Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/export.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 27#include <linux/mm_inline.h>
 28#include <linux/writeback.h>
 29#include <linux/backing-dev.h>
 30#include <linux/pagevec.h>
 31#include <linux/cleancache.h>
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_page().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_end_io(struct bio *bio)
 47{
 48	struct bio_vec *bv;
 49	int i;
 50
 51	bio_for_each_segment_all(bv, bio, i) {
 52		struct page *page = bv->bv_page;
 53		page_endio(page, op_is_write(bio_op(bio)), bio->bi_error);
 
 
 
 
 
 
 
 
 
 
 
 
 54	}
 55
 56	bio_put(bio);
 57}
 58
 59static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
 60{
 61	bio->bi_end_io = mpage_end_io;
 62	bio_set_op_attrs(bio, op, op_flags);
 63	guard_bio_eod(op, bio);
 64	submit_bio(bio);
 65	return NULL;
 66}
 67
 68static struct bio *
 69mpage_alloc(struct block_device *bdev,
 70		sector_t first_sector, int nr_vecs,
 71		gfp_t gfp_flags)
 72{
 73	struct bio *bio;
 74
 75	/* Restrict the given (page cache) mask for slab allocations */
 76	gfp_flags &= GFP_KERNEL;
 77	bio = bio_alloc(gfp_flags, nr_vecs);
 78
 79	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 80		while (!bio && (nr_vecs /= 2))
 81			bio = bio_alloc(gfp_flags, nr_vecs);
 82	}
 83
 84	if (bio) {
 85		bio->bi_bdev = bdev;
 86		bio->bi_iter.bi_sector = first_sector;
 87	}
 88	return bio;
 89}
 90
 91/*
 92 * support function for mpage_readpages.  The fs supplied get_block might
 93 * return an up to date buffer.  This is used to map that buffer into
 94 * the page, which allows readpage to avoid triggering a duplicate call
 95 * to get_block.
 96 *
 97 * The idea is to avoid adding buffers to pages that don't already have
 98 * them.  So when the buffer is up to date and the page size == block size,
 99 * this marks the page up to date instead of adding new buffers.
100 */
101static void 
102map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
103{
104	struct inode *inode = page->mapping->host;
105	struct buffer_head *page_bh, *head;
106	int block = 0;
107
108	if (!page_has_buffers(page)) {
 
109		/*
110		 * don't make any buffers if there is only one buffer on
111		 * the page and the page just needs to be set up to date
112		 */
113		if (inode->i_blkbits == PAGE_SHIFT &&
114		    buffer_uptodate(bh)) {
115			SetPageUptodate(page);    
116			return;
117		}
118		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
119	}
120	head = page_buffers(page);
121	page_bh = head;
122	do {
123		if (block == page_block) {
124			page_bh->b_state = bh->b_state;
125			page_bh->b_bdev = bh->b_bdev;
126			page_bh->b_blocknr = bh->b_blocknr;
127			break;
128		}
129		page_bh = page_bh->b_this_page;
130		block++;
131	} while (page_bh != head);
132}
133
 
 
 
 
 
 
 
 
 
 
 
134/*
135 * This is the worker routine which does all the work of mapping the disk
136 * blocks and constructs largest possible bios, submits them for IO if the
137 * blocks are not contiguous on the disk.
138 *
139 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
140 * represent the validity of its disk mapping and to decide when to do the next
141 * get_block() call.
142 */
143static struct bio *
144do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
145		sector_t *last_block_in_bio, struct buffer_head *map_bh,
146		unsigned long *first_logical_block, get_block_t get_block,
147		gfp_t gfp)
148{
149	struct inode *inode = page->mapping->host;
 
150	const unsigned blkbits = inode->i_blkbits;
151	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
152	const unsigned blocksize = 1 << blkbits;
 
153	sector_t block_in_file;
154	sector_t last_block;
155	sector_t last_block_in_file;
156	sector_t blocks[MAX_BUF_PER_PAGE];
157	unsigned page_block;
158	unsigned first_hole = blocks_per_page;
159	struct block_device *bdev = NULL;
160	int length;
161	int fully_mapped = 1;
 
162	unsigned nblocks;
163	unsigned relative_block;
 
164
165	if (page_has_buffers(page))
 
 
 
 
 
 
 
 
166		goto confused;
167
168	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
169	last_block = block_in_file + nr_pages * blocks_per_page;
170	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
171	if (last_block > last_block_in_file)
172		last_block = last_block_in_file;
173	page_block = 0;
174
175	/*
176	 * Map blocks using the result from the previous get_blocks call first.
177	 */
178	nblocks = map_bh->b_size >> blkbits;
179	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
180			block_in_file < (*first_logical_block + nblocks)) {
181		unsigned map_offset = block_in_file - *first_logical_block;
 
182		unsigned last = nblocks - map_offset;
183
 
184		for (relative_block = 0; ; relative_block++) {
185			if (relative_block == last) {
186				clear_buffer_mapped(map_bh);
187				break;
188			}
189			if (page_block == blocks_per_page)
190				break;
191			blocks[page_block] = map_bh->b_blocknr + map_offset +
192						relative_block;
193			page_block++;
194			block_in_file++;
195		}
196		bdev = map_bh->b_bdev;
197	}
198
199	/*
200	 * Then do more get_blocks calls until we are done with this page.
201	 */
202	map_bh->b_page = page;
203	while (page_block < blocks_per_page) {
204		map_bh->b_state = 0;
205		map_bh->b_size = 0;
206
207		if (block_in_file < last_block) {
208			map_bh->b_size = (last_block-block_in_file) << blkbits;
209			if (get_block(inode, block_in_file, map_bh, 0))
210				goto confused;
211			*first_logical_block = block_in_file;
212		}
213
214		if (!buffer_mapped(map_bh)) {
215			fully_mapped = 0;
216			if (first_hole == blocks_per_page)
217				first_hole = page_block;
218			page_block++;
219			block_in_file++;
220			continue;
221		}
222
223		/* some filesystems will copy data into the page during
224		 * the get_block call, in which case we don't want to
225		 * read it again.  map_buffer_to_page copies the data
226		 * we just collected from get_block into the page's buffers
227		 * so readpage doesn't have to repeat the get_block call
228		 */
229		if (buffer_uptodate(map_bh)) {
230			map_buffer_to_page(page, map_bh, page_block);
231			goto confused;
232		}
233	
234		if (first_hole != blocks_per_page)
235			goto confused;		/* hole -> non-hole */
236
237		/* Contiguous blocks? */
238		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 
 
239			goto confused;
240		nblocks = map_bh->b_size >> blkbits;
241		for (relative_block = 0; ; relative_block++) {
242			if (relative_block == nblocks) {
243				clear_buffer_mapped(map_bh);
244				break;
245			} else if (page_block == blocks_per_page)
246				break;
247			blocks[page_block] = map_bh->b_blocknr+relative_block;
248			page_block++;
249			block_in_file++;
250		}
251		bdev = map_bh->b_bdev;
252	}
253
254	if (first_hole != blocks_per_page) {
255		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
256		if (first_hole == 0) {
257			SetPageUptodate(page);
258			unlock_page(page);
259			goto out;
260		}
261	} else if (fully_mapped) {
262		SetPageMappedToDisk(page);
263	}
264
265	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
266	    cleancache_get_page(page) == 0) {
267		SetPageUptodate(page);
268		goto confused;
269	}
270
271	/*
272	 * This page will go to BIO.  Do we need to send this BIO off first?
273	 */
274	if (bio && (*last_block_in_bio != blocks[0] - 1))
275		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
276
277alloc_new:
278	if (bio == NULL) {
279		if (first_hole == blocks_per_page) {
280			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
281								page))
282				goto out;
283		}
284		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
285				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
286		if (bio == NULL)
287			goto confused;
 
288	}
289
290	length = first_hole << blkbits;
291	if (bio_add_page(bio, page, length, 0) < length) {
292		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
293		goto alloc_new;
294	}
295
296	relative_block = block_in_file - *first_logical_block;
297	nblocks = map_bh->b_size >> blkbits;
298	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
299	    (first_hole != blocks_per_page))
300		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
301	else
302		*last_block_in_bio = blocks[blocks_per_page - 1];
303out:
304	return bio;
305
306confused:
307	if (bio)
308		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
309	if (!PageUptodate(page))
310	        block_read_full_page(page, get_block);
311	else
312		unlock_page(page);
313	goto out;
314}
315
316/**
317 * mpage_readpages - populate an address space with some pages & start reads against them
318 * @mapping: the address_space
319 * @pages: The address of a list_head which contains the target pages.  These
320 *   pages have their ->index populated and are otherwise uninitialised.
321 *   The page at @pages->prev has the lowest file offset, and reads should be
322 *   issued in @pages->prev to @pages->next order.
323 * @nr_pages: The number of pages at *@pages
324 * @get_block: The filesystem's block mapper function.
325 *
326 * This function walks the pages and the blocks within each page, building and
327 * emitting large BIOs.
328 *
329 * If anything unusual happens, such as:
330 *
331 * - encountering a page which has buffers
332 * - encountering a page which has a non-hole after a hole
333 * - encountering a page with non-contiguous blocks
334 *
335 * then this code just gives up and calls the buffer_head-based read function.
336 * It does handle a page which has holes at the end - that is a common case:
337 * the end-of-file on blocksize < PAGE_SIZE setups.
338 *
339 * BH_Boundary explanation:
340 *
341 * There is a problem.  The mpage read code assembles several pages, gets all
342 * their disk mappings, and then submits them all.  That's fine, but obtaining
343 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
344 *
345 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
346 * submitted in the following order:
 
347 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
348 *
349 * because the indirect block has to be read to get the mappings of blocks
350 * 13,14,15,16.  Obviously, this impacts performance.
351 *
352 * So what we do it to allow the filesystem's get_block() function to set
353 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
354 * after this one will require I/O against a block which is probably close to
355 * this one.  So you should push what I/O you have currently accumulated.
356 *
357 * This all causes the disk requests to be issued in the correct order.
358 */
359int
360mpage_readpages(struct address_space *mapping, struct list_head *pages,
361				unsigned nr_pages, get_block_t get_block)
362{
363	struct bio *bio = NULL;
364	unsigned page_idx;
365	sector_t last_block_in_bio = 0;
366	struct buffer_head map_bh;
367	unsigned long first_logical_block = 0;
368	gfp_t gfp = readahead_gfp_mask(mapping);
369
370	map_bh.b_state = 0;
371	map_bh.b_size = 0;
372	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
373		struct page *page = lru_to_page(pages);
374
375		prefetchw(&page->flags);
376		list_del(&page->lru);
377		if (!add_to_page_cache_lru(page, mapping,
378					page->index,
379					gfp)) {
380			bio = do_mpage_readpage(bio, page,
381					nr_pages - page_idx,
382					&last_block_in_bio, &map_bh,
383					&first_logical_block,
384					get_block, gfp);
385		}
386		put_page(page);
387	}
388	BUG_ON(!list_empty(pages));
389	if (bio)
390		mpage_bio_submit(REQ_OP_READ, 0, bio);
391	return 0;
392}
393EXPORT_SYMBOL(mpage_readpages);
394
395/*
396 * This isn't called much at all
397 */
398int mpage_readpage(struct page *page, get_block_t get_block)
399{
400	struct bio *bio = NULL;
401	sector_t last_block_in_bio = 0;
402	struct buffer_head map_bh;
403	unsigned long first_logical_block = 0;
404	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
405
406	map_bh.b_state = 0;
407	map_bh.b_size = 0;
408	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
409			&map_bh, &first_logical_block, get_block, gfp);
410	if (bio)
411		mpage_bio_submit(REQ_OP_READ, 0, bio);
412	return 0;
413}
414EXPORT_SYMBOL(mpage_readpage);
415
416/*
417 * Writing is not so simple.
418 *
419 * If the page has buffers then they will be used for obtaining the disk
420 * mapping.  We only support pages which are fully mapped-and-dirty, with a
421 * special case for pages which are unmapped at the end: end-of-file.
422 *
423 * If the page has no buffers (preferred) then the page is mapped here.
424 *
425 * If all blocks are found to be contiguous then the page can go into the
426 * BIO.  Otherwise fall back to the mapping's writepage().
427 * 
428 * FIXME: This code wants an estimate of how many pages are still to be
429 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
430 * just allocate full-size (16-page) BIOs.
431 */
432
433struct mpage_data {
434	struct bio *bio;
435	sector_t last_block_in_bio;
436	get_block_t *get_block;
437	unsigned use_writepage;
438};
439
440/*
441 * We have our BIO, so we can now mark the buffers clean.  Make
442 * sure to only clean buffers which we know we'll be writing.
443 */
444static void clean_buffers(struct page *page, unsigned first_unmapped)
445{
446	unsigned buffer_counter = 0;
447	struct buffer_head *bh, *head;
448	if (!page_has_buffers(page))
 
449		return;
450	head = page_buffers(page);
451	bh = head;
452
453	do {
454		if (buffer_counter++ == first_unmapped)
455			break;
456		clear_buffer_dirty(bh);
457		bh = bh->b_this_page;
458	} while (bh != head);
459
460	/*
461	 * we cannot drop the bh if the page is not uptodate or a concurrent
462	 * readpage would fail to serialize with the bh and it would read from
463	 * disk before we reach the platter.
464	 */
465	if (buffer_heads_over_limit && PageUptodate(page))
466		try_to_free_buffers(page);
467}
468
469static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
470		      void *data)
471{
472	struct mpage_data *mpd = data;
473	struct bio *bio = mpd->bio;
474	struct address_space *mapping = page->mapping;
475	struct inode *inode = page->mapping->host;
476	const unsigned blkbits = inode->i_blkbits;
477	unsigned long end_index;
478	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
479	sector_t last_block;
480	sector_t block_in_file;
481	sector_t blocks[MAX_BUF_PER_PAGE];
482	unsigned page_block;
483	unsigned first_unmapped = blocks_per_page;
484	struct block_device *bdev = NULL;
485	int boundary = 0;
486	sector_t boundary_block = 0;
487	struct block_device *boundary_bdev = NULL;
488	int length;
489	struct buffer_head map_bh;
490	loff_t i_size = i_size_read(inode);
491	int ret = 0;
492	int op_flags = wbc_to_write_flags(wbc);
493
494	if (page_has_buffers(page)) {
495		struct buffer_head *head = page_buffers(page);
496		struct buffer_head *bh = head;
497
498		/* If they're all mapped and dirty, do it */
499		page_block = 0;
500		do {
501			BUG_ON(buffer_locked(bh));
502			if (!buffer_mapped(bh)) {
503				/*
504				 * unmapped dirty buffers are created by
505				 * __set_page_dirty_buffers -> mmapped data
506				 */
507				if (buffer_dirty(bh))
508					goto confused;
509				if (first_unmapped == blocks_per_page)
510					first_unmapped = page_block;
511				continue;
512			}
513
514			if (first_unmapped != blocks_per_page)
515				goto confused;	/* hole -> non-hole */
516
517			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
518				goto confused;
519			if (page_block) {
520				if (bh->b_blocknr != blocks[page_block-1] + 1)
521					goto confused;
 
 
522			}
523			blocks[page_block++] = bh->b_blocknr;
524			boundary = buffer_boundary(bh);
525			if (boundary) {
526				boundary_block = bh->b_blocknr;
527				boundary_bdev = bh->b_bdev;
528			}
529			bdev = bh->b_bdev;
530		} while ((bh = bh->b_this_page) != head);
531
532		if (first_unmapped)
533			goto page_is_mapped;
534
535		/*
536		 * Page has buffers, but they are all unmapped. The page was
537		 * created by pagein or read over a hole which was handled by
538		 * block_read_full_page().  If this address_space is also
539		 * using mpage_readpages then this can rarely happen.
540		 */
541		goto confused;
542	}
543
544	/*
545	 * The page has no buffers: map it to disk
546	 */
547	BUG_ON(!PageUptodate(page));
548	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 
 
 
 
 
 
549	last_block = (i_size - 1) >> blkbits;
550	map_bh.b_page = page;
551	for (page_block = 0; page_block < blocks_per_page; ) {
552
553		map_bh.b_state = 0;
554		map_bh.b_size = 1 << blkbits;
555		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
556			goto confused;
 
 
557		if (buffer_new(&map_bh))
558			clean_bdev_bh_alias(&map_bh);
559		if (buffer_boundary(&map_bh)) {
560			boundary_block = map_bh.b_blocknr;
561			boundary_bdev = map_bh.b_bdev;
562		}
563		if (page_block) {
564			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
565				goto confused;
 
 
566		}
567		blocks[page_block++] = map_bh.b_blocknr;
568		boundary = buffer_boundary(&map_bh);
569		bdev = map_bh.b_bdev;
570		if (block_in_file == last_block)
571			break;
572		block_in_file++;
573	}
574	BUG_ON(page_block == 0);
575
576	first_unmapped = page_block;
577
578page_is_mapped:
579	end_index = i_size >> PAGE_SHIFT;
580	if (page->index >= end_index) {
 
 
 
581		/*
582		 * The page straddles i_size.  It must be zeroed out on each
583		 * and every writepage invocation because it may be mmapped.
584		 * "A file is mapped in multiples of the page size.  For a file
585		 * that is not a multiple of the page size, the remaining memory
586		 * is zeroed when mapped, and writes to that region are not
587		 * written out to the file."
588		 */
589		unsigned offset = i_size & (PAGE_SIZE - 1);
590
591		if (page->index > end_index || !offset)
592			goto confused;
593		zero_user_segment(page, offset, PAGE_SIZE);
594	}
595
596	/*
597	 * This page will go to BIO.  Do we need to send this BIO off first?
598	 */
599	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
600		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
601
602alloc_new:
603	if (bio == NULL) {
604		if (first_unmapped == blocks_per_page) {
605			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
606								page, wbc)) {
607				clean_buffers(page, first_unmapped);
608				goto out;
609			}
610		}
611		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
612				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
613		if (bio == NULL)
614			goto confused;
615
616		wbc_init_bio(wbc, bio);
 
617	}
618
619	/*
620	 * Must try to add the page before marking the buffer clean or
621	 * the confused fail path above (OOM) will be very confused when
622	 * it finds all bh marked clean (i.e. it will not write anything)
623	 */
624	wbc_account_io(wbc, page, PAGE_SIZE);
625	length = first_unmapped << blkbits;
626	if (bio_add_page(bio, page, length, 0) < length) {
627		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
628		goto alloc_new;
629	}
630
631	clean_buffers(page, first_unmapped);
632
633	BUG_ON(PageWriteback(page));
634	set_page_writeback(page);
635	unlock_page(page);
636	if (boundary || (first_unmapped != blocks_per_page)) {
637		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
638		if (boundary_block) {
639			write_boundary_block(boundary_bdev,
640					boundary_block, 1 << blkbits);
641		}
642	} else {
643		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
644	}
645	goto out;
646
647confused:
648	if (bio)
649		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
650
651	if (mpd->use_writepage) {
652		ret = mapping->a_ops->writepage(page, wbc);
653	} else {
654		ret = -EAGAIN;
655		goto out;
656	}
657	/*
658	 * The caller has a ref on the inode, so *mapping is stable
659	 */
 
660	mapping_set_error(mapping, ret);
661out:
662	mpd->bio = bio;
663	return ret;
664}
665
666/**
667 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
668 * @mapping: address space structure to write
669 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
670 * @get_block: the filesystem's block mapper function.
671 *             If this is NULL then use a_ops->writepage.  Otherwise, go
672 *             direct-to-BIO.
673 *
674 * This is a library function, which implements the writepages()
675 * address_space_operation.
676 *
677 * If a page is already under I/O, generic_writepages() skips it, even
678 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
679 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
680 * and msync() need to guarantee that all the data which was dirty at the time
681 * the call was made get new I/O started against them.  If wbc->sync_mode is
682 * WB_SYNC_ALL then we were called for data integrity and we must wait for
683 * existing IO to complete.
684 */
685int
686mpage_writepages(struct address_space *mapping,
687		struct writeback_control *wbc, get_block_t get_block)
688{
 
 
 
689	struct blk_plug plug;
690	int ret;
691
692	blk_start_plug(&plug);
693
694	if (!get_block)
695		ret = generic_writepages(mapping, wbc);
696	else {
697		struct mpage_data mpd = {
698			.bio = NULL,
699			.last_block_in_bio = 0,
700			.get_block = get_block,
701			.use_writepage = 1,
702		};
703
704		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
705		if (mpd.bio) {
706			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
707				  REQ_SYNC : 0);
708			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
709		}
710	}
711	blk_finish_plug(&plug);
712	return ret;
713}
714EXPORT_SYMBOL(mpage_writepages);
715
716int mpage_writepage(struct page *page, get_block_t get_block,
717	struct writeback_control *wbc)
718{
719	struct mpage_data mpd = {
720		.bio = NULL,
721		.last_block_in_bio = 0,
722		.get_block = get_block,
723		.use_writepage = 0,
724	};
725	int ret = __mpage_writepage(page, wbc, &mpd);
726	if (mpd.bio) {
727		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
728			  REQ_SYNC : 0);
729		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
730	}
731	return ret;
732}
733EXPORT_SYMBOL(mpage_writepage);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/mpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 *
  7 * Contains functions related to preparing and submitting BIOs which contain
  8 * multiple pagecache pages.
  9 *
 10 * 15May2002	Andrew Morton
 11 *		Initial version
 12 * 27Jun2002	axboe@suse.de
 13 *		use bio_add_page() to build bio's just the right size
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/export.h>
 18#include <linux/mm.h>
 19#include <linux/kdev_t.h>
 20#include <linux/gfp.h>
 21#include <linux/bio.h>
 22#include <linux/fs.h>
 23#include <linux/buffer_head.h>
 24#include <linux/blkdev.h>
 25#include <linux/highmem.h>
 26#include <linux/prefetch.h>
 27#include <linux/mpage.h>
 28#include <linux/mm_inline.h>
 29#include <linux/writeback.h>
 30#include <linux/backing-dev.h>
 31#include <linux/pagevec.h>
 
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_folio().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_read_end_io(struct bio *bio)
 47{
 48	struct folio_iter fi;
 49	int err = blk_status_to_errno(bio->bi_status);
 50
 51	bio_for_each_folio_all(fi, bio)
 52		folio_end_read(fi.folio, err == 0);
 53
 54	bio_put(bio);
 55}
 56
 57static void mpage_write_end_io(struct bio *bio)
 58{
 59	struct folio_iter fi;
 60	int err = blk_status_to_errno(bio->bi_status);
 61
 62	bio_for_each_folio_all(fi, bio) {
 63		if (err)
 64			mapping_set_error(fi.folio->mapping, err);
 65		folio_end_writeback(fi.folio);
 66	}
 67
 68	bio_put(bio);
 69}
 70
 71static struct bio *mpage_bio_submit_read(struct bio *bio)
 72{
 73	bio->bi_end_io = mpage_read_end_io;
 74	guard_bio_eod(bio);
 
 75	submit_bio(bio);
 76	return NULL;
 77}
 78
 79static struct bio *mpage_bio_submit_write(struct bio *bio)
 
 
 
 80{
 81	bio->bi_end_io = mpage_write_end_io;
 82	guard_bio_eod(bio);
 83	submit_bio(bio);
 84	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 85}
 86
 87/*
 88 * support function for mpage_readahead.  The fs supplied get_block might
 89 * return an up to date buffer.  This is used to map that buffer into
 90 * the page, which allows read_folio to avoid triggering a duplicate call
 91 * to get_block.
 92 *
 93 * The idea is to avoid adding buffers to pages that don't already have
 94 * them.  So when the buffer is up to date and the page size == block size,
 95 * this marks the page up to date instead of adding new buffers.
 96 */
 97static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
 98		int page_block)
 99{
100	struct inode *inode = folio->mapping->host;
101	struct buffer_head *page_bh, *head;
102	int block = 0;
103
104	head = folio_buffers(folio);
105	if (!head) {
106		/*
107		 * don't make any buffers if there is only one buffer on
108		 * the folio and the folio just needs to be set up to date
109		 */
110		if (inode->i_blkbits == PAGE_SHIFT &&
111		    buffer_uptodate(bh)) {
112			folio_mark_uptodate(folio);
113			return;
114		}
115		head = create_empty_buffers(folio, i_blocksize(inode), 0);
116	}
117
118	page_bh = head;
119	do {
120		if (block == page_block) {
121			page_bh->b_state = bh->b_state;
122			page_bh->b_bdev = bh->b_bdev;
123			page_bh->b_blocknr = bh->b_blocknr;
124			break;
125		}
126		page_bh = page_bh->b_this_page;
127		block++;
128	} while (page_bh != head);
129}
130
131struct mpage_readpage_args {
132	struct bio *bio;
133	struct folio *folio;
134	unsigned int nr_pages;
135	bool is_readahead;
136	sector_t last_block_in_bio;
137	struct buffer_head map_bh;
138	unsigned long first_logical_block;
139	get_block_t *get_block;
140};
141
142/*
143 * This is the worker routine which does all the work of mapping the disk
144 * blocks and constructs largest possible bios, submits them for IO if the
145 * blocks are not contiguous on the disk.
146 *
147 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
148 * represent the validity of its disk mapping and to decide when to do the next
149 * get_block() call.
150 */
151static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 
 
 
 
152{
153	struct folio *folio = args->folio;
154	struct inode *inode = folio->mapping->host;
155	const unsigned blkbits = inode->i_blkbits;
156	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
157	const unsigned blocksize = 1 << blkbits;
158	struct buffer_head *map_bh = &args->map_bh;
159	sector_t block_in_file;
160	sector_t last_block;
161	sector_t last_block_in_file;
162	sector_t first_block;
163	unsigned page_block;
164	unsigned first_hole = blocks_per_page;
165	struct block_device *bdev = NULL;
166	int length;
167	int fully_mapped = 1;
168	blk_opf_t opf = REQ_OP_READ;
169	unsigned nblocks;
170	unsigned relative_block;
171	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
172
173	/* MAX_BUF_PER_PAGE, for example */
174	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
175
176	if (args->is_readahead) {
177		opf |= REQ_RAHEAD;
178		gfp |= __GFP_NORETRY | __GFP_NOWARN;
179	}
180
181	if (folio_buffers(folio))
182		goto confused;
183
184	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
185	last_block = block_in_file + args->nr_pages * blocks_per_page;
186	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
187	if (last_block > last_block_in_file)
188		last_block = last_block_in_file;
189	page_block = 0;
190
191	/*
192	 * Map blocks using the result from the previous get_blocks call first.
193	 */
194	nblocks = map_bh->b_size >> blkbits;
195	if (buffer_mapped(map_bh) &&
196			block_in_file > args->first_logical_block &&
197			block_in_file < (args->first_logical_block + nblocks)) {
198		unsigned map_offset = block_in_file - args->first_logical_block;
199		unsigned last = nblocks - map_offset;
200
201		first_block = map_bh->b_blocknr + map_offset;
202		for (relative_block = 0; ; relative_block++) {
203			if (relative_block == last) {
204				clear_buffer_mapped(map_bh);
205				break;
206			}
207			if (page_block == blocks_per_page)
208				break;
 
 
209			page_block++;
210			block_in_file++;
211		}
212		bdev = map_bh->b_bdev;
213	}
214
215	/*
216	 * Then do more get_blocks calls until we are done with this folio.
217	 */
218	map_bh->b_folio = folio;
219	while (page_block < blocks_per_page) {
220		map_bh->b_state = 0;
221		map_bh->b_size = 0;
222
223		if (block_in_file < last_block) {
224			map_bh->b_size = (last_block-block_in_file) << blkbits;
225			if (args->get_block(inode, block_in_file, map_bh, 0))
226				goto confused;
227			args->first_logical_block = block_in_file;
228		}
229
230		if (!buffer_mapped(map_bh)) {
231			fully_mapped = 0;
232			if (first_hole == blocks_per_page)
233				first_hole = page_block;
234			page_block++;
235			block_in_file++;
236			continue;
237		}
238
239		/* some filesystems will copy data into the page during
240		 * the get_block call, in which case we don't want to
241		 * read it again.  map_buffer_to_folio copies the data
242		 * we just collected from get_block into the folio's buffers
243		 * so read_folio doesn't have to repeat the get_block call
244		 */
245		if (buffer_uptodate(map_bh)) {
246			map_buffer_to_folio(folio, map_bh, page_block);
247			goto confused;
248		}
249	
250		if (first_hole != blocks_per_page)
251			goto confused;		/* hole -> non-hole */
252
253		/* Contiguous blocks? */
254		if (!page_block)
255			first_block = map_bh->b_blocknr;
256		else if (first_block + page_block != map_bh->b_blocknr)
257			goto confused;
258		nblocks = map_bh->b_size >> blkbits;
259		for (relative_block = 0; ; relative_block++) {
260			if (relative_block == nblocks) {
261				clear_buffer_mapped(map_bh);
262				break;
263			} else if (page_block == blocks_per_page)
264				break;
 
265			page_block++;
266			block_in_file++;
267		}
268		bdev = map_bh->b_bdev;
269	}
270
271	if (first_hole != blocks_per_page) {
272		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
273		if (first_hole == 0) {
274			folio_mark_uptodate(folio);
275			folio_unlock(folio);
276			goto out;
277		}
278	} else if (fully_mapped) {
279		folio_set_mappedtodisk(folio);
 
 
 
 
 
 
280	}
281
282	/*
283	 * This folio will go to BIO.  Do we need to send this BIO off first?
284	 */
285	if (args->bio && (args->last_block_in_bio != first_block - 1))
286		args->bio = mpage_bio_submit_read(args->bio);
287
288alloc_new:
289	if (args->bio == NULL) {
290		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
291				      gfp);
292		if (args->bio == NULL)
 
 
 
 
 
293			goto confused;
294		args->bio->bi_iter.bi_sector = first_block << (blkbits - 9);
295	}
296
297	length = first_hole << blkbits;
298	if (!bio_add_folio(args->bio, folio, length, 0)) {
299		args->bio = mpage_bio_submit_read(args->bio);
300		goto alloc_new;
301	}
302
303	relative_block = block_in_file - args->first_logical_block;
304	nblocks = map_bh->b_size >> blkbits;
305	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
306	    (first_hole != blocks_per_page))
307		args->bio = mpage_bio_submit_read(args->bio);
308	else
309		args->last_block_in_bio = first_block + blocks_per_page - 1;
310out:
311	return args->bio;
312
313confused:
314	if (args->bio)
315		args->bio = mpage_bio_submit_read(args->bio);
316	if (!folio_test_uptodate(folio))
317		block_read_full_folio(folio, args->get_block);
318	else
319		folio_unlock(folio);
320	goto out;
321}
322
323/**
324 * mpage_readahead - start reads against pages
325 * @rac: Describes which pages to read.
 
 
 
 
 
326 * @get_block: The filesystem's block mapper function.
327 *
328 * This function walks the pages and the blocks within each page, building and
329 * emitting large BIOs.
330 *
331 * If anything unusual happens, such as:
332 *
333 * - encountering a page which has buffers
334 * - encountering a page which has a non-hole after a hole
335 * - encountering a page with non-contiguous blocks
336 *
337 * then this code just gives up and calls the buffer_head-based read function.
338 * It does handle a page which has holes at the end - that is a common case:
339 * the end-of-file on blocksize < PAGE_SIZE setups.
340 *
341 * BH_Boundary explanation:
342 *
343 * There is a problem.  The mpage read code assembles several pages, gets all
344 * their disk mappings, and then submits them all.  That's fine, but obtaining
345 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
346 *
347 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
348 * submitted in the following order:
349 *
350 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
351 *
352 * because the indirect block has to be read to get the mappings of blocks
353 * 13,14,15,16.  Obviously, this impacts performance.
354 *
355 * So what we do it to allow the filesystem's get_block() function to set
356 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
357 * after this one will require I/O against a block which is probably close to
358 * this one.  So you should push what I/O you have currently accumulated.
359 *
360 * This all causes the disk requests to be issued in the correct order.
361 */
362void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
 
 
363{
364	struct folio *folio;
365	struct mpage_readpage_args args = {
366		.get_block = get_block,
367		.is_readahead = true,
368	};
 
369
370	while ((folio = readahead_folio(rac))) {
371		prefetchw(&folio->flags);
372		args.folio = folio;
373		args.nr_pages = readahead_count(rac);
374		args.bio = do_mpage_readpage(&args);
 
 
 
 
 
 
 
 
 
 
 
 
375	}
376	if (args.bio)
377		mpage_bio_submit_read(args.bio);
 
 
378}
379EXPORT_SYMBOL(mpage_readahead);
380
381/*
382 * This isn't called much at all
383 */
384int mpage_read_folio(struct folio *folio, get_block_t get_block)
385{
386	struct mpage_readpage_args args = {
387		.folio = folio,
388		.nr_pages = 1,
389		.get_block = get_block,
390	};
391
392	args.bio = do_mpage_readpage(&args);
393	if (args.bio)
394		mpage_bio_submit_read(args.bio);
 
 
 
395	return 0;
396}
397EXPORT_SYMBOL(mpage_read_folio);
398
399/*
400 * Writing is not so simple.
401 *
402 * If the page has buffers then they will be used for obtaining the disk
403 * mapping.  We only support pages which are fully mapped-and-dirty, with a
404 * special case for pages which are unmapped at the end: end-of-file.
405 *
406 * If the page has no buffers (preferred) then the page is mapped here.
407 *
408 * If all blocks are found to be contiguous then the page can go into the
409 * BIO.  Otherwise fall back to the mapping's writepage().
410 * 
411 * FIXME: This code wants an estimate of how many pages are still to be
412 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
413 * just allocate full-size (16-page) BIOs.
414 */
415
416struct mpage_data {
417	struct bio *bio;
418	sector_t last_block_in_bio;
419	get_block_t *get_block;
 
420};
421
422/*
423 * We have our BIO, so we can now mark the buffers clean.  Make
424 * sure to only clean buffers which we know we'll be writing.
425 */
426static void clean_buffers(struct folio *folio, unsigned first_unmapped)
427{
428	unsigned buffer_counter = 0;
429	struct buffer_head *bh, *head = folio_buffers(folio);
430
431	if (!head)
432		return;
 
433	bh = head;
434
435	do {
436		if (buffer_counter++ == first_unmapped)
437			break;
438		clear_buffer_dirty(bh);
439		bh = bh->b_this_page;
440	} while (bh != head);
441
442	/*
443	 * we cannot drop the bh if the page is not uptodate or a concurrent
444	 * read_folio would fail to serialize with the bh and it would read from
445	 * disk before we reach the platter.
446	 */
447	if (buffer_heads_over_limit && folio_test_uptodate(folio))
448		try_to_free_buffers(folio);
449}
450
451static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
452		      void *data)
453{
454	struct mpage_data *mpd = data;
455	struct bio *bio = mpd->bio;
456	struct address_space *mapping = folio->mapping;
457	struct inode *inode = mapping->host;
458	const unsigned blkbits = inode->i_blkbits;
 
459	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
460	sector_t last_block;
461	sector_t block_in_file;
462	sector_t first_block;
463	unsigned page_block;
464	unsigned first_unmapped = blocks_per_page;
465	struct block_device *bdev = NULL;
466	int boundary = 0;
467	sector_t boundary_block = 0;
468	struct block_device *boundary_bdev = NULL;
469	size_t length;
470	struct buffer_head map_bh;
471	loff_t i_size = i_size_read(inode);
472	int ret = 0;
473	struct buffer_head *head = folio_buffers(folio);
474
475	if (head) {
 
476		struct buffer_head *bh = head;
477
478		/* If they're all mapped and dirty, do it */
479		page_block = 0;
480		do {
481			BUG_ON(buffer_locked(bh));
482			if (!buffer_mapped(bh)) {
483				/*
484				 * unmapped dirty buffers are created by
485				 * block_dirty_folio -> mmapped data
486				 */
487				if (buffer_dirty(bh))
488					goto confused;
489				if (first_unmapped == blocks_per_page)
490					first_unmapped = page_block;
491				continue;
492			}
493
494			if (first_unmapped != blocks_per_page)
495				goto confused;	/* hole -> non-hole */
496
497			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
498				goto confused;
499			if (page_block) {
500				if (bh->b_blocknr != first_block + page_block)
501					goto confused;
502			} else {
503				first_block = bh->b_blocknr;
504			}
505			page_block++;
506			boundary = buffer_boundary(bh);
507			if (boundary) {
508				boundary_block = bh->b_blocknr;
509				boundary_bdev = bh->b_bdev;
510			}
511			bdev = bh->b_bdev;
512		} while ((bh = bh->b_this_page) != head);
513
514		if (first_unmapped)
515			goto page_is_mapped;
516
517		/*
518		 * Page has buffers, but they are all unmapped. The page was
519		 * created by pagein or read over a hole which was handled by
520		 * block_read_full_folio().  If this address_space is also
521		 * using mpage_readahead then this can rarely happen.
522		 */
523		goto confused;
524	}
525
526	/*
527	 * The page has no buffers: map it to disk
528	 */
529	BUG_ON(!folio_test_uptodate(folio));
530	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
531	/*
532	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
533	 * space.
534	 */
535	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
536		goto page_is_mapped;
537	last_block = (i_size - 1) >> blkbits;
538	map_bh.b_folio = folio;
539	for (page_block = 0; page_block < blocks_per_page; ) {
540
541		map_bh.b_state = 0;
542		map_bh.b_size = 1 << blkbits;
543		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
544			goto confused;
545		if (!buffer_mapped(&map_bh))
546			goto confused;
547		if (buffer_new(&map_bh))
548			clean_bdev_bh_alias(&map_bh);
549		if (buffer_boundary(&map_bh)) {
550			boundary_block = map_bh.b_blocknr;
551			boundary_bdev = map_bh.b_bdev;
552		}
553		if (page_block) {
554			if (map_bh.b_blocknr != first_block + page_block)
555				goto confused;
556		} else {
557			first_block = map_bh.b_blocknr;
558		}
559		page_block++;
560		boundary = buffer_boundary(&map_bh);
561		bdev = map_bh.b_bdev;
562		if (block_in_file == last_block)
563			break;
564		block_in_file++;
565	}
566	BUG_ON(page_block == 0);
567
568	first_unmapped = page_block;
569
570page_is_mapped:
571	/* Don't bother writing beyond EOF, truncate will discard the folio */
572	if (folio_pos(folio) >= i_size)
573		goto confused;
574	length = folio_size(folio);
575	if (folio_pos(folio) + length > i_size) {
576		/*
577		 * The page straddles i_size.  It must be zeroed out on each
578		 * and every writepage invocation because it may be mmapped.
579		 * "A file is mapped in multiples of the page size.  For a file
580		 * that is not a multiple of the page size, the remaining memory
581		 * is zeroed when mapped, and writes to that region are not
582		 * written out to the file."
583		 */
584		length = i_size - folio_pos(folio);
585		folio_zero_segment(folio, length, folio_size(folio));
 
 
 
586	}
587
588	/*
589	 * This page will go to BIO.  Do we need to send this BIO off first?
590	 */
591	if (bio && mpd->last_block_in_bio != first_block - 1)
592		bio = mpage_bio_submit_write(bio);
593
594alloc_new:
595	if (bio == NULL) {
596		bio = bio_alloc(bdev, BIO_MAX_VECS,
597				REQ_OP_WRITE | wbc_to_write_flags(wbc),
598				GFP_NOFS);
599		bio->bi_iter.bi_sector = first_block << (blkbits - 9);
 
 
 
 
 
 
 
 
600		wbc_init_bio(wbc, bio);
601		bio->bi_write_hint = inode->i_write_hint;
602	}
603
604	/*
605	 * Must try to add the page before marking the buffer clean or
606	 * the confused fail path above (OOM) will be very confused when
607	 * it finds all bh marked clean (i.e. it will not write anything)
608	 */
609	wbc_account_cgroup_owner(wbc, folio, folio_size(folio));
610	length = first_unmapped << blkbits;
611	if (!bio_add_folio(bio, folio, length, 0)) {
612		bio = mpage_bio_submit_write(bio);
613		goto alloc_new;
614	}
615
616	clean_buffers(folio, first_unmapped);
617
618	BUG_ON(folio_test_writeback(folio));
619	folio_start_writeback(folio);
620	folio_unlock(folio);
621	if (boundary || (first_unmapped != blocks_per_page)) {
622		bio = mpage_bio_submit_write(bio);
623		if (boundary_block) {
624			write_boundary_block(boundary_bdev,
625					boundary_block, 1 << blkbits);
626		}
627	} else {
628		mpd->last_block_in_bio = first_block + blocks_per_page - 1;
629	}
630	goto out;
631
632confused:
633	if (bio)
634		bio = mpage_bio_submit_write(bio);
635
 
 
 
 
 
 
636	/*
637	 * The caller has a ref on the inode, so *mapping is stable
638	 */
639	ret = block_write_full_folio(folio, wbc, mpd->get_block);
640	mapping_set_error(mapping, ret);
641out:
642	mpd->bio = bio;
643	return ret;
644}
645
646/**
647 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
648 * @mapping: address space structure to write
649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
650 * @get_block: the filesystem's block mapper function.
 
 
651 *
652 * This is a library function, which implements the writepages()
653 * address_space_operation.
 
 
 
 
 
 
 
 
654 */
655int
656mpage_writepages(struct address_space *mapping,
657		struct writeback_control *wbc, get_block_t get_block)
658{
659	struct mpage_data mpd = {
660		.get_block	= get_block,
661	};
662	struct blk_plug plug;
663	int ret;
664
665	blk_start_plug(&plug);
666	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
667	if (mpd.bio)
668		mpage_bio_submit_write(mpd.bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669	blk_finish_plug(&plug);
670	return ret;
671}
672EXPORT_SYMBOL(mpage_writepages);