Linux Audio

Check our new training course

Loading...
v4.10.11
 
    1/*
    2 * Copyright (C) 2007 Oracle.  All rights reserved.
    3 *
    4 * This program is free software; you can redistribute it and/or
    5 * modify it under the terms of the GNU General Public
    6 * License v2 as published by the Free Software Foundation.
    7 *
    8 * This program is distributed in the hope that it will be useful,
    9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   11 * General Public License for more details.
   12 *
   13 * You should have received a copy of the GNU General Public
   14 * License along with this program; if not, write to the
   15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   16 * Boston, MA 021110-1307, USA.
   17 */
 
   18#include <linux/sched.h>
 
   19#include <linux/pagemap.h>
   20#include <linux/writeback.h>
   21#include <linux/blkdev.h>
   22#include <linux/sort.h>
   23#include <linux/rcupdate.h>
   24#include <linux/kthread.h>
   25#include <linux/slab.h>
   26#include <linux/ratelimit.h>
   27#include <linux/percpu_counter.h>
   28#include "hash.h"
   29#include "tree-log.h"
 
 
 
   30#include "disk-io.h"
   31#include "print-tree.h"
   32#include "volumes.h"
   33#include "raid56.h"
   34#include "locking.h"
   35#include "free-space-cache.h"
   36#include "free-space-tree.h"
   37#include "math.h"
   38#include "sysfs.h"
   39#include "qgroup.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
   40
   41#undef SCRAMBLE_DELAYED_REFS
   42
   43/*
   44 * control flags for do_chunk_alloc's force field
   45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
   46 * if we really need one.
   47 *
   48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
   49 * if we have very few chunks already allocated.  This is
   50 * used as part of the clustering code to help make sure
   51 * we have a good pool of storage to cluster in, without
   52 * filling the FS with empty chunks
   53 *
   54 * CHUNK_ALLOC_FORCE means it must try to allocate one
   55 *
   56 */
   57enum {
   58	CHUNK_ALLOC_NO_FORCE = 0,
   59	CHUNK_ALLOC_LIMITED = 1,
   60	CHUNK_ALLOC_FORCE = 2,
   61};
   62
   63static int update_block_group(struct btrfs_trans_handle *trans,
   64			      struct btrfs_fs_info *fs_info, u64 bytenr,
   65			      u64 num_bytes, int alloc);
   66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
   67			       struct btrfs_fs_info *fs_info,
   68				struct btrfs_delayed_ref_node *node, u64 parent,
   69				u64 root_objectid, u64 owner_objectid,
   70				u64 owner_offset, int refs_to_drop,
   71				struct btrfs_delayed_extent_op *extra_op);
   72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
   73				    struct extent_buffer *leaf,
   74				    struct btrfs_extent_item *ei);
   75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
   76				      struct btrfs_fs_info *fs_info,
   77				      u64 parent, u64 root_objectid,
   78				      u64 flags, u64 owner, u64 offset,
   79				      struct btrfs_key *ins, int ref_mod);
   80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
   81				     struct btrfs_fs_info *fs_info,
   82				     u64 parent, u64 root_objectid,
   83				     u64 flags, struct btrfs_disk_key *key,
   84				     int level, struct btrfs_key *ins);
   85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
   86			  struct btrfs_fs_info *fs_info, u64 flags,
   87			  int force);
   88static int find_next_key(struct btrfs_path *path, int level,
   89			 struct btrfs_key *key);
   90static void dump_space_info(struct btrfs_fs_info *fs_info,
   91			    struct btrfs_space_info *info, u64 bytes,
   92			    int dump_block_groups);
   93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
   94				    u64 ram_bytes, u64 num_bytes, int delalloc);
   95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
   96				     u64 num_bytes, int delalloc);
   97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
   98			       u64 num_bytes);
   99static int __reserve_metadata_bytes(struct btrfs_root *root,
  100				    struct btrfs_space_info *space_info,
  101				    u64 orig_bytes,
  102				    enum btrfs_reserve_flush_enum flush);
  103static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
  104				     struct btrfs_space_info *space_info,
  105				     u64 num_bytes);
  106static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
  107				     struct btrfs_space_info *space_info,
  108				     u64 num_bytes);
  109
  110static noinline int
  111block_group_cache_done(struct btrfs_block_group_cache *cache)
  112{
  113	smp_mb();
  114	return cache->cached == BTRFS_CACHE_FINISHED ||
  115		cache->cached == BTRFS_CACHE_ERROR;
  116}
  117
  118static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  119{
  120	return (cache->flags & bits) == bits;
  121}
  122
  123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  124{
  125	atomic_inc(&cache->count);
  126}
  127
  128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  129{
  130	if (atomic_dec_and_test(&cache->count)) {
  131		WARN_ON(cache->pinned > 0);
  132		WARN_ON(cache->reserved > 0);
  133		kfree(cache->free_space_ctl);
  134		kfree(cache);
  135	}
  136}
  137
  138/*
  139 * this adds the block group to the fs_info rb tree for the block group
  140 * cache
  141 */
  142static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  143				struct btrfs_block_group_cache *block_group)
  144{
  145	struct rb_node **p;
  146	struct rb_node *parent = NULL;
  147	struct btrfs_block_group_cache *cache;
  148
  149	spin_lock(&info->block_group_cache_lock);
  150	p = &info->block_group_cache_tree.rb_node;
  151
  152	while (*p) {
  153		parent = *p;
  154		cache = rb_entry(parent, struct btrfs_block_group_cache,
  155				 cache_node);
  156		if (block_group->key.objectid < cache->key.objectid) {
  157			p = &(*p)->rb_left;
  158		} else if (block_group->key.objectid > cache->key.objectid) {
  159			p = &(*p)->rb_right;
  160		} else {
  161			spin_unlock(&info->block_group_cache_lock);
  162			return -EEXIST;
  163		}
  164	}
  165
  166	rb_link_node(&block_group->cache_node, parent, p);
  167	rb_insert_color(&block_group->cache_node,
  168			&info->block_group_cache_tree);
  169
  170	if (info->first_logical_byte > block_group->key.objectid)
  171		info->first_logical_byte = block_group->key.objectid;
  172
  173	spin_unlock(&info->block_group_cache_lock);
  174
  175	return 0;
  176}
  177
  178/*
  179 * This will return the block group at or after bytenr if contains is 0, else
  180 * it will return the block group that contains the bytenr
  181 */
  182static struct btrfs_block_group_cache *
  183block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  184			      int contains)
  185{
  186	struct btrfs_block_group_cache *cache, *ret = NULL;
  187	struct rb_node *n;
  188	u64 end, start;
  189
  190	spin_lock(&info->block_group_cache_lock);
  191	n = info->block_group_cache_tree.rb_node;
  192
  193	while (n) {
  194		cache = rb_entry(n, struct btrfs_block_group_cache,
  195				 cache_node);
  196		end = cache->key.objectid + cache->key.offset - 1;
  197		start = cache->key.objectid;
  198
  199		if (bytenr < start) {
  200			if (!contains && (!ret || start < ret->key.objectid))
  201				ret = cache;
  202			n = n->rb_left;
  203		} else if (bytenr > start) {
  204			if (contains && bytenr <= end) {
  205				ret = cache;
  206				break;
  207			}
  208			n = n->rb_right;
  209		} else {
  210			ret = cache;
  211			break;
  212		}
  213	}
  214	if (ret) {
  215		btrfs_get_block_group(ret);
  216		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  217			info->first_logical_byte = ret->key.objectid;
  218	}
  219	spin_unlock(&info->block_group_cache_lock);
  220
  221	return ret;
  222}
  223
  224static int add_excluded_extent(struct btrfs_fs_info *fs_info,
  225			       u64 start, u64 num_bytes)
  226{
  227	u64 end = start + num_bytes - 1;
  228	set_extent_bits(&fs_info->freed_extents[0],
  229			start, end, EXTENT_UPTODATE);
  230	set_extent_bits(&fs_info->freed_extents[1],
  231			start, end, EXTENT_UPTODATE);
  232	return 0;
  233}
  234
  235static void free_excluded_extents(struct btrfs_fs_info *fs_info,
  236				  struct btrfs_block_group_cache *cache)
  237{
  238	u64 start, end;
  239
  240	start = cache->key.objectid;
  241	end = start + cache->key.offset - 1;
  242
  243	clear_extent_bits(&fs_info->freed_extents[0],
  244			  start, end, EXTENT_UPTODATE);
  245	clear_extent_bits(&fs_info->freed_extents[1],
  246			  start, end, EXTENT_UPTODATE);
  247}
  248
  249static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
  250				 struct btrfs_block_group_cache *cache)
  251{
  252	u64 bytenr;
  253	u64 *logical;
  254	int stripe_len;
  255	int i, nr, ret;
  256
  257	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  258		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  259		cache->bytes_super += stripe_len;
  260		ret = add_excluded_extent(fs_info, cache->key.objectid,
  261					  stripe_len);
  262		if (ret)
  263			return ret;
  264	}
  265
  266	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  267		bytenr = btrfs_sb_offset(i);
  268		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
  269				       bytenr, 0, &logical, &nr, &stripe_len);
  270		if (ret)
  271			return ret;
  272
  273		while (nr--) {
  274			u64 start, len;
  275
  276			if (logical[nr] > cache->key.objectid +
  277			    cache->key.offset)
  278				continue;
  279
  280			if (logical[nr] + stripe_len <= cache->key.objectid)
  281				continue;
  282
  283			start = logical[nr];
  284			if (start < cache->key.objectid) {
  285				start = cache->key.objectid;
  286				len = (logical[nr] + stripe_len) - start;
  287			} else {
  288				len = min_t(u64, stripe_len,
  289					    cache->key.objectid +
  290					    cache->key.offset - start);
  291			}
  292
  293			cache->bytes_super += len;
  294			ret = add_excluded_extent(fs_info, start, len);
  295			if (ret) {
  296				kfree(logical);
  297				return ret;
  298			}
  299		}
  300
  301		kfree(logical);
  302	}
  303	return 0;
  304}
  305
  306static struct btrfs_caching_control *
  307get_caching_control(struct btrfs_block_group_cache *cache)
  308{
  309	struct btrfs_caching_control *ctl;
  310
  311	spin_lock(&cache->lock);
  312	if (!cache->caching_ctl) {
  313		spin_unlock(&cache->lock);
  314		return NULL;
  315	}
  316
  317	ctl = cache->caching_ctl;
  318	atomic_inc(&ctl->count);
  319	spin_unlock(&cache->lock);
  320	return ctl;
  321}
  322
  323static void put_caching_control(struct btrfs_caching_control *ctl)
  324{
  325	if (atomic_dec_and_test(&ctl->count))
  326		kfree(ctl);
  327}
  328
  329#ifdef CONFIG_BTRFS_DEBUG
  330static void fragment_free_space(struct btrfs_block_group_cache *block_group)
  331{
  332	struct btrfs_fs_info *fs_info = block_group->fs_info;
  333	u64 start = block_group->key.objectid;
  334	u64 len = block_group->key.offset;
  335	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
  336		fs_info->nodesize : fs_info->sectorsize;
  337	u64 step = chunk << 1;
  338
  339	while (len > chunk) {
  340		btrfs_remove_free_space(block_group, start, chunk);
  341		start += step;
  342		if (len < step)
  343			len = 0;
  344		else
  345			len -= step;
  346	}
  347}
  348#endif
  349
  350/*
  351 * this is only called by cache_block_group, since we could have freed extents
  352 * we need to check the pinned_extents for any extents that can't be used yet
  353 * since their free space will be released as soon as the transaction commits.
  354 */
  355u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  356		       struct btrfs_fs_info *info, u64 start, u64 end)
  357{
  358	u64 extent_start, extent_end, size, total_added = 0;
  359	int ret;
  360
  361	while (start < end) {
  362		ret = find_first_extent_bit(info->pinned_extents, start,
  363					    &extent_start, &extent_end,
  364					    EXTENT_DIRTY | EXTENT_UPTODATE,
  365					    NULL);
  366		if (ret)
  367			break;
  368
  369		if (extent_start <= start) {
  370			start = extent_end + 1;
  371		} else if (extent_start > start && extent_start < end) {
  372			size = extent_start - start;
  373			total_added += size;
  374			ret = btrfs_add_free_space(block_group, start,
  375						   size);
  376			BUG_ON(ret); /* -ENOMEM or logic error */
  377			start = extent_end + 1;
  378		} else {
  379			break;
  380		}
  381	}
  382
  383	if (start < end) {
  384		size = end - start;
  385		total_added += size;
  386		ret = btrfs_add_free_space(block_group, start, size);
  387		BUG_ON(ret); /* -ENOMEM or logic error */
  388	}
  389
  390	return total_added;
  391}
  392
  393static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
  394{
  395	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
  396	struct btrfs_fs_info *fs_info = block_group->fs_info;
  397	struct btrfs_root *extent_root = fs_info->extent_root;
  398	struct btrfs_path *path;
  399	struct extent_buffer *leaf;
  400	struct btrfs_key key;
  401	u64 total_found = 0;
  402	u64 last = 0;
  403	u32 nritems;
  404	int ret;
  405	bool wakeup = true;
  406
  407	path = btrfs_alloc_path();
  408	if (!path)
  409		return -ENOMEM;
  410
  411	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  412
  413#ifdef CONFIG_BTRFS_DEBUG
  414	/*
  415	 * If we're fragmenting we don't want to make anybody think we can
  416	 * allocate from this block group until we've had a chance to fragment
  417	 * the free space.
  418	 */
  419	if (btrfs_should_fragment_free_space(block_group))
  420		wakeup = false;
  421#endif
  422	/*
  423	 * We don't want to deadlock with somebody trying to allocate a new
  424	 * extent for the extent root while also trying to search the extent
  425	 * root to add free space.  So we skip locking and search the commit
  426	 * root, since its read-only
  427	 */
  428	path->skip_locking = 1;
  429	path->search_commit_root = 1;
  430	path->reada = READA_FORWARD;
  431
  432	key.objectid = last;
  433	key.offset = 0;
  434	key.type = BTRFS_EXTENT_ITEM_KEY;
  435
  436next:
  437	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  438	if (ret < 0)
  439		goto out;
  440
  441	leaf = path->nodes[0];
  442	nritems = btrfs_header_nritems(leaf);
  443
  444	while (1) {
  445		if (btrfs_fs_closing(fs_info) > 1) {
  446			last = (u64)-1;
  447			break;
  448		}
  449
  450		if (path->slots[0] < nritems) {
  451			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  452		} else {
  453			ret = find_next_key(path, 0, &key);
  454			if (ret)
  455				break;
  456
  457			if (need_resched() ||
  458			    rwsem_is_contended(&fs_info->commit_root_sem)) {
  459				if (wakeup)
  460					caching_ctl->progress = last;
  461				btrfs_release_path(path);
  462				up_read(&fs_info->commit_root_sem);
  463				mutex_unlock(&caching_ctl->mutex);
  464				cond_resched();
  465				mutex_lock(&caching_ctl->mutex);
  466				down_read(&fs_info->commit_root_sem);
  467				goto next;
  468			}
  469
  470			ret = btrfs_next_leaf(extent_root, path);
  471			if (ret < 0)
  472				goto out;
  473			if (ret)
  474				break;
  475			leaf = path->nodes[0];
  476			nritems = btrfs_header_nritems(leaf);
  477			continue;
  478		}
  479
  480		if (key.objectid < last) {
  481			key.objectid = last;
  482			key.offset = 0;
  483			key.type = BTRFS_EXTENT_ITEM_KEY;
  484
  485			if (wakeup)
  486				caching_ctl->progress = last;
  487			btrfs_release_path(path);
  488			goto next;
  489		}
  490
  491		if (key.objectid < block_group->key.objectid) {
  492			path->slots[0]++;
  493			continue;
  494		}
  495
  496		if (key.objectid >= block_group->key.objectid +
  497		    block_group->key.offset)
  498			break;
  499
  500		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  501		    key.type == BTRFS_METADATA_ITEM_KEY) {
  502			total_found += add_new_free_space(block_group,
  503							  fs_info, last,
  504							  key.objectid);
  505			if (key.type == BTRFS_METADATA_ITEM_KEY)
  506				last = key.objectid +
  507					fs_info->nodesize;
  508			else
  509				last = key.objectid + key.offset;
  510
  511			if (total_found > CACHING_CTL_WAKE_UP) {
  512				total_found = 0;
  513				if (wakeup)
  514					wake_up(&caching_ctl->wait);
  515			}
  516		}
  517		path->slots[0]++;
  518	}
  519	ret = 0;
  520
  521	total_found += add_new_free_space(block_group, fs_info, last,
  522					  block_group->key.objectid +
  523					  block_group->key.offset);
  524	caching_ctl->progress = (u64)-1;
  525
  526out:
  527	btrfs_free_path(path);
  528	return ret;
  529}
  530
  531static noinline void caching_thread(struct btrfs_work *work)
  532{
  533	struct btrfs_block_group_cache *block_group;
  534	struct btrfs_fs_info *fs_info;
  535	struct btrfs_caching_control *caching_ctl;
  536	struct btrfs_root *extent_root;
  537	int ret;
  538
  539	caching_ctl = container_of(work, struct btrfs_caching_control, work);
  540	block_group = caching_ctl->block_group;
  541	fs_info = block_group->fs_info;
  542	extent_root = fs_info->extent_root;
  543
  544	mutex_lock(&caching_ctl->mutex);
  545	down_read(&fs_info->commit_root_sem);
  546
  547	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
  548		ret = load_free_space_tree(caching_ctl);
  549	else
  550		ret = load_extent_tree_free(caching_ctl);
  551
  552	spin_lock(&block_group->lock);
  553	block_group->caching_ctl = NULL;
  554	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
  555	spin_unlock(&block_group->lock);
  556
  557#ifdef CONFIG_BTRFS_DEBUG
  558	if (btrfs_should_fragment_free_space(block_group)) {
  559		u64 bytes_used;
  560
  561		spin_lock(&block_group->space_info->lock);
  562		spin_lock(&block_group->lock);
  563		bytes_used = block_group->key.offset -
  564			btrfs_block_group_used(&block_group->item);
  565		block_group->space_info->bytes_used += bytes_used >> 1;
  566		spin_unlock(&block_group->lock);
  567		spin_unlock(&block_group->space_info->lock);
  568		fragment_free_space(block_group);
  569	}
  570#endif
  571
  572	caching_ctl->progress = (u64)-1;
  573
  574	up_read(&fs_info->commit_root_sem);
  575	free_excluded_extents(fs_info, block_group);
  576	mutex_unlock(&caching_ctl->mutex);
  577
  578	wake_up(&caching_ctl->wait);
  579
  580	put_caching_control(caching_ctl);
  581	btrfs_put_block_group(block_group);
  582}
  583
  584static int cache_block_group(struct btrfs_block_group_cache *cache,
  585			     int load_cache_only)
  586{
  587	DEFINE_WAIT(wait);
  588	struct btrfs_fs_info *fs_info = cache->fs_info;
  589	struct btrfs_caching_control *caching_ctl;
  590	int ret = 0;
  591
  592	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  593	if (!caching_ctl)
  594		return -ENOMEM;
  595
  596	INIT_LIST_HEAD(&caching_ctl->list);
  597	mutex_init(&caching_ctl->mutex);
  598	init_waitqueue_head(&caching_ctl->wait);
  599	caching_ctl->block_group = cache;
  600	caching_ctl->progress = cache->key.objectid;
  601	atomic_set(&caching_ctl->count, 1);
  602	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
  603			caching_thread, NULL, NULL);
  604
  605	spin_lock(&cache->lock);
  606	/*
  607	 * This should be a rare occasion, but this could happen I think in the
  608	 * case where one thread starts to load the space cache info, and then
  609	 * some other thread starts a transaction commit which tries to do an
  610	 * allocation while the other thread is still loading the space cache
  611	 * info.  The previous loop should have kept us from choosing this block
  612	 * group, but if we've moved to the state where we will wait on caching
  613	 * block groups we need to first check if we're doing a fast load here,
  614	 * so we can wait for it to finish, otherwise we could end up allocating
  615	 * from a block group who's cache gets evicted for one reason or
  616	 * another.
  617	 */
  618	while (cache->cached == BTRFS_CACHE_FAST) {
  619		struct btrfs_caching_control *ctl;
  620
  621		ctl = cache->caching_ctl;
  622		atomic_inc(&ctl->count);
  623		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  624		spin_unlock(&cache->lock);
  625
  626		schedule();
  627
  628		finish_wait(&ctl->wait, &wait);
  629		put_caching_control(ctl);
  630		spin_lock(&cache->lock);
  631	}
  632
  633	if (cache->cached != BTRFS_CACHE_NO) {
  634		spin_unlock(&cache->lock);
  635		kfree(caching_ctl);
  636		return 0;
  637	}
  638	WARN_ON(cache->caching_ctl);
  639	cache->caching_ctl = caching_ctl;
  640	cache->cached = BTRFS_CACHE_FAST;
  641	spin_unlock(&cache->lock);
  642
  643	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  644		mutex_lock(&caching_ctl->mutex);
  645		ret = load_free_space_cache(fs_info, cache);
  646
  647		spin_lock(&cache->lock);
  648		if (ret == 1) {
  649			cache->caching_ctl = NULL;
  650			cache->cached = BTRFS_CACHE_FINISHED;
  651			cache->last_byte_to_unpin = (u64)-1;
  652			caching_ctl->progress = (u64)-1;
  653		} else {
  654			if (load_cache_only) {
  655				cache->caching_ctl = NULL;
  656				cache->cached = BTRFS_CACHE_NO;
  657			} else {
  658				cache->cached = BTRFS_CACHE_STARTED;
  659				cache->has_caching_ctl = 1;
  660			}
  661		}
  662		spin_unlock(&cache->lock);
  663#ifdef CONFIG_BTRFS_DEBUG
  664		if (ret == 1 &&
  665		    btrfs_should_fragment_free_space(cache)) {
  666			u64 bytes_used;
  667
  668			spin_lock(&cache->space_info->lock);
  669			spin_lock(&cache->lock);
  670			bytes_used = cache->key.offset -
  671				btrfs_block_group_used(&cache->item);
  672			cache->space_info->bytes_used += bytes_used >> 1;
  673			spin_unlock(&cache->lock);
  674			spin_unlock(&cache->space_info->lock);
  675			fragment_free_space(cache);
  676		}
  677#endif
  678		mutex_unlock(&caching_ctl->mutex);
  679
  680		wake_up(&caching_ctl->wait);
  681		if (ret == 1) {
  682			put_caching_control(caching_ctl);
  683			free_excluded_extents(fs_info, cache);
  684			return 0;
  685		}
  686	} else {
  687		/*
  688		 * We're either using the free space tree or no caching at all.
  689		 * Set cached to the appropriate value and wakeup any waiters.
  690		 */
  691		spin_lock(&cache->lock);
  692		if (load_cache_only) {
  693			cache->caching_ctl = NULL;
  694			cache->cached = BTRFS_CACHE_NO;
  695		} else {
  696			cache->cached = BTRFS_CACHE_STARTED;
  697			cache->has_caching_ctl = 1;
  698		}
  699		spin_unlock(&cache->lock);
  700		wake_up(&caching_ctl->wait);
  701	}
  702
  703	if (load_cache_only) {
  704		put_caching_control(caching_ctl);
  705		return 0;
  706	}
  707
  708	down_write(&fs_info->commit_root_sem);
  709	atomic_inc(&caching_ctl->count);
  710	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  711	up_write(&fs_info->commit_root_sem);
  712
  713	btrfs_get_block_group(cache);
  714
  715	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
  716
  717	return ret;
  718}
  719
  720/*
  721 * return the block group that starts at or after bytenr
  722 */
  723static struct btrfs_block_group_cache *
  724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  725{
  726	return block_group_cache_tree_search(info, bytenr, 0);
  727}
  728
  729/*
  730 * return the block group that contains the given bytenr
  731 */
  732struct btrfs_block_group_cache *btrfs_lookup_block_group(
  733						 struct btrfs_fs_info *info,
  734						 u64 bytenr)
  735{
  736	return block_group_cache_tree_search(info, bytenr, 1);
  737}
  738
  739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  740						  u64 flags)
  741{
  742	struct list_head *head = &info->space_info;
  743	struct btrfs_space_info *found;
  744
  745	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  746
  747	rcu_read_lock();
  748	list_for_each_entry_rcu(found, head, list) {
  749		if (found->flags & flags) {
  750			rcu_read_unlock();
  751			return found;
  752		}
  753	}
  754	rcu_read_unlock();
  755	return NULL;
  756}
  757
  758/*
  759 * after adding space to the filesystem, we need to clear the full flags
  760 * on all the space infos.
  761 */
  762void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  763{
  764	struct list_head *head = &info->space_info;
  765	struct btrfs_space_info *found;
  766
  767	rcu_read_lock();
  768	list_for_each_entry_rcu(found, head, list)
  769		found->full = 0;
  770	rcu_read_unlock();
  771}
  772
  773/* simple helper to search for an existing data extent at a given offset */
  774int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  775{
 
  776	int ret;
  777	struct btrfs_key key;
  778	struct btrfs_path *path;
  779
  780	path = btrfs_alloc_path();
  781	if (!path)
  782		return -ENOMEM;
  783
  784	key.objectid = start;
  785	key.offset = len;
  786	key.type = BTRFS_EXTENT_ITEM_KEY;
  787	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  788	btrfs_free_path(path);
  789	return ret;
  790}
  791
  792/*
  793 * helper function to lookup reference count and flags of a tree block.
  794 *
  795 * the head node for delayed ref is used to store the sum of all the
  796 * reference count modifications queued up in the rbtree. the head
  797 * node may also store the extent flags to set. This way you can check
  798 * to see what the reference count and extent flags would be if all of
  799 * the delayed refs are not processed.
  800 */
  801int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  802			     struct btrfs_fs_info *fs_info, u64 bytenr,
  803			     u64 offset, int metadata, u64 *refs, u64 *flags)
 
  804{
 
  805	struct btrfs_delayed_ref_head *head;
  806	struct btrfs_delayed_ref_root *delayed_refs;
  807	struct btrfs_path *path;
  808	struct btrfs_extent_item *ei;
  809	struct extent_buffer *leaf;
  810	struct btrfs_key key;
  811	u32 item_size;
  812	u64 num_refs;
  813	u64 extent_flags;
 
  814	int ret;
  815
  816	/*
  817	 * If we don't have skinny metadata, don't bother doing anything
  818	 * different
  819	 */
  820	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
  821		offset = fs_info->nodesize;
  822		metadata = 0;
  823	}
  824
  825	path = btrfs_alloc_path();
  826	if (!path)
  827		return -ENOMEM;
  828
  829	if (!trans) {
  830		path->skip_locking = 1;
  831		path->search_commit_root = 1;
  832	}
  833
  834search_again:
  835	key.objectid = bytenr;
  836	key.offset = offset;
  837	if (metadata)
  838		key.type = BTRFS_METADATA_ITEM_KEY;
  839	else
  840		key.type = BTRFS_EXTENT_ITEM_KEY;
  841
  842	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 
  843	if (ret < 0)
  844		goto out_free;
  845
  846	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  847		if (path->slots[0]) {
  848			path->slots[0]--;
  849			btrfs_item_key_to_cpu(path->nodes[0], &key,
  850					      path->slots[0]);
  851			if (key.objectid == bytenr &&
  852			    key.type == BTRFS_EXTENT_ITEM_KEY &&
  853			    key.offset == fs_info->nodesize)
  854				ret = 0;
  855		}
  856	}
  857
  858	if (ret == 0) {
  859		leaf = path->nodes[0];
  860		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  861		if (item_size >= sizeof(*ei)) {
  862			ei = btrfs_item_ptr(leaf, path->slots[0],
  863					    struct btrfs_extent_item);
  864			num_refs = btrfs_extent_refs(leaf, ei);
  865			extent_flags = btrfs_extent_flags(leaf, ei);
  866		} else {
  867#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  868			struct btrfs_extent_item_v0 *ei0;
  869			BUG_ON(item_size != sizeof(*ei0));
  870			ei0 = btrfs_item_ptr(leaf, path->slots[0],
  871					     struct btrfs_extent_item_v0);
  872			num_refs = btrfs_extent_refs_v0(leaf, ei0);
  873			/* FIXME: this isn't correct for data */
  874			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  875#else
  876			BUG();
  877#endif
  878		}
  879		BUG_ON(num_refs == 0);
 
 
 
 
 
 
 
 
 
 
 
 
  880	} else {
  881		num_refs = 0;
  882		extent_flags = 0;
  883		ret = 0;
  884	}
  885
  886	if (!trans)
  887		goto out;
  888
  889	delayed_refs = &trans->transaction->delayed_refs;
  890	spin_lock(&delayed_refs->lock);
  891	head = btrfs_find_delayed_ref_head(trans, bytenr);
  892	if (head) {
  893		if (!mutex_trylock(&head->mutex)) {
  894			atomic_inc(&head->node.refs);
  895			spin_unlock(&delayed_refs->lock);
  896
  897			btrfs_release_path(path);
  898
  899			/*
  900			 * Mutex was contended, block until it's released and try
  901			 * again
  902			 */
  903			mutex_lock(&head->mutex);
  904			mutex_unlock(&head->mutex);
  905			btrfs_put_delayed_ref(&head->node);
  906			goto search_again;
  907		}
  908		spin_lock(&head->lock);
  909		if (head->extent_op && head->extent_op->update_flags)
  910			extent_flags |= head->extent_op->flags_to_set;
  911		else
  912			BUG_ON(num_refs == 0);
  913
  914		num_refs += head->node.ref_mod;
  915		spin_unlock(&head->lock);
  916		mutex_unlock(&head->mutex);
  917	}
  918	spin_unlock(&delayed_refs->lock);
  919out:
  920	WARN_ON(num_refs == 0);
  921	if (refs)
  922		*refs = num_refs;
  923	if (flags)
  924		*flags = extent_flags;
 
 
  925out_free:
  926	btrfs_free_path(path);
  927	return ret;
  928}
  929
  930/*
  931 * Back reference rules.  Back refs have three main goals:
  932 *
  933 * 1) differentiate between all holders of references to an extent so that
  934 *    when a reference is dropped we can make sure it was a valid reference
  935 *    before freeing the extent.
  936 *
  937 * 2) Provide enough information to quickly find the holders of an extent
  938 *    if we notice a given block is corrupted or bad.
  939 *
  940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  941 *    maintenance.  This is actually the same as #2, but with a slightly
  942 *    different use case.
  943 *
  944 * There are two kinds of back refs. The implicit back refs is optimized
  945 * for pointers in non-shared tree blocks. For a given pointer in a block,
  946 * back refs of this kind provide information about the block's owner tree
  947 * and the pointer's key. These information allow us to find the block by
  948 * b-tree searching. The full back refs is for pointers in tree blocks not
  949 * referenced by their owner trees. The location of tree block is recorded
  950 * in the back refs. Actually the full back refs is generic, and can be
  951 * used in all cases the implicit back refs is used. The major shortcoming
  952 * of the full back refs is its overhead. Every time a tree block gets
  953 * COWed, we have to update back refs entry for all pointers in it.
  954 *
  955 * For a newly allocated tree block, we use implicit back refs for
  956 * pointers in it. This means most tree related operations only involve
  957 * implicit back refs. For a tree block created in old transaction, the
  958 * only way to drop a reference to it is COW it. So we can detect the
  959 * event that tree block loses its owner tree's reference and do the
  960 * back refs conversion.
  961 *
  962 * When a tree block is COWed through a tree, there are four cases:
  963 *
  964 * The reference count of the block is one and the tree is the block's
  965 * owner tree. Nothing to do in this case.
  966 *
  967 * The reference count of the block is one and the tree is not the
  968 * block's owner tree. In this case, full back refs is used for pointers
  969 * in the block. Remove these full back refs, add implicit back refs for
  970 * every pointers in the new block.
  971 *
  972 * The reference count of the block is greater than one and the tree is
  973 * the block's owner tree. In this case, implicit back refs is used for
  974 * pointers in the block. Add full back refs for every pointers in the
  975 * block, increase lower level extents' reference counts. The original
  976 * implicit back refs are entailed to the new block.
  977 *
  978 * The reference count of the block is greater than one and the tree is
  979 * not the block's owner tree. Add implicit back refs for every pointer in
  980 * the new block, increase lower level extents' reference count.
  981 *
  982 * Back Reference Key composing:
  983 *
  984 * The key objectid corresponds to the first byte in the extent,
  985 * The key type is used to differentiate between types of back refs.
  986 * There are different meanings of the key offset for different types
  987 * of back refs.
  988 *
  989 * File extents can be referenced by:
  990 *
  991 * - multiple snapshots, subvolumes, or different generations in one subvol
  992 * - different files inside a single subvolume
  993 * - different offsets inside a file (bookend extents in file.c)
  994 *
  995 * The extent ref structure for the implicit back refs has fields for:
  996 *
  997 * - Objectid of the subvolume root
  998 * - objectid of the file holding the reference
  999 * - original offset in the file
 1000 * - how many bookend extents
 1001 *
 1002 * The key offset for the implicit back refs is hash of the first
 1003 * three fields.
 1004 *
 1005 * The extent ref structure for the full back refs has field for:
 1006 *
 1007 * - number of pointers in the tree leaf
 1008 *
 1009 * The key offset for the implicit back refs is the first byte of
 1010 * the tree leaf
 1011 *
 1012 * When a file extent is allocated, The implicit back refs is used.
 1013 * the fields are filled in:
 1014 *
 1015 *     (root_key.objectid, inode objectid, offset in file, 1)
 1016 *
 1017 * When a file extent is removed file truncation, we find the
 1018 * corresponding implicit back refs and check the following fields:
 1019 *
 1020 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 1021 *
 1022 * Btree extents can be referenced by:
 1023 *
 1024 * - Different subvolumes
 1025 *
 1026 * Both the implicit back refs and the full back refs for tree blocks
 1027 * only consist of key. The key offset for the implicit back refs is
 1028 * objectid of block's owner tree. The key offset for the full back refs
 1029 * is the first byte of parent block.
 1030 *
 1031 * When implicit back refs is used, information about the lowest key and
 1032 * level of the tree block are required. These information are stored in
 1033 * tree block info structure.
 1034 */
 1035
 1036#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1037static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 1038				  struct btrfs_root *root,
 1039				  struct btrfs_path *path,
 1040				  u64 owner, u32 extra_size)
 1041{
 1042	struct btrfs_extent_item *item;
 1043	struct btrfs_extent_item_v0 *ei0;
 1044	struct btrfs_extent_ref_v0 *ref0;
 1045	struct btrfs_tree_block_info *bi;
 1046	struct extent_buffer *leaf;
 1047	struct btrfs_key key;
 1048	struct btrfs_key found_key;
 1049	u32 new_size = sizeof(*item);
 1050	u64 refs;
 1051	int ret;
 1052
 1053	leaf = path->nodes[0];
 1054	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 1055
 1056	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1057	ei0 = btrfs_item_ptr(leaf, path->slots[0],
 1058			     struct btrfs_extent_item_v0);
 1059	refs = btrfs_extent_refs_v0(leaf, ei0);
 1060
 1061	if (owner == (u64)-1) {
 1062		while (1) {
 1063			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 1064				ret = btrfs_next_leaf(root, path);
 1065				if (ret < 0)
 1066					return ret;
 1067				BUG_ON(ret > 0); /* Corruption */
 1068				leaf = path->nodes[0];
 1069			}
 1070			btrfs_item_key_to_cpu(leaf, &found_key,
 1071					      path->slots[0]);
 1072			BUG_ON(key.objectid != found_key.objectid);
 1073			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 1074				path->slots[0]++;
 1075				continue;
 
 
 
 
 
 
 1076			}
 1077			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1078					      struct btrfs_extent_ref_v0);
 1079			owner = btrfs_ref_objectid_v0(leaf, ref0);
 1080			break;
 1081		}
 1082	}
 1083	btrfs_release_path(path);
 1084
 1085	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 1086		new_size += sizeof(*bi);
 1087
 1088	new_size -= sizeof(*ei0);
 1089	ret = btrfs_search_slot(trans, root, &key, path,
 1090				new_size + extra_size, 1);
 1091	if (ret < 0)
 1092		return ret;
 1093	BUG_ON(ret); /* Corruption */
 1094
 1095	btrfs_extend_item(root->fs_info, path, new_size);
 1096
 1097	leaf = path->nodes[0];
 1098	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1099	btrfs_set_extent_refs(leaf, item, refs);
 1100	/* FIXME: get real generation */
 1101	btrfs_set_extent_generation(leaf, item, 0);
 1102	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1103		btrfs_set_extent_flags(leaf, item,
 1104				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
 1105				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
 1106		bi = (struct btrfs_tree_block_info *)(item + 1);
 1107		/* FIXME: get first key of the block */
 1108		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
 1109		btrfs_set_tree_block_level(leaf, bi, (int)owner);
 1110	} else {
 1111		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
 1112	}
 1113	btrfs_mark_buffer_dirty(leaf);
 1114	return 0;
 1115}
 1116#endif
 1117
 1118static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 1119{
 1120	u32 high_crc = ~(u32)0;
 1121	u32 low_crc = ~(u32)0;
 1122	__le64 lenum;
 1123
 1124	lenum = cpu_to_le64(root_objectid);
 1125	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 1126	lenum = cpu_to_le64(owner);
 1127	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1128	lenum = cpu_to_le64(offset);
 1129	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1130
 1131	return ((u64)high_crc << 31) ^ (u64)low_crc;
 1132}
 1133
 1134static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 1135				     struct btrfs_extent_data_ref *ref)
 1136{
 1137	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 1138				    btrfs_extent_data_ref_objectid(leaf, ref),
 1139				    btrfs_extent_data_ref_offset(leaf, ref));
 1140}
 1141
 1142static int match_extent_data_ref(struct extent_buffer *leaf,
 1143				 struct btrfs_extent_data_ref *ref,
 1144				 u64 root_objectid, u64 owner, u64 offset)
 1145{
 1146	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 1147	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 1148	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 1149		return 0;
 1150	return 1;
 1151}
 1152
 1153static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 1154					   struct btrfs_root *root,
 1155					   struct btrfs_path *path,
 1156					   u64 bytenr, u64 parent,
 1157					   u64 root_objectid,
 1158					   u64 owner, u64 offset)
 1159{
 
 1160	struct btrfs_key key;
 1161	struct btrfs_extent_data_ref *ref;
 1162	struct extent_buffer *leaf;
 1163	u32 nritems;
 1164	int ret;
 1165	int recow;
 1166	int err = -ENOENT;
 1167
 1168	key.objectid = bytenr;
 1169	if (parent) {
 1170		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1171		key.offset = parent;
 1172	} else {
 1173		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1174		key.offset = hash_extent_data_ref(root_objectid,
 1175						  owner, offset);
 1176	}
 1177again:
 1178	recow = 0;
 1179	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1180	if (ret < 0) {
 1181		err = ret;
 1182		goto fail;
 1183	}
 1184
 1185	if (parent) {
 1186		if (!ret)
 1187			return 0;
 1188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1189		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1190		btrfs_release_path(path);
 1191		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1192		if (ret < 0) {
 1193			err = ret;
 1194			goto fail;
 1195		}
 1196		if (!ret)
 1197			return 0;
 1198#endif
 1199		goto fail;
 1200	}
 1201
 
 1202	leaf = path->nodes[0];
 1203	nritems = btrfs_header_nritems(leaf);
 1204	while (1) {
 1205		if (path->slots[0] >= nritems) {
 1206			ret = btrfs_next_leaf(root, path);
 1207			if (ret < 0)
 1208				err = ret;
 1209			if (ret)
 1210				goto fail;
 
 1211
 1212			leaf = path->nodes[0];
 1213			nritems = btrfs_header_nritems(leaf);
 1214			recow = 1;
 1215		}
 1216
 1217		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1218		if (key.objectid != bytenr ||
 1219		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 1220			goto fail;
 1221
 1222		ref = btrfs_item_ptr(leaf, path->slots[0],
 1223				     struct btrfs_extent_data_ref);
 1224
 1225		if (match_extent_data_ref(leaf, ref, root_objectid,
 1226					  owner, offset)) {
 1227			if (recow) {
 1228				btrfs_release_path(path);
 1229				goto again;
 1230			}
 1231			err = 0;
 1232			break;
 1233		}
 1234		path->slots[0]++;
 1235	}
 1236fail:
 1237	return err;
 1238}
 1239
 1240static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 1241					   struct btrfs_root *root,
 1242					   struct btrfs_path *path,
 1243					   u64 bytenr, u64 parent,
 1244					   u64 root_objectid, u64 owner,
 1245					   u64 offset, int refs_to_add)
 1246{
 
 1247	struct btrfs_key key;
 1248	struct extent_buffer *leaf;
 
 
 1249	u32 size;
 1250	u32 num_refs;
 1251	int ret;
 1252
 1253	key.objectid = bytenr;
 1254	if (parent) {
 1255		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1256		key.offset = parent;
 1257		size = sizeof(struct btrfs_shared_data_ref);
 1258	} else {
 1259		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1260		key.offset = hash_extent_data_ref(root_objectid,
 1261						  owner, offset);
 1262		size = sizeof(struct btrfs_extent_data_ref);
 1263	}
 1264
 1265	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 1266	if (ret && ret != -EEXIST)
 1267		goto fail;
 1268
 1269	leaf = path->nodes[0];
 1270	if (parent) {
 1271		struct btrfs_shared_data_ref *ref;
 1272		ref = btrfs_item_ptr(leaf, path->slots[0],
 1273				     struct btrfs_shared_data_ref);
 1274		if (ret == 0) {
 1275			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 1276		} else {
 1277			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 1278			num_refs += refs_to_add;
 1279			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 1280		}
 1281	} else {
 1282		struct btrfs_extent_data_ref *ref;
 1283		while (ret == -EEXIST) {
 1284			ref = btrfs_item_ptr(leaf, path->slots[0],
 1285					     struct btrfs_extent_data_ref);
 1286			if (match_extent_data_ref(leaf, ref, root_objectid,
 1287						  owner, offset))
 1288				break;
 1289			btrfs_release_path(path);
 1290			key.offset++;
 1291			ret = btrfs_insert_empty_item(trans, root, path, &key,
 1292						      size);
 1293			if (ret && ret != -EEXIST)
 1294				goto fail;
 1295
 1296			leaf = path->nodes[0];
 1297		}
 1298		ref = btrfs_item_ptr(leaf, path->slots[0],
 1299				     struct btrfs_extent_data_ref);
 1300		if (ret == 0) {
 1301			btrfs_set_extent_data_ref_root(leaf, ref,
 1302						       root_objectid);
 1303			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 1304			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 1305			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 1306		} else {
 1307			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 1308			num_refs += refs_to_add;
 1309			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 1310		}
 1311	}
 1312	btrfs_mark_buffer_dirty(leaf);
 1313	ret = 0;
 1314fail:
 1315	btrfs_release_path(path);
 1316	return ret;
 1317}
 1318
 1319static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 1320					   struct btrfs_root *root,
 1321					   struct btrfs_path *path,
 1322					   int refs_to_drop, int *last_ref)
 1323{
 1324	struct btrfs_key key;
 1325	struct btrfs_extent_data_ref *ref1 = NULL;
 1326	struct btrfs_shared_data_ref *ref2 = NULL;
 1327	struct extent_buffer *leaf;
 1328	u32 num_refs = 0;
 1329	int ret = 0;
 1330
 1331	leaf = path->nodes[0];
 1332	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1333
 1334	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1335		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1336				      struct btrfs_extent_data_ref);
 1337		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1338	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1339		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1340				      struct btrfs_shared_data_ref);
 1341		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1342#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1343	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1344		struct btrfs_extent_ref_v0 *ref0;
 1345		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1346				      struct btrfs_extent_ref_v0);
 1347		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1348#endif
 1349	} else {
 1350		BUG();
 
 
 
 
 1351	}
 1352
 1353	BUG_ON(num_refs < refs_to_drop);
 1354	num_refs -= refs_to_drop;
 1355
 1356	if (num_refs == 0) {
 1357		ret = btrfs_del_item(trans, root, path);
 1358		*last_ref = 1;
 1359	} else {
 1360		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 1361			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 1362		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 1363			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 1364#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1365		else {
 1366			struct btrfs_extent_ref_v0 *ref0;
 1367			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1368					struct btrfs_extent_ref_v0);
 1369			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
 1370		}
 1371#endif
 1372		btrfs_mark_buffer_dirty(leaf);
 1373	}
 1374	return ret;
 1375}
 1376
 1377static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 1378					  struct btrfs_extent_inline_ref *iref)
 1379{
 1380	struct btrfs_key key;
 1381	struct extent_buffer *leaf;
 1382	struct btrfs_extent_data_ref *ref1;
 1383	struct btrfs_shared_data_ref *ref2;
 1384	u32 num_refs = 0;
 
 1385
 1386	leaf = path->nodes[0];
 1387	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 
 1388	if (iref) {
 1389		if (btrfs_extent_inline_ref_type(leaf, iref) ==
 1390		    BTRFS_EXTENT_DATA_REF_KEY) {
 
 
 
 
 
 1391			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 1392			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1393		} else {
 1394			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 1395			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1396		}
 1397	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1398		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1399				      struct btrfs_extent_data_ref);
 1400		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1401	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1402		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1403				      struct btrfs_shared_data_ref);
 1404		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1406	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1407		struct btrfs_extent_ref_v0 *ref0;
 1408		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1409				      struct btrfs_extent_ref_v0);
 1410		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1411#endif
 1412	} else {
 1413		WARN_ON(1);
 1414	}
 1415	return num_refs;
 1416}
 1417
 1418static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 1419					  struct btrfs_root *root,
 1420					  struct btrfs_path *path,
 1421					  u64 bytenr, u64 parent,
 1422					  u64 root_objectid)
 1423{
 
 1424	struct btrfs_key key;
 1425	int ret;
 1426
 1427	key.objectid = bytenr;
 1428	if (parent) {
 1429		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1430		key.offset = parent;
 1431	} else {
 1432		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1433		key.offset = root_objectid;
 1434	}
 1435
 1436	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1437	if (ret > 0)
 1438		ret = -ENOENT;
 1439#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1440	if (ret == -ENOENT && parent) {
 1441		btrfs_release_path(path);
 1442		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1443		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1444		if (ret > 0)
 1445			ret = -ENOENT;
 1446	}
 1447#endif
 1448	return ret;
 1449}
 1450
 1451static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 1452					  struct btrfs_root *root,
 1453					  struct btrfs_path *path,
 1454					  u64 bytenr, u64 parent,
 1455					  u64 root_objectid)
 1456{
 
 1457	struct btrfs_key key;
 1458	int ret;
 1459
 1460	key.objectid = bytenr;
 1461	if (parent) {
 1462		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1463		key.offset = parent;
 1464	} else {
 1465		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1466		key.offset = root_objectid;
 1467	}
 1468
 1469	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 1470	btrfs_release_path(path);
 1471	return ret;
 1472}
 1473
 1474static inline int extent_ref_type(u64 parent, u64 owner)
 1475{
 1476	int type;
 1477	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1478		if (parent > 0)
 1479			type = BTRFS_SHARED_BLOCK_REF_KEY;
 1480		else
 1481			type = BTRFS_TREE_BLOCK_REF_KEY;
 1482	} else {
 1483		if (parent > 0)
 1484			type = BTRFS_SHARED_DATA_REF_KEY;
 1485		else
 1486			type = BTRFS_EXTENT_DATA_REF_KEY;
 1487	}
 1488	return type;
 1489}
 1490
 1491static int find_next_key(struct btrfs_path *path, int level,
 1492			 struct btrfs_key *key)
 1493
 1494{
 1495	for (; level < BTRFS_MAX_LEVEL; level++) {
 1496		if (!path->nodes[level])
 1497			break;
 1498		if (path->slots[level] + 1 >=
 1499		    btrfs_header_nritems(path->nodes[level]))
 1500			continue;
 1501		if (level == 0)
 1502			btrfs_item_key_to_cpu(path->nodes[level], key,
 1503					      path->slots[level] + 1);
 1504		else
 1505			btrfs_node_key_to_cpu(path->nodes[level], key,
 1506					      path->slots[level] + 1);
 1507		return 0;
 1508	}
 1509	return 1;
 1510}
 1511
 1512/*
 1513 * look for inline back ref. if back ref is found, *ref_ret is set
 1514 * to the address of inline back ref, and 0 is returned.
 1515 *
 1516 * if back ref isn't found, *ref_ret is set to the address where it
 1517 * should be inserted, and -ENOENT is returned.
 1518 *
 1519 * if insert is true and there are too many inline back refs, the path
 1520 * points to the extent item, and -EAGAIN is returned.
 1521 *
 1522 * NOTE: inline back refs are ordered in the same way that back ref
 1523 *	 items in the tree are ordered.
 1524 */
 1525static noinline_for_stack
 1526int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 1527				 struct btrfs_root *root,
 1528				 struct btrfs_path *path,
 1529				 struct btrfs_extent_inline_ref **ref_ret,
 1530				 u64 bytenr, u64 num_bytes,
 1531				 u64 parent, u64 root_objectid,
 1532				 u64 owner, u64 offset, int insert)
 1533{
 1534	struct btrfs_fs_info *fs_info = root->fs_info;
 
 1535	struct btrfs_key key;
 1536	struct extent_buffer *leaf;
 1537	struct btrfs_extent_item *ei;
 1538	struct btrfs_extent_inline_ref *iref;
 1539	u64 flags;
 1540	u64 item_size;
 1541	unsigned long ptr;
 1542	unsigned long end;
 1543	int extra_size;
 1544	int type;
 1545	int want;
 1546	int ret;
 1547	int err = 0;
 1548	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
 1549
 1550	key.objectid = bytenr;
 1551	key.type = BTRFS_EXTENT_ITEM_KEY;
 1552	key.offset = num_bytes;
 1553
 1554	want = extent_ref_type(parent, owner);
 1555	if (insert) {
 1556		extra_size = btrfs_extent_inline_ref_size(want);
 1557		path->keep_locks = 1;
 1558	} else
 1559		extra_size = -1;
 1560
 1561	/*
 1562	 * Owner is our parent level, so we can just add one to get the level
 1563	 * for the block we are interested in.
 1564	 */
 1565	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 1566		key.type = BTRFS_METADATA_ITEM_KEY;
 1567		key.offset = owner;
 1568	}
 1569
 1570again:
 1571	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 1572	if (ret < 0) {
 1573		err = ret;
 1574		goto out;
 1575	}
 1576
 1577	/*
 1578	 * We may be a newly converted file system which still has the old fat
 1579	 * extent entries for metadata, so try and see if we have one of those.
 1580	 */
 1581	if (ret > 0 && skinny_metadata) {
 1582		skinny_metadata = false;
 1583		if (path->slots[0]) {
 1584			path->slots[0]--;
 1585			btrfs_item_key_to_cpu(path->nodes[0], &key,
 1586					      path->slots[0]);
 1587			if (key.objectid == bytenr &&
 1588			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 1589			    key.offset == num_bytes)
 1590				ret = 0;
 1591		}
 1592		if (ret) {
 1593			key.objectid = bytenr;
 1594			key.type = BTRFS_EXTENT_ITEM_KEY;
 1595			key.offset = num_bytes;
 1596			btrfs_release_path(path);
 1597			goto again;
 1598		}
 1599	}
 1600
 1601	if (ret && !insert) {
 1602		err = -ENOENT;
 1603		goto out;
 1604	} else if (WARN_ON(ret)) {
 1605		err = -EIO;
 
 
 
 
 
 1606		goto out;
 1607	}
 1608
 1609	leaf = path->nodes[0];
 1610	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1611#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1612	if (item_size < sizeof(*ei)) {
 1613		if (!insert) {
 1614			err = -ENOENT;
 1615			goto out;
 1616		}
 1617		ret = convert_extent_item_v0(trans, root, path, owner,
 1618					     extra_size);
 1619		if (ret < 0) {
 1620			err = ret;
 1621			goto out;
 1622		}
 1623		leaf = path->nodes[0];
 1624		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1625	}
 1626#endif
 1627	BUG_ON(item_size < sizeof(*ei));
 1628
 1629	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1630	flags = btrfs_extent_flags(leaf, ei);
 1631
 1632	ptr = (unsigned long)(ei + 1);
 1633	end = (unsigned long)ei + item_size;
 1634
 1635	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 1636		ptr += sizeof(struct btrfs_tree_block_info);
 1637		BUG_ON(ptr > end);
 1638	}
 1639
 1640	err = -ENOENT;
 1641	while (1) {
 1642		if (ptr >= end) {
 1643			WARN_ON(ptr > end);
 1644			break;
 1645		}
 
 1646		iref = (struct btrfs_extent_inline_ref *)ptr;
 1647		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 
 
 
 
 
 1648		if (want < type)
 1649			break;
 1650		if (want > type) {
 1651			ptr += btrfs_extent_inline_ref_size(type);
 1652			continue;
 1653		}
 1654
 1655		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1656			struct btrfs_extent_data_ref *dref;
 1657			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1658			if (match_extent_data_ref(leaf, dref, root_objectid,
 1659						  owner, offset)) {
 1660				err = 0;
 1661				break;
 1662			}
 1663			if (hash_extent_data_ref_item(leaf, dref) <
 1664			    hash_extent_data_ref(root_objectid, owner, offset))
 1665				break;
 1666		} else {
 1667			u64 ref_offset;
 1668			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 1669			if (parent > 0) {
 1670				if (parent == ref_offset) {
 1671					err = 0;
 1672					break;
 1673				}
 1674				if (ref_offset < parent)
 1675					break;
 1676			} else {
 1677				if (root_objectid == ref_offset) {
 1678					err = 0;
 1679					break;
 1680				}
 1681				if (ref_offset < root_objectid)
 1682					break;
 1683			}
 1684		}
 1685		ptr += btrfs_extent_inline_ref_size(type);
 1686	}
 1687	if (err == -ENOENT && insert) {
 
 
 
 
 
 
 
 
 
 
 1688		if (item_size + extra_size >=
 1689		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 1690			err = -EAGAIN;
 1691			goto out;
 1692		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1693		/*
 1694		 * To add new inline back ref, we have to make sure
 1695		 * there is no corresponding back ref item.
 1696		 * For simplicity, we just do not add new inline back
 1697		 * ref if there is any kind of item for this block
 1698		 */
 1699		if (find_next_key(path, 0, &key) == 0 &&
 1700		    key.objectid == bytenr &&
 1701		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 1702			err = -EAGAIN;
 1703			goto out;
 1704		}
 1705	}
 
 1706	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 1707out:
 1708	if (insert) {
 1709		path->keep_locks = 0;
 1710		btrfs_unlock_up_safe(path, 1);
 1711	}
 1712	return err;
 
 
 1713}
 1714
 1715/*
 1716 * helper to add new inline back ref
 1717 */
 1718static noinline_for_stack
 1719void setup_inline_extent_backref(struct btrfs_root *root,
 1720				 struct btrfs_path *path,
 1721				 struct btrfs_extent_inline_ref *iref,
 1722				 u64 parent, u64 root_objectid,
 1723				 u64 owner, u64 offset, int refs_to_add,
 1724				 struct btrfs_delayed_extent_op *extent_op)
 1725{
 1726	struct extent_buffer *leaf;
 1727	struct btrfs_extent_item *ei;
 1728	unsigned long ptr;
 1729	unsigned long end;
 1730	unsigned long item_offset;
 1731	u64 refs;
 1732	int size;
 1733	int type;
 1734
 1735	leaf = path->nodes[0];
 1736	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1737	item_offset = (unsigned long)iref - (unsigned long)ei;
 1738
 1739	type = extent_ref_type(parent, owner);
 1740	size = btrfs_extent_inline_ref_size(type);
 1741
 1742	btrfs_extend_item(root->fs_info, path, size);
 1743
 1744	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1745	refs = btrfs_extent_refs(leaf, ei);
 1746	refs += refs_to_add;
 1747	btrfs_set_extent_refs(leaf, ei, refs);
 1748	if (extent_op)
 1749		__run_delayed_extent_op(extent_op, leaf, ei);
 1750
 1751	ptr = (unsigned long)ei + item_offset;
 1752	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
 1753	if (ptr < end - size)
 1754		memmove_extent_buffer(leaf, ptr + size, ptr,
 1755				      end - size - ptr);
 1756
 1757	iref = (struct btrfs_extent_inline_ref *)ptr;
 1758	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 1759	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1760		struct btrfs_extent_data_ref *dref;
 1761		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1762		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
 1763		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
 1764		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
 1765		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
 1766	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1767		struct btrfs_shared_data_ref *sref;
 1768		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1769		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
 1770		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1771	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 1772		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1773	} else {
 1774		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 1775	}
 1776	btrfs_mark_buffer_dirty(leaf);
 1777}
 1778
 1779static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 1780				 struct btrfs_root *root,
 1781				 struct btrfs_path *path,
 1782				 struct btrfs_extent_inline_ref **ref_ret,
 1783				 u64 bytenr, u64 num_bytes, u64 parent,
 1784				 u64 root_objectid, u64 owner, u64 offset)
 1785{
 1786	int ret;
 1787
 1788	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
 1789					   bytenr, num_bytes, parent,
 1790					   root_objectid, owner, offset, 0);
 1791	if (ret != -ENOENT)
 1792		return ret;
 1793
 1794	btrfs_release_path(path);
 1795	*ref_ret = NULL;
 1796
 1797	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1798		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
 1799					    root_objectid);
 1800	} else {
 1801		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
 1802					     root_objectid, owner, offset);
 1803	}
 1804	return ret;
 1805}
 1806
 1807/*
 1808 * helper to update/remove inline back ref
 1809 */
 1810static noinline_for_stack
 1811void update_inline_extent_backref(struct btrfs_root *root,
 1812				  struct btrfs_path *path,
 1813				  struct btrfs_extent_inline_ref *iref,
 1814				  int refs_to_mod,
 1815				  struct btrfs_delayed_extent_op *extent_op,
 1816				  int *last_ref)
 1817{
 1818	struct extent_buffer *leaf;
 
 1819	struct btrfs_extent_item *ei;
 1820	struct btrfs_extent_data_ref *dref = NULL;
 1821	struct btrfs_shared_data_ref *sref = NULL;
 1822	unsigned long ptr;
 1823	unsigned long end;
 1824	u32 item_size;
 1825	int size;
 1826	int type;
 1827	u64 refs;
 1828
 1829	leaf = path->nodes[0];
 1830	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1831	refs = btrfs_extent_refs(leaf, ei);
 1832	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1833	refs += refs_to_mod;
 1834	btrfs_set_extent_refs(leaf, ei, refs);
 1835	if (extent_op)
 1836		__run_delayed_extent_op(extent_op, leaf, ei);
 1837
 1838	type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 
 1839
 1840	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1841		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1842		refs = btrfs_extent_data_ref_count(leaf, dref);
 1843	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1844		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1845		refs = btrfs_shared_data_ref_count(leaf, sref);
 1846	} else {
 1847		refs = 1;
 1848		BUG_ON(refs_to_mod != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1849	}
 1850
 1851	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1852	refs += refs_to_mod;
 1853
 1854	if (refs > 0) {
 1855		if (type == BTRFS_EXTENT_DATA_REF_KEY)
 1856			btrfs_set_extent_data_ref_count(leaf, dref, refs);
 1857		else
 1858			btrfs_set_shared_data_ref_count(leaf, sref, refs);
 1859	} else {
 1860		*last_ref = 1;
 1861		size =  btrfs_extent_inline_ref_size(type);
 1862		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1863		ptr = (unsigned long)iref;
 1864		end = (unsigned long)ei + item_size;
 1865		if (ptr + size < end)
 1866			memmove_extent_buffer(leaf, ptr, ptr + size,
 1867					      end - ptr - size);
 1868		item_size -= size;
 1869		btrfs_truncate_item(root->fs_info, path, item_size, 1);
 1870	}
 1871	btrfs_mark_buffer_dirty(leaf);
 
 1872}
 1873
 1874static noinline_for_stack
 1875int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 1876				 struct btrfs_root *root,
 1877				 struct btrfs_path *path,
 1878				 u64 bytenr, u64 num_bytes, u64 parent,
 1879				 u64 root_objectid, u64 owner,
 1880				 u64 offset, int refs_to_add,
 1881				 struct btrfs_delayed_extent_op *extent_op)
 1882{
 1883	struct btrfs_extent_inline_ref *iref;
 1884	int ret;
 1885
 1886	ret = lookup_inline_extent_backref(trans, root, path, &iref,
 1887					   bytenr, num_bytes, parent,
 1888					   root_objectid, owner, offset, 1);
 1889	if (ret == 0) {
 1890		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
 1891		update_inline_extent_backref(root, path, iref,
 1892					     refs_to_add, extent_op, NULL);
 
 
 
 
 
 
 
 
 
 
 1893	} else if (ret == -ENOENT) {
 1894		setup_inline_extent_backref(root, path, iref, parent,
 1895					    root_objectid, owner, offset,
 1896					    refs_to_add, extent_op);
 1897		ret = 0;
 1898	}
 1899	return ret;
 1900}
 1901
 1902static int insert_extent_backref(struct btrfs_trans_handle *trans,
 1903				 struct btrfs_root *root,
 1904				 struct btrfs_path *path,
 1905				 u64 bytenr, u64 parent, u64 root_objectid,
 1906				 u64 owner, u64 offset, int refs_to_add)
 1907{
 1908	int ret;
 1909	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1910		BUG_ON(refs_to_add != 1);
 1911		ret = insert_tree_block_ref(trans, root, path, bytenr,
 1912					    parent, root_objectid);
 1913	} else {
 1914		ret = insert_extent_data_ref(trans, root, path, bytenr,
 1915					     parent, root_objectid,
 1916					     owner, offset, refs_to_add);
 1917	}
 1918	return ret;
 1919}
 1920
 1921static int remove_extent_backref(struct btrfs_trans_handle *trans,
 1922				 struct btrfs_root *root,
 1923				 struct btrfs_path *path,
 1924				 struct btrfs_extent_inline_ref *iref,
 1925				 int refs_to_drop, int is_data, int *last_ref)
 1926{
 1927	int ret = 0;
 1928
 1929	BUG_ON(!is_data && refs_to_drop != 1);
 1930	if (iref) {
 1931		update_inline_extent_backref(root, path, iref,
 1932					     -refs_to_drop, NULL, last_ref);
 1933	} else if (is_data) {
 1934		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
 1935					     last_ref);
 1936	} else {
 1937		*last_ref = 1;
 1938		ret = btrfs_del_item(trans, root, path);
 1939	}
 1940	return ret;
 1941}
 1942
 1943#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
 1944static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
 1945			       u64 *discarded_bytes)
 1946{
 1947	int j, ret = 0;
 1948	u64 bytes_left, end;
 1949	u64 aligned_start = ALIGN(start, 1 << 9);
 1950
 1951	if (WARN_ON(start != aligned_start)) {
 
 1952		len -= aligned_start - start;
 1953		len = round_down(len, 1 << 9);
 1954		start = aligned_start;
 1955	}
 1956
 1957	*discarded_bytes = 0;
 1958
 1959	if (!len)
 1960		return 0;
 1961
 1962	end = start + len;
 1963	bytes_left = len;
 1964
 1965	/* Skip any superblocks on this device. */
 1966	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
 1967		u64 sb_start = btrfs_sb_offset(j);
 1968		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
 1969		u64 size = sb_start - start;
 1970
 1971		if (!in_range(sb_start, start, bytes_left) &&
 1972		    !in_range(sb_end, start, bytes_left) &&
 1973		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
 1974			continue;
 1975
 1976		/*
 1977		 * Superblock spans beginning of range.  Adjust start and
 1978		 * try again.
 1979		 */
 1980		if (sb_start <= start) {
 1981			start += sb_end - start;
 1982			if (start > end) {
 1983				bytes_left = 0;
 1984				break;
 1985			}
 1986			bytes_left = end - start;
 1987			continue;
 1988		}
 1989
 1990		if (size) {
 1991			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
 1992						   GFP_NOFS, 0);
 
 1993			if (!ret)
 1994				*discarded_bytes += size;
 1995			else if (ret != -EOPNOTSUPP)
 1996				return ret;
 1997		}
 1998
 1999		start = sb_end;
 2000		if (start > end) {
 2001			bytes_left = 0;
 2002			break;
 2003		}
 2004		bytes_left = end - start;
 2005	}
 2006
 2007	if (bytes_left) {
 2008		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
 2009					   GFP_NOFS, 0);
 2010		if (!ret)
 2011			*discarded_bytes += bytes_left;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2012	}
 
 
 
 2013	return ret;
 2014}
 2015
 2016int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
 2017			 u64 num_bytes, u64 *actual_bytes)
 2018{
 2019	int ret;
 2020	u64 discarded_bytes = 0;
 2021	struct btrfs_bio *bbio = NULL;
 2022
 2023
 2024	/*
 2025	 * Avoid races with device replace and make sure our bbio has devices
 2026	 * associated to its stripes that don't go away while we are discarding.
 2027	 */
 2028	btrfs_bio_counter_inc_blocked(fs_info);
 2029	/* Tell the block device(s) that the sectors can be discarded */
 2030	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
 2031			      &bbio, 0);
 2032	/* Error condition is -ENOMEM */
 2033	if (!ret) {
 2034		struct btrfs_bio_stripe *stripe = bbio->stripes;
 2035		int i;
 2036
 
 
 
 
 
 
 
 
 2037
 2038		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 
 2039			u64 bytes;
 2040			if (!stripe->dev->can_discard)
 
 
 2041				continue;
 
 2042
 2043			ret = btrfs_issue_discard(stripe->dev->bdev,
 2044						  stripe->physical,
 2045						  stripe->length,
 2046						  &bytes);
 2047			if (!ret)
 2048				discarded_bytes += bytes;
 2049			else if (ret != -EOPNOTSUPP)
 2050				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
 2051
 2052			/*
 2053			 * Just in case we get back EOPNOTSUPP for some reason,
 2054			 * just ignore the return value so we don't screw up
 2055			 * people calling discard_extent.
 2056			 */
 2057			ret = 0;
 
 
 
 
 
 
 2058		}
 2059		btrfs_put_bbio(bbio);
 
 
 
 2060	}
 2061	btrfs_bio_counter_dec(fs_info);
 2062
 2063	if (actual_bytes)
 2064		*actual_bytes = discarded_bytes;
 2065
 2066
 2067	if (ret == -EOPNOTSUPP)
 2068		ret = 0;
 2069	return ret;
 2070}
 2071
 2072/* Can return -ENOMEM */
 2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2074			 struct btrfs_fs_info *fs_info,
 2075			 u64 bytenr, u64 num_bytes, u64 parent,
 2076			 u64 root_objectid, u64 owner, u64 offset)
 2077{
 
 2078	int ret;
 2079
 2080	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
 2081	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
 
 
 
 
 
 
 
 
 
 2082
 2083	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 2084		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 2085					num_bytes,
 2086					parent, root_objectid, (int)owner,
 2087					BTRFS_ADD_DELAYED_REF, NULL);
 2088	} else {
 2089		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 2090					num_bytes, parent, root_objectid,
 2091					owner, offset, 0,
 2092					BTRFS_ADD_DELAYED_REF, NULL);
 2093	}
 2094	return ret;
 2095}
 2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2097static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2098				  struct btrfs_fs_info *fs_info,
 2099				  struct btrfs_delayed_ref_node *node,
 2100				  u64 parent, u64 root_objectid,
 2101				  u64 owner, u64 offset, int refs_to_add,
 2102				  struct btrfs_delayed_extent_op *extent_op)
 2103{
 2104	struct btrfs_path *path;
 2105	struct extent_buffer *leaf;
 2106	struct btrfs_extent_item *item;
 2107	struct btrfs_key key;
 2108	u64 bytenr = node->bytenr;
 2109	u64 num_bytes = node->num_bytes;
 
 
 2110	u64 refs;
 
 2111	int ret;
 2112
 2113	path = btrfs_alloc_path();
 2114	if (!path)
 2115		return -ENOMEM;
 2116
 2117	path->reada = READA_FORWARD;
 2118	path->leave_spinning = 1;
 2119	/* this will setup the path even if it fails to insert the back ref */
 2120	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
 2121					   bytenr, num_bytes, parent,
 2122					   root_objectid, owner, offset,
 2123					   refs_to_add, extent_op);
 2124	if ((ret < 0 && ret != -EAGAIN) || !ret)
 2125		goto out;
 2126
 2127	/*
 2128	 * Ok we had -EAGAIN which means we didn't have space to insert and
 2129	 * inline extent ref, so just update the reference count and add a
 2130	 * normal backref.
 2131	 */
 2132	leaf = path->nodes[0];
 2133	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 2134	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2135	refs = btrfs_extent_refs(leaf, item);
 2136	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
 2137	if (extent_op)
 2138		__run_delayed_extent_op(extent_op, leaf, item);
 2139
 2140	btrfs_mark_buffer_dirty(leaf);
 2141	btrfs_release_path(path);
 2142
 2143	path->reada = READA_FORWARD;
 2144	path->leave_spinning = 1;
 2145	/* now insert the actual backref */
 2146	ret = insert_extent_backref(trans, fs_info->extent_root,
 2147				    path, bytenr, parent, root_objectid,
 2148				    owner, offset, refs_to_add);
 
 
 2149	if (ret)
 2150		btrfs_abort_transaction(trans, ret);
 2151out:
 2152	btrfs_free_path(path);
 2153	return ret;
 2154}
 2155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2156static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 2157				struct btrfs_fs_info *fs_info,
 2158				struct btrfs_delayed_ref_node *node,
 2159				struct btrfs_delayed_extent_op *extent_op,
 2160				int insert_reserved)
 2161{
 2162	int ret = 0;
 2163	struct btrfs_delayed_data_ref *ref;
 2164	struct btrfs_key ins;
 2165	u64 parent = 0;
 2166	u64 ref_root = 0;
 2167	u64 flags = 0;
 2168
 2169	ins.objectid = node->bytenr;
 2170	ins.offset = node->num_bytes;
 2171	ins.type = BTRFS_EXTENT_ITEM_KEY;
 2172
 2173	ref = btrfs_delayed_node_to_data_ref(node);
 2174	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
 2175
 2176	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
 2177		parent = ref->parent;
 2178	ref_root = ref->root;
 2179
 2180	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 
 
 
 
 
 
 
 
 
 
 
 2181		if (extent_op)
 2182			flags |= extent_op->flags_to_set;
 2183		ret = alloc_reserved_file_extent(trans, fs_info,
 2184						 parent, ref_root, flags,
 2185						 ref->objectid, ref->offset,
 2186						 &ins, node->ref_mod);
 
 
 
 
 
 
 
 
 2187	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2188		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
 2189					     ref_root, ref->objectid,
 2190					     ref->offset, node->ref_mod,
 2191					     extent_op);
 2192	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2193		ret = __btrfs_free_extent(trans, fs_info, node, parent,
 2194					  ref_root, ref->objectid,
 2195					  ref->offset, node->ref_mod,
 2196					  extent_op);
 2197	} else {
 2198		BUG();
 2199	}
 2200	return ret;
 2201}
 2202
 2203static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 2204				    struct extent_buffer *leaf,
 2205				    struct btrfs_extent_item *ei)
 2206{
 2207	u64 flags = btrfs_extent_flags(leaf, ei);
 2208	if (extent_op->update_flags) {
 2209		flags |= extent_op->flags_to_set;
 2210		btrfs_set_extent_flags(leaf, ei, flags);
 2211	}
 2212
 2213	if (extent_op->update_key) {
 2214		struct btrfs_tree_block_info *bi;
 2215		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
 2216		bi = (struct btrfs_tree_block_info *)(ei + 1);
 2217		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
 2218	}
 2219}
 2220
 2221static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
 2222				 struct btrfs_fs_info *fs_info,
 2223				 struct btrfs_delayed_ref_node *node,
 2224				 struct btrfs_delayed_extent_op *extent_op)
 2225{
 
 
 2226	struct btrfs_key key;
 2227	struct btrfs_path *path;
 2228	struct btrfs_extent_item *ei;
 2229	struct extent_buffer *leaf;
 2230	u32 item_size;
 2231	int ret;
 2232	int err = 0;
 2233	int metadata = !extent_op->is_data;
 2234
 2235	if (trans->aborted)
 2236		return 0;
 2237
 2238	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 2239		metadata = 0;
 2240
 2241	path = btrfs_alloc_path();
 2242	if (!path)
 2243		return -ENOMEM;
 2244
 2245	key.objectid = node->bytenr;
 2246
 2247	if (metadata) {
 2248		key.type = BTRFS_METADATA_ITEM_KEY;
 2249		key.offset = extent_op->level;
 2250	} else {
 2251		key.type = BTRFS_EXTENT_ITEM_KEY;
 2252		key.offset = node->num_bytes;
 2253	}
 2254
 
 2255again:
 2256	path->reada = READA_FORWARD;
 2257	path->leave_spinning = 1;
 2258	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
 2259	if (ret < 0) {
 2260		err = ret;
 2261		goto out;
 2262	}
 2263	if (ret > 0) {
 2264		if (metadata) {
 2265			if (path->slots[0] > 0) {
 2266				path->slots[0]--;
 2267				btrfs_item_key_to_cpu(path->nodes[0], &key,
 2268						      path->slots[0]);
 2269				if (key.objectid == node->bytenr &&
 2270				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 2271				    key.offset == node->num_bytes)
 2272					ret = 0;
 2273			}
 2274			if (ret > 0) {
 2275				btrfs_release_path(path);
 2276				metadata = 0;
 2277
 2278				key.objectid = node->bytenr;
 2279				key.offset = node->num_bytes;
 2280				key.type = BTRFS_EXTENT_ITEM_KEY;
 2281				goto again;
 2282			}
 2283		} else {
 2284			err = -EIO;
 
 
 
 2285			goto out;
 2286		}
 2287	}
 2288
 2289	leaf = path->nodes[0];
 2290	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2291#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 2292	if (item_size < sizeof(*ei)) {
 2293		ret = convert_extent_item_v0(trans, fs_info->extent_root,
 2294					     path, (u64)-1, 0);
 2295		if (ret < 0) {
 2296			err = ret;
 2297			goto out;
 2298		}
 2299		leaf = path->nodes[0];
 2300		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2301	}
 2302#endif
 2303	BUG_ON(item_size < sizeof(*ei));
 2304	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2305	__run_delayed_extent_op(extent_op, leaf, ei);
 2306
 2307	btrfs_mark_buffer_dirty(leaf);
 2308out:
 2309	btrfs_free_path(path);
 2310	return err;
 2311}
 2312
 2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 2314				struct btrfs_fs_info *fs_info,
 2315				struct btrfs_delayed_ref_node *node,
 2316				struct btrfs_delayed_extent_op *extent_op,
 2317				int insert_reserved)
 2318{
 2319	int ret = 0;
 2320	struct btrfs_delayed_tree_ref *ref;
 2321	struct btrfs_key ins;
 2322	u64 parent = 0;
 2323	u64 ref_root = 0;
 2324	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 2325
 2326	ref = btrfs_delayed_node_to_tree_ref(node);
 2327	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
 2328
 2329	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2330		parent = ref->parent;
 2331	ref_root = ref->root;
 2332
 2333	ins.objectid = node->bytenr;
 2334	if (skinny_metadata) {
 2335		ins.offset = ref->level;
 2336		ins.type = BTRFS_METADATA_ITEM_KEY;
 2337	} else {
 2338		ins.offset = node->num_bytes;
 2339		ins.type = BTRFS_EXTENT_ITEM_KEY;
 2340	}
 2341
 2342	if (node->ref_mod != 1) {
 2343		btrfs_err(fs_info,
 2344	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
 2345			  node->bytenr, node->ref_mod, node->action, ref_root,
 2346			  parent);
 2347		return -EIO;
 2348	}
 2349	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 2350		BUG_ON(!extent_op || !extent_op->update_flags);
 2351		ret = alloc_reserved_tree_block(trans, fs_info,
 2352						parent, ref_root,
 2353						extent_op->flags_to_set,
 2354						&extent_op->key,
 2355						ref->level, &ins);
 
 
 
 
 
 2356	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2357		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
 2358					     parent, ref_root,
 2359					     ref->level, 0, 1,
 2360					     extent_op);
 2361	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2362		ret = __btrfs_free_extent(trans, fs_info, node,
 2363					  parent, ref_root,
 2364					  ref->level, 0, 1, extent_op);
 2365	} else {
 2366		BUG();
 2367	}
 2368	return ret;
 2369}
 2370
 2371/* helper function to actually process a single delayed ref entry */
 2372static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 2373			       struct btrfs_fs_info *fs_info,
 2374			       struct btrfs_delayed_ref_node *node,
 2375			       struct btrfs_delayed_extent_op *extent_op,
 2376			       int insert_reserved)
 2377{
 2378	int ret = 0;
 2379
 2380	if (trans->aborted) {
 2381		if (insert_reserved)
 2382			btrfs_pin_extent(fs_info, node->bytenr,
 2383					 node->num_bytes, 1);
 2384		return 0;
 2385	}
 2386
 2387	if (btrfs_delayed_ref_is_head(node)) {
 2388		struct btrfs_delayed_ref_head *head;
 2389		/*
 2390		 * we've hit the end of the chain and we were supposed
 2391		 * to insert this extent into the tree.  But, it got
 2392		 * deleted before we ever needed to insert it, so all
 2393		 * we have to do is clean up the accounting
 2394		 */
 2395		BUG_ON(extent_op);
 2396		head = btrfs_delayed_node_to_head(node);
 2397		trace_run_delayed_ref_head(fs_info, node, head, node->action);
 2398
 2399		if (insert_reserved) {
 2400			btrfs_pin_extent(fs_info, node->bytenr,
 2401					 node->num_bytes, 1);
 2402			if (head->is_data) {
 2403				ret = btrfs_del_csums(trans, fs_info,
 2404						      node->bytenr,
 2405						      node->num_bytes);
 2406			}
 2407		}
 2408
 2409		/* Also free its reserved qgroup space */
 2410		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
 2411					      head->qgroup_reserved);
 2412		return ret;
 2413	}
 2414
 2415	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
 2416	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2417		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
 2418					   insert_reserved);
 2419	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
 2420		 node->type == BTRFS_SHARED_DATA_REF_KEY)
 2421		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
 2422					   insert_reserved);
 
 
 2423	else
 2424		BUG();
 
 
 
 
 
 
 
 2425	return ret;
 2426}
 2427
 2428static inline struct btrfs_delayed_ref_node *
 2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
 2430{
 2431	struct btrfs_delayed_ref_node *ref;
 2432
 2433	if (list_empty(&head->ref_list))
 2434		return NULL;
 2435
 2436	/*
 2437	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
 2438	 * This is to prevent a ref count from going down to zero, which deletes
 2439	 * the extent item from the extent tree, when there still are references
 2440	 * to add, which would fail because they would not find the extent item.
 2441	 */
 2442	if (!list_empty(&head->ref_add_list))
 2443		return list_first_entry(&head->ref_add_list,
 2444				struct btrfs_delayed_ref_node, add_list);
 2445
 2446	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
 2447			       list);
 2448	ASSERT(list_empty(&ref->add_list));
 2449	return ref;
 2450}
 2451
 2452/*
 2453 * Returns 0 on success or if called with an already aborted transaction.
 2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 2455 */
 2456static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2457					     struct btrfs_fs_info *fs_info,
 2458					     unsigned long nr)
 
 
 
 
 
 
 
 
 
 
 
 2459{
 2460	struct btrfs_delayed_ref_root *delayed_refs;
 2461	struct btrfs_delayed_ref_node *ref;
 2462	struct btrfs_delayed_ref_head *locked_ref = NULL;
 2463	struct btrfs_delayed_extent_op *extent_op;
 2464	ktime_t start = ktime_get();
 2465	int ret;
 2466	unsigned long count = 0;
 2467	unsigned long actual_count = 0;
 2468	int must_insert_reserved = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2469
 2470	delayed_refs = &trans->transaction->delayed_refs;
 2471	while (1) {
 2472		if (!locked_ref) {
 2473			if (count >= nr)
 2474				break;
 2475
 2476			spin_lock(&delayed_refs->lock);
 2477			locked_ref = btrfs_select_ref_head(trans);
 2478			if (!locked_ref) {
 2479				spin_unlock(&delayed_refs->lock);
 2480				break;
 2481			}
 
 
 2482
 2483			/* grab the lock that says we are going to process
 2484			 * all the refs for this head */
 2485			ret = btrfs_delayed_ref_lock(trans, locked_ref);
 2486			spin_unlock(&delayed_refs->lock);
 2487			/*
 2488			 * we may have dropped the spin lock to get the head
 2489			 * mutex lock, and that might have given someone else
 2490			 * time to free the head.  If that's true, it has been
 2491			 * removed from our list and we can move on.
 2492			 */
 2493			if (ret == -EAGAIN) {
 2494				locked_ref = NULL;
 2495				count++;
 2496				continue;
 2497			}
 
 
 
 
 
 
 
 
 
 2498		}
 
 2499
 2500		/*
 2501		 * We need to try and merge add/drops of the same ref since we
 2502		 * can run into issues with relocate dropping the implicit ref
 2503		 * and then it being added back again before the drop can
 2504		 * finish.  If we merged anything we need to re-loop so we can
 2505		 * get a good ref.
 2506		 * Or we can get node references of the same type that weren't
 2507		 * merged when created due to bumps in the tree mod seq, and
 2508		 * we need to merge them to prevent adding an inline extent
 2509		 * backref before dropping it (triggering a BUG_ON at
 2510		 * insert_inline_extent_backref()).
 2511		 */
 2512		spin_lock(&locked_ref->lock);
 2513		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
 2514					 locked_ref);
 2515
 2516		/*
 2517		 * locked_ref is the head node, so we have to go one
 2518		 * node back for any delayed ref updates
 2519		 */
 2520		ref = select_delayed_ref(locked_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2521
 2522		if (ref && ref->seq &&
 2523		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
 
 2524			spin_unlock(&locked_ref->lock);
 2525			spin_lock(&delayed_refs->lock);
 2526			locked_ref->processing = 0;
 2527			delayed_refs->num_heads_ready++;
 2528			spin_unlock(&delayed_refs->lock);
 2529			btrfs_delayed_ref_unlock(locked_ref);
 2530			locked_ref = NULL;
 2531			cond_resched();
 2532			count++;
 2533			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 2534		}
 2535
 2536		/*
 2537		 * record the must insert reserved flag before we
 2538		 * drop the spin lock.
 2539		 */
 2540		must_insert_reserved = locked_ref->must_insert_reserved;
 2541		locked_ref->must_insert_reserved = 0;
 
 
 
 
 
 
 2542
 2543		extent_op = locked_ref->extent_op;
 2544		locked_ref->extent_op = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 2545
 2546		if (!ref) {
 
 2547
 
 
 
 2548
 2549			/* All delayed refs have been processed, Go ahead
 2550			 * and send the head node to run_one_delayed_ref,
 2551			 * so that any accounting fixes can happen
 2552			 */
 2553			ref = &locked_ref->node;
 2554
 2555			if (extent_op && must_insert_reserved) {
 2556				btrfs_free_delayed_extent_op(extent_op);
 2557				extent_op = NULL;
 2558			}
 
 
 
 
 
 
 
 
 
 
 2559
 2560			if (extent_op) {
 2561				spin_unlock(&locked_ref->lock);
 2562				ret = run_delayed_extent_op(trans, fs_info,
 2563							    ref, extent_op);
 2564				btrfs_free_delayed_extent_op(extent_op);
 2565
 2566				if (ret) {
 2567					/*
 2568					 * Need to reset must_insert_reserved if
 2569					 * there was an error so the abort stuff
 2570					 * can cleanup the reserved space
 2571					 * properly.
 2572					 */
 2573					if (must_insert_reserved)
 2574						locked_ref->must_insert_reserved = 1;
 2575					spin_lock(&delayed_refs->lock);
 2576					locked_ref->processing = 0;
 2577					delayed_refs->num_heads_ready++;
 2578					spin_unlock(&delayed_refs->lock);
 2579					btrfs_debug(fs_info,
 2580						    "run_delayed_extent_op returned %d",
 2581						    ret);
 2582					btrfs_delayed_ref_unlock(locked_ref);
 2583					return ret;
 2584				}
 2585				continue;
 2586			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2587
 
 
 2588			/*
 2589			 * Need to drop our head ref lock and re-acquire the
 2590			 * delayed ref lock and then re-check to make sure
 2591			 * nobody got added.
 2592			 */
 2593			spin_unlock(&locked_ref->lock);
 2594			spin_lock(&delayed_refs->lock);
 2595			spin_lock(&locked_ref->lock);
 2596			if (!list_empty(&locked_ref->ref_list) ||
 2597			    locked_ref->extent_op) {
 2598				spin_unlock(&locked_ref->lock);
 2599				spin_unlock(&delayed_refs->lock);
 2600				continue;
 2601			}
 2602			ref->in_tree = 0;
 2603			delayed_refs->num_heads--;
 2604			rb_erase(&locked_ref->href_node,
 2605				 &delayed_refs->href_root);
 2606			spin_unlock(&delayed_refs->lock);
 2607		} else {
 2608			actual_count++;
 2609			ref->in_tree = 0;
 2610			list_del(&ref->list);
 2611			if (!list_empty(&ref->add_list))
 2612				list_del(&ref->add_list);
 2613		}
 2614		atomic_dec(&delayed_refs->num_entries);
 2615
 2616		if (!btrfs_delayed_ref_is_head(ref)) {
 2617			/*
 2618			 * when we play the delayed ref, also correct the
 2619			 * ref_mod on head
 2620			 */
 2621			switch (ref->action) {
 2622			case BTRFS_ADD_DELAYED_REF:
 2623			case BTRFS_ADD_DELAYED_EXTENT:
 2624				locked_ref->node.ref_mod -= ref->ref_mod;
 2625				break;
 2626			case BTRFS_DROP_DELAYED_REF:
 2627				locked_ref->node.ref_mod += ref->ref_mod;
 2628				break;
 2629			default:
 2630				WARN_ON(1);
 2631			}
 2632		}
 2633		spin_unlock(&locked_ref->lock);
 2634
 2635		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
 2636					  must_insert_reserved);
 2637
 2638		btrfs_free_delayed_extent_op(extent_op);
 2639		if (ret) {
 2640			spin_lock(&delayed_refs->lock);
 2641			locked_ref->processing = 0;
 2642			delayed_refs->num_heads_ready++;
 2643			spin_unlock(&delayed_refs->lock);
 2644			btrfs_delayed_ref_unlock(locked_ref);
 2645			btrfs_put_delayed_ref(ref);
 2646			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
 2647				    ret);
 2648			return ret;
 2649		}
 2650
 2651		/*
 2652		 * If this node is a head, that means all the refs in this head
 2653		 * have been dealt with, and we will pick the next head to deal
 2654		 * with, so we must unlock the head and drop it from the cluster
 2655		 * list before we release it.
 2656		 */
 2657		if (btrfs_delayed_ref_is_head(ref)) {
 2658			if (locked_ref->is_data &&
 2659			    locked_ref->total_ref_mod < 0) {
 2660				spin_lock(&delayed_refs->lock);
 2661				delayed_refs->pending_csums -= ref->num_bytes;
 2662				spin_unlock(&delayed_refs->lock);
 2663			}
 2664			btrfs_delayed_ref_unlock(locked_ref);
 2665			locked_ref = NULL;
 2666		}
 2667		btrfs_put_delayed_ref(ref);
 2668		count++;
 2669		cond_resched();
 2670	}
 2671
 2672	/*
 2673	 * We don't want to include ref heads since we can have empty ref heads
 2674	 * and those will drastically skew our runtime down since we just do
 2675	 * accounting, no actual extent tree updates.
 2676	 */
 2677	if (actual_count > 0) {
 2678		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
 2679		u64 avg;
 2680
 2681		/*
 2682		 * We weigh the current average higher than our current runtime
 2683		 * to avoid large swings in the average.
 2684		 */
 2685		spin_lock(&delayed_refs->lock);
 2686		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
 2687		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
 2688		spin_unlock(&delayed_refs->lock);
 2689	}
 2690	return 0;
 2691}
 2692
 2693#ifdef SCRAMBLE_DELAYED_REFS
 2694/*
 2695 * Normally delayed refs get processed in ascending bytenr order. This
 2696 * correlates in most cases to the order added. To expose dependencies on this
 2697 * order, we start to process the tree in the middle instead of the beginning
 2698 */
 2699static u64 find_middle(struct rb_root *root)
 2700{
 2701	struct rb_node *n = root->rb_node;
 2702	struct btrfs_delayed_ref_node *entry;
 2703	int alt = 1;
 2704	u64 middle;
 2705	u64 first = 0, last = 0;
 2706
 2707	n = rb_first(root);
 2708	if (n) {
 2709		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2710		first = entry->bytenr;
 2711	}
 2712	n = rb_last(root);
 2713	if (n) {
 2714		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2715		last = entry->bytenr;
 2716	}
 2717	n = root->rb_node;
 2718
 2719	while (n) {
 2720		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2721		WARN_ON(!entry->in_tree);
 2722
 2723		middle = entry->bytenr;
 2724
 2725		if (alt)
 2726			n = n->rb_left;
 2727		else
 2728			n = n->rb_right;
 2729
 2730		alt = 1 - alt;
 2731	}
 2732	return middle;
 2733}
 2734#endif
 2735
 2736static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
 2737{
 2738	u64 num_bytes;
 2739
 2740	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
 2741			     sizeof(struct btrfs_extent_inline_ref));
 2742	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 2743		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
 2744
 2745	/*
 2746	 * We don't ever fill up leaves all the way so multiply by 2 just to be
 2747	 * closer to what we're really going to want to use.
 2748	 */
 2749	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
 2750}
 2751
 2752/*
 2753 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
 2754 * would require to store the csums for that many bytes.
 2755 */
 2756u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
 2757{
 2758	u64 csum_size;
 2759	u64 num_csums_per_leaf;
 2760	u64 num_csums;
 2761
 2762	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
 2763	num_csums_per_leaf = div64_u64(csum_size,
 2764			(u64)btrfs_super_csum_size(fs_info->super_copy));
 2765	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
 2766	num_csums += num_csums_per_leaf - 1;
 2767	num_csums = div64_u64(num_csums, num_csums_per_leaf);
 2768	return num_csums;
 2769}
 2770
 2771int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
 2772				       struct btrfs_fs_info *fs_info)
 2773{
 2774	struct btrfs_block_rsv *global_rsv;
 2775	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
 2776	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
 2777	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
 2778	u64 num_bytes, num_dirty_bgs_bytes;
 2779	int ret = 0;
 2780
 2781	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 2782	num_heads = heads_to_leaves(fs_info, num_heads);
 2783	if (num_heads > 1)
 2784		num_bytes += (num_heads - 1) * fs_info->nodesize;
 2785	num_bytes <<= 1;
 2786	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
 2787							fs_info->nodesize;
 2788	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
 2789							     num_dirty_bgs);
 2790	global_rsv = &fs_info->global_block_rsv;
 2791
 2792	/*
 2793	 * If we can't allocate any more chunks lets make sure we have _lots_ of
 2794	 * wiggle room since running delayed refs can create more delayed refs.
 2795	 */
 2796	if (global_rsv->space_info->full) {
 2797		num_dirty_bgs_bytes <<= 1;
 2798		num_bytes <<= 1;
 2799	}
 2800
 2801	spin_lock(&global_rsv->lock);
 2802	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
 2803		ret = 1;
 2804	spin_unlock(&global_rsv->lock);
 2805	return ret;
 2806}
 2807
 2808int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
 2809				       struct btrfs_fs_info *fs_info)
 2810{
 2811	u64 num_entries =
 2812		atomic_read(&trans->transaction->delayed_refs.num_entries);
 2813	u64 avg_runtime;
 2814	u64 val;
 2815
 2816	smp_mb();
 2817	avg_runtime = fs_info->avg_delayed_ref_runtime;
 2818	val = num_entries * avg_runtime;
 2819	if (val >= NSEC_PER_SEC)
 2820		return 1;
 2821	if (val >= NSEC_PER_SEC / 2)
 2822		return 2;
 2823
 2824	return btrfs_check_space_for_delayed_refs(trans, fs_info);
 2825}
 2826
 2827struct async_delayed_refs {
 2828	struct btrfs_root *root;
 2829	u64 transid;
 2830	int count;
 2831	int error;
 2832	int sync;
 2833	struct completion wait;
 2834	struct btrfs_work work;
 2835};
 2836
 2837static inline struct async_delayed_refs *
 2838to_async_delayed_refs(struct btrfs_work *work)
 2839{
 2840	return container_of(work, struct async_delayed_refs, work);
 2841}
 2842
 2843static void delayed_ref_async_start(struct btrfs_work *work)
 2844{
 2845	struct async_delayed_refs *async = to_async_delayed_refs(work);
 2846	struct btrfs_trans_handle *trans;
 2847	struct btrfs_fs_info *fs_info = async->root->fs_info;
 2848	int ret;
 2849
 2850	/* if the commit is already started, we don't need to wait here */
 2851	if (btrfs_transaction_blocked(fs_info))
 2852		goto done;
 2853
 2854	trans = btrfs_join_transaction(async->root);
 2855	if (IS_ERR(trans)) {
 2856		async->error = PTR_ERR(trans);
 2857		goto done;
 2858	}
 2859
 2860	/*
 2861	 * trans->sync means that when we call end_transaction, we won't
 2862	 * wait on delayed refs
 2863	 */
 2864	trans->sync = true;
 2865
 2866	/* Don't bother flushing if we got into a different transaction */
 2867	if (trans->transid > async->transid)
 2868		goto end;
 2869
 2870	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
 2871	if (ret)
 2872		async->error = ret;
 2873end:
 2874	ret = btrfs_end_transaction(trans);
 2875	if (ret && !async->error)
 2876		async->error = ret;
 2877done:
 2878	if (async->sync)
 2879		complete(&async->wait);
 2880	else
 2881		kfree(async);
 2882}
 2883
 2884int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
 2885				 unsigned long count, u64 transid, int wait)
 2886{
 2887	struct async_delayed_refs *async;
 2888	int ret;
 2889
 2890	async = kmalloc(sizeof(*async), GFP_NOFS);
 2891	if (!async)
 2892		return -ENOMEM;
 2893
 2894	async->root = fs_info->tree_root;
 2895	async->count = count;
 2896	async->error = 0;
 2897	async->transid = transid;
 2898	if (wait)
 2899		async->sync = 1;
 2900	else
 2901		async->sync = 0;
 2902	init_completion(&async->wait);
 2903
 2904	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
 2905			delayed_ref_async_start, NULL, NULL);
 2906
 2907	btrfs_queue_work(fs_info->extent_workers, &async->work);
 2908
 2909	if (wait) {
 2910		wait_for_completion(&async->wait);
 2911		ret = async->error;
 2912		kfree(async);
 2913		return ret;
 2914	}
 2915	return 0;
 2916}
 2917
 2918/*
 2919 * this starts processing the delayed reference count updates and
 2920 * extent insertions we have queued up so far.  count can be
 2921 * 0, which means to process everything in the tree at the start
 2922 * of the run (but not newly added entries), or it can be some target
 2923 * number you'd like to process.
 
 
 
 
 
 2924 *
 2925 * Returns 0 on success or if called with an aborted transaction
 2926 * Returns <0 on error and aborts the transaction
 2927 */
 2928int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2929			   struct btrfs_fs_info *fs_info, unsigned long count)
 2930{
 2931	struct rb_node *node;
 2932	struct btrfs_delayed_ref_root *delayed_refs;
 2933	struct btrfs_delayed_ref_head *head;
 2934	int ret;
 2935	int run_all = count == (unsigned long)-1;
 2936	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
 2937
 2938	/* We'll clean this up in btrfs_cleanup_transaction */
 2939	if (trans->aborted)
 2940		return 0;
 2941
 2942	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
 2943		return 0;
 2944
 2945	delayed_refs = &trans->transaction->delayed_refs;
 2946	if (count == 0)
 2947		count = atomic_read(&delayed_refs->num_entries) * 2;
 2948
 2949again:
 2950#ifdef SCRAMBLE_DELAYED_REFS
 2951	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
 2952#endif
 2953	trans->can_flush_pending_bgs = false;
 2954	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
 2955	if (ret < 0) {
 2956		btrfs_abort_transaction(trans, ret);
 2957		return ret;
 2958	}
 2959
 2960	if (run_all) {
 2961		if (!list_empty(&trans->new_bgs))
 2962			btrfs_create_pending_block_groups(trans, fs_info);
 2963
 2964		spin_lock(&delayed_refs->lock);
 2965		node = rb_first(&delayed_refs->href_root);
 2966		if (!node) {
 2967			spin_unlock(&delayed_refs->lock);
 2968			goto out;
 2969		}
 2970
 2971		while (node) {
 2972			head = rb_entry(node, struct btrfs_delayed_ref_head,
 2973					href_node);
 2974			if (btrfs_delayed_ref_is_head(&head->node)) {
 2975				struct btrfs_delayed_ref_node *ref;
 2976
 2977				ref = &head->node;
 2978				atomic_inc(&ref->refs);
 2979
 2980				spin_unlock(&delayed_refs->lock);
 2981				/*
 2982				 * Mutex was contended, block until it's
 2983				 * released and try again
 2984				 */
 2985				mutex_lock(&head->mutex);
 2986				mutex_unlock(&head->mutex);
 2987
 2988				btrfs_put_delayed_ref(ref);
 2989				cond_resched();
 2990				goto again;
 2991			} else {
 2992				WARN_ON(1);
 2993			}
 2994			node = rb_next(node);
 2995		}
 2996		spin_unlock(&delayed_refs->lock);
 
 2997		cond_resched();
 2998		goto again;
 2999	}
 3000out:
 3001	assert_qgroups_uptodate(trans);
 3002	trans->can_flush_pending_bgs = can_flush_pending_bgs;
 3003	return 0;
 3004}
 3005
 3006int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 3007				struct btrfs_fs_info *fs_info,
 3008				u64 bytenr, u64 num_bytes, u64 flags,
 3009				int level, int is_data)
 3010{
 3011	struct btrfs_delayed_extent_op *extent_op;
 3012	int ret;
 3013
 3014	extent_op = btrfs_alloc_delayed_extent_op();
 3015	if (!extent_op)
 3016		return -ENOMEM;
 3017
 3018	extent_op->flags_to_set = flags;
 3019	extent_op->update_flags = true;
 3020	extent_op->update_key = false;
 3021	extent_op->is_data = is_data ? true : false;
 3022	extent_op->level = level;
 3023
 3024	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
 3025					  num_bytes, extent_op);
 3026	if (ret)
 3027		btrfs_free_delayed_extent_op(extent_op);
 3028	return ret;
 3029}
 3030
 3031static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
 3032				      struct btrfs_root *root,
 3033				      struct btrfs_path *path,
 3034				      u64 objectid, u64 offset, u64 bytenr)
 3035{
 3036	struct btrfs_delayed_ref_head *head;
 3037	struct btrfs_delayed_ref_node *ref;
 3038	struct btrfs_delayed_data_ref *data_ref;
 3039	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 3040	int ret = 0;
 3041
 3042	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
 
 
 
 3043	spin_lock(&delayed_refs->lock);
 3044	head = btrfs_find_delayed_ref_head(trans, bytenr);
 3045	if (!head) {
 3046		spin_unlock(&delayed_refs->lock);
 
 3047		return 0;
 3048	}
 3049
 3050	if (!mutex_trylock(&head->mutex)) {
 3051		atomic_inc(&head->node.refs);
 
 
 
 
 
 
 3052		spin_unlock(&delayed_refs->lock);
 3053
 3054		btrfs_release_path(path);
 3055
 3056		/*
 3057		 * Mutex was contended, block until it's released and let
 3058		 * caller try again
 3059		 */
 3060		mutex_lock(&head->mutex);
 3061		mutex_unlock(&head->mutex);
 3062		btrfs_put_delayed_ref(&head->node);
 
 3063		return -EAGAIN;
 3064	}
 3065	spin_unlock(&delayed_refs->lock);
 3066
 3067	spin_lock(&head->lock);
 3068	list_for_each_entry(ref, &head->ref_list, list) {
 
 
 
 
 
 
 
 
 
 3069		/* If it's a shared ref we know a cross reference exists */
 3070		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
 3071			ret = 1;
 3072			break;
 3073		}
 3074
 3075		data_ref = btrfs_delayed_node_to_data_ref(ref);
 
 3076
 3077		/*
 3078		 * If our ref doesn't match the one we're currently looking at
 3079		 * then we have a cross reference.
 3080		 */
 3081		if (data_ref->root != root->root_key.objectid ||
 3082		    data_ref->objectid != objectid ||
 3083		    data_ref->offset != offset) {
 3084			ret = 1;
 3085			break;
 3086		}
 3087	}
 3088	spin_unlock(&head->lock);
 3089	mutex_unlock(&head->mutex);
 
 3090	return ret;
 3091}
 3092
 3093static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
 3094					struct btrfs_root *root,
 3095					struct btrfs_path *path,
 3096					u64 objectid, u64 offset, u64 bytenr)
 
 3097{
 3098	struct btrfs_fs_info *fs_info = root->fs_info;
 3099	struct btrfs_root *extent_root = fs_info->extent_root;
 3100	struct extent_buffer *leaf;
 3101	struct btrfs_extent_data_ref *ref;
 3102	struct btrfs_extent_inline_ref *iref;
 3103	struct btrfs_extent_item *ei;
 3104	struct btrfs_key key;
 3105	u32 item_size;
 
 
 3106	int ret;
 3107
 3108	key.objectid = bytenr;
 3109	key.offset = (u64)-1;
 3110	key.type = BTRFS_EXTENT_ITEM_KEY;
 3111
 3112	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 3113	if (ret < 0)
 3114		goto out;
 3115	BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
 
 
 3116
 3117	ret = -ENOENT;
 3118	if (path->slots[0] == 0)
 3119		goto out;
 3120
 3121	path->slots[0]--;
 3122	leaf = path->nodes[0];
 3123	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 3124
 3125	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
 3126		goto out;
 3127
 3128	ret = 1;
 3129	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 3130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 3131	if (item_size < sizeof(*ei)) {
 3132		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 
 
 3133		goto out;
 
 
 
 
 
 
 
 3134	}
 3135#endif
 3136	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 3137
 3138	if (item_size != sizeof(*ei) +
 3139	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
 3140		goto out;
 3141
 3142	if (btrfs_extent_generation(leaf, ei) <=
 3143	    btrfs_root_last_snapshot(&root->root_item))
 
 
 
 
 
 3144		goto out;
 3145
 3146	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 3147	if (btrfs_extent_inline_ref_type(leaf, iref) !=
 3148	    BTRFS_EXTENT_DATA_REF_KEY)
 3149		goto out;
 3150
 3151	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 3152	if (btrfs_extent_refs(leaf, ei) !=
 3153	    btrfs_extent_data_ref_count(leaf, ref) ||
 3154	    btrfs_extent_data_ref_root(leaf, ref) !=
 3155	    root->root_key.objectid ||
 3156	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
 3157	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 3158		goto out;
 3159
 3160	ret = 0;
 3161out:
 3162	return ret;
 3163}
 3164
 3165int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
 3166			  struct btrfs_root *root,
 3167			  u64 objectid, u64 offset, u64 bytenr)
 3168{
 3169	struct btrfs_path *path;
 3170	int ret;
 3171	int ret2;
 3172
 3173	path = btrfs_alloc_path();
 3174	if (!path)
 3175		return -ENOENT;
 3176
 3177	do {
 3178		ret = check_committed_ref(trans, root, path, objectid,
 3179					  offset, bytenr);
 3180		if (ret && ret != -ENOENT)
 3181			goto out;
 3182
 3183		ret2 = check_delayed_ref(trans, root, path, objectid,
 3184					 offset, bytenr);
 3185	} while (ret2 == -EAGAIN);
 3186
 3187	if (ret2 && ret2 != -ENOENT) {
 3188		ret = ret2;
 3189		goto out;
 3190	}
 3191
 3192	if (ret != -ENOENT || ret2 != -ENOENT)
 3193		ret = 0;
 3194out:
 3195	btrfs_free_path(path);
 3196	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
 3197		WARN_ON(ret > 0);
 3198	return ret;
 3199}
 3200
 3201static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
 3202			   struct btrfs_root *root,
 3203			   struct extent_buffer *buf,
 3204			   int full_backref, int inc)
 3205{
 3206	struct btrfs_fs_info *fs_info = root->fs_info;
 3207	u64 bytenr;
 3208	u64 num_bytes;
 3209	u64 parent;
 3210	u64 ref_root;
 3211	u32 nritems;
 3212	struct btrfs_key key;
 3213	struct btrfs_file_extent_item *fi;
 
 3214	int i;
 
 3215	int level;
 3216	int ret = 0;
 3217	int (*process_func)(struct btrfs_trans_handle *,
 3218			    struct btrfs_fs_info *,
 3219			    u64, u64, u64, u64, u64, u64);
 3220
 3221
 3222	if (btrfs_is_testing(fs_info))
 3223		return 0;
 3224
 3225	ref_root = btrfs_header_owner(buf);
 3226	nritems = btrfs_header_nritems(buf);
 3227	level = btrfs_header_level(buf);
 3228
 3229	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
 3230		return 0;
 3231
 3232	if (inc)
 3233		process_func = btrfs_inc_extent_ref;
 3234	else
 3235		process_func = btrfs_free_extent;
 3236
 3237	if (full_backref)
 3238		parent = buf->start;
 3239	else
 3240		parent = 0;
 
 
 
 
 3241
 3242	for (i = 0; i < nritems; i++) {
 
 
 
 
 
 
 3243		if (level == 0) {
 3244			btrfs_item_key_to_cpu(buf, &key, i);
 3245			if (key.type != BTRFS_EXTENT_DATA_KEY)
 3246				continue;
 3247			fi = btrfs_item_ptr(buf, i,
 3248					    struct btrfs_file_extent_item);
 3249			if (btrfs_file_extent_type(buf, fi) ==
 3250			    BTRFS_FILE_EXTENT_INLINE)
 3251				continue;
 3252			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
 3253			if (bytenr == 0)
 3254				continue;
 3255
 3256			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 
 
 3257			key.offset -= btrfs_file_extent_offset(buf, fi);
 3258			ret = process_func(trans, fs_info, bytenr, num_bytes,
 3259					   parent, ref_root, key.objectid,
 3260					   key.offset);
 
 
 
 3261			if (ret)
 3262				goto fail;
 3263		} else {
 3264			bytenr = btrfs_node_blockptr(buf, i);
 3265			num_bytes = fs_info->nodesize;
 3266			ret = process_func(trans, fs_info, bytenr, num_bytes,
 3267					   parent, ref_root, level - 1, 0);
 
 
 
 
 
 
 3268			if (ret)
 3269				goto fail;
 3270		}
 3271	}
 3272	return 0;
 3273fail:
 3274	return ret;
 3275}
 3276
 3277int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3278		  struct extent_buffer *buf, int full_backref)
 3279{
 3280	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
 3281}
 3282
 3283int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3284		  struct extent_buffer *buf, int full_backref)
 3285{
 3286	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
 3287}
 3288
 3289static int write_one_cache_group(struct btrfs_trans_handle *trans,
 3290				 struct btrfs_fs_info *fs_info,
 3291				 struct btrfs_path *path,
 3292				 struct btrfs_block_group_cache *cache)
 3293{
 3294	int ret;
 3295	struct btrfs_root *extent_root = fs_info->extent_root;
 3296	unsigned long bi;
 3297	struct extent_buffer *leaf;
 3298
 3299	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
 3300	if (ret) {
 3301		if (ret > 0)
 3302			ret = -ENOENT;
 3303		goto fail;
 3304	}
 3305
 3306	leaf = path->nodes[0];
 3307	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
 3308	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
 3309	btrfs_mark_buffer_dirty(leaf);
 3310fail:
 3311	btrfs_release_path(path);
 3312	return ret;
 3313
 3314}
 3315
 3316static struct btrfs_block_group_cache *
 3317next_block_group(struct btrfs_fs_info *fs_info,
 3318		 struct btrfs_block_group_cache *cache)
 3319{
 3320	struct rb_node *node;
 3321
 3322	spin_lock(&fs_info->block_group_cache_lock);
 3323
 3324	/* If our block group was removed, we need a full search. */
 3325	if (RB_EMPTY_NODE(&cache->cache_node)) {
 3326		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
 3327
 3328		spin_unlock(&fs_info->block_group_cache_lock);
 3329		btrfs_put_block_group(cache);
 3330		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
 3331	}
 3332	node = rb_next(&cache->cache_node);
 3333	btrfs_put_block_group(cache);
 3334	if (node) {
 3335		cache = rb_entry(node, struct btrfs_block_group_cache,
 3336				 cache_node);
 3337		btrfs_get_block_group(cache);
 3338	} else
 3339		cache = NULL;
 3340	spin_unlock(&fs_info->block_group_cache_lock);
 3341	return cache;
 3342}
 3343
 3344static int cache_save_setup(struct btrfs_block_group_cache *block_group,
 3345			    struct btrfs_trans_handle *trans,
 3346			    struct btrfs_path *path)
 3347{
 3348	struct btrfs_fs_info *fs_info = block_group->fs_info;
 3349	struct btrfs_root *root = fs_info->tree_root;
 3350	struct inode *inode = NULL;
 3351	u64 alloc_hint = 0;
 3352	int dcs = BTRFS_DC_ERROR;
 3353	u64 num_pages = 0;
 3354	int retries = 0;
 3355	int ret = 0;
 3356
 3357	/*
 3358	 * If this block group is smaller than 100 megs don't bother caching the
 3359	 * block group.
 3360	 */
 3361	if (block_group->key.offset < (100 * SZ_1M)) {
 3362		spin_lock(&block_group->lock);
 3363		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 3364		spin_unlock(&block_group->lock);
 3365		return 0;
 3366	}
 3367
 3368	if (trans->aborted)
 3369		return 0;
 3370again:
 3371	inode = lookup_free_space_inode(root, block_group, path);
 3372	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
 3373		ret = PTR_ERR(inode);
 3374		btrfs_release_path(path);
 3375		goto out;
 3376	}
 3377
 3378	if (IS_ERR(inode)) {
 3379		BUG_ON(retries);
 3380		retries++;
 3381
 3382		if (block_group->ro)
 3383			goto out_free;
 3384
 3385		ret = create_free_space_inode(root, trans, block_group, path);
 3386		if (ret)
 3387			goto out_free;
 3388		goto again;
 3389	}
 3390
 3391	/* We've already setup this transaction, go ahead and exit */
 3392	if (block_group->cache_generation == trans->transid &&
 3393	    i_size_read(inode)) {
 3394		dcs = BTRFS_DC_SETUP;
 3395		goto out_put;
 3396	}
 3397
 3398	/*
 3399	 * We want to set the generation to 0, that way if anything goes wrong
 3400	 * from here on out we know not to trust this cache when we load up next
 3401	 * time.
 3402	 */
 3403	BTRFS_I(inode)->generation = 0;
 3404	ret = btrfs_update_inode(trans, root, inode);
 3405	if (ret) {
 3406		/*
 3407		 * So theoretically we could recover from this, simply set the
 3408		 * super cache generation to 0 so we know to invalidate the
 3409		 * cache, but then we'd have to keep track of the block groups
 3410		 * that fail this way so we know we _have_ to reset this cache
 3411		 * before the next commit or risk reading stale cache.  So to
 3412		 * limit our exposure to horrible edge cases lets just abort the
 3413		 * transaction, this only happens in really bad situations
 3414		 * anyway.
 3415		 */
 3416		btrfs_abort_transaction(trans, ret);
 3417		goto out_put;
 3418	}
 3419	WARN_ON(ret);
 3420
 3421	if (i_size_read(inode) > 0) {
 3422		ret = btrfs_check_trunc_cache_free_space(fs_info,
 3423					&fs_info->global_block_rsv);
 3424		if (ret)
 3425			goto out_put;
 3426
 3427		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
 3428		if (ret)
 3429			goto out_put;
 3430	}
 3431
 3432	spin_lock(&block_group->lock);
 3433	if (block_group->cached != BTRFS_CACHE_FINISHED ||
 3434	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
 3435		/*
 3436		 * don't bother trying to write stuff out _if_
 3437		 * a) we're not cached,
 3438		 * b) we're with nospace_cache mount option.
 3439		 */
 3440		dcs = BTRFS_DC_WRITTEN;
 3441		spin_unlock(&block_group->lock);
 3442		goto out_put;
 3443	}
 3444	spin_unlock(&block_group->lock);
 3445
 3446	/*
 3447	 * We hit an ENOSPC when setting up the cache in this transaction, just
 3448	 * skip doing the setup, we've already cleared the cache so we're safe.
 3449	 */
 3450	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
 3451		ret = -ENOSPC;
 3452		goto out_put;
 3453	}
 3454
 3455	/*
 3456	 * Try to preallocate enough space based on how big the block group is.
 3457	 * Keep in mind this has to include any pinned space which could end up
 3458	 * taking up quite a bit since it's not folded into the other space
 3459	 * cache.
 3460	 */
 3461	num_pages = div_u64(block_group->key.offset, SZ_256M);
 3462	if (!num_pages)
 3463		num_pages = 1;
 3464
 3465	num_pages *= 16;
 3466	num_pages *= PAGE_SIZE;
 3467
 3468	ret = btrfs_check_data_free_space(inode, 0, num_pages);
 3469	if (ret)
 3470		goto out_put;
 3471
 3472	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
 3473					      num_pages, num_pages,
 3474					      &alloc_hint);
 3475	/*
 3476	 * Our cache requires contiguous chunks so that we don't modify a bunch
 3477	 * of metadata or split extents when writing the cache out, which means
 3478	 * we can enospc if we are heavily fragmented in addition to just normal
 3479	 * out of space conditions.  So if we hit this just skip setting up any
 3480	 * other block groups for this transaction, maybe we'll unpin enough
 3481	 * space the next time around.
 3482	 */
 3483	if (!ret)
 3484		dcs = BTRFS_DC_SETUP;
 3485	else if (ret == -ENOSPC)
 3486		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
 3487
 3488out_put:
 3489	iput(inode);
 3490out_free:
 3491	btrfs_release_path(path);
 3492out:
 3493	spin_lock(&block_group->lock);
 3494	if (!ret && dcs == BTRFS_DC_SETUP)
 3495		block_group->cache_generation = trans->transid;
 3496	block_group->disk_cache_state = dcs;
 3497	spin_unlock(&block_group->lock);
 3498
 3499	return ret;
 3500}
 3501
 3502int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
 3503			    struct btrfs_fs_info *fs_info)
 3504{
 3505	struct btrfs_block_group_cache *cache, *tmp;
 3506	struct btrfs_transaction *cur_trans = trans->transaction;
 3507	struct btrfs_path *path;
 3508
 3509	if (list_empty(&cur_trans->dirty_bgs) ||
 3510	    !btrfs_test_opt(fs_info, SPACE_CACHE))
 3511		return 0;
 3512
 3513	path = btrfs_alloc_path();
 3514	if (!path)
 3515		return -ENOMEM;
 3516
 3517	/* Could add new block groups, use _safe just in case */
 3518	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
 3519				 dirty_list) {
 3520		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
 3521			cache_save_setup(cache, trans, path);
 3522	}
 3523
 3524	btrfs_free_path(path);
 3525	return 0;
 3526}
 3527
 3528/*
 3529 * transaction commit does final block group cache writeback during a
 3530 * critical section where nothing is allowed to change the FS.  This is
 3531 * required in order for the cache to actually match the block group,
 3532 * but can introduce a lot of latency into the commit.
 3533 *
 3534 * So, btrfs_start_dirty_block_groups is here to kick off block group
 3535 * cache IO.  There's a chance we'll have to redo some of it if the
 3536 * block group changes again during the commit, but it greatly reduces
 3537 * the commit latency by getting rid of the easy block groups while
 3538 * we're still allowing others to join the commit.
 3539 */
 3540int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
 3541				   struct btrfs_fs_info *fs_info)
 3542{
 3543	struct btrfs_block_group_cache *cache;
 3544	struct btrfs_transaction *cur_trans = trans->transaction;
 3545	int ret = 0;
 3546	int should_put;
 3547	struct btrfs_path *path = NULL;
 3548	LIST_HEAD(dirty);
 3549	struct list_head *io = &cur_trans->io_bgs;
 3550	int num_started = 0;
 3551	int loops = 0;
 3552
 3553	spin_lock(&cur_trans->dirty_bgs_lock);
 3554	if (list_empty(&cur_trans->dirty_bgs)) {
 3555		spin_unlock(&cur_trans->dirty_bgs_lock);
 3556		return 0;
 3557	}
 3558	list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3559	spin_unlock(&cur_trans->dirty_bgs_lock);
 3560
 3561again:
 3562	/*
 3563	 * make sure all the block groups on our dirty list actually
 3564	 * exist
 3565	 */
 3566	btrfs_create_pending_block_groups(trans, fs_info);
 3567
 3568	if (!path) {
 3569		path = btrfs_alloc_path();
 3570		if (!path)
 3571			return -ENOMEM;
 3572	}
 3573
 3574	/*
 3575	 * cache_write_mutex is here only to save us from balance or automatic
 3576	 * removal of empty block groups deleting this block group while we are
 3577	 * writing out the cache
 3578	 */
 3579	mutex_lock(&trans->transaction->cache_write_mutex);
 3580	while (!list_empty(&dirty)) {
 3581		cache = list_first_entry(&dirty,
 3582					 struct btrfs_block_group_cache,
 3583					 dirty_list);
 3584		/*
 3585		 * this can happen if something re-dirties a block
 3586		 * group that is already under IO.  Just wait for it to
 3587		 * finish and then do it all again
 3588		 */
 3589		if (!list_empty(&cache->io_list)) {
 3590			list_del_init(&cache->io_list);
 3591			btrfs_wait_cache_io(trans, cache, path);
 3592			btrfs_put_block_group(cache);
 3593		}
 3594
 3595
 3596		/*
 3597		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
 3598		 * if it should update the cache_state.  Don't delete
 3599		 * until after we wait.
 3600		 *
 3601		 * Since we're not running in the commit critical section
 3602		 * we need the dirty_bgs_lock to protect from update_block_group
 3603		 */
 3604		spin_lock(&cur_trans->dirty_bgs_lock);
 3605		list_del_init(&cache->dirty_list);
 3606		spin_unlock(&cur_trans->dirty_bgs_lock);
 3607
 3608		should_put = 1;
 3609
 3610		cache_save_setup(cache, trans, path);
 3611
 3612		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
 3613			cache->io_ctl.inode = NULL;
 3614			ret = btrfs_write_out_cache(fs_info, trans,
 3615						    cache, path);
 3616			if (ret == 0 && cache->io_ctl.inode) {
 3617				num_started++;
 3618				should_put = 0;
 3619
 3620				/*
 3621				 * the cache_write_mutex is protecting
 3622				 * the io_list
 3623				 */
 3624				list_add_tail(&cache->io_list, io);
 3625			} else {
 3626				/*
 3627				 * if we failed to write the cache, the
 3628				 * generation will be bad and life goes on
 3629				 */
 3630				ret = 0;
 3631			}
 3632		}
 3633		if (!ret) {
 3634			ret = write_one_cache_group(trans, fs_info,
 3635						    path, cache);
 3636			/*
 3637			 * Our block group might still be attached to the list
 3638			 * of new block groups in the transaction handle of some
 3639			 * other task (struct btrfs_trans_handle->new_bgs). This
 3640			 * means its block group item isn't yet in the extent
 3641			 * tree. If this happens ignore the error, as we will
 3642			 * try again later in the critical section of the
 3643			 * transaction commit.
 3644			 */
 3645			if (ret == -ENOENT) {
 3646				ret = 0;
 3647				spin_lock(&cur_trans->dirty_bgs_lock);
 3648				if (list_empty(&cache->dirty_list)) {
 3649					list_add_tail(&cache->dirty_list,
 3650						      &cur_trans->dirty_bgs);
 3651					btrfs_get_block_group(cache);
 3652				}
 3653				spin_unlock(&cur_trans->dirty_bgs_lock);
 3654			} else if (ret) {
 3655				btrfs_abort_transaction(trans, ret);
 3656			}
 3657		}
 3658
 3659		/* if its not on the io list, we need to put the block group */
 3660		if (should_put)
 3661			btrfs_put_block_group(cache);
 3662
 3663		if (ret)
 3664			break;
 3665
 3666		/*
 3667		 * Avoid blocking other tasks for too long. It might even save
 3668		 * us from writing caches for block groups that are going to be
 3669		 * removed.
 3670		 */
 3671		mutex_unlock(&trans->transaction->cache_write_mutex);
 3672		mutex_lock(&trans->transaction->cache_write_mutex);
 3673	}
 3674	mutex_unlock(&trans->transaction->cache_write_mutex);
 3675
 3676	/*
 3677	 * go through delayed refs for all the stuff we've just kicked off
 3678	 * and then loop back (just once)
 3679	 */
 3680	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
 3681	if (!ret && loops == 0) {
 3682		loops++;
 3683		spin_lock(&cur_trans->dirty_bgs_lock);
 3684		list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3685		/*
 3686		 * dirty_bgs_lock protects us from concurrent block group
 3687		 * deletes too (not just cache_write_mutex).
 3688		 */
 3689		if (!list_empty(&dirty)) {
 3690			spin_unlock(&cur_trans->dirty_bgs_lock);
 3691			goto again;
 3692		}
 3693		spin_unlock(&cur_trans->dirty_bgs_lock);
 3694	} else if (ret < 0) {
 3695		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
 3696	}
 3697
 3698	btrfs_free_path(path);
 3699	return ret;
 3700}
 3701
 3702int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
 3703				   struct btrfs_fs_info *fs_info)
 3704{
 3705	struct btrfs_block_group_cache *cache;
 3706	struct btrfs_transaction *cur_trans = trans->transaction;
 3707	int ret = 0;
 3708	int should_put;
 3709	struct btrfs_path *path;
 3710	struct list_head *io = &cur_trans->io_bgs;
 3711	int num_started = 0;
 3712
 3713	path = btrfs_alloc_path();
 3714	if (!path)
 3715		return -ENOMEM;
 3716
 3717	/*
 3718	 * Even though we are in the critical section of the transaction commit,
 3719	 * we can still have concurrent tasks adding elements to this
 3720	 * transaction's list of dirty block groups. These tasks correspond to
 3721	 * endio free space workers started when writeback finishes for a
 3722	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
 3723	 * allocate new block groups as a result of COWing nodes of the root
 3724	 * tree when updating the free space inode. The writeback for the space
 3725	 * caches is triggered by an earlier call to
 3726	 * btrfs_start_dirty_block_groups() and iterations of the following
 3727	 * loop.
 3728	 * Also we want to do the cache_save_setup first and then run the
 3729	 * delayed refs to make sure we have the best chance at doing this all
 3730	 * in one shot.
 3731	 */
 3732	spin_lock(&cur_trans->dirty_bgs_lock);
 3733	while (!list_empty(&cur_trans->dirty_bgs)) {
 3734		cache = list_first_entry(&cur_trans->dirty_bgs,
 3735					 struct btrfs_block_group_cache,
 3736					 dirty_list);
 3737
 3738		/*
 3739		 * this can happen if cache_save_setup re-dirties a block
 3740		 * group that is already under IO.  Just wait for it to
 3741		 * finish and then do it all again
 3742		 */
 3743		if (!list_empty(&cache->io_list)) {
 3744			spin_unlock(&cur_trans->dirty_bgs_lock);
 3745			list_del_init(&cache->io_list);
 3746			btrfs_wait_cache_io(trans, cache, path);
 3747			btrfs_put_block_group(cache);
 3748			spin_lock(&cur_trans->dirty_bgs_lock);
 3749		}
 3750
 3751		/*
 3752		 * don't remove from the dirty list until after we've waited
 3753		 * on any pending IO
 3754		 */
 3755		list_del_init(&cache->dirty_list);
 3756		spin_unlock(&cur_trans->dirty_bgs_lock);
 3757		should_put = 1;
 3758
 3759		cache_save_setup(cache, trans, path);
 3760
 3761		if (!ret)
 3762			ret = btrfs_run_delayed_refs(trans, fs_info,
 3763						     (unsigned long) -1);
 3764
 3765		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
 3766			cache->io_ctl.inode = NULL;
 3767			ret = btrfs_write_out_cache(fs_info, trans,
 3768						    cache, path);
 3769			if (ret == 0 && cache->io_ctl.inode) {
 3770				num_started++;
 3771				should_put = 0;
 3772				list_add_tail(&cache->io_list, io);
 3773			} else {
 3774				/*
 3775				 * if we failed to write the cache, the
 3776				 * generation will be bad and life goes on
 3777				 */
 3778				ret = 0;
 3779			}
 3780		}
 3781		if (!ret) {
 3782			ret = write_one_cache_group(trans, fs_info,
 3783						    path, cache);
 3784			/*
 3785			 * One of the free space endio workers might have
 3786			 * created a new block group while updating a free space
 3787			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
 3788			 * and hasn't released its transaction handle yet, in
 3789			 * which case the new block group is still attached to
 3790			 * its transaction handle and its creation has not
 3791			 * finished yet (no block group item in the extent tree
 3792			 * yet, etc). If this is the case, wait for all free
 3793			 * space endio workers to finish and retry. This is a
 3794			 * a very rare case so no need for a more efficient and
 3795			 * complex approach.
 3796			 */
 3797			if (ret == -ENOENT) {
 3798				wait_event(cur_trans->writer_wait,
 3799				   atomic_read(&cur_trans->num_writers) == 1);
 3800				ret = write_one_cache_group(trans, fs_info,
 3801							    path, cache);
 3802			}
 3803			if (ret)
 3804				btrfs_abort_transaction(trans, ret);
 3805		}
 3806
 3807		/* if its not on the io list, we need to put the block group */
 3808		if (should_put)
 3809			btrfs_put_block_group(cache);
 3810		spin_lock(&cur_trans->dirty_bgs_lock);
 3811	}
 3812	spin_unlock(&cur_trans->dirty_bgs_lock);
 3813
 3814	while (!list_empty(io)) {
 3815		cache = list_first_entry(io, struct btrfs_block_group_cache,
 3816					 io_list);
 3817		list_del_init(&cache->io_list);
 3818		btrfs_wait_cache_io(trans, cache, path);
 3819		btrfs_put_block_group(cache);
 3820	}
 3821
 3822	btrfs_free_path(path);
 3823	return ret;
 3824}
 3825
 3826int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
 3827{
 3828	struct btrfs_block_group_cache *block_group;
 3829	int readonly = 0;
 3830
 3831	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 3832	if (!block_group || block_group->ro)
 3833		readonly = 1;
 3834	if (block_group)
 3835		btrfs_put_block_group(block_group);
 3836	return readonly;
 3837}
 3838
 3839bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 3840{
 3841	struct btrfs_block_group_cache *bg;
 3842	bool ret = true;
 3843
 3844	bg = btrfs_lookup_block_group(fs_info, bytenr);
 3845	if (!bg)
 3846		return false;
 3847
 3848	spin_lock(&bg->lock);
 3849	if (bg->ro)
 3850		ret = false;
 3851	else
 3852		atomic_inc(&bg->nocow_writers);
 3853	spin_unlock(&bg->lock);
 3854
 3855	/* no put on block group, done by btrfs_dec_nocow_writers */
 3856	if (!ret)
 3857		btrfs_put_block_group(bg);
 3858
 3859	return ret;
 3860
 3861}
 3862
 3863void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 3864{
 3865	struct btrfs_block_group_cache *bg;
 3866
 3867	bg = btrfs_lookup_block_group(fs_info, bytenr);
 3868	ASSERT(bg);
 3869	if (atomic_dec_and_test(&bg->nocow_writers))
 3870		wake_up_atomic_t(&bg->nocow_writers);
 3871	/*
 3872	 * Once for our lookup and once for the lookup done by a previous call
 3873	 * to btrfs_inc_nocow_writers()
 3874	 */
 3875	btrfs_put_block_group(bg);
 3876	btrfs_put_block_group(bg);
 3877}
 3878
 3879static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
 3880{
 3881	schedule();
 3882	return 0;
 3883}
 3884
 3885void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
 3886{
 3887	wait_on_atomic_t(&bg->nocow_writers,
 3888			 btrfs_wait_nocow_writers_atomic_t,
 3889			 TASK_UNINTERRUPTIBLE);
 3890}
 3891
 3892static const char *alloc_name(u64 flags)
 3893{
 3894	switch (flags) {
 3895	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
 3896		return "mixed";
 3897	case BTRFS_BLOCK_GROUP_METADATA:
 3898		return "metadata";
 3899	case BTRFS_BLOCK_GROUP_DATA:
 3900		return "data";
 3901	case BTRFS_BLOCK_GROUP_SYSTEM:
 3902		return "system";
 3903	default:
 3904		WARN_ON(1);
 3905		return "invalid-combination";
 3906	};
 3907}
 3908
 3909static int update_space_info(struct btrfs_fs_info *info, u64 flags,
 3910			     u64 total_bytes, u64 bytes_used,
 3911			     u64 bytes_readonly,
 3912			     struct btrfs_space_info **space_info)
 3913{
 3914	struct btrfs_space_info *found;
 3915	int i;
 3916	int factor;
 3917	int ret;
 3918
 3919	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
 3920		     BTRFS_BLOCK_GROUP_RAID10))
 3921		factor = 2;
 3922	else
 3923		factor = 1;
 3924
 3925	found = __find_space_info(info, flags);
 3926	if (found) {
 3927		spin_lock(&found->lock);
 3928		found->total_bytes += total_bytes;
 3929		found->disk_total += total_bytes * factor;
 3930		found->bytes_used += bytes_used;
 3931		found->disk_used += bytes_used * factor;
 3932		found->bytes_readonly += bytes_readonly;
 3933		if (total_bytes > 0)
 3934			found->full = 0;
 3935		space_info_add_new_bytes(info, found, total_bytes -
 3936					 bytes_used - bytes_readonly);
 3937		spin_unlock(&found->lock);
 3938		*space_info = found;
 3939		return 0;
 3940	}
 3941	found = kzalloc(sizeof(*found), GFP_NOFS);
 3942	if (!found)
 3943		return -ENOMEM;
 3944
 3945	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
 3946	if (ret) {
 3947		kfree(found);
 3948		return ret;
 3949	}
 3950
 3951	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 3952		INIT_LIST_HEAD(&found->block_groups[i]);
 3953	init_rwsem(&found->groups_sem);
 3954	spin_lock_init(&found->lock);
 3955	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 3956	found->total_bytes = total_bytes;
 3957	found->disk_total = total_bytes * factor;
 3958	found->bytes_used = bytes_used;
 3959	found->disk_used = bytes_used * factor;
 3960	found->bytes_pinned = 0;
 3961	found->bytes_reserved = 0;
 3962	found->bytes_readonly = bytes_readonly;
 3963	found->bytes_may_use = 0;
 3964	found->full = 0;
 3965	found->max_extent_size = 0;
 3966	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
 3967	found->chunk_alloc = 0;
 3968	found->flush = 0;
 3969	init_waitqueue_head(&found->wait);
 3970	INIT_LIST_HEAD(&found->ro_bgs);
 3971	INIT_LIST_HEAD(&found->tickets);
 3972	INIT_LIST_HEAD(&found->priority_tickets);
 3973
 3974	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
 3975				    info->space_info_kobj, "%s",
 3976				    alloc_name(found->flags));
 3977	if (ret) {
 3978		kfree(found);
 3979		return ret;
 3980	}
 3981
 3982	*space_info = found;
 3983	list_add_rcu(&found->list, &info->space_info);
 3984	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3985		info->data_sinfo = found;
 3986
 3987	return ret;
 3988}
 3989
 3990static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 3991{
 3992	u64 extra_flags = chunk_to_extended(flags) &
 3993				BTRFS_EXTENDED_PROFILE_MASK;
 3994
 3995	write_seqlock(&fs_info->profiles_lock);
 3996	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3997		fs_info->avail_data_alloc_bits |= extra_flags;
 3998	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 3999		fs_info->avail_metadata_alloc_bits |= extra_flags;
 4000	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 4001		fs_info->avail_system_alloc_bits |= extra_flags;
 4002	write_sequnlock(&fs_info->profiles_lock);
 4003}
 4004
 4005/*
 4006 * returns target flags in extended format or 0 if restripe for this
 4007 * chunk_type is not in progress
 4008 *
 4009 * should be called with either volume_mutex or balance_lock held
 4010 */
 4011static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
 4012{
 4013	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 4014	u64 target = 0;
 4015
 4016	if (!bctl)
 4017		return 0;
 4018
 4019	if (flags & BTRFS_BLOCK_GROUP_DATA &&
 4020	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4021		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
 4022	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
 4023		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4024		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
 4025	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
 4026		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4027		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
 4028	}
 4029
 4030	return target;
 4031}
 4032
 4033/*
 4034 * @flags: available profiles in extended format (see ctree.h)
 4035 *
 4036 * Returns reduced profile in chunk format.  If profile changing is in
 4037 * progress (either running or paused) picks the target profile (if it's
 4038 * already available), otherwise falls back to plain reducing.
 4039 */
 4040static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
 4041{
 4042	u64 num_devices = fs_info->fs_devices->rw_devices;
 4043	u64 target;
 4044	u64 raid_type;
 4045	u64 allowed = 0;
 4046
 4047	/*
 4048	 * see if restripe for this chunk_type is in progress, if so
 4049	 * try to reduce to the target profile
 4050	 */
 4051	spin_lock(&fs_info->balance_lock);
 4052	target = get_restripe_target(fs_info, flags);
 4053	if (target) {
 4054		/* pick target profile only if it's already available */
 4055		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
 4056			spin_unlock(&fs_info->balance_lock);
 4057			return extended_to_chunk(target);
 4058		}
 4059	}
 4060	spin_unlock(&fs_info->balance_lock);
 4061
 4062	/* First, mask out the RAID levels which aren't possible */
 4063	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 4064		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
 4065			allowed |= btrfs_raid_group[raid_type];
 4066	}
 4067	allowed &= flags;
 4068
 4069	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
 4070		allowed = BTRFS_BLOCK_GROUP_RAID6;
 4071	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 4072		allowed = BTRFS_BLOCK_GROUP_RAID5;
 4073	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 4074		allowed = BTRFS_BLOCK_GROUP_RAID10;
 4075	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 4076		allowed = BTRFS_BLOCK_GROUP_RAID1;
 4077	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 4078		allowed = BTRFS_BLOCK_GROUP_RAID0;
 4079
 4080	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 4081
 4082	return extended_to_chunk(flags | allowed);
 4083}
 4084
 4085static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
 4086{
 4087	unsigned seq;
 4088	u64 flags;
 4089
 4090	do {
 4091		flags = orig_flags;
 4092		seq = read_seqbegin(&fs_info->profiles_lock);
 4093
 4094		if (flags & BTRFS_BLOCK_GROUP_DATA)
 4095			flags |= fs_info->avail_data_alloc_bits;
 4096		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 4097			flags |= fs_info->avail_system_alloc_bits;
 4098		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 4099			flags |= fs_info->avail_metadata_alloc_bits;
 4100	} while (read_seqretry(&fs_info->profiles_lock, seq));
 4101
 4102	return btrfs_reduce_alloc_profile(fs_info, flags);
 4103}
 4104
 4105u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
 4106{
 4107	struct btrfs_fs_info *fs_info = root->fs_info;
 4108	u64 flags;
 4109	u64 ret;
 4110
 4111	if (data)
 4112		flags = BTRFS_BLOCK_GROUP_DATA;
 4113	else if (root == fs_info->chunk_root)
 4114		flags = BTRFS_BLOCK_GROUP_SYSTEM;
 4115	else
 4116		flags = BTRFS_BLOCK_GROUP_METADATA;
 4117
 4118	ret = get_alloc_profile(fs_info, flags);
 4119	return ret;
 4120}
 4121
 4122int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
 4123{
 4124	struct btrfs_space_info *data_sinfo;
 4125	struct btrfs_root *root = BTRFS_I(inode)->root;
 4126	struct btrfs_fs_info *fs_info = root->fs_info;
 4127	u64 used;
 4128	int ret = 0;
 4129	int need_commit = 2;
 4130	int have_pinned_space;
 4131
 4132	/* make sure bytes are sectorsize aligned */
 4133	bytes = ALIGN(bytes, fs_info->sectorsize);
 4134
 4135	if (btrfs_is_free_space_inode(inode)) {
 4136		need_commit = 0;
 4137		ASSERT(current->journal_info);
 4138	}
 4139
 4140	data_sinfo = fs_info->data_sinfo;
 4141	if (!data_sinfo)
 4142		goto alloc;
 4143
 4144again:
 4145	/* make sure we have enough space to handle the data first */
 4146	spin_lock(&data_sinfo->lock);
 4147	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
 4148		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
 4149		data_sinfo->bytes_may_use;
 4150
 4151	if (used + bytes > data_sinfo->total_bytes) {
 4152		struct btrfs_trans_handle *trans;
 4153
 4154		/*
 4155		 * if we don't have enough free bytes in this space then we need
 4156		 * to alloc a new chunk.
 4157		 */
 4158		if (!data_sinfo->full) {
 4159			u64 alloc_target;
 4160
 4161			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
 4162			spin_unlock(&data_sinfo->lock);
 4163alloc:
 4164			alloc_target = btrfs_get_alloc_profile(root, 1);
 4165			/*
 4166			 * It is ugly that we don't call nolock join
 4167			 * transaction for the free space inode case here.
 4168			 * But it is safe because we only do the data space
 4169			 * reservation for the free space cache in the
 4170			 * transaction context, the common join transaction
 4171			 * just increase the counter of the current transaction
 4172			 * handler, doesn't try to acquire the trans_lock of
 4173			 * the fs.
 4174			 */
 4175			trans = btrfs_join_transaction(root);
 4176			if (IS_ERR(trans))
 4177				return PTR_ERR(trans);
 4178
 4179			ret = do_chunk_alloc(trans, fs_info, alloc_target,
 4180					     CHUNK_ALLOC_NO_FORCE);
 4181			btrfs_end_transaction(trans);
 4182			if (ret < 0) {
 4183				if (ret != -ENOSPC)
 4184					return ret;
 4185				else {
 4186					have_pinned_space = 1;
 4187					goto commit_trans;
 4188				}
 4189			}
 4190
 4191			if (!data_sinfo)
 4192				data_sinfo = fs_info->data_sinfo;
 4193
 4194			goto again;
 4195		}
 4196
 4197		/*
 4198		 * If we don't have enough pinned space to deal with this
 4199		 * allocation, and no removed chunk in current transaction,
 4200		 * don't bother committing the transaction.
 4201		 */
 4202		have_pinned_space = percpu_counter_compare(
 4203			&data_sinfo->total_bytes_pinned,
 4204			used + bytes - data_sinfo->total_bytes);
 4205		spin_unlock(&data_sinfo->lock);
 4206
 4207		/* commit the current transaction and try again */
 4208commit_trans:
 4209		if (need_commit &&
 4210		    !atomic_read(&fs_info->open_ioctl_trans)) {
 4211			need_commit--;
 4212
 4213			if (need_commit > 0) {
 4214				btrfs_start_delalloc_roots(fs_info, 0, -1);
 4215				btrfs_wait_ordered_roots(fs_info, -1, 0,
 4216							 (u64)-1);
 4217			}
 4218
 4219			trans = btrfs_join_transaction(root);
 4220			if (IS_ERR(trans))
 4221				return PTR_ERR(trans);
 4222			if (have_pinned_space >= 0 ||
 4223			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
 4224				     &trans->transaction->flags) ||
 4225			    need_commit > 0) {
 4226				ret = btrfs_commit_transaction(trans);
 4227				if (ret)
 4228					return ret;
 4229				/*
 4230				 * The cleaner kthread might still be doing iput
 4231				 * operations. Wait for it to finish so that
 4232				 * more space is released.
 4233				 */
 4234				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
 4235				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
 4236				goto again;
 4237			} else {
 4238				btrfs_end_transaction(trans);
 4239			}
 4240		}
 4241
 4242		trace_btrfs_space_reservation(fs_info,
 4243					      "space_info:enospc",
 4244					      data_sinfo->flags, bytes, 1);
 4245		return -ENOSPC;
 4246	}
 4247	data_sinfo->bytes_may_use += bytes;
 4248	trace_btrfs_space_reservation(fs_info, "space_info",
 4249				      data_sinfo->flags, bytes, 1);
 4250	spin_unlock(&data_sinfo->lock);
 4251
 4252	return ret;
 4253}
 4254
 4255/*
 4256 * New check_data_free_space() with ability for precious data reservation
 4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
 4258 * add a new function first and then replace it.
 4259 */
 4260int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
 4261{
 4262	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 4263	int ret;
 4264
 4265	/* align the range */
 4266	len = round_up(start + len, fs_info->sectorsize) -
 4267	      round_down(start, fs_info->sectorsize);
 4268	start = round_down(start, fs_info->sectorsize);
 4269
 4270	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
 4271	if (ret < 0)
 4272		return ret;
 4273
 4274	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
 4275	ret = btrfs_qgroup_reserve_data(inode, start, len);
 4276	if (ret)
 4277		btrfs_free_reserved_data_space_noquota(inode, start, len);
 4278	return ret;
 4279}
 4280
 4281/*
 4282 * Called if we need to clear a data reservation for this inode
 4283 * Normally in a error case.
 4284 *
 4285 * This one will *NOT* use accurate qgroup reserved space API, just for case
 4286 * which we can't sleep and is sure it won't affect qgroup reserved space.
 4287 * Like clear_bit_hook().
 4288 */
 4289void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
 4290					    u64 len)
 4291{
 4292	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 4293	struct btrfs_space_info *data_sinfo;
 4294
 4295	/* Make sure the range is aligned to sectorsize */
 4296	len = round_up(start + len, fs_info->sectorsize) -
 4297	      round_down(start, fs_info->sectorsize);
 4298	start = round_down(start, fs_info->sectorsize);
 4299
 4300	data_sinfo = fs_info->data_sinfo;
 4301	spin_lock(&data_sinfo->lock);
 4302	if (WARN_ON(data_sinfo->bytes_may_use < len))
 4303		data_sinfo->bytes_may_use = 0;
 4304	else
 4305		data_sinfo->bytes_may_use -= len;
 4306	trace_btrfs_space_reservation(fs_info, "space_info",
 4307				      data_sinfo->flags, len, 0);
 4308	spin_unlock(&data_sinfo->lock);
 4309}
 4310
 4311/*
 4312 * Called if we need to clear a data reservation for this inode
 4313 * Normally in a error case.
 4314 *
 4315 * This one will handle the per-inode data rsv map for accurate reserved
 4316 * space framework.
 4317 */
 4318void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
 4319{
 4320	struct btrfs_root *root = BTRFS_I(inode)->root;
 4321
 4322	/* Make sure the range is aligned to sectorsize */
 4323	len = round_up(start + len, root->fs_info->sectorsize) -
 4324	      round_down(start, root->fs_info->sectorsize);
 4325	start = round_down(start, root->fs_info->sectorsize);
 4326
 4327	btrfs_free_reserved_data_space_noquota(inode, start, len);
 4328	btrfs_qgroup_free_data(inode, start, len);
 4329}
 4330
 4331static void force_metadata_allocation(struct btrfs_fs_info *info)
 4332{
 4333	struct list_head *head = &info->space_info;
 4334	struct btrfs_space_info *found;
 4335
 4336	rcu_read_lock();
 4337	list_for_each_entry_rcu(found, head, list) {
 4338		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
 4339			found->force_alloc = CHUNK_ALLOC_FORCE;
 4340	}
 4341	rcu_read_unlock();
 4342}
 4343
 4344static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 4345{
 4346	return (global->size << 1);
 4347}
 4348
 4349static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
 4350			      struct btrfs_space_info *sinfo, int force)
 4351{
 4352	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 4353	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
 4354	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
 4355	u64 thresh;
 4356
 4357	if (force == CHUNK_ALLOC_FORCE)
 4358		return 1;
 4359
 4360	/*
 4361	 * We need to take into account the global rsv because for all intents
 4362	 * and purposes it's used space.  Don't worry about locking the
 4363	 * global_rsv, it doesn't change except when the transaction commits.
 4364	 */
 4365	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
 4366		num_allocated += calc_global_rsv_need_space(global_rsv);
 4367
 4368	/*
 4369	 * in limited mode, we want to have some free space up to
 4370	 * about 1% of the FS size.
 4371	 */
 4372	if (force == CHUNK_ALLOC_LIMITED) {
 4373		thresh = btrfs_super_total_bytes(fs_info->super_copy);
 4374		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
 4375
 4376		if (num_bytes - num_allocated < thresh)
 4377			return 1;
 4378	}
 4379
 4380	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
 4381		return 0;
 4382	return 1;
 4383}
 4384
 4385static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
 4386{
 4387	u64 num_dev;
 4388
 4389	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
 4390		    BTRFS_BLOCK_GROUP_RAID0 |
 4391		    BTRFS_BLOCK_GROUP_RAID5 |
 4392		    BTRFS_BLOCK_GROUP_RAID6))
 4393		num_dev = fs_info->fs_devices->rw_devices;
 4394	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 4395		num_dev = 2;
 4396	else
 4397		num_dev = 1;	/* DUP or single */
 4398
 4399	return num_dev;
 4400}
 4401
 4402/*
 4403 * If @is_allocation is true, reserve space in the system space info necessary
 4404 * for allocating a chunk, otherwise if it's false, reserve space necessary for
 4405 * removing a chunk.
 4406 */
 4407void check_system_chunk(struct btrfs_trans_handle *trans,
 4408			struct btrfs_fs_info *fs_info, u64 type)
 4409{
 4410	struct btrfs_space_info *info;
 4411	u64 left;
 4412	u64 thresh;
 4413	int ret = 0;
 4414	u64 num_devs;
 4415
 4416	/*
 4417	 * Needed because we can end up allocating a system chunk and for an
 4418	 * atomic and race free space reservation in the chunk block reserve.
 4419	 */
 4420	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
 4421
 4422	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 4423	spin_lock(&info->lock);
 4424	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
 4425		info->bytes_reserved - info->bytes_readonly -
 4426		info->bytes_may_use;
 4427	spin_unlock(&info->lock);
 4428
 4429	num_devs = get_profile_num_devs(fs_info, type);
 4430
 4431	/* num_devs device items to update and 1 chunk item to add or remove */
 4432	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
 4433		btrfs_calc_trans_metadata_size(fs_info, 1);
 4434
 4435	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 4436		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
 4437			   left, thresh, type);
 4438		dump_space_info(fs_info, info, 0, 0);
 4439	}
 4440
 4441	if (left < thresh) {
 4442		u64 flags;
 4443
 4444		flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
 4445		/*
 4446		 * Ignore failure to create system chunk. We might end up not
 4447		 * needing it, as we might not need to COW all nodes/leafs from
 4448		 * the paths we visit in the chunk tree (they were already COWed
 4449		 * or created in the current transaction for example).
 4450		 */
 4451		ret = btrfs_alloc_chunk(trans, fs_info, flags);
 4452	}
 4453
 4454	if (!ret) {
 4455		ret = btrfs_block_rsv_add(fs_info->chunk_root,
 4456					  &fs_info->chunk_block_rsv,
 4457					  thresh, BTRFS_RESERVE_NO_FLUSH);
 4458		if (!ret)
 4459			trans->chunk_bytes_reserved += thresh;
 4460	}
 4461}
 4462
 4463/*
 4464 * If force is CHUNK_ALLOC_FORCE:
 4465 *    - return 1 if it successfully allocates a chunk,
 4466 *    - return errors including -ENOSPC otherwise.
 4467 * If force is NOT CHUNK_ALLOC_FORCE:
 4468 *    - return 0 if it doesn't need to allocate a new chunk,
 4469 *    - return 1 if it successfully allocates a chunk,
 4470 *    - return errors including -ENOSPC otherwise.
 4471 */
 4472static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 4473			  struct btrfs_fs_info *fs_info, u64 flags, int force)
 4474{
 4475	struct btrfs_space_info *space_info;
 4476	int wait_for_alloc = 0;
 4477	int ret = 0;
 4478
 4479	/* Don't re-enter if we're already allocating a chunk */
 4480	if (trans->allocating_chunk)
 4481		return -ENOSPC;
 4482
 4483	space_info = __find_space_info(fs_info, flags);
 4484	if (!space_info) {
 4485		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
 4486		BUG_ON(ret); /* -ENOMEM */
 4487	}
 4488	BUG_ON(!space_info); /* Logic error */
 4489
 4490again:
 4491	spin_lock(&space_info->lock);
 4492	if (force < space_info->force_alloc)
 4493		force = space_info->force_alloc;
 4494	if (space_info->full) {
 4495		if (should_alloc_chunk(fs_info, space_info, force))
 4496			ret = -ENOSPC;
 4497		else
 4498			ret = 0;
 4499		spin_unlock(&space_info->lock);
 4500		return ret;
 4501	}
 4502
 4503	if (!should_alloc_chunk(fs_info, space_info, force)) {
 4504		spin_unlock(&space_info->lock);
 4505		return 0;
 4506	} else if (space_info->chunk_alloc) {
 4507		wait_for_alloc = 1;
 4508	} else {
 4509		space_info->chunk_alloc = 1;
 4510	}
 4511
 4512	spin_unlock(&space_info->lock);
 4513
 4514	mutex_lock(&fs_info->chunk_mutex);
 4515
 4516	/*
 4517	 * The chunk_mutex is held throughout the entirety of a chunk
 4518	 * allocation, so once we've acquired the chunk_mutex we know that the
 4519	 * other guy is done and we need to recheck and see if we should
 4520	 * allocate.
 4521	 */
 4522	if (wait_for_alloc) {
 4523		mutex_unlock(&fs_info->chunk_mutex);
 4524		wait_for_alloc = 0;
 4525		goto again;
 4526	}
 4527
 4528	trans->allocating_chunk = true;
 4529
 4530	/*
 4531	 * If we have mixed data/metadata chunks we want to make sure we keep
 4532	 * allocating mixed chunks instead of individual chunks.
 4533	 */
 4534	if (btrfs_mixed_space_info(space_info))
 4535		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
 4536
 4537	/*
 4538	 * if we're doing a data chunk, go ahead and make sure that
 4539	 * we keep a reasonable number of metadata chunks allocated in the
 4540	 * FS as well.
 4541	 */
 4542	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
 4543		fs_info->data_chunk_allocations++;
 4544		if (!(fs_info->data_chunk_allocations %
 4545		      fs_info->metadata_ratio))
 4546			force_metadata_allocation(fs_info);
 4547	}
 4548
 4549	/*
 4550	 * Check if we have enough space in SYSTEM chunk because we may need
 4551	 * to update devices.
 4552	 */
 4553	check_system_chunk(trans, fs_info, flags);
 4554
 4555	ret = btrfs_alloc_chunk(trans, fs_info, flags);
 4556	trans->allocating_chunk = false;
 4557
 4558	spin_lock(&space_info->lock);
 4559	if (ret < 0 && ret != -ENOSPC)
 4560		goto out;
 4561	if (ret)
 4562		space_info->full = 1;
 4563	else
 4564		ret = 1;
 4565
 4566	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 4567out:
 4568	space_info->chunk_alloc = 0;
 4569	spin_unlock(&space_info->lock);
 4570	mutex_unlock(&fs_info->chunk_mutex);
 4571	/*
 4572	 * When we allocate a new chunk we reserve space in the chunk block
 4573	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
 4574	 * add new nodes/leafs to it if we end up needing to do it when
 4575	 * inserting the chunk item and updating device items as part of the
 4576	 * second phase of chunk allocation, performed by
 4577	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
 4578	 * large number of new block groups to create in our transaction
 4579	 * handle's new_bgs list to avoid exhausting the chunk block reserve
 4580	 * in extreme cases - like having a single transaction create many new
 4581	 * block groups when starting to write out the free space caches of all
 4582	 * the block groups that were made dirty during the lifetime of the
 4583	 * transaction.
 4584	 */
 4585	if (trans->can_flush_pending_bgs &&
 4586	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
 4587		btrfs_create_pending_block_groups(trans, fs_info);
 4588		btrfs_trans_release_chunk_metadata(trans);
 4589	}
 4590	return ret;
 4591}
 4592
 4593static int can_overcommit(struct btrfs_root *root,
 4594			  struct btrfs_space_info *space_info, u64 bytes,
 4595			  enum btrfs_reserve_flush_enum flush)
 4596{
 4597	struct btrfs_fs_info *fs_info = root->fs_info;
 4598	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 4599	u64 profile;
 4600	u64 space_size;
 4601	u64 avail;
 4602	u64 used;
 4603
 4604	/* Don't overcommit when in mixed mode. */
 4605	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 4606		return 0;
 4607
 4608	profile = btrfs_get_alloc_profile(root, 0);
 4609	used = space_info->bytes_used + space_info->bytes_reserved +
 4610		space_info->bytes_pinned + space_info->bytes_readonly;
 4611
 4612	/*
 4613	 * We only want to allow over committing if we have lots of actual space
 4614	 * free, but if we don't have enough space to handle the global reserve
 4615	 * space then we could end up having a real enospc problem when trying
 4616	 * to allocate a chunk or some other such important allocation.
 4617	 */
 4618	spin_lock(&global_rsv->lock);
 4619	space_size = calc_global_rsv_need_space(global_rsv);
 4620	spin_unlock(&global_rsv->lock);
 4621	if (used + space_size >= space_info->total_bytes)
 4622		return 0;
 4623
 4624	used += space_info->bytes_may_use;
 4625
 4626	spin_lock(&fs_info->free_chunk_lock);
 4627	avail = fs_info->free_chunk_space;
 4628	spin_unlock(&fs_info->free_chunk_lock);
 4629
 4630	/*
 4631	 * If we have dup, raid1 or raid10 then only half of the free
 4632	 * space is actually useable.  For raid56, the space info used
 4633	 * doesn't include the parity drive, so we don't have to
 4634	 * change the math
 4635	 */
 4636	if (profile & (BTRFS_BLOCK_GROUP_DUP |
 4637		       BTRFS_BLOCK_GROUP_RAID1 |
 4638		       BTRFS_BLOCK_GROUP_RAID10))
 4639		avail >>= 1;
 4640
 4641	/*
 4642	 * If we aren't flushing all things, let us overcommit up to
 4643	 * 1/2th of the space. If we can flush, don't let us overcommit
 4644	 * too much, let it overcommit up to 1/8 of the space.
 4645	 */
 4646	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 4647		avail >>= 3;
 4648	else
 4649		avail >>= 1;
 4650
 4651	if (used + bytes < space_info->total_bytes + avail)
 4652		return 1;
 4653	return 0;
 4654}
 4655
 4656static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 4657					 unsigned long nr_pages, int nr_items)
 4658{
 4659	struct super_block *sb = fs_info->sb;
 4660
 4661	if (down_read_trylock(&sb->s_umount)) {
 4662		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 4663		up_read(&sb->s_umount);
 4664	} else {
 4665		/*
 4666		 * We needn't worry the filesystem going from r/w to r/o though
 4667		 * we don't acquire ->s_umount mutex, because the filesystem
 4668		 * should guarantee the delalloc inodes list be empty after
 4669		 * the filesystem is readonly(all dirty pages are written to
 4670		 * the disk).
 4671		 */
 4672		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
 4673		if (!current->journal_info)
 4674			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 4675	}
 4676}
 4677
 4678static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 4679					u64 to_reclaim)
 4680{
 4681	u64 bytes;
 4682	int nr;
 4683
 4684	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 4685	nr = (int)div64_u64(to_reclaim, bytes);
 4686	if (!nr)
 4687		nr = 1;
 4688	return nr;
 4689}
 4690
 4691#define EXTENT_SIZE_PER_ITEM	SZ_256K
 4692
 4693/*
 4694 * shrink metadata reservation for delalloc
 4695 */
 4696static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
 4697			    bool wait_ordered)
 4698{
 4699	struct btrfs_fs_info *fs_info = root->fs_info;
 4700	struct btrfs_block_rsv *block_rsv;
 4701	struct btrfs_space_info *space_info;
 4702	struct btrfs_trans_handle *trans;
 4703	u64 delalloc_bytes;
 4704	u64 max_reclaim;
 4705	long time_left;
 4706	unsigned long nr_pages;
 4707	int loops;
 4708	int items;
 4709	enum btrfs_reserve_flush_enum flush;
 4710
 4711	/* Calc the number of the pages we need flush for space reservation */
 4712	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 4713	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
 4714
 4715	trans = (struct btrfs_trans_handle *)current->journal_info;
 4716	block_rsv = &fs_info->delalloc_block_rsv;
 4717	space_info = block_rsv->space_info;
 4718
 4719	delalloc_bytes = percpu_counter_sum_positive(
 4720						&fs_info->delalloc_bytes);
 4721	if (delalloc_bytes == 0) {
 4722		if (trans)
 4723			return;
 4724		if (wait_ordered)
 4725			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 4726		return;
 4727	}
 4728
 4729	loops = 0;
 4730	while (delalloc_bytes && loops < 3) {
 4731		max_reclaim = min(delalloc_bytes, to_reclaim);
 4732		nr_pages = max_reclaim >> PAGE_SHIFT;
 4733		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 4734		/*
 4735		 * We need to wait for the async pages to actually start before
 4736		 * we do anything.
 4737		 */
 4738		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
 4739		if (!max_reclaim)
 4740			goto skip_async;
 4741
 4742		if (max_reclaim <= nr_pages)
 4743			max_reclaim = 0;
 4744		else
 4745			max_reclaim -= nr_pages;
 4746
 4747		wait_event(fs_info->async_submit_wait,
 4748			   atomic_read(&fs_info->async_delalloc_pages) <=
 4749			   (int)max_reclaim);
 4750skip_async:
 4751		if (!trans)
 4752			flush = BTRFS_RESERVE_FLUSH_ALL;
 4753		else
 4754			flush = BTRFS_RESERVE_NO_FLUSH;
 4755		spin_lock(&space_info->lock);
 4756		if (can_overcommit(root, space_info, orig, flush)) {
 4757			spin_unlock(&space_info->lock);
 4758			break;
 4759		}
 4760		if (list_empty(&space_info->tickets) &&
 4761		    list_empty(&space_info->priority_tickets)) {
 4762			spin_unlock(&space_info->lock);
 4763			break;
 4764		}
 4765		spin_unlock(&space_info->lock);
 4766
 4767		loops++;
 4768		if (wait_ordered && !trans) {
 4769			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 4770		} else {
 4771			time_left = schedule_timeout_killable(1);
 4772			if (time_left)
 4773				break;
 4774		}
 4775		delalloc_bytes = percpu_counter_sum_positive(
 4776						&fs_info->delalloc_bytes);
 4777	}
 4778}
 4779
 4780/**
 4781 * maybe_commit_transaction - possibly commit the transaction if its ok to
 4782 * @root - the root we're allocating for
 4783 * @bytes - the number of bytes we want to reserve
 4784 * @force - force the commit
 4785 *
 4786 * This will check to make sure that committing the transaction will actually
 4787 * get us somewhere and then commit the transaction if it does.  Otherwise it
 4788 * will return -ENOSPC.
 4789 */
 4790static int may_commit_transaction(struct btrfs_root *root,
 4791				  struct btrfs_space_info *space_info,
 4792				  u64 bytes, int force)
 4793{
 4794	struct btrfs_fs_info *fs_info = root->fs_info;
 4795	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 4796	struct btrfs_trans_handle *trans;
 4797
 4798	trans = (struct btrfs_trans_handle *)current->journal_info;
 4799	if (trans)
 4800		return -EAGAIN;
 4801
 4802	if (force)
 4803		goto commit;
 4804
 4805	/* See if there is enough pinned space to make this reservation */
 4806	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4807				   bytes) >= 0)
 4808		goto commit;
 4809
 4810	/*
 4811	 * See if there is some space in the delayed insertion reservation for
 4812	 * this reservation.
 4813	 */
 4814	if (space_info != delayed_rsv->space_info)
 4815		return -ENOSPC;
 4816
 4817	spin_lock(&delayed_rsv->lock);
 4818	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4819				   bytes - delayed_rsv->size) >= 0) {
 4820		spin_unlock(&delayed_rsv->lock);
 4821		return -ENOSPC;
 4822	}
 4823	spin_unlock(&delayed_rsv->lock);
 4824
 4825commit:
 4826	trans = btrfs_join_transaction(root);
 4827	if (IS_ERR(trans))
 4828		return -ENOSPC;
 4829
 4830	return btrfs_commit_transaction(trans);
 4831}
 4832
 4833struct reserve_ticket {
 4834	u64 bytes;
 4835	int error;
 4836	struct list_head list;
 4837	wait_queue_head_t wait;
 4838};
 4839
 4840static int flush_space(struct btrfs_root *root,
 4841		       struct btrfs_space_info *space_info, u64 num_bytes,
 4842		       u64 orig_bytes, int state)
 4843{
 4844	struct btrfs_fs_info *fs_info = root->fs_info;
 4845	struct btrfs_trans_handle *trans;
 4846	int nr;
 4847	int ret = 0;
 4848
 4849	switch (state) {
 4850	case FLUSH_DELAYED_ITEMS_NR:
 4851	case FLUSH_DELAYED_ITEMS:
 4852		if (state == FLUSH_DELAYED_ITEMS_NR)
 4853			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 4854		else
 4855			nr = -1;
 4856
 4857		trans = btrfs_join_transaction(root);
 4858		if (IS_ERR(trans)) {
 4859			ret = PTR_ERR(trans);
 4860			break;
 4861		}
 4862		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
 4863		btrfs_end_transaction(trans);
 4864		break;
 4865	case FLUSH_DELALLOC:
 4866	case FLUSH_DELALLOC_WAIT:
 4867		shrink_delalloc(root, num_bytes * 2, orig_bytes,
 4868				state == FLUSH_DELALLOC_WAIT);
 4869		break;
 4870	case ALLOC_CHUNK:
 4871		trans = btrfs_join_transaction(root);
 4872		if (IS_ERR(trans)) {
 4873			ret = PTR_ERR(trans);
 4874			break;
 4875		}
 4876		ret = do_chunk_alloc(trans, fs_info,
 4877				     btrfs_get_alloc_profile(root, 0),
 4878				     CHUNK_ALLOC_NO_FORCE);
 4879		btrfs_end_transaction(trans);
 4880		if (ret > 0 || ret == -ENOSPC)
 4881			ret = 0;
 4882		break;
 4883	case COMMIT_TRANS:
 4884		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
 4885		break;
 4886	default:
 4887		ret = -ENOSPC;
 4888		break;
 4889	}
 4890
 4891	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
 4892				orig_bytes, state, ret);
 4893	return ret;
 4894}
 4895
 4896static inline u64
 4897btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
 4898				 struct btrfs_space_info *space_info)
 4899{
 4900	struct reserve_ticket *ticket;
 4901	u64 used;
 4902	u64 expected;
 4903	u64 to_reclaim = 0;
 4904
 4905	list_for_each_entry(ticket, &space_info->tickets, list)
 4906		to_reclaim += ticket->bytes;
 4907	list_for_each_entry(ticket, &space_info->priority_tickets, list)
 4908		to_reclaim += ticket->bytes;
 4909	if (to_reclaim)
 4910		return to_reclaim;
 4911
 4912	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 4913	if (can_overcommit(root, space_info, to_reclaim,
 4914			   BTRFS_RESERVE_FLUSH_ALL))
 4915		return 0;
 4916
 4917	used = space_info->bytes_used + space_info->bytes_reserved +
 4918	       space_info->bytes_pinned + space_info->bytes_readonly +
 4919	       space_info->bytes_may_use;
 4920	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
 4921		expected = div_factor_fine(space_info->total_bytes, 95);
 4922	else
 4923		expected = div_factor_fine(space_info->total_bytes, 90);
 4924
 4925	if (used > expected)
 4926		to_reclaim = used - expected;
 4927	else
 4928		to_reclaim = 0;
 4929	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 4930				     space_info->bytes_reserved);
 4931	return to_reclaim;
 4932}
 4933
 4934static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
 4935					struct btrfs_root *root, u64 used)
 4936{
 4937	struct btrfs_fs_info *fs_info = root->fs_info;
 4938	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 4939
 4940	/* If we're just plain full then async reclaim just slows us down. */
 4941	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 4942		return 0;
 4943
 4944	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
 4945		return 0;
 4946
 4947	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 4948		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 4949}
 4950
 4951static void wake_all_tickets(struct list_head *head)
 4952{
 4953	struct reserve_ticket *ticket;
 4954
 4955	while (!list_empty(head)) {
 4956		ticket = list_first_entry(head, struct reserve_ticket, list);
 4957		list_del_init(&ticket->list);
 4958		ticket->error = -ENOSPC;
 4959		wake_up(&ticket->wait);
 4960	}
 4961}
 4962
 4963/*
 4964 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 4965 * will loop and continuously try to flush as long as we are making progress.
 4966 * We count progress as clearing off tickets each time we have to loop.
 4967 */
 4968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 4969{
 4970	struct btrfs_fs_info *fs_info;
 4971	struct btrfs_space_info *space_info;
 4972	u64 to_reclaim;
 4973	int flush_state;
 4974	int commit_cycles = 0;
 4975	u64 last_tickets_id;
 4976
 4977	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 4978	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 4979
 4980	spin_lock(&space_info->lock);
 4981	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 4982						      space_info);
 4983	if (!to_reclaim) {
 4984		space_info->flush = 0;
 4985		spin_unlock(&space_info->lock);
 4986		return;
 4987	}
 4988	last_tickets_id = space_info->tickets_id;
 4989	spin_unlock(&space_info->lock);
 4990
 4991	flush_state = FLUSH_DELAYED_ITEMS_NR;
 4992	do {
 4993		struct reserve_ticket *ticket;
 4994		int ret;
 4995
 4996		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
 4997			    to_reclaim, flush_state);
 4998		spin_lock(&space_info->lock);
 4999		if (list_empty(&space_info->tickets)) {
 5000			space_info->flush = 0;
 5001			spin_unlock(&space_info->lock);
 5002			return;
 5003		}
 5004		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 5005							      space_info);
 5006		ticket = list_first_entry(&space_info->tickets,
 5007					  struct reserve_ticket, list);
 5008		if (last_tickets_id == space_info->tickets_id) {
 5009			flush_state++;
 5010		} else {
 5011			last_tickets_id = space_info->tickets_id;
 5012			flush_state = FLUSH_DELAYED_ITEMS_NR;
 5013			if (commit_cycles)
 5014				commit_cycles--;
 5015		}
 5016
 5017		if (flush_state > COMMIT_TRANS) {
 5018			commit_cycles++;
 5019			if (commit_cycles > 2) {
 5020				wake_all_tickets(&space_info->tickets);
 5021				space_info->flush = 0;
 5022			} else {
 5023				flush_state = FLUSH_DELAYED_ITEMS_NR;
 5024			}
 5025		}
 5026		spin_unlock(&space_info->lock);
 5027	} while (flush_state <= COMMIT_TRANS);
 5028}
 5029
 5030void btrfs_init_async_reclaim_work(struct work_struct *work)
 5031{
 5032	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 5033}
 5034
 5035static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 5036					    struct btrfs_space_info *space_info,
 5037					    struct reserve_ticket *ticket)
 5038{
 5039	u64 to_reclaim;
 5040	int flush_state = FLUSH_DELAYED_ITEMS_NR;
 5041
 5042	spin_lock(&space_info->lock);
 5043	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 5044						      space_info);
 5045	if (!to_reclaim) {
 5046		spin_unlock(&space_info->lock);
 5047		return;
 5048	}
 5049	spin_unlock(&space_info->lock);
 5050
 5051	do {
 5052		flush_space(fs_info->fs_root, space_info, to_reclaim,
 5053			    to_reclaim, flush_state);
 5054		flush_state++;
 5055		spin_lock(&space_info->lock);
 5056		if (ticket->bytes == 0) {
 5057			spin_unlock(&space_info->lock);
 5058			return;
 5059		}
 5060		spin_unlock(&space_info->lock);
 5061
 5062		/*
 5063		 * Priority flushers can't wait on delalloc without
 5064		 * deadlocking.
 5065		 */
 5066		if (flush_state == FLUSH_DELALLOC ||
 5067		    flush_state == FLUSH_DELALLOC_WAIT)
 5068			flush_state = ALLOC_CHUNK;
 5069	} while (flush_state < COMMIT_TRANS);
 5070}
 5071
 5072static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 5073			       struct btrfs_space_info *space_info,
 5074			       struct reserve_ticket *ticket, u64 orig_bytes)
 5075
 5076{
 5077	DEFINE_WAIT(wait);
 5078	int ret = 0;
 5079
 5080	spin_lock(&space_info->lock);
 5081	while (ticket->bytes > 0 && ticket->error == 0) {
 5082		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 5083		if (ret) {
 5084			ret = -EINTR;
 5085			break;
 5086		}
 5087		spin_unlock(&space_info->lock);
 5088
 5089		schedule();
 5090
 5091		finish_wait(&ticket->wait, &wait);
 5092		spin_lock(&space_info->lock);
 5093	}
 5094	if (!ret)
 5095		ret = ticket->error;
 5096	if (!list_empty(&ticket->list))
 5097		list_del_init(&ticket->list);
 5098	if (ticket->bytes && ticket->bytes < orig_bytes) {
 5099		u64 num_bytes = orig_bytes - ticket->bytes;
 5100		space_info->bytes_may_use -= num_bytes;
 5101		trace_btrfs_space_reservation(fs_info, "space_info",
 5102					      space_info->flags, num_bytes, 0);
 5103	}
 5104	spin_unlock(&space_info->lock);
 5105
 5106	return ret;
 5107}
 5108
 5109/**
 5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 5111 * @root - the root we're allocating for
 5112 * @space_info - the space info we want to allocate from
 5113 * @orig_bytes - the number of bytes we want
 5114 * @flush - whether or not we can flush to make our reservation
 5115 *
 5116 * This will reserve orig_bytes number of bytes from the space info associated
 5117 * with the block_rsv.  If there is not enough space it will make an attempt to
 5118 * flush out space to make room.  It will do this by flushing delalloc if
 5119 * possible or committing the transaction.  If flush is 0 then no attempts to
 5120 * regain reservations will be made and this will fail if there is not enough
 5121 * space already.
 5122 */
 5123static int __reserve_metadata_bytes(struct btrfs_root *root,
 5124				    struct btrfs_space_info *space_info,
 5125				    u64 orig_bytes,
 5126				    enum btrfs_reserve_flush_enum flush)
 5127{
 5128	struct btrfs_fs_info *fs_info = root->fs_info;
 5129	struct reserve_ticket ticket;
 5130	u64 used;
 5131	int ret = 0;
 5132
 5133	ASSERT(orig_bytes);
 5134	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
 5135
 5136	spin_lock(&space_info->lock);
 5137	ret = -ENOSPC;
 5138	used = space_info->bytes_used + space_info->bytes_reserved +
 5139		space_info->bytes_pinned + space_info->bytes_readonly +
 5140		space_info->bytes_may_use;
 5141
 5142	/*
 5143	 * If we have enough space then hooray, make our reservation and carry
 5144	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
 5145	 * If not things get more complicated.
 5146	 */
 5147	if (used + orig_bytes <= space_info->total_bytes) {
 5148		space_info->bytes_may_use += orig_bytes;
 5149		trace_btrfs_space_reservation(fs_info, "space_info",
 5150					      space_info->flags, orig_bytes, 1);
 5151		ret = 0;
 5152	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
 5153		space_info->bytes_may_use += orig_bytes;
 5154		trace_btrfs_space_reservation(fs_info, "space_info",
 5155					      space_info->flags, orig_bytes, 1);
 5156		ret = 0;
 5157	}
 5158
 5159	/*
 5160	 * If we couldn't make a reservation then setup our reservation ticket
 5161	 * and kick the async worker if it's not already running.
 5162	 *
 5163	 * If we are a priority flusher then we just need to add our ticket to
 5164	 * the list and we will do our own flushing further down.
 5165	 */
 5166	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
 5167		ticket.bytes = orig_bytes;
 5168		ticket.error = 0;
 5169		init_waitqueue_head(&ticket.wait);
 5170		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
 5171			list_add_tail(&ticket.list, &space_info->tickets);
 5172			if (!space_info->flush) {
 5173				space_info->flush = 1;
 5174				trace_btrfs_trigger_flush(fs_info,
 5175							  space_info->flags,
 5176							  orig_bytes, flush,
 5177							  "enospc");
 5178				queue_work(system_unbound_wq,
 5179					   &root->fs_info->async_reclaim_work);
 5180			}
 5181		} else {
 5182			list_add_tail(&ticket.list,
 5183				      &space_info->priority_tickets);
 5184		}
 5185	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 5186		used += orig_bytes;
 5187		/*
 5188		 * We will do the space reservation dance during log replay,
 5189		 * which means we won't have fs_info->fs_root set, so don't do
 5190		 * the async reclaim as we will panic.
 5191		 */
 5192		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
 5193		    need_do_async_reclaim(space_info, root, used) &&
 5194		    !work_busy(&fs_info->async_reclaim_work)) {
 5195			trace_btrfs_trigger_flush(fs_info, space_info->flags,
 5196						  orig_bytes, flush, "preempt");
 5197			queue_work(system_unbound_wq,
 5198				   &fs_info->async_reclaim_work);
 5199		}
 5200	}
 5201	spin_unlock(&space_info->lock);
 5202	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
 5203		return ret;
 5204
 5205	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 5206		return wait_reserve_ticket(fs_info, space_info, &ticket,
 5207					   orig_bytes);
 5208
 5209	ret = 0;
 5210	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
 5211	spin_lock(&space_info->lock);
 5212	if (ticket.bytes) {
 5213		if (ticket.bytes < orig_bytes) {
 5214			u64 num_bytes = orig_bytes - ticket.bytes;
 5215			space_info->bytes_may_use -= num_bytes;
 5216			trace_btrfs_space_reservation(fs_info, "space_info",
 5217						      space_info->flags,
 5218						      num_bytes, 0);
 5219
 5220		}
 5221		list_del_init(&ticket.list);
 5222		ret = -ENOSPC;
 5223	}
 5224	spin_unlock(&space_info->lock);
 5225	ASSERT(list_empty(&ticket.list));
 5226	return ret;
 5227}
 5228
 5229/**
 5230 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 5231 * @root - the root we're allocating for
 5232 * @block_rsv - the block_rsv we're allocating for
 5233 * @orig_bytes - the number of bytes we want
 5234 * @flush - whether or not we can flush to make our reservation
 5235 *
 5236 * This will reserve orgi_bytes number of bytes from the space info associated
 5237 * with the block_rsv.  If there is not enough space it will make an attempt to
 5238 * flush out space to make room.  It will do this by flushing delalloc if
 5239 * possible or committing the transaction.  If flush is 0 then no attempts to
 5240 * regain reservations will be made and this will fail if there is not enough
 5241 * space already.
 5242 */
 5243static int reserve_metadata_bytes(struct btrfs_root *root,
 5244				  struct btrfs_block_rsv *block_rsv,
 5245				  u64 orig_bytes,
 5246				  enum btrfs_reserve_flush_enum flush)
 5247{
 5248	struct btrfs_fs_info *fs_info = root->fs_info;
 5249	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5250	int ret;
 5251
 5252	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
 5253				       flush);
 5254	if (ret == -ENOSPC &&
 5255	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
 5256		if (block_rsv != global_rsv &&
 5257		    !block_rsv_use_bytes(global_rsv, orig_bytes))
 5258			ret = 0;
 5259	}
 5260	if (ret == -ENOSPC)
 5261		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
 5262					      block_rsv->space_info->flags,
 5263					      orig_bytes, 1);
 5264	return ret;
 5265}
 5266
 5267static struct btrfs_block_rsv *get_block_rsv(
 5268					const struct btrfs_trans_handle *trans,
 5269					const struct btrfs_root *root)
 5270{
 5271	struct btrfs_fs_info *fs_info = root->fs_info;
 5272	struct btrfs_block_rsv *block_rsv = NULL;
 5273
 5274	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 5275	    (root == fs_info->csum_root && trans->adding_csums) ||
 5276	    (root == fs_info->uuid_root))
 5277		block_rsv = trans->block_rsv;
 5278
 5279	if (!block_rsv)
 5280		block_rsv = root->block_rsv;
 5281
 5282	if (!block_rsv)
 5283		block_rsv = &fs_info->empty_block_rsv;
 5284
 5285	return block_rsv;
 5286}
 5287
 5288static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 5289			       u64 num_bytes)
 5290{
 5291	int ret = -ENOSPC;
 5292	spin_lock(&block_rsv->lock);
 5293	if (block_rsv->reserved >= num_bytes) {
 5294		block_rsv->reserved -= num_bytes;
 5295		if (block_rsv->reserved < block_rsv->size)
 5296			block_rsv->full = 0;
 5297		ret = 0;
 5298	}
 5299	spin_unlock(&block_rsv->lock);
 5300	return ret;
 5301}
 5302
 5303static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
 5304				u64 num_bytes, int update_size)
 5305{
 5306	spin_lock(&block_rsv->lock);
 5307	block_rsv->reserved += num_bytes;
 5308	if (update_size)
 5309		block_rsv->size += num_bytes;
 5310	else if (block_rsv->reserved >= block_rsv->size)
 5311		block_rsv->full = 1;
 5312	spin_unlock(&block_rsv->lock);
 5313}
 5314
 5315int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
 5316			     struct btrfs_block_rsv *dest, u64 num_bytes,
 5317			     int min_factor)
 5318{
 5319	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5320	u64 min_bytes;
 5321
 5322	if (global_rsv->space_info != dest->space_info)
 5323		return -ENOSPC;
 5324
 5325	spin_lock(&global_rsv->lock);
 5326	min_bytes = div_factor(global_rsv->size, min_factor);
 5327	if (global_rsv->reserved < min_bytes + num_bytes) {
 5328		spin_unlock(&global_rsv->lock);
 5329		return -ENOSPC;
 5330	}
 5331	global_rsv->reserved -= num_bytes;
 5332	if (global_rsv->reserved < global_rsv->size)
 5333		global_rsv->full = 0;
 5334	spin_unlock(&global_rsv->lock);
 5335
 5336	block_rsv_add_bytes(dest, num_bytes, 1);
 5337	return 0;
 5338}
 5339
 5340/*
 5341 * This is for space we already have accounted in space_info->bytes_may_use, so
 5342 * basically when we're returning space from block_rsv's.
 5343 */
 5344static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
 5345				     struct btrfs_space_info *space_info,
 5346				     u64 num_bytes)
 5347{
 5348	struct reserve_ticket *ticket;
 5349	struct list_head *head;
 5350	u64 used;
 5351	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 5352	bool check_overcommit = false;
 5353
 5354	spin_lock(&space_info->lock);
 5355	head = &space_info->priority_tickets;
 5356
 5357	/*
 5358	 * If we are over our limit then we need to check and see if we can
 5359	 * overcommit, and if we can't then we just need to free up our space
 5360	 * and not satisfy any requests.
 5361	 */
 5362	used = space_info->bytes_used + space_info->bytes_reserved +
 5363		space_info->bytes_pinned + space_info->bytes_readonly +
 5364		space_info->bytes_may_use;
 5365	if (used - num_bytes >= space_info->total_bytes)
 5366		check_overcommit = true;
 5367again:
 5368	while (!list_empty(head) && num_bytes) {
 5369		ticket = list_first_entry(head, struct reserve_ticket,
 5370					  list);
 5371		/*
 5372		 * We use 0 bytes because this space is already reserved, so
 5373		 * adding the ticket space would be a double count.
 5374		 */
 5375		if (check_overcommit &&
 5376		    !can_overcommit(fs_info->extent_root, space_info, 0,
 5377				    flush))
 5378			break;
 5379		if (num_bytes >= ticket->bytes) {
 5380			list_del_init(&ticket->list);
 5381			num_bytes -= ticket->bytes;
 5382			ticket->bytes = 0;
 5383			space_info->tickets_id++;
 5384			wake_up(&ticket->wait);
 5385		} else {
 5386			ticket->bytes -= num_bytes;
 5387			num_bytes = 0;
 5388		}
 5389	}
 5390
 5391	if (num_bytes && head == &space_info->priority_tickets) {
 5392		head = &space_info->tickets;
 5393		flush = BTRFS_RESERVE_FLUSH_ALL;
 5394		goto again;
 5395	}
 5396	space_info->bytes_may_use -= num_bytes;
 5397	trace_btrfs_space_reservation(fs_info, "space_info",
 5398				      space_info->flags, num_bytes, 0);
 5399	spin_unlock(&space_info->lock);
 5400}
 5401
 5402/*
 5403 * This is for newly allocated space that isn't accounted in
 5404 * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
 5405 * we use this helper.
 5406 */
 5407static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
 5408				     struct btrfs_space_info *space_info,
 5409				     u64 num_bytes)
 5410{
 5411	struct reserve_ticket *ticket;
 5412	struct list_head *head = &space_info->priority_tickets;
 5413
 5414again:
 5415	while (!list_empty(head) && num_bytes) {
 5416		ticket = list_first_entry(head, struct reserve_ticket,
 5417					  list);
 5418		if (num_bytes >= ticket->bytes) {
 5419			trace_btrfs_space_reservation(fs_info, "space_info",
 5420						      space_info->flags,
 5421						      ticket->bytes, 1);
 5422			list_del_init(&ticket->list);
 5423			num_bytes -= ticket->bytes;
 5424			space_info->bytes_may_use += ticket->bytes;
 5425			ticket->bytes = 0;
 5426			space_info->tickets_id++;
 5427			wake_up(&ticket->wait);
 5428		} else {
 5429			trace_btrfs_space_reservation(fs_info, "space_info",
 5430						      space_info->flags,
 5431						      num_bytes, 1);
 5432			space_info->bytes_may_use += num_bytes;
 5433			ticket->bytes -= num_bytes;
 5434			num_bytes = 0;
 5435		}
 5436	}
 5437
 5438	if (num_bytes && head == &space_info->priority_tickets) {
 5439		head = &space_info->tickets;
 5440		goto again;
 5441	}
 5442}
 5443
 5444static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
 5445				    struct btrfs_block_rsv *block_rsv,
 5446				    struct btrfs_block_rsv *dest, u64 num_bytes)
 5447{
 5448	struct btrfs_space_info *space_info = block_rsv->space_info;
 5449
 5450	spin_lock(&block_rsv->lock);
 5451	if (num_bytes == (u64)-1)
 5452		num_bytes = block_rsv->size;
 5453	block_rsv->size -= num_bytes;
 5454	if (block_rsv->reserved >= block_rsv->size) {
 5455		num_bytes = block_rsv->reserved - block_rsv->size;
 5456		block_rsv->reserved = block_rsv->size;
 5457		block_rsv->full = 1;
 5458	} else {
 5459		num_bytes = 0;
 5460	}
 5461	spin_unlock(&block_rsv->lock);
 5462
 5463	if (num_bytes > 0) {
 5464		if (dest) {
 5465			spin_lock(&dest->lock);
 5466			if (!dest->full) {
 5467				u64 bytes_to_add;
 5468
 5469				bytes_to_add = dest->size - dest->reserved;
 5470				bytes_to_add = min(num_bytes, bytes_to_add);
 5471				dest->reserved += bytes_to_add;
 5472				if (dest->reserved >= dest->size)
 5473					dest->full = 1;
 5474				num_bytes -= bytes_to_add;
 5475			}
 5476			spin_unlock(&dest->lock);
 5477		}
 5478		if (num_bytes)
 5479			space_info_add_old_bytes(fs_info, space_info,
 5480						 num_bytes);
 5481	}
 5482}
 5483
 5484int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
 5485			    struct btrfs_block_rsv *dst, u64 num_bytes,
 5486			    int update_size)
 5487{
 5488	int ret;
 5489
 5490	ret = block_rsv_use_bytes(src, num_bytes);
 5491	if (ret)
 5492		return ret;
 5493
 5494	block_rsv_add_bytes(dst, num_bytes, update_size);
 5495	return 0;
 5496}
 5497
 5498void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
 5499{
 5500	memset(rsv, 0, sizeof(*rsv));
 5501	spin_lock_init(&rsv->lock);
 5502	rsv->type = type;
 5503}
 5504
 5505struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
 5506					      unsigned short type)
 5507{
 5508	struct btrfs_block_rsv *block_rsv;
 5509
 5510	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
 5511	if (!block_rsv)
 5512		return NULL;
 5513
 5514	btrfs_init_block_rsv(block_rsv, type);
 5515	block_rsv->space_info = __find_space_info(fs_info,
 5516						  BTRFS_BLOCK_GROUP_METADATA);
 5517	return block_rsv;
 5518}
 5519
 5520void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
 5521			  struct btrfs_block_rsv *rsv)
 5522{
 5523	if (!rsv)
 5524		return;
 5525	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
 5526	kfree(rsv);
 5527}
 5528
 5529void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
 5530{
 5531	kfree(rsv);
 5532}
 5533
 5534int btrfs_block_rsv_add(struct btrfs_root *root,
 5535			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
 5536			enum btrfs_reserve_flush_enum flush)
 5537{
 5538	int ret;
 5539
 5540	if (num_bytes == 0)
 5541		return 0;
 5542
 5543	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5544	if (!ret) {
 5545		block_rsv_add_bytes(block_rsv, num_bytes, 1);
 5546		return 0;
 5547	}
 5548
 5549	return ret;
 5550}
 5551
 5552int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
 5553{
 5554	u64 num_bytes = 0;
 5555	int ret = -ENOSPC;
 5556
 5557	if (!block_rsv)
 5558		return 0;
 5559
 5560	spin_lock(&block_rsv->lock);
 5561	num_bytes = div_factor(block_rsv->size, min_factor);
 5562	if (block_rsv->reserved >= num_bytes)
 5563		ret = 0;
 5564	spin_unlock(&block_rsv->lock);
 5565
 5566	return ret;
 5567}
 5568
 5569int btrfs_block_rsv_refill(struct btrfs_root *root,
 5570			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
 5571			   enum btrfs_reserve_flush_enum flush)
 5572{
 5573	u64 num_bytes = 0;
 5574	int ret = -ENOSPC;
 5575
 5576	if (!block_rsv)
 5577		return 0;
 5578
 5579	spin_lock(&block_rsv->lock);
 5580	num_bytes = min_reserved;
 5581	if (block_rsv->reserved >= num_bytes)
 5582		ret = 0;
 5583	else
 5584		num_bytes -= block_rsv->reserved;
 5585	spin_unlock(&block_rsv->lock);
 5586
 5587	if (!ret)
 5588		return 0;
 5589
 5590	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5591	if (!ret) {
 5592		block_rsv_add_bytes(block_rsv, num_bytes, 0);
 5593		return 0;
 5594	}
 5595
 5596	return ret;
 5597}
 5598
 5599void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
 5600			     struct btrfs_block_rsv *block_rsv,
 5601			     u64 num_bytes)
 5602{
 5603	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5604
 5605	if (global_rsv == block_rsv ||
 5606	    block_rsv->space_info != global_rsv->space_info)
 5607		global_rsv = NULL;
 5608	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
 5609}
 5610
 5611static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
 5612{
 5613	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
 5614	struct btrfs_space_info *sinfo = block_rsv->space_info;
 5615	u64 num_bytes;
 5616
 5617	/*
 5618	 * The global block rsv is based on the size of the extent tree, the
 5619	 * checksum tree and the root tree.  If the fs is empty we want to set
 5620	 * it to a minimal amount for safety.
 5621	 */
 5622	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
 5623		btrfs_root_used(&fs_info->csum_root->root_item) +
 5624		btrfs_root_used(&fs_info->tree_root->root_item);
 5625	num_bytes = max_t(u64, num_bytes, SZ_16M);
 5626
 5627	spin_lock(&sinfo->lock);
 5628	spin_lock(&block_rsv->lock);
 5629
 5630	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
 5631
 5632	if (block_rsv->reserved < block_rsv->size) {
 5633		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
 5634			sinfo->bytes_reserved + sinfo->bytes_readonly +
 5635			sinfo->bytes_may_use;
 5636		if (sinfo->total_bytes > num_bytes) {
 5637			num_bytes = sinfo->total_bytes - num_bytes;
 5638			num_bytes = min(num_bytes,
 5639					block_rsv->size - block_rsv->reserved);
 5640			block_rsv->reserved += num_bytes;
 5641			sinfo->bytes_may_use += num_bytes;
 5642			trace_btrfs_space_reservation(fs_info, "space_info",
 5643						      sinfo->flags, num_bytes,
 5644						      1);
 5645		}
 5646	} else if (block_rsv->reserved > block_rsv->size) {
 5647		num_bytes = block_rsv->reserved - block_rsv->size;
 5648		sinfo->bytes_may_use -= num_bytes;
 5649		trace_btrfs_space_reservation(fs_info, "space_info",
 5650				      sinfo->flags, num_bytes, 0);
 5651		block_rsv->reserved = block_rsv->size;
 5652	}
 5653
 5654	if (block_rsv->reserved == block_rsv->size)
 5655		block_rsv->full = 1;
 5656	else
 5657		block_rsv->full = 0;
 5658
 5659	spin_unlock(&block_rsv->lock);
 5660	spin_unlock(&sinfo->lock);
 5661}
 5662
 5663static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
 5664{
 5665	struct btrfs_space_info *space_info;
 5666
 5667	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 5668	fs_info->chunk_block_rsv.space_info = space_info;
 5669
 5670	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 5671	fs_info->global_block_rsv.space_info = space_info;
 5672	fs_info->delalloc_block_rsv.space_info = space_info;
 5673	fs_info->trans_block_rsv.space_info = space_info;
 5674	fs_info->empty_block_rsv.space_info = space_info;
 5675	fs_info->delayed_block_rsv.space_info = space_info;
 5676
 5677	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
 5678	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
 5679	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
 5680	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
 5681	if (fs_info->quota_root)
 5682		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
 5683	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
 5684
 5685	update_global_block_rsv(fs_info);
 5686}
 5687
 5688static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
 5689{
 5690	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
 5691				(u64)-1);
 5692	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
 5693	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
 5694	WARN_ON(fs_info->trans_block_rsv.size > 0);
 5695	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
 5696	WARN_ON(fs_info->chunk_block_rsv.size > 0);
 5697	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
 5698	WARN_ON(fs_info->delayed_block_rsv.size > 0);
 5699	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
 5700}
 5701
 5702void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
 5703				  struct btrfs_fs_info *fs_info)
 5704{
 5705	if (!trans->block_rsv)
 5706		return;
 5707
 5708	if (!trans->bytes_reserved)
 5709		return;
 5710
 5711	trace_btrfs_space_reservation(fs_info, "transaction",
 5712				      trans->transid, trans->bytes_reserved, 0);
 5713	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 5714				trans->bytes_reserved);
 5715	trans->bytes_reserved = 0;
 5716}
 5717
 5718/*
 5719 * To be called after all the new block groups attached to the transaction
 5720 * handle have been created (btrfs_create_pending_block_groups()).
 5721 */
 5722void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 5723{
 5724	struct btrfs_fs_info *fs_info = trans->fs_info;
 5725
 5726	if (!trans->chunk_bytes_reserved)
 5727		return;
 5728
 5729	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 5730
 5731	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
 5732				trans->chunk_bytes_reserved);
 5733	trans->chunk_bytes_reserved = 0;
 5734}
 5735
 5736/* Can only return 0 or -ENOSPC */
 5737int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
 5738				  struct inode *inode)
 5739{
 5740	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5741	struct btrfs_root *root = BTRFS_I(inode)->root;
 5742	/*
 5743	 * We always use trans->block_rsv here as we will have reserved space
 5744	 * for our orphan when starting the transaction, using get_block_rsv()
 5745	 * here will sometimes make us choose the wrong block rsv as we could be
 5746	 * doing a reloc inode for a non refcounted root.
 5747	 */
 5748	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
 5749	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
 5750
 5751	/*
 5752	 * We need to hold space in order to delete our orphan item once we've
 5753	 * added it, so this takes the reservation so we can release it later
 5754	 * when we are truly done with the orphan item.
 5755	 */
 5756	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 5757
 5758	trace_btrfs_space_reservation(fs_info, "orphan",
 5759				      btrfs_ino(inode), num_bytes, 1);
 5760	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 5761}
 5762
 5763void btrfs_orphan_release_metadata(struct inode *inode)
 5764{
 5765	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5766	struct btrfs_root *root = BTRFS_I(inode)->root;
 5767	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 5768
 5769	trace_btrfs_space_reservation(fs_info, "orphan",
 5770				      btrfs_ino(inode), num_bytes, 0);
 5771	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
 5772}
 5773
 5774/*
 5775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
 5776 * root: the root of the parent directory
 5777 * rsv: block reservation
 5778 * items: the number of items that we need do reservation
 5779 * qgroup_reserved: used to return the reserved size in qgroup
 5780 *
 5781 * This function is used to reserve the space for snapshot/subvolume
 5782 * creation and deletion. Those operations are different with the
 5783 * common file/directory operations, they change two fs/file trees
 5784 * and root tree, the number of items that the qgroup reserves is
 5785 * different with the free space reservation. So we can not use
 5786 * the space reservation mechanism in start_transaction().
 5787 */
 5788int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
 5789				     struct btrfs_block_rsv *rsv,
 5790				     int items,
 5791				     u64 *qgroup_reserved,
 5792				     bool use_global_rsv)
 5793{
 5794	u64 num_bytes;
 5795	int ret;
 5796	struct btrfs_fs_info *fs_info = root->fs_info;
 5797	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5798
 5799	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
 5800		/* One for parent inode, two for dir entries */
 5801		num_bytes = 3 * fs_info->nodesize;
 5802		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
 5803		if (ret)
 5804			return ret;
 5805	} else {
 5806		num_bytes = 0;
 5807	}
 5808
 5809	*qgroup_reserved = num_bytes;
 5810
 5811	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
 5812	rsv->space_info = __find_space_info(fs_info,
 5813					    BTRFS_BLOCK_GROUP_METADATA);
 5814	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
 5815				  BTRFS_RESERVE_FLUSH_ALL);
 5816
 5817	if (ret == -ENOSPC && use_global_rsv)
 5818		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
 5819
 5820	if (ret && *qgroup_reserved)
 5821		btrfs_qgroup_free_meta(root, *qgroup_reserved);
 5822
 5823	return ret;
 5824}
 5825
 5826void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
 5827				      struct btrfs_block_rsv *rsv,
 5828				      u64 qgroup_reserved)
 5829{
 5830	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
 5831}
 5832
 5833/**
 5834 * drop_outstanding_extent - drop an outstanding extent
 5835 * @inode: the inode we're dropping the extent for
 5836 * @num_bytes: the number of bytes we're releasing.
 5837 *
 5838 * This is called when we are freeing up an outstanding extent, either called
 5839 * after an error or after an extent is written.  This will return the number of
 5840 * reserved extents that need to be freed.  This must be called with
 5841 * BTRFS_I(inode)->lock held.
 5842 */
 5843static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
 5844{
 5845	unsigned drop_inode_space = 0;
 5846	unsigned dropped_extents = 0;
 5847	unsigned num_extents = 0;
 5848
 5849	num_extents = (unsigned)div64_u64(num_bytes +
 5850					  BTRFS_MAX_EXTENT_SIZE - 1,
 5851					  BTRFS_MAX_EXTENT_SIZE);
 5852	ASSERT(num_extents);
 5853	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
 5854	BTRFS_I(inode)->outstanding_extents -= num_extents;
 5855
 5856	if (BTRFS_I(inode)->outstanding_extents == 0 &&
 5857	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5858			       &BTRFS_I(inode)->runtime_flags))
 5859		drop_inode_space = 1;
 5860
 5861	/*
 5862	 * If we have more or the same amount of outstanding extents than we have
 5863	 * reserved then we need to leave the reserved extents count alone.
 5864	 */
 5865	if (BTRFS_I(inode)->outstanding_extents >=
 5866	    BTRFS_I(inode)->reserved_extents)
 5867		return drop_inode_space;
 5868
 5869	dropped_extents = BTRFS_I(inode)->reserved_extents -
 5870		BTRFS_I(inode)->outstanding_extents;
 5871	BTRFS_I(inode)->reserved_extents -= dropped_extents;
 5872	return dropped_extents + drop_inode_space;
 5873}
 5874
 5875/**
 5876 * calc_csum_metadata_size - return the amount of metadata space that must be
 5877 *	reserved/freed for the given bytes.
 5878 * @inode: the inode we're manipulating
 5879 * @num_bytes: the number of bytes in question
 5880 * @reserve: 1 if we are reserving space, 0 if we are freeing space
 5881 *
 5882 * This adjusts the number of csum_bytes in the inode and then returns the
 5883 * correct amount of metadata that must either be reserved or freed.  We
 5884 * calculate how many checksums we can fit into one leaf and then divide the
 5885 * number of bytes that will need to be checksumed by this value to figure out
 5886 * how many checksums will be required.  If we are adding bytes then the number
 5887 * may go up and we will return the number of additional bytes that must be
 5888 * reserved.  If it is going down we will return the number of bytes that must
 5889 * be freed.
 5890 *
 5891 * This must be called with BTRFS_I(inode)->lock held.
 5892 */
 5893static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
 5894				   int reserve)
 5895{
 5896	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5897	u64 old_csums, num_csums;
 5898
 5899	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
 5900	    BTRFS_I(inode)->csum_bytes == 0)
 5901		return 0;
 5902
 5903	old_csums = btrfs_csum_bytes_to_leaves(fs_info,
 5904					       BTRFS_I(inode)->csum_bytes);
 5905	if (reserve)
 5906		BTRFS_I(inode)->csum_bytes += num_bytes;
 5907	else
 5908		BTRFS_I(inode)->csum_bytes -= num_bytes;
 5909	num_csums = btrfs_csum_bytes_to_leaves(fs_info,
 5910					       BTRFS_I(inode)->csum_bytes);
 5911
 5912	/* No change, no need to reserve more */
 5913	if (old_csums == num_csums)
 5914		return 0;
 5915
 5916	if (reserve)
 5917		return btrfs_calc_trans_metadata_size(fs_info,
 5918						      num_csums - old_csums);
 5919
 5920	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
 5921}
 5922
 5923int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
 5924{
 5925	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5926	struct btrfs_root *root = BTRFS_I(inode)->root;
 5927	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
 5928	u64 to_reserve = 0;
 5929	u64 csum_bytes;
 5930	unsigned nr_extents = 0;
 5931	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
 5932	int ret = 0;
 5933	bool delalloc_lock = true;
 5934	u64 to_free = 0;
 5935	unsigned dropped;
 5936	bool release_extra = false;
 5937
 5938	/* If we are a free space inode we need to not flush since we will be in
 5939	 * the middle of a transaction commit.  We also don't need the delalloc
 5940	 * mutex since we won't race with anybody.  We need this mostly to make
 5941	 * lockdep shut its filthy mouth.
 5942	 *
 5943	 * If we have a transaction open (can happen if we call truncate_block
 5944	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
 5945	 */
 5946	if (btrfs_is_free_space_inode(inode)) {
 5947		flush = BTRFS_RESERVE_NO_FLUSH;
 5948		delalloc_lock = false;
 5949	} else if (current->journal_info) {
 5950		flush = BTRFS_RESERVE_FLUSH_LIMIT;
 5951	}
 5952
 5953	if (flush != BTRFS_RESERVE_NO_FLUSH &&
 5954	    btrfs_transaction_in_commit(fs_info))
 5955		schedule_timeout(1);
 5956
 5957	if (delalloc_lock)
 5958		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
 5959
 5960	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 5961
 5962	spin_lock(&BTRFS_I(inode)->lock);
 5963	nr_extents = (unsigned)div64_u64(num_bytes +
 5964					 BTRFS_MAX_EXTENT_SIZE - 1,
 5965					 BTRFS_MAX_EXTENT_SIZE);
 5966	BTRFS_I(inode)->outstanding_extents += nr_extents;
 5967
 5968	nr_extents = 0;
 5969	if (BTRFS_I(inode)->outstanding_extents >
 5970	    BTRFS_I(inode)->reserved_extents)
 5971		nr_extents += BTRFS_I(inode)->outstanding_extents -
 5972			BTRFS_I(inode)->reserved_extents;
 5973
 5974	/* We always want to reserve a slot for updating the inode. */
 5975	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
 5976	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
 5977	csum_bytes = BTRFS_I(inode)->csum_bytes;
 5978	spin_unlock(&BTRFS_I(inode)->lock);
 5979
 5980	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
 5981		ret = btrfs_qgroup_reserve_meta(root,
 5982				nr_extents * fs_info->nodesize);
 5983		if (ret)
 5984			goto out_fail;
 5985	}
 5986
 5987	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
 5988	if (unlikely(ret)) {
 5989		btrfs_qgroup_free_meta(root,
 5990				       nr_extents * fs_info->nodesize);
 5991		goto out_fail;
 5992	}
 5993
 5994	spin_lock(&BTRFS_I(inode)->lock);
 5995	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5996			     &BTRFS_I(inode)->runtime_flags)) {
 5997		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
 5998		release_extra = true;
 5999	}
 6000	BTRFS_I(inode)->reserved_extents += nr_extents;
 6001	spin_unlock(&BTRFS_I(inode)->lock);
 6002
 6003	if (delalloc_lock)
 6004		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 6005
 6006	if (to_reserve)
 6007		trace_btrfs_space_reservation(fs_info, "delalloc",
 6008					      btrfs_ino(inode), to_reserve, 1);
 6009	if (release_extra)
 6010		btrfs_block_rsv_release(fs_info, block_rsv,
 6011				btrfs_calc_trans_metadata_size(fs_info, 1));
 6012	return 0;
 6013
 6014out_fail:
 6015	spin_lock(&BTRFS_I(inode)->lock);
 6016	dropped = drop_outstanding_extent(inode, num_bytes);
 6017	/*
 6018	 * If the inodes csum_bytes is the same as the original
 6019	 * csum_bytes then we know we haven't raced with any free()ers
 6020	 * so we can just reduce our inodes csum bytes and carry on.
 6021	 */
 6022	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
 6023		calc_csum_metadata_size(inode, num_bytes, 0);
 6024	} else {
 6025		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
 6026		u64 bytes;
 6027
 6028		/*
 6029		 * This is tricky, but first we need to figure out how much we
 6030		 * freed from any free-ers that occurred during this
 6031		 * reservation, so we reset ->csum_bytes to the csum_bytes
 6032		 * before we dropped our lock, and then call the free for the
 6033		 * number of bytes that were freed while we were trying our
 6034		 * reservation.
 6035		 */
 6036		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
 6037		BTRFS_I(inode)->csum_bytes = csum_bytes;
 6038		to_free = calc_csum_metadata_size(inode, bytes, 0);
 6039
 6040
 6041		/*
 6042		 * Now we need to see how much we would have freed had we not
 6043		 * been making this reservation and our ->csum_bytes were not
 6044		 * artificially inflated.
 6045		 */
 6046		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
 6047		bytes = csum_bytes - orig_csum_bytes;
 6048		bytes = calc_csum_metadata_size(inode, bytes, 0);
 6049
 6050		/*
 6051		 * Now reset ->csum_bytes to what it should be.  If bytes is
 6052		 * more than to_free then we would have freed more space had we
 6053		 * not had an artificially high ->csum_bytes, so we need to free
 6054		 * the remainder.  If bytes is the same or less then we don't
 6055		 * need to do anything, the other free-ers did the correct
 6056		 * thing.
 6057		 */
 6058		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
 6059		if (bytes > to_free)
 6060			to_free = bytes - to_free;
 6061		else
 6062			to_free = 0;
 6063	}
 6064	spin_unlock(&BTRFS_I(inode)->lock);
 6065	if (dropped)
 6066		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
 6067
 6068	if (to_free) {
 6069		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
 6070		trace_btrfs_space_reservation(fs_info, "delalloc",
 6071					      btrfs_ino(inode), to_free, 0);
 6072	}
 6073	if (delalloc_lock)
 6074		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 6075	return ret;
 6076}
 6077
 6078/**
 6079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
 6080 * @inode: the inode to release the reservation for
 6081 * @num_bytes: the number of bytes we're releasing
 6082 *
 6083 * This will release the metadata reservation for an inode.  This can be called
 6084 * once we complete IO for a given set of bytes to release their metadata
 6085 * reservations.
 6086 */
 6087void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
 6088{
 6089	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 6090	u64 to_free = 0;
 6091	unsigned dropped;
 6092
 6093	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 6094	spin_lock(&BTRFS_I(inode)->lock);
 6095	dropped = drop_outstanding_extent(inode, num_bytes);
 6096
 6097	if (num_bytes)
 6098		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
 6099	spin_unlock(&BTRFS_I(inode)->lock);
 6100	if (dropped > 0)
 6101		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
 6102
 6103	if (btrfs_is_testing(fs_info))
 6104		return;
 6105
 6106	trace_btrfs_space_reservation(fs_info, "delalloc",
 6107				      btrfs_ino(inode), to_free, 0);
 6108
 6109	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
 6110}
 6111
 6112/**
 6113 * btrfs_delalloc_reserve_space - reserve data and metadata space for
 6114 * delalloc
 6115 * @inode: inode we're writing to
 6116 * @start: start range we are writing to
 6117 * @len: how long the range we are writing to
 6118 *
 6119 * This will do the following things
 6120 *
 6121 * o reserve space in data space info for num bytes
 6122 *   and reserve precious corresponding qgroup space
 6123 *   (Done in check_data_free_space)
 6124 *
 6125 * o reserve space for metadata space, based on the number of outstanding
 6126 *   extents and how much csums will be needed
 6127 *   also reserve metadata space in a per root over-reserve method.
 6128 * o add to the inodes->delalloc_bytes
 6129 * o add it to the fs_info's delalloc inodes list.
 6130 *   (Above 3 all done in delalloc_reserve_metadata)
 6131 *
 6132 * Return 0 for success
 6133 * Return <0 for error(-ENOSPC or -EQUOT)
 6134 */
 6135int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
 6136{
 6137	int ret;
 6138
 6139	ret = btrfs_check_data_free_space(inode, start, len);
 6140	if (ret < 0)
 6141		return ret;
 6142	ret = btrfs_delalloc_reserve_metadata(inode, len);
 6143	if (ret < 0)
 6144		btrfs_free_reserved_data_space(inode, start, len);
 6145	return ret;
 6146}
 6147
 6148/**
 6149 * btrfs_delalloc_release_space - release data and metadata space for delalloc
 6150 * @inode: inode we're releasing space for
 6151 * @start: start position of the space already reserved
 6152 * @len: the len of the space already reserved
 6153 *
 6154 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
 6155 * called in the case that we don't need the metadata AND data reservations
 6156 * anymore.  So if there is an error or we insert an inline extent.
 6157 *
 6158 * This function will release the metadata space that was not used and will
 6159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
 6160 * list if there are no delalloc bytes left.
 6161 * Also it will handle the qgroup reserved space.
 6162 */
 6163void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
 6164{
 6165	btrfs_delalloc_release_metadata(inode, len);
 6166	btrfs_free_reserved_data_space(inode, start, len);
 6167}
 6168
 6169static int update_block_group(struct btrfs_trans_handle *trans,
 6170			      struct btrfs_fs_info *info, u64 bytenr,
 6171			      u64 num_bytes, int alloc)
 6172{
 6173	struct btrfs_block_group_cache *cache = NULL;
 6174	u64 total = num_bytes;
 6175	u64 old_val;
 6176	u64 byte_in_group;
 6177	int factor;
 6178
 6179	/* block accounting for super block */
 6180	spin_lock(&info->delalloc_root_lock);
 6181	old_val = btrfs_super_bytes_used(info->super_copy);
 6182	if (alloc)
 6183		old_val += num_bytes;
 6184	else
 6185		old_val -= num_bytes;
 6186	btrfs_set_super_bytes_used(info->super_copy, old_val);
 6187	spin_unlock(&info->delalloc_root_lock);
 6188
 6189	while (total) {
 6190		cache = btrfs_lookup_block_group(info, bytenr);
 6191		if (!cache)
 6192			return -ENOENT;
 6193		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
 6194				    BTRFS_BLOCK_GROUP_RAID1 |
 6195				    BTRFS_BLOCK_GROUP_RAID10))
 6196			factor = 2;
 6197		else
 6198			factor = 1;
 6199		/*
 6200		 * If this block group has free space cache written out, we
 6201		 * need to make sure to load it if we are removing space.  This
 6202		 * is because we need the unpinning stage to actually add the
 6203		 * space back to the block group, otherwise we will leak space.
 6204		 */
 6205		if (!alloc && cache->cached == BTRFS_CACHE_NO)
 6206			cache_block_group(cache, 1);
 6207
 6208		byte_in_group = bytenr - cache->key.objectid;
 6209		WARN_ON(byte_in_group > cache->key.offset);
 6210
 6211		spin_lock(&cache->space_info->lock);
 6212		spin_lock(&cache->lock);
 6213
 6214		if (btrfs_test_opt(info, SPACE_CACHE) &&
 6215		    cache->disk_cache_state < BTRFS_DC_CLEAR)
 6216			cache->disk_cache_state = BTRFS_DC_CLEAR;
 6217
 6218		old_val = btrfs_block_group_used(&cache->item);
 6219		num_bytes = min(total, cache->key.offset - byte_in_group);
 6220		if (alloc) {
 6221			old_val += num_bytes;
 6222			btrfs_set_block_group_used(&cache->item, old_val);
 6223			cache->reserved -= num_bytes;
 6224			cache->space_info->bytes_reserved -= num_bytes;
 6225			cache->space_info->bytes_used += num_bytes;
 6226			cache->space_info->disk_used += num_bytes * factor;
 6227			spin_unlock(&cache->lock);
 6228			spin_unlock(&cache->space_info->lock);
 6229		} else {
 6230			old_val -= num_bytes;
 6231			btrfs_set_block_group_used(&cache->item, old_val);
 6232			cache->pinned += num_bytes;
 6233			cache->space_info->bytes_pinned += num_bytes;
 6234			cache->space_info->bytes_used -= num_bytes;
 6235			cache->space_info->disk_used -= num_bytes * factor;
 6236			spin_unlock(&cache->lock);
 6237			spin_unlock(&cache->space_info->lock);
 6238
 6239			trace_btrfs_space_reservation(info, "pinned",
 6240						      cache->space_info->flags,
 6241						      num_bytes, 1);
 6242			set_extent_dirty(info->pinned_extents,
 6243					 bytenr, bytenr + num_bytes - 1,
 6244					 GFP_NOFS | __GFP_NOFAIL);
 6245		}
 6246
 6247		spin_lock(&trans->transaction->dirty_bgs_lock);
 6248		if (list_empty(&cache->dirty_list)) {
 6249			list_add_tail(&cache->dirty_list,
 6250				      &trans->transaction->dirty_bgs);
 6251				trans->transaction->num_dirty_bgs++;
 6252			btrfs_get_block_group(cache);
 6253		}
 6254		spin_unlock(&trans->transaction->dirty_bgs_lock);
 6255
 6256		/*
 6257		 * No longer have used bytes in this block group, queue it for
 6258		 * deletion. We do this after adding the block group to the
 6259		 * dirty list to avoid races between cleaner kthread and space
 6260		 * cache writeout.
 6261		 */
 6262		if (!alloc && old_val == 0) {
 6263			spin_lock(&info->unused_bgs_lock);
 6264			if (list_empty(&cache->bg_list)) {
 6265				btrfs_get_block_group(cache);
 6266				list_add_tail(&cache->bg_list,
 6267					      &info->unused_bgs);
 6268			}
 6269			spin_unlock(&info->unused_bgs_lock);
 6270		}
 6271
 6272		btrfs_put_block_group(cache);
 6273		total -= num_bytes;
 6274		bytenr += num_bytes;
 6275	}
 6276	return 0;
 6277}
 6278
 6279static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
 6280{
 6281	struct btrfs_block_group_cache *cache;
 6282	u64 bytenr;
 6283
 6284	spin_lock(&fs_info->block_group_cache_lock);
 6285	bytenr = fs_info->first_logical_byte;
 6286	spin_unlock(&fs_info->block_group_cache_lock);
 6287
 6288	if (bytenr < (u64)-1)
 6289		return bytenr;
 6290
 6291	cache = btrfs_lookup_first_block_group(fs_info, search_start);
 6292	if (!cache)
 6293		return 0;
 6294
 6295	bytenr = cache->key.objectid;
 6296	btrfs_put_block_group(cache);
 6297
 6298	return bytenr;
 6299}
 6300
 6301static int pin_down_extent(struct btrfs_fs_info *fs_info,
 6302			   struct btrfs_block_group_cache *cache,
 6303			   u64 bytenr, u64 num_bytes, int reserved)
 6304{
 
 
 6305	spin_lock(&cache->space_info->lock);
 6306	spin_lock(&cache->lock);
 6307	cache->pinned += num_bytes;
 6308	cache->space_info->bytes_pinned += num_bytes;
 
 6309	if (reserved) {
 6310		cache->reserved -= num_bytes;
 6311		cache->space_info->bytes_reserved -= num_bytes;
 6312	}
 6313	spin_unlock(&cache->lock);
 6314	spin_unlock(&cache->space_info->lock);
 6315
 6316	trace_btrfs_space_reservation(fs_info, "pinned",
 6317				      cache->space_info->flags, num_bytes, 1);
 6318	set_extent_dirty(fs_info->pinned_extents, bytenr,
 6319			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 6320	return 0;
 6321}
 6322
 6323/*
 6324 * this function must be called within transaction
 6325 */
 6326int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
 6327		     u64 bytenr, u64 num_bytes, int reserved)
 6328{
 6329	struct btrfs_block_group_cache *cache;
 6330
 6331	cache = btrfs_lookup_block_group(fs_info, bytenr);
 6332	BUG_ON(!cache); /* Logic error */
 6333
 6334	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
 6335
 6336	btrfs_put_block_group(cache);
 6337	return 0;
 6338}
 6339
 6340/*
 6341 * this function must be called within transaction
 6342 */
 6343int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
 6344				    u64 bytenr, u64 num_bytes)
 6345{
 6346	struct btrfs_block_group_cache *cache;
 6347	int ret;
 6348
 6349	cache = btrfs_lookup_block_group(fs_info, bytenr);
 6350	if (!cache)
 6351		return -EINVAL;
 6352
 6353	/*
 6354	 * pull in the free space cache (if any) so that our pin
 6355	 * removes the free space from the cache.  We have load_only set
 6356	 * to one because the slow code to read in the free extents does check
 6357	 * the pinned extents.
 6358	 */
 6359	cache_block_group(cache, 1);
 
 
 6360
 6361	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
 6362
 6363	/* remove us from the free space cache (if we're there at all) */
 6364	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 
 6365	btrfs_put_block_group(cache);
 6366	return ret;
 6367}
 6368
 6369static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
 6370				   u64 start, u64 num_bytes)
 6371{
 6372	int ret;
 6373	struct btrfs_block_group_cache *block_group;
 6374	struct btrfs_caching_control *caching_ctl;
 6375
 6376	block_group = btrfs_lookup_block_group(fs_info, start);
 6377	if (!block_group)
 6378		return -EINVAL;
 6379
 6380	cache_block_group(block_group, 0);
 6381	caching_ctl = get_caching_control(block_group);
 6382
 6383	if (!caching_ctl) {
 6384		/* Logic error */
 6385		BUG_ON(!block_group_cache_done(block_group));
 6386		ret = btrfs_remove_free_space(block_group, start, num_bytes);
 6387	} else {
 6388		mutex_lock(&caching_ctl->mutex);
 6389
 6390		if (start >= caching_ctl->progress) {
 6391			ret = add_excluded_extent(fs_info, start, num_bytes);
 6392		} else if (start + num_bytes <= caching_ctl->progress) {
 6393			ret = btrfs_remove_free_space(block_group,
 6394						      start, num_bytes);
 6395		} else {
 6396			num_bytes = caching_ctl->progress - start;
 6397			ret = btrfs_remove_free_space(block_group,
 6398						      start, num_bytes);
 6399			if (ret)
 6400				goto out_lock;
 6401
 6402			num_bytes = (start + num_bytes) -
 6403				caching_ctl->progress;
 6404			start = caching_ctl->progress;
 6405			ret = add_excluded_extent(fs_info, start, num_bytes);
 6406		}
 6407out_lock:
 6408		mutex_unlock(&caching_ctl->mutex);
 6409		put_caching_control(caching_ctl);
 6410	}
 6411	btrfs_put_block_group(block_group);
 6412	return ret;
 6413}
 6414
 6415int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
 6416				 struct extent_buffer *eb)
 6417{
 
 6418	struct btrfs_file_extent_item *item;
 6419	struct btrfs_key key;
 6420	int found_type;
 6421	int i;
 
 6422
 6423	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
 6424		return 0;
 6425
 6426	for (i = 0; i < btrfs_header_nritems(eb); i++) {
 6427		btrfs_item_key_to_cpu(eb, &key, i);
 6428		if (key.type != BTRFS_EXTENT_DATA_KEY)
 6429			continue;
 6430		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 6431		found_type = btrfs_file_extent_type(eb, item);
 6432		if (found_type == BTRFS_FILE_EXTENT_INLINE)
 6433			continue;
 6434		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 6435			continue;
 6436		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 6437		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 6438		__exclude_logged_extent(fs_info, key.objectid, key.offset);
 
 
 6439	}
 6440
 6441	return 0;
 6442}
 6443
 6444static void
 6445btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
 6446{
 6447	atomic_inc(&bg->reservations);
 6448}
 6449
 6450void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 6451					const u64 start)
 6452{
 6453	struct btrfs_block_group_cache *bg;
 6454
 6455	bg = btrfs_lookup_block_group(fs_info, start);
 6456	ASSERT(bg);
 6457	if (atomic_dec_and_test(&bg->reservations))
 6458		wake_up_atomic_t(&bg->reservations);
 6459	btrfs_put_block_group(bg);
 6460}
 6461
 6462static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
 6463{
 6464	schedule();
 6465	return 0;
 6466}
 6467
 6468void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
 6469{
 6470	struct btrfs_space_info *space_info = bg->space_info;
 6471
 6472	ASSERT(bg->ro);
 6473
 6474	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 6475		return;
 6476
 6477	/*
 6478	 * Our block group is read only but before we set it to read only,
 6479	 * some task might have had allocated an extent from it already, but it
 6480	 * has not yet created a respective ordered extent (and added it to a
 6481	 * root's list of ordered extents).
 6482	 * Therefore wait for any task currently allocating extents, since the
 6483	 * block group's reservations counter is incremented while a read lock
 6484	 * on the groups' semaphore is held and decremented after releasing
 6485	 * the read access on that semaphore and creating the ordered extent.
 6486	 */
 6487	down_write(&space_info->groups_sem);
 6488	up_write(&space_info->groups_sem);
 6489
 6490	wait_on_atomic_t(&bg->reservations,
 6491			 btrfs_wait_bg_reservations_atomic_t,
 6492			 TASK_UNINTERRUPTIBLE);
 6493}
 6494
 6495/**
 6496 * btrfs_add_reserved_bytes - update the block_group and space info counters
 6497 * @cache:	The cache we are manipulating
 6498 * @ram_bytes:  The number of bytes of file content, and will be same to
 6499 *              @num_bytes except for the compress path.
 6500 * @num_bytes:	The number of bytes in question
 6501 * @delalloc:   The blocks are allocated for the delalloc write
 6502 *
 6503 * This is called by the allocator when it reserves space. If this is a
 6504 * reservation and the block group has become read only we cannot make the
 6505 * reservation and return -EAGAIN, otherwise this function always succeeds.
 6506 */
 6507static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
 6508				    u64 ram_bytes, u64 num_bytes, int delalloc)
 6509{
 6510	struct btrfs_space_info *space_info = cache->space_info;
 6511	int ret = 0;
 6512
 6513	spin_lock(&space_info->lock);
 6514	spin_lock(&cache->lock);
 6515	if (cache->ro) {
 6516		ret = -EAGAIN;
 6517	} else {
 6518		cache->reserved += num_bytes;
 6519		space_info->bytes_reserved += num_bytes;
 6520
 6521		trace_btrfs_space_reservation(cache->fs_info,
 6522				"space_info", space_info->flags,
 6523				ram_bytes, 0);
 6524		space_info->bytes_may_use -= ram_bytes;
 6525		if (delalloc)
 6526			cache->delalloc_bytes += num_bytes;
 6527	}
 6528	spin_unlock(&cache->lock);
 6529	spin_unlock(&space_info->lock);
 6530	return ret;
 6531}
 6532
 6533/**
 6534 * btrfs_free_reserved_bytes - update the block_group and space info counters
 6535 * @cache:      The cache we are manipulating
 6536 * @num_bytes:  The number of bytes in question
 6537 * @delalloc:   The blocks are allocated for the delalloc write
 6538 *
 6539 * This is called by somebody who is freeing space that was never actually used
 6540 * on disk.  For example if you reserve some space for a new leaf in transaction
 6541 * A and before transaction A commits you free that leaf, you call this with
 6542 * reserve set to 0 in order to clear the reservation.
 6543 */
 6544
 6545static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
 6546				     u64 num_bytes, int delalloc)
 6547{
 6548	struct btrfs_space_info *space_info = cache->space_info;
 6549	int ret = 0;
 6550
 6551	spin_lock(&space_info->lock);
 6552	spin_lock(&cache->lock);
 6553	if (cache->ro)
 6554		space_info->bytes_readonly += num_bytes;
 6555	cache->reserved -= num_bytes;
 6556	space_info->bytes_reserved -= num_bytes;
 6557
 6558	if (delalloc)
 6559		cache->delalloc_bytes -= num_bytes;
 6560	spin_unlock(&cache->lock);
 6561	spin_unlock(&space_info->lock);
 6562	return ret;
 6563}
 6564void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
 6565				struct btrfs_fs_info *fs_info)
 6566{
 6567	struct btrfs_caching_control *next;
 6568	struct btrfs_caching_control *caching_ctl;
 6569	struct btrfs_block_group_cache *cache;
 6570
 6571	down_write(&fs_info->commit_root_sem);
 6572
 6573	list_for_each_entry_safe(caching_ctl, next,
 6574				 &fs_info->caching_block_groups, list) {
 6575		cache = caching_ctl->block_group;
 6576		if (block_group_cache_done(cache)) {
 6577			cache->last_byte_to_unpin = (u64)-1;
 6578			list_del_init(&caching_ctl->list);
 6579			put_caching_control(caching_ctl);
 6580		} else {
 6581			cache->last_byte_to_unpin = caching_ctl->progress;
 6582		}
 6583	}
 6584
 6585	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6586		fs_info->pinned_extents = &fs_info->freed_extents[1];
 6587	else
 6588		fs_info->pinned_extents = &fs_info->freed_extents[0];
 6589
 6590	up_write(&fs_info->commit_root_sem);
 6591
 6592	update_global_block_rsv(fs_info);
 6593}
 6594
 6595/*
 6596 * Returns the free cluster for the given space info and sets empty_cluster to
 6597 * what it should be based on the mount options.
 6598 */
 6599static struct btrfs_free_cluster *
 6600fetch_cluster_info(struct btrfs_fs_info *fs_info,
 6601		   struct btrfs_space_info *space_info, u64 *empty_cluster)
 6602{
 6603	struct btrfs_free_cluster *ret = NULL;
 6604	bool ssd = btrfs_test_opt(fs_info, SSD);
 6605
 6606	*empty_cluster = 0;
 6607	if (btrfs_mixed_space_info(space_info))
 6608		return ret;
 6609
 6610	if (ssd)
 6611		*empty_cluster = SZ_2M;
 6612	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 6613		ret = &fs_info->meta_alloc_cluster;
 6614		if (!ssd)
 
 
 6615			*empty_cluster = SZ_64K;
 6616	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
 
 
 6617		ret = &fs_info->data_alloc_cluster;
 6618	}
 6619
 6620	return ret;
 6621}
 6622
 6623static int unpin_extent_range(struct btrfs_fs_info *fs_info,
 6624			      u64 start, u64 end,
 6625			      const bool return_free_space)
 6626{
 6627	struct btrfs_block_group_cache *cache = NULL;
 6628	struct btrfs_space_info *space_info;
 6629	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 6630	struct btrfs_free_cluster *cluster = NULL;
 6631	u64 len;
 6632	u64 total_unpinned = 0;
 6633	u64 empty_cluster = 0;
 6634	bool readonly;
 
 6635
 6636	while (start <= end) {
 6637		readonly = false;
 6638		if (!cache ||
 6639		    start >= cache->key.objectid + cache->key.offset) {
 6640			if (cache)
 6641				btrfs_put_block_group(cache);
 6642			total_unpinned = 0;
 6643			cache = btrfs_lookup_block_group(fs_info, start);
 6644			BUG_ON(!cache); /* Logic error */
 
 
 
 
 6645
 6646			cluster = fetch_cluster_info(fs_info,
 6647						     cache->space_info,
 6648						     &empty_cluster);
 6649			empty_cluster <<= 1;
 6650		}
 6651
 6652		len = cache->key.objectid + cache->key.offset - start;
 6653		len = min(len, end + 1 - start);
 6654
 6655		if (start < cache->last_byte_to_unpin) {
 6656			len = min(len, cache->last_byte_to_unpin - start);
 6657			if (return_free_space)
 6658				btrfs_add_free_space(cache, start, len);
 6659		}
 6660
 6661		start += len;
 6662		total_unpinned += len;
 6663		space_info = cache->space_info;
 6664
 6665		/*
 6666		 * If this space cluster has been marked as fragmented and we've
 6667		 * unpinned enough in this block group to potentially allow a
 6668		 * cluster to be created inside of it go ahead and clear the
 6669		 * fragmented check.
 6670		 */
 6671		if (cluster && cluster->fragmented &&
 6672		    total_unpinned > empty_cluster) {
 6673			spin_lock(&cluster->lock);
 6674			cluster->fragmented = 0;
 6675			spin_unlock(&cluster->lock);
 6676		}
 6677
 6678		spin_lock(&space_info->lock);
 6679		spin_lock(&cache->lock);
 6680		cache->pinned -= len;
 6681		space_info->bytes_pinned -= len;
 6682
 6683		trace_btrfs_space_reservation(fs_info, "pinned",
 6684					      space_info->flags, len, 0);
 6685		space_info->max_extent_size = 0;
 6686		percpu_counter_add(&space_info->total_bytes_pinned, -len);
 6687		if (cache->ro) {
 6688			space_info->bytes_readonly += len;
 6689			readonly = true;
 
 
 
 
 
 6690		}
 6691		spin_unlock(&cache->lock);
 6692		if (!readonly && return_free_space &&
 6693		    global_rsv->space_info == space_info) {
 6694			u64 to_add = len;
 6695			WARN_ON(!return_free_space);
 6696			spin_lock(&global_rsv->lock);
 6697			if (!global_rsv->full) {
 6698				to_add = min(len, global_rsv->size -
 6699					     global_rsv->reserved);
 
 6700				global_rsv->reserved += to_add;
 6701				space_info->bytes_may_use += to_add;
 
 6702				if (global_rsv->reserved >= global_rsv->size)
 6703					global_rsv->full = 1;
 6704				trace_btrfs_space_reservation(fs_info,
 6705							      "space_info",
 6706							      space_info->flags,
 6707							      to_add, 1);
 6708				len -= to_add;
 6709			}
 6710			spin_unlock(&global_rsv->lock);
 6711			/* Add to any tickets we may have */
 6712			if (len)
 6713				space_info_add_new_bytes(fs_info, space_info,
 6714							 len);
 6715		}
 
 
 
 6716		spin_unlock(&space_info->lock);
 6717	}
 6718
 6719	if (cache)
 6720		btrfs_put_block_group(cache);
 6721	return 0;
 
 6722}
 6723
 6724int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
 6725			       struct btrfs_fs_info *fs_info)
 6726{
 6727	struct btrfs_block_group_cache *block_group, *tmp;
 
 6728	struct list_head *deleted_bgs;
 6729	struct extent_io_tree *unpin;
 6730	u64 start;
 6731	u64 end;
 6732	int ret;
 6733
 6734	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6735		unpin = &fs_info->freed_extents[1];
 6736	else
 6737		unpin = &fs_info->freed_extents[0];
 6738
 6739	while (!trans->aborted) {
 6740		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 6741		ret = find_first_extent_bit(unpin, 0, &start, &end,
 6742					    EXTENT_DIRTY, NULL);
 6743		if (ret) {
 6744			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 6745			break;
 6746		}
 6747
 6748		if (btrfs_test_opt(fs_info, DISCARD))
 6749			ret = btrfs_discard_extent(fs_info, start,
 6750						   end + 1 - start, NULL);
 6751
 6752		clear_extent_dirty(unpin, start, end);
 6753		unpin_extent_range(fs_info, start, end, true);
 
 6754		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 
 6755		cond_resched();
 6756	}
 6757
 
 
 
 
 
 6758	/*
 6759	 * Transaction is finished.  We don't need the lock anymore.  We
 6760	 * do need to clean up the block groups in case of a transaction
 6761	 * abort.
 6762	 */
 6763	deleted_bgs = &trans->transaction->deleted_bgs;
 6764	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
 6765		u64 trimmed = 0;
 6766
 6767		ret = -EROFS;
 6768		if (!trans->aborted)
 6769			ret = btrfs_discard_extent(fs_info,
 6770						   block_group->key.objectid,
 6771						   block_group->key.offset,
 6772						   &trimmed);
 6773
 6774		list_del_init(&block_group->bg_list);
 6775		btrfs_put_block_group_trimming(block_group);
 6776		btrfs_put_block_group(block_group);
 6777
 6778		if (ret) {
 6779			const char *errstr = btrfs_decode_error(ret);
 6780			btrfs_warn(fs_info,
 6781				   "Discard failed while removing blockgroup: errno=%d %s\n",
 6782				   ret, errstr);
 6783		}
 6784	}
 6785
 6786	return 0;
 6787}
 6788
 6789static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
 6790			     u64 owner, u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6791{
 6792	struct btrfs_space_info *space_info;
 6793	u64 flags;
 
 
 
 
 6794
 6795	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 6796		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
 6797			flags = BTRFS_BLOCK_GROUP_SYSTEM;
 6798		else
 6799			flags = BTRFS_BLOCK_GROUP_METADATA;
 6800	} else {
 6801		flags = BTRFS_BLOCK_GROUP_DATA;
 
 
 
 
 
 
 
 
 
 
 
 6802	}
 6803
 6804	space_info = __find_space_info(fs_info, flags);
 6805	BUG_ON(!space_info); /* Logic bug */
 6806	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
 6807}
 6808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 6810static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 6811				struct btrfs_fs_info *info,
 6812				struct btrfs_delayed_ref_node *node, u64 parent,
 6813				u64 root_objectid, u64 owner_objectid,
 6814				u64 owner_offset, int refs_to_drop,
 6815				struct btrfs_delayed_extent_op *extent_op)
 6816{
 
 6817	struct btrfs_key key;
 6818	struct btrfs_path *path;
 6819	struct btrfs_root *extent_root = info->extent_root;
 6820	struct extent_buffer *leaf;
 6821	struct btrfs_extent_item *ei;
 6822	struct btrfs_extent_inline_ref *iref;
 6823	int ret;
 6824	int is_data;
 6825	int extent_slot = 0;
 6826	int found_extent = 0;
 6827	int num_to_del = 1;
 
 6828	u32 item_size;
 6829	u64 refs;
 6830	u64 bytenr = node->bytenr;
 6831	u64 num_bytes = node->num_bytes;
 6832	int last_ref = 0;
 
 6833	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 
 
 
 
 6834
 6835	path = btrfs_alloc_path();
 6836	if (!path)
 6837		return -ENOMEM;
 6838
 6839	path->reada = READA_FORWARD;
 6840	path->leave_spinning = 1;
 6841
 6842	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 6843	BUG_ON(!is_data && refs_to_drop != 1);
 
 
 
 
 
 
 
 
 6844
 6845	if (is_data)
 6846		skinny_metadata = 0;
 6847
 6848	ret = lookup_extent_backref(trans, extent_root, path, &iref,
 6849				    bytenr, num_bytes, parent,
 6850				    root_objectid, owner_objectid,
 6851				    owner_offset);
 6852	if (ret == 0) {
 
 
 
 
 
 
 
 6853		extent_slot = path->slots[0];
 6854		while (extent_slot >= 0) {
 6855			btrfs_item_key_to_cpu(path->nodes[0], &key,
 6856					      extent_slot);
 6857			if (key.objectid != bytenr)
 6858				break;
 6859			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 6860			    key.offset == num_bytes) {
 6861				found_extent = 1;
 6862				break;
 6863			}
 6864			if (key.type == BTRFS_METADATA_ITEM_KEY &&
 6865			    key.offset == owner_objectid) {
 6866				found_extent = 1;
 6867				break;
 6868			}
 
 
 6869			if (path->slots[0] - extent_slot > 5)
 6870				break;
 6871			extent_slot--;
 6872		}
 6873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6874		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
 6875		if (found_extent && item_size < sizeof(*ei))
 6876			found_extent = 0;
 6877#endif
 6878		if (!found_extent) {
 6879			BUG_ON(iref);
 
 
 
 
 
 
 
 6880			ret = remove_extent_backref(trans, extent_root, path,
 6881						    NULL, refs_to_drop,
 6882						    is_data, &last_ref);
 6883			if (ret) {
 6884				btrfs_abort_transaction(trans, ret);
 6885				goto out;
 6886			}
 6887			btrfs_release_path(path);
 6888			path->leave_spinning = 1;
 6889
 
 6890			key.objectid = bytenr;
 6891			key.type = BTRFS_EXTENT_ITEM_KEY;
 6892			key.offset = num_bytes;
 6893
 6894			if (!is_data && skinny_metadata) {
 6895				key.type = BTRFS_METADATA_ITEM_KEY;
 6896				key.offset = owner_objectid;
 6897			}
 6898
 6899			ret = btrfs_search_slot(trans, extent_root,
 6900						&key, path, -1, 1);
 6901			if (ret > 0 && skinny_metadata && path->slots[0]) {
 6902				/*
 6903				 * Couldn't find our skinny metadata item,
 6904				 * see if we have ye olde extent item.
 6905				 */
 6906				path->slots[0]--;
 6907				btrfs_item_key_to_cpu(path->nodes[0], &key,
 6908						      path->slots[0]);
 6909				if (key.objectid == bytenr &&
 6910				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 6911				    key.offset == num_bytes)
 6912					ret = 0;
 6913			}
 6914
 6915			if (ret > 0 && skinny_metadata) {
 6916				skinny_metadata = false;
 6917				key.objectid = bytenr;
 6918				key.type = BTRFS_EXTENT_ITEM_KEY;
 6919				key.offset = num_bytes;
 6920				btrfs_release_path(path);
 6921				ret = btrfs_search_slot(trans, extent_root,
 6922							&key, path, -1, 1);
 6923			}
 6924
 6925			if (ret) {
 6926				btrfs_err(info,
 6927					  "umm, got %d back from search, was looking for %llu",
 6928					  ret, bytenr);
 6929				if (ret > 0)
 6930					btrfs_print_leaf(info, path->nodes[0]);
 
 
 
 6931			}
 6932			if (ret < 0) {
 6933				btrfs_abort_transaction(trans, ret);
 6934				goto out;
 6935			}
 6936			extent_slot = path->slots[0];
 6937		}
 6938	} else if (WARN_ON(ret == -ENOENT)) {
 6939		btrfs_print_leaf(info, path->nodes[0]);
 6940		btrfs_err(info,
 6941			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
 6942			bytenr, parent, root_objectid, owner_objectid,
 6943			owner_offset);
 6944		btrfs_abort_transaction(trans, ret);
 6945		goto out;
 6946	} else {
 6947		btrfs_abort_transaction(trans, ret);
 6948		goto out;
 6949	}
 6950
 6951	leaf = path->nodes[0];
 6952	item_size = btrfs_item_size_nr(leaf, extent_slot);
 6953#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6954	if (item_size < sizeof(*ei)) {
 6955		BUG_ON(found_extent || extent_slot != path->slots[0]);
 6956		ret = convert_extent_item_v0(trans, extent_root, path,
 6957					     owner_objectid, 0);
 6958		if (ret < 0) {
 6959			btrfs_abort_transaction(trans, ret);
 6960			goto out;
 6961		}
 6962
 6963		btrfs_release_path(path);
 6964		path->leave_spinning = 1;
 6965
 6966		key.objectid = bytenr;
 6967		key.type = BTRFS_EXTENT_ITEM_KEY;
 6968		key.offset = num_bytes;
 6969
 6970		ret = btrfs_search_slot(trans, extent_root, &key, path,
 6971					-1, 1);
 6972		if (ret) {
 6973			btrfs_err(info,
 6974				  "umm, got %d back from search, was looking for %llu",
 6975				ret, bytenr);
 6976			btrfs_print_leaf(info, path->nodes[0]);
 6977		}
 6978		if (ret < 0) {
 6979			btrfs_abort_transaction(trans, ret);
 6980			goto out;
 6981		}
 6982
 6983		extent_slot = path->slots[0];
 6984		leaf = path->nodes[0];
 6985		item_size = btrfs_item_size_nr(leaf, extent_slot);
 6986	}
 6987#endif
 6988	BUG_ON(item_size < sizeof(*ei));
 6989	ei = btrfs_item_ptr(leaf, extent_slot,
 6990			    struct btrfs_extent_item);
 6991	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
 6992	    key.type == BTRFS_EXTENT_ITEM_KEY) {
 6993		struct btrfs_tree_block_info *bi;
 6994		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 
 
 
 
 
 
 
 
 
 6995		bi = (struct btrfs_tree_block_info *)(ei + 1);
 6996		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
 6997	}
 6998
 6999	refs = btrfs_extent_refs(leaf, ei);
 7000	if (refs < refs_to_drop) {
 7001		btrfs_err(info,
 7002			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
 7003			  refs_to_drop, refs, bytenr);
 7004		ret = -EINVAL;
 7005		btrfs_abort_transaction(trans, ret);
 7006		goto out;
 7007	}
 7008	refs -= refs_to_drop;
 7009
 7010	if (refs > 0) {
 7011		if (extent_op)
 7012			__run_delayed_extent_op(extent_op, leaf, ei);
 7013		/*
 7014		 * In the case of inline back ref, reference count will
 7015		 * be updated by remove_extent_backref
 7016		 */
 7017		if (iref) {
 7018			BUG_ON(!found_extent);
 
 
 
 
 
 
 7019		} else {
 7020			btrfs_set_extent_refs(leaf, ei, refs);
 7021			btrfs_mark_buffer_dirty(leaf);
 7022		}
 7023		if (found_extent) {
 7024			ret = remove_extent_backref(trans, extent_root, path,
 7025						    iref, refs_to_drop,
 7026						    is_data, &last_ref);
 7027			if (ret) {
 7028				btrfs_abort_transaction(trans, ret);
 7029				goto out;
 7030			}
 7031		}
 7032		add_pinned_bytes(info, -num_bytes, owner_objectid,
 7033				 root_objectid);
 7034	} else {
 
 
 
 
 
 
 
 
 
 7035		if (found_extent) {
 7036			BUG_ON(is_data && refs_to_drop !=
 7037			       extent_data_ref_count(path, iref));
 
 
 
 
 
 
 
 7038			if (iref) {
 7039				BUG_ON(path->slots[0] != extent_slot);
 
 
 
 
 
 
 
 7040			} else {
 7041				BUG_ON(path->slots[0] != extent_slot + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 7042				path->slots[0] = extent_slot;
 7043				num_to_del = 2;
 7044			}
 7045		}
 
 
 
 
 
 
 
 
 
 
 7046
 7047		last_ref = 1;
 7048		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
 7049				      num_to_del);
 7050		if (ret) {
 7051			btrfs_abort_transaction(trans, ret);
 7052			goto out;
 7053		}
 7054		btrfs_release_path(path);
 7055
 7056		if (is_data) {
 7057			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
 7058			if (ret) {
 7059				btrfs_abort_transaction(trans, ret);
 7060				goto out;
 7061			}
 7062		}
 7063
 7064		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
 7065		if (ret) {
 7066			btrfs_abort_transaction(trans, ret);
 7067			goto out;
 7068		}
 7069
 7070		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
 7071		if (ret) {
 7072			btrfs_abort_transaction(trans, ret);
 7073			goto out;
 7074		}
 7075	}
 7076	btrfs_release_path(path);
 7077
 7078out:
 7079	btrfs_free_path(path);
 7080	return ret;
 7081}
 7082
 7083/*
 7084 * when we free an block, it is possible (and likely) that we free the last
 7085 * delayed ref for that extent as well.  This searches the delayed ref tree for
 7086 * a given extent, and if there are no other delayed refs to be processed, it
 7087 * removes it from the tree.
 7088 */
 7089static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
 7090				      u64 bytenr)
 7091{
 
 7092	struct btrfs_delayed_ref_head *head;
 7093	struct btrfs_delayed_ref_root *delayed_refs;
 7094	int ret = 0;
 7095
 7096	delayed_refs = &trans->transaction->delayed_refs;
 7097	spin_lock(&delayed_refs->lock);
 7098	head = btrfs_find_delayed_ref_head(trans, bytenr);
 7099	if (!head)
 7100		goto out_delayed_unlock;
 7101
 7102	spin_lock(&head->lock);
 7103	if (!list_empty(&head->ref_list))
 7104		goto out;
 7105
 7106	if (head->extent_op) {
 7107		if (!head->must_insert_reserved)
 7108			goto out;
 7109		btrfs_free_delayed_extent_op(head->extent_op);
 7110		head->extent_op = NULL;
 7111	}
 7112
 7113	/*
 7114	 * waiting for the lock here would deadlock.  If someone else has it
 7115	 * locked they are already in the process of dropping it anyway
 7116	 */
 7117	if (!mutex_trylock(&head->mutex))
 7118		goto out;
 7119
 7120	/*
 7121	 * at this point we have a head with no other entries.  Go
 7122	 * ahead and process it.
 7123	 */
 7124	head->node.in_tree = 0;
 7125	rb_erase(&head->href_node, &delayed_refs->href_root);
 7126
 7127	atomic_dec(&delayed_refs->num_entries);
 7128
 7129	/*
 7130	 * we don't take a ref on the node because we're removing it from the
 7131	 * tree, so we just steal the ref the tree was holding.
 7132	 */
 7133	delayed_refs->num_heads--;
 7134	if (head->processing == 0)
 7135		delayed_refs->num_heads_ready--;
 7136	head->processing = 0;
 7137	spin_unlock(&head->lock);
 7138	spin_unlock(&delayed_refs->lock);
 7139
 7140	BUG_ON(head->extent_op);
 7141	if (head->must_insert_reserved)
 7142		ret = 1;
 7143
 
 7144	mutex_unlock(&head->mutex);
 7145	btrfs_put_delayed_ref(&head->node);
 7146	return ret;
 7147out:
 7148	spin_unlock(&head->lock);
 7149
 7150out_delayed_unlock:
 7151	spin_unlock(&delayed_refs->lock);
 7152	return 0;
 7153}
 7154
 7155void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
 7156			   struct btrfs_root *root,
 7157			   struct extent_buffer *buf,
 7158			   u64 parent, int last_ref)
 7159{
 7160	struct btrfs_fs_info *fs_info = root->fs_info;
 7161	int pin = 1;
 7162	int ret;
 7163
 7164	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 7165		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
 7166						 buf->start, buf->len,
 7167						 parent,
 7168						 root->root_key.objectid,
 7169						 btrfs_header_level(buf),
 7170						 BTRFS_DROP_DELAYED_REF, NULL);
 7171		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7172	}
 7173
 7174	if (!last_ref)
 7175		return;
 7176
 7177	if (btrfs_header_generation(buf) == trans->transid) {
 7178		struct btrfs_block_group_cache *cache;
 7179
 7180		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 7181			ret = check_ref_cleanup(trans, buf->start);
 7182			if (!ret)
 7183				goto out;
 7184		}
 7185
 7186		cache = btrfs_lookup_block_group(fs_info, buf->start);
 7187
 7188		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
 7189			pin_down_extent(fs_info, cache, buf->start,
 7190					buf->len, 1);
 7191			btrfs_put_block_group(cache);
 7192			goto out;
 7193		}
 7194
 7195		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7196
 7197		btrfs_add_free_space(cache, buf->start, buf->len);
 7198		btrfs_free_reserved_bytes(cache, buf->len, 0);
 7199		btrfs_put_block_group(cache);
 7200		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 7201		pin = 0;
 7202	}
 
 
 
 
 
 
 
 
 7203out:
 7204	if (pin)
 7205		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
 7206				 root->root_key.objectid);
 7207
 7208	/*
 7209	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
 7210	 * anymore.
 7211	 */
 7212	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
 7213}
 7214
 7215/* Can return -ENOMEM */
 7216int btrfs_free_extent(struct btrfs_trans_handle *trans,
 7217		      struct btrfs_fs_info *fs_info,
 7218		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
 7219		      u64 owner, u64 offset)
 7220{
 
 7221	int ret;
 7222
 7223	if (btrfs_is_testing(fs_info))
 7224		return 0;
 7225
 7226	add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
 7227
 7228	/*
 7229	 * tree log blocks never actually go into the extent allocation
 7230	 * tree, just update pinning info and exit early.
 7231	 */
 7232	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
 7233		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
 7234		/* unlocks the pinned mutex */
 7235		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
 7236		ret = 0;
 7237	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 7238		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 7239					num_bytes,
 7240					parent, root_objectid, (int)owner,
 7241					BTRFS_DROP_DELAYED_REF, NULL);
 7242	} else {
 7243		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 7244						num_bytes,
 7245						parent, root_objectid, owner,
 7246						offset, 0,
 7247						BTRFS_DROP_DELAYED_REF, NULL);
 7248	}
 7249	return ret;
 7250}
 7251
 7252/*
 7253 * when we wait for progress in the block group caching, its because
 7254 * our allocation attempt failed at least once.  So, we must sleep
 7255 * and let some progress happen before we try again.
 7256 *
 7257 * This function will sleep at least once waiting for new free space to
 7258 * show up, and then it will check the block group free space numbers
 7259 * for our min num_bytes.  Another option is to have it go ahead
 7260 * and look in the rbtree for a free extent of a given size, but this
 7261 * is a good start.
 7262 *
 7263 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 7264 * any of the information in this block group.
 7265 */
 7266static noinline void
 7267wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
 7268				u64 num_bytes)
 7269{
 7270	struct btrfs_caching_control *caching_ctl;
 7271
 7272	caching_ctl = get_caching_control(cache);
 7273	if (!caching_ctl)
 7274		return;
 7275
 7276	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
 7277		   (cache->free_space_ctl->free_space >= num_bytes));
 7278
 7279	put_caching_control(caching_ctl);
 7280}
 7281
 7282static noinline int
 7283wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
 7284{
 7285	struct btrfs_caching_control *caching_ctl;
 7286	int ret = 0;
 7287
 7288	caching_ctl = get_caching_control(cache);
 7289	if (!caching_ctl)
 7290		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 7291
 7292	wait_event(caching_ctl->wait, block_group_cache_done(cache));
 7293	if (cache->cached == BTRFS_CACHE_ERROR)
 7294		ret = -EIO;
 7295	put_caching_control(caching_ctl);
 7296	return ret;
 7297}
 7298
 7299int __get_raid_index(u64 flags)
 7300{
 7301	if (flags & BTRFS_BLOCK_GROUP_RAID10)
 7302		return BTRFS_RAID_RAID10;
 7303	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
 7304		return BTRFS_RAID_RAID1;
 7305	else if (flags & BTRFS_BLOCK_GROUP_DUP)
 7306		return BTRFS_RAID_DUP;
 7307	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
 7308		return BTRFS_RAID_RAID0;
 7309	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
 7310		return BTRFS_RAID_RAID5;
 7311	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
 7312		return BTRFS_RAID_RAID6;
 7313
 7314	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
 7315}
 7316
 7317int get_block_group_index(struct btrfs_block_group_cache *cache)
 7318{
 7319	return __get_raid_index(cache->flags);
 7320}
 
 7321
 7322static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
 7323	[BTRFS_RAID_RAID10]	= "raid10",
 7324	[BTRFS_RAID_RAID1]	= "raid1",
 7325	[BTRFS_RAID_DUP]	= "dup",
 7326	[BTRFS_RAID_RAID0]	= "raid0",
 7327	[BTRFS_RAID_SINGLE]	= "single",
 7328	[BTRFS_RAID_RAID5]	= "raid5",
 7329	[BTRFS_RAID_RAID6]	= "raid6",
 7330};
 7331
 7332static const char *get_raid_name(enum btrfs_raid_types type)
 7333{
 7334	if (type >= BTRFS_NR_RAID_TYPES)
 7335		return NULL;
 7336
 7337	return btrfs_raid_type_names[type];
 7338}
 
 
 7339
 7340enum btrfs_loop_type {
 7341	LOOP_CACHING_NOWAIT = 0,
 7342	LOOP_CACHING_WAIT = 1,
 7343	LOOP_ALLOC_CHUNK = 2,
 7344	LOOP_NO_EMPTY_SIZE = 3,
 7345};
 7346
 7347static inline void
 7348btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
 7349		       int delalloc)
 7350{
 7351	if (delalloc)
 7352		down_read(&cache->data_rwsem);
 7353}
 7354
 7355static inline void
 7356btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
 7357		       int delalloc)
 7358{
 7359	btrfs_get_block_group(cache);
 7360	if (delalloc)
 7361		down_read(&cache->data_rwsem);
 7362}
 7363
 7364static struct btrfs_block_group_cache *
 7365btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
 7366		   struct btrfs_free_cluster *cluster,
 7367		   int delalloc)
 
 7368{
 7369	struct btrfs_block_group_cache *used_bg = NULL;
 7370
 7371	spin_lock(&cluster->refill_lock);
 7372	while (1) {
 7373		used_bg = cluster->block_group;
 7374		if (!used_bg)
 7375			return NULL;
 7376
 7377		if (used_bg == block_group)
 7378			return used_bg;
 7379
 7380		btrfs_get_block_group(used_bg);
 7381
 7382		if (!delalloc)
 7383			return used_bg;
 7384
 7385		if (down_read_trylock(&used_bg->data_rwsem))
 7386			return used_bg;
 7387
 7388		spin_unlock(&cluster->refill_lock);
 7389
 7390		/* We should only have one-level nested. */
 7391		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
 7392
 7393		spin_lock(&cluster->refill_lock);
 7394		if (used_bg == cluster->block_group)
 7395			return used_bg;
 7396
 7397		up_read(&used_bg->data_rwsem);
 7398		btrfs_put_block_group(used_bg);
 7399	}
 7400}
 7401
 7402static inline void
 7403btrfs_release_block_group(struct btrfs_block_group_cache *cache,
 7404			 int delalloc)
 7405{
 7406	if (delalloc)
 7407		up_read(&cache->data_rwsem);
 7408	btrfs_put_block_group(cache);
 7409}
 7410
 7411/*
 7412 * walks the btree of allocated extents and find a hole of a given size.
 7413 * The key ins is changed to record the hole:
 7414 * ins->objectid == start position
 7415 * ins->flags = BTRFS_EXTENT_ITEM_KEY
 7416 * ins->offset == the size of the hole.
 7417 * Any available blocks before search_start are skipped.
 7418 *
 7419 * If there is no suitable free space, we will record the max size of
 7420 * the free space extent currently.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7421 */
 7422static noinline int find_free_extent(struct btrfs_root *orig_root,
 7423				u64 ram_bytes, u64 num_bytes, u64 empty_size,
 7424				u64 hint_byte, struct btrfs_key *ins,
 7425				u64 flags, int delalloc)
 7426{
 7427	struct btrfs_fs_info *fs_info = orig_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7428	int ret = 0;
 7429	struct btrfs_root *root = fs_info->extent_root;
 7430	struct btrfs_free_cluster *last_ptr = NULL;
 7431	struct btrfs_block_group_cache *block_group = NULL;
 7432	u64 search_start = 0;
 7433	u64 max_extent_size = 0;
 7434	u64 empty_cluster = 0;
 7435	struct btrfs_space_info *space_info;
 7436	int loop = 0;
 7437	int index = __get_raid_index(flags);
 7438	bool failed_cluster_refill = false;
 7439	bool failed_alloc = false;
 7440	bool use_cluster = true;
 7441	bool have_caching_bg = false;
 7442	bool orig_have_caching_bg = false;
 7443	bool full_search = false;
 7444
 7445	WARN_ON(num_bytes < fs_info->sectorsize);
 7446	ins->type = BTRFS_EXTENT_ITEM_KEY;
 7447	ins->objectid = 0;
 7448	ins->offset = 0;
 7449
 7450	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
 
 
 
 
 
 
 
 
 
 
 
 7451
 7452	space_info = __find_space_info(fs_info, flags);
 7453	if (!space_info) {
 7454		btrfs_err(fs_info, "No space info for %llu", flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7455		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7456	}
 7457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7458	/*
 7459	 * If our free space is heavily fragmented we may not be able to make
 7460	 * big contiguous allocations, so instead of doing the expensive search
 7461	 * for free space, simply return ENOSPC with our max_extent_size so we
 7462	 * can go ahead and search for a more manageable chunk.
 7463	 *
 7464	 * If our max_extent_size is large enough for our allocation simply
 7465	 * disable clustering since we will likely not be able to find enough
 7466	 * space to create a cluster and induce latency trying.
 7467	 */
 7468	if (unlikely(space_info->max_extent_size)) {
 7469		spin_lock(&space_info->lock);
 7470		if (space_info->max_extent_size &&
 7471		    num_bytes > space_info->max_extent_size) {
 7472			ins->offset = space_info->max_extent_size;
 7473			spin_unlock(&space_info->lock);
 7474			return -ENOSPC;
 7475		} else if (space_info->max_extent_size) {
 7476			use_cluster = false;
 7477		}
 7478		spin_unlock(&space_info->lock);
 7479	}
 7480
 7481	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
 7482	if (last_ptr) {
 
 
 
 7483		spin_lock(&last_ptr->lock);
 7484		if (last_ptr->block_group)
 7485			hint_byte = last_ptr->window_start;
 7486		if (last_ptr->fragmented) {
 7487			/*
 7488			 * We still set window_start so we can keep track of the
 7489			 * last place we found an allocation to try and save
 7490			 * some time.
 7491			 */
 7492			hint_byte = last_ptr->window_start;
 7493			use_cluster = false;
 7494		}
 7495		spin_unlock(&last_ptr->lock);
 7496	}
 7497
 7498	search_start = max(search_start, first_logical_byte(fs_info, 0));
 7499	search_start = max(search_start, hint_byte);
 7500	if (search_start == hint_byte) {
 7501		block_group = btrfs_lookup_block_group(fs_info, search_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7502		/*
 7503		 * we don't want to use the block group if it doesn't match our
 7504		 * allocation bits, or if its not cached.
 7505		 *
 7506		 * However if we are re-searching with an ideal block group
 7507		 * picked out then we don't care that the block group is cached.
 7508		 */
 7509		if (block_group && block_group_bits(block_group, flags) &&
 7510		    block_group->cached != BTRFS_CACHE_NO) {
 7511			down_read(&space_info->groups_sem);
 7512			if (list_empty(&block_group->list) ||
 7513			    block_group->ro) {
 7514				/*
 7515				 * someone is removing this block group,
 7516				 * we can't jump into the have_block_group
 7517				 * target because our list pointers are not
 7518				 * valid
 7519				 */
 7520				btrfs_put_block_group(block_group);
 7521				up_read(&space_info->groups_sem);
 7522			} else {
 7523				index = get_block_group_index(block_group);
 7524				btrfs_lock_block_group(block_group, delalloc);
 
 
 
 7525				goto have_block_group;
 7526			}
 7527		} else if (block_group) {
 7528			btrfs_put_block_group(block_group);
 7529		}
 7530	}
 7531search:
 7532	have_caching_bg = false;
 7533	if (index == 0 || index == __get_raid_index(flags))
 
 
 7534		full_search = true;
 7535	down_read(&space_info->groups_sem);
 7536	list_for_each_entry(block_group, &space_info->block_groups[index],
 7537			    list) {
 7538		u64 offset;
 7539		int cached;
 
 
 
 
 
 
 
 
 
 7540
 7541		btrfs_grab_block_group(block_group, delalloc);
 7542		search_start = block_group->key.objectid;
 7543
 7544		/*
 7545		 * this can happen if we end up cycling through all the
 7546		 * raid types, but we want to make sure we only allocate
 7547		 * for the proper type.
 7548		 */
 7549		if (!block_group_bits(block_group, flags)) {
 7550		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
 7551				BTRFS_BLOCK_GROUP_RAID1 |
 7552				BTRFS_BLOCK_GROUP_RAID5 |
 7553				BTRFS_BLOCK_GROUP_RAID6 |
 7554				BTRFS_BLOCK_GROUP_RAID10;
 7555
 7556			/*
 7557			 * if they asked for extra copies and this block group
 7558			 * doesn't provide them, bail.  This does allow us to
 7559			 * fill raid0 from raid1.
 7560			 */
 7561			if ((flags & extra) && !(block_group->flags & extra))
 7562				goto loop;
 7563		}
 7564
 7565have_block_group:
 7566		cached = block_group_cache_done(block_group);
 7567		if (unlikely(!cached)) {
 7568			have_caching_bg = true;
 7569			ret = cache_block_group(block_group, 0);
 7570			BUG_ON(ret < 0);
 7571			ret = 0;
 7572		}
 7573
 7574		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 7575			goto loop;
 7576		if (unlikely(block_group->ro))
 7577			goto loop;
 7578
 7579		/*
 7580		 * Ok we want to try and use the cluster allocator, so
 7581		 * lets look there
 7582		 */
 7583		if (last_ptr && use_cluster) {
 7584			struct btrfs_block_group_cache *used_block_group;
 7585			unsigned long aligned_cluster;
 7586			/*
 7587			 * the refill lock keeps out other
 7588			 * people trying to start a new cluster
 
 7589			 */
 7590			used_block_group = btrfs_lock_cluster(block_group,
 7591							      last_ptr,
 7592							      delalloc);
 7593			if (!used_block_group)
 7594				goto refill_cluster;
 7595
 7596			if (used_block_group != block_group &&
 7597			    (used_block_group->ro ||
 7598			     !block_group_bits(used_block_group, flags)))
 7599				goto release_cluster;
 7600
 7601			offset = btrfs_alloc_from_cluster(used_block_group,
 7602						last_ptr,
 7603						num_bytes,
 7604						used_block_group->key.objectid,
 7605						&max_extent_size);
 7606			if (offset) {
 7607				/* we have a block, we're done */
 7608				spin_unlock(&last_ptr->refill_lock);
 7609				trace_btrfs_reserve_extent_cluster(fs_info,
 7610						used_block_group,
 7611						search_start, num_bytes);
 7612				if (used_block_group != block_group) {
 7613					btrfs_release_block_group(block_group,
 7614								  delalloc);
 7615					block_group = used_block_group;
 7616				}
 7617				goto checks;
 7618			}
 7619
 7620			WARN_ON(last_ptr->block_group != used_block_group);
 7621release_cluster:
 7622			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
 7623			 * set up a new clusters, so lets just skip it
 7624			 * and let the allocator find whatever block
 7625			 * it can find.  If we reach this point, we
 7626			 * will have tried the cluster allocator
 7627			 * plenty of times and not have found
 7628			 * anything, so we are likely way too
 7629			 * fragmented for the clustering stuff to find
 7630			 * anything.
 7631			 *
 7632			 * However, if the cluster is taken from the
 7633			 * current block group, release the cluster
 7634			 * first, so that we stand a better chance of
 7635			 * succeeding in the unclustered
 7636			 * allocation.  */
 7637			if (loop >= LOOP_NO_EMPTY_SIZE &&
 7638			    used_block_group != block_group) {
 7639				spin_unlock(&last_ptr->refill_lock);
 7640				btrfs_release_block_group(used_block_group,
 7641							  delalloc);
 7642				goto unclustered_alloc;
 7643			}
 7644
 7645			/*
 7646			 * this cluster didn't work out, free it and
 7647			 * start over
 
 
 
 7648			 */
 7649			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7650
 7651			if (used_block_group != block_group)
 7652				btrfs_release_block_group(used_block_group,
 7653							  delalloc);
 7654refill_cluster:
 7655			if (loop >= LOOP_NO_EMPTY_SIZE) {
 7656				spin_unlock(&last_ptr->refill_lock);
 7657				goto unclustered_alloc;
 7658			}
 7659
 7660			aligned_cluster = max_t(unsigned long,
 7661						empty_cluster + empty_size,
 7662					      block_group->full_stripe_len);
 7663
 7664			/* allocate a cluster in this block group */
 7665			ret = btrfs_find_space_cluster(fs_info, block_group,
 7666						       last_ptr, search_start,
 7667						       num_bytes,
 7668						       aligned_cluster);
 7669			if (ret == 0) {
 7670				/*
 7671				 * now pull our allocation out of this
 7672				 * cluster
 7673				 */
 7674				offset = btrfs_alloc_from_cluster(block_group,
 7675							last_ptr,
 7676							num_bytes,
 7677							search_start,
 7678							&max_extent_size);
 7679				if (offset) {
 7680					/* we found one, proceed */
 7681					spin_unlock(&last_ptr->refill_lock);
 7682					trace_btrfs_reserve_extent_cluster(fs_info,
 7683						block_group, search_start,
 7684						num_bytes);
 7685					goto checks;
 7686				}
 7687			} else if (!cached && loop > LOOP_CACHING_NOWAIT
 7688				   && !failed_cluster_refill) {
 7689				spin_unlock(&last_ptr->refill_lock);
 7690
 7691				failed_cluster_refill = true;
 7692				wait_block_group_cache_progress(block_group,
 7693				       num_bytes + empty_cluster + empty_size);
 7694				goto have_block_group;
 7695			}
 
 
 7696
 7697			/*
 7698			 * at this point we either didn't find a cluster
 7699			 * or we weren't able to allocate a block from our
 7700			 * cluster.  Free the cluster we've been trying
 7701			 * to use, and go to the next block group
 7702			 */
 7703			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7704			spin_unlock(&last_ptr->refill_lock);
 7705			goto loop;
 7706		}
 7707
 7708unclustered_alloc:
 7709		/*
 7710		 * We are doing an unclustered alloc, set the fragmented flag so
 7711		 * we don't bother trying to setup a cluster again until we get
 7712		 * more space.
 7713		 */
 7714		if (unlikely(last_ptr)) {
 7715			spin_lock(&last_ptr->lock);
 7716			last_ptr->fragmented = 1;
 7717			spin_unlock(&last_ptr->lock);
 7718		}
 7719		spin_lock(&block_group->free_space_ctl->tree_lock);
 7720		if (cached &&
 7721		    block_group->free_space_ctl->free_space <
 7722		    num_bytes + empty_cluster + empty_size) {
 7723			if (block_group->free_space_ctl->free_space >
 7724			    max_extent_size)
 7725				max_extent_size =
 7726					block_group->free_space_ctl->free_space;
 7727			spin_unlock(&block_group->free_space_ctl->tree_lock);
 7728			goto loop;
 7729		}
 7730		spin_unlock(&block_group->free_space_ctl->tree_lock);
 7731
 7732		offset = btrfs_find_space_for_alloc(block_group, search_start,
 7733						    num_bytes, empty_size,
 7734						    &max_extent_size);
 7735		/*
 7736		 * If we didn't find a chunk, and we haven't failed on this
 7737		 * block group before, and this block group is in the middle of
 7738		 * caching and we are ok with waiting, then go ahead and wait
 7739		 * for progress to be made, and set failed_alloc to true.
 7740		 *
 7741		 * If failed_alloc is true then we've already waited on this
 7742		 * block group once and should move on to the next block group.
 7743		 */
 7744		if (!offset && !failed_alloc && !cached &&
 7745		    loop > LOOP_CACHING_NOWAIT) {
 7746			wait_block_group_cache_progress(block_group,
 7747						num_bytes + empty_size);
 7748			failed_alloc = true;
 7749			goto have_block_group;
 7750		} else if (!offset) {
 7751			goto loop;
 
 
 
 
 7752		}
 7753checks:
 7754		search_start = ALIGN(offset, fs_info->stripesize);
 
 
 7755
 7756		/* move on to the next group */
 7757		if (search_start + num_bytes >
 7758		    block_group->key.objectid + block_group->key.offset) {
 7759			btrfs_add_free_space(block_group, offset, num_bytes);
 
 
 7760			goto loop;
 7761		}
 7762
 7763		if (offset < search_start)
 7764			btrfs_add_free_space(block_group, offset,
 7765					     search_start - offset);
 7766		BUG_ON(offset > search_start);
 7767
 7768		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
 7769				num_bytes, delalloc);
 
 
 7770		if (ret == -EAGAIN) {
 7771			btrfs_add_free_space(block_group, offset, num_bytes);
 
 
 7772			goto loop;
 7773		}
 7774		btrfs_inc_block_group_reservations(block_group);
 7775
 7776		/* we are all good, lets return */
 7777		ins->objectid = search_start;
 7778		ins->offset = num_bytes;
 7779
 7780		trace_btrfs_reserve_extent(fs_info, block_group,
 7781					   search_start, num_bytes);
 7782		btrfs_release_block_group(block_group, delalloc);
 7783		break;
 7784loop:
 7785		failed_cluster_refill = false;
 7786		failed_alloc = false;
 7787		BUG_ON(index != get_block_group_index(block_group));
 7788		btrfs_release_block_group(block_group, delalloc);
 
 
 
 
 
 
 
 7789	}
 7790	up_read(&space_info->groups_sem);
 7791
 7792	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
 7793		&& !orig_have_caching_bg)
 7794		orig_have_caching_bg = true;
 7795
 7796	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
 7797		goto search;
 7798
 7799	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
 7800		goto search;
 7801
 7802	/*
 7803	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
 7804	 *			caching kthreads as we move along
 7805	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
 7806	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
 7807	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
 7808	 *			again
 7809	 */
 7810	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
 7811		index = 0;
 7812		if (loop == LOOP_CACHING_NOWAIT) {
 7813			/*
 7814			 * We want to skip the LOOP_CACHING_WAIT step if we
 7815			 * don't have any uncached bgs and we've already done a
 7816			 * full search through.
 7817			 */
 7818			if (orig_have_caching_bg || !full_search)
 7819				loop = LOOP_CACHING_WAIT;
 7820			else
 7821				loop = LOOP_ALLOC_CHUNK;
 7822		} else {
 7823			loop++;
 7824		}
 7825
 7826		if (loop == LOOP_ALLOC_CHUNK) {
 7827			struct btrfs_trans_handle *trans;
 7828			int exist = 0;
 7829
 7830			trans = current->journal_info;
 7831			if (trans)
 7832				exist = 1;
 7833			else
 7834				trans = btrfs_join_transaction(root);
 7835
 7836			if (IS_ERR(trans)) {
 7837				ret = PTR_ERR(trans);
 7838				goto out;
 7839			}
 7840
 7841			ret = do_chunk_alloc(trans, fs_info, flags,
 7842					     CHUNK_ALLOC_FORCE);
 7843
 7844			/*
 7845			 * If we can't allocate a new chunk we've already looped
 7846			 * through at least once, move on to the NO_EMPTY_SIZE
 7847			 * case.
 7848			 */
 7849			if (ret == -ENOSPC)
 7850				loop = LOOP_NO_EMPTY_SIZE;
 7851
 7852			/*
 7853			 * Do not bail out on ENOSPC since we
 7854			 * can do more things.
 7855			 */
 7856			if (ret < 0 && ret != -ENOSPC)
 7857				btrfs_abort_transaction(trans, ret);
 7858			else
 7859				ret = 0;
 7860			if (!exist)
 7861				btrfs_end_transaction(trans);
 7862			if (ret)
 7863				goto out;
 7864		}
 7865
 7866		if (loop == LOOP_NO_EMPTY_SIZE) {
 7867			/*
 7868			 * Don't loop again if we already have no empty_size and
 7869			 * no empty_cluster.
 7870			 */
 7871			if (empty_size == 0 &&
 7872			    empty_cluster == 0) {
 7873				ret = -ENOSPC;
 7874				goto out;
 7875			}
 7876			empty_size = 0;
 7877			empty_cluster = 0;
 7878		}
 7879
 7880		goto search;
 7881	} else if (!ins->objectid) {
 7882		ret = -ENOSPC;
 7883	} else if (ins->objectid) {
 7884		if (!use_cluster && last_ptr) {
 7885			spin_lock(&last_ptr->lock);
 7886			last_ptr->window_start = ins->objectid;
 7887			spin_unlock(&last_ptr->lock);
 7888		}
 7889		ret = 0;
 7890	}
 7891out:
 7892	if (ret == -ENOSPC) {
 7893		spin_lock(&space_info->lock);
 7894		space_info->max_extent_size = max_extent_size;
 7895		spin_unlock(&space_info->lock);
 7896		ins->offset = max_extent_size;
 
 
 7897	}
 7898	return ret;
 7899}
 7900
 7901static void dump_space_info(struct btrfs_fs_info *fs_info,
 7902			    struct btrfs_space_info *info, u64 bytes,
 7903			    int dump_block_groups)
 7904{
 7905	struct btrfs_block_group_cache *cache;
 7906	int index = 0;
 7907
 7908	spin_lock(&info->lock);
 7909	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 7910		   info->flags,
 7911		   info->total_bytes - info->bytes_used - info->bytes_pinned -
 7912		   info->bytes_reserved - info->bytes_readonly -
 7913		   info->bytes_may_use, (info->full) ? "" : "not ");
 7914	btrfs_info(fs_info,
 7915		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 7916		info->total_bytes, info->bytes_used, info->bytes_pinned,
 7917		info->bytes_reserved, info->bytes_may_use,
 7918		info->bytes_readonly);
 7919	spin_unlock(&info->lock);
 7920
 7921	if (!dump_block_groups)
 7922		return;
 7923
 7924	down_read(&info->groups_sem);
 7925again:
 7926	list_for_each_entry(cache, &info->block_groups[index], list) {
 7927		spin_lock(&cache->lock);
 7928		btrfs_info(fs_info,
 7929			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 7930			cache->key.objectid, cache->key.offset,
 7931			btrfs_block_group_used(&cache->item), cache->pinned,
 7932			cache->reserved, cache->ro ? "[readonly]" : "");
 7933		btrfs_dump_free_space(cache, bytes);
 7934		spin_unlock(&cache->lock);
 7935	}
 7936	if (++index < BTRFS_NR_RAID_TYPES)
 7937		goto again;
 7938	up_read(&info->groups_sem);
 7939}
 7940
 
 
 
 
 
 7941int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
 7942			 u64 num_bytes, u64 min_alloc_size,
 7943			 u64 empty_size, u64 hint_byte,
 7944			 struct btrfs_key *ins, int is_data, int delalloc)
 7945{
 7946	struct btrfs_fs_info *fs_info = root->fs_info;
 
 7947	bool final_tried = num_bytes == min_alloc_size;
 7948	u64 flags;
 7949	int ret;
 
 
 7950
 7951	flags = btrfs_get_alloc_profile(root, is_data);
 7952again:
 7953	WARN_ON(num_bytes < fs_info->sectorsize);
 7954	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
 7955			       hint_byte, ins, flags, delalloc);
 
 
 
 
 
 
 
 
 
 
 7956	if (!ret && !is_data) {
 7957		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
 7958	} else if (ret == -ENOSPC) {
 7959		if (!final_tried && ins->offset) {
 7960			num_bytes = min(num_bytes >> 1, ins->offset);
 7961			num_bytes = round_down(num_bytes,
 7962					       fs_info->sectorsize);
 7963			num_bytes = max(num_bytes, min_alloc_size);
 7964			ram_bytes = num_bytes;
 7965			if (num_bytes == min_alloc_size)
 7966				final_tried = true;
 7967			goto again;
 7968		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 7969			struct btrfs_space_info *sinfo;
 7970
 7971			sinfo = __find_space_info(fs_info, flags);
 7972			btrfs_err(fs_info,
 7973				  "allocation failed flags %llu, wanted %llu",
 7974				  flags, num_bytes);
 7975			if (sinfo)
 7976				dump_space_info(fs_info, sinfo, num_bytes, 1);
 
 7977		}
 7978	}
 7979
 7980	return ret;
 7981}
 7982
 7983static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 7984					u64 start, u64 len,
 7985					int pin, int delalloc)
 7986{
 7987	struct btrfs_block_group_cache *cache;
 7988	int ret = 0;
 7989
 7990	cache = btrfs_lookup_block_group(fs_info, start);
 7991	if (!cache) {
 7992		btrfs_err(fs_info, "Unable to find block group for %llu",
 7993			  start);
 7994		return -ENOSPC;
 7995	}
 7996
 7997	if (pin)
 7998		pin_down_extent(fs_info, cache, start, len, 1);
 7999	else {
 8000		if (btrfs_test_opt(fs_info, DISCARD))
 8001			ret = btrfs_discard_extent(fs_info, start, len, NULL);
 8002		btrfs_add_free_space(cache, start, len);
 8003		btrfs_free_reserved_bytes(cache, len, delalloc);
 8004		trace_btrfs_reserved_extent_free(fs_info, start, len);
 8005	}
 8006
 8007	btrfs_put_block_group(cache);
 8008	return ret;
 8009}
 8010
 8011int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 8012			       u64 start, u64 len, int delalloc)
 8013{
 8014	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
 
 
 
 
 
 
 
 
 
 
 
 
 8015}
 8016
 8017int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
 8018				       u64 start, u64 len)
 8019{
 8020	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8021}
 8022
 8023static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 8024				      struct btrfs_fs_info *fs_info,
 8025				      u64 parent, u64 root_objectid,
 8026				      u64 flags, u64 owner, u64 offset,
 8027				      struct btrfs_key *ins, int ref_mod)
 8028{
 
 
 8029	int ret;
 8030	struct btrfs_extent_item *extent_item;
 
 8031	struct btrfs_extent_inline_ref *iref;
 8032	struct btrfs_path *path;
 8033	struct extent_buffer *leaf;
 8034	int type;
 8035	u32 size;
 
 8036
 8037	if (parent > 0)
 8038		type = BTRFS_SHARED_DATA_REF_KEY;
 8039	else
 8040		type = BTRFS_EXTENT_DATA_REF_KEY;
 8041
 8042	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 
 
 
 8043
 8044	path = btrfs_alloc_path();
 8045	if (!path)
 8046		return -ENOMEM;
 8047
 8048	path->leave_spinning = 1;
 8049	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 8050				      ins, size);
 8051	if (ret) {
 8052		btrfs_free_path(path);
 8053		return ret;
 8054	}
 8055
 8056	leaf = path->nodes[0];
 8057	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 8058				     struct btrfs_extent_item);
 8059	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
 8060	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 8061	btrfs_set_extent_flags(leaf, extent_item,
 8062			       flags | BTRFS_EXTENT_FLAG_DATA);
 8063
 8064	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
 
 
 
 
 
 8065	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 
 8066	if (parent > 0) {
 8067		struct btrfs_shared_data_ref *ref;
 8068		ref = (struct btrfs_shared_data_ref *)(iref + 1);
 8069		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 8070		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
 8071	} else {
 8072		struct btrfs_extent_data_ref *ref;
 8073		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 8074		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
 8075		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 8076		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 8077		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
 8078	}
 8079
 8080	btrfs_mark_buffer_dirty(path->nodes[0]);
 8081	btrfs_free_path(path);
 8082
 8083	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 8084					  ins->offset);
 8085	if (ret)
 8086		return ret;
 8087
 8088	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
 8089	if (ret) { /* -ENOENT, logic error */
 8090		btrfs_err(fs_info, "update block group failed for %llu %llu",
 8091			ins->objectid, ins->offset);
 8092		BUG();
 8093	}
 8094	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
 8095	return ret;
 8096}
 8097
 8098static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 8099				     struct btrfs_fs_info *fs_info,
 8100				     u64 parent, u64 root_objectid,
 8101				     u64 flags, struct btrfs_disk_key *key,
 8102				     int level, struct btrfs_key *ins)
 8103{
 
 
 8104	int ret;
 8105	struct btrfs_extent_item *extent_item;
 
 8106	struct btrfs_tree_block_info *block_info;
 8107	struct btrfs_extent_inline_ref *iref;
 8108	struct btrfs_path *path;
 8109	struct extent_buffer *leaf;
 8110	u32 size = sizeof(*extent_item) + sizeof(*iref);
 8111	u64 num_bytes = ins->offset;
 
 
 8112	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 8113
 8114	if (!skinny_metadata)
 
 
 
 
 
 
 
 8115		size += sizeof(*block_info);
 
 8116
 8117	path = btrfs_alloc_path();
 8118	if (!path) {
 8119		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
 8120						   fs_info->nodesize);
 8121		return -ENOMEM;
 8122	}
 8123
 8124	path->leave_spinning = 1;
 8125	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 8126				      ins, size);
 8127	if (ret) {
 8128		btrfs_free_path(path);
 8129		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
 8130						   fs_info->nodesize);
 8131		return ret;
 8132	}
 8133
 8134	leaf = path->nodes[0];
 8135	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 8136				     struct btrfs_extent_item);
 8137	btrfs_set_extent_refs(leaf, extent_item, 1);
 8138	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 8139	btrfs_set_extent_flags(leaf, extent_item,
 8140			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 8141
 8142	if (skinny_metadata) {
 8143		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 8144		num_bytes = fs_info->nodesize;
 8145	} else {
 8146		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
 8147		btrfs_set_tree_block_key(leaf, block_info, key);
 8148		btrfs_set_tree_block_level(leaf, block_info, level);
 8149		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
 8150	}
 8151
 8152	if (parent > 0) {
 8153		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 8154		btrfs_set_extent_inline_ref_type(leaf, iref,
 8155						 BTRFS_SHARED_BLOCK_REF_KEY);
 8156		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 8157	} else {
 8158		btrfs_set_extent_inline_ref_type(leaf, iref,
 8159						 BTRFS_TREE_BLOCK_REF_KEY);
 8160		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 8161	}
 8162
 8163	btrfs_mark_buffer_dirty(leaf);
 8164	btrfs_free_path(path);
 8165
 8166	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 8167					  num_bytes);
 8168	if (ret)
 8169		return ret;
 8170
 8171	ret = update_block_group(trans, fs_info, ins->objectid,
 8172				 fs_info->nodesize, 1);
 8173	if (ret) { /* -ENOENT, logic error */
 8174		btrfs_err(fs_info, "update block group failed for %llu %llu",
 8175			ins->objectid, ins->offset);
 8176		BUG();
 8177	}
 8178
 8179	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
 8180					  fs_info->nodesize);
 8181	return ret;
 8182}
 8183
 8184int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 8185				     u64 root_objectid, u64 owner,
 8186				     u64 offset, u64 ram_bytes,
 8187				     struct btrfs_key *ins)
 8188{
 8189	struct btrfs_fs_info *fs_info = trans->fs_info;
 8190	int ret;
 
 
 
 
 
 8191
 8192	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
 8193
 8194	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
 8195					 ins->offset, 0,
 8196					 root_objectid, owner, offset,
 8197					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
 8198					 NULL);
 8199	return ret;
 
 8200}
 8201
 8202/*
 8203 * this is used by the tree logging recovery code.  It records that
 8204 * an extent has been allocated and makes sure to clear the free
 8205 * space cache bits as well
 8206 */
 8207int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 8208				   struct btrfs_fs_info *fs_info,
 8209				   u64 root_objectid, u64 owner, u64 offset,
 8210				   struct btrfs_key *ins)
 8211{
 
 8212	int ret;
 8213	struct btrfs_block_group_cache *block_group;
 8214	struct btrfs_space_info *space_info;
 
 
 
 
 
 
 
 8215
 8216	/*
 8217	 * Mixed block groups will exclude before processing the log so we only
 8218	 * need to do the exclude dance if this fs isn't mixed.
 8219	 */
 8220	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 8221		ret = __exclude_logged_extent(fs_info, ins->objectid,
 8222					      ins->offset);
 8223		if (ret)
 8224			return ret;
 8225	}
 8226
 8227	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
 8228	if (!block_group)
 8229		return -EINVAL;
 8230
 8231	space_info = block_group->space_info;
 8232	spin_lock(&space_info->lock);
 8233	spin_lock(&block_group->lock);
 8234	space_info->bytes_reserved += ins->offset;
 8235	block_group->reserved += ins->offset;
 8236	spin_unlock(&block_group->lock);
 8237	spin_unlock(&space_info->lock);
 8238
 8239	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
 8240					 0, owner, offset, ins, 1);
 
 
 
 8241	btrfs_put_block_group(block_group);
 8242	return ret;
 8243}
 8244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8245static struct extent_buffer *
 8246btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 8247		      u64 bytenr, int level)
 
 8248{
 8249	struct btrfs_fs_info *fs_info = root->fs_info;
 8250	struct extent_buffer *buf;
 
 8251
 8252	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 8253	if (IS_ERR(buf))
 8254		return buf;
 8255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8256	btrfs_set_header_generation(buf, trans->transid);
 8257	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
 8258	btrfs_tree_lock(buf);
 8259	clean_tree_block(trans, fs_info, buf);
 
 
 
 
 
 
 
 8260	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 
 8261
 8262	btrfs_set_lock_blocking(buf);
 8263	set_extent_buffer_uptodate(buf);
 8264
 8265	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 
 
 
 
 
 
 
 
 8266		buf->log_index = root->log_transid % 2;
 8267		/*
 8268		 * we allow two log transactions at a time, use different
 8269		 * EXENT bit to differentiate dirty pages.
 8270		 */
 8271		if (buf->log_index == 0)
 8272			set_extent_dirty(&root->dirty_log_pages, buf->start,
 8273					buf->start + buf->len - 1, GFP_NOFS);
 
 8274		else
 8275			set_extent_new(&root->dirty_log_pages, buf->start,
 8276					buf->start + buf->len - 1);
 
 8277	} else {
 8278		buf->log_index = -1;
 8279		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
 8280			 buf->start + buf->len - 1, GFP_NOFS);
 8281	}
 8282	trans->dirty = true;
 8283	/* this returns a buffer locked for blocking */
 8284	return buf;
 8285}
 8286
 8287static struct btrfs_block_rsv *
 8288use_block_rsv(struct btrfs_trans_handle *trans,
 8289	      struct btrfs_root *root, u32 blocksize)
 8290{
 8291	struct btrfs_fs_info *fs_info = root->fs_info;
 8292	struct btrfs_block_rsv *block_rsv;
 8293	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 8294	int ret;
 8295	bool global_updated = false;
 8296
 8297	block_rsv = get_block_rsv(trans, root);
 8298
 8299	if (unlikely(block_rsv->size == 0))
 8300		goto try_reserve;
 8301again:
 8302	ret = block_rsv_use_bytes(block_rsv, blocksize);
 8303	if (!ret)
 8304		return block_rsv;
 8305
 8306	if (block_rsv->failfast)
 8307		return ERR_PTR(ret);
 8308
 8309	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
 8310		global_updated = true;
 8311		update_global_block_rsv(fs_info);
 8312		goto again;
 8313	}
 8314
 8315	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 8316		static DEFINE_RATELIMIT_STATE(_rs,
 8317				DEFAULT_RATELIMIT_INTERVAL * 10,
 8318				/*DEFAULT_RATELIMIT_BURST*/ 1);
 8319		if (__ratelimit(&_rs))
 8320			WARN(1, KERN_DEBUG
 8321				"BTRFS: block rsv returned %d\n", ret);
 8322	}
 8323try_reserve:
 8324	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
 8325				     BTRFS_RESERVE_NO_FLUSH);
 8326	if (!ret)
 8327		return block_rsv;
 8328	/*
 8329	 * If we couldn't reserve metadata bytes try and use some from
 8330	 * the global reserve if its space type is the same as the global
 8331	 * reservation.
 8332	 */
 8333	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
 8334	    block_rsv->space_info == global_rsv->space_info) {
 8335		ret = block_rsv_use_bytes(global_rsv, blocksize);
 8336		if (!ret)
 8337			return global_rsv;
 8338	}
 8339	return ERR_PTR(ret);
 8340}
 8341
 8342static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
 8343			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
 8344{
 8345	block_rsv_add_bytes(block_rsv, blocksize, 0);
 8346	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
 8347}
 8348
 8349/*
 8350 * finds a free extent and does all the dirty work required for allocation
 8351 * returns the tree buffer or an ERR_PTR on error.
 8352 */
 8353struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
 8354					struct btrfs_root *root,
 8355					u64 parent, u64 root_objectid,
 8356					struct btrfs_disk_key *key, int level,
 8357					u64 hint, u64 empty_size)
 
 
 
 8358{
 8359	struct btrfs_fs_info *fs_info = root->fs_info;
 8360	struct btrfs_key ins;
 8361	struct btrfs_block_rsv *block_rsv;
 8362	struct extent_buffer *buf;
 8363	struct btrfs_delayed_extent_op *extent_op;
 8364	u64 flags = 0;
 8365	int ret;
 8366	u32 blocksize = fs_info->nodesize;
 8367	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
 8368
 8369#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 8370	if (btrfs_is_testing(fs_info)) {
 8371		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
 8372					    level);
 8373		if (!IS_ERR(buf))
 8374			root->alloc_bytenr += blocksize;
 8375		return buf;
 8376	}
 8377#endif
 8378
 8379	block_rsv = use_block_rsv(trans, root, blocksize);
 8380	if (IS_ERR(block_rsv))
 8381		return ERR_CAST(block_rsv);
 8382
 8383	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
 8384				   empty_size, hint, &ins, 0, 0);
 8385	if (ret)
 8386		goto out_unuse;
 8387
 8388	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
 
 8389	if (IS_ERR(buf)) {
 8390		ret = PTR_ERR(buf);
 8391		goto out_free_reserved;
 8392	}
 
 8393
 8394	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
 8395		if (parent == 0)
 8396			parent = ins.objectid;
 8397		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 
 8398	} else
 8399		BUG_ON(parent > 0);
 8400
 8401	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
 8402		extent_op = btrfs_alloc_delayed_extent_op();
 8403		if (!extent_op) {
 8404			ret = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8405			goto out_free_buf;
 8406		}
 8407		if (key)
 8408			memcpy(&extent_op->key, key, sizeof(extent_op->key));
 8409		else
 8410			memset(&extent_op->key, 0, sizeof(extent_op->key));
 8411		extent_op->flags_to_set = flags;
 8412		extent_op->update_key = skinny_metadata ? false : true;
 8413		extent_op->update_flags = true;
 8414		extent_op->is_data = false;
 8415		extent_op->level = level;
 8416
 8417		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
 8418						 ins.objectid, ins.offset,
 8419						 parent, root_objectid, level,
 8420						 BTRFS_ADD_DELAYED_EXTENT,
 8421						 extent_op);
 8422		if (ret)
 8423			goto out_free_delayed;
 8424	}
 8425	return buf;
 8426
 8427out_free_delayed:
 8428	btrfs_free_delayed_extent_op(extent_op);
 8429out_free_buf:
 
 8430	free_extent_buffer(buf);
 8431out_free_reserved:
 8432	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
 8433out_unuse:
 8434	unuse_block_rsv(fs_info, block_rsv, blocksize);
 8435	return ERR_PTR(ret);
 8436}
 8437
 8438struct walk_control {
 8439	u64 refs[BTRFS_MAX_LEVEL];
 8440	u64 flags[BTRFS_MAX_LEVEL];
 8441	struct btrfs_key update_progress;
 
 
 8442	int stage;
 8443	int level;
 8444	int shared_level;
 8445	int update_ref;
 8446	int keep_locks;
 8447	int reada_slot;
 8448	int reada_count;
 8449	int for_reloc;
 
 
 8450};
 8451
 
 
 
 
 
 8452#define DROP_REFERENCE	1
 
 
 
 
 
 
 
 
 8453#define UPDATE_BACKREF	2
 8454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8455static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
 8456				     struct btrfs_root *root,
 8457				     struct walk_control *wc,
 8458				     struct btrfs_path *path)
 8459{
 8460	struct btrfs_fs_info *fs_info = root->fs_info;
 8461	u64 bytenr;
 8462	u64 generation;
 8463	u64 refs;
 8464	u64 flags;
 8465	u32 nritems;
 8466	struct btrfs_key key;
 8467	struct extent_buffer *eb;
 8468	int ret;
 8469	int slot;
 8470	int nread = 0;
 8471
 8472	if (path->slots[wc->level] < wc->reada_slot) {
 8473		wc->reada_count = wc->reada_count * 2 / 3;
 8474		wc->reada_count = max(wc->reada_count, 2);
 8475	} else {
 8476		wc->reada_count = wc->reada_count * 3 / 2;
 8477		wc->reada_count = min_t(int, wc->reada_count,
 8478					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 8479	}
 8480
 8481	eb = path->nodes[wc->level];
 8482	nritems = btrfs_header_nritems(eb);
 8483
 8484	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
 8485		if (nread >= wc->reada_count)
 8486			break;
 8487
 8488		cond_resched();
 8489		bytenr = btrfs_node_blockptr(eb, slot);
 8490		generation = btrfs_node_ptr_generation(eb, slot);
 8491
 8492		if (slot == path->slots[wc->level])
 8493			goto reada;
 8494
 8495		if (wc->stage == UPDATE_BACKREF &&
 8496		    generation <= root->root_key.offset)
 8497			continue;
 8498
 8499		/* We don't lock the tree block, it's OK to be racy here */
 8500		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
 8501					       wc->level - 1, 1, &refs,
 8502					       &flags);
 8503		/* We don't care about errors in readahead. */
 8504		if (ret < 0)
 8505			continue;
 8506		BUG_ON(refs == 0);
 8507
 8508		if (wc->stage == DROP_REFERENCE) {
 8509			if (refs == 1)
 8510				goto reada;
 
 
 
 
 
 8511
 8512			if (wc->level == 1 &&
 8513			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8514				continue;
 8515			if (!wc->update_ref ||
 8516			    generation <= root->root_key.offset)
 8517				continue;
 8518			btrfs_node_key_to_cpu(eb, &key, slot);
 8519			ret = btrfs_comp_cpu_keys(&key,
 8520						  &wc->update_progress);
 8521			if (ret < 0)
 8522				continue;
 8523		} else {
 8524			if (wc->level == 1 &&
 8525			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8526				continue;
 8527		}
 8528reada:
 8529		readahead_tree_block(fs_info, bytenr);
 8530		nread++;
 8531	}
 8532	wc->reada_slot = slot;
 8533}
 8534
 8535/*
 8536 * helper to process tree block while walking down the tree.
 8537 *
 8538 * when wc->stage == UPDATE_BACKREF, this function updates
 8539 * back refs for pointers in the block.
 8540 *
 8541 * NOTE: return value 1 means we should stop walking down.
 8542 */
 8543static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
 8544				   struct btrfs_root *root,
 8545				   struct btrfs_path *path,
 8546				   struct walk_control *wc, int lookup_info)
 8547{
 8548	struct btrfs_fs_info *fs_info = root->fs_info;
 8549	int level = wc->level;
 8550	struct extent_buffer *eb = path->nodes[level];
 8551	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 8552	int ret;
 8553
 8554	if (wc->stage == UPDATE_BACKREF &&
 8555	    btrfs_header_owner(eb) != root->root_key.objectid)
 8556		return 1;
 8557
 8558	/*
 8559	 * when reference count of tree block is 1, it won't increase
 8560	 * again. once full backref flag is set, we never clear it.
 8561	 */
 8562	if (lookup_info &&
 8563	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
 8564	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
 8565		BUG_ON(!path->locks[level]);
 8566		ret = btrfs_lookup_extent_info(trans, fs_info,
 8567					       eb->start, level, 1,
 8568					       &wc->refs[level],
 8569					       &wc->flags[level]);
 8570		BUG_ON(ret == -ENOMEM);
 8571		if (ret)
 8572			return ret;
 8573		BUG_ON(wc->refs[level] == 0);
 
 
 
 
 8574	}
 8575
 8576	if (wc->stage == DROP_REFERENCE) {
 8577		if (wc->refs[level] > 1)
 8578			return 1;
 8579
 8580		if (path->locks[level] && !wc->keep_locks) {
 8581			btrfs_tree_unlock_rw(eb, path->locks[level]);
 8582			path->locks[level] = 0;
 8583		}
 8584		return 0;
 8585	}
 8586
 8587	/* wc->stage == UPDATE_BACKREF */
 8588	if (!(wc->flags[level] & flag)) {
 8589		BUG_ON(!path->locks[level]);
 8590		ret = btrfs_inc_ref(trans, root, eb, 1);
 8591		BUG_ON(ret); /* -ENOMEM */
 
 
 
 8592		ret = btrfs_dec_ref(trans, root, eb, 0);
 8593		BUG_ON(ret); /* -ENOMEM */
 8594		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
 8595						  eb->len, flag,
 8596						  btrfs_header_level(eb), 0);
 8597		BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 8598		wc->flags[level] |= flag;
 8599	}
 8600
 8601	/*
 8602	 * the block is shared by multiple trees, so it's not good to
 8603	 * keep the tree lock
 8604	 */
 8605	if (path->locks[level] && level > 0) {
 8606		btrfs_tree_unlock_rw(eb, path->locks[level]);
 8607		path->locks[level] = 0;
 8608	}
 8609	return 0;
 8610}
 8611
 8612/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8613 * helper to process tree block pointer.
 8614 *
 8615 * when wc->stage == DROP_REFERENCE, this function checks
 8616 * reference count of the block pointed to. if the block
 8617 * is shared and we need update back refs for the subtree
 8618 * rooted at the block, this function changes wc->stage to
 8619 * UPDATE_BACKREF. if the block is shared and there is no
 8620 * need to update back, this function drops the reference
 8621 * to the block.
 8622 *
 8623 * NOTE: return value 1 means we should stop walking down.
 8624 */
 8625static noinline int do_walk_down(struct btrfs_trans_handle *trans,
 8626				 struct btrfs_root *root,
 8627				 struct btrfs_path *path,
 8628				 struct walk_control *wc, int *lookup_info)
 8629{
 8630	struct btrfs_fs_info *fs_info = root->fs_info;
 8631	u64 bytenr;
 8632	u64 generation;
 8633	u64 parent;
 8634	u32 blocksize;
 8635	struct btrfs_key key;
 8636	struct extent_buffer *next;
 8637	int level = wc->level;
 8638	int reada = 0;
 8639	int ret = 0;
 8640	bool need_account = false;
 8641
 8642	generation = btrfs_node_ptr_generation(path->nodes[level],
 8643					       path->slots[level]);
 8644	/*
 8645	 * if the lower level block was created before the snapshot
 8646	 * was created, we know there is no need to update back refs
 8647	 * for the subtree
 8648	 */
 8649	if (wc->stage == UPDATE_BACKREF &&
 8650	    generation <= root->root_key.offset) {
 8651		*lookup_info = 1;
 8652		return 1;
 8653	}
 8654
 8655	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 8656	blocksize = fs_info->nodesize;
 8657
 8658	next = find_extent_buffer(fs_info, bytenr);
 8659	if (!next) {
 8660		next = btrfs_find_create_tree_block(fs_info, bytenr);
 8661		if (IS_ERR(next))
 8662			return PTR_ERR(next);
 8663
 8664		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
 8665					       level - 1);
 8666		reada = 1;
 8667	}
 8668	btrfs_tree_lock(next);
 8669	btrfs_set_lock_blocking(next);
 8670
 8671	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
 8672				       &wc->refs[level - 1],
 8673				       &wc->flags[level - 1]);
 
 8674	if (ret < 0)
 8675		goto out_unlock;
 8676
 8677	if (unlikely(wc->refs[level - 1] == 0)) {
 8678		btrfs_err(fs_info, "Missing references.");
 8679		ret = -EIO;
 
 8680		goto out_unlock;
 8681	}
 8682	*lookup_info = 0;
 8683
 8684	if (wc->stage == DROP_REFERENCE) {
 8685		if (wc->refs[level - 1] > 1) {
 8686			need_account = true;
 8687			if (level == 1 &&
 8688			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8689				goto skip;
 8690
 8691			if (!wc->update_ref ||
 8692			    generation <= root->root_key.offset)
 8693				goto skip;
 8694
 8695			btrfs_node_key_to_cpu(path->nodes[level], &key,
 8696					      path->slots[level]);
 8697			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
 8698			if (ret < 0)
 8699				goto skip;
 8700
 8701			wc->stage = UPDATE_BACKREF;
 8702			wc->shared_level = level - 1;
 8703		}
 8704	} else {
 8705		if (level == 1 &&
 8706		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8707			goto skip;
 8708	}
 8709
 8710	if (!btrfs_buffer_uptodate(next, generation, 0)) {
 8711		btrfs_tree_unlock(next);
 8712		free_extent_buffer(next);
 8713		next = NULL;
 8714		*lookup_info = 1;
 
 
 
 8715	}
 8716
 8717	if (!next) {
 8718		if (reada && level == 1)
 8719			reada_walk_down(trans, root, wc, path);
 8720		next = read_tree_block(fs_info, bytenr, generation);
 8721		if (IS_ERR(next)) {
 8722			return PTR_ERR(next);
 8723		} else if (!extent_buffer_uptodate(next)) {
 8724			free_extent_buffer(next);
 8725			return -EIO;
 8726		}
 8727		btrfs_tree_lock(next);
 8728		btrfs_set_lock_blocking(next);
 8729	}
 8730
 8731	level--;
 8732	ASSERT(level == btrfs_header_level(next));
 8733	if (level != btrfs_header_level(next)) {
 8734		btrfs_err(root->fs_info, "mismatched level");
 8735		ret = -EIO;
 8736		goto out_unlock;
 8737	}
 8738	path->nodes[level] = next;
 8739	path->slots[level] = 0;
 8740	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8741	wc->level = level;
 8742	if (wc->level == 1)
 8743		wc->reada_slot = 0;
 8744	return 0;
 8745skip:
 
 
 
 8746	wc->refs[level - 1] = 0;
 8747	wc->flags[level - 1] = 0;
 8748	if (wc->stage == DROP_REFERENCE) {
 8749		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 8750			parent = path->nodes[level]->start;
 8751		} else {
 8752			ASSERT(root->root_key.objectid ==
 8753			       btrfs_header_owner(path->nodes[level]));
 8754			if (root->root_key.objectid !=
 8755			    btrfs_header_owner(path->nodes[level])) {
 8756				btrfs_err(root->fs_info,
 8757						"mismatched block owner");
 8758				ret = -EIO;
 8759				goto out_unlock;
 8760			}
 8761			parent = 0;
 8762		}
 8763
 8764		if (need_account) {
 8765			ret = btrfs_qgroup_trace_subtree(trans, root, next,
 8766							 generation, level - 1);
 8767			if (ret) {
 8768				btrfs_err_rl(fs_info,
 8769					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
 8770					     ret);
 8771			}
 8772		}
 8773		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
 8774					parent, root->root_key.objectid,
 8775					level - 1, 0);
 8776		if (ret)
 8777			goto out_unlock;
 8778	}
 8779
 8780	*lookup_info = 1;
 8781	ret = 1;
 8782
 8783out_unlock:
 8784	btrfs_tree_unlock(next);
 8785	free_extent_buffer(next);
 8786
 8787	return ret;
 8788}
 8789
 8790/*
 8791 * helper to process tree block while walking up the tree.
 8792 *
 8793 * when wc->stage == DROP_REFERENCE, this function drops
 8794 * reference count on the block.
 8795 *
 8796 * when wc->stage == UPDATE_BACKREF, this function changes
 8797 * wc->stage back to DROP_REFERENCE if we changed wc->stage
 8798 * to UPDATE_BACKREF previously while processing the block.
 8799 *
 8800 * NOTE: return value 1 means we should stop walking up.
 8801 */
 8802static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
 8803				 struct btrfs_root *root,
 8804				 struct btrfs_path *path,
 8805				 struct walk_control *wc)
 8806{
 8807	struct btrfs_fs_info *fs_info = root->fs_info;
 8808	int ret;
 8809	int level = wc->level;
 8810	struct extent_buffer *eb = path->nodes[level];
 8811	u64 parent = 0;
 8812
 8813	if (wc->stage == UPDATE_BACKREF) {
 8814		BUG_ON(wc->shared_level < level);
 8815		if (level < wc->shared_level)
 8816			goto out;
 8817
 8818		ret = find_next_key(path, level + 1, &wc->update_progress);
 8819		if (ret > 0)
 8820			wc->update_ref = 0;
 8821
 8822		wc->stage = DROP_REFERENCE;
 8823		wc->shared_level = -1;
 8824		path->slots[level] = 0;
 8825
 8826		/*
 8827		 * check reference count again if the block isn't locked.
 8828		 * we should start walking down the tree again if reference
 8829		 * count is one.
 8830		 */
 8831		if (!path->locks[level]) {
 8832			BUG_ON(level == 0);
 8833			btrfs_tree_lock(eb);
 8834			btrfs_set_lock_blocking(eb);
 8835			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8836
 8837			ret = btrfs_lookup_extent_info(trans, fs_info,
 8838						       eb->start, level, 1,
 8839						       &wc->refs[level],
 8840						       &wc->flags[level]);
 
 8841			if (ret < 0) {
 8842				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8843				path->locks[level] = 0;
 8844				return ret;
 8845			}
 8846			BUG_ON(wc->refs[level] == 0);
 
 
 
 
 
 8847			if (wc->refs[level] == 1) {
 8848				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8849				path->locks[level] = 0;
 8850				return 1;
 8851			}
 8852		}
 8853	}
 8854
 8855	/* wc->stage == DROP_REFERENCE */
 8856	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
 8857
 8858	if (wc->refs[level] == 1) {
 8859		if (level == 0) {
 8860			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8861				ret = btrfs_dec_ref(trans, root, eb, 1);
 8862			else
 8863				ret = btrfs_dec_ref(trans, root, eb, 0);
 8864			BUG_ON(ret); /* -ENOMEM */
 8865			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
 8866			if (ret) {
 8867				btrfs_err_rl(fs_info,
 8868					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
 
 
 
 
 
 
 8869					     ret);
 
 8870			}
 8871		}
 8872		/* make block locked assertion in clean_tree_block happy */
 8873		if (!path->locks[level] &&
 8874		    btrfs_header_generation(eb) == trans->transid) {
 8875			btrfs_tree_lock(eb);
 8876			btrfs_set_lock_blocking(eb);
 8877			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8878		}
 8879		clean_tree_block(trans, fs_info, eb);
 8880	}
 8881
 8882	if (eb == root->node) {
 8883		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8884			parent = eb->start;
 8885		else
 8886			BUG_ON(root->root_key.objectid !=
 8887			       btrfs_header_owner(eb));
 8888	} else {
 8889		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8890			parent = path->nodes[level + 1]->start;
 8891		else
 8892			BUG_ON(root->root_key.objectid !=
 8893			       btrfs_header_owner(path->nodes[level + 1]));
 8894	}
 8895
 8896	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 
 
 
 8897out:
 8898	wc->refs[level] = 0;
 8899	wc->flags[level] = 0;
 8900	return 0;
 
 
 
 
 
 8901}
 8902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8903static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
 8904				   struct btrfs_root *root,
 8905				   struct btrfs_path *path,
 8906				   struct walk_control *wc)
 8907{
 8908	int level = wc->level;
 8909	int lookup_info = 1;
 8910	int ret;
 8911
 
 8912	while (level >= 0) {
 8913		ret = walk_down_proc(trans, root, path, wc, lookup_info);
 8914		if (ret > 0)
 8915			break;
 8916
 8917		if (level == 0)
 8918			break;
 8919
 8920		if (path->slots[level] >=
 8921		    btrfs_header_nritems(path->nodes[level]))
 8922			break;
 8923
 8924		ret = do_walk_down(trans, root, path, wc, &lookup_info);
 8925		if (ret > 0) {
 8926			path->slots[level]++;
 8927			continue;
 8928		} else if (ret < 0)
 8929			return ret;
 8930		level = wc->level;
 8931	}
 8932	return 0;
 8933}
 8934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8935static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
 8936				 struct btrfs_root *root,
 8937				 struct btrfs_path *path,
 8938				 struct walk_control *wc, int max_level)
 8939{
 8940	int level = wc->level;
 8941	int ret;
 8942
 8943	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
 8944	while (level < max_level && path->nodes[level]) {
 8945		wc->level = level;
 8946		if (path->slots[level] + 1 <
 8947		    btrfs_header_nritems(path->nodes[level])) {
 8948			path->slots[level]++;
 8949			return 0;
 8950		} else {
 8951			ret = walk_up_proc(trans, root, path, wc);
 8952			if (ret > 0)
 8953				return 0;
 
 
 8954
 8955			if (path->locks[level]) {
 8956				btrfs_tree_unlock_rw(path->nodes[level],
 8957						     path->locks[level]);
 8958				path->locks[level] = 0;
 8959			}
 8960			free_extent_buffer(path->nodes[level]);
 8961			path->nodes[level] = NULL;
 8962			level++;
 8963		}
 8964	}
 8965	return 1;
 8966}
 8967
 8968/*
 8969 * drop a subvolume tree.
 8970 *
 8971 * this function traverses the tree freeing any blocks that only
 8972 * referenced by the tree.
 8973 *
 8974 * when a shared tree block is found. this function decreases its
 8975 * reference count by one. if update_ref is true, this function
 8976 * also make sure backrefs for the shared block and all lower level
 8977 * blocks are properly updated.
 8978 *
 8979 * If called with for_reloc == 0, may exit early with -EAGAIN
 8980 */
 8981int btrfs_drop_snapshot(struct btrfs_root *root,
 8982			 struct btrfs_block_rsv *block_rsv, int update_ref,
 8983			 int for_reloc)
 8984{
 
 8985	struct btrfs_fs_info *fs_info = root->fs_info;
 8986	struct btrfs_path *path;
 8987	struct btrfs_trans_handle *trans;
 8988	struct btrfs_root *tree_root = fs_info->tree_root;
 8989	struct btrfs_root_item *root_item = &root->root_item;
 8990	struct walk_control *wc;
 8991	struct btrfs_key key;
 8992	int err = 0;
 8993	int ret;
 8994	int level;
 8995	bool root_dropped = false;
 
 8996
 8997	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
 8998
 8999	path = btrfs_alloc_path();
 9000	if (!path) {
 9001		err = -ENOMEM;
 9002		goto out;
 9003	}
 9004
 9005	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 9006	if (!wc) {
 9007		btrfs_free_path(path);
 9008		err = -ENOMEM;
 9009		goto out;
 9010	}
 9011
 9012	trans = btrfs_start_transaction(tree_root, 0);
 
 
 
 
 
 
 
 9013	if (IS_ERR(trans)) {
 9014		err = PTR_ERR(trans);
 9015		goto out_free;
 9016	}
 9017
 9018	if (block_rsv)
 9019		trans->block_rsv = block_rsv;
 
 
 
 
 
 
 
 
 
 
 
 
 9020
 9021	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
 9022		level = btrfs_header_level(root->node);
 9023		path->nodes[level] = btrfs_lock_root_node(root);
 9024		btrfs_set_lock_blocking(path->nodes[level]);
 9025		path->slots[level] = 0;
 9026		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9027		memset(&wc->update_progress, 0,
 9028		       sizeof(wc->update_progress));
 9029	} else {
 9030		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
 9031		memcpy(&wc->update_progress, &key,
 9032		       sizeof(wc->update_progress));
 9033
 9034		level = root_item->drop_level;
 9035		BUG_ON(level == 0);
 9036		path->lowest_level = level;
 9037		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 9038		path->lowest_level = 0;
 9039		if (ret < 0) {
 9040			err = ret;
 9041			goto out_end_trans;
 9042		}
 9043		WARN_ON(ret > 0);
 
 9044
 9045		/*
 9046		 * unlock our path, this is safe because only this
 9047		 * function is allowed to delete this snapshot
 9048		 */
 9049		btrfs_unlock_up_safe(path, 0);
 9050
 9051		level = btrfs_header_level(root->node);
 9052		while (1) {
 9053			btrfs_tree_lock(path->nodes[level]);
 9054			btrfs_set_lock_blocking(path->nodes[level]);
 9055			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9056
 
 
 
 
 9057			ret = btrfs_lookup_extent_info(trans, fs_info,
 9058						path->nodes[level]->start,
 9059						level, 1, &wc->refs[level],
 9060						&wc->flags[level]);
 9061			if (ret < 0) {
 9062				err = ret;
 9063				goto out_end_trans;
 9064			}
 9065			BUG_ON(wc->refs[level] == 0);
 9066
 9067			if (level == root_item->drop_level)
 9068				break;
 9069
 9070			btrfs_tree_unlock(path->nodes[level]);
 9071			path->locks[level] = 0;
 9072			WARN_ON(wc->refs[level] != 1);
 9073			level--;
 9074		}
 9075	}
 9076
 
 9077	wc->level = level;
 9078	wc->shared_level = -1;
 9079	wc->stage = DROP_REFERENCE;
 9080	wc->update_ref = update_ref;
 9081	wc->keep_locks = 0;
 9082	wc->for_reloc = for_reloc;
 9083	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 9084
 9085	while (1) {
 9086
 9087		ret = walk_down_tree(trans, root, path, wc);
 9088		if (ret < 0) {
 9089			err = ret;
 9090			break;
 9091		}
 9092
 9093		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
 9094		if (ret < 0) {
 9095			err = ret;
 9096			break;
 9097		}
 9098
 9099		if (ret > 0) {
 9100			BUG_ON(wc->stage != DROP_REFERENCE);
 
 9101			break;
 9102		}
 9103
 9104		if (wc->stage == DROP_REFERENCE) {
 9105			level = wc->level;
 9106			btrfs_node_key(path->nodes[level],
 9107				       &root_item->drop_progress,
 9108				       path->slots[level]);
 9109			root_item->drop_level = level;
 9110		}
 
 
 9111
 9112		BUG_ON(wc->level == 0);
 9113		if (btrfs_should_end_transaction(trans) ||
 9114		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
 9115			ret = btrfs_update_root(trans, tree_root,
 9116						&root->root_key,
 9117						root_item);
 9118			if (ret) {
 9119				btrfs_abort_transaction(trans, ret);
 9120				err = ret;
 9121				goto out_end_trans;
 9122			}
 9123
 
 
 
 9124			btrfs_end_transaction_throttle(trans);
 9125			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
 9126				btrfs_debug(fs_info,
 9127					    "drop snapshot early exit");
 9128				err = -EAGAIN;
 9129				goto out_free;
 9130			}
 9131
 9132			trans = btrfs_start_transaction(tree_root, 0);
 
 
 
 
 
 
 
 
 9133			if (IS_ERR(trans)) {
 9134				err = PTR_ERR(trans);
 9135				goto out_free;
 9136			}
 9137			if (block_rsv)
 9138				trans->block_rsv = block_rsv;
 9139		}
 9140	}
 9141	btrfs_release_path(path);
 9142	if (err)
 9143		goto out_end_trans;
 9144
 9145	ret = btrfs_del_root(trans, tree_root, &root->root_key);
 9146	if (ret) {
 9147		btrfs_abort_transaction(trans, ret);
 9148		goto out_end_trans;
 9149	}
 9150
 9151	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
 9152		ret = btrfs_find_root(tree_root, &root->root_key, path,
 9153				      NULL, NULL);
 9154		if (ret < 0) {
 9155			btrfs_abort_transaction(trans, ret);
 9156			err = ret;
 9157			goto out_end_trans;
 9158		} else if (ret > 0) {
 9159			/* if we fail to delete the orphan item this time
 
 
 9160			 * around, it'll get picked up the next time.
 9161			 *
 9162			 * The most common failure here is just -ENOENT.
 9163			 */
 9164			btrfs_del_orphan_item(trans, tree_root,
 9165					      root->root_key.objectid);
 9166		}
 9167	}
 9168
 9169	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 
 
 
 
 
 
 
 
 9170		btrfs_add_dropped_root(trans, root);
 9171	} else {
 9172		free_extent_buffer(root->node);
 9173		free_extent_buffer(root->commit_root);
 9174		btrfs_put_fs_root(root);
 9175	}
 9176	root_dropped = true;
 9177out_end_trans:
 
 
 
 9178	btrfs_end_transaction_throttle(trans);
 9179out_free:
 9180	kfree(wc);
 9181	btrfs_free_path(path);
 9182out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9183	/*
 9184	 * So if we need to stop dropping the snapshot for whatever reason we
 9185	 * need to make sure to add it back to the dead root list so that we
 9186	 * keep trying to do the work later.  This also cleans up roots if we
 9187	 * don't have it in the radix (like when we recover after a power fail
 9188	 * or unmount) so we don't leak memory.
 9189	 */
 9190	if (!for_reloc && root_dropped == false)
 9191		btrfs_add_dead_root(root);
 9192	if (err && err != -EAGAIN)
 9193		btrfs_handle_fs_error(fs_info, err, NULL);
 9194	return err;
 9195}
 9196
 9197/*
 9198 * drop subtree rooted at tree block 'node'.
 9199 *
 9200 * NOTE: this function will unlock and release tree block 'node'
 9201 * only used by relocation code
 9202 */
 9203int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
 9204			struct btrfs_root *root,
 9205			struct extent_buffer *node,
 9206			struct extent_buffer *parent)
 9207{
 9208	struct btrfs_fs_info *fs_info = root->fs_info;
 9209	struct btrfs_path *path;
 9210	struct walk_control *wc;
 9211	int level;
 9212	int parent_level;
 9213	int ret = 0;
 9214	int wret;
 9215
 9216	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
 9217
 9218	path = btrfs_alloc_path();
 9219	if (!path)
 9220		return -ENOMEM;
 9221
 9222	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 9223	if (!wc) {
 9224		btrfs_free_path(path);
 9225		return -ENOMEM;
 9226	}
 9227
 9228	btrfs_assert_tree_locked(parent);
 9229	parent_level = btrfs_header_level(parent);
 9230	extent_buffer_get(parent);
 9231	path->nodes[parent_level] = parent;
 9232	path->slots[parent_level] = btrfs_header_nritems(parent);
 9233
 9234	btrfs_assert_tree_locked(node);
 9235	level = btrfs_header_level(node);
 9236	path->nodes[level] = node;
 9237	path->slots[level] = 0;
 9238	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9239
 9240	wc->refs[parent_level] = 1;
 9241	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 9242	wc->level = level;
 9243	wc->shared_level = -1;
 9244	wc->stage = DROP_REFERENCE;
 9245	wc->update_ref = 0;
 9246	wc->keep_locks = 1;
 9247	wc->for_reloc = 1;
 9248	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 9249
 9250	while (1) {
 9251		wret = walk_down_tree(trans, root, path, wc);
 9252		if (wret < 0) {
 9253			ret = wret;
 9254			break;
 9255		}
 9256
 9257		wret = walk_up_tree(trans, root, path, wc, parent_level);
 9258		if (wret < 0)
 9259			ret = wret;
 9260		if (wret != 0)
 9261			break;
 9262	}
 9263
 9264	kfree(wc);
 9265	btrfs_free_path(path);
 9266	return ret;
 9267}
 9268
 9269static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
 9270{
 9271	u64 num_devices;
 9272	u64 stripped;
 9273
 9274	/*
 9275	 * if restripe for this chunk_type is on pick target profile and
 9276	 * return, otherwise do the usual balance
 9277	 */
 9278	stripped = get_restripe_target(fs_info, flags);
 9279	if (stripped)
 9280		return extended_to_chunk(stripped);
 9281
 9282	num_devices = fs_info->fs_devices->rw_devices;
 9283
 9284	stripped = BTRFS_BLOCK_GROUP_RAID0 |
 9285		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
 9286		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
 9287
 9288	if (num_devices == 1) {
 9289		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9290		stripped = flags & ~stripped;
 9291
 9292		/* turn raid0 into single device chunks */
 9293		if (flags & BTRFS_BLOCK_GROUP_RAID0)
 9294			return stripped;
 9295
 9296		/* turn mirroring into duplication */
 9297		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9298			     BTRFS_BLOCK_GROUP_RAID10))
 9299			return stripped | BTRFS_BLOCK_GROUP_DUP;
 9300	} else {
 9301		/* they already had raid on here, just return */
 9302		if (flags & stripped)
 9303			return flags;
 9304
 9305		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9306		stripped = flags & ~stripped;
 9307
 9308		/* switch duplicated blocks with raid1 */
 9309		if (flags & BTRFS_BLOCK_GROUP_DUP)
 9310			return stripped | BTRFS_BLOCK_GROUP_RAID1;
 9311
 9312		/* this is drive concat, leave it alone */
 9313	}
 9314
 9315	return flags;
 9316}
 9317
 9318static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
 9319{
 9320	struct btrfs_space_info *sinfo = cache->space_info;
 9321	u64 num_bytes;
 9322	u64 min_allocable_bytes;
 9323	int ret = -ENOSPC;
 9324
 9325	/*
 9326	 * We need some metadata space and system metadata space for
 9327	 * allocating chunks in some corner cases until we force to set
 9328	 * it to be readonly.
 9329	 */
 9330	if ((sinfo->flags &
 9331	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
 9332	    !force)
 9333		min_allocable_bytes = SZ_1M;
 9334	else
 9335		min_allocable_bytes = 0;
 9336
 9337	spin_lock(&sinfo->lock);
 9338	spin_lock(&cache->lock);
 9339
 9340	if (cache->ro) {
 9341		cache->ro++;
 9342		ret = 0;
 9343		goto out;
 9344	}
 9345
 9346	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
 9347		    cache->bytes_super - btrfs_block_group_used(&cache->item);
 9348
 9349	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
 9350	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
 9351	    min_allocable_bytes <= sinfo->total_bytes) {
 9352		sinfo->bytes_readonly += num_bytes;
 9353		cache->ro++;
 9354		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
 9355		ret = 0;
 9356	}
 9357out:
 9358	spin_unlock(&cache->lock);
 9359	spin_unlock(&sinfo->lock);
 9360	return ret;
 9361}
 9362
 9363int btrfs_inc_block_group_ro(struct btrfs_root *root,
 9364			     struct btrfs_block_group_cache *cache)
 9365
 9366{
 9367	struct btrfs_fs_info *fs_info = root->fs_info;
 9368	struct btrfs_trans_handle *trans;
 9369	u64 alloc_flags;
 9370	int ret;
 9371
 9372again:
 9373	trans = btrfs_join_transaction(root);
 9374	if (IS_ERR(trans))
 9375		return PTR_ERR(trans);
 9376
 9377	/*
 9378	 * we're not allowed to set block groups readonly after the dirty
 9379	 * block groups cache has started writing.  If it already started,
 9380	 * back off and let this transaction commit
 9381	 */
 9382	mutex_lock(&fs_info->ro_block_group_mutex);
 9383	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
 9384		u64 transid = trans->transid;
 9385
 9386		mutex_unlock(&fs_info->ro_block_group_mutex);
 9387		btrfs_end_transaction(trans);
 9388
 9389		ret = btrfs_wait_for_commit(fs_info, transid);
 9390		if (ret)
 9391			return ret;
 9392		goto again;
 9393	}
 9394
 9395	/*
 9396	 * if we are changing raid levels, try to allocate a corresponding
 9397	 * block group with the new raid level.
 9398	 */
 9399	alloc_flags = update_block_group_flags(fs_info, cache->flags);
 9400	if (alloc_flags != cache->flags) {
 9401		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
 9402				     CHUNK_ALLOC_FORCE);
 9403		/*
 9404		 * ENOSPC is allowed here, we may have enough space
 9405		 * already allocated at the new raid level to
 9406		 * carry on
 9407		 */
 9408		if (ret == -ENOSPC)
 9409			ret = 0;
 9410		if (ret < 0)
 9411			goto out;
 9412	}
 9413
 9414	ret = inc_block_group_ro(cache, 0);
 9415	if (!ret)
 9416		goto out;
 9417	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
 9418	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
 9419			     CHUNK_ALLOC_FORCE);
 9420	if (ret < 0)
 9421		goto out;
 9422	ret = inc_block_group_ro(cache, 0);
 9423out:
 9424	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
 9425		alloc_flags = update_block_group_flags(fs_info, cache->flags);
 9426		mutex_lock(&fs_info->chunk_mutex);
 9427		check_system_chunk(trans, fs_info, alloc_flags);
 9428		mutex_unlock(&fs_info->chunk_mutex);
 9429	}
 9430	mutex_unlock(&fs_info->ro_block_group_mutex);
 9431
 9432	btrfs_end_transaction(trans);
 9433	return ret;
 9434}
 9435
 9436int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
 9437			    struct btrfs_fs_info *fs_info, u64 type)
 9438{
 9439	u64 alloc_flags = get_alloc_profile(fs_info, type);
 9440
 9441	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
 9442}
 9443
 9444/*
 9445 * helper to account the unused space of all the readonly block group in the
 9446 * space_info. takes mirrors into account.
 9447 */
 9448u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
 9449{
 9450	struct btrfs_block_group_cache *block_group;
 9451	u64 free_bytes = 0;
 9452	int factor;
 9453
 9454	/* It's df, we don't care if it's racy */
 9455	if (list_empty(&sinfo->ro_bgs))
 9456		return 0;
 9457
 9458	spin_lock(&sinfo->lock);
 9459	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
 9460		spin_lock(&block_group->lock);
 9461
 9462		if (!block_group->ro) {
 9463			spin_unlock(&block_group->lock);
 9464			continue;
 9465		}
 9466
 9467		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9468					  BTRFS_BLOCK_GROUP_RAID10 |
 9469					  BTRFS_BLOCK_GROUP_DUP))
 9470			factor = 2;
 9471		else
 9472			factor = 1;
 9473
 9474		free_bytes += (block_group->key.offset -
 9475			       btrfs_block_group_used(&block_group->item)) *
 9476			       factor;
 9477
 9478		spin_unlock(&block_group->lock);
 9479	}
 9480	spin_unlock(&sinfo->lock);
 9481
 9482	return free_bytes;
 9483}
 9484
 9485void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
 9486{
 9487	struct btrfs_space_info *sinfo = cache->space_info;
 9488	u64 num_bytes;
 9489
 9490	BUG_ON(!cache->ro);
 9491
 9492	spin_lock(&sinfo->lock);
 9493	spin_lock(&cache->lock);
 9494	if (!--cache->ro) {
 9495		num_bytes = cache->key.offset - cache->reserved -
 9496			    cache->pinned - cache->bytes_super -
 9497			    btrfs_block_group_used(&cache->item);
 9498		sinfo->bytes_readonly -= num_bytes;
 9499		list_del_init(&cache->ro_list);
 9500	}
 9501	spin_unlock(&cache->lock);
 9502	spin_unlock(&sinfo->lock);
 9503}
 9504
 9505/*
 9506 * checks to see if its even possible to relocate this block group.
 9507 *
 9508 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
 9509 * ok to go ahead and try.
 9510 */
 9511int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
 9512{
 9513	struct btrfs_root *root = fs_info->extent_root;
 9514	struct btrfs_block_group_cache *block_group;
 9515	struct btrfs_space_info *space_info;
 9516	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 9517	struct btrfs_device *device;
 9518	struct btrfs_trans_handle *trans;
 9519	u64 min_free;
 9520	u64 dev_min = 1;
 9521	u64 dev_nr = 0;
 9522	u64 target;
 9523	int debug;
 9524	int index;
 9525	int full = 0;
 9526	int ret = 0;
 9527
 9528	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
 9529
 9530	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 9531
 9532	/* odd, couldn't find the block group, leave it alone */
 9533	if (!block_group) {
 9534		if (debug)
 9535			btrfs_warn(fs_info,
 9536				   "can't find block group for bytenr %llu",
 9537				   bytenr);
 9538		return -1;
 9539	}
 9540
 9541	min_free = btrfs_block_group_used(&block_group->item);
 9542
 9543	/* no bytes used, we're good */
 9544	if (!min_free)
 9545		goto out;
 9546
 9547	space_info = block_group->space_info;
 9548	spin_lock(&space_info->lock);
 9549
 9550	full = space_info->full;
 9551
 9552	/*
 9553	 * if this is the last block group we have in this space, we can't
 9554	 * relocate it unless we're able to allocate a new chunk below.
 9555	 *
 9556	 * Otherwise, we need to make sure we have room in the space to handle
 9557	 * all of the extents from this block group.  If we can, we're good
 9558	 */
 9559	if ((space_info->total_bytes != block_group->key.offset) &&
 9560	    (space_info->bytes_used + space_info->bytes_reserved +
 9561	     space_info->bytes_pinned + space_info->bytes_readonly +
 9562	     min_free < space_info->total_bytes)) {
 9563		spin_unlock(&space_info->lock);
 9564		goto out;
 9565	}
 9566	spin_unlock(&space_info->lock);
 9567
 9568	/*
 9569	 * ok we don't have enough space, but maybe we have free space on our
 9570	 * devices to allocate new chunks for relocation, so loop through our
 9571	 * alloc devices and guess if we have enough space.  if this block
 9572	 * group is going to be restriped, run checks against the target
 9573	 * profile instead of the current one.
 9574	 */
 9575	ret = -1;
 9576
 9577	/*
 9578	 * index:
 9579	 *      0: raid10
 9580	 *      1: raid1
 9581	 *      2: dup
 9582	 *      3: raid0
 9583	 *      4: single
 9584	 */
 9585	target = get_restripe_target(fs_info, block_group->flags);
 9586	if (target) {
 9587		index = __get_raid_index(extended_to_chunk(target));
 9588	} else {
 9589		/*
 9590		 * this is just a balance, so if we were marked as full
 9591		 * we know there is no space for a new chunk
 9592		 */
 9593		if (full) {
 9594			if (debug)
 9595				btrfs_warn(fs_info,
 9596					   "no space to alloc new chunk for block group %llu",
 9597					   block_group->key.objectid);
 9598			goto out;
 9599		}
 9600
 9601		index = get_block_group_index(block_group);
 9602	}
 9603
 9604	if (index == BTRFS_RAID_RAID10) {
 9605		dev_min = 4;
 9606		/* Divide by 2 */
 9607		min_free >>= 1;
 9608	} else if (index == BTRFS_RAID_RAID1) {
 9609		dev_min = 2;
 9610	} else if (index == BTRFS_RAID_DUP) {
 9611		/* Multiply by 2 */
 9612		min_free <<= 1;
 9613	} else if (index == BTRFS_RAID_RAID0) {
 9614		dev_min = fs_devices->rw_devices;
 9615		min_free = div64_u64(min_free, dev_min);
 9616	}
 9617
 9618	/* We need to do this so that we can look at pending chunks */
 9619	trans = btrfs_join_transaction(root);
 9620	if (IS_ERR(trans)) {
 9621		ret = PTR_ERR(trans);
 9622		goto out;
 9623	}
 9624
 9625	mutex_lock(&fs_info->chunk_mutex);
 9626	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 9627		u64 dev_offset;
 9628
 9629		/*
 9630		 * check to make sure we can actually find a chunk with enough
 9631		 * space to fit our block group in.
 9632		 */
 9633		if (device->total_bytes > device->bytes_used + min_free &&
 9634		    !device->is_tgtdev_for_dev_replace) {
 9635			ret = find_free_dev_extent(trans, device, min_free,
 9636						   &dev_offset, NULL);
 9637			if (!ret)
 9638				dev_nr++;
 9639
 9640			if (dev_nr >= dev_min)
 9641				break;
 9642
 9643			ret = -1;
 9644		}
 9645	}
 9646	if (debug && ret == -1)
 9647		btrfs_warn(fs_info,
 9648			   "no space to allocate a new chunk for block group %llu",
 9649			   block_group->key.objectid);
 9650	mutex_unlock(&fs_info->chunk_mutex);
 9651	btrfs_end_transaction(trans);
 9652out:
 9653	btrfs_put_block_group(block_group);
 9654	return ret;
 9655}
 9656
 9657static int find_first_block_group(struct btrfs_fs_info *fs_info,
 9658				  struct btrfs_path *path,
 9659				  struct btrfs_key *key)
 9660{
 9661	struct btrfs_root *root = fs_info->extent_root;
 9662	int ret = 0;
 9663	struct btrfs_key found_key;
 9664	struct extent_buffer *leaf;
 9665	int slot;
 9666
 9667	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 9668	if (ret < 0)
 9669		goto out;
 9670
 9671	while (1) {
 9672		slot = path->slots[0];
 9673		leaf = path->nodes[0];
 9674		if (slot >= btrfs_header_nritems(leaf)) {
 9675			ret = btrfs_next_leaf(root, path);
 9676			if (ret == 0)
 9677				continue;
 9678			if (ret < 0)
 9679				goto out;
 9680			break;
 9681		}
 9682		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 9683
 9684		if (found_key.objectid >= key->objectid &&
 9685		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
 9686			struct extent_map_tree *em_tree;
 9687			struct extent_map *em;
 9688
 9689			em_tree = &root->fs_info->mapping_tree.map_tree;
 9690			read_lock(&em_tree->lock);
 9691			em = lookup_extent_mapping(em_tree, found_key.objectid,
 9692						   found_key.offset);
 9693			read_unlock(&em_tree->lock);
 9694			if (!em) {
 9695				btrfs_err(fs_info,
 9696			"logical %llu len %llu found bg but no related chunk",
 9697					  found_key.objectid, found_key.offset);
 9698				ret = -ENOENT;
 9699			} else {
 9700				ret = 0;
 9701			}
 9702			free_extent_map(em);
 9703			goto out;
 9704		}
 9705		path->slots[0]++;
 9706	}
 9707out:
 9708	return ret;
 9709}
 9710
 9711void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
 9712{
 9713	struct btrfs_block_group_cache *block_group;
 9714	u64 last = 0;
 9715
 9716	while (1) {
 9717		struct inode *inode;
 9718
 9719		block_group = btrfs_lookup_first_block_group(info, last);
 9720		while (block_group) {
 9721			spin_lock(&block_group->lock);
 9722			if (block_group->iref)
 9723				break;
 9724			spin_unlock(&block_group->lock);
 9725			block_group = next_block_group(info, block_group);
 9726		}
 9727		if (!block_group) {
 9728			if (last == 0)
 9729				break;
 9730			last = 0;
 9731			continue;
 9732		}
 9733
 9734		inode = block_group->inode;
 9735		block_group->iref = 0;
 9736		block_group->inode = NULL;
 9737		spin_unlock(&block_group->lock);
 9738		ASSERT(block_group->io_ctl.inode == NULL);
 9739		iput(inode);
 9740		last = block_group->key.objectid + block_group->key.offset;
 9741		btrfs_put_block_group(block_group);
 9742	}
 9743}
 9744
 9745int btrfs_free_block_groups(struct btrfs_fs_info *info)
 9746{
 9747	struct btrfs_block_group_cache *block_group;
 9748	struct btrfs_space_info *space_info;
 9749	struct btrfs_caching_control *caching_ctl;
 9750	struct rb_node *n;
 9751
 9752	down_write(&info->commit_root_sem);
 9753	while (!list_empty(&info->caching_block_groups)) {
 9754		caching_ctl = list_entry(info->caching_block_groups.next,
 9755					 struct btrfs_caching_control, list);
 9756		list_del(&caching_ctl->list);
 9757		put_caching_control(caching_ctl);
 9758	}
 9759	up_write(&info->commit_root_sem);
 9760
 9761	spin_lock(&info->unused_bgs_lock);
 9762	while (!list_empty(&info->unused_bgs)) {
 9763		block_group = list_first_entry(&info->unused_bgs,
 9764					       struct btrfs_block_group_cache,
 9765					       bg_list);
 9766		list_del_init(&block_group->bg_list);
 9767		btrfs_put_block_group(block_group);
 9768	}
 9769	spin_unlock(&info->unused_bgs_lock);
 9770
 9771	spin_lock(&info->block_group_cache_lock);
 9772	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
 9773		block_group = rb_entry(n, struct btrfs_block_group_cache,
 9774				       cache_node);
 9775		rb_erase(&block_group->cache_node,
 9776			 &info->block_group_cache_tree);
 9777		RB_CLEAR_NODE(&block_group->cache_node);
 9778		spin_unlock(&info->block_group_cache_lock);
 9779
 9780		down_write(&block_group->space_info->groups_sem);
 9781		list_del(&block_group->list);
 9782		up_write(&block_group->space_info->groups_sem);
 9783
 9784		if (block_group->cached == BTRFS_CACHE_STARTED)
 9785			wait_block_group_cache_done(block_group);
 9786
 9787		/*
 9788		 * We haven't cached this block group, which means we could
 9789		 * possibly have excluded extents on this block group.
 9790		 */
 9791		if (block_group->cached == BTRFS_CACHE_NO ||
 9792		    block_group->cached == BTRFS_CACHE_ERROR)
 9793			free_excluded_extents(info, block_group);
 9794
 9795		btrfs_remove_free_space_cache(block_group);
 9796		ASSERT(list_empty(&block_group->dirty_list));
 9797		ASSERT(list_empty(&block_group->io_list));
 9798		ASSERT(list_empty(&block_group->bg_list));
 9799		ASSERT(atomic_read(&block_group->count) == 1);
 9800		btrfs_put_block_group(block_group);
 9801
 9802		spin_lock(&info->block_group_cache_lock);
 9803	}
 9804	spin_unlock(&info->block_group_cache_lock);
 9805
 9806	/* now that all the block groups are freed, go through and
 9807	 * free all the space_info structs.  This is only called during
 9808	 * the final stages of unmount, and so we know nobody is
 9809	 * using them.  We call synchronize_rcu() once before we start,
 9810	 * just to be on the safe side.
 9811	 */
 9812	synchronize_rcu();
 9813
 9814	release_global_block_rsv(info);
 9815
 9816	while (!list_empty(&info->space_info)) {
 9817		int i;
 9818
 9819		space_info = list_entry(info->space_info.next,
 9820					struct btrfs_space_info,
 9821					list);
 9822
 9823		/*
 9824		 * Do not hide this behind enospc_debug, this is actually
 9825		 * important and indicates a real bug if this happens.
 9826		 */
 9827		if (WARN_ON(space_info->bytes_pinned > 0 ||
 9828			    space_info->bytes_reserved > 0 ||
 9829			    space_info->bytes_may_use > 0))
 9830			dump_space_info(info, space_info, 0, 0);
 9831		list_del(&space_info->list);
 9832		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
 9833			struct kobject *kobj;
 9834			kobj = space_info->block_group_kobjs[i];
 9835			space_info->block_group_kobjs[i] = NULL;
 9836			if (kobj) {
 9837				kobject_del(kobj);
 9838				kobject_put(kobj);
 9839			}
 9840		}
 9841		kobject_del(&space_info->kobj);
 9842		kobject_put(&space_info->kobj);
 9843	}
 9844	return 0;
 9845}
 9846
 9847static void __link_block_group(struct btrfs_space_info *space_info,
 9848			       struct btrfs_block_group_cache *cache)
 9849{
 9850	int index = get_block_group_index(cache);
 9851	bool first = false;
 9852
 9853	down_write(&space_info->groups_sem);
 9854	if (list_empty(&space_info->block_groups[index]))
 9855		first = true;
 9856	list_add_tail(&cache->list, &space_info->block_groups[index]);
 9857	up_write(&space_info->groups_sem);
 9858
 9859	if (first) {
 9860		struct raid_kobject *rkobj;
 9861		int ret;
 9862
 9863		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
 9864		if (!rkobj)
 9865			goto out_err;
 9866		rkobj->raid_type = index;
 9867		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
 9868		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
 9869				  "%s", get_raid_name(index));
 9870		if (ret) {
 9871			kobject_put(&rkobj->kobj);
 9872			goto out_err;
 9873		}
 9874		space_info->block_group_kobjs[index] = &rkobj->kobj;
 9875	}
 9876
 9877	return;
 9878out_err:
 9879	btrfs_warn(cache->fs_info,
 9880		   "failed to add kobject for block cache, ignoring");
 9881}
 9882
 9883static struct btrfs_block_group_cache *
 9884btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
 9885			       u64 start, u64 size)
 9886{
 9887	struct btrfs_block_group_cache *cache;
 9888
 9889	cache = kzalloc(sizeof(*cache), GFP_NOFS);
 9890	if (!cache)
 9891		return NULL;
 9892
 9893	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
 9894					GFP_NOFS);
 9895	if (!cache->free_space_ctl) {
 9896		kfree(cache);
 9897		return NULL;
 9898	}
 9899
 9900	cache->key.objectid = start;
 9901	cache->key.offset = size;
 9902	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9903
 9904	cache->sectorsize = fs_info->sectorsize;
 9905	cache->fs_info = fs_info;
 9906	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
 9907						       &fs_info->mapping_tree,
 9908						       start);
 9909	set_free_space_tree_thresholds(cache);
 9910
 9911	atomic_set(&cache->count, 1);
 9912	spin_lock_init(&cache->lock);
 9913	init_rwsem(&cache->data_rwsem);
 9914	INIT_LIST_HEAD(&cache->list);
 9915	INIT_LIST_HEAD(&cache->cluster_list);
 9916	INIT_LIST_HEAD(&cache->bg_list);
 9917	INIT_LIST_HEAD(&cache->ro_list);
 9918	INIT_LIST_HEAD(&cache->dirty_list);
 9919	INIT_LIST_HEAD(&cache->io_list);
 9920	btrfs_init_free_space_ctl(cache);
 9921	atomic_set(&cache->trimming, 0);
 9922	mutex_init(&cache->free_space_lock);
 9923
 9924	return cache;
 9925}
 9926
 9927int btrfs_read_block_groups(struct btrfs_fs_info *info)
 9928{
 9929	struct btrfs_path *path;
 9930	int ret;
 9931	struct btrfs_block_group_cache *cache;
 9932	struct btrfs_space_info *space_info;
 9933	struct btrfs_key key;
 9934	struct btrfs_key found_key;
 9935	struct extent_buffer *leaf;
 9936	int need_clear = 0;
 9937	u64 cache_gen;
 9938	u64 feature;
 9939	int mixed;
 9940
 9941	feature = btrfs_super_incompat_flags(info->super_copy);
 9942	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
 9943
 9944	key.objectid = 0;
 9945	key.offset = 0;
 9946	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9947	path = btrfs_alloc_path();
 9948	if (!path)
 9949		return -ENOMEM;
 9950	path->reada = READA_FORWARD;
 9951
 9952	cache_gen = btrfs_super_cache_generation(info->super_copy);
 9953	if (btrfs_test_opt(info, SPACE_CACHE) &&
 9954	    btrfs_super_generation(info->super_copy) != cache_gen)
 9955		need_clear = 1;
 9956	if (btrfs_test_opt(info, CLEAR_CACHE))
 9957		need_clear = 1;
 9958
 9959	while (1) {
 9960		ret = find_first_block_group(info, path, &key);
 9961		if (ret > 0)
 9962			break;
 9963		if (ret != 0)
 9964			goto error;
 9965
 9966		leaf = path->nodes[0];
 9967		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 9968
 9969		cache = btrfs_create_block_group_cache(info, found_key.objectid,
 9970						       found_key.offset);
 9971		if (!cache) {
 9972			ret = -ENOMEM;
 9973			goto error;
 9974		}
 9975
 9976		if (need_clear) {
 9977			/*
 9978			 * When we mount with old space cache, we need to
 9979			 * set BTRFS_DC_CLEAR and set dirty flag.
 9980			 *
 9981			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
 9982			 *    truncate the old free space cache inode and
 9983			 *    setup a new one.
 9984			 * b) Setting 'dirty flag' makes sure that we flush
 9985			 *    the new space cache info onto disk.
 9986			 */
 9987			if (btrfs_test_opt(info, SPACE_CACHE))
 9988				cache->disk_cache_state = BTRFS_DC_CLEAR;
 9989		}
 9990
 9991		read_extent_buffer(leaf, &cache->item,
 9992				   btrfs_item_ptr_offset(leaf, path->slots[0]),
 9993				   sizeof(cache->item));
 9994		cache->flags = btrfs_block_group_flags(&cache->item);
 9995		if (!mixed &&
 9996		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
 9997		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
 9998			btrfs_err(info,
 9999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10000				  cache->key.objectid);
10001			ret = -EINVAL;
10002			goto error;
10003		}
10004
10005		key.objectid = found_key.objectid + found_key.offset;
10006		btrfs_release_path(path);
10007
10008		/*
10009		 * We need to exclude the super stripes now so that the space
10010		 * info has super bytes accounted for, otherwise we'll think
10011		 * we have more space than we actually do.
10012		 */
10013		ret = exclude_super_stripes(info, cache);
10014		if (ret) {
10015			/*
10016			 * We may have excluded something, so call this just in
10017			 * case.
10018			 */
10019			free_excluded_extents(info, cache);
10020			btrfs_put_block_group(cache);
10021			goto error;
10022		}
10023
10024		/*
10025		 * check for two cases, either we are full, and therefore
10026		 * don't need to bother with the caching work since we won't
10027		 * find any space, or we are empty, and we can just add all
10028		 * the space in and be done with it.  This saves us _alot_ of
10029		 * time, particularly in the full case.
10030		 */
10031		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10032			cache->last_byte_to_unpin = (u64)-1;
10033			cache->cached = BTRFS_CACHE_FINISHED;
10034			free_excluded_extents(info, cache);
10035		} else if (btrfs_block_group_used(&cache->item) == 0) {
10036			cache->last_byte_to_unpin = (u64)-1;
10037			cache->cached = BTRFS_CACHE_FINISHED;
10038			add_new_free_space(cache, info,
10039					   found_key.objectid,
10040					   found_key.objectid +
10041					   found_key.offset);
10042			free_excluded_extents(info, cache);
10043		}
10044
10045		ret = btrfs_add_block_group_cache(info, cache);
10046		if (ret) {
10047			btrfs_remove_free_space_cache(cache);
10048			btrfs_put_block_group(cache);
10049			goto error;
10050		}
10051
10052		trace_btrfs_add_block_group(info, cache, 0);
10053		ret = update_space_info(info, cache->flags, found_key.offset,
10054					btrfs_block_group_used(&cache->item),
10055					cache->bytes_super, &space_info);
10056		if (ret) {
10057			btrfs_remove_free_space_cache(cache);
10058			spin_lock(&info->block_group_cache_lock);
10059			rb_erase(&cache->cache_node,
10060				 &info->block_group_cache_tree);
10061			RB_CLEAR_NODE(&cache->cache_node);
10062			spin_unlock(&info->block_group_cache_lock);
10063			btrfs_put_block_group(cache);
10064			goto error;
10065		}
10066
10067		cache->space_info = space_info;
10068
10069		__link_block_group(space_info, cache);
10070
10071		set_avail_alloc_bits(info, cache->flags);
10072		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10073			inc_block_group_ro(cache, 1);
10074		} else if (btrfs_block_group_used(&cache->item) == 0) {
10075			spin_lock(&info->unused_bgs_lock);
10076			/* Should always be true but just in case. */
10077			if (list_empty(&cache->bg_list)) {
10078				btrfs_get_block_group(cache);
10079				list_add_tail(&cache->bg_list,
10080					      &info->unused_bgs);
10081			}
10082			spin_unlock(&info->unused_bgs_lock);
10083		}
10084	}
10085
10086	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10087		if (!(get_alloc_profile(info, space_info->flags) &
10088		      (BTRFS_BLOCK_GROUP_RAID10 |
10089		       BTRFS_BLOCK_GROUP_RAID1 |
10090		       BTRFS_BLOCK_GROUP_RAID5 |
10091		       BTRFS_BLOCK_GROUP_RAID6 |
10092		       BTRFS_BLOCK_GROUP_DUP)))
10093			continue;
10094		/*
10095		 * avoid allocating from un-mirrored block group if there are
10096		 * mirrored block groups.
10097		 */
10098		list_for_each_entry(cache,
10099				&space_info->block_groups[BTRFS_RAID_RAID0],
10100				list)
10101			inc_block_group_ro(cache, 1);
10102		list_for_each_entry(cache,
10103				&space_info->block_groups[BTRFS_RAID_SINGLE],
10104				list)
10105			inc_block_group_ro(cache, 1);
10106	}
10107
10108	init_global_block_rsv(info);
10109	ret = 0;
10110error:
10111	btrfs_free_path(path);
10112	return ret;
10113}
10114
10115void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10116				       struct btrfs_fs_info *fs_info)
10117{
10118	struct btrfs_block_group_cache *block_group, *tmp;
10119	struct btrfs_root *extent_root = fs_info->extent_root;
10120	struct btrfs_block_group_item item;
10121	struct btrfs_key key;
10122	int ret = 0;
10123	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10124
10125	trans->can_flush_pending_bgs = false;
10126	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10127		if (ret)
10128			goto next;
10129
10130		spin_lock(&block_group->lock);
10131		memcpy(&item, &block_group->item, sizeof(item));
10132		memcpy(&key, &block_group->key, sizeof(key));
10133		spin_unlock(&block_group->lock);
10134
10135		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10136					sizeof(item));
10137		if (ret)
10138			btrfs_abort_transaction(trans, ret);
10139		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10140					       key.offset);
10141		if (ret)
10142			btrfs_abort_transaction(trans, ret);
10143		add_block_group_free_space(trans, fs_info, block_group);
10144		/* already aborted the transaction if it failed. */
10145next:
10146		list_del_init(&block_group->bg_list);
10147	}
10148	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10149}
10150
10151int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10152			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10153			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10154			   u64 size)
10155{
10156	struct btrfs_block_group_cache *cache;
10157	int ret;
10158
10159	btrfs_set_log_full_commit(fs_info, trans);
10160
10161	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10162	if (!cache)
10163		return -ENOMEM;
10164
10165	btrfs_set_block_group_used(&cache->item, bytes_used);
10166	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10167	btrfs_set_block_group_flags(&cache->item, type);
10168
10169	cache->flags = type;
10170	cache->last_byte_to_unpin = (u64)-1;
10171	cache->cached = BTRFS_CACHE_FINISHED;
10172	cache->needs_free_space = 1;
10173	ret = exclude_super_stripes(fs_info, cache);
10174	if (ret) {
10175		/*
10176		 * We may have excluded something, so call this just in
10177		 * case.
10178		 */
10179		free_excluded_extents(fs_info, cache);
10180		btrfs_put_block_group(cache);
10181		return ret;
10182	}
10183
10184	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10185
10186	free_excluded_extents(fs_info, cache);
10187
10188#ifdef CONFIG_BTRFS_DEBUG
10189	if (btrfs_should_fragment_free_space(cache)) {
10190		u64 new_bytes_used = size - bytes_used;
10191
10192		bytes_used += new_bytes_used >> 1;
10193		fragment_free_space(cache);
10194	}
10195#endif
10196	/*
10197	 * Call to ensure the corresponding space_info object is created and
10198	 * assigned to our block group, but don't update its counters just yet.
10199	 * We want our bg to be added to the rbtree with its ->space_info set.
10200	 */
10201	ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10202				&cache->space_info);
10203	if (ret) {
10204		btrfs_remove_free_space_cache(cache);
10205		btrfs_put_block_group(cache);
10206		return ret;
10207	}
10208
10209	ret = btrfs_add_block_group_cache(fs_info, cache);
10210	if (ret) {
10211		btrfs_remove_free_space_cache(cache);
10212		btrfs_put_block_group(cache);
10213		return ret;
10214	}
10215
10216	/*
10217	 * Now that our block group has its ->space_info set and is inserted in
10218	 * the rbtree, update the space info's counters.
10219	 */
10220	trace_btrfs_add_block_group(fs_info, cache, 1);
10221	ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10222				cache->bytes_super, &cache->space_info);
10223	if (ret) {
10224		btrfs_remove_free_space_cache(cache);
10225		spin_lock(&fs_info->block_group_cache_lock);
10226		rb_erase(&cache->cache_node,
10227			 &fs_info->block_group_cache_tree);
10228		RB_CLEAR_NODE(&cache->cache_node);
10229		spin_unlock(&fs_info->block_group_cache_lock);
10230		btrfs_put_block_group(cache);
10231		return ret;
10232	}
10233	update_global_block_rsv(fs_info);
10234
10235	__link_block_group(cache->space_info, cache);
10236
10237	list_add_tail(&cache->bg_list, &trans->new_bgs);
10238
10239	set_avail_alloc_bits(fs_info, type);
10240	return 0;
10241}
10242
10243static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10244{
10245	u64 extra_flags = chunk_to_extended(flags) &
10246				BTRFS_EXTENDED_PROFILE_MASK;
10247
10248	write_seqlock(&fs_info->profiles_lock);
10249	if (flags & BTRFS_BLOCK_GROUP_DATA)
10250		fs_info->avail_data_alloc_bits &= ~extra_flags;
10251	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10252		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10253	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10254		fs_info->avail_system_alloc_bits &= ~extra_flags;
10255	write_sequnlock(&fs_info->profiles_lock);
10256}
10257
10258int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10259			     struct btrfs_fs_info *fs_info, u64 group_start,
10260			     struct extent_map *em)
10261{
10262	struct btrfs_root *root = fs_info->extent_root;
10263	struct btrfs_path *path;
10264	struct btrfs_block_group_cache *block_group;
10265	struct btrfs_free_cluster *cluster;
10266	struct btrfs_root *tree_root = fs_info->tree_root;
10267	struct btrfs_key key;
10268	struct inode *inode;
10269	struct kobject *kobj = NULL;
10270	int ret;
10271	int index;
10272	int factor;
10273	struct btrfs_caching_control *caching_ctl = NULL;
10274	bool remove_em;
10275
10276	block_group = btrfs_lookup_block_group(fs_info, group_start);
10277	BUG_ON(!block_group);
10278	BUG_ON(!block_group->ro);
10279
10280	/*
10281	 * Free the reserved super bytes from this block group before
10282	 * remove it.
10283	 */
10284	free_excluded_extents(fs_info, block_group);
10285
10286	memcpy(&key, &block_group->key, sizeof(key));
10287	index = get_block_group_index(block_group);
10288	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10289				  BTRFS_BLOCK_GROUP_RAID1 |
10290				  BTRFS_BLOCK_GROUP_RAID10))
10291		factor = 2;
10292	else
10293		factor = 1;
10294
10295	/* make sure this block group isn't part of an allocation cluster */
10296	cluster = &fs_info->data_alloc_cluster;
10297	spin_lock(&cluster->refill_lock);
10298	btrfs_return_cluster_to_free_space(block_group, cluster);
10299	spin_unlock(&cluster->refill_lock);
10300
10301	/*
10302	 * make sure this block group isn't part of a metadata
10303	 * allocation cluster
10304	 */
10305	cluster = &fs_info->meta_alloc_cluster;
10306	spin_lock(&cluster->refill_lock);
10307	btrfs_return_cluster_to_free_space(block_group, cluster);
10308	spin_unlock(&cluster->refill_lock);
10309
10310	path = btrfs_alloc_path();
10311	if (!path) {
10312		ret = -ENOMEM;
10313		goto out;
10314	}
10315
10316	/*
10317	 * get the inode first so any iput calls done for the io_list
10318	 * aren't the final iput (no unlinks allowed now)
10319	 */
10320	inode = lookup_free_space_inode(tree_root, block_group, path);
10321
10322	mutex_lock(&trans->transaction->cache_write_mutex);
10323	/*
10324	 * make sure our free spache cache IO is done before remove the
10325	 * free space inode
10326	 */
10327	spin_lock(&trans->transaction->dirty_bgs_lock);
10328	if (!list_empty(&block_group->io_list)) {
10329		list_del_init(&block_group->io_list);
10330
10331		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10332
10333		spin_unlock(&trans->transaction->dirty_bgs_lock);
10334		btrfs_wait_cache_io(trans, block_group, path);
10335		btrfs_put_block_group(block_group);
10336		spin_lock(&trans->transaction->dirty_bgs_lock);
10337	}
10338
10339	if (!list_empty(&block_group->dirty_list)) {
10340		list_del_init(&block_group->dirty_list);
10341		btrfs_put_block_group(block_group);
10342	}
10343	spin_unlock(&trans->transaction->dirty_bgs_lock);
10344	mutex_unlock(&trans->transaction->cache_write_mutex);
10345
10346	if (!IS_ERR(inode)) {
10347		ret = btrfs_orphan_add(trans, inode);
10348		if (ret) {
10349			btrfs_add_delayed_iput(inode);
10350			goto out;
10351		}
10352		clear_nlink(inode);
10353		/* One for the block groups ref */
10354		spin_lock(&block_group->lock);
10355		if (block_group->iref) {
10356			block_group->iref = 0;
10357			block_group->inode = NULL;
10358			spin_unlock(&block_group->lock);
10359			iput(inode);
10360		} else {
10361			spin_unlock(&block_group->lock);
10362		}
10363		/* One for our lookup ref */
10364		btrfs_add_delayed_iput(inode);
10365	}
10366
10367	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10368	key.offset = block_group->key.objectid;
10369	key.type = 0;
10370
10371	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10372	if (ret < 0)
10373		goto out;
10374	if (ret > 0)
10375		btrfs_release_path(path);
10376	if (ret == 0) {
10377		ret = btrfs_del_item(trans, tree_root, path);
10378		if (ret)
10379			goto out;
10380		btrfs_release_path(path);
10381	}
10382
10383	spin_lock(&fs_info->block_group_cache_lock);
10384	rb_erase(&block_group->cache_node,
10385		 &fs_info->block_group_cache_tree);
10386	RB_CLEAR_NODE(&block_group->cache_node);
10387
10388	if (fs_info->first_logical_byte == block_group->key.objectid)
10389		fs_info->first_logical_byte = (u64)-1;
10390	spin_unlock(&fs_info->block_group_cache_lock);
10391
10392	down_write(&block_group->space_info->groups_sem);
10393	/*
10394	 * we must use list_del_init so people can check to see if they
10395	 * are still on the list after taking the semaphore
10396	 */
10397	list_del_init(&block_group->list);
10398	if (list_empty(&block_group->space_info->block_groups[index])) {
10399		kobj = block_group->space_info->block_group_kobjs[index];
10400		block_group->space_info->block_group_kobjs[index] = NULL;
10401		clear_avail_alloc_bits(fs_info, block_group->flags);
10402	}
10403	up_write(&block_group->space_info->groups_sem);
10404	if (kobj) {
10405		kobject_del(kobj);
10406		kobject_put(kobj);
10407	}
10408
10409	if (block_group->has_caching_ctl)
10410		caching_ctl = get_caching_control(block_group);
10411	if (block_group->cached == BTRFS_CACHE_STARTED)
10412		wait_block_group_cache_done(block_group);
10413	if (block_group->has_caching_ctl) {
10414		down_write(&fs_info->commit_root_sem);
10415		if (!caching_ctl) {
10416			struct btrfs_caching_control *ctl;
10417
10418			list_for_each_entry(ctl,
10419				    &fs_info->caching_block_groups, list)
10420				if (ctl->block_group == block_group) {
10421					caching_ctl = ctl;
10422					atomic_inc(&caching_ctl->count);
10423					break;
10424				}
10425		}
10426		if (caching_ctl)
10427			list_del_init(&caching_ctl->list);
10428		up_write(&fs_info->commit_root_sem);
10429		if (caching_ctl) {
10430			/* Once for the caching bgs list and once for us. */
10431			put_caching_control(caching_ctl);
10432			put_caching_control(caching_ctl);
10433		}
10434	}
10435
10436	spin_lock(&trans->transaction->dirty_bgs_lock);
10437	if (!list_empty(&block_group->dirty_list)) {
10438		WARN_ON(1);
10439	}
10440	if (!list_empty(&block_group->io_list)) {
10441		WARN_ON(1);
10442	}
10443	spin_unlock(&trans->transaction->dirty_bgs_lock);
10444	btrfs_remove_free_space_cache(block_group);
10445
10446	spin_lock(&block_group->space_info->lock);
10447	list_del_init(&block_group->ro_list);
10448
10449	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10450		WARN_ON(block_group->space_info->total_bytes
10451			< block_group->key.offset);
10452		WARN_ON(block_group->space_info->bytes_readonly
10453			< block_group->key.offset);
10454		WARN_ON(block_group->space_info->disk_total
10455			< block_group->key.offset * factor);
10456	}
10457	block_group->space_info->total_bytes -= block_group->key.offset;
10458	block_group->space_info->bytes_readonly -= block_group->key.offset;
10459	block_group->space_info->disk_total -= block_group->key.offset * factor;
10460
10461	spin_unlock(&block_group->space_info->lock);
10462
10463	memcpy(&key, &block_group->key, sizeof(key));
10464
10465	mutex_lock(&fs_info->chunk_mutex);
10466	if (!list_empty(&em->list)) {
10467		/* We're in the transaction->pending_chunks list. */
10468		free_extent_map(em);
10469	}
10470	spin_lock(&block_group->lock);
10471	block_group->removed = 1;
10472	/*
10473	 * At this point trimming can't start on this block group, because we
10474	 * removed the block group from the tree fs_info->block_group_cache_tree
10475	 * so no one can't find it anymore and even if someone already got this
10476	 * block group before we removed it from the rbtree, they have already
10477	 * incremented block_group->trimming - if they didn't, they won't find
10478	 * any free space entries because we already removed them all when we
10479	 * called btrfs_remove_free_space_cache().
10480	 *
10481	 * And we must not remove the extent map from the fs_info->mapping_tree
10482	 * to prevent the same logical address range and physical device space
10483	 * ranges from being reused for a new block group. This is because our
10484	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10485	 * completely transactionless, so while it is trimming a range the
10486	 * currently running transaction might finish and a new one start,
10487	 * allowing for new block groups to be created that can reuse the same
10488	 * physical device locations unless we take this special care.
10489	 *
10490	 * There may also be an implicit trim operation if the file system
10491	 * is mounted with -odiscard. The same protections must remain
10492	 * in place until the extents have been discarded completely when
10493	 * the transaction commit has completed.
10494	 */
10495	remove_em = (atomic_read(&block_group->trimming) == 0);
10496	/*
10497	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10498	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10499	 * before checking block_group->removed).
10500	 */
10501	if (!remove_em) {
10502		/*
10503		 * Our em might be in trans->transaction->pending_chunks which
10504		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10505		 * and so is the fs_info->pinned_chunks list.
10506		 *
10507		 * So at this point we must be holding the chunk_mutex to avoid
10508		 * any races with chunk allocation (more specifically at
10509		 * volumes.c:contains_pending_extent()), to ensure it always
10510		 * sees the em, either in the pending_chunks list or in the
10511		 * pinned_chunks list.
10512		 */
10513		list_move_tail(&em->list, &fs_info->pinned_chunks);
10514	}
10515	spin_unlock(&block_group->lock);
10516
10517	if (remove_em) {
10518		struct extent_map_tree *em_tree;
10519
10520		em_tree = &fs_info->mapping_tree.map_tree;
10521		write_lock(&em_tree->lock);
10522		/*
10523		 * The em might be in the pending_chunks list, so make sure the
10524		 * chunk mutex is locked, since remove_extent_mapping() will
10525		 * delete us from that list.
10526		 */
10527		remove_extent_mapping(em_tree, em);
10528		write_unlock(&em_tree->lock);
10529		/* once for the tree */
10530		free_extent_map(em);
10531	}
10532
10533	mutex_unlock(&fs_info->chunk_mutex);
10534
10535	ret = remove_block_group_free_space(trans, fs_info, block_group);
10536	if (ret)
10537		goto out;
10538
10539	btrfs_put_block_group(block_group);
10540	btrfs_put_block_group(block_group);
10541
10542	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10543	if (ret > 0)
10544		ret = -EIO;
10545	if (ret < 0)
10546		goto out;
10547
10548	ret = btrfs_del_item(trans, root, path);
10549out:
10550	btrfs_free_path(path);
10551	return ret;
10552}
10553
10554struct btrfs_trans_handle *
10555btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10556				     const u64 chunk_offset)
10557{
10558	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10559	struct extent_map *em;
10560	struct map_lookup *map;
10561	unsigned int num_items;
10562
10563	read_lock(&em_tree->lock);
10564	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10565	read_unlock(&em_tree->lock);
10566	ASSERT(em && em->start == chunk_offset);
10567
10568	/*
10569	 * We need to reserve 3 + N units from the metadata space info in order
10570	 * to remove a block group (done at btrfs_remove_chunk() and at
10571	 * btrfs_remove_block_group()), which are used for:
10572	 *
10573	 * 1 unit for adding the free space inode's orphan (located in the tree
10574	 * of tree roots).
10575	 * 1 unit for deleting the block group item (located in the extent
10576	 * tree).
10577	 * 1 unit for deleting the free space item (located in tree of tree
10578	 * roots).
10579	 * N units for deleting N device extent items corresponding to each
10580	 * stripe (located in the device tree).
10581	 *
10582	 * In order to remove a block group we also need to reserve units in the
10583	 * system space info in order to update the chunk tree (update one or
10584	 * more device items and remove one chunk item), but this is done at
10585	 * btrfs_remove_chunk() through a call to check_system_chunk().
10586	 */
10587	map = em->map_lookup;
10588	num_items = 3 + map->num_stripes;
10589	free_extent_map(em);
10590
10591	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10592							   num_items, 1);
10593}
10594
10595/*
10596 * Process the unused_bgs list and remove any that don't have any allocated
10597 * space inside of them.
10598 */
10599void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10600{
10601	struct btrfs_block_group_cache *block_group;
10602	struct btrfs_space_info *space_info;
10603	struct btrfs_trans_handle *trans;
10604	int ret = 0;
10605
10606	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10607		return;
10608
10609	spin_lock(&fs_info->unused_bgs_lock);
10610	while (!list_empty(&fs_info->unused_bgs)) {
10611		u64 start, end;
10612		int trimming;
10613
10614		block_group = list_first_entry(&fs_info->unused_bgs,
10615					       struct btrfs_block_group_cache,
10616					       bg_list);
10617		list_del_init(&block_group->bg_list);
10618
10619		space_info = block_group->space_info;
10620
10621		if (ret || btrfs_mixed_space_info(space_info)) {
10622			btrfs_put_block_group(block_group);
10623			continue;
10624		}
10625		spin_unlock(&fs_info->unused_bgs_lock);
10626
10627		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10628
10629		/* Don't want to race with allocators so take the groups_sem */
10630		down_write(&space_info->groups_sem);
10631		spin_lock(&block_group->lock);
10632		if (block_group->reserved ||
10633		    btrfs_block_group_used(&block_group->item) ||
10634		    block_group->ro ||
10635		    list_is_singular(&block_group->list)) {
10636			/*
10637			 * We want to bail if we made new allocations or have
10638			 * outstanding allocations in this block group.  We do
10639			 * the ro check in case balance is currently acting on
10640			 * this block group.
10641			 */
10642			spin_unlock(&block_group->lock);
10643			up_write(&space_info->groups_sem);
10644			goto next;
10645		}
10646		spin_unlock(&block_group->lock);
10647
10648		/* We don't want to force the issue, only flip if it's ok. */
10649		ret = inc_block_group_ro(block_group, 0);
10650		up_write(&space_info->groups_sem);
10651		if (ret < 0) {
10652			ret = 0;
10653			goto next;
10654		}
10655
10656		/*
10657		 * Want to do this before we do anything else so we can recover
10658		 * properly if we fail to join the transaction.
10659		 */
10660		trans = btrfs_start_trans_remove_block_group(fs_info,
10661						     block_group->key.objectid);
10662		if (IS_ERR(trans)) {
10663			btrfs_dec_block_group_ro(block_group);
10664			ret = PTR_ERR(trans);
10665			goto next;
10666		}
10667
10668		/*
10669		 * We could have pending pinned extents for this block group,
10670		 * just delete them, we don't care about them anymore.
10671		 */
10672		start = block_group->key.objectid;
10673		end = start + block_group->key.offset - 1;
10674		/*
10675		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10676		 * btrfs_finish_extent_commit(). If we are at transaction N,
10677		 * another task might be running finish_extent_commit() for the
10678		 * previous transaction N - 1, and have seen a range belonging
10679		 * to the block group in freed_extents[] before we were able to
10680		 * clear the whole block group range from freed_extents[]. This
10681		 * means that task can lookup for the block group after we
10682		 * unpinned it from freed_extents[] and removed it, leading to
10683		 * a BUG_ON() at btrfs_unpin_extent_range().
10684		 */
10685		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10686		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10687				  EXTENT_DIRTY);
10688		if (ret) {
10689			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10690			btrfs_dec_block_group_ro(block_group);
10691			goto end_trans;
10692		}
10693		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10694				  EXTENT_DIRTY);
10695		if (ret) {
10696			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10697			btrfs_dec_block_group_ro(block_group);
10698			goto end_trans;
10699		}
10700		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10701
10702		/* Reset pinned so btrfs_put_block_group doesn't complain */
10703		spin_lock(&space_info->lock);
10704		spin_lock(&block_group->lock);
10705
10706		space_info->bytes_pinned -= block_group->pinned;
10707		space_info->bytes_readonly += block_group->pinned;
10708		percpu_counter_add(&space_info->total_bytes_pinned,
10709				   -block_group->pinned);
10710		block_group->pinned = 0;
10711
10712		spin_unlock(&block_group->lock);
10713		spin_unlock(&space_info->lock);
10714
10715		/* DISCARD can flip during remount */
10716		trimming = btrfs_test_opt(fs_info, DISCARD);
10717
10718		/* Implicit trim during transaction commit. */
10719		if (trimming)
10720			btrfs_get_block_group_trimming(block_group);
10721
10722		/*
10723		 * Btrfs_remove_chunk will abort the transaction if things go
10724		 * horribly wrong.
10725		 */
10726		ret = btrfs_remove_chunk(trans, fs_info,
10727					 block_group->key.objectid);
10728
10729		if (ret) {
10730			if (trimming)
10731				btrfs_put_block_group_trimming(block_group);
10732			goto end_trans;
10733		}
10734
10735		/*
10736		 * If we're not mounted with -odiscard, we can just forget
10737		 * about this block group. Otherwise we'll need to wait
10738		 * until transaction commit to do the actual discard.
10739		 */
10740		if (trimming) {
10741			spin_lock(&fs_info->unused_bgs_lock);
10742			/*
10743			 * A concurrent scrub might have added us to the list
10744			 * fs_info->unused_bgs, so use a list_move operation
10745			 * to add the block group to the deleted_bgs list.
10746			 */
10747			list_move(&block_group->bg_list,
10748				  &trans->transaction->deleted_bgs);
10749			spin_unlock(&fs_info->unused_bgs_lock);
10750			btrfs_get_block_group(block_group);
10751		}
10752end_trans:
10753		btrfs_end_transaction(trans);
10754next:
10755		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10756		btrfs_put_block_group(block_group);
10757		spin_lock(&fs_info->unused_bgs_lock);
10758	}
10759	spin_unlock(&fs_info->unused_bgs_lock);
10760}
10761
10762int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10763{
10764	struct btrfs_space_info *space_info;
10765	struct btrfs_super_block *disk_super;
10766	u64 features;
10767	u64 flags;
10768	int mixed = 0;
10769	int ret;
10770
10771	disk_super = fs_info->super_copy;
10772	if (!btrfs_super_root(disk_super))
10773		return -EINVAL;
10774
10775	features = btrfs_super_incompat_flags(disk_super);
10776	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10777		mixed = 1;
10778
10779	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10780	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10781	if (ret)
10782		goto out;
10783
10784	if (mixed) {
10785		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10786		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787	} else {
10788		flags = BTRFS_BLOCK_GROUP_METADATA;
10789		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10790		if (ret)
10791			goto out;
10792
10793		flags = BTRFS_BLOCK_GROUP_DATA;
10794		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10795	}
10796out:
10797	return ret;
10798}
10799
10800int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10801				   u64 start, u64 end)
10802{
10803	return unpin_extent_range(fs_info, start, end, false);
10804}
10805
10806/*
10807 * It used to be that old block groups would be left around forever.
10808 * Iterating over them would be enough to trim unused space.  Since we
10809 * now automatically remove them, we also need to iterate over unallocated
10810 * space.
10811 *
10812 * We don't want a transaction for this since the discard may take a
10813 * substantial amount of time.  We don't require that a transaction be
10814 * running, but we do need to take a running transaction into account
10815 * to ensure that we're not discarding chunks that were released in
10816 * the current transaction.
10817 *
10818 * Holding the chunks lock will prevent other threads from allocating
10819 * or releasing chunks, but it won't prevent a running transaction
10820 * from committing and releasing the memory that the pending chunks
10821 * list head uses.  For that, we need to take a reference to the
10822 * transaction.
 
 
10823 */
10824static int btrfs_trim_free_extents(struct btrfs_device *device,
10825				   u64 minlen, u64 *trimmed)
10826{
10827	u64 start = 0, len = 0;
10828	int ret;
10829
10830	*trimmed = 0;
10831
10832	/* Not writeable = nothing to do. */
10833	if (!device->writeable)
 
 
 
 
10834		return 0;
10835
10836	/* No free space = nothing to do. */
10837	if (device->total_bytes <= device->bytes_used)
10838		return 0;
10839
10840	ret = 0;
10841
10842	while (1) {
10843		struct btrfs_fs_info *fs_info = device->fs_info;
10844		struct btrfs_transaction *trans;
10845		u64 bytes;
10846
10847		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10848		if (ret)
10849			return ret;
10850
10851		down_read(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10852
10853		spin_lock(&fs_info->trans_lock);
10854		trans = fs_info->running_transaction;
10855		if (trans)
10856			atomic_inc(&trans->use_count);
10857		spin_unlock(&fs_info->trans_lock);
10858
10859		ret = find_free_dev_extent_start(trans, device, minlen, start,
10860						 &start, &len);
10861		if (trans)
10862			btrfs_put_transaction(trans);
10863
10864		if (ret) {
10865			up_read(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
 
 
10866			mutex_unlock(&fs_info->chunk_mutex);
10867			if (ret == -ENOSPC)
10868				ret = 0;
10869			break;
10870		}
10871
10872		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10873		up_read(&fs_info->commit_root_sem);
 
 
 
10874		mutex_unlock(&fs_info->chunk_mutex);
10875
10876		if (ret)
10877			break;
10878
10879		start += len;
10880		*trimmed += bytes;
10881
10882		if (fatal_signal_pending(current)) {
10883			ret = -ERESTARTSYS;
10884			break;
10885		}
10886
10887		cond_resched();
10888	}
10889
10890	return ret;
10891}
10892
 
 
 
 
 
 
 
 
 
10893int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10894{
10895	struct btrfs_block_group_cache *cache = NULL;
 
10896	struct btrfs_device *device;
10897	struct list_head *devices;
10898	u64 group_trimmed;
 
10899	u64 start;
10900	u64 end;
10901	u64 trimmed = 0;
10902	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 
 
 
10903	int ret = 0;
10904
 
 
 
10905	/*
10906	 * try to trim all FS space, our block group may start from non-zero.
 
10907	 */
10908	if (range->len == total_bytes)
10909		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10910	else
10911		cache = btrfs_lookup_block_group(fs_info, range->start);
10912
10913	while (cache) {
10914		if (cache->key.objectid >= (range->start + range->len)) {
 
10915			btrfs_put_block_group(cache);
10916			break;
10917		}
10918
10919		start = max(range->start, cache->key.objectid);
10920		end = min(range->start + range->len,
10921				cache->key.objectid + cache->key.offset);
10922
10923		if (end - start >= range->minlen) {
10924			if (!block_group_cache_done(cache)) {
10925				ret = cache_block_group(cache, 0);
10926				if (ret) {
10927					btrfs_put_block_group(cache);
10928					break;
10929				}
10930				ret = wait_block_group_cache_done(cache);
10931				if (ret) {
10932					btrfs_put_block_group(cache);
10933					break;
 
10934				}
10935			}
10936			ret = btrfs_trim_block_group(cache,
10937						     &group_trimmed,
10938						     start,
10939						     end,
10940						     range->minlen);
10941
10942			trimmed += group_trimmed;
10943			if (ret) {
10944				btrfs_put_block_group(cache);
10945				break;
 
10946			}
10947		}
10948
10949		cache = next_block_group(fs_info, cache);
10950	}
10951
10952	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10953	devices = &fs_info->fs_devices->alloc_list;
10954	list_for_each_entry(device, devices, dev_alloc_list) {
10955		ret = btrfs_trim_free_extents(device, range->minlen,
10956					      &group_trimmed);
10957		if (ret)
10958			break;
10959
10960		trimmed += group_trimmed;
10961	}
10962	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10963
10964	range->len = trimmed;
10965	return ret;
10966}
10967
10968/*
10969 * btrfs_{start,end}_write_no_snapshoting() are similar to
10970 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10971 * data into the page cache through nocow before the subvolume is snapshoted,
10972 * but flush the data into disk after the snapshot creation, or to prevent
10973 * operations while snapshoting is ongoing and that cause the snapshot to be
10974 * inconsistent (writes followed by expanding truncates for example).
10975 */
10976void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10977{
10978	percpu_counter_dec(&root->subv_writers->counter);
10979	/*
10980	 * Make sure counter is updated before we wake up waiters.
10981	 */
10982	smp_mb();
10983	if (waitqueue_active(&root->subv_writers->wait))
10984		wake_up(&root->subv_writers->wait);
10985}
10986
10987int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10988{
10989	if (atomic_read(&root->will_be_snapshoted))
10990		return 0;
10991
10992	percpu_counter_inc(&root->subv_writers->counter);
10993	/*
10994	 * Make sure counter is updated before we check for snapshot creation.
10995	 */
10996	smp_mb();
10997	if (atomic_read(&root->will_be_snapshoted)) {
10998		btrfs_end_write_no_snapshoting(root);
10999		return 0;
11000	}
11001	return 1;
11002}
11003
11004static int wait_snapshoting_atomic_t(atomic_t *a)
11005{
11006	schedule();
11007	return 0;
11008}
11009
11010void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11011{
11012	while (true) {
11013		int ret;
11014
11015		ret = btrfs_start_write_no_snapshoting(root);
11016		if (ret)
 
 
11017			break;
11018		wait_on_atomic_t(&root->will_be_snapshoted,
11019				 wait_snapshoting_atomic_t,
11020				 TASK_UNINTERRUPTIBLE);
11021	}
 
 
 
 
 
 
 
 
 
 
11022}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "ctree.h"
  20#include "extent-tree.h"
  21#include "transaction.h"
  22#include "disk-io.h"
  23#include "print-tree.h"
  24#include "volumes.h"
  25#include "raid56.h"
  26#include "locking.h"
  27#include "free-space-cache.h"
  28#include "free-space-tree.h"
 
 
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "discard.h"
  34#include "zoned.h"
  35#include "dev-replace.h"
  36#include "fs.h"
  37#include "accessors.h"
  38#include "root-tree.h"
  39#include "file-item.h"
  40#include "orphan.h"
  41#include "tree-checker.h"
  42#include "raid-stripe-tree.h"
  43
  44#undef SCRAMBLE_DELAYED_REFS
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
 
 
 
  47static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  48			       struct btrfs_delayed_ref_head *href,
  49			       struct btrfs_delayed_ref_node *node,
  50			       struct btrfs_delayed_extent_op *extra_op);
 
 
  51static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  52				    struct extent_buffer *leaf,
  53				    struct btrfs_extent_item *ei);
  54static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
  55				      u64 parent, u64 root_objectid,
  56				      u64 flags, u64 owner, u64 offset,
  57				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
  58static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  59				     struct btrfs_delayed_ref_node *node,
  60				     struct btrfs_delayed_extent_op *extent_op);
 
 
 
 
 
  61static int find_next_key(struct btrfs_path *path, int level,
  62			 struct btrfs_key *key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
  65{
  66	return (cache->flags & bits) == bits;
  67}
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69/* simple helper to search for an existing data extent at a given offset */
  70int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  71{
  72	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
  73	int ret;
  74	struct btrfs_key key;
  75	struct btrfs_path *path;
  76
  77	path = btrfs_alloc_path();
  78	if (!path)
  79		return -ENOMEM;
  80
  81	key.objectid = start;
  82	key.offset = len;
  83	key.type = BTRFS_EXTENT_ITEM_KEY;
  84	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  85	btrfs_free_path(path);
  86	return ret;
  87}
  88
  89/*
  90 * helper function to lookup reference count and flags of a tree block.
  91 *
  92 * the head node for delayed ref is used to store the sum of all the
  93 * reference count modifications queued up in the rbtree. the head
  94 * node may also store the extent flags to set. This way you can check
  95 * to see what the reference count and extent flags would be if all of
  96 * the delayed refs are not processed.
  97 */
  98int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  99			     struct btrfs_fs_info *fs_info, u64 bytenr,
 100			     u64 offset, int metadata, u64 *refs, u64 *flags,
 101			     u64 *owning_root)
 102{
 103	struct btrfs_root *extent_root;
 104	struct btrfs_delayed_ref_head *head;
 105	struct btrfs_delayed_ref_root *delayed_refs;
 106	struct btrfs_path *path;
 
 
 107	struct btrfs_key key;
 
 108	u64 num_refs;
 109	u64 extent_flags;
 110	u64 owner = 0;
 111	int ret;
 112
 113	/*
 114	 * If we don't have skinny metadata, don't bother doing anything
 115	 * different
 116	 */
 117	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 118		offset = fs_info->nodesize;
 119		metadata = 0;
 120	}
 121
 122	path = btrfs_alloc_path();
 123	if (!path)
 124		return -ENOMEM;
 125
 
 
 
 
 
 126search_again:
 127	key.objectid = bytenr;
 128	key.offset = offset;
 129	if (metadata)
 130		key.type = BTRFS_METADATA_ITEM_KEY;
 131	else
 132		key.type = BTRFS_EXTENT_ITEM_KEY;
 133
 134	extent_root = btrfs_extent_root(fs_info, bytenr);
 135	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 136	if (ret < 0)
 137		goto out_free;
 138
 139	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
 140		if (path->slots[0]) {
 141			path->slots[0]--;
 142			btrfs_item_key_to_cpu(path->nodes[0], &key,
 143					      path->slots[0]);
 144			if (key.objectid == bytenr &&
 145			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 146			    key.offset == fs_info->nodesize)
 147				ret = 0;
 148		}
 149	}
 150
 151	if (ret == 0) {
 152		struct extent_buffer *leaf = path->nodes[0];
 153		struct btrfs_extent_item *ei;
 154		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
 155
 156		if (unlikely(item_size < sizeof(*ei))) {
 157			ret = -EUCLEAN;
 158			btrfs_err(fs_info,
 159			"unexpected extent item size, has %u expect >= %zu",
 160				  item_size, sizeof(*ei));
 161			btrfs_abort_transaction(trans, ret);
 162			goto out_free;
 
 
 
 
 
 
 
 
 163		}
 164
 165		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 166		num_refs = btrfs_extent_refs(leaf, ei);
 167		if (unlikely(num_refs == 0)) {
 168			ret = -EUCLEAN;
 169			btrfs_err(fs_info,
 170		"unexpected zero reference count for extent item (%llu %u %llu)",
 171				  key.objectid, key.type, key.offset);
 172			btrfs_abort_transaction(trans, ret);
 173			goto out_free;
 174		}
 175		extent_flags = btrfs_extent_flags(leaf, ei);
 176		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
 177	} else {
 178		num_refs = 0;
 179		extent_flags = 0;
 180		ret = 0;
 181	}
 182
 
 
 
 183	delayed_refs = &trans->transaction->delayed_refs;
 184	spin_lock(&delayed_refs->lock);
 185	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
 186	if (head) {
 187		if (!mutex_trylock(&head->mutex)) {
 188			refcount_inc(&head->refs);
 189			spin_unlock(&delayed_refs->lock);
 190
 191			btrfs_release_path(path);
 192
 193			/*
 194			 * Mutex was contended, block until it's released and try
 195			 * again
 196			 */
 197			mutex_lock(&head->mutex);
 198			mutex_unlock(&head->mutex);
 199			btrfs_put_delayed_ref_head(head);
 200			goto search_again;
 201		}
 202		spin_lock(&head->lock);
 203		if (head->extent_op && head->extent_op->update_flags)
 204			extent_flags |= head->extent_op->flags_to_set;
 
 
 205
 206		num_refs += head->ref_mod;
 207		spin_unlock(&head->lock);
 208		mutex_unlock(&head->mutex);
 209	}
 210	spin_unlock(&delayed_refs->lock);
 211
 212	WARN_ON(num_refs == 0);
 213	if (refs)
 214		*refs = num_refs;
 215	if (flags)
 216		*flags = extent_flags;
 217	if (owning_root)
 218		*owning_root = owner;
 219out_free:
 220	btrfs_free_path(path);
 221	return ret;
 222}
 223
 224/*
 225 * Back reference rules.  Back refs have three main goals:
 226 *
 227 * 1) differentiate between all holders of references to an extent so that
 228 *    when a reference is dropped we can make sure it was a valid reference
 229 *    before freeing the extent.
 230 *
 231 * 2) Provide enough information to quickly find the holders of an extent
 232 *    if we notice a given block is corrupted or bad.
 233 *
 234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 235 *    maintenance.  This is actually the same as #2, but with a slightly
 236 *    different use case.
 237 *
 238 * There are two kinds of back refs. The implicit back refs is optimized
 239 * for pointers in non-shared tree blocks. For a given pointer in a block,
 240 * back refs of this kind provide information about the block's owner tree
 241 * and the pointer's key. These information allow us to find the block by
 242 * b-tree searching. The full back refs is for pointers in tree blocks not
 243 * referenced by their owner trees. The location of tree block is recorded
 244 * in the back refs. Actually the full back refs is generic, and can be
 245 * used in all cases the implicit back refs is used. The major shortcoming
 246 * of the full back refs is its overhead. Every time a tree block gets
 247 * COWed, we have to update back refs entry for all pointers in it.
 248 *
 249 * For a newly allocated tree block, we use implicit back refs for
 250 * pointers in it. This means most tree related operations only involve
 251 * implicit back refs. For a tree block created in old transaction, the
 252 * only way to drop a reference to it is COW it. So we can detect the
 253 * event that tree block loses its owner tree's reference and do the
 254 * back refs conversion.
 255 *
 256 * When a tree block is COWed through a tree, there are four cases:
 257 *
 258 * The reference count of the block is one and the tree is the block's
 259 * owner tree. Nothing to do in this case.
 260 *
 261 * The reference count of the block is one and the tree is not the
 262 * block's owner tree. In this case, full back refs is used for pointers
 263 * in the block. Remove these full back refs, add implicit back refs for
 264 * every pointers in the new block.
 265 *
 266 * The reference count of the block is greater than one and the tree is
 267 * the block's owner tree. In this case, implicit back refs is used for
 268 * pointers in the block. Add full back refs for every pointers in the
 269 * block, increase lower level extents' reference counts. The original
 270 * implicit back refs are entailed to the new block.
 271 *
 272 * The reference count of the block is greater than one and the tree is
 273 * not the block's owner tree. Add implicit back refs for every pointer in
 274 * the new block, increase lower level extents' reference count.
 275 *
 276 * Back Reference Key composing:
 277 *
 278 * The key objectid corresponds to the first byte in the extent,
 279 * The key type is used to differentiate between types of back refs.
 280 * There are different meanings of the key offset for different types
 281 * of back refs.
 282 *
 283 * File extents can be referenced by:
 284 *
 285 * - multiple snapshots, subvolumes, or different generations in one subvol
 286 * - different files inside a single subvolume
 287 * - different offsets inside a file (bookend extents in file.c)
 288 *
 289 * The extent ref structure for the implicit back refs has fields for:
 290 *
 291 * - Objectid of the subvolume root
 292 * - objectid of the file holding the reference
 293 * - original offset in the file
 294 * - how many bookend extents
 295 *
 296 * The key offset for the implicit back refs is hash of the first
 297 * three fields.
 298 *
 299 * The extent ref structure for the full back refs has field for:
 300 *
 301 * - number of pointers in the tree leaf
 302 *
 303 * The key offset for the implicit back refs is the first byte of
 304 * the tree leaf
 305 *
 306 * When a file extent is allocated, The implicit back refs is used.
 307 * the fields are filled in:
 308 *
 309 *     (root_key.objectid, inode objectid, offset in file, 1)
 310 *
 311 * When a file extent is removed file truncation, we find the
 312 * corresponding implicit back refs and check the following fields:
 313 *
 314 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 315 *
 316 * Btree extents can be referenced by:
 317 *
 318 * - Different subvolumes
 319 *
 320 * Both the implicit back refs and the full back refs for tree blocks
 321 * only consist of key. The key offset for the implicit back refs is
 322 * objectid of block's owner tree. The key offset for the full back refs
 323 * is the first byte of parent block.
 324 *
 325 * When implicit back refs is used, information about the lowest key and
 326 * level of the tree block are required. These information are stored in
 327 * tree block info structure.
 328 */
 329
 330/*
 331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 334 */
 335int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 336				     struct btrfs_extent_inline_ref *iref,
 337				     enum btrfs_inline_ref_type is_data)
 338{
 339	struct btrfs_fs_info *fs_info = eb->fs_info;
 340	int type = btrfs_extent_inline_ref_type(eb, iref);
 341	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 342
 343	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 344		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 345		return type;
 346	}
 347
 348	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 349	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 350	    type == BTRFS_SHARED_DATA_REF_KEY ||
 351	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 352		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 353			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 354				return type;
 355			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 356				ASSERT(fs_info);
 357				/*
 358				 * Every shared one has parent tree block,
 359				 * which must be aligned to sector size.
 360				 */
 361				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
 362					return type;
 363			}
 364		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 365			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 366				return type;
 367			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 368				ASSERT(fs_info);
 369				/*
 370				 * Every shared one has parent tree block,
 371				 * which must be aligned to sector size.
 372				 */
 373				if (offset &&
 374				    IS_ALIGNED(offset, fs_info->sectorsize))
 375					return type;
 376			}
 377		} else {
 378			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 379			return type;
 
 380		}
 381	}
 
 382
 383	WARN_ON(1);
 384	btrfs_print_leaf(eb);
 385	btrfs_err(fs_info,
 386		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
 387		  eb->start, (unsigned long)iref, type);
 
 
 
 
 388
 389	return BTRFS_REF_TYPE_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 
 391
 392u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 393{
 394	u32 high_crc = ~(u32)0;
 395	u32 low_crc = ~(u32)0;
 396	__le64 lenum;
 397
 398	lenum = cpu_to_le64(root_objectid);
 399	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
 400	lenum = cpu_to_le64(owner);
 401	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 402	lenum = cpu_to_le64(offset);
 403	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
 404
 405	return ((u64)high_crc << 31) ^ (u64)low_crc;
 406}
 407
 408static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 409				     struct btrfs_extent_data_ref *ref)
 410{
 411	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 412				    btrfs_extent_data_ref_objectid(leaf, ref),
 413				    btrfs_extent_data_ref_offset(leaf, ref));
 414}
 415
 416static int match_extent_data_ref(struct extent_buffer *leaf,
 417				 struct btrfs_extent_data_ref *ref,
 418				 u64 root_objectid, u64 owner, u64 offset)
 419{
 420	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 421	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 422	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 423		return 0;
 424	return 1;
 425}
 426
 427static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 
 428					   struct btrfs_path *path,
 429					   u64 bytenr, u64 parent,
 430					   u64 root_objectid,
 431					   u64 owner, u64 offset)
 432{
 433	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 434	struct btrfs_key key;
 435	struct btrfs_extent_data_ref *ref;
 436	struct extent_buffer *leaf;
 437	u32 nritems;
 
 438	int recow;
 439	int ret;
 440
 441	key.objectid = bytenr;
 442	if (parent) {
 443		key.type = BTRFS_SHARED_DATA_REF_KEY;
 444		key.offset = parent;
 445	} else {
 446		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 447		key.offset = hash_extent_data_ref(root_objectid,
 448						  owner, offset);
 449	}
 450again:
 451	recow = 0;
 452	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 453	if (ret < 0)
 454		return ret;
 
 
 455
 456	if (parent) {
 457		if (ret)
 458			return -ENOENT;
 459		return 0;
 
 
 
 
 
 
 
 
 
 
 
 460	}
 461
 462	ret = -ENOENT;
 463	leaf = path->nodes[0];
 464	nritems = btrfs_header_nritems(leaf);
 465	while (1) {
 466		if (path->slots[0] >= nritems) {
 467			ret = btrfs_next_leaf(root, path);
 468			if (ret) {
 469				if (ret > 0)
 470					return -ENOENT;
 471				return ret;
 472			}
 473
 474			leaf = path->nodes[0];
 475			nritems = btrfs_header_nritems(leaf);
 476			recow = 1;
 477		}
 478
 479		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 480		if (key.objectid != bytenr ||
 481		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 482			goto fail;
 483
 484		ref = btrfs_item_ptr(leaf, path->slots[0],
 485				     struct btrfs_extent_data_ref);
 486
 487		if (match_extent_data_ref(leaf, ref, root_objectid,
 488					  owner, offset)) {
 489			if (recow) {
 490				btrfs_release_path(path);
 491				goto again;
 492			}
 493			ret = 0;
 494			break;
 495		}
 496		path->slots[0]++;
 497	}
 498fail:
 499	return ret;
 500}
 501
 502static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 
 503					   struct btrfs_path *path,
 504					   struct btrfs_delayed_ref_node *node,
 505					   u64 bytenr)
 
 506{
 507	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 508	struct btrfs_key key;
 509	struct extent_buffer *leaf;
 510	u64 owner = btrfs_delayed_ref_owner(node);
 511	u64 offset = btrfs_delayed_ref_offset(node);
 512	u32 size;
 513	u32 num_refs;
 514	int ret;
 515
 516	key.objectid = bytenr;
 517	if (node->parent) {
 518		key.type = BTRFS_SHARED_DATA_REF_KEY;
 519		key.offset = node->parent;
 520		size = sizeof(struct btrfs_shared_data_ref);
 521	} else {
 522		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 523		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
 
 524		size = sizeof(struct btrfs_extent_data_ref);
 525	}
 526
 527	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 528	if (ret && ret != -EEXIST)
 529		goto fail;
 530
 531	leaf = path->nodes[0];
 532	if (node->parent) {
 533		struct btrfs_shared_data_ref *ref;
 534		ref = btrfs_item_ptr(leaf, path->slots[0],
 535				     struct btrfs_shared_data_ref);
 536		if (ret == 0) {
 537			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
 538		} else {
 539			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 540			num_refs += node->ref_mod;
 541			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 542		}
 543	} else {
 544		struct btrfs_extent_data_ref *ref;
 545		while (ret == -EEXIST) {
 546			ref = btrfs_item_ptr(leaf, path->slots[0],
 547					     struct btrfs_extent_data_ref);
 548			if (match_extent_data_ref(leaf, ref, node->ref_root,
 549						  owner, offset))
 550				break;
 551			btrfs_release_path(path);
 552			key.offset++;
 553			ret = btrfs_insert_empty_item(trans, root, path, &key,
 554						      size);
 555			if (ret && ret != -EEXIST)
 556				goto fail;
 557
 558			leaf = path->nodes[0];
 559		}
 560		ref = btrfs_item_ptr(leaf, path->slots[0],
 561				     struct btrfs_extent_data_ref);
 562		if (ret == 0) {
 563			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
 
 564			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 565			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 566			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
 567		} else {
 568			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 569			num_refs += node->ref_mod;
 570			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 571		}
 572	}
 573	btrfs_mark_buffer_dirty(trans, leaf);
 574	ret = 0;
 575fail:
 576	btrfs_release_path(path);
 577	return ret;
 578}
 579
 580static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 581					   struct btrfs_root *root,
 582					   struct btrfs_path *path,
 583					   int refs_to_drop)
 584{
 585	struct btrfs_key key;
 586	struct btrfs_extent_data_ref *ref1 = NULL;
 587	struct btrfs_shared_data_ref *ref2 = NULL;
 588	struct extent_buffer *leaf;
 589	u32 num_refs = 0;
 590	int ret = 0;
 591
 592	leaf = path->nodes[0];
 593	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 594
 595	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 596		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 597				      struct btrfs_extent_data_ref);
 598		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 599	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 600		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 601				      struct btrfs_shared_data_ref);
 602		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 603	} else {
 604		btrfs_err(trans->fs_info,
 605			  "unrecognized backref key (%llu %u %llu)",
 606			  key.objectid, key.type, key.offset);
 607		btrfs_abort_transaction(trans, -EUCLEAN);
 608		return -EUCLEAN;
 609	}
 610
 611	BUG_ON(num_refs < refs_to_drop);
 612	num_refs -= refs_to_drop;
 613
 614	if (num_refs == 0) {
 615		ret = btrfs_del_item(trans, root, path);
 
 616	} else {
 617		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 618			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 619		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 620			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 621		btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 622	}
 623	return ret;
 624}
 625
 626static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 627					  struct btrfs_extent_inline_ref *iref)
 628{
 629	struct btrfs_key key;
 630	struct extent_buffer *leaf;
 631	struct btrfs_extent_data_ref *ref1;
 632	struct btrfs_shared_data_ref *ref2;
 633	u32 num_refs = 0;
 634	int type;
 635
 636	leaf = path->nodes[0];
 637	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 638
 639	if (iref) {
 640		/*
 641		 * If type is invalid, we should have bailed out earlier than
 642		 * this call.
 643		 */
 644		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 645		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 646		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 647			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 648			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 649		} else {
 650			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 651			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 652		}
 653	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 654		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 655				      struct btrfs_extent_data_ref);
 656		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 657	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 658		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 659				      struct btrfs_shared_data_ref);
 660		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 661	} else {
 662		WARN_ON(1);
 663	}
 664	return num_refs;
 665}
 666
 667static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 
 668					  struct btrfs_path *path,
 669					  u64 bytenr, u64 parent,
 670					  u64 root_objectid)
 671{
 672	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 673	struct btrfs_key key;
 674	int ret;
 675
 676	key.objectid = bytenr;
 677	if (parent) {
 678		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 679		key.offset = parent;
 680	} else {
 681		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 682		key.offset = root_objectid;
 683	}
 684
 685	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 686	if (ret > 0)
 687		ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 688	return ret;
 689}
 690
 691static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 
 692					  struct btrfs_path *path,
 693					  struct btrfs_delayed_ref_node *node,
 694					  u64 bytenr)
 695{
 696	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
 697	struct btrfs_key key;
 698	int ret;
 699
 700	key.objectid = bytenr;
 701	if (node->parent) {
 702		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 703		key.offset = node->parent;
 704	} else {
 705		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 706		key.offset = node->ref_root;
 707	}
 708
 709	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 710	btrfs_release_path(path);
 711	return ret;
 712}
 713
 714static inline int extent_ref_type(u64 parent, u64 owner)
 715{
 716	int type;
 717	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 718		if (parent > 0)
 719			type = BTRFS_SHARED_BLOCK_REF_KEY;
 720		else
 721			type = BTRFS_TREE_BLOCK_REF_KEY;
 722	} else {
 723		if (parent > 0)
 724			type = BTRFS_SHARED_DATA_REF_KEY;
 725		else
 726			type = BTRFS_EXTENT_DATA_REF_KEY;
 727	}
 728	return type;
 729}
 730
 731static int find_next_key(struct btrfs_path *path, int level,
 732			 struct btrfs_key *key)
 733
 734{
 735	for (; level < BTRFS_MAX_LEVEL; level++) {
 736		if (!path->nodes[level])
 737			break;
 738		if (path->slots[level] + 1 >=
 739		    btrfs_header_nritems(path->nodes[level]))
 740			continue;
 741		if (level == 0)
 742			btrfs_item_key_to_cpu(path->nodes[level], key,
 743					      path->slots[level] + 1);
 744		else
 745			btrfs_node_key_to_cpu(path->nodes[level], key,
 746					      path->slots[level] + 1);
 747		return 0;
 748	}
 749	return 1;
 750}
 751
 752/*
 753 * look for inline back ref. if back ref is found, *ref_ret is set
 754 * to the address of inline back ref, and 0 is returned.
 755 *
 756 * if back ref isn't found, *ref_ret is set to the address where it
 757 * should be inserted, and -ENOENT is returned.
 758 *
 759 * if insert is true and there are too many inline back refs, the path
 760 * points to the extent item, and -EAGAIN is returned.
 761 *
 762 * NOTE: inline back refs are ordered in the same way that back ref
 763 *	 items in the tree are ordered.
 764 */
 765static noinline_for_stack
 766int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 
 767				 struct btrfs_path *path,
 768				 struct btrfs_extent_inline_ref **ref_ret,
 769				 u64 bytenr, u64 num_bytes,
 770				 u64 parent, u64 root_objectid,
 771				 u64 owner, u64 offset, int insert)
 772{
 773	struct btrfs_fs_info *fs_info = trans->fs_info;
 774	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
 775	struct btrfs_key key;
 776	struct extent_buffer *leaf;
 777	struct btrfs_extent_item *ei;
 778	struct btrfs_extent_inline_ref *iref;
 779	u64 flags;
 780	u64 item_size;
 781	unsigned long ptr;
 782	unsigned long end;
 783	int extra_size;
 784	int type;
 785	int want;
 786	int ret;
 
 787	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 788	int needed;
 789
 790	key.objectid = bytenr;
 791	key.type = BTRFS_EXTENT_ITEM_KEY;
 792	key.offset = num_bytes;
 793
 794	want = extent_ref_type(parent, owner);
 795	if (insert) {
 796		extra_size = btrfs_extent_inline_ref_size(want);
 797		path->search_for_extension = 1;
 798	} else
 799		extra_size = -1;
 800
 801	/*
 802	 * Owner is our level, so we can just add one to get the level for the
 803	 * block we are interested in.
 804	 */
 805	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 806		key.type = BTRFS_METADATA_ITEM_KEY;
 807		key.offset = owner;
 808	}
 809
 810again:
 811	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 812	if (ret < 0)
 
 813		goto out;
 
 814
 815	/*
 816	 * We may be a newly converted file system which still has the old fat
 817	 * extent entries for metadata, so try and see if we have one of those.
 818	 */
 819	if (ret > 0 && skinny_metadata) {
 820		skinny_metadata = false;
 821		if (path->slots[0]) {
 822			path->slots[0]--;
 823			btrfs_item_key_to_cpu(path->nodes[0], &key,
 824					      path->slots[0]);
 825			if (key.objectid == bytenr &&
 826			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 827			    key.offset == num_bytes)
 828				ret = 0;
 829		}
 830		if (ret) {
 831			key.objectid = bytenr;
 832			key.type = BTRFS_EXTENT_ITEM_KEY;
 833			key.offset = num_bytes;
 834			btrfs_release_path(path);
 835			goto again;
 836		}
 837	}
 838
 839	if (ret && !insert) {
 840		ret = -ENOENT;
 841		goto out;
 842	} else if (WARN_ON(ret)) {
 843		btrfs_print_leaf(path->nodes[0]);
 844		btrfs_err(fs_info,
 845"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
 846			  bytenr, num_bytes, parent, root_objectid, owner,
 847			  offset);
 848		ret = -EUCLEAN;
 849		goto out;
 850	}
 851
 852	leaf = path->nodes[0];
 853	item_size = btrfs_item_size(leaf, path->slots[0]);
 854	if (unlikely(item_size < sizeof(*ei))) {
 855		ret = -EUCLEAN;
 856		btrfs_err(fs_info,
 857			  "unexpected extent item size, has %llu expect >= %zu",
 858			  item_size, sizeof(*ei));
 859		btrfs_abort_transaction(trans, ret);
 860		goto out;
 
 
 
 
 
 
 
 861	}
 
 
 862
 863	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 864	flags = btrfs_extent_flags(leaf, ei);
 865
 866	ptr = (unsigned long)(ei + 1);
 867	end = (unsigned long)ei + item_size;
 868
 869	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 870		ptr += sizeof(struct btrfs_tree_block_info);
 871		BUG_ON(ptr > end);
 872	}
 873
 874	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 875		needed = BTRFS_REF_TYPE_DATA;
 876	else
 877		needed = BTRFS_REF_TYPE_BLOCK;
 878
 879	ret = -ENOENT;
 880	while (ptr < end) {
 881		iref = (struct btrfs_extent_inline_ref *)ptr;
 882		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 883		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
 884			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
 885			ptr += btrfs_extent_inline_ref_size(type);
 886			continue;
 887		}
 888		if (type == BTRFS_REF_TYPE_INVALID) {
 889			ret = -EUCLEAN;
 890			goto out;
 891		}
 892
 893		if (want < type)
 894			break;
 895		if (want > type) {
 896			ptr += btrfs_extent_inline_ref_size(type);
 897			continue;
 898		}
 899
 900		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 901			struct btrfs_extent_data_ref *dref;
 902			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 903			if (match_extent_data_ref(leaf, dref, root_objectid,
 904						  owner, offset)) {
 905				ret = 0;
 906				break;
 907			}
 908			if (hash_extent_data_ref_item(leaf, dref) <
 909			    hash_extent_data_ref(root_objectid, owner, offset))
 910				break;
 911		} else {
 912			u64 ref_offset;
 913			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 914			if (parent > 0) {
 915				if (parent == ref_offset) {
 916					ret = 0;
 917					break;
 918				}
 919				if (ref_offset < parent)
 920					break;
 921			} else {
 922				if (root_objectid == ref_offset) {
 923					ret = 0;
 924					break;
 925				}
 926				if (ref_offset < root_objectid)
 927					break;
 928			}
 929		}
 930		ptr += btrfs_extent_inline_ref_size(type);
 931	}
 932
 933	if (unlikely(ptr > end)) {
 934		ret = -EUCLEAN;
 935		btrfs_print_leaf(path->nodes[0]);
 936		btrfs_crit(fs_info,
 937"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
 938			   path->slots[0], root_objectid, owner, offset, parent);
 939		goto out;
 940	}
 941
 942	if (ret == -ENOENT && insert) {
 943		if (item_size + extra_size >=
 944		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 945			ret = -EAGAIN;
 946			goto out;
 947		}
 948
 949		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
 950			struct btrfs_key tmp_key;
 951
 952			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
 953			if (tmp_key.objectid == bytenr &&
 954			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 955				ret = -EAGAIN;
 956				goto out;
 957			}
 958			goto out_no_entry;
 959		}
 960
 961		if (!path->keep_locks) {
 962			btrfs_release_path(path);
 963			path->keep_locks = 1;
 964			goto again;
 965		}
 966
 967		/*
 968		 * To add new inline back ref, we have to make sure
 969		 * there is no corresponding back ref item.
 970		 * For simplicity, we just do not add new inline back
 971		 * ref if there is any kind of item for this block
 972		 */
 973		if (find_next_key(path, 0, &key) == 0 &&
 974		    key.objectid == bytenr &&
 975		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 976			ret = -EAGAIN;
 977			goto out;
 978		}
 979	}
 980out_no_entry:
 981	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 982out:
 983	if (path->keep_locks) {
 984		path->keep_locks = 0;
 985		btrfs_unlock_up_safe(path, 1);
 986	}
 987	if (insert)
 988		path->search_for_extension = 0;
 989	return ret;
 990}
 991
 992/*
 993 * helper to add new inline back ref
 994 */
 995static noinline_for_stack
 996void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
 997				 struct btrfs_path *path,
 998				 struct btrfs_extent_inline_ref *iref,
 999				 u64 parent, u64 root_objectid,
1000				 u64 owner, u64 offset, int refs_to_add,
1001				 struct btrfs_delayed_extent_op *extent_op)
1002{
1003	struct extent_buffer *leaf;
1004	struct btrfs_extent_item *ei;
1005	unsigned long ptr;
1006	unsigned long end;
1007	unsigned long item_offset;
1008	u64 refs;
1009	int size;
1010	int type;
1011
1012	leaf = path->nodes[0];
1013	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014	item_offset = (unsigned long)iref - (unsigned long)ei;
1015
1016	type = extent_ref_type(parent, owner);
1017	size = btrfs_extent_inline_ref_size(type);
1018
1019	btrfs_extend_item(trans, path, size);
1020
1021	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1022	refs = btrfs_extent_refs(leaf, ei);
1023	refs += refs_to_add;
1024	btrfs_set_extent_refs(leaf, ei, refs);
1025	if (extent_op)
1026		__run_delayed_extent_op(extent_op, leaf, ei);
1027
1028	ptr = (unsigned long)ei + item_offset;
1029	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1030	if (ptr < end - size)
1031		memmove_extent_buffer(leaf, ptr + size, ptr,
1032				      end - size - ptr);
1033
1034	iref = (struct btrfs_extent_inline_ref *)ptr;
1035	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1036	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1037		struct btrfs_extent_data_ref *dref;
1038		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1039		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1040		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1041		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1042		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1043	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1044		struct btrfs_shared_data_ref *sref;
1045		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1046		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1047		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1049		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1050	} else {
1051		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1052	}
1053	btrfs_mark_buffer_dirty(trans, leaf);
1054}
1055
1056static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 
1057				 struct btrfs_path *path,
1058				 struct btrfs_extent_inline_ref **ref_ret,
1059				 u64 bytenr, u64 num_bytes, u64 parent,
1060				 u64 root_objectid, u64 owner, u64 offset)
1061{
1062	int ret;
1063
1064	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1065					   num_bytes, parent, root_objectid,
1066					   owner, offset, 0);
1067	if (ret != -ENOENT)
1068		return ret;
1069
1070	btrfs_release_path(path);
1071	*ref_ret = NULL;
1072
1073	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1074		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1075					    root_objectid);
1076	} else {
1077		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1078					     root_objectid, owner, offset);
1079	}
1080	return ret;
1081}
1082
1083/*
1084 * helper to update/remove inline back ref
1085 */
1086static noinline_for_stack int update_inline_extent_backref(
1087				  struct btrfs_trans_handle *trans,
1088				  struct btrfs_path *path,
1089				  struct btrfs_extent_inline_ref *iref,
1090				  int refs_to_mod,
1091				  struct btrfs_delayed_extent_op *extent_op)
 
1092{
1093	struct extent_buffer *leaf = path->nodes[0];
1094	struct btrfs_fs_info *fs_info = leaf->fs_info;
1095	struct btrfs_extent_item *ei;
1096	struct btrfs_extent_data_ref *dref = NULL;
1097	struct btrfs_shared_data_ref *sref = NULL;
1098	unsigned long ptr;
1099	unsigned long end;
1100	u32 item_size;
1101	int size;
1102	int type;
1103	u64 refs;
1104
 
1105	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106	refs = btrfs_extent_refs(leaf, ei);
1107	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1108		struct btrfs_key key;
1109		u32 extent_size;
1110
1111		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112		if (key.type == BTRFS_METADATA_ITEM_KEY)
1113			extent_size = fs_info->nodesize;
1114		else
1115			extent_size = key.offset;
1116		btrfs_print_leaf(leaf);
1117		btrfs_err(fs_info,
1118	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1119			  key.objectid, extent_size, refs_to_mod, refs);
1120		return -EUCLEAN;
1121	}
1122	refs += refs_to_mod;
1123	btrfs_set_extent_refs(leaf, ei, refs);
1124	if (extent_op)
1125		__run_delayed_extent_op(extent_op, leaf, ei);
1126
1127	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1128	/*
1129	 * Function btrfs_get_extent_inline_ref_type() has already printed
1130	 * error messages.
1131	 */
1132	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1133		return -EUCLEAN;
1134
1135	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137		refs = btrfs_extent_data_ref_count(leaf, dref);
1138	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140		refs = btrfs_shared_data_ref_count(leaf, sref);
1141	} else {
1142		refs = 1;
1143		/*
1144		 * For tree blocks we can only drop one ref for it, and tree
1145		 * blocks should not have refs > 1.
1146		 *
1147		 * Furthermore if we're inserting a new inline backref, we
1148		 * won't reach this path either. That would be
1149		 * setup_inline_extent_backref().
1150		 */
1151		if (unlikely(refs_to_mod != -1)) {
1152			struct btrfs_key key;
1153
1154			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1155
1156			btrfs_print_leaf(leaf);
1157			btrfs_err(fs_info,
1158			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1159				  key.objectid, refs_to_mod);
1160			return -EUCLEAN;
1161		}
1162	}
1163
1164	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1165		struct btrfs_key key;
1166		u32 extent_size;
1167
1168		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169		if (key.type == BTRFS_METADATA_ITEM_KEY)
1170			extent_size = fs_info->nodesize;
1171		else
1172			extent_size = key.offset;
1173		btrfs_print_leaf(leaf);
1174		btrfs_err(fs_info,
1175"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1176			  (unsigned long)iref, key.objectid, extent_size,
1177			  refs_to_mod, refs);
1178		return -EUCLEAN;
1179	}
1180	refs += refs_to_mod;
1181
1182	if (refs > 0) {
1183		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1185		else
1186			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1187	} else {
 
1188		size =  btrfs_extent_inline_ref_size(type);
1189		item_size = btrfs_item_size(leaf, path->slots[0]);
1190		ptr = (unsigned long)iref;
1191		end = (unsigned long)ei + item_size;
1192		if (ptr + size < end)
1193			memmove_extent_buffer(leaf, ptr, ptr + size,
1194					      end - ptr - size);
1195		item_size -= size;
1196		btrfs_truncate_item(trans, path, item_size, 1);
1197	}
1198	btrfs_mark_buffer_dirty(trans, leaf);
1199	return 0;
1200}
1201
1202static noinline_for_stack
1203int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 
1204				 struct btrfs_path *path,
1205				 u64 bytenr, u64 num_bytes, u64 parent,
1206				 u64 root_objectid, u64 owner,
1207				 u64 offset, int refs_to_add,
1208				 struct btrfs_delayed_extent_op *extent_op)
1209{
1210	struct btrfs_extent_inline_ref *iref;
1211	int ret;
1212
1213	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1214					   num_bytes, parent, root_objectid,
1215					   owner, offset, 1);
1216	if (ret == 0) {
1217		/*
1218		 * We're adding refs to a tree block we already own, this
1219		 * should not happen at all.
1220		 */
1221		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1222			btrfs_print_leaf(path->nodes[0]);
1223			btrfs_crit(trans->fs_info,
1224"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1225				   bytenr, num_bytes, root_objectid, path->slots[0]);
1226			return -EUCLEAN;
1227		}
1228		ret = update_inline_extent_backref(trans, path, iref,
1229						   refs_to_add, extent_op);
1230	} else if (ret == -ENOENT) {
1231		setup_inline_extent_backref(trans, path, iref, parent,
1232					    root_objectid, owner, offset,
1233					    refs_to_add, extent_op);
1234		ret = 0;
1235	}
1236	return ret;
1237}
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239static int remove_extent_backref(struct btrfs_trans_handle *trans,
1240				 struct btrfs_root *root,
1241				 struct btrfs_path *path,
1242				 struct btrfs_extent_inline_ref *iref,
1243				 int refs_to_drop, int is_data)
1244{
1245	int ret = 0;
1246
1247	BUG_ON(!is_data && refs_to_drop != 1);
1248	if (iref)
1249		ret = update_inline_extent_backref(trans, path, iref,
1250						   -refs_to_drop, NULL);
1251	else if (is_data)
1252		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1253	else
 
 
1254		ret = btrfs_del_item(trans, root, path);
 
1255	return ret;
1256}
1257
 
1258static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1259			       u64 *discarded_bytes)
1260{
1261	int j, ret = 0;
1262	u64 bytes_left, end;
1263	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1264
1265	/* Adjust the range to be aligned to 512B sectors if necessary. */
1266	if (start != aligned_start) {
1267		len -= aligned_start - start;
1268		len = round_down(len, 1 << SECTOR_SHIFT);
1269		start = aligned_start;
1270	}
1271
1272	*discarded_bytes = 0;
1273
1274	if (!len)
1275		return 0;
1276
1277	end = start + len;
1278	bytes_left = len;
1279
1280	/* Skip any superblocks on this device. */
1281	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1282		u64 sb_start = btrfs_sb_offset(j);
1283		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1284		u64 size = sb_start - start;
1285
1286		if (!in_range(sb_start, start, bytes_left) &&
1287		    !in_range(sb_end, start, bytes_left) &&
1288		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1289			continue;
1290
1291		/*
1292		 * Superblock spans beginning of range.  Adjust start and
1293		 * try again.
1294		 */
1295		if (sb_start <= start) {
1296			start += sb_end - start;
1297			if (start > end) {
1298				bytes_left = 0;
1299				break;
1300			}
1301			bytes_left = end - start;
1302			continue;
1303		}
1304
1305		if (size) {
1306			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307						   size >> SECTOR_SHIFT,
1308						   GFP_NOFS);
1309			if (!ret)
1310				*discarded_bytes += size;
1311			else if (ret != -EOPNOTSUPP)
1312				return ret;
1313		}
1314
1315		start = sb_end;
1316		if (start > end) {
1317			bytes_left = 0;
1318			break;
1319		}
1320		bytes_left = end - start;
1321	}
1322
1323	while (bytes_left) {
1324		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1325
1326		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1327					   bytes_to_discard >> SECTOR_SHIFT,
1328					   GFP_NOFS);
1329
1330		if (ret) {
1331			if (ret != -EOPNOTSUPP)
1332				break;
1333			continue;
1334		}
1335
1336		start += bytes_to_discard;
1337		bytes_left -= bytes_to_discard;
1338		*discarded_bytes += bytes_to_discard;
1339
1340		if (btrfs_trim_interrupted()) {
1341			ret = -ERESTARTSYS;
1342			break;
1343		}
1344	}
1345
1346	return ret;
1347}
1348
1349static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1350{
1351	struct btrfs_device *dev = stripe->dev;
1352	struct btrfs_fs_info *fs_info = dev->fs_info;
1353	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1354	u64 phys = stripe->physical;
1355	u64 len = stripe->length;
1356	u64 discarded = 0;
1357	int ret = 0;
1358
1359	/* Zone reset on a zoned filesystem */
1360	if (btrfs_can_zone_reset(dev, phys, len)) {
1361		u64 src_disc;
1362
1363		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1364		if (ret)
1365			goto out;
1366
1367		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1368		    dev != dev_replace->srcdev)
1369			goto out;
1370
1371		src_disc = discarded;
1372
1373		/* Send to replace target as well */
1374		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1375					      &discarded);
1376		discarded += src_disc;
1377	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1378		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1379	} else {
1380		ret = 0;
1381		*bytes = 0;
1382	}
1383
1384out:
1385	*bytes = discarded;
1386	return ret;
1387}
1388
1389int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1390			 u64 num_bytes, u64 *actual_bytes)
1391{
1392	int ret = 0;
1393	u64 discarded_bytes = 0;
1394	u64 end = bytenr + num_bytes;
1395	u64 cur = bytenr;
1396
1397	/*
1398	 * Avoid races with device replace and make sure the devices in the
1399	 * stripes don't go away while we are discarding.
1400	 */
1401	btrfs_bio_counter_inc_blocked(fs_info);
1402	while (cur < end) {
1403		struct btrfs_discard_stripe *stripes;
1404		unsigned int num_stripes;
 
 
 
1405		int i;
1406
1407		num_bytes = end - cur;
1408		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1409		if (IS_ERR(stripes)) {
1410			ret = PTR_ERR(stripes);
1411			if (ret == -EOPNOTSUPP)
1412				ret = 0;
1413			break;
1414		}
1415
1416		for (i = 0; i < num_stripes; i++) {
1417			struct btrfs_discard_stripe *stripe = stripes + i;
1418			u64 bytes;
1419
1420			if (!stripe->dev->bdev) {
1421				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1422				continue;
1423			}
1424
1425			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1426					&stripe->dev->dev_state))
1427				continue;
 
 
 
 
 
1428
1429			ret = do_discard_extent(stripe, &bytes);
1430			if (ret) {
1431				/*
1432				 * Keep going if discard is not supported by the
1433				 * device.
1434				 */
1435				if (ret != -EOPNOTSUPP)
1436					break;
1437				ret = 0;
1438			} else {
1439				discarded_bytes += bytes;
1440			}
1441		}
1442		kfree(stripes);
1443		if (ret)
1444			break;
1445		cur += num_bytes;
1446	}
1447	btrfs_bio_counter_dec(fs_info);
 
1448	if (actual_bytes)
1449		*actual_bytes = discarded_bytes;
 
 
 
 
1450	return ret;
1451}
1452
1453/* Can return -ENOMEM */
1454int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455			 struct btrfs_ref *generic_ref)
 
 
1456{
1457	struct btrfs_fs_info *fs_info = trans->fs_info;
1458	int ret;
1459
1460	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1461	       generic_ref->action);
1462	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1463	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1464
1465	if (generic_ref->type == BTRFS_REF_METADATA)
1466		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1467	else
1468		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1469
1470	btrfs_ref_tree_mod(fs_info, generic_ref);
1471
 
 
 
 
 
 
 
 
 
 
 
1472	return ret;
1473}
1474
1475/*
1476 * Insert backreference for a given extent.
1477 *
1478 * The counterpart is in __btrfs_free_extent(), with examples and more details
1479 * how it works.
1480 *
1481 * @trans:	    Handle of transaction
1482 *
1483 * @node:	    The delayed ref node used to get the bytenr/length for
1484 *		    extent whose references are incremented.
1485 *
1486 * @extent_op       Pointer to a structure, holding information necessary when
1487 *                  updating a tree block's flags
1488 *
1489 */
1490static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 
1491				  struct btrfs_delayed_ref_node *node,
 
 
1492				  struct btrfs_delayed_extent_op *extent_op)
1493{
1494	struct btrfs_path *path;
1495	struct extent_buffer *leaf;
1496	struct btrfs_extent_item *item;
1497	struct btrfs_key key;
1498	u64 bytenr = node->bytenr;
1499	u64 num_bytes = node->num_bytes;
1500	u64 owner = btrfs_delayed_ref_owner(node);
1501	u64 offset = btrfs_delayed_ref_offset(node);
1502	u64 refs;
1503	int refs_to_add = node->ref_mod;
1504	int ret;
1505
1506	path = btrfs_alloc_path();
1507	if (!path)
1508		return -ENOMEM;
1509
 
 
1510	/* this will setup the path even if it fails to insert the back ref */
1511	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1512					   node->parent, node->ref_root, owner,
1513					   offset, refs_to_add, extent_op);
 
1514	if ((ret < 0 && ret != -EAGAIN) || !ret)
1515		goto out;
1516
1517	/*
1518	 * Ok we had -EAGAIN which means we didn't have space to insert and
1519	 * inline extent ref, so just update the reference count and add a
1520	 * normal backref.
1521	 */
1522	leaf = path->nodes[0];
1523	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1524	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1525	refs = btrfs_extent_refs(leaf, item);
1526	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1527	if (extent_op)
1528		__run_delayed_extent_op(extent_op, leaf, item);
1529
1530	btrfs_mark_buffer_dirty(trans, leaf);
1531	btrfs_release_path(path);
1532
 
 
1533	/* now insert the actual backref */
1534	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1535		ret = insert_tree_block_ref(trans, path, node, bytenr);
1536	else
1537		ret = insert_extent_data_ref(trans, path, node, bytenr);
1538
1539	if (ret)
1540		btrfs_abort_transaction(trans, ret);
1541out:
1542	btrfs_free_path(path);
1543	return ret;
1544}
1545
1546static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1547				     struct btrfs_delayed_ref_head *href)
1548{
1549	u64 root = href->owning_root;
1550
1551	/*
1552	 * Don't check must_insert_reserved, as this is called from contexts
1553	 * where it has already been unset.
1554	 */
1555	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1556	    !href->is_data || !is_fstree(root))
1557		return;
1558
1559	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1560				  BTRFS_QGROUP_RSV_DATA);
1561}
1562
1563static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1564				struct btrfs_delayed_ref_head *href,
1565				struct btrfs_delayed_ref_node *node,
1566				struct btrfs_delayed_extent_op *extent_op,
1567				bool insert_reserved)
1568{
1569	int ret = 0;
 
 
1570	u64 parent = 0;
 
1571	u64 flags = 0;
1572
1573	trace_run_delayed_data_ref(trans->fs_info, node);
 
 
 
 
 
1574
1575	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1576		parent = node->parent;
 
1577
1578	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1579		struct btrfs_key key;
1580		struct btrfs_squota_delta delta = {
1581			.root = href->owning_root,
1582			.num_bytes = node->num_bytes,
1583			.is_data = true,
1584			.is_inc	= true,
1585			.generation = trans->transid,
1586		};
1587		u64 owner = btrfs_delayed_ref_owner(node);
1588		u64 offset = btrfs_delayed_ref_offset(node);
1589
1590		if (extent_op)
1591			flags |= extent_op->flags_to_set;
1592
1593		key.objectid = node->bytenr;
1594		key.type = BTRFS_EXTENT_ITEM_KEY;
1595		key.offset = node->num_bytes;
1596
1597		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1598						 flags, owner, offset, &key,
1599						 node->ref_mod,
1600						 href->owning_root);
1601		free_head_ref_squota_rsv(trans->fs_info, href);
1602		if (!ret)
1603			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1604	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1605		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
 
 
 
1606	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1607		ret = __btrfs_free_extent(trans, href, node, extent_op);
 
 
 
1608	} else {
1609		BUG();
1610	}
1611	return ret;
1612}
1613
1614static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1615				    struct extent_buffer *leaf,
1616				    struct btrfs_extent_item *ei)
1617{
1618	u64 flags = btrfs_extent_flags(leaf, ei);
1619	if (extent_op->update_flags) {
1620		flags |= extent_op->flags_to_set;
1621		btrfs_set_extent_flags(leaf, ei, flags);
1622	}
1623
1624	if (extent_op->update_key) {
1625		struct btrfs_tree_block_info *bi;
1626		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1627		bi = (struct btrfs_tree_block_info *)(ei + 1);
1628		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1629	}
1630}
1631
1632static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1633				 struct btrfs_delayed_ref_head *head,
 
1634				 struct btrfs_delayed_extent_op *extent_op)
1635{
1636	struct btrfs_fs_info *fs_info = trans->fs_info;
1637	struct btrfs_root *root;
1638	struct btrfs_key key;
1639	struct btrfs_path *path;
1640	struct btrfs_extent_item *ei;
1641	struct extent_buffer *leaf;
1642	u32 item_size;
1643	int ret;
1644	int metadata = 1;
 
1645
1646	if (TRANS_ABORTED(trans))
1647		return 0;
1648
1649	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650		metadata = 0;
1651
1652	path = btrfs_alloc_path();
1653	if (!path)
1654		return -ENOMEM;
1655
1656	key.objectid = head->bytenr;
1657
1658	if (metadata) {
1659		key.type = BTRFS_METADATA_ITEM_KEY;
1660		key.offset = head->level;
1661	} else {
1662		key.type = BTRFS_EXTENT_ITEM_KEY;
1663		key.offset = head->num_bytes;
1664	}
1665
1666	root = btrfs_extent_root(fs_info, key.objectid);
1667again:
1668	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
 
1669	if (ret < 0) {
 
1670		goto out;
1671	} else if (ret > 0) {
 
1672		if (metadata) {
1673			if (path->slots[0] > 0) {
1674				path->slots[0]--;
1675				btrfs_item_key_to_cpu(path->nodes[0], &key,
1676						      path->slots[0]);
1677				if (key.objectid == head->bytenr &&
1678				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1679				    key.offset == head->num_bytes)
1680					ret = 0;
1681			}
1682			if (ret > 0) {
1683				btrfs_release_path(path);
1684				metadata = 0;
1685
1686				key.objectid = head->bytenr;
1687				key.offset = head->num_bytes;
1688				key.type = BTRFS_EXTENT_ITEM_KEY;
1689				goto again;
1690			}
1691		} else {
1692			ret = -EUCLEAN;
1693			btrfs_err(fs_info,
1694		  "missing extent item for extent %llu num_bytes %llu level %d",
1695				  head->bytenr, head->num_bytes, head->level);
1696			goto out;
1697		}
1698	}
1699
1700	leaf = path->nodes[0];
1701	item_size = btrfs_item_size(leaf, path->slots[0]);
1702
1703	if (unlikely(item_size < sizeof(*ei))) {
1704		ret = -EUCLEAN;
1705		btrfs_err(fs_info,
1706			  "unexpected extent item size, has %u expect >= %zu",
1707			  item_size, sizeof(*ei));
1708		btrfs_abort_transaction(trans, ret);
1709		goto out;
 
 
1710	}
1711
 
1712	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713	__run_delayed_extent_op(extent_op, leaf, ei);
1714
1715	btrfs_mark_buffer_dirty(trans, leaf);
1716out:
1717	btrfs_free_path(path);
1718	return ret;
1719}
1720
1721static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1722				struct btrfs_delayed_ref_head *href,
1723				struct btrfs_delayed_ref_node *node,
1724				struct btrfs_delayed_extent_op *extent_op,
1725				bool insert_reserved)
1726{
1727	int ret = 0;
1728	struct btrfs_fs_info *fs_info = trans->fs_info;
 
1729	u64 parent = 0;
1730	u64 ref_root = 0;
 
1731
1732	trace_run_delayed_tree_ref(trans->fs_info, node);
 
1733
1734	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1735		parent = node->parent;
1736	ref_root = node->ref_root;
1737
1738	if (unlikely(node->ref_mod != 1)) {
1739		btrfs_err(trans->fs_info,
1740	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
 
 
 
 
 
 
 
 
 
1741			  node->bytenr, node->ref_mod, node->action, ref_root,
1742			  parent);
1743		return -EUCLEAN;
1744	}
1745	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1746		struct btrfs_squota_delta delta = {
1747			.root = href->owning_root,
1748			.num_bytes = fs_info->nodesize,
1749			.is_data = false,
1750			.is_inc = true,
1751			.generation = trans->transid,
1752		};
1753
1754		ret = alloc_reserved_tree_block(trans, node, extent_op);
1755		if (!ret)
1756			btrfs_record_squota_delta(fs_info, &delta);
1757	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1758		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
 
 
 
1759	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1760		ret = __btrfs_free_extent(trans, href, node, extent_op);
 
 
1761	} else {
1762		BUG();
1763	}
1764	return ret;
1765}
1766
1767/* helper function to actually process a single delayed ref entry */
1768static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769			       struct btrfs_delayed_ref_head *href,
1770			       struct btrfs_delayed_ref_node *node,
1771			       struct btrfs_delayed_extent_op *extent_op,
1772			       bool insert_reserved)
1773{
1774	int ret = 0;
1775
1776	if (TRANS_ABORTED(trans)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777		if (insert_reserved) {
1778			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779			free_head_ref_squota_rsv(trans->fs_info, href);
 
 
 
 
 
1780		}
1781		return 0;
 
 
 
 
1782	}
1783
1784	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1785	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1786		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1787					   insert_reserved);
1788	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1789		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1790		ret = run_delayed_data_ref(trans, href, node, extent_op,
1791					   insert_reserved);
1792	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1793		ret = 0;
1794	else
1795		BUG();
1796	if (ret && insert_reserved)
1797		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1798	if (ret < 0)
1799		btrfs_err(trans->fs_info,
1800"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1801			  node->bytenr, node->num_bytes, node->type,
1802			  node->action, node->ref_mod, ret);
1803	return ret;
1804}
1805
1806static inline struct btrfs_delayed_ref_node *
1807select_delayed_ref(struct btrfs_delayed_ref_head *head)
1808{
1809	struct btrfs_delayed_ref_node *ref;
1810
1811	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1812		return NULL;
1813
1814	/*
1815	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1816	 * This is to prevent a ref count from going down to zero, which deletes
1817	 * the extent item from the extent tree, when there still are references
1818	 * to add, which would fail because they would not find the extent item.
1819	 */
1820	if (!list_empty(&head->ref_add_list))
1821		return list_first_entry(&head->ref_add_list,
1822				struct btrfs_delayed_ref_node, add_list);
1823
1824	ref = rb_entry(rb_first_cached(&head->ref_tree),
1825		       struct btrfs_delayed_ref_node, ref_node);
1826	ASSERT(list_empty(&ref->add_list));
1827	return ref;
1828}
1829
1830static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831				struct btrfs_delayed_ref_head *head)
1832{
1833	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834
1835	if (!extent_op)
1836		return NULL;
1837
1838	if (head->must_insert_reserved) {
1839		head->extent_op = NULL;
1840		btrfs_free_delayed_extent_op(extent_op);
1841		return NULL;
1842	}
1843	return extent_op;
1844}
1845
1846static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847				     struct btrfs_delayed_ref_head *head)
1848{
 
 
 
1849	struct btrfs_delayed_extent_op *extent_op;
 
1850	int ret;
1851
1852	extent_op = cleanup_extent_op(head);
1853	if (!extent_op)
1854		return 0;
1855	head->extent_op = NULL;
1856	spin_unlock(&head->lock);
1857	ret = run_delayed_extent_op(trans, head, extent_op);
1858	btrfs_free_delayed_extent_op(extent_op);
1859	return ret ? ret : 1;
1860}
1861
1862u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863				  struct btrfs_delayed_ref_root *delayed_refs,
1864				  struct btrfs_delayed_ref_head *head)
1865{
1866	u64 ret = 0;
1867
1868	/*
1869	 * We had csum deletions accounted for in our delayed refs rsv, we need
1870	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871	 */
1872	if (head->total_ref_mod < 0 && head->is_data) {
1873		int nr_csums;
1874
1875		spin_lock(&delayed_refs->lock);
1876		delayed_refs->pending_csums -= head->num_bytes;
1877		spin_unlock(&delayed_refs->lock);
1878		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1879
1880		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1881
1882		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1883	}
1884	/* must_insert_reserved can be set only if we didn't run the head ref. */
1885	if (head->must_insert_reserved)
1886		free_head_ref_squota_rsv(fs_info, head);
1887
1888	return ret;
1889}
1890
1891static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1892			    struct btrfs_delayed_ref_head *head,
1893			    u64 *bytes_released)
1894{
1895
1896	struct btrfs_fs_info *fs_info = trans->fs_info;
1897	struct btrfs_delayed_ref_root *delayed_refs;
1898	int ret;
1899
1900	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
1901
1902	ret = run_and_cleanup_extent_op(trans, head);
1903	if (ret < 0) {
1904		btrfs_unselect_ref_head(delayed_refs, head);
1905		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1906		return ret;
1907	} else if (ret) {
1908		return ret;
1909	}
1910
1911	/*
1912	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1913	 * and then re-check to make sure nobody got added.
1914	 */
1915	spin_unlock(&head->lock);
1916	spin_lock(&delayed_refs->lock);
1917	spin_lock(&head->lock);
1918	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1919		spin_unlock(&head->lock);
1920		spin_unlock(&delayed_refs->lock);
1921		return 1;
1922	}
1923	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1924	spin_unlock(&head->lock);
1925	spin_unlock(&delayed_refs->lock);
1926
1927	if (head->must_insert_reserved) {
1928		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1929		if (head->is_data) {
1930			struct btrfs_root *csum_root;
1931
1932			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1933			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1934					      head->num_bytes);
1935		}
1936	}
1937
1938	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939
1940	trace_run_delayed_ref_head(fs_info, head, 0);
1941	btrfs_delayed_ref_unlock(head);
1942	btrfs_put_delayed_ref_head(head);
1943	return ret;
1944}
1945
1946static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1947					   struct btrfs_delayed_ref_head *locked_ref,
1948					   u64 *bytes_released)
1949{
1950	struct btrfs_fs_info *fs_info = trans->fs_info;
1951	struct btrfs_delayed_ref_root *delayed_refs;
1952	struct btrfs_delayed_extent_op *extent_op;
1953	struct btrfs_delayed_ref_node *ref;
1954	bool must_insert_reserved;
1955	int ret;
1956
1957	delayed_refs = &trans->transaction->delayed_refs;
1958
1959	lockdep_assert_held(&locked_ref->mutex);
1960	lockdep_assert_held(&locked_ref->lock);
1961
1962	while ((ref = select_delayed_ref(locked_ref))) {
1963		if (ref->seq &&
1964		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1965			spin_unlock(&locked_ref->lock);
1966			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1967			return -EAGAIN;
1968		}
1969
1970		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1971		RB_CLEAR_NODE(&ref->ref_node);
1972		if (!list_empty(&ref->add_list))
1973			list_del(&ref->add_list);
1974		/*
1975		 * When we play the delayed ref, also correct the ref_mod on
1976		 * head
1977		 */
1978		switch (ref->action) {
1979		case BTRFS_ADD_DELAYED_REF:
1980		case BTRFS_ADD_DELAYED_EXTENT:
1981			locked_ref->ref_mod -= ref->ref_mod;
1982			break;
1983		case BTRFS_DROP_DELAYED_REF:
1984			locked_ref->ref_mod += ref->ref_mod;
1985			break;
1986		default:
1987			WARN_ON(1);
1988		}
1989
1990		/*
1991		 * Record the must_insert_reserved flag before we drop the
1992		 * spin lock.
1993		 */
1994		must_insert_reserved = locked_ref->must_insert_reserved;
1995		/*
1996		 * Unsetting this on the head ref relinquishes ownership of
1997		 * the rsv_bytes, so it is critical that every possible code
1998		 * path from here forward frees all reserves including qgroup
1999		 * reserve.
2000		 */
2001		locked_ref->must_insert_reserved = false;
2002
2003		extent_op = locked_ref->extent_op;
2004		locked_ref->extent_op = NULL;
2005		spin_unlock(&locked_ref->lock);
2006
2007		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2008					  must_insert_reserved);
2009		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2010		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2011
2012		btrfs_free_delayed_extent_op(extent_op);
2013		if (ret) {
2014			btrfs_unselect_ref_head(delayed_refs, locked_ref);
2015			btrfs_put_delayed_ref(ref);
2016			return ret;
2017		}
2018
2019		btrfs_put_delayed_ref(ref);
2020		cond_resched();
2021
2022		spin_lock(&locked_ref->lock);
2023		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024	}
2025
2026	return 0;
2027}
 
 
 
2028
2029/*
2030 * Returns 0 on success or if called with an already aborted transaction.
2031 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032 */
2033static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034					     u64 min_bytes)
2035{
2036	struct btrfs_fs_info *fs_info = trans->fs_info;
2037	struct btrfs_delayed_ref_root *delayed_refs;
2038	struct btrfs_delayed_ref_head *locked_ref = NULL;
2039	int ret;
2040	unsigned long count = 0;
2041	unsigned long max_count = 0;
2042	u64 bytes_processed = 0;
2043
2044	delayed_refs = &trans->transaction->delayed_refs;
2045	if (min_bytes == 0) {
2046		max_count = delayed_refs->num_heads_ready;
2047		min_bytes = U64_MAX;
2048	}
2049
2050	do {
2051		if (!locked_ref) {
2052			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2053			if (IS_ERR_OR_NULL(locked_ref)) {
2054				if (PTR_ERR(locked_ref) == -EAGAIN) {
2055					continue;
2056				} else {
2057					break;
 
 
 
 
 
 
 
 
 
 
2058				}
 
2059			}
2060			count++;
2061		}
2062		/*
2063		 * We need to try and merge add/drops of the same ref since we
2064		 * can run into issues with relocate dropping the implicit ref
2065		 * and then it being added back again before the drop can
2066		 * finish.  If we merged anything we need to re-loop so we can
2067		 * get a good ref.
2068		 * Or we can get node references of the same type that weren't
2069		 * merged when created due to bumps in the tree mod seq, and
2070		 * we need to merge them to prevent adding an inline extent
2071		 * backref before dropping it (triggering a BUG_ON at
2072		 * insert_inline_extent_backref()).
2073		 */
2074		spin_lock(&locked_ref->lock);
2075		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2076
2077		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2078		if (ret < 0 && ret != -EAGAIN) {
2079			/*
2080			 * Error, btrfs_run_delayed_refs_for_head already
2081			 * unlocked everything so just bail out
 
2082			 */
2083			return ret;
2084		} else if (!ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085			/*
2086			 * Success, perform the usual cleanup of a processed
2087			 * head
2088			 */
2089			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2090			if (ret > 0 ) {
2091				/* We dropped our lock, we need to loop. */
2092				ret = 0;
2093				continue;
2094			} else if (ret) {
2095				return ret;
 
 
 
2096			}
2097		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098
2099		/*
2100		 * Either success case or btrfs_run_delayed_refs_for_head
2101		 * returned -EAGAIN, meaning we need to select another head
 
 
2102		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103
2104		locked_ref = NULL;
2105		cond_resched();
2106	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2107		 (max_count > 0 && count < max_count) ||
2108		 locked_ref);
 
 
 
2109
 
 
 
 
 
 
 
 
 
2110	return 0;
2111}
2112
2113#ifdef SCRAMBLE_DELAYED_REFS
2114/*
2115 * Normally delayed refs get processed in ascending bytenr order. This
2116 * correlates in most cases to the order added. To expose dependencies on this
2117 * order, we start to process the tree in the middle instead of the beginning
2118 */
2119static u64 find_middle(struct rb_root *root)
2120{
2121	struct rb_node *n = root->rb_node;
2122	struct btrfs_delayed_ref_node *entry;
2123	int alt = 1;
2124	u64 middle;
2125	u64 first = 0, last = 0;
2126
2127	n = rb_first(root);
2128	if (n) {
2129		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2130		first = entry->bytenr;
2131	}
2132	n = rb_last(root);
2133	if (n) {
2134		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2135		last = entry->bytenr;
2136	}
2137	n = root->rb_node;
2138
2139	while (n) {
2140		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141		WARN_ON(!entry->in_tree);
2142
2143		middle = entry->bytenr;
2144
2145		if (alt)
2146			n = n->rb_left;
2147		else
2148			n = n->rb_right;
2149
2150		alt = 1 - alt;
2151	}
2152	return middle;
2153}
2154#endif
2155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156/*
2157 * Start processing the delayed reference count updates and extent insertions
2158 * we have queued up so far.
2159 *
2160 * @trans:	Transaction handle.
2161 * @min_bytes:	How many bytes of delayed references to process. After this
2162 *		many bytes we stop processing delayed references if there are
2163 *		any more. If 0 it means to run all existing delayed references,
2164 *		but not new ones added after running all existing ones.
2165 *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2166 *		plus any new ones that are added.
2167 *
2168 * Returns 0 on success or if called with an aborted transaction
2169 * Returns <0 on error and aborts the transaction
2170 */
2171int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
 
2172{
2173	struct btrfs_fs_info *fs_info = trans->fs_info;
2174	struct btrfs_delayed_ref_root *delayed_refs;
 
2175	int ret;
 
 
2176
2177	/* We'll clean this up in btrfs_cleanup_transaction */
2178	if (TRANS_ABORTED(trans))
2179		return 0;
2180
2181	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2182		return 0;
2183
2184	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
2185again:
2186#ifdef SCRAMBLE_DELAYED_REFS
2187	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2188#endif
2189	ret = __btrfs_run_delayed_refs(trans, min_bytes);
 
2190	if (ret < 0) {
2191		btrfs_abort_transaction(trans, ret);
2192		return ret;
2193	}
2194
2195	if (min_bytes == U64_MAX) {
2196		btrfs_create_pending_block_groups(trans);
 
2197
2198		spin_lock(&delayed_refs->lock);
2199		if (xa_empty(&delayed_refs->head_refs)) {
 
2200			spin_unlock(&delayed_refs->lock);
2201			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2202		}
2203		spin_unlock(&delayed_refs->lock);
2204
2205		cond_resched();
2206		goto again;
2207	}
2208
 
 
2209	return 0;
2210}
2211
2212int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2213				struct extent_buffer *eb, u64 flags)
 
 
2214{
2215	struct btrfs_delayed_extent_op *extent_op;
2216	int ret;
2217
2218	extent_op = btrfs_alloc_delayed_extent_op();
2219	if (!extent_op)
2220		return -ENOMEM;
2221
2222	extent_op->flags_to_set = flags;
2223	extent_op->update_flags = true;
2224	extent_op->update_key = false;
 
 
2225
2226	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2227					  btrfs_header_level(eb), extent_op);
2228	if (ret)
2229		btrfs_free_delayed_extent_op(extent_op);
2230	return ret;
2231}
2232
2233static noinline int check_delayed_ref(struct btrfs_root *root,
 
2234				      struct btrfs_path *path,
2235				      u64 objectid, u64 offset, u64 bytenr)
2236{
2237	struct btrfs_delayed_ref_head *head;
2238	struct btrfs_delayed_ref_node *ref;
 
2239	struct btrfs_delayed_ref_root *delayed_refs;
2240	struct btrfs_transaction *cur_trans;
2241	struct rb_node *node;
2242	int ret = 0;
2243
2244	spin_lock(&root->fs_info->trans_lock);
2245	cur_trans = root->fs_info->running_transaction;
2246	if (cur_trans)
2247		refcount_inc(&cur_trans->use_count);
2248	spin_unlock(&root->fs_info->trans_lock);
2249	if (!cur_trans)
2250		return 0;
2251
2252	delayed_refs = &cur_trans->delayed_refs;
2253	spin_lock(&delayed_refs->lock);
2254	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2255	if (!head) {
2256		spin_unlock(&delayed_refs->lock);
2257		btrfs_put_transaction(cur_trans);
2258		return 0;
2259	}
2260
2261	if (!mutex_trylock(&head->mutex)) {
2262		if (path->nowait) {
2263			spin_unlock(&delayed_refs->lock);
2264			btrfs_put_transaction(cur_trans);
2265			return -EAGAIN;
2266		}
2267
2268		refcount_inc(&head->refs);
2269		spin_unlock(&delayed_refs->lock);
2270
2271		btrfs_release_path(path);
2272
2273		/*
2274		 * Mutex was contended, block until it's released and let
2275		 * caller try again
2276		 */
2277		mutex_lock(&head->mutex);
2278		mutex_unlock(&head->mutex);
2279		btrfs_put_delayed_ref_head(head);
2280		btrfs_put_transaction(cur_trans);
2281		return -EAGAIN;
2282	}
2283	spin_unlock(&delayed_refs->lock);
2284
2285	spin_lock(&head->lock);
2286	/*
2287	 * XXX: We should replace this with a proper search function in the
2288	 * future.
2289	 */
2290	for (node = rb_first_cached(&head->ref_tree); node;
2291	     node = rb_next(node)) {
2292		u64 ref_owner;
2293		u64 ref_offset;
2294
2295		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296		/* If it's a shared ref we know a cross reference exists */
2297		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298			ret = 1;
2299			break;
2300		}
2301
2302		ref_owner = btrfs_delayed_ref_owner(ref);
2303		ref_offset = btrfs_delayed_ref_offset(ref);
2304
2305		/*
2306		 * If our ref doesn't match the one we're currently looking at
2307		 * then we have a cross reference.
2308		 */
2309		if (ref->ref_root != btrfs_root_id(root) ||
2310		    ref_owner != objectid || ref_offset != offset) {
 
2311			ret = 1;
2312			break;
2313		}
2314	}
2315	spin_unlock(&head->lock);
2316	mutex_unlock(&head->mutex);
2317	btrfs_put_transaction(cur_trans);
2318	return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
 
2322					struct btrfs_path *path,
2323					u64 objectid, u64 offset, u64 bytenr,
2324					bool strict)
2325{
2326	struct btrfs_fs_info *fs_info = root->fs_info;
2327	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2328	struct extent_buffer *leaf;
2329	struct btrfs_extent_data_ref *ref;
2330	struct btrfs_extent_inline_ref *iref;
2331	struct btrfs_extent_item *ei;
2332	struct btrfs_key key;
2333	u32 item_size;
2334	u32 expected_size;
2335	int type;
2336	int ret;
2337
2338	key.objectid = bytenr;
2339	key.offset = (u64)-1;
2340	key.type = BTRFS_EXTENT_ITEM_KEY;
2341
2342	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343	if (ret < 0)
2344		goto out;
2345	if (ret == 0) {
2346		/*
2347		 * Key with offset -1 found, there would have to exist an extent
2348		 * item with such offset, but this is out of the valid range.
2349		 */
2350		ret = -EUCLEAN;
2351		goto out;
2352	}
2353
2354	ret = -ENOENT;
2355	if (path->slots[0] == 0)
2356		goto out;
2357
2358	path->slots[0]--;
2359	leaf = path->nodes[0];
2360	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2361
2362	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2363		goto out;
2364
2365	ret = 1;
2366	item_size = btrfs_item_size(leaf, path->slots[0]);
2367	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2368	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2369
2370	/* No inline refs; we need to bail before checking for owner ref. */
2371	if (item_size == sizeof(*ei))
2372		goto out;
2373
2374	/* Check for an owner ref; skip over it to the real inline refs. */
2375	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2376	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2377	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2378		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2379		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2380	}
 
 
2381
2382	/* If extent item has more than 1 inline ref then it's shared */
2383	if (item_size != expected_size)
2384		goto out;
2385
2386	/*
2387	 * If extent created before last snapshot => it's shared unless the
2388	 * snapshot has been deleted. Use the heuristic if strict is false.
2389	 */
2390	if (!strict &&
2391	    (btrfs_extent_generation(leaf, ei) <=
2392	     btrfs_root_last_snapshot(&root->root_item)))
2393		goto out;
2394
2395	/* If this extent has SHARED_DATA_REF then it's shared */
2396	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2397	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398		goto out;
2399
2400	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401	if (btrfs_extent_refs(leaf, ei) !=
2402	    btrfs_extent_data_ref_count(leaf, ref) ||
2403	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
 
2404	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406		goto out;
2407
2408	ret = 0;
2409out:
2410	return ret;
2411}
2412
2413int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414			  u64 bytenr, bool strict, struct btrfs_path *path)
 
2415{
 
2416	int ret;
 
 
 
 
 
2417
2418	do {
2419		ret = check_committed_ref(root, path, objectid,
2420					  offset, bytenr, strict);
2421		if (ret && ret != -ENOENT)
2422			goto out;
2423
2424		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2425	} while (ret == -EAGAIN && !path->nowait);
 
2426
 
 
 
 
 
 
 
2427out:
2428	btrfs_release_path(path);
2429	if (btrfs_is_data_reloc_root(root))
2430		WARN_ON(ret > 0);
2431	return ret;
2432}
2433
2434static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2435			   struct btrfs_root *root,
2436			   struct extent_buffer *buf,
2437			   int full_backref, int inc)
2438{
2439	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
2440	u64 parent;
2441	u64 ref_root;
2442	u32 nritems;
2443	struct btrfs_key key;
2444	struct btrfs_file_extent_item *fi;
2445	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2446	int i;
2447	int action;
2448	int level;
2449	int ret = 0;
 
 
 
 
2450
2451	if (btrfs_is_testing(fs_info))
2452		return 0;
2453
2454	ref_root = btrfs_header_owner(buf);
2455	nritems = btrfs_header_nritems(buf);
2456	level = btrfs_header_level(buf);
2457
2458	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2459		return 0;
2460
 
 
 
 
 
2461	if (full_backref)
2462		parent = buf->start;
2463	else
2464		parent = 0;
2465	if (inc)
2466		action = BTRFS_ADD_DELAYED_REF;
2467	else
2468		action = BTRFS_DROP_DELAYED_REF;
2469
2470	for (i = 0; i < nritems; i++) {
2471		struct btrfs_ref ref = {
2472			.action = action,
2473			.parent = parent,
2474			.ref_root = ref_root,
2475		};
2476
2477		if (level == 0) {
2478			btrfs_item_key_to_cpu(buf, &key, i);
2479			if (key.type != BTRFS_EXTENT_DATA_KEY)
2480				continue;
2481			fi = btrfs_item_ptr(buf, i,
2482					    struct btrfs_file_extent_item);
2483			if (btrfs_file_extent_type(buf, fi) ==
2484			    BTRFS_FILE_EXTENT_INLINE)
2485				continue;
2486			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2487			if (ref.bytenr == 0)
2488				continue;
2489
2490			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2491			ref.owning_root = ref_root;
2492
2493			key.offset -= btrfs_file_extent_offset(buf, fi);
2494			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2495					    btrfs_root_id(root), for_reloc);
2496			if (inc)
2497				ret = btrfs_inc_extent_ref(trans, &ref);
2498			else
2499				ret = btrfs_free_extent(trans, &ref);
2500			if (ret)
2501				goto fail;
2502		} else {
2503			/* We don't know the owning_root, leave as 0. */
2504			ref.bytenr = btrfs_node_blockptr(buf, i);
2505			ref.num_bytes = fs_info->nodesize;
2506
2507			btrfs_init_tree_ref(&ref, level - 1,
2508					    btrfs_root_id(root), for_reloc);
2509			if (inc)
2510				ret = btrfs_inc_extent_ref(trans, &ref);
2511			else
2512				ret = btrfs_free_extent(trans, &ref);
2513			if (ret)
2514				goto fail;
2515		}
2516	}
2517	return 0;
2518fail:
2519	return ret;
2520}
2521
2522int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2523		  struct extent_buffer *buf, int full_backref)
2524{
2525	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2526}
2527
2528int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529		  struct extent_buffer *buf, int full_backref)
2530{
2531	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2532}
2533
2534static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535{
2536	struct btrfs_fs_info *fs_info = root->fs_info;
2537	u64 flags;
2538	u64 ret;
2539
2540	if (data)
2541		flags = BTRFS_BLOCK_GROUP_DATA;
2542	else if (root == fs_info->chunk_root)
2543		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2544	else
2545		flags = BTRFS_BLOCK_GROUP_METADATA;
2546
2547	ret = btrfs_get_alloc_profile(fs_info, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2548	return ret;
2549}
2550
2551static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552{
2553	struct rb_node *leftmost;
2554	u64 bytenr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555
2556	read_lock(&fs_info->block_group_cache_lock);
2557	/* Get the block group with the lowest logical start address. */
2558	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2559	if (leftmost) {
2560		struct btrfs_block_group *bg;
 
 
 
 
 
 
 
 
 
 
2561
2562		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2563		bytenr = bg->start;
 
2564	}
2565	read_unlock(&fs_info->block_group_cache_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567	return bytenr;
2568}
2569
2570static int pin_down_extent(struct btrfs_trans_handle *trans,
2571			   struct btrfs_block_group *cache,
2572			   u64 bytenr, u64 num_bytes, int reserved)
2573{
2574	struct btrfs_fs_info *fs_info = cache->fs_info;
2575
2576	spin_lock(&cache->space_info->lock);
2577	spin_lock(&cache->lock);
2578	cache->pinned += num_bytes;
2579	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580					     num_bytes);
2581	if (reserved) {
2582		cache->reserved -= num_bytes;
2583		cache->space_info->bytes_reserved -= num_bytes;
2584	}
2585	spin_unlock(&cache->lock);
2586	spin_unlock(&cache->space_info->lock);
2587
2588	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2589		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
 
 
2590	return 0;
2591}
2592
2593int btrfs_pin_extent(struct btrfs_trans_handle *trans,
 
 
 
2594		     u64 bytenr, u64 num_bytes, int reserved)
2595{
2596	struct btrfs_block_group *cache;
2597
2598	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599	BUG_ON(!cache); /* Logic error */
2600
2601	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2602
2603	btrfs_put_block_group(cache);
2604	return 0;
2605}
2606
2607int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608				    const struct extent_buffer *eb)
 
 
 
2609{
2610	struct btrfs_block_group *cache;
2611	int ret;
2612
2613	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2614	if (!cache)
2615		return -EINVAL;
2616
2617	/*
2618	 * Fully cache the free space first so that our pin removes the free space
2619	 * from the cache.
 
 
2620	 */
2621	ret = btrfs_cache_block_group(cache, true);
2622	if (ret)
2623		goto out;
2624
2625	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2626
2627	/* remove us from the free space cache (if we're there at all) */
2628	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2629out:
2630	btrfs_put_block_group(cache);
2631	return ret;
2632}
2633
2634static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635				   u64 start, u64 num_bytes)
2636{
2637	int ret;
2638	struct btrfs_block_group *block_group;
 
2639
2640	block_group = btrfs_lookup_block_group(fs_info, start);
2641	if (!block_group)
2642		return -EINVAL;
2643
2644	ret = btrfs_cache_block_group(block_group, true);
2645	if (ret)
2646		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647
2648	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649out:
 
 
 
 
 
 
 
2650	btrfs_put_block_group(block_group);
2651	return ret;
2652}
2653
2654int btrfs_exclude_logged_extents(struct extent_buffer *eb)
 
2655{
2656	struct btrfs_fs_info *fs_info = eb->fs_info;
2657	struct btrfs_file_extent_item *item;
2658	struct btrfs_key key;
2659	int found_type;
2660	int i;
2661	int ret = 0;
2662
2663	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664		return 0;
2665
2666	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667		btrfs_item_key_to_cpu(eb, &key, i);
2668		if (key.type != BTRFS_EXTENT_DATA_KEY)
2669			continue;
2670		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671		found_type = btrfs_file_extent_type(eb, item);
2672		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673			continue;
2674		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675			continue;
2676		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679		if (ret)
2680			break;
2681	}
2682
2683	return ret;
2684}
2685
2686static void
2687btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688{
2689	atomic_inc(&bg->reservations);
2690}
2691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692/*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696static struct btrfs_free_cluster *
2697fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2699{
2700	struct btrfs_free_cluster *ret = NULL;
 
2701
2702	*empty_cluster = 0;
2703	if (btrfs_mixed_space_info(space_info))
2704		return ret;
2705
 
 
2706	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707		ret = &fs_info->meta_alloc_cluster;
2708		if (btrfs_test_opt(fs_info, SSD))
2709			*empty_cluster = SZ_2M;
2710		else
2711			*empty_cluster = SZ_64K;
2712	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714		*empty_cluster = SZ_2M;
2715		ret = &fs_info->data_alloc_cluster;
2716	}
2717
2718	return ret;
2719}
2720
2721static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722			      u64 start, u64 end,
2723			      const bool return_free_space)
2724{
2725	struct btrfs_block_group *cache = NULL;
2726	struct btrfs_space_info *space_info;
2727	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728	struct btrfs_free_cluster *cluster = NULL;
2729	u64 len;
2730	u64 total_unpinned = 0;
2731	u64 empty_cluster = 0;
2732	bool readonly;
2733	int ret = 0;
2734
2735	while (start <= end) {
2736		readonly = false;
2737		if (!cache ||
2738		    start >= cache->start + cache->length) {
2739			if (cache)
2740				btrfs_put_block_group(cache);
2741			total_unpinned = 0;
2742			cache = btrfs_lookup_block_group(fs_info, start);
2743			if (cache == NULL) {
2744				/* Logic error, something removed the block group. */
2745				ret = -EUCLEAN;
2746				goto out;
2747			}
2748
2749			cluster = fetch_cluster_info(fs_info,
2750						     cache->space_info,
2751						     &empty_cluster);
2752			empty_cluster <<= 1;
2753		}
2754
2755		len = cache->start + cache->length - start;
2756		len = min(len, end + 1 - start);
2757
2758		if (return_free_space)
2759			btrfs_add_free_space(cache, start, len);
 
 
 
2760
2761		start += len;
2762		total_unpinned += len;
2763		space_info = cache->space_info;
2764
2765		/*
2766		 * If this space cluster has been marked as fragmented and we've
2767		 * unpinned enough in this block group to potentially allow a
2768		 * cluster to be created inside of it go ahead and clear the
2769		 * fragmented check.
2770		 */
2771		if (cluster && cluster->fragmented &&
2772		    total_unpinned > empty_cluster) {
2773			spin_lock(&cluster->lock);
2774			cluster->fragmented = 0;
2775			spin_unlock(&cluster->lock);
2776		}
2777
2778		spin_lock(&space_info->lock);
2779		spin_lock(&cache->lock);
2780		cache->pinned -= len;
2781		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
 
 
 
2782		space_info->max_extent_size = 0;
 
2783		if (cache->ro) {
2784			space_info->bytes_readonly += len;
2785			readonly = true;
2786		} else if (btrfs_is_zoned(fs_info)) {
2787			/* Need reset before reusing in a zoned block group */
2788			btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2789								    len);
2790			readonly = true;
2791		}
2792		spin_unlock(&cache->lock);
2793		if (!readonly && return_free_space &&
2794		    global_rsv->space_info == space_info) {
 
 
2795			spin_lock(&global_rsv->lock);
2796			if (!global_rsv->full) {
2797				u64 to_add = min(len, global_rsv->size -
2798						      global_rsv->reserved);
2799
2800				global_rsv->reserved += to_add;
2801				btrfs_space_info_update_bytes_may_use(fs_info,
2802						space_info, to_add);
2803				if (global_rsv->reserved >= global_rsv->size)
2804					global_rsv->full = 1;
 
 
 
 
2805				len -= to_add;
2806			}
2807			spin_unlock(&global_rsv->lock);
 
 
 
 
2808		}
2809		/* Add to any tickets we may have */
2810		if (!readonly && return_free_space && len)
2811			btrfs_try_granting_tickets(fs_info, space_info);
2812		spin_unlock(&space_info->lock);
2813	}
2814
2815	if (cache)
2816		btrfs_put_block_group(cache);
2817out:
2818	return ret;
2819}
2820
2821int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
 
2822{
2823	struct btrfs_fs_info *fs_info = trans->fs_info;
2824	struct btrfs_block_group *block_group, *tmp;
2825	struct list_head *deleted_bgs;
2826	struct extent_io_tree *unpin;
2827	u64 start;
2828	u64 end;
2829	int ret;
2830
2831	unpin = &trans->transaction->pinned_extents;
2832
2833	while (!TRANS_ABORTED(trans)) {
2834		struct extent_state *cached_state = NULL;
2835
 
2836		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837		if (!find_first_extent_bit(unpin, 0, &start, &end,
2838					   EXTENT_DIRTY, &cached_state)) {
 
2839			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840			break;
2841		}
2842
2843		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2844			ret = btrfs_discard_extent(fs_info, start,
2845						   end + 1 - start, NULL);
2846
2847		clear_extent_dirty(unpin, start, end, &cached_state);
2848		ret = unpin_extent_range(fs_info, start, end, true);
2849		BUG_ON(ret);
2850		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2851		free_extent_state(cached_state);
2852		cond_resched();
2853	}
2854
2855	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2856		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2857		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2858	}
2859
2860	/*
2861	 * Transaction is finished.  We don't need the lock anymore.  We
2862	 * do need to clean up the block groups in case of a transaction
2863	 * abort.
2864	 */
2865	deleted_bgs = &trans->transaction->deleted_bgs;
2866	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2867		u64 trimmed = 0;
2868
2869		ret = -EROFS;
2870		if (!TRANS_ABORTED(trans))
2871			ret = btrfs_discard_extent(fs_info,
2872						   block_group->start,
2873						   block_group->length,
2874						   &trimmed);
2875
2876		list_del_init(&block_group->bg_list);
2877		btrfs_unfreeze_block_group(block_group);
2878		btrfs_put_block_group(block_group);
2879
2880		if (ret) {
2881			const char *errstr = btrfs_decode_error(ret);
2882			btrfs_warn(fs_info,
2883			   "discard failed while removing blockgroup: errno=%d %s",
2884				   ret, errstr);
2885		}
2886	}
2887
2888	return 0;
2889}
2890
2891/*
2892 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2893 *
2894 * @fs_info:	the btrfs_fs_info for this mount
2895 * @leaf:	a leaf in the extent tree containing the extent item
2896 * @slot:	the slot in the leaf where the extent item is found
2897 *
2898 * Returns the objectid of the root that originally allocated the extent item
2899 * if the inline owner ref is expected and present, otherwise 0.
2900 *
2901 * If an extent item has an owner ref item, it will be the first inline ref
2902 * item. Therefore the logic is to check whether there are any inline ref
2903 * items, then check the type of the first one.
2904 */
2905u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2906				struct extent_buffer *leaf, int slot)
2907{
2908	struct btrfs_extent_item *ei;
2909	struct btrfs_extent_inline_ref *iref;
2910	struct btrfs_extent_owner_ref *oref;
2911	unsigned long ptr;
2912	unsigned long end;
2913	int type;
2914
2915	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2916		return 0;
2917
2918	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2919	ptr = (unsigned long)(ei + 1);
2920	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2921
2922	/* No inline ref items of any kind, can't check type. */
2923	if (ptr == end)
2924		return 0;
2925
2926	iref = (struct btrfs_extent_inline_ref *)ptr;
2927	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2928
2929	/* We found an owner ref, get the root out of it. */
2930	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2931		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2932		return btrfs_extent_owner_ref_root_id(leaf, oref);
2933	}
2934
2935	/* We have inline refs, but not an owner ref. */
2936	return 0;
 
2937}
2938
2939static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2940				     u64 bytenr, struct btrfs_squota_delta *delta)
2941{
2942	int ret;
2943	u64 num_bytes = delta->num_bytes;
2944
2945	if (delta->is_data) {
2946		struct btrfs_root *csum_root;
2947
2948		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2949		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2950		if (ret) {
2951			btrfs_abort_transaction(trans, ret);
2952			return ret;
2953		}
2954
2955		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2956		if (ret) {
2957			btrfs_abort_transaction(trans, ret);
2958			return ret;
2959		}
2960	}
2961
2962	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2963	if (ret) {
2964		btrfs_abort_transaction(trans, ret);
2965		return ret;
2966	}
2967
2968	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2969	if (ret) {
2970		btrfs_abort_transaction(trans, ret);
2971		return ret;
2972	}
2973
2974	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2975	if (ret)
2976		btrfs_abort_transaction(trans, ret);
2977
2978	return ret;
2979}
2980
2981#define abort_and_dump(trans, path, fmt, args...)	\
2982({							\
2983	btrfs_abort_transaction(trans, -EUCLEAN);	\
2984	btrfs_print_leaf(path->nodes[0]);		\
2985	btrfs_crit(trans->fs_info, fmt, ##args);	\
2986})
2987
2988/*
2989 * Drop one or more refs of @node.
2990 *
2991 * 1. Locate the extent refs.
2992 *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2993 *    Locate it, then reduce the refs number or remove the ref line completely.
2994 *
2995 * 2. Update the refs count in EXTENT/METADATA_ITEM
2996 *
2997 * Inline backref case:
2998 *
2999 * in extent tree we have:
3000 *
3001 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3002 *		refs 2 gen 6 flags DATA
3003 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3004 *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3005 *
3006 * This function gets called with:
3007 *
3008 *    node->bytenr = 13631488
3009 *    node->num_bytes = 1048576
3010 *    root_objectid = FS_TREE
3011 *    owner_objectid = 257
3012 *    owner_offset = 0
3013 *    refs_to_drop = 1
3014 *
3015 * Then we should get some like:
3016 *
3017 * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3018 *		refs 1 gen 6 flags DATA
3019 *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3020 *
3021 * Keyed backref case:
3022 *
3023 * in extent tree we have:
3024 *
3025 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3026 *		refs 754 gen 6 flags DATA
3027 *	[...]
3028 *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3029 *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3030 *
3031 * This function get called with:
3032 *
3033 *    node->bytenr = 13631488
3034 *    node->num_bytes = 1048576
3035 *    root_objectid = FS_TREE
3036 *    owner_objectid = 866
3037 *    owner_offset = 0
3038 *    refs_to_drop = 1
3039 *
3040 * Then we should get some like:
3041 *
3042 *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3043 *		refs 753 gen 6 flags DATA
3044 *
3045 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3046 */
3047static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3048			       struct btrfs_delayed_ref_head *href,
3049			       struct btrfs_delayed_ref_node *node,
3050			       struct btrfs_delayed_extent_op *extent_op)
 
 
3051{
3052	struct btrfs_fs_info *info = trans->fs_info;
3053	struct btrfs_key key;
3054	struct btrfs_path *path;
3055	struct btrfs_root *extent_root;
3056	struct extent_buffer *leaf;
3057	struct btrfs_extent_item *ei;
3058	struct btrfs_extent_inline_ref *iref;
3059	int ret;
3060	int is_data;
3061	int extent_slot = 0;
3062	int found_extent = 0;
3063	int num_to_del = 1;
3064	int refs_to_drop = node->ref_mod;
3065	u32 item_size;
3066	u64 refs;
3067	u64 bytenr = node->bytenr;
3068	u64 num_bytes = node->num_bytes;
3069	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3070	u64 owner_offset = btrfs_delayed_ref_offset(node);
3071	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3072	u64 delayed_ref_root = href->owning_root;
3073
3074	extent_root = btrfs_extent_root(info, bytenr);
3075	ASSERT(extent_root);
3076
3077	path = btrfs_alloc_path();
3078	if (!path)
3079		return -ENOMEM;
3080
 
 
 
3081	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3082
3083	if (!is_data && refs_to_drop != 1) {
3084		btrfs_crit(info,
3085"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3086			   node->bytenr, refs_to_drop);
3087		ret = -EINVAL;
3088		btrfs_abort_transaction(trans, ret);
3089		goto out;
3090	}
3091
3092	if (is_data)
3093		skinny_metadata = false;
3094
3095	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3096				    node->parent, node->ref_root, owner_objectid,
 
3097				    owner_offset);
3098	if (ret == 0) {
3099		/*
3100		 * Either the inline backref or the SHARED_DATA_REF/
3101		 * SHARED_BLOCK_REF is found
3102		 *
3103		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3104		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3105		 */
3106		extent_slot = path->slots[0];
3107		while (extent_slot >= 0) {
3108			btrfs_item_key_to_cpu(path->nodes[0], &key,
3109					      extent_slot);
3110			if (key.objectid != bytenr)
3111				break;
3112			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3113			    key.offset == num_bytes) {
3114				found_extent = 1;
3115				break;
3116			}
3117			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3118			    key.offset == owner_objectid) {
3119				found_extent = 1;
3120				break;
3121			}
3122
3123			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3124			if (path->slots[0] - extent_slot > 5)
3125				break;
3126			extent_slot--;
3127		}
3128
 
 
 
 
3129		if (!found_extent) {
3130			if (iref) {
3131				abort_and_dump(trans, path,
3132"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3133					   path->slots[0]);
3134				ret = -EUCLEAN;
3135				goto out;
3136			}
3137			/* Must be SHARED_* item, remove the backref first */
3138			ret = remove_extent_backref(trans, extent_root, path,
3139						    NULL, refs_to_drop, is_data);
 
3140			if (ret) {
3141				btrfs_abort_transaction(trans, ret);
3142				goto out;
3143			}
3144			btrfs_release_path(path);
 
3145
3146			/* Slow path to locate EXTENT/METADATA_ITEM */
3147			key.objectid = bytenr;
3148			key.type = BTRFS_EXTENT_ITEM_KEY;
3149			key.offset = num_bytes;
3150
3151			if (!is_data && skinny_metadata) {
3152				key.type = BTRFS_METADATA_ITEM_KEY;
3153				key.offset = owner_objectid;
3154			}
3155
3156			ret = btrfs_search_slot(trans, extent_root,
3157						&key, path, -1, 1);
3158			if (ret > 0 && skinny_metadata && path->slots[0]) {
3159				/*
3160				 * Couldn't find our skinny metadata item,
3161				 * see if we have ye olde extent item.
3162				 */
3163				path->slots[0]--;
3164				btrfs_item_key_to_cpu(path->nodes[0], &key,
3165						      path->slots[0]);
3166				if (key.objectid == bytenr &&
3167				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3168				    key.offset == num_bytes)
3169					ret = 0;
3170			}
3171
3172			if (ret > 0 && skinny_metadata) {
3173				skinny_metadata = false;
3174				key.objectid = bytenr;
3175				key.type = BTRFS_EXTENT_ITEM_KEY;
3176				key.offset = num_bytes;
3177				btrfs_release_path(path);
3178				ret = btrfs_search_slot(trans, extent_root,
3179							&key, path, -1, 1);
3180			}
3181
3182			if (ret) {
 
 
 
3183				if (ret > 0)
3184					btrfs_print_leaf(path->nodes[0]);
3185				btrfs_err(info,
3186			"umm, got %d back from search, was looking for %llu, slot %d",
3187					  ret, bytenr, path->slots[0]);
3188			}
3189			if (ret < 0) {
3190				btrfs_abort_transaction(trans, ret);
3191				goto out;
3192			}
3193			extent_slot = path->slots[0];
3194		}
3195	} else if (WARN_ON(ret == -ENOENT)) {
3196		abort_and_dump(trans, path,
3197"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3198			       bytenr, node->parent, node->ref_root, owner_objectid,
3199			       owner_offset, path->slots[0]);
 
 
3200		goto out;
3201	} else {
3202		btrfs_abort_transaction(trans, ret);
3203		goto out;
3204	}
3205
3206	leaf = path->nodes[0];
3207	item_size = btrfs_item_size(leaf, extent_slot);
3208	if (unlikely(item_size < sizeof(*ei))) {
3209		ret = -EUCLEAN;
3210		btrfs_err(trans->fs_info,
3211			  "unexpected extent item size, has %u expect >= %zu",
3212			  item_size, sizeof(*ei));
3213		btrfs_abort_transaction(trans, ret);
3214		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3215	}
 
 
3216	ei = btrfs_item_ptr(leaf, extent_slot,
3217			    struct btrfs_extent_item);
3218	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3219	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3220		struct btrfs_tree_block_info *bi;
3221
3222		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3223			abort_and_dump(trans, path,
3224"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3225				       key.objectid, key.type, key.offset,
3226				       path->slots[0], owner_objectid, item_size,
3227				       sizeof(*ei) + sizeof(*bi));
3228			ret = -EUCLEAN;
3229			goto out;
3230		}
3231		bi = (struct btrfs_tree_block_info *)(ei + 1);
3232		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3233	}
3234
3235	refs = btrfs_extent_refs(leaf, ei);
3236	if (refs < refs_to_drop) {
3237		abort_and_dump(trans, path,
3238		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3239			       refs_to_drop, refs, bytenr, path->slots[0]);
3240		ret = -EUCLEAN;
 
3241		goto out;
3242	}
3243	refs -= refs_to_drop;
3244
3245	if (refs > 0) {
3246		if (extent_op)
3247			__run_delayed_extent_op(extent_op, leaf, ei);
3248		/*
3249		 * In the case of inline back ref, reference count will
3250		 * be updated by remove_extent_backref
3251		 */
3252		if (iref) {
3253			if (!found_extent) {
3254				abort_and_dump(trans, path,
3255"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3256					       path->slots[0]);
3257				ret = -EUCLEAN;
3258				goto out;
3259			}
3260		} else {
3261			btrfs_set_extent_refs(leaf, ei, refs);
3262			btrfs_mark_buffer_dirty(trans, leaf);
3263		}
3264		if (found_extent) {
3265			ret = remove_extent_backref(trans, extent_root, path,
3266						    iref, refs_to_drop, is_data);
 
3267			if (ret) {
3268				btrfs_abort_transaction(trans, ret);
3269				goto out;
3270			}
3271		}
 
 
3272	} else {
3273		struct btrfs_squota_delta delta = {
3274			.root = delayed_ref_root,
3275			.num_bytes = num_bytes,
3276			.is_data = is_data,
3277			.is_inc = false,
3278			.generation = btrfs_extent_generation(leaf, ei),
3279		};
3280
3281		/* In this branch refs == 1 */
3282		if (found_extent) {
3283			if (is_data && refs_to_drop !=
3284			    extent_data_ref_count(path, iref)) {
3285				abort_and_dump(trans, path,
3286		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287					       extent_data_ref_count(path, iref),
3288					       refs_to_drop, path->slots[0]);
3289				ret = -EUCLEAN;
3290				goto out;
3291			}
3292			if (iref) {
3293				if (path->slots[0] != extent_slot) {
3294					abort_and_dump(trans, path,
3295"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296						       key.objectid, key.type,
3297						       key.offset, path->slots[0]);
3298					ret = -EUCLEAN;
3299					goto out;
3300				}
3301			} else {
3302				/*
3303				 * No inline ref, we must be at SHARED_* item,
3304				 * And it's single ref, it must be:
3305				 * |	extent_slot	  ||extent_slot + 1|
3306				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307				 */
3308				if (path->slots[0] != extent_slot + 1) {
3309					abort_and_dump(trans, path,
3310	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311						       path->slots[0]);
3312					ret = -EUCLEAN;
3313					goto out;
3314				}
3315				path->slots[0] = extent_slot;
3316				num_to_del = 2;
3317			}
3318		}
3319		/*
3320		 * We can't infer the data owner from the delayed ref, so we need
3321		 * to try to get it from the owning ref item.
3322		 *
3323		 * If it is not present, then that extent was not written under
3324		 * simple quotas mode, so we don't need to account for its deletion.
3325		 */
3326		if (is_data)
3327			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328								 leaf, extent_slot);
3329
 
3330		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331				      num_to_del);
3332		if (ret) {
3333			btrfs_abort_transaction(trans, ret);
3334			goto out;
3335		}
3336		btrfs_release_path(path);
3337
3338		ret = do_free_extent_accounting(trans, bytenr, &delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3339	}
3340	btrfs_release_path(path);
3341
3342out:
3343	btrfs_free_path(path);
3344	return ret;
3345}
3346
3347/*
3348 * when we free an block, it is possible (and likely) that we free the last
3349 * delayed ref for that extent as well.  This searches the delayed ref tree for
3350 * a given extent, and if there are no other delayed refs to be processed, it
3351 * removes it from the tree.
3352 */
3353static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354				      u64 bytenr)
3355{
3356	struct btrfs_fs_info *fs_info = trans->fs_info;
3357	struct btrfs_delayed_ref_head *head;
3358	struct btrfs_delayed_ref_root *delayed_refs;
3359	int ret = 0;
3360
3361	delayed_refs = &trans->transaction->delayed_refs;
3362	spin_lock(&delayed_refs->lock);
3363	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364	if (!head)
3365		goto out_delayed_unlock;
3366
3367	spin_lock(&head->lock);
3368	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369		goto out;
3370
3371	if (cleanup_extent_op(head) != NULL)
3372		goto out;
 
 
 
 
3373
3374	/*
3375	 * waiting for the lock here would deadlock.  If someone else has it
3376	 * locked they are already in the process of dropping it anyway
3377	 */
3378	if (!mutex_trylock(&head->mutex))
3379		goto out;
3380
3381	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382	head->processing = false;
 
 
 
 
 
 
3383
 
 
 
 
 
 
 
 
3384	spin_unlock(&head->lock);
3385	spin_unlock(&delayed_refs->lock);
3386
3387	BUG_ON(head->extent_op);
3388	if (head->must_insert_reserved)
3389		ret = 1;
3390
3391	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392	mutex_unlock(&head->mutex);
3393	btrfs_put_delayed_ref_head(head);
3394	return ret;
3395out:
3396	spin_unlock(&head->lock);
3397
3398out_delayed_unlock:
3399	spin_unlock(&delayed_refs->lock);
3400	return 0;
3401}
3402
3403int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404			  u64 root_id,
3405			  struct extent_buffer *buf,
3406			  u64 parent, int last_ref)
3407{
3408	struct btrfs_fs_info *fs_info = trans->fs_info;
3409	struct btrfs_block_group *bg;
3410	int ret;
3411
3412	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413		struct btrfs_ref generic_ref = {
3414			.action = BTRFS_DROP_DELAYED_REF,
3415			.bytenr = buf->start,
3416			.num_bytes = buf->len,
3417			.parent = parent,
3418			.owning_root = btrfs_header_owner(buf),
3419			.ref_root = root_id,
3420		};
3421
3422		/*
3423		 * Assert that the extent buffer is not cleared due to
3424		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426		 * detail.
3427		 */
3428		ASSERT(btrfs_header_bytenr(buf) != 0);
3429
3430		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431		btrfs_ref_tree_mod(fs_info, &generic_ref);
3432		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433		if (ret < 0)
3434			return ret;
3435	}
3436
3437	if (!last_ref)
3438		return 0;
3439
3440	if (btrfs_header_generation(buf) != trans->transid)
3441		goto out;
3442
3443	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444		ret = check_ref_cleanup(trans, buf->start);
3445		if (!ret)
3446			goto out;
3447	}
3448
3449	bg = btrfs_lookup_block_group(fs_info, buf->start);
3450
3451	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453		btrfs_put_block_group(bg);
3454		goto out;
3455	}
 
3456
3457	/*
3458	 * If there are tree mod log users we may have recorded mod log
3459	 * operations for this node.  If we re-allocate this node we
3460	 * could replay operations on this node that happened when it
3461	 * existed in a completely different root.  For example if it
3462	 * was part of root A, then was reallocated to root B, and we
3463	 * are doing a btrfs_old_search_slot(root b), we could replay
3464	 * operations that happened when the block was part of root A,
3465	 * giving us an inconsistent view of the btree.
3466	 *
3467	 * We are safe from races here because at this point no other
3468	 * node or root points to this extent buffer, so if after this
3469	 * check a new tree mod log user joins we will not have an
3470	 * existing log of operations on this node that we have to
3471	 * contend with.
3472	 */
3473
3474	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475		     || btrfs_is_zoned(fs_info)) {
3476		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477		btrfs_put_block_group(bg);
3478		goto out;
3479	}
3480
3481	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482
3483	btrfs_add_free_space(bg, buf->start, buf->len);
3484	btrfs_free_reserved_bytes(bg, buf->len, 0);
3485	btrfs_put_block_group(bg);
3486	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487
3488out:
 
 
 
3489
3490	/*
3491	 * Deleting the buffer, clear the corrupt flag since it doesn't
3492	 * matter anymore.
3493	 */
3494	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495	return 0;
3496}
3497
3498/* Can return -ENOMEM */
3499int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
 
 
 
3500{
3501	struct btrfs_fs_info *fs_info = trans->fs_info;
3502	int ret;
3503
3504	if (btrfs_is_testing(fs_info))
3505		return 0;
3506
 
 
3507	/*
3508	 * tree log blocks never actually go into the extent allocation
3509	 * tree, just update pinning info and exit early.
3510	 */
3511	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
 
 
3513		ret = 0;
3514	} else if (ref->type == BTRFS_REF_METADATA) {
3515		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
 
 
 
3516	} else {
3517		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
 
 
 
 
3518	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519
3520	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3521		btrfs_ref_tree_mod(fs_info, ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522
 
 
 
 
3523	return ret;
3524}
3525
3526enum btrfs_loop_type {
3527	/*
3528	 * Start caching block groups but do not wait for progress or for them
3529	 * to be done.
3530	 */
3531	LOOP_CACHING_NOWAIT,
 
 
 
 
 
 
 
 
 
 
 
3532
3533	/*
3534	 * Wait for the block group free_space >= the space we're waiting for if
3535	 * the block group isn't cached.
3536	 */
3537	LOOP_CACHING_WAIT,
3538
3539	/*
3540	 * Allow allocations to happen from block groups that do not yet have a
3541	 * size classification.
3542	 */
3543	LOOP_UNSET_SIZE_CLASS,
 
 
 
 
3544
3545	/*
3546	 * Allocate a chunk and then retry the allocation.
3547	 */
3548	LOOP_ALLOC_CHUNK,
3549
3550	/*
3551	 * Ignore the size class restrictions for this allocation.
3552	 */
3553	LOOP_WRONG_SIZE_CLASS,
3554
3555	/*
3556	 * Ignore the empty size, only try to allocate the number of bytes
3557	 * needed for this allocation.
3558	 */
3559	LOOP_NO_EMPTY_SIZE,
3560};
3561
3562static inline void
3563btrfs_lock_block_group(struct btrfs_block_group *cache,
3564		       int delalloc)
3565{
3566	if (delalloc)
3567		down_read(&cache->data_rwsem);
3568}
3569
3570static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
 
3571		       int delalloc)
3572{
3573	btrfs_get_block_group(cache);
3574	if (delalloc)
3575		down_read(&cache->data_rwsem);
3576}
3577
3578static struct btrfs_block_group *btrfs_lock_cluster(
3579		   struct btrfs_block_group *block_group,
3580		   struct btrfs_free_cluster *cluster,
3581		   int delalloc)
3582	__acquires(&cluster->refill_lock)
3583{
3584	struct btrfs_block_group *used_bg = NULL;
3585
3586	spin_lock(&cluster->refill_lock);
3587	while (1) {
3588		used_bg = cluster->block_group;
3589		if (!used_bg)
3590			return NULL;
3591
3592		if (used_bg == block_group)
3593			return used_bg;
3594
3595		btrfs_get_block_group(used_bg);
3596
3597		if (!delalloc)
3598			return used_bg;
3599
3600		if (down_read_trylock(&used_bg->data_rwsem))
3601			return used_bg;
3602
3603		spin_unlock(&cluster->refill_lock);
3604
3605		/* We should only have one-level nested. */
3606		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607
3608		spin_lock(&cluster->refill_lock);
3609		if (used_bg == cluster->block_group)
3610			return used_bg;
3611
3612		up_read(&used_bg->data_rwsem);
3613		btrfs_put_block_group(used_bg);
3614	}
3615}
3616
3617static inline void
3618btrfs_release_block_group(struct btrfs_block_group *cache,
3619			 int delalloc)
3620{
3621	if (delalloc)
3622		up_read(&cache->data_rwsem);
3623	btrfs_put_block_group(cache);
3624}
3625
3626/*
3627 * Helper function for find_free_extent().
 
 
 
 
 
3628 *
3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3630 * Return >0 to inform caller that we find nothing
3631 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632 */
3633static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634				      struct find_free_extent_ctl *ffe_ctl,
3635				      struct btrfs_block_group **cluster_bg_ret)
3636{
3637	struct btrfs_block_group *cluster_bg;
3638	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639	u64 aligned_cluster;
3640	u64 offset;
3641	int ret;
3642
3643	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644	if (!cluster_bg)
3645		goto refill_cluster;
3646	if (cluster_bg != bg && (cluster_bg->ro ||
3647	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648		goto release_cluster;
3649
3650	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651			ffe_ctl->num_bytes, cluster_bg->start,
3652			&ffe_ctl->max_extent_size);
3653	if (offset) {
3654		/* We have a block, we're done */
3655		spin_unlock(&last_ptr->refill_lock);
3656		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3657		*cluster_bg_ret = cluster_bg;
3658		ffe_ctl->found_offset = offset;
3659		return 0;
3660	}
3661	WARN_ON(last_ptr->block_group != cluster_bg);
3662
3663release_cluster:
3664	/*
3665	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666	 * lets just skip it and let the allocator find whatever block it can
3667	 * find. If we reach this point, we will have tried the cluster
3668	 * allocator plenty of times and not have found anything, so we are
3669	 * likely way too fragmented for the clustering stuff to find anything.
3670	 *
3671	 * However, if the cluster is taken from the current block group,
3672	 * release the cluster first, so that we stand a better chance of
3673	 * succeeding in the unclustered allocation.
3674	 */
3675	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676		spin_unlock(&last_ptr->refill_lock);
3677		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678		return -ENOENT;
3679	}
3680
3681	/* This cluster didn't work out, free it and start over */
3682	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683
3684	if (cluster_bg != bg)
3685		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686
3687refill_cluster:
3688	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689		spin_unlock(&last_ptr->refill_lock);
3690		return -ENOENT;
3691	}
3692
3693	aligned_cluster = max_t(u64,
3694			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695			bg->full_stripe_len);
3696	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697			ffe_ctl->num_bytes, aligned_cluster);
3698	if (ret == 0) {
3699		/* Now pull our allocation out of this cluster */
3700		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701				ffe_ctl->num_bytes, ffe_ctl->search_start,
3702				&ffe_ctl->max_extent_size);
3703		if (offset) {
3704			/* We found one, proceed */
3705			spin_unlock(&last_ptr->refill_lock);
3706			ffe_ctl->found_offset = offset;
3707			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708			return 0;
3709		}
3710	}
3711	/*
3712	 * At this point we either didn't find a cluster or we weren't able to
3713	 * allocate a block from our cluster.  Free the cluster we've been
3714	 * trying to use, and go to the next block group.
3715	 */
3716	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717	spin_unlock(&last_ptr->refill_lock);
3718	return 1;
3719}
3720
3721/*
3722 * Return >0 to inform caller that we find nothing
3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3724 */
3725static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726					struct find_free_extent_ctl *ffe_ctl)
 
 
3727{
3728	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729	u64 offset;
3730
3731	/*
3732	 * We are doing an unclustered allocation, set the fragmented flag so
3733	 * we don't bother trying to setup a cluster again until we get more
3734	 * space.
3735	 */
3736	if (unlikely(last_ptr)) {
3737		spin_lock(&last_ptr->lock);
3738		last_ptr->fragmented = 1;
3739		spin_unlock(&last_ptr->lock);
3740	}
3741	if (ffe_ctl->cached) {
3742		struct btrfs_free_space_ctl *free_space_ctl;
3743
3744		free_space_ctl = bg->free_space_ctl;
3745		spin_lock(&free_space_ctl->tree_lock);
3746		if (free_space_ctl->free_space <
3747		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748		    ffe_ctl->empty_size) {
3749			ffe_ctl->total_free_space = max_t(u64,
3750					ffe_ctl->total_free_space,
3751					free_space_ctl->free_space);
3752			spin_unlock(&free_space_ctl->tree_lock);
3753			return 1;
3754		}
3755		spin_unlock(&free_space_ctl->tree_lock);
3756	}
3757
3758	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760			&ffe_ctl->max_extent_size);
3761	if (!offset)
3762		return 1;
3763	ffe_ctl->found_offset = offset;
3764	return 0;
3765}
3766
3767static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768				   struct find_free_extent_ctl *ffe_ctl,
3769				   struct btrfs_block_group **bg_ret)
3770{
3771	int ret;
3772
3773	/* We want to try and use the cluster allocator, so lets look there */
3774	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776		if (ret >= 0)
3777			return ret;
3778		/* ret == -ENOENT case falls through */
3779	}
3780
3781	return find_free_extent_unclustered(block_group, ffe_ctl);
3782}
3783
3784/*
3785 * Tree-log block group locking
3786 * ============================
3787 *
3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789 * indicates the starting address of a block group, which is reserved only
3790 * for tree-log metadata.
3791 *
3792 * Lock nesting
3793 * ============
3794 *
3795 * space_info::lock
3796 *   block_group::lock
3797 *     fs_info::treelog_bg_lock
3798 */
3799
3800/*
3801 * Simple allocator for sequential-only block group. It only allows sequential
3802 * allocation. No need to play with trees. This function also reserves the
3803 * bytes as in btrfs_add_reserved_bytes.
3804 */
3805static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806			       struct find_free_extent_ctl *ffe_ctl,
3807			       struct btrfs_block_group **bg_ret)
3808{
3809	struct btrfs_fs_info *fs_info = block_group->fs_info;
3810	struct btrfs_space_info *space_info = block_group->space_info;
3811	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812	u64 start = block_group->start;
3813	u64 num_bytes = ffe_ctl->num_bytes;
3814	u64 avail;
3815	u64 bytenr = block_group->start;
3816	u64 log_bytenr;
3817	u64 data_reloc_bytenr;
3818	int ret = 0;
3819	bool skip = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3820
3821	ASSERT(btrfs_is_zoned(block_group->fs_info));
 
 
 
3822
3823	/*
3824	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825	 * group, and vice versa.
3826	 */
3827	spin_lock(&fs_info->treelog_bg_lock);
3828	log_bytenr = fs_info->treelog_bg;
3829	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831		skip = true;
3832	spin_unlock(&fs_info->treelog_bg_lock);
3833	if (skip)
3834		return 1;
3835
3836	/*
3837	 * Do not allow non-relocation blocks in the dedicated relocation block
3838	 * group, and vice versa.
3839	 */
3840	spin_lock(&fs_info->relocation_bg_lock);
3841	data_reloc_bytenr = fs_info->data_reloc_bg;
3842	if (data_reloc_bytenr &&
3843	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845		skip = true;
3846	spin_unlock(&fs_info->relocation_bg_lock);
3847	if (skip)
3848		return 1;
3849
3850	/* Check RO and no space case before trying to activate it */
3851	spin_lock(&block_group->lock);
3852	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853		ret = 1;
3854		/*
3855		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856		 * Return the error after taking the locks.
3857		 */
3858	}
3859	spin_unlock(&block_group->lock);
3860
3861	/* Metadata block group is activated at write time. */
3862	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863	    !btrfs_zone_activate(block_group)) {
3864		ret = 1;
3865		/*
3866		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867		 * Return the error after taking the locks.
3868		 */
3869	}
3870
3871	spin_lock(&space_info->lock);
3872	spin_lock(&block_group->lock);
3873	spin_lock(&fs_info->treelog_bg_lock);
3874	spin_lock(&fs_info->relocation_bg_lock);
3875
3876	if (ret)
3877		goto out;
3878
3879	ASSERT(!ffe_ctl->for_treelog ||
3880	       block_group->start == fs_info->treelog_bg ||
3881	       fs_info->treelog_bg == 0);
3882	ASSERT(!ffe_ctl->for_data_reloc ||
3883	       block_group->start == fs_info->data_reloc_bg ||
3884	       fs_info->data_reloc_bg == 0);
3885
3886	if (block_group->ro ||
3887	    (!ffe_ctl->for_data_reloc &&
3888	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889		ret = 1;
3890		goto out;
3891	}
3892
3893	/*
3894	 * Do not allow currently using block group to be tree-log dedicated
3895	 * block group.
3896	 */
3897	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898	    (block_group->used || block_group->reserved)) {
3899		ret = 1;
3900		goto out;
3901	}
3902
3903	/*
3904	 * Do not allow currently used block group to be the data relocation
3905	 * dedicated block group.
3906	 */
3907	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908	    (block_group->used || block_group->reserved)) {
3909		ret = 1;
3910		goto out;
3911	}
3912
3913	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914	avail = block_group->zone_capacity - block_group->alloc_offset;
3915	if (avail < num_bytes) {
3916		if (ffe_ctl->max_extent_size < avail) {
3917			/*
3918			 * With sequential allocator, free space is always
3919			 * contiguous
3920			 */
3921			ffe_ctl->max_extent_size = avail;
3922			ffe_ctl->total_free_space = avail;
3923		}
3924		ret = 1;
3925		goto out;
3926	}
3927
3928	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929		fs_info->treelog_bg = block_group->start;
3930
3931	if (ffe_ctl->for_data_reloc) {
3932		if (!fs_info->data_reloc_bg)
3933			fs_info->data_reloc_bg = block_group->start;
3934		/*
3935		 * Do not allow allocations from this block group, unless it is
3936		 * for data relocation. Compared to increasing the ->ro, setting
3937		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938		 * writers to come in. See btrfs_inc_nocow_writers().
3939		 *
3940		 * We need to disable an allocation to avoid an allocation of
3941		 * regular (non-relocation data) extent. With mix of relocation
3942		 * extents and regular extents, we can dispatch WRITE commands
3943		 * (for relocation extents) and ZONE APPEND commands (for
3944		 * regular extents) at the same time to the same zone, which
3945		 * easily break the write pointer.
3946		 *
3947		 * Also, this flag avoids this block group to be zone finished.
3948		 */
3949		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950	}
3951
3952	ffe_ctl->found_offset = start + block_group->alloc_offset;
3953	block_group->alloc_offset += num_bytes;
3954	spin_lock(&ctl->tree_lock);
3955	ctl->free_space -= num_bytes;
3956	spin_unlock(&ctl->tree_lock);
3957
3958	/*
3959	 * We do not check if found_offset is aligned to stripesize. The
3960	 * address is anyway rewritten when using zone append writing.
3961	 */
3962
3963	ffe_ctl->search_start = ffe_ctl->found_offset;
3964
3965out:
3966	if (ret && ffe_ctl->for_treelog)
3967		fs_info->treelog_bg = 0;
3968	if (ret && ffe_ctl->for_data_reloc)
3969		fs_info->data_reloc_bg = 0;
3970	spin_unlock(&fs_info->relocation_bg_lock);
3971	spin_unlock(&fs_info->treelog_bg_lock);
3972	spin_unlock(&block_group->lock);
3973	spin_unlock(&space_info->lock);
3974	return ret;
3975}
3976
3977static int do_allocation(struct btrfs_block_group *block_group,
3978			 struct find_free_extent_ctl *ffe_ctl,
3979			 struct btrfs_block_group **bg_ret)
3980{
3981	switch (ffe_ctl->policy) {
3982	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984	case BTRFS_EXTENT_ALLOC_ZONED:
3985		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986	default:
3987		BUG();
3988	}
3989}
3990
3991static void release_block_group(struct btrfs_block_group *block_group,
3992				struct find_free_extent_ctl *ffe_ctl,
3993				int delalloc)
3994{
3995	switch (ffe_ctl->policy) {
3996	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997		ffe_ctl->retry_uncached = false;
3998		break;
3999	case BTRFS_EXTENT_ALLOC_ZONED:
4000		/* Nothing to do */
4001		break;
4002	default:
4003		BUG();
4004	}
4005
4006	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007	       ffe_ctl->index);
4008	btrfs_release_block_group(block_group, delalloc);
4009}
4010
4011static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012				   struct btrfs_key *ins)
4013{
4014	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015
4016	if (!ffe_ctl->use_cluster && last_ptr) {
4017		spin_lock(&last_ptr->lock);
4018		last_ptr->window_start = ins->objectid;
4019		spin_unlock(&last_ptr->lock);
4020	}
4021}
4022
4023static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024			 struct btrfs_key *ins)
4025{
4026	switch (ffe_ctl->policy) {
4027	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028		found_extent_clustered(ffe_ctl, ins);
4029		break;
4030	case BTRFS_EXTENT_ALLOC_ZONED:
4031		/* Nothing to do */
4032		break;
4033	default:
4034		BUG();
4035	}
4036}
4037
4038static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039				    struct find_free_extent_ctl *ffe_ctl)
4040{
4041	/* Block group's activeness is not a requirement for METADATA block groups. */
4042	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043		return 0;
4044
4045	/* If we can activate new zone, just allocate a chunk and use it */
4046	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047		return 0;
4048
4049	/*
4050	 * We already reached the max active zones. Try to finish one block
4051	 * group to make a room for a new block group. This is only possible
4052	 * for a data block group because btrfs_zone_finish() may need to wait
4053	 * for a running transaction which can cause a deadlock for metadata
4054	 * allocation.
4055	 */
4056	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057		int ret = btrfs_zone_finish_one_bg(fs_info);
4058
4059		if (ret == 1)
4060			return 0;
4061		else if (ret < 0)
4062			return ret;
4063	}
4064
4065	/*
4066	 * If we have enough free space left in an already active block group
4067	 * and we can't activate any other zone now, do not allow allocating a
4068	 * new chunk and let find_free_extent() retry with a smaller size.
4069	 */
4070	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071		return -ENOSPC;
4072
4073	/*
4074	 * Even min_alloc_size is not left in any block groups. Since we cannot
4075	 * activate a new block group, allocating it may not help. Let's tell a
4076	 * caller to try again and hope it progress something by writing some
4077	 * parts of the region. That is only possible for data block groups,
4078	 * where a part of the region can be written.
4079	 */
4080	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081		return -EAGAIN;
4082
4083	/*
4084	 * We cannot activate a new block group and no enough space left in any
4085	 * block groups. So, allocating a new block group may not help. But,
4086	 * there is nothing to do anyway, so let's go with it.
4087	 */
4088	return 0;
4089}
4090
4091static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092			      struct find_free_extent_ctl *ffe_ctl)
4093{
4094	switch (ffe_ctl->policy) {
4095	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096		return 0;
4097	case BTRFS_EXTENT_ALLOC_ZONED:
4098		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099	default:
4100		BUG();
4101	}
4102}
4103
4104/*
4105 * Return >0 means caller needs to re-search for free extent
4106 * Return 0 means we have the needed free extent.
4107 * Return <0 means we failed to locate any free extent.
4108 */
4109static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4110					struct btrfs_key *ins,
4111					struct find_free_extent_ctl *ffe_ctl,
4112					bool full_search)
4113{
4114	struct btrfs_root *root = fs_info->chunk_root;
4115	int ret;
4116
4117	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119		ffe_ctl->orig_have_caching_bg = true;
4120
4121	if (ins->objectid) {
4122		found_extent(ffe_ctl, ins);
4123		return 0;
4124	}
4125
4126	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127		return 1;
4128
4129	ffe_ctl->index++;
4130	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131		return 1;
4132
4133	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4134	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135		ffe_ctl->index = 0;
4136		/*
4137		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138		 * any uncached bgs and we've already done a full search
4139		 * through.
4140		 */
4141		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142		    (!ffe_ctl->orig_have_caching_bg && full_search))
4143			ffe_ctl->loop++;
4144		ffe_ctl->loop++;
4145
4146		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147			struct btrfs_trans_handle *trans;
4148			int exist = 0;
4149
4150			/* Check if allocation policy allows to create a new chunk */
4151			ret = can_allocate_chunk(fs_info, ffe_ctl);
4152			if (ret)
4153				return ret;
4154
4155			trans = current->journal_info;
4156			if (trans)
4157				exist = 1;
4158			else
4159				trans = btrfs_join_transaction(root);
4160
4161			if (IS_ERR(trans)) {
4162				ret = PTR_ERR(trans);
4163				return ret;
4164			}
4165
4166			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4168
4169			/* Do not bail out on ENOSPC since we can do more. */
4170			if (ret == -ENOSPC) {
4171				ret = 0;
4172				ffe_ctl->loop++;
4173			}
4174			else if (ret < 0)
4175				btrfs_abort_transaction(trans, ret);
4176			else
4177				ret = 0;
4178			if (!exist)
4179				btrfs_end_transaction(trans);
4180			if (ret)
4181				return ret;
4182		}
4183
4184		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186				return -ENOSPC;
4187
4188			/*
4189			 * Don't loop again if we already have no empty_size and
4190			 * no empty_cluster.
4191			 */
4192			if (ffe_ctl->empty_size == 0 &&
4193			    ffe_ctl->empty_cluster == 0)
4194				return -ENOSPC;
4195			ffe_ctl->empty_size = 0;
4196			ffe_ctl->empty_cluster = 0;
4197		}
4198		return 1;
4199	}
4200	return -ENOSPC;
4201}
4202
4203static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204					      struct btrfs_block_group *bg)
4205{
4206	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207		return true;
4208	if (!btrfs_block_group_should_use_size_class(bg))
4209		return true;
4210	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211		return true;
4212	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213	    bg->size_class == BTRFS_BG_SZ_NONE)
4214		return true;
4215	return ffe_ctl->size_class == bg->size_class;
4216}
4217
4218static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219					struct find_free_extent_ctl *ffe_ctl,
4220					struct btrfs_space_info *space_info,
4221					struct btrfs_key *ins)
4222{
4223	/*
4224	 * If our free space is heavily fragmented we may not be able to make
4225	 * big contiguous allocations, so instead of doing the expensive search
4226	 * for free space, simply return ENOSPC with our max_extent_size so we
4227	 * can go ahead and search for a more manageable chunk.
4228	 *
4229	 * If our max_extent_size is large enough for our allocation simply
4230	 * disable clustering since we will likely not be able to find enough
4231	 * space to create a cluster and induce latency trying.
4232	 */
4233	if (space_info->max_extent_size) {
4234		spin_lock(&space_info->lock);
4235		if (space_info->max_extent_size &&
4236		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4237			ins->offset = space_info->max_extent_size;
4238			spin_unlock(&space_info->lock);
4239			return -ENOSPC;
4240		} else if (space_info->max_extent_size) {
4241			ffe_ctl->use_cluster = false;
4242		}
4243		spin_unlock(&space_info->lock);
4244	}
4245
4246	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247					       &ffe_ctl->empty_cluster);
4248	if (ffe_ctl->last_ptr) {
4249		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250
4251		spin_lock(&last_ptr->lock);
4252		if (last_ptr->block_group)
4253			ffe_ctl->hint_byte = last_ptr->window_start;
4254		if (last_ptr->fragmented) {
4255			/*
4256			 * We still set window_start so we can keep track of the
4257			 * last place we found an allocation to try and save
4258			 * some time.
4259			 */
4260			ffe_ctl->hint_byte = last_ptr->window_start;
4261			ffe_ctl->use_cluster = false;
4262		}
4263		spin_unlock(&last_ptr->lock);
4264	}
4265
4266	return 0;
4267}
4268
4269static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270				    struct find_free_extent_ctl *ffe_ctl)
4271{
4272	if (ffe_ctl->for_treelog) {
4273		spin_lock(&fs_info->treelog_bg_lock);
4274		if (fs_info->treelog_bg)
4275			ffe_ctl->hint_byte = fs_info->treelog_bg;
4276		spin_unlock(&fs_info->treelog_bg_lock);
4277	} else if (ffe_ctl->for_data_reloc) {
4278		spin_lock(&fs_info->relocation_bg_lock);
4279		if (fs_info->data_reloc_bg)
4280			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281		spin_unlock(&fs_info->relocation_bg_lock);
4282	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283		struct btrfs_block_group *block_group;
4284
4285		spin_lock(&fs_info->zone_active_bgs_lock);
4286		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287			/*
4288			 * No lock is OK here because avail is monotinically
4289			 * decreasing, and this is just a hint.
4290			 */
4291			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292
4293			if (block_group_bits(block_group, ffe_ctl->flags) &&
4294			    avail >= ffe_ctl->num_bytes) {
4295				ffe_ctl->hint_byte = block_group->start;
4296				break;
4297			}
4298		}
4299		spin_unlock(&fs_info->zone_active_bgs_lock);
4300	}
4301
4302	return 0;
4303}
4304
4305static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306			      struct find_free_extent_ctl *ffe_ctl,
4307			      struct btrfs_space_info *space_info,
4308			      struct btrfs_key *ins)
4309{
4310	switch (ffe_ctl->policy) {
4311	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312		return prepare_allocation_clustered(fs_info, ffe_ctl,
4313						    space_info, ins);
4314	case BTRFS_EXTENT_ALLOC_ZONED:
4315		return prepare_allocation_zoned(fs_info, ffe_ctl);
4316	default:
4317		BUG();
4318	}
4319}
4320
4321/*
4322 * walks the btree of allocated extents and find a hole of a given size.
4323 * The key ins is changed to record the hole:
4324 * ins->objectid == start position
4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326 * ins->offset == the size of the hole.
4327 * Any available blocks before search_start are skipped.
4328 *
4329 * If there is no suitable free space, we will record the max size of
4330 * the free space extent currently.
4331 *
4332 * The overall logic and call chain:
4333 *
4334 * find_free_extent()
4335 * |- Iterate through all block groups
4336 * |  |- Get a valid block group
4337 * |  |- Try to do clustered allocation in that block group
4338 * |  |- Try to do unclustered allocation in that block group
4339 * |  |- Check if the result is valid
4340 * |  |  |- If valid, then exit
4341 * |  |- Jump to next block group
4342 * |
4343 * |- Push harder to find free extents
4344 *    |- If not found, re-iterate all block groups
4345 */
4346static noinline int find_free_extent(struct btrfs_root *root,
4347				     struct btrfs_key *ins,
4348				     struct find_free_extent_ctl *ffe_ctl)
4349{
4350	struct btrfs_fs_info *fs_info = root->fs_info;
4351	int ret = 0;
4352	int cache_block_group_error = 0;
4353	struct btrfs_block_group *block_group = NULL;
4354	struct btrfs_space_info *space_info;
4355	bool full_search = false;
4356
4357	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358
4359	ffe_ctl->search_start = 0;
4360	/* For clustered allocation */
4361	ffe_ctl->empty_cluster = 0;
4362	ffe_ctl->last_ptr = NULL;
4363	ffe_ctl->use_cluster = true;
4364	ffe_ctl->have_caching_bg = false;
4365	ffe_ctl->orig_have_caching_bg = false;
4366	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367	ffe_ctl->loop = 0;
4368	ffe_ctl->retry_uncached = false;
4369	ffe_ctl->cached = 0;
4370	ffe_ctl->max_extent_size = 0;
4371	ffe_ctl->total_free_space = 0;
4372	ffe_ctl->found_offset = 0;
4373	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375
4376	if (btrfs_is_zoned(fs_info))
4377		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378
4379	ins->type = BTRFS_EXTENT_ITEM_KEY;
4380	ins->objectid = 0;
4381	ins->offset = 0;
4382
4383	trace_find_free_extent(root, ffe_ctl);
4384
4385	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386	if (!space_info) {
4387		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388		return -ENOSPC;
4389	}
4390
4391	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392	if (ret < 0)
4393		return ret;
4394
4395	ffe_ctl->search_start = max(ffe_ctl->search_start,
4396				    first_logical_byte(fs_info));
4397	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399		block_group = btrfs_lookup_block_group(fs_info,
4400						       ffe_ctl->search_start);
4401		/*
4402		 * we don't want to use the block group if it doesn't match our
4403		 * allocation bits, or if its not cached.
4404		 *
4405		 * However if we are re-searching with an ideal block group
4406		 * picked out then we don't care that the block group is cached.
4407		 */
4408		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409		    block_group->cached != BTRFS_CACHE_NO) {
4410			down_read(&space_info->groups_sem);
4411			if (list_empty(&block_group->list) ||
4412			    block_group->ro) {
4413				/*
4414				 * someone is removing this block group,
4415				 * we can't jump into the have_block_group
4416				 * target because our list pointers are not
4417				 * valid
4418				 */
4419				btrfs_put_block_group(block_group);
4420				up_read(&space_info->groups_sem);
4421			} else {
4422				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423							block_group->flags);
4424				btrfs_lock_block_group(block_group,
4425						       ffe_ctl->delalloc);
4426				ffe_ctl->hinted = true;
4427				goto have_block_group;
4428			}
4429		} else if (block_group) {
4430			btrfs_put_block_group(block_group);
4431		}
4432	}
4433search:
4434	trace_find_free_extent_search_loop(root, ffe_ctl);
4435	ffe_ctl->have_caching_bg = false;
4436	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437	    ffe_ctl->index == 0)
4438		full_search = true;
4439	down_read(&space_info->groups_sem);
4440	list_for_each_entry(block_group,
4441			    &space_info->block_groups[ffe_ctl->index], list) {
4442		struct btrfs_block_group *bg_ret;
4443
4444		ffe_ctl->hinted = false;
4445		/* If the block group is read-only, we can skip it entirely. */
4446		if (unlikely(block_group->ro)) {
4447			if (ffe_ctl->for_treelog)
4448				btrfs_clear_treelog_bg(block_group);
4449			if (ffe_ctl->for_data_reloc)
4450				btrfs_clear_data_reloc_bg(block_group);
4451			continue;
4452		}
4453
4454		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455		ffe_ctl->search_start = block_group->start;
4456
4457		/*
4458		 * this can happen if we end up cycling through all the
4459		 * raid types, but we want to make sure we only allocate
4460		 * for the proper type.
4461		 */
4462		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464				BTRFS_BLOCK_GROUP_RAID1_MASK |
4465				BTRFS_BLOCK_GROUP_RAID56_MASK |
 
4466				BTRFS_BLOCK_GROUP_RAID10;
4467
4468			/*
4469			 * if they asked for extra copies and this block group
4470			 * doesn't provide them, bail.  This does allow us to
4471			 * fill raid0 from raid1.
4472			 */
4473			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474				goto loop;
 
 
 
 
 
 
 
 
 
 
4475
 
 
 
 
 
 
 
 
 
 
 
 
4476			/*
4477			 * This block group has different flags than we want.
4478			 * It's possible that we have MIXED_GROUP flag but no
4479			 * block group is mixed.  Just skip such block group.
4480			 */
4481			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482			continue;
4483		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4484
4485have_block_group:
4486		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487		ffe_ctl->cached = btrfs_block_group_done(block_group);
4488		if (unlikely(!ffe_ctl->cached)) {
4489			ffe_ctl->have_caching_bg = true;
4490			ret = btrfs_cache_block_group(block_group, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4491
4492			/*
4493			 * If we get ENOMEM here or something else we want to
4494			 * try other block groups, because it may not be fatal.
4495			 * However if we can't find anything else we need to
4496			 * save our return here so that we return the actual
4497			 * error that caused problems, not ENOSPC.
4498			 */
4499			if (ret < 0) {
4500				if (!cache_block_group_error)
4501					cache_block_group_error = ret;
4502				ret = 0;
4503				goto loop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4504			}
4505			ret = 0;
4506		}
4507
4508		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509			if (!cache_block_group_error)
4510				cache_block_group_error = -EIO;
 
 
 
 
 
4511			goto loop;
4512		}
4513
4514		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4515			goto loop;
 
 
4516
4517		bg_ret = NULL;
4518		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519		if (ret > 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4520			goto loop;
4521
4522		if (bg_ret && bg_ret != block_group) {
4523			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524			block_group = bg_ret;
4525		}
4526
4527		/* Checks */
4528		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529						 fs_info->stripesize);
4530
4531		/* move on to the next group */
4532		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533		    block_group->start + block_group->length) {
4534			btrfs_add_free_space_unused(block_group,
4535					    ffe_ctl->found_offset,
4536					    ffe_ctl->num_bytes);
4537			goto loop;
4538		}
4539
4540		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541			btrfs_add_free_space_unused(block_group,
4542					ffe_ctl->found_offset,
4543					ffe_ctl->search_start - ffe_ctl->found_offset);
4544
4545		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546					       ffe_ctl->num_bytes,
4547					       ffe_ctl->delalloc,
4548					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549		if (ret == -EAGAIN) {
4550			btrfs_add_free_space_unused(block_group,
4551					ffe_ctl->found_offset,
4552					ffe_ctl->num_bytes);
4553			goto loop;
4554		}
4555		btrfs_inc_block_group_reservations(block_group);
4556
4557		/* we are all good, lets return */
4558		ins->objectid = ffe_ctl->search_start;
4559		ins->offset = ffe_ctl->num_bytes;
4560
4561		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
 
4563		break;
4564loop:
4565		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566		    !ffe_ctl->retry_uncached) {
4567			ffe_ctl->retry_uncached = true;
4568			btrfs_wait_block_group_cache_progress(block_group,
4569						ffe_ctl->num_bytes +
4570						ffe_ctl->empty_cluster +
4571						ffe_ctl->empty_size);
4572			goto have_block_group;
4573		}
4574		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575		cond_resched();
4576	}
4577	up_read(&space_info->groups_sem);
4578
4579	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4580	if (ret > 0)
 
 
 
 
 
 
4581		goto search;
4582
4583	if (ret == -ENOSPC && !cache_block_group_error) {
4584		/*
4585		 * Use ffe_ctl->total_free_space as fallback if we can't find
4586		 * any contiguous hole.
4587		 */
4588		if (!ffe_ctl->max_extent_size)
4589			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4590		spin_lock(&space_info->lock);
4591		space_info->max_extent_size = ffe_ctl->max_extent_size;
4592		spin_unlock(&space_info->lock);
4593		ins->offset = ffe_ctl->max_extent_size;
4594	} else if (ret == -ENOSPC) {
4595		ret = cache_block_group_error;
4596	}
4597	return ret;
4598}
4599
4600/*
4601 * Entry point to the extent allocator. Tries to find a hole that is at least
4602 * as big as @num_bytes.
4603 *
4604 * @root           -	The root that will contain this extent
4605 *
4606 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4607 *			is used for accounting purposes. This value differs
4608 *			from @num_bytes only in the case of compressed extents.
4609 *
4610 * @num_bytes      -	Number of bytes to allocate on-disk.
4611 *
4612 * @min_alloc_size -	Indicates the minimum amount of space that the
4613 *			allocator should try to satisfy. In some cases
4614 *			@num_bytes may be larger than what is required and if
4615 *			the filesystem is fragmented then allocation fails.
4616 *			However, the presence of @min_alloc_size gives a
4617 *			chance to try and satisfy the smaller allocation.
4618 *
4619 * @empty_size     -	A hint that you plan on doing more COW. This is the
4620 *			size in bytes the allocator should try to find free
4621 *			next to the block it returns.  This is just a hint and
4622 *			may be ignored by the allocator.
4623 *
4624 * @hint_byte      -	Hint to the allocator to start searching above the byte
4625 *			address passed. It might be ignored.
4626 *
4627 * @ins            -	This key is modified to record the found hole. It will
4628 *			have the following values:
4629 *			ins->objectid == start position
4630 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4631 *			ins->offset == the size of the hole.
4632 *
4633 * @is_data        -	Boolean flag indicating whether an extent is
4634 *			allocated for data (true) or metadata (false)
4635 *
4636 * @delalloc       -	Boolean flag indicating whether this allocation is for
4637 *			delalloc or not. If 'true' data_rwsem of block groups
4638 *			is going to be acquired.
4639 *
4640 *
4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642 * case -ENOSPC is returned then @ins->offset will contain the size of the
4643 * largest available hole the allocator managed to find.
4644 */
4645int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646			 u64 num_bytes, u64 min_alloc_size,
4647			 u64 empty_size, u64 hint_byte,
4648			 struct btrfs_key *ins, int is_data, int delalloc)
4649{
4650	struct btrfs_fs_info *fs_info = root->fs_info;
4651	struct find_free_extent_ctl ffe_ctl = {};
4652	bool final_tried = num_bytes == min_alloc_size;
4653	u64 flags;
4654	int ret;
4655	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657
4658	flags = get_alloc_profile_by_root(root, is_data);
4659again:
4660	WARN_ON(num_bytes < fs_info->sectorsize);
4661
4662	ffe_ctl.ram_bytes = ram_bytes;
4663	ffe_ctl.num_bytes = num_bytes;
4664	ffe_ctl.min_alloc_size = min_alloc_size;
4665	ffe_ctl.empty_size = empty_size;
4666	ffe_ctl.flags = flags;
4667	ffe_ctl.delalloc = delalloc;
4668	ffe_ctl.hint_byte = hint_byte;
4669	ffe_ctl.for_treelog = for_treelog;
4670	ffe_ctl.for_data_reloc = for_data_reloc;
4671
4672	ret = find_free_extent(root, ins, &ffe_ctl);
4673	if (!ret && !is_data) {
4674		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675	} else if (ret == -ENOSPC) {
4676		if (!final_tried && ins->offset) {
4677			num_bytes = min(num_bytes >> 1, ins->offset);
4678			num_bytes = round_down(num_bytes,
4679					       fs_info->sectorsize);
4680			num_bytes = max(num_bytes, min_alloc_size);
4681			ram_bytes = num_bytes;
4682			if (num_bytes == min_alloc_size)
4683				final_tried = true;
4684			goto again;
4685		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686			struct btrfs_space_info *sinfo;
4687
4688			sinfo = btrfs_find_space_info(fs_info, flags);
4689			btrfs_err(fs_info,
4690	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691				  flags, num_bytes, for_treelog, for_data_reloc);
4692			if (sinfo)
4693				btrfs_dump_space_info(fs_info, sinfo,
4694						      num_bytes, 1);
4695		}
4696	}
4697
4698	return ret;
4699}
4700
4701int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702			       u64 start, u64 len, int delalloc)
 
4703{
4704	struct btrfs_block_group *cache;
 
4705
4706	cache = btrfs_lookup_block_group(fs_info, start);
4707	if (!cache) {
4708		btrfs_err(fs_info, "Unable to find block group for %llu",
4709			  start);
4710		return -ENOSPC;
4711	}
4712
4713	btrfs_add_free_space(cache, start, len);
4714	btrfs_free_reserved_bytes(cache, len, delalloc);
4715	trace_btrfs_reserved_extent_free(fs_info, start, len);
 
 
 
 
 
 
4716
4717	btrfs_put_block_group(cache);
4718	return 0;
4719}
4720
4721int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722			      const struct extent_buffer *eb)
4723{
4724	struct btrfs_block_group *cache;
4725	int ret = 0;
4726
4727	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728	if (!cache) {
4729		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730			  eb->start);
4731		return -ENOSPC;
4732	}
4733
4734	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735	btrfs_put_block_group(cache);
4736	return ret;
4737}
4738
4739static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740				 u64 num_bytes)
4741{
4742	struct btrfs_fs_info *fs_info = trans->fs_info;
4743	int ret;
4744
4745	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746	if (ret)
4747		return ret;
4748
4749	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750	if (ret) {
4751		ASSERT(!ret);
4752		btrfs_err(fs_info, "update block group failed for %llu %llu",
4753			  bytenr, num_bytes);
4754		return ret;
4755	}
4756
4757	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758	return 0;
4759}
4760
4761static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
4762				      u64 parent, u64 root_objectid,
4763				      u64 flags, u64 owner, u64 offset,
4764				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765{
4766	struct btrfs_fs_info *fs_info = trans->fs_info;
4767	struct btrfs_root *extent_root;
4768	int ret;
4769	struct btrfs_extent_item *extent_item;
4770	struct btrfs_extent_owner_ref *oref;
4771	struct btrfs_extent_inline_ref *iref;
4772	struct btrfs_path *path;
4773	struct extent_buffer *leaf;
4774	int type;
4775	u32 size;
4776	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777
4778	if (parent > 0)
4779		type = BTRFS_SHARED_DATA_REF_KEY;
4780	else
4781		type = BTRFS_EXTENT_DATA_REF_KEY;
4782
4783	size = sizeof(*extent_item);
4784	if (simple_quota)
4785		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786	size += btrfs_extent_inline_ref_size(type);
4787
4788	path = btrfs_alloc_path();
4789	if (!path)
4790		return -ENOMEM;
4791
4792	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
 
4794	if (ret) {
4795		btrfs_free_path(path);
4796		return ret;
4797	}
4798
4799	leaf = path->nodes[0];
4800	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801				     struct btrfs_extent_item);
4802	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804	btrfs_set_extent_flags(leaf, extent_item,
4805			       flags | BTRFS_EXTENT_FLAG_DATA);
4806
4807	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808	if (simple_quota) {
4809		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813	}
4814	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815
4816	if (parent > 0) {
4817		struct btrfs_shared_data_ref *ref;
4818		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821	} else {
4822		struct btrfs_extent_data_ref *ref;
4823		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828	}
4829
4830	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4831	btrfs_free_path(path);
4832
4833	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
 
 
 
 
 
 
 
 
 
 
 
 
4834}
4835
4836static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4837				     struct btrfs_delayed_ref_node *node,
4838				     struct btrfs_delayed_extent_op *extent_op)
 
 
4839{
4840	struct btrfs_fs_info *fs_info = trans->fs_info;
4841	struct btrfs_root *extent_root;
4842	int ret;
4843	struct btrfs_extent_item *extent_item;
4844	struct btrfs_key extent_key;
4845	struct btrfs_tree_block_info *block_info;
4846	struct btrfs_extent_inline_ref *iref;
4847	struct btrfs_path *path;
4848	struct extent_buffer *leaf;
4849	u32 size = sizeof(*extent_item) + sizeof(*iref);
4850	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4851	/* The owner of a tree block is the level. */
4852	int level = btrfs_delayed_ref_owner(node);
4853	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4854
4855	extent_key.objectid = node->bytenr;
4856	if (skinny_metadata) {
4857		/* The owner of a tree block is the level. */
4858		extent_key.offset = level;
4859		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4860	} else {
4861		extent_key.offset = node->num_bytes;
4862		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4863		size += sizeof(*block_info);
4864	}
4865
4866	path = btrfs_alloc_path();
4867	if (!path)
 
 
4868		return -ENOMEM;
 
4869
4870	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4871	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4872				      size);
4873	if (ret) {
4874		btrfs_free_path(path);
 
 
4875		return ret;
4876	}
4877
4878	leaf = path->nodes[0];
4879	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4880				     struct btrfs_extent_item);
4881	btrfs_set_extent_refs(leaf, extent_item, 1);
4882	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4883	btrfs_set_extent_flags(leaf, extent_item,
4884			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4885
4886	if (skinny_metadata) {
4887		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
4888	} else {
4889		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4890		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4891		btrfs_set_tree_block_level(leaf, block_info, level);
4892		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4893	}
4894
4895	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
 
4896		btrfs_set_extent_inline_ref_type(leaf, iref,
4897						 BTRFS_SHARED_BLOCK_REF_KEY);
4898		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4899	} else {
4900		btrfs_set_extent_inline_ref_type(leaf, iref,
4901						 BTRFS_TREE_BLOCK_REF_KEY);
4902		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4903	}
4904
4905	btrfs_mark_buffer_dirty(trans, leaf);
4906	btrfs_free_path(path);
4907
4908	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4909}
4910
4911int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912				     struct btrfs_root *root, u64 owner,
4913				     u64 offset, u64 ram_bytes,
4914				     struct btrfs_key *ins)
4915{
4916	struct btrfs_ref generic_ref = {
4917		.action = BTRFS_ADD_DELAYED_EXTENT,
4918		.bytenr = ins->objectid,
4919		.num_bytes = ins->offset,
4920		.owning_root = btrfs_root_id(root),
4921		.ref_root = btrfs_root_id(root),
4922	};
4923
4924	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925
4926	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927		generic_ref.owning_root = root->relocation_src_root;
4928
4929	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931
4932	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933}
4934
4935/*
4936 * this is used by the tree logging recovery code.  It records that
4937 * an extent has been allocated and makes sure to clear the free
4938 * space cache bits as well
4939 */
4940int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 
4941				   u64 root_objectid, u64 owner, u64 offset,
4942				   struct btrfs_key *ins)
4943{
4944	struct btrfs_fs_info *fs_info = trans->fs_info;
4945	int ret;
4946	struct btrfs_block_group *block_group;
4947	struct btrfs_space_info *space_info;
4948	struct btrfs_squota_delta delta = {
4949		.root = root_objectid,
4950		.num_bytes = ins->offset,
4951		.generation = trans->transid,
4952		.is_data = true,
4953		.is_inc = true,
4954	};
4955
4956	/*
4957	 * Mixed block groups will exclude before processing the log so we only
4958	 * need to do the exclude dance if this fs isn't mixed.
4959	 */
4960	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961		ret = __exclude_logged_extent(fs_info, ins->objectid,
4962					      ins->offset);
4963		if (ret)
4964			return ret;
4965	}
4966
4967	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968	if (!block_group)
4969		return -EINVAL;
4970
4971	space_info = block_group->space_info;
4972	spin_lock(&space_info->lock);
4973	spin_lock(&block_group->lock);
4974	space_info->bytes_reserved += ins->offset;
4975	block_group->reserved += ins->offset;
4976	spin_unlock(&block_group->lock);
4977	spin_unlock(&space_info->lock);
4978
4979	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980					 offset, ins, 1, root_objectid);
4981	if (ret)
4982		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983	ret = btrfs_record_squota_delta(fs_info, &delta);
4984	btrfs_put_block_group(block_group);
4985	return ret;
4986}
4987
4988#ifdef CONFIG_BTRFS_DEBUG
4989/*
4990 * Extra safety check in case the extent tree is corrupted and extent allocator
4991 * chooses to use a tree block which is already used and locked.
4992 */
4993static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994{
4995	if (eb->lock_owner == current->pid) {
4996		btrfs_err_rl(eb->fs_info,
4997"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998			     eb->start, btrfs_header_owner(eb), current->pid);
4999		return true;
5000	}
5001	return false;
5002}
5003#else
5004static bool check_eb_lock_owner(struct extent_buffer *eb)
5005{
5006	return false;
5007}
5008#endif
5009
5010static struct extent_buffer *
5011btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012		      u64 bytenr, int level, u64 owner,
5013		      enum btrfs_lock_nesting nest)
5014{
5015	struct btrfs_fs_info *fs_info = root->fs_info;
5016	struct extent_buffer *buf;
5017	u64 lockdep_owner = owner;
5018
5019	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020	if (IS_ERR(buf))
5021		return buf;
5022
5023	if (check_eb_lock_owner(buf)) {
5024		free_extent_buffer(buf);
5025		return ERR_PTR(-EUCLEAN);
5026	}
5027
5028	/*
5029	 * The reloc trees are just snapshots, so we need them to appear to be
5030	 * just like any other fs tree WRT lockdep.
5031	 *
5032	 * The exception however is in replace_path() in relocation, where we
5033	 * hold the lock on the original fs root and then search for the reloc
5034	 * root.  At that point we need to make sure any reloc root buffers are
5035	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036	 * lockdep happy.
5037	 */
5038	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041
5042	/* btrfs_clear_buffer_dirty() accesses generation field. */
5043	btrfs_set_header_generation(buf, trans->transid);
5044
5045	/*
5046	 * This needs to stay, because we could allocate a freed block from an
5047	 * old tree into a new tree, so we need to make sure this new block is
5048	 * set to the appropriate level and owner.
5049	 */
5050	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051
5052	btrfs_tree_lock_nested(buf, nest);
5053	btrfs_clear_buffer_dirty(trans, buf);
5054	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056
 
5057	set_extent_buffer_uptodate(buf);
5058
5059	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060	btrfs_set_header_level(buf, level);
5061	btrfs_set_header_bytenr(buf, buf->start);
5062	btrfs_set_header_generation(buf, trans->transid);
5063	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064	btrfs_set_header_owner(buf, owner);
5065	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068		buf->log_index = root->log_transid % 2;
5069		/*
5070		 * we allow two log transactions at a time, use different
5071		 * EXTENT bit to differentiate dirty pages.
5072		 */
5073		if (buf->log_index == 0)
5074			set_extent_bit(&root->dirty_log_pages, buf->start,
5075				       buf->start + buf->len - 1,
5076				       EXTENT_DIRTY, NULL);
5077		else
5078			set_extent_bit(&root->dirty_log_pages, buf->start,
5079				       buf->start + buf->len - 1,
5080				       EXTENT_NEW, NULL);
5081	} else {
5082		buf->log_index = -1;
5083		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085	}
 
5086	/* this returns a buffer locked for blocking */
5087	return buf;
5088}
5089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5090/*
5091 * finds a free extent and does all the dirty work required for allocation
5092 * returns the tree buffer or an ERR_PTR on error.
5093 */
5094struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095					     struct btrfs_root *root,
5096					     u64 parent, u64 root_objectid,
5097					     const struct btrfs_disk_key *key,
5098					     int level, u64 hint,
5099					     u64 empty_size,
5100					     u64 reloc_src_root,
5101					     enum btrfs_lock_nesting nest)
5102{
5103	struct btrfs_fs_info *fs_info = root->fs_info;
5104	struct btrfs_key ins;
5105	struct btrfs_block_rsv *block_rsv;
5106	struct extent_buffer *buf;
 
5107	u64 flags = 0;
5108	int ret;
5109	u32 blocksize = fs_info->nodesize;
5110	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111	u64 owning_root;
5112
5113#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114	if (btrfs_is_testing(fs_info)) {
5115		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116					    level, root_objectid, nest);
5117		if (!IS_ERR(buf))
5118			root->alloc_bytenr += blocksize;
5119		return buf;
5120	}
5121#endif
5122
5123	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124	if (IS_ERR(block_rsv))
5125		return ERR_CAST(block_rsv);
5126
5127	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128				   empty_size, hint, &ins, 0, 0);
5129	if (ret)
5130		goto out_unuse;
5131
5132	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133				    root_objectid, nest);
5134	if (IS_ERR(buf)) {
5135		ret = PTR_ERR(buf);
5136		goto out_free_reserved;
5137	}
5138	owning_root = btrfs_header_owner(buf);
5139
5140	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141		if (parent == 0)
5142			parent = ins.objectid;
5143		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144		owning_root = reloc_src_root;
5145	} else
5146		BUG_ON(parent > 0);
5147
5148	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149		struct btrfs_delayed_extent_op *extent_op;
5150		struct btrfs_ref generic_ref = {
5151			.action = BTRFS_ADD_DELAYED_EXTENT,
5152			.bytenr = ins.objectid,
5153			.num_bytes = ins.offset,
5154			.parent = parent,
5155			.owning_root = owning_root,
5156			.ref_root = root_objectid,
5157		};
5158
5159		if (!skinny_metadata || flags != 0) {
5160			extent_op = btrfs_alloc_delayed_extent_op();
5161			if (!extent_op) {
5162				ret = -ENOMEM;
5163				goto out_free_buf;
5164			}
5165			if (key)
5166				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167			else
5168				memset(&extent_op->key, 0, sizeof(extent_op->key));
5169			extent_op->flags_to_set = flags;
5170			extent_op->update_key = (skinny_metadata ? false : true);
5171			extent_op->update_flags = (flags != 0);
5172		} else {
5173			extent_op = NULL;
5174		}
5175
5176		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177		btrfs_ref_tree_mod(fs_info, &generic_ref);
5178		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179		if (ret) {
5180			btrfs_free_delayed_extent_op(extent_op);
5181			goto out_free_buf;
5182		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5183	}
5184	return buf;
5185
 
 
5186out_free_buf:
5187	btrfs_tree_unlock(buf);
5188	free_extent_buffer(buf);
5189out_free_reserved:
5190	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191out_unuse:
5192	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193	return ERR_PTR(ret);
5194}
5195
5196struct walk_control {
5197	u64 refs[BTRFS_MAX_LEVEL];
5198	u64 flags[BTRFS_MAX_LEVEL];
5199	struct btrfs_key update_progress;
5200	struct btrfs_key drop_progress;
5201	int drop_level;
5202	int stage;
5203	int level;
5204	int shared_level;
5205	int update_ref;
5206	int keep_locks;
5207	int reada_slot;
5208	int reada_count;
5209	int restarted;
5210	/* Indicate that extent info needs to be looked up when walking the tree. */
5211	int lookup_info;
5212};
5213
5214/*
5215 * This is our normal stage.  We are traversing blocks the current snapshot owns
5216 * and we are dropping any of our references to any children we are able to, and
5217 * then freeing the block once we've processed all of the children.
5218 */
5219#define DROP_REFERENCE	1
5220
5221/*
5222 * We enter this stage when we have to walk into a child block (meaning we can't
5223 * simply drop our reference to it from our current parent node) and there are
5224 * more than one reference on it.  If we are the owner of any of the children
5225 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226 * on them in order to drop our normal ref and add the shared ref.
5227 */
5228#define UPDATE_BACKREF	2
5229
5230/*
5231 * Decide if we need to walk down into this node to adjust the references.
5232 *
5233 * @root:	the root we are currently deleting
5234 * @wc:		the walk control for this deletion
5235 * @eb:		the parent eb that we're currently visiting
5236 * @refs:	the number of refs for wc->level - 1
5237 * @flags:	the flags for wc->level - 1
5238 * @slot:	the slot in the eb that we're currently checking
5239 *
5240 * This is meant to be called when we're evaluating if a node we point to at
5241 * wc->level should be read and walked into, or if we can simply delete our
5242 * reference to it.  We return true if we should walk into the node, false if we
5243 * can skip it.
5244 *
5245 * We have assertions in here to make sure this is called correctly.  We assume
5246 * that sanity checking on the blocks read to this point has been done, so any
5247 * corrupted file systems must have been caught before calling this function.
5248 */
5249static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250				  struct extent_buffer *eb, u64 flags, int slot)
5251{
5252	struct btrfs_key key;
5253	u64 generation;
5254	int level = wc->level;
5255
5256	ASSERT(level > 0);
5257	ASSERT(wc->refs[level - 1] > 0);
5258
5259	/*
5260	 * The update backref stage we only want to skip if we already have
5261	 * FULL_BACKREF set, otherwise we need to read.
5262	 */
5263	if (wc->stage == UPDATE_BACKREF) {
5264		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265			return false;
5266		return true;
5267	}
5268
5269	/*
5270	 * We're the last ref on this block, we must walk into it and process
5271	 * any refs it's pointing at.
5272	 */
5273	if (wc->refs[level - 1] == 1)
5274		return true;
5275
5276	/*
5277	 * If we're already FULL_BACKREF then we know we can just drop our
5278	 * current reference.
5279	 */
5280	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281		return false;
5282
5283	/*
5284	 * This block is older than our creation generation, we can drop our
5285	 * reference to it.
5286	 */
5287	generation = btrfs_node_ptr_generation(eb, slot);
5288	if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289		return false;
5290
5291	/*
5292	 * This block was processed from a previous snapshot deletion run, we
5293	 * can skip it.
5294	 */
5295	btrfs_node_key_to_cpu(eb, &key, slot);
5296	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297		return false;
5298
5299	/* All other cases we need to wander into the node. */
5300	return true;
5301}
5302
5303static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304				     struct btrfs_root *root,
5305				     struct walk_control *wc,
5306				     struct btrfs_path *path)
5307{
5308	struct btrfs_fs_info *fs_info = root->fs_info;
5309	u64 bytenr;
5310	u64 generation;
5311	u64 refs;
5312	u64 flags;
5313	u32 nritems;
 
5314	struct extent_buffer *eb;
5315	int ret;
5316	int slot;
5317	int nread = 0;
5318
5319	if (path->slots[wc->level] < wc->reada_slot) {
5320		wc->reada_count = wc->reada_count * 2 / 3;
5321		wc->reada_count = max(wc->reada_count, 2);
5322	} else {
5323		wc->reada_count = wc->reada_count * 3 / 2;
5324		wc->reada_count = min_t(int, wc->reada_count,
5325					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326	}
5327
5328	eb = path->nodes[wc->level];
5329	nritems = btrfs_header_nritems(eb);
5330
5331	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332		if (nread >= wc->reada_count)
5333			break;
5334
5335		cond_resched();
5336		bytenr = btrfs_node_blockptr(eb, slot);
5337		generation = btrfs_node_ptr_generation(eb, slot);
5338
5339		if (slot == path->slots[wc->level])
5340			goto reada;
5341
5342		if (wc->stage == UPDATE_BACKREF &&
5343		    generation <= btrfs_root_origin_generation(root))
5344			continue;
5345
5346		/* We don't lock the tree block, it's OK to be racy here */
5347		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348					       wc->level - 1, 1, &refs,
5349					       &flags, NULL);
5350		/* We don't care about errors in readahead. */
5351		if (ret < 0)
5352			continue;
 
5353
5354		/*
5355		 * This could be racey, it's conceivable that we raced and end
5356		 * up with a bogus refs count, if that's the case just skip, if
5357		 * we are actually corrupt we will notice when we look up
5358		 * everything again with our locks.
5359		 */
5360		if (refs == 0)
5361			continue;
5362
5363		/* If we don't need to visit this node don't reada. */
5364		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
5366reada:
5367		btrfs_readahead_node_child(eb, slot);
5368		nread++;
5369	}
5370	wc->reada_slot = slot;
5371}
5372
5373/*
5374 * helper to process tree block while walking down the tree.
5375 *
5376 * when wc->stage == UPDATE_BACKREF, this function updates
5377 * back refs for pointers in the block.
5378 *
5379 * NOTE: return value 1 means we should stop walking down.
5380 */
5381static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382				   struct btrfs_root *root,
5383				   struct btrfs_path *path,
5384				   struct walk_control *wc)
5385{
5386	struct btrfs_fs_info *fs_info = root->fs_info;
5387	int level = wc->level;
5388	struct extent_buffer *eb = path->nodes[level];
5389	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390	int ret;
5391
5392	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
 
5393		return 1;
5394
5395	/*
5396	 * when reference count of tree block is 1, it won't increase
5397	 * again. once full backref flag is set, we never clear it.
5398	 */
5399	if (wc->lookup_info &&
5400	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402		ASSERT(path->locks[level]);
5403		ret = btrfs_lookup_extent_info(trans, fs_info,
5404					       eb->start, level, 1,
5405					       &wc->refs[level],
5406					       &wc->flags[level],
5407					       NULL);
5408		if (ret)
5409			return ret;
5410		if (unlikely(wc->refs[level] == 0)) {
5411			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412				  eb->start);
5413			return -EUCLEAN;
5414		}
5415	}
5416
5417	if (wc->stage == DROP_REFERENCE) {
5418		if (wc->refs[level] > 1)
5419			return 1;
5420
5421		if (path->locks[level] && !wc->keep_locks) {
5422			btrfs_tree_unlock_rw(eb, path->locks[level]);
5423			path->locks[level] = 0;
5424		}
5425		return 0;
5426	}
5427
5428	/* wc->stage == UPDATE_BACKREF */
5429	if (!(wc->flags[level] & flag)) {
5430		ASSERT(path->locks[level]);
5431		ret = btrfs_inc_ref(trans, root, eb, 1);
5432		if (ret) {
5433			btrfs_abort_transaction(trans, ret);
5434			return ret;
5435		}
5436		ret = btrfs_dec_ref(trans, root, eb, 0);
5437		if (ret) {
5438			btrfs_abort_transaction(trans, ret);
5439			return ret;
5440		}
5441		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442		if (ret) {
5443			btrfs_abort_transaction(trans, ret);
5444			return ret;
5445		}
5446		wc->flags[level] |= flag;
5447	}
5448
5449	/*
5450	 * the block is shared by multiple trees, so it's not good to
5451	 * keep the tree lock
5452	 */
5453	if (path->locks[level] && level > 0) {
5454		btrfs_tree_unlock_rw(eb, path->locks[level]);
5455		path->locks[level] = 0;
5456	}
5457	return 0;
5458}
5459
5460/*
5461 * This is used to verify a ref exists for this root to deal with a bug where we
5462 * would have a drop_progress key that hadn't been updated properly.
5463 */
5464static int check_ref_exists(struct btrfs_trans_handle *trans,
5465			    struct btrfs_root *root, u64 bytenr, u64 parent,
5466			    int level)
5467{
5468	struct btrfs_delayed_ref_root *delayed_refs;
5469	struct btrfs_delayed_ref_head *head;
5470	struct btrfs_path *path;
5471	struct btrfs_extent_inline_ref *iref;
5472	int ret;
5473	bool exists = false;
5474
5475	path = btrfs_alloc_path();
5476	if (!path)
5477		return -ENOMEM;
5478again:
5479	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480				    root->fs_info->nodesize, parent,
5481				    btrfs_root_id(root), level, 0);
5482	if (ret != -ENOENT) {
5483		/*
5484		 * If we get 0 then we found our reference, return 1, else
5485		 * return the error if it's not -ENOENT;
5486		 */
5487		btrfs_free_path(path);
5488		return (ret < 0 ) ? ret : 1;
5489	}
5490
5491	/*
5492	 * We could have a delayed ref with this reference, so look it up while
5493	 * we're holding the path open to make sure we don't race with the
5494	 * delayed ref running.
5495	 */
5496	delayed_refs = &trans->transaction->delayed_refs;
5497	spin_lock(&delayed_refs->lock);
5498	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5499	if (!head)
5500		goto out;
5501	if (!mutex_trylock(&head->mutex)) {
5502		/*
5503		 * We're contended, means that the delayed ref is running, get a
5504		 * reference and wait for the ref head to be complete and then
5505		 * try again.
5506		 */
5507		refcount_inc(&head->refs);
5508		spin_unlock(&delayed_refs->lock);
5509
5510		btrfs_release_path(path);
5511
5512		mutex_lock(&head->mutex);
5513		mutex_unlock(&head->mutex);
5514		btrfs_put_delayed_ref_head(head);
5515		goto again;
5516	}
5517
5518	exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5519	mutex_unlock(&head->mutex);
5520out:
5521	spin_unlock(&delayed_refs->lock);
5522	btrfs_free_path(path);
5523	return exists ? 1 : 0;
5524}
5525
5526/*
5527 * We may not have an uptodate block, so if we are going to walk down into this
5528 * block we need to drop the lock, read it off of the disk, re-lock it and
5529 * return to continue dropping the snapshot.
5530 */
5531static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5532				     struct btrfs_root *root,
5533				     struct btrfs_path *path,
5534				     struct walk_control *wc,
5535				     struct extent_buffer *next)
5536{
5537	struct btrfs_tree_parent_check check = { 0 };
5538	u64 generation;
5539	int level = wc->level;
5540	int ret;
5541
5542	btrfs_assert_tree_write_locked(next);
5543
5544	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5545
5546	if (btrfs_buffer_uptodate(next, generation, 0))
5547		return 0;
5548
5549	check.level = level - 1;
5550	check.transid = generation;
5551	check.owner_root = btrfs_root_id(root);
5552	check.has_first_key = true;
5553	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5554
5555	btrfs_tree_unlock(next);
5556	if (level == 1)
5557		reada_walk_down(trans, root, wc, path);
5558	ret = btrfs_read_extent_buffer(next, &check);
5559	if (ret) {
5560		free_extent_buffer(next);
5561		return ret;
5562	}
5563	btrfs_tree_lock(next);
5564	wc->lookup_info = 1;
5565	return 0;
5566}
5567
5568/*
5569 * If we determine that we don't have to visit wc->level - 1 then we need to
5570 * determine if we can drop our reference.
5571 *
5572 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5573 *
5574 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5575 * reference, skipping it if we dropped it from a previous incompleted drop, or
5576 * dropping it if we still have a reference to it.
5577 */
5578static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5579				struct btrfs_path *path, struct walk_control *wc,
5580				struct extent_buffer *next, u64 owner_root)
5581{
5582	struct btrfs_ref ref = {
5583		.action = BTRFS_DROP_DELAYED_REF,
5584		.bytenr = next->start,
5585		.num_bytes = root->fs_info->nodesize,
5586		.owning_root = owner_root,
5587		.ref_root = btrfs_root_id(root),
5588	};
5589	int level = wc->level;
5590	int ret;
5591
5592	/* We are UPDATE_BACKREF, we're not dropping anything. */
5593	if (wc->stage == UPDATE_BACKREF)
5594		return 0;
5595
5596	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5597		ref.parent = path->nodes[level]->start;
5598	} else {
5599		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5600		if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5601			btrfs_err(root->fs_info, "mismatched block owner");
5602			return -EIO;
5603		}
5604	}
5605
5606	/*
5607	 * If we had a drop_progress we need to verify the refs are set as
5608	 * expected.  If we find our ref then we know that from here on out
5609	 * everything should be correct, and we can clear the
5610	 * ->restarted flag.
5611	 */
5612	if (wc->restarted) {
5613		ret = check_ref_exists(trans, root, next->start, ref.parent,
5614				       level - 1);
5615		if (ret <= 0)
5616			return ret;
5617		ret = 0;
5618		wc->restarted = 0;
5619	}
5620
5621	/*
5622	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5623	 * accounted them at merge time (replace_path), thus we could skip
5624	 * expensive subtree trace here.
5625	 */
5626	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5627	    wc->refs[level - 1] > 1) {
5628		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5629							   path->slots[level]);
5630
5631		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5632		if (ret) {
5633			btrfs_err_rl(root->fs_info,
5634"error %d accounting shared subtree, quota is out of sync, rescan required",
5635				     ret);
5636		}
5637	}
5638
5639	/*
5640	 * We need to update the next key in our walk control so we can update
5641	 * the drop_progress key accordingly.  We don't care if find_next_key
5642	 * doesn't find a key because that means we're at the end and are going
5643	 * to clean up now.
5644	 */
5645	wc->drop_level = level;
5646	find_next_key(path, level, &wc->drop_progress);
5647
5648	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5649	return btrfs_free_extent(trans, &ref);
5650}
5651
5652/*
5653 * helper to process tree block pointer.
5654 *
5655 * when wc->stage == DROP_REFERENCE, this function checks
5656 * reference count of the block pointed to. if the block
5657 * is shared and we need update back refs for the subtree
5658 * rooted at the block, this function changes wc->stage to
5659 * UPDATE_BACKREF. if the block is shared and there is no
5660 * need to update back, this function drops the reference
5661 * to the block.
5662 *
5663 * NOTE: return value 1 means we should stop walking down.
5664 */
5665static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5666				 struct btrfs_root *root,
5667				 struct btrfs_path *path,
5668				 struct walk_control *wc)
5669{
5670	struct btrfs_fs_info *fs_info = root->fs_info;
5671	u64 bytenr;
5672	u64 generation;
5673	u64 owner_root = 0;
 
 
5674	struct extent_buffer *next;
5675	int level = wc->level;
 
5676	int ret = 0;
 
5677
5678	generation = btrfs_node_ptr_generation(path->nodes[level],
5679					       path->slots[level]);
5680	/*
5681	 * if the lower level block was created before the snapshot
5682	 * was created, we know there is no need to update back refs
5683	 * for the subtree
5684	 */
5685	if (wc->stage == UPDATE_BACKREF &&
5686	    generation <= btrfs_root_origin_generation(root)) {
5687		wc->lookup_info = 1;
5688		return 1;
5689	}
5690
5691	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 
5692
5693	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5694					    level - 1);
5695	if (IS_ERR(next))
5696		return PTR_ERR(next);
5697
 
 
 
 
 
5698	btrfs_tree_lock(next);
 
5699
5700	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5701				       &wc->refs[level - 1],
5702				       &wc->flags[level - 1],
5703				       &owner_root);
5704	if (ret < 0)
5705		goto out_unlock;
5706
5707	if (unlikely(wc->refs[level - 1] == 0)) {
5708		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5709			  bytenr);
5710		ret = -EUCLEAN;
5711		goto out_unlock;
5712	}
5713	wc->lookup_info = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5714
5715	/* If we don't have to walk into this node skip it. */
5716	if (!visit_node_for_delete(root, wc, path->nodes[level],
5717				   wc->flags[level - 1], path->slots[level]))
5718		goto skip;
 
 
 
 
5719
5720	/*
5721	 * We have to walk down into this node, and if we're currently at the
5722	 * DROP_REFERNCE stage and this block is shared then we need to switch
5723	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5724	 */
5725	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5726		wc->stage = UPDATE_BACKREF;
5727		wc->shared_level = level - 1;
5728	}
5729
5730	ret = check_next_block_uptodate(trans, root, path, wc, next);
5731	if (ret)
5732		return ret;
 
 
 
 
 
 
 
 
 
 
5733
5734	level--;
5735	ASSERT(level == btrfs_header_level(next));
5736	if (level != btrfs_header_level(next)) {
5737		btrfs_err(root->fs_info, "mismatched level");
5738		ret = -EIO;
5739		goto out_unlock;
5740	}
5741	path->nodes[level] = next;
5742	path->slots[level] = 0;
5743	path->locks[level] = BTRFS_WRITE_LOCK;
5744	wc->level = level;
5745	if (wc->level == 1)
5746		wc->reada_slot = 0;
5747	return 0;
5748skip:
5749	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5750	if (ret)
5751		goto out_unlock;
5752	wc->refs[level - 1] = 0;
5753	wc->flags[level - 1] = 0;
5754	wc->lookup_info = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755	ret = 1;
5756
5757out_unlock:
5758	btrfs_tree_unlock(next);
5759	free_extent_buffer(next);
5760
5761	return ret;
5762}
5763
5764/*
5765 * helper to process tree block while walking up the tree.
5766 *
5767 * when wc->stage == DROP_REFERENCE, this function drops
5768 * reference count on the block.
5769 *
5770 * when wc->stage == UPDATE_BACKREF, this function changes
5771 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5772 * to UPDATE_BACKREF previously while processing the block.
5773 *
5774 * NOTE: return value 1 means we should stop walking up.
5775 */
5776static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5777				 struct btrfs_root *root,
5778				 struct btrfs_path *path,
5779				 struct walk_control *wc)
5780{
5781	struct btrfs_fs_info *fs_info = root->fs_info;
5782	int ret = 0;
5783	int level = wc->level;
5784	struct extent_buffer *eb = path->nodes[level];
5785	u64 parent = 0;
5786
5787	if (wc->stage == UPDATE_BACKREF) {
5788		ASSERT(wc->shared_level >= level);
5789		if (level < wc->shared_level)
5790			goto out;
5791
5792		ret = find_next_key(path, level + 1, &wc->update_progress);
5793		if (ret > 0)
5794			wc->update_ref = 0;
5795
5796		wc->stage = DROP_REFERENCE;
5797		wc->shared_level = -1;
5798		path->slots[level] = 0;
5799
5800		/*
5801		 * check reference count again if the block isn't locked.
5802		 * we should start walking down the tree again if reference
5803		 * count is one.
5804		 */
5805		if (!path->locks[level]) {
5806			ASSERT(level > 0);
5807			btrfs_tree_lock(eb);
5808			path->locks[level] = BTRFS_WRITE_LOCK;
 
5809
5810			ret = btrfs_lookup_extent_info(trans, fs_info,
5811						       eb->start, level, 1,
5812						       &wc->refs[level],
5813						       &wc->flags[level],
5814						       NULL);
5815			if (ret < 0) {
5816				btrfs_tree_unlock_rw(eb, path->locks[level]);
5817				path->locks[level] = 0;
5818				return ret;
5819			}
5820			if (unlikely(wc->refs[level] == 0)) {
5821				btrfs_tree_unlock_rw(eb, path->locks[level]);
5822				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5823					  eb->start);
5824				return -EUCLEAN;
5825			}
5826			if (wc->refs[level] == 1) {
5827				btrfs_tree_unlock_rw(eb, path->locks[level]);
5828				path->locks[level] = 0;
5829				return 1;
5830			}
5831		}
5832	}
5833
5834	/* wc->stage == DROP_REFERENCE */
5835	ASSERT(path->locks[level] || wc->refs[level] == 1);
5836
5837	if (wc->refs[level] == 1) {
5838		if (level == 0) {
5839			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5840				ret = btrfs_dec_ref(trans, root, eb, 1);
5841			else
5842				ret = btrfs_dec_ref(trans, root, eb, 0);
 
 
5843			if (ret) {
5844				btrfs_abort_transaction(trans, ret);
5845				return ret;
5846			}
5847			if (is_fstree(btrfs_root_id(root))) {
5848				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5849				if (ret) {
5850					btrfs_err_rl(fs_info,
5851	"error %d accounting leaf items, quota is out of sync, rescan required",
5852					     ret);
5853				}
5854			}
5855		}
5856		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5857		if (!path->locks[level]) {
 
5858			btrfs_tree_lock(eb);
5859			path->locks[level] = BTRFS_WRITE_LOCK;
 
5860		}
5861		btrfs_clear_buffer_dirty(trans, eb);
5862	}
5863
5864	if (eb == root->node) {
5865		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5866			parent = eb->start;
5867		else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5868			goto owner_mismatch;
 
5869	} else {
5870		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5871			parent = path->nodes[level + 1]->start;
5872		else if (btrfs_root_id(root) !=
5873			 btrfs_header_owner(path->nodes[level + 1]))
5874			goto owner_mismatch;
5875	}
5876
5877	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5878				    wc->refs[level] == 1);
5879	if (ret < 0)
5880		btrfs_abort_transaction(trans, ret);
5881out:
5882	wc->refs[level] = 0;
5883	wc->flags[level] = 0;
5884	return ret;
5885
5886owner_mismatch:
5887	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5888		     btrfs_header_owner(eb), btrfs_root_id(root));
5889	return -EUCLEAN;
5890}
5891
5892/*
5893 * walk_down_tree consists of two steps.
5894 *
5895 * walk_down_proc().  Look up the reference count and reference of our current
5896 * wc->level.  At this point path->nodes[wc->level] should be populated and
5897 * uptodate, and in most cases should already be locked.  If we are in
5898 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5899 * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5900 * FULL_BACKREF on this node if it's not already set, and then do the
5901 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5902 * the shared reference to all of this nodes children.
5903 *
5904 * do_walk_down().  This is where we actually start iterating on the children of
5905 * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5906 * our reference to the children that return false from visit_node_for_delete(),
5907 * which has various conditions where we know we can just drop our reference
5908 * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5909 * visit_node_for_delete() returns false for, only walking down when necessary.
5910 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5911 * snapshot deletion.
5912 */
5913static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5914				   struct btrfs_root *root,
5915				   struct btrfs_path *path,
5916				   struct walk_control *wc)
5917{
5918	int level = wc->level;
5919	int ret = 0;
 
5920
5921	wc->lookup_info = 1;
5922	while (level >= 0) {
5923		ret = walk_down_proc(trans, root, path, wc);
5924		if (ret)
5925			break;
5926
5927		if (level == 0)
5928			break;
5929
5930		if (path->slots[level] >=
5931		    btrfs_header_nritems(path->nodes[level]))
5932			break;
5933
5934		ret = do_walk_down(trans, root, path, wc);
5935		if (ret > 0) {
5936			path->slots[level]++;
5937			continue;
5938		} else if (ret < 0)
5939			break;
5940		level = wc->level;
5941	}
5942	return (ret == 1) ? 0 : ret;
5943}
5944
5945/*
5946 * walk_up_tree() is responsible for making sure we visit every slot on our
5947 * current node, and if we're at the end of that node then we call
5948 * walk_up_proc() on our current node which will do one of a few things based on
5949 * our stage.
5950 *
5951 * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5952 * then we need to walk back up the tree, and then going back down into the
5953 * other slots via walk_down_tree to update any other children from our original
5954 * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5955 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5956 *
5957 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5958 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5959 * in our current leaf.  After that we call btrfs_free_tree_block() on the
5960 * current node and walk up to the next node to walk down the next slot.
5961 */
5962static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5963				 struct btrfs_root *root,
5964				 struct btrfs_path *path,
5965				 struct walk_control *wc, int max_level)
5966{
5967	int level = wc->level;
5968	int ret;
5969
5970	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5971	while (level < max_level && path->nodes[level]) {
5972		wc->level = level;
5973		if (path->slots[level] + 1 <
5974		    btrfs_header_nritems(path->nodes[level])) {
5975			path->slots[level]++;
5976			return 0;
5977		} else {
5978			ret = walk_up_proc(trans, root, path, wc);
5979			if (ret > 0)
5980				return 0;
5981			if (ret < 0)
5982				return ret;
5983
5984			if (path->locks[level]) {
5985				btrfs_tree_unlock_rw(path->nodes[level],
5986						     path->locks[level]);
5987				path->locks[level] = 0;
5988			}
5989			free_extent_buffer(path->nodes[level]);
5990			path->nodes[level] = NULL;
5991			level++;
5992		}
5993	}
5994	return 1;
5995}
5996
5997/*
5998 * drop a subvolume tree.
5999 *
6000 * this function traverses the tree freeing any blocks that only
6001 * referenced by the tree.
6002 *
6003 * when a shared tree block is found. this function decreases its
6004 * reference count by one. if update_ref is true, this function
6005 * also make sure backrefs for the shared block and all lower level
6006 * blocks are properly updated.
6007 *
6008 * If called with for_reloc == 0, may exit early with -EAGAIN
6009 */
6010int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
 
 
6011{
6012	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6013	struct btrfs_fs_info *fs_info = root->fs_info;
6014	struct btrfs_path *path;
6015	struct btrfs_trans_handle *trans;
6016	struct btrfs_root *tree_root = fs_info->tree_root;
6017	struct btrfs_root_item *root_item = &root->root_item;
6018	struct walk_control *wc;
6019	struct btrfs_key key;
6020	const u64 rootid = btrfs_root_id(root);
6021	int ret = 0;
6022	int level;
6023	bool root_dropped = false;
6024	bool unfinished_drop = false;
6025
6026	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6027
6028	path = btrfs_alloc_path();
6029	if (!path) {
6030		ret = -ENOMEM;
6031		goto out;
6032	}
6033
6034	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6035	if (!wc) {
6036		btrfs_free_path(path);
6037		ret = -ENOMEM;
6038		goto out;
6039	}
6040
6041	/*
6042	 * Use join to avoid potential EINTR from transaction start. See
6043	 * wait_reserve_ticket and the whole reservation callchain.
6044	 */
6045	if (for_reloc)
6046		trans = btrfs_join_transaction(tree_root);
6047	else
6048		trans = btrfs_start_transaction(tree_root, 0);
6049	if (IS_ERR(trans)) {
6050		ret = PTR_ERR(trans);
6051		goto out_free;
6052	}
6053
6054	ret = btrfs_run_delayed_items(trans);
6055	if (ret)
6056		goto out_end_trans;
6057
6058	/*
6059	 * This will help us catch people modifying the fs tree while we're
6060	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6061	 * dropped as we unlock the root node and parent nodes as we walk down
6062	 * the tree, assuming nothing will change.  If something does change
6063	 * then we'll have stale information and drop references to blocks we've
6064	 * already dropped.
6065	 */
6066	set_bit(BTRFS_ROOT_DELETING, &root->state);
6067	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6068
6069	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6070		level = btrfs_header_level(root->node);
6071		path->nodes[level] = btrfs_lock_root_node(root);
 
6072		path->slots[level] = 0;
6073		path->locks[level] = BTRFS_WRITE_LOCK;
6074		memset(&wc->update_progress, 0,
6075		       sizeof(wc->update_progress));
6076	} else {
6077		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6078		memcpy(&wc->update_progress, &key,
6079		       sizeof(wc->update_progress));
6080
6081		level = btrfs_root_drop_level(root_item);
6082		BUG_ON(level == 0);
6083		path->lowest_level = level;
6084		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6085		path->lowest_level = 0;
6086		if (ret < 0)
 
6087			goto out_end_trans;
6088
6089		WARN_ON(ret > 0);
6090		ret = 0;
6091
6092		/*
6093		 * unlock our path, this is safe because only this
6094		 * function is allowed to delete this snapshot
6095		 */
6096		btrfs_unlock_up_safe(path, 0);
6097
6098		level = btrfs_header_level(root->node);
6099		while (1) {
6100			btrfs_tree_lock(path->nodes[level]);
6101			path->locks[level] = BTRFS_WRITE_LOCK;
 
6102
6103			/*
6104			 * btrfs_lookup_extent_info() returns 0 for success,
6105			 * or < 0 for error.
6106			 */
6107			ret = btrfs_lookup_extent_info(trans, fs_info,
6108						path->nodes[level]->start,
6109						level, 1, &wc->refs[level],
6110						&wc->flags[level], NULL);
6111			if (ret < 0)
 
6112				goto out_end_trans;
6113
6114			BUG_ON(wc->refs[level] == 0);
6115
6116			if (level == btrfs_root_drop_level(root_item))
6117				break;
6118
6119			btrfs_tree_unlock(path->nodes[level]);
6120			path->locks[level] = 0;
6121			WARN_ON(wc->refs[level] != 1);
6122			level--;
6123		}
6124	}
6125
6126	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6127	wc->level = level;
6128	wc->shared_level = -1;
6129	wc->stage = DROP_REFERENCE;
6130	wc->update_ref = update_ref;
6131	wc->keep_locks = 0;
 
6132	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6133
6134	while (1) {
6135
6136		ret = walk_down_tree(trans, root, path, wc);
6137		if (ret < 0) {
6138			btrfs_abort_transaction(trans, ret);
6139			break;
6140		}
6141
6142		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6143		if (ret < 0) {
6144			btrfs_abort_transaction(trans, ret);
6145			break;
6146		}
6147
6148		if (ret > 0) {
6149			BUG_ON(wc->stage != DROP_REFERENCE);
6150			ret = 0;
6151			break;
6152		}
6153
6154		if (wc->stage == DROP_REFERENCE) {
6155			wc->drop_level = wc->level;
6156			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6157					      &wc->drop_progress,
6158					      path->slots[wc->drop_level]);
6159		}
6160		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6161				      &wc->drop_progress);
6162		btrfs_set_root_drop_level(root_item, wc->drop_level);
6163
6164		BUG_ON(wc->level == 0);
6165		if (btrfs_should_end_transaction(trans) ||
6166		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6167			ret = btrfs_update_root(trans, tree_root,
6168						&root->root_key,
6169						root_item);
6170			if (ret) {
6171				btrfs_abort_transaction(trans, ret);
 
6172				goto out_end_trans;
6173			}
6174
6175			if (!is_reloc_root)
6176				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6177
6178			btrfs_end_transaction_throttle(trans);
6179			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6180				btrfs_debug(fs_info,
6181					    "drop snapshot early exit");
6182				ret = -EAGAIN;
6183				goto out_free;
6184			}
6185
6186		       /*
6187			* Use join to avoid potential EINTR from transaction
6188			* start. See wait_reserve_ticket and the whole
6189			* reservation callchain.
6190			*/
6191			if (for_reloc)
6192				trans = btrfs_join_transaction(tree_root);
6193			else
6194				trans = btrfs_start_transaction(tree_root, 0);
6195			if (IS_ERR(trans)) {
6196				ret = PTR_ERR(trans);
6197				goto out_free;
6198			}
 
 
6199		}
6200	}
6201	btrfs_release_path(path);
6202	if (ret)
6203		goto out_end_trans;
6204
6205	ret = btrfs_del_root(trans, &root->root_key);
6206	if (ret) {
6207		btrfs_abort_transaction(trans, ret);
6208		goto out_end_trans;
6209	}
6210
6211	if (!is_reloc_root) {
6212		ret = btrfs_find_root(tree_root, &root->root_key, path,
6213				      NULL, NULL);
6214		if (ret < 0) {
6215			btrfs_abort_transaction(trans, ret);
 
6216			goto out_end_trans;
6217		} else if (ret > 0) {
6218			ret = 0;
6219			/*
6220			 * If we fail to delete the orphan item this time
6221			 * around, it'll get picked up the next time.
6222			 *
6223			 * The most common failure here is just -ENOENT.
6224			 */
6225			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
 
6226		}
6227	}
6228
6229	/*
6230	 * This subvolume is going to be completely dropped, and won't be
6231	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6232	 * commit transaction time.  So free it here manually.
6233	 */
6234	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6235	btrfs_qgroup_free_meta_all_pertrans(root);
6236
6237	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6238		btrfs_add_dropped_root(trans, root);
6239	else
6240		btrfs_put_root(root);
 
 
 
6241	root_dropped = true;
6242out_end_trans:
6243	if (!is_reloc_root)
6244		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6245
6246	btrfs_end_transaction_throttle(trans);
6247out_free:
6248	kfree(wc);
6249	btrfs_free_path(path);
6250out:
6251	if (!ret && root_dropped) {
6252		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6253		if (ret < 0)
6254			btrfs_warn_rl(fs_info,
6255				      "failed to cleanup qgroup 0/%llu: %d",
6256				      rootid, ret);
6257		ret = 0;
6258	}
6259	/*
6260	 * We were an unfinished drop root, check to see if there are any
6261	 * pending, and if not clear and wake up any waiters.
6262	 */
6263	if (!ret && unfinished_drop)
6264		btrfs_maybe_wake_unfinished_drop(fs_info);
6265
6266	/*
6267	 * So if we need to stop dropping the snapshot for whatever reason we
6268	 * need to make sure to add it back to the dead root list so that we
6269	 * keep trying to do the work later.  This also cleans up roots if we
6270	 * don't have it in the radix (like when we recover after a power fail
6271	 * or unmount) so we don't leak memory.
6272	 */
6273	if (!for_reloc && !root_dropped)
6274		btrfs_add_dead_root(root);
6275	return ret;
 
 
6276}
6277
6278/*
6279 * drop subtree rooted at tree block 'node'.
6280 *
6281 * NOTE: this function will unlock and release tree block 'node'
6282 * only used by relocation code
6283 */
6284int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6285			struct btrfs_root *root,
6286			struct extent_buffer *node,
6287			struct extent_buffer *parent)
6288{
6289	struct btrfs_fs_info *fs_info = root->fs_info;
6290	struct btrfs_path *path;
6291	struct walk_control *wc;
6292	int level;
6293	int parent_level;
6294	int ret = 0;
 
6295
6296	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6297
6298	path = btrfs_alloc_path();
6299	if (!path)
6300		return -ENOMEM;
6301
6302	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6303	if (!wc) {
6304		btrfs_free_path(path);
6305		return -ENOMEM;
6306	}
6307
6308	btrfs_assert_tree_write_locked(parent);
6309	parent_level = btrfs_header_level(parent);
6310	atomic_inc(&parent->refs);
6311	path->nodes[parent_level] = parent;
6312	path->slots[parent_level] = btrfs_header_nritems(parent);
6313
6314	btrfs_assert_tree_write_locked(node);
6315	level = btrfs_header_level(node);
6316	path->nodes[level] = node;
6317	path->slots[level] = 0;
6318	path->locks[level] = BTRFS_WRITE_LOCK;
6319
6320	wc->refs[parent_level] = 1;
6321	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6322	wc->level = level;
6323	wc->shared_level = -1;
6324	wc->stage = DROP_REFERENCE;
6325	wc->update_ref = 0;
6326	wc->keep_locks = 1;
 
6327	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6328
6329	while (1) {
6330		ret = walk_down_tree(trans, root, path, wc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6331		if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6332			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6333
6334		ret = walk_up_tree(trans, root, path, wc, parent_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6335		if (ret) {
6336			if (ret > 0)
6337				ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6338			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6339		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6340	}
 
 
 
 
 
6341
6342	kfree(wc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6343	btrfs_free_path(path);
6344	return ret;
6345}
6346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6347/*
6348 * Unpin the extent range in an error context and don't add the space back.
6349 * Errors are not propagated further.
6350 */
6351void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6352{
6353	unpin_extent_range(fs_info, start, end, false);
6354}
6355
6356/*
6357 * It used to be that old block groups would be left around forever.
6358 * Iterating over them would be enough to trim unused space.  Since we
6359 * now automatically remove them, we also need to iterate over unallocated
6360 * space.
6361 *
6362 * We don't want a transaction for this since the discard may take a
6363 * substantial amount of time.  We don't require that a transaction be
6364 * running, but we do need to take a running transaction into account
6365 * to ensure that we're not discarding chunks that were released or
6366 * allocated in the current transaction.
6367 *
6368 * Holding the chunks lock will prevent other threads from allocating
6369 * or releasing chunks, but it won't prevent a running transaction
6370 * from committing and releasing the memory that the pending chunks
6371 * list head uses.  For that, we need to take a reference to the
6372 * transaction and hold the commit root sem.  We only need to hold
6373 * it while performing the free space search since we have already
6374 * held back allocations.
6375 */
6376static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
 
6377{
6378	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6379	int ret;
6380
6381	*trimmed = 0;
6382
6383	/* Discard not supported = nothing to do. */
6384	if (!bdev_max_discard_sectors(device->bdev))
6385		return 0;
6386
6387	/* Not writable = nothing to do. */
6388	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6389		return 0;
6390
6391	/* No free space = nothing to do. */
6392	if (device->total_bytes <= device->bytes_used)
6393		return 0;
6394
6395	ret = 0;
6396
6397	while (1) {
6398		struct btrfs_fs_info *fs_info = device->fs_info;
 
6399		u64 bytes;
6400
6401		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6402		if (ret)
6403			break;
6404
6405		find_first_clear_extent_bit(&device->alloc_state, start,
6406					    &start, &end,
6407					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6408
6409		/* Check if there are any CHUNK_* bits left */
6410		if (start > device->total_bytes) {
6411			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6412			btrfs_warn_in_rcu(fs_info,
6413"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6414					  start, end - start + 1,
6415					  btrfs_dev_name(device),
6416					  device->total_bytes);
6417			mutex_unlock(&fs_info->chunk_mutex);
6418			ret = 0;
6419			break;
6420		}
6421
6422		/* Ensure we skip the reserved space on each device. */
6423		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
 
 
 
 
 
 
 
 
6424
6425		/*
6426		 * If find_first_clear_extent_bit find a range that spans the
6427		 * end of the device it will set end to -1, in this case it's up
6428		 * to the caller to trim the value to the size of the device.
6429		 */
6430		end = min(end, device->total_bytes - 1);
6431
6432		len = end - start + 1;
6433
6434		/* We didn't find any extents */
6435		if (!len) {
6436			mutex_unlock(&fs_info->chunk_mutex);
6437			ret = 0;
 
6438			break;
6439		}
6440
6441		ret = btrfs_issue_discard(device->bdev, start, len,
6442					  &bytes);
6443		if (!ret)
6444			set_extent_bit(&device->alloc_state, start,
6445				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6446		mutex_unlock(&fs_info->chunk_mutex);
6447
6448		if (ret)
6449			break;
6450
6451		start += len;
6452		*trimmed += bytes;
6453
6454		if (btrfs_trim_interrupted()) {
6455			ret = -ERESTARTSYS;
6456			break;
6457		}
6458
6459		cond_resched();
6460	}
6461
6462	return ret;
6463}
6464
6465/*
6466 * Trim the whole filesystem by:
6467 * 1) trimming the free space in each block group
6468 * 2) trimming the unallocated space on each device
6469 *
6470 * This will also continue trimming even if a block group or device encounters
6471 * an error.  The return value will be the last error, or 0 if nothing bad
6472 * happens.
6473 */
6474int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6475{
6476	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6477	struct btrfs_block_group *cache = NULL;
6478	struct btrfs_device *device;
 
6479	u64 group_trimmed;
6480	u64 range_end = U64_MAX;
6481	u64 start;
6482	u64 end;
6483	u64 trimmed = 0;
6484	u64 bg_failed = 0;
6485	u64 dev_failed = 0;
6486	int bg_ret = 0;
6487	int dev_ret = 0;
6488	int ret = 0;
6489
6490	if (range->start == U64_MAX)
6491		return -EINVAL;
6492
6493	/*
6494	 * Check range overflow if range->len is set.
6495	 * The default range->len is U64_MAX.
6496	 */
6497	if (range->len != U64_MAX &&
6498	    check_add_overflow(range->start, range->len, &range_end))
6499		return -EINVAL;
 
6500
6501	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6502	for (; cache; cache = btrfs_next_block_group(cache)) {
6503		if (cache->start >= range_end) {
6504			btrfs_put_block_group(cache);
6505			break;
6506		}
6507
6508		start = max(range->start, cache->start);
6509		end = min(range_end, cache->start + cache->length);
 
6510
6511		if (end - start >= range->minlen) {
6512			if (!btrfs_block_group_done(cache)) {
6513				ret = btrfs_cache_block_group(cache, true);
 
 
 
 
 
6514				if (ret) {
6515					bg_failed++;
6516					bg_ret = ret;
6517					continue;
6518				}
6519			}
6520			ret = btrfs_trim_block_group(cache,
6521						     &group_trimmed,
6522						     start,
6523						     end,
6524						     range->minlen);
6525
6526			trimmed += group_trimmed;
6527			if (ret) {
6528				bg_failed++;
6529				bg_ret = ret;
6530				continue;
6531			}
6532		}
 
 
6533	}
6534
6535	if (bg_failed)
6536		btrfs_warn(fs_info,
6537			"failed to trim %llu block group(s), last error %d",
6538			bg_failed, bg_ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6539
6540	mutex_lock(&fs_devices->device_list_mutex);
6541	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6542		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6543			continue;
 
6544
6545		ret = btrfs_trim_free_extents(device, &group_trimmed);
 
 
 
6546
6547		trimmed += group_trimmed;
6548		if (ret) {
6549			dev_failed++;
6550			dev_ret = ret;
6551			break;
6552		}
 
 
6553	}
6554	mutex_unlock(&fs_devices->device_list_mutex);
6555
6556	if (dev_failed)
6557		btrfs_warn(fs_info,
6558			"failed to trim %llu device(s), last error %d",
6559			dev_failed, dev_ret);
6560	range->len = trimmed;
6561	if (bg_ret)
6562		return bg_ret;
6563	return dev_ret;
6564}