
 
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46
  47static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  48			      struct sw_flow_key *key,
  49			      const struct nlattr *attr, int len);
  50
  51struct deferred_action {
  52	struct sk_buff *skb;
  53	const struct nlattr *actions;
 
  54
  55	/* Store pkt_key clone when creating deferred action. */
  56	struct sw_flow_key pkt_key;
  57};
  58
  59#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  60struct ovs_frag_data {
  61	unsigned long dst;
  62	struct vport *vport;
  63	struct ovs_skb_cb cb;
  64	__be16 inner_protocol;
  65	u16 network_offset;	/* valid only for MPLS */
  66	u16 vlan_tci;
  67	__be16 vlan_proto;
  68	unsigned int l2_len;
  69	u8 mac_proto;
  70	u8 l2_data[MAX_L2_LEN];
  71};
  72
  73static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  74
  75#define DEFERRED_ACTION_FIFO_SIZE 10
  76#define OVS_RECURSION_LIMIT 5
  77#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  78struct action_fifo {
  79	int head;
  80	int tail;
  81	/* Deferred action fifo queue storage. */
  82	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  83};
  84
  85struct recirc_keys {
  86	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  87};
  88
  89static struct action_fifo __percpu *action_fifos;
  90static struct recirc_keys __percpu *recirc_keys;
  91static DEFINE_PER_CPU(int, exec_actions_level);
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93static void action_fifo_init(struct action_fifo *fifo)
  94{
  95	fifo->head = 0;
  96	fifo->tail = 0;
  97}
  98
  99static bool action_fifo_is_empty(const struct action_fifo *fifo)
 100{
 101	return (fifo->head == fifo->tail);
 102}
 103
 104static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 105{
 106	if (action_fifo_is_empty(fifo))
 107		return NULL;
 108
 109	return &fifo->fifo[fifo->tail++];
 110}
 111
 112static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 113{
 114	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 115		return NULL;
 116
 117	return &fifo->fifo[fifo->head++];
 118}
 119
 120/* Return true if fifo is not full */
 121static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 122						    const struct sw_flow_key *key,
 123						    const struct nlattr *attr)
 
 124{
 125	struct action_fifo *fifo;
 126	struct deferred_action *da;
 127
 128	fifo = this_cpu_ptr(action_fifos);
 129	da = action_fifo_put(fifo);
 130	if (da) {
 131		da->skb = skb;
 132		da->actions = attr;
 
 133		da->pkt_key = *key;
 134	}
 135
 136	return da;
 137}
 138
 139static void invalidate_flow_key(struct sw_flow_key *key)
 140{
 141	key->mac_proto |= SW_FLOW_KEY_INVALID;
 142}
 143
 144static bool is_flow_key_valid(const struct sw_flow_key *key)
 145{
 146	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 147}
 148
 149static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
 150			     __be16 ethertype)
 151{
 152	if (skb->ip_summed == CHECKSUM_COMPLETE) {
 153		__be16 diff[] = { ~(hdr->h_proto), ethertype };
 154
 155		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 156					~skb->csum);
 157	}
 158
 159	hdr->h_proto = ethertype;
 160}
 
 161
 162static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 163		     const struct ovs_action_push_mpls *mpls)
 164{
 165	struct mpls_shim_hdr *new_mpls_lse;
 166
 167	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 168	if (skb->encapsulation)
 169		return -ENOTSUPP;
 170
 171	if (skb_cow_head(skb, MPLS_HLEN) < 0)
 172		return -ENOMEM;
 173
 174	if (!skb->inner_protocol) {
 175		skb_set_inner_network_header(skb, skb->mac_len);
 176		skb_set_inner_protocol(skb, skb->protocol);
 177	}
 178
 179	skb_push(skb, MPLS_HLEN);
 180	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 181		skb->mac_len);
 182	skb_reset_mac_header(skb);
 183	skb_set_network_header(skb, skb->mac_len);
 184
 185	new_mpls_lse = mpls_hdr(skb);
 186	new_mpls_lse->label_stack_entry = mpls->mpls_lse;
 187
 188	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
 
 
 189
 190	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
 191		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
 192	skb->protocol = mpls->mpls_ethertype;
 193
 194	invalidate_flow_key(key);
 195	return 0;
 196}
 197
 198static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 199		    const __be16 ethertype)
 200{
 201	int err;
 202
 203	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 204	if (unlikely(err))
 
 205		return err;
 206
 207	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
 208
 209	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 210		skb->mac_len);
 211
 212	__skb_pull(skb, MPLS_HLEN);
 213	skb_reset_mac_header(skb);
 214	skb_set_network_header(skb, skb->mac_len);
 215
 216	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
 217		struct ethhdr *hdr;
 218
 219		/* mpls_hdr() is used to locate the ethertype field correctly in the
 220		 * presence of VLAN tags.
 221		 */
 222		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
 223		update_ethertype(skb, hdr, ethertype);
 224	}
 225	if (eth_p_mpls(skb->protocol))
 226		skb->protocol = ethertype;
 227
 228	invalidate_flow_key(key);
 229	return 0;
 230}
 231
 232static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 233		    const __be32 *mpls_lse, const __be32 *mask)
 234{
 235	struct mpls_shim_hdr *stack;
 236	__be32 lse;
 237	int err;
 238
 239	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 240	if (unlikely(err))
 241		return err;
 242
 243	stack = mpls_hdr(skb);
 244	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 245	if (skb->ip_summed == CHECKSUM_COMPLETE) {
 246		__be32 diff[] = { ~(stack->label_stack_entry), lse };
 247
 248		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 249					  ~skb->csum);
 250	}
 251
 252	stack->label_stack_entry = lse;
 253	flow_key->mpls.top_lse = lse;
 254	return 0;
 255}
 256
 257static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 258{
 259	int err;
 260
 261	err = skb_vlan_pop(skb);
 262	if (skb_vlan_tag_present(skb)) {
 263		invalidate_flow_key(key);
 264	} else {
 265		key->eth.vlan.tci = 0;
 266		key->eth.vlan.tpid = 0;
 267	}
 268	return err;
 269}
 270
 271static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 272		     const struct ovs_action_push_vlan *vlan)
 273{
 
 
 274	if (skb_vlan_tag_present(skb)) {
 275		invalidate_flow_key(key);
 276	} else {
 277		key->eth.vlan.tci = vlan->vlan_tci;
 278		key->eth.vlan.tpid = vlan->vlan_tpid;
 279	}
 280	return skb_vlan_push(skb, vlan->vlan_tpid,
 281			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 
 
 282}
 283
 284/* 'src' is already properly masked. */
 285static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 286{
 287	u16 *dst = (u16 *)dst_;
 288	const u16 *src = (const u16 *)src_;
 289	const u16 *mask = (const u16 *)mask_;
 290
 291	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 292	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 293	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 294}
 295
 296static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 297			const struct ovs_key_ethernet *key,
 298			const struct ovs_key_ethernet *mask)
 299{
 300	int err;
 301
 302	err = skb_ensure_writable(skb, ETH_HLEN);
 303	if (unlikely(err))
 304		return err;
 305
 306	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 307
 308	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 309			       mask->eth_src);
 310	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 311			       mask->eth_dst);
 312
 313	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 314
 315	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 316	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 317	return 0;
 318}
 319
 320/* pop_eth does not support VLAN packets as this action is never called
 321 * for them.
 322 */
 323static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 324{
 325	skb_pull_rcsum(skb, ETH_HLEN);
 326	skb_reset_mac_header(skb);
 327	skb_reset_mac_len(skb);
 
 
 328
 329	/* safe right before invalidate_flow_key */
 330	key->mac_proto = MAC_PROTO_NONE;
 331	invalidate_flow_key(key);
 332	return 0;
 333}
 334
 335static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 336		    const struct ovs_action_push_eth *ethh)
 337{
 338	struct ethhdr *hdr;
 339
 340	/* Add the new Ethernet header */
 341	if (skb_cow_head(skb, ETH_HLEN) < 0)
 342		return -ENOMEM;
 
 343
 344	skb_push(skb, ETH_HLEN);
 345	skb_reset_mac_header(skb);
 346	skb_reset_mac_len(skb);
 
 
 347
 348	hdr = eth_hdr(skb);
 349	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 350	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 351	hdr->h_proto = skb->protocol;
 
 
 
 
 
 
 
 352
 353	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 
 
 354
 355	/* safe right before invalidate_flow_key */
 356	key->mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	invalidate_flow_key(key);
 358	return 0;
 359}
 360
 361static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 362				  __be32 addr, __be32 new_addr)
 363{
 364	int transport_len = skb->len - skb_transport_offset(skb);
 365
 366	if (nh->frag_off & htons(IP_OFFSET))
 367		return;
 368
 369	if (nh->protocol == IPPROTO_TCP) {
 370		if (likely(transport_len >= sizeof(struct tcphdr)))
 371			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 372						 addr, new_addr, true);
 373	} else if (nh->protocol == IPPROTO_UDP) {
 374		if (likely(transport_len >= sizeof(struct udphdr))) {
 375			struct udphdr *uh = udp_hdr(skb);
 376
 377			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 378				inet_proto_csum_replace4(&uh->check, skb,
 379							 addr, new_addr, true);
 380				if (!uh->check)
 381					uh->check = CSUM_MANGLED_0;
 382			}
 383		}
 384	}
 385}
 386
 387static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 388			__be32 *addr, __be32 new_addr)
 389{
 390	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 391	csum_replace4(&nh->check, *addr, new_addr);
 392	skb_clear_hash(skb);
 
 393	*addr = new_addr;
 394}
 395
 396static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 397				 __be32 addr[4], const __be32 new_addr[4])
 398{
 399	int transport_len = skb->len - skb_transport_offset(skb);
 400
 401	if (l4_proto == NEXTHDR_TCP) {
 402		if (likely(transport_len >= sizeof(struct tcphdr)))
 403			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 404						  addr, new_addr, true);
 405	} else if (l4_proto == NEXTHDR_UDP) {
 406		if (likely(transport_len >= sizeof(struct udphdr))) {
 407			struct udphdr *uh = udp_hdr(skb);
 408
 409			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 410				inet_proto_csum_replace16(&uh->check, skb,
 411							  addr, new_addr, true);
 412				if (!uh->check)
 413					uh->check = CSUM_MANGLED_0;
 414			}
 415		}
 416	} else if (l4_proto == NEXTHDR_ICMP) {
 417		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 418			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 419						  skb, addr, new_addr, true);
 420	}
 421}
 422
 423static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 424			   const __be32 mask[4], __be32 masked[4])
 425{
 426	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 427	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 428	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 429	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 430}
 431
 432static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 433			  __be32 addr[4], const __be32 new_addr[4],
 434			  bool recalculate_csum)
 435{
 436	if (recalculate_csum)
 437		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 438
 439	skb_clear_hash(skb);
 
 440	memcpy(addr, new_addr, sizeof(__be32[4]));
 441}
 442
 443static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 444{
 
 
 
 
 
 445	/* Bits 21-24 are always unmasked, so this retains their values. */
 446	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 447	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 448	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 452		       u8 mask)
 453{
 454	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 455
 456	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 457	nh->ttl = new_ttl;
 458}
 459
 460static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 461		    const struct ovs_key_ipv4 *key,
 462		    const struct ovs_key_ipv4 *mask)
 463{
 464	struct iphdr *nh;
 465	__be32 new_addr;
 466	int err;
 467
 468	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 469				  sizeof(struct iphdr));
 470	if (unlikely(err))
 471		return err;
 472
 473	nh = ip_hdr(skb);
 474
 475	/* Setting an IP addresses is typically only a side effect of
 476	 * matching on them in the current userspace implementation, so it
 477	 * makes sense to check if the value actually changed.
 478	 */
 479	if (mask->ipv4_src) {
 480		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 481
 482		if (unlikely(new_addr != nh->saddr)) {
 483			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 484			flow_key->ipv4.addr.src = new_addr;
 485		}
 486	}
 487	if (mask->ipv4_dst) {
 488		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 489
 490		if (unlikely(new_addr != nh->daddr)) {
 491			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 492			flow_key->ipv4.addr.dst = new_addr;
 493		}
 494	}
 495	if (mask->ipv4_tos) {
 496		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 497		flow_key->ip.tos = nh->tos;
 498	}
 499	if (mask->ipv4_ttl) {
 500		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 501		flow_key->ip.ttl = nh->ttl;
 502	}
 503
 504	return 0;
 505}
 506
 507static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 508{
 509	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 510}
 511
 512static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 513		    const struct ovs_key_ipv6 *key,
 514		    const struct ovs_key_ipv6 *mask)
 515{
 516	struct ipv6hdr *nh;
 517	int err;
 518
 519	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 520				  sizeof(struct ipv6hdr));
 521	if (unlikely(err))
 522		return err;
 523
 524	nh = ipv6_hdr(skb);
 525
 526	/* Setting an IP addresses is typically only a side effect of
 527	 * matching on them in the current userspace implementation, so it
 528	 * makes sense to check if the value actually changed.
 529	 */
 530	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 531		__be32 *saddr = (__be32 *)&nh->saddr;
 532		__be32 masked[4];
 533
 534		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 535
 536		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 537			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 538				      true);
 539			memcpy(&flow_key->ipv6.addr.src, masked,
 540			       sizeof(flow_key->ipv6.addr.src));
 541		}
 542	}
 543	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 544		unsigned int offset = 0;
 545		int flags = IP6_FH_F_SKIP_RH;
 546		bool recalc_csum = true;
 547		__be32 *daddr = (__be32 *)&nh->daddr;
 548		__be32 masked[4];
 549
 550		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 551
 552		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 553			if (ipv6_ext_hdr(nh->nexthdr))
 554				recalc_csum = (ipv6_find_hdr(skb, &offset,
 555							     NEXTHDR_ROUTING,
 556							     NULL, &flags)
 557					       != NEXTHDR_ROUTING);
 558
 559			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 560				      recalc_csum);
 561			memcpy(&flow_key->ipv6.addr.dst, masked,
 562			       sizeof(flow_key->ipv6.addr.dst));
 563		}
 564	}
 565	if (mask->ipv6_tclass) {
 566		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 567		flow_key->ip.tos = ipv6_get_dsfield(nh);
 568	}
 569	if (mask->ipv6_label) {
 570		set_ipv6_fl(nh, ntohl(key->ipv6_label),
 571			    ntohl(mask->ipv6_label));
 572		flow_key->ipv6.label =
 573		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 574	}
 575	if (mask->ipv6_hlimit) {
 576		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 577			       mask->ipv6_hlimit);
 578		flow_key->ip.ttl = nh->hop_limit;
 579	}
 580	return 0;
 581}
 582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583/* Must follow skb_ensure_writable() since that can move the skb data. */
 584static void set_tp_port(struct sk_buff *skb, __be16 *port,
 585			__be16 new_port, __sum16 *check)
 586{
 
 587	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 588	*port = new_port;
 589}
 590
 591static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 592		   const struct ovs_key_udp *key,
 593		   const struct ovs_key_udp *mask)
 594{
 595	struct udphdr *uh;
 596	__be16 src, dst;
 597	int err;
 598
 599	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 600				  sizeof(struct udphdr));
 601	if (unlikely(err))
 602		return err;
 603
 604	uh = udp_hdr(skb);
 605	/* Either of the masks is non-zero, so do not bother checking them. */
 606	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 607	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 608
 609	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 610		if (likely(src != uh->source)) {
 611			set_tp_port(skb, &uh->source, src, &uh->check);
 612			flow_key->tp.src = src;
 613		}
 614		if (likely(dst != uh->dest)) {
 615			set_tp_port(skb, &uh->dest, dst, &uh->check);
 616			flow_key->tp.dst = dst;
 617		}
 618
 619		if (unlikely(!uh->check))
 620			uh->check = CSUM_MANGLED_0;
 621	} else {
 622		uh->source = src;
 623		uh->dest = dst;
 624		flow_key->tp.src = src;
 625		flow_key->tp.dst = dst;
 
 626	}
 627
 628	skb_clear_hash(skb);
 629
 630	return 0;
 631}
 632
 633static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 634		   const struct ovs_key_tcp *key,
 635		   const struct ovs_key_tcp *mask)
 636{
 637	struct tcphdr *th;
 638	__be16 src, dst;
 639	int err;
 640
 641	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 642				  sizeof(struct tcphdr));
 643	if (unlikely(err))
 644		return err;
 645
 646	th = tcp_hdr(skb);
 647	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 648	if (likely(src != th->source)) {
 649		set_tp_port(skb, &th->source, src, &th->check);
 650		flow_key->tp.src = src;
 651	}
 652	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 653	if (likely(dst != th->dest)) {
 654		set_tp_port(skb, &th->dest, dst, &th->check);
 655		flow_key->tp.dst = dst;
 656	}
 657	skb_clear_hash(skb);
 658
 659	return 0;
 660}
 661
 662static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 663		    const struct ovs_key_sctp *key,
 664		    const struct ovs_key_sctp *mask)
 665{
 666	unsigned int sctphoff = skb_transport_offset(skb);
 667	struct sctphdr *sh;
 668	__le32 old_correct_csum, new_csum, old_csum;
 669	int err;
 670
 671	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 672	if (unlikely(err))
 673		return err;
 674
 675	sh = sctp_hdr(skb);
 676	old_csum = sh->checksum;
 677	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 678
 679	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 680	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 681
 682	new_csum = sctp_compute_cksum(skb, sctphoff);
 683
 684	/* Carry any checksum errors through. */
 685	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 686
 687	skb_clear_hash(skb);
 
 
 688	flow_key->tp.src = sh->source;
 689	flow_key->tp.dst = sh->dest;
 690
 691	return 0;
 692}
 693
 694static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 
 695{
 696	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 697	struct vport *vport = data->vport;
 698
 699	if (skb_cow_head(skb, data->l2_len) < 0) {
 700		kfree_skb(skb);
 701		return -ENOMEM;
 702	}
 703
 704	__skb_dst_copy(skb, data->dst);
 705	*OVS_CB(skb) = data->cb;
 706	skb->inner_protocol = data->inner_protocol;
 707	skb->vlan_tci = data->vlan_tci;
 708	skb->vlan_proto = data->vlan_proto;
 
 
 709
 710	/* Reconstruct the MAC header.  */
 711	skb_push(skb, data->l2_len);
 712	memcpy(skb->data, &data->l2_data, data->l2_len);
 713	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 714	skb_reset_mac_header(skb);
 715
 716	if (eth_p_mpls(skb->protocol)) {
 717		skb->inner_network_header = skb->network_header;
 718		skb_set_network_header(skb, data->network_offset);
 719		skb_reset_mac_len(skb);
 720	}
 721
 722	ovs_vport_send(vport, skb, data->mac_proto);
 723	return 0;
 724}
 725
 726static unsigned int
 727ovs_dst_get_mtu(const struct dst_entry *dst)
 728{
 729	return dst->dev->mtu;
 730}
 731
 732static struct dst_ops ovs_dst_ops = {
 733	.family = AF_UNSPEC,
 734	.mtu = ovs_dst_get_mtu,
 735};
 736
 737/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 738 * ovs_vport_output(), which is called once per fragmented packet.
 739 */
 740static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 741			 u16 orig_network_offset, u8 mac_proto)
 742{
 743	unsigned int hlen = skb_network_offset(skb);
 744	struct ovs_frag_data *data;
 745
 746	data = this_cpu_ptr(&ovs_frag_data_storage);
 747	data->dst = skb->_skb_refdst;
 748	data->vport = vport;
 749	data->cb = *OVS_CB(skb);
 750	data->inner_protocol = skb->inner_protocol;
 751	data->network_offset = orig_network_offset;
 752	data->vlan_tci = skb->vlan_tci;
 
 
 
 753	data->vlan_proto = skb->vlan_proto;
 754	data->mac_proto = mac_proto;
 755	data->l2_len = hlen;
 756	memcpy(&data->l2_data, skb->data, hlen);
 757
 758	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 759	skb_pull(skb, hlen);
 760}
 761
 762static void ovs_fragment(struct net *net, struct vport *vport,
 763			 struct sk_buff *skb, u16 mru,
 764			 struct sw_flow_key *key)
 765{
 
 766	u16 orig_network_offset = 0;
 767
 768	if (eth_p_mpls(skb->protocol)) {
 769		orig_network_offset = skb_network_offset(skb);
 770		skb->network_header = skb->inner_network_header;
 771	}
 772
 773	if (skb_network_offset(skb) > MAX_L2_LEN) {
 774		OVS_NLERR(1, "L2 header too long to fragment");
 
 775		goto err;
 776	}
 777
 778	if (key->eth.type == htons(ETH_P_IP)) {
 779		struct dst_entry ovs_dst;
 780		unsigned long orig_dst;
 781
 782		prepare_frag(vport, skb, orig_network_offset,
 783			     ovs_key_mac_proto(key));
 784		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 785			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 786		ovs_dst.dev = vport->dev;
 787
 788		orig_dst = skb->_skb_refdst;
 789		skb_dst_set_noref(skb, &ovs_dst);
 790		IPCB(skb)->frag_max_size = mru;
 791
 792		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 793		refdst_drop(orig_dst);
 794	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 795		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 796		unsigned long orig_dst;
 797		struct rt6_info ovs_rt;
 798
 799		if (!v6ops) {
 800			goto err;
 801		}
 802
 803		prepare_frag(vport, skb, orig_network_offset,
 804			     ovs_key_mac_proto(key));
 805		memset(&ovs_rt, 0, sizeof(ovs_rt));
 806		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 807			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 808		ovs_rt.dst.dev = vport->dev;
 809
 810		orig_dst = skb->_skb_refdst;
 811		skb_dst_set_noref(skb, &ovs_rt.dst);
 812		IP6CB(skb)->frag_max_size = mru;
 813
 814		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 815		refdst_drop(orig_dst);
 816	} else {
 817		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 818			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 819			  vport->dev->mtu);
 
 820		goto err;
 821	}
 822
 823	return;
 824err:
 825	kfree_skb(skb);
 826}
 827
 828static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 829		      struct sw_flow_key *key)
 830{
 831	struct vport *vport = ovs_vport_rcu(dp, out_port);
 832
 833	if (likely(vport)) {
 
 
 834		u16 mru = OVS_CB(skb)->mru;
 835		u32 cutlen = OVS_CB(skb)->cutlen;
 836
 837		if (unlikely(cutlen > 0)) {
 838			if (skb->len - cutlen > ovs_mac_header_len(key))
 839				pskb_trim(skb, skb->len - cutlen);
 840			else
 841				pskb_trim(skb, ovs_mac_header_len(key));
 842		}
 843
 
 
 
 
 
 
 844		if (likely(!mru ||
 845		           (skb->len <= mru + vport->dev->hard_header_len))) {
 846			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 847		} else if (mru <= vport->dev->mtu) {
 848			struct net *net = read_pnet(&dp->net);
 849
 850			ovs_fragment(net, vport, skb, mru, key);
 851		} else {
 852			kfree_skb(skb);
 853		}
 854	} else {
 855		kfree_skb(skb);
 856	}
 857}
 858
 859static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 860			    struct sw_flow_key *key, const struct nlattr *attr,
 861			    const struct nlattr *actions, int actions_len,
 862			    uint32_t cutlen)
 863{
 864	struct dp_upcall_info upcall;
 865	const struct nlattr *a;
 866	int rem;
 867
 868	memset(&upcall, 0, sizeof(upcall));
 869	upcall.cmd = OVS_PACKET_CMD_ACTION;
 870	upcall.mru = OVS_CB(skb)->mru;
 871
 872	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 873		 a = nla_next(a, &rem)) {
 874		switch (nla_type(a)) {
 875		case OVS_USERSPACE_ATTR_USERDATA:
 876			upcall.userdata = a;
 877			break;
 878
 879		case OVS_USERSPACE_ATTR_PID:
 880			upcall.portid = nla_get_u32(a);
 
 
 
 
 
 
 881			break;
 882
 883		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 884			/* Get out tunnel info. */
 885			struct vport *vport;
 886
 887			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 888			if (vport) {
 889				int err;
 890
 891				err = dev_fill_metadata_dst(vport->dev, skb);
 892				if (!err)
 893					upcall.egress_tun_info = skb_tunnel_info(skb);
 894			}
 895
 896			break;
 897		}
 898
 899		case OVS_USERSPACE_ATTR_ACTIONS: {
 900			/* Include actions. */
 901			upcall.actions = actions;
 902			upcall.actions_len = actions_len;
 903			break;
 904		}
 905
 906		} /* End of switch. */
 907	}
 908
 909	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 910}
 911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912static int sample(struct datapath *dp, struct sk_buff *skb,
 913		  struct sw_flow_key *key, const struct nlattr *attr,
 914		  const struct nlattr *actions, int actions_len)
 915{
 916	const struct nlattr *acts_list = NULL;
 917	const struct nlattr *a;
 918	int rem;
 919	u32 cutlen = 0;
 920
 921	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 922		 a = nla_next(a, &rem)) {
 923		u32 probability;
 924
 925		switch (nla_type(a)) {
 926		case OVS_SAMPLE_ATTR_PROBABILITY:
 927			probability = nla_get_u32(a);
 928			if (!probability || prandom_u32() > probability)
 929				return 0;
 930			break;
 931
 932		case OVS_SAMPLE_ATTR_ACTIONS:
 933			acts_list = a;
 934			break;
 935		}
 936	}
 937
 938	rem = nla_len(acts_list);
 939	a = nla_data(acts_list);
 940
 941	/* Actions list is empty, do nothing */
 942	if (unlikely(!rem))
 
 
 
 
 
 
 
 
 943		return 0;
 
 944
 945	/* The only known usage of sample action is having a single user-space
 946	 * action, or having a truncate action followed by a single user-space
 947	 * action. Treat this usage as a special case.
 948	 * The output_userspace() should clone the skb to be sent to the
 949	 * user space. This skb will be consumed by its caller.
 950	 */
 951	if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
 952		struct ovs_action_trunc *trunc = nla_data(a);
 953
 954		if (skb->len > trunc->max_len)
 955			cutlen = skb->len - trunc->max_len;
 956
 957		a = nla_next(a, &rem);
 958	}
 
 959
 960	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
 961		   nla_is_last(a, rem)))
 962		return output_userspace(dp, skb, key, a, actions,
 963					actions_len, cutlen);
 964
 965	skb = skb_clone(skb, GFP_ATOMIC);
 966	if (!skb)
 967		/* Skip the sample action when out of memory. */
 968		return 0;
 969
 970	if (!add_deferred_actions(skb, key, a)) {
 971		if (net_ratelimit())
 972			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
 973				ovs_dp_name(dp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975		kfree_skb(skb);
 976	}
 977	return 0;
 978}
 979
 980static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 981			 const struct nlattr *attr)
 982{
 983	struct ovs_action_hash *hash_act = nla_data(attr);
 984	u32 hash = 0;
 985
 986	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
 987	hash = skb_get_hash(skb);
 
 
 
 
 
 
 
 
 988	hash = jhash_1word(hash, hash_act->hash_basis);
 989	if (!hash)
 990		hash = 0x1;
 991
 992	key->ovs_flow_hash = hash;
 993}
 994
 995static int execute_set_action(struct sk_buff *skb,
 996			      struct sw_flow_key *flow_key,
 997			      const struct nlattr *a)
 998{
 999	/* Only tunnel set execution is supported without a mask. */
1000	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1001		struct ovs_tunnel_info *tun = nla_data(a);
1002
1003		skb_dst_drop(skb);
1004		dst_hold((struct dst_entry *)tun->tun_dst);
1005		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1006		return 0;
1007	}
1008
1009	return -EINVAL;
1010}
1011
1012/* Mask is at the midpoint of the data. */
1013#define get_mask(a, type) ((const type)nla_data(a) + 1)
1014
1015static int execute_masked_set_action(struct sk_buff *skb,
1016				     struct sw_flow_key *flow_key,
1017				     const struct nlattr *a)
1018{
1019	int err = 0;
1020
1021	switch (nla_type(a)) {
1022	case OVS_KEY_ATTR_PRIORITY:
1023		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1024			       *get_mask(a, u32 *));
1025		flow_key->phy.priority = skb->priority;
1026		break;
1027
1028	case OVS_KEY_ATTR_SKB_MARK:
1029		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1030		flow_key->phy.skb_mark = skb->mark;
1031		break;
1032
1033	case OVS_KEY_ATTR_TUNNEL_INFO:
1034		/* Masked data not supported for tunnel. */
1035		err = -EINVAL;
1036		break;
1037
1038	case OVS_KEY_ATTR_ETHERNET:
1039		err = set_eth_addr(skb, flow_key, nla_data(a),
1040				   get_mask(a, struct ovs_key_ethernet *));
1041		break;
1042
 
 
 
 
1043	case OVS_KEY_ATTR_IPV4:
1044		err = set_ipv4(skb, flow_key, nla_data(a),
1045			       get_mask(a, struct ovs_key_ipv4 *));
1046		break;
1047
1048	case OVS_KEY_ATTR_IPV6:
1049		err = set_ipv6(skb, flow_key, nla_data(a),
1050			       get_mask(a, struct ovs_key_ipv6 *));
1051		break;
1052
1053	case OVS_KEY_ATTR_TCP:
1054		err = set_tcp(skb, flow_key, nla_data(a),
1055			      get_mask(a, struct ovs_key_tcp *));
1056		break;
1057
1058	case OVS_KEY_ATTR_UDP:
1059		err = set_udp(skb, flow_key, nla_data(a),
1060			      get_mask(a, struct ovs_key_udp *));
1061		break;
1062
1063	case OVS_KEY_ATTR_SCTP:
1064		err = set_sctp(skb, flow_key, nla_data(a),
1065			       get_mask(a, struct ovs_key_sctp *));
1066		break;
1067
1068	case OVS_KEY_ATTR_MPLS:
1069		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1070								    __be32 *));
1071		break;
1072
1073	case OVS_KEY_ATTR_CT_STATE:
1074	case OVS_KEY_ATTR_CT_ZONE:
1075	case OVS_KEY_ATTR_CT_MARK:
1076	case OVS_KEY_ATTR_CT_LABELS:
 
 
1077		err = -EINVAL;
1078		break;
1079	}
1080
1081	return err;
1082}
1083
1084static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1085			  struct sw_flow_key *key,
1086			  const struct nlattr *a, int rem)
1087{
1088	struct deferred_action *da;
1089	int level;
1090
1091	if (!is_flow_key_valid(key)) {
1092		int err;
1093
1094		err = ovs_flow_key_update(skb, key);
1095		if (err)
1096			return err;
1097	}
1098	BUG_ON(!is_flow_key_valid(key));
1099
1100	if (!nla_is_last(a, rem)) {
1101		/* Recirc action is the not the last action
1102		 * of the action list, need to clone the skb.
1103		 */
1104		skb = skb_clone(skb, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105
1106		/* Skip the recirc action when out of memory, but
1107		 * continue on with the rest of the action list.
 
 
1108		 */
1109		if (!skb)
1110			return 0;
 
 
 
 
 
 
 
1111	}
1112
1113	level = this_cpu_read(exec_actions_level);
1114	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1115		struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1116		struct sw_flow_key *recirc_key = &rks->key[level - 1];
1117
1118		*recirc_key = *key;
1119		recirc_key->recirc_id = nla_get_u32(a);
1120		ovs_dp_process_packet(skb, recirc_key);
1121
1122		return 0;
1123	}
1124
1125	da = add_deferred_actions(skb, key, NULL);
1126	if (da) {
1127		da->pkt_key.recirc_id = nla_get_u32(a);
1128	} else {
1129		kfree_skb(skb);
1130
1131		if (net_ratelimit())
1132			pr_warn("%s: deferred action limit reached, drop recirc action\n",
1133				ovs_dp_name(dp));
1134	}
1135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136	return 0;
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139/* Execute a list of actions against 'skb'. */
1140static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1141			      struct sw_flow_key *key,
1142			      const struct nlattr *attr, int len)
1143{
1144	/* Every output action needs a separate clone of 'skb', but the common
1145	 * case is just a single output action, so that doing a clone and
1146	 * then freeing the original skbuff is wasteful.  So the following code
1147	 * is slightly obscure just to avoid that.
1148	 */
1149	int prev_port = -1;
1150	const struct nlattr *a;
1151	int rem;
1152
1153	for (a = attr, rem = len; rem > 0;
1154	     a = nla_next(a, &rem)) {
1155		int err = 0;
1156
1157		if (unlikely(prev_port != -1)) {
1158			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1159
1160			if (out_skb)
1161				do_output(dp, out_skb, prev_port, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162
 
 
 
1163			OVS_CB(skb)->cutlen = 0;
1164			prev_port = -1;
1165		}
1166
1167		switch (nla_type(a)) {
1168		case OVS_ACTION_ATTR_OUTPUT:
1169			prev_port = nla_get_u32(a);
1170			break;
 
1171
1172		case OVS_ACTION_ATTR_TRUNC: {
1173			struct ovs_action_trunc *trunc = nla_data(a);
1174
1175			if (skb->len > trunc->max_len)
1176				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1177			break;
1178		}
1179
1180		case OVS_ACTION_ATTR_USERSPACE:
1181			output_userspace(dp, skb, key, a, attr,
1182						     len, OVS_CB(skb)->cutlen);
1183			OVS_CB(skb)->cutlen = 0;
 
 
 
 
1184			break;
1185
1186		case OVS_ACTION_ATTR_HASH:
1187			execute_hash(skb, key, a);
1188			break;
1189
1190		case OVS_ACTION_ATTR_PUSH_MPLS:
1191			err = push_mpls(skb, key, nla_data(a));
 
 
 
1192			break;
 
 
 
 
1193
 
 
 
 
 
 
 
1194		case OVS_ACTION_ATTR_POP_MPLS:
1195			err = pop_mpls(skb, key, nla_get_be16(a));
1196			break;
1197
1198		case OVS_ACTION_ATTR_PUSH_VLAN:
1199			err = push_vlan(skb, key, nla_data(a));
1200			break;
1201
1202		case OVS_ACTION_ATTR_POP_VLAN:
1203			err = pop_vlan(skb, key);
1204			break;
1205
1206		case OVS_ACTION_ATTR_RECIRC:
1207			err = execute_recirc(dp, skb, key, a, rem);
1208			if (nla_is_last(a, rem)) {
 
 
1209				/* If this is the last action, the skb has
1210				 * been consumed or freed.
1211				 * Return immediately.
1212				 */
1213				return err;
1214			}
1215			break;
 
1216
1217		case OVS_ACTION_ATTR_SET:
1218			err = execute_set_action(skb, key, nla_data(a));
1219			break;
1220
1221		case OVS_ACTION_ATTR_SET_MASKED:
1222		case OVS_ACTION_ATTR_SET_TO_MASKED:
1223			err = execute_masked_set_action(skb, key, nla_data(a));
1224			break;
1225
1226		case OVS_ACTION_ATTR_SAMPLE:
1227			err = sample(dp, skb, key, a, attr, len);
 
 
 
 
 
1228			break;
 
1229
1230		case OVS_ACTION_ATTR_CT:
1231			if (!is_flow_key_valid(key)) {
1232				err = ovs_flow_key_update(skb, key);
1233				if (err)
1234					return err;
1235			}
1236
1237			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1238					     nla_data(a));
1239
1240			/* Hide stolen IP fragments from user space. */
1241			if (err)
1242				return err == -EINPROGRESS ? 0 : err;
1243			break;
1244
 
 
 
 
1245		case OVS_ACTION_ATTR_PUSH_ETH:
1246			err = push_eth(skb, key, nla_data(a));
1247			break;
1248
1249		case OVS_ACTION_ATTR_POP_ETH:
1250			err = pop_eth(skb, key);
1251			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252		}
1253
1254		if (unlikely(err)) {
1255			kfree_skb(skb);
1256			return err;
1257		}
1258	}
1259
1260	if (prev_port != -1)
1261		do_output(dp, skb, prev_port, key);
1262	else
1263		consume_skb(skb);
1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265	return 0;
1266}
1267
1268static void process_deferred_actions(struct datapath *dp)
1269{
1270	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1271
1272	/* Do not touch the FIFO in case there is no deferred actions. */
1273	if (action_fifo_is_empty(fifo))
1274		return;
1275
1276	/* Finishing executing all deferred actions. */
1277	do {
1278		struct deferred_action *da = action_fifo_get(fifo);
1279		struct sk_buff *skb = da->skb;
1280		struct sw_flow_key *key = &da->pkt_key;
1281		const struct nlattr *actions = da->actions;
 
1282
1283		if (actions)
1284			do_execute_actions(dp, skb, key, actions,
1285					   nla_len(actions));
1286		else
1287			ovs_dp_process_packet(skb, key);
1288	} while (!action_fifo_is_empty(fifo));
1289
1290	/* Reset FIFO for the next packet.  */
1291	action_fifo_init(fifo);
1292}
1293
1294/* Execute a list of actions against 'skb'. */
1295int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1296			const struct sw_flow_actions *acts,
1297			struct sw_flow_key *key)
1298{
1299	int err, level;
1300
1301	level = __this_cpu_inc_return(exec_actions_level);
1302	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1303		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1304				     ovs_dp_name(dp));
1305		kfree_skb(skb);
1306		err = -ENETDOWN;
1307		goto out;
1308	}
1309
 
1310	err = do_execute_actions(dp, skb, key,
1311				 acts->actions, acts->actions_len);
1312
1313	if (level == 1)
1314		process_deferred_actions(dp);
1315
1316out:
1317	__this_cpu_dec(exec_actions_level);
1318	return err;
1319}
1320
1321int action_fifos_init(void)
1322{
1323	action_fifos = alloc_percpu(struct action_fifo);
1324	if (!action_fifos)
1325		return -ENOMEM;
1326
1327	recirc_keys = alloc_percpu(struct recirc_keys);
1328	if (!recirc_keys) {
1329		free_percpu(action_fifos);
1330		return -ENOMEM;
1331	}
1332
1333	return 0;
1334}
1335
1336void action_fifos_exit(void)
1337{
1338	free_percpu(action_fifos);
1339	free_percpu(recirc_keys);
1340}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
 
  12#include <linux/sctp.h>
  13#include <linux/tcp.h>
  14#include <linux/udp.h>
  15#include <linux/in6.h>
  16#include <linux/if_arp.h>
  17#include <linux/if_vlan.h>
  18
  19#include <net/dst.h>
  20#include <net/gso.h>
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27
  28#if IS_ENABLED(CONFIG_PSAMPLE)
  29#include <net/psample.h>
  30#endif
  31
  32#include <net/sctp/checksum.h>
  33
  34#include "datapath.h"
  35#include "drop.h"
  36#include "flow.h"
  37#include "conntrack.h"
  38#include "vport.h"
  39#include "flow_netlink.h"
  40#include "openvswitch_trace.h"
 
 
  41
  42struct deferred_action {
  43	struct sk_buff *skb;
  44	const struct nlattr *actions;
  45	int actions_len;
  46
  47	/* Store pkt_key clone when creating deferred action. */
  48	struct sw_flow_key pkt_key;
  49};
  50
  51#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  52struct ovs_frag_data {
  53	unsigned long dst;
  54	struct vport *vport;
  55	struct ovs_skb_cb cb;
  56	__be16 inner_protocol;
  57	u16 network_offset;	/* valid only for MPLS */
  58	u16 vlan_tci;
  59	__be16 vlan_proto;
  60	unsigned int l2_len;
  61	u8 mac_proto;
  62	u8 l2_data[MAX_L2_LEN];
  63};
  64
  65static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  66
  67#define DEFERRED_ACTION_FIFO_SIZE 10
  68#define OVS_RECURSION_LIMIT 5
  69#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  70struct action_fifo {
  71	int head;
  72	int tail;
  73	/* Deferred action fifo queue storage. */
  74	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  75};
  76
  77struct action_flow_keys {
  78	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  79};
  80
  81static struct action_fifo __percpu *action_fifos;
  82static struct action_flow_keys __percpu *flow_keys;
  83static DEFINE_PER_CPU(int, exec_actions_level);
  84
  85/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  86 * space. Return NULL if out of key spaces.
  87 */
  88static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  89{
  90	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  91	int level = this_cpu_read(exec_actions_level);
  92	struct sw_flow_key *key = NULL;
  93
  94	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  95		key = &keys->key[level - 1];
  96		*key = *key_;
  97	}
  98
  99	return key;
 100}
 101
 102static void action_fifo_init(struct action_fifo *fifo)
 103{
 104	fifo->head = 0;
 105	fifo->tail = 0;
 106}
 107
 108static bool action_fifo_is_empty(const struct action_fifo *fifo)
 109{
 110	return (fifo->head == fifo->tail);
 111}
 112
 113static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 114{
 115	if (action_fifo_is_empty(fifo))
 116		return NULL;
 117
 118	return &fifo->fifo[fifo->tail++];
 119}
 120
 121static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 122{
 123	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 124		return NULL;
 125
 126	return &fifo->fifo[fifo->head++];
 127}
 128
 129/* Return true if fifo is not full */
 130static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 131				    const struct sw_flow_key *key,
 132				    const struct nlattr *actions,
 133				    const int actions_len)
 134{
 135	struct action_fifo *fifo;
 136	struct deferred_action *da;
 137
 138	fifo = this_cpu_ptr(action_fifos);
 139	da = action_fifo_put(fifo);
 140	if (da) {
 141		da->skb = skb;
 142		da->actions = actions;
 143		da->actions_len = actions_len;
 144		da->pkt_key = *key;
 145	}
 146
 147	return da;
 148}
 149
 150static void invalidate_flow_key(struct sw_flow_key *key)
 151{
 152	key->mac_proto |= SW_FLOW_KEY_INVALID;
 153}
 154
 155static bool is_flow_key_valid(const struct sw_flow_key *key)
 156{
 157	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 158}
 159
 160static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 161			 struct sw_flow_key *key,
 162			 u32 recirc_id,
 163			 const struct nlattr *actions, int len,
 164			 bool last, bool clone_flow_key);
 
 
 
 
 165
 166static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 167			      struct sw_flow_key *key,
 168			      const struct nlattr *attr, int len);
 169
 170static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 171		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
 172{
 173	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174
 175	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
 176	if (err)
 177		return err;
 178
 179	if (!mac_len)
 180		key->mac_proto = MAC_PROTO_NONE;
 
 181
 182	invalidate_flow_key(key);
 183	return 0;
 184}
 185
 186static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 187		    const __be16 ethertype)
 188{
 189	int err;
 190
 191	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
 192			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 193	if (err)
 194		return err;
 195
 196	if (ethertype == htons(ETH_P_TEB))
 197		key->mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198
 199	invalidate_flow_key(key);
 200	return 0;
 201}
 202
 203static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 204		    const __be32 *mpls_lse, const __be32 *mask)
 205{
 206	struct mpls_shim_hdr *stack;
 207	__be32 lse;
 208	int err;
 209
 210	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
 211		return -ENOMEM;
 
 212
 213	stack = mpls_hdr(skb);
 214	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 215	err = skb_mpls_update_lse(skb, lse);
 216	if (err)
 217		return err;
 
 
 
 218
 219	flow_key->mpls.lse[0] = lse;
 
 220	return 0;
 221}
 222
 223static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 224{
 225	int err;
 226
 227	err = skb_vlan_pop(skb);
 228	if (skb_vlan_tag_present(skb)) {
 229		invalidate_flow_key(key);
 230	} else {
 231		key->eth.vlan.tci = 0;
 232		key->eth.vlan.tpid = 0;
 233	}
 234	return err;
 235}
 236
 237static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 238		     const struct ovs_action_push_vlan *vlan)
 239{
 240	int err;
 241
 242	if (skb_vlan_tag_present(skb)) {
 243		invalidate_flow_key(key);
 244	} else {
 245		key->eth.vlan.tci = vlan->vlan_tci;
 246		key->eth.vlan.tpid = vlan->vlan_tpid;
 247	}
 248	err = skb_vlan_push(skb, vlan->vlan_tpid,
 249			    ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 250	skb_reset_mac_len(skb);
 251	return err;
 252}
 253
 254/* 'src' is already properly masked. */
 255static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 256{
 257	u16 *dst = (u16 *)dst_;
 258	const u16 *src = (const u16 *)src_;
 259	const u16 *mask = (const u16 *)mask_;
 260
 261	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 262	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 263	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 264}
 265
 266static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 267			const struct ovs_key_ethernet *key,
 268			const struct ovs_key_ethernet *mask)
 269{
 270	int err;
 271
 272	err = skb_ensure_writable(skb, ETH_HLEN);
 273	if (unlikely(err))
 274		return err;
 275
 276	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 277
 278	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 279			       mask->eth_src);
 280	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 281			       mask->eth_dst);
 282
 283	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 284
 285	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 286	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 287	return 0;
 288}
 289
 290/* pop_eth does not support VLAN packets as this action is never called
 291 * for them.
 292 */
 293static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 294{
 295	int err;
 296
 297	err = skb_eth_pop(skb);
 298	if (err)
 299		return err;
 300
 301	/* safe right before invalidate_flow_key */
 302	key->mac_proto = MAC_PROTO_NONE;
 303	invalidate_flow_key(key);
 304	return 0;
 305}
 306
 307static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 308		    const struct ovs_action_push_eth *ethh)
 309{
 310	int err;
 311
 312	err = skb_eth_push(skb, ethh->addresses.eth_dst,
 313			   ethh->addresses.eth_src);
 314	if (err)
 315		return err;
 316
 317	/* safe right before invalidate_flow_key */
 318	key->mac_proto = MAC_PROTO_ETHERNET;
 319	invalidate_flow_key(key);
 320	return 0;
 321}
 322
 323static noinline_for_stack int push_nsh(struct sk_buff *skb,
 324				       struct sw_flow_key *key,
 325				       const struct nlattr *a)
 326{
 327	u8 buffer[NSH_HDR_MAX_LEN];
 328	struct nshhdr *nh = (struct nshhdr *)buffer;
 329	int err;
 330
 331	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
 332	if (err)
 333		return err;
 334
 335	err = nsh_push(skb, nh);
 336	if (err)
 337		return err;
 338
 339	/* safe right before invalidate_flow_key */
 340	key->mac_proto = MAC_PROTO_NONE;
 341	invalidate_flow_key(key);
 342	return 0;
 343}
 344
 345static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 346{
 347	int err;
 348
 349	err = nsh_pop(skb);
 350	if (err)
 351		return err;
 352
 353	/* safe right before invalidate_flow_key */
 354	if (skb->protocol == htons(ETH_P_TEB))
 355		key->mac_proto = MAC_PROTO_ETHERNET;
 356	else
 357		key->mac_proto = MAC_PROTO_NONE;
 358	invalidate_flow_key(key);
 359	return 0;
 360}
 361
 362static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 363				  __be32 addr, __be32 new_addr)
 364{
 365	int transport_len = skb->len - skb_transport_offset(skb);
 366
 367	if (nh->frag_off & htons(IP_OFFSET))
 368		return;
 369
 370	if (nh->protocol == IPPROTO_TCP) {
 371		if (likely(transport_len >= sizeof(struct tcphdr)))
 372			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 373						 addr, new_addr, true);
 374	} else if (nh->protocol == IPPROTO_UDP) {
 375		if (likely(transport_len >= sizeof(struct udphdr))) {
 376			struct udphdr *uh = udp_hdr(skb);
 377
 378			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 379				inet_proto_csum_replace4(&uh->check, skb,
 380							 addr, new_addr, true);
 381				if (!uh->check)
 382					uh->check = CSUM_MANGLED_0;
 383			}
 384		}
 385	}
 386}
 387
 388static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 389			__be32 *addr, __be32 new_addr)
 390{
 391	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 392	csum_replace4(&nh->check, *addr, new_addr);
 393	skb_clear_hash(skb);
 394	ovs_ct_clear(skb, NULL);
 395	*addr = new_addr;
 396}
 397
 398static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 399				 __be32 addr[4], const __be32 new_addr[4])
 400{
 401	int transport_len = skb->len - skb_transport_offset(skb);
 402
 403	if (l4_proto == NEXTHDR_TCP) {
 404		if (likely(transport_len >= sizeof(struct tcphdr)))
 405			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 406						  addr, new_addr, true);
 407	} else if (l4_proto == NEXTHDR_UDP) {
 408		if (likely(transport_len >= sizeof(struct udphdr))) {
 409			struct udphdr *uh = udp_hdr(skb);
 410
 411			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 412				inet_proto_csum_replace16(&uh->check, skb,
 413							  addr, new_addr, true);
 414				if (!uh->check)
 415					uh->check = CSUM_MANGLED_0;
 416			}
 417		}
 418	} else if (l4_proto == NEXTHDR_ICMP) {
 419		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 420			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 421						  skb, addr, new_addr, true);
 422	}
 423}
 424
 425static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 426			   const __be32 mask[4], __be32 masked[4])
 427{
 428	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 429	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 430	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 431	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 432}
 433
 434static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 435			  __be32 addr[4], const __be32 new_addr[4],
 436			  bool recalculate_csum)
 437{
 438	if (recalculate_csum)
 439		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 440
 441	skb_clear_hash(skb);
 442	ovs_ct_clear(skb, NULL);
 443	memcpy(addr, new_addr, sizeof(__be32[4]));
 444}
 445
 446static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
 447{
 448	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
 449
 450	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
 451
 452	if (skb->ip_summed == CHECKSUM_COMPLETE)
 453		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
 454			     (__force __wsum)(ipv6_tclass << 12));
 455
 456	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
 457}
 458
 459static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
 460{
 461	u32 ofl;
 462
 463	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
 464	fl = OVS_MASKED(ofl, fl, mask);
 465
 466	/* Bits 21-24 are always unmasked, so this retains their values. */
 467	nh->flow_lbl[0] = (u8)(fl >> 16);
 468	nh->flow_lbl[1] = (u8)(fl >> 8);
 469	nh->flow_lbl[2] = (u8)fl;
 470
 471	if (skb->ip_summed == CHECKSUM_COMPLETE)
 472		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
 473}
 474
 475static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
 476{
 477	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
 478
 479	if (skb->ip_summed == CHECKSUM_COMPLETE)
 480		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
 481			     (__force __wsum)(new_ttl << 8));
 482	nh->hop_limit = new_ttl;
 483}
 484
 485static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 486		       u8 mask)
 487{
 488	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 489
 490	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 491	nh->ttl = new_ttl;
 492}
 493
 494static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 495		    const struct ovs_key_ipv4 *key,
 496		    const struct ovs_key_ipv4 *mask)
 497{
 498	struct iphdr *nh;
 499	__be32 new_addr;
 500	int err;
 501
 502	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 503				  sizeof(struct iphdr));
 504	if (unlikely(err))
 505		return err;
 506
 507	nh = ip_hdr(skb);
 508
 509	/* Setting an IP addresses is typically only a side effect of
 510	 * matching on them in the current userspace implementation, so it
 511	 * makes sense to check if the value actually changed.
 512	 */
 513	if (mask->ipv4_src) {
 514		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 515
 516		if (unlikely(new_addr != nh->saddr)) {
 517			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 518			flow_key->ipv4.addr.src = new_addr;
 519		}
 520	}
 521	if (mask->ipv4_dst) {
 522		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 523
 524		if (unlikely(new_addr != nh->daddr)) {
 525			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 526			flow_key->ipv4.addr.dst = new_addr;
 527		}
 528	}
 529	if (mask->ipv4_tos) {
 530		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 531		flow_key->ip.tos = nh->tos;
 532	}
 533	if (mask->ipv4_ttl) {
 534		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 535		flow_key->ip.ttl = nh->ttl;
 536	}
 537
 538	return 0;
 539}
 540
 541static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 542{
 543	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 544}
 545
 546static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 547		    const struct ovs_key_ipv6 *key,
 548		    const struct ovs_key_ipv6 *mask)
 549{
 550	struct ipv6hdr *nh;
 551	int err;
 552
 553	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 554				  sizeof(struct ipv6hdr));
 555	if (unlikely(err))
 556		return err;
 557
 558	nh = ipv6_hdr(skb);
 559
 560	/* Setting an IP addresses is typically only a side effect of
 561	 * matching on them in the current userspace implementation, so it
 562	 * makes sense to check if the value actually changed.
 563	 */
 564	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 565		__be32 *saddr = (__be32 *)&nh->saddr;
 566		__be32 masked[4];
 567
 568		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 569
 570		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 571			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 572				      true);
 573			memcpy(&flow_key->ipv6.addr.src, masked,
 574			       sizeof(flow_key->ipv6.addr.src));
 575		}
 576	}
 577	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 578		unsigned int offset = 0;
 579		int flags = IP6_FH_F_SKIP_RH;
 580		bool recalc_csum = true;
 581		__be32 *daddr = (__be32 *)&nh->daddr;
 582		__be32 masked[4];
 583
 584		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 585
 586		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 587			if (ipv6_ext_hdr(nh->nexthdr))
 588				recalc_csum = (ipv6_find_hdr(skb, &offset,
 589							     NEXTHDR_ROUTING,
 590							     NULL, &flags)
 591					       != NEXTHDR_ROUTING);
 592
 593			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 594				      recalc_csum);
 595			memcpy(&flow_key->ipv6.addr.dst, masked,
 596			       sizeof(flow_key->ipv6.addr.dst));
 597		}
 598	}
 599	if (mask->ipv6_tclass) {
 600		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
 601		flow_key->ip.tos = ipv6_get_dsfield(nh);
 602	}
 603	if (mask->ipv6_label) {
 604		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
 605			    ntohl(mask->ipv6_label));
 606		flow_key->ipv6.label =
 607		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 608	}
 609	if (mask->ipv6_hlimit) {
 610		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
 
 611		flow_key->ip.ttl = nh->hop_limit;
 612	}
 613	return 0;
 614}
 615
 616static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 617		   const struct nlattr *a)
 618{
 619	struct nshhdr *nh;
 620	size_t length;
 621	int err;
 622	u8 flags;
 623	u8 ttl;
 624	int i;
 625
 626	struct ovs_key_nsh key;
 627	struct ovs_key_nsh mask;
 628
 629	err = nsh_key_from_nlattr(a, &key, &mask);
 630	if (err)
 631		return err;
 632
 633	/* Make sure the NSH base header is there */
 634	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 635		return -ENOMEM;
 636
 637	nh = nsh_hdr(skb);
 638	length = nsh_hdr_len(nh);
 639
 640	/* Make sure the whole NSH header is there */
 641	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 642				       length);
 643	if (unlikely(err))
 644		return err;
 645
 646	nh = nsh_hdr(skb);
 647	skb_postpull_rcsum(skb, nh, length);
 648	flags = nsh_get_flags(nh);
 649	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 650	flow_key->nsh.base.flags = flags;
 651	ttl = nsh_get_ttl(nh);
 652	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 653	flow_key->nsh.base.ttl = ttl;
 654	nsh_set_flags_and_ttl(nh, flags, ttl);
 655	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 656				  mask.base.path_hdr);
 657	flow_key->nsh.base.path_hdr = nh->path_hdr;
 658	switch (nh->mdtype) {
 659	case NSH_M_TYPE1:
 660		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 661			nh->md1.context[i] =
 662			    OVS_MASKED(nh->md1.context[i], key.context[i],
 663				       mask.context[i]);
 664		}
 665		memcpy(flow_key->nsh.context, nh->md1.context,
 666		       sizeof(nh->md1.context));
 667		break;
 668	case NSH_M_TYPE2:
 669		memset(flow_key->nsh.context, 0,
 670		       sizeof(flow_key->nsh.context));
 671		break;
 672	default:
 673		return -EINVAL;
 674	}
 675	skb_postpush_rcsum(skb, nh, length);
 676	return 0;
 677}
 678
 679/* Must follow skb_ensure_writable() since that can move the skb data. */
 680static void set_tp_port(struct sk_buff *skb, __be16 *port,
 681			__be16 new_port, __sum16 *check)
 682{
 683	ovs_ct_clear(skb, NULL);
 684	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 685	*port = new_port;
 686}
 687
 688static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 689		   const struct ovs_key_udp *key,
 690		   const struct ovs_key_udp *mask)
 691{
 692	struct udphdr *uh;
 693	__be16 src, dst;
 694	int err;
 695
 696	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 697				  sizeof(struct udphdr));
 698	if (unlikely(err))
 699		return err;
 700
 701	uh = udp_hdr(skb);
 702	/* Either of the masks is non-zero, so do not bother checking them. */
 703	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 704	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 705
 706	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 707		if (likely(src != uh->source)) {
 708			set_tp_port(skb, &uh->source, src, &uh->check);
 709			flow_key->tp.src = src;
 710		}
 711		if (likely(dst != uh->dest)) {
 712			set_tp_port(skb, &uh->dest, dst, &uh->check);
 713			flow_key->tp.dst = dst;
 714		}
 715
 716		if (unlikely(!uh->check))
 717			uh->check = CSUM_MANGLED_0;
 718	} else {
 719		uh->source = src;
 720		uh->dest = dst;
 721		flow_key->tp.src = src;
 722		flow_key->tp.dst = dst;
 723		ovs_ct_clear(skb, NULL);
 724	}
 725
 726	skb_clear_hash(skb);
 727
 728	return 0;
 729}
 730
 731static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 732		   const struct ovs_key_tcp *key,
 733		   const struct ovs_key_tcp *mask)
 734{
 735	struct tcphdr *th;
 736	__be16 src, dst;
 737	int err;
 738
 739	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 740				  sizeof(struct tcphdr));
 741	if (unlikely(err))
 742		return err;
 743
 744	th = tcp_hdr(skb);
 745	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 746	if (likely(src != th->source)) {
 747		set_tp_port(skb, &th->source, src, &th->check);
 748		flow_key->tp.src = src;
 749	}
 750	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 751	if (likely(dst != th->dest)) {
 752		set_tp_port(skb, &th->dest, dst, &th->check);
 753		flow_key->tp.dst = dst;
 754	}
 755	skb_clear_hash(skb);
 756
 757	return 0;
 758}
 759
 760static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 761		    const struct ovs_key_sctp *key,
 762		    const struct ovs_key_sctp *mask)
 763{
 764	unsigned int sctphoff = skb_transport_offset(skb);
 765	struct sctphdr *sh;
 766	__le32 old_correct_csum, new_csum, old_csum;
 767	int err;
 768
 769	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 770	if (unlikely(err))
 771		return err;
 772
 773	sh = sctp_hdr(skb);
 774	old_csum = sh->checksum;
 775	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 776
 777	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 778	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 779
 780	new_csum = sctp_compute_cksum(skb, sctphoff);
 781
 782	/* Carry any checksum errors through. */
 783	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 784
 785	skb_clear_hash(skb);
 786	ovs_ct_clear(skb, NULL);
 787
 788	flow_key->tp.src = sh->source;
 789	flow_key->tp.dst = sh->dest;
 790
 791	return 0;
 792}
 793
 794static int ovs_vport_output(struct net *net, struct sock *sk,
 795			    struct sk_buff *skb)
 796{
 797	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 798	struct vport *vport = data->vport;
 799
 800	if (skb_cow_head(skb, data->l2_len) < 0) {
 801		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
 802		return -ENOMEM;
 803	}
 804
 805	__skb_dst_copy(skb, data->dst);
 806	*OVS_CB(skb) = data->cb;
 807	skb->inner_protocol = data->inner_protocol;
 808	if (data->vlan_tci & VLAN_CFI_MASK)
 809		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 810	else
 811		__vlan_hwaccel_clear_tag(skb);
 812
 813	/* Reconstruct the MAC header.  */
 814	skb_push(skb, data->l2_len);
 815	memcpy(skb->data, &data->l2_data, data->l2_len);
 816	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 817	skb_reset_mac_header(skb);
 818
 819	if (eth_p_mpls(skb->protocol)) {
 820		skb->inner_network_header = skb->network_header;
 821		skb_set_network_header(skb, data->network_offset);
 822		skb_reset_mac_len(skb);
 823	}
 824
 825	ovs_vport_send(vport, skb, data->mac_proto);
 826	return 0;
 827}
 828
 829static unsigned int
 830ovs_dst_get_mtu(const struct dst_entry *dst)
 831{
 832	return dst->dev->mtu;
 833}
 834
 835static struct dst_ops ovs_dst_ops = {
 836	.family = AF_UNSPEC,
 837	.mtu = ovs_dst_get_mtu,
 838};
 839
 840/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 841 * ovs_vport_output(), which is called once per fragmented packet.
 842 */
 843static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 844			 u16 orig_network_offset, u8 mac_proto)
 845{
 846	unsigned int hlen = skb_network_offset(skb);
 847	struct ovs_frag_data *data;
 848
 849	data = this_cpu_ptr(&ovs_frag_data_storage);
 850	data->dst = skb->_skb_refdst;
 851	data->vport = vport;
 852	data->cb = *OVS_CB(skb);
 853	data->inner_protocol = skb->inner_protocol;
 854	data->network_offset = orig_network_offset;
 855	if (skb_vlan_tag_present(skb))
 856		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 857	else
 858		data->vlan_tci = 0;
 859	data->vlan_proto = skb->vlan_proto;
 860	data->mac_proto = mac_proto;
 861	data->l2_len = hlen;
 862	memcpy(&data->l2_data, skb->data, hlen);
 863
 864	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 865	skb_pull(skb, hlen);
 866}
 867
 868static void ovs_fragment(struct net *net, struct vport *vport,
 869			 struct sk_buff *skb, u16 mru,
 870			 struct sw_flow_key *key)
 871{
 872	enum ovs_drop_reason reason;
 873	u16 orig_network_offset = 0;
 874
 875	if (eth_p_mpls(skb->protocol)) {
 876		orig_network_offset = skb_network_offset(skb);
 877		skb->network_header = skb->inner_network_header;
 878	}
 879
 880	if (skb_network_offset(skb) > MAX_L2_LEN) {
 881		OVS_NLERR(1, "L2 header too long to fragment");
 882		reason = OVS_DROP_FRAG_L2_TOO_LONG;
 883		goto err;
 884	}
 885
 886	if (key->eth.type == htons(ETH_P_IP)) {
 887		struct rtable ovs_rt = { 0 };
 888		unsigned long orig_dst;
 889
 890		prepare_frag(vport, skb, orig_network_offset,
 891			     ovs_key_mac_proto(key));
 892		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 893			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 894		ovs_rt.dst.dev = vport->dev;
 895
 896		orig_dst = skb->_skb_refdst;
 897		skb_dst_set_noref(skb, &ovs_rt.dst);
 898		IPCB(skb)->frag_max_size = mru;
 899
 900		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 901		refdst_drop(orig_dst);
 902	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 
 903		unsigned long orig_dst;
 904		struct rt6_info ovs_rt;
 905
 
 
 
 
 906		prepare_frag(vport, skb, orig_network_offset,
 907			     ovs_key_mac_proto(key));
 908		memset(&ovs_rt, 0, sizeof(ovs_rt));
 909		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
 910			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 911		ovs_rt.dst.dev = vport->dev;
 912
 913		orig_dst = skb->_skb_refdst;
 914		skb_dst_set_noref(skb, &ovs_rt.dst);
 915		IP6CB(skb)->frag_max_size = mru;
 916
 917		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
 918		refdst_drop(orig_dst);
 919	} else {
 920		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 921			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 922			  vport->dev->mtu);
 923		reason = OVS_DROP_FRAG_INVALID_PROTO;
 924		goto err;
 925	}
 926
 927	return;
 928err:
 929	ovs_kfree_skb_reason(skb, reason);
 930}
 931
 932static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 933		      struct sw_flow_key *key)
 934{
 935	struct vport *vport = ovs_vport_rcu(dp, out_port);
 936
 937	if (likely(vport &&
 938		   netif_running(vport->dev) &&
 939		   netif_carrier_ok(vport->dev))) {
 940		u16 mru = OVS_CB(skb)->mru;
 941		u32 cutlen = OVS_CB(skb)->cutlen;
 942
 943		if (unlikely(cutlen > 0)) {
 944			if (skb->len - cutlen > ovs_mac_header_len(key))
 945				pskb_trim(skb, skb->len - cutlen);
 946			else
 947				pskb_trim(skb, ovs_mac_header_len(key));
 948		}
 949
 950		/* Need to set the pkt_type to involve the routing layer.  The
 951		 * packet movement through the OVS datapath doesn't generally
 952		 * use routing, but this is needed for tunnel cases.
 953		 */
 954		skb->pkt_type = PACKET_OUTGOING;
 955
 956		if (likely(!mru ||
 957		           (skb->len <= mru + vport->dev->hard_header_len))) {
 958			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 959		} else if (mru <= vport->dev->mtu) {
 960			struct net *net = read_pnet(&dp->net);
 961
 962			ovs_fragment(net, vport, skb, mru, key);
 963		} else {
 964			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
 965		}
 966	} else {
 967		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
 968	}
 969}
 970
 971static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 972			    struct sw_flow_key *key, const struct nlattr *attr,
 973			    const struct nlattr *actions, int actions_len,
 974			    uint32_t cutlen)
 975{
 976	struct dp_upcall_info upcall;
 977	const struct nlattr *a;
 978	int rem;
 979
 980	memset(&upcall, 0, sizeof(upcall));
 981	upcall.cmd = OVS_PACKET_CMD_ACTION;
 982	upcall.mru = OVS_CB(skb)->mru;
 983
 984	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 985	     a = nla_next(a, &rem)) {
 986		switch (nla_type(a)) {
 987		case OVS_USERSPACE_ATTR_USERDATA:
 988			upcall.userdata = a;
 989			break;
 990
 991		case OVS_USERSPACE_ATTR_PID:
 992			if (dp->user_features &
 993			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
 994				upcall.portid =
 995				  ovs_dp_get_upcall_portid(dp,
 996							   smp_processor_id());
 997			else
 998				upcall.portid = nla_get_u32(a);
 999			break;
1000
1001		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1002			/* Get out tunnel info. */
1003			struct vport *vport;
1004
1005			vport = ovs_vport_rcu(dp, nla_get_u32(a));
1006			if (vport) {
1007				int err;
1008
1009				err = dev_fill_metadata_dst(vport->dev, skb);
1010				if (!err)
1011					upcall.egress_tun_info = skb_tunnel_info(skb);
1012			}
1013
1014			break;
1015		}
1016
1017		case OVS_USERSPACE_ATTR_ACTIONS: {
1018			/* Include actions. */
1019			upcall.actions = actions;
1020			upcall.actions_len = actions_len;
1021			break;
1022		}
1023
1024		} /* End of switch. */
1025	}
1026
1027	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1028}
1029
1030static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1031				     struct sw_flow_key *key,
1032				     const struct nlattr *attr)
1033{
1034	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1035	struct nlattr *actions = nla_data(attr);
1036
1037	if (nla_len(actions))
1038		return clone_execute(dp, skb, key, 0, nla_data(actions),
1039				     nla_len(actions), true, false);
1040
1041	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1042	return 0;
1043}
1044
1045/* When 'last' is true, sample() should always consume the 'skb'.
1046 * Otherwise, sample() should keep 'skb' intact regardless what
1047 * actions are executed within sample().
1048 */
1049static int sample(struct datapath *dp, struct sk_buff *skb,
1050		  struct sw_flow_key *key, const struct nlattr *attr,
1051		  bool last)
1052{
1053	struct nlattr *actions;
1054	struct nlattr *sample_arg;
1055	int rem = nla_len(attr);
1056	const struct sample_arg *arg;
1057	u32 init_probability;
1058	bool clone_flow_key;
1059	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060
1061	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1062	sample_arg = nla_data(attr);
1063	arg = nla_data(sample_arg);
1064	actions = nla_next(sample_arg, &rem);
1065	init_probability = OVS_CB(skb)->probability;
1066
1067	if ((arg->probability != U32_MAX) &&
1068	    (!arg->probability || get_random_u32() > arg->probability)) {
1069		if (last)
1070			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1071		return 0;
1072	}
1073
1074	OVS_CB(skb)->probability = arg->probability;
 
 
 
 
 
 
 
 
 
 
1075
1076	clone_flow_key = !arg->exec;
1077	err = clone_execute(dp, skb, key, 0, actions, rem, last,
1078			    clone_flow_key);
1079
1080	if (!last)
1081		OVS_CB(skb)->probability = init_probability;
 
 
1082
1083	return err;
1084}
 
 
1085
1086/* When 'last' is true, clone() should always consume the 'skb'.
1087 * Otherwise, clone() should keep 'skb' intact regardless what
1088 * actions are executed within clone().
1089 */
1090static int clone(struct datapath *dp, struct sk_buff *skb,
1091		 struct sw_flow_key *key, const struct nlattr *attr,
1092		 bool last)
1093{
1094	struct nlattr *actions;
1095	struct nlattr *clone_arg;
1096	int rem = nla_len(attr);
1097	bool dont_clone_flow_key;
1098
1099	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1100	clone_arg = nla_data(attr);
1101	dont_clone_flow_key = nla_get_u32(clone_arg);
1102	actions = nla_next(clone_arg, &rem);
1103
1104	return clone_execute(dp, skb, key, 0, actions, rem, last,
1105			     !dont_clone_flow_key);
 
1106}
1107
1108static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1109			 const struct nlattr *attr)
1110{
1111	struct ovs_action_hash *hash_act = nla_data(attr);
1112	u32 hash = 0;
1113
1114	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1115		/* OVS_HASH_ALG_L4 hasing type. */
1116		hash = skb_get_hash(skb);
1117	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1118		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1119		 * extend past an encapsulated header.
1120		 */
1121		hash = __skb_get_hash_symmetric(skb);
1122	}
1123
1124	hash = jhash_1word(hash, hash_act->hash_basis);
1125	if (!hash)
1126		hash = 0x1;
1127
1128	key->ovs_flow_hash = hash;
1129}
1130
1131static int execute_set_action(struct sk_buff *skb,
1132			      struct sw_flow_key *flow_key,
1133			      const struct nlattr *a)
1134{
1135	/* Only tunnel set execution is supported without a mask. */
1136	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1137		struct ovs_tunnel_info *tun = nla_data(a);
1138
1139		skb_dst_drop(skb);
1140		dst_hold((struct dst_entry *)tun->tun_dst);
1141		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1142		return 0;
1143	}
1144
1145	return -EINVAL;
1146}
1147
1148/* Mask is at the midpoint of the data. */
1149#define get_mask(a, type) ((const type)nla_data(a) + 1)
1150
1151static int execute_masked_set_action(struct sk_buff *skb,
1152				     struct sw_flow_key *flow_key,
1153				     const struct nlattr *a)
1154{
1155	int err = 0;
1156
1157	switch (nla_type(a)) {
1158	case OVS_KEY_ATTR_PRIORITY:
1159		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1160			       *get_mask(a, u32 *));
1161		flow_key->phy.priority = skb->priority;
1162		break;
1163
1164	case OVS_KEY_ATTR_SKB_MARK:
1165		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1166		flow_key->phy.skb_mark = skb->mark;
1167		break;
1168
1169	case OVS_KEY_ATTR_TUNNEL_INFO:
1170		/* Masked data not supported for tunnel. */
1171		err = -EINVAL;
1172		break;
1173
1174	case OVS_KEY_ATTR_ETHERNET:
1175		err = set_eth_addr(skb, flow_key, nla_data(a),
1176				   get_mask(a, struct ovs_key_ethernet *));
1177		break;
1178
1179	case OVS_KEY_ATTR_NSH:
1180		err = set_nsh(skb, flow_key, a);
1181		break;
1182
1183	case OVS_KEY_ATTR_IPV4:
1184		err = set_ipv4(skb, flow_key, nla_data(a),
1185			       get_mask(a, struct ovs_key_ipv4 *));
1186		break;
1187
1188	case OVS_KEY_ATTR_IPV6:
1189		err = set_ipv6(skb, flow_key, nla_data(a),
1190			       get_mask(a, struct ovs_key_ipv6 *));
1191		break;
1192
1193	case OVS_KEY_ATTR_TCP:
1194		err = set_tcp(skb, flow_key, nla_data(a),
1195			      get_mask(a, struct ovs_key_tcp *));
1196		break;
1197
1198	case OVS_KEY_ATTR_UDP:
1199		err = set_udp(skb, flow_key, nla_data(a),
1200			      get_mask(a, struct ovs_key_udp *));
1201		break;
1202
1203	case OVS_KEY_ATTR_SCTP:
1204		err = set_sctp(skb, flow_key, nla_data(a),
1205			       get_mask(a, struct ovs_key_sctp *));
1206		break;
1207
1208	case OVS_KEY_ATTR_MPLS:
1209		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1210								    __be32 *));
1211		break;
1212
1213	case OVS_KEY_ATTR_CT_STATE:
1214	case OVS_KEY_ATTR_CT_ZONE:
1215	case OVS_KEY_ATTR_CT_MARK:
1216	case OVS_KEY_ATTR_CT_LABELS:
1217	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1218	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1219		err = -EINVAL;
1220		break;
1221	}
1222
1223	return err;
1224}
1225
1226static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1227			  struct sw_flow_key *key,
1228			  const struct nlattr *a, bool last)
1229{
1230	u32 recirc_id;
 
1231
1232	if (!is_flow_key_valid(key)) {
1233		int err;
1234
1235		err = ovs_flow_key_update(skb, key);
1236		if (err)
1237			return err;
1238	}
1239	BUG_ON(!is_flow_key_valid(key));
1240
1241	recirc_id = nla_get_u32(a);
1242	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1243}
1244
1245static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1246				 struct sw_flow_key *key,
1247				 const struct nlattr *attr, bool last)
1248{
1249	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1250	const struct nlattr *actions, *cpl_arg;
1251	int len, max_len, rem = nla_len(attr);
1252	const struct check_pkt_len_arg *arg;
1253	bool clone_flow_key;
1254
1255	/* The first netlink attribute in 'attr' is always
1256	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1257	 */
1258	cpl_arg = nla_data(attr);
1259	arg = nla_data(cpl_arg);
1260
1261	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1262	max_len = arg->pkt_len;
1263
1264	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1265	    len <= max_len) {
1266		/* Second netlink attribute in 'attr' is always
1267		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1268		 */
1269		actions = nla_next(cpl_arg, &rem);
1270		clone_flow_key = !arg->exec_for_lesser_equal;
1271	} else {
1272		/* Third netlink attribute in 'attr' is always
1273		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1274		 */
1275		actions = nla_next(cpl_arg, &rem);
1276		actions = nla_next(actions, &rem);
1277		clone_flow_key = !arg->exec_for_greater;
1278	}
1279
1280	return clone_execute(dp, skb, key, 0, nla_data(actions),
1281			     nla_len(actions), last, clone_flow_key);
1282}
 
1283
1284static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1285{
1286	int err;
1287
1288	if (skb->protocol == htons(ETH_P_IPV6)) {
1289		struct ipv6hdr *nh;
1290
1291		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1292					  sizeof(*nh));
1293		if (unlikely(err))
1294			return err;
 
1295
1296		nh = ipv6_hdr(skb);
1297
1298		if (nh->hop_limit <= 1)
1299			return -EHOSTUNREACH;
1300
1301		key->ip.ttl = --nh->hop_limit;
1302	} else if (skb->protocol == htons(ETH_P_IP)) {
1303		struct iphdr *nh;
1304		u8 old_ttl;
1305
1306		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1307					  sizeof(*nh));
1308		if (unlikely(err))
1309			return err;
1310
1311		nh = ip_hdr(skb);
1312		if (nh->ttl <= 1)
1313			return -EHOSTUNREACH;
1314
1315		old_ttl = nh->ttl--;
1316		csum_replace2(&nh->check, htons(old_ttl << 8),
1317			      htons(nh->ttl << 8));
1318		key->ip.ttl = nh->ttl;
1319	}
1320	return 0;
1321}
1322
1323#if IS_ENABLED(CONFIG_PSAMPLE)
1324static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1325			    const struct nlattr *attr)
1326{
1327	struct psample_group psample_group = {};
1328	struct psample_metadata md = {};
1329	const struct nlattr *a;
1330	u32 rate;
1331	int rem;
1332
1333	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
1334		switch (nla_type(a)) {
1335		case OVS_PSAMPLE_ATTR_GROUP:
1336			psample_group.group_num = nla_get_u32(a);
1337			break;
1338
1339		case OVS_PSAMPLE_ATTR_COOKIE:
1340			md.user_cookie = nla_data(a);
1341			md.user_cookie_len = nla_len(a);
1342			break;
1343		}
1344	}
1345
1346	psample_group.net = ovs_dp_get_net(dp);
1347	md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
1348	md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
1349	md.rate_as_probability = 1;
1350
1351	rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
1352
1353	psample_sample_packet(&psample_group, skb, rate, &md);
1354}
1355#else
1356static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1357			    const struct nlattr *attr)
1358{}
1359#endif
1360
1361/* Execute a list of actions against 'skb'. */
1362static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1363			      struct sw_flow_key *key,
1364			      const struct nlattr *attr, int len)
1365{
 
 
 
 
 
 
1366	const struct nlattr *a;
1367	int rem;
1368
1369	for (a = attr, rem = len; rem > 0;
1370	     a = nla_next(a, &rem)) {
1371		int err = 0;
1372
1373		if (trace_ovs_do_execute_action_enabled())
1374			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1375
1376		/* Actions that rightfully have to consume the skb should do it
1377		 * and return directly.
1378		 */
1379		switch (nla_type(a)) {
1380		case OVS_ACTION_ATTR_OUTPUT: {
1381			int port = nla_get_u32(a);
1382			struct sk_buff *clone;
1383
1384			/* Every output action needs a separate clone
1385			 * of 'skb', In case the output action is the
1386			 * last action, cloning can be avoided.
1387			 */
1388			if (nla_is_last(a, rem)) {
1389				do_output(dp, skb, port, key);
1390				/* 'skb' has been used for output.
1391				 */
1392				return 0;
1393			}
1394
1395			clone = skb_clone(skb, GFP_ATOMIC);
1396			if (clone)
1397				do_output(dp, clone, port, key);
1398			OVS_CB(skb)->cutlen = 0;
 
 
 
 
 
 
1399			break;
1400		}
1401
1402		case OVS_ACTION_ATTR_TRUNC: {
1403			struct ovs_action_trunc *trunc = nla_data(a);
1404
1405			if (skb->len > trunc->max_len)
1406				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1407			break;
1408		}
1409
1410		case OVS_ACTION_ATTR_USERSPACE:
1411			output_userspace(dp, skb, key, a, attr,
1412						     len, OVS_CB(skb)->cutlen);
1413			OVS_CB(skb)->cutlen = 0;
1414			if (nla_is_last(a, rem)) {
1415				consume_skb(skb);
1416				return 0;
1417			}
1418			break;
1419
1420		case OVS_ACTION_ATTR_HASH:
1421			execute_hash(skb, key, a);
1422			break;
1423
1424		case OVS_ACTION_ATTR_PUSH_MPLS: {
1425			struct ovs_action_push_mpls *mpls = nla_data(a);
1426
1427			err = push_mpls(skb, key, mpls->mpls_lse,
1428					mpls->mpls_ethertype, skb->mac_len);
1429			break;
1430		}
1431		case OVS_ACTION_ATTR_ADD_MPLS: {
1432			struct ovs_action_add_mpls *mpls = nla_data(a);
1433			__u16 mac_len = 0;
1434
1435			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1436				mac_len = skb->mac_len;
1437
1438			err = push_mpls(skb, key, mpls->mpls_lse,
1439					mpls->mpls_ethertype, mac_len);
1440			break;
1441		}
1442		case OVS_ACTION_ATTR_POP_MPLS:
1443			err = pop_mpls(skb, key, nla_get_be16(a));
1444			break;
1445
1446		case OVS_ACTION_ATTR_PUSH_VLAN:
1447			err = push_vlan(skb, key, nla_data(a));
1448			break;
1449
1450		case OVS_ACTION_ATTR_POP_VLAN:
1451			err = pop_vlan(skb, key);
1452			break;
1453
1454		case OVS_ACTION_ATTR_RECIRC: {
1455			bool last = nla_is_last(a, rem);
1456
1457			err = execute_recirc(dp, skb, key, a, last);
1458			if (last) {
1459				/* If this is the last action, the skb has
1460				 * been consumed or freed.
1461				 * Return immediately.
1462				 */
1463				return err;
1464			}
1465			break;
1466		}
1467
1468		case OVS_ACTION_ATTR_SET:
1469			err = execute_set_action(skb, key, nla_data(a));
1470			break;
1471
1472		case OVS_ACTION_ATTR_SET_MASKED:
1473		case OVS_ACTION_ATTR_SET_TO_MASKED:
1474			err = execute_masked_set_action(skb, key, nla_data(a));
1475			break;
1476
1477		case OVS_ACTION_ATTR_SAMPLE: {
1478			bool last = nla_is_last(a, rem);
1479
1480			err = sample(dp, skb, key, a, last);
1481			if (last)
1482				return err;
1483
1484			break;
1485		}
1486
1487		case OVS_ACTION_ATTR_CT:
1488			if (!is_flow_key_valid(key)) {
1489				err = ovs_flow_key_update(skb, key);
1490				if (err)
1491					return err;
1492			}
1493
1494			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1495					     nla_data(a));
1496
1497			/* Hide stolen IP fragments from user space. */
1498			if (err)
1499				return err == -EINPROGRESS ? 0 : err;
1500			break;
1501
1502		case OVS_ACTION_ATTR_CT_CLEAR:
1503			err = ovs_ct_clear(skb, key);
1504			break;
1505
1506		case OVS_ACTION_ATTR_PUSH_ETH:
1507			err = push_eth(skb, key, nla_data(a));
1508			break;
1509
1510		case OVS_ACTION_ATTR_POP_ETH:
1511			err = pop_eth(skb, key);
1512			break;
1513
1514		case OVS_ACTION_ATTR_PUSH_NSH:
1515			err = push_nsh(skb, key, nla_data(a));
1516			break;
1517
1518		case OVS_ACTION_ATTR_POP_NSH:
1519			err = pop_nsh(skb, key);
1520			break;
1521
1522		case OVS_ACTION_ATTR_METER:
1523			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1524				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1525				return 0;
1526			}
1527			break;
1528
1529		case OVS_ACTION_ATTR_CLONE: {
1530			bool last = nla_is_last(a, rem);
1531
1532			err = clone(dp, skb, key, a, last);
1533			if (last)
1534				return err;
1535
1536			break;
1537		}
1538
1539		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1540			bool last = nla_is_last(a, rem);
1541
1542			err = execute_check_pkt_len(dp, skb, key, a, last);
1543			if (last)
1544				return err;
1545
1546			break;
1547		}
1548
1549		case OVS_ACTION_ATTR_DEC_TTL:
1550			err = execute_dec_ttl(skb, key);
1551			if (err == -EHOSTUNREACH)
1552				return dec_ttl_exception_handler(dp, skb,
1553								 key, a);
1554			break;
1555
1556		case OVS_ACTION_ATTR_DROP: {
1557			enum ovs_drop_reason reason = nla_get_u32(a)
1558				? OVS_DROP_EXPLICIT_WITH_ERROR
1559				: OVS_DROP_EXPLICIT;
1560
1561			ovs_kfree_skb_reason(skb, reason);
1562			return 0;
1563		}
1564
1565		case OVS_ACTION_ATTR_PSAMPLE:
1566			execute_psample(dp, skb, a);
1567			OVS_CB(skb)->cutlen = 0;
1568			if (nla_is_last(a, rem)) {
1569				consume_skb(skb);
1570				return 0;
1571			}
1572			break;
1573		}
1574
1575		if (unlikely(err)) {
1576			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1577			return err;
1578		}
1579	}
1580
1581	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1582	return 0;
1583}
 
1584
1585/* Execute the actions on the clone of the packet. The effect of the
1586 * execution does not affect the original 'skb' nor the original 'key'.
1587 *
1588 * The execution may be deferred in case the actions can not be executed
1589 * immediately.
1590 */
1591static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1592			 struct sw_flow_key *key, u32 recirc_id,
1593			 const struct nlattr *actions, int len,
1594			 bool last, bool clone_flow_key)
1595{
1596	struct deferred_action *da;
1597	struct sw_flow_key *clone;
1598
1599	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1600	if (!skb) {
1601		/* Out of memory, skip this action.
1602		 */
1603		return 0;
1604	}
1605
1606	/* When clone_flow_key is false, the 'key' will not be change
1607	 * by the actions, then the 'key' can be used directly.
1608	 * Otherwise, try to clone key from the next recursion level of
1609	 * 'flow_keys'. If clone is successful, execute the actions
1610	 * without deferring.
1611	 */
1612	clone = clone_flow_key ? clone_key(key) : key;
1613	if (clone) {
1614		int err = 0;
1615
1616		if (actions) { /* Sample action */
1617			if (clone_flow_key)
1618				__this_cpu_inc(exec_actions_level);
1619
1620			err = do_execute_actions(dp, skb, clone,
1621						 actions, len);
1622
1623			if (clone_flow_key)
1624				__this_cpu_dec(exec_actions_level);
1625		} else { /* Recirc action */
1626			clone->recirc_id = recirc_id;
1627			ovs_dp_process_packet(skb, clone);
1628		}
1629		return err;
1630	}
1631
1632	/* Out of 'flow_keys' space. Defer actions */
1633	da = add_deferred_actions(skb, key, actions, len);
1634	if (da) {
1635		if (!actions) { /* Recirc action */
1636			key = &da->pkt_key;
1637			key->recirc_id = recirc_id;
1638		}
1639	} else {
1640		/* Out of per CPU action FIFO space. Drop the 'skb' and
1641		 * log an error.
1642		 */
1643		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1644
1645		if (net_ratelimit()) {
1646			if (actions) { /* Sample action */
1647				pr_warn("%s: deferred action limit reached, drop sample action\n",
1648					ovs_dp_name(dp));
1649			} else {  /* Recirc action */
1650				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1651					ovs_dp_name(dp), recirc_id);
1652			}
1653		}
1654	}
1655	return 0;
1656}
1657
1658static void process_deferred_actions(struct datapath *dp)
1659{
1660	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1661
1662	/* Do not touch the FIFO in case there is no deferred actions. */
1663	if (action_fifo_is_empty(fifo))
1664		return;
1665
1666	/* Finishing executing all deferred actions. */
1667	do {
1668		struct deferred_action *da = action_fifo_get(fifo);
1669		struct sk_buff *skb = da->skb;
1670		struct sw_flow_key *key = &da->pkt_key;
1671		const struct nlattr *actions = da->actions;
1672		int actions_len = da->actions_len;
1673
1674		if (actions)
1675			do_execute_actions(dp, skb, key, actions, actions_len);
 
1676		else
1677			ovs_dp_process_packet(skb, key);
1678	} while (!action_fifo_is_empty(fifo));
1679
1680	/* Reset FIFO for the next packet.  */
1681	action_fifo_init(fifo);
1682}
1683
1684/* Execute a list of actions against 'skb'. */
1685int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1686			const struct sw_flow_actions *acts,
1687			struct sw_flow_key *key)
1688{
1689	int err, level;
1690
1691	level = __this_cpu_inc_return(exec_actions_level);
1692	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1693		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1694				     ovs_dp_name(dp));
1695		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1696		err = -ENETDOWN;
1697		goto out;
1698	}
1699
1700	OVS_CB(skb)->acts_origlen = acts->orig_len;
1701	err = do_execute_actions(dp, skb, key,
1702				 acts->actions, acts->actions_len);
1703
1704	if (level == 1)
1705		process_deferred_actions(dp);
1706
1707out:
1708	__this_cpu_dec(exec_actions_level);
1709	return err;
1710}
1711
1712int action_fifos_init(void)
1713{
1714	action_fifos = alloc_percpu(struct action_fifo);
1715	if (!action_fifos)
1716		return -ENOMEM;
1717
1718	flow_keys = alloc_percpu(struct action_flow_keys);
1719	if (!flow_keys) {
1720		free_percpu(action_fifos);
1721		return -ENOMEM;
1722	}
1723
1724	return 0;
1725}
1726
1727void action_fifos_exit(void)
1728{
1729	free_percpu(action_fifos);
1730	free_percpu(flow_keys);
1731}