Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Copyright (c) 2007-2014 Nicira, Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of version 2 of the GNU General Public
   6 * License as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  16 * 02110-1301, USA
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/skbuff.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/openvswitch.h>
  25#include <linux/netfilter_ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/in6.h>
  30#include <linux/if_arp.h>
  31#include <linux/if_vlan.h>
  32
  33#include <net/dst.h>
  34#include <net/ip.h>
  35#include <net/ipv6.h>
  36#include <net/ip6_fib.h>
  37#include <net/checksum.h>
  38#include <net/dsfield.h>
  39#include <net/mpls.h>
  40#include <net/sctp/checksum.h>
  41
  42#include "datapath.h"
  43#include "flow.h"
  44#include "conntrack.h"
  45#include "vport.h"
  46
  47static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
  48			      struct sw_flow_key *key,
  49			      const struct nlattr *attr, int len);
  50
  51struct deferred_action {
  52	struct sk_buff *skb;
  53	const struct nlattr *actions;
 
  54
  55	/* Store pkt_key clone when creating deferred action. */
  56	struct sw_flow_key pkt_key;
  57};
  58
  59#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  60struct ovs_frag_data {
  61	unsigned long dst;
  62	struct vport *vport;
  63	struct ovs_skb_cb cb;
  64	__be16 inner_protocol;
  65	u16 network_offset;	/* valid only for MPLS */
  66	u16 vlan_tci;
  67	__be16 vlan_proto;
  68	unsigned int l2_len;
  69	u8 mac_proto;
  70	u8 l2_data[MAX_L2_LEN];
  71};
  72
  73static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  74
  75#define DEFERRED_ACTION_FIFO_SIZE 10
  76#define OVS_RECURSION_LIMIT 5
  77#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  78struct action_fifo {
  79	int head;
  80	int tail;
  81	/* Deferred action fifo queue storage. */
  82	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  83};
  84
  85struct recirc_keys {
  86	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  87};
  88
  89static struct action_fifo __percpu *action_fifos;
  90static struct recirc_keys __percpu *recirc_keys;
  91static DEFINE_PER_CPU(int, exec_actions_level);
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93static void action_fifo_init(struct action_fifo *fifo)
  94{
  95	fifo->head = 0;
  96	fifo->tail = 0;
  97}
  98
  99static bool action_fifo_is_empty(const struct action_fifo *fifo)
 100{
 101	return (fifo->head == fifo->tail);
 102}
 103
 104static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 105{
 106	if (action_fifo_is_empty(fifo))
 107		return NULL;
 108
 109	return &fifo->fifo[fifo->tail++];
 110}
 111
 112static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 113{
 114	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 115		return NULL;
 116
 117	return &fifo->fifo[fifo->head++];
 118}
 119
 120/* Return true if fifo is not full */
 121static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 122						    const struct sw_flow_key *key,
 123						    const struct nlattr *attr)
 
 124{
 125	struct action_fifo *fifo;
 126	struct deferred_action *da;
 127
 128	fifo = this_cpu_ptr(action_fifos);
 129	da = action_fifo_put(fifo);
 130	if (da) {
 131		da->skb = skb;
 132		da->actions = attr;
 
 133		da->pkt_key = *key;
 134	}
 135
 136	return da;
 137}
 138
 139static void invalidate_flow_key(struct sw_flow_key *key)
 140{
 141	key->mac_proto |= SW_FLOW_KEY_INVALID;
 142}
 143
 144static bool is_flow_key_valid(const struct sw_flow_key *key)
 145{
 146	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 147}
 148
 149static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
 150			     __be16 ethertype)
 151{
 152	if (skb->ip_summed == CHECKSUM_COMPLETE) {
 153		__be16 diff[] = { ~(hdr->h_proto), ethertype };
 154
 155		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 156					~skb->csum);
 157	}
 158
 159	hdr->h_proto = ethertype;
 160}
 
 161
 162static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 163		     const struct ovs_action_push_mpls *mpls)
 164{
 165	struct mpls_shim_hdr *new_mpls_lse;
 166
 167	/* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
 168	if (skb->encapsulation)
 169		return -ENOTSUPP;
 170
 171	if (skb_cow_head(skb, MPLS_HLEN) < 0)
 172		return -ENOMEM;
 173
 174	if (!skb->inner_protocol) {
 175		skb_set_inner_network_header(skb, skb->mac_len);
 176		skb_set_inner_protocol(skb, skb->protocol);
 177	}
 178
 179	skb_push(skb, MPLS_HLEN);
 180	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
 181		skb->mac_len);
 182	skb_reset_mac_header(skb);
 183	skb_set_network_header(skb, skb->mac_len);
 184
 185	new_mpls_lse = mpls_hdr(skb);
 186	new_mpls_lse->label_stack_entry = mpls->mpls_lse;
 187
 188	skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
 
 
 189
 190	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
 191		update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
 192	skb->protocol = mpls->mpls_ethertype;
 193
 194	invalidate_flow_key(key);
 195	return 0;
 196}
 197
 198static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 199		    const __be16 ethertype)
 200{
 201	int err;
 202
 203	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 204	if (unlikely(err))
 
 205		return err;
 206
 207	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
 208
 209	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
 210		skb->mac_len);
 211
 212	__skb_pull(skb, MPLS_HLEN);
 213	skb_reset_mac_header(skb);
 214	skb_set_network_header(skb, skb->mac_len);
 215
 216	if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
 217		struct ethhdr *hdr;
 218
 219		/* mpls_hdr() is used to locate the ethertype field correctly in the
 220		 * presence of VLAN tags.
 221		 */
 222		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
 223		update_ethertype(skb, hdr, ethertype);
 224	}
 225	if (eth_p_mpls(skb->protocol))
 226		skb->protocol = ethertype;
 227
 228	invalidate_flow_key(key);
 229	return 0;
 230}
 231
 232static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 233		    const __be32 *mpls_lse, const __be32 *mask)
 234{
 235	struct mpls_shim_hdr *stack;
 236	__be32 lse;
 237	int err;
 238
 239	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
 240	if (unlikely(err))
 241		return err;
 242
 243	stack = mpls_hdr(skb);
 244	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 245	if (skb->ip_summed == CHECKSUM_COMPLETE) {
 246		__be32 diff[] = { ~(stack->label_stack_entry), lse };
 247
 248		skb->csum = ~csum_partial((char *)diff, sizeof(diff),
 249					  ~skb->csum);
 250	}
 251
 252	stack->label_stack_entry = lse;
 253	flow_key->mpls.top_lse = lse;
 254	return 0;
 255}
 256
 257static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 258{
 259	int err;
 260
 261	err = skb_vlan_pop(skb);
 262	if (skb_vlan_tag_present(skb)) {
 263		invalidate_flow_key(key);
 264	} else {
 265		key->eth.vlan.tci = 0;
 266		key->eth.vlan.tpid = 0;
 267	}
 268	return err;
 269}
 270
 271static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 272		     const struct ovs_action_push_vlan *vlan)
 273{
 274	if (skb_vlan_tag_present(skb)) {
 275		invalidate_flow_key(key);
 276	} else {
 277		key->eth.vlan.tci = vlan->vlan_tci;
 278		key->eth.vlan.tpid = vlan->vlan_tpid;
 279	}
 280	return skb_vlan_push(skb, vlan->vlan_tpid,
 281			     ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
 282}
 283
 284/* 'src' is already properly masked. */
 285static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 286{
 287	u16 *dst = (u16 *)dst_;
 288	const u16 *src = (const u16 *)src_;
 289	const u16 *mask = (const u16 *)mask_;
 290
 291	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 292	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 293	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 294}
 295
 296static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 297			const struct ovs_key_ethernet *key,
 298			const struct ovs_key_ethernet *mask)
 299{
 300	int err;
 301
 302	err = skb_ensure_writable(skb, ETH_HLEN);
 303	if (unlikely(err))
 304		return err;
 305
 306	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 307
 308	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 309			       mask->eth_src);
 310	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 311			       mask->eth_dst);
 312
 313	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 314
 315	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 316	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 317	return 0;
 318}
 319
 320/* pop_eth does not support VLAN packets as this action is never called
 321 * for them.
 322 */
 323static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 324{
 325	skb_pull_rcsum(skb, ETH_HLEN);
 326	skb_reset_mac_header(skb);
 327	skb_reset_mac_len(skb);
 328
 329	/* safe right before invalidate_flow_key */
 330	key->mac_proto = MAC_PROTO_NONE;
 331	invalidate_flow_key(key);
 332	return 0;
 333}
 334
 335static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 336		    const struct ovs_action_push_eth *ethh)
 337{
 338	struct ethhdr *hdr;
 339
 340	/* Add the new Ethernet header */
 341	if (skb_cow_head(skb, ETH_HLEN) < 0)
 342		return -ENOMEM;
 343
 344	skb_push(skb, ETH_HLEN);
 345	skb_reset_mac_header(skb);
 346	skb_reset_mac_len(skb);
 347
 348	hdr = eth_hdr(skb);
 349	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 350	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 351	hdr->h_proto = skb->protocol;
 352
 353	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 354
 355	/* safe right before invalidate_flow_key */
 356	key->mac_proto = MAC_PROTO_ETHERNET;
 357	invalidate_flow_key(key);
 358	return 0;
 359}
 360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 362				  __be32 addr, __be32 new_addr)
 363{
 364	int transport_len = skb->len - skb_transport_offset(skb);
 365
 366	if (nh->frag_off & htons(IP_OFFSET))
 367		return;
 368
 369	if (nh->protocol == IPPROTO_TCP) {
 370		if (likely(transport_len >= sizeof(struct tcphdr)))
 371			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 372						 addr, new_addr, true);
 373	} else if (nh->protocol == IPPROTO_UDP) {
 374		if (likely(transport_len >= sizeof(struct udphdr))) {
 375			struct udphdr *uh = udp_hdr(skb);
 376
 377			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 378				inet_proto_csum_replace4(&uh->check, skb,
 379							 addr, new_addr, true);
 380				if (!uh->check)
 381					uh->check = CSUM_MANGLED_0;
 382			}
 383		}
 384	}
 385}
 386
 387static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 388			__be32 *addr, __be32 new_addr)
 389{
 390	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 391	csum_replace4(&nh->check, *addr, new_addr);
 392	skb_clear_hash(skb);
 393	*addr = new_addr;
 394}
 395
 396static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 397				 __be32 addr[4], const __be32 new_addr[4])
 398{
 399	int transport_len = skb->len - skb_transport_offset(skb);
 400
 401	if (l4_proto == NEXTHDR_TCP) {
 402		if (likely(transport_len >= sizeof(struct tcphdr)))
 403			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 404						  addr, new_addr, true);
 405	} else if (l4_proto == NEXTHDR_UDP) {
 406		if (likely(transport_len >= sizeof(struct udphdr))) {
 407			struct udphdr *uh = udp_hdr(skb);
 408
 409			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 410				inet_proto_csum_replace16(&uh->check, skb,
 411							  addr, new_addr, true);
 412				if (!uh->check)
 413					uh->check = CSUM_MANGLED_0;
 414			}
 415		}
 416	} else if (l4_proto == NEXTHDR_ICMP) {
 417		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 418			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 419						  skb, addr, new_addr, true);
 420	}
 421}
 422
 423static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 424			   const __be32 mask[4], __be32 masked[4])
 425{
 426	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 427	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 428	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 429	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 430}
 431
 432static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 433			  __be32 addr[4], const __be32 new_addr[4],
 434			  bool recalculate_csum)
 435{
 436	if (recalculate_csum)
 437		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 438
 439	skb_clear_hash(skb);
 440	memcpy(addr, new_addr, sizeof(__be32[4]));
 441}
 442
 443static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 444{
 445	/* Bits 21-24 are always unmasked, so this retains their values. */
 446	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 447	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 448	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 449}
 450
 451static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 452		       u8 mask)
 453{
 454	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 455
 456	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 457	nh->ttl = new_ttl;
 458}
 459
 460static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 461		    const struct ovs_key_ipv4 *key,
 462		    const struct ovs_key_ipv4 *mask)
 463{
 464	struct iphdr *nh;
 465	__be32 new_addr;
 466	int err;
 467
 468	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 469				  sizeof(struct iphdr));
 470	if (unlikely(err))
 471		return err;
 472
 473	nh = ip_hdr(skb);
 474
 475	/* Setting an IP addresses is typically only a side effect of
 476	 * matching on them in the current userspace implementation, so it
 477	 * makes sense to check if the value actually changed.
 478	 */
 479	if (mask->ipv4_src) {
 480		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 481
 482		if (unlikely(new_addr != nh->saddr)) {
 483			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 484			flow_key->ipv4.addr.src = new_addr;
 485		}
 486	}
 487	if (mask->ipv4_dst) {
 488		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 489
 490		if (unlikely(new_addr != nh->daddr)) {
 491			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 492			flow_key->ipv4.addr.dst = new_addr;
 493		}
 494	}
 495	if (mask->ipv4_tos) {
 496		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 497		flow_key->ip.tos = nh->tos;
 498	}
 499	if (mask->ipv4_ttl) {
 500		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 501		flow_key->ip.ttl = nh->ttl;
 502	}
 503
 504	return 0;
 505}
 506
 507static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 508{
 509	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 510}
 511
 512static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 513		    const struct ovs_key_ipv6 *key,
 514		    const struct ovs_key_ipv6 *mask)
 515{
 516	struct ipv6hdr *nh;
 517	int err;
 518
 519	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 520				  sizeof(struct ipv6hdr));
 521	if (unlikely(err))
 522		return err;
 523
 524	nh = ipv6_hdr(skb);
 525
 526	/* Setting an IP addresses is typically only a side effect of
 527	 * matching on them in the current userspace implementation, so it
 528	 * makes sense to check if the value actually changed.
 529	 */
 530	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 531		__be32 *saddr = (__be32 *)&nh->saddr;
 532		__be32 masked[4];
 533
 534		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 535
 536		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 537			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 538				      true);
 539			memcpy(&flow_key->ipv6.addr.src, masked,
 540			       sizeof(flow_key->ipv6.addr.src));
 541		}
 542	}
 543	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 544		unsigned int offset = 0;
 545		int flags = IP6_FH_F_SKIP_RH;
 546		bool recalc_csum = true;
 547		__be32 *daddr = (__be32 *)&nh->daddr;
 548		__be32 masked[4];
 549
 550		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 551
 552		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 553			if (ipv6_ext_hdr(nh->nexthdr))
 554				recalc_csum = (ipv6_find_hdr(skb, &offset,
 555							     NEXTHDR_ROUTING,
 556							     NULL, &flags)
 557					       != NEXTHDR_ROUTING);
 558
 559			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 560				      recalc_csum);
 561			memcpy(&flow_key->ipv6.addr.dst, masked,
 562			       sizeof(flow_key->ipv6.addr.dst));
 563		}
 564	}
 565	if (mask->ipv6_tclass) {
 566		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 567		flow_key->ip.tos = ipv6_get_dsfield(nh);
 568	}
 569	if (mask->ipv6_label) {
 570		set_ipv6_fl(nh, ntohl(key->ipv6_label),
 571			    ntohl(mask->ipv6_label));
 572		flow_key->ipv6.label =
 573		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 574	}
 575	if (mask->ipv6_hlimit) {
 576		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 577			       mask->ipv6_hlimit);
 578		flow_key->ip.ttl = nh->hop_limit;
 579	}
 580	return 0;
 581}
 582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583/* Must follow skb_ensure_writable() since that can move the skb data. */
 584static void set_tp_port(struct sk_buff *skb, __be16 *port,
 585			__be16 new_port, __sum16 *check)
 586{
 587	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 588	*port = new_port;
 589}
 590
 591static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 592		   const struct ovs_key_udp *key,
 593		   const struct ovs_key_udp *mask)
 594{
 595	struct udphdr *uh;
 596	__be16 src, dst;
 597	int err;
 598
 599	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 600				  sizeof(struct udphdr));
 601	if (unlikely(err))
 602		return err;
 603
 604	uh = udp_hdr(skb);
 605	/* Either of the masks is non-zero, so do not bother checking them. */
 606	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 607	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 608
 609	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 610		if (likely(src != uh->source)) {
 611			set_tp_port(skb, &uh->source, src, &uh->check);
 612			flow_key->tp.src = src;
 613		}
 614		if (likely(dst != uh->dest)) {
 615			set_tp_port(skb, &uh->dest, dst, &uh->check);
 616			flow_key->tp.dst = dst;
 617		}
 618
 619		if (unlikely(!uh->check))
 620			uh->check = CSUM_MANGLED_0;
 621	} else {
 622		uh->source = src;
 623		uh->dest = dst;
 624		flow_key->tp.src = src;
 625		flow_key->tp.dst = dst;
 626	}
 627
 628	skb_clear_hash(skb);
 629
 630	return 0;
 631}
 632
 633static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 634		   const struct ovs_key_tcp *key,
 635		   const struct ovs_key_tcp *mask)
 636{
 637	struct tcphdr *th;
 638	__be16 src, dst;
 639	int err;
 640
 641	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 642				  sizeof(struct tcphdr));
 643	if (unlikely(err))
 644		return err;
 645
 646	th = tcp_hdr(skb);
 647	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 648	if (likely(src != th->source)) {
 649		set_tp_port(skb, &th->source, src, &th->check);
 650		flow_key->tp.src = src;
 651	}
 652	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 653	if (likely(dst != th->dest)) {
 654		set_tp_port(skb, &th->dest, dst, &th->check);
 655		flow_key->tp.dst = dst;
 656	}
 657	skb_clear_hash(skb);
 658
 659	return 0;
 660}
 661
 662static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 663		    const struct ovs_key_sctp *key,
 664		    const struct ovs_key_sctp *mask)
 665{
 666	unsigned int sctphoff = skb_transport_offset(skb);
 667	struct sctphdr *sh;
 668	__le32 old_correct_csum, new_csum, old_csum;
 669	int err;
 670
 671	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 672	if (unlikely(err))
 673		return err;
 674
 675	sh = sctp_hdr(skb);
 676	old_csum = sh->checksum;
 677	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 678
 679	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 680	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 681
 682	new_csum = sctp_compute_cksum(skb, sctphoff);
 683
 684	/* Carry any checksum errors through. */
 685	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 686
 687	skb_clear_hash(skb);
 688	flow_key->tp.src = sh->source;
 689	flow_key->tp.dst = sh->dest;
 690
 691	return 0;
 692}
 693
 694static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 695{
 696	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 697	struct vport *vport = data->vport;
 698
 699	if (skb_cow_head(skb, data->l2_len) < 0) {
 700		kfree_skb(skb);
 701		return -ENOMEM;
 702	}
 703
 704	__skb_dst_copy(skb, data->dst);
 705	*OVS_CB(skb) = data->cb;
 706	skb->inner_protocol = data->inner_protocol;
 707	skb->vlan_tci = data->vlan_tci;
 708	skb->vlan_proto = data->vlan_proto;
 
 
 709
 710	/* Reconstruct the MAC header.  */
 711	skb_push(skb, data->l2_len);
 712	memcpy(skb->data, &data->l2_data, data->l2_len);
 713	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 714	skb_reset_mac_header(skb);
 715
 716	if (eth_p_mpls(skb->protocol)) {
 717		skb->inner_network_header = skb->network_header;
 718		skb_set_network_header(skb, data->network_offset);
 719		skb_reset_mac_len(skb);
 720	}
 721
 722	ovs_vport_send(vport, skb, data->mac_proto);
 723	return 0;
 724}
 725
 726static unsigned int
 727ovs_dst_get_mtu(const struct dst_entry *dst)
 728{
 729	return dst->dev->mtu;
 730}
 731
 732static struct dst_ops ovs_dst_ops = {
 733	.family = AF_UNSPEC,
 734	.mtu = ovs_dst_get_mtu,
 735};
 736
 737/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 738 * ovs_vport_output(), which is called once per fragmented packet.
 739 */
 740static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 741			 u16 orig_network_offset, u8 mac_proto)
 742{
 743	unsigned int hlen = skb_network_offset(skb);
 744	struct ovs_frag_data *data;
 745
 746	data = this_cpu_ptr(&ovs_frag_data_storage);
 747	data->dst = skb->_skb_refdst;
 748	data->vport = vport;
 749	data->cb = *OVS_CB(skb);
 750	data->inner_protocol = skb->inner_protocol;
 751	data->network_offset = orig_network_offset;
 752	data->vlan_tci = skb->vlan_tci;
 
 
 
 753	data->vlan_proto = skb->vlan_proto;
 754	data->mac_proto = mac_proto;
 755	data->l2_len = hlen;
 756	memcpy(&data->l2_data, skb->data, hlen);
 757
 758	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 759	skb_pull(skb, hlen);
 760}
 761
 762static void ovs_fragment(struct net *net, struct vport *vport,
 763			 struct sk_buff *skb, u16 mru,
 764			 struct sw_flow_key *key)
 765{
 766	u16 orig_network_offset = 0;
 767
 768	if (eth_p_mpls(skb->protocol)) {
 769		orig_network_offset = skb_network_offset(skb);
 770		skb->network_header = skb->inner_network_header;
 771	}
 772
 773	if (skb_network_offset(skb) > MAX_L2_LEN) {
 774		OVS_NLERR(1, "L2 header too long to fragment");
 775		goto err;
 776	}
 777
 778	if (key->eth.type == htons(ETH_P_IP)) {
 779		struct dst_entry ovs_dst;
 780		unsigned long orig_dst;
 781
 782		prepare_frag(vport, skb, orig_network_offset,
 783			     ovs_key_mac_proto(key));
 784		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 785			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 786		ovs_dst.dev = vport->dev;
 787
 788		orig_dst = skb->_skb_refdst;
 789		skb_dst_set_noref(skb, &ovs_dst);
 790		IPCB(skb)->frag_max_size = mru;
 791
 792		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 793		refdst_drop(orig_dst);
 794	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 795		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 796		unsigned long orig_dst;
 797		struct rt6_info ovs_rt;
 798
 799		if (!v6ops) {
 800			goto err;
 801		}
 802
 803		prepare_frag(vport, skb, orig_network_offset,
 804			     ovs_key_mac_proto(key));
 805		memset(&ovs_rt, 0, sizeof(ovs_rt));
 806		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 807			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 808		ovs_rt.dst.dev = vport->dev;
 809
 810		orig_dst = skb->_skb_refdst;
 811		skb_dst_set_noref(skb, &ovs_rt.dst);
 812		IP6CB(skb)->frag_max_size = mru;
 813
 814		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 815		refdst_drop(orig_dst);
 816	} else {
 817		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 818			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 819			  vport->dev->mtu);
 820		goto err;
 821	}
 822
 823	return;
 824err:
 825	kfree_skb(skb);
 826}
 827
 828static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 829		      struct sw_flow_key *key)
 830{
 831	struct vport *vport = ovs_vport_rcu(dp, out_port);
 832
 833	if (likely(vport)) {
 834		u16 mru = OVS_CB(skb)->mru;
 835		u32 cutlen = OVS_CB(skb)->cutlen;
 836
 837		if (unlikely(cutlen > 0)) {
 838			if (skb->len - cutlen > ovs_mac_header_len(key))
 839				pskb_trim(skb, skb->len - cutlen);
 840			else
 841				pskb_trim(skb, ovs_mac_header_len(key));
 842		}
 843
 844		if (likely(!mru ||
 845		           (skb->len <= mru + vport->dev->hard_header_len))) {
 846			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 847		} else if (mru <= vport->dev->mtu) {
 848			struct net *net = read_pnet(&dp->net);
 849
 850			ovs_fragment(net, vport, skb, mru, key);
 851		} else {
 852			kfree_skb(skb);
 853		}
 854	} else {
 855		kfree_skb(skb);
 856	}
 857}
 858
 859static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 860			    struct sw_flow_key *key, const struct nlattr *attr,
 861			    const struct nlattr *actions, int actions_len,
 862			    uint32_t cutlen)
 863{
 864	struct dp_upcall_info upcall;
 865	const struct nlattr *a;
 866	int rem;
 867
 868	memset(&upcall, 0, sizeof(upcall));
 869	upcall.cmd = OVS_PACKET_CMD_ACTION;
 870	upcall.mru = OVS_CB(skb)->mru;
 871
 872	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 873		 a = nla_next(a, &rem)) {
 874		switch (nla_type(a)) {
 875		case OVS_USERSPACE_ATTR_USERDATA:
 876			upcall.userdata = a;
 877			break;
 878
 879		case OVS_USERSPACE_ATTR_PID:
 880			upcall.portid = nla_get_u32(a);
 881			break;
 882
 883		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 884			/* Get out tunnel info. */
 885			struct vport *vport;
 886
 887			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 888			if (vport) {
 889				int err;
 890
 891				err = dev_fill_metadata_dst(vport->dev, skb);
 892				if (!err)
 893					upcall.egress_tun_info = skb_tunnel_info(skb);
 894			}
 895
 896			break;
 897		}
 898
 899		case OVS_USERSPACE_ATTR_ACTIONS: {
 900			/* Include actions. */
 901			upcall.actions = actions;
 902			upcall.actions_len = actions_len;
 903			break;
 904		}
 905
 906		} /* End of switch. */
 907	}
 908
 909	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 910}
 911
 912static int sample(struct datapath *dp, struct sk_buff *skb,
 913		  struct sw_flow_key *key, const struct nlattr *attr,
 914		  const struct nlattr *actions, int actions_len)
 915{
 916	const struct nlattr *acts_list = NULL;
 917	const struct nlattr *a;
 918	int rem;
 919	u32 cutlen = 0;
 920
 921	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 922		 a = nla_next(a, &rem)) {
 923		u32 probability;
 924
 925		switch (nla_type(a)) {
 926		case OVS_SAMPLE_ATTR_PROBABILITY:
 927			probability = nla_get_u32(a);
 928			if (!probability || prandom_u32() > probability)
 929				return 0;
 930			break;
 931
 932		case OVS_SAMPLE_ATTR_ACTIONS:
 933			acts_list = a;
 934			break;
 935		}
 936	}
 
 
 
 937
 938	rem = nla_len(acts_list);
 939	a = nla_data(acts_list);
 940
 941	/* Actions list is empty, do nothing */
 942	if (unlikely(!rem))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943		return 0;
 944
 945	/* The only known usage of sample action is having a single user-space
 946	 * action, or having a truncate action followed by a single user-space
 947	 * action. Treat this usage as a special case.
 948	 * The output_userspace() should clone the skb to be sent to the
 949	 * user space. This skb will be consumed by its caller.
 950	 */
 951	if (unlikely(nla_type(a) == OVS_ACTION_ATTR_TRUNC)) {
 952		struct ovs_action_trunc *trunc = nla_data(a);
 953
 954		if (skb->len > trunc->max_len)
 955			cutlen = skb->len - trunc->max_len;
 956
 957		a = nla_next(a, &rem);
 958	}
 959
 960	if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
 961		   nla_is_last(a, rem)))
 962		return output_userspace(dp, skb, key, a, actions,
 963					actions_len, cutlen);
 964
 965	skb = skb_clone(skb, GFP_ATOMIC);
 966	if (!skb)
 967		/* Skip the sample action when out of memory. */
 968		return 0;
 969
 970	if (!add_deferred_actions(skb, key, a)) {
 971		if (net_ratelimit())
 972			pr_warn("%s: deferred actions limit reached, dropping sample action\n",
 973				ovs_dp_name(dp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 974
 975		kfree_skb(skb);
 976	}
 977	return 0;
 978}
 979
 980static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
 981			 const struct nlattr *attr)
 982{
 983	struct ovs_action_hash *hash_act = nla_data(attr);
 984	u32 hash = 0;
 985
 986	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
 987	hash = skb_get_hash(skb);
 988	hash = jhash_1word(hash, hash_act->hash_basis);
 989	if (!hash)
 990		hash = 0x1;
 991
 992	key->ovs_flow_hash = hash;
 993}
 994
 995static int execute_set_action(struct sk_buff *skb,
 996			      struct sw_flow_key *flow_key,
 997			      const struct nlattr *a)
 998{
 999	/* Only tunnel set execution is supported without a mask. */
1000	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1001		struct ovs_tunnel_info *tun = nla_data(a);
1002
1003		skb_dst_drop(skb);
1004		dst_hold((struct dst_entry *)tun->tun_dst);
1005		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1006		return 0;
1007	}
1008
1009	return -EINVAL;
1010}
1011
1012/* Mask is at the midpoint of the data. */
1013#define get_mask(a, type) ((const type)nla_data(a) + 1)
1014
1015static int execute_masked_set_action(struct sk_buff *skb,
1016				     struct sw_flow_key *flow_key,
1017				     const struct nlattr *a)
1018{
1019	int err = 0;
1020
1021	switch (nla_type(a)) {
1022	case OVS_KEY_ATTR_PRIORITY:
1023		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1024			       *get_mask(a, u32 *));
1025		flow_key->phy.priority = skb->priority;
1026		break;
1027
1028	case OVS_KEY_ATTR_SKB_MARK:
1029		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1030		flow_key->phy.skb_mark = skb->mark;
1031		break;
1032
1033	case OVS_KEY_ATTR_TUNNEL_INFO:
1034		/* Masked data not supported for tunnel. */
1035		err = -EINVAL;
1036		break;
1037
1038	case OVS_KEY_ATTR_ETHERNET:
1039		err = set_eth_addr(skb, flow_key, nla_data(a),
1040				   get_mask(a, struct ovs_key_ethernet *));
1041		break;
1042
 
 
 
 
1043	case OVS_KEY_ATTR_IPV4:
1044		err = set_ipv4(skb, flow_key, nla_data(a),
1045			       get_mask(a, struct ovs_key_ipv4 *));
1046		break;
1047
1048	case OVS_KEY_ATTR_IPV6:
1049		err = set_ipv6(skb, flow_key, nla_data(a),
1050			       get_mask(a, struct ovs_key_ipv6 *));
1051		break;
1052
1053	case OVS_KEY_ATTR_TCP:
1054		err = set_tcp(skb, flow_key, nla_data(a),
1055			      get_mask(a, struct ovs_key_tcp *));
1056		break;
1057
1058	case OVS_KEY_ATTR_UDP:
1059		err = set_udp(skb, flow_key, nla_data(a),
1060			      get_mask(a, struct ovs_key_udp *));
1061		break;
1062
1063	case OVS_KEY_ATTR_SCTP:
1064		err = set_sctp(skb, flow_key, nla_data(a),
1065			       get_mask(a, struct ovs_key_sctp *));
1066		break;
1067
1068	case OVS_KEY_ATTR_MPLS:
1069		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1070								    __be32 *));
1071		break;
1072
1073	case OVS_KEY_ATTR_CT_STATE:
1074	case OVS_KEY_ATTR_CT_ZONE:
1075	case OVS_KEY_ATTR_CT_MARK:
1076	case OVS_KEY_ATTR_CT_LABELS:
 
 
1077		err = -EINVAL;
1078		break;
1079	}
1080
1081	return err;
1082}
1083
1084static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1085			  struct sw_flow_key *key,
1086			  const struct nlattr *a, int rem)
1087{
1088	struct deferred_action *da;
1089	int level;
1090
1091	if (!is_flow_key_valid(key)) {
1092		int err;
1093
1094		err = ovs_flow_key_update(skb, key);
1095		if (err)
1096			return err;
1097	}
1098	BUG_ON(!is_flow_key_valid(key));
1099
1100	if (!nla_is_last(a, rem)) {
1101		/* Recirc action is the not the last action
1102		 * of the action list, need to clone the skb.
1103		 */
1104		skb = skb_clone(skb, GFP_ATOMIC);
 
 
 
 
 
 
 
 
1105
1106		/* Skip the recirc action when out of memory, but
1107		 * continue on with the rest of the action list.
 
 
 
 
 
 
 
 
 
 
 
1108		 */
1109		if (!skb)
1110			return 0;
 
 
 
 
 
 
 
1111	}
1112
1113	level = this_cpu_read(exec_actions_level);
1114	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
1115		struct recirc_keys *rks = this_cpu_ptr(recirc_keys);
1116		struct sw_flow_key *recirc_key = &rks->key[level - 1];
1117
1118		*recirc_key = *key;
1119		recirc_key->recirc_id = nla_get_u32(a);
1120		ovs_dp_process_packet(skb, recirc_key);
1121
1122		return 0;
1123	}
1124
1125	da = add_deferred_actions(skb, key, NULL);
1126	if (da) {
1127		da->pkt_key.recirc_id = nla_get_u32(a);
 
 
 
 
 
 
 
 
1128	} else {
1129		kfree_skb(skb);
 
1130
1131		if (net_ratelimit())
1132			pr_warn("%s: deferred action limit reached, drop recirc action\n",
1133				ovs_dp_name(dp));
1134	}
1135
 
 
 
 
 
 
 
 
 
1136	return 0;
1137}
1138
1139/* Execute a list of actions against 'skb'. */
1140static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1141			      struct sw_flow_key *key,
1142			      const struct nlattr *attr, int len)
1143{
1144	/* Every output action needs a separate clone of 'skb', but the common
1145	 * case is just a single output action, so that doing a clone and
1146	 * then freeing the original skbuff is wasteful.  So the following code
1147	 * is slightly obscure just to avoid that.
1148	 */
1149	int prev_port = -1;
1150	const struct nlattr *a;
1151	int rem;
1152
1153	for (a = attr, rem = len; rem > 0;
1154	     a = nla_next(a, &rem)) {
1155		int err = 0;
1156
1157		if (unlikely(prev_port != -1)) {
1158			struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
1159
1160			if (out_skb)
1161				do_output(dp, out_skb, prev_port, key);
 
 
 
 
 
 
 
 
 
 
1162
 
 
 
1163			OVS_CB(skb)->cutlen = 0;
1164			prev_port = -1;
1165		}
1166
1167		switch (nla_type(a)) {
1168		case OVS_ACTION_ATTR_OUTPUT:
1169			prev_port = nla_get_u32(a);
1170			break;
 
1171
1172		case OVS_ACTION_ATTR_TRUNC: {
1173			struct ovs_action_trunc *trunc = nla_data(a);
1174
1175			if (skb->len > trunc->max_len)
1176				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1177			break;
1178		}
1179
1180		case OVS_ACTION_ATTR_USERSPACE:
1181			output_userspace(dp, skb, key, a, attr,
1182						     len, OVS_CB(skb)->cutlen);
1183			OVS_CB(skb)->cutlen = 0;
1184			break;
1185
1186		case OVS_ACTION_ATTR_HASH:
1187			execute_hash(skb, key, a);
1188			break;
1189
1190		case OVS_ACTION_ATTR_PUSH_MPLS:
1191			err = push_mpls(skb, key, nla_data(a));
 
 
 
1192			break;
 
 
 
 
 
 
 
1193
 
 
 
 
1194		case OVS_ACTION_ATTR_POP_MPLS:
1195			err = pop_mpls(skb, key, nla_get_be16(a));
1196			break;
1197
1198		case OVS_ACTION_ATTR_PUSH_VLAN:
1199			err = push_vlan(skb, key, nla_data(a));
1200			break;
1201
1202		case OVS_ACTION_ATTR_POP_VLAN:
1203			err = pop_vlan(skb, key);
1204			break;
1205
1206		case OVS_ACTION_ATTR_RECIRC:
1207			err = execute_recirc(dp, skb, key, a, rem);
1208			if (nla_is_last(a, rem)) {
 
 
1209				/* If this is the last action, the skb has
1210				 * been consumed or freed.
1211				 * Return immediately.
1212				 */
1213				return err;
1214			}
1215			break;
 
1216
1217		case OVS_ACTION_ATTR_SET:
1218			err = execute_set_action(skb, key, nla_data(a));
1219			break;
1220
1221		case OVS_ACTION_ATTR_SET_MASKED:
1222		case OVS_ACTION_ATTR_SET_TO_MASKED:
1223			err = execute_masked_set_action(skb, key, nla_data(a));
1224			break;
1225
1226		case OVS_ACTION_ATTR_SAMPLE:
1227			err = sample(dp, skb, key, a, attr, len);
 
 
 
 
 
1228			break;
 
1229
1230		case OVS_ACTION_ATTR_CT:
1231			if (!is_flow_key_valid(key)) {
1232				err = ovs_flow_key_update(skb, key);
1233				if (err)
1234					return err;
1235			}
1236
1237			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1238					     nla_data(a));
1239
1240			/* Hide stolen IP fragments from user space. */
1241			if (err)
1242				return err == -EINPROGRESS ? 0 : err;
1243			break;
1244
 
 
 
 
1245		case OVS_ACTION_ATTR_PUSH_ETH:
1246			err = push_eth(skb, key, nla_data(a));
1247			break;
1248
1249		case OVS_ACTION_ATTR_POP_ETH:
1250			err = pop_eth(skb, key);
1251			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252		}
1253
1254		if (unlikely(err)) {
1255			kfree_skb(skb);
1256			return err;
1257		}
1258	}
1259
1260	if (prev_port != -1)
1261		do_output(dp, skb, prev_port, key);
1262	else
1263		consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264
 
 
 
 
 
 
 
 
 
 
1265	return 0;
1266}
1267
1268static void process_deferred_actions(struct datapath *dp)
1269{
1270	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1271
1272	/* Do not touch the FIFO in case there is no deferred actions. */
1273	if (action_fifo_is_empty(fifo))
1274		return;
1275
1276	/* Finishing executing all deferred actions. */
1277	do {
1278		struct deferred_action *da = action_fifo_get(fifo);
1279		struct sk_buff *skb = da->skb;
1280		struct sw_flow_key *key = &da->pkt_key;
1281		const struct nlattr *actions = da->actions;
 
1282
1283		if (actions)
1284			do_execute_actions(dp, skb, key, actions,
1285					   nla_len(actions));
1286		else
1287			ovs_dp_process_packet(skb, key);
1288	} while (!action_fifo_is_empty(fifo));
1289
1290	/* Reset FIFO for the next packet.  */
1291	action_fifo_init(fifo);
1292}
1293
1294/* Execute a list of actions against 'skb'. */
1295int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1296			const struct sw_flow_actions *acts,
1297			struct sw_flow_key *key)
1298{
1299	int err, level;
1300
1301	level = __this_cpu_inc_return(exec_actions_level);
1302	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1303		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1304				     ovs_dp_name(dp));
1305		kfree_skb(skb);
1306		err = -ENETDOWN;
1307		goto out;
1308	}
1309
 
1310	err = do_execute_actions(dp, skb, key,
1311				 acts->actions, acts->actions_len);
1312
1313	if (level == 1)
1314		process_deferred_actions(dp);
1315
1316out:
1317	__this_cpu_dec(exec_actions_level);
1318	return err;
1319}
1320
1321int action_fifos_init(void)
1322{
1323	action_fifos = alloc_percpu(struct action_fifo);
1324	if (!action_fifos)
1325		return -ENOMEM;
1326
1327	recirc_keys = alloc_percpu(struct recirc_keys);
1328	if (!recirc_keys) {
1329		free_percpu(action_fifos);
1330		return -ENOMEM;
1331	}
1332
1333	return 0;
1334}
1335
1336void action_fifos_exit(void)
1337{
1338	free_percpu(action_fifos);
1339	free_percpu(recirc_keys);
1340}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
  12#include <linux/netfilter_ipv6.h>
  13#include <linux/sctp.h>
  14#include <linux/tcp.h>
  15#include <linux/udp.h>
  16#include <linux/in6.h>
  17#include <linux/if_arp.h>
  18#include <linux/if_vlan.h>
  19
  20#include <net/dst.h>
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27#include <net/sctp/checksum.h>
  28
  29#include "datapath.h"
  30#include "flow.h"
  31#include "conntrack.h"
  32#include "vport.h"
  33#include "flow_netlink.h"
 
 
 
  34
  35struct deferred_action {
  36	struct sk_buff *skb;
  37	const struct nlattr *actions;
  38	int actions_len;
  39
  40	/* Store pkt_key clone when creating deferred action. */
  41	struct sw_flow_key pkt_key;
  42};
  43
  44#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  45struct ovs_frag_data {
  46	unsigned long dst;
  47	struct vport *vport;
  48	struct ovs_skb_cb cb;
  49	__be16 inner_protocol;
  50	u16 network_offset;	/* valid only for MPLS */
  51	u16 vlan_tci;
  52	__be16 vlan_proto;
  53	unsigned int l2_len;
  54	u8 mac_proto;
  55	u8 l2_data[MAX_L2_LEN];
  56};
  57
  58static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  59
  60#define DEFERRED_ACTION_FIFO_SIZE 10
  61#define OVS_RECURSION_LIMIT 5
  62#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  63struct action_fifo {
  64	int head;
  65	int tail;
  66	/* Deferred action fifo queue storage. */
  67	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  68};
  69
  70struct action_flow_keys {
  71	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  72};
  73
  74static struct action_fifo __percpu *action_fifos;
  75static struct action_flow_keys __percpu *flow_keys;
  76static DEFINE_PER_CPU(int, exec_actions_level);
  77
  78/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  79 * space. Return NULL if out of key spaces.
  80 */
  81static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  82{
  83	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  84	int level = this_cpu_read(exec_actions_level);
  85	struct sw_flow_key *key = NULL;
  86
  87	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  88		key = &keys->key[level - 1];
  89		*key = *key_;
  90	}
  91
  92	return key;
  93}
  94
  95static void action_fifo_init(struct action_fifo *fifo)
  96{
  97	fifo->head = 0;
  98	fifo->tail = 0;
  99}
 100
 101static bool action_fifo_is_empty(const struct action_fifo *fifo)
 102{
 103	return (fifo->head == fifo->tail);
 104}
 105
 106static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 107{
 108	if (action_fifo_is_empty(fifo))
 109		return NULL;
 110
 111	return &fifo->fifo[fifo->tail++];
 112}
 113
 114static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 115{
 116	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 117		return NULL;
 118
 119	return &fifo->fifo[fifo->head++];
 120}
 121
 122/* Return true if fifo is not full */
 123static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 124				    const struct sw_flow_key *key,
 125				    const struct nlattr *actions,
 126				    const int actions_len)
 127{
 128	struct action_fifo *fifo;
 129	struct deferred_action *da;
 130
 131	fifo = this_cpu_ptr(action_fifos);
 132	da = action_fifo_put(fifo);
 133	if (da) {
 134		da->skb = skb;
 135		da->actions = actions;
 136		da->actions_len = actions_len;
 137		da->pkt_key = *key;
 138	}
 139
 140	return da;
 141}
 142
 143static void invalidate_flow_key(struct sw_flow_key *key)
 144{
 145	key->mac_proto |= SW_FLOW_KEY_INVALID;
 146}
 147
 148static bool is_flow_key_valid(const struct sw_flow_key *key)
 149{
 150	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 151}
 152
 153static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 154			 struct sw_flow_key *key,
 155			 u32 recirc_id,
 156			 const struct nlattr *actions, int len,
 157			 bool last, bool clone_flow_key);
 
 
 
 
 158
 159static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 160			      struct sw_flow_key *key,
 161			      const struct nlattr *attr, int len);
 162
 163static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 164		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
 165{
 166	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167
 168	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
 169	if (err)
 170		return err;
 171
 172	if (!mac_len)
 173		key->mac_proto = MAC_PROTO_NONE;
 
 174
 175	invalidate_flow_key(key);
 176	return 0;
 177}
 178
 179static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 180		    const __be16 ethertype)
 181{
 182	int err;
 183
 184	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
 185			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
 186	if (err)
 187		return err;
 188
 189	if (ethertype == htons(ETH_P_TEB))
 190		key->mac_proto = MAC_PROTO_ETHERNET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192	invalidate_flow_key(key);
 193	return 0;
 194}
 195
 196static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 197		    const __be32 *mpls_lse, const __be32 *mask)
 198{
 199	struct mpls_shim_hdr *stack;
 200	__be32 lse;
 201	int err;
 202
 
 
 
 
 203	stack = mpls_hdr(skb);
 204	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 205	err = skb_mpls_update_lse(skb, lse);
 206	if (err)
 207		return err;
 
 
 
 208
 209	flow_key->mpls.lse[0] = lse;
 
 210	return 0;
 211}
 212
 213static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 214{
 215	int err;
 216
 217	err = skb_vlan_pop(skb);
 218	if (skb_vlan_tag_present(skb)) {
 219		invalidate_flow_key(key);
 220	} else {
 221		key->eth.vlan.tci = 0;
 222		key->eth.vlan.tpid = 0;
 223	}
 224	return err;
 225}
 226
 227static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 228		     const struct ovs_action_push_vlan *vlan)
 229{
 230	if (skb_vlan_tag_present(skb)) {
 231		invalidate_flow_key(key);
 232	} else {
 233		key->eth.vlan.tci = vlan->vlan_tci;
 234		key->eth.vlan.tpid = vlan->vlan_tpid;
 235	}
 236	return skb_vlan_push(skb, vlan->vlan_tpid,
 237			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 238}
 239
 240/* 'src' is already properly masked. */
 241static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 242{
 243	u16 *dst = (u16 *)dst_;
 244	const u16 *src = (const u16 *)src_;
 245	const u16 *mask = (const u16 *)mask_;
 246
 247	OVS_SET_MASKED(dst[0], src[0], mask[0]);
 248	OVS_SET_MASKED(dst[1], src[1], mask[1]);
 249	OVS_SET_MASKED(dst[2], src[2], mask[2]);
 250}
 251
 252static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 253			const struct ovs_key_ethernet *key,
 254			const struct ovs_key_ethernet *mask)
 255{
 256	int err;
 257
 258	err = skb_ensure_writable(skb, ETH_HLEN);
 259	if (unlikely(err))
 260		return err;
 261
 262	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 263
 264	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 265			       mask->eth_src);
 266	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 267			       mask->eth_dst);
 268
 269	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 270
 271	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 272	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 273	return 0;
 274}
 275
 276/* pop_eth does not support VLAN packets as this action is never called
 277 * for them.
 278 */
 279static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 280{
 281	skb_pull_rcsum(skb, ETH_HLEN);
 282	skb_reset_mac_header(skb);
 283	skb_reset_mac_len(skb);
 284
 285	/* safe right before invalidate_flow_key */
 286	key->mac_proto = MAC_PROTO_NONE;
 287	invalidate_flow_key(key);
 288	return 0;
 289}
 290
 291static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 292		    const struct ovs_action_push_eth *ethh)
 293{
 294	struct ethhdr *hdr;
 295
 296	/* Add the new Ethernet header */
 297	if (skb_cow_head(skb, ETH_HLEN) < 0)
 298		return -ENOMEM;
 299
 300	skb_push(skb, ETH_HLEN);
 301	skb_reset_mac_header(skb);
 302	skb_reset_mac_len(skb);
 303
 304	hdr = eth_hdr(skb);
 305	ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 306	ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 307	hdr->h_proto = skb->protocol;
 308
 309	skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 310
 311	/* safe right before invalidate_flow_key */
 312	key->mac_proto = MAC_PROTO_ETHERNET;
 313	invalidate_flow_key(key);
 314	return 0;
 315}
 316
 317static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
 318		    const struct nshhdr *nh)
 319{
 320	int err;
 321
 322	err = nsh_push(skb, nh);
 323	if (err)
 324		return err;
 325
 326	/* safe right before invalidate_flow_key */
 327	key->mac_proto = MAC_PROTO_NONE;
 328	invalidate_flow_key(key);
 329	return 0;
 330}
 331
 332static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 333{
 334	int err;
 335
 336	err = nsh_pop(skb);
 337	if (err)
 338		return err;
 339
 340	/* safe right before invalidate_flow_key */
 341	if (skb->protocol == htons(ETH_P_TEB))
 342		key->mac_proto = MAC_PROTO_ETHERNET;
 343	else
 344		key->mac_proto = MAC_PROTO_NONE;
 345	invalidate_flow_key(key);
 346	return 0;
 347}
 348
 349static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 350				  __be32 addr, __be32 new_addr)
 351{
 352	int transport_len = skb->len - skb_transport_offset(skb);
 353
 354	if (nh->frag_off & htons(IP_OFFSET))
 355		return;
 356
 357	if (nh->protocol == IPPROTO_TCP) {
 358		if (likely(transport_len >= sizeof(struct tcphdr)))
 359			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 360						 addr, new_addr, true);
 361	} else if (nh->protocol == IPPROTO_UDP) {
 362		if (likely(transport_len >= sizeof(struct udphdr))) {
 363			struct udphdr *uh = udp_hdr(skb);
 364
 365			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 366				inet_proto_csum_replace4(&uh->check, skb,
 367							 addr, new_addr, true);
 368				if (!uh->check)
 369					uh->check = CSUM_MANGLED_0;
 370			}
 371		}
 372	}
 373}
 374
 375static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 376			__be32 *addr, __be32 new_addr)
 377{
 378	update_ip_l4_checksum(skb, nh, *addr, new_addr);
 379	csum_replace4(&nh->check, *addr, new_addr);
 380	skb_clear_hash(skb);
 381	*addr = new_addr;
 382}
 383
 384static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 385				 __be32 addr[4], const __be32 new_addr[4])
 386{
 387	int transport_len = skb->len - skb_transport_offset(skb);
 388
 389	if (l4_proto == NEXTHDR_TCP) {
 390		if (likely(transport_len >= sizeof(struct tcphdr)))
 391			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 392						  addr, new_addr, true);
 393	} else if (l4_proto == NEXTHDR_UDP) {
 394		if (likely(transport_len >= sizeof(struct udphdr))) {
 395			struct udphdr *uh = udp_hdr(skb);
 396
 397			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 398				inet_proto_csum_replace16(&uh->check, skb,
 399							  addr, new_addr, true);
 400				if (!uh->check)
 401					uh->check = CSUM_MANGLED_0;
 402			}
 403		}
 404	} else if (l4_proto == NEXTHDR_ICMP) {
 405		if (likely(transport_len >= sizeof(struct icmp6hdr)))
 406			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 407						  skb, addr, new_addr, true);
 408	}
 409}
 410
 411static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 412			   const __be32 mask[4], __be32 masked[4])
 413{
 414	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 415	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 416	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 417	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 418}
 419
 420static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 421			  __be32 addr[4], const __be32 new_addr[4],
 422			  bool recalculate_csum)
 423{
 424	if (recalculate_csum)
 425		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 426
 427	skb_clear_hash(skb);
 428	memcpy(addr, new_addr, sizeof(__be32[4]));
 429}
 430
 431static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 432{
 433	/* Bits 21-24 are always unmasked, so this retains their values. */
 434	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 435	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 436	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 437}
 438
 439static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 440		       u8 mask)
 441{
 442	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 443
 444	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 445	nh->ttl = new_ttl;
 446}
 447
 448static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 449		    const struct ovs_key_ipv4 *key,
 450		    const struct ovs_key_ipv4 *mask)
 451{
 452	struct iphdr *nh;
 453	__be32 new_addr;
 454	int err;
 455
 456	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 457				  sizeof(struct iphdr));
 458	if (unlikely(err))
 459		return err;
 460
 461	nh = ip_hdr(skb);
 462
 463	/* Setting an IP addresses is typically only a side effect of
 464	 * matching on them in the current userspace implementation, so it
 465	 * makes sense to check if the value actually changed.
 466	 */
 467	if (mask->ipv4_src) {
 468		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 469
 470		if (unlikely(new_addr != nh->saddr)) {
 471			set_ip_addr(skb, nh, &nh->saddr, new_addr);
 472			flow_key->ipv4.addr.src = new_addr;
 473		}
 474	}
 475	if (mask->ipv4_dst) {
 476		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 477
 478		if (unlikely(new_addr != nh->daddr)) {
 479			set_ip_addr(skb, nh, &nh->daddr, new_addr);
 480			flow_key->ipv4.addr.dst = new_addr;
 481		}
 482	}
 483	if (mask->ipv4_tos) {
 484		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 485		flow_key->ip.tos = nh->tos;
 486	}
 487	if (mask->ipv4_ttl) {
 488		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 489		flow_key->ip.ttl = nh->ttl;
 490	}
 491
 492	return 0;
 493}
 494
 495static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 496{
 497	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 498}
 499
 500static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 501		    const struct ovs_key_ipv6 *key,
 502		    const struct ovs_key_ipv6 *mask)
 503{
 504	struct ipv6hdr *nh;
 505	int err;
 506
 507	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 508				  sizeof(struct ipv6hdr));
 509	if (unlikely(err))
 510		return err;
 511
 512	nh = ipv6_hdr(skb);
 513
 514	/* Setting an IP addresses is typically only a side effect of
 515	 * matching on them in the current userspace implementation, so it
 516	 * makes sense to check if the value actually changed.
 517	 */
 518	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 519		__be32 *saddr = (__be32 *)&nh->saddr;
 520		__be32 masked[4];
 521
 522		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 523
 524		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 525			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 526				      true);
 527			memcpy(&flow_key->ipv6.addr.src, masked,
 528			       sizeof(flow_key->ipv6.addr.src));
 529		}
 530	}
 531	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 532		unsigned int offset = 0;
 533		int flags = IP6_FH_F_SKIP_RH;
 534		bool recalc_csum = true;
 535		__be32 *daddr = (__be32 *)&nh->daddr;
 536		__be32 masked[4];
 537
 538		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 539
 540		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 541			if (ipv6_ext_hdr(nh->nexthdr))
 542				recalc_csum = (ipv6_find_hdr(skb, &offset,
 543							     NEXTHDR_ROUTING,
 544							     NULL, &flags)
 545					       != NEXTHDR_ROUTING);
 546
 547			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 548				      recalc_csum);
 549			memcpy(&flow_key->ipv6.addr.dst, masked,
 550			       sizeof(flow_key->ipv6.addr.dst));
 551		}
 552	}
 553	if (mask->ipv6_tclass) {
 554		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 555		flow_key->ip.tos = ipv6_get_dsfield(nh);
 556	}
 557	if (mask->ipv6_label) {
 558		set_ipv6_fl(nh, ntohl(key->ipv6_label),
 559			    ntohl(mask->ipv6_label));
 560		flow_key->ipv6.label =
 561		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 562	}
 563	if (mask->ipv6_hlimit) {
 564		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 565			       mask->ipv6_hlimit);
 566		flow_key->ip.ttl = nh->hop_limit;
 567	}
 568	return 0;
 569}
 570
 571static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 572		   const struct nlattr *a)
 573{
 574	struct nshhdr *nh;
 575	size_t length;
 576	int err;
 577	u8 flags;
 578	u8 ttl;
 579	int i;
 580
 581	struct ovs_key_nsh key;
 582	struct ovs_key_nsh mask;
 583
 584	err = nsh_key_from_nlattr(a, &key, &mask);
 585	if (err)
 586		return err;
 587
 588	/* Make sure the NSH base header is there */
 589	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 590		return -ENOMEM;
 591
 592	nh = nsh_hdr(skb);
 593	length = nsh_hdr_len(nh);
 594
 595	/* Make sure the whole NSH header is there */
 596	err = skb_ensure_writable(skb, skb_network_offset(skb) +
 597				       length);
 598	if (unlikely(err))
 599		return err;
 600
 601	nh = nsh_hdr(skb);
 602	skb_postpull_rcsum(skb, nh, length);
 603	flags = nsh_get_flags(nh);
 604	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 605	flow_key->nsh.base.flags = flags;
 606	ttl = nsh_get_ttl(nh);
 607	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 608	flow_key->nsh.base.ttl = ttl;
 609	nsh_set_flags_and_ttl(nh, flags, ttl);
 610	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 611				  mask.base.path_hdr);
 612	flow_key->nsh.base.path_hdr = nh->path_hdr;
 613	switch (nh->mdtype) {
 614	case NSH_M_TYPE1:
 615		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 616			nh->md1.context[i] =
 617			    OVS_MASKED(nh->md1.context[i], key.context[i],
 618				       mask.context[i]);
 619		}
 620		memcpy(flow_key->nsh.context, nh->md1.context,
 621		       sizeof(nh->md1.context));
 622		break;
 623	case NSH_M_TYPE2:
 624		memset(flow_key->nsh.context, 0,
 625		       sizeof(flow_key->nsh.context));
 626		break;
 627	default:
 628		return -EINVAL;
 629	}
 630	skb_postpush_rcsum(skb, nh, length);
 631	return 0;
 632}
 633
 634/* Must follow skb_ensure_writable() since that can move the skb data. */
 635static void set_tp_port(struct sk_buff *skb, __be16 *port,
 636			__be16 new_port, __sum16 *check)
 637{
 638	inet_proto_csum_replace2(check, skb, *port, new_port, false);
 639	*port = new_port;
 640}
 641
 642static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 643		   const struct ovs_key_udp *key,
 644		   const struct ovs_key_udp *mask)
 645{
 646	struct udphdr *uh;
 647	__be16 src, dst;
 648	int err;
 649
 650	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 651				  sizeof(struct udphdr));
 652	if (unlikely(err))
 653		return err;
 654
 655	uh = udp_hdr(skb);
 656	/* Either of the masks is non-zero, so do not bother checking them. */
 657	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 658	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 659
 660	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 661		if (likely(src != uh->source)) {
 662			set_tp_port(skb, &uh->source, src, &uh->check);
 663			flow_key->tp.src = src;
 664		}
 665		if (likely(dst != uh->dest)) {
 666			set_tp_port(skb, &uh->dest, dst, &uh->check);
 667			flow_key->tp.dst = dst;
 668		}
 669
 670		if (unlikely(!uh->check))
 671			uh->check = CSUM_MANGLED_0;
 672	} else {
 673		uh->source = src;
 674		uh->dest = dst;
 675		flow_key->tp.src = src;
 676		flow_key->tp.dst = dst;
 677	}
 678
 679	skb_clear_hash(skb);
 680
 681	return 0;
 682}
 683
 684static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 685		   const struct ovs_key_tcp *key,
 686		   const struct ovs_key_tcp *mask)
 687{
 688	struct tcphdr *th;
 689	__be16 src, dst;
 690	int err;
 691
 692	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 693				  sizeof(struct tcphdr));
 694	if (unlikely(err))
 695		return err;
 696
 697	th = tcp_hdr(skb);
 698	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 699	if (likely(src != th->source)) {
 700		set_tp_port(skb, &th->source, src, &th->check);
 701		flow_key->tp.src = src;
 702	}
 703	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 704	if (likely(dst != th->dest)) {
 705		set_tp_port(skb, &th->dest, dst, &th->check);
 706		flow_key->tp.dst = dst;
 707	}
 708	skb_clear_hash(skb);
 709
 710	return 0;
 711}
 712
 713static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 714		    const struct ovs_key_sctp *key,
 715		    const struct ovs_key_sctp *mask)
 716{
 717	unsigned int sctphoff = skb_transport_offset(skb);
 718	struct sctphdr *sh;
 719	__le32 old_correct_csum, new_csum, old_csum;
 720	int err;
 721
 722	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 723	if (unlikely(err))
 724		return err;
 725
 726	sh = sctp_hdr(skb);
 727	old_csum = sh->checksum;
 728	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 729
 730	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 731	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 732
 733	new_csum = sctp_compute_cksum(skb, sctphoff);
 734
 735	/* Carry any checksum errors through. */
 736	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 737
 738	skb_clear_hash(skb);
 739	flow_key->tp.src = sh->source;
 740	flow_key->tp.dst = sh->dest;
 741
 742	return 0;
 743}
 744
 745static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 746{
 747	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 748	struct vport *vport = data->vport;
 749
 750	if (skb_cow_head(skb, data->l2_len) < 0) {
 751		kfree_skb(skb);
 752		return -ENOMEM;
 753	}
 754
 755	__skb_dst_copy(skb, data->dst);
 756	*OVS_CB(skb) = data->cb;
 757	skb->inner_protocol = data->inner_protocol;
 758	if (data->vlan_tci & VLAN_CFI_MASK)
 759		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 760	else
 761		__vlan_hwaccel_clear_tag(skb);
 762
 763	/* Reconstruct the MAC header.  */
 764	skb_push(skb, data->l2_len);
 765	memcpy(skb->data, &data->l2_data, data->l2_len);
 766	skb_postpush_rcsum(skb, skb->data, data->l2_len);
 767	skb_reset_mac_header(skb);
 768
 769	if (eth_p_mpls(skb->protocol)) {
 770		skb->inner_network_header = skb->network_header;
 771		skb_set_network_header(skb, data->network_offset);
 772		skb_reset_mac_len(skb);
 773	}
 774
 775	ovs_vport_send(vport, skb, data->mac_proto);
 776	return 0;
 777}
 778
 779static unsigned int
 780ovs_dst_get_mtu(const struct dst_entry *dst)
 781{
 782	return dst->dev->mtu;
 783}
 784
 785static struct dst_ops ovs_dst_ops = {
 786	.family = AF_UNSPEC,
 787	.mtu = ovs_dst_get_mtu,
 788};
 789
 790/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 791 * ovs_vport_output(), which is called once per fragmented packet.
 792 */
 793static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 794			 u16 orig_network_offset, u8 mac_proto)
 795{
 796	unsigned int hlen = skb_network_offset(skb);
 797	struct ovs_frag_data *data;
 798
 799	data = this_cpu_ptr(&ovs_frag_data_storage);
 800	data->dst = skb->_skb_refdst;
 801	data->vport = vport;
 802	data->cb = *OVS_CB(skb);
 803	data->inner_protocol = skb->inner_protocol;
 804	data->network_offset = orig_network_offset;
 805	if (skb_vlan_tag_present(skb))
 806		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 807	else
 808		data->vlan_tci = 0;
 809	data->vlan_proto = skb->vlan_proto;
 810	data->mac_proto = mac_proto;
 811	data->l2_len = hlen;
 812	memcpy(&data->l2_data, skb->data, hlen);
 813
 814	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 815	skb_pull(skb, hlen);
 816}
 817
 818static void ovs_fragment(struct net *net, struct vport *vport,
 819			 struct sk_buff *skb, u16 mru,
 820			 struct sw_flow_key *key)
 821{
 822	u16 orig_network_offset = 0;
 823
 824	if (eth_p_mpls(skb->protocol)) {
 825		orig_network_offset = skb_network_offset(skb);
 826		skb->network_header = skb->inner_network_header;
 827	}
 828
 829	if (skb_network_offset(skb) > MAX_L2_LEN) {
 830		OVS_NLERR(1, "L2 header too long to fragment");
 831		goto err;
 832	}
 833
 834	if (key->eth.type == htons(ETH_P_IP)) {
 835		struct dst_entry ovs_dst;
 836		unsigned long orig_dst;
 837
 838		prepare_frag(vport, skb, orig_network_offset,
 839			     ovs_key_mac_proto(key));
 840		dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 841			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 842		ovs_dst.dev = vport->dev;
 843
 844		orig_dst = skb->_skb_refdst;
 845		skb_dst_set_noref(skb, &ovs_dst);
 846		IPCB(skb)->frag_max_size = mru;
 847
 848		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 849		refdst_drop(orig_dst);
 850	} else if (key->eth.type == htons(ETH_P_IPV6)) {
 851		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 852		unsigned long orig_dst;
 853		struct rt6_info ovs_rt;
 854
 855		if (!v6ops)
 856			goto err;
 
 857
 858		prepare_frag(vport, skb, orig_network_offset,
 859			     ovs_key_mac_proto(key));
 860		memset(&ovs_rt, 0, sizeof(ovs_rt));
 861		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 862			 DST_OBSOLETE_NONE, DST_NOCOUNT);
 863		ovs_rt.dst.dev = vport->dev;
 864
 865		orig_dst = skb->_skb_refdst;
 866		skb_dst_set_noref(skb, &ovs_rt.dst);
 867		IP6CB(skb)->frag_max_size = mru;
 868
 869		v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 870		refdst_drop(orig_dst);
 871	} else {
 872		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 873			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
 874			  vport->dev->mtu);
 875		goto err;
 876	}
 877
 878	return;
 879err:
 880	kfree_skb(skb);
 881}
 882
 883static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 884		      struct sw_flow_key *key)
 885{
 886	struct vport *vport = ovs_vport_rcu(dp, out_port);
 887
 888	if (likely(vport)) {
 889		u16 mru = OVS_CB(skb)->mru;
 890		u32 cutlen = OVS_CB(skb)->cutlen;
 891
 892		if (unlikely(cutlen > 0)) {
 893			if (skb->len - cutlen > ovs_mac_header_len(key))
 894				pskb_trim(skb, skb->len - cutlen);
 895			else
 896				pskb_trim(skb, ovs_mac_header_len(key));
 897		}
 898
 899		if (likely(!mru ||
 900		           (skb->len <= mru + vport->dev->hard_header_len))) {
 901			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 902		} else if (mru <= vport->dev->mtu) {
 903			struct net *net = read_pnet(&dp->net);
 904
 905			ovs_fragment(net, vport, skb, mru, key);
 906		} else {
 907			kfree_skb(skb);
 908		}
 909	} else {
 910		kfree_skb(skb);
 911	}
 912}
 913
 914static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 915			    struct sw_flow_key *key, const struct nlattr *attr,
 916			    const struct nlattr *actions, int actions_len,
 917			    uint32_t cutlen)
 918{
 919	struct dp_upcall_info upcall;
 920	const struct nlattr *a;
 921	int rem;
 922
 923	memset(&upcall, 0, sizeof(upcall));
 924	upcall.cmd = OVS_PACKET_CMD_ACTION;
 925	upcall.mru = OVS_CB(skb)->mru;
 926
 927	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 928		 a = nla_next(a, &rem)) {
 929		switch (nla_type(a)) {
 930		case OVS_USERSPACE_ATTR_USERDATA:
 931			upcall.userdata = a;
 932			break;
 933
 934		case OVS_USERSPACE_ATTR_PID:
 935			upcall.portid = nla_get_u32(a);
 936			break;
 937
 938		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 939			/* Get out tunnel info. */
 940			struct vport *vport;
 941
 942			vport = ovs_vport_rcu(dp, nla_get_u32(a));
 943			if (vport) {
 944				int err;
 945
 946				err = dev_fill_metadata_dst(vport->dev, skb);
 947				if (!err)
 948					upcall.egress_tun_info = skb_tunnel_info(skb);
 949			}
 950
 951			break;
 952		}
 953
 954		case OVS_USERSPACE_ATTR_ACTIONS: {
 955			/* Include actions. */
 956			upcall.actions = actions;
 957			upcall.actions_len = actions_len;
 958			break;
 959		}
 960
 961		} /* End of switch. */
 962	}
 963
 964	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 965}
 966
 967static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
 968				     struct sw_flow_key *key,
 969				     const struct nlattr *attr, bool last)
 970{
 971	/* The first action is always 'OVS_DEC_TTL_ATTR_ARG'. */
 972	struct nlattr *dec_ttl_arg = nla_data(attr);
 973	int rem = nla_len(attr);
 
 
 
 
 
 974
 975	if (nla_len(dec_ttl_arg)) {
 976		struct nlattr *actions = nla_next(dec_ttl_arg, &rem);
 
 
 
 
 977
 978		if (actions)
 979			return clone_execute(dp, skb, key, 0, actions, rem,
 980					     last, false);
 
 981	}
 982	consume_skb(skb);
 983	return 0;
 984}
 985
 986/* When 'last' is true, sample() should always consume the 'skb'.
 987 * Otherwise, sample() should keep 'skb' intact regardless what
 988 * actions are executed within sample().
 989 */
 990static int sample(struct datapath *dp, struct sk_buff *skb,
 991		  struct sw_flow_key *key, const struct nlattr *attr,
 992		  bool last)
 993{
 994	struct nlattr *actions;
 995	struct nlattr *sample_arg;
 996	int rem = nla_len(attr);
 997	const struct sample_arg *arg;
 998	bool clone_flow_key;
 999
1000	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1001	sample_arg = nla_data(attr);
1002	arg = nla_data(sample_arg);
1003	actions = nla_next(sample_arg, &rem);
1004
1005	if ((arg->probability != U32_MAX) &&
1006	    (!arg->probability || prandom_u32() > arg->probability)) {
1007		if (last)
1008			consume_skb(skb);
1009		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010	}
1011
1012	clone_flow_key = !arg->exec;
1013	return clone_execute(dp, skb, key, 0, actions, rem, last,
1014			     clone_flow_key);
1015}
 
 
 
 
 
1016
1017/* When 'last' is true, clone() should always consume the 'skb'.
1018 * Otherwise, clone() should keep 'skb' intact regardless what
1019 * actions are executed within clone().
1020 */
1021static int clone(struct datapath *dp, struct sk_buff *skb,
1022		 struct sw_flow_key *key, const struct nlattr *attr,
1023		 bool last)
1024{
1025	struct nlattr *actions;
1026	struct nlattr *clone_arg;
1027	int rem = nla_len(attr);
1028	bool dont_clone_flow_key;
1029
1030	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1031	clone_arg = nla_data(attr);
1032	dont_clone_flow_key = nla_get_u32(clone_arg);
1033	actions = nla_next(clone_arg, &rem);
1034
1035	return clone_execute(dp, skb, key, 0, actions, rem, last,
1036			     !dont_clone_flow_key);
 
1037}
1038
1039static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1040			 const struct nlattr *attr)
1041{
1042	struct ovs_action_hash *hash_act = nla_data(attr);
1043	u32 hash = 0;
1044
1045	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1046	hash = skb_get_hash(skb);
1047	hash = jhash_1word(hash, hash_act->hash_basis);
1048	if (!hash)
1049		hash = 0x1;
1050
1051	key->ovs_flow_hash = hash;
1052}
1053
1054static int execute_set_action(struct sk_buff *skb,
1055			      struct sw_flow_key *flow_key,
1056			      const struct nlattr *a)
1057{
1058	/* Only tunnel set execution is supported without a mask. */
1059	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1060		struct ovs_tunnel_info *tun = nla_data(a);
1061
1062		skb_dst_drop(skb);
1063		dst_hold((struct dst_entry *)tun->tun_dst);
1064		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1065		return 0;
1066	}
1067
1068	return -EINVAL;
1069}
1070
1071/* Mask is at the midpoint of the data. */
1072#define get_mask(a, type) ((const type)nla_data(a) + 1)
1073
1074static int execute_masked_set_action(struct sk_buff *skb,
1075				     struct sw_flow_key *flow_key,
1076				     const struct nlattr *a)
1077{
1078	int err = 0;
1079
1080	switch (nla_type(a)) {
1081	case OVS_KEY_ATTR_PRIORITY:
1082		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1083			       *get_mask(a, u32 *));
1084		flow_key->phy.priority = skb->priority;
1085		break;
1086
1087	case OVS_KEY_ATTR_SKB_MARK:
1088		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1089		flow_key->phy.skb_mark = skb->mark;
1090		break;
1091
1092	case OVS_KEY_ATTR_TUNNEL_INFO:
1093		/* Masked data not supported for tunnel. */
1094		err = -EINVAL;
1095		break;
1096
1097	case OVS_KEY_ATTR_ETHERNET:
1098		err = set_eth_addr(skb, flow_key, nla_data(a),
1099				   get_mask(a, struct ovs_key_ethernet *));
1100		break;
1101
1102	case OVS_KEY_ATTR_NSH:
1103		err = set_nsh(skb, flow_key, a);
1104		break;
1105
1106	case OVS_KEY_ATTR_IPV4:
1107		err = set_ipv4(skb, flow_key, nla_data(a),
1108			       get_mask(a, struct ovs_key_ipv4 *));
1109		break;
1110
1111	case OVS_KEY_ATTR_IPV6:
1112		err = set_ipv6(skb, flow_key, nla_data(a),
1113			       get_mask(a, struct ovs_key_ipv6 *));
1114		break;
1115
1116	case OVS_KEY_ATTR_TCP:
1117		err = set_tcp(skb, flow_key, nla_data(a),
1118			      get_mask(a, struct ovs_key_tcp *));
1119		break;
1120
1121	case OVS_KEY_ATTR_UDP:
1122		err = set_udp(skb, flow_key, nla_data(a),
1123			      get_mask(a, struct ovs_key_udp *));
1124		break;
1125
1126	case OVS_KEY_ATTR_SCTP:
1127		err = set_sctp(skb, flow_key, nla_data(a),
1128			       get_mask(a, struct ovs_key_sctp *));
1129		break;
1130
1131	case OVS_KEY_ATTR_MPLS:
1132		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1133								    __be32 *));
1134		break;
1135
1136	case OVS_KEY_ATTR_CT_STATE:
1137	case OVS_KEY_ATTR_CT_ZONE:
1138	case OVS_KEY_ATTR_CT_MARK:
1139	case OVS_KEY_ATTR_CT_LABELS:
1140	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1141	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1142		err = -EINVAL;
1143		break;
1144	}
1145
1146	return err;
1147}
1148
1149static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1150			  struct sw_flow_key *key,
1151			  const struct nlattr *a, bool last)
1152{
1153	u32 recirc_id;
 
1154
1155	if (!is_flow_key_valid(key)) {
1156		int err;
1157
1158		err = ovs_flow_key_update(skb, key);
1159		if (err)
1160			return err;
1161	}
1162	BUG_ON(!is_flow_key_valid(key));
1163
1164	recirc_id = nla_get_u32(a);
1165	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1166}
1167
1168static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1169				 struct sw_flow_key *key,
1170				 const struct nlattr *attr, bool last)
1171{
1172	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1173	const struct nlattr *actions, *cpl_arg;
1174	int len, max_len, rem = nla_len(attr);
1175	const struct check_pkt_len_arg *arg;
1176	bool clone_flow_key;
1177
1178	/* The first netlink attribute in 'attr' is always
1179	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1180	 */
1181	cpl_arg = nla_data(attr);
1182	arg = nla_data(cpl_arg);
1183
1184	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1185	max_len = arg->pkt_len;
1186
1187	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1188	    len <= max_len) {
1189		/* Second netlink attribute in 'attr' is always
1190		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1191		 */
1192		actions = nla_next(cpl_arg, &rem);
1193		clone_flow_key = !arg->exec_for_lesser_equal;
1194	} else {
1195		/* Third netlink attribute in 'attr' is always
1196		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1197		 */
1198		actions = nla_next(cpl_arg, &rem);
1199		actions = nla_next(actions, &rem);
1200		clone_flow_key = !arg->exec_for_greater;
1201	}
1202
1203	return clone_execute(dp, skb, key, 0, nla_data(actions),
1204			     nla_len(actions), last, clone_flow_key);
1205}
 
1206
1207static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1208{
1209	int err;
1210
1211	if (skb->protocol == htons(ETH_P_IPV6)) {
1212		struct ipv6hdr *nh;
1213
1214		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1215					  sizeof(*nh));
1216		if (unlikely(err))
1217			return err;
1218
1219		nh = ipv6_hdr(skb);
1220
1221		if (nh->hop_limit <= 1)
1222			return -EHOSTUNREACH;
1223
1224		key->ip.ttl = --nh->hop_limit;
1225	} else {
1226		struct iphdr *nh;
1227		u8 old_ttl;
1228
1229		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1230					  sizeof(*nh));
1231		if (unlikely(err))
1232			return err;
1233
1234		nh = ip_hdr(skb);
1235		if (nh->ttl <= 1)
1236			return -EHOSTUNREACH;
1237
1238		old_ttl = nh->ttl--;
1239		csum_replace2(&nh->check, htons(old_ttl << 8),
1240			      htons(nh->ttl << 8));
1241		key->ip.ttl = nh->ttl;
1242	}
1243	return 0;
1244}
1245
1246/* Execute a list of actions against 'skb'. */
1247static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1248			      struct sw_flow_key *key,
1249			      const struct nlattr *attr, int len)
1250{
 
 
 
 
 
 
1251	const struct nlattr *a;
1252	int rem;
1253
1254	for (a = attr, rem = len; rem > 0;
1255	     a = nla_next(a, &rem)) {
1256		int err = 0;
1257
1258		switch (nla_type(a)) {
1259		case OVS_ACTION_ATTR_OUTPUT: {
1260			int port = nla_get_u32(a);
1261			struct sk_buff *clone;
1262
1263			/* Every output action needs a separate clone
1264			 * of 'skb', In case the output action is the
1265			 * last action, cloning can be avoided.
1266			 */
1267			if (nla_is_last(a, rem)) {
1268				do_output(dp, skb, port, key);
1269				/* 'skb' has been used for output.
1270				 */
1271				return 0;
1272			}
1273
1274			clone = skb_clone(skb, GFP_ATOMIC);
1275			if (clone)
1276				do_output(dp, clone, port, key);
1277			OVS_CB(skb)->cutlen = 0;
 
 
 
 
 
 
1278			break;
1279		}
1280
1281		case OVS_ACTION_ATTR_TRUNC: {
1282			struct ovs_action_trunc *trunc = nla_data(a);
1283
1284			if (skb->len > trunc->max_len)
1285				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1286			break;
1287		}
1288
1289		case OVS_ACTION_ATTR_USERSPACE:
1290			output_userspace(dp, skb, key, a, attr,
1291						     len, OVS_CB(skb)->cutlen);
1292			OVS_CB(skb)->cutlen = 0;
1293			break;
1294
1295		case OVS_ACTION_ATTR_HASH:
1296			execute_hash(skb, key, a);
1297			break;
1298
1299		case OVS_ACTION_ATTR_PUSH_MPLS: {
1300			struct ovs_action_push_mpls *mpls = nla_data(a);
1301
1302			err = push_mpls(skb, key, mpls->mpls_lse,
1303					mpls->mpls_ethertype, skb->mac_len);
1304			break;
1305		}
1306		case OVS_ACTION_ATTR_ADD_MPLS: {
1307			struct ovs_action_add_mpls *mpls = nla_data(a);
1308			__u16 mac_len = 0;
1309
1310			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1311				mac_len = skb->mac_len;
1312
1313			err = push_mpls(skb, key, mpls->mpls_lse,
1314					mpls->mpls_ethertype, mac_len);
1315			break;
1316		}
1317		case OVS_ACTION_ATTR_POP_MPLS:
1318			err = pop_mpls(skb, key, nla_get_be16(a));
1319			break;
1320
1321		case OVS_ACTION_ATTR_PUSH_VLAN:
1322			err = push_vlan(skb, key, nla_data(a));
1323			break;
1324
1325		case OVS_ACTION_ATTR_POP_VLAN:
1326			err = pop_vlan(skb, key);
1327			break;
1328
1329		case OVS_ACTION_ATTR_RECIRC: {
1330			bool last = nla_is_last(a, rem);
1331
1332			err = execute_recirc(dp, skb, key, a, last);
1333			if (last) {
1334				/* If this is the last action, the skb has
1335				 * been consumed or freed.
1336				 * Return immediately.
1337				 */
1338				return err;
1339			}
1340			break;
1341		}
1342
1343		case OVS_ACTION_ATTR_SET:
1344			err = execute_set_action(skb, key, nla_data(a));
1345			break;
1346
1347		case OVS_ACTION_ATTR_SET_MASKED:
1348		case OVS_ACTION_ATTR_SET_TO_MASKED:
1349			err = execute_masked_set_action(skb, key, nla_data(a));
1350			break;
1351
1352		case OVS_ACTION_ATTR_SAMPLE: {
1353			bool last = nla_is_last(a, rem);
1354
1355			err = sample(dp, skb, key, a, last);
1356			if (last)
1357				return err;
1358
1359			break;
1360		}
1361
1362		case OVS_ACTION_ATTR_CT:
1363			if (!is_flow_key_valid(key)) {
1364				err = ovs_flow_key_update(skb, key);
1365				if (err)
1366					return err;
1367			}
1368
1369			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1370					     nla_data(a));
1371
1372			/* Hide stolen IP fragments from user space. */
1373			if (err)
1374				return err == -EINPROGRESS ? 0 : err;
1375			break;
1376
1377		case OVS_ACTION_ATTR_CT_CLEAR:
1378			err = ovs_ct_clear(skb, key);
1379			break;
1380
1381		case OVS_ACTION_ATTR_PUSH_ETH:
1382			err = push_eth(skb, key, nla_data(a));
1383			break;
1384
1385		case OVS_ACTION_ATTR_POP_ETH:
1386			err = pop_eth(skb, key);
1387			break;
1388
1389		case OVS_ACTION_ATTR_PUSH_NSH: {
1390			u8 buffer[NSH_HDR_MAX_LEN];
1391			struct nshhdr *nh = (struct nshhdr *)buffer;
1392
1393			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1394						  NSH_HDR_MAX_LEN);
1395			if (unlikely(err))
1396				break;
1397			err = push_nsh(skb, key, nh);
1398			break;
1399		}
1400
1401		case OVS_ACTION_ATTR_POP_NSH:
1402			err = pop_nsh(skb, key);
1403			break;
1404
1405		case OVS_ACTION_ATTR_METER:
1406			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1407				consume_skb(skb);
1408				return 0;
1409			}
1410			break;
1411
1412		case OVS_ACTION_ATTR_CLONE: {
1413			bool last = nla_is_last(a, rem);
1414
1415			err = clone(dp, skb, key, a, last);
1416			if (last)
1417				return err;
1418
1419			break;
1420		}
1421
1422		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1423			bool last = nla_is_last(a, rem);
1424
1425			err = execute_check_pkt_len(dp, skb, key, a, last);
1426			if (last)
1427				return err;
1428
1429			break;
1430		}
1431
1432		case OVS_ACTION_ATTR_DEC_TTL:
1433			err = execute_dec_ttl(skb, key);
1434			if (err == -EHOSTUNREACH) {
1435				err = dec_ttl_exception_handler(dp, skb, key,
1436								a, true);
1437				return err;
1438			}
1439			break;
1440		}
1441
1442		if (unlikely(err)) {
1443			kfree_skb(skb);
1444			return err;
1445		}
1446	}
1447
1448	consume_skb(skb);
1449	return 0;
1450}
1451
1452/* Execute the actions on the clone of the packet. The effect of the
1453 * execution does not affect the original 'skb' nor the original 'key'.
1454 *
1455 * The execution may be deferred in case the actions can not be executed
1456 * immediately.
1457 */
1458static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1459			 struct sw_flow_key *key, u32 recirc_id,
1460			 const struct nlattr *actions, int len,
1461			 bool last, bool clone_flow_key)
1462{
1463	struct deferred_action *da;
1464	struct sw_flow_key *clone;
1465
1466	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1467	if (!skb) {
1468		/* Out of memory, skip this action.
1469		 */
1470		return 0;
1471	}
1472
1473	/* When clone_flow_key is false, the 'key' will not be change
1474	 * by the actions, then the 'key' can be used directly.
1475	 * Otherwise, try to clone key from the next recursion level of
1476	 * 'flow_keys'. If clone is successful, execute the actions
1477	 * without deferring.
1478	 */
1479	clone = clone_flow_key ? clone_key(key) : key;
1480	if (clone) {
1481		int err = 0;
1482
1483		if (actions) { /* Sample action */
1484			if (clone_flow_key)
1485				__this_cpu_inc(exec_actions_level);
1486
1487			err = do_execute_actions(dp, skb, clone,
1488						 actions, len);
1489
1490			if (clone_flow_key)
1491				__this_cpu_dec(exec_actions_level);
1492		} else { /* Recirc action */
1493			clone->recirc_id = recirc_id;
1494			ovs_dp_process_packet(skb, clone);
1495		}
1496		return err;
1497	}
1498
1499	/* Out of 'flow_keys' space. Defer actions */
1500	da = add_deferred_actions(skb, key, actions, len);
1501	if (da) {
1502		if (!actions) { /* Recirc action */
1503			key = &da->pkt_key;
1504			key->recirc_id = recirc_id;
1505		}
1506	} else {
1507		/* Out of per CPU action FIFO space. Drop the 'skb' and
1508		 * log an error.
1509		 */
1510		kfree_skb(skb);
1511
1512		if (net_ratelimit()) {
1513			if (actions) { /* Sample action */
1514				pr_warn("%s: deferred action limit reached, drop sample action\n",
1515					ovs_dp_name(dp));
1516			} else {  /* Recirc action */
1517				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1518					ovs_dp_name(dp));
1519			}
1520		}
1521	}
1522	return 0;
1523}
1524
1525static void process_deferred_actions(struct datapath *dp)
1526{
1527	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1528
1529	/* Do not touch the FIFO in case there is no deferred actions. */
1530	if (action_fifo_is_empty(fifo))
1531		return;
1532
1533	/* Finishing executing all deferred actions. */
1534	do {
1535		struct deferred_action *da = action_fifo_get(fifo);
1536		struct sk_buff *skb = da->skb;
1537		struct sw_flow_key *key = &da->pkt_key;
1538		const struct nlattr *actions = da->actions;
1539		int actions_len = da->actions_len;
1540
1541		if (actions)
1542			do_execute_actions(dp, skb, key, actions, actions_len);
 
1543		else
1544			ovs_dp_process_packet(skb, key);
1545	} while (!action_fifo_is_empty(fifo));
1546
1547	/* Reset FIFO for the next packet.  */
1548	action_fifo_init(fifo);
1549}
1550
1551/* Execute a list of actions against 'skb'. */
1552int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1553			const struct sw_flow_actions *acts,
1554			struct sw_flow_key *key)
1555{
1556	int err, level;
1557
1558	level = __this_cpu_inc_return(exec_actions_level);
1559	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1560		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1561				     ovs_dp_name(dp));
1562		kfree_skb(skb);
1563		err = -ENETDOWN;
1564		goto out;
1565	}
1566
1567	OVS_CB(skb)->acts_origlen = acts->orig_len;
1568	err = do_execute_actions(dp, skb, key,
1569				 acts->actions, acts->actions_len);
1570
1571	if (level == 1)
1572		process_deferred_actions(dp);
1573
1574out:
1575	__this_cpu_dec(exec_actions_level);
1576	return err;
1577}
1578
1579int action_fifos_init(void)
1580{
1581	action_fifos = alloc_percpu(struct action_fifo);
1582	if (!action_fifos)
1583		return -ENOMEM;
1584
1585	flow_keys = alloc_percpu(struct action_flow_keys);
1586	if (!flow_keys) {
1587		free_percpu(action_fifos);
1588		return -ENOMEM;
1589	}
1590
1591	return 0;
1592}
1593
1594void action_fifos_exit(void)
1595{
1596	free_percpu(action_fifos);
1597	free_percpu(flow_keys);
1598}