Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include <linux/ratelimit.h>
27#include <linux/percpu_counter.h>
28#include "hash.h"
29#include "tree-log.h"
30#include "disk-io.h"
31#include "print-tree.h"
32#include "volumes.h"
33#include "raid56.h"
34#include "locking.h"
35#include "free-space-cache.h"
36#include "free-space-tree.h"
37#include "math.h"
38#include "sysfs.h"
39#include "qgroup.h"
40
41#undef SCRAMBLE_DELAYED_REFS
42
43/*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61};
62
63static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_fs_info *fs_info, u64 bytenr,
65 u64 num_bytes, int alloc);
66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_fs_info *fs_info,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_fs_info *fs_info,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_fs_info *fs_info,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_fs_info *fs_info, u64 flags,
87 int force);
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 u64 ram_bytes, u64 num_bytes, int delalloc);
95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
99static int __reserve_metadata_bytes(struct btrfs_root *root,
100 struct btrfs_space_info *space_info,
101 u64 orig_bytes,
102 enum btrfs_reserve_flush_enum flush);
103static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
104 struct btrfs_space_info *space_info,
105 u64 num_bytes);
106static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
107 struct btrfs_space_info *space_info,
108 u64 num_bytes);
109
110static noinline int
111block_group_cache_done(struct btrfs_block_group_cache *cache)
112{
113 smp_mb();
114 return cache->cached == BTRFS_CACHE_FINISHED ||
115 cache->cached == BTRFS_CACHE_ERROR;
116}
117
118static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119{
120 return (cache->flags & bits) == bits;
121}
122
123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124{
125 atomic_inc(&cache->count);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129{
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133 kfree(cache->free_space_ctl);
134 kfree(cache);
135 }
136}
137
138/*
139 * this adds the block group to the fs_info rb tree for the block group
140 * cache
141 */
142static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
143 struct btrfs_block_group_cache *block_group)
144{
145 struct rb_node **p;
146 struct rb_node *parent = NULL;
147 struct btrfs_block_group_cache *cache;
148
149 spin_lock(&info->block_group_cache_lock);
150 p = &info->block_group_cache_tree.rb_node;
151
152 while (*p) {
153 parent = *p;
154 cache = rb_entry(parent, struct btrfs_block_group_cache,
155 cache_node);
156 if (block_group->key.objectid < cache->key.objectid) {
157 p = &(*p)->rb_left;
158 } else if (block_group->key.objectid > cache->key.objectid) {
159 p = &(*p)->rb_right;
160 } else {
161 spin_unlock(&info->block_group_cache_lock);
162 return -EEXIST;
163 }
164 }
165
166 rb_link_node(&block_group->cache_node, parent, p);
167 rb_insert_color(&block_group->cache_node,
168 &info->block_group_cache_tree);
169
170 if (info->first_logical_byte > block_group->key.objectid)
171 info->first_logical_byte = block_group->key.objectid;
172
173 spin_unlock(&info->block_group_cache_lock);
174
175 return 0;
176}
177
178/*
179 * This will return the block group at or after bytenr if contains is 0, else
180 * it will return the block group that contains the bytenr
181 */
182static struct btrfs_block_group_cache *
183block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 int contains)
185{
186 struct btrfs_block_group_cache *cache, *ret = NULL;
187 struct rb_node *n;
188 u64 end, start;
189
190 spin_lock(&info->block_group_cache_lock);
191 n = info->block_group_cache_tree.rb_node;
192
193 while (n) {
194 cache = rb_entry(n, struct btrfs_block_group_cache,
195 cache_node);
196 end = cache->key.objectid + cache->key.offset - 1;
197 start = cache->key.objectid;
198
199 if (bytenr < start) {
200 if (!contains && (!ret || start < ret->key.objectid))
201 ret = cache;
202 n = n->rb_left;
203 } else if (bytenr > start) {
204 if (contains && bytenr <= end) {
205 ret = cache;
206 break;
207 }
208 n = n->rb_right;
209 } else {
210 ret = cache;
211 break;
212 }
213 }
214 if (ret) {
215 btrfs_get_block_group(ret);
216 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 info->first_logical_byte = ret->key.objectid;
218 }
219 spin_unlock(&info->block_group_cache_lock);
220
221 return ret;
222}
223
224static int add_excluded_extent(struct btrfs_fs_info *fs_info,
225 u64 start, u64 num_bytes)
226{
227 u64 end = start + num_bytes - 1;
228 set_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 set_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
232 return 0;
233}
234
235static void free_excluded_extents(struct btrfs_fs_info *fs_info,
236 struct btrfs_block_group_cache *cache)
237{
238 u64 start, end;
239
240 start = cache->key.objectid;
241 end = start + cache->key.offset - 1;
242
243 clear_extent_bits(&fs_info->freed_extents[0],
244 start, end, EXTENT_UPTODATE);
245 clear_extent_bits(&fs_info->freed_extents[1],
246 start, end, EXTENT_UPTODATE);
247}
248
249static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
250 struct btrfs_block_group_cache *cache)
251{
252 u64 bytenr;
253 u64 *logical;
254 int stripe_len;
255 int i, nr, ret;
256
257 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(fs_info, cache->key.objectid,
261 stripe_len);
262 if (ret)
263 return ret;
264 }
265
266 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 bytenr = btrfs_sb_offset(i);
268 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
269 bytenr, 0, &logical, &nr, &stripe_len);
270 if (ret)
271 return ret;
272
273 while (nr--) {
274 u64 start, len;
275
276 if (logical[nr] > cache->key.objectid +
277 cache->key.offset)
278 continue;
279
280 if (logical[nr] + stripe_len <= cache->key.objectid)
281 continue;
282
283 start = logical[nr];
284 if (start < cache->key.objectid) {
285 start = cache->key.objectid;
286 len = (logical[nr] + stripe_len) - start;
287 } else {
288 len = min_t(u64, stripe_len,
289 cache->key.objectid +
290 cache->key.offset - start);
291 }
292
293 cache->bytes_super += len;
294 ret = add_excluded_extent(fs_info, start, len);
295 if (ret) {
296 kfree(logical);
297 return ret;
298 }
299 }
300
301 kfree(logical);
302 }
303 return 0;
304}
305
306static struct btrfs_caching_control *
307get_caching_control(struct btrfs_block_group_cache *cache)
308{
309 struct btrfs_caching_control *ctl;
310
311 spin_lock(&cache->lock);
312 if (!cache->caching_ctl) {
313 spin_unlock(&cache->lock);
314 return NULL;
315 }
316
317 ctl = cache->caching_ctl;
318 atomic_inc(&ctl->count);
319 spin_unlock(&cache->lock);
320 return ctl;
321}
322
323static void put_caching_control(struct btrfs_caching_control *ctl)
324{
325 if (atomic_dec_and_test(&ctl->count))
326 kfree(ctl);
327}
328
329#ifdef CONFIG_BTRFS_DEBUG
330static void fragment_free_space(struct btrfs_block_group_cache *block_group)
331{
332 struct btrfs_fs_info *fs_info = block_group->fs_info;
333 u64 start = block_group->key.objectid;
334 u64 len = block_group->key.offset;
335 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
336 fs_info->nodesize : fs_info->sectorsize;
337 u64 step = chunk << 1;
338
339 while (len > chunk) {
340 btrfs_remove_free_space(block_group, start, chunk);
341 start += step;
342 if (len < step)
343 len = 0;
344 else
345 len -= step;
346 }
347}
348#endif
349
350/*
351 * this is only called by cache_block_group, since we could have freed extents
352 * we need to check the pinned_extents for any extents that can't be used yet
353 * since their free space will be released as soon as the transaction commits.
354 */
355u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
356 struct btrfs_fs_info *info, u64 start, u64 end)
357{
358 u64 extent_start, extent_end, size, total_added = 0;
359 int ret;
360
361 while (start < end) {
362 ret = find_first_extent_bit(info->pinned_extents, start,
363 &extent_start, &extent_end,
364 EXTENT_DIRTY | EXTENT_UPTODATE,
365 NULL);
366 if (ret)
367 break;
368
369 if (extent_start <= start) {
370 start = extent_end + 1;
371 } else if (extent_start > start && extent_start < end) {
372 size = extent_start - start;
373 total_added += size;
374 ret = btrfs_add_free_space(block_group, start,
375 size);
376 BUG_ON(ret); /* -ENOMEM or logic error */
377 start = extent_end + 1;
378 } else {
379 break;
380 }
381 }
382
383 if (start < end) {
384 size = end - start;
385 total_added += size;
386 ret = btrfs_add_free_space(block_group, start, size);
387 BUG_ON(ret); /* -ENOMEM or logic error */
388 }
389
390 return total_added;
391}
392
393static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
394{
395 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
396 struct btrfs_fs_info *fs_info = block_group->fs_info;
397 struct btrfs_root *extent_root = fs_info->extent_root;
398 struct btrfs_path *path;
399 struct extent_buffer *leaf;
400 struct btrfs_key key;
401 u64 total_found = 0;
402 u64 last = 0;
403 u32 nritems;
404 int ret;
405 bool wakeup = true;
406
407 path = btrfs_alloc_path();
408 if (!path)
409 return -ENOMEM;
410
411 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
412
413#ifdef CONFIG_BTRFS_DEBUG
414 /*
415 * If we're fragmenting we don't want to make anybody think we can
416 * allocate from this block group until we've had a chance to fragment
417 * the free space.
418 */
419 if (btrfs_should_fragment_free_space(block_group))
420 wakeup = false;
421#endif
422 /*
423 * We don't want to deadlock with somebody trying to allocate a new
424 * extent for the extent root while also trying to search the extent
425 * root to add free space. So we skip locking and search the commit
426 * root, since its read-only
427 */
428 path->skip_locking = 1;
429 path->search_commit_root = 1;
430 path->reada = READA_FORWARD;
431
432 key.objectid = last;
433 key.offset = 0;
434 key.type = BTRFS_EXTENT_ITEM_KEY;
435
436next:
437 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
438 if (ret < 0)
439 goto out;
440
441 leaf = path->nodes[0];
442 nritems = btrfs_header_nritems(leaf);
443
444 while (1) {
445 if (btrfs_fs_closing(fs_info) > 1) {
446 last = (u64)-1;
447 break;
448 }
449
450 if (path->slots[0] < nritems) {
451 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
452 } else {
453 ret = find_next_key(path, 0, &key);
454 if (ret)
455 break;
456
457 if (need_resched() ||
458 rwsem_is_contended(&fs_info->commit_root_sem)) {
459 if (wakeup)
460 caching_ctl->progress = last;
461 btrfs_release_path(path);
462 up_read(&fs_info->commit_root_sem);
463 mutex_unlock(&caching_ctl->mutex);
464 cond_resched();
465 mutex_lock(&caching_ctl->mutex);
466 down_read(&fs_info->commit_root_sem);
467 goto next;
468 }
469
470 ret = btrfs_next_leaf(extent_root, path);
471 if (ret < 0)
472 goto out;
473 if (ret)
474 break;
475 leaf = path->nodes[0];
476 nritems = btrfs_header_nritems(leaf);
477 continue;
478 }
479
480 if (key.objectid < last) {
481 key.objectid = last;
482 key.offset = 0;
483 key.type = BTRFS_EXTENT_ITEM_KEY;
484
485 if (wakeup)
486 caching_ctl->progress = last;
487 btrfs_release_path(path);
488 goto next;
489 }
490
491 if (key.objectid < block_group->key.objectid) {
492 path->slots[0]++;
493 continue;
494 }
495
496 if (key.objectid >= block_group->key.objectid +
497 block_group->key.offset)
498 break;
499
500 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
501 key.type == BTRFS_METADATA_ITEM_KEY) {
502 total_found += add_new_free_space(block_group,
503 fs_info, last,
504 key.objectid);
505 if (key.type == BTRFS_METADATA_ITEM_KEY)
506 last = key.objectid +
507 fs_info->nodesize;
508 else
509 last = key.objectid + key.offset;
510
511 if (total_found > CACHING_CTL_WAKE_UP) {
512 total_found = 0;
513 if (wakeup)
514 wake_up(&caching_ctl->wait);
515 }
516 }
517 path->slots[0]++;
518 }
519 ret = 0;
520
521 total_found += add_new_free_space(block_group, fs_info, last,
522 block_group->key.objectid +
523 block_group->key.offset);
524 caching_ctl->progress = (u64)-1;
525
526out:
527 btrfs_free_path(path);
528 return ret;
529}
530
531static noinline void caching_thread(struct btrfs_work *work)
532{
533 struct btrfs_block_group_cache *block_group;
534 struct btrfs_fs_info *fs_info;
535 struct btrfs_caching_control *caching_ctl;
536 struct btrfs_root *extent_root;
537 int ret;
538
539 caching_ctl = container_of(work, struct btrfs_caching_control, work);
540 block_group = caching_ctl->block_group;
541 fs_info = block_group->fs_info;
542 extent_root = fs_info->extent_root;
543
544 mutex_lock(&caching_ctl->mutex);
545 down_read(&fs_info->commit_root_sem);
546
547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 ret = load_free_space_tree(caching_ctl);
549 else
550 ret = load_extent_tree_free(caching_ctl);
551
552 spin_lock(&block_group->lock);
553 block_group->caching_ctl = NULL;
554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
555 spin_unlock(&block_group->lock);
556
557#ifdef CONFIG_BTRFS_DEBUG
558 if (btrfs_should_fragment_free_space(block_group)) {
559 u64 bytes_used;
560
561 spin_lock(&block_group->space_info->lock);
562 spin_lock(&block_group->lock);
563 bytes_used = block_group->key.offset -
564 btrfs_block_group_used(&block_group->item);
565 block_group->space_info->bytes_used += bytes_used >> 1;
566 spin_unlock(&block_group->lock);
567 spin_unlock(&block_group->space_info->lock);
568 fragment_free_space(block_group);
569 }
570#endif
571
572 caching_ctl->progress = (u64)-1;
573
574 up_read(&fs_info->commit_root_sem);
575 free_excluded_extents(fs_info, block_group);
576 mutex_unlock(&caching_ctl->mutex);
577
578 wake_up(&caching_ctl->wait);
579
580 put_caching_control(caching_ctl);
581 btrfs_put_block_group(block_group);
582}
583
584static int cache_block_group(struct btrfs_block_group_cache *cache,
585 int load_cache_only)
586{
587 DEFINE_WAIT(wait);
588 struct btrfs_fs_info *fs_info = cache->fs_info;
589 struct btrfs_caching_control *caching_ctl;
590 int ret = 0;
591
592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
593 if (!caching_ctl)
594 return -ENOMEM;
595
596 INIT_LIST_HEAD(&caching_ctl->list);
597 mutex_init(&caching_ctl->mutex);
598 init_waitqueue_head(&caching_ctl->wait);
599 caching_ctl->block_group = cache;
600 caching_ctl->progress = cache->key.objectid;
601 atomic_set(&caching_ctl->count, 1);
602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 caching_thread, NULL, NULL);
604
605 spin_lock(&cache->lock);
606 /*
607 * This should be a rare occasion, but this could happen I think in the
608 * case where one thread starts to load the space cache info, and then
609 * some other thread starts a transaction commit which tries to do an
610 * allocation while the other thread is still loading the space cache
611 * info. The previous loop should have kept us from choosing this block
612 * group, but if we've moved to the state where we will wait on caching
613 * block groups we need to first check if we're doing a fast load here,
614 * so we can wait for it to finish, otherwise we could end up allocating
615 * from a block group who's cache gets evicted for one reason or
616 * another.
617 */
618 while (cache->cached == BTRFS_CACHE_FAST) {
619 struct btrfs_caching_control *ctl;
620
621 ctl = cache->caching_ctl;
622 atomic_inc(&ctl->count);
623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 spin_unlock(&cache->lock);
625
626 schedule();
627
628 finish_wait(&ctl->wait, &wait);
629 put_caching_control(ctl);
630 spin_lock(&cache->lock);
631 }
632
633 if (cache->cached != BTRFS_CACHE_NO) {
634 spin_unlock(&cache->lock);
635 kfree(caching_ctl);
636 return 0;
637 }
638 WARN_ON(cache->caching_ctl);
639 cache->caching_ctl = caching_ctl;
640 cache->cached = BTRFS_CACHE_FAST;
641 spin_unlock(&cache->lock);
642
643 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
644 mutex_lock(&caching_ctl->mutex);
645 ret = load_free_space_cache(fs_info, cache);
646
647 spin_lock(&cache->lock);
648 if (ret == 1) {
649 cache->caching_ctl = NULL;
650 cache->cached = BTRFS_CACHE_FINISHED;
651 cache->last_byte_to_unpin = (u64)-1;
652 caching_ctl->progress = (u64)-1;
653 } else {
654 if (load_cache_only) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_NO;
657 } else {
658 cache->cached = BTRFS_CACHE_STARTED;
659 cache->has_caching_ctl = 1;
660 }
661 }
662 spin_unlock(&cache->lock);
663#ifdef CONFIG_BTRFS_DEBUG
664 if (ret == 1 &&
665 btrfs_should_fragment_free_space(cache)) {
666 u64 bytes_used;
667
668 spin_lock(&cache->space_info->lock);
669 spin_lock(&cache->lock);
670 bytes_used = cache->key.offset -
671 btrfs_block_group_used(&cache->item);
672 cache->space_info->bytes_used += bytes_used >> 1;
673 spin_unlock(&cache->lock);
674 spin_unlock(&cache->space_info->lock);
675 fragment_free_space(cache);
676 }
677#endif
678 mutex_unlock(&caching_ctl->mutex);
679
680 wake_up(&caching_ctl->wait);
681 if (ret == 1) {
682 put_caching_control(caching_ctl);
683 free_excluded_extents(fs_info, cache);
684 return 0;
685 }
686 } else {
687 /*
688 * We're either using the free space tree or no caching at all.
689 * Set cached to the appropriate value and wakeup any waiters.
690 */
691 spin_lock(&cache->lock);
692 if (load_cache_only) {
693 cache->caching_ctl = NULL;
694 cache->cached = BTRFS_CACHE_NO;
695 } else {
696 cache->cached = BTRFS_CACHE_STARTED;
697 cache->has_caching_ctl = 1;
698 }
699 spin_unlock(&cache->lock);
700 wake_up(&caching_ctl->wait);
701 }
702
703 if (load_cache_only) {
704 put_caching_control(caching_ctl);
705 return 0;
706 }
707
708 down_write(&fs_info->commit_root_sem);
709 atomic_inc(&caching_ctl->count);
710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
711 up_write(&fs_info->commit_root_sem);
712
713 btrfs_get_block_group(cache);
714
715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
716
717 return ret;
718}
719
720/*
721 * return the block group that starts at or after bytenr
722 */
723static struct btrfs_block_group_cache *
724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
725{
726 return block_group_cache_tree_search(info, bytenr, 0);
727}
728
729/*
730 * return the block group that contains the given bytenr
731 */
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
735{
736 return block_group_cache_tree_search(info, bytenr, 1);
737}
738
739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 u64 flags)
741{
742 struct list_head *head = &info->space_info;
743 struct btrfs_space_info *found;
744
745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
746
747 rcu_read_lock();
748 list_for_each_entry_rcu(found, head, list) {
749 if (found->flags & flags) {
750 rcu_read_unlock();
751 return found;
752 }
753 }
754 rcu_read_unlock();
755 return NULL;
756}
757
758/*
759 * after adding space to the filesystem, we need to clear the full flags
760 * on all the space infos.
761 */
762void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
763{
764 struct list_head *head = &info->space_info;
765 struct btrfs_space_info *found;
766
767 rcu_read_lock();
768 list_for_each_entry_rcu(found, head, list)
769 found->full = 0;
770 rcu_read_unlock();
771}
772
773/* simple helper to search for an existing data extent at a given offset */
774int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
775{
776 int ret;
777 struct btrfs_key key;
778 struct btrfs_path *path;
779
780 path = btrfs_alloc_path();
781 if (!path)
782 return -ENOMEM;
783
784 key.objectid = start;
785 key.offset = len;
786 key.type = BTRFS_EXTENT_ITEM_KEY;
787 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
788 btrfs_free_path(path);
789 return ret;
790}
791
792/*
793 * helper function to lookup reference count and flags of a tree block.
794 *
795 * the head node for delayed ref is used to store the sum of all the
796 * reference count modifications queued up in the rbtree. the head
797 * node may also store the extent flags to set. This way you can check
798 * to see what the reference count and extent flags would be if all of
799 * the delayed refs are not processed.
800 */
801int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
802 struct btrfs_fs_info *fs_info, u64 bytenr,
803 u64 offset, int metadata, u64 *refs, u64 *flags)
804{
805 struct btrfs_delayed_ref_head *head;
806 struct btrfs_delayed_ref_root *delayed_refs;
807 struct btrfs_path *path;
808 struct btrfs_extent_item *ei;
809 struct extent_buffer *leaf;
810 struct btrfs_key key;
811 u32 item_size;
812 u64 num_refs;
813 u64 extent_flags;
814 int ret;
815
816 /*
817 * If we don't have skinny metadata, don't bother doing anything
818 * different
819 */
820 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
821 offset = fs_info->nodesize;
822 metadata = 0;
823 }
824
825 path = btrfs_alloc_path();
826 if (!path)
827 return -ENOMEM;
828
829 if (!trans) {
830 path->skip_locking = 1;
831 path->search_commit_root = 1;
832 }
833
834search_again:
835 key.objectid = bytenr;
836 key.offset = offset;
837 if (metadata)
838 key.type = BTRFS_METADATA_ITEM_KEY;
839 else
840 key.type = BTRFS_EXTENT_ITEM_KEY;
841
842 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
843 if (ret < 0)
844 goto out_free;
845
846 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
847 if (path->slots[0]) {
848 path->slots[0]--;
849 btrfs_item_key_to_cpu(path->nodes[0], &key,
850 path->slots[0]);
851 if (key.objectid == bytenr &&
852 key.type == BTRFS_EXTENT_ITEM_KEY &&
853 key.offset == fs_info->nodesize)
854 ret = 0;
855 }
856 }
857
858 if (ret == 0) {
859 leaf = path->nodes[0];
860 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
861 if (item_size >= sizeof(*ei)) {
862 ei = btrfs_item_ptr(leaf, path->slots[0],
863 struct btrfs_extent_item);
864 num_refs = btrfs_extent_refs(leaf, ei);
865 extent_flags = btrfs_extent_flags(leaf, ei);
866 } else {
867#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
868 struct btrfs_extent_item_v0 *ei0;
869 BUG_ON(item_size != sizeof(*ei0));
870 ei0 = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item_v0);
872 num_refs = btrfs_extent_refs_v0(leaf, ei0);
873 /* FIXME: this isn't correct for data */
874 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
875#else
876 BUG();
877#endif
878 }
879 BUG_ON(num_refs == 0);
880 } else {
881 num_refs = 0;
882 extent_flags = 0;
883 ret = 0;
884 }
885
886 if (!trans)
887 goto out;
888
889 delayed_refs = &trans->transaction->delayed_refs;
890 spin_lock(&delayed_refs->lock);
891 head = btrfs_find_delayed_ref_head(trans, bytenr);
892 if (head) {
893 if (!mutex_trylock(&head->mutex)) {
894 atomic_inc(&head->node.refs);
895 spin_unlock(&delayed_refs->lock);
896
897 btrfs_release_path(path);
898
899 /*
900 * Mutex was contended, block until it's released and try
901 * again
902 */
903 mutex_lock(&head->mutex);
904 mutex_unlock(&head->mutex);
905 btrfs_put_delayed_ref(&head->node);
906 goto search_again;
907 }
908 spin_lock(&head->lock);
909 if (head->extent_op && head->extent_op->update_flags)
910 extent_flags |= head->extent_op->flags_to_set;
911 else
912 BUG_ON(num_refs == 0);
913
914 num_refs += head->node.ref_mod;
915 spin_unlock(&head->lock);
916 mutex_unlock(&head->mutex);
917 }
918 spin_unlock(&delayed_refs->lock);
919out:
920 WARN_ON(num_refs == 0);
921 if (refs)
922 *refs = num_refs;
923 if (flags)
924 *flags = extent_flags;
925out_free:
926 btrfs_free_path(path);
927 return ret;
928}
929
930/*
931 * Back reference rules. Back refs have three main goals:
932 *
933 * 1) differentiate between all holders of references to an extent so that
934 * when a reference is dropped we can make sure it was a valid reference
935 * before freeing the extent.
936 *
937 * 2) Provide enough information to quickly find the holders of an extent
938 * if we notice a given block is corrupted or bad.
939 *
940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
941 * maintenance. This is actually the same as #2, but with a slightly
942 * different use case.
943 *
944 * There are two kinds of back refs. The implicit back refs is optimized
945 * for pointers in non-shared tree blocks. For a given pointer in a block,
946 * back refs of this kind provide information about the block's owner tree
947 * and the pointer's key. These information allow us to find the block by
948 * b-tree searching. The full back refs is for pointers in tree blocks not
949 * referenced by their owner trees. The location of tree block is recorded
950 * in the back refs. Actually the full back refs is generic, and can be
951 * used in all cases the implicit back refs is used. The major shortcoming
952 * of the full back refs is its overhead. Every time a tree block gets
953 * COWed, we have to update back refs entry for all pointers in it.
954 *
955 * For a newly allocated tree block, we use implicit back refs for
956 * pointers in it. This means most tree related operations only involve
957 * implicit back refs. For a tree block created in old transaction, the
958 * only way to drop a reference to it is COW it. So we can detect the
959 * event that tree block loses its owner tree's reference and do the
960 * back refs conversion.
961 *
962 * When a tree block is COWed through a tree, there are four cases:
963 *
964 * The reference count of the block is one and the tree is the block's
965 * owner tree. Nothing to do in this case.
966 *
967 * The reference count of the block is one and the tree is not the
968 * block's owner tree. In this case, full back refs is used for pointers
969 * in the block. Remove these full back refs, add implicit back refs for
970 * every pointers in the new block.
971 *
972 * The reference count of the block is greater than one and the tree is
973 * the block's owner tree. In this case, implicit back refs is used for
974 * pointers in the block. Add full back refs for every pointers in the
975 * block, increase lower level extents' reference counts. The original
976 * implicit back refs are entailed to the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * not the block's owner tree. Add implicit back refs for every pointer in
980 * the new block, increase lower level extents' reference count.
981 *
982 * Back Reference Key composing:
983 *
984 * The key objectid corresponds to the first byte in the extent,
985 * The key type is used to differentiate between types of back refs.
986 * There are different meanings of the key offset for different types
987 * of back refs.
988 *
989 * File extents can be referenced by:
990 *
991 * - multiple snapshots, subvolumes, or different generations in one subvol
992 * - different files inside a single subvolume
993 * - different offsets inside a file (bookend extents in file.c)
994 *
995 * The extent ref structure for the implicit back refs has fields for:
996 *
997 * - Objectid of the subvolume root
998 * - objectid of the file holding the reference
999 * - original offset in the file
1000 * - how many bookend extents
1001 *
1002 * The key offset for the implicit back refs is hash of the first
1003 * three fields.
1004 *
1005 * The extent ref structure for the full back refs has field for:
1006 *
1007 * - number of pointers in the tree leaf
1008 *
1009 * The key offset for the implicit back refs is the first byte of
1010 * the tree leaf
1011 *
1012 * When a file extent is allocated, The implicit back refs is used.
1013 * the fields are filled in:
1014 *
1015 * (root_key.objectid, inode objectid, offset in file, 1)
1016 *
1017 * When a file extent is removed file truncation, we find the
1018 * corresponding implicit back refs and check the following fields:
1019 *
1020 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1021 *
1022 * Btree extents can be referenced by:
1023 *
1024 * - Different subvolumes
1025 *
1026 * Both the implicit back refs and the full back refs for tree blocks
1027 * only consist of key. The key offset for the implicit back refs is
1028 * objectid of block's owner tree. The key offset for the full back refs
1029 * is the first byte of parent block.
1030 *
1031 * When implicit back refs is used, information about the lowest key and
1032 * level of the tree block are required. These information are stored in
1033 * tree block info structure.
1034 */
1035
1036#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1037static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root,
1039 struct btrfs_path *path,
1040 u64 owner, u32 extra_size)
1041{
1042 struct btrfs_extent_item *item;
1043 struct btrfs_extent_item_v0 *ei0;
1044 struct btrfs_extent_ref_v0 *ref0;
1045 struct btrfs_tree_block_info *bi;
1046 struct extent_buffer *leaf;
1047 struct btrfs_key key;
1048 struct btrfs_key found_key;
1049 u32 new_size = sizeof(*item);
1050 u64 refs;
1051 int ret;
1052
1053 leaf = path->nodes[0];
1054 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1055
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_extent_item_v0);
1059 refs = btrfs_extent_refs_v0(leaf, ei0);
1060
1061 if (owner == (u64)-1) {
1062 while (1) {
1063 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1064 ret = btrfs_next_leaf(root, path);
1065 if (ret < 0)
1066 return ret;
1067 BUG_ON(ret > 0); /* Corruption */
1068 leaf = path->nodes[0];
1069 }
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0]);
1072 BUG_ON(key.objectid != found_key.objectid);
1073 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1074 path->slots[0]++;
1075 continue;
1076 }
1077 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1078 struct btrfs_extent_ref_v0);
1079 owner = btrfs_ref_objectid_v0(leaf, ref0);
1080 break;
1081 }
1082 }
1083 btrfs_release_path(path);
1084
1085 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1086 new_size += sizeof(*bi);
1087
1088 new_size -= sizeof(*ei0);
1089 ret = btrfs_search_slot(trans, root, &key, path,
1090 new_size + extra_size, 1);
1091 if (ret < 0)
1092 return ret;
1093 BUG_ON(ret); /* Corruption */
1094
1095 btrfs_extend_item(root->fs_info, path, new_size);
1096
1097 leaf = path->nodes[0];
1098 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 btrfs_set_extent_refs(leaf, item, refs);
1100 /* FIXME: get real generation */
1101 btrfs_set_extent_generation(leaf, item, 0);
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1103 btrfs_set_extent_flags(leaf, item,
1104 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1105 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1106 bi = (struct btrfs_tree_block_info *)(item + 1);
1107 /* FIXME: get first key of the block */
1108 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1109 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1110 } else {
1111 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1112 }
1113 btrfs_mark_buffer_dirty(leaf);
1114 return 0;
1115}
1116#endif
1117
1118static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1119{
1120 u32 high_crc = ~(u32)0;
1121 u32 low_crc = ~(u32)0;
1122 __le64 lenum;
1123
1124 lenum = cpu_to_le64(root_objectid);
1125 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1126 lenum = cpu_to_le64(owner);
1127 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1128 lenum = cpu_to_le64(offset);
1129 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1130
1131 return ((u64)high_crc << 31) ^ (u64)low_crc;
1132}
1133
1134static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1135 struct btrfs_extent_data_ref *ref)
1136{
1137 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1138 btrfs_extent_data_ref_objectid(leaf, ref),
1139 btrfs_extent_data_ref_offset(leaf, ref));
1140}
1141
1142static int match_extent_data_ref(struct extent_buffer *leaf,
1143 struct btrfs_extent_data_ref *ref,
1144 u64 root_objectid, u64 owner, u64 offset)
1145{
1146 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1147 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1148 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1149 return 0;
1150 return 1;
1151}
1152
1153static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1154 struct btrfs_root *root,
1155 struct btrfs_path *path,
1156 u64 bytenr, u64 parent,
1157 u64 root_objectid,
1158 u64 owner, u64 offset)
1159{
1160 struct btrfs_key key;
1161 struct btrfs_extent_data_ref *ref;
1162 struct extent_buffer *leaf;
1163 u32 nritems;
1164 int ret;
1165 int recow;
1166 int err = -ENOENT;
1167
1168 key.objectid = bytenr;
1169 if (parent) {
1170 key.type = BTRFS_SHARED_DATA_REF_KEY;
1171 key.offset = parent;
1172 } else {
1173 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1174 key.offset = hash_extent_data_ref(root_objectid,
1175 owner, offset);
1176 }
1177again:
1178 recow = 0;
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 if (ret < 0) {
1181 err = ret;
1182 goto fail;
1183 }
1184
1185 if (parent) {
1186 if (!ret)
1187 return 0;
1188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1189 key.type = BTRFS_EXTENT_REF_V0_KEY;
1190 btrfs_release_path(path);
1191 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1192 if (ret < 0) {
1193 err = ret;
1194 goto fail;
1195 }
1196 if (!ret)
1197 return 0;
1198#endif
1199 goto fail;
1200 }
1201
1202 leaf = path->nodes[0];
1203 nritems = btrfs_header_nritems(leaf);
1204 while (1) {
1205 if (path->slots[0] >= nritems) {
1206 ret = btrfs_next_leaf(root, path);
1207 if (ret < 0)
1208 err = ret;
1209 if (ret)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 nritems = btrfs_header_nritems(leaf);
1214 recow = 1;
1215 }
1216
1217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1218 if (key.objectid != bytenr ||
1219 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1220 goto fail;
1221
1222 ref = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_extent_data_ref);
1224
1225 if (match_extent_data_ref(leaf, ref, root_objectid,
1226 owner, offset)) {
1227 if (recow) {
1228 btrfs_release_path(path);
1229 goto again;
1230 }
1231 err = 0;
1232 break;
1233 }
1234 path->slots[0]++;
1235 }
1236fail:
1237 return err;
1238}
1239
1240static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1241 struct btrfs_root *root,
1242 struct btrfs_path *path,
1243 u64 bytenr, u64 parent,
1244 u64 root_objectid, u64 owner,
1245 u64 offset, int refs_to_add)
1246{
1247 struct btrfs_key key;
1248 struct extent_buffer *leaf;
1249 u32 size;
1250 u32 num_refs;
1251 int ret;
1252
1253 key.objectid = bytenr;
1254 if (parent) {
1255 key.type = BTRFS_SHARED_DATA_REF_KEY;
1256 key.offset = parent;
1257 size = sizeof(struct btrfs_shared_data_ref);
1258 } else {
1259 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1260 key.offset = hash_extent_data_ref(root_objectid,
1261 owner, offset);
1262 size = sizeof(struct btrfs_extent_data_ref);
1263 }
1264
1265 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1266 if (ret && ret != -EEXIST)
1267 goto fail;
1268
1269 leaf = path->nodes[0];
1270 if (parent) {
1271 struct btrfs_shared_data_ref *ref;
1272 ref = btrfs_item_ptr(leaf, path->slots[0],
1273 struct btrfs_shared_data_ref);
1274 if (ret == 0) {
1275 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1276 } else {
1277 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1278 num_refs += refs_to_add;
1279 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1280 }
1281 } else {
1282 struct btrfs_extent_data_ref *ref;
1283 while (ret == -EEXIST) {
1284 ref = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_data_ref);
1286 if (match_extent_data_ref(leaf, ref, root_objectid,
1287 owner, offset))
1288 break;
1289 btrfs_release_path(path);
1290 key.offset++;
1291 ret = btrfs_insert_empty_item(trans, root, path, &key,
1292 size);
1293 if (ret && ret != -EEXIST)
1294 goto fail;
1295
1296 leaf = path->nodes[0];
1297 }
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (ret == 0) {
1301 btrfs_set_extent_data_ref_root(leaf, ref,
1302 root_objectid);
1303 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1304 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1305 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1306 } else {
1307 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1308 num_refs += refs_to_add;
1309 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1310 }
1311 }
1312 btrfs_mark_buffer_dirty(leaf);
1313 ret = 0;
1314fail:
1315 btrfs_release_path(path);
1316 return ret;
1317}
1318
1319static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 int refs_to_drop, int *last_ref)
1323{
1324 struct btrfs_key key;
1325 struct btrfs_extent_data_ref *ref1 = NULL;
1326 struct btrfs_shared_data_ref *ref2 = NULL;
1327 struct extent_buffer *leaf;
1328 u32 num_refs = 0;
1329 int ret = 0;
1330
1331 leaf = path->nodes[0];
1332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1333
1334 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_extent_data_ref);
1337 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1338 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1339 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1340 struct btrfs_shared_data_ref);
1341 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1342#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1344 struct btrfs_extent_ref_v0 *ref0;
1345 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_extent_ref_v0);
1347 num_refs = btrfs_ref_count_v0(leaf, ref0);
1348#endif
1349 } else {
1350 BUG();
1351 }
1352
1353 BUG_ON(num_refs < refs_to_drop);
1354 num_refs -= refs_to_drop;
1355
1356 if (num_refs == 0) {
1357 ret = btrfs_del_item(trans, root, path);
1358 *last_ref = 1;
1359 } else {
1360 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1361 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1362 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1363 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1364#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1365 else {
1366 struct btrfs_extent_ref_v0 *ref0;
1367 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_ref_v0);
1369 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1370 }
1371#endif
1372 btrfs_mark_buffer_dirty(leaf);
1373 }
1374 return ret;
1375}
1376
1377static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1378 struct btrfs_extent_inline_ref *iref)
1379{
1380 struct btrfs_key key;
1381 struct extent_buffer *leaf;
1382 struct btrfs_extent_data_ref *ref1;
1383 struct btrfs_shared_data_ref *ref2;
1384 u32 num_refs = 0;
1385
1386 leaf = path->nodes[0];
1387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1388 if (iref) {
1389 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1390 BTRFS_EXTENT_DATA_REF_KEY) {
1391 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1392 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1393 } else {
1394 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1395 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1396 }
1397 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1398 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_extent_data_ref);
1400 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1401 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1402 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_shared_data_ref);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1407 struct btrfs_extent_ref_v0 *ref0;
1408 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_extent_ref_v0);
1410 num_refs = btrfs_ref_count_v0(leaf, ref0);
1411#endif
1412 } else {
1413 WARN_ON(1);
1414 }
1415 return num_refs;
1416}
1417
1418static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1419 struct btrfs_root *root,
1420 struct btrfs_path *path,
1421 u64 bytenr, u64 parent,
1422 u64 root_objectid)
1423{
1424 struct btrfs_key key;
1425 int ret;
1426
1427 key.objectid = bytenr;
1428 if (parent) {
1429 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 key.offset = parent;
1431 } else {
1432 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1433 key.offset = root_objectid;
1434 }
1435
1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1437 if (ret > 0)
1438 ret = -ENOENT;
1439#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1440 if (ret == -ENOENT && parent) {
1441 btrfs_release_path(path);
1442 key.type = BTRFS_EXTENT_REF_V0_KEY;
1443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1444 if (ret > 0)
1445 ret = -ENOENT;
1446 }
1447#endif
1448 return ret;
1449}
1450
1451static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root,
1453 struct btrfs_path *path,
1454 u64 bytenr, u64 parent,
1455 u64 root_objectid)
1456{
1457 struct btrfs_key key;
1458 int ret;
1459
1460 key.objectid = bytenr;
1461 if (parent) {
1462 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1463 key.offset = parent;
1464 } else {
1465 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1466 key.offset = root_objectid;
1467 }
1468
1469 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1470 btrfs_release_path(path);
1471 return ret;
1472}
1473
1474static inline int extent_ref_type(u64 parent, u64 owner)
1475{
1476 int type;
1477 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1478 if (parent > 0)
1479 type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 else
1481 type = BTRFS_TREE_BLOCK_REF_KEY;
1482 } else {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_DATA_REF_KEY;
1485 else
1486 type = BTRFS_EXTENT_DATA_REF_KEY;
1487 }
1488 return type;
1489}
1490
1491static int find_next_key(struct btrfs_path *path, int level,
1492 struct btrfs_key *key)
1493
1494{
1495 for (; level < BTRFS_MAX_LEVEL; level++) {
1496 if (!path->nodes[level])
1497 break;
1498 if (path->slots[level] + 1 >=
1499 btrfs_header_nritems(path->nodes[level]))
1500 continue;
1501 if (level == 0)
1502 btrfs_item_key_to_cpu(path->nodes[level], key,
1503 path->slots[level] + 1);
1504 else
1505 btrfs_node_key_to_cpu(path->nodes[level], key,
1506 path->slots[level] + 1);
1507 return 0;
1508 }
1509 return 1;
1510}
1511
1512/*
1513 * look for inline back ref. if back ref is found, *ref_ret is set
1514 * to the address of inline back ref, and 0 is returned.
1515 *
1516 * if back ref isn't found, *ref_ret is set to the address where it
1517 * should be inserted, and -ENOENT is returned.
1518 *
1519 * if insert is true and there are too many inline back refs, the path
1520 * points to the extent item, and -EAGAIN is returned.
1521 *
1522 * NOTE: inline back refs are ordered in the same way that back ref
1523 * items in the tree are ordered.
1524 */
1525static noinline_for_stack
1526int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1527 struct btrfs_root *root,
1528 struct btrfs_path *path,
1529 struct btrfs_extent_inline_ref **ref_ret,
1530 u64 bytenr, u64 num_bytes,
1531 u64 parent, u64 root_objectid,
1532 u64 owner, u64 offset, int insert)
1533{
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 struct btrfs_key key;
1536 struct extent_buffer *leaf;
1537 struct btrfs_extent_item *ei;
1538 struct btrfs_extent_inline_ref *iref;
1539 u64 flags;
1540 u64 item_size;
1541 unsigned long ptr;
1542 unsigned long end;
1543 int extra_size;
1544 int type;
1545 int want;
1546 int ret;
1547 int err = 0;
1548 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1549
1550 key.objectid = bytenr;
1551 key.type = BTRFS_EXTENT_ITEM_KEY;
1552 key.offset = num_bytes;
1553
1554 want = extent_ref_type(parent, owner);
1555 if (insert) {
1556 extra_size = btrfs_extent_inline_ref_size(want);
1557 path->keep_locks = 1;
1558 } else
1559 extra_size = -1;
1560
1561 /*
1562 * Owner is our parent level, so we can just add one to get the level
1563 * for the block we are interested in.
1564 */
1565 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1566 key.type = BTRFS_METADATA_ITEM_KEY;
1567 key.offset = owner;
1568 }
1569
1570again:
1571 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1572 if (ret < 0) {
1573 err = ret;
1574 goto out;
1575 }
1576
1577 /*
1578 * We may be a newly converted file system which still has the old fat
1579 * extent entries for metadata, so try and see if we have one of those.
1580 */
1581 if (ret > 0 && skinny_metadata) {
1582 skinny_metadata = false;
1583 if (path->slots[0]) {
1584 path->slots[0]--;
1585 btrfs_item_key_to_cpu(path->nodes[0], &key,
1586 path->slots[0]);
1587 if (key.objectid == bytenr &&
1588 key.type == BTRFS_EXTENT_ITEM_KEY &&
1589 key.offset == num_bytes)
1590 ret = 0;
1591 }
1592 if (ret) {
1593 key.objectid = bytenr;
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 key.offset = num_bytes;
1596 btrfs_release_path(path);
1597 goto again;
1598 }
1599 }
1600
1601 if (ret && !insert) {
1602 err = -ENOENT;
1603 goto out;
1604 } else if (WARN_ON(ret)) {
1605 err = -EIO;
1606 goto out;
1607 }
1608
1609 leaf = path->nodes[0];
1610 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1611#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1612 if (item_size < sizeof(*ei)) {
1613 if (!insert) {
1614 err = -ENOENT;
1615 goto out;
1616 }
1617 ret = convert_extent_item_v0(trans, root, path, owner,
1618 extra_size);
1619 if (ret < 0) {
1620 err = ret;
1621 goto out;
1622 }
1623 leaf = path->nodes[0];
1624 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1625 }
1626#endif
1627 BUG_ON(item_size < sizeof(*ei));
1628
1629 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1630 flags = btrfs_extent_flags(leaf, ei);
1631
1632 ptr = (unsigned long)(ei + 1);
1633 end = (unsigned long)ei + item_size;
1634
1635 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1636 ptr += sizeof(struct btrfs_tree_block_info);
1637 BUG_ON(ptr > end);
1638 }
1639
1640 err = -ENOENT;
1641 while (1) {
1642 if (ptr >= end) {
1643 WARN_ON(ptr > end);
1644 break;
1645 }
1646 iref = (struct btrfs_extent_inline_ref *)ptr;
1647 type = btrfs_extent_inline_ref_type(leaf, iref);
1648 if (want < type)
1649 break;
1650 if (want > type) {
1651 ptr += btrfs_extent_inline_ref_size(type);
1652 continue;
1653 }
1654
1655 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1656 struct btrfs_extent_data_ref *dref;
1657 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1658 if (match_extent_data_ref(leaf, dref, root_objectid,
1659 owner, offset)) {
1660 err = 0;
1661 break;
1662 }
1663 if (hash_extent_data_ref_item(leaf, dref) <
1664 hash_extent_data_ref(root_objectid, owner, offset))
1665 break;
1666 } else {
1667 u64 ref_offset;
1668 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1669 if (parent > 0) {
1670 if (parent == ref_offset) {
1671 err = 0;
1672 break;
1673 }
1674 if (ref_offset < parent)
1675 break;
1676 } else {
1677 if (root_objectid == ref_offset) {
1678 err = 0;
1679 break;
1680 }
1681 if (ref_offset < root_objectid)
1682 break;
1683 }
1684 }
1685 ptr += btrfs_extent_inline_ref_size(type);
1686 }
1687 if (err == -ENOENT && insert) {
1688 if (item_size + extra_size >=
1689 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1690 err = -EAGAIN;
1691 goto out;
1692 }
1693 /*
1694 * To add new inline back ref, we have to make sure
1695 * there is no corresponding back ref item.
1696 * For simplicity, we just do not add new inline back
1697 * ref if there is any kind of item for this block
1698 */
1699 if (find_next_key(path, 0, &key) == 0 &&
1700 key.objectid == bytenr &&
1701 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1702 err = -EAGAIN;
1703 goto out;
1704 }
1705 }
1706 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1707out:
1708 if (insert) {
1709 path->keep_locks = 0;
1710 btrfs_unlock_up_safe(path, 1);
1711 }
1712 return err;
1713}
1714
1715/*
1716 * helper to add new inline back ref
1717 */
1718static noinline_for_stack
1719void setup_inline_extent_backref(struct btrfs_root *root,
1720 struct btrfs_path *path,
1721 struct btrfs_extent_inline_ref *iref,
1722 u64 parent, u64 root_objectid,
1723 u64 owner, u64 offset, int refs_to_add,
1724 struct btrfs_delayed_extent_op *extent_op)
1725{
1726 struct extent_buffer *leaf;
1727 struct btrfs_extent_item *ei;
1728 unsigned long ptr;
1729 unsigned long end;
1730 unsigned long item_offset;
1731 u64 refs;
1732 int size;
1733 int type;
1734
1735 leaf = path->nodes[0];
1736 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1737 item_offset = (unsigned long)iref - (unsigned long)ei;
1738
1739 type = extent_ref_type(parent, owner);
1740 size = btrfs_extent_inline_ref_size(type);
1741
1742 btrfs_extend_item(root->fs_info, path, size);
1743
1744 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1745 refs = btrfs_extent_refs(leaf, ei);
1746 refs += refs_to_add;
1747 btrfs_set_extent_refs(leaf, ei, refs);
1748 if (extent_op)
1749 __run_delayed_extent_op(extent_op, leaf, ei);
1750
1751 ptr = (unsigned long)ei + item_offset;
1752 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1753 if (ptr < end - size)
1754 memmove_extent_buffer(leaf, ptr + size, ptr,
1755 end - size - ptr);
1756
1757 iref = (struct btrfs_extent_inline_ref *)ptr;
1758 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1759 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1760 struct btrfs_extent_data_ref *dref;
1761 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1762 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1763 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1764 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1765 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1766 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1767 struct btrfs_shared_data_ref *sref;
1768 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1769 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1770 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1771 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1772 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1773 } else {
1774 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1775 }
1776 btrfs_mark_buffer_dirty(leaf);
1777}
1778
1779static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1780 struct btrfs_root *root,
1781 struct btrfs_path *path,
1782 struct btrfs_extent_inline_ref **ref_ret,
1783 u64 bytenr, u64 num_bytes, u64 parent,
1784 u64 root_objectid, u64 owner, u64 offset)
1785{
1786 int ret;
1787
1788 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1789 bytenr, num_bytes, parent,
1790 root_objectid, owner, offset, 0);
1791 if (ret != -ENOENT)
1792 return ret;
1793
1794 btrfs_release_path(path);
1795 *ref_ret = NULL;
1796
1797 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1798 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1799 root_objectid);
1800 } else {
1801 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1802 root_objectid, owner, offset);
1803 }
1804 return ret;
1805}
1806
1807/*
1808 * helper to update/remove inline back ref
1809 */
1810static noinline_for_stack
1811void update_inline_extent_backref(struct btrfs_root *root,
1812 struct btrfs_path *path,
1813 struct btrfs_extent_inline_ref *iref,
1814 int refs_to_mod,
1815 struct btrfs_delayed_extent_op *extent_op,
1816 int *last_ref)
1817{
1818 struct extent_buffer *leaf;
1819 struct btrfs_extent_item *ei;
1820 struct btrfs_extent_data_ref *dref = NULL;
1821 struct btrfs_shared_data_ref *sref = NULL;
1822 unsigned long ptr;
1823 unsigned long end;
1824 u32 item_size;
1825 int size;
1826 int type;
1827 u64 refs;
1828
1829 leaf = path->nodes[0];
1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1831 refs = btrfs_extent_refs(leaf, ei);
1832 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1833 refs += refs_to_mod;
1834 btrfs_set_extent_refs(leaf, ei, refs);
1835 if (extent_op)
1836 __run_delayed_extent_op(extent_op, leaf, ei);
1837
1838 type = btrfs_extent_inline_ref_type(leaf, iref);
1839
1840 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1841 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1842 refs = btrfs_extent_data_ref_count(leaf, dref);
1843 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1844 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1845 refs = btrfs_shared_data_ref_count(leaf, sref);
1846 } else {
1847 refs = 1;
1848 BUG_ON(refs_to_mod != -1);
1849 }
1850
1851 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1852 refs += refs_to_mod;
1853
1854 if (refs > 0) {
1855 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1856 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1857 else
1858 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1859 } else {
1860 *last_ref = 1;
1861 size = btrfs_extent_inline_ref_size(type);
1862 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1863 ptr = (unsigned long)iref;
1864 end = (unsigned long)ei + item_size;
1865 if (ptr + size < end)
1866 memmove_extent_buffer(leaf, ptr, ptr + size,
1867 end - ptr - size);
1868 item_size -= size;
1869 btrfs_truncate_item(root->fs_info, path, item_size, 1);
1870 }
1871 btrfs_mark_buffer_dirty(leaf);
1872}
1873
1874static noinline_for_stack
1875int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 struct btrfs_path *path,
1878 u64 bytenr, u64 num_bytes, u64 parent,
1879 u64 root_objectid, u64 owner,
1880 u64 offset, int refs_to_add,
1881 struct btrfs_delayed_extent_op *extent_op)
1882{
1883 struct btrfs_extent_inline_ref *iref;
1884 int ret;
1885
1886 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1887 bytenr, num_bytes, parent,
1888 root_objectid, owner, offset, 1);
1889 if (ret == 0) {
1890 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1891 update_inline_extent_backref(root, path, iref,
1892 refs_to_add, extent_op, NULL);
1893 } else if (ret == -ENOENT) {
1894 setup_inline_extent_backref(root, path, iref, parent,
1895 root_objectid, owner, offset,
1896 refs_to_add, extent_op);
1897 ret = 0;
1898 }
1899 return ret;
1900}
1901
1902static int insert_extent_backref(struct btrfs_trans_handle *trans,
1903 struct btrfs_root *root,
1904 struct btrfs_path *path,
1905 u64 bytenr, u64 parent, u64 root_objectid,
1906 u64 owner, u64 offset, int refs_to_add)
1907{
1908 int ret;
1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1910 BUG_ON(refs_to_add != 1);
1911 ret = insert_tree_block_ref(trans, root, path, bytenr,
1912 parent, root_objectid);
1913 } else {
1914 ret = insert_extent_data_ref(trans, root, path, bytenr,
1915 parent, root_objectid,
1916 owner, offset, refs_to_add);
1917 }
1918 return ret;
1919}
1920
1921static int remove_extent_backref(struct btrfs_trans_handle *trans,
1922 struct btrfs_root *root,
1923 struct btrfs_path *path,
1924 struct btrfs_extent_inline_ref *iref,
1925 int refs_to_drop, int is_data, int *last_ref)
1926{
1927 int ret = 0;
1928
1929 BUG_ON(!is_data && refs_to_drop != 1);
1930 if (iref) {
1931 update_inline_extent_backref(root, path, iref,
1932 -refs_to_drop, NULL, last_ref);
1933 } else if (is_data) {
1934 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1935 last_ref);
1936 } else {
1937 *last_ref = 1;
1938 ret = btrfs_del_item(trans, root, path);
1939 }
1940 return ret;
1941}
1942
1943#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1944static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1945 u64 *discarded_bytes)
1946{
1947 int j, ret = 0;
1948 u64 bytes_left, end;
1949 u64 aligned_start = ALIGN(start, 1 << 9);
1950
1951 if (WARN_ON(start != aligned_start)) {
1952 len -= aligned_start - start;
1953 len = round_down(len, 1 << 9);
1954 start = aligned_start;
1955 }
1956
1957 *discarded_bytes = 0;
1958
1959 if (!len)
1960 return 0;
1961
1962 end = start + len;
1963 bytes_left = len;
1964
1965 /* Skip any superblocks on this device. */
1966 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1967 u64 sb_start = btrfs_sb_offset(j);
1968 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1969 u64 size = sb_start - start;
1970
1971 if (!in_range(sb_start, start, bytes_left) &&
1972 !in_range(sb_end, start, bytes_left) &&
1973 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1974 continue;
1975
1976 /*
1977 * Superblock spans beginning of range. Adjust start and
1978 * try again.
1979 */
1980 if (sb_start <= start) {
1981 start += sb_end - start;
1982 if (start > end) {
1983 bytes_left = 0;
1984 break;
1985 }
1986 bytes_left = end - start;
1987 continue;
1988 }
1989
1990 if (size) {
1991 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1992 GFP_NOFS, 0);
1993 if (!ret)
1994 *discarded_bytes += size;
1995 else if (ret != -EOPNOTSUPP)
1996 return ret;
1997 }
1998
1999 start = sb_end;
2000 if (start > end) {
2001 bytes_left = 0;
2002 break;
2003 }
2004 bytes_left = end - start;
2005 }
2006
2007 if (bytes_left) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += bytes_left;
2012 }
2013 return ret;
2014}
2015
2016int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2017 u64 num_bytes, u64 *actual_bytes)
2018{
2019 int ret;
2020 u64 discarded_bytes = 0;
2021 struct btrfs_bio *bbio = NULL;
2022
2023
2024 /*
2025 * Avoid races with device replace and make sure our bbio has devices
2026 * associated to its stripes that don't go away while we are discarding.
2027 */
2028 btrfs_bio_counter_inc_blocked(fs_info);
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2031 &bbio, 0);
2032 /* Error condition is -ENOMEM */
2033 if (!ret) {
2034 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035 int i;
2036
2037
2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039 u64 bytes;
2040 if (!stripe->dev->can_discard)
2041 continue;
2042
2043 ret = btrfs_issue_discard(stripe->dev->bdev,
2044 stripe->physical,
2045 stripe->length,
2046 &bytes);
2047 if (!ret)
2048 discarded_bytes += bytes;
2049 else if (ret != -EOPNOTSUPP)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052 /*
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2056 */
2057 ret = 0;
2058 }
2059 btrfs_put_bbio(bbio);
2060 }
2061 btrfs_bio_counter_dec(fs_info);
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
2066
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
2069 return ret;
2070}
2071
2072/* Can return -ENOMEM */
2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2074 struct btrfs_fs_info *fs_info,
2075 u64 bytenr, u64 num_bytes, u64 parent,
2076 u64 root_objectid, u64 owner, u64 offset)
2077{
2078 int ret;
2079
2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 num_bytes,
2086 parent, root_objectid, (int)owner,
2087 BTRFS_ADD_DELAYED_REF, NULL);
2088 } else {
2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090 num_bytes, parent, root_objectid,
2091 owner, offset, 0,
2092 BTRFS_ADD_DELAYED_REF, NULL);
2093 }
2094 return ret;
2095}
2096
2097static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098 struct btrfs_fs_info *fs_info,
2099 struct btrfs_delayed_ref_node *node,
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103{
2104 struct btrfs_path *path;
2105 struct extent_buffer *leaf;
2106 struct btrfs_extent_item *item;
2107 struct btrfs_key key;
2108 u64 bytenr = node->bytenr;
2109 u64 num_bytes = node->num_bytes;
2110 u64 refs;
2111 int ret;
2112
2113 path = btrfs_alloc_path();
2114 if (!path)
2115 return -ENOMEM;
2116
2117 path->reada = READA_FORWARD;
2118 path->leave_spinning = 1;
2119 /* this will setup the path even if it fails to insert the back ref */
2120 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2121 bytenr, num_bytes, parent,
2122 root_objectid, owner, offset,
2123 refs_to_add, extent_op);
2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
2125 goto out;
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
2132 leaf = path->nodes[0];
2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
2139
2140 btrfs_mark_buffer_dirty(leaf);
2141 btrfs_release_path(path);
2142
2143 path->reada = READA_FORWARD;
2144 path->leave_spinning = 1;
2145 /* now insert the actual backref */
2146 ret = insert_extent_backref(trans, fs_info->extent_root,
2147 path, bytenr, parent, root_objectid,
2148 owner, offset, refs_to_add);
2149 if (ret)
2150 btrfs_abort_transaction(trans, ret);
2151out:
2152 btrfs_free_path(path);
2153 return ret;
2154}
2155
2156static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2157 struct btrfs_fs_info *fs_info,
2158 struct btrfs_delayed_ref_node *node,
2159 struct btrfs_delayed_extent_op *extent_op,
2160 int insert_reserved)
2161{
2162 int ret = 0;
2163 struct btrfs_delayed_data_ref *ref;
2164 struct btrfs_key ins;
2165 u64 parent = 0;
2166 u64 ref_root = 0;
2167 u64 flags = 0;
2168
2169 ins.objectid = node->bytenr;
2170 ins.offset = node->num_bytes;
2171 ins.type = BTRFS_EXTENT_ITEM_KEY;
2172
2173 ref = btrfs_delayed_node_to_data_ref(node);
2174 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2175
2176 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2177 parent = ref->parent;
2178 ref_root = ref->root;
2179
2180 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2181 if (extent_op)
2182 flags |= extent_op->flags_to_set;
2183 ret = alloc_reserved_file_extent(trans, fs_info,
2184 parent, ref_root, flags,
2185 ref->objectid, ref->offset,
2186 &ins, node->ref_mod);
2187 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2188 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2189 ref_root, ref->objectid,
2190 ref->offset, node->ref_mod,
2191 extent_op);
2192 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2193 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2194 ref_root, ref->objectid,
2195 ref->offset, node->ref_mod,
2196 extent_op);
2197 } else {
2198 BUG();
2199 }
2200 return ret;
2201}
2202
2203static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2204 struct extent_buffer *leaf,
2205 struct btrfs_extent_item *ei)
2206{
2207 u64 flags = btrfs_extent_flags(leaf, ei);
2208 if (extent_op->update_flags) {
2209 flags |= extent_op->flags_to_set;
2210 btrfs_set_extent_flags(leaf, ei, flags);
2211 }
2212
2213 if (extent_op->update_key) {
2214 struct btrfs_tree_block_info *bi;
2215 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2216 bi = (struct btrfs_tree_block_info *)(ei + 1);
2217 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2218 }
2219}
2220
2221static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2222 struct btrfs_fs_info *fs_info,
2223 struct btrfs_delayed_ref_node *node,
2224 struct btrfs_delayed_extent_op *extent_op)
2225{
2226 struct btrfs_key key;
2227 struct btrfs_path *path;
2228 struct btrfs_extent_item *ei;
2229 struct extent_buffer *leaf;
2230 u32 item_size;
2231 int ret;
2232 int err = 0;
2233 int metadata = !extent_op->is_data;
2234
2235 if (trans->aborted)
2236 return 0;
2237
2238 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2239 metadata = 0;
2240
2241 path = btrfs_alloc_path();
2242 if (!path)
2243 return -ENOMEM;
2244
2245 key.objectid = node->bytenr;
2246
2247 if (metadata) {
2248 key.type = BTRFS_METADATA_ITEM_KEY;
2249 key.offset = extent_op->level;
2250 } else {
2251 key.type = BTRFS_EXTENT_ITEM_KEY;
2252 key.offset = node->num_bytes;
2253 }
2254
2255again:
2256 path->reada = READA_FORWARD;
2257 path->leave_spinning = 1;
2258 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2259 if (ret < 0) {
2260 err = ret;
2261 goto out;
2262 }
2263 if (ret > 0) {
2264 if (metadata) {
2265 if (path->slots[0] > 0) {
2266 path->slots[0]--;
2267 btrfs_item_key_to_cpu(path->nodes[0], &key,
2268 path->slots[0]);
2269 if (key.objectid == node->bytenr &&
2270 key.type == BTRFS_EXTENT_ITEM_KEY &&
2271 key.offset == node->num_bytes)
2272 ret = 0;
2273 }
2274 if (ret > 0) {
2275 btrfs_release_path(path);
2276 metadata = 0;
2277
2278 key.objectid = node->bytenr;
2279 key.offset = node->num_bytes;
2280 key.type = BTRFS_EXTENT_ITEM_KEY;
2281 goto again;
2282 }
2283 } else {
2284 err = -EIO;
2285 goto out;
2286 }
2287 }
2288
2289 leaf = path->nodes[0];
2290 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2291#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2292 if (item_size < sizeof(*ei)) {
2293 ret = convert_extent_item_v0(trans, fs_info->extent_root,
2294 path, (u64)-1, 0);
2295 if (ret < 0) {
2296 err = ret;
2297 goto out;
2298 }
2299 leaf = path->nodes[0];
2300 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2301 }
2302#endif
2303 BUG_ON(item_size < sizeof(*ei));
2304 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305 __run_delayed_extent_op(extent_op, leaf, ei);
2306
2307 btrfs_mark_buffer_dirty(leaf);
2308out:
2309 btrfs_free_path(path);
2310 return err;
2311}
2312
2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2314 struct btrfs_fs_info *fs_info,
2315 struct btrfs_delayed_ref_node *node,
2316 struct btrfs_delayed_extent_op *extent_op,
2317 int insert_reserved)
2318{
2319 int ret = 0;
2320 struct btrfs_delayed_tree_ref *ref;
2321 struct btrfs_key ins;
2322 u64 parent = 0;
2323 u64 ref_root = 0;
2324 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2325
2326 ref = btrfs_delayed_node_to_tree_ref(node);
2327 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2328
2329 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2330 parent = ref->parent;
2331 ref_root = ref->root;
2332
2333 ins.objectid = node->bytenr;
2334 if (skinny_metadata) {
2335 ins.offset = ref->level;
2336 ins.type = BTRFS_METADATA_ITEM_KEY;
2337 } else {
2338 ins.offset = node->num_bytes;
2339 ins.type = BTRFS_EXTENT_ITEM_KEY;
2340 }
2341
2342 if (node->ref_mod != 1) {
2343 btrfs_err(fs_info,
2344 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2345 node->bytenr, node->ref_mod, node->action, ref_root,
2346 parent);
2347 return -EIO;
2348 }
2349 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2350 BUG_ON(!extent_op || !extent_op->update_flags);
2351 ret = alloc_reserved_tree_block(trans, fs_info,
2352 parent, ref_root,
2353 extent_op->flags_to_set,
2354 &extent_op->key,
2355 ref->level, &ins);
2356 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2357 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2358 parent, ref_root,
2359 ref->level, 0, 1,
2360 extent_op);
2361 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2362 ret = __btrfs_free_extent(trans, fs_info, node,
2363 parent, ref_root,
2364 ref->level, 0, 1, extent_op);
2365 } else {
2366 BUG();
2367 }
2368 return ret;
2369}
2370
2371/* helper function to actually process a single delayed ref entry */
2372static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2373 struct btrfs_fs_info *fs_info,
2374 struct btrfs_delayed_ref_node *node,
2375 struct btrfs_delayed_extent_op *extent_op,
2376 int insert_reserved)
2377{
2378 int ret = 0;
2379
2380 if (trans->aborted) {
2381 if (insert_reserved)
2382 btrfs_pin_extent(fs_info, node->bytenr,
2383 node->num_bytes, 1);
2384 return 0;
2385 }
2386
2387 if (btrfs_delayed_ref_is_head(node)) {
2388 struct btrfs_delayed_ref_head *head;
2389 /*
2390 * we've hit the end of the chain and we were supposed
2391 * to insert this extent into the tree. But, it got
2392 * deleted before we ever needed to insert it, so all
2393 * we have to do is clean up the accounting
2394 */
2395 BUG_ON(extent_op);
2396 head = btrfs_delayed_node_to_head(node);
2397 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2398
2399 if (insert_reserved) {
2400 btrfs_pin_extent(fs_info, node->bytenr,
2401 node->num_bytes, 1);
2402 if (head->is_data) {
2403 ret = btrfs_del_csums(trans, fs_info,
2404 node->bytenr,
2405 node->num_bytes);
2406 }
2407 }
2408
2409 /* Also free its reserved qgroup space */
2410 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2411 head->qgroup_reserved);
2412 return ret;
2413 }
2414
2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2417 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2418 insert_reserved);
2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2420 node->type == BTRFS_SHARED_DATA_REF_KEY)
2421 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2422 insert_reserved);
2423 else
2424 BUG();
2425 return ret;
2426}
2427
2428static inline struct btrfs_delayed_ref_node *
2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
2430{
2431 struct btrfs_delayed_ref_node *ref;
2432
2433 if (list_empty(&head->ref_list))
2434 return NULL;
2435
2436 /*
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2441 */
2442 if (!list_empty(&head->ref_add_list))
2443 return list_first_entry(&head->ref_add_list,
2444 struct btrfs_delayed_ref_node, add_list);
2445
2446 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2447 list);
2448 ASSERT(list_empty(&ref->add_list));
2449 return ref;
2450}
2451
2452/*
2453 * Returns 0 on success or if called with an already aborted transaction.
2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2455 */
2456static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2457 struct btrfs_fs_info *fs_info,
2458 unsigned long nr)
2459{
2460 struct btrfs_delayed_ref_root *delayed_refs;
2461 struct btrfs_delayed_ref_node *ref;
2462 struct btrfs_delayed_ref_head *locked_ref = NULL;
2463 struct btrfs_delayed_extent_op *extent_op;
2464 ktime_t start = ktime_get();
2465 int ret;
2466 unsigned long count = 0;
2467 unsigned long actual_count = 0;
2468 int must_insert_reserved = 0;
2469
2470 delayed_refs = &trans->transaction->delayed_refs;
2471 while (1) {
2472 if (!locked_ref) {
2473 if (count >= nr)
2474 break;
2475
2476 spin_lock(&delayed_refs->lock);
2477 locked_ref = btrfs_select_ref_head(trans);
2478 if (!locked_ref) {
2479 spin_unlock(&delayed_refs->lock);
2480 break;
2481 }
2482
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2486 spin_unlock(&delayed_refs->lock);
2487 /*
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2492 */
2493 if (ret == -EAGAIN) {
2494 locked_ref = NULL;
2495 count++;
2496 continue;
2497 }
2498 }
2499
2500 /*
2501 * We need to try and merge add/drops of the same ref since we
2502 * can run into issues with relocate dropping the implicit ref
2503 * and then it being added back again before the drop can
2504 * finish. If we merged anything we need to re-loop so we can
2505 * get a good ref.
2506 * Or we can get node references of the same type that weren't
2507 * merged when created due to bumps in the tree mod seq, and
2508 * we need to merge them to prevent adding an inline extent
2509 * backref before dropping it (triggering a BUG_ON at
2510 * insert_inline_extent_backref()).
2511 */
2512 spin_lock(&locked_ref->lock);
2513 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2514 locked_ref);
2515
2516 /*
2517 * locked_ref is the head node, so we have to go one
2518 * node back for any delayed ref updates
2519 */
2520 ref = select_delayed_ref(locked_ref);
2521
2522 if (ref && ref->seq &&
2523 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2524 spin_unlock(&locked_ref->lock);
2525 spin_lock(&delayed_refs->lock);
2526 locked_ref->processing = 0;
2527 delayed_refs->num_heads_ready++;
2528 spin_unlock(&delayed_refs->lock);
2529 btrfs_delayed_ref_unlock(locked_ref);
2530 locked_ref = NULL;
2531 cond_resched();
2532 count++;
2533 continue;
2534 }
2535
2536 /*
2537 * record the must insert reserved flag before we
2538 * drop the spin lock.
2539 */
2540 must_insert_reserved = locked_ref->must_insert_reserved;
2541 locked_ref->must_insert_reserved = 0;
2542
2543 extent_op = locked_ref->extent_op;
2544 locked_ref->extent_op = NULL;
2545
2546 if (!ref) {
2547
2548
2549 /* All delayed refs have been processed, Go ahead
2550 * and send the head node to run_one_delayed_ref,
2551 * so that any accounting fixes can happen
2552 */
2553 ref = &locked_ref->node;
2554
2555 if (extent_op && must_insert_reserved) {
2556 btrfs_free_delayed_extent_op(extent_op);
2557 extent_op = NULL;
2558 }
2559
2560 if (extent_op) {
2561 spin_unlock(&locked_ref->lock);
2562 ret = run_delayed_extent_op(trans, fs_info,
2563 ref, extent_op);
2564 btrfs_free_delayed_extent_op(extent_op);
2565
2566 if (ret) {
2567 /*
2568 * Need to reset must_insert_reserved if
2569 * there was an error so the abort stuff
2570 * can cleanup the reserved space
2571 * properly.
2572 */
2573 if (must_insert_reserved)
2574 locked_ref->must_insert_reserved = 1;
2575 spin_lock(&delayed_refs->lock);
2576 locked_ref->processing = 0;
2577 delayed_refs->num_heads_ready++;
2578 spin_unlock(&delayed_refs->lock);
2579 btrfs_debug(fs_info,
2580 "run_delayed_extent_op returned %d",
2581 ret);
2582 btrfs_delayed_ref_unlock(locked_ref);
2583 return ret;
2584 }
2585 continue;
2586 }
2587
2588 /*
2589 * Need to drop our head ref lock and re-acquire the
2590 * delayed ref lock and then re-check to make sure
2591 * nobody got added.
2592 */
2593 spin_unlock(&locked_ref->lock);
2594 spin_lock(&delayed_refs->lock);
2595 spin_lock(&locked_ref->lock);
2596 if (!list_empty(&locked_ref->ref_list) ||
2597 locked_ref->extent_op) {
2598 spin_unlock(&locked_ref->lock);
2599 spin_unlock(&delayed_refs->lock);
2600 continue;
2601 }
2602 ref->in_tree = 0;
2603 delayed_refs->num_heads--;
2604 rb_erase(&locked_ref->href_node,
2605 &delayed_refs->href_root);
2606 spin_unlock(&delayed_refs->lock);
2607 } else {
2608 actual_count++;
2609 ref->in_tree = 0;
2610 list_del(&ref->list);
2611 if (!list_empty(&ref->add_list))
2612 list_del(&ref->add_list);
2613 }
2614 atomic_dec(&delayed_refs->num_entries);
2615
2616 if (!btrfs_delayed_ref_is_head(ref)) {
2617 /*
2618 * when we play the delayed ref, also correct the
2619 * ref_mod on head
2620 */
2621 switch (ref->action) {
2622 case BTRFS_ADD_DELAYED_REF:
2623 case BTRFS_ADD_DELAYED_EXTENT:
2624 locked_ref->node.ref_mod -= ref->ref_mod;
2625 break;
2626 case BTRFS_DROP_DELAYED_REF:
2627 locked_ref->node.ref_mod += ref->ref_mod;
2628 break;
2629 default:
2630 WARN_ON(1);
2631 }
2632 }
2633 spin_unlock(&locked_ref->lock);
2634
2635 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2636 must_insert_reserved);
2637
2638 btrfs_free_delayed_extent_op(extent_op);
2639 if (ret) {
2640 spin_lock(&delayed_refs->lock);
2641 locked_ref->processing = 0;
2642 delayed_refs->num_heads_ready++;
2643 spin_unlock(&delayed_refs->lock);
2644 btrfs_delayed_ref_unlock(locked_ref);
2645 btrfs_put_delayed_ref(ref);
2646 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2647 ret);
2648 return ret;
2649 }
2650
2651 /*
2652 * If this node is a head, that means all the refs in this head
2653 * have been dealt with, and we will pick the next head to deal
2654 * with, so we must unlock the head and drop it from the cluster
2655 * list before we release it.
2656 */
2657 if (btrfs_delayed_ref_is_head(ref)) {
2658 if (locked_ref->is_data &&
2659 locked_ref->total_ref_mod < 0) {
2660 spin_lock(&delayed_refs->lock);
2661 delayed_refs->pending_csums -= ref->num_bytes;
2662 spin_unlock(&delayed_refs->lock);
2663 }
2664 btrfs_delayed_ref_unlock(locked_ref);
2665 locked_ref = NULL;
2666 }
2667 btrfs_put_delayed_ref(ref);
2668 count++;
2669 cond_resched();
2670 }
2671
2672 /*
2673 * We don't want to include ref heads since we can have empty ref heads
2674 * and those will drastically skew our runtime down since we just do
2675 * accounting, no actual extent tree updates.
2676 */
2677 if (actual_count > 0) {
2678 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2679 u64 avg;
2680
2681 /*
2682 * We weigh the current average higher than our current runtime
2683 * to avoid large swings in the average.
2684 */
2685 spin_lock(&delayed_refs->lock);
2686 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2687 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2688 spin_unlock(&delayed_refs->lock);
2689 }
2690 return 0;
2691}
2692
2693#ifdef SCRAMBLE_DELAYED_REFS
2694/*
2695 * Normally delayed refs get processed in ascending bytenr order. This
2696 * correlates in most cases to the order added. To expose dependencies on this
2697 * order, we start to process the tree in the middle instead of the beginning
2698 */
2699static u64 find_middle(struct rb_root *root)
2700{
2701 struct rb_node *n = root->rb_node;
2702 struct btrfs_delayed_ref_node *entry;
2703 int alt = 1;
2704 u64 middle;
2705 u64 first = 0, last = 0;
2706
2707 n = rb_first(root);
2708 if (n) {
2709 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2710 first = entry->bytenr;
2711 }
2712 n = rb_last(root);
2713 if (n) {
2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 last = entry->bytenr;
2716 }
2717 n = root->rb_node;
2718
2719 while (n) {
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 WARN_ON(!entry->in_tree);
2722
2723 middle = entry->bytenr;
2724
2725 if (alt)
2726 n = n->rb_left;
2727 else
2728 n = n->rb_right;
2729
2730 alt = 1 - alt;
2731 }
2732 return middle;
2733}
2734#endif
2735
2736static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2737{
2738 u64 num_bytes;
2739
2740 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2741 sizeof(struct btrfs_extent_inline_ref));
2742 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2743 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2744
2745 /*
2746 * We don't ever fill up leaves all the way so multiply by 2 just to be
2747 * closer to what we're really going to want to use.
2748 */
2749 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2750}
2751
2752/*
2753 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2754 * would require to store the csums for that many bytes.
2755 */
2756u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2757{
2758 u64 csum_size;
2759 u64 num_csums_per_leaf;
2760 u64 num_csums;
2761
2762 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2763 num_csums_per_leaf = div64_u64(csum_size,
2764 (u64)btrfs_super_csum_size(fs_info->super_copy));
2765 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2766 num_csums += num_csums_per_leaf - 1;
2767 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2768 return num_csums;
2769}
2770
2771int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2772 struct btrfs_fs_info *fs_info)
2773{
2774 struct btrfs_block_rsv *global_rsv;
2775 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2776 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2777 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2778 u64 num_bytes, num_dirty_bgs_bytes;
2779 int ret = 0;
2780
2781 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2782 num_heads = heads_to_leaves(fs_info, num_heads);
2783 if (num_heads > 1)
2784 num_bytes += (num_heads - 1) * fs_info->nodesize;
2785 num_bytes <<= 1;
2786 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2787 fs_info->nodesize;
2788 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2789 num_dirty_bgs);
2790 global_rsv = &fs_info->global_block_rsv;
2791
2792 /*
2793 * If we can't allocate any more chunks lets make sure we have _lots_ of
2794 * wiggle room since running delayed refs can create more delayed refs.
2795 */
2796 if (global_rsv->space_info->full) {
2797 num_dirty_bgs_bytes <<= 1;
2798 num_bytes <<= 1;
2799 }
2800
2801 spin_lock(&global_rsv->lock);
2802 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2803 ret = 1;
2804 spin_unlock(&global_rsv->lock);
2805 return ret;
2806}
2807
2808int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2809 struct btrfs_fs_info *fs_info)
2810{
2811 u64 num_entries =
2812 atomic_read(&trans->transaction->delayed_refs.num_entries);
2813 u64 avg_runtime;
2814 u64 val;
2815
2816 smp_mb();
2817 avg_runtime = fs_info->avg_delayed_ref_runtime;
2818 val = num_entries * avg_runtime;
2819 if (val >= NSEC_PER_SEC)
2820 return 1;
2821 if (val >= NSEC_PER_SEC / 2)
2822 return 2;
2823
2824 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2825}
2826
2827struct async_delayed_refs {
2828 struct btrfs_root *root;
2829 u64 transid;
2830 int count;
2831 int error;
2832 int sync;
2833 struct completion wait;
2834 struct btrfs_work work;
2835};
2836
2837static inline struct async_delayed_refs *
2838to_async_delayed_refs(struct btrfs_work *work)
2839{
2840 return container_of(work, struct async_delayed_refs, work);
2841}
2842
2843static void delayed_ref_async_start(struct btrfs_work *work)
2844{
2845 struct async_delayed_refs *async = to_async_delayed_refs(work);
2846 struct btrfs_trans_handle *trans;
2847 struct btrfs_fs_info *fs_info = async->root->fs_info;
2848 int ret;
2849
2850 /* if the commit is already started, we don't need to wait here */
2851 if (btrfs_transaction_blocked(fs_info))
2852 goto done;
2853
2854 trans = btrfs_join_transaction(async->root);
2855 if (IS_ERR(trans)) {
2856 async->error = PTR_ERR(trans);
2857 goto done;
2858 }
2859
2860 /*
2861 * trans->sync means that when we call end_transaction, we won't
2862 * wait on delayed refs
2863 */
2864 trans->sync = true;
2865
2866 /* Don't bother flushing if we got into a different transaction */
2867 if (trans->transid > async->transid)
2868 goto end;
2869
2870 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2871 if (ret)
2872 async->error = ret;
2873end:
2874 ret = btrfs_end_transaction(trans);
2875 if (ret && !async->error)
2876 async->error = ret;
2877done:
2878 if (async->sync)
2879 complete(&async->wait);
2880 else
2881 kfree(async);
2882}
2883
2884int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2885 unsigned long count, u64 transid, int wait)
2886{
2887 struct async_delayed_refs *async;
2888 int ret;
2889
2890 async = kmalloc(sizeof(*async), GFP_NOFS);
2891 if (!async)
2892 return -ENOMEM;
2893
2894 async->root = fs_info->tree_root;
2895 async->count = count;
2896 async->error = 0;
2897 async->transid = transid;
2898 if (wait)
2899 async->sync = 1;
2900 else
2901 async->sync = 0;
2902 init_completion(&async->wait);
2903
2904 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2905 delayed_ref_async_start, NULL, NULL);
2906
2907 btrfs_queue_work(fs_info->extent_workers, &async->work);
2908
2909 if (wait) {
2910 wait_for_completion(&async->wait);
2911 ret = async->error;
2912 kfree(async);
2913 return ret;
2914 }
2915 return 0;
2916}
2917
2918/*
2919 * this starts processing the delayed reference count updates and
2920 * extent insertions we have queued up so far. count can be
2921 * 0, which means to process everything in the tree at the start
2922 * of the run (but not newly added entries), or it can be some target
2923 * number you'd like to process.
2924 *
2925 * Returns 0 on success or if called with an aborted transaction
2926 * Returns <0 on error and aborts the transaction
2927 */
2928int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2929 struct btrfs_fs_info *fs_info, unsigned long count)
2930{
2931 struct rb_node *node;
2932 struct btrfs_delayed_ref_root *delayed_refs;
2933 struct btrfs_delayed_ref_head *head;
2934 int ret;
2935 int run_all = count == (unsigned long)-1;
2936 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2937
2938 /* We'll clean this up in btrfs_cleanup_transaction */
2939 if (trans->aborted)
2940 return 0;
2941
2942 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2943 return 0;
2944
2945 delayed_refs = &trans->transaction->delayed_refs;
2946 if (count == 0)
2947 count = atomic_read(&delayed_refs->num_entries) * 2;
2948
2949again:
2950#ifdef SCRAMBLE_DELAYED_REFS
2951 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2952#endif
2953 trans->can_flush_pending_bgs = false;
2954 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2955 if (ret < 0) {
2956 btrfs_abort_transaction(trans, ret);
2957 return ret;
2958 }
2959
2960 if (run_all) {
2961 if (!list_empty(&trans->new_bgs))
2962 btrfs_create_pending_block_groups(trans, fs_info);
2963
2964 spin_lock(&delayed_refs->lock);
2965 node = rb_first(&delayed_refs->href_root);
2966 if (!node) {
2967 spin_unlock(&delayed_refs->lock);
2968 goto out;
2969 }
2970
2971 while (node) {
2972 head = rb_entry(node, struct btrfs_delayed_ref_head,
2973 href_node);
2974 if (btrfs_delayed_ref_is_head(&head->node)) {
2975 struct btrfs_delayed_ref_node *ref;
2976
2977 ref = &head->node;
2978 atomic_inc(&ref->refs);
2979
2980 spin_unlock(&delayed_refs->lock);
2981 /*
2982 * Mutex was contended, block until it's
2983 * released and try again
2984 */
2985 mutex_lock(&head->mutex);
2986 mutex_unlock(&head->mutex);
2987
2988 btrfs_put_delayed_ref(ref);
2989 cond_resched();
2990 goto again;
2991 } else {
2992 WARN_ON(1);
2993 }
2994 node = rb_next(node);
2995 }
2996 spin_unlock(&delayed_refs->lock);
2997 cond_resched();
2998 goto again;
2999 }
3000out:
3001 assert_qgroups_uptodate(trans);
3002 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3003 return 0;
3004}
3005
3006int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3007 struct btrfs_fs_info *fs_info,
3008 u64 bytenr, u64 num_bytes, u64 flags,
3009 int level, int is_data)
3010{
3011 struct btrfs_delayed_extent_op *extent_op;
3012 int ret;
3013
3014 extent_op = btrfs_alloc_delayed_extent_op();
3015 if (!extent_op)
3016 return -ENOMEM;
3017
3018 extent_op->flags_to_set = flags;
3019 extent_op->update_flags = true;
3020 extent_op->update_key = false;
3021 extent_op->is_data = is_data ? true : false;
3022 extent_op->level = level;
3023
3024 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3025 num_bytes, extent_op);
3026 if (ret)
3027 btrfs_free_delayed_extent_op(extent_op);
3028 return ret;
3029}
3030
3031static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3032 struct btrfs_root *root,
3033 struct btrfs_path *path,
3034 u64 objectid, u64 offset, u64 bytenr)
3035{
3036 struct btrfs_delayed_ref_head *head;
3037 struct btrfs_delayed_ref_node *ref;
3038 struct btrfs_delayed_data_ref *data_ref;
3039 struct btrfs_delayed_ref_root *delayed_refs;
3040 int ret = 0;
3041
3042 delayed_refs = &trans->transaction->delayed_refs;
3043 spin_lock(&delayed_refs->lock);
3044 head = btrfs_find_delayed_ref_head(trans, bytenr);
3045 if (!head) {
3046 spin_unlock(&delayed_refs->lock);
3047 return 0;
3048 }
3049
3050 if (!mutex_trylock(&head->mutex)) {
3051 atomic_inc(&head->node.refs);
3052 spin_unlock(&delayed_refs->lock);
3053
3054 btrfs_release_path(path);
3055
3056 /*
3057 * Mutex was contended, block until it's released and let
3058 * caller try again
3059 */
3060 mutex_lock(&head->mutex);
3061 mutex_unlock(&head->mutex);
3062 btrfs_put_delayed_ref(&head->node);
3063 return -EAGAIN;
3064 }
3065 spin_unlock(&delayed_refs->lock);
3066
3067 spin_lock(&head->lock);
3068 list_for_each_entry(ref, &head->ref_list, list) {
3069 /* If it's a shared ref we know a cross reference exists */
3070 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3071 ret = 1;
3072 break;
3073 }
3074
3075 data_ref = btrfs_delayed_node_to_data_ref(ref);
3076
3077 /*
3078 * If our ref doesn't match the one we're currently looking at
3079 * then we have a cross reference.
3080 */
3081 if (data_ref->root != root->root_key.objectid ||
3082 data_ref->objectid != objectid ||
3083 data_ref->offset != offset) {
3084 ret = 1;
3085 break;
3086 }
3087 }
3088 spin_unlock(&head->lock);
3089 mutex_unlock(&head->mutex);
3090 return ret;
3091}
3092
3093static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root,
3095 struct btrfs_path *path,
3096 u64 objectid, u64 offset, u64 bytenr)
3097{
3098 struct btrfs_fs_info *fs_info = root->fs_info;
3099 struct btrfs_root *extent_root = fs_info->extent_root;
3100 struct extent_buffer *leaf;
3101 struct btrfs_extent_data_ref *ref;
3102 struct btrfs_extent_inline_ref *iref;
3103 struct btrfs_extent_item *ei;
3104 struct btrfs_key key;
3105 u32 item_size;
3106 int ret;
3107
3108 key.objectid = bytenr;
3109 key.offset = (u64)-1;
3110 key.type = BTRFS_EXTENT_ITEM_KEY;
3111
3112 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3113 if (ret < 0)
3114 goto out;
3115 BUG_ON(ret == 0); /* Corruption */
3116
3117 ret = -ENOENT;
3118 if (path->slots[0] == 0)
3119 goto out;
3120
3121 path->slots[0]--;
3122 leaf = path->nodes[0];
3123 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3124
3125 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3126 goto out;
3127
3128 ret = 1;
3129 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3131 if (item_size < sizeof(*ei)) {
3132 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3133 goto out;
3134 }
3135#endif
3136 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3137
3138 if (item_size != sizeof(*ei) +
3139 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3140 goto out;
3141
3142 if (btrfs_extent_generation(leaf, ei) <=
3143 btrfs_root_last_snapshot(&root->root_item))
3144 goto out;
3145
3146 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3147 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3148 BTRFS_EXTENT_DATA_REF_KEY)
3149 goto out;
3150
3151 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3152 if (btrfs_extent_refs(leaf, ei) !=
3153 btrfs_extent_data_ref_count(leaf, ref) ||
3154 btrfs_extent_data_ref_root(leaf, ref) !=
3155 root->root_key.objectid ||
3156 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3157 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3158 goto out;
3159
3160 ret = 0;
3161out:
3162 return ret;
3163}
3164
3165int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *root,
3167 u64 objectid, u64 offset, u64 bytenr)
3168{
3169 struct btrfs_path *path;
3170 int ret;
3171 int ret2;
3172
3173 path = btrfs_alloc_path();
3174 if (!path)
3175 return -ENOENT;
3176
3177 do {
3178 ret = check_committed_ref(trans, root, path, objectid,
3179 offset, bytenr);
3180 if (ret && ret != -ENOENT)
3181 goto out;
3182
3183 ret2 = check_delayed_ref(trans, root, path, objectid,
3184 offset, bytenr);
3185 } while (ret2 == -EAGAIN);
3186
3187 if (ret2 && ret2 != -ENOENT) {
3188 ret = ret2;
3189 goto out;
3190 }
3191
3192 if (ret != -ENOENT || ret2 != -ENOENT)
3193 ret = 0;
3194out:
3195 btrfs_free_path(path);
3196 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3197 WARN_ON(ret > 0);
3198 return ret;
3199}
3200
3201static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3202 struct btrfs_root *root,
3203 struct extent_buffer *buf,
3204 int full_backref, int inc)
3205{
3206 struct btrfs_fs_info *fs_info = root->fs_info;
3207 u64 bytenr;
3208 u64 num_bytes;
3209 u64 parent;
3210 u64 ref_root;
3211 u32 nritems;
3212 struct btrfs_key key;
3213 struct btrfs_file_extent_item *fi;
3214 int i;
3215 int level;
3216 int ret = 0;
3217 int (*process_func)(struct btrfs_trans_handle *,
3218 struct btrfs_fs_info *,
3219 u64, u64, u64, u64, u64, u64);
3220
3221
3222 if (btrfs_is_testing(fs_info))
3223 return 0;
3224
3225 ref_root = btrfs_header_owner(buf);
3226 nritems = btrfs_header_nritems(buf);
3227 level = btrfs_header_level(buf);
3228
3229 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3230 return 0;
3231
3232 if (inc)
3233 process_func = btrfs_inc_extent_ref;
3234 else
3235 process_func = btrfs_free_extent;
3236
3237 if (full_backref)
3238 parent = buf->start;
3239 else
3240 parent = 0;
3241
3242 for (i = 0; i < nritems; i++) {
3243 if (level == 0) {
3244 btrfs_item_key_to_cpu(buf, &key, i);
3245 if (key.type != BTRFS_EXTENT_DATA_KEY)
3246 continue;
3247 fi = btrfs_item_ptr(buf, i,
3248 struct btrfs_file_extent_item);
3249 if (btrfs_file_extent_type(buf, fi) ==
3250 BTRFS_FILE_EXTENT_INLINE)
3251 continue;
3252 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3253 if (bytenr == 0)
3254 continue;
3255
3256 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3257 key.offset -= btrfs_file_extent_offset(buf, fi);
3258 ret = process_func(trans, fs_info, bytenr, num_bytes,
3259 parent, ref_root, key.objectid,
3260 key.offset);
3261 if (ret)
3262 goto fail;
3263 } else {
3264 bytenr = btrfs_node_blockptr(buf, i);
3265 num_bytes = fs_info->nodesize;
3266 ret = process_func(trans, fs_info, bytenr, num_bytes,
3267 parent, ref_root, level - 1, 0);
3268 if (ret)
3269 goto fail;
3270 }
3271 }
3272 return 0;
3273fail:
3274 return ret;
3275}
3276
3277int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278 struct extent_buffer *buf, int full_backref)
3279{
3280 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3281}
3282
3283int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3284 struct extent_buffer *buf, int full_backref)
3285{
3286 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3287}
3288
3289static int write_one_cache_group(struct btrfs_trans_handle *trans,
3290 struct btrfs_fs_info *fs_info,
3291 struct btrfs_path *path,
3292 struct btrfs_block_group_cache *cache)
3293{
3294 int ret;
3295 struct btrfs_root *extent_root = fs_info->extent_root;
3296 unsigned long bi;
3297 struct extent_buffer *leaf;
3298
3299 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3300 if (ret) {
3301 if (ret > 0)
3302 ret = -ENOENT;
3303 goto fail;
3304 }
3305
3306 leaf = path->nodes[0];
3307 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3308 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3309 btrfs_mark_buffer_dirty(leaf);
3310fail:
3311 btrfs_release_path(path);
3312 return ret;
3313
3314}
3315
3316static struct btrfs_block_group_cache *
3317next_block_group(struct btrfs_fs_info *fs_info,
3318 struct btrfs_block_group_cache *cache)
3319{
3320 struct rb_node *node;
3321
3322 spin_lock(&fs_info->block_group_cache_lock);
3323
3324 /* If our block group was removed, we need a full search. */
3325 if (RB_EMPTY_NODE(&cache->cache_node)) {
3326 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3327
3328 spin_unlock(&fs_info->block_group_cache_lock);
3329 btrfs_put_block_group(cache);
3330 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3331 }
3332 node = rb_next(&cache->cache_node);
3333 btrfs_put_block_group(cache);
3334 if (node) {
3335 cache = rb_entry(node, struct btrfs_block_group_cache,
3336 cache_node);
3337 btrfs_get_block_group(cache);
3338 } else
3339 cache = NULL;
3340 spin_unlock(&fs_info->block_group_cache_lock);
3341 return cache;
3342}
3343
3344static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3345 struct btrfs_trans_handle *trans,
3346 struct btrfs_path *path)
3347{
3348 struct btrfs_fs_info *fs_info = block_group->fs_info;
3349 struct btrfs_root *root = fs_info->tree_root;
3350 struct inode *inode = NULL;
3351 u64 alloc_hint = 0;
3352 int dcs = BTRFS_DC_ERROR;
3353 u64 num_pages = 0;
3354 int retries = 0;
3355 int ret = 0;
3356
3357 /*
3358 * If this block group is smaller than 100 megs don't bother caching the
3359 * block group.
3360 */
3361 if (block_group->key.offset < (100 * SZ_1M)) {
3362 spin_lock(&block_group->lock);
3363 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3364 spin_unlock(&block_group->lock);
3365 return 0;
3366 }
3367
3368 if (trans->aborted)
3369 return 0;
3370again:
3371 inode = lookup_free_space_inode(root, block_group, path);
3372 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3373 ret = PTR_ERR(inode);
3374 btrfs_release_path(path);
3375 goto out;
3376 }
3377
3378 if (IS_ERR(inode)) {
3379 BUG_ON(retries);
3380 retries++;
3381
3382 if (block_group->ro)
3383 goto out_free;
3384
3385 ret = create_free_space_inode(root, trans, block_group, path);
3386 if (ret)
3387 goto out_free;
3388 goto again;
3389 }
3390
3391 /* We've already setup this transaction, go ahead and exit */
3392 if (block_group->cache_generation == trans->transid &&
3393 i_size_read(inode)) {
3394 dcs = BTRFS_DC_SETUP;
3395 goto out_put;
3396 }
3397
3398 /*
3399 * We want to set the generation to 0, that way if anything goes wrong
3400 * from here on out we know not to trust this cache when we load up next
3401 * time.
3402 */
3403 BTRFS_I(inode)->generation = 0;
3404 ret = btrfs_update_inode(trans, root, inode);
3405 if (ret) {
3406 /*
3407 * So theoretically we could recover from this, simply set the
3408 * super cache generation to 0 so we know to invalidate the
3409 * cache, but then we'd have to keep track of the block groups
3410 * that fail this way so we know we _have_ to reset this cache
3411 * before the next commit or risk reading stale cache. So to
3412 * limit our exposure to horrible edge cases lets just abort the
3413 * transaction, this only happens in really bad situations
3414 * anyway.
3415 */
3416 btrfs_abort_transaction(trans, ret);
3417 goto out_put;
3418 }
3419 WARN_ON(ret);
3420
3421 if (i_size_read(inode) > 0) {
3422 ret = btrfs_check_trunc_cache_free_space(fs_info,
3423 &fs_info->global_block_rsv);
3424 if (ret)
3425 goto out_put;
3426
3427 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3428 if (ret)
3429 goto out_put;
3430 }
3431
3432 spin_lock(&block_group->lock);
3433 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3434 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3435 /*
3436 * don't bother trying to write stuff out _if_
3437 * a) we're not cached,
3438 * b) we're with nospace_cache mount option.
3439 */
3440 dcs = BTRFS_DC_WRITTEN;
3441 spin_unlock(&block_group->lock);
3442 goto out_put;
3443 }
3444 spin_unlock(&block_group->lock);
3445
3446 /*
3447 * We hit an ENOSPC when setting up the cache in this transaction, just
3448 * skip doing the setup, we've already cleared the cache so we're safe.
3449 */
3450 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3451 ret = -ENOSPC;
3452 goto out_put;
3453 }
3454
3455 /*
3456 * Try to preallocate enough space based on how big the block group is.
3457 * Keep in mind this has to include any pinned space which could end up
3458 * taking up quite a bit since it's not folded into the other space
3459 * cache.
3460 */
3461 num_pages = div_u64(block_group->key.offset, SZ_256M);
3462 if (!num_pages)
3463 num_pages = 1;
3464
3465 num_pages *= 16;
3466 num_pages *= PAGE_SIZE;
3467
3468 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3469 if (ret)
3470 goto out_put;
3471
3472 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3473 num_pages, num_pages,
3474 &alloc_hint);
3475 /*
3476 * Our cache requires contiguous chunks so that we don't modify a bunch
3477 * of metadata or split extents when writing the cache out, which means
3478 * we can enospc if we are heavily fragmented in addition to just normal
3479 * out of space conditions. So if we hit this just skip setting up any
3480 * other block groups for this transaction, maybe we'll unpin enough
3481 * space the next time around.
3482 */
3483 if (!ret)
3484 dcs = BTRFS_DC_SETUP;
3485 else if (ret == -ENOSPC)
3486 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3487
3488out_put:
3489 iput(inode);
3490out_free:
3491 btrfs_release_path(path);
3492out:
3493 spin_lock(&block_group->lock);
3494 if (!ret && dcs == BTRFS_DC_SETUP)
3495 block_group->cache_generation = trans->transid;
3496 block_group->disk_cache_state = dcs;
3497 spin_unlock(&block_group->lock);
3498
3499 return ret;
3500}
3501
3502int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3503 struct btrfs_fs_info *fs_info)
3504{
3505 struct btrfs_block_group_cache *cache, *tmp;
3506 struct btrfs_transaction *cur_trans = trans->transaction;
3507 struct btrfs_path *path;
3508
3509 if (list_empty(&cur_trans->dirty_bgs) ||
3510 !btrfs_test_opt(fs_info, SPACE_CACHE))
3511 return 0;
3512
3513 path = btrfs_alloc_path();
3514 if (!path)
3515 return -ENOMEM;
3516
3517 /* Could add new block groups, use _safe just in case */
3518 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3519 dirty_list) {
3520 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3521 cache_save_setup(cache, trans, path);
3522 }
3523
3524 btrfs_free_path(path);
3525 return 0;
3526}
3527
3528/*
3529 * transaction commit does final block group cache writeback during a
3530 * critical section where nothing is allowed to change the FS. This is
3531 * required in order for the cache to actually match the block group,
3532 * but can introduce a lot of latency into the commit.
3533 *
3534 * So, btrfs_start_dirty_block_groups is here to kick off block group
3535 * cache IO. There's a chance we'll have to redo some of it if the
3536 * block group changes again during the commit, but it greatly reduces
3537 * the commit latency by getting rid of the easy block groups while
3538 * we're still allowing others to join the commit.
3539 */
3540int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3541 struct btrfs_fs_info *fs_info)
3542{
3543 struct btrfs_block_group_cache *cache;
3544 struct btrfs_transaction *cur_trans = trans->transaction;
3545 int ret = 0;
3546 int should_put;
3547 struct btrfs_path *path = NULL;
3548 LIST_HEAD(dirty);
3549 struct list_head *io = &cur_trans->io_bgs;
3550 int num_started = 0;
3551 int loops = 0;
3552
3553 spin_lock(&cur_trans->dirty_bgs_lock);
3554 if (list_empty(&cur_trans->dirty_bgs)) {
3555 spin_unlock(&cur_trans->dirty_bgs_lock);
3556 return 0;
3557 }
3558 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3559 spin_unlock(&cur_trans->dirty_bgs_lock);
3560
3561again:
3562 /*
3563 * make sure all the block groups on our dirty list actually
3564 * exist
3565 */
3566 btrfs_create_pending_block_groups(trans, fs_info);
3567
3568 if (!path) {
3569 path = btrfs_alloc_path();
3570 if (!path)
3571 return -ENOMEM;
3572 }
3573
3574 /*
3575 * cache_write_mutex is here only to save us from balance or automatic
3576 * removal of empty block groups deleting this block group while we are
3577 * writing out the cache
3578 */
3579 mutex_lock(&trans->transaction->cache_write_mutex);
3580 while (!list_empty(&dirty)) {
3581 cache = list_first_entry(&dirty,
3582 struct btrfs_block_group_cache,
3583 dirty_list);
3584 /*
3585 * this can happen if something re-dirties a block
3586 * group that is already under IO. Just wait for it to
3587 * finish and then do it all again
3588 */
3589 if (!list_empty(&cache->io_list)) {
3590 list_del_init(&cache->io_list);
3591 btrfs_wait_cache_io(trans, cache, path);
3592 btrfs_put_block_group(cache);
3593 }
3594
3595
3596 /*
3597 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3598 * if it should update the cache_state. Don't delete
3599 * until after we wait.
3600 *
3601 * Since we're not running in the commit critical section
3602 * we need the dirty_bgs_lock to protect from update_block_group
3603 */
3604 spin_lock(&cur_trans->dirty_bgs_lock);
3605 list_del_init(&cache->dirty_list);
3606 spin_unlock(&cur_trans->dirty_bgs_lock);
3607
3608 should_put = 1;
3609
3610 cache_save_setup(cache, trans, path);
3611
3612 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3613 cache->io_ctl.inode = NULL;
3614 ret = btrfs_write_out_cache(fs_info, trans,
3615 cache, path);
3616 if (ret == 0 && cache->io_ctl.inode) {
3617 num_started++;
3618 should_put = 0;
3619
3620 /*
3621 * the cache_write_mutex is protecting
3622 * the io_list
3623 */
3624 list_add_tail(&cache->io_list, io);
3625 } else {
3626 /*
3627 * if we failed to write the cache, the
3628 * generation will be bad and life goes on
3629 */
3630 ret = 0;
3631 }
3632 }
3633 if (!ret) {
3634 ret = write_one_cache_group(trans, fs_info,
3635 path, cache);
3636 /*
3637 * Our block group might still be attached to the list
3638 * of new block groups in the transaction handle of some
3639 * other task (struct btrfs_trans_handle->new_bgs). This
3640 * means its block group item isn't yet in the extent
3641 * tree. If this happens ignore the error, as we will
3642 * try again later in the critical section of the
3643 * transaction commit.
3644 */
3645 if (ret == -ENOENT) {
3646 ret = 0;
3647 spin_lock(&cur_trans->dirty_bgs_lock);
3648 if (list_empty(&cache->dirty_list)) {
3649 list_add_tail(&cache->dirty_list,
3650 &cur_trans->dirty_bgs);
3651 btrfs_get_block_group(cache);
3652 }
3653 spin_unlock(&cur_trans->dirty_bgs_lock);
3654 } else if (ret) {
3655 btrfs_abort_transaction(trans, ret);
3656 }
3657 }
3658
3659 /* if its not on the io list, we need to put the block group */
3660 if (should_put)
3661 btrfs_put_block_group(cache);
3662
3663 if (ret)
3664 break;
3665
3666 /*
3667 * Avoid blocking other tasks for too long. It might even save
3668 * us from writing caches for block groups that are going to be
3669 * removed.
3670 */
3671 mutex_unlock(&trans->transaction->cache_write_mutex);
3672 mutex_lock(&trans->transaction->cache_write_mutex);
3673 }
3674 mutex_unlock(&trans->transaction->cache_write_mutex);
3675
3676 /*
3677 * go through delayed refs for all the stuff we've just kicked off
3678 * and then loop back (just once)
3679 */
3680 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3681 if (!ret && loops == 0) {
3682 loops++;
3683 spin_lock(&cur_trans->dirty_bgs_lock);
3684 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3685 /*
3686 * dirty_bgs_lock protects us from concurrent block group
3687 * deletes too (not just cache_write_mutex).
3688 */
3689 if (!list_empty(&dirty)) {
3690 spin_unlock(&cur_trans->dirty_bgs_lock);
3691 goto again;
3692 }
3693 spin_unlock(&cur_trans->dirty_bgs_lock);
3694 } else if (ret < 0) {
3695 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3696 }
3697
3698 btrfs_free_path(path);
3699 return ret;
3700}
3701
3702int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3703 struct btrfs_fs_info *fs_info)
3704{
3705 struct btrfs_block_group_cache *cache;
3706 struct btrfs_transaction *cur_trans = trans->transaction;
3707 int ret = 0;
3708 int should_put;
3709 struct btrfs_path *path;
3710 struct list_head *io = &cur_trans->io_bgs;
3711 int num_started = 0;
3712
3713 path = btrfs_alloc_path();
3714 if (!path)
3715 return -ENOMEM;
3716
3717 /*
3718 * Even though we are in the critical section of the transaction commit,
3719 * we can still have concurrent tasks adding elements to this
3720 * transaction's list of dirty block groups. These tasks correspond to
3721 * endio free space workers started when writeback finishes for a
3722 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3723 * allocate new block groups as a result of COWing nodes of the root
3724 * tree when updating the free space inode. The writeback for the space
3725 * caches is triggered by an earlier call to
3726 * btrfs_start_dirty_block_groups() and iterations of the following
3727 * loop.
3728 * Also we want to do the cache_save_setup first and then run the
3729 * delayed refs to make sure we have the best chance at doing this all
3730 * in one shot.
3731 */
3732 spin_lock(&cur_trans->dirty_bgs_lock);
3733 while (!list_empty(&cur_trans->dirty_bgs)) {
3734 cache = list_first_entry(&cur_trans->dirty_bgs,
3735 struct btrfs_block_group_cache,
3736 dirty_list);
3737
3738 /*
3739 * this can happen if cache_save_setup re-dirties a block
3740 * group that is already under IO. Just wait for it to
3741 * finish and then do it all again
3742 */
3743 if (!list_empty(&cache->io_list)) {
3744 spin_unlock(&cur_trans->dirty_bgs_lock);
3745 list_del_init(&cache->io_list);
3746 btrfs_wait_cache_io(trans, cache, path);
3747 btrfs_put_block_group(cache);
3748 spin_lock(&cur_trans->dirty_bgs_lock);
3749 }
3750
3751 /*
3752 * don't remove from the dirty list until after we've waited
3753 * on any pending IO
3754 */
3755 list_del_init(&cache->dirty_list);
3756 spin_unlock(&cur_trans->dirty_bgs_lock);
3757 should_put = 1;
3758
3759 cache_save_setup(cache, trans, path);
3760
3761 if (!ret)
3762 ret = btrfs_run_delayed_refs(trans, fs_info,
3763 (unsigned long) -1);
3764
3765 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3766 cache->io_ctl.inode = NULL;
3767 ret = btrfs_write_out_cache(fs_info, trans,
3768 cache, path);
3769 if (ret == 0 && cache->io_ctl.inode) {
3770 num_started++;
3771 should_put = 0;
3772 list_add_tail(&cache->io_list, io);
3773 } else {
3774 /*
3775 * if we failed to write the cache, the
3776 * generation will be bad and life goes on
3777 */
3778 ret = 0;
3779 }
3780 }
3781 if (!ret) {
3782 ret = write_one_cache_group(trans, fs_info,
3783 path, cache);
3784 /*
3785 * One of the free space endio workers might have
3786 * created a new block group while updating a free space
3787 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 * and hasn't released its transaction handle yet, in
3789 * which case the new block group is still attached to
3790 * its transaction handle and its creation has not
3791 * finished yet (no block group item in the extent tree
3792 * yet, etc). If this is the case, wait for all free
3793 * space endio workers to finish and retry. This is a
3794 * a very rare case so no need for a more efficient and
3795 * complex approach.
3796 */
3797 if (ret == -ENOENT) {
3798 wait_event(cur_trans->writer_wait,
3799 atomic_read(&cur_trans->num_writers) == 1);
3800 ret = write_one_cache_group(trans, fs_info,
3801 path, cache);
3802 }
3803 if (ret)
3804 btrfs_abort_transaction(trans, ret);
3805 }
3806
3807 /* if its not on the io list, we need to put the block group */
3808 if (should_put)
3809 btrfs_put_block_group(cache);
3810 spin_lock(&cur_trans->dirty_bgs_lock);
3811 }
3812 spin_unlock(&cur_trans->dirty_bgs_lock);
3813
3814 while (!list_empty(io)) {
3815 cache = list_first_entry(io, struct btrfs_block_group_cache,
3816 io_list);
3817 list_del_init(&cache->io_list);
3818 btrfs_wait_cache_io(trans, cache, path);
3819 btrfs_put_block_group(cache);
3820 }
3821
3822 btrfs_free_path(path);
3823 return ret;
3824}
3825
3826int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3827{
3828 struct btrfs_block_group_cache *block_group;
3829 int readonly = 0;
3830
3831 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3832 if (!block_group || block_group->ro)
3833 readonly = 1;
3834 if (block_group)
3835 btrfs_put_block_group(block_group);
3836 return readonly;
3837}
3838
3839bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3840{
3841 struct btrfs_block_group_cache *bg;
3842 bool ret = true;
3843
3844 bg = btrfs_lookup_block_group(fs_info, bytenr);
3845 if (!bg)
3846 return false;
3847
3848 spin_lock(&bg->lock);
3849 if (bg->ro)
3850 ret = false;
3851 else
3852 atomic_inc(&bg->nocow_writers);
3853 spin_unlock(&bg->lock);
3854
3855 /* no put on block group, done by btrfs_dec_nocow_writers */
3856 if (!ret)
3857 btrfs_put_block_group(bg);
3858
3859 return ret;
3860
3861}
3862
3863void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3864{
3865 struct btrfs_block_group_cache *bg;
3866
3867 bg = btrfs_lookup_block_group(fs_info, bytenr);
3868 ASSERT(bg);
3869 if (atomic_dec_and_test(&bg->nocow_writers))
3870 wake_up_atomic_t(&bg->nocow_writers);
3871 /*
3872 * Once for our lookup and once for the lookup done by a previous call
3873 * to btrfs_inc_nocow_writers()
3874 */
3875 btrfs_put_block_group(bg);
3876 btrfs_put_block_group(bg);
3877}
3878
3879static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3880{
3881 schedule();
3882 return 0;
3883}
3884
3885void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3886{
3887 wait_on_atomic_t(&bg->nocow_writers,
3888 btrfs_wait_nocow_writers_atomic_t,
3889 TASK_UNINTERRUPTIBLE);
3890}
3891
3892static const char *alloc_name(u64 flags)
3893{
3894 switch (flags) {
3895 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3896 return "mixed";
3897 case BTRFS_BLOCK_GROUP_METADATA:
3898 return "metadata";
3899 case BTRFS_BLOCK_GROUP_DATA:
3900 return "data";
3901 case BTRFS_BLOCK_GROUP_SYSTEM:
3902 return "system";
3903 default:
3904 WARN_ON(1);
3905 return "invalid-combination";
3906 };
3907}
3908
3909static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3910 u64 total_bytes, u64 bytes_used,
3911 u64 bytes_readonly,
3912 struct btrfs_space_info **space_info)
3913{
3914 struct btrfs_space_info *found;
3915 int i;
3916 int factor;
3917 int ret;
3918
3919 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3920 BTRFS_BLOCK_GROUP_RAID10))
3921 factor = 2;
3922 else
3923 factor = 1;
3924
3925 found = __find_space_info(info, flags);
3926 if (found) {
3927 spin_lock(&found->lock);
3928 found->total_bytes += total_bytes;
3929 found->disk_total += total_bytes * factor;
3930 found->bytes_used += bytes_used;
3931 found->disk_used += bytes_used * factor;
3932 found->bytes_readonly += bytes_readonly;
3933 if (total_bytes > 0)
3934 found->full = 0;
3935 space_info_add_new_bytes(info, found, total_bytes -
3936 bytes_used - bytes_readonly);
3937 spin_unlock(&found->lock);
3938 *space_info = found;
3939 return 0;
3940 }
3941 found = kzalloc(sizeof(*found), GFP_NOFS);
3942 if (!found)
3943 return -ENOMEM;
3944
3945 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3946 if (ret) {
3947 kfree(found);
3948 return ret;
3949 }
3950
3951 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3952 INIT_LIST_HEAD(&found->block_groups[i]);
3953 init_rwsem(&found->groups_sem);
3954 spin_lock_init(&found->lock);
3955 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3956 found->total_bytes = total_bytes;
3957 found->disk_total = total_bytes * factor;
3958 found->bytes_used = bytes_used;
3959 found->disk_used = bytes_used * factor;
3960 found->bytes_pinned = 0;
3961 found->bytes_reserved = 0;
3962 found->bytes_readonly = bytes_readonly;
3963 found->bytes_may_use = 0;
3964 found->full = 0;
3965 found->max_extent_size = 0;
3966 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3967 found->chunk_alloc = 0;
3968 found->flush = 0;
3969 init_waitqueue_head(&found->wait);
3970 INIT_LIST_HEAD(&found->ro_bgs);
3971 INIT_LIST_HEAD(&found->tickets);
3972 INIT_LIST_HEAD(&found->priority_tickets);
3973
3974 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3975 info->space_info_kobj, "%s",
3976 alloc_name(found->flags));
3977 if (ret) {
3978 kfree(found);
3979 return ret;
3980 }
3981
3982 *space_info = found;
3983 list_add_rcu(&found->list, &info->space_info);
3984 if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 info->data_sinfo = found;
3986
3987 return ret;
3988}
3989
3990static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3991{
3992 u64 extra_flags = chunk_to_extended(flags) &
3993 BTRFS_EXTENDED_PROFILE_MASK;
3994
3995 write_seqlock(&fs_info->profiles_lock);
3996 if (flags & BTRFS_BLOCK_GROUP_DATA)
3997 fs_info->avail_data_alloc_bits |= extra_flags;
3998 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3999 fs_info->avail_metadata_alloc_bits |= extra_flags;
4000 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4001 fs_info->avail_system_alloc_bits |= extra_flags;
4002 write_sequnlock(&fs_info->profiles_lock);
4003}
4004
4005/*
4006 * returns target flags in extended format or 0 if restripe for this
4007 * chunk_type is not in progress
4008 *
4009 * should be called with either volume_mutex or balance_lock held
4010 */
4011static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4012{
4013 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4014 u64 target = 0;
4015
4016 if (!bctl)
4017 return 0;
4018
4019 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4020 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4021 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4022 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4023 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4024 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4025 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4026 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4028 }
4029
4030 return target;
4031}
4032
4033/*
4034 * @flags: available profiles in extended format (see ctree.h)
4035 *
4036 * Returns reduced profile in chunk format. If profile changing is in
4037 * progress (either running or paused) picks the target profile (if it's
4038 * already available), otherwise falls back to plain reducing.
4039 */
4040static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4041{
4042 u64 num_devices = fs_info->fs_devices->rw_devices;
4043 u64 target;
4044 u64 raid_type;
4045 u64 allowed = 0;
4046
4047 /*
4048 * see if restripe for this chunk_type is in progress, if so
4049 * try to reduce to the target profile
4050 */
4051 spin_lock(&fs_info->balance_lock);
4052 target = get_restripe_target(fs_info, flags);
4053 if (target) {
4054 /* pick target profile only if it's already available */
4055 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4056 spin_unlock(&fs_info->balance_lock);
4057 return extended_to_chunk(target);
4058 }
4059 }
4060 spin_unlock(&fs_info->balance_lock);
4061
4062 /* First, mask out the RAID levels which aren't possible */
4063 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4064 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4065 allowed |= btrfs_raid_group[raid_type];
4066 }
4067 allowed &= flags;
4068
4069 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4070 allowed = BTRFS_BLOCK_GROUP_RAID6;
4071 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4072 allowed = BTRFS_BLOCK_GROUP_RAID5;
4073 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4074 allowed = BTRFS_BLOCK_GROUP_RAID10;
4075 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4076 allowed = BTRFS_BLOCK_GROUP_RAID1;
4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4078 allowed = BTRFS_BLOCK_GROUP_RAID0;
4079
4080 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4081
4082 return extended_to_chunk(flags | allowed);
4083}
4084
4085static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4086{
4087 unsigned seq;
4088 u64 flags;
4089
4090 do {
4091 flags = orig_flags;
4092 seq = read_seqbegin(&fs_info->profiles_lock);
4093
4094 if (flags & BTRFS_BLOCK_GROUP_DATA)
4095 flags |= fs_info->avail_data_alloc_bits;
4096 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4097 flags |= fs_info->avail_system_alloc_bits;
4098 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4099 flags |= fs_info->avail_metadata_alloc_bits;
4100 } while (read_seqretry(&fs_info->profiles_lock, seq));
4101
4102 return btrfs_reduce_alloc_profile(fs_info, flags);
4103}
4104
4105u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4106{
4107 struct btrfs_fs_info *fs_info = root->fs_info;
4108 u64 flags;
4109 u64 ret;
4110
4111 if (data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115 else
4116 flags = BTRFS_BLOCK_GROUP_METADATA;
4117
4118 ret = get_alloc_profile(fs_info, flags);
4119 return ret;
4120}
4121
4122int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123{
4124 struct btrfs_space_info *data_sinfo;
4125 struct btrfs_root *root = BTRFS_I(inode)->root;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 used;
4128 int ret = 0;
4129 int need_commit = 2;
4130 int have_pinned_space;
4131
4132 /* make sure bytes are sectorsize aligned */
4133 bytes = ALIGN(bytes, fs_info->sectorsize);
4134
4135 if (btrfs_is_free_space_inode(inode)) {
4136 need_commit = 0;
4137 ASSERT(current->journal_info);
4138 }
4139
4140 data_sinfo = fs_info->data_sinfo;
4141 if (!data_sinfo)
4142 goto alloc;
4143
4144again:
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
4150
4151 if (used + bytes > data_sinfo->total_bytes) {
4152 struct btrfs_trans_handle *trans;
4153
4154 /*
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4157 */
4158 if (!data_sinfo->full) {
4159 u64 alloc_target;
4160
4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 spin_unlock(&data_sinfo->lock);
4163alloc:
4164 alloc_target = btrfs_get_alloc_profile(root, 1);
4165 /*
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4173 * the fs.
4174 */
4175 trans = btrfs_join_transaction(root);
4176 if (IS_ERR(trans))
4177 return PTR_ERR(trans);
4178
4179 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4180 CHUNK_ALLOC_NO_FORCE);
4181 btrfs_end_transaction(trans);
4182 if (ret < 0) {
4183 if (ret != -ENOSPC)
4184 return ret;
4185 else {
4186 have_pinned_space = 1;
4187 goto commit_trans;
4188 }
4189 }
4190
4191 if (!data_sinfo)
4192 data_sinfo = fs_info->data_sinfo;
4193
4194 goto again;
4195 }
4196
4197 /*
4198 * If we don't have enough pinned space to deal with this
4199 * allocation, and no removed chunk in current transaction,
4200 * don't bother committing the transaction.
4201 */
4202 have_pinned_space = percpu_counter_compare(
4203 &data_sinfo->total_bytes_pinned,
4204 used + bytes - data_sinfo->total_bytes);
4205 spin_unlock(&data_sinfo->lock);
4206
4207 /* commit the current transaction and try again */
4208commit_trans:
4209 if (need_commit &&
4210 !atomic_read(&fs_info->open_ioctl_trans)) {
4211 need_commit--;
4212
4213 if (need_commit > 0) {
4214 btrfs_start_delalloc_roots(fs_info, 0, -1);
4215 btrfs_wait_ordered_roots(fs_info, -1, 0,
4216 (u64)-1);
4217 }
4218
4219 trans = btrfs_join_transaction(root);
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
4222 if (have_pinned_space >= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
4225 need_commit > 0) {
4226 ret = btrfs_commit_transaction(trans);
4227 if (ret)
4228 return ret;
4229 /*
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4233 */
4234 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4236 goto again;
4237 } else {
4238 btrfs_end_transaction(trans);
4239 }
4240 }
4241
4242 trace_btrfs_space_reservation(fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
4245 return -ENOSPC;
4246 }
4247 data_sinfo->bytes_may_use += bytes;
4248 trace_btrfs_space_reservation(fs_info, "space_info",
4249 data_sinfo->flags, bytes, 1);
4250 spin_unlock(&data_sinfo->lock);
4251
4252 return ret;
4253}
4254
4255/*
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4259 */
4260int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261{
4262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4263 int ret;
4264
4265 /* align the range */
4266 len = round_up(start + len, fs_info->sectorsize) -
4267 round_down(start, fs_info->sectorsize);
4268 start = round_down(start, fs_info->sectorsize);
4269
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 if (ret < 0)
4272 return ret;
4273
4274 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4275 ret = btrfs_qgroup_reserve_data(inode, start, len);
4276 if (ret)
4277 btrfs_free_reserved_data_space_noquota(inode, start, len);
4278 return ret;
4279}
4280
4281/*
4282 * Called if we need to clear a data reservation for this inode
4283 * Normally in a error case.
4284 *
4285 * This one will *NOT* use accurate qgroup reserved space API, just for case
4286 * which we can't sleep and is sure it won't affect qgroup reserved space.
4287 * Like clear_bit_hook().
4288 */
4289void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4290 u64 len)
4291{
4292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4293 struct btrfs_space_info *data_sinfo;
4294
4295 /* Make sure the range is aligned to sectorsize */
4296 len = round_up(start + len, fs_info->sectorsize) -
4297 round_down(start, fs_info->sectorsize);
4298 start = round_down(start, fs_info->sectorsize);
4299
4300 data_sinfo = fs_info->data_sinfo;
4301 spin_lock(&data_sinfo->lock);
4302 if (WARN_ON(data_sinfo->bytes_may_use < len))
4303 data_sinfo->bytes_may_use = 0;
4304 else
4305 data_sinfo->bytes_may_use -= len;
4306 trace_btrfs_space_reservation(fs_info, "space_info",
4307 data_sinfo->flags, len, 0);
4308 spin_unlock(&data_sinfo->lock);
4309}
4310
4311/*
4312 * Called if we need to clear a data reservation for this inode
4313 * Normally in a error case.
4314 *
4315 * This one will handle the per-inode data rsv map for accurate reserved
4316 * space framework.
4317 */
4318void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4319{
4320 struct btrfs_root *root = BTRFS_I(inode)->root;
4321
4322 /* Make sure the range is aligned to sectorsize */
4323 len = round_up(start + len, root->fs_info->sectorsize) -
4324 round_down(start, root->fs_info->sectorsize);
4325 start = round_down(start, root->fs_info->sectorsize);
4326
4327 btrfs_free_reserved_data_space_noquota(inode, start, len);
4328 btrfs_qgroup_free_data(inode, start, len);
4329}
4330
4331static void force_metadata_allocation(struct btrfs_fs_info *info)
4332{
4333 struct list_head *head = &info->space_info;
4334 struct btrfs_space_info *found;
4335
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(found, head, list) {
4338 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4339 found->force_alloc = CHUNK_ALLOC_FORCE;
4340 }
4341 rcu_read_unlock();
4342}
4343
4344static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4345{
4346 return (global->size << 1);
4347}
4348
4349static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4350 struct btrfs_space_info *sinfo, int force)
4351{
4352 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4353 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4354 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4355 u64 thresh;
4356
4357 if (force == CHUNK_ALLOC_FORCE)
4358 return 1;
4359
4360 /*
4361 * We need to take into account the global rsv because for all intents
4362 * and purposes it's used space. Don't worry about locking the
4363 * global_rsv, it doesn't change except when the transaction commits.
4364 */
4365 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4366 num_allocated += calc_global_rsv_need_space(global_rsv);
4367
4368 /*
4369 * in limited mode, we want to have some free space up to
4370 * about 1% of the FS size.
4371 */
4372 if (force == CHUNK_ALLOC_LIMITED) {
4373 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4374 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4375
4376 if (num_bytes - num_allocated < thresh)
4377 return 1;
4378 }
4379
4380 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4381 return 0;
4382 return 1;
4383}
4384
4385static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4386{
4387 u64 num_dev;
4388
4389 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4390 BTRFS_BLOCK_GROUP_RAID0 |
4391 BTRFS_BLOCK_GROUP_RAID5 |
4392 BTRFS_BLOCK_GROUP_RAID6))
4393 num_dev = fs_info->fs_devices->rw_devices;
4394 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4395 num_dev = 2;
4396 else
4397 num_dev = 1; /* DUP or single */
4398
4399 return num_dev;
4400}
4401
4402/*
4403 * If @is_allocation is true, reserve space in the system space info necessary
4404 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4405 * removing a chunk.
4406 */
4407void check_system_chunk(struct btrfs_trans_handle *trans,
4408 struct btrfs_fs_info *fs_info, u64 type)
4409{
4410 struct btrfs_space_info *info;
4411 u64 left;
4412 u64 thresh;
4413 int ret = 0;
4414 u64 num_devs;
4415
4416 /*
4417 * Needed because we can end up allocating a system chunk and for an
4418 * atomic and race free space reservation in the chunk block reserve.
4419 */
4420 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4421
4422 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4423 spin_lock(&info->lock);
4424 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4425 info->bytes_reserved - info->bytes_readonly -
4426 info->bytes_may_use;
4427 spin_unlock(&info->lock);
4428
4429 num_devs = get_profile_num_devs(fs_info, type);
4430
4431 /* num_devs device items to update and 1 chunk item to add or remove */
4432 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4433 btrfs_calc_trans_metadata_size(fs_info, 1);
4434
4435 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4436 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4437 left, thresh, type);
4438 dump_space_info(fs_info, info, 0, 0);
4439 }
4440
4441 if (left < thresh) {
4442 u64 flags;
4443
4444 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4445 /*
4446 * Ignore failure to create system chunk. We might end up not
4447 * needing it, as we might not need to COW all nodes/leafs from
4448 * the paths we visit in the chunk tree (they were already COWed
4449 * or created in the current transaction for example).
4450 */
4451 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4452 }
4453
4454 if (!ret) {
4455 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4456 &fs_info->chunk_block_rsv,
4457 thresh, BTRFS_RESERVE_NO_FLUSH);
4458 if (!ret)
4459 trans->chunk_bytes_reserved += thresh;
4460 }
4461}
4462
4463/*
4464 * If force is CHUNK_ALLOC_FORCE:
4465 * - return 1 if it successfully allocates a chunk,
4466 * - return errors including -ENOSPC otherwise.
4467 * If force is NOT CHUNK_ALLOC_FORCE:
4468 * - return 0 if it doesn't need to allocate a new chunk,
4469 * - return 1 if it successfully allocates a chunk,
4470 * - return errors including -ENOSPC otherwise.
4471 */
4472static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4473 struct btrfs_fs_info *fs_info, u64 flags, int force)
4474{
4475 struct btrfs_space_info *space_info;
4476 int wait_for_alloc = 0;
4477 int ret = 0;
4478
4479 /* Don't re-enter if we're already allocating a chunk */
4480 if (trans->allocating_chunk)
4481 return -ENOSPC;
4482
4483 space_info = __find_space_info(fs_info, flags);
4484 if (!space_info) {
4485 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4486 BUG_ON(ret); /* -ENOMEM */
4487 }
4488 BUG_ON(!space_info); /* Logic error */
4489
4490again:
4491 spin_lock(&space_info->lock);
4492 if (force < space_info->force_alloc)
4493 force = space_info->force_alloc;
4494 if (space_info->full) {
4495 if (should_alloc_chunk(fs_info, space_info, force))
4496 ret = -ENOSPC;
4497 else
4498 ret = 0;
4499 spin_unlock(&space_info->lock);
4500 return ret;
4501 }
4502
4503 if (!should_alloc_chunk(fs_info, space_info, force)) {
4504 spin_unlock(&space_info->lock);
4505 return 0;
4506 } else if (space_info->chunk_alloc) {
4507 wait_for_alloc = 1;
4508 } else {
4509 space_info->chunk_alloc = 1;
4510 }
4511
4512 spin_unlock(&space_info->lock);
4513
4514 mutex_lock(&fs_info->chunk_mutex);
4515
4516 /*
4517 * The chunk_mutex is held throughout the entirety of a chunk
4518 * allocation, so once we've acquired the chunk_mutex we know that the
4519 * other guy is done and we need to recheck and see if we should
4520 * allocate.
4521 */
4522 if (wait_for_alloc) {
4523 mutex_unlock(&fs_info->chunk_mutex);
4524 wait_for_alloc = 0;
4525 goto again;
4526 }
4527
4528 trans->allocating_chunk = true;
4529
4530 /*
4531 * If we have mixed data/metadata chunks we want to make sure we keep
4532 * allocating mixed chunks instead of individual chunks.
4533 */
4534 if (btrfs_mixed_space_info(space_info))
4535 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4536
4537 /*
4538 * if we're doing a data chunk, go ahead and make sure that
4539 * we keep a reasonable number of metadata chunks allocated in the
4540 * FS as well.
4541 */
4542 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4543 fs_info->data_chunk_allocations++;
4544 if (!(fs_info->data_chunk_allocations %
4545 fs_info->metadata_ratio))
4546 force_metadata_allocation(fs_info);
4547 }
4548
4549 /*
4550 * Check if we have enough space in SYSTEM chunk because we may need
4551 * to update devices.
4552 */
4553 check_system_chunk(trans, fs_info, flags);
4554
4555 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4556 trans->allocating_chunk = false;
4557
4558 spin_lock(&space_info->lock);
4559 if (ret < 0 && ret != -ENOSPC)
4560 goto out;
4561 if (ret)
4562 space_info->full = 1;
4563 else
4564 ret = 1;
4565
4566 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4567out:
4568 space_info->chunk_alloc = 0;
4569 spin_unlock(&space_info->lock);
4570 mutex_unlock(&fs_info->chunk_mutex);
4571 /*
4572 * When we allocate a new chunk we reserve space in the chunk block
4573 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4574 * add new nodes/leafs to it if we end up needing to do it when
4575 * inserting the chunk item and updating device items as part of the
4576 * second phase of chunk allocation, performed by
4577 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4578 * large number of new block groups to create in our transaction
4579 * handle's new_bgs list to avoid exhausting the chunk block reserve
4580 * in extreme cases - like having a single transaction create many new
4581 * block groups when starting to write out the free space caches of all
4582 * the block groups that were made dirty during the lifetime of the
4583 * transaction.
4584 */
4585 if (trans->can_flush_pending_bgs &&
4586 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4587 btrfs_create_pending_block_groups(trans, fs_info);
4588 btrfs_trans_release_chunk_metadata(trans);
4589 }
4590 return ret;
4591}
4592
4593static int can_overcommit(struct btrfs_root *root,
4594 struct btrfs_space_info *space_info, u64 bytes,
4595 enum btrfs_reserve_flush_enum flush)
4596{
4597 struct btrfs_fs_info *fs_info = root->fs_info;
4598 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4599 u64 profile;
4600 u64 space_size;
4601 u64 avail;
4602 u64 used;
4603
4604 /* Don't overcommit when in mixed mode. */
4605 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4606 return 0;
4607
4608 profile = btrfs_get_alloc_profile(root, 0);
4609 used = space_info->bytes_used + space_info->bytes_reserved +
4610 space_info->bytes_pinned + space_info->bytes_readonly;
4611
4612 /*
4613 * We only want to allow over committing if we have lots of actual space
4614 * free, but if we don't have enough space to handle the global reserve
4615 * space then we could end up having a real enospc problem when trying
4616 * to allocate a chunk or some other such important allocation.
4617 */
4618 spin_lock(&global_rsv->lock);
4619 space_size = calc_global_rsv_need_space(global_rsv);
4620 spin_unlock(&global_rsv->lock);
4621 if (used + space_size >= space_info->total_bytes)
4622 return 0;
4623
4624 used += space_info->bytes_may_use;
4625
4626 spin_lock(&fs_info->free_chunk_lock);
4627 avail = fs_info->free_chunk_space;
4628 spin_unlock(&fs_info->free_chunk_lock);
4629
4630 /*
4631 * If we have dup, raid1 or raid10 then only half of the free
4632 * space is actually useable. For raid56, the space info used
4633 * doesn't include the parity drive, so we don't have to
4634 * change the math
4635 */
4636 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4637 BTRFS_BLOCK_GROUP_RAID1 |
4638 BTRFS_BLOCK_GROUP_RAID10))
4639 avail >>= 1;
4640
4641 /*
4642 * If we aren't flushing all things, let us overcommit up to
4643 * 1/2th of the space. If we can flush, don't let us overcommit
4644 * too much, let it overcommit up to 1/8 of the space.
4645 */
4646 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4647 avail >>= 3;
4648 else
4649 avail >>= 1;
4650
4651 if (used + bytes < space_info->total_bytes + avail)
4652 return 1;
4653 return 0;
4654}
4655
4656static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4657 unsigned long nr_pages, int nr_items)
4658{
4659 struct super_block *sb = fs_info->sb;
4660
4661 if (down_read_trylock(&sb->s_umount)) {
4662 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4663 up_read(&sb->s_umount);
4664 } else {
4665 /*
4666 * We needn't worry the filesystem going from r/w to r/o though
4667 * we don't acquire ->s_umount mutex, because the filesystem
4668 * should guarantee the delalloc inodes list be empty after
4669 * the filesystem is readonly(all dirty pages are written to
4670 * the disk).
4671 */
4672 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4673 if (!current->journal_info)
4674 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4675 }
4676}
4677
4678static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4679 u64 to_reclaim)
4680{
4681 u64 bytes;
4682 int nr;
4683
4684 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4685 nr = (int)div64_u64(to_reclaim, bytes);
4686 if (!nr)
4687 nr = 1;
4688 return nr;
4689}
4690
4691#define EXTENT_SIZE_PER_ITEM SZ_256K
4692
4693/*
4694 * shrink metadata reservation for delalloc
4695 */
4696static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4697 bool wait_ordered)
4698{
4699 struct btrfs_fs_info *fs_info = root->fs_info;
4700 struct btrfs_block_rsv *block_rsv;
4701 struct btrfs_space_info *space_info;
4702 struct btrfs_trans_handle *trans;
4703 u64 delalloc_bytes;
4704 u64 max_reclaim;
4705 long time_left;
4706 unsigned long nr_pages;
4707 int loops;
4708 int items;
4709 enum btrfs_reserve_flush_enum flush;
4710
4711 /* Calc the number of the pages we need flush for space reservation */
4712 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4713 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4714
4715 trans = (struct btrfs_trans_handle *)current->journal_info;
4716 block_rsv = &fs_info->delalloc_block_rsv;
4717 space_info = block_rsv->space_info;
4718
4719 delalloc_bytes = percpu_counter_sum_positive(
4720 &fs_info->delalloc_bytes);
4721 if (delalloc_bytes == 0) {
4722 if (trans)
4723 return;
4724 if (wait_ordered)
4725 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4726 return;
4727 }
4728
4729 loops = 0;
4730 while (delalloc_bytes && loops < 3) {
4731 max_reclaim = min(delalloc_bytes, to_reclaim);
4732 nr_pages = max_reclaim >> PAGE_SHIFT;
4733 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4734 /*
4735 * We need to wait for the async pages to actually start before
4736 * we do anything.
4737 */
4738 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4739 if (!max_reclaim)
4740 goto skip_async;
4741
4742 if (max_reclaim <= nr_pages)
4743 max_reclaim = 0;
4744 else
4745 max_reclaim -= nr_pages;
4746
4747 wait_event(fs_info->async_submit_wait,
4748 atomic_read(&fs_info->async_delalloc_pages) <=
4749 (int)max_reclaim);
4750skip_async:
4751 if (!trans)
4752 flush = BTRFS_RESERVE_FLUSH_ALL;
4753 else
4754 flush = BTRFS_RESERVE_NO_FLUSH;
4755 spin_lock(&space_info->lock);
4756 if (can_overcommit(root, space_info, orig, flush)) {
4757 spin_unlock(&space_info->lock);
4758 break;
4759 }
4760 if (list_empty(&space_info->tickets) &&
4761 list_empty(&space_info->priority_tickets)) {
4762 spin_unlock(&space_info->lock);
4763 break;
4764 }
4765 spin_unlock(&space_info->lock);
4766
4767 loops++;
4768 if (wait_ordered && !trans) {
4769 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4770 } else {
4771 time_left = schedule_timeout_killable(1);
4772 if (time_left)
4773 break;
4774 }
4775 delalloc_bytes = percpu_counter_sum_positive(
4776 &fs_info->delalloc_bytes);
4777 }
4778}
4779
4780/**
4781 * maybe_commit_transaction - possibly commit the transaction if its ok to
4782 * @root - the root we're allocating for
4783 * @bytes - the number of bytes we want to reserve
4784 * @force - force the commit
4785 *
4786 * This will check to make sure that committing the transaction will actually
4787 * get us somewhere and then commit the transaction if it does. Otherwise it
4788 * will return -ENOSPC.
4789 */
4790static int may_commit_transaction(struct btrfs_root *root,
4791 struct btrfs_space_info *space_info,
4792 u64 bytes, int force)
4793{
4794 struct btrfs_fs_info *fs_info = root->fs_info;
4795 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4796 struct btrfs_trans_handle *trans;
4797
4798 trans = (struct btrfs_trans_handle *)current->journal_info;
4799 if (trans)
4800 return -EAGAIN;
4801
4802 if (force)
4803 goto commit;
4804
4805 /* See if there is enough pinned space to make this reservation */
4806 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4807 bytes) >= 0)
4808 goto commit;
4809
4810 /*
4811 * See if there is some space in the delayed insertion reservation for
4812 * this reservation.
4813 */
4814 if (space_info != delayed_rsv->space_info)
4815 return -ENOSPC;
4816
4817 spin_lock(&delayed_rsv->lock);
4818 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4819 bytes - delayed_rsv->size) >= 0) {
4820 spin_unlock(&delayed_rsv->lock);
4821 return -ENOSPC;
4822 }
4823 spin_unlock(&delayed_rsv->lock);
4824
4825commit:
4826 trans = btrfs_join_transaction(root);
4827 if (IS_ERR(trans))
4828 return -ENOSPC;
4829
4830 return btrfs_commit_transaction(trans);
4831}
4832
4833struct reserve_ticket {
4834 u64 bytes;
4835 int error;
4836 struct list_head list;
4837 wait_queue_head_t wait;
4838};
4839
4840static int flush_space(struct btrfs_root *root,
4841 struct btrfs_space_info *space_info, u64 num_bytes,
4842 u64 orig_bytes, int state)
4843{
4844 struct btrfs_fs_info *fs_info = root->fs_info;
4845 struct btrfs_trans_handle *trans;
4846 int nr;
4847 int ret = 0;
4848
4849 switch (state) {
4850 case FLUSH_DELAYED_ITEMS_NR:
4851 case FLUSH_DELAYED_ITEMS:
4852 if (state == FLUSH_DELAYED_ITEMS_NR)
4853 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4854 else
4855 nr = -1;
4856
4857 trans = btrfs_join_transaction(root);
4858 if (IS_ERR(trans)) {
4859 ret = PTR_ERR(trans);
4860 break;
4861 }
4862 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4863 btrfs_end_transaction(trans);
4864 break;
4865 case FLUSH_DELALLOC:
4866 case FLUSH_DELALLOC_WAIT:
4867 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4868 state == FLUSH_DELALLOC_WAIT);
4869 break;
4870 case ALLOC_CHUNK:
4871 trans = btrfs_join_transaction(root);
4872 if (IS_ERR(trans)) {
4873 ret = PTR_ERR(trans);
4874 break;
4875 }
4876 ret = do_chunk_alloc(trans, fs_info,
4877 btrfs_get_alloc_profile(root, 0),
4878 CHUNK_ALLOC_NO_FORCE);
4879 btrfs_end_transaction(trans);
4880 if (ret > 0 || ret == -ENOSPC)
4881 ret = 0;
4882 break;
4883 case COMMIT_TRANS:
4884 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4885 break;
4886 default:
4887 ret = -ENOSPC;
4888 break;
4889 }
4890
4891 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4892 orig_bytes, state, ret);
4893 return ret;
4894}
4895
4896static inline u64
4897btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4898 struct btrfs_space_info *space_info)
4899{
4900 struct reserve_ticket *ticket;
4901 u64 used;
4902 u64 expected;
4903 u64 to_reclaim = 0;
4904
4905 list_for_each_entry(ticket, &space_info->tickets, list)
4906 to_reclaim += ticket->bytes;
4907 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4908 to_reclaim += ticket->bytes;
4909 if (to_reclaim)
4910 return to_reclaim;
4911
4912 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4913 if (can_overcommit(root, space_info, to_reclaim,
4914 BTRFS_RESERVE_FLUSH_ALL))
4915 return 0;
4916
4917 used = space_info->bytes_used + space_info->bytes_reserved +
4918 space_info->bytes_pinned + space_info->bytes_readonly +
4919 space_info->bytes_may_use;
4920 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4921 expected = div_factor_fine(space_info->total_bytes, 95);
4922 else
4923 expected = div_factor_fine(space_info->total_bytes, 90);
4924
4925 if (used > expected)
4926 to_reclaim = used - expected;
4927 else
4928 to_reclaim = 0;
4929 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4930 space_info->bytes_reserved);
4931 return to_reclaim;
4932}
4933
4934static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4935 struct btrfs_root *root, u64 used)
4936{
4937 struct btrfs_fs_info *fs_info = root->fs_info;
4938 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4939
4940 /* If we're just plain full then async reclaim just slows us down. */
4941 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4942 return 0;
4943
4944 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4945 return 0;
4946
4947 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4948 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4949}
4950
4951static void wake_all_tickets(struct list_head *head)
4952{
4953 struct reserve_ticket *ticket;
4954
4955 while (!list_empty(head)) {
4956 ticket = list_first_entry(head, struct reserve_ticket, list);
4957 list_del_init(&ticket->list);
4958 ticket->error = -ENOSPC;
4959 wake_up(&ticket->wait);
4960 }
4961}
4962
4963/*
4964 * This is for normal flushers, we can wait all goddamned day if we want to. We
4965 * will loop and continuously try to flush as long as we are making progress.
4966 * We count progress as clearing off tickets each time we have to loop.
4967 */
4968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4969{
4970 struct btrfs_fs_info *fs_info;
4971 struct btrfs_space_info *space_info;
4972 u64 to_reclaim;
4973 int flush_state;
4974 int commit_cycles = 0;
4975 u64 last_tickets_id;
4976
4977 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4978 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4979
4980 spin_lock(&space_info->lock);
4981 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4982 space_info);
4983 if (!to_reclaim) {
4984 space_info->flush = 0;
4985 spin_unlock(&space_info->lock);
4986 return;
4987 }
4988 last_tickets_id = space_info->tickets_id;
4989 spin_unlock(&space_info->lock);
4990
4991 flush_state = FLUSH_DELAYED_ITEMS_NR;
4992 do {
4993 struct reserve_ticket *ticket;
4994 int ret;
4995
4996 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4997 to_reclaim, flush_state);
4998 spin_lock(&space_info->lock);
4999 if (list_empty(&space_info->tickets)) {
5000 space_info->flush = 0;
5001 spin_unlock(&space_info->lock);
5002 return;
5003 }
5004 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5005 space_info);
5006 ticket = list_first_entry(&space_info->tickets,
5007 struct reserve_ticket, list);
5008 if (last_tickets_id == space_info->tickets_id) {
5009 flush_state++;
5010 } else {
5011 last_tickets_id = space_info->tickets_id;
5012 flush_state = FLUSH_DELAYED_ITEMS_NR;
5013 if (commit_cycles)
5014 commit_cycles--;
5015 }
5016
5017 if (flush_state > COMMIT_TRANS) {
5018 commit_cycles++;
5019 if (commit_cycles > 2) {
5020 wake_all_tickets(&space_info->tickets);
5021 space_info->flush = 0;
5022 } else {
5023 flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 }
5025 }
5026 spin_unlock(&space_info->lock);
5027 } while (flush_state <= COMMIT_TRANS);
5028}
5029
5030void btrfs_init_async_reclaim_work(struct work_struct *work)
5031{
5032 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5033}
5034
5035static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5036 struct btrfs_space_info *space_info,
5037 struct reserve_ticket *ticket)
5038{
5039 u64 to_reclaim;
5040 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5041
5042 spin_lock(&space_info->lock);
5043 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5044 space_info);
5045 if (!to_reclaim) {
5046 spin_unlock(&space_info->lock);
5047 return;
5048 }
5049 spin_unlock(&space_info->lock);
5050
5051 do {
5052 flush_space(fs_info->fs_root, space_info, to_reclaim,
5053 to_reclaim, flush_state);
5054 flush_state++;
5055 spin_lock(&space_info->lock);
5056 if (ticket->bytes == 0) {
5057 spin_unlock(&space_info->lock);
5058 return;
5059 }
5060 spin_unlock(&space_info->lock);
5061
5062 /*
5063 * Priority flushers can't wait on delalloc without
5064 * deadlocking.
5065 */
5066 if (flush_state == FLUSH_DELALLOC ||
5067 flush_state == FLUSH_DELALLOC_WAIT)
5068 flush_state = ALLOC_CHUNK;
5069 } while (flush_state < COMMIT_TRANS);
5070}
5071
5072static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5073 struct btrfs_space_info *space_info,
5074 struct reserve_ticket *ticket, u64 orig_bytes)
5075
5076{
5077 DEFINE_WAIT(wait);
5078 int ret = 0;
5079
5080 spin_lock(&space_info->lock);
5081 while (ticket->bytes > 0 && ticket->error == 0) {
5082 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5083 if (ret) {
5084 ret = -EINTR;
5085 break;
5086 }
5087 spin_unlock(&space_info->lock);
5088
5089 schedule();
5090
5091 finish_wait(&ticket->wait, &wait);
5092 spin_lock(&space_info->lock);
5093 }
5094 if (!ret)
5095 ret = ticket->error;
5096 if (!list_empty(&ticket->list))
5097 list_del_init(&ticket->list);
5098 if (ticket->bytes && ticket->bytes < orig_bytes) {
5099 u64 num_bytes = orig_bytes - ticket->bytes;
5100 space_info->bytes_may_use -= num_bytes;
5101 trace_btrfs_space_reservation(fs_info, "space_info",
5102 space_info->flags, num_bytes, 0);
5103 }
5104 spin_unlock(&space_info->lock);
5105
5106 return ret;
5107}
5108
5109/**
5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5111 * @root - the root we're allocating for
5112 * @space_info - the space info we want to allocate from
5113 * @orig_bytes - the number of bytes we want
5114 * @flush - whether or not we can flush to make our reservation
5115 *
5116 * This will reserve orig_bytes number of bytes from the space info associated
5117 * with the block_rsv. If there is not enough space it will make an attempt to
5118 * flush out space to make room. It will do this by flushing delalloc if
5119 * possible or committing the transaction. If flush is 0 then no attempts to
5120 * regain reservations will be made and this will fail if there is not enough
5121 * space already.
5122 */
5123static int __reserve_metadata_bytes(struct btrfs_root *root,
5124 struct btrfs_space_info *space_info,
5125 u64 orig_bytes,
5126 enum btrfs_reserve_flush_enum flush)
5127{
5128 struct btrfs_fs_info *fs_info = root->fs_info;
5129 struct reserve_ticket ticket;
5130 u64 used;
5131 int ret = 0;
5132
5133 ASSERT(orig_bytes);
5134 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5135
5136 spin_lock(&space_info->lock);
5137 ret = -ENOSPC;
5138 used = space_info->bytes_used + space_info->bytes_reserved +
5139 space_info->bytes_pinned + space_info->bytes_readonly +
5140 space_info->bytes_may_use;
5141
5142 /*
5143 * If we have enough space then hooray, make our reservation and carry
5144 * on. If not see if we can overcommit, and if we can, hooray carry on.
5145 * If not things get more complicated.
5146 */
5147 if (used + orig_bytes <= space_info->total_bytes) {
5148 space_info->bytes_may_use += orig_bytes;
5149 trace_btrfs_space_reservation(fs_info, "space_info",
5150 space_info->flags, orig_bytes, 1);
5151 ret = 0;
5152 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5153 space_info->bytes_may_use += orig_bytes;
5154 trace_btrfs_space_reservation(fs_info, "space_info",
5155 space_info->flags, orig_bytes, 1);
5156 ret = 0;
5157 }
5158
5159 /*
5160 * If we couldn't make a reservation then setup our reservation ticket
5161 * and kick the async worker if it's not already running.
5162 *
5163 * If we are a priority flusher then we just need to add our ticket to
5164 * the list and we will do our own flushing further down.
5165 */
5166 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5167 ticket.bytes = orig_bytes;
5168 ticket.error = 0;
5169 init_waitqueue_head(&ticket.wait);
5170 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5171 list_add_tail(&ticket.list, &space_info->tickets);
5172 if (!space_info->flush) {
5173 space_info->flush = 1;
5174 trace_btrfs_trigger_flush(fs_info,
5175 space_info->flags,
5176 orig_bytes, flush,
5177 "enospc");
5178 queue_work(system_unbound_wq,
5179 &root->fs_info->async_reclaim_work);
5180 }
5181 } else {
5182 list_add_tail(&ticket.list,
5183 &space_info->priority_tickets);
5184 }
5185 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5186 used += orig_bytes;
5187 /*
5188 * We will do the space reservation dance during log replay,
5189 * which means we won't have fs_info->fs_root set, so don't do
5190 * the async reclaim as we will panic.
5191 */
5192 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5193 need_do_async_reclaim(space_info, root, used) &&
5194 !work_busy(&fs_info->async_reclaim_work)) {
5195 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5196 orig_bytes, flush, "preempt");
5197 queue_work(system_unbound_wq,
5198 &fs_info->async_reclaim_work);
5199 }
5200 }
5201 spin_unlock(&space_info->lock);
5202 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5203 return ret;
5204
5205 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5206 return wait_reserve_ticket(fs_info, space_info, &ticket,
5207 orig_bytes);
5208
5209 ret = 0;
5210 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5211 spin_lock(&space_info->lock);
5212 if (ticket.bytes) {
5213 if (ticket.bytes < orig_bytes) {
5214 u64 num_bytes = orig_bytes - ticket.bytes;
5215 space_info->bytes_may_use -= num_bytes;
5216 trace_btrfs_space_reservation(fs_info, "space_info",
5217 space_info->flags,
5218 num_bytes, 0);
5219
5220 }
5221 list_del_init(&ticket.list);
5222 ret = -ENOSPC;
5223 }
5224 spin_unlock(&space_info->lock);
5225 ASSERT(list_empty(&ticket.list));
5226 return ret;
5227}
5228
5229/**
5230 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5231 * @root - the root we're allocating for
5232 * @block_rsv - the block_rsv we're allocating for
5233 * @orig_bytes - the number of bytes we want
5234 * @flush - whether or not we can flush to make our reservation
5235 *
5236 * This will reserve orgi_bytes number of bytes from the space info associated
5237 * with the block_rsv. If there is not enough space it will make an attempt to
5238 * flush out space to make room. It will do this by flushing delalloc if
5239 * possible or committing the transaction. If flush is 0 then no attempts to
5240 * regain reservations will be made and this will fail if there is not enough
5241 * space already.
5242 */
5243static int reserve_metadata_bytes(struct btrfs_root *root,
5244 struct btrfs_block_rsv *block_rsv,
5245 u64 orig_bytes,
5246 enum btrfs_reserve_flush_enum flush)
5247{
5248 struct btrfs_fs_info *fs_info = root->fs_info;
5249 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5250 int ret;
5251
5252 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5253 flush);
5254 if (ret == -ENOSPC &&
5255 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5256 if (block_rsv != global_rsv &&
5257 !block_rsv_use_bytes(global_rsv, orig_bytes))
5258 ret = 0;
5259 }
5260 if (ret == -ENOSPC)
5261 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5262 block_rsv->space_info->flags,
5263 orig_bytes, 1);
5264 return ret;
5265}
5266
5267static struct btrfs_block_rsv *get_block_rsv(
5268 const struct btrfs_trans_handle *trans,
5269 const struct btrfs_root *root)
5270{
5271 struct btrfs_fs_info *fs_info = root->fs_info;
5272 struct btrfs_block_rsv *block_rsv = NULL;
5273
5274 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5275 (root == fs_info->csum_root && trans->adding_csums) ||
5276 (root == fs_info->uuid_root))
5277 block_rsv = trans->block_rsv;
5278
5279 if (!block_rsv)
5280 block_rsv = root->block_rsv;
5281
5282 if (!block_rsv)
5283 block_rsv = &fs_info->empty_block_rsv;
5284
5285 return block_rsv;
5286}
5287
5288static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5289 u64 num_bytes)
5290{
5291 int ret = -ENOSPC;
5292 spin_lock(&block_rsv->lock);
5293 if (block_rsv->reserved >= num_bytes) {
5294 block_rsv->reserved -= num_bytes;
5295 if (block_rsv->reserved < block_rsv->size)
5296 block_rsv->full = 0;
5297 ret = 0;
5298 }
5299 spin_unlock(&block_rsv->lock);
5300 return ret;
5301}
5302
5303static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5304 u64 num_bytes, int update_size)
5305{
5306 spin_lock(&block_rsv->lock);
5307 block_rsv->reserved += num_bytes;
5308 if (update_size)
5309 block_rsv->size += num_bytes;
5310 else if (block_rsv->reserved >= block_rsv->size)
5311 block_rsv->full = 1;
5312 spin_unlock(&block_rsv->lock);
5313}
5314
5315int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5316 struct btrfs_block_rsv *dest, u64 num_bytes,
5317 int min_factor)
5318{
5319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5320 u64 min_bytes;
5321
5322 if (global_rsv->space_info != dest->space_info)
5323 return -ENOSPC;
5324
5325 spin_lock(&global_rsv->lock);
5326 min_bytes = div_factor(global_rsv->size, min_factor);
5327 if (global_rsv->reserved < min_bytes + num_bytes) {
5328 spin_unlock(&global_rsv->lock);
5329 return -ENOSPC;
5330 }
5331 global_rsv->reserved -= num_bytes;
5332 if (global_rsv->reserved < global_rsv->size)
5333 global_rsv->full = 0;
5334 spin_unlock(&global_rsv->lock);
5335
5336 block_rsv_add_bytes(dest, num_bytes, 1);
5337 return 0;
5338}
5339
5340/*
5341 * This is for space we already have accounted in space_info->bytes_may_use, so
5342 * basically when we're returning space from block_rsv's.
5343 */
5344static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5345 struct btrfs_space_info *space_info,
5346 u64 num_bytes)
5347{
5348 struct reserve_ticket *ticket;
5349 struct list_head *head;
5350 u64 used;
5351 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5352 bool check_overcommit = false;
5353
5354 spin_lock(&space_info->lock);
5355 head = &space_info->priority_tickets;
5356
5357 /*
5358 * If we are over our limit then we need to check and see if we can
5359 * overcommit, and if we can't then we just need to free up our space
5360 * and not satisfy any requests.
5361 */
5362 used = space_info->bytes_used + space_info->bytes_reserved +
5363 space_info->bytes_pinned + space_info->bytes_readonly +
5364 space_info->bytes_may_use;
5365 if (used - num_bytes >= space_info->total_bytes)
5366 check_overcommit = true;
5367again:
5368 while (!list_empty(head) && num_bytes) {
5369 ticket = list_first_entry(head, struct reserve_ticket,
5370 list);
5371 /*
5372 * We use 0 bytes because this space is already reserved, so
5373 * adding the ticket space would be a double count.
5374 */
5375 if (check_overcommit &&
5376 !can_overcommit(fs_info->extent_root, space_info, 0,
5377 flush))
5378 break;
5379 if (num_bytes >= ticket->bytes) {
5380 list_del_init(&ticket->list);
5381 num_bytes -= ticket->bytes;
5382 ticket->bytes = 0;
5383 space_info->tickets_id++;
5384 wake_up(&ticket->wait);
5385 } else {
5386 ticket->bytes -= num_bytes;
5387 num_bytes = 0;
5388 }
5389 }
5390
5391 if (num_bytes && head == &space_info->priority_tickets) {
5392 head = &space_info->tickets;
5393 flush = BTRFS_RESERVE_FLUSH_ALL;
5394 goto again;
5395 }
5396 space_info->bytes_may_use -= num_bytes;
5397 trace_btrfs_space_reservation(fs_info, "space_info",
5398 space_info->flags, num_bytes, 0);
5399 spin_unlock(&space_info->lock);
5400}
5401
5402/*
5403 * This is for newly allocated space that isn't accounted in
5404 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5405 * we use this helper.
5406 */
5407static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5408 struct btrfs_space_info *space_info,
5409 u64 num_bytes)
5410{
5411 struct reserve_ticket *ticket;
5412 struct list_head *head = &space_info->priority_tickets;
5413
5414again:
5415 while (!list_empty(head) && num_bytes) {
5416 ticket = list_first_entry(head, struct reserve_ticket,
5417 list);
5418 if (num_bytes >= ticket->bytes) {
5419 trace_btrfs_space_reservation(fs_info, "space_info",
5420 space_info->flags,
5421 ticket->bytes, 1);
5422 list_del_init(&ticket->list);
5423 num_bytes -= ticket->bytes;
5424 space_info->bytes_may_use += ticket->bytes;
5425 ticket->bytes = 0;
5426 space_info->tickets_id++;
5427 wake_up(&ticket->wait);
5428 } else {
5429 trace_btrfs_space_reservation(fs_info, "space_info",
5430 space_info->flags,
5431 num_bytes, 1);
5432 space_info->bytes_may_use += num_bytes;
5433 ticket->bytes -= num_bytes;
5434 num_bytes = 0;
5435 }
5436 }
5437
5438 if (num_bytes && head == &space_info->priority_tickets) {
5439 head = &space_info->tickets;
5440 goto again;
5441 }
5442}
5443
5444static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5445 struct btrfs_block_rsv *block_rsv,
5446 struct btrfs_block_rsv *dest, u64 num_bytes)
5447{
5448 struct btrfs_space_info *space_info = block_rsv->space_info;
5449
5450 spin_lock(&block_rsv->lock);
5451 if (num_bytes == (u64)-1)
5452 num_bytes = block_rsv->size;
5453 block_rsv->size -= num_bytes;
5454 if (block_rsv->reserved >= block_rsv->size) {
5455 num_bytes = block_rsv->reserved - block_rsv->size;
5456 block_rsv->reserved = block_rsv->size;
5457 block_rsv->full = 1;
5458 } else {
5459 num_bytes = 0;
5460 }
5461 spin_unlock(&block_rsv->lock);
5462
5463 if (num_bytes > 0) {
5464 if (dest) {
5465 spin_lock(&dest->lock);
5466 if (!dest->full) {
5467 u64 bytes_to_add;
5468
5469 bytes_to_add = dest->size - dest->reserved;
5470 bytes_to_add = min(num_bytes, bytes_to_add);
5471 dest->reserved += bytes_to_add;
5472 if (dest->reserved >= dest->size)
5473 dest->full = 1;
5474 num_bytes -= bytes_to_add;
5475 }
5476 spin_unlock(&dest->lock);
5477 }
5478 if (num_bytes)
5479 space_info_add_old_bytes(fs_info, space_info,
5480 num_bytes);
5481 }
5482}
5483
5484int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5485 struct btrfs_block_rsv *dst, u64 num_bytes,
5486 int update_size)
5487{
5488 int ret;
5489
5490 ret = block_rsv_use_bytes(src, num_bytes);
5491 if (ret)
5492 return ret;
5493
5494 block_rsv_add_bytes(dst, num_bytes, update_size);
5495 return 0;
5496}
5497
5498void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5499{
5500 memset(rsv, 0, sizeof(*rsv));
5501 spin_lock_init(&rsv->lock);
5502 rsv->type = type;
5503}
5504
5505struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5506 unsigned short type)
5507{
5508 struct btrfs_block_rsv *block_rsv;
5509
5510 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5511 if (!block_rsv)
5512 return NULL;
5513
5514 btrfs_init_block_rsv(block_rsv, type);
5515 block_rsv->space_info = __find_space_info(fs_info,
5516 BTRFS_BLOCK_GROUP_METADATA);
5517 return block_rsv;
5518}
5519
5520void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5521 struct btrfs_block_rsv *rsv)
5522{
5523 if (!rsv)
5524 return;
5525 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5526 kfree(rsv);
5527}
5528
5529void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5530{
5531 kfree(rsv);
5532}
5533
5534int btrfs_block_rsv_add(struct btrfs_root *root,
5535 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5536 enum btrfs_reserve_flush_enum flush)
5537{
5538 int ret;
5539
5540 if (num_bytes == 0)
5541 return 0;
5542
5543 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5544 if (!ret) {
5545 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5546 return 0;
5547 }
5548
5549 return ret;
5550}
5551
5552int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5553{
5554 u64 num_bytes = 0;
5555 int ret = -ENOSPC;
5556
5557 if (!block_rsv)
5558 return 0;
5559
5560 spin_lock(&block_rsv->lock);
5561 num_bytes = div_factor(block_rsv->size, min_factor);
5562 if (block_rsv->reserved >= num_bytes)
5563 ret = 0;
5564 spin_unlock(&block_rsv->lock);
5565
5566 return ret;
5567}
5568
5569int btrfs_block_rsv_refill(struct btrfs_root *root,
5570 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5571 enum btrfs_reserve_flush_enum flush)
5572{
5573 u64 num_bytes = 0;
5574 int ret = -ENOSPC;
5575
5576 if (!block_rsv)
5577 return 0;
5578
5579 spin_lock(&block_rsv->lock);
5580 num_bytes = min_reserved;
5581 if (block_rsv->reserved >= num_bytes)
5582 ret = 0;
5583 else
5584 num_bytes -= block_rsv->reserved;
5585 spin_unlock(&block_rsv->lock);
5586
5587 if (!ret)
5588 return 0;
5589
5590 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5591 if (!ret) {
5592 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5593 return 0;
5594 }
5595
5596 return ret;
5597}
5598
5599void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5600 struct btrfs_block_rsv *block_rsv,
5601 u64 num_bytes)
5602{
5603 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5604
5605 if (global_rsv == block_rsv ||
5606 block_rsv->space_info != global_rsv->space_info)
5607 global_rsv = NULL;
5608 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5609}
5610
5611static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5612{
5613 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5614 struct btrfs_space_info *sinfo = block_rsv->space_info;
5615 u64 num_bytes;
5616
5617 /*
5618 * The global block rsv is based on the size of the extent tree, the
5619 * checksum tree and the root tree. If the fs is empty we want to set
5620 * it to a minimal amount for safety.
5621 */
5622 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5623 btrfs_root_used(&fs_info->csum_root->root_item) +
5624 btrfs_root_used(&fs_info->tree_root->root_item);
5625 num_bytes = max_t(u64, num_bytes, SZ_16M);
5626
5627 spin_lock(&sinfo->lock);
5628 spin_lock(&block_rsv->lock);
5629
5630 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5631
5632 if (block_rsv->reserved < block_rsv->size) {
5633 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5634 sinfo->bytes_reserved + sinfo->bytes_readonly +
5635 sinfo->bytes_may_use;
5636 if (sinfo->total_bytes > num_bytes) {
5637 num_bytes = sinfo->total_bytes - num_bytes;
5638 num_bytes = min(num_bytes,
5639 block_rsv->size - block_rsv->reserved);
5640 block_rsv->reserved += num_bytes;
5641 sinfo->bytes_may_use += num_bytes;
5642 trace_btrfs_space_reservation(fs_info, "space_info",
5643 sinfo->flags, num_bytes,
5644 1);
5645 }
5646 } else if (block_rsv->reserved > block_rsv->size) {
5647 num_bytes = block_rsv->reserved - block_rsv->size;
5648 sinfo->bytes_may_use -= num_bytes;
5649 trace_btrfs_space_reservation(fs_info, "space_info",
5650 sinfo->flags, num_bytes, 0);
5651 block_rsv->reserved = block_rsv->size;
5652 }
5653
5654 if (block_rsv->reserved == block_rsv->size)
5655 block_rsv->full = 1;
5656 else
5657 block_rsv->full = 0;
5658
5659 spin_unlock(&block_rsv->lock);
5660 spin_unlock(&sinfo->lock);
5661}
5662
5663static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5664{
5665 struct btrfs_space_info *space_info;
5666
5667 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5668 fs_info->chunk_block_rsv.space_info = space_info;
5669
5670 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5671 fs_info->global_block_rsv.space_info = space_info;
5672 fs_info->delalloc_block_rsv.space_info = space_info;
5673 fs_info->trans_block_rsv.space_info = space_info;
5674 fs_info->empty_block_rsv.space_info = space_info;
5675 fs_info->delayed_block_rsv.space_info = space_info;
5676
5677 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5678 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5679 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5680 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5681 if (fs_info->quota_root)
5682 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5683 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5684
5685 update_global_block_rsv(fs_info);
5686}
5687
5688static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5689{
5690 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5691 (u64)-1);
5692 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5693 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5694 WARN_ON(fs_info->trans_block_rsv.size > 0);
5695 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5696 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5697 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5698 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5699 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5700}
5701
5702void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5703 struct btrfs_fs_info *fs_info)
5704{
5705 if (!trans->block_rsv)
5706 return;
5707
5708 if (!trans->bytes_reserved)
5709 return;
5710
5711 trace_btrfs_space_reservation(fs_info, "transaction",
5712 trans->transid, trans->bytes_reserved, 0);
5713 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5714 trans->bytes_reserved);
5715 trans->bytes_reserved = 0;
5716}
5717
5718/*
5719 * To be called after all the new block groups attached to the transaction
5720 * handle have been created (btrfs_create_pending_block_groups()).
5721 */
5722void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5723{
5724 struct btrfs_fs_info *fs_info = trans->fs_info;
5725
5726 if (!trans->chunk_bytes_reserved)
5727 return;
5728
5729 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5730
5731 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5732 trans->chunk_bytes_reserved);
5733 trans->chunk_bytes_reserved = 0;
5734}
5735
5736/* Can only return 0 or -ENOSPC */
5737int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5738 struct inode *inode)
5739{
5740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 /*
5743 * We always use trans->block_rsv here as we will have reserved space
5744 * for our orphan when starting the transaction, using get_block_rsv()
5745 * here will sometimes make us choose the wrong block rsv as we could be
5746 * doing a reloc inode for a non refcounted root.
5747 */
5748 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5750
5751 /*
5752 * We need to hold space in order to delete our orphan item once we've
5753 * added it, so this takes the reservation so we can release it later
5754 * when we are truly done with the orphan item.
5755 */
5756 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5757
5758 trace_btrfs_space_reservation(fs_info, "orphan",
5759 btrfs_ino(inode), num_bytes, 1);
5760 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5761}
5762
5763void btrfs_orphan_release_metadata(struct inode *inode)
5764{
5765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5766 struct btrfs_root *root = BTRFS_I(inode)->root;
5767 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5768
5769 trace_btrfs_space_reservation(fs_info, "orphan",
5770 btrfs_ino(inode), num_bytes, 0);
5771 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5772}
5773
5774/*
5775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5776 * root: the root of the parent directory
5777 * rsv: block reservation
5778 * items: the number of items that we need do reservation
5779 * qgroup_reserved: used to return the reserved size in qgroup
5780 *
5781 * This function is used to reserve the space for snapshot/subvolume
5782 * creation and deletion. Those operations are different with the
5783 * common file/directory operations, they change two fs/file trees
5784 * and root tree, the number of items that the qgroup reserves is
5785 * different with the free space reservation. So we can not use
5786 * the space reservation mechanism in start_transaction().
5787 */
5788int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5789 struct btrfs_block_rsv *rsv,
5790 int items,
5791 u64 *qgroup_reserved,
5792 bool use_global_rsv)
5793{
5794 u64 num_bytes;
5795 int ret;
5796 struct btrfs_fs_info *fs_info = root->fs_info;
5797 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5798
5799 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5800 /* One for parent inode, two for dir entries */
5801 num_bytes = 3 * fs_info->nodesize;
5802 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5803 if (ret)
5804 return ret;
5805 } else {
5806 num_bytes = 0;
5807 }
5808
5809 *qgroup_reserved = num_bytes;
5810
5811 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5812 rsv->space_info = __find_space_info(fs_info,
5813 BTRFS_BLOCK_GROUP_METADATA);
5814 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5815 BTRFS_RESERVE_FLUSH_ALL);
5816
5817 if (ret == -ENOSPC && use_global_rsv)
5818 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5819
5820 if (ret && *qgroup_reserved)
5821 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5822
5823 return ret;
5824}
5825
5826void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5827 struct btrfs_block_rsv *rsv,
5828 u64 qgroup_reserved)
5829{
5830 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5831}
5832
5833/**
5834 * drop_outstanding_extent - drop an outstanding extent
5835 * @inode: the inode we're dropping the extent for
5836 * @num_bytes: the number of bytes we're releasing.
5837 *
5838 * This is called when we are freeing up an outstanding extent, either called
5839 * after an error or after an extent is written. This will return the number of
5840 * reserved extents that need to be freed. This must be called with
5841 * BTRFS_I(inode)->lock held.
5842 */
5843static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5844{
5845 unsigned drop_inode_space = 0;
5846 unsigned dropped_extents = 0;
5847 unsigned num_extents = 0;
5848
5849 num_extents = (unsigned)div64_u64(num_bytes +
5850 BTRFS_MAX_EXTENT_SIZE - 1,
5851 BTRFS_MAX_EXTENT_SIZE);
5852 ASSERT(num_extents);
5853 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5854 BTRFS_I(inode)->outstanding_extents -= num_extents;
5855
5856 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5857 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5858 &BTRFS_I(inode)->runtime_flags))
5859 drop_inode_space = 1;
5860
5861 /*
5862 * If we have more or the same amount of outstanding extents than we have
5863 * reserved then we need to leave the reserved extents count alone.
5864 */
5865 if (BTRFS_I(inode)->outstanding_extents >=
5866 BTRFS_I(inode)->reserved_extents)
5867 return drop_inode_space;
5868
5869 dropped_extents = BTRFS_I(inode)->reserved_extents -
5870 BTRFS_I(inode)->outstanding_extents;
5871 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5872 return dropped_extents + drop_inode_space;
5873}
5874
5875/**
5876 * calc_csum_metadata_size - return the amount of metadata space that must be
5877 * reserved/freed for the given bytes.
5878 * @inode: the inode we're manipulating
5879 * @num_bytes: the number of bytes in question
5880 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5881 *
5882 * This adjusts the number of csum_bytes in the inode and then returns the
5883 * correct amount of metadata that must either be reserved or freed. We
5884 * calculate how many checksums we can fit into one leaf and then divide the
5885 * number of bytes that will need to be checksumed by this value to figure out
5886 * how many checksums will be required. If we are adding bytes then the number
5887 * may go up and we will return the number of additional bytes that must be
5888 * reserved. If it is going down we will return the number of bytes that must
5889 * be freed.
5890 *
5891 * This must be called with BTRFS_I(inode)->lock held.
5892 */
5893static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5894 int reserve)
5895{
5896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5897 u64 old_csums, num_csums;
5898
5899 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5900 BTRFS_I(inode)->csum_bytes == 0)
5901 return 0;
5902
5903 old_csums = btrfs_csum_bytes_to_leaves(fs_info,
5904 BTRFS_I(inode)->csum_bytes);
5905 if (reserve)
5906 BTRFS_I(inode)->csum_bytes += num_bytes;
5907 else
5908 BTRFS_I(inode)->csum_bytes -= num_bytes;
5909 num_csums = btrfs_csum_bytes_to_leaves(fs_info,
5910 BTRFS_I(inode)->csum_bytes);
5911
5912 /* No change, no need to reserve more */
5913 if (old_csums == num_csums)
5914 return 0;
5915
5916 if (reserve)
5917 return btrfs_calc_trans_metadata_size(fs_info,
5918 num_csums - old_csums);
5919
5920 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5921}
5922
5923int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5924{
5925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5926 struct btrfs_root *root = BTRFS_I(inode)->root;
5927 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5928 u64 to_reserve = 0;
5929 u64 csum_bytes;
5930 unsigned nr_extents = 0;
5931 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5932 int ret = 0;
5933 bool delalloc_lock = true;
5934 u64 to_free = 0;
5935 unsigned dropped;
5936 bool release_extra = false;
5937
5938 /* If we are a free space inode we need to not flush since we will be in
5939 * the middle of a transaction commit. We also don't need the delalloc
5940 * mutex since we won't race with anybody. We need this mostly to make
5941 * lockdep shut its filthy mouth.
5942 *
5943 * If we have a transaction open (can happen if we call truncate_block
5944 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5945 */
5946 if (btrfs_is_free_space_inode(inode)) {
5947 flush = BTRFS_RESERVE_NO_FLUSH;
5948 delalloc_lock = false;
5949 } else if (current->journal_info) {
5950 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5951 }
5952
5953 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5954 btrfs_transaction_in_commit(fs_info))
5955 schedule_timeout(1);
5956
5957 if (delalloc_lock)
5958 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5959
5960 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5961
5962 spin_lock(&BTRFS_I(inode)->lock);
5963 nr_extents = (unsigned)div64_u64(num_bytes +
5964 BTRFS_MAX_EXTENT_SIZE - 1,
5965 BTRFS_MAX_EXTENT_SIZE);
5966 BTRFS_I(inode)->outstanding_extents += nr_extents;
5967
5968 nr_extents = 0;
5969 if (BTRFS_I(inode)->outstanding_extents >
5970 BTRFS_I(inode)->reserved_extents)
5971 nr_extents += BTRFS_I(inode)->outstanding_extents -
5972 BTRFS_I(inode)->reserved_extents;
5973
5974 /* We always want to reserve a slot for updating the inode. */
5975 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5976 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5977 csum_bytes = BTRFS_I(inode)->csum_bytes;
5978 spin_unlock(&BTRFS_I(inode)->lock);
5979
5980 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5981 ret = btrfs_qgroup_reserve_meta(root,
5982 nr_extents * fs_info->nodesize);
5983 if (ret)
5984 goto out_fail;
5985 }
5986
5987 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5988 if (unlikely(ret)) {
5989 btrfs_qgroup_free_meta(root,
5990 nr_extents * fs_info->nodesize);
5991 goto out_fail;
5992 }
5993
5994 spin_lock(&BTRFS_I(inode)->lock);
5995 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5996 &BTRFS_I(inode)->runtime_flags)) {
5997 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
5998 release_extra = true;
5999 }
6000 BTRFS_I(inode)->reserved_extents += nr_extents;
6001 spin_unlock(&BTRFS_I(inode)->lock);
6002
6003 if (delalloc_lock)
6004 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6005
6006 if (to_reserve)
6007 trace_btrfs_space_reservation(fs_info, "delalloc",
6008 btrfs_ino(inode), to_reserve, 1);
6009 if (release_extra)
6010 btrfs_block_rsv_release(fs_info, block_rsv,
6011 btrfs_calc_trans_metadata_size(fs_info, 1));
6012 return 0;
6013
6014out_fail:
6015 spin_lock(&BTRFS_I(inode)->lock);
6016 dropped = drop_outstanding_extent(inode, num_bytes);
6017 /*
6018 * If the inodes csum_bytes is the same as the original
6019 * csum_bytes then we know we haven't raced with any free()ers
6020 * so we can just reduce our inodes csum bytes and carry on.
6021 */
6022 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6023 calc_csum_metadata_size(inode, num_bytes, 0);
6024 } else {
6025 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6026 u64 bytes;
6027
6028 /*
6029 * This is tricky, but first we need to figure out how much we
6030 * freed from any free-ers that occurred during this
6031 * reservation, so we reset ->csum_bytes to the csum_bytes
6032 * before we dropped our lock, and then call the free for the
6033 * number of bytes that were freed while we were trying our
6034 * reservation.
6035 */
6036 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6037 BTRFS_I(inode)->csum_bytes = csum_bytes;
6038 to_free = calc_csum_metadata_size(inode, bytes, 0);
6039
6040
6041 /*
6042 * Now we need to see how much we would have freed had we not
6043 * been making this reservation and our ->csum_bytes were not
6044 * artificially inflated.
6045 */
6046 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6047 bytes = csum_bytes - orig_csum_bytes;
6048 bytes = calc_csum_metadata_size(inode, bytes, 0);
6049
6050 /*
6051 * Now reset ->csum_bytes to what it should be. If bytes is
6052 * more than to_free then we would have freed more space had we
6053 * not had an artificially high ->csum_bytes, so we need to free
6054 * the remainder. If bytes is the same or less then we don't
6055 * need to do anything, the other free-ers did the correct
6056 * thing.
6057 */
6058 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6059 if (bytes > to_free)
6060 to_free = bytes - to_free;
6061 else
6062 to_free = 0;
6063 }
6064 spin_unlock(&BTRFS_I(inode)->lock);
6065 if (dropped)
6066 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6067
6068 if (to_free) {
6069 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6070 trace_btrfs_space_reservation(fs_info, "delalloc",
6071 btrfs_ino(inode), to_free, 0);
6072 }
6073 if (delalloc_lock)
6074 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6075 return ret;
6076}
6077
6078/**
6079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6080 * @inode: the inode to release the reservation for
6081 * @num_bytes: the number of bytes we're releasing
6082 *
6083 * This will release the metadata reservation for an inode. This can be called
6084 * once we complete IO for a given set of bytes to release their metadata
6085 * reservations.
6086 */
6087void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6088{
6089 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6090 u64 to_free = 0;
6091 unsigned dropped;
6092
6093 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6094 spin_lock(&BTRFS_I(inode)->lock);
6095 dropped = drop_outstanding_extent(inode, num_bytes);
6096
6097 if (num_bytes)
6098 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6099 spin_unlock(&BTRFS_I(inode)->lock);
6100 if (dropped > 0)
6101 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6102
6103 if (btrfs_is_testing(fs_info))
6104 return;
6105
6106 trace_btrfs_space_reservation(fs_info, "delalloc",
6107 btrfs_ino(inode), to_free, 0);
6108
6109 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6110}
6111
6112/**
6113 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6114 * delalloc
6115 * @inode: inode we're writing to
6116 * @start: start range we are writing to
6117 * @len: how long the range we are writing to
6118 *
6119 * This will do the following things
6120 *
6121 * o reserve space in data space info for num bytes
6122 * and reserve precious corresponding qgroup space
6123 * (Done in check_data_free_space)
6124 *
6125 * o reserve space for metadata space, based on the number of outstanding
6126 * extents and how much csums will be needed
6127 * also reserve metadata space in a per root over-reserve method.
6128 * o add to the inodes->delalloc_bytes
6129 * o add it to the fs_info's delalloc inodes list.
6130 * (Above 3 all done in delalloc_reserve_metadata)
6131 *
6132 * Return 0 for success
6133 * Return <0 for error(-ENOSPC or -EQUOT)
6134 */
6135int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6136{
6137 int ret;
6138
6139 ret = btrfs_check_data_free_space(inode, start, len);
6140 if (ret < 0)
6141 return ret;
6142 ret = btrfs_delalloc_reserve_metadata(inode, len);
6143 if (ret < 0)
6144 btrfs_free_reserved_data_space(inode, start, len);
6145 return ret;
6146}
6147
6148/**
6149 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6150 * @inode: inode we're releasing space for
6151 * @start: start position of the space already reserved
6152 * @len: the len of the space already reserved
6153 *
6154 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6155 * called in the case that we don't need the metadata AND data reservations
6156 * anymore. So if there is an error or we insert an inline extent.
6157 *
6158 * This function will release the metadata space that was not used and will
6159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6160 * list if there are no delalloc bytes left.
6161 * Also it will handle the qgroup reserved space.
6162 */
6163void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6164{
6165 btrfs_delalloc_release_metadata(inode, len);
6166 btrfs_free_reserved_data_space(inode, start, len);
6167}
6168
6169static int update_block_group(struct btrfs_trans_handle *trans,
6170 struct btrfs_fs_info *info, u64 bytenr,
6171 u64 num_bytes, int alloc)
6172{
6173 struct btrfs_block_group_cache *cache = NULL;
6174 u64 total = num_bytes;
6175 u64 old_val;
6176 u64 byte_in_group;
6177 int factor;
6178
6179 /* block accounting for super block */
6180 spin_lock(&info->delalloc_root_lock);
6181 old_val = btrfs_super_bytes_used(info->super_copy);
6182 if (alloc)
6183 old_val += num_bytes;
6184 else
6185 old_val -= num_bytes;
6186 btrfs_set_super_bytes_used(info->super_copy, old_val);
6187 spin_unlock(&info->delalloc_root_lock);
6188
6189 while (total) {
6190 cache = btrfs_lookup_block_group(info, bytenr);
6191 if (!cache)
6192 return -ENOENT;
6193 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6194 BTRFS_BLOCK_GROUP_RAID1 |
6195 BTRFS_BLOCK_GROUP_RAID10))
6196 factor = 2;
6197 else
6198 factor = 1;
6199 /*
6200 * If this block group has free space cache written out, we
6201 * need to make sure to load it if we are removing space. This
6202 * is because we need the unpinning stage to actually add the
6203 * space back to the block group, otherwise we will leak space.
6204 */
6205 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6206 cache_block_group(cache, 1);
6207
6208 byte_in_group = bytenr - cache->key.objectid;
6209 WARN_ON(byte_in_group > cache->key.offset);
6210
6211 spin_lock(&cache->space_info->lock);
6212 spin_lock(&cache->lock);
6213
6214 if (btrfs_test_opt(info, SPACE_CACHE) &&
6215 cache->disk_cache_state < BTRFS_DC_CLEAR)
6216 cache->disk_cache_state = BTRFS_DC_CLEAR;
6217
6218 old_val = btrfs_block_group_used(&cache->item);
6219 num_bytes = min(total, cache->key.offset - byte_in_group);
6220 if (alloc) {
6221 old_val += num_bytes;
6222 btrfs_set_block_group_used(&cache->item, old_val);
6223 cache->reserved -= num_bytes;
6224 cache->space_info->bytes_reserved -= num_bytes;
6225 cache->space_info->bytes_used += num_bytes;
6226 cache->space_info->disk_used += num_bytes * factor;
6227 spin_unlock(&cache->lock);
6228 spin_unlock(&cache->space_info->lock);
6229 } else {
6230 old_val -= num_bytes;
6231 btrfs_set_block_group_used(&cache->item, old_val);
6232 cache->pinned += num_bytes;
6233 cache->space_info->bytes_pinned += num_bytes;
6234 cache->space_info->bytes_used -= num_bytes;
6235 cache->space_info->disk_used -= num_bytes * factor;
6236 spin_unlock(&cache->lock);
6237 spin_unlock(&cache->space_info->lock);
6238
6239 trace_btrfs_space_reservation(info, "pinned",
6240 cache->space_info->flags,
6241 num_bytes, 1);
6242 set_extent_dirty(info->pinned_extents,
6243 bytenr, bytenr + num_bytes - 1,
6244 GFP_NOFS | __GFP_NOFAIL);
6245 }
6246
6247 spin_lock(&trans->transaction->dirty_bgs_lock);
6248 if (list_empty(&cache->dirty_list)) {
6249 list_add_tail(&cache->dirty_list,
6250 &trans->transaction->dirty_bgs);
6251 trans->transaction->num_dirty_bgs++;
6252 btrfs_get_block_group(cache);
6253 }
6254 spin_unlock(&trans->transaction->dirty_bgs_lock);
6255
6256 /*
6257 * No longer have used bytes in this block group, queue it for
6258 * deletion. We do this after adding the block group to the
6259 * dirty list to avoid races between cleaner kthread and space
6260 * cache writeout.
6261 */
6262 if (!alloc && old_val == 0) {
6263 spin_lock(&info->unused_bgs_lock);
6264 if (list_empty(&cache->bg_list)) {
6265 btrfs_get_block_group(cache);
6266 list_add_tail(&cache->bg_list,
6267 &info->unused_bgs);
6268 }
6269 spin_unlock(&info->unused_bgs_lock);
6270 }
6271
6272 btrfs_put_block_group(cache);
6273 total -= num_bytes;
6274 bytenr += num_bytes;
6275 }
6276 return 0;
6277}
6278
6279static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6280{
6281 struct btrfs_block_group_cache *cache;
6282 u64 bytenr;
6283
6284 spin_lock(&fs_info->block_group_cache_lock);
6285 bytenr = fs_info->first_logical_byte;
6286 spin_unlock(&fs_info->block_group_cache_lock);
6287
6288 if (bytenr < (u64)-1)
6289 return bytenr;
6290
6291 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6292 if (!cache)
6293 return 0;
6294
6295 bytenr = cache->key.objectid;
6296 btrfs_put_block_group(cache);
6297
6298 return bytenr;
6299}
6300
6301static int pin_down_extent(struct btrfs_fs_info *fs_info,
6302 struct btrfs_block_group_cache *cache,
6303 u64 bytenr, u64 num_bytes, int reserved)
6304{
6305 spin_lock(&cache->space_info->lock);
6306 spin_lock(&cache->lock);
6307 cache->pinned += num_bytes;
6308 cache->space_info->bytes_pinned += num_bytes;
6309 if (reserved) {
6310 cache->reserved -= num_bytes;
6311 cache->space_info->bytes_reserved -= num_bytes;
6312 }
6313 spin_unlock(&cache->lock);
6314 spin_unlock(&cache->space_info->lock);
6315
6316 trace_btrfs_space_reservation(fs_info, "pinned",
6317 cache->space_info->flags, num_bytes, 1);
6318 set_extent_dirty(fs_info->pinned_extents, bytenr,
6319 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6320 return 0;
6321}
6322
6323/*
6324 * this function must be called within transaction
6325 */
6326int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6327 u64 bytenr, u64 num_bytes, int reserved)
6328{
6329 struct btrfs_block_group_cache *cache;
6330
6331 cache = btrfs_lookup_block_group(fs_info, bytenr);
6332 BUG_ON(!cache); /* Logic error */
6333
6334 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6335
6336 btrfs_put_block_group(cache);
6337 return 0;
6338}
6339
6340/*
6341 * this function must be called within transaction
6342 */
6343int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6344 u64 bytenr, u64 num_bytes)
6345{
6346 struct btrfs_block_group_cache *cache;
6347 int ret;
6348
6349 cache = btrfs_lookup_block_group(fs_info, bytenr);
6350 if (!cache)
6351 return -EINVAL;
6352
6353 /*
6354 * pull in the free space cache (if any) so that our pin
6355 * removes the free space from the cache. We have load_only set
6356 * to one because the slow code to read in the free extents does check
6357 * the pinned extents.
6358 */
6359 cache_block_group(cache, 1);
6360
6361 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6362
6363 /* remove us from the free space cache (if we're there at all) */
6364 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6365 btrfs_put_block_group(cache);
6366 return ret;
6367}
6368
6369static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6370 u64 start, u64 num_bytes)
6371{
6372 int ret;
6373 struct btrfs_block_group_cache *block_group;
6374 struct btrfs_caching_control *caching_ctl;
6375
6376 block_group = btrfs_lookup_block_group(fs_info, start);
6377 if (!block_group)
6378 return -EINVAL;
6379
6380 cache_block_group(block_group, 0);
6381 caching_ctl = get_caching_control(block_group);
6382
6383 if (!caching_ctl) {
6384 /* Logic error */
6385 BUG_ON(!block_group_cache_done(block_group));
6386 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6387 } else {
6388 mutex_lock(&caching_ctl->mutex);
6389
6390 if (start >= caching_ctl->progress) {
6391 ret = add_excluded_extent(fs_info, start, num_bytes);
6392 } else if (start + num_bytes <= caching_ctl->progress) {
6393 ret = btrfs_remove_free_space(block_group,
6394 start, num_bytes);
6395 } else {
6396 num_bytes = caching_ctl->progress - start;
6397 ret = btrfs_remove_free_space(block_group,
6398 start, num_bytes);
6399 if (ret)
6400 goto out_lock;
6401
6402 num_bytes = (start + num_bytes) -
6403 caching_ctl->progress;
6404 start = caching_ctl->progress;
6405 ret = add_excluded_extent(fs_info, start, num_bytes);
6406 }
6407out_lock:
6408 mutex_unlock(&caching_ctl->mutex);
6409 put_caching_control(caching_ctl);
6410 }
6411 btrfs_put_block_group(block_group);
6412 return ret;
6413}
6414
6415int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6416 struct extent_buffer *eb)
6417{
6418 struct btrfs_file_extent_item *item;
6419 struct btrfs_key key;
6420 int found_type;
6421 int i;
6422
6423 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6424 return 0;
6425
6426 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6427 btrfs_item_key_to_cpu(eb, &key, i);
6428 if (key.type != BTRFS_EXTENT_DATA_KEY)
6429 continue;
6430 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6431 found_type = btrfs_file_extent_type(eb, item);
6432 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6433 continue;
6434 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6435 continue;
6436 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6437 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6438 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6439 }
6440
6441 return 0;
6442}
6443
6444static void
6445btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6446{
6447 atomic_inc(&bg->reservations);
6448}
6449
6450void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6451 const u64 start)
6452{
6453 struct btrfs_block_group_cache *bg;
6454
6455 bg = btrfs_lookup_block_group(fs_info, start);
6456 ASSERT(bg);
6457 if (atomic_dec_and_test(&bg->reservations))
6458 wake_up_atomic_t(&bg->reservations);
6459 btrfs_put_block_group(bg);
6460}
6461
6462static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6463{
6464 schedule();
6465 return 0;
6466}
6467
6468void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6469{
6470 struct btrfs_space_info *space_info = bg->space_info;
6471
6472 ASSERT(bg->ro);
6473
6474 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6475 return;
6476
6477 /*
6478 * Our block group is read only but before we set it to read only,
6479 * some task might have had allocated an extent from it already, but it
6480 * has not yet created a respective ordered extent (and added it to a
6481 * root's list of ordered extents).
6482 * Therefore wait for any task currently allocating extents, since the
6483 * block group's reservations counter is incremented while a read lock
6484 * on the groups' semaphore is held and decremented after releasing
6485 * the read access on that semaphore and creating the ordered extent.
6486 */
6487 down_write(&space_info->groups_sem);
6488 up_write(&space_info->groups_sem);
6489
6490 wait_on_atomic_t(&bg->reservations,
6491 btrfs_wait_bg_reservations_atomic_t,
6492 TASK_UNINTERRUPTIBLE);
6493}
6494
6495/**
6496 * btrfs_add_reserved_bytes - update the block_group and space info counters
6497 * @cache: The cache we are manipulating
6498 * @ram_bytes: The number of bytes of file content, and will be same to
6499 * @num_bytes except for the compress path.
6500 * @num_bytes: The number of bytes in question
6501 * @delalloc: The blocks are allocated for the delalloc write
6502 *
6503 * This is called by the allocator when it reserves space. If this is a
6504 * reservation and the block group has become read only we cannot make the
6505 * reservation and return -EAGAIN, otherwise this function always succeeds.
6506 */
6507static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6508 u64 ram_bytes, u64 num_bytes, int delalloc)
6509{
6510 struct btrfs_space_info *space_info = cache->space_info;
6511 int ret = 0;
6512
6513 spin_lock(&space_info->lock);
6514 spin_lock(&cache->lock);
6515 if (cache->ro) {
6516 ret = -EAGAIN;
6517 } else {
6518 cache->reserved += num_bytes;
6519 space_info->bytes_reserved += num_bytes;
6520
6521 trace_btrfs_space_reservation(cache->fs_info,
6522 "space_info", space_info->flags,
6523 ram_bytes, 0);
6524 space_info->bytes_may_use -= ram_bytes;
6525 if (delalloc)
6526 cache->delalloc_bytes += num_bytes;
6527 }
6528 spin_unlock(&cache->lock);
6529 spin_unlock(&space_info->lock);
6530 return ret;
6531}
6532
6533/**
6534 * btrfs_free_reserved_bytes - update the block_group and space info counters
6535 * @cache: The cache we are manipulating
6536 * @num_bytes: The number of bytes in question
6537 * @delalloc: The blocks are allocated for the delalloc write
6538 *
6539 * This is called by somebody who is freeing space that was never actually used
6540 * on disk. For example if you reserve some space for a new leaf in transaction
6541 * A and before transaction A commits you free that leaf, you call this with
6542 * reserve set to 0 in order to clear the reservation.
6543 */
6544
6545static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6546 u64 num_bytes, int delalloc)
6547{
6548 struct btrfs_space_info *space_info = cache->space_info;
6549 int ret = 0;
6550
6551 spin_lock(&space_info->lock);
6552 spin_lock(&cache->lock);
6553 if (cache->ro)
6554 space_info->bytes_readonly += num_bytes;
6555 cache->reserved -= num_bytes;
6556 space_info->bytes_reserved -= num_bytes;
6557
6558 if (delalloc)
6559 cache->delalloc_bytes -= num_bytes;
6560 spin_unlock(&cache->lock);
6561 spin_unlock(&space_info->lock);
6562 return ret;
6563}
6564void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6565 struct btrfs_fs_info *fs_info)
6566{
6567 struct btrfs_caching_control *next;
6568 struct btrfs_caching_control *caching_ctl;
6569 struct btrfs_block_group_cache *cache;
6570
6571 down_write(&fs_info->commit_root_sem);
6572
6573 list_for_each_entry_safe(caching_ctl, next,
6574 &fs_info->caching_block_groups, list) {
6575 cache = caching_ctl->block_group;
6576 if (block_group_cache_done(cache)) {
6577 cache->last_byte_to_unpin = (u64)-1;
6578 list_del_init(&caching_ctl->list);
6579 put_caching_control(caching_ctl);
6580 } else {
6581 cache->last_byte_to_unpin = caching_ctl->progress;
6582 }
6583 }
6584
6585 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6586 fs_info->pinned_extents = &fs_info->freed_extents[1];
6587 else
6588 fs_info->pinned_extents = &fs_info->freed_extents[0];
6589
6590 up_write(&fs_info->commit_root_sem);
6591
6592 update_global_block_rsv(fs_info);
6593}
6594
6595/*
6596 * Returns the free cluster for the given space info and sets empty_cluster to
6597 * what it should be based on the mount options.
6598 */
6599static struct btrfs_free_cluster *
6600fetch_cluster_info(struct btrfs_fs_info *fs_info,
6601 struct btrfs_space_info *space_info, u64 *empty_cluster)
6602{
6603 struct btrfs_free_cluster *ret = NULL;
6604 bool ssd = btrfs_test_opt(fs_info, SSD);
6605
6606 *empty_cluster = 0;
6607 if (btrfs_mixed_space_info(space_info))
6608 return ret;
6609
6610 if (ssd)
6611 *empty_cluster = SZ_2M;
6612 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6613 ret = &fs_info->meta_alloc_cluster;
6614 if (!ssd)
6615 *empty_cluster = SZ_64K;
6616 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6617 ret = &fs_info->data_alloc_cluster;
6618 }
6619
6620 return ret;
6621}
6622
6623static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6624 u64 start, u64 end,
6625 const bool return_free_space)
6626{
6627 struct btrfs_block_group_cache *cache = NULL;
6628 struct btrfs_space_info *space_info;
6629 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6630 struct btrfs_free_cluster *cluster = NULL;
6631 u64 len;
6632 u64 total_unpinned = 0;
6633 u64 empty_cluster = 0;
6634 bool readonly;
6635
6636 while (start <= end) {
6637 readonly = false;
6638 if (!cache ||
6639 start >= cache->key.objectid + cache->key.offset) {
6640 if (cache)
6641 btrfs_put_block_group(cache);
6642 total_unpinned = 0;
6643 cache = btrfs_lookup_block_group(fs_info, start);
6644 BUG_ON(!cache); /* Logic error */
6645
6646 cluster = fetch_cluster_info(fs_info,
6647 cache->space_info,
6648 &empty_cluster);
6649 empty_cluster <<= 1;
6650 }
6651
6652 len = cache->key.objectid + cache->key.offset - start;
6653 len = min(len, end + 1 - start);
6654
6655 if (start < cache->last_byte_to_unpin) {
6656 len = min(len, cache->last_byte_to_unpin - start);
6657 if (return_free_space)
6658 btrfs_add_free_space(cache, start, len);
6659 }
6660
6661 start += len;
6662 total_unpinned += len;
6663 space_info = cache->space_info;
6664
6665 /*
6666 * If this space cluster has been marked as fragmented and we've
6667 * unpinned enough in this block group to potentially allow a
6668 * cluster to be created inside of it go ahead and clear the
6669 * fragmented check.
6670 */
6671 if (cluster && cluster->fragmented &&
6672 total_unpinned > empty_cluster) {
6673 spin_lock(&cluster->lock);
6674 cluster->fragmented = 0;
6675 spin_unlock(&cluster->lock);
6676 }
6677
6678 spin_lock(&space_info->lock);
6679 spin_lock(&cache->lock);
6680 cache->pinned -= len;
6681 space_info->bytes_pinned -= len;
6682
6683 trace_btrfs_space_reservation(fs_info, "pinned",
6684 space_info->flags, len, 0);
6685 space_info->max_extent_size = 0;
6686 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6687 if (cache->ro) {
6688 space_info->bytes_readonly += len;
6689 readonly = true;
6690 }
6691 spin_unlock(&cache->lock);
6692 if (!readonly && return_free_space &&
6693 global_rsv->space_info == space_info) {
6694 u64 to_add = len;
6695 WARN_ON(!return_free_space);
6696 spin_lock(&global_rsv->lock);
6697 if (!global_rsv->full) {
6698 to_add = min(len, global_rsv->size -
6699 global_rsv->reserved);
6700 global_rsv->reserved += to_add;
6701 space_info->bytes_may_use += to_add;
6702 if (global_rsv->reserved >= global_rsv->size)
6703 global_rsv->full = 1;
6704 trace_btrfs_space_reservation(fs_info,
6705 "space_info",
6706 space_info->flags,
6707 to_add, 1);
6708 len -= to_add;
6709 }
6710 spin_unlock(&global_rsv->lock);
6711 /* Add to any tickets we may have */
6712 if (len)
6713 space_info_add_new_bytes(fs_info, space_info,
6714 len);
6715 }
6716 spin_unlock(&space_info->lock);
6717 }
6718
6719 if (cache)
6720 btrfs_put_block_group(cache);
6721 return 0;
6722}
6723
6724int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6725 struct btrfs_fs_info *fs_info)
6726{
6727 struct btrfs_block_group_cache *block_group, *tmp;
6728 struct list_head *deleted_bgs;
6729 struct extent_io_tree *unpin;
6730 u64 start;
6731 u64 end;
6732 int ret;
6733
6734 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6735 unpin = &fs_info->freed_extents[1];
6736 else
6737 unpin = &fs_info->freed_extents[0];
6738
6739 while (!trans->aborted) {
6740 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6741 ret = find_first_extent_bit(unpin, 0, &start, &end,
6742 EXTENT_DIRTY, NULL);
6743 if (ret) {
6744 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6745 break;
6746 }
6747
6748 if (btrfs_test_opt(fs_info, DISCARD))
6749 ret = btrfs_discard_extent(fs_info, start,
6750 end + 1 - start, NULL);
6751
6752 clear_extent_dirty(unpin, start, end);
6753 unpin_extent_range(fs_info, start, end, true);
6754 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6755 cond_resched();
6756 }
6757
6758 /*
6759 * Transaction is finished. We don't need the lock anymore. We
6760 * do need to clean up the block groups in case of a transaction
6761 * abort.
6762 */
6763 deleted_bgs = &trans->transaction->deleted_bgs;
6764 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6765 u64 trimmed = 0;
6766
6767 ret = -EROFS;
6768 if (!trans->aborted)
6769 ret = btrfs_discard_extent(fs_info,
6770 block_group->key.objectid,
6771 block_group->key.offset,
6772 &trimmed);
6773
6774 list_del_init(&block_group->bg_list);
6775 btrfs_put_block_group_trimming(block_group);
6776 btrfs_put_block_group(block_group);
6777
6778 if (ret) {
6779 const char *errstr = btrfs_decode_error(ret);
6780 btrfs_warn(fs_info,
6781 "Discard failed while removing blockgroup: errno=%d %s\n",
6782 ret, errstr);
6783 }
6784 }
6785
6786 return 0;
6787}
6788
6789static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6790 u64 owner, u64 root_objectid)
6791{
6792 struct btrfs_space_info *space_info;
6793 u64 flags;
6794
6795 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6796 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6797 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6798 else
6799 flags = BTRFS_BLOCK_GROUP_METADATA;
6800 } else {
6801 flags = BTRFS_BLOCK_GROUP_DATA;
6802 }
6803
6804 space_info = __find_space_info(fs_info, flags);
6805 BUG_ON(!space_info); /* Logic bug */
6806 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6807}
6808
6809
6810static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6811 struct btrfs_fs_info *info,
6812 struct btrfs_delayed_ref_node *node, u64 parent,
6813 u64 root_objectid, u64 owner_objectid,
6814 u64 owner_offset, int refs_to_drop,
6815 struct btrfs_delayed_extent_op *extent_op)
6816{
6817 struct btrfs_key key;
6818 struct btrfs_path *path;
6819 struct btrfs_root *extent_root = info->extent_root;
6820 struct extent_buffer *leaf;
6821 struct btrfs_extent_item *ei;
6822 struct btrfs_extent_inline_ref *iref;
6823 int ret;
6824 int is_data;
6825 int extent_slot = 0;
6826 int found_extent = 0;
6827 int num_to_del = 1;
6828 u32 item_size;
6829 u64 refs;
6830 u64 bytenr = node->bytenr;
6831 u64 num_bytes = node->num_bytes;
6832 int last_ref = 0;
6833 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6834
6835 path = btrfs_alloc_path();
6836 if (!path)
6837 return -ENOMEM;
6838
6839 path->reada = READA_FORWARD;
6840 path->leave_spinning = 1;
6841
6842 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6843 BUG_ON(!is_data && refs_to_drop != 1);
6844
6845 if (is_data)
6846 skinny_metadata = 0;
6847
6848 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6849 bytenr, num_bytes, parent,
6850 root_objectid, owner_objectid,
6851 owner_offset);
6852 if (ret == 0) {
6853 extent_slot = path->slots[0];
6854 while (extent_slot >= 0) {
6855 btrfs_item_key_to_cpu(path->nodes[0], &key,
6856 extent_slot);
6857 if (key.objectid != bytenr)
6858 break;
6859 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6860 key.offset == num_bytes) {
6861 found_extent = 1;
6862 break;
6863 }
6864 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6865 key.offset == owner_objectid) {
6866 found_extent = 1;
6867 break;
6868 }
6869 if (path->slots[0] - extent_slot > 5)
6870 break;
6871 extent_slot--;
6872 }
6873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6874 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6875 if (found_extent && item_size < sizeof(*ei))
6876 found_extent = 0;
6877#endif
6878 if (!found_extent) {
6879 BUG_ON(iref);
6880 ret = remove_extent_backref(trans, extent_root, path,
6881 NULL, refs_to_drop,
6882 is_data, &last_ref);
6883 if (ret) {
6884 btrfs_abort_transaction(trans, ret);
6885 goto out;
6886 }
6887 btrfs_release_path(path);
6888 path->leave_spinning = 1;
6889
6890 key.objectid = bytenr;
6891 key.type = BTRFS_EXTENT_ITEM_KEY;
6892 key.offset = num_bytes;
6893
6894 if (!is_data && skinny_metadata) {
6895 key.type = BTRFS_METADATA_ITEM_KEY;
6896 key.offset = owner_objectid;
6897 }
6898
6899 ret = btrfs_search_slot(trans, extent_root,
6900 &key, path, -1, 1);
6901 if (ret > 0 && skinny_metadata && path->slots[0]) {
6902 /*
6903 * Couldn't find our skinny metadata item,
6904 * see if we have ye olde extent item.
6905 */
6906 path->slots[0]--;
6907 btrfs_item_key_to_cpu(path->nodes[0], &key,
6908 path->slots[0]);
6909 if (key.objectid == bytenr &&
6910 key.type == BTRFS_EXTENT_ITEM_KEY &&
6911 key.offset == num_bytes)
6912 ret = 0;
6913 }
6914
6915 if (ret > 0 && skinny_metadata) {
6916 skinny_metadata = false;
6917 key.objectid = bytenr;
6918 key.type = BTRFS_EXTENT_ITEM_KEY;
6919 key.offset = num_bytes;
6920 btrfs_release_path(path);
6921 ret = btrfs_search_slot(trans, extent_root,
6922 &key, path, -1, 1);
6923 }
6924
6925 if (ret) {
6926 btrfs_err(info,
6927 "umm, got %d back from search, was looking for %llu",
6928 ret, bytenr);
6929 if (ret > 0)
6930 btrfs_print_leaf(info, path->nodes[0]);
6931 }
6932 if (ret < 0) {
6933 btrfs_abort_transaction(trans, ret);
6934 goto out;
6935 }
6936 extent_slot = path->slots[0];
6937 }
6938 } else if (WARN_ON(ret == -ENOENT)) {
6939 btrfs_print_leaf(info, path->nodes[0]);
6940 btrfs_err(info,
6941 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6942 bytenr, parent, root_objectid, owner_objectid,
6943 owner_offset);
6944 btrfs_abort_transaction(trans, ret);
6945 goto out;
6946 } else {
6947 btrfs_abort_transaction(trans, ret);
6948 goto out;
6949 }
6950
6951 leaf = path->nodes[0];
6952 item_size = btrfs_item_size_nr(leaf, extent_slot);
6953#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6954 if (item_size < sizeof(*ei)) {
6955 BUG_ON(found_extent || extent_slot != path->slots[0]);
6956 ret = convert_extent_item_v0(trans, extent_root, path,
6957 owner_objectid, 0);
6958 if (ret < 0) {
6959 btrfs_abort_transaction(trans, ret);
6960 goto out;
6961 }
6962
6963 btrfs_release_path(path);
6964 path->leave_spinning = 1;
6965
6966 key.objectid = bytenr;
6967 key.type = BTRFS_EXTENT_ITEM_KEY;
6968 key.offset = num_bytes;
6969
6970 ret = btrfs_search_slot(trans, extent_root, &key, path,
6971 -1, 1);
6972 if (ret) {
6973 btrfs_err(info,
6974 "umm, got %d back from search, was looking for %llu",
6975 ret, bytenr);
6976 btrfs_print_leaf(info, path->nodes[0]);
6977 }
6978 if (ret < 0) {
6979 btrfs_abort_transaction(trans, ret);
6980 goto out;
6981 }
6982
6983 extent_slot = path->slots[0];
6984 leaf = path->nodes[0];
6985 item_size = btrfs_item_size_nr(leaf, extent_slot);
6986 }
6987#endif
6988 BUG_ON(item_size < sizeof(*ei));
6989 ei = btrfs_item_ptr(leaf, extent_slot,
6990 struct btrfs_extent_item);
6991 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6992 key.type == BTRFS_EXTENT_ITEM_KEY) {
6993 struct btrfs_tree_block_info *bi;
6994 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6995 bi = (struct btrfs_tree_block_info *)(ei + 1);
6996 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6997 }
6998
6999 refs = btrfs_extent_refs(leaf, ei);
7000 if (refs < refs_to_drop) {
7001 btrfs_err(info,
7002 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7003 refs_to_drop, refs, bytenr);
7004 ret = -EINVAL;
7005 btrfs_abort_transaction(trans, ret);
7006 goto out;
7007 }
7008 refs -= refs_to_drop;
7009
7010 if (refs > 0) {
7011 if (extent_op)
7012 __run_delayed_extent_op(extent_op, leaf, ei);
7013 /*
7014 * In the case of inline back ref, reference count will
7015 * be updated by remove_extent_backref
7016 */
7017 if (iref) {
7018 BUG_ON(!found_extent);
7019 } else {
7020 btrfs_set_extent_refs(leaf, ei, refs);
7021 btrfs_mark_buffer_dirty(leaf);
7022 }
7023 if (found_extent) {
7024 ret = remove_extent_backref(trans, extent_root, path,
7025 iref, refs_to_drop,
7026 is_data, &last_ref);
7027 if (ret) {
7028 btrfs_abort_transaction(trans, ret);
7029 goto out;
7030 }
7031 }
7032 add_pinned_bytes(info, -num_bytes, owner_objectid,
7033 root_objectid);
7034 } else {
7035 if (found_extent) {
7036 BUG_ON(is_data && refs_to_drop !=
7037 extent_data_ref_count(path, iref));
7038 if (iref) {
7039 BUG_ON(path->slots[0] != extent_slot);
7040 } else {
7041 BUG_ON(path->slots[0] != extent_slot + 1);
7042 path->slots[0] = extent_slot;
7043 num_to_del = 2;
7044 }
7045 }
7046
7047 last_ref = 1;
7048 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7049 num_to_del);
7050 if (ret) {
7051 btrfs_abort_transaction(trans, ret);
7052 goto out;
7053 }
7054 btrfs_release_path(path);
7055
7056 if (is_data) {
7057 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7058 if (ret) {
7059 btrfs_abort_transaction(trans, ret);
7060 goto out;
7061 }
7062 }
7063
7064 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7065 if (ret) {
7066 btrfs_abort_transaction(trans, ret);
7067 goto out;
7068 }
7069
7070 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7071 if (ret) {
7072 btrfs_abort_transaction(trans, ret);
7073 goto out;
7074 }
7075 }
7076 btrfs_release_path(path);
7077
7078out:
7079 btrfs_free_path(path);
7080 return ret;
7081}
7082
7083/*
7084 * when we free an block, it is possible (and likely) that we free the last
7085 * delayed ref for that extent as well. This searches the delayed ref tree for
7086 * a given extent, and if there are no other delayed refs to be processed, it
7087 * removes it from the tree.
7088 */
7089static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7090 u64 bytenr)
7091{
7092 struct btrfs_delayed_ref_head *head;
7093 struct btrfs_delayed_ref_root *delayed_refs;
7094 int ret = 0;
7095
7096 delayed_refs = &trans->transaction->delayed_refs;
7097 spin_lock(&delayed_refs->lock);
7098 head = btrfs_find_delayed_ref_head(trans, bytenr);
7099 if (!head)
7100 goto out_delayed_unlock;
7101
7102 spin_lock(&head->lock);
7103 if (!list_empty(&head->ref_list))
7104 goto out;
7105
7106 if (head->extent_op) {
7107 if (!head->must_insert_reserved)
7108 goto out;
7109 btrfs_free_delayed_extent_op(head->extent_op);
7110 head->extent_op = NULL;
7111 }
7112
7113 /*
7114 * waiting for the lock here would deadlock. If someone else has it
7115 * locked they are already in the process of dropping it anyway
7116 */
7117 if (!mutex_trylock(&head->mutex))
7118 goto out;
7119
7120 /*
7121 * at this point we have a head with no other entries. Go
7122 * ahead and process it.
7123 */
7124 head->node.in_tree = 0;
7125 rb_erase(&head->href_node, &delayed_refs->href_root);
7126
7127 atomic_dec(&delayed_refs->num_entries);
7128
7129 /*
7130 * we don't take a ref on the node because we're removing it from the
7131 * tree, so we just steal the ref the tree was holding.
7132 */
7133 delayed_refs->num_heads--;
7134 if (head->processing == 0)
7135 delayed_refs->num_heads_ready--;
7136 head->processing = 0;
7137 spin_unlock(&head->lock);
7138 spin_unlock(&delayed_refs->lock);
7139
7140 BUG_ON(head->extent_op);
7141 if (head->must_insert_reserved)
7142 ret = 1;
7143
7144 mutex_unlock(&head->mutex);
7145 btrfs_put_delayed_ref(&head->node);
7146 return ret;
7147out:
7148 spin_unlock(&head->lock);
7149
7150out_delayed_unlock:
7151 spin_unlock(&delayed_refs->lock);
7152 return 0;
7153}
7154
7155void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7156 struct btrfs_root *root,
7157 struct extent_buffer *buf,
7158 u64 parent, int last_ref)
7159{
7160 struct btrfs_fs_info *fs_info = root->fs_info;
7161 int pin = 1;
7162 int ret;
7163
7164 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7165 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7166 buf->start, buf->len,
7167 parent,
7168 root->root_key.objectid,
7169 btrfs_header_level(buf),
7170 BTRFS_DROP_DELAYED_REF, NULL);
7171 BUG_ON(ret); /* -ENOMEM */
7172 }
7173
7174 if (!last_ref)
7175 return;
7176
7177 if (btrfs_header_generation(buf) == trans->transid) {
7178 struct btrfs_block_group_cache *cache;
7179
7180 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7181 ret = check_ref_cleanup(trans, buf->start);
7182 if (!ret)
7183 goto out;
7184 }
7185
7186 cache = btrfs_lookup_block_group(fs_info, buf->start);
7187
7188 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7189 pin_down_extent(fs_info, cache, buf->start,
7190 buf->len, 1);
7191 btrfs_put_block_group(cache);
7192 goto out;
7193 }
7194
7195 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7196
7197 btrfs_add_free_space(cache, buf->start, buf->len);
7198 btrfs_free_reserved_bytes(cache, buf->len, 0);
7199 btrfs_put_block_group(cache);
7200 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7201 pin = 0;
7202 }
7203out:
7204 if (pin)
7205 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7206 root->root_key.objectid);
7207
7208 /*
7209 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7210 * anymore.
7211 */
7212 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7213}
7214
7215/* Can return -ENOMEM */
7216int btrfs_free_extent(struct btrfs_trans_handle *trans,
7217 struct btrfs_fs_info *fs_info,
7218 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7219 u64 owner, u64 offset)
7220{
7221 int ret;
7222
7223 if (btrfs_is_testing(fs_info))
7224 return 0;
7225
7226 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7227
7228 /*
7229 * tree log blocks never actually go into the extent allocation
7230 * tree, just update pinning info and exit early.
7231 */
7232 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7233 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7234 /* unlocks the pinned mutex */
7235 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7236 ret = 0;
7237 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7238 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7239 num_bytes,
7240 parent, root_objectid, (int)owner,
7241 BTRFS_DROP_DELAYED_REF, NULL);
7242 } else {
7243 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7244 num_bytes,
7245 parent, root_objectid, owner,
7246 offset, 0,
7247 BTRFS_DROP_DELAYED_REF, NULL);
7248 }
7249 return ret;
7250}
7251
7252/*
7253 * when we wait for progress in the block group caching, its because
7254 * our allocation attempt failed at least once. So, we must sleep
7255 * and let some progress happen before we try again.
7256 *
7257 * This function will sleep at least once waiting for new free space to
7258 * show up, and then it will check the block group free space numbers
7259 * for our min num_bytes. Another option is to have it go ahead
7260 * and look in the rbtree for a free extent of a given size, but this
7261 * is a good start.
7262 *
7263 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7264 * any of the information in this block group.
7265 */
7266static noinline void
7267wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7268 u64 num_bytes)
7269{
7270 struct btrfs_caching_control *caching_ctl;
7271
7272 caching_ctl = get_caching_control(cache);
7273 if (!caching_ctl)
7274 return;
7275
7276 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7277 (cache->free_space_ctl->free_space >= num_bytes));
7278
7279 put_caching_control(caching_ctl);
7280}
7281
7282static noinline int
7283wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7284{
7285 struct btrfs_caching_control *caching_ctl;
7286 int ret = 0;
7287
7288 caching_ctl = get_caching_control(cache);
7289 if (!caching_ctl)
7290 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7291
7292 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7293 if (cache->cached == BTRFS_CACHE_ERROR)
7294 ret = -EIO;
7295 put_caching_control(caching_ctl);
7296 return ret;
7297}
7298
7299int __get_raid_index(u64 flags)
7300{
7301 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7302 return BTRFS_RAID_RAID10;
7303 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7304 return BTRFS_RAID_RAID1;
7305 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7306 return BTRFS_RAID_DUP;
7307 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7308 return BTRFS_RAID_RAID0;
7309 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7310 return BTRFS_RAID_RAID5;
7311 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7312 return BTRFS_RAID_RAID6;
7313
7314 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7315}
7316
7317int get_block_group_index(struct btrfs_block_group_cache *cache)
7318{
7319 return __get_raid_index(cache->flags);
7320}
7321
7322static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7323 [BTRFS_RAID_RAID10] = "raid10",
7324 [BTRFS_RAID_RAID1] = "raid1",
7325 [BTRFS_RAID_DUP] = "dup",
7326 [BTRFS_RAID_RAID0] = "raid0",
7327 [BTRFS_RAID_SINGLE] = "single",
7328 [BTRFS_RAID_RAID5] = "raid5",
7329 [BTRFS_RAID_RAID6] = "raid6",
7330};
7331
7332static const char *get_raid_name(enum btrfs_raid_types type)
7333{
7334 if (type >= BTRFS_NR_RAID_TYPES)
7335 return NULL;
7336
7337 return btrfs_raid_type_names[type];
7338}
7339
7340enum btrfs_loop_type {
7341 LOOP_CACHING_NOWAIT = 0,
7342 LOOP_CACHING_WAIT = 1,
7343 LOOP_ALLOC_CHUNK = 2,
7344 LOOP_NO_EMPTY_SIZE = 3,
7345};
7346
7347static inline void
7348btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7349 int delalloc)
7350{
7351 if (delalloc)
7352 down_read(&cache->data_rwsem);
7353}
7354
7355static inline void
7356btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7357 int delalloc)
7358{
7359 btrfs_get_block_group(cache);
7360 if (delalloc)
7361 down_read(&cache->data_rwsem);
7362}
7363
7364static struct btrfs_block_group_cache *
7365btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7366 struct btrfs_free_cluster *cluster,
7367 int delalloc)
7368{
7369 struct btrfs_block_group_cache *used_bg = NULL;
7370
7371 spin_lock(&cluster->refill_lock);
7372 while (1) {
7373 used_bg = cluster->block_group;
7374 if (!used_bg)
7375 return NULL;
7376
7377 if (used_bg == block_group)
7378 return used_bg;
7379
7380 btrfs_get_block_group(used_bg);
7381
7382 if (!delalloc)
7383 return used_bg;
7384
7385 if (down_read_trylock(&used_bg->data_rwsem))
7386 return used_bg;
7387
7388 spin_unlock(&cluster->refill_lock);
7389
7390 /* We should only have one-level nested. */
7391 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7392
7393 spin_lock(&cluster->refill_lock);
7394 if (used_bg == cluster->block_group)
7395 return used_bg;
7396
7397 up_read(&used_bg->data_rwsem);
7398 btrfs_put_block_group(used_bg);
7399 }
7400}
7401
7402static inline void
7403btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7404 int delalloc)
7405{
7406 if (delalloc)
7407 up_read(&cache->data_rwsem);
7408 btrfs_put_block_group(cache);
7409}
7410
7411/*
7412 * walks the btree of allocated extents and find a hole of a given size.
7413 * The key ins is changed to record the hole:
7414 * ins->objectid == start position
7415 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7416 * ins->offset == the size of the hole.
7417 * Any available blocks before search_start are skipped.
7418 *
7419 * If there is no suitable free space, we will record the max size of
7420 * the free space extent currently.
7421 */
7422static noinline int find_free_extent(struct btrfs_root *orig_root,
7423 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7424 u64 hint_byte, struct btrfs_key *ins,
7425 u64 flags, int delalloc)
7426{
7427 struct btrfs_fs_info *fs_info = orig_root->fs_info;
7428 int ret = 0;
7429 struct btrfs_root *root = fs_info->extent_root;
7430 struct btrfs_free_cluster *last_ptr = NULL;
7431 struct btrfs_block_group_cache *block_group = NULL;
7432 u64 search_start = 0;
7433 u64 max_extent_size = 0;
7434 u64 empty_cluster = 0;
7435 struct btrfs_space_info *space_info;
7436 int loop = 0;
7437 int index = __get_raid_index(flags);
7438 bool failed_cluster_refill = false;
7439 bool failed_alloc = false;
7440 bool use_cluster = true;
7441 bool have_caching_bg = false;
7442 bool orig_have_caching_bg = false;
7443 bool full_search = false;
7444
7445 WARN_ON(num_bytes < fs_info->sectorsize);
7446 ins->type = BTRFS_EXTENT_ITEM_KEY;
7447 ins->objectid = 0;
7448 ins->offset = 0;
7449
7450 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7451
7452 space_info = __find_space_info(fs_info, flags);
7453 if (!space_info) {
7454 btrfs_err(fs_info, "No space info for %llu", flags);
7455 return -ENOSPC;
7456 }
7457
7458 /*
7459 * If our free space is heavily fragmented we may not be able to make
7460 * big contiguous allocations, so instead of doing the expensive search
7461 * for free space, simply return ENOSPC with our max_extent_size so we
7462 * can go ahead and search for a more manageable chunk.
7463 *
7464 * If our max_extent_size is large enough for our allocation simply
7465 * disable clustering since we will likely not be able to find enough
7466 * space to create a cluster and induce latency trying.
7467 */
7468 if (unlikely(space_info->max_extent_size)) {
7469 spin_lock(&space_info->lock);
7470 if (space_info->max_extent_size &&
7471 num_bytes > space_info->max_extent_size) {
7472 ins->offset = space_info->max_extent_size;
7473 spin_unlock(&space_info->lock);
7474 return -ENOSPC;
7475 } else if (space_info->max_extent_size) {
7476 use_cluster = false;
7477 }
7478 spin_unlock(&space_info->lock);
7479 }
7480
7481 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7482 if (last_ptr) {
7483 spin_lock(&last_ptr->lock);
7484 if (last_ptr->block_group)
7485 hint_byte = last_ptr->window_start;
7486 if (last_ptr->fragmented) {
7487 /*
7488 * We still set window_start so we can keep track of the
7489 * last place we found an allocation to try and save
7490 * some time.
7491 */
7492 hint_byte = last_ptr->window_start;
7493 use_cluster = false;
7494 }
7495 spin_unlock(&last_ptr->lock);
7496 }
7497
7498 search_start = max(search_start, first_logical_byte(fs_info, 0));
7499 search_start = max(search_start, hint_byte);
7500 if (search_start == hint_byte) {
7501 block_group = btrfs_lookup_block_group(fs_info, search_start);
7502 /*
7503 * we don't want to use the block group if it doesn't match our
7504 * allocation bits, or if its not cached.
7505 *
7506 * However if we are re-searching with an ideal block group
7507 * picked out then we don't care that the block group is cached.
7508 */
7509 if (block_group && block_group_bits(block_group, flags) &&
7510 block_group->cached != BTRFS_CACHE_NO) {
7511 down_read(&space_info->groups_sem);
7512 if (list_empty(&block_group->list) ||
7513 block_group->ro) {
7514 /*
7515 * someone is removing this block group,
7516 * we can't jump into the have_block_group
7517 * target because our list pointers are not
7518 * valid
7519 */
7520 btrfs_put_block_group(block_group);
7521 up_read(&space_info->groups_sem);
7522 } else {
7523 index = get_block_group_index(block_group);
7524 btrfs_lock_block_group(block_group, delalloc);
7525 goto have_block_group;
7526 }
7527 } else if (block_group) {
7528 btrfs_put_block_group(block_group);
7529 }
7530 }
7531search:
7532 have_caching_bg = false;
7533 if (index == 0 || index == __get_raid_index(flags))
7534 full_search = true;
7535 down_read(&space_info->groups_sem);
7536 list_for_each_entry(block_group, &space_info->block_groups[index],
7537 list) {
7538 u64 offset;
7539 int cached;
7540
7541 btrfs_grab_block_group(block_group, delalloc);
7542 search_start = block_group->key.objectid;
7543
7544 /*
7545 * this can happen if we end up cycling through all the
7546 * raid types, but we want to make sure we only allocate
7547 * for the proper type.
7548 */
7549 if (!block_group_bits(block_group, flags)) {
7550 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7551 BTRFS_BLOCK_GROUP_RAID1 |
7552 BTRFS_BLOCK_GROUP_RAID5 |
7553 BTRFS_BLOCK_GROUP_RAID6 |
7554 BTRFS_BLOCK_GROUP_RAID10;
7555
7556 /*
7557 * if they asked for extra copies and this block group
7558 * doesn't provide them, bail. This does allow us to
7559 * fill raid0 from raid1.
7560 */
7561 if ((flags & extra) && !(block_group->flags & extra))
7562 goto loop;
7563 }
7564
7565have_block_group:
7566 cached = block_group_cache_done(block_group);
7567 if (unlikely(!cached)) {
7568 have_caching_bg = true;
7569 ret = cache_block_group(block_group, 0);
7570 BUG_ON(ret < 0);
7571 ret = 0;
7572 }
7573
7574 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7575 goto loop;
7576 if (unlikely(block_group->ro))
7577 goto loop;
7578
7579 /*
7580 * Ok we want to try and use the cluster allocator, so
7581 * lets look there
7582 */
7583 if (last_ptr && use_cluster) {
7584 struct btrfs_block_group_cache *used_block_group;
7585 unsigned long aligned_cluster;
7586 /*
7587 * the refill lock keeps out other
7588 * people trying to start a new cluster
7589 */
7590 used_block_group = btrfs_lock_cluster(block_group,
7591 last_ptr,
7592 delalloc);
7593 if (!used_block_group)
7594 goto refill_cluster;
7595
7596 if (used_block_group != block_group &&
7597 (used_block_group->ro ||
7598 !block_group_bits(used_block_group, flags)))
7599 goto release_cluster;
7600
7601 offset = btrfs_alloc_from_cluster(used_block_group,
7602 last_ptr,
7603 num_bytes,
7604 used_block_group->key.objectid,
7605 &max_extent_size);
7606 if (offset) {
7607 /* we have a block, we're done */
7608 spin_unlock(&last_ptr->refill_lock);
7609 trace_btrfs_reserve_extent_cluster(fs_info,
7610 used_block_group,
7611 search_start, num_bytes);
7612 if (used_block_group != block_group) {
7613 btrfs_release_block_group(block_group,
7614 delalloc);
7615 block_group = used_block_group;
7616 }
7617 goto checks;
7618 }
7619
7620 WARN_ON(last_ptr->block_group != used_block_group);
7621release_cluster:
7622 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7623 * set up a new clusters, so lets just skip it
7624 * and let the allocator find whatever block
7625 * it can find. If we reach this point, we
7626 * will have tried the cluster allocator
7627 * plenty of times and not have found
7628 * anything, so we are likely way too
7629 * fragmented for the clustering stuff to find
7630 * anything.
7631 *
7632 * However, if the cluster is taken from the
7633 * current block group, release the cluster
7634 * first, so that we stand a better chance of
7635 * succeeding in the unclustered
7636 * allocation. */
7637 if (loop >= LOOP_NO_EMPTY_SIZE &&
7638 used_block_group != block_group) {
7639 spin_unlock(&last_ptr->refill_lock);
7640 btrfs_release_block_group(used_block_group,
7641 delalloc);
7642 goto unclustered_alloc;
7643 }
7644
7645 /*
7646 * this cluster didn't work out, free it and
7647 * start over
7648 */
7649 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7650
7651 if (used_block_group != block_group)
7652 btrfs_release_block_group(used_block_group,
7653 delalloc);
7654refill_cluster:
7655 if (loop >= LOOP_NO_EMPTY_SIZE) {
7656 spin_unlock(&last_ptr->refill_lock);
7657 goto unclustered_alloc;
7658 }
7659
7660 aligned_cluster = max_t(unsigned long,
7661 empty_cluster + empty_size,
7662 block_group->full_stripe_len);
7663
7664 /* allocate a cluster in this block group */
7665 ret = btrfs_find_space_cluster(fs_info, block_group,
7666 last_ptr, search_start,
7667 num_bytes,
7668 aligned_cluster);
7669 if (ret == 0) {
7670 /*
7671 * now pull our allocation out of this
7672 * cluster
7673 */
7674 offset = btrfs_alloc_from_cluster(block_group,
7675 last_ptr,
7676 num_bytes,
7677 search_start,
7678 &max_extent_size);
7679 if (offset) {
7680 /* we found one, proceed */
7681 spin_unlock(&last_ptr->refill_lock);
7682 trace_btrfs_reserve_extent_cluster(fs_info,
7683 block_group, search_start,
7684 num_bytes);
7685 goto checks;
7686 }
7687 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7688 && !failed_cluster_refill) {
7689 spin_unlock(&last_ptr->refill_lock);
7690
7691 failed_cluster_refill = true;
7692 wait_block_group_cache_progress(block_group,
7693 num_bytes + empty_cluster + empty_size);
7694 goto have_block_group;
7695 }
7696
7697 /*
7698 * at this point we either didn't find a cluster
7699 * or we weren't able to allocate a block from our
7700 * cluster. Free the cluster we've been trying
7701 * to use, and go to the next block group
7702 */
7703 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7704 spin_unlock(&last_ptr->refill_lock);
7705 goto loop;
7706 }
7707
7708unclustered_alloc:
7709 /*
7710 * We are doing an unclustered alloc, set the fragmented flag so
7711 * we don't bother trying to setup a cluster again until we get
7712 * more space.
7713 */
7714 if (unlikely(last_ptr)) {
7715 spin_lock(&last_ptr->lock);
7716 last_ptr->fragmented = 1;
7717 spin_unlock(&last_ptr->lock);
7718 }
7719 spin_lock(&block_group->free_space_ctl->tree_lock);
7720 if (cached &&
7721 block_group->free_space_ctl->free_space <
7722 num_bytes + empty_cluster + empty_size) {
7723 if (block_group->free_space_ctl->free_space >
7724 max_extent_size)
7725 max_extent_size =
7726 block_group->free_space_ctl->free_space;
7727 spin_unlock(&block_group->free_space_ctl->tree_lock);
7728 goto loop;
7729 }
7730 spin_unlock(&block_group->free_space_ctl->tree_lock);
7731
7732 offset = btrfs_find_space_for_alloc(block_group, search_start,
7733 num_bytes, empty_size,
7734 &max_extent_size);
7735 /*
7736 * If we didn't find a chunk, and we haven't failed on this
7737 * block group before, and this block group is in the middle of
7738 * caching and we are ok with waiting, then go ahead and wait
7739 * for progress to be made, and set failed_alloc to true.
7740 *
7741 * If failed_alloc is true then we've already waited on this
7742 * block group once and should move on to the next block group.
7743 */
7744 if (!offset && !failed_alloc && !cached &&
7745 loop > LOOP_CACHING_NOWAIT) {
7746 wait_block_group_cache_progress(block_group,
7747 num_bytes + empty_size);
7748 failed_alloc = true;
7749 goto have_block_group;
7750 } else if (!offset) {
7751 goto loop;
7752 }
7753checks:
7754 search_start = ALIGN(offset, fs_info->stripesize);
7755
7756 /* move on to the next group */
7757 if (search_start + num_bytes >
7758 block_group->key.objectid + block_group->key.offset) {
7759 btrfs_add_free_space(block_group, offset, num_bytes);
7760 goto loop;
7761 }
7762
7763 if (offset < search_start)
7764 btrfs_add_free_space(block_group, offset,
7765 search_start - offset);
7766 BUG_ON(offset > search_start);
7767
7768 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7769 num_bytes, delalloc);
7770 if (ret == -EAGAIN) {
7771 btrfs_add_free_space(block_group, offset, num_bytes);
7772 goto loop;
7773 }
7774 btrfs_inc_block_group_reservations(block_group);
7775
7776 /* we are all good, lets return */
7777 ins->objectid = search_start;
7778 ins->offset = num_bytes;
7779
7780 trace_btrfs_reserve_extent(fs_info, block_group,
7781 search_start, num_bytes);
7782 btrfs_release_block_group(block_group, delalloc);
7783 break;
7784loop:
7785 failed_cluster_refill = false;
7786 failed_alloc = false;
7787 BUG_ON(index != get_block_group_index(block_group));
7788 btrfs_release_block_group(block_group, delalloc);
7789 }
7790 up_read(&space_info->groups_sem);
7791
7792 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7793 && !orig_have_caching_bg)
7794 orig_have_caching_bg = true;
7795
7796 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7797 goto search;
7798
7799 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7800 goto search;
7801
7802 /*
7803 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7804 * caching kthreads as we move along
7805 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7806 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7807 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7808 * again
7809 */
7810 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7811 index = 0;
7812 if (loop == LOOP_CACHING_NOWAIT) {
7813 /*
7814 * We want to skip the LOOP_CACHING_WAIT step if we
7815 * don't have any uncached bgs and we've already done a
7816 * full search through.
7817 */
7818 if (orig_have_caching_bg || !full_search)
7819 loop = LOOP_CACHING_WAIT;
7820 else
7821 loop = LOOP_ALLOC_CHUNK;
7822 } else {
7823 loop++;
7824 }
7825
7826 if (loop == LOOP_ALLOC_CHUNK) {
7827 struct btrfs_trans_handle *trans;
7828 int exist = 0;
7829
7830 trans = current->journal_info;
7831 if (trans)
7832 exist = 1;
7833 else
7834 trans = btrfs_join_transaction(root);
7835
7836 if (IS_ERR(trans)) {
7837 ret = PTR_ERR(trans);
7838 goto out;
7839 }
7840
7841 ret = do_chunk_alloc(trans, fs_info, flags,
7842 CHUNK_ALLOC_FORCE);
7843
7844 /*
7845 * If we can't allocate a new chunk we've already looped
7846 * through at least once, move on to the NO_EMPTY_SIZE
7847 * case.
7848 */
7849 if (ret == -ENOSPC)
7850 loop = LOOP_NO_EMPTY_SIZE;
7851
7852 /*
7853 * Do not bail out on ENOSPC since we
7854 * can do more things.
7855 */
7856 if (ret < 0 && ret != -ENOSPC)
7857 btrfs_abort_transaction(trans, ret);
7858 else
7859 ret = 0;
7860 if (!exist)
7861 btrfs_end_transaction(trans);
7862 if (ret)
7863 goto out;
7864 }
7865
7866 if (loop == LOOP_NO_EMPTY_SIZE) {
7867 /*
7868 * Don't loop again if we already have no empty_size and
7869 * no empty_cluster.
7870 */
7871 if (empty_size == 0 &&
7872 empty_cluster == 0) {
7873 ret = -ENOSPC;
7874 goto out;
7875 }
7876 empty_size = 0;
7877 empty_cluster = 0;
7878 }
7879
7880 goto search;
7881 } else if (!ins->objectid) {
7882 ret = -ENOSPC;
7883 } else if (ins->objectid) {
7884 if (!use_cluster && last_ptr) {
7885 spin_lock(&last_ptr->lock);
7886 last_ptr->window_start = ins->objectid;
7887 spin_unlock(&last_ptr->lock);
7888 }
7889 ret = 0;
7890 }
7891out:
7892 if (ret == -ENOSPC) {
7893 spin_lock(&space_info->lock);
7894 space_info->max_extent_size = max_extent_size;
7895 spin_unlock(&space_info->lock);
7896 ins->offset = max_extent_size;
7897 }
7898 return ret;
7899}
7900
7901static void dump_space_info(struct btrfs_fs_info *fs_info,
7902 struct btrfs_space_info *info, u64 bytes,
7903 int dump_block_groups)
7904{
7905 struct btrfs_block_group_cache *cache;
7906 int index = 0;
7907
7908 spin_lock(&info->lock);
7909 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7910 info->flags,
7911 info->total_bytes - info->bytes_used - info->bytes_pinned -
7912 info->bytes_reserved - info->bytes_readonly -
7913 info->bytes_may_use, (info->full) ? "" : "not ");
7914 btrfs_info(fs_info,
7915 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7916 info->total_bytes, info->bytes_used, info->bytes_pinned,
7917 info->bytes_reserved, info->bytes_may_use,
7918 info->bytes_readonly);
7919 spin_unlock(&info->lock);
7920
7921 if (!dump_block_groups)
7922 return;
7923
7924 down_read(&info->groups_sem);
7925again:
7926 list_for_each_entry(cache, &info->block_groups[index], list) {
7927 spin_lock(&cache->lock);
7928 btrfs_info(fs_info,
7929 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7930 cache->key.objectid, cache->key.offset,
7931 btrfs_block_group_used(&cache->item), cache->pinned,
7932 cache->reserved, cache->ro ? "[readonly]" : "");
7933 btrfs_dump_free_space(cache, bytes);
7934 spin_unlock(&cache->lock);
7935 }
7936 if (++index < BTRFS_NR_RAID_TYPES)
7937 goto again;
7938 up_read(&info->groups_sem);
7939}
7940
7941int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7942 u64 num_bytes, u64 min_alloc_size,
7943 u64 empty_size, u64 hint_byte,
7944 struct btrfs_key *ins, int is_data, int delalloc)
7945{
7946 struct btrfs_fs_info *fs_info = root->fs_info;
7947 bool final_tried = num_bytes == min_alloc_size;
7948 u64 flags;
7949 int ret;
7950
7951 flags = btrfs_get_alloc_profile(root, is_data);
7952again:
7953 WARN_ON(num_bytes < fs_info->sectorsize);
7954 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7955 hint_byte, ins, flags, delalloc);
7956 if (!ret && !is_data) {
7957 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7958 } else if (ret == -ENOSPC) {
7959 if (!final_tried && ins->offset) {
7960 num_bytes = min(num_bytes >> 1, ins->offset);
7961 num_bytes = round_down(num_bytes,
7962 fs_info->sectorsize);
7963 num_bytes = max(num_bytes, min_alloc_size);
7964 ram_bytes = num_bytes;
7965 if (num_bytes == min_alloc_size)
7966 final_tried = true;
7967 goto again;
7968 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7969 struct btrfs_space_info *sinfo;
7970
7971 sinfo = __find_space_info(fs_info, flags);
7972 btrfs_err(fs_info,
7973 "allocation failed flags %llu, wanted %llu",
7974 flags, num_bytes);
7975 if (sinfo)
7976 dump_space_info(fs_info, sinfo, num_bytes, 1);
7977 }
7978 }
7979
7980 return ret;
7981}
7982
7983static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7984 u64 start, u64 len,
7985 int pin, int delalloc)
7986{
7987 struct btrfs_block_group_cache *cache;
7988 int ret = 0;
7989
7990 cache = btrfs_lookup_block_group(fs_info, start);
7991 if (!cache) {
7992 btrfs_err(fs_info, "Unable to find block group for %llu",
7993 start);
7994 return -ENOSPC;
7995 }
7996
7997 if (pin)
7998 pin_down_extent(fs_info, cache, start, len, 1);
7999 else {
8000 if (btrfs_test_opt(fs_info, DISCARD))
8001 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8002 btrfs_add_free_space(cache, start, len);
8003 btrfs_free_reserved_bytes(cache, len, delalloc);
8004 trace_btrfs_reserved_extent_free(fs_info, start, len);
8005 }
8006
8007 btrfs_put_block_group(cache);
8008 return ret;
8009}
8010
8011int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8012 u64 start, u64 len, int delalloc)
8013{
8014 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8015}
8016
8017int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8018 u64 start, u64 len)
8019{
8020 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8021}
8022
8023static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8024 struct btrfs_fs_info *fs_info,
8025 u64 parent, u64 root_objectid,
8026 u64 flags, u64 owner, u64 offset,
8027 struct btrfs_key *ins, int ref_mod)
8028{
8029 int ret;
8030 struct btrfs_extent_item *extent_item;
8031 struct btrfs_extent_inline_ref *iref;
8032 struct btrfs_path *path;
8033 struct extent_buffer *leaf;
8034 int type;
8035 u32 size;
8036
8037 if (parent > 0)
8038 type = BTRFS_SHARED_DATA_REF_KEY;
8039 else
8040 type = BTRFS_EXTENT_DATA_REF_KEY;
8041
8042 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8043
8044 path = btrfs_alloc_path();
8045 if (!path)
8046 return -ENOMEM;
8047
8048 path->leave_spinning = 1;
8049 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8050 ins, size);
8051 if (ret) {
8052 btrfs_free_path(path);
8053 return ret;
8054 }
8055
8056 leaf = path->nodes[0];
8057 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8058 struct btrfs_extent_item);
8059 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8060 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8061 btrfs_set_extent_flags(leaf, extent_item,
8062 flags | BTRFS_EXTENT_FLAG_DATA);
8063
8064 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8065 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8066 if (parent > 0) {
8067 struct btrfs_shared_data_ref *ref;
8068 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8069 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8070 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8071 } else {
8072 struct btrfs_extent_data_ref *ref;
8073 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8074 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8075 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8076 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8077 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8078 }
8079
8080 btrfs_mark_buffer_dirty(path->nodes[0]);
8081 btrfs_free_path(path);
8082
8083 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8084 ins->offset);
8085 if (ret)
8086 return ret;
8087
8088 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8089 if (ret) { /* -ENOENT, logic error */
8090 btrfs_err(fs_info, "update block group failed for %llu %llu",
8091 ins->objectid, ins->offset);
8092 BUG();
8093 }
8094 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8095 return ret;
8096}
8097
8098static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8099 struct btrfs_fs_info *fs_info,
8100 u64 parent, u64 root_objectid,
8101 u64 flags, struct btrfs_disk_key *key,
8102 int level, struct btrfs_key *ins)
8103{
8104 int ret;
8105 struct btrfs_extent_item *extent_item;
8106 struct btrfs_tree_block_info *block_info;
8107 struct btrfs_extent_inline_ref *iref;
8108 struct btrfs_path *path;
8109 struct extent_buffer *leaf;
8110 u32 size = sizeof(*extent_item) + sizeof(*iref);
8111 u64 num_bytes = ins->offset;
8112 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8113
8114 if (!skinny_metadata)
8115 size += sizeof(*block_info);
8116
8117 path = btrfs_alloc_path();
8118 if (!path) {
8119 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8120 fs_info->nodesize);
8121 return -ENOMEM;
8122 }
8123
8124 path->leave_spinning = 1;
8125 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8126 ins, size);
8127 if (ret) {
8128 btrfs_free_path(path);
8129 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8130 fs_info->nodesize);
8131 return ret;
8132 }
8133
8134 leaf = path->nodes[0];
8135 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8136 struct btrfs_extent_item);
8137 btrfs_set_extent_refs(leaf, extent_item, 1);
8138 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8139 btrfs_set_extent_flags(leaf, extent_item,
8140 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8141
8142 if (skinny_metadata) {
8143 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8144 num_bytes = fs_info->nodesize;
8145 } else {
8146 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8147 btrfs_set_tree_block_key(leaf, block_info, key);
8148 btrfs_set_tree_block_level(leaf, block_info, level);
8149 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8150 }
8151
8152 if (parent > 0) {
8153 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8154 btrfs_set_extent_inline_ref_type(leaf, iref,
8155 BTRFS_SHARED_BLOCK_REF_KEY);
8156 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8157 } else {
8158 btrfs_set_extent_inline_ref_type(leaf, iref,
8159 BTRFS_TREE_BLOCK_REF_KEY);
8160 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8161 }
8162
8163 btrfs_mark_buffer_dirty(leaf);
8164 btrfs_free_path(path);
8165
8166 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8167 num_bytes);
8168 if (ret)
8169 return ret;
8170
8171 ret = update_block_group(trans, fs_info, ins->objectid,
8172 fs_info->nodesize, 1);
8173 if (ret) { /* -ENOENT, logic error */
8174 btrfs_err(fs_info, "update block group failed for %llu %llu",
8175 ins->objectid, ins->offset);
8176 BUG();
8177 }
8178
8179 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8180 fs_info->nodesize);
8181 return ret;
8182}
8183
8184int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8185 u64 root_objectid, u64 owner,
8186 u64 offset, u64 ram_bytes,
8187 struct btrfs_key *ins)
8188{
8189 struct btrfs_fs_info *fs_info = trans->fs_info;
8190 int ret;
8191
8192 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8193
8194 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8195 ins->offset, 0,
8196 root_objectid, owner, offset,
8197 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8198 NULL);
8199 return ret;
8200}
8201
8202/*
8203 * this is used by the tree logging recovery code. It records that
8204 * an extent has been allocated and makes sure to clear the free
8205 * space cache bits as well
8206 */
8207int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8208 struct btrfs_fs_info *fs_info,
8209 u64 root_objectid, u64 owner, u64 offset,
8210 struct btrfs_key *ins)
8211{
8212 int ret;
8213 struct btrfs_block_group_cache *block_group;
8214 struct btrfs_space_info *space_info;
8215
8216 /*
8217 * Mixed block groups will exclude before processing the log so we only
8218 * need to do the exclude dance if this fs isn't mixed.
8219 */
8220 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8221 ret = __exclude_logged_extent(fs_info, ins->objectid,
8222 ins->offset);
8223 if (ret)
8224 return ret;
8225 }
8226
8227 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8228 if (!block_group)
8229 return -EINVAL;
8230
8231 space_info = block_group->space_info;
8232 spin_lock(&space_info->lock);
8233 spin_lock(&block_group->lock);
8234 space_info->bytes_reserved += ins->offset;
8235 block_group->reserved += ins->offset;
8236 spin_unlock(&block_group->lock);
8237 spin_unlock(&space_info->lock);
8238
8239 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8240 0, owner, offset, ins, 1);
8241 btrfs_put_block_group(block_group);
8242 return ret;
8243}
8244
8245static struct extent_buffer *
8246btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8247 u64 bytenr, int level)
8248{
8249 struct btrfs_fs_info *fs_info = root->fs_info;
8250 struct extent_buffer *buf;
8251
8252 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8253 if (IS_ERR(buf))
8254 return buf;
8255
8256 btrfs_set_header_generation(buf, trans->transid);
8257 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8258 btrfs_tree_lock(buf);
8259 clean_tree_block(trans, fs_info, buf);
8260 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8261
8262 btrfs_set_lock_blocking(buf);
8263 set_extent_buffer_uptodate(buf);
8264
8265 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8266 buf->log_index = root->log_transid % 2;
8267 /*
8268 * we allow two log transactions at a time, use different
8269 * EXENT bit to differentiate dirty pages.
8270 */
8271 if (buf->log_index == 0)
8272 set_extent_dirty(&root->dirty_log_pages, buf->start,
8273 buf->start + buf->len - 1, GFP_NOFS);
8274 else
8275 set_extent_new(&root->dirty_log_pages, buf->start,
8276 buf->start + buf->len - 1);
8277 } else {
8278 buf->log_index = -1;
8279 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8280 buf->start + buf->len - 1, GFP_NOFS);
8281 }
8282 trans->dirty = true;
8283 /* this returns a buffer locked for blocking */
8284 return buf;
8285}
8286
8287static struct btrfs_block_rsv *
8288use_block_rsv(struct btrfs_trans_handle *trans,
8289 struct btrfs_root *root, u32 blocksize)
8290{
8291 struct btrfs_fs_info *fs_info = root->fs_info;
8292 struct btrfs_block_rsv *block_rsv;
8293 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8294 int ret;
8295 bool global_updated = false;
8296
8297 block_rsv = get_block_rsv(trans, root);
8298
8299 if (unlikely(block_rsv->size == 0))
8300 goto try_reserve;
8301again:
8302 ret = block_rsv_use_bytes(block_rsv, blocksize);
8303 if (!ret)
8304 return block_rsv;
8305
8306 if (block_rsv->failfast)
8307 return ERR_PTR(ret);
8308
8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8310 global_updated = true;
8311 update_global_block_rsv(fs_info);
8312 goto again;
8313 }
8314
8315 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8316 static DEFINE_RATELIMIT_STATE(_rs,
8317 DEFAULT_RATELIMIT_INTERVAL * 10,
8318 /*DEFAULT_RATELIMIT_BURST*/ 1);
8319 if (__ratelimit(&_rs))
8320 WARN(1, KERN_DEBUG
8321 "BTRFS: block rsv returned %d\n", ret);
8322 }
8323try_reserve:
8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8325 BTRFS_RESERVE_NO_FLUSH);
8326 if (!ret)
8327 return block_rsv;
8328 /*
8329 * If we couldn't reserve metadata bytes try and use some from
8330 * the global reserve if its space type is the same as the global
8331 * reservation.
8332 */
8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8334 block_rsv->space_info == global_rsv->space_info) {
8335 ret = block_rsv_use_bytes(global_rsv, blocksize);
8336 if (!ret)
8337 return global_rsv;
8338 }
8339 return ERR_PTR(ret);
8340}
8341
8342static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8343 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8344{
8345 block_rsv_add_bytes(block_rsv, blocksize, 0);
8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8347}
8348
8349/*
8350 * finds a free extent and does all the dirty work required for allocation
8351 * returns the tree buffer or an ERR_PTR on error.
8352 */
8353struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8354 struct btrfs_root *root,
8355 u64 parent, u64 root_objectid,
8356 struct btrfs_disk_key *key, int level,
8357 u64 hint, u64 empty_size)
8358{
8359 struct btrfs_fs_info *fs_info = root->fs_info;
8360 struct btrfs_key ins;
8361 struct btrfs_block_rsv *block_rsv;
8362 struct extent_buffer *buf;
8363 struct btrfs_delayed_extent_op *extent_op;
8364 u64 flags = 0;
8365 int ret;
8366 u32 blocksize = fs_info->nodesize;
8367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8368
8369#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8370 if (btrfs_is_testing(fs_info)) {
8371 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8372 level);
8373 if (!IS_ERR(buf))
8374 root->alloc_bytenr += blocksize;
8375 return buf;
8376 }
8377#endif
8378
8379 block_rsv = use_block_rsv(trans, root, blocksize);
8380 if (IS_ERR(block_rsv))
8381 return ERR_CAST(block_rsv);
8382
8383 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8384 empty_size, hint, &ins, 0, 0);
8385 if (ret)
8386 goto out_unuse;
8387
8388 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8389 if (IS_ERR(buf)) {
8390 ret = PTR_ERR(buf);
8391 goto out_free_reserved;
8392 }
8393
8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8395 if (parent == 0)
8396 parent = ins.objectid;
8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8398 } else
8399 BUG_ON(parent > 0);
8400
8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8402 extent_op = btrfs_alloc_delayed_extent_op();
8403 if (!extent_op) {
8404 ret = -ENOMEM;
8405 goto out_free_buf;
8406 }
8407 if (key)
8408 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8409 else
8410 memset(&extent_op->key, 0, sizeof(extent_op->key));
8411 extent_op->flags_to_set = flags;
8412 extent_op->update_key = skinny_metadata ? false : true;
8413 extent_op->update_flags = true;
8414 extent_op->is_data = false;
8415 extent_op->level = level;
8416
8417 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8418 ins.objectid, ins.offset,
8419 parent, root_objectid, level,
8420 BTRFS_ADD_DELAYED_EXTENT,
8421 extent_op);
8422 if (ret)
8423 goto out_free_delayed;
8424 }
8425 return buf;
8426
8427out_free_delayed:
8428 btrfs_free_delayed_extent_op(extent_op);
8429out_free_buf:
8430 free_extent_buffer(buf);
8431out_free_reserved:
8432 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8433out_unuse:
8434 unuse_block_rsv(fs_info, block_rsv, blocksize);
8435 return ERR_PTR(ret);
8436}
8437
8438struct walk_control {
8439 u64 refs[BTRFS_MAX_LEVEL];
8440 u64 flags[BTRFS_MAX_LEVEL];
8441 struct btrfs_key update_progress;
8442 int stage;
8443 int level;
8444 int shared_level;
8445 int update_ref;
8446 int keep_locks;
8447 int reada_slot;
8448 int reada_count;
8449 int for_reloc;
8450};
8451
8452#define DROP_REFERENCE 1
8453#define UPDATE_BACKREF 2
8454
8455static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8456 struct btrfs_root *root,
8457 struct walk_control *wc,
8458 struct btrfs_path *path)
8459{
8460 struct btrfs_fs_info *fs_info = root->fs_info;
8461 u64 bytenr;
8462 u64 generation;
8463 u64 refs;
8464 u64 flags;
8465 u32 nritems;
8466 struct btrfs_key key;
8467 struct extent_buffer *eb;
8468 int ret;
8469 int slot;
8470 int nread = 0;
8471
8472 if (path->slots[wc->level] < wc->reada_slot) {
8473 wc->reada_count = wc->reada_count * 2 / 3;
8474 wc->reada_count = max(wc->reada_count, 2);
8475 } else {
8476 wc->reada_count = wc->reada_count * 3 / 2;
8477 wc->reada_count = min_t(int, wc->reada_count,
8478 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8479 }
8480
8481 eb = path->nodes[wc->level];
8482 nritems = btrfs_header_nritems(eb);
8483
8484 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8485 if (nread >= wc->reada_count)
8486 break;
8487
8488 cond_resched();
8489 bytenr = btrfs_node_blockptr(eb, slot);
8490 generation = btrfs_node_ptr_generation(eb, slot);
8491
8492 if (slot == path->slots[wc->level])
8493 goto reada;
8494
8495 if (wc->stage == UPDATE_BACKREF &&
8496 generation <= root->root_key.offset)
8497 continue;
8498
8499 /* We don't lock the tree block, it's OK to be racy here */
8500 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8501 wc->level - 1, 1, &refs,
8502 &flags);
8503 /* We don't care about errors in readahead. */
8504 if (ret < 0)
8505 continue;
8506 BUG_ON(refs == 0);
8507
8508 if (wc->stage == DROP_REFERENCE) {
8509 if (refs == 1)
8510 goto reada;
8511
8512 if (wc->level == 1 &&
8513 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8514 continue;
8515 if (!wc->update_ref ||
8516 generation <= root->root_key.offset)
8517 continue;
8518 btrfs_node_key_to_cpu(eb, &key, slot);
8519 ret = btrfs_comp_cpu_keys(&key,
8520 &wc->update_progress);
8521 if (ret < 0)
8522 continue;
8523 } else {
8524 if (wc->level == 1 &&
8525 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8526 continue;
8527 }
8528reada:
8529 readahead_tree_block(fs_info, bytenr);
8530 nread++;
8531 }
8532 wc->reada_slot = slot;
8533}
8534
8535/*
8536 * helper to process tree block while walking down the tree.
8537 *
8538 * when wc->stage == UPDATE_BACKREF, this function updates
8539 * back refs for pointers in the block.
8540 *
8541 * NOTE: return value 1 means we should stop walking down.
8542 */
8543static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8544 struct btrfs_root *root,
8545 struct btrfs_path *path,
8546 struct walk_control *wc, int lookup_info)
8547{
8548 struct btrfs_fs_info *fs_info = root->fs_info;
8549 int level = wc->level;
8550 struct extent_buffer *eb = path->nodes[level];
8551 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8552 int ret;
8553
8554 if (wc->stage == UPDATE_BACKREF &&
8555 btrfs_header_owner(eb) != root->root_key.objectid)
8556 return 1;
8557
8558 /*
8559 * when reference count of tree block is 1, it won't increase
8560 * again. once full backref flag is set, we never clear it.
8561 */
8562 if (lookup_info &&
8563 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8564 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8565 BUG_ON(!path->locks[level]);
8566 ret = btrfs_lookup_extent_info(trans, fs_info,
8567 eb->start, level, 1,
8568 &wc->refs[level],
8569 &wc->flags[level]);
8570 BUG_ON(ret == -ENOMEM);
8571 if (ret)
8572 return ret;
8573 BUG_ON(wc->refs[level] == 0);
8574 }
8575
8576 if (wc->stage == DROP_REFERENCE) {
8577 if (wc->refs[level] > 1)
8578 return 1;
8579
8580 if (path->locks[level] && !wc->keep_locks) {
8581 btrfs_tree_unlock_rw(eb, path->locks[level]);
8582 path->locks[level] = 0;
8583 }
8584 return 0;
8585 }
8586
8587 /* wc->stage == UPDATE_BACKREF */
8588 if (!(wc->flags[level] & flag)) {
8589 BUG_ON(!path->locks[level]);
8590 ret = btrfs_inc_ref(trans, root, eb, 1);
8591 BUG_ON(ret); /* -ENOMEM */
8592 ret = btrfs_dec_ref(trans, root, eb, 0);
8593 BUG_ON(ret); /* -ENOMEM */
8594 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8595 eb->len, flag,
8596 btrfs_header_level(eb), 0);
8597 BUG_ON(ret); /* -ENOMEM */
8598 wc->flags[level] |= flag;
8599 }
8600
8601 /*
8602 * the block is shared by multiple trees, so it's not good to
8603 * keep the tree lock
8604 */
8605 if (path->locks[level] && level > 0) {
8606 btrfs_tree_unlock_rw(eb, path->locks[level]);
8607 path->locks[level] = 0;
8608 }
8609 return 0;
8610}
8611
8612/*
8613 * helper to process tree block pointer.
8614 *
8615 * when wc->stage == DROP_REFERENCE, this function checks
8616 * reference count of the block pointed to. if the block
8617 * is shared and we need update back refs for the subtree
8618 * rooted at the block, this function changes wc->stage to
8619 * UPDATE_BACKREF. if the block is shared and there is no
8620 * need to update back, this function drops the reference
8621 * to the block.
8622 *
8623 * NOTE: return value 1 means we should stop walking down.
8624 */
8625static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8626 struct btrfs_root *root,
8627 struct btrfs_path *path,
8628 struct walk_control *wc, int *lookup_info)
8629{
8630 struct btrfs_fs_info *fs_info = root->fs_info;
8631 u64 bytenr;
8632 u64 generation;
8633 u64 parent;
8634 u32 blocksize;
8635 struct btrfs_key key;
8636 struct extent_buffer *next;
8637 int level = wc->level;
8638 int reada = 0;
8639 int ret = 0;
8640 bool need_account = false;
8641
8642 generation = btrfs_node_ptr_generation(path->nodes[level],
8643 path->slots[level]);
8644 /*
8645 * if the lower level block was created before the snapshot
8646 * was created, we know there is no need to update back refs
8647 * for the subtree
8648 */
8649 if (wc->stage == UPDATE_BACKREF &&
8650 generation <= root->root_key.offset) {
8651 *lookup_info = 1;
8652 return 1;
8653 }
8654
8655 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8656 blocksize = fs_info->nodesize;
8657
8658 next = find_extent_buffer(fs_info, bytenr);
8659 if (!next) {
8660 next = btrfs_find_create_tree_block(fs_info, bytenr);
8661 if (IS_ERR(next))
8662 return PTR_ERR(next);
8663
8664 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8665 level - 1);
8666 reada = 1;
8667 }
8668 btrfs_tree_lock(next);
8669 btrfs_set_lock_blocking(next);
8670
8671 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8672 &wc->refs[level - 1],
8673 &wc->flags[level - 1]);
8674 if (ret < 0)
8675 goto out_unlock;
8676
8677 if (unlikely(wc->refs[level - 1] == 0)) {
8678 btrfs_err(fs_info, "Missing references.");
8679 ret = -EIO;
8680 goto out_unlock;
8681 }
8682 *lookup_info = 0;
8683
8684 if (wc->stage == DROP_REFERENCE) {
8685 if (wc->refs[level - 1] > 1) {
8686 need_account = true;
8687 if (level == 1 &&
8688 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8689 goto skip;
8690
8691 if (!wc->update_ref ||
8692 generation <= root->root_key.offset)
8693 goto skip;
8694
8695 btrfs_node_key_to_cpu(path->nodes[level], &key,
8696 path->slots[level]);
8697 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8698 if (ret < 0)
8699 goto skip;
8700
8701 wc->stage = UPDATE_BACKREF;
8702 wc->shared_level = level - 1;
8703 }
8704 } else {
8705 if (level == 1 &&
8706 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8707 goto skip;
8708 }
8709
8710 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8711 btrfs_tree_unlock(next);
8712 free_extent_buffer(next);
8713 next = NULL;
8714 *lookup_info = 1;
8715 }
8716
8717 if (!next) {
8718 if (reada && level == 1)
8719 reada_walk_down(trans, root, wc, path);
8720 next = read_tree_block(fs_info, bytenr, generation);
8721 if (IS_ERR(next)) {
8722 return PTR_ERR(next);
8723 } else if (!extent_buffer_uptodate(next)) {
8724 free_extent_buffer(next);
8725 return -EIO;
8726 }
8727 btrfs_tree_lock(next);
8728 btrfs_set_lock_blocking(next);
8729 }
8730
8731 level--;
8732 ASSERT(level == btrfs_header_level(next));
8733 if (level != btrfs_header_level(next)) {
8734 btrfs_err(root->fs_info, "mismatched level");
8735 ret = -EIO;
8736 goto out_unlock;
8737 }
8738 path->nodes[level] = next;
8739 path->slots[level] = 0;
8740 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8741 wc->level = level;
8742 if (wc->level == 1)
8743 wc->reada_slot = 0;
8744 return 0;
8745skip:
8746 wc->refs[level - 1] = 0;
8747 wc->flags[level - 1] = 0;
8748 if (wc->stage == DROP_REFERENCE) {
8749 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8750 parent = path->nodes[level]->start;
8751 } else {
8752 ASSERT(root->root_key.objectid ==
8753 btrfs_header_owner(path->nodes[level]));
8754 if (root->root_key.objectid !=
8755 btrfs_header_owner(path->nodes[level])) {
8756 btrfs_err(root->fs_info,
8757 "mismatched block owner");
8758 ret = -EIO;
8759 goto out_unlock;
8760 }
8761 parent = 0;
8762 }
8763
8764 if (need_account) {
8765 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8766 generation, level - 1);
8767 if (ret) {
8768 btrfs_err_rl(fs_info,
8769 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8770 ret);
8771 }
8772 }
8773 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8774 parent, root->root_key.objectid,
8775 level - 1, 0);
8776 if (ret)
8777 goto out_unlock;
8778 }
8779
8780 *lookup_info = 1;
8781 ret = 1;
8782
8783out_unlock:
8784 btrfs_tree_unlock(next);
8785 free_extent_buffer(next);
8786
8787 return ret;
8788}
8789
8790/*
8791 * helper to process tree block while walking up the tree.
8792 *
8793 * when wc->stage == DROP_REFERENCE, this function drops
8794 * reference count on the block.
8795 *
8796 * when wc->stage == UPDATE_BACKREF, this function changes
8797 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8798 * to UPDATE_BACKREF previously while processing the block.
8799 *
8800 * NOTE: return value 1 means we should stop walking up.
8801 */
8802static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8803 struct btrfs_root *root,
8804 struct btrfs_path *path,
8805 struct walk_control *wc)
8806{
8807 struct btrfs_fs_info *fs_info = root->fs_info;
8808 int ret;
8809 int level = wc->level;
8810 struct extent_buffer *eb = path->nodes[level];
8811 u64 parent = 0;
8812
8813 if (wc->stage == UPDATE_BACKREF) {
8814 BUG_ON(wc->shared_level < level);
8815 if (level < wc->shared_level)
8816 goto out;
8817
8818 ret = find_next_key(path, level + 1, &wc->update_progress);
8819 if (ret > 0)
8820 wc->update_ref = 0;
8821
8822 wc->stage = DROP_REFERENCE;
8823 wc->shared_level = -1;
8824 path->slots[level] = 0;
8825
8826 /*
8827 * check reference count again if the block isn't locked.
8828 * we should start walking down the tree again if reference
8829 * count is one.
8830 */
8831 if (!path->locks[level]) {
8832 BUG_ON(level == 0);
8833 btrfs_tree_lock(eb);
8834 btrfs_set_lock_blocking(eb);
8835 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8836
8837 ret = btrfs_lookup_extent_info(trans, fs_info,
8838 eb->start, level, 1,
8839 &wc->refs[level],
8840 &wc->flags[level]);
8841 if (ret < 0) {
8842 btrfs_tree_unlock_rw(eb, path->locks[level]);
8843 path->locks[level] = 0;
8844 return ret;
8845 }
8846 BUG_ON(wc->refs[level] == 0);
8847 if (wc->refs[level] == 1) {
8848 btrfs_tree_unlock_rw(eb, path->locks[level]);
8849 path->locks[level] = 0;
8850 return 1;
8851 }
8852 }
8853 }
8854
8855 /* wc->stage == DROP_REFERENCE */
8856 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8857
8858 if (wc->refs[level] == 1) {
8859 if (level == 0) {
8860 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8861 ret = btrfs_dec_ref(trans, root, eb, 1);
8862 else
8863 ret = btrfs_dec_ref(trans, root, eb, 0);
8864 BUG_ON(ret); /* -ENOMEM */
8865 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8866 if (ret) {
8867 btrfs_err_rl(fs_info,
8868 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8869 ret);
8870 }
8871 }
8872 /* make block locked assertion in clean_tree_block happy */
8873 if (!path->locks[level] &&
8874 btrfs_header_generation(eb) == trans->transid) {
8875 btrfs_tree_lock(eb);
8876 btrfs_set_lock_blocking(eb);
8877 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8878 }
8879 clean_tree_block(trans, fs_info, eb);
8880 }
8881
8882 if (eb == root->node) {
8883 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8884 parent = eb->start;
8885 else
8886 BUG_ON(root->root_key.objectid !=
8887 btrfs_header_owner(eb));
8888 } else {
8889 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8890 parent = path->nodes[level + 1]->start;
8891 else
8892 BUG_ON(root->root_key.objectid !=
8893 btrfs_header_owner(path->nodes[level + 1]));
8894 }
8895
8896 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8897out:
8898 wc->refs[level] = 0;
8899 wc->flags[level] = 0;
8900 return 0;
8901}
8902
8903static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8904 struct btrfs_root *root,
8905 struct btrfs_path *path,
8906 struct walk_control *wc)
8907{
8908 int level = wc->level;
8909 int lookup_info = 1;
8910 int ret;
8911
8912 while (level >= 0) {
8913 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8914 if (ret > 0)
8915 break;
8916
8917 if (level == 0)
8918 break;
8919
8920 if (path->slots[level] >=
8921 btrfs_header_nritems(path->nodes[level]))
8922 break;
8923
8924 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8925 if (ret > 0) {
8926 path->slots[level]++;
8927 continue;
8928 } else if (ret < 0)
8929 return ret;
8930 level = wc->level;
8931 }
8932 return 0;
8933}
8934
8935static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8936 struct btrfs_root *root,
8937 struct btrfs_path *path,
8938 struct walk_control *wc, int max_level)
8939{
8940 int level = wc->level;
8941 int ret;
8942
8943 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8944 while (level < max_level && path->nodes[level]) {
8945 wc->level = level;
8946 if (path->slots[level] + 1 <
8947 btrfs_header_nritems(path->nodes[level])) {
8948 path->slots[level]++;
8949 return 0;
8950 } else {
8951 ret = walk_up_proc(trans, root, path, wc);
8952 if (ret > 0)
8953 return 0;
8954
8955 if (path->locks[level]) {
8956 btrfs_tree_unlock_rw(path->nodes[level],
8957 path->locks[level]);
8958 path->locks[level] = 0;
8959 }
8960 free_extent_buffer(path->nodes[level]);
8961 path->nodes[level] = NULL;
8962 level++;
8963 }
8964 }
8965 return 1;
8966}
8967
8968/*
8969 * drop a subvolume tree.
8970 *
8971 * this function traverses the tree freeing any blocks that only
8972 * referenced by the tree.
8973 *
8974 * when a shared tree block is found. this function decreases its
8975 * reference count by one. if update_ref is true, this function
8976 * also make sure backrefs for the shared block and all lower level
8977 * blocks are properly updated.
8978 *
8979 * If called with for_reloc == 0, may exit early with -EAGAIN
8980 */
8981int btrfs_drop_snapshot(struct btrfs_root *root,
8982 struct btrfs_block_rsv *block_rsv, int update_ref,
8983 int for_reloc)
8984{
8985 struct btrfs_fs_info *fs_info = root->fs_info;
8986 struct btrfs_path *path;
8987 struct btrfs_trans_handle *trans;
8988 struct btrfs_root *tree_root = fs_info->tree_root;
8989 struct btrfs_root_item *root_item = &root->root_item;
8990 struct walk_control *wc;
8991 struct btrfs_key key;
8992 int err = 0;
8993 int ret;
8994 int level;
8995 bool root_dropped = false;
8996
8997 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8998
8999 path = btrfs_alloc_path();
9000 if (!path) {
9001 err = -ENOMEM;
9002 goto out;
9003 }
9004
9005 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9006 if (!wc) {
9007 btrfs_free_path(path);
9008 err = -ENOMEM;
9009 goto out;
9010 }
9011
9012 trans = btrfs_start_transaction(tree_root, 0);
9013 if (IS_ERR(trans)) {
9014 err = PTR_ERR(trans);
9015 goto out_free;
9016 }
9017
9018 if (block_rsv)
9019 trans->block_rsv = block_rsv;
9020
9021 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9022 level = btrfs_header_level(root->node);
9023 path->nodes[level] = btrfs_lock_root_node(root);
9024 btrfs_set_lock_blocking(path->nodes[level]);
9025 path->slots[level] = 0;
9026 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9027 memset(&wc->update_progress, 0,
9028 sizeof(wc->update_progress));
9029 } else {
9030 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9031 memcpy(&wc->update_progress, &key,
9032 sizeof(wc->update_progress));
9033
9034 level = root_item->drop_level;
9035 BUG_ON(level == 0);
9036 path->lowest_level = level;
9037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9038 path->lowest_level = 0;
9039 if (ret < 0) {
9040 err = ret;
9041 goto out_end_trans;
9042 }
9043 WARN_ON(ret > 0);
9044
9045 /*
9046 * unlock our path, this is safe because only this
9047 * function is allowed to delete this snapshot
9048 */
9049 btrfs_unlock_up_safe(path, 0);
9050
9051 level = btrfs_header_level(root->node);
9052 while (1) {
9053 btrfs_tree_lock(path->nodes[level]);
9054 btrfs_set_lock_blocking(path->nodes[level]);
9055 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9056
9057 ret = btrfs_lookup_extent_info(trans, fs_info,
9058 path->nodes[level]->start,
9059 level, 1, &wc->refs[level],
9060 &wc->flags[level]);
9061 if (ret < 0) {
9062 err = ret;
9063 goto out_end_trans;
9064 }
9065 BUG_ON(wc->refs[level] == 0);
9066
9067 if (level == root_item->drop_level)
9068 break;
9069
9070 btrfs_tree_unlock(path->nodes[level]);
9071 path->locks[level] = 0;
9072 WARN_ON(wc->refs[level] != 1);
9073 level--;
9074 }
9075 }
9076
9077 wc->level = level;
9078 wc->shared_level = -1;
9079 wc->stage = DROP_REFERENCE;
9080 wc->update_ref = update_ref;
9081 wc->keep_locks = 0;
9082 wc->for_reloc = for_reloc;
9083 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9084
9085 while (1) {
9086
9087 ret = walk_down_tree(trans, root, path, wc);
9088 if (ret < 0) {
9089 err = ret;
9090 break;
9091 }
9092
9093 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9094 if (ret < 0) {
9095 err = ret;
9096 break;
9097 }
9098
9099 if (ret > 0) {
9100 BUG_ON(wc->stage != DROP_REFERENCE);
9101 break;
9102 }
9103
9104 if (wc->stage == DROP_REFERENCE) {
9105 level = wc->level;
9106 btrfs_node_key(path->nodes[level],
9107 &root_item->drop_progress,
9108 path->slots[level]);
9109 root_item->drop_level = level;
9110 }
9111
9112 BUG_ON(wc->level == 0);
9113 if (btrfs_should_end_transaction(trans) ||
9114 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9115 ret = btrfs_update_root(trans, tree_root,
9116 &root->root_key,
9117 root_item);
9118 if (ret) {
9119 btrfs_abort_transaction(trans, ret);
9120 err = ret;
9121 goto out_end_trans;
9122 }
9123
9124 btrfs_end_transaction_throttle(trans);
9125 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9126 btrfs_debug(fs_info,
9127 "drop snapshot early exit");
9128 err = -EAGAIN;
9129 goto out_free;
9130 }
9131
9132 trans = btrfs_start_transaction(tree_root, 0);
9133 if (IS_ERR(trans)) {
9134 err = PTR_ERR(trans);
9135 goto out_free;
9136 }
9137 if (block_rsv)
9138 trans->block_rsv = block_rsv;
9139 }
9140 }
9141 btrfs_release_path(path);
9142 if (err)
9143 goto out_end_trans;
9144
9145 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9146 if (ret) {
9147 btrfs_abort_transaction(trans, ret);
9148 goto out_end_trans;
9149 }
9150
9151 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9152 ret = btrfs_find_root(tree_root, &root->root_key, path,
9153 NULL, NULL);
9154 if (ret < 0) {
9155 btrfs_abort_transaction(trans, ret);
9156 err = ret;
9157 goto out_end_trans;
9158 } else if (ret > 0) {
9159 /* if we fail to delete the orphan item this time
9160 * around, it'll get picked up the next time.
9161 *
9162 * The most common failure here is just -ENOENT.
9163 */
9164 btrfs_del_orphan_item(trans, tree_root,
9165 root->root_key.objectid);
9166 }
9167 }
9168
9169 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9170 btrfs_add_dropped_root(trans, root);
9171 } else {
9172 free_extent_buffer(root->node);
9173 free_extent_buffer(root->commit_root);
9174 btrfs_put_fs_root(root);
9175 }
9176 root_dropped = true;
9177out_end_trans:
9178 btrfs_end_transaction_throttle(trans);
9179out_free:
9180 kfree(wc);
9181 btrfs_free_path(path);
9182out:
9183 /*
9184 * So if we need to stop dropping the snapshot for whatever reason we
9185 * need to make sure to add it back to the dead root list so that we
9186 * keep trying to do the work later. This also cleans up roots if we
9187 * don't have it in the radix (like when we recover after a power fail
9188 * or unmount) so we don't leak memory.
9189 */
9190 if (!for_reloc && root_dropped == false)
9191 btrfs_add_dead_root(root);
9192 if (err && err != -EAGAIN)
9193 btrfs_handle_fs_error(fs_info, err, NULL);
9194 return err;
9195}
9196
9197/*
9198 * drop subtree rooted at tree block 'node'.
9199 *
9200 * NOTE: this function will unlock and release tree block 'node'
9201 * only used by relocation code
9202 */
9203int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9204 struct btrfs_root *root,
9205 struct extent_buffer *node,
9206 struct extent_buffer *parent)
9207{
9208 struct btrfs_fs_info *fs_info = root->fs_info;
9209 struct btrfs_path *path;
9210 struct walk_control *wc;
9211 int level;
9212 int parent_level;
9213 int ret = 0;
9214 int wret;
9215
9216 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9217
9218 path = btrfs_alloc_path();
9219 if (!path)
9220 return -ENOMEM;
9221
9222 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9223 if (!wc) {
9224 btrfs_free_path(path);
9225 return -ENOMEM;
9226 }
9227
9228 btrfs_assert_tree_locked(parent);
9229 parent_level = btrfs_header_level(parent);
9230 extent_buffer_get(parent);
9231 path->nodes[parent_level] = parent;
9232 path->slots[parent_level] = btrfs_header_nritems(parent);
9233
9234 btrfs_assert_tree_locked(node);
9235 level = btrfs_header_level(node);
9236 path->nodes[level] = node;
9237 path->slots[level] = 0;
9238 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9239
9240 wc->refs[parent_level] = 1;
9241 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9242 wc->level = level;
9243 wc->shared_level = -1;
9244 wc->stage = DROP_REFERENCE;
9245 wc->update_ref = 0;
9246 wc->keep_locks = 1;
9247 wc->for_reloc = 1;
9248 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9249
9250 while (1) {
9251 wret = walk_down_tree(trans, root, path, wc);
9252 if (wret < 0) {
9253 ret = wret;
9254 break;
9255 }
9256
9257 wret = walk_up_tree(trans, root, path, wc, parent_level);
9258 if (wret < 0)
9259 ret = wret;
9260 if (wret != 0)
9261 break;
9262 }
9263
9264 kfree(wc);
9265 btrfs_free_path(path);
9266 return ret;
9267}
9268
9269static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9270{
9271 u64 num_devices;
9272 u64 stripped;
9273
9274 /*
9275 * if restripe for this chunk_type is on pick target profile and
9276 * return, otherwise do the usual balance
9277 */
9278 stripped = get_restripe_target(fs_info, flags);
9279 if (stripped)
9280 return extended_to_chunk(stripped);
9281
9282 num_devices = fs_info->fs_devices->rw_devices;
9283
9284 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9285 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9286 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9287
9288 if (num_devices == 1) {
9289 stripped |= BTRFS_BLOCK_GROUP_DUP;
9290 stripped = flags & ~stripped;
9291
9292 /* turn raid0 into single device chunks */
9293 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9294 return stripped;
9295
9296 /* turn mirroring into duplication */
9297 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9298 BTRFS_BLOCK_GROUP_RAID10))
9299 return stripped | BTRFS_BLOCK_GROUP_DUP;
9300 } else {
9301 /* they already had raid on here, just return */
9302 if (flags & stripped)
9303 return flags;
9304
9305 stripped |= BTRFS_BLOCK_GROUP_DUP;
9306 stripped = flags & ~stripped;
9307
9308 /* switch duplicated blocks with raid1 */
9309 if (flags & BTRFS_BLOCK_GROUP_DUP)
9310 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9311
9312 /* this is drive concat, leave it alone */
9313 }
9314
9315 return flags;
9316}
9317
9318static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9319{
9320 struct btrfs_space_info *sinfo = cache->space_info;
9321 u64 num_bytes;
9322 u64 min_allocable_bytes;
9323 int ret = -ENOSPC;
9324
9325 /*
9326 * We need some metadata space and system metadata space for
9327 * allocating chunks in some corner cases until we force to set
9328 * it to be readonly.
9329 */
9330 if ((sinfo->flags &
9331 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9332 !force)
9333 min_allocable_bytes = SZ_1M;
9334 else
9335 min_allocable_bytes = 0;
9336
9337 spin_lock(&sinfo->lock);
9338 spin_lock(&cache->lock);
9339
9340 if (cache->ro) {
9341 cache->ro++;
9342 ret = 0;
9343 goto out;
9344 }
9345
9346 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9347 cache->bytes_super - btrfs_block_group_used(&cache->item);
9348
9349 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9350 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9351 min_allocable_bytes <= sinfo->total_bytes) {
9352 sinfo->bytes_readonly += num_bytes;
9353 cache->ro++;
9354 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9355 ret = 0;
9356 }
9357out:
9358 spin_unlock(&cache->lock);
9359 spin_unlock(&sinfo->lock);
9360 return ret;
9361}
9362
9363int btrfs_inc_block_group_ro(struct btrfs_root *root,
9364 struct btrfs_block_group_cache *cache)
9365
9366{
9367 struct btrfs_fs_info *fs_info = root->fs_info;
9368 struct btrfs_trans_handle *trans;
9369 u64 alloc_flags;
9370 int ret;
9371
9372again:
9373 trans = btrfs_join_transaction(root);
9374 if (IS_ERR(trans))
9375 return PTR_ERR(trans);
9376
9377 /*
9378 * we're not allowed to set block groups readonly after the dirty
9379 * block groups cache has started writing. If it already started,
9380 * back off and let this transaction commit
9381 */
9382 mutex_lock(&fs_info->ro_block_group_mutex);
9383 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9384 u64 transid = trans->transid;
9385
9386 mutex_unlock(&fs_info->ro_block_group_mutex);
9387 btrfs_end_transaction(trans);
9388
9389 ret = btrfs_wait_for_commit(fs_info, transid);
9390 if (ret)
9391 return ret;
9392 goto again;
9393 }
9394
9395 /*
9396 * if we are changing raid levels, try to allocate a corresponding
9397 * block group with the new raid level.
9398 */
9399 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9400 if (alloc_flags != cache->flags) {
9401 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9402 CHUNK_ALLOC_FORCE);
9403 /*
9404 * ENOSPC is allowed here, we may have enough space
9405 * already allocated at the new raid level to
9406 * carry on
9407 */
9408 if (ret == -ENOSPC)
9409 ret = 0;
9410 if (ret < 0)
9411 goto out;
9412 }
9413
9414 ret = inc_block_group_ro(cache, 0);
9415 if (!ret)
9416 goto out;
9417 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9418 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9419 CHUNK_ALLOC_FORCE);
9420 if (ret < 0)
9421 goto out;
9422 ret = inc_block_group_ro(cache, 0);
9423out:
9424 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9425 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9426 mutex_lock(&fs_info->chunk_mutex);
9427 check_system_chunk(trans, fs_info, alloc_flags);
9428 mutex_unlock(&fs_info->chunk_mutex);
9429 }
9430 mutex_unlock(&fs_info->ro_block_group_mutex);
9431
9432 btrfs_end_transaction(trans);
9433 return ret;
9434}
9435
9436int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9437 struct btrfs_fs_info *fs_info, u64 type)
9438{
9439 u64 alloc_flags = get_alloc_profile(fs_info, type);
9440
9441 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9442}
9443
9444/*
9445 * helper to account the unused space of all the readonly block group in the
9446 * space_info. takes mirrors into account.
9447 */
9448u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9449{
9450 struct btrfs_block_group_cache *block_group;
9451 u64 free_bytes = 0;
9452 int factor;
9453
9454 /* It's df, we don't care if it's racy */
9455 if (list_empty(&sinfo->ro_bgs))
9456 return 0;
9457
9458 spin_lock(&sinfo->lock);
9459 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9460 spin_lock(&block_group->lock);
9461
9462 if (!block_group->ro) {
9463 spin_unlock(&block_group->lock);
9464 continue;
9465 }
9466
9467 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9468 BTRFS_BLOCK_GROUP_RAID10 |
9469 BTRFS_BLOCK_GROUP_DUP))
9470 factor = 2;
9471 else
9472 factor = 1;
9473
9474 free_bytes += (block_group->key.offset -
9475 btrfs_block_group_used(&block_group->item)) *
9476 factor;
9477
9478 spin_unlock(&block_group->lock);
9479 }
9480 spin_unlock(&sinfo->lock);
9481
9482 return free_bytes;
9483}
9484
9485void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9486{
9487 struct btrfs_space_info *sinfo = cache->space_info;
9488 u64 num_bytes;
9489
9490 BUG_ON(!cache->ro);
9491
9492 spin_lock(&sinfo->lock);
9493 spin_lock(&cache->lock);
9494 if (!--cache->ro) {
9495 num_bytes = cache->key.offset - cache->reserved -
9496 cache->pinned - cache->bytes_super -
9497 btrfs_block_group_used(&cache->item);
9498 sinfo->bytes_readonly -= num_bytes;
9499 list_del_init(&cache->ro_list);
9500 }
9501 spin_unlock(&cache->lock);
9502 spin_unlock(&sinfo->lock);
9503}
9504
9505/*
9506 * checks to see if its even possible to relocate this block group.
9507 *
9508 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9509 * ok to go ahead and try.
9510 */
9511int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9512{
9513 struct btrfs_root *root = fs_info->extent_root;
9514 struct btrfs_block_group_cache *block_group;
9515 struct btrfs_space_info *space_info;
9516 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9517 struct btrfs_device *device;
9518 struct btrfs_trans_handle *trans;
9519 u64 min_free;
9520 u64 dev_min = 1;
9521 u64 dev_nr = 0;
9522 u64 target;
9523 int debug;
9524 int index;
9525 int full = 0;
9526 int ret = 0;
9527
9528 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9529
9530 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9531
9532 /* odd, couldn't find the block group, leave it alone */
9533 if (!block_group) {
9534 if (debug)
9535 btrfs_warn(fs_info,
9536 "can't find block group for bytenr %llu",
9537 bytenr);
9538 return -1;
9539 }
9540
9541 min_free = btrfs_block_group_used(&block_group->item);
9542
9543 /* no bytes used, we're good */
9544 if (!min_free)
9545 goto out;
9546
9547 space_info = block_group->space_info;
9548 spin_lock(&space_info->lock);
9549
9550 full = space_info->full;
9551
9552 /*
9553 * if this is the last block group we have in this space, we can't
9554 * relocate it unless we're able to allocate a new chunk below.
9555 *
9556 * Otherwise, we need to make sure we have room in the space to handle
9557 * all of the extents from this block group. If we can, we're good
9558 */
9559 if ((space_info->total_bytes != block_group->key.offset) &&
9560 (space_info->bytes_used + space_info->bytes_reserved +
9561 space_info->bytes_pinned + space_info->bytes_readonly +
9562 min_free < space_info->total_bytes)) {
9563 spin_unlock(&space_info->lock);
9564 goto out;
9565 }
9566 spin_unlock(&space_info->lock);
9567
9568 /*
9569 * ok we don't have enough space, but maybe we have free space on our
9570 * devices to allocate new chunks for relocation, so loop through our
9571 * alloc devices and guess if we have enough space. if this block
9572 * group is going to be restriped, run checks against the target
9573 * profile instead of the current one.
9574 */
9575 ret = -1;
9576
9577 /*
9578 * index:
9579 * 0: raid10
9580 * 1: raid1
9581 * 2: dup
9582 * 3: raid0
9583 * 4: single
9584 */
9585 target = get_restripe_target(fs_info, block_group->flags);
9586 if (target) {
9587 index = __get_raid_index(extended_to_chunk(target));
9588 } else {
9589 /*
9590 * this is just a balance, so if we were marked as full
9591 * we know there is no space for a new chunk
9592 */
9593 if (full) {
9594 if (debug)
9595 btrfs_warn(fs_info,
9596 "no space to alloc new chunk for block group %llu",
9597 block_group->key.objectid);
9598 goto out;
9599 }
9600
9601 index = get_block_group_index(block_group);
9602 }
9603
9604 if (index == BTRFS_RAID_RAID10) {
9605 dev_min = 4;
9606 /* Divide by 2 */
9607 min_free >>= 1;
9608 } else if (index == BTRFS_RAID_RAID1) {
9609 dev_min = 2;
9610 } else if (index == BTRFS_RAID_DUP) {
9611 /* Multiply by 2 */
9612 min_free <<= 1;
9613 } else if (index == BTRFS_RAID_RAID0) {
9614 dev_min = fs_devices->rw_devices;
9615 min_free = div64_u64(min_free, dev_min);
9616 }
9617
9618 /* We need to do this so that we can look at pending chunks */
9619 trans = btrfs_join_transaction(root);
9620 if (IS_ERR(trans)) {
9621 ret = PTR_ERR(trans);
9622 goto out;
9623 }
9624
9625 mutex_lock(&fs_info->chunk_mutex);
9626 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9627 u64 dev_offset;
9628
9629 /*
9630 * check to make sure we can actually find a chunk with enough
9631 * space to fit our block group in.
9632 */
9633 if (device->total_bytes > device->bytes_used + min_free &&
9634 !device->is_tgtdev_for_dev_replace) {
9635 ret = find_free_dev_extent(trans, device, min_free,
9636 &dev_offset, NULL);
9637 if (!ret)
9638 dev_nr++;
9639
9640 if (dev_nr >= dev_min)
9641 break;
9642
9643 ret = -1;
9644 }
9645 }
9646 if (debug && ret == -1)
9647 btrfs_warn(fs_info,
9648 "no space to allocate a new chunk for block group %llu",
9649 block_group->key.objectid);
9650 mutex_unlock(&fs_info->chunk_mutex);
9651 btrfs_end_transaction(trans);
9652out:
9653 btrfs_put_block_group(block_group);
9654 return ret;
9655}
9656
9657static int find_first_block_group(struct btrfs_fs_info *fs_info,
9658 struct btrfs_path *path,
9659 struct btrfs_key *key)
9660{
9661 struct btrfs_root *root = fs_info->extent_root;
9662 int ret = 0;
9663 struct btrfs_key found_key;
9664 struct extent_buffer *leaf;
9665 int slot;
9666
9667 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9668 if (ret < 0)
9669 goto out;
9670
9671 while (1) {
9672 slot = path->slots[0];
9673 leaf = path->nodes[0];
9674 if (slot >= btrfs_header_nritems(leaf)) {
9675 ret = btrfs_next_leaf(root, path);
9676 if (ret == 0)
9677 continue;
9678 if (ret < 0)
9679 goto out;
9680 break;
9681 }
9682 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9683
9684 if (found_key.objectid >= key->objectid &&
9685 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9686 struct extent_map_tree *em_tree;
9687 struct extent_map *em;
9688
9689 em_tree = &root->fs_info->mapping_tree.map_tree;
9690 read_lock(&em_tree->lock);
9691 em = lookup_extent_mapping(em_tree, found_key.objectid,
9692 found_key.offset);
9693 read_unlock(&em_tree->lock);
9694 if (!em) {
9695 btrfs_err(fs_info,
9696 "logical %llu len %llu found bg but no related chunk",
9697 found_key.objectid, found_key.offset);
9698 ret = -ENOENT;
9699 } else {
9700 ret = 0;
9701 }
9702 free_extent_map(em);
9703 goto out;
9704 }
9705 path->slots[0]++;
9706 }
9707out:
9708 return ret;
9709}
9710
9711void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9712{
9713 struct btrfs_block_group_cache *block_group;
9714 u64 last = 0;
9715
9716 while (1) {
9717 struct inode *inode;
9718
9719 block_group = btrfs_lookup_first_block_group(info, last);
9720 while (block_group) {
9721 spin_lock(&block_group->lock);
9722 if (block_group->iref)
9723 break;
9724 spin_unlock(&block_group->lock);
9725 block_group = next_block_group(info, block_group);
9726 }
9727 if (!block_group) {
9728 if (last == 0)
9729 break;
9730 last = 0;
9731 continue;
9732 }
9733
9734 inode = block_group->inode;
9735 block_group->iref = 0;
9736 block_group->inode = NULL;
9737 spin_unlock(&block_group->lock);
9738 ASSERT(block_group->io_ctl.inode == NULL);
9739 iput(inode);
9740 last = block_group->key.objectid + block_group->key.offset;
9741 btrfs_put_block_group(block_group);
9742 }
9743}
9744
9745int btrfs_free_block_groups(struct btrfs_fs_info *info)
9746{
9747 struct btrfs_block_group_cache *block_group;
9748 struct btrfs_space_info *space_info;
9749 struct btrfs_caching_control *caching_ctl;
9750 struct rb_node *n;
9751
9752 down_write(&info->commit_root_sem);
9753 while (!list_empty(&info->caching_block_groups)) {
9754 caching_ctl = list_entry(info->caching_block_groups.next,
9755 struct btrfs_caching_control, list);
9756 list_del(&caching_ctl->list);
9757 put_caching_control(caching_ctl);
9758 }
9759 up_write(&info->commit_root_sem);
9760
9761 spin_lock(&info->unused_bgs_lock);
9762 while (!list_empty(&info->unused_bgs)) {
9763 block_group = list_first_entry(&info->unused_bgs,
9764 struct btrfs_block_group_cache,
9765 bg_list);
9766 list_del_init(&block_group->bg_list);
9767 btrfs_put_block_group(block_group);
9768 }
9769 spin_unlock(&info->unused_bgs_lock);
9770
9771 spin_lock(&info->block_group_cache_lock);
9772 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9773 block_group = rb_entry(n, struct btrfs_block_group_cache,
9774 cache_node);
9775 rb_erase(&block_group->cache_node,
9776 &info->block_group_cache_tree);
9777 RB_CLEAR_NODE(&block_group->cache_node);
9778 spin_unlock(&info->block_group_cache_lock);
9779
9780 down_write(&block_group->space_info->groups_sem);
9781 list_del(&block_group->list);
9782 up_write(&block_group->space_info->groups_sem);
9783
9784 if (block_group->cached == BTRFS_CACHE_STARTED)
9785 wait_block_group_cache_done(block_group);
9786
9787 /*
9788 * We haven't cached this block group, which means we could
9789 * possibly have excluded extents on this block group.
9790 */
9791 if (block_group->cached == BTRFS_CACHE_NO ||
9792 block_group->cached == BTRFS_CACHE_ERROR)
9793 free_excluded_extents(info, block_group);
9794
9795 btrfs_remove_free_space_cache(block_group);
9796 ASSERT(list_empty(&block_group->dirty_list));
9797 ASSERT(list_empty(&block_group->io_list));
9798 ASSERT(list_empty(&block_group->bg_list));
9799 ASSERT(atomic_read(&block_group->count) == 1);
9800 btrfs_put_block_group(block_group);
9801
9802 spin_lock(&info->block_group_cache_lock);
9803 }
9804 spin_unlock(&info->block_group_cache_lock);
9805
9806 /* now that all the block groups are freed, go through and
9807 * free all the space_info structs. This is only called during
9808 * the final stages of unmount, and so we know nobody is
9809 * using them. We call synchronize_rcu() once before we start,
9810 * just to be on the safe side.
9811 */
9812 synchronize_rcu();
9813
9814 release_global_block_rsv(info);
9815
9816 while (!list_empty(&info->space_info)) {
9817 int i;
9818
9819 space_info = list_entry(info->space_info.next,
9820 struct btrfs_space_info,
9821 list);
9822
9823 /*
9824 * Do not hide this behind enospc_debug, this is actually
9825 * important and indicates a real bug if this happens.
9826 */
9827 if (WARN_ON(space_info->bytes_pinned > 0 ||
9828 space_info->bytes_reserved > 0 ||
9829 space_info->bytes_may_use > 0))
9830 dump_space_info(info, space_info, 0, 0);
9831 list_del(&space_info->list);
9832 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9833 struct kobject *kobj;
9834 kobj = space_info->block_group_kobjs[i];
9835 space_info->block_group_kobjs[i] = NULL;
9836 if (kobj) {
9837 kobject_del(kobj);
9838 kobject_put(kobj);
9839 }
9840 }
9841 kobject_del(&space_info->kobj);
9842 kobject_put(&space_info->kobj);
9843 }
9844 return 0;
9845}
9846
9847static void __link_block_group(struct btrfs_space_info *space_info,
9848 struct btrfs_block_group_cache *cache)
9849{
9850 int index = get_block_group_index(cache);
9851 bool first = false;
9852
9853 down_write(&space_info->groups_sem);
9854 if (list_empty(&space_info->block_groups[index]))
9855 first = true;
9856 list_add_tail(&cache->list, &space_info->block_groups[index]);
9857 up_write(&space_info->groups_sem);
9858
9859 if (first) {
9860 struct raid_kobject *rkobj;
9861 int ret;
9862
9863 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9864 if (!rkobj)
9865 goto out_err;
9866 rkobj->raid_type = index;
9867 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9868 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9869 "%s", get_raid_name(index));
9870 if (ret) {
9871 kobject_put(&rkobj->kobj);
9872 goto out_err;
9873 }
9874 space_info->block_group_kobjs[index] = &rkobj->kobj;
9875 }
9876
9877 return;
9878out_err:
9879 btrfs_warn(cache->fs_info,
9880 "failed to add kobject for block cache, ignoring");
9881}
9882
9883static struct btrfs_block_group_cache *
9884btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9885 u64 start, u64 size)
9886{
9887 struct btrfs_block_group_cache *cache;
9888
9889 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9890 if (!cache)
9891 return NULL;
9892
9893 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9894 GFP_NOFS);
9895 if (!cache->free_space_ctl) {
9896 kfree(cache);
9897 return NULL;
9898 }
9899
9900 cache->key.objectid = start;
9901 cache->key.offset = size;
9902 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9903
9904 cache->sectorsize = fs_info->sectorsize;
9905 cache->fs_info = fs_info;
9906 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9907 &fs_info->mapping_tree,
9908 start);
9909 set_free_space_tree_thresholds(cache);
9910
9911 atomic_set(&cache->count, 1);
9912 spin_lock_init(&cache->lock);
9913 init_rwsem(&cache->data_rwsem);
9914 INIT_LIST_HEAD(&cache->list);
9915 INIT_LIST_HEAD(&cache->cluster_list);
9916 INIT_LIST_HEAD(&cache->bg_list);
9917 INIT_LIST_HEAD(&cache->ro_list);
9918 INIT_LIST_HEAD(&cache->dirty_list);
9919 INIT_LIST_HEAD(&cache->io_list);
9920 btrfs_init_free_space_ctl(cache);
9921 atomic_set(&cache->trimming, 0);
9922 mutex_init(&cache->free_space_lock);
9923
9924 return cache;
9925}
9926
9927int btrfs_read_block_groups(struct btrfs_fs_info *info)
9928{
9929 struct btrfs_path *path;
9930 int ret;
9931 struct btrfs_block_group_cache *cache;
9932 struct btrfs_space_info *space_info;
9933 struct btrfs_key key;
9934 struct btrfs_key found_key;
9935 struct extent_buffer *leaf;
9936 int need_clear = 0;
9937 u64 cache_gen;
9938 u64 feature;
9939 int mixed;
9940
9941 feature = btrfs_super_incompat_flags(info->super_copy);
9942 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9943
9944 key.objectid = 0;
9945 key.offset = 0;
9946 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9947 path = btrfs_alloc_path();
9948 if (!path)
9949 return -ENOMEM;
9950 path->reada = READA_FORWARD;
9951
9952 cache_gen = btrfs_super_cache_generation(info->super_copy);
9953 if (btrfs_test_opt(info, SPACE_CACHE) &&
9954 btrfs_super_generation(info->super_copy) != cache_gen)
9955 need_clear = 1;
9956 if (btrfs_test_opt(info, CLEAR_CACHE))
9957 need_clear = 1;
9958
9959 while (1) {
9960 ret = find_first_block_group(info, path, &key);
9961 if (ret > 0)
9962 break;
9963 if (ret != 0)
9964 goto error;
9965
9966 leaf = path->nodes[0];
9967 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9968
9969 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9970 found_key.offset);
9971 if (!cache) {
9972 ret = -ENOMEM;
9973 goto error;
9974 }
9975
9976 if (need_clear) {
9977 /*
9978 * When we mount with old space cache, we need to
9979 * set BTRFS_DC_CLEAR and set dirty flag.
9980 *
9981 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9982 * truncate the old free space cache inode and
9983 * setup a new one.
9984 * b) Setting 'dirty flag' makes sure that we flush
9985 * the new space cache info onto disk.
9986 */
9987 if (btrfs_test_opt(info, SPACE_CACHE))
9988 cache->disk_cache_state = BTRFS_DC_CLEAR;
9989 }
9990
9991 read_extent_buffer(leaf, &cache->item,
9992 btrfs_item_ptr_offset(leaf, path->slots[0]),
9993 sizeof(cache->item));
9994 cache->flags = btrfs_block_group_flags(&cache->item);
9995 if (!mixed &&
9996 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9997 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9998 btrfs_err(info,
9999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10000 cache->key.objectid);
10001 ret = -EINVAL;
10002 goto error;
10003 }
10004
10005 key.objectid = found_key.objectid + found_key.offset;
10006 btrfs_release_path(path);
10007
10008 /*
10009 * We need to exclude the super stripes now so that the space
10010 * info has super bytes accounted for, otherwise we'll think
10011 * we have more space than we actually do.
10012 */
10013 ret = exclude_super_stripes(info, cache);
10014 if (ret) {
10015 /*
10016 * We may have excluded something, so call this just in
10017 * case.
10018 */
10019 free_excluded_extents(info, cache);
10020 btrfs_put_block_group(cache);
10021 goto error;
10022 }
10023
10024 /*
10025 * check for two cases, either we are full, and therefore
10026 * don't need to bother with the caching work since we won't
10027 * find any space, or we are empty, and we can just add all
10028 * the space in and be done with it. This saves us _alot_ of
10029 * time, particularly in the full case.
10030 */
10031 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10032 cache->last_byte_to_unpin = (u64)-1;
10033 cache->cached = BTRFS_CACHE_FINISHED;
10034 free_excluded_extents(info, cache);
10035 } else if (btrfs_block_group_used(&cache->item) == 0) {
10036 cache->last_byte_to_unpin = (u64)-1;
10037 cache->cached = BTRFS_CACHE_FINISHED;
10038 add_new_free_space(cache, info,
10039 found_key.objectid,
10040 found_key.objectid +
10041 found_key.offset);
10042 free_excluded_extents(info, cache);
10043 }
10044
10045 ret = btrfs_add_block_group_cache(info, cache);
10046 if (ret) {
10047 btrfs_remove_free_space_cache(cache);
10048 btrfs_put_block_group(cache);
10049 goto error;
10050 }
10051
10052 trace_btrfs_add_block_group(info, cache, 0);
10053 ret = update_space_info(info, cache->flags, found_key.offset,
10054 btrfs_block_group_used(&cache->item),
10055 cache->bytes_super, &space_info);
10056 if (ret) {
10057 btrfs_remove_free_space_cache(cache);
10058 spin_lock(&info->block_group_cache_lock);
10059 rb_erase(&cache->cache_node,
10060 &info->block_group_cache_tree);
10061 RB_CLEAR_NODE(&cache->cache_node);
10062 spin_unlock(&info->block_group_cache_lock);
10063 btrfs_put_block_group(cache);
10064 goto error;
10065 }
10066
10067 cache->space_info = space_info;
10068
10069 __link_block_group(space_info, cache);
10070
10071 set_avail_alloc_bits(info, cache->flags);
10072 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10073 inc_block_group_ro(cache, 1);
10074 } else if (btrfs_block_group_used(&cache->item) == 0) {
10075 spin_lock(&info->unused_bgs_lock);
10076 /* Should always be true but just in case. */
10077 if (list_empty(&cache->bg_list)) {
10078 btrfs_get_block_group(cache);
10079 list_add_tail(&cache->bg_list,
10080 &info->unused_bgs);
10081 }
10082 spin_unlock(&info->unused_bgs_lock);
10083 }
10084 }
10085
10086 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10087 if (!(get_alloc_profile(info, space_info->flags) &
10088 (BTRFS_BLOCK_GROUP_RAID10 |
10089 BTRFS_BLOCK_GROUP_RAID1 |
10090 BTRFS_BLOCK_GROUP_RAID5 |
10091 BTRFS_BLOCK_GROUP_RAID6 |
10092 BTRFS_BLOCK_GROUP_DUP)))
10093 continue;
10094 /*
10095 * avoid allocating from un-mirrored block group if there are
10096 * mirrored block groups.
10097 */
10098 list_for_each_entry(cache,
10099 &space_info->block_groups[BTRFS_RAID_RAID0],
10100 list)
10101 inc_block_group_ro(cache, 1);
10102 list_for_each_entry(cache,
10103 &space_info->block_groups[BTRFS_RAID_SINGLE],
10104 list)
10105 inc_block_group_ro(cache, 1);
10106 }
10107
10108 init_global_block_rsv(info);
10109 ret = 0;
10110error:
10111 btrfs_free_path(path);
10112 return ret;
10113}
10114
10115void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10116 struct btrfs_fs_info *fs_info)
10117{
10118 struct btrfs_block_group_cache *block_group, *tmp;
10119 struct btrfs_root *extent_root = fs_info->extent_root;
10120 struct btrfs_block_group_item item;
10121 struct btrfs_key key;
10122 int ret = 0;
10123 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10124
10125 trans->can_flush_pending_bgs = false;
10126 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10127 if (ret)
10128 goto next;
10129
10130 spin_lock(&block_group->lock);
10131 memcpy(&item, &block_group->item, sizeof(item));
10132 memcpy(&key, &block_group->key, sizeof(key));
10133 spin_unlock(&block_group->lock);
10134
10135 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10136 sizeof(item));
10137 if (ret)
10138 btrfs_abort_transaction(trans, ret);
10139 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10140 key.offset);
10141 if (ret)
10142 btrfs_abort_transaction(trans, ret);
10143 add_block_group_free_space(trans, fs_info, block_group);
10144 /* already aborted the transaction if it failed. */
10145next:
10146 list_del_init(&block_group->bg_list);
10147 }
10148 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10149}
10150
10151int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10152 struct btrfs_fs_info *fs_info, u64 bytes_used,
10153 u64 type, u64 chunk_objectid, u64 chunk_offset,
10154 u64 size)
10155{
10156 struct btrfs_block_group_cache *cache;
10157 int ret;
10158
10159 btrfs_set_log_full_commit(fs_info, trans);
10160
10161 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10162 if (!cache)
10163 return -ENOMEM;
10164
10165 btrfs_set_block_group_used(&cache->item, bytes_used);
10166 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10167 btrfs_set_block_group_flags(&cache->item, type);
10168
10169 cache->flags = type;
10170 cache->last_byte_to_unpin = (u64)-1;
10171 cache->cached = BTRFS_CACHE_FINISHED;
10172 cache->needs_free_space = 1;
10173 ret = exclude_super_stripes(fs_info, cache);
10174 if (ret) {
10175 /*
10176 * We may have excluded something, so call this just in
10177 * case.
10178 */
10179 free_excluded_extents(fs_info, cache);
10180 btrfs_put_block_group(cache);
10181 return ret;
10182 }
10183
10184 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10185
10186 free_excluded_extents(fs_info, cache);
10187
10188#ifdef CONFIG_BTRFS_DEBUG
10189 if (btrfs_should_fragment_free_space(cache)) {
10190 u64 new_bytes_used = size - bytes_used;
10191
10192 bytes_used += new_bytes_used >> 1;
10193 fragment_free_space(cache);
10194 }
10195#endif
10196 /*
10197 * Call to ensure the corresponding space_info object is created and
10198 * assigned to our block group, but don't update its counters just yet.
10199 * We want our bg to be added to the rbtree with its ->space_info set.
10200 */
10201 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10202 &cache->space_info);
10203 if (ret) {
10204 btrfs_remove_free_space_cache(cache);
10205 btrfs_put_block_group(cache);
10206 return ret;
10207 }
10208
10209 ret = btrfs_add_block_group_cache(fs_info, cache);
10210 if (ret) {
10211 btrfs_remove_free_space_cache(cache);
10212 btrfs_put_block_group(cache);
10213 return ret;
10214 }
10215
10216 /*
10217 * Now that our block group has its ->space_info set and is inserted in
10218 * the rbtree, update the space info's counters.
10219 */
10220 trace_btrfs_add_block_group(fs_info, cache, 1);
10221 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10222 cache->bytes_super, &cache->space_info);
10223 if (ret) {
10224 btrfs_remove_free_space_cache(cache);
10225 spin_lock(&fs_info->block_group_cache_lock);
10226 rb_erase(&cache->cache_node,
10227 &fs_info->block_group_cache_tree);
10228 RB_CLEAR_NODE(&cache->cache_node);
10229 spin_unlock(&fs_info->block_group_cache_lock);
10230 btrfs_put_block_group(cache);
10231 return ret;
10232 }
10233 update_global_block_rsv(fs_info);
10234
10235 __link_block_group(cache->space_info, cache);
10236
10237 list_add_tail(&cache->bg_list, &trans->new_bgs);
10238
10239 set_avail_alloc_bits(fs_info, type);
10240 return 0;
10241}
10242
10243static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10244{
10245 u64 extra_flags = chunk_to_extended(flags) &
10246 BTRFS_EXTENDED_PROFILE_MASK;
10247
10248 write_seqlock(&fs_info->profiles_lock);
10249 if (flags & BTRFS_BLOCK_GROUP_DATA)
10250 fs_info->avail_data_alloc_bits &= ~extra_flags;
10251 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10252 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10253 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10254 fs_info->avail_system_alloc_bits &= ~extra_flags;
10255 write_sequnlock(&fs_info->profiles_lock);
10256}
10257
10258int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10259 struct btrfs_fs_info *fs_info, u64 group_start,
10260 struct extent_map *em)
10261{
10262 struct btrfs_root *root = fs_info->extent_root;
10263 struct btrfs_path *path;
10264 struct btrfs_block_group_cache *block_group;
10265 struct btrfs_free_cluster *cluster;
10266 struct btrfs_root *tree_root = fs_info->tree_root;
10267 struct btrfs_key key;
10268 struct inode *inode;
10269 struct kobject *kobj = NULL;
10270 int ret;
10271 int index;
10272 int factor;
10273 struct btrfs_caching_control *caching_ctl = NULL;
10274 bool remove_em;
10275
10276 block_group = btrfs_lookup_block_group(fs_info, group_start);
10277 BUG_ON(!block_group);
10278 BUG_ON(!block_group->ro);
10279
10280 /*
10281 * Free the reserved super bytes from this block group before
10282 * remove it.
10283 */
10284 free_excluded_extents(fs_info, block_group);
10285
10286 memcpy(&key, &block_group->key, sizeof(key));
10287 index = get_block_group_index(block_group);
10288 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10289 BTRFS_BLOCK_GROUP_RAID1 |
10290 BTRFS_BLOCK_GROUP_RAID10))
10291 factor = 2;
10292 else
10293 factor = 1;
10294
10295 /* make sure this block group isn't part of an allocation cluster */
10296 cluster = &fs_info->data_alloc_cluster;
10297 spin_lock(&cluster->refill_lock);
10298 btrfs_return_cluster_to_free_space(block_group, cluster);
10299 spin_unlock(&cluster->refill_lock);
10300
10301 /*
10302 * make sure this block group isn't part of a metadata
10303 * allocation cluster
10304 */
10305 cluster = &fs_info->meta_alloc_cluster;
10306 spin_lock(&cluster->refill_lock);
10307 btrfs_return_cluster_to_free_space(block_group, cluster);
10308 spin_unlock(&cluster->refill_lock);
10309
10310 path = btrfs_alloc_path();
10311 if (!path) {
10312 ret = -ENOMEM;
10313 goto out;
10314 }
10315
10316 /*
10317 * get the inode first so any iput calls done for the io_list
10318 * aren't the final iput (no unlinks allowed now)
10319 */
10320 inode = lookup_free_space_inode(tree_root, block_group, path);
10321
10322 mutex_lock(&trans->transaction->cache_write_mutex);
10323 /*
10324 * make sure our free spache cache IO is done before remove the
10325 * free space inode
10326 */
10327 spin_lock(&trans->transaction->dirty_bgs_lock);
10328 if (!list_empty(&block_group->io_list)) {
10329 list_del_init(&block_group->io_list);
10330
10331 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10332
10333 spin_unlock(&trans->transaction->dirty_bgs_lock);
10334 btrfs_wait_cache_io(trans, block_group, path);
10335 btrfs_put_block_group(block_group);
10336 spin_lock(&trans->transaction->dirty_bgs_lock);
10337 }
10338
10339 if (!list_empty(&block_group->dirty_list)) {
10340 list_del_init(&block_group->dirty_list);
10341 btrfs_put_block_group(block_group);
10342 }
10343 spin_unlock(&trans->transaction->dirty_bgs_lock);
10344 mutex_unlock(&trans->transaction->cache_write_mutex);
10345
10346 if (!IS_ERR(inode)) {
10347 ret = btrfs_orphan_add(trans, inode);
10348 if (ret) {
10349 btrfs_add_delayed_iput(inode);
10350 goto out;
10351 }
10352 clear_nlink(inode);
10353 /* One for the block groups ref */
10354 spin_lock(&block_group->lock);
10355 if (block_group->iref) {
10356 block_group->iref = 0;
10357 block_group->inode = NULL;
10358 spin_unlock(&block_group->lock);
10359 iput(inode);
10360 } else {
10361 spin_unlock(&block_group->lock);
10362 }
10363 /* One for our lookup ref */
10364 btrfs_add_delayed_iput(inode);
10365 }
10366
10367 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10368 key.offset = block_group->key.objectid;
10369 key.type = 0;
10370
10371 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10372 if (ret < 0)
10373 goto out;
10374 if (ret > 0)
10375 btrfs_release_path(path);
10376 if (ret == 0) {
10377 ret = btrfs_del_item(trans, tree_root, path);
10378 if (ret)
10379 goto out;
10380 btrfs_release_path(path);
10381 }
10382
10383 spin_lock(&fs_info->block_group_cache_lock);
10384 rb_erase(&block_group->cache_node,
10385 &fs_info->block_group_cache_tree);
10386 RB_CLEAR_NODE(&block_group->cache_node);
10387
10388 if (fs_info->first_logical_byte == block_group->key.objectid)
10389 fs_info->first_logical_byte = (u64)-1;
10390 spin_unlock(&fs_info->block_group_cache_lock);
10391
10392 down_write(&block_group->space_info->groups_sem);
10393 /*
10394 * we must use list_del_init so people can check to see if they
10395 * are still on the list after taking the semaphore
10396 */
10397 list_del_init(&block_group->list);
10398 if (list_empty(&block_group->space_info->block_groups[index])) {
10399 kobj = block_group->space_info->block_group_kobjs[index];
10400 block_group->space_info->block_group_kobjs[index] = NULL;
10401 clear_avail_alloc_bits(fs_info, block_group->flags);
10402 }
10403 up_write(&block_group->space_info->groups_sem);
10404 if (kobj) {
10405 kobject_del(kobj);
10406 kobject_put(kobj);
10407 }
10408
10409 if (block_group->has_caching_ctl)
10410 caching_ctl = get_caching_control(block_group);
10411 if (block_group->cached == BTRFS_CACHE_STARTED)
10412 wait_block_group_cache_done(block_group);
10413 if (block_group->has_caching_ctl) {
10414 down_write(&fs_info->commit_root_sem);
10415 if (!caching_ctl) {
10416 struct btrfs_caching_control *ctl;
10417
10418 list_for_each_entry(ctl,
10419 &fs_info->caching_block_groups, list)
10420 if (ctl->block_group == block_group) {
10421 caching_ctl = ctl;
10422 atomic_inc(&caching_ctl->count);
10423 break;
10424 }
10425 }
10426 if (caching_ctl)
10427 list_del_init(&caching_ctl->list);
10428 up_write(&fs_info->commit_root_sem);
10429 if (caching_ctl) {
10430 /* Once for the caching bgs list and once for us. */
10431 put_caching_control(caching_ctl);
10432 put_caching_control(caching_ctl);
10433 }
10434 }
10435
10436 spin_lock(&trans->transaction->dirty_bgs_lock);
10437 if (!list_empty(&block_group->dirty_list)) {
10438 WARN_ON(1);
10439 }
10440 if (!list_empty(&block_group->io_list)) {
10441 WARN_ON(1);
10442 }
10443 spin_unlock(&trans->transaction->dirty_bgs_lock);
10444 btrfs_remove_free_space_cache(block_group);
10445
10446 spin_lock(&block_group->space_info->lock);
10447 list_del_init(&block_group->ro_list);
10448
10449 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10450 WARN_ON(block_group->space_info->total_bytes
10451 < block_group->key.offset);
10452 WARN_ON(block_group->space_info->bytes_readonly
10453 < block_group->key.offset);
10454 WARN_ON(block_group->space_info->disk_total
10455 < block_group->key.offset * factor);
10456 }
10457 block_group->space_info->total_bytes -= block_group->key.offset;
10458 block_group->space_info->bytes_readonly -= block_group->key.offset;
10459 block_group->space_info->disk_total -= block_group->key.offset * factor;
10460
10461 spin_unlock(&block_group->space_info->lock);
10462
10463 memcpy(&key, &block_group->key, sizeof(key));
10464
10465 mutex_lock(&fs_info->chunk_mutex);
10466 if (!list_empty(&em->list)) {
10467 /* We're in the transaction->pending_chunks list. */
10468 free_extent_map(em);
10469 }
10470 spin_lock(&block_group->lock);
10471 block_group->removed = 1;
10472 /*
10473 * At this point trimming can't start on this block group, because we
10474 * removed the block group from the tree fs_info->block_group_cache_tree
10475 * so no one can't find it anymore and even if someone already got this
10476 * block group before we removed it from the rbtree, they have already
10477 * incremented block_group->trimming - if they didn't, they won't find
10478 * any free space entries because we already removed them all when we
10479 * called btrfs_remove_free_space_cache().
10480 *
10481 * And we must not remove the extent map from the fs_info->mapping_tree
10482 * to prevent the same logical address range and physical device space
10483 * ranges from being reused for a new block group. This is because our
10484 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10485 * completely transactionless, so while it is trimming a range the
10486 * currently running transaction might finish and a new one start,
10487 * allowing for new block groups to be created that can reuse the same
10488 * physical device locations unless we take this special care.
10489 *
10490 * There may also be an implicit trim operation if the file system
10491 * is mounted with -odiscard. The same protections must remain
10492 * in place until the extents have been discarded completely when
10493 * the transaction commit has completed.
10494 */
10495 remove_em = (atomic_read(&block_group->trimming) == 0);
10496 /*
10497 * Make sure a trimmer task always sees the em in the pinned_chunks list
10498 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10499 * before checking block_group->removed).
10500 */
10501 if (!remove_em) {
10502 /*
10503 * Our em might be in trans->transaction->pending_chunks which
10504 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10505 * and so is the fs_info->pinned_chunks list.
10506 *
10507 * So at this point we must be holding the chunk_mutex to avoid
10508 * any races with chunk allocation (more specifically at
10509 * volumes.c:contains_pending_extent()), to ensure it always
10510 * sees the em, either in the pending_chunks list or in the
10511 * pinned_chunks list.
10512 */
10513 list_move_tail(&em->list, &fs_info->pinned_chunks);
10514 }
10515 spin_unlock(&block_group->lock);
10516
10517 if (remove_em) {
10518 struct extent_map_tree *em_tree;
10519
10520 em_tree = &fs_info->mapping_tree.map_tree;
10521 write_lock(&em_tree->lock);
10522 /*
10523 * The em might be in the pending_chunks list, so make sure the
10524 * chunk mutex is locked, since remove_extent_mapping() will
10525 * delete us from that list.
10526 */
10527 remove_extent_mapping(em_tree, em);
10528 write_unlock(&em_tree->lock);
10529 /* once for the tree */
10530 free_extent_map(em);
10531 }
10532
10533 mutex_unlock(&fs_info->chunk_mutex);
10534
10535 ret = remove_block_group_free_space(trans, fs_info, block_group);
10536 if (ret)
10537 goto out;
10538
10539 btrfs_put_block_group(block_group);
10540 btrfs_put_block_group(block_group);
10541
10542 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10543 if (ret > 0)
10544 ret = -EIO;
10545 if (ret < 0)
10546 goto out;
10547
10548 ret = btrfs_del_item(trans, root, path);
10549out:
10550 btrfs_free_path(path);
10551 return ret;
10552}
10553
10554struct btrfs_trans_handle *
10555btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10556 const u64 chunk_offset)
10557{
10558 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10559 struct extent_map *em;
10560 struct map_lookup *map;
10561 unsigned int num_items;
10562
10563 read_lock(&em_tree->lock);
10564 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10565 read_unlock(&em_tree->lock);
10566 ASSERT(em && em->start == chunk_offset);
10567
10568 /*
10569 * We need to reserve 3 + N units from the metadata space info in order
10570 * to remove a block group (done at btrfs_remove_chunk() and at
10571 * btrfs_remove_block_group()), which are used for:
10572 *
10573 * 1 unit for adding the free space inode's orphan (located in the tree
10574 * of tree roots).
10575 * 1 unit for deleting the block group item (located in the extent
10576 * tree).
10577 * 1 unit for deleting the free space item (located in tree of tree
10578 * roots).
10579 * N units for deleting N device extent items corresponding to each
10580 * stripe (located in the device tree).
10581 *
10582 * In order to remove a block group we also need to reserve units in the
10583 * system space info in order to update the chunk tree (update one or
10584 * more device items and remove one chunk item), but this is done at
10585 * btrfs_remove_chunk() through a call to check_system_chunk().
10586 */
10587 map = em->map_lookup;
10588 num_items = 3 + map->num_stripes;
10589 free_extent_map(em);
10590
10591 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10592 num_items, 1);
10593}
10594
10595/*
10596 * Process the unused_bgs list and remove any that don't have any allocated
10597 * space inside of them.
10598 */
10599void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10600{
10601 struct btrfs_block_group_cache *block_group;
10602 struct btrfs_space_info *space_info;
10603 struct btrfs_trans_handle *trans;
10604 int ret = 0;
10605
10606 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10607 return;
10608
10609 spin_lock(&fs_info->unused_bgs_lock);
10610 while (!list_empty(&fs_info->unused_bgs)) {
10611 u64 start, end;
10612 int trimming;
10613
10614 block_group = list_first_entry(&fs_info->unused_bgs,
10615 struct btrfs_block_group_cache,
10616 bg_list);
10617 list_del_init(&block_group->bg_list);
10618
10619 space_info = block_group->space_info;
10620
10621 if (ret || btrfs_mixed_space_info(space_info)) {
10622 btrfs_put_block_group(block_group);
10623 continue;
10624 }
10625 spin_unlock(&fs_info->unused_bgs_lock);
10626
10627 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10628
10629 /* Don't want to race with allocators so take the groups_sem */
10630 down_write(&space_info->groups_sem);
10631 spin_lock(&block_group->lock);
10632 if (block_group->reserved ||
10633 btrfs_block_group_used(&block_group->item) ||
10634 block_group->ro ||
10635 list_is_singular(&block_group->list)) {
10636 /*
10637 * We want to bail if we made new allocations or have
10638 * outstanding allocations in this block group. We do
10639 * the ro check in case balance is currently acting on
10640 * this block group.
10641 */
10642 spin_unlock(&block_group->lock);
10643 up_write(&space_info->groups_sem);
10644 goto next;
10645 }
10646 spin_unlock(&block_group->lock);
10647
10648 /* We don't want to force the issue, only flip if it's ok. */
10649 ret = inc_block_group_ro(block_group, 0);
10650 up_write(&space_info->groups_sem);
10651 if (ret < 0) {
10652 ret = 0;
10653 goto next;
10654 }
10655
10656 /*
10657 * Want to do this before we do anything else so we can recover
10658 * properly if we fail to join the transaction.
10659 */
10660 trans = btrfs_start_trans_remove_block_group(fs_info,
10661 block_group->key.objectid);
10662 if (IS_ERR(trans)) {
10663 btrfs_dec_block_group_ro(block_group);
10664 ret = PTR_ERR(trans);
10665 goto next;
10666 }
10667
10668 /*
10669 * We could have pending pinned extents for this block group,
10670 * just delete them, we don't care about them anymore.
10671 */
10672 start = block_group->key.objectid;
10673 end = start + block_group->key.offset - 1;
10674 /*
10675 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10676 * btrfs_finish_extent_commit(). If we are at transaction N,
10677 * another task might be running finish_extent_commit() for the
10678 * previous transaction N - 1, and have seen a range belonging
10679 * to the block group in freed_extents[] before we were able to
10680 * clear the whole block group range from freed_extents[]. This
10681 * means that task can lookup for the block group after we
10682 * unpinned it from freed_extents[] and removed it, leading to
10683 * a BUG_ON() at btrfs_unpin_extent_range().
10684 */
10685 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10686 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10687 EXTENT_DIRTY);
10688 if (ret) {
10689 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10690 btrfs_dec_block_group_ro(block_group);
10691 goto end_trans;
10692 }
10693 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10694 EXTENT_DIRTY);
10695 if (ret) {
10696 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10697 btrfs_dec_block_group_ro(block_group);
10698 goto end_trans;
10699 }
10700 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10701
10702 /* Reset pinned so btrfs_put_block_group doesn't complain */
10703 spin_lock(&space_info->lock);
10704 spin_lock(&block_group->lock);
10705
10706 space_info->bytes_pinned -= block_group->pinned;
10707 space_info->bytes_readonly += block_group->pinned;
10708 percpu_counter_add(&space_info->total_bytes_pinned,
10709 -block_group->pinned);
10710 block_group->pinned = 0;
10711
10712 spin_unlock(&block_group->lock);
10713 spin_unlock(&space_info->lock);
10714
10715 /* DISCARD can flip during remount */
10716 trimming = btrfs_test_opt(fs_info, DISCARD);
10717
10718 /* Implicit trim during transaction commit. */
10719 if (trimming)
10720 btrfs_get_block_group_trimming(block_group);
10721
10722 /*
10723 * Btrfs_remove_chunk will abort the transaction if things go
10724 * horribly wrong.
10725 */
10726 ret = btrfs_remove_chunk(trans, fs_info,
10727 block_group->key.objectid);
10728
10729 if (ret) {
10730 if (trimming)
10731 btrfs_put_block_group_trimming(block_group);
10732 goto end_trans;
10733 }
10734
10735 /*
10736 * If we're not mounted with -odiscard, we can just forget
10737 * about this block group. Otherwise we'll need to wait
10738 * until transaction commit to do the actual discard.
10739 */
10740 if (trimming) {
10741 spin_lock(&fs_info->unused_bgs_lock);
10742 /*
10743 * A concurrent scrub might have added us to the list
10744 * fs_info->unused_bgs, so use a list_move operation
10745 * to add the block group to the deleted_bgs list.
10746 */
10747 list_move(&block_group->bg_list,
10748 &trans->transaction->deleted_bgs);
10749 spin_unlock(&fs_info->unused_bgs_lock);
10750 btrfs_get_block_group(block_group);
10751 }
10752end_trans:
10753 btrfs_end_transaction(trans);
10754next:
10755 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10756 btrfs_put_block_group(block_group);
10757 spin_lock(&fs_info->unused_bgs_lock);
10758 }
10759 spin_unlock(&fs_info->unused_bgs_lock);
10760}
10761
10762int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10763{
10764 struct btrfs_space_info *space_info;
10765 struct btrfs_super_block *disk_super;
10766 u64 features;
10767 u64 flags;
10768 int mixed = 0;
10769 int ret;
10770
10771 disk_super = fs_info->super_copy;
10772 if (!btrfs_super_root(disk_super))
10773 return -EINVAL;
10774
10775 features = btrfs_super_incompat_flags(disk_super);
10776 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10777 mixed = 1;
10778
10779 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10780 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10781 if (ret)
10782 goto out;
10783
10784 if (mixed) {
10785 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10786 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787 } else {
10788 flags = BTRFS_BLOCK_GROUP_METADATA;
10789 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10790 if (ret)
10791 goto out;
10792
10793 flags = BTRFS_BLOCK_GROUP_DATA;
10794 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10795 }
10796out:
10797 return ret;
10798}
10799
10800int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10801 u64 start, u64 end)
10802{
10803 return unpin_extent_range(fs_info, start, end, false);
10804}
10805
10806/*
10807 * It used to be that old block groups would be left around forever.
10808 * Iterating over them would be enough to trim unused space. Since we
10809 * now automatically remove them, we also need to iterate over unallocated
10810 * space.
10811 *
10812 * We don't want a transaction for this since the discard may take a
10813 * substantial amount of time. We don't require that a transaction be
10814 * running, but we do need to take a running transaction into account
10815 * to ensure that we're not discarding chunks that were released in
10816 * the current transaction.
10817 *
10818 * Holding the chunks lock will prevent other threads from allocating
10819 * or releasing chunks, but it won't prevent a running transaction
10820 * from committing and releasing the memory that the pending chunks
10821 * list head uses. For that, we need to take a reference to the
10822 * transaction.
10823 */
10824static int btrfs_trim_free_extents(struct btrfs_device *device,
10825 u64 minlen, u64 *trimmed)
10826{
10827 u64 start = 0, len = 0;
10828 int ret;
10829
10830 *trimmed = 0;
10831
10832 /* Not writeable = nothing to do. */
10833 if (!device->writeable)
10834 return 0;
10835
10836 /* No free space = nothing to do. */
10837 if (device->total_bytes <= device->bytes_used)
10838 return 0;
10839
10840 ret = 0;
10841
10842 while (1) {
10843 struct btrfs_fs_info *fs_info = device->fs_info;
10844 struct btrfs_transaction *trans;
10845 u64 bytes;
10846
10847 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10848 if (ret)
10849 return ret;
10850
10851 down_read(&fs_info->commit_root_sem);
10852
10853 spin_lock(&fs_info->trans_lock);
10854 trans = fs_info->running_transaction;
10855 if (trans)
10856 atomic_inc(&trans->use_count);
10857 spin_unlock(&fs_info->trans_lock);
10858
10859 ret = find_free_dev_extent_start(trans, device, minlen, start,
10860 &start, &len);
10861 if (trans)
10862 btrfs_put_transaction(trans);
10863
10864 if (ret) {
10865 up_read(&fs_info->commit_root_sem);
10866 mutex_unlock(&fs_info->chunk_mutex);
10867 if (ret == -ENOSPC)
10868 ret = 0;
10869 break;
10870 }
10871
10872 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10873 up_read(&fs_info->commit_root_sem);
10874 mutex_unlock(&fs_info->chunk_mutex);
10875
10876 if (ret)
10877 break;
10878
10879 start += len;
10880 *trimmed += bytes;
10881
10882 if (fatal_signal_pending(current)) {
10883 ret = -ERESTARTSYS;
10884 break;
10885 }
10886
10887 cond_resched();
10888 }
10889
10890 return ret;
10891}
10892
10893int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10894{
10895 struct btrfs_block_group_cache *cache = NULL;
10896 struct btrfs_device *device;
10897 struct list_head *devices;
10898 u64 group_trimmed;
10899 u64 start;
10900 u64 end;
10901 u64 trimmed = 0;
10902 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10903 int ret = 0;
10904
10905 /*
10906 * try to trim all FS space, our block group may start from non-zero.
10907 */
10908 if (range->len == total_bytes)
10909 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10910 else
10911 cache = btrfs_lookup_block_group(fs_info, range->start);
10912
10913 while (cache) {
10914 if (cache->key.objectid >= (range->start + range->len)) {
10915 btrfs_put_block_group(cache);
10916 break;
10917 }
10918
10919 start = max(range->start, cache->key.objectid);
10920 end = min(range->start + range->len,
10921 cache->key.objectid + cache->key.offset);
10922
10923 if (end - start >= range->minlen) {
10924 if (!block_group_cache_done(cache)) {
10925 ret = cache_block_group(cache, 0);
10926 if (ret) {
10927 btrfs_put_block_group(cache);
10928 break;
10929 }
10930 ret = wait_block_group_cache_done(cache);
10931 if (ret) {
10932 btrfs_put_block_group(cache);
10933 break;
10934 }
10935 }
10936 ret = btrfs_trim_block_group(cache,
10937 &group_trimmed,
10938 start,
10939 end,
10940 range->minlen);
10941
10942 trimmed += group_trimmed;
10943 if (ret) {
10944 btrfs_put_block_group(cache);
10945 break;
10946 }
10947 }
10948
10949 cache = next_block_group(fs_info, cache);
10950 }
10951
10952 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10953 devices = &fs_info->fs_devices->alloc_list;
10954 list_for_each_entry(device, devices, dev_alloc_list) {
10955 ret = btrfs_trim_free_extents(device, range->minlen,
10956 &group_trimmed);
10957 if (ret)
10958 break;
10959
10960 trimmed += group_trimmed;
10961 }
10962 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10963
10964 range->len = trimmed;
10965 return ret;
10966}
10967
10968/*
10969 * btrfs_{start,end}_write_no_snapshoting() are similar to
10970 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10971 * data into the page cache through nocow before the subvolume is snapshoted,
10972 * but flush the data into disk after the snapshot creation, or to prevent
10973 * operations while snapshoting is ongoing and that cause the snapshot to be
10974 * inconsistent (writes followed by expanding truncates for example).
10975 */
10976void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10977{
10978 percpu_counter_dec(&root->subv_writers->counter);
10979 /*
10980 * Make sure counter is updated before we wake up waiters.
10981 */
10982 smp_mb();
10983 if (waitqueue_active(&root->subv_writers->wait))
10984 wake_up(&root->subv_writers->wait);
10985}
10986
10987int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10988{
10989 if (atomic_read(&root->will_be_snapshoted))
10990 return 0;
10991
10992 percpu_counter_inc(&root->subv_writers->counter);
10993 /*
10994 * Make sure counter is updated before we check for snapshot creation.
10995 */
10996 smp_mb();
10997 if (atomic_read(&root->will_be_snapshoted)) {
10998 btrfs_end_write_no_snapshoting(root);
10999 return 0;
11000 }
11001 return 1;
11002}
11003
11004static int wait_snapshoting_atomic_t(atomic_t *a)
11005{
11006 schedule();
11007 return 0;
11008}
11009
11010void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11011{
11012 while (true) {
11013 int ret;
11014
11015 ret = btrfs_start_write_no_snapshoting(root);
11016 if (ret)
11017 break;
11018 wait_on_atomic_t(&root->will_be_snapshoted,
11019 wait_snapshoting_atomic_t,
11020 TASK_UNINTERRUPTIBLE);
11021 }
11022}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "ctree.h"
20#include "extent-tree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "print-tree.h"
24#include "volumes.h"
25#include "raid56.h"
26#include "locking.h"
27#include "free-space-cache.h"
28#include "free-space-tree.h"
29#include "qgroup.h"
30#include "ref-verify.h"
31#include "space-info.h"
32#include "block-rsv.h"
33#include "discard.h"
34#include "zoned.h"
35#include "dev-replace.h"
36#include "fs.h"
37#include "accessors.h"
38#include "root-tree.h"
39#include "file-item.h"
40#include "orphan.h"
41#include "tree-checker.h"
42#include "raid-stripe-tree.h"
43
44#undef SCRAMBLE_DELAYED_REFS
45
46
47static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48 struct btrfs_delayed_ref_head *href,
49 struct btrfs_delayed_ref_node *node,
50 struct btrfs_delayed_extent_op *extra_op);
51static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52 struct extent_buffer *leaf,
53 struct btrfs_extent_item *ei);
54static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55 u64 parent, u64 root_objectid,
56 u64 flags, u64 owner, u64 offset,
57 struct btrfs_key *ins, int ref_mod, u64 oref_root);
58static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59 struct btrfs_delayed_ref_node *node,
60 struct btrfs_delayed_extent_op *extent_op);
61static int find_next_key(struct btrfs_path *path, int level,
62 struct btrfs_key *key);
63
64static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
65{
66 return (cache->flags & bits) == bits;
67}
68
69/* simple helper to search for an existing data extent at a given offset */
70int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71{
72 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73 int ret;
74 struct btrfs_key key;
75 struct btrfs_path *path;
76
77 path = btrfs_alloc_path();
78 if (!path)
79 return -ENOMEM;
80
81 key.objectid = start;
82 key.offset = len;
83 key.type = BTRFS_EXTENT_ITEM_KEY;
84 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 btrfs_free_path(path);
86 return ret;
87}
88
89/*
90 * helper function to lookup reference count and flags of a tree block.
91 *
92 * the head node for delayed ref is used to store the sum of all the
93 * reference count modifications queued up in the rbtree. the head
94 * node may also store the extent flags to set. This way you can check
95 * to see what the reference count and extent flags would be if all of
96 * the delayed refs are not processed.
97 */
98int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
99 struct btrfs_fs_info *fs_info, u64 bytenr,
100 u64 offset, int metadata, u64 *refs, u64 *flags,
101 u64 *owning_root)
102{
103 struct btrfs_root *extent_root;
104 struct btrfs_delayed_ref_head *head;
105 struct btrfs_delayed_ref_root *delayed_refs;
106 struct btrfs_path *path;
107 struct btrfs_key key;
108 u64 num_refs;
109 u64 extent_flags;
110 u64 owner = 0;
111 int ret;
112
113 /*
114 * If we don't have skinny metadata, don't bother doing anything
115 * different
116 */
117 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
118 offset = fs_info->nodesize;
119 metadata = 0;
120 }
121
122 path = btrfs_alloc_path();
123 if (!path)
124 return -ENOMEM;
125
126search_again:
127 key.objectid = bytenr;
128 key.offset = offset;
129 if (metadata)
130 key.type = BTRFS_METADATA_ITEM_KEY;
131 else
132 key.type = BTRFS_EXTENT_ITEM_KEY;
133
134 extent_root = btrfs_extent_root(fs_info, bytenr);
135 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
136 if (ret < 0)
137 goto out_free;
138
139 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
140 if (path->slots[0]) {
141 path->slots[0]--;
142 btrfs_item_key_to_cpu(path->nodes[0], &key,
143 path->slots[0]);
144 if (key.objectid == bytenr &&
145 key.type == BTRFS_EXTENT_ITEM_KEY &&
146 key.offset == fs_info->nodesize)
147 ret = 0;
148 }
149 }
150
151 if (ret == 0) {
152 struct extent_buffer *leaf = path->nodes[0];
153 struct btrfs_extent_item *ei;
154 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
155
156 if (unlikely(item_size < sizeof(*ei))) {
157 ret = -EUCLEAN;
158 btrfs_err(fs_info,
159 "unexpected extent item size, has %u expect >= %zu",
160 item_size, sizeof(*ei));
161 btrfs_abort_transaction(trans, ret);
162 goto out_free;
163 }
164
165 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 if (unlikely(num_refs == 0)) {
168 ret = -EUCLEAN;
169 btrfs_err(fs_info,
170 "unexpected zero reference count for extent item (%llu %u %llu)",
171 key.objectid, key.type, key.offset);
172 btrfs_abort_transaction(trans, ret);
173 goto out_free;
174 }
175 extent_flags = btrfs_extent_flags(leaf, ei);
176 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
177 } else {
178 num_refs = 0;
179 extent_flags = 0;
180 ret = 0;
181 }
182
183 delayed_refs = &trans->transaction->delayed_refs;
184 spin_lock(&delayed_refs->lock);
185 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
186 if (head) {
187 if (!mutex_trylock(&head->mutex)) {
188 refcount_inc(&head->refs);
189 spin_unlock(&delayed_refs->lock);
190
191 btrfs_release_path(path);
192
193 /*
194 * Mutex was contended, block until it's released and try
195 * again
196 */
197 mutex_lock(&head->mutex);
198 mutex_unlock(&head->mutex);
199 btrfs_put_delayed_ref_head(head);
200 goto search_again;
201 }
202 spin_lock(&head->lock);
203 if (head->extent_op && head->extent_op->update_flags)
204 extent_flags |= head->extent_op->flags_to_set;
205
206 num_refs += head->ref_mod;
207 spin_unlock(&head->lock);
208 mutex_unlock(&head->mutex);
209 }
210 spin_unlock(&delayed_refs->lock);
211
212 WARN_ON(num_refs == 0);
213 if (refs)
214 *refs = num_refs;
215 if (flags)
216 *flags = extent_flags;
217 if (owning_root)
218 *owning_root = owner;
219out_free:
220 btrfs_free_path(path);
221 return ret;
222}
223
224/*
225 * Back reference rules. Back refs have three main goals:
226 *
227 * 1) differentiate between all holders of references to an extent so that
228 * when a reference is dropped we can make sure it was a valid reference
229 * before freeing the extent.
230 *
231 * 2) Provide enough information to quickly find the holders of an extent
232 * if we notice a given block is corrupted or bad.
233 *
234 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
235 * maintenance. This is actually the same as #2, but with a slightly
236 * different use case.
237 *
238 * There are two kinds of back refs. The implicit back refs is optimized
239 * for pointers in non-shared tree blocks. For a given pointer in a block,
240 * back refs of this kind provide information about the block's owner tree
241 * and the pointer's key. These information allow us to find the block by
242 * b-tree searching. The full back refs is for pointers in tree blocks not
243 * referenced by their owner trees. The location of tree block is recorded
244 * in the back refs. Actually the full back refs is generic, and can be
245 * used in all cases the implicit back refs is used. The major shortcoming
246 * of the full back refs is its overhead. Every time a tree block gets
247 * COWed, we have to update back refs entry for all pointers in it.
248 *
249 * For a newly allocated tree block, we use implicit back refs for
250 * pointers in it. This means most tree related operations only involve
251 * implicit back refs. For a tree block created in old transaction, the
252 * only way to drop a reference to it is COW it. So we can detect the
253 * event that tree block loses its owner tree's reference and do the
254 * back refs conversion.
255 *
256 * When a tree block is COWed through a tree, there are four cases:
257 *
258 * The reference count of the block is one and the tree is the block's
259 * owner tree. Nothing to do in this case.
260 *
261 * The reference count of the block is one and the tree is not the
262 * block's owner tree. In this case, full back refs is used for pointers
263 * in the block. Remove these full back refs, add implicit back refs for
264 * every pointers in the new block.
265 *
266 * The reference count of the block is greater than one and the tree is
267 * the block's owner tree. In this case, implicit back refs is used for
268 * pointers in the block. Add full back refs for every pointers in the
269 * block, increase lower level extents' reference counts. The original
270 * implicit back refs are entailed to the new block.
271 *
272 * The reference count of the block is greater than one and the tree is
273 * not the block's owner tree. Add implicit back refs for every pointer in
274 * the new block, increase lower level extents' reference count.
275 *
276 * Back Reference Key composing:
277 *
278 * The key objectid corresponds to the first byte in the extent,
279 * The key type is used to differentiate between types of back refs.
280 * There are different meanings of the key offset for different types
281 * of back refs.
282 *
283 * File extents can be referenced by:
284 *
285 * - multiple snapshots, subvolumes, or different generations in one subvol
286 * - different files inside a single subvolume
287 * - different offsets inside a file (bookend extents in file.c)
288 *
289 * The extent ref structure for the implicit back refs has fields for:
290 *
291 * - Objectid of the subvolume root
292 * - objectid of the file holding the reference
293 * - original offset in the file
294 * - how many bookend extents
295 *
296 * The key offset for the implicit back refs is hash of the first
297 * three fields.
298 *
299 * The extent ref structure for the full back refs has field for:
300 *
301 * - number of pointers in the tree leaf
302 *
303 * The key offset for the implicit back refs is the first byte of
304 * the tree leaf
305 *
306 * When a file extent is allocated, The implicit back refs is used.
307 * the fields are filled in:
308 *
309 * (root_key.objectid, inode objectid, offset in file, 1)
310 *
311 * When a file extent is removed file truncation, we find the
312 * corresponding implicit back refs and check the following fields:
313 *
314 * (btrfs_header_owner(leaf), inode objectid, offset in file)
315 *
316 * Btree extents can be referenced by:
317 *
318 * - Different subvolumes
319 *
320 * Both the implicit back refs and the full back refs for tree blocks
321 * only consist of key. The key offset for the implicit back refs is
322 * objectid of block's owner tree. The key offset for the full back refs
323 * is the first byte of parent block.
324 *
325 * When implicit back refs is used, information about the lowest key and
326 * level of the tree block are required. These information are stored in
327 * tree block info structure.
328 */
329
330/*
331 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
332 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
333 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
334 */
335int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
336 struct btrfs_extent_inline_ref *iref,
337 enum btrfs_inline_ref_type is_data)
338{
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 int type = btrfs_extent_inline_ref_type(eb, iref);
341 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
342
343 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
344 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
345 return type;
346 }
347
348 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
349 type == BTRFS_SHARED_BLOCK_REF_KEY ||
350 type == BTRFS_SHARED_DATA_REF_KEY ||
351 type == BTRFS_EXTENT_DATA_REF_KEY) {
352 if (is_data == BTRFS_REF_TYPE_BLOCK) {
353 if (type == BTRFS_TREE_BLOCK_REF_KEY)
354 return type;
355 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
356 ASSERT(fs_info);
357 /*
358 * Every shared one has parent tree block,
359 * which must be aligned to sector size.
360 */
361 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
362 return type;
363 }
364 } else if (is_data == BTRFS_REF_TYPE_DATA) {
365 if (type == BTRFS_EXTENT_DATA_REF_KEY)
366 return type;
367 if (type == BTRFS_SHARED_DATA_REF_KEY) {
368 ASSERT(fs_info);
369 /*
370 * Every shared one has parent tree block,
371 * which must be aligned to sector size.
372 */
373 if (offset &&
374 IS_ALIGNED(offset, fs_info->sectorsize))
375 return type;
376 }
377 } else {
378 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
379 return type;
380 }
381 }
382
383 WARN_ON(1);
384 btrfs_print_leaf(eb);
385 btrfs_err(fs_info,
386 "eb %llu iref 0x%lx invalid extent inline ref type %d",
387 eb->start, (unsigned long)iref, type);
388
389 return BTRFS_REF_TYPE_INVALID;
390}
391
392u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
393{
394 u32 high_crc = ~(u32)0;
395 u32 low_crc = ~(u32)0;
396 __le64 lenum;
397
398 lenum = cpu_to_le64(root_objectid);
399 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
400 lenum = cpu_to_le64(owner);
401 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
402 lenum = cpu_to_le64(offset);
403 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
404
405 return ((u64)high_crc << 31) ^ (u64)low_crc;
406}
407
408static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
409 struct btrfs_extent_data_ref *ref)
410{
411 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
412 btrfs_extent_data_ref_objectid(leaf, ref),
413 btrfs_extent_data_ref_offset(leaf, ref));
414}
415
416static int match_extent_data_ref(struct extent_buffer *leaf,
417 struct btrfs_extent_data_ref *ref,
418 u64 root_objectid, u64 owner, u64 offset)
419{
420 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
421 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
422 btrfs_extent_data_ref_offset(leaf, ref) != offset)
423 return 0;
424 return 1;
425}
426
427static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
428 struct btrfs_path *path,
429 u64 bytenr, u64 parent,
430 u64 root_objectid,
431 u64 owner, u64 offset)
432{
433 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
434 struct btrfs_key key;
435 struct btrfs_extent_data_ref *ref;
436 struct extent_buffer *leaf;
437 u32 nritems;
438 int recow;
439 int ret;
440
441 key.objectid = bytenr;
442 if (parent) {
443 key.type = BTRFS_SHARED_DATA_REF_KEY;
444 key.offset = parent;
445 } else {
446 key.type = BTRFS_EXTENT_DATA_REF_KEY;
447 key.offset = hash_extent_data_ref(root_objectid,
448 owner, offset);
449 }
450again:
451 recow = 0;
452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
453 if (ret < 0)
454 return ret;
455
456 if (parent) {
457 if (ret)
458 return -ENOENT;
459 return 0;
460 }
461
462 ret = -ENOENT;
463 leaf = path->nodes[0];
464 nritems = btrfs_header_nritems(leaf);
465 while (1) {
466 if (path->slots[0] >= nritems) {
467 ret = btrfs_next_leaf(root, path);
468 if (ret) {
469 if (ret > 0)
470 return -ENOENT;
471 return ret;
472 }
473
474 leaf = path->nodes[0];
475 nritems = btrfs_header_nritems(leaf);
476 recow = 1;
477 }
478
479 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
480 if (key.objectid != bytenr ||
481 key.type != BTRFS_EXTENT_DATA_REF_KEY)
482 goto fail;
483
484 ref = btrfs_item_ptr(leaf, path->slots[0],
485 struct btrfs_extent_data_ref);
486
487 if (match_extent_data_ref(leaf, ref, root_objectid,
488 owner, offset)) {
489 if (recow) {
490 btrfs_release_path(path);
491 goto again;
492 }
493 ret = 0;
494 break;
495 }
496 path->slots[0]++;
497 }
498fail:
499 return ret;
500}
501
502static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_delayed_ref_node *node,
505 u64 bytenr)
506{
507 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
508 struct btrfs_key key;
509 struct extent_buffer *leaf;
510 u64 owner = btrfs_delayed_ref_owner(node);
511 u64 offset = btrfs_delayed_ref_offset(node);
512 u32 size;
513 u32 num_refs;
514 int ret;
515
516 key.objectid = bytenr;
517 if (node->parent) {
518 key.type = BTRFS_SHARED_DATA_REF_KEY;
519 key.offset = node->parent;
520 size = sizeof(struct btrfs_shared_data_ref);
521 } else {
522 key.type = BTRFS_EXTENT_DATA_REF_KEY;
523 key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
524 size = sizeof(struct btrfs_extent_data_ref);
525 }
526
527 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
528 if (ret && ret != -EEXIST)
529 goto fail;
530
531 leaf = path->nodes[0];
532 if (node->parent) {
533 struct btrfs_shared_data_ref *ref;
534 ref = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_shared_data_ref);
536 if (ret == 0) {
537 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
538 } else {
539 num_refs = btrfs_shared_data_ref_count(leaf, ref);
540 num_refs += node->ref_mod;
541 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
542 }
543 } else {
544 struct btrfs_extent_data_ref *ref;
545 while (ret == -EEXIST) {
546 ref = btrfs_item_ptr(leaf, path->slots[0],
547 struct btrfs_extent_data_ref);
548 if (match_extent_data_ref(leaf, ref, node->ref_root,
549 owner, offset))
550 break;
551 btrfs_release_path(path);
552 key.offset++;
553 ret = btrfs_insert_empty_item(trans, root, path, &key,
554 size);
555 if (ret && ret != -EEXIST)
556 goto fail;
557
558 leaf = path->nodes[0];
559 }
560 ref = btrfs_item_ptr(leaf, path->slots[0],
561 struct btrfs_extent_data_ref);
562 if (ret == 0) {
563 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
564 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
565 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
566 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
567 } else {
568 num_refs = btrfs_extent_data_ref_count(leaf, ref);
569 num_refs += node->ref_mod;
570 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
571 }
572 }
573 btrfs_mark_buffer_dirty(trans, leaf);
574 ret = 0;
575fail:
576 btrfs_release_path(path);
577 return ret;
578}
579
580static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 int refs_to_drop)
584{
585 struct btrfs_key key;
586 struct btrfs_extent_data_ref *ref1 = NULL;
587 struct btrfs_shared_data_ref *ref2 = NULL;
588 struct extent_buffer *leaf;
589 u32 num_refs = 0;
590 int ret = 0;
591
592 leaf = path->nodes[0];
593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594
595 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
596 ref1 = btrfs_item_ptr(leaf, path->slots[0],
597 struct btrfs_extent_data_ref);
598 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
599 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
600 ref2 = btrfs_item_ptr(leaf, path->slots[0],
601 struct btrfs_shared_data_ref);
602 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
603 } else {
604 btrfs_err(trans->fs_info,
605 "unrecognized backref key (%llu %u %llu)",
606 key.objectid, key.type, key.offset);
607 btrfs_abort_transaction(trans, -EUCLEAN);
608 return -EUCLEAN;
609 }
610
611 BUG_ON(num_refs < refs_to_drop);
612 num_refs -= refs_to_drop;
613
614 if (num_refs == 0) {
615 ret = btrfs_del_item(trans, root, path);
616 } else {
617 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
618 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
619 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
620 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
621 btrfs_mark_buffer_dirty(trans, leaf);
622 }
623 return ret;
624}
625
626static noinline u32 extent_data_ref_count(struct btrfs_path *path,
627 struct btrfs_extent_inline_ref *iref)
628{
629 struct btrfs_key key;
630 struct extent_buffer *leaf;
631 struct btrfs_extent_data_ref *ref1;
632 struct btrfs_shared_data_ref *ref2;
633 u32 num_refs = 0;
634 int type;
635
636 leaf = path->nodes[0];
637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638
639 if (iref) {
640 /*
641 * If type is invalid, we should have bailed out earlier than
642 * this call.
643 */
644 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
645 ASSERT(type != BTRFS_REF_TYPE_INVALID);
646 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
647 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
648 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 } else {
650 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
651 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
652 }
653 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
654 ref1 = btrfs_item_ptr(leaf, path->slots[0],
655 struct btrfs_extent_data_ref);
656 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
657 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
658 ref2 = btrfs_item_ptr(leaf, path->slots[0],
659 struct btrfs_shared_data_ref);
660 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
661 } else {
662 WARN_ON(1);
663 }
664 return num_refs;
665}
666
667static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
668 struct btrfs_path *path,
669 u64 bytenr, u64 parent,
670 u64 root_objectid)
671{
672 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
673 struct btrfs_key key;
674 int ret;
675
676 key.objectid = bytenr;
677 if (parent) {
678 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
679 key.offset = parent;
680 } else {
681 key.type = BTRFS_TREE_BLOCK_REF_KEY;
682 key.offset = root_objectid;
683 }
684
685 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
686 if (ret > 0)
687 ret = -ENOENT;
688 return ret;
689}
690
691static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
692 struct btrfs_path *path,
693 struct btrfs_delayed_ref_node *node,
694 u64 bytenr)
695{
696 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
697 struct btrfs_key key;
698 int ret;
699
700 key.objectid = bytenr;
701 if (node->parent) {
702 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
703 key.offset = node->parent;
704 } else {
705 key.type = BTRFS_TREE_BLOCK_REF_KEY;
706 key.offset = node->ref_root;
707 }
708
709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
710 btrfs_release_path(path);
711 return ret;
712}
713
714static inline int extent_ref_type(u64 parent, u64 owner)
715{
716 int type;
717 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
718 if (parent > 0)
719 type = BTRFS_SHARED_BLOCK_REF_KEY;
720 else
721 type = BTRFS_TREE_BLOCK_REF_KEY;
722 } else {
723 if (parent > 0)
724 type = BTRFS_SHARED_DATA_REF_KEY;
725 else
726 type = BTRFS_EXTENT_DATA_REF_KEY;
727 }
728 return type;
729}
730
731static int find_next_key(struct btrfs_path *path, int level,
732 struct btrfs_key *key)
733
734{
735 for (; level < BTRFS_MAX_LEVEL; level++) {
736 if (!path->nodes[level])
737 break;
738 if (path->slots[level] + 1 >=
739 btrfs_header_nritems(path->nodes[level]))
740 continue;
741 if (level == 0)
742 btrfs_item_key_to_cpu(path->nodes[level], key,
743 path->slots[level] + 1);
744 else
745 btrfs_node_key_to_cpu(path->nodes[level], key,
746 path->slots[level] + 1);
747 return 0;
748 }
749 return 1;
750}
751
752/*
753 * look for inline back ref. if back ref is found, *ref_ret is set
754 * to the address of inline back ref, and 0 is returned.
755 *
756 * if back ref isn't found, *ref_ret is set to the address where it
757 * should be inserted, and -ENOENT is returned.
758 *
759 * if insert is true and there are too many inline back refs, the path
760 * points to the extent item, and -EAGAIN is returned.
761 *
762 * NOTE: inline back refs are ordered in the same way that back ref
763 * items in the tree are ordered.
764 */
765static noinline_for_stack
766int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
767 struct btrfs_path *path,
768 struct btrfs_extent_inline_ref **ref_ret,
769 u64 bytenr, u64 num_bytes,
770 u64 parent, u64 root_objectid,
771 u64 owner, u64 offset, int insert)
772{
773 struct btrfs_fs_info *fs_info = trans->fs_info;
774 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
775 struct btrfs_key key;
776 struct extent_buffer *leaf;
777 struct btrfs_extent_item *ei;
778 struct btrfs_extent_inline_ref *iref;
779 u64 flags;
780 u64 item_size;
781 unsigned long ptr;
782 unsigned long end;
783 int extra_size;
784 int type;
785 int want;
786 int ret;
787 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
788 int needed;
789
790 key.objectid = bytenr;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 key.offset = num_bytes;
793
794 want = extent_ref_type(parent, owner);
795 if (insert) {
796 extra_size = btrfs_extent_inline_ref_size(want);
797 path->search_for_extension = 1;
798 } else
799 extra_size = -1;
800
801 /*
802 * Owner is our level, so we can just add one to get the level for the
803 * block we are interested in.
804 */
805 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
806 key.type = BTRFS_METADATA_ITEM_KEY;
807 key.offset = owner;
808 }
809
810again:
811 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
812 if (ret < 0)
813 goto out;
814
815 /*
816 * We may be a newly converted file system which still has the old fat
817 * extent entries for metadata, so try and see if we have one of those.
818 */
819 if (ret > 0 && skinny_metadata) {
820 skinny_metadata = false;
821 if (path->slots[0]) {
822 path->slots[0]--;
823 btrfs_item_key_to_cpu(path->nodes[0], &key,
824 path->slots[0]);
825 if (key.objectid == bytenr &&
826 key.type == BTRFS_EXTENT_ITEM_KEY &&
827 key.offset == num_bytes)
828 ret = 0;
829 }
830 if (ret) {
831 key.objectid = bytenr;
832 key.type = BTRFS_EXTENT_ITEM_KEY;
833 key.offset = num_bytes;
834 btrfs_release_path(path);
835 goto again;
836 }
837 }
838
839 if (ret && !insert) {
840 ret = -ENOENT;
841 goto out;
842 } else if (WARN_ON(ret)) {
843 btrfs_print_leaf(path->nodes[0]);
844 btrfs_err(fs_info,
845"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
846 bytenr, num_bytes, parent, root_objectid, owner,
847 offset);
848 ret = -EUCLEAN;
849 goto out;
850 }
851
852 leaf = path->nodes[0];
853 item_size = btrfs_item_size(leaf, path->slots[0]);
854 if (unlikely(item_size < sizeof(*ei))) {
855 ret = -EUCLEAN;
856 btrfs_err(fs_info,
857 "unexpected extent item size, has %llu expect >= %zu",
858 item_size, sizeof(*ei));
859 btrfs_abort_transaction(trans, ret);
860 goto out;
861 }
862
863 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
864 flags = btrfs_extent_flags(leaf, ei);
865
866 ptr = (unsigned long)(ei + 1);
867 end = (unsigned long)ei + item_size;
868
869 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
870 ptr += sizeof(struct btrfs_tree_block_info);
871 BUG_ON(ptr > end);
872 }
873
874 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
875 needed = BTRFS_REF_TYPE_DATA;
876 else
877 needed = BTRFS_REF_TYPE_BLOCK;
878
879 ret = -ENOENT;
880 while (ptr < end) {
881 iref = (struct btrfs_extent_inline_ref *)ptr;
882 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
883 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
884 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
885 ptr += btrfs_extent_inline_ref_size(type);
886 continue;
887 }
888 if (type == BTRFS_REF_TYPE_INVALID) {
889 ret = -EUCLEAN;
890 goto out;
891 }
892
893 if (want < type)
894 break;
895 if (want > type) {
896 ptr += btrfs_extent_inline_ref_size(type);
897 continue;
898 }
899
900 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
901 struct btrfs_extent_data_ref *dref;
902 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
903 if (match_extent_data_ref(leaf, dref, root_objectid,
904 owner, offset)) {
905 ret = 0;
906 break;
907 }
908 if (hash_extent_data_ref_item(leaf, dref) <
909 hash_extent_data_ref(root_objectid, owner, offset))
910 break;
911 } else {
912 u64 ref_offset;
913 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
914 if (parent > 0) {
915 if (parent == ref_offset) {
916 ret = 0;
917 break;
918 }
919 if (ref_offset < parent)
920 break;
921 } else {
922 if (root_objectid == ref_offset) {
923 ret = 0;
924 break;
925 }
926 if (ref_offset < root_objectid)
927 break;
928 }
929 }
930 ptr += btrfs_extent_inline_ref_size(type);
931 }
932
933 if (unlikely(ptr > end)) {
934 ret = -EUCLEAN;
935 btrfs_print_leaf(path->nodes[0]);
936 btrfs_crit(fs_info,
937"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
938 path->slots[0], root_objectid, owner, offset, parent);
939 goto out;
940 }
941
942 if (ret == -ENOENT && insert) {
943 if (item_size + extra_size >=
944 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
945 ret = -EAGAIN;
946 goto out;
947 }
948
949 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
950 struct btrfs_key tmp_key;
951
952 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
953 if (tmp_key.objectid == bytenr &&
954 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
955 ret = -EAGAIN;
956 goto out;
957 }
958 goto out_no_entry;
959 }
960
961 if (!path->keep_locks) {
962 btrfs_release_path(path);
963 path->keep_locks = 1;
964 goto again;
965 }
966
967 /*
968 * To add new inline back ref, we have to make sure
969 * there is no corresponding back ref item.
970 * For simplicity, we just do not add new inline back
971 * ref if there is any kind of item for this block
972 */
973 if (find_next_key(path, 0, &key) == 0 &&
974 key.objectid == bytenr &&
975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 ret = -EAGAIN;
977 goto out;
978 }
979 }
980out_no_entry:
981 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
982out:
983 if (path->keep_locks) {
984 path->keep_locks = 0;
985 btrfs_unlock_up_safe(path, 1);
986 }
987 if (insert)
988 path->search_for_extension = 0;
989 return ret;
990}
991
992/*
993 * helper to add new inline back ref
994 */
995static noinline_for_stack
996void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
997 struct btrfs_path *path,
998 struct btrfs_extent_inline_ref *iref,
999 u64 parent, u64 root_objectid,
1000 u64 owner, u64 offset, int refs_to_add,
1001 struct btrfs_delayed_extent_op *extent_op)
1002{
1003 struct extent_buffer *leaf;
1004 struct btrfs_extent_item *ei;
1005 unsigned long ptr;
1006 unsigned long end;
1007 unsigned long item_offset;
1008 u64 refs;
1009 int size;
1010 int type;
1011
1012 leaf = path->nodes[0];
1013 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014 item_offset = (unsigned long)iref - (unsigned long)ei;
1015
1016 type = extent_ref_type(parent, owner);
1017 size = btrfs_extent_inline_ref_size(type);
1018
1019 btrfs_extend_item(trans, path, size);
1020
1021 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1022 refs = btrfs_extent_refs(leaf, ei);
1023 refs += refs_to_add;
1024 btrfs_set_extent_refs(leaf, ei, refs);
1025 if (extent_op)
1026 __run_delayed_extent_op(extent_op, leaf, ei);
1027
1028 ptr = (unsigned long)ei + item_offset;
1029 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1030 if (ptr < end - size)
1031 memmove_extent_buffer(leaf, ptr + size, ptr,
1032 end - size - ptr);
1033
1034 iref = (struct btrfs_extent_inline_ref *)ptr;
1035 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1036 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1037 struct btrfs_extent_data_ref *dref;
1038 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1039 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1040 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1041 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1042 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1043 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1044 struct btrfs_shared_data_ref *sref;
1045 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1046 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1050 } else {
1051 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1052 }
1053 btrfs_mark_buffer_dirty(trans, leaf);
1054}
1055
1056static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1057 struct btrfs_path *path,
1058 struct btrfs_extent_inline_ref **ref_ret,
1059 u64 bytenr, u64 num_bytes, u64 parent,
1060 u64 root_objectid, u64 owner, u64 offset)
1061{
1062 int ret;
1063
1064 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1065 num_bytes, parent, root_objectid,
1066 owner, offset, 0);
1067 if (ret != -ENOENT)
1068 return ret;
1069
1070 btrfs_release_path(path);
1071 *ref_ret = NULL;
1072
1073 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1074 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1075 root_objectid);
1076 } else {
1077 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1078 root_objectid, owner, offset);
1079 }
1080 return ret;
1081}
1082
1083/*
1084 * helper to update/remove inline back ref
1085 */
1086static noinline_for_stack int update_inline_extent_backref(
1087 struct btrfs_trans_handle *trans,
1088 struct btrfs_path *path,
1089 struct btrfs_extent_inline_ref *iref,
1090 int refs_to_mod,
1091 struct btrfs_delayed_extent_op *extent_op)
1092{
1093 struct extent_buffer *leaf = path->nodes[0];
1094 struct btrfs_fs_info *fs_info = leaf->fs_info;
1095 struct btrfs_extent_item *ei;
1096 struct btrfs_extent_data_ref *dref = NULL;
1097 struct btrfs_shared_data_ref *sref = NULL;
1098 unsigned long ptr;
1099 unsigned long end;
1100 u32 item_size;
1101 int size;
1102 int type;
1103 u64 refs;
1104
1105 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 refs = btrfs_extent_refs(leaf, ei);
1107 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1108 struct btrfs_key key;
1109 u32 extent_size;
1110
1111 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 if (key.type == BTRFS_METADATA_ITEM_KEY)
1113 extent_size = fs_info->nodesize;
1114 else
1115 extent_size = key.offset;
1116 btrfs_print_leaf(leaf);
1117 btrfs_err(fs_info,
1118 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1119 key.objectid, extent_size, refs_to_mod, refs);
1120 return -EUCLEAN;
1121 }
1122 refs += refs_to_mod;
1123 btrfs_set_extent_refs(leaf, ei, refs);
1124 if (extent_op)
1125 __run_delayed_extent_op(extent_op, leaf, ei);
1126
1127 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1128 /*
1129 * Function btrfs_get_extent_inline_ref_type() has already printed
1130 * error messages.
1131 */
1132 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1133 return -EUCLEAN;
1134
1135 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137 refs = btrfs_extent_data_ref_count(leaf, dref);
1138 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140 refs = btrfs_shared_data_ref_count(leaf, sref);
1141 } else {
1142 refs = 1;
1143 /*
1144 * For tree blocks we can only drop one ref for it, and tree
1145 * blocks should not have refs > 1.
1146 *
1147 * Furthermore if we're inserting a new inline backref, we
1148 * won't reach this path either. That would be
1149 * setup_inline_extent_backref().
1150 */
1151 if (unlikely(refs_to_mod != -1)) {
1152 struct btrfs_key key;
1153
1154 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1155
1156 btrfs_print_leaf(leaf);
1157 btrfs_err(fs_info,
1158 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1159 key.objectid, refs_to_mod);
1160 return -EUCLEAN;
1161 }
1162 }
1163
1164 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1165 struct btrfs_key key;
1166 u32 extent_size;
1167
1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 if (key.type == BTRFS_METADATA_ITEM_KEY)
1170 extent_size = fs_info->nodesize;
1171 else
1172 extent_size = key.offset;
1173 btrfs_print_leaf(leaf);
1174 btrfs_err(fs_info,
1175"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1176 (unsigned long)iref, key.objectid, extent_size,
1177 refs_to_mod, refs);
1178 return -EUCLEAN;
1179 }
1180 refs += refs_to_mod;
1181
1182 if (refs > 0) {
1183 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1184 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1185 else
1186 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1187 } else {
1188 size = btrfs_extent_inline_ref_size(type);
1189 item_size = btrfs_item_size(leaf, path->slots[0]);
1190 ptr = (unsigned long)iref;
1191 end = (unsigned long)ei + item_size;
1192 if (ptr + size < end)
1193 memmove_extent_buffer(leaf, ptr, ptr + size,
1194 end - ptr - size);
1195 item_size -= size;
1196 btrfs_truncate_item(trans, path, item_size, 1);
1197 }
1198 btrfs_mark_buffer_dirty(trans, leaf);
1199 return 0;
1200}
1201
1202static noinline_for_stack
1203int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1204 struct btrfs_path *path,
1205 u64 bytenr, u64 num_bytes, u64 parent,
1206 u64 root_objectid, u64 owner,
1207 u64 offset, int refs_to_add,
1208 struct btrfs_delayed_extent_op *extent_op)
1209{
1210 struct btrfs_extent_inline_ref *iref;
1211 int ret;
1212
1213 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1214 num_bytes, parent, root_objectid,
1215 owner, offset, 1);
1216 if (ret == 0) {
1217 /*
1218 * We're adding refs to a tree block we already own, this
1219 * should not happen at all.
1220 */
1221 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1222 btrfs_print_leaf(path->nodes[0]);
1223 btrfs_crit(trans->fs_info,
1224"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1225 bytenr, num_bytes, root_objectid, path->slots[0]);
1226 return -EUCLEAN;
1227 }
1228 ret = update_inline_extent_backref(trans, path, iref,
1229 refs_to_add, extent_op);
1230 } else if (ret == -ENOENT) {
1231 setup_inline_extent_backref(trans, path, iref, parent,
1232 root_objectid, owner, offset,
1233 refs_to_add, extent_op);
1234 ret = 0;
1235 }
1236 return ret;
1237}
1238
1239static int remove_extent_backref(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *root,
1241 struct btrfs_path *path,
1242 struct btrfs_extent_inline_ref *iref,
1243 int refs_to_drop, int is_data)
1244{
1245 int ret = 0;
1246
1247 BUG_ON(!is_data && refs_to_drop != 1);
1248 if (iref)
1249 ret = update_inline_extent_backref(trans, path, iref,
1250 -refs_to_drop, NULL);
1251 else if (is_data)
1252 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1253 else
1254 ret = btrfs_del_item(trans, root, path);
1255 return ret;
1256}
1257
1258static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1259 u64 *discarded_bytes)
1260{
1261 int j, ret = 0;
1262 u64 bytes_left, end;
1263 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1264
1265 /* Adjust the range to be aligned to 512B sectors if necessary. */
1266 if (start != aligned_start) {
1267 len -= aligned_start - start;
1268 len = round_down(len, 1 << SECTOR_SHIFT);
1269 start = aligned_start;
1270 }
1271
1272 *discarded_bytes = 0;
1273
1274 if (!len)
1275 return 0;
1276
1277 end = start + len;
1278 bytes_left = len;
1279
1280 /* Skip any superblocks on this device. */
1281 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1282 u64 sb_start = btrfs_sb_offset(j);
1283 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1284 u64 size = sb_start - start;
1285
1286 if (!in_range(sb_start, start, bytes_left) &&
1287 !in_range(sb_end, start, bytes_left) &&
1288 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1289 continue;
1290
1291 /*
1292 * Superblock spans beginning of range. Adjust start and
1293 * try again.
1294 */
1295 if (sb_start <= start) {
1296 start += sb_end - start;
1297 if (start > end) {
1298 bytes_left = 0;
1299 break;
1300 }
1301 bytes_left = end - start;
1302 continue;
1303 }
1304
1305 if (size) {
1306 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307 size >> SECTOR_SHIFT,
1308 GFP_NOFS);
1309 if (!ret)
1310 *discarded_bytes += size;
1311 else if (ret != -EOPNOTSUPP)
1312 return ret;
1313 }
1314
1315 start = sb_end;
1316 if (start > end) {
1317 bytes_left = 0;
1318 break;
1319 }
1320 bytes_left = end - start;
1321 }
1322
1323 while (bytes_left) {
1324 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1325
1326 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1327 bytes_to_discard >> SECTOR_SHIFT,
1328 GFP_NOFS);
1329
1330 if (ret) {
1331 if (ret != -EOPNOTSUPP)
1332 break;
1333 continue;
1334 }
1335
1336 start += bytes_to_discard;
1337 bytes_left -= bytes_to_discard;
1338 *discarded_bytes += bytes_to_discard;
1339
1340 if (btrfs_trim_interrupted()) {
1341 ret = -ERESTARTSYS;
1342 break;
1343 }
1344 }
1345
1346 return ret;
1347}
1348
1349static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1350{
1351 struct btrfs_device *dev = stripe->dev;
1352 struct btrfs_fs_info *fs_info = dev->fs_info;
1353 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1354 u64 phys = stripe->physical;
1355 u64 len = stripe->length;
1356 u64 discarded = 0;
1357 int ret = 0;
1358
1359 /* Zone reset on a zoned filesystem */
1360 if (btrfs_can_zone_reset(dev, phys, len)) {
1361 u64 src_disc;
1362
1363 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1364 if (ret)
1365 goto out;
1366
1367 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1368 dev != dev_replace->srcdev)
1369 goto out;
1370
1371 src_disc = discarded;
1372
1373 /* Send to replace target as well */
1374 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1375 &discarded);
1376 discarded += src_disc;
1377 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1378 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1379 } else {
1380 ret = 0;
1381 *bytes = 0;
1382 }
1383
1384out:
1385 *bytes = discarded;
1386 return ret;
1387}
1388
1389int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1390 u64 num_bytes, u64 *actual_bytes)
1391{
1392 int ret = 0;
1393 u64 discarded_bytes = 0;
1394 u64 end = bytenr + num_bytes;
1395 u64 cur = bytenr;
1396
1397 /*
1398 * Avoid races with device replace and make sure the devices in the
1399 * stripes don't go away while we are discarding.
1400 */
1401 btrfs_bio_counter_inc_blocked(fs_info);
1402 while (cur < end) {
1403 struct btrfs_discard_stripe *stripes;
1404 unsigned int num_stripes;
1405 int i;
1406
1407 num_bytes = end - cur;
1408 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1409 if (IS_ERR(stripes)) {
1410 ret = PTR_ERR(stripes);
1411 if (ret == -EOPNOTSUPP)
1412 ret = 0;
1413 break;
1414 }
1415
1416 for (i = 0; i < num_stripes; i++) {
1417 struct btrfs_discard_stripe *stripe = stripes + i;
1418 u64 bytes;
1419
1420 if (!stripe->dev->bdev) {
1421 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1422 continue;
1423 }
1424
1425 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1426 &stripe->dev->dev_state))
1427 continue;
1428
1429 ret = do_discard_extent(stripe, &bytes);
1430 if (ret) {
1431 /*
1432 * Keep going if discard is not supported by the
1433 * device.
1434 */
1435 if (ret != -EOPNOTSUPP)
1436 break;
1437 ret = 0;
1438 } else {
1439 discarded_bytes += bytes;
1440 }
1441 }
1442 kfree(stripes);
1443 if (ret)
1444 break;
1445 cur += num_bytes;
1446 }
1447 btrfs_bio_counter_dec(fs_info);
1448 if (actual_bytes)
1449 *actual_bytes = discarded_bytes;
1450 return ret;
1451}
1452
1453/* Can return -ENOMEM */
1454int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1455 struct btrfs_ref *generic_ref)
1456{
1457 struct btrfs_fs_info *fs_info = trans->fs_info;
1458 int ret;
1459
1460 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1461 generic_ref->action);
1462 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1463 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1464
1465 if (generic_ref->type == BTRFS_REF_METADATA)
1466 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1467 else
1468 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1469
1470 btrfs_ref_tree_mod(fs_info, generic_ref);
1471
1472 return ret;
1473}
1474
1475/*
1476 * Insert backreference for a given extent.
1477 *
1478 * The counterpart is in __btrfs_free_extent(), with examples and more details
1479 * how it works.
1480 *
1481 * @trans: Handle of transaction
1482 *
1483 * @node: The delayed ref node used to get the bytenr/length for
1484 * extent whose references are incremented.
1485 *
1486 * @extent_op Pointer to a structure, holding information necessary when
1487 * updating a tree block's flags
1488 *
1489 */
1490static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1491 struct btrfs_delayed_ref_node *node,
1492 struct btrfs_delayed_extent_op *extent_op)
1493{
1494 struct btrfs_path *path;
1495 struct extent_buffer *leaf;
1496 struct btrfs_extent_item *item;
1497 struct btrfs_key key;
1498 u64 bytenr = node->bytenr;
1499 u64 num_bytes = node->num_bytes;
1500 u64 owner = btrfs_delayed_ref_owner(node);
1501 u64 offset = btrfs_delayed_ref_offset(node);
1502 u64 refs;
1503 int refs_to_add = node->ref_mod;
1504 int ret;
1505
1506 path = btrfs_alloc_path();
1507 if (!path)
1508 return -ENOMEM;
1509
1510 /* this will setup the path even if it fails to insert the back ref */
1511 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1512 node->parent, node->ref_root, owner,
1513 offset, refs_to_add, extent_op);
1514 if ((ret < 0 && ret != -EAGAIN) || !ret)
1515 goto out;
1516
1517 /*
1518 * Ok we had -EAGAIN which means we didn't have space to insert and
1519 * inline extent ref, so just update the reference count and add a
1520 * normal backref.
1521 */
1522 leaf = path->nodes[0];
1523 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1524 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1525 refs = btrfs_extent_refs(leaf, item);
1526 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1527 if (extent_op)
1528 __run_delayed_extent_op(extent_op, leaf, item);
1529
1530 btrfs_mark_buffer_dirty(trans, leaf);
1531 btrfs_release_path(path);
1532
1533 /* now insert the actual backref */
1534 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1535 ret = insert_tree_block_ref(trans, path, node, bytenr);
1536 else
1537 ret = insert_extent_data_ref(trans, path, node, bytenr);
1538
1539 if (ret)
1540 btrfs_abort_transaction(trans, ret);
1541out:
1542 btrfs_free_path(path);
1543 return ret;
1544}
1545
1546static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1547 struct btrfs_delayed_ref_head *href)
1548{
1549 u64 root = href->owning_root;
1550
1551 /*
1552 * Don't check must_insert_reserved, as this is called from contexts
1553 * where it has already been unset.
1554 */
1555 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1556 !href->is_data || !is_fstree(root))
1557 return;
1558
1559 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1560 BTRFS_QGROUP_RSV_DATA);
1561}
1562
1563static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1564 struct btrfs_delayed_ref_head *href,
1565 struct btrfs_delayed_ref_node *node,
1566 struct btrfs_delayed_extent_op *extent_op,
1567 bool insert_reserved)
1568{
1569 int ret = 0;
1570 u64 parent = 0;
1571 u64 flags = 0;
1572
1573 trace_run_delayed_data_ref(trans->fs_info, node);
1574
1575 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1576 parent = node->parent;
1577
1578 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1579 struct btrfs_key key;
1580 struct btrfs_squota_delta delta = {
1581 .root = href->owning_root,
1582 .num_bytes = node->num_bytes,
1583 .is_data = true,
1584 .is_inc = true,
1585 .generation = trans->transid,
1586 };
1587 u64 owner = btrfs_delayed_ref_owner(node);
1588 u64 offset = btrfs_delayed_ref_offset(node);
1589
1590 if (extent_op)
1591 flags |= extent_op->flags_to_set;
1592
1593 key.objectid = node->bytenr;
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 key.offset = node->num_bytes;
1596
1597 ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1598 flags, owner, offset, &key,
1599 node->ref_mod,
1600 href->owning_root);
1601 free_head_ref_squota_rsv(trans->fs_info, href);
1602 if (!ret)
1603 ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1604 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1605 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1606 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1607 ret = __btrfs_free_extent(trans, href, node, extent_op);
1608 } else {
1609 BUG();
1610 }
1611 return ret;
1612}
1613
1614static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1615 struct extent_buffer *leaf,
1616 struct btrfs_extent_item *ei)
1617{
1618 u64 flags = btrfs_extent_flags(leaf, ei);
1619 if (extent_op->update_flags) {
1620 flags |= extent_op->flags_to_set;
1621 btrfs_set_extent_flags(leaf, ei, flags);
1622 }
1623
1624 if (extent_op->update_key) {
1625 struct btrfs_tree_block_info *bi;
1626 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1627 bi = (struct btrfs_tree_block_info *)(ei + 1);
1628 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1629 }
1630}
1631
1632static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1633 struct btrfs_delayed_ref_head *head,
1634 struct btrfs_delayed_extent_op *extent_op)
1635{
1636 struct btrfs_fs_info *fs_info = trans->fs_info;
1637 struct btrfs_root *root;
1638 struct btrfs_key key;
1639 struct btrfs_path *path;
1640 struct btrfs_extent_item *ei;
1641 struct extent_buffer *leaf;
1642 u32 item_size;
1643 int ret;
1644 int metadata = 1;
1645
1646 if (TRANS_ABORTED(trans))
1647 return 0;
1648
1649 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650 metadata = 0;
1651
1652 path = btrfs_alloc_path();
1653 if (!path)
1654 return -ENOMEM;
1655
1656 key.objectid = head->bytenr;
1657
1658 if (metadata) {
1659 key.type = BTRFS_METADATA_ITEM_KEY;
1660 key.offset = head->level;
1661 } else {
1662 key.type = BTRFS_EXTENT_ITEM_KEY;
1663 key.offset = head->num_bytes;
1664 }
1665
1666 root = btrfs_extent_root(fs_info, key.objectid);
1667again:
1668 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1669 if (ret < 0) {
1670 goto out;
1671 } else if (ret > 0) {
1672 if (metadata) {
1673 if (path->slots[0] > 0) {
1674 path->slots[0]--;
1675 btrfs_item_key_to_cpu(path->nodes[0], &key,
1676 path->slots[0]);
1677 if (key.objectid == head->bytenr &&
1678 key.type == BTRFS_EXTENT_ITEM_KEY &&
1679 key.offset == head->num_bytes)
1680 ret = 0;
1681 }
1682 if (ret > 0) {
1683 btrfs_release_path(path);
1684 metadata = 0;
1685
1686 key.objectid = head->bytenr;
1687 key.offset = head->num_bytes;
1688 key.type = BTRFS_EXTENT_ITEM_KEY;
1689 goto again;
1690 }
1691 } else {
1692 ret = -EUCLEAN;
1693 btrfs_err(fs_info,
1694 "missing extent item for extent %llu num_bytes %llu level %d",
1695 head->bytenr, head->num_bytes, head->level);
1696 goto out;
1697 }
1698 }
1699
1700 leaf = path->nodes[0];
1701 item_size = btrfs_item_size(leaf, path->slots[0]);
1702
1703 if (unlikely(item_size < sizeof(*ei))) {
1704 ret = -EUCLEAN;
1705 btrfs_err(fs_info,
1706 "unexpected extent item size, has %u expect >= %zu",
1707 item_size, sizeof(*ei));
1708 btrfs_abort_transaction(trans, ret);
1709 goto out;
1710 }
1711
1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1713 __run_delayed_extent_op(extent_op, leaf, ei);
1714
1715 btrfs_mark_buffer_dirty(trans, leaf);
1716out:
1717 btrfs_free_path(path);
1718 return ret;
1719}
1720
1721static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1722 struct btrfs_delayed_ref_head *href,
1723 struct btrfs_delayed_ref_node *node,
1724 struct btrfs_delayed_extent_op *extent_op,
1725 bool insert_reserved)
1726{
1727 int ret = 0;
1728 struct btrfs_fs_info *fs_info = trans->fs_info;
1729 u64 parent = 0;
1730 u64 ref_root = 0;
1731
1732 trace_run_delayed_tree_ref(trans->fs_info, node);
1733
1734 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1735 parent = node->parent;
1736 ref_root = node->ref_root;
1737
1738 if (unlikely(node->ref_mod != 1)) {
1739 btrfs_err(trans->fs_info,
1740 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1741 node->bytenr, node->ref_mod, node->action, ref_root,
1742 parent);
1743 return -EUCLEAN;
1744 }
1745 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1746 struct btrfs_squota_delta delta = {
1747 .root = href->owning_root,
1748 .num_bytes = fs_info->nodesize,
1749 .is_data = false,
1750 .is_inc = true,
1751 .generation = trans->transid,
1752 };
1753
1754 ret = alloc_reserved_tree_block(trans, node, extent_op);
1755 if (!ret)
1756 btrfs_record_squota_delta(fs_info, &delta);
1757 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1758 ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1759 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1760 ret = __btrfs_free_extent(trans, href, node, extent_op);
1761 } else {
1762 BUG();
1763 }
1764 return ret;
1765}
1766
1767/* helper function to actually process a single delayed ref entry */
1768static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1769 struct btrfs_delayed_ref_head *href,
1770 struct btrfs_delayed_ref_node *node,
1771 struct btrfs_delayed_extent_op *extent_op,
1772 bool insert_reserved)
1773{
1774 int ret = 0;
1775
1776 if (TRANS_ABORTED(trans)) {
1777 if (insert_reserved) {
1778 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1779 free_head_ref_squota_rsv(trans->fs_info, href);
1780 }
1781 return 0;
1782 }
1783
1784 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1785 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1786 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1787 insert_reserved);
1788 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1789 node->type == BTRFS_SHARED_DATA_REF_KEY)
1790 ret = run_delayed_data_ref(trans, href, node, extent_op,
1791 insert_reserved);
1792 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1793 ret = 0;
1794 else
1795 BUG();
1796 if (ret && insert_reserved)
1797 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1798 if (ret < 0)
1799 btrfs_err(trans->fs_info,
1800"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1801 node->bytenr, node->num_bytes, node->type,
1802 node->action, node->ref_mod, ret);
1803 return ret;
1804}
1805
1806static inline struct btrfs_delayed_ref_node *
1807select_delayed_ref(struct btrfs_delayed_ref_head *head)
1808{
1809 struct btrfs_delayed_ref_node *ref;
1810
1811 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1812 return NULL;
1813
1814 /*
1815 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1816 * This is to prevent a ref count from going down to zero, which deletes
1817 * the extent item from the extent tree, when there still are references
1818 * to add, which would fail because they would not find the extent item.
1819 */
1820 if (!list_empty(&head->ref_add_list))
1821 return list_first_entry(&head->ref_add_list,
1822 struct btrfs_delayed_ref_node, add_list);
1823
1824 ref = rb_entry(rb_first_cached(&head->ref_tree),
1825 struct btrfs_delayed_ref_node, ref_node);
1826 ASSERT(list_empty(&ref->add_list));
1827 return ref;
1828}
1829
1830static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831 struct btrfs_delayed_ref_head *head)
1832{
1833 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834
1835 if (!extent_op)
1836 return NULL;
1837
1838 if (head->must_insert_reserved) {
1839 head->extent_op = NULL;
1840 btrfs_free_delayed_extent_op(extent_op);
1841 return NULL;
1842 }
1843 return extent_op;
1844}
1845
1846static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847 struct btrfs_delayed_ref_head *head)
1848{
1849 struct btrfs_delayed_extent_op *extent_op;
1850 int ret;
1851
1852 extent_op = cleanup_extent_op(head);
1853 if (!extent_op)
1854 return 0;
1855 head->extent_op = NULL;
1856 spin_unlock(&head->lock);
1857 ret = run_delayed_extent_op(trans, head, extent_op);
1858 btrfs_free_delayed_extent_op(extent_op);
1859 return ret ? ret : 1;
1860}
1861
1862u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863 struct btrfs_delayed_ref_root *delayed_refs,
1864 struct btrfs_delayed_ref_head *head)
1865{
1866 u64 ret = 0;
1867
1868 /*
1869 * We had csum deletions accounted for in our delayed refs rsv, we need
1870 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871 */
1872 if (head->total_ref_mod < 0 && head->is_data) {
1873 int nr_csums;
1874
1875 spin_lock(&delayed_refs->lock);
1876 delayed_refs->pending_csums -= head->num_bytes;
1877 spin_unlock(&delayed_refs->lock);
1878 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1879
1880 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1881
1882 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1883 }
1884 /* must_insert_reserved can be set only if we didn't run the head ref. */
1885 if (head->must_insert_reserved)
1886 free_head_ref_squota_rsv(fs_info, head);
1887
1888 return ret;
1889}
1890
1891static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1892 struct btrfs_delayed_ref_head *head,
1893 u64 *bytes_released)
1894{
1895
1896 struct btrfs_fs_info *fs_info = trans->fs_info;
1897 struct btrfs_delayed_ref_root *delayed_refs;
1898 int ret;
1899
1900 delayed_refs = &trans->transaction->delayed_refs;
1901
1902 ret = run_and_cleanup_extent_op(trans, head);
1903 if (ret < 0) {
1904 btrfs_unselect_ref_head(delayed_refs, head);
1905 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1906 return ret;
1907 } else if (ret) {
1908 return ret;
1909 }
1910
1911 /*
1912 * Need to drop our head ref lock and re-acquire the delayed ref lock
1913 * and then re-check to make sure nobody got added.
1914 */
1915 spin_unlock(&head->lock);
1916 spin_lock(&delayed_refs->lock);
1917 spin_lock(&head->lock);
1918 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1919 spin_unlock(&head->lock);
1920 spin_unlock(&delayed_refs->lock);
1921 return 1;
1922 }
1923 btrfs_delete_ref_head(fs_info, delayed_refs, head);
1924 spin_unlock(&head->lock);
1925 spin_unlock(&delayed_refs->lock);
1926
1927 if (head->must_insert_reserved) {
1928 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1929 if (head->is_data) {
1930 struct btrfs_root *csum_root;
1931
1932 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1933 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1934 head->num_bytes);
1935 }
1936 }
1937
1938 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1939
1940 trace_run_delayed_ref_head(fs_info, head, 0);
1941 btrfs_delayed_ref_unlock(head);
1942 btrfs_put_delayed_ref_head(head);
1943 return ret;
1944}
1945
1946static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1947 struct btrfs_delayed_ref_head *locked_ref,
1948 u64 *bytes_released)
1949{
1950 struct btrfs_fs_info *fs_info = trans->fs_info;
1951 struct btrfs_delayed_ref_root *delayed_refs;
1952 struct btrfs_delayed_extent_op *extent_op;
1953 struct btrfs_delayed_ref_node *ref;
1954 bool must_insert_reserved;
1955 int ret;
1956
1957 delayed_refs = &trans->transaction->delayed_refs;
1958
1959 lockdep_assert_held(&locked_ref->mutex);
1960 lockdep_assert_held(&locked_ref->lock);
1961
1962 while ((ref = select_delayed_ref(locked_ref))) {
1963 if (ref->seq &&
1964 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1965 spin_unlock(&locked_ref->lock);
1966 btrfs_unselect_ref_head(delayed_refs, locked_ref);
1967 return -EAGAIN;
1968 }
1969
1970 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1971 RB_CLEAR_NODE(&ref->ref_node);
1972 if (!list_empty(&ref->add_list))
1973 list_del(&ref->add_list);
1974 /*
1975 * When we play the delayed ref, also correct the ref_mod on
1976 * head
1977 */
1978 switch (ref->action) {
1979 case BTRFS_ADD_DELAYED_REF:
1980 case BTRFS_ADD_DELAYED_EXTENT:
1981 locked_ref->ref_mod -= ref->ref_mod;
1982 break;
1983 case BTRFS_DROP_DELAYED_REF:
1984 locked_ref->ref_mod += ref->ref_mod;
1985 break;
1986 default:
1987 WARN_ON(1);
1988 }
1989
1990 /*
1991 * Record the must_insert_reserved flag before we drop the
1992 * spin lock.
1993 */
1994 must_insert_reserved = locked_ref->must_insert_reserved;
1995 /*
1996 * Unsetting this on the head ref relinquishes ownership of
1997 * the rsv_bytes, so it is critical that every possible code
1998 * path from here forward frees all reserves including qgroup
1999 * reserve.
2000 */
2001 locked_ref->must_insert_reserved = false;
2002
2003 extent_op = locked_ref->extent_op;
2004 locked_ref->extent_op = NULL;
2005 spin_unlock(&locked_ref->lock);
2006
2007 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2008 must_insert_reserved);
2009 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2010 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2011
2012 btrfs_free_delayed_extent_op(extent_op);
2013 if (ret) {
2014 btrfs_unselect_ref_head(delayed_refs, locked_ref);
2015 btrfs_put_delayed_ref(ref);
2016 return ret;
2017 }
2018
2019 btrfs_put_delayed_ref(ref);
2020 cond_resched();
2021
2022 spin_lock(&locked_ref->lock);
2023 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024 }
2025
2026 return 0;
2027}
2028
2029/*
2030 * Returns 0 on success or if called with an already aborted transaction.
2031 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032 */
2033static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034 u64 min_bytes)
2035{
2036 struct btrfs_fs_info *fs_info = trans->fs_info;
2037 struct btrfs_delayed_ref_root *delayed_refs;
2038 struct btrfs_delayed_ref_head *locked_ref = NULL;
2039 int ret;
2040 unsigned long count = 0;
2041 unsigned long max_count = 0;
2042 u64 bytes_processed = 0;
2043
2044 delayed_refs = &trans->transaction->delayed_refs;
2045 if (min_bytes == 0) {
2046 max_count = delayed_refs->num_heads_ready;
2047 min_bytes = U64_MAX;
2048 }
2049
2050 do {
2051 if (!locked_ref) {
2052 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2053 if (IS_ERR_OR_NULL(locked_ref)) {
2054 if (PTR_ERR(locked_ref) == -EAGAIN) {
2055 continue;
2056 } else {
2057 break;
2058 }
2059 }
2060 count++;
2061 }
2062 /*
2063 * We need to try and merge add/drops of the same ref since we
2064 * can run into issues with relocate dropping the implicit ref
2065 * and then it being added back again before the drop can
2066 * finish. If we merged anything we need to re-loop so we can
2067 * get a good ref.
2068 * Or we can get node references of the same type that weren't
2069 * merged when created due to bumps in the tree mod seq, and
2070 * we need to merge them to prevent adding an inline extent
2071 * backref before dropping it (triggering a BUG_ON at
2072 * insert_inline_extent_backref()).
2073 */
2074 spin_lock(&locked_ref->lock);
2075 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2076
2077 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2078 if (ret < 0 && ret != -EAGAIN) {
2079 /*
2080 * Error, btrfs_run_delayed_refs_for_head already
2081 * unlocked everything so just bail out
2082 */
2083 return ret;
2084 } else if (!ret) {
2085 /*
2086 * Success, perform the usual cleanup of a processed
2087 * head
2088 */
2089 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2090 if (ret > 0 ) {
2091 /* We dropped our lock, we need to loop. */
2092 ret = 0;
2093 continue;
2094 } else if (ret) {
2095 return ret;
2096 }
2097 }
2098
2099 /*
2100 * Either success case or btrfs_run_delayed_refs_for_head
2101 * returned -EAGAIN, meaning we need to select another head
2102 */
2103
2104 locked_ref = NULL;
2105 cond_resched();
2106 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2107 (max_count > 0 && count < max_count) ||
2108 locked_ref);
2109
2110 return 0;
2111}
2112
2113#ifdef SCRAMBLE_DELAYED_REFS
2114/*
2115 * Normally delayed refs get processed in ascending bytenr order. This
2116 * correlates in most cases to the order added. To expose dependencies on this
2117 * order, we start to process the tree in the middle instead of the beginning
2118 */
2119static u64 find_middle(struct rb_root *root)
2120{
2121 struct rb_node *n = root->rb_node;
2122 struct btrfs_delayed_ref_node *entry;
2123 int alt = 1;
2124 u64 middle;
2125 u64 first = 0, last = 0;
2126
2127 n = rb_first(root);
2128 if (n) {
2129 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2130 first = entry->bytenr;
2131 }
2132 n = rb_last(root);
2133 if (n) {
2134 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2135 last = entry->bytenr;
2136 }
2137 n = root->rb_node;
2138
2139 while (n) {
2140 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141 WARN_ON(!entry->in_tree);
2142
2143 middle = entry->bytenr;
2144
2145 if (alt)
2146 n = n->rb_left;
2147 else
2148 n = n->rb_right;
2149
2150 alt = 1 - alt;
2151 }
2152 return middle;
2153}
2154#endif
2155
2156/*
2157 * Start processing the delayed reference count updates and extent insertions
2158 * we have queued up so far.
2159 *
2160 * @trans: Transaction handle.
2161 * @min_bytes: How many bytes of delayed references to process. After this
2162 * many bytes we stop processing delayed references if there are
2163 * any more. If 0 it means to run all existing delayed references,
2164 * but not new ones added after running all existing ones.
2165 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2166 * plus any new ones that are added.
2167 *
2168 * Returns 0 on success or if called with an aborted transaction
2169 * Returns <0 on error and aborts the transaction
2170 */
2171int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2172{
2173 struct btrfs_fs_info *fs_info = trans->fs_info;
2174 struct btrfs_delayed_ref_root *delayed_refs;
2175 int ret;
2176
2177 /* We'll clean this up in btrfs_cleanup_transaction */
2178 if (TRANS_ABORTED(trans))
2179 return 0;
2180
2181 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2182 return 0;
2183
2184 delayed_refs = &trans->transaction->delayed_refs;
2185again:
2186#ifdef SCRAMBLE_DELAYED_REFS
2187 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2188#endif
2189 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2190 if (ret < 0) {
2191 btrfs_abort_transaction(trans, ret);
2192 return ret;
2193 }
2194
2195 if (min_bytes == U64_MAX) {
2196 btrfs_create_pending_block_groups(trans);
2197
2198 spin_lock(&delayed_refs->lock);
2199 if (xa_empty(&delayed_refs->head_refs)) {
2200 spin_unlock(&delayed_refs->lock);
2201 return 0;
2202 }
2203 spin_unlock(&delayed_refs->lock);
2204
2205 cond_resched();
2206 goto again;
2207 }
2208
2209 return 0;
2210}
2211
2212int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2213 struct extent_buffer *eb, u64 flags)
2214{
2215 struct btrfs_delayed_extent_op *extent_op;
2216 int ret;
2217
2218 extent_op = btrfs_alloc_delayed_extent_op();
2219 if (!extent_op)
2220 return -ENOMEM;
2221
2222 extent_op->flags_to_set = flags;
2223 extent_op->update_flags = true;
2224 extent_op->update_key = false;
2225
2226 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2227 btrfs_header_level(eb), extent_op);
2228 if (ret)
2229 btrfs_free_delayed_extent_op(extent_op);
2230 return ret;
2231}
2232
2233static noinline int check_delayed_ref(struct btrfs_root *root,
2234 struct btrfs_path *path,
2235 u64 objectid, u64 offset, u64 bytenr)
2236{
2237 struct btrfs_delayed_ref_head *head;
2238 struct btrfs_delayed_ref_node *ref;
2239 struct btrfs_delayed_ref_root *delayed_refs;
2240 struct btrfs_transaction *cur_trans;
2241 struct rb_node *node;
2242 int ret = 0;
2243
2244 spin_lock(&root->fs_info->trans_lock);
2245 cur_trans = root->fs_info->running_transaction;
2246 if (cur_trans)
2247 refcount_inc(&cur_trans->use_count);
2248 spin_unlock(&root->fs_info->trans_lock);
2249 if (!cur_trans)
2250 return 0;
2251
2252 delayed_refs = &cur_trans->delayed_refs;
2253 spin_lock(&delayed_refs->lock);
2254 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2255 if (!head) {
2256 spin_unlock(&delayed_refs->lock);
2257 btrfs_put_transaction(cur_trans);
2258 return 0;
2259 }
2260
2261 if (!mutex_trylock(&head->mutex)) {
2262 if (path->nowait) {
2263 spin_unlock(&delayed_refs->lock);
2264 btrfs_put_transaction(cur_trans);
2265 return -EAGAIN;
2266 }
2267
2268 refcount_inc(&head->refs);
2269 spin_unlock(&delayed_refs->lock);
2270
2271 btrfs_release_path(path);
2272
2273 /*
2274 * Mutex was contended, block until it's released and let
2275 * caller try again
2276 */
2277 mutex_lock(&head->mutex);
2278 mutex_unlock(&head->mutex);
2279 btrfs_put_delayed_ref_head(head);
2280 btrfs_put_transaction(cur_trans);
2281 return -EAGAIN;
2282 }
2283 spin_unlock(&delayed_refs->lock);
2284
2285 spin_lock(&head->lock);
2286 /*
2287 * XXX: We should replace this with a proper search function in the
2288 * future.
2289 */
2290 for (node = rb_first_cached(&head->ref_tree); node;
2291 node = rb_next(node)) {
2292 u64 ref_owner;
2293 u64 ref_offset;
2294
2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296 /* If it's a shared ref we know a cross reference exists */
2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298 ret = 1;
2299 break;
2300 }
2301
2302 ref_owner = btrfs_delayed_ref_owner(ref);
2303 ref_offset = btrfs_delayed_ref_offset(ref);
2304
2305 /*
2306 * If our ref doesn't match the one we're currently looking at
2307 * then we have a cross reference.
2308 */
2309 if (ref->ref_root != btrfs_root_id(root) ||
2310 ref_owner != objectid || ref_offset != offset) {
2311 ret = 1;
2312 break;
2313 }
2314 }
2315 spin_unlock(&head->lock);
2316 mutex_unlock(&head->mutex);
2317 btrfs_put_transaction(cur_trans);
2318 return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
2322 struct btrfs_path *path,
2323 u64 objectid, u64 offset, u64 bytenr,
2324 bool strict)
2325{
2326 struct btrfs_fs_info *fs_info = root->fs_info;
2327 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2328 struct extent_buffer *leaf;
2329 struct btrfs_extent_data_ref *ref;
2330 struct btrfs_extent_inline_ref *iref;
2331 struct btrfs_extent_item *ei;
2332 struct btrfs_key key;
2333 u32 item_size;
2334 u32 expected_size;
2335 int type;
2336 int ret;
2337
2338 key.objectid = bytenr;
2339 key.offset = (u64)-1;
2340 key.type = BTRFS_EXTENT_ITEM_KEY;
2341
2342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343 if (ret < 0)
2344 goto out;
2345 if (ret == 0) {
2346 /*
2347 * Key with offset -1 found, there would have to exist an extent
2348 * item with such offset, but this is out of the valid range.
2349 */
2350 ret = -EUCLEAN;
2351 goto out;
2352 }
2353
2354 ret = -ENOENT;
2355 if (path->slots[0] == 0)
2356 goto out;
2357
2358 path->slots[0]--;
2359 leaf = path->nodes[0];
2360 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2361
2362 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2363 goto out;
2364
2365 ret = 1;
2366 item_size = btrfs_item_size(leaf, path->slots[0]);
2367 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2368 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2369
2370 /* No inline refs; we need to bail before checking for owner ref. */
2371 if (item_size == sizeof(*ei))
2372 goto out;
2373
2374 /* Check for an owner ref; skip over it to the real inline refs. */
2375 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2376 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2377 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2378 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2379 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2380 }
2381
2382 /* If extent item has more than 1 inline ref then it's shared */
2383 if (item_size != expected_size)
2384 goto out;
2385
2386 /*
2387 * If extent created before last snapshot => it's shared unless the
2388 * snapshot has been deleted. Use the heuristic if strict is false.
2389 */
2390 if (!strict &&
2391 (btrfs_extent_generation(leaf, ei) <=
2392 btrfs_root_last_snapshot(&root->root_item)))
2393 goto out;
2394
2395 /* If this extent has SHARED_DATA_REF then it's shared */
2396 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2397 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2398 goto out;
2399
2400 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2401 if (btrfs_extent_refs(leaf, ei) !=
2402 btrfs_extent_data_ref_count(leaf, ref) ||
2403 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2404 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 goto out;
2407
2408 ret = 0;
2409out:
2410 return ret;
2411}
2412
2413int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414 u64 bytenr, bool strict, struct btrfs_path *path)
2415{
2416 int ret;
2417
2418 do {
2419 ret = check_committed_ref(root, path, objectid,
2420 offset, bytenr, strict);
2421 if (ret && ret != -ENOENT)
2422 goto out;
2423
2424 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2425 } while (ret == -EAGAIN && !path->nowait);
2426
2427out:
2428 btrfs_release_path(path);
2429 if (btrfs_is_data_reloc_root(root))
2430 WARN_ON(ret > 0);
2431 return ret;
2432}
2433
2434static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2435 struct btrfs_root *root,
2436 struct extent_buffer *buf,
2437 int full_backref, int inc)
2438{
2439 struct btrfs_fs_info *fs_info = root->fs_info;
2440 u64 parent;
2441 u64 ref_root;
2442 u32 nritems;
2443 struct btrfs_key key;
2444 struct btrfs_file_extent_item *fi;
2445 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2446 int i;
2447 int action;
2448 int level;
2449 int ret = 0;
2450
2451 if (btrfs_is_testing(fs_info))
2452 return 0;
2453
2454 ref_root = btrfs_header_owner(buf);
2455 nritems = btrfs_header_nritems(buf);
2456 level = btrfs_header_level(buf);
2457
2458 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2459 return 0;
2460
2461 if (full_backref)
2462 parent = buf->start;
2463 else
2464 parent = 0;
2465 if (inc)
2466 action = BTRFS_ADD_DELAYED_REF;
2467 else
2468 action = BTRFS_DROP_DELAYED_REF;
2469
2470 for (i = 0; i < nritems; i++) {
2471 struct btrfs_ref ref = {
2472 .action = action,
2473 .parent = parent,
2474 .ref_root = ref_root,
2475 };
2476
2477 if (level == 0) {
2478 btrfs_item_key_to_cpu(buf, &key, i);
2479 if (key.type != BTRFS_EXTENT_DATA_KEY)
2480 continue;
2481 fi = btrfs_item_ptr(buf, i,
2482 struct btrfs_file_extent_item);
2483 if (btrfs_file_extent_type(buf, fi) ==
2484 BTRFS_FILE_EXTENT_INLINE)
2485 continue;
2486 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2487 if (ref.bytenr == 0)
2488 continue;
2489
2490 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2491 ref.owning_root = ref_root;
2492
2493 key.offset -= btrfs_file_extent_offset(buf, fi);
2494 btrfs_init_data_ref(&ref, key.objectid, key.offset,
2495 btrfs_root_id(root), for_reloc);
2496 if (inc)
2497 ret = btrfs_inc_extent_ref(trans, &ref);
2498 else
2499 ret = btrfs_free_extent(trans, &ref);
2500 if (ret)
2501 goto fail;
2502 } else {
2503 /* We don't know the owning_root, leave as 0. */
2504 ref.bytenr = btrfs_node_blockptr(buf, i);
2505 ref.num_bytes = fs_info->nodesize;
2506
2507 btrfs_init_tree_ref(&ref, level - 1,
2508 btrfs_root_id(root), for_reloc);
2509 if (inc)
2510 ret = btrfs_inc_extent_ref(trans, &ref);
2511 else
2512 ret = btrfs_free_extent(trans, &ref);
2513 if (ret)
2514 goto fail;
2515 }
2516 }
2517 return 0;
2518fail:
2519 return ret;
2520}
2521
2522int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2523 struct extent_buffer *buf, int full_backref)
2524{
2525 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2526}
2527
2528int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2529 struct extent_buffer *buf, int full_backref)
2530{
2531 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2532}
2533
2534static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2535{
2536 struct btrfs_fs_info *fs_info = root->fs_info;
2537 u64 flags;
2538 u64 ret;
2539
2540 if (data)
2541 flags = BTRFS_BLOCK_GROUP_DATA;
2542 else if (root == fs_info->chunk_root)
2543 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2544 else
2545 flags = BTRFS_BLOCK_GROUP_METADATA;
2546
2547 ret = btrfs_get_alloc_profile(fs_info, flags);
2548 return ret;
2549}
2550
2551static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2552{
2553 struct rb_node *leftmost;
2554 u64 bytenr = 0;
2555
2556 read_lock(&fs_info->block_group_cache_lock);
2557 /* Get the block group with the lowest logical start address. */
2558 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2559 if (leftmost) {
2560 struct btrfs_block_group *bg;
2561
2562 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2563 bytenr = bg->start;
2564 }
2565 read_unlock(&fs_info->block_group_cache_lock);
2566
2567 return bytenr;
2568}
2569
2570static int pin_down_extent(struct btrfs_trans_handle *trans,
2571 struct btrfs_block_group *cache,
2572 u64 bytenr, u64 num_bytes, int reserved)
2573{
2574 struct btrfs_fs_info *fs_info = cache->fs_info;
2575
2576 spin_lock(&cache->space_info->lock);
2577 spin_lock(&cache->lock);
2578 cache->pinned += num_bytes;
2579 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580 num_bytes);
2581 if (reserved) {
2582 cache->reserved -= num_bytes;
2583 cache->space_info->bytes_reserved -= num_bytes;
2584 }
2585 spin_unlock(&cache->lock);
2586 spin_unlock(&cache->space_info->lock);
2587
2588 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2589 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2590 return 0;
2591}
2592
2593int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2594 u64 bytenr, u64 num_bytes, int reserved)
2595{
2596 struct btrfs_block_group *cache;
2597
2598 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599 BUG_ON(!cache); /* Logic error */
2600
2601 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2602
2603 btrfs_put_block_group(cache);
2604 return 0;
2605}
2606
2607int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608 const struct extent_buffer *eb)
2609{
2610 struct btrfs_block_group *cache;
2611 int ret;
2612
2613 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2614 if (!cache)
2615 return -EINVAL;
2616
2617 /*
2618 * Fully cache the free space first so that our pin removes the free space
2619 * from the cache.
2620 */
2621 ret = btrfs_cache_block_group(cache, true);
2622 if (ret)
2623 goto out;
2624
2625 pin_down_extent(trans, cache, eb->start, eb->len, 0);
2626
2627 /* remove us from the free space cache (if we're there at all) */
2628 ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2629out:
2630 btrfs_put_block_group(cache);
2631 return ret;
2632}
2633
2634static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635 u64 start, u64 num_bytes)
2636{
2637 int ret;
2638 struct btrfs_block_group *block_group;
2639
2640 block_group = btrfs_lookup_block_group(fs_info, start);
2641 if (!block_group)
2642 return -EINVAL;
2643
2644 ret = btrfs_cache_block_group(block_group, true);
2645 if (ret)
2646 goto out;
2647
2648 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649out:
2650 btrfs_put_block_group(block_group);
2651 return ret;
2652}
2653
2654int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655{
2656 struct btrfs_fs_info *fs_info = eb->fs_info;
2657 struct btrfs_file_extent_item *item;
2658 struct btrfs_key key;
2659 int found_type;
2660 int i;
2661 int ret = 0;
2662
2663 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664 return 0;
2665
2666 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667 btrfs_item_key_to_cpu(eb, &key, i);
2668 if (key.type != BTRFS_EXTENT_DATA_KEY)
2669 continue;
2670 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671 found_type = btrfs_file_extent_type(eb, item);
2672 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673 continue;
2674 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675 continue;
2676 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679 if (ret)
2680 break;
2681 }
2682
2683 return ret;
2684}
2685
2686static void
2687btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688{
2689 atomic_inc(&bg->reservations);
2690}
2691
2692/*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696static struct btrfs_free_cluster *
2697fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698 struct btrfs_space_info *space_info, u64 *empty_cluster)
2699{
2700 struct btrfs_free_cluster *ret = NULL;
2701
2702 *empty_cluster = 0;
2703 if (btrfs_mixed_space_info(space_info))
2704 return ret;
2705
2706 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707 ret = &fs_info->meta_alloc_cluster;
2708 if (btrfs_test_opt(fs_info, SSD))
2709 *empty_cluster = SZ_2M;
2710 else
2711 *empty_cluster = SZ_64K;
2712 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714 *empty_cluster = SZ_2M;
2715 ret = &fs_info->data_alloc_cluster;
2716 }
2717
2718 return ret;
2719}
2720
2721static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722 u64 start, u64 end,
2723 const bool return_free_space)
2724{
2725 struct btrfs_block_group *cache = NULL;
2726 struct btrfs_space_info *space_info;
2727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728 struct btrfs_free_cluster *cluster = NULL;
2729 u64 len;
2730 u64 total_unpinned = 0;
2731 u64 empty_cluster = 0;
2732 bool readonly;
2733 int ret = 0;
2734
2735 while (start <= end) {
2736 readonly = false;
2737 if (!cache ||
2738 start >= cache->start + cache->length) {
2739 if (cache)
2740 btrfs_put_block_group(cache);
2741 total_unpinned = 0;
2742 cache = btrfs_lookup_block_group(fs_info, start);
2743 if (cache == NULL) {
2744 /* Logic error, something removed the block group. */
2745 ret = -EUCLEAN;
2746 goto out;
2747 }
2748
2749 cluster = fetch_cluster_info(fs_info,
2750 cache->space_info,
2751 &empty_cluster);
2752 empty_cluster <<= 1;
2753 }
2754
2755 len = cache->start + cache->length - start;
2756 len = min(len, end + 1 - start);
2757
2758 if (return_free_space)
2759 btrfs_add_free_space(cache, start, len);
2760
2761 start += len;
2762 total_unpinned += len;
2763 space_info = cache->space_info;
2764
2765 /*
2766 * If this space cluster has been marked as fragmented and we've
2767 * unpinned enough in this block group to potentially allow a
2768 * cluster to be created inside of it go ahead and clear the
2769 * fragmented check.
2770 */
2771 if (cluster && cluster->fragmented &&
2772 total_unpinned > empty_cluster) {
2773 spin_lock(&cluster->lock);
2774 cluster->fragmented = 0;
2775 spin_unlock(&cluster->lock);
2776 }
2777
2778 spin_lock(&space_info->lock);
2779 spin_lock(&cache->lock);
2780 cache->pinned -= len;
2781 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2782 space_info->max_extent_size = 0;
2783 if (cache->ro) {
2784 space_info->bytes_readonly += len;
2785 readonly = true;
2786 } else if (btrfs_is_zoned(fs_info)) {
2787 /* Need reset before reusing in a zoned block group */
2788 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2789 len);
2790 readonly = true;
2791 }
2792 spin_unlock(&cache->lock);
2793 if (!readonly && return_free_space &&
2794 global_rsv->space_info == space_info) {
2795 spin_lock(&global_rsv->lock);
2796 if (!global_rsv->full) {
2797 u64 to_add = min(len, global_rsv->size -
2798 global_rsv->reserved);
2799
2800 global_rsv->reserved += to_add;
2801 btrfs_space_info_update_bytes_may_use(fs_info,
2802 space_info, to_add);
2803 if (global_rsv->reserved >= global_rsv->size)
2804 global_rsv->full = 1;
2805 len -= to_add;
2806 }
2807 spin_unlock(&global_rsv->lock);
2808 }
2809 /* Add to any tickets we may have */
2810 if (!readonly && return_free_space && len)
2811 btrfs_try_granting_tickets(fs_info, space_info);
2812 spin_unlock(&space_info->lock);
2813 }
2814
2815 if (cache)
2816 btrfs_put_block_group(cache);
2817out:
2818 return ret;
2819}
2820
2821int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2822{
2823 struct btrfs_fs_info *fs_info = trans->fs_info;
2824 struct btrfs_block_group *block_group, *tmp;
2825 struct list_head *deleted_bgs;
2826 struct extent_io_tree *unpin;
2827 u64 start;
2828 u64 end;
2829 int ret;
2830
2831 unpin = &trans->transaction->pinned_extents;
2832
2833 while (!TRANS_ABORTED(trans)) {
2834 struct extent_state *cached_state = NULL;
2835
2836 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2837 if (!find_first_extent_bit(unpin, 0, &start, &end,
2838 EXTENT_DIRTY, &cached_state)) {
2839 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2840 break;
2841 }
2842
2843 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2844 ret = btrfs_discard_extent(fs_info, start,
2845 end + 1 - start, NULL);
2846
2847 clear_extent_dirty(unpin, start, end, &cached_state);
2848 ret = unpin_extent_range(fs_info, start, end, true);
2849 BUG_ON(ret);
2850 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2851 free_extent_state(cached_state);
2852 cond_resched();
2853 }
2854
2855 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2856 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2857 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2858 }
2859
2860 /*
2861 * Transaction is finished. We don't need the lock anymore. We
2862 * do need to clean up the block groups in case of a transaction
2863 * abort.
2864 */
2865 deleted_bgs = &trans->transaction->deleted_bgs;
2866 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2867 u64 trimmed = 0;
2868
2869 ret = -EROFS;
2870 if (!TRANS_ABORTED(trans))
2871 ret = btrfs_discard_extent(fs_info,
2872 block_group->start,
2873 block_group->length,
2874 &trimmed);
2875
2876 list_del_init(&block_group->bg_list);
2877 btrfs_unfreeze_block_group(block_group);
2878 btrfs_put_block_group(block_group);
2879
2880 if (ret) {
2881 const char *errstr = btrfs_decode_error(ret);
2882 btrfs_warn(fs_info,
2883 "discard failed while removing blockgroup: errno=%d %s",
2884 ret, errstr);
2885 }
2886 }
2887
2888 return 0;
2889}
2890
2891/*
2892 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2893 *
2894 * @fs_info: the btrfs_fs_info for this mount
2895 * @leaf: a leaf in the extent tree containing the extent item
2896 * @slot: the slot in the leaf where the extent item is found
2897 *
2898 * Returns the objectid of the root that originally allocated the extent item
2899 * if the inline owner ref is expected and present, otherwise 0.
2900 *
2901 * If an extent item has an owner ref item, it will be the first inline ref
2902 * item. Therefore the logic is to check whether there are any inline ref
2903 * items, then check the type of the first one.
2904 */
2905u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2906 struct extent_buffer *leaf, int slot)
2907{
2908 struct btrfs_extent_item *ei;
2909 struct btrfs_extent_inline_ref *iref;
2910 struct btrfs_extent_owner_ref *oref;
2911 unsigned long ptr;
2912 unsigned long end;
2913 int type;
2914
2915 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2916 return 0;
2917
2918 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2919 ptr = (unsigned long)(ei + 1);
2920 end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2921
2922 /* No inline ref items of any kind, can't check type. */
2923 if (ptr == end)
2924 return 0;
2925
2926 iref = (struct btrfs_extent_inline_ref *)ptr;
2927 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2928
2929 /* We found an owner ref, get the root out of it. */
2930 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2931 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2932 return btrfs_extent_owner_ref_root_id(leaf, oref);
2933 }
2934
2935 /* We have inline refs, but not an owner ref. */
2936 return 0;
2937}
2938
2939static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2940 u64 bytenr, struct btrfs_squota_delta *delta)
2941{
2942 int ret;
2943 u64 num_bytes = delta->num_bytes;
2944
2945 if (delta->is_data) {
2946 struct btrfs_root *csum_root;
2947
2948 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2949 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2950 if (ret) {
2951 btrfs_abort_transaction(trans, ret);
2952 return ret;
2953 }
2954
2955 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2956 if (ret) {
2957 btrfs_abort_transaction(trans, ret);
2958 return ret;
2959 }
2960 }
2961
2962 ret = btrfs_record_squota_delta(trans->fs_info, delta);
2963 if (ret) {
2964 btrfs_abort_transaction(trans, ret);
2965 return ret;
2966 }
2967
2968 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2969 if (ret) {
2970 btrfs_abort_transaction(trans, ret);
2971 return ret;
2972 }
2973
2974 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2975 if (ret)
2976 btrfs_abort_transaction(trans, ret);
2977
2978 return ret;
2979}
2980
2981#define abort_and_dump(trans, path, fmt, args...) \
2982({ \
2983 btrfs_abort_transaction(trans, -EUCLEAN); \
2984 btrfs_print_leaf(path->nodes[0]); \
2985 btrfs_crit(trans->fs_info, fmt, ##args); \
2986})
2987
2988/*
2989 * Drop one or more refs of @node.
2990 *
2991 * 1. Locate the extent refs.
2992 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2993 * Locate it, then reduce the refs number or remove the ref line completely.
2994 *
2995 * 2. Update the refs count in EXTENT/METADATA_ITEM
2996 *
2997 * Inline backref case:
2998 *
2999 * in extent tree we have:
3000 *
3001 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3002 * refs 2 gen 6 flags DATA
3003 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3004 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3005 *
3006 * This function gets called with:
3007 *
3008 * node->bytenr = 13631488
3009 * node->num_bytes = 1048576
3010 * root_objectid = FS_TREE
3011 * owner_objectid = 257
3012 * owner_offset = 0
3013 * refs_to_drop = 1
3014 *
3015 * Then we should get some like:
3016 *
3017 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3018 * refs 1 gen 6 flags DATA
3019 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3020 *
3021 * Keyed backref case:
3022 *
3023 * in extent tree we have:
3024 *
3025 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3026 * refs 754 gen 6 flags DATA
3027 * [...]
3028 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3029 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3030 *
3031 * This function get called with:
3032 *
3033 * node->bytenr = 13631488
3034 * node->num_bytes = 1048576
3035 * root_objectid = FS_TREE
3036 * owner_objectid = 866
3037 * owner_offset = 0
3038 * refs_to_drop = 1
3039 *
3040 * Then we should get some like:
3041 *
3042 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3043 * refs 753 gen 6 flags DATA
3044 *
3045 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3046 */
3047static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3048 struct btrfs_delayed_ref_head *href,
3049 struct btrfs_delayed_ref_node *node,
3050 struct btrfs_delayed_extent_op *extent_op)
3051{
3052 struct btrfs_fs_info *info = trans->fs_info;
3053 struct btrfs_key key;
3054 struct btrfs_path *path;
3055 struct btrfs_root *extent_root;
3056 struct extent_buffer *leaf;
3057 struct btrfs_extent_item *ei;
3058 struct btrfs_extent_inline_ref *iref;
3059 int ret;
3060 int is_data;
3061 int extent_slot = 0;
3062 int found_extent = 0;
3063 int num_to_del = 1;
3064 int refs_to_drop = node->ref_mod;
3065 u32 item_size;
3066 u64 refs;
3067 u64 bytenr = node->bytenr;
3068 u64 num_bytes = node->num_bytes;
3069 u64 owner_objectid = btrfs_delayed_ref_owner(node);
3070 u64 owner_offset = btrfs_delayed_ref_offset(node);
3071 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3072 u64 delayed_ref_root = href->owning_root;
3073
3074 extent_root = btrfs_extent_root(info, bytenr);
3075 ASSERT(extent_root);
3076
3077 path = btrfs_alloc_path();
3078 if (!path)
3079 return -ENOMEM;
3080
3081 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3082
3083 if (!is_data && refs_to_drop != 1) {
3084 btrfs_crit(info,
3085"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3086 node->bytenr, refs_to_drop);
3087 ret = -EINVAL;
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
3091
3092 if (is_data)
3093 skinny_metadata = false;
3094
3095 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3096 node->parent, node->ref_root, owner_objectid,
3097 owner_offset);
3098 if (ret == 0) {
3099 /*
3100 * Either the inline backref or the SHARED_DATA_REF/
3101 * SHARED_BLOCK_REF is found
3102 *
3103 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3104 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3105 */
3106 extent_slot = path->slots[0];
3107 while (extent_slot >= 0) {
3108 btrfs_item_key_to_cpu(path->nodes[0], &key,
3109 extent_slot);
3110 if (key.objectid != bytenr)
3111 break;
3112 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3113 key.offset == num_bytes) {
3114 found_extent = 1;
3115 break;
3116 }
3117 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3118 key.offset == owner_objectid) {
3119 found_extent = 1;
3120 break;
3121 }
3122
3123 /* Quick path didn't find the EXTENT/METADATA_ITEM */
3124 if (path->slots[0] - extent_slot > 5)
3125 break;
3126 extent_slot--;
3127 }
3128
3129 if (!found_extent) {
3130 if (iref) {
3131 abort_and_dump(trans, path,
3132"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3133 path->slots[0]);
3134 ret = -EUCLEAN;
3135 goto out;
3136 }
3137 /* Must be SHARED_* item, remove the backref first */
3138 ret = remove_extent_backref(trans, extent_root, path,
3139 NULL, refs_to_drop, is_data);
3140 if (ret) {
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
3144 btrfs_release_path(path);
3145
3146 /* Slow path to locate EXTENT/METADATA_ITEM */
3147 key.objectid = bytenr;
3148 key.type = BTRFS_EXTENT_ITEM_KEY;
3149 key.offset = num_bytes;
3150
3151 if (!is_data && skinny_metadata) {
3152 key.type = BTRFS_METADATA_ITEM_KEY;
3153 key.offset = owner_objectid;
3154 }
3155
3156 ret = btrfs_search_slot(trans, extent_root,
3157 &key, path, -1, 1);
3158 if (ret > 0 && skinny_metadata && path->slots[0]) {
3159 /*
3160 * Couldn't find our skinny metadata item,
3161 * see if we have ye olde extent item.
3162 */
3163 path->slots[0]--;
3164 btrfs_item_key_to_cpu(path->nodes[0], &key,
3165 path->slots[0]);
3166 if (key.objectid == bytenr &&
3167 key.type == BTRFS_EXTENT_ITEM_KEY &&
3168 key.offset == num_bytes)
3169 ret = 0;
3170 }
3171
3172 if (ret > 0 && skinny_metadata) {
3173 skinny_metadata = false;
3174 key.objectid = bytenr;
3175 key.type = BTRFS_EXTENT_ITEM_KEY;
3176 key.offset = num_bytes;
3177 btrfs_release_path(path);
3178 ret = btrfs_search_slot(trans, extent_root,
3179 &key, path, -1, 1);
3180 }
3181
3182 if (ret) {
3183 if (ret > 0)
3184 btrfs_print_leaf(path->nodes[0]);
3185 btrfs_err(info,
3186 "umm, got %d back from search, was looking for %llu, slot %d",
3187 ret, bytenr, path->slots[0]);
3188 }
3189 if (ret < 0) {
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193 extent_slot = path->slots[0];
3194 }
3195 } else if (WARN_ON(ret == -ENOENT)) {
3196 abort_and_dump(trans, path,
3197"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3198 bytenr, node->parent, node->ref_root, owner_objectid,
3199 owner_offset, path->slots[0]);
3200 goto out;
3201 } else {
3202 btrfs_abort_transaction(trans, ret);
3203 goto out;
3204 }
3205
3206 leaf = path->nodes[0];
3207 item_size = btrfs_item_size(leaf, extent_slot);
3208 if (unlikely(item_size < sizeof(*ei))) {
3209 ret = -EUCLEAN;
3210 btrfs_err(trans->fs_info,
3211 "unexpected extent item size, has %u expect >= %zu",
3212 item_size, sizeof(*ei));
3213 btrfs_abort_transaction(trans, ret);
3214 goto out;
3215 }
3216 ei = btrfs_item_ptr(leaf, extent_slot,
3217 struct btrfs_extent_item);
3218 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3219 key.type == BTRFS_EXTENT_ITEM_KEY) {
3220 struct btrfs_tree_block_info *bi;
3221
3222 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3223 abort_and_dump(trans, path,
3224"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3225 key.objectid, key.type, key.offset,
3226 path->slots[0], owner_objectid, item_size,
3227 sizeof(*ei) + sizeof(*bi));
3228 ret = -EUCLEAN;
3229 goto out;
3230 }
3231 bi = (struct btrfs_tree_block_info *)(ei + 1);
3232 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3233 }
3234
3235 refs = btrfs_extent_refs(leaf, ei);
3236 if (refs < refs_to_drop) {
3237 abort_and_dump(trans, path,
3238 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3239 refs_to_drop, refs, bytenr, path->slots[0]);
3240 ret = -EUCLEAN;
3241 goto out;
3242 }
3243 refs -= refs_to_drop;
3244
3245 if (refs > 0) {
3246 if (extent_op)
3247 __run_delayed_extent_op(extent_op, leaf, ei);
3248 /*
3249 * In the case of inline back ref, reference count will
3250 * be updated by remove_extent_backref
3251 */
3252 if (iref) {
3253 if (!found_extent) {
3254 abort_and_dump(trans, path,
3255"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3256 path->slots[0]);
3257 ret = -EUCLEAN;
3258 goto out;
3259 }
3260 } else {
3261 btrfs_set_extent_refs(leaf, ei, refs);
3262 btrfs_mark_buffer_dirty(trans, leaf);
3263 }
3264 if (found_extent) {
3265 ret = remove_extent_backref(trans, extent_root, path,
3266 iref, refs_to_drop, is_data);
3267 if (ret) {
3268 btrfs_abort_transaction(trans, ret);
3269 goto out;
3270 }
3271 }
3272 } else {
3273 struct btrfs_squota_delta delta = {
3274 .root = delayed_ref_root,
3275 .num_bytes = num_bytes,
3276 .is_data = is_data,
3277 .is_inc = false,
3278 .generation = btrfs_extent_generation(leaf, ei),
3279 };
3280
3281 /* In this branch refs == 1 */
3282 if (found_extent) {
3283 if (is_data && refs_to_drop !=
3284 extent_data_ref_count(path, iref)) {
3285 abort_and_dump(trans, path,
3286 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3287 extent_data_ref_count(path, iref),
3288 refs_to_drop, path->slots[0]);
3289 ret = -EUCLEAN;
3290 goto out;
3291 }
3292 if (iref) {
3293 if (path->slots[0] != extent_slot) {
3294 abort_and_dump(trans, path,
3295"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3296 key.objectid, key.type,
3297 key.offset, path->slots[0]);
3298 ret = -EUCLEAN;
3299 goto out;
3300 }
3301 } else {
3302 /*
3303 * No inline ref, we must be at SHARED_* item,
3304 * And it's single ref, it must be:
3305 * | extent_slot ||extent_slot + 1|
3306 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3307 */
3308 if (path->slots[0] != extent_slot + 1) {
3309 abort_and_dump(trans, path,
3310 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3311 path->slots[0]);
3312 ret = -EUCLEAN;
3313 goto out;
3314 }
3315 path->slots[0] = extent_slot;
3316 num_to_del = 2;
3317 }
3318 }
3319 /*
3320 * We can't infer the data owner from the delayed ref, so we need
3321 * to try to get it from the owning ref item.
3322 *
3323 * If it is not present, then that extent was not written under
3324 * simple quotas mode, so we don't need to account for its deletion.
3325 */
3326 if (is_data)
3327 delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3328 leaf, extent_slot);
3329
3330 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3331 num_to_del);
3332 if (ret) {
3333 btrfs_abort_transaction(trans, ret);
3334 goto out;
3335 }
3336 btrfs_release_path(path);
3337
3338 ret = do_free_extent_accounting(trans, bytenr, &delta);
3339 }
3340 btrfs_release_path(path);
3341
3342out:
3343 btrfs_free_path(path);
3344 return ret;
3345}
3346
3347/*
3348 * when we free an block, it is possible (and likely) that we free the last
3349 * delayed ref for that extent as well. This searches the delayed ref tree for
3350 * a given extent, and if there are no other delayed refs to be processed, it
3351 * removes it from the tree.
3352 */
3353static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3354 u64 bytenr)
3355{
3356 struct btrfs_fs_info *fs_info = trans->fs_info;
3357 struct btrfs_delayed_ref_head *head;
3358 struct btrfs_delayed_ref_root *delayed_refs;
3359 int ret = 0;
3360
3361 delayed_refs = &trans->transaction->delayed_refs;
3362 spin_lock(&delayed_refs->lock);
3363 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3364 if (!head)
3365 goto out_delayed_unlock;
3366
3367 spin_lock(&head->lock);
3368 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3369 goto out;
3370
3371 if (cleanup_extent_op(head) != NULL)
3372 goto out;
3373
3374 /*
3375 * waiting for the lock here would deadlock. If someone else has it
3376 * locked they are already in the process of dropping it anyway
3377 */
3378 if (!mutex_trylock(&head->mutex))
3379 goto out;
3380
3381 btrfs_delete_ref_head(fs_info, delayed_refs, head);
3382 head->processing = false;
3383
3384 spin_unlock(&head->lock);
3385 spin_unlock(&delayed_refs->lock);
3386
3387 BUG_ON(head->extent_op);
3388 if (head->must_insert_reserved)
3389 ret = 1;
3390
3391 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3392 mutex_unlock(&head->mutex);
3393 btrfs_put_delayed_ref_head(head);
3394 return ret;
3395out:
3396 spin_unlock(&head->lock);
3397
3398out_delayed_unlock:
3399 spin_unlock(&delayed_refs->lock);
3400 return 0;
3401}
3402
3403int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3404 u64 root_id,
3405 struct extent_buffer *buf,
3406 u64 parent, int last_ref)
3407{
3408 struct btrfs_fs_info *fs_info = trans->fs_info;
3409 struct btrfs_block_group *bg;
3410 int ret;
3411
3412 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3413 struct btrfs_ref generic_ref = {
3414 .action = BTRFS_DROP_DELAYED_REF,
3415 .bytenr = buf->start,
3416 .num_bytes = buf->len,
3417 .parent = parent,
3418 .owning_root = btrfs_header_owner(buf),
3419 .ref_root = root_id,
3420 };
3421
3422 /*
3423 * Assert that the extent buffer is not cleared due to
3424 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3425 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3426 * detail.
3427 */
3428 ASSERT(btrfs_header_bytenr(buf) != 0);
3429
3430 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3431 btrfs_ref_tree_mod(fs_info, &generic_ref);
3432 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3433 if (ret < 0)
3434 return ret;
3435 }
3436
3437 if (!last_ref)
3438 return 0;
3439
3440 if (btrfs_header_generation(buf) != trans->transid)
3441 goto out;
3442
3443 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3444 ret = check_ref_cleanup(trans, buf->start);
3445 if (!ret)
3446 goto out;
3447 }
3448
3449 bg = btrfs_lookup_block_group(fs_info, buf->start);
3450
3451 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3452 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3453 btrfs_put_block_group(bg);
3454 goto out;
3455 }
3456
3457 /*
3458 * If there are tree mod log users we may have recorded mod log
3459 * operations for this node. If we re-allocate this node we
3460 * could replay operations on this node that happened when it
3461 * existed in a completely different root. For example if it
3462 * was part of root A, then was reallocated to root B, and we
3463 * are doing a btrfs_old_search_slot(root b), we could replay
3464 * operations that happened when the block was part of root A,
3465 * giving us an inconsistent view of the btree.
3466 *
3467 * We are safe from races here because at this point no other
3468 * node or root points to this extent buffer, so if after this
3469 * check a new tree mod log user joins we will not have an
3470 * existing log of operations on this node that we have to
3471 * contend with.
3472 */
3473
3474 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3475 || btrfs_is_zoned(fs_info)) {
3476 pin_down_extent(trans, bg, buf->start, buf->len, 1);
3477 btrfs_put_block_group(bg);
3478 goto out;
3479 }
3480
3481 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3482
3483 btrfs_add_free_space(bg, buf->start, buf->len);
3484 btrfs_free_reserved_bytes(bg, buf->len, 0);
3485 btrfs_put_block_group(bg);
3486 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3487
3488out:
3489
3490 /*
3491 * Deleting the buffer, clear the corrupt flag since it doesn't
3492 * matter anymore.
3493 */
3494 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3495 return 0;
3496}
3497
3498/* Can return -ENOMEM */
3499int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3500{
3501 struct btrfs_fs_info *fs_info = trans->fs_info;
3502 int ret;
3503
3504 if (btrfs_is_testing(fs_info))
3505 return 0;
3506
3507 /*
3508 * tree log blocks never actually go into the extent allocation
3509 * tree, just update pinning info and exit early.
3510 */
3511 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3512 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3513 ret = 0;
3514 } else if (ref->type == BTRFS_REF_METADATA) {
3515 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3516 } else {
3517 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3518 }
3519
3520 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3521 btrfs_ref_tree_mod(fs_info, ref);
3522
3523 return ret;
3524}
3525
3526enum btrfs_loop_type {
3527 /*
3528 * Start caching block groups but do not wait for progress or for them
3529 * to be done.
3530 */
3531 LOOP_CACHING_NOWAIT,
3532
3533 /*
3534 * Wait for the block group free_space >= the space we're waiting for if
3535 * the block group isn't cached.
3536 */
3537 LOOP_CACHING_WAIT,
3538
3539 /*
3540 * Allow allocations to happen from block groups that do not yet have a
3541 * size classification.
3542 */
3543 LOOP_UNSET_SIZE_CLASS,
3544
3545 /*
3546 * Allocate a chunk and then retry the allocation.
3547 */
3548 LOOP_ALLOC_CHUNK,
3549
3550 /*
3551 * Ignore the size class restrictions for this allocation.
3552 */
3553 LOOP_WRONG_SIZE_CLASS,
3554
3555 /*
3556 * Ignore the empty size, only try to allocate the number of bytes
3557 * needed for this allocation.
3558 */
3559 LOOP_NO_EMPTY_SIZE,
3560};
3561
3562static inline void
3563btrfs_lock_block_group(struct btrfs_block_group *cache,
3564 int delalloc)
3565{
3566 if (delalloc)
3567 down_read(&cache->data_rwsem);
3568}
3569
3570static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3571 int delalloc)
3572{
3573 btrfs_get_block_group(cache);
3574 if (delalloc)
3575 down_read(&cache->data_rwsem);
3576}
3577
3578static struct btrfs_block_group *btrfs_lock_cluster(
3579 struct btrfs_block_group *block_group,
3580 struct btrfs_free_cluster *cluster,
3581 int delalloc)
3582 __acquires(&cluster->refill_lock)
3583{
3584 struct btrfs_block_group *used_bg = NULL;
3585
3586 spin_lock(&cluster->refill_lock);
3587 while (1) {
3588 used_bg = cluster->block_group;
3589 if (!used_bg)
3590 return NULL;
3591
3592 if (used_bg == block_group)
3593 return used_bg;
3594
3595 btrfs_get_block_group(used_bg);
3596
3597 if (!delalloc)
3598 return used_bg;
3599
3600 if (down_read_trylock(&used_bg->data_rwsem))
3601 return used_bg;
3602
3603 spin_unlock(&cluster->refill_lock);
3604
3605 /* We should only have one-level nested. */
3606 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3607
3608 spin_lock(&cluster->refill_lock);
3609 if (used_bg == cluster->block_group)
3610 return used_bg;
3611
3612 up_read(&used_bg->data_rwsem);
3613 btrfs_put_block_group(used_bg);
3614 }
3615}
3616
3617static inline void
3618btrfs_release_block_group(struct btrfs_block_group *cache,
3619 int delalloc)
3620{
3621 if (delalloc)
3622 up_read(&cache->data_rwsem);
3623 btrfs_put_block_group(cache);
3624}
3625
3626/*
3627 * Helper function for find_free_extent().
3628 *
3629 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3630 * Return >0 to inform caller that we find nothing
3631 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3632 */
3633static int find_free_extent_clustered(struct btrfs_block_group *bg,
3634 struct find_free_extent_ctl *ffe_ctl,
3635 struct btrfs_block_group **cluster_bg_ret)
3636{
3637 struct btrfs_block_group *cluster_bg;
3638 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3639 u64 aligned_cluster;
3640 u64 offset;
3641 int ret;
3642
3643 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3644 if (!cluster_bg)
3645 goto refill_cluster;
3646 if (cluster_bg != bg && (cluster_bg->ro ||
3647 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3648 goto release_cluster;
3649
3650 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3651 ffe_ctl->num_bytes, cluster_bg->start,
3652 &ffe_ctl->max_extent_size);
3653 if (offset) {
3654 /* We have a block, we're done */
3655 spin_unlock(&last_ptr->refill_lock);
3656 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3657 *cluster_bg_ret = cluster_bg;
3658 ffe_ctl->found_offset = offset;
3659 return 0;
3660 }
3661 WARN_ON(last_ptr->block_group != cluster_bg);
3662
3663release_cluster:
3664 /*
3665 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3666 * lets just skip it and let the allocator find whatever block it can
3667 * find. If we reach this point, we will have tried the cluster
3668 * allocator plenty of times and not have found anything, so we are
3669 * likely way too fragmented for the clustering stuff to find anything.
3670 *
3671 * However, if the cluster is taken from the current block group,
3672 * release the cluster first, so that we stand a better chance of
3673 * succeeding in the unclustered allocation.
3674 */
3675 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3676 spin_unlock(&last_ptr->refill_lock);
3677 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3678 return -ENOENT;
3679 }
3680
3681 /* This cluster didn't work out, free it and start over */
3682 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3683
3684 if (cluster_bg != bg)
3685 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3686
3687refill_cluster:
3688 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3689 spin_unlock(&last_ptr->refill_lock);
3690 return -ENOENT;
3691 }
3692
3693 aligned_cluster = max_t(u64,
3694 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3695 bg->full_stripe_len);
3696 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3697 ffe_ctl->num_bytes, aligned_cluster);
3698 if (ret == 0) {
3699 /* Now pull our allocation out of this cluster */
3700 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3701 ffe_ctl->num_bytes, ffe_ctl->search_start,
3702 &ffe_ctl->max_extent_size);
3703 if (offset) {
3704 /* We found one, proceed */
3705 spin_unlock(&last_ptr->refill_lock);
3706 ffe_ctl->found_offset = offset;
3707 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3708 return 0;
3709 }
3710 }
3711 /*
3712 * At this point we either didn't find a cluster or we weren't able to
3713 * allocate a block from our cluster. Free the cluster we've been
3714 * trying to use, and go to the next block group.
3715 */
3716 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3717 spin_unlock(&last_ptr->refill_lock);
3718 return 1;
3719}
3720
3721/*
3722 * Return >0 to inform caller that we find nothing
3723 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3724 */
3725static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3726 struct find_free_extent_ctl *ffe_ctl)
3727{
3728 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3729 u64 offset;
3730
3731 /*
3732 * We are doing an unclustered allocation, set the fragmented flag so
3733 * we don't bother trying to setup a cluster again until we get more
3734 * space.
3735 */
3736 if (unlikely(last_ptr)) {
3737 spin_lock(&last_ptr->lock);
3738 last_ptr->fragmented = 1;
3739 spin_unlock(&last_ptr->lock);
3740 }
3741 if (ffe_ctl->cached) {
3742 struct btrfs_free_space_ctl *free_space_ctl;
3743
3744 free_space_ctl = bg->free_space_ctl;
3745 spin_lock(&free_space_ctl->tree_lock);
3746 if (free_space_ctl->free_space <
3747 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3748 ffe_ctl->empty_size) {
3749 ffe_ctl->total_free_space = max_t(u64,
3750 ffe_ctl->total_free_space,
3751 free_space_ctl->free_space);
3752 spin_unlock(&free_space_ctl->tree_lock);
3753 return 1;
3754 }
3755 spin_unlock(&free_space_ctl->tree_lock);
3756 }
3757
3758 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3759 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3760 &ffe_ctl->max_extent_size);
3761 if (!offset)
3762 return 1;
3763 ffe_ctl->found_offset = offset;
3764 return 0;
3765}
3766
3767static int do_allocation_clustered(struct btrfs_block_group *block_group,
3768 struct find_free_extent_ctl *ffe_ctl,
3769 struct btrfs_block_group **bg_ret)
3770{
3771 int ret;
3772
3773 /* We want to try and use the cluster allocator, so lets look there */
3774 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3775 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3776 if (ret >= 0)
3777 return ret;
3778 /* ret == -ENOENT case falls through */
3779 }
3780
3781 return find_free_extent_unclustered(block_group, ffe_ctl);
3782}
3783
3784/*
3785 * Tree-log block group locking
3786 * ============================
3787 *
3788 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3789 * indicates the starting address of a block group, which is reserved only
3790 * for tree-log metadata.
3791 *
3792 * Lock nesting
3793 * ============
3794 *
3795 * space_info::lock
3796 * block_group::lock
3797 * fs_info::treelog_bg_lock
3798 */
3799
3800/*
3801 * Simple allocator for sequential-only block group. It only allows sequential
3802 * allocation. No need to play with trees. This function also reserves the
3803 * bytes as in btrfs_add_reserved_bytes.
3804 */
3805static int do_allocation_zoned(struct btrfs_block_group *block_group,
3806 struct find_free_extent_ctl *ffe_ctl,
3807 struct btrfs_block_group **bg_ret)
3808{
3809 struct btrfs_fs_info *fs_info = block_group->fs_info;
3810 struct btrfs_space_info *space_info = block_group->space_info;
3811 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3812 u64 start = block_group->start;
3813 u64 num_bytes = ffe_ctl->num_bytes;
3814 u64 avail;
3815 u64 bytenr = block_group->start;
3816 u64 log_bytenr;
3817 u64 data_reloc_bytenr;
3818 int ret = 0;
3819 bool skip = false;
3820
3821 ASSERT(btrfs_is_zoned(block_group->fs_info));
3822
3823 /*
3824 * Do not allow non-tree-log blocks in the dedicated tree-log block
3825 * group, and vice versa.
3826 */
3827 spin_lock(&fs_info->treelog_bg_lock);
3828 log_bytenr = fs_info->treelog_bg;
3829 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3830 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3831 skip = true;
3832 spin_unlock(&fs_info->treelog_bg_lock);
3833 if (skip)
3834 return 1;
3835
3836 /*
3837 * Do not allow non-relocation blocks in the dedicated relocation block
3838 * group, and vice versa.
3839 */
3840 spin_lock(&fs_info->relocation_bg_lock);
3841 data_reloc_bytenr = fs_info->data_reloc_bg;
3842 if (data_reloc_bytenr &&
3843 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3844 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3845 skip = true;
3846 spin_unlock(&fs_info->relocation_bg_lock);
3847 if (skip)
3848 return 1;
3849
3850 /* Check RO and no space case before trying to activate it */
3851 spin_lock(&block_group->lock);
3852 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3853 ret = 1;
3854 /*
3855 * May need to clear fs_info->{treelog,data_reloc}_bg.
3856 * Return the error after taking the locks.
3857 */
3858 }
3859 spin_unlock(&block_group->lock);
3860
3861 /* Metadata block group is activated at write time. */
3862 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3863 !btrfs_zone_activate(block_group)) {
3864 ret = 1;
3865 /*
3866 * May need to clear fs_info->{treelog,data_reloc}_bg.
3867 * Return the error after taking the locks.
3868 */
3869 }
3870
3871 spin_lock(&space_info->lock);
3872 spin_lock(&block_group->lock);
3873 spin_lock(&fs_info->treelog_bg_lock);
3874 spin_lock(&fs_info->relocation_bg_lock);
3875
3876 if (ret)
3877 goto out;
3878
3879 ASSERT(!ffe_ctl->for_treelog ||
3880 block_group->start == fs_info->treelog_bg ||
3881 fs_info->treelog_bg == 0);
3882 ASSERT(!ffe_ctl->for_data_reloc ||
3883 block_group->start == fs_info->data_reloc_bg ||
3884 fs_info->data_reloc_bg == 0);
3885
3886 if (block_group->ro ||
3887 (!ffe_ctl->for_data_reloc &&
3888 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3889 ret = 1;
3890 goto out;
3891 }
3892
3893 /*
3894 * Do not allow currently using block group to be tree-log dedicated
3895 * block group.
3896 */
3897 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3898 (block_group->used || block_group->reserved)) {
3899 ret = 1;
3900 goto out;
3901 }
3902
3903 /*
3904 * Do not allow currently used block group to be the data relocation
3905 * dedicated block group.
3906 */
3907 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3908 (block_group->used || block_group->reserved)) {
3909 ret = 1;
3910 goto out;
3911 }
3912
3913 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3914 avail = block_group->zone_capacity - block_group->alloc_offset;
3915 if (avail < num_bytes) {
3916 if (ffe_ctl->max_extent_size < avail) {
3917 /*
3918 * With sequential allocator, free space is always
3919 * contiguous
3920 */
3921 ffe_ctl->max_extent_size = avail;
3922 ffe_ctl->total_free_space = avail;
3923 }
3924 ret = 1;
3925 goto out;
3926 }
3927
3928 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3929 fs_info->treelog_bg = block_group->start;
3930
3931 if (ffe_ctl->for_data_reloc) {
3932 if (!fs_info->data_reloc_bg)
3933 fs_info->data_reloc_bg = block_group->start;
3934 /*
3935 * Do not allow allocations from this block group, unless it is
3936 * for data relocation. Compared to increasing the ->ro, setting
3937 * the ->zoned_data_reloc_ongoing flag still allows nocow
3938 * writers to come in. See btrfs_inc_nocow_writers().
3939 *
3940 * We need to disable an allocation to avoid an allocation of
3941 * regular (non-relocation data) extent. With mix of relocation
3942 * extents and regular extents, we can dispatch WRITE commands
3943 * (for relocation extents) and ZONE APPEND commands (for
3944 * regular extents) at the same time to the same zone, which
3945 * easily break the write pointer.
3946 *
3947 * Also, this flag avoids this block group to be zone finished.
3948 */
3949 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3950 }
3951
3952 ffe_ctl->found_offset = start + block_group->alloc_offset;
3953 block_group->alloc_offset += num_bytes;
3954 spin_lock(&ctl->tree_lock);
3955 ctl->free_space -= num_bytes;
3956 spin_unlock(&ctl->tree_lock);
3957
3958 /*
3959 * We do not check if found_offset is aligned to stripesize. The
3960 * address is anyway rewritten when using zone append writing.
3961 */
3962
3963 ffe_ctl->search_start = ffe_ctl->found_offset;
3964
3965out:
3966 if (ret && ffe_ctl->for_treelog)
3967 fs_info->treelog_bg = 0;
3968 if (ret && ffe_ctl->for_data_reloc)
3969 fs_info->data_reloc_bg = 0;
3970 spin_unlock(&fs_info->relocation_bg_lock);
3971 spin_unlock(&fs_info->treelog_bg_lock);
3972 spin_unlock(&block_group->lock);
3973 spin_unlock(&space_info->lock);
3974 return ret;
3975}
3976
3977static int do_allocation(struct btrfs_block_group *block_group,
3978 struct find_free_extent_ctl *ffe_ctl,
3979 struct btrfs_block_group **bg_ret)
3980{
3981 switch (ffe_ctl->policy) {
3982 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3983 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3984 case BTRFS_EXTENT_ALLOC_ZONED:
3985 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3986 default:
3987 BUG();
3988 }
3989}
3990
3991static void release_block_group(struct btrfs_block_group *block_group,
3992 struct find_free_extent_ctl *ffe_ctl,
3993 int delalloc)
3994{
3995 switch (ffe_ctl->policy) {
3996 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3997 ffe_ctl->retry_uncached = false;
3998 break;
3999 case BTRFS_EXTENT_ALLOC_ZONED:
4000 /* Nothing to do */
4001 break;
4002 default:
4003 BUG();
4004 }
4005
4006 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4007 ffe_ctl->index);
4008 btrfs_release_block_group(block_group, delalloc);
4009}
4010
4011static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4012 struct btrfs_key *ins)
4013{
4014 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4015
4016 if (!ffe_ctl->use_cluster && last_ptr) {
4017 spin_lock(&last_ptr->lock);
4018 last_ptr->window_start = ins->objectid;
4019 spin_unlock(&last_ptr->lock);
4020 }
4021}
4022
4023static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4024 struct btrfs_key *ins)
4025{
4026 switch (ffe_ctl->policy) {
4027 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4028 found_extent_clustered(ffe_ctl, ins);
4029 break;
4030 case BTRFS_EXTENT_ALLOC_ZONED:
4031 /* Nothing to do */
4032 break;
4033 default:
4034 BUG();
4035 }
4036}
4037
4038static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4039 struct find_free_extent_ctl *ffe_ctl)
4040{
4041 /* Block group's activeness is not a requirement for METADATA block groups. */
4042 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4043 return 0;
4044
4045 /* If we can activate new zone, just allocate a chunk and use it */
4046 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4047 return 0;
4048
4049 /*
4050 * We already reached the max active zones. Try to finish one block
4051 * group to make a room for a new block group. This is only possible
4052 * for a data block group because btrfs_zone_finish() may need to wait
4053 * for a running transaction which can cause a deadlock for metadata
4054 * allocation.
4055 */
4056 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4057 int ret = btrfs_zone_finish_one_bg(fs_info);
4058
4059 if (ret == 1)
4060 return 0;
4061 else if (ret < 0)
4062 return ret;
4063 }
4064
4065 /*
4066 * If we have enough free space left in an already active block group
4067 * and we can't activate any other zone now, do not allow allocating a
4068 * new chunk and let find_free_extent() retry with a smaller size.
4069 */
4070 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4071 return -ENOSPC;
4072
4073 /*
4074 * Even min_alloc_size is not left in any block groups. Since we cannot
4075 * activate a new block group, allocating it may not help. Let's tell a
4076 * caller to try again and hope it progress something by writing some
4077 * parts of the region. That is only possible for data block groups,
4078 * where a part of the region can be written.
4079 */
4080 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4081 return -EAGAIN;
4082
4083 /*
4084 * We cannot activate a new block group and no enough space left in any
4085 * block groups. So, allocating a new block group may not help. But,
4086 * there is nothing to do anyway, so let's go with it.
4087 */
4088 return 0;
4089}
4090
4091static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4092 struct find_free_extent_ctl *ffe_ctl)
4093{
4094 switch (ffe_ctl->policy) {
4095 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4096 return 0;
4097 case BTRFS_EXTENT_ALLOC_ZONED:
4098 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4099 default:
4100 BUG();
4101 }
4102}
4103
4104/*
4105 * Return >0 means caller needs to re-search for free extent
4106 * Return 0 means we have the needed free extent.
4107 * Return <0 means we failed to locate any free extent.
4108 */
4109static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4110 struct btrfs_key *ins,
4111 struct find_free_extent_ctl *ffe_ctl,
4112 bool full_search)
4113{
4114 struct btrfs_root *root = fs_info->chunk_root;
4115 int ret;
4116
4117 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4118 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4119 ffe_ctl->orig_have_caching_bg = true;
4120
4121 if (ins->objectid) {
4122 found_extent(ffe_ctl, ins);
4123 return 0;
4124 }
4125
4126 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4127 return 1;
4128
4129 ffe_ctl->index++;
4130 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4131 return 1;
4132
4133 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4134 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4135 ffe_ctl->index = 0;
4136 /*
4137 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4138 * any uncached bgs and we've already done a full search
4139 * through.
4140 */
4141 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4142 (!ffe_ctl->orig_have_caching_bg && full_search))
4143 ffe_ctl->loop++;
4144 ffe_ctl->loop++;
4145
4146 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4147 struct btrfs_trans_handle *trans;
4148 int exist = 0;
4149
4150 /* Check if allocation policy allows to create a new chunk */
4151 ret = can_allocate_chunk(fs_info, ffe_ctl);
4152 if (ret)
4153 return ret;
4154
4155 trans = current->journal_info;
4156 if (trans)
4157 exist = 1;
4158 else
4159 trans = btrfs_join_transaction(root);
4160
4161 if (IS_ERR(trans)) {
4162 ret = PTR_ERR(trans);
4163 return ret;
4164 }
4165
4166 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4167 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4168
4169 /* Do not bail out on ENOSPC since we can do more. */
4170 if (ret == -ENOSPC) {
4171 ret = 0;
4172 ffe_ctl->loop++;
4173 }
4174 else if (ret < 0)
4175 btrfs_abort_transaction(trans, ret);
4176 else
4177 ret = 0;
4178 if (!exist)
4179 btrfs_end_transaction(trans);
4180 if (ret)
4181 return ret;
4182 }
4183
4184 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4185 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4186 return -ENOSPC;
4187
4188 /*
4189 * Don't loop again if we already have no empty_size and
4190 * no empty_cluster.
4191 */
4192 if (ffe_ctl->empty_size == 0 &&
4193 ffe_ctl->empty_cluster == 0)
4194 return -ENOSPC;
4195 ffe_ctl->empty_size = 0;
4196 ffe_ctl->empty_cluster = 0;
4197 }
4198 return 1;
4199 }
4200 return -ENOSPC;
4201}
4202
4203static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4204 struct btrfs_block_group *bg)
4205{
4206 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4207 return true;
4208 if (!btrfs_block_group_should_use_size_class(bg))
4209 return true;
4210 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4211 return true;
4212 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4213 bg->size_class == BTRFS_BG_SZ_NONE)
4214 return true;
4215 return ffe_ctl->size_class == bg->size_class;
4216}
4217
4218static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4219 struct find_free_extent_ctl *ffe_ctl,
4220 struct btrfs_space_info *space_info,
4221 struct btrfs_key *ins)
4222{
4223 /*
4224 * If our free space is heavily fragmented we may not be able to make
4225 * big contiguous allocations, so instead of doing the expensive search
4226 * for free space, simply return ENOSPC with our max_extent_size so we
4227 * can go ahead and search for a more manageable chunk.
4228 *
4229 * If our max_extent_size is large enough for our allocation simply
4230 * disable clustering since we will likely not be able to find enough
4231 * space to create a cluster and induce latency trying.
4232 */
4233 if (space_info->max_extent_size) {
4234 spin_lock(&space_info->lock);
4235 if (space_info->max_extent_size &&
4236 ffe_ctl->num_bytes > space_info->max_extent_size) {
4237 ins->offset = space_info->max_extent_size;
4238 spin_unlock(&space_info->lock);
4239 return -ENOSPC;
4240 } else if (space_info->max_extent_size) {
4241 ffe_ctl->use_cluster = false;
4242 }
4243 spin_unlock(&space_info->lock);
4244 }
4245
4246 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4247 &ffe_ctl->empty_cluster);
4248 if (ffe_ctl->last_ptr) {
4249 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4250
4251 spin_lock(&last_ptr->lock);
4252 if (last_ptr->block_group)
4253 ffe_ctl->hint_byte = last_ptr->window_start;
4254 if (last_ptr->fragmented) {
4255 /*
4256 * We still set window_start so we can keep track of the
4257 * last place we found an allocation to try and save
4258 * some time.
4259 */
4260 ffe_ctl->hint_byte = last_ptr->window_start;
4261 ffe_ctl->use_cluster = false;
4262 }
4263 spin_unlock(&last_ptr->lock);
4264 }
4265
4266 return 0;
4267}
4268
4269static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4270 struct find_free_extent_ctl *ffe_ctl)
4271{
4272 if (ffe_ctl->for_treelog) {
4273 spin_lock(&fs_info->treelog_bg_lock);
4274 if (fs_info->treelog_bg)
4275 ffe_ctl->hint_byte = fs_info->treelog_bg;
4276 spin_unlock(&fs_info->treelog_bg_lock);
4277 } else if (ffe_ctl->for_data_reloc) {
4278 spin_lock(&fs_info->relocation_bg_lock);
4279 if (fs_info->data_reloc_bg)
4280 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4281 spin_unlock(&fs_info->relocation_bg_lock);
4282 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4283 struct btrfs_block_group *block_group;
4284
4285 spin_lock(&fs_info->zone_active_bgs_lock);
4286 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4287 /*
4288 * No lock is OK here because avail is monotinically
4289 * decreasing, and this is just a hint.
4290 */
4291 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4292
4293 if (block_group_bits(block_group, ffe_ctl->flags) &&
4294 avail >= ffe_ctl->num_bytes) {
4295 ffe_ctl->hint_byte = block_group->start;
4296 break;
4297 }
4298 }
4299 spin_unlock(&fs_info->zone_active_bgs_lock);
4300 }
4301
4302 return 0;
4303}
4304
4305static int prepare_allocation(struct btrfs_fs_info *fs_info,
4306 struct find_free_extent_ctl *ffe_ctl,
4307 struct btrfs_space_info *space_info,
4308 struct btrfs_key *ins)
4309{
4310 switch (ffe_ctl->policy) {
4311 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4312 return prepare_allocation_clustered(fs_info, ffe_ctl,
4313 space_info, ins);
4314 case BTRFS_EXTENT_ALLOC_ZONED:
4315 return prepare_allocation_zoned(fs_info, ffe_ctl);
4316 default:
4317 BUG();
4318 }
4319}
4320
4321/*
4322 * walks the btree of allocated extents and find a hole of a given size.
4323 * The key ins is changed to record the hole:
4324 * ins->objectid == start position
4325 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4326 * ins->offset == the size of the hole.
4327 * Any available blocks before search_start are skipped.
4328 *
4329 * If there is no suitable free space, we will record the max size of
4330 * the free space extent currently.
4331 *
4332 * The overall logic and call chain:
4333 *
4334 * find_free_extent()
4335 * |- Iterate through all block groups
4336 * | |- Get a valid block group
4337 * | |- Try to do clustered allocation in that block group
4338 * | |- Try to do unclustered allocation in that block group
4339 * | |- Check if the result is valid
4340 * | | |- If valid, then exit
4341 * | |- Jump to next block group
4342 * |
4343 * |- Push harder to find free extents
4344 * |- If not found, re-iterate all block groups
4345 */
4346static noinline int find_free_extent(struct btrfs_root *root,
4347 struct btrfs_key *ins,
4348 struct find_free_extent_ctl *ffe_ctl)
4349{
4350 struct btrfs_fs_info *fs_info = root->fs_info;
4351 int ret = 0;
4352 int cache_block_group_error = 0;
4353 struct btrfs_block_group *block_group = NULL;
4354 struct btrfs_space_info *space_info;
4355 bool full_search = false;
4356
4357 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4358
4359 ffe_ctl->search_start = 0;
4360 /* For clustered allocation */
4361 ffe_ctl->empty_cluster = 0;
4362 ffe_ctl->last_ptr = NULL;
4363 ffe_ctl->use_cluster = true;
4364 ffe_ctl->have_caching_bg = false;
4365 ffe_ctl->orig_have_caching_bg = false;
4366 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4367 ffe_ctl->loop = 0;
4368 ffe_ctl->retry_uncached = false;
4369 ffe_ctl->cached = 0;
4370 ffe_ctl->max_extent_size = 0;
4371 ffe_ctl->total_free_space = 0;
4372 ffe_ctl->found_offset = 0;
4373 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4374 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4375
4376 if (btrfs_is_zoned(fs_info))
4377 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4378
4379 ins->type = BTRFS_EXTENT_ITEM_KEY;
4380 ins->objectid = 0;
4381 ins->offset = 0;
4382
4383 trace_find_free_extent(root, ffe_ctl);
4384
4385 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4386 if (!space_info) {
4387 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4388 return -ENOSPC;
4389 }
4390
4391 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4392 if (ret < 0)
4393 return ret;
4394
4395 ffe_ctl->search_start = max(ffe_ctl->search_start,
4396 first_logical_byte(fs_info));
4397 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4398 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4399 block_group = btrfs_lookup_block_group(fs_info,
4400 ffe_ctl->search_start);
4401 /*
4402 * we don't want to use the block group if it doesn't match our
4403 * allocation bits, or if its not cached.
4404 *
4405 * However if we are re-searching with an ideal block group
4406 * picked out then we don't care that the block group is cached.
4407 */
4408 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4409 block_group->cached != BTRFS_CACHE_NO) {
4410 down_read(&space_info->groups_sem);
4411 if (list_empty(&block_group->list) ||
4412 block_group->ro) {
4413 /*
4414 * someone is removing this block group,
4415 * we can't jump into the have_block_group
4416 * target because our list pointers are not
4417 * valid
4418 */
4419 btrfs_put_block_group(block_group);
4420 up_read(&space_info->groups_sem);
4421 } else {
4422 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4423 block_group->flags);
4424 btrfs_lock_block_group(block_group,
4425 ffe_ctl->delalloc);
4426 ffe_ctl->hinted = true;
4427 goto have_block_group;
4428 }
4429 } else if (block_group) {
4430 btrfs_put_block_group(block_group);
4431 }
4432 }
4433search:
4434 trace_find_free_extent_search_loop(root, ffe_ctl);
4435 ffe_ctl->have_caching_bg = false;
4436 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4437 ffe_ctl->index == 0)
4438 full_search = true;
4439 down_read(&space_info->groups_sem);
4440 list_for_each_entry(block_group,
4441 &space_info->block_groups[ffe_ctl->index], list) {
4442 struct btrfs_block_group *bg_ret;
4443
4444 ffe_ctl->hinted = false;
4445 /* If the block group is read-only, we can skip it entirely. */
4446 if (unlikely(block_group->ro)) {
4447 if (ffe_ctl->for_treelog)
4448 btrfs_clear_treelog_bg(block_group);
4449 if (ffe_ctl->for_data_reloc)
4450 btrfs_clear_data_reloc_bg(block_group);
4451 continue;
4452 }
4453
4454 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4455 ffe_ctl->search_start = block_group->start;
4456
4457 /*
4458 * this can happen if we end up cycling through all the
4459 * raid types, but we want to make sure we only allocate
4460 * for the proper type.
4461 */
4462 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4463 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4464 BTRFS_BLOCK_GROUP_RAID1_MASK |
4465 BTRFS_BLOCK_GROUP_RAID56_MASK |
4466 BTRFS_BLOCK_GROUP_RAID10;
4467
4468 /*
4469 * if they asked for extra copies and this block group
4470 * doesn't provide them, bail. This does allow us to
4471 * fill raid0 from raid1.
4472 */
4473 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4474 goto loop;
4475
4476 /*
4477 * This block group has different flags than we want.
4478 * It's possible that we have MIXED_GROUP flag but no
4479 * block group is mixed. Just skip such block group.
4480 */
4481 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4482 continue;
4483 }
4484
4485have_block_group:
4486 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4487 ffe_ctl->cached = btrfs_block_group_done(block_group);
4488 if (unlikely(!ffe_ctl->cached)) {
4489 ffe_ctl->have_caching_bg = true;
4490 ret = btrfs_cache_block_group(block_group, false);
4491
4492 /*
4493 * If we get ENOMEM here or something else we want to
4494 * try other block groups, because it may not be fatal.
4495 * However if we can't find anything else we need to
4496 * save our return here so that we return the actual
4497 * error that caused problems, not ENOSPC.
4498 */
4499 if (ret < 0) {
4500 if (!cache_block_group_error)
4501 cache_block_group_error = ret;
4502 ret = 0;
4503 goto loop;
4504 }
4505 ret = 0;
4506 }
4507
4508 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4509 if (!cache_block_group_error)
4510 cache_block_group_error = -EIO;
4511 goto loop;
4512 }
4513
4514 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4515 goto loop;
4516
4517 bg_ret = NULL;
4518 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4519 if (ret > 0)
4520 goto loop;
4521
4522 if (bg_ret && bg_ret != block_group) {
4523 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524 block_group = bg_ret;
4525 }
4526
4527 /* Checks */
4528 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4529 fs_info->stripesize);
4530
4531 /* move on to the next group */
4532 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4533 block_group->start + block_group->length) {
4534 btrfs_add_free_space_unused(block_group,
4535 ffe_ctl->found_offset,
4536 ffe_ctl->num_bytes);
4537 goto loop;
4538 }
4539
4540 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4541 btrfs_add_free_space_unused(block_group,
4542 ffe_ctl->found_offset,
4543 ffe_ctl->search_start - ffe_ctl->found_offset);
4544
4545 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4546 ffe_ctl->num_bytes,
4547 ffe_ctl->delalloc,
4548 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4549 if (ret == -EAGAIN) {
4550 btrfs_add_free_space_unused(block_group,
4551 ffe_ctl->found_offset,
4552 ffe_ctl->num_bytes);
4553 goto loop;
4554 }
4555 btrfs_inc_block_group_reservations(block_group);
4556
4557 /* we are all good, lets return */
4558 ins->objectid = ffe_ctl->search_start;
4559 ins->offset = ffe_ctl->num_bytes;
4560
4561 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4562 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4563 break;
4564loop:
4565 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4566 !ffe_ctl->retry_uncached) {
4567 ffe_ctl->retry_uncached = true;
4568 btrfs_wait_block_group_cache_progress(block_group,
4569 ffe_ctl->num_bytes +
4570 ffe_ctl->empty_cluster +
4571 ffe_ctl->empty_size);
4572 goto have_block_group;
4573 }
4574 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4575 cond_resched();
4576 }
4577 up_read(&space_info->groups_sem);
4578
4579 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4580 if (ret > 0)
4581 goto search;
4582
4583 if (ret == -ENOSPC && !cache_block_group_error) {
4584 /*
4585 * Use ffe_ctl->total_free_space as fallback if we can't find
4586 * any contiguous hole.
4587 */
4588 if (!ffe_ctl->max_extent_size)
4589 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4590 spin_lock(&space_info->lock);
4591 space_info->max_extent_size = ffe_ctl->max_extent_size;
4592 spin_unlock(&space_info->lock);
4593 ins->offset = ffe_ctl->max_extent_size;
4594 } else if (ret == -ENOSPC) {
4595 ret = cache_block_group_error;
4596 }
4597 return ret;
4598}
4599
4600/*
4601 * Entry point to the extent allocator. Tries to find a hole that is at least
4602 * as big as @num_bytes.
4603 *
4604 * @root - The root that will contain this extent
4605 *
4606 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4607 * is used for accounting purposes. This value differs
4608 * from @num_bytes only in the case of compressed extents.
4609 *
4610 * @num_bytes - Number of bytes to allocate on-disk.
4611 *
4612 * @min_alloc_size - Indicates the minimum amount of space that the
4613 * allocator should try to satisfy. In some cases
4614 * @num_bytes may be larger than what is required and if
4615 * the filesystem is fragmented then allocation fails.
4616 * However, the presence of @min_alloc_size gives a
4617 * chance to try and satisfy the smaller allocation.
4618 *
4619 * @empty_size - A hint that you plan on doing more COW. This is the
4620 * size in bytes the allocator should try to find free
4621 * next to the block it returns. This is just a hint and
4622 * may be ignored by the allocator.
4623 *
4624 * @hint_byte - Hint to the allocator to start searching above the byte
4625 * address passed. It might be ignored.
4626 *
4627 * @ins - This key is modified to record the found hole. It will
4628 * have the following values:
4629 * ins->objectid == start position
4630 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4631 * ins->offset == the size of the hole.
4632 *
4633 * @is_data - Boolean flag indicating whether an extent is
4634 * allocated for data (true) or metadata (false)
4635 *
4636 * @delalloc - Boolean flag indicating whether this allocation is for
4637 * delalloc or not. If 'true' data_rwsem of block groups
4638 * is going to be acquired.
4639 *
4640 *
4641 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4642 * case -ENOSPC is returned then @ins->offset will contain the size of the
4643 * largest available hole the allocator managed to find.
4644 */
4645int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4646 u64 num_bytes, u64 min_alloc_size,
4647 u64 empty_size, u64 hint_byte,
4648 struct btrfs_key *ins, int is_data, int delalloc)
4649{
4650 struct btrfs_fs_info *fs_info = root->fs_info;
4651 struct find_free_extent_ctl ffe_ctl = {};
4652 bool final_tried = num_bytes == min_alloc_size;
4653 u64 flags;
4654 int ret;
4655 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4656 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4657
4658 flags = get_alloc_profile_by_root(root, is_data);
4659again:
4660 WARN_ON(num_bytes < fs_info->sectorsize);
4661
4662 ffe_ctl.ram_bytes = ram_bytes;
4663 ffe_ctl.num_bytes = num_bytes;
4664 ffe_ctl.min_alloc_size = min_alloc_size;
4665 ffe_ctl.empty_size = empty_size;
4666 ffe_ctl.flags = flags;
4667 ffe_ctl.delalloc = delalloc;
4668 ffe_ctl.hint_byte = hint_byte;
4669 ffe_ctl.for_treelog = for_treelog;
4670 ffe_ctl.for_data_reloc = for_data_reloc;
4671
4672 ret = find_free_extent(root, ins, &ffe_ctl);
4673 if (!ret && !is_data) {
4674 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4675 } else if (ret == -ENOSPC) {
4676 if (!final_tried && ins->offset) {
4677 num_bytes = min(num_bytes >> 1, ins->offset);
4678 num_bytes = round_down(num_bytes,
4679 fs_info->sectorsize);
4680 num_bytes = max(num_bytes, min_alloc_size);
4681 ram_bytes = num_bytes;
4682 if (num_bytes == min_alloc_size)
4683 final_tried = true;
4684 goto again;
4685 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4686 struct btrfs_space_info *sinfo;
4687
4688 sinfo = btrfs_find_space_info(fs_info, flags);
4689 btrfs_err(fs_info,
4690 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4691 flags, num_bytes, for_treelog, for_data_reloc);
4692 if (sinfo)
4693 btrfs_dump_space_info(fs_info, sinfo,
4694 num_bytes, 1);
4695 }
4696 }
4697
4698 return ret;
4699}
4700
4701int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4702 u64 start, u64 len, int delalloc)
4703{
4704 struct btrfs_block_group *cache;
4705
4706 cache = btrfs_lookup_block_group(fs_info, start);
4707 if (!cache) {
4708 btrfs_err(fs_info, "Unable to find block group for %llu",
4709 start);
4710 return -ENOSPC;
4711 }
4712
4713 btrfs_add_free_space(cache, start, len);
4714 btrfs_free_reserved_bytes(cache, len, delalloc);
4715 trace_btrfs_reserved_extent_free(fs_info, start, len);
4716
4717 btrfs_put_block_group(cache);
4718 return 0;
4719}
4720
4721int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4722 const struct extent_buffer *eb)
4723{
4724 struct btrfs_block_group *cache;
4725 int ret = 0;
4726
4727 cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4728 if (!cache) {
4729 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4730 eb->start);
4731 return -ENOSPC;
4732 }
4733
4734 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4735 btrfs_put_block_group(cache);
4736 return ret;
4737}
4738
4739static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4740 u64 num_bytes)
4741{
4742 struct btrfs_fs_info *fs_info = trans->fs_info;
4743 int ret;
4744
4745 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4746 if (ret)
4747 return ret;
4748
4749 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4750 if (ret) {
4751 ASSERT(!ret);
4752 btrfs_err(fs_info, "update block group failed for %llu %llu",
4753 bytenr, num_bytes);
4754 return ret;
4755 }
4756
4757 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4758 return 0;
4759}
4760
4761static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4762 u64 parent, u64 root_objectid,
4763 u64 flags, u64 owner, u64 offset,
4764 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4765{
4766 struct btrfs_fs_info *fs_info = trans->fs_info;
4767 struct btrfs_root *extent_root;
4768 int ret;
4769 struct btrfs_extent_item *extent_item;
4770 struct btrfs_extent_owner_ref *oref;
4771 struct btrfs_extent_inline_ref *iref;
4772 struct btrfs_path *path;
4773 struct extent_buffer *leaf;
4774 int type;
4775 u32 size;
4776 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4777
4778 if (parent > 0)
4779 type = BTRFS_SHARED_DATA_REF_KEY;
4780 else
4781 type = BTRFS_EXTENT_DATA_REF_KEY;
4782
4783 size = sizeof(*extent_item);
4784 if (simple_quota)
4785 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4786 size += btrfs_extent_inline_ref_size(type);
4787
4788 path = btrfs_alloc_path();
4789 if (!path)
4790 return -ENOMEM;
4791
4792 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4793 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4794 if (ret) {
4795 btrfs_free_path(path);
4796 return ret;
4797 }
4798
4799 leaf = path->nodes[0];
4800 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4801 struct btrfs_extent_item);
4802 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4803 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4804 btrfs_set_extent_flags(leaf, extent_item,
4805 flags | BTRFS_EXTENT_FLAG_DATA);
4806
4807 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4808 if (simple_quota) {
4809 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4810 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4811 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4812 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4813 }
4814 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4815
4816 if (parent > 0) {
4817 struct btrfs_shared_data_ref *ref;
4818 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4819 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4820 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4821 } else {
4822 struct btrfs_extent_data_ref *ref;
4823 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4824 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4825 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4826 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4827 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4828 }
4829
4830 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4831 btrfs_free_path(path);
4832
4833 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4834}
4835
4836static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4837 struct btrfs_delayed_ref_node *node,
4838 struct btrfs_delayed_extent_op *extent_op)
4839{
4840 struct btrfs_fs_info *fs_info = trans->fs_info;
4841 struct btrfs_root *extent_root;
4842 int ret;
4843 struct btrfs_extent_item *extent_item;
4844 struct btrfs_key extent_key;
4845 struct btrfs_tree_block_info *block_info;
4846 struct btrfs_extent_inline_ref *iref;
4847 struct btrfs_path *path;
4848 struct extent_buffer *leaf;
4849 u32 size = sizeof(*extent_item) + sizeof(*iref);
4850 const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4851 /* The owner of a tree block is the level. */
4852 int level = btrfs_delayed_ref_owner(node);
4853 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4854
4855 extent_key.objectid = node->bytenr;
4856 if (skinny_metadata) {
4857 /* The owner of a tree block is the level. */
4858 extent_key.offset = level;
4859 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4860 } else {
4861 extent_key.offset = node->num_bytes;
4862 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4863 size += sizeof(*block_info);
4864 }
4865
4866 path = btrfs_alloc_path();
4867 if (!path)
4868 return -ENOMEM;
4869
4870 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4871 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4872 size);
4873 if (ret) {
4874 btrfs_free_path(path);
4875 return ret;
4876 }
4877
4878 leaf = path->nodes[0];
4879 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4880 struct btrfs_extent_item);
4881 btrfs_set_extent_refs(leaf, extent_item, 1);
4882 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4883 btrfs_set_extent_flags(leaf, extent_item,
4884 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4885
4886 if (skinny_metadata) {
4887 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4888 } else {
4889 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4890 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4891 btrfs_set_tree_block_level(leaf, block_info, level);
4892 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4893 }
4894
4895 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4896 btrfs_set_extent_inline_ref_type(leaf, iref,
4897 BTRFS_SHARED_BLOCK_REF_KEY);
4898 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4899 } else {
4900 btrfs_set_extent_inline_ref_type(leaf, iref,
4901 BTRFS_TREE_BLOCK_REF_KEY);
4902 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4903 }
4904
4905 btrfs_mark_buffer_dirty(trans, leaf);
4906 btrfs_free_path(path);
4907
4908 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4909}
4910
4911int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4912 struct btrfs_root *root, u64 owner,
4913 u64 offset, u64 ram_bytes,
4914 struct btrfs_key *ins)
4915{
4916 struct btrfs_ref generic_ref = {
4917 .action = BTRFS_ADD_DELAYED_EXTENT,
4918 .bytenr = ins->objectid,
4919 .num_bytes = ins->offset,
4920 .owning_root = btrfs_root_id(root),
4921 .ref_root = btrfs_root_id(root),
4922 };
4923
4924 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4925
4926 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4927 generic_ref.owning_root = root->relocation_src_root;
4928
4929 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4930 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4931
4932 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4933}
4934
4935/*
4936 * this is used by the tree logging recovery code. It records that
4937 * an extent has been allocated and makes sure to clear the free
4938 * space cache bits as well
4939 */
4940int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4941 u64 root_objectid, u64 owner, u64 offset,
4942 struct btrfs_key *ins)
4943{
4944 struct btrfs_fs_info *fs_info = trans->fs_info;
4945 int ret;
4946 struct btrfs_block_group *block_group;
4947 struct btrfs_space_info *space_info;
4948 struct btrfs_squota_delta delta = {
4949 .root = root_objectid,
4950 .num_bytes = ins->offset,
4951 .generation = trans->transid,
4952 .is_data = true,
4953 .is_inc = true,
4954 };
4955
4956 /*
4957 * Mixed block groups will exclude before processing the log so we only
4958 * need to do the exclude dance if this fs isn't mixed.
4959 */
4960 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4961 ret = __exclude_logged_extent(fs_info, ins->objectid,
4962 ins->offset);
4963 if (ret)
4964 return ret;
4965 }
4966
4967 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4968 if (!block_group)
4969 return -EINVAL;
4970
4971 space_info = block_group->space_info;
4972 spin_lock(&space_info->lock);
4973 spin_lock(&block_group->lock);
4974 space_info->bytes_reserved += ins->offset;
4975 block_group->reserved += ins->offset;
4976 spin_unlock(&block_group->lock);
4977 spin_unlock(&space_info->lock);
4978
4979 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4980 offset, ins, 1, root_objectid);
4981 if (ret)
4982 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4983 ret = btrfs_record_squota_delta(fs_info, &delta);
4984 btrfs_put_block_group(block_group);
4985 return ret;
4986}
4987
4988#ifdef CONFIG_BTRFS_DEBUG
4989/*
4990 * Extra safety check in case the extent tree is corrupted and extent allocator
4991 * chooses to use a tree block which is already used and locked.
4992 */
4993static bool check_eb_lock_owner(const struct extent_buffer *eb)
4994{
4995 if (eb->lock_owner == current->pid) {
4996 btrfs_err_rl(eb->fs_info,
4997"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4998 eb->start, btrfs_header_owner(eb), current->pid);
4999 return true;
5000 }
5001 return false;
5002}
5003#else
5004static bool check_eb_lock_owner(struct extent_buffer *eb)
5005{
5006 return false;
5007}
5008#endif
5009
5010static struct extent_buffer *
5011btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5012 u64 bytenr, int level, u64 owner,
5013 enum btrfs_lock_nesting nest)
5014{
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct extent_buffer *buf;
5017 u64 lockdep_owner = owner;
5018
5019 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5020 if (IS_ERR(buf))
5021 return buf;
5022
5023 if (check_eb_lock_owner(buf)) {
5024 free_extent_buffer(buf);
5025 return ERR_PTR(-EUCLEAN);
5026 }
5027
5028 /*
5029 * The reloc trees are just snapshots, so we need them to appear to be
5030 * just like any other fs tree WRT lockdep.
5031 *
5032 * The exception however is in replace_path() in relocation, where we
5033 * hold the lock on the original fs root and then search for the reloc
5034 * root. At that point we need to make sure any reloc root buffers are
5035 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5036 * lockdep happy.
5037 */
5038 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5039 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5040 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5041
5042 /* btrfs_clear_buffer_dirty() accesses generation field. */
5043 btrfs_set_header_generation(buf, trans->transid);
5044
5045 /*
5046 * This needs to stay, because we could allocate a freed block from an
5047 * old tree into a new tree, so we need to make sure this new block is
5048 * set to the appropriate level and owner.
5049 */
5050 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5051
5052 btrfs_tree_lock_nested(buf, nest);
5053 btrfs_clear_buffer_dirty(trans, buf);
5054 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5055 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5056
5057 set_extent_buffer_uptodate(buf);
5058
5059 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5060 btrfs_set_header_level(buf, level);
5061 btrfs_set_header_bytenr(buf, buf->start);
5062 btrfs_set_header_generation(buf, trans->transid);
5063 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5064 btrfs_set_header_owner(buf, owner);
5065 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5066 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5067 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5068 buf->log_index = root->log_transid % 2;
5069 /*
5070 * we allow two log transactions at a time, use different
5071 * EXTENT bit to differentiate dirty pages.
5072 */
5073 if (buf->log_index == 0)
5074 set_extent_bit(&root->dirty_log_pages, buf->start,
5075 buf->start + buf->len - 1,
5076 EXTENT_DIRTY, NULL);
5077 else
5078 set_extent_bit(&root->dirty_log_pages, buf->start,
5079 buf->start + buf->len - 1,
5080 EXTENT_NEW, NULL);
5081 } else {
5082 buf->log_index = -1;
5083 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5084 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5085 }
5086 /* this returns a buffer locked for blocking */
5087 return buf;
5088}
5089
5090/*
5091 * finds a free extent and does all the dirty work required for allocation
5092 * returns the tree buffer or an ERR_PTR on error.
5093 */
5094struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5095 struct btrfs_root *root,
5096 u64 parent, u64 root_objectid,
5097 const struct btrfs_disk_key *key,
5098 int level, u64 hint,
5099 u64 empty_size,
5100 u64 reloc_src_root,
5101 enum btrfs_lock_nesting nest)
5102{
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct btrfs_key ins;
5105 struct btrfs_block_rsv *block_rsv;
5106 struct extent_buffer *buf;
5107 u64 flags = 0;
5108 int ret;
5109 u32 blocksize = fs_info->nodesize;
5110 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5111 u64 owning_root;
5112
5113#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5114 if (btrfs_is_testing(fs_info)) {
5115 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5116 level, root_objectid, nest);
5117 if (!IS_ERR(buf))
5118 root->alloc_bytenr += blocksize;
5119 return buf;
5120 }
5121#endif
5122
5123 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5124 if (IS_ERR(block_rsv))
5125 return ERR_CAST(block_rsv);
5126
5127 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5128 empty_size, hint, &ins, 0, 0);
5129 if (ret)
5130 goto out_unuse;
5131
5132 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5133 root_objectid, nest);
5134 if (IS_ERR(buf)) {
5135 ret = PTR_ERR(buf);
5136 goto out_free_reserved;
5137 }
5138 owning_root = btrfs_header_owner(buf);
5139
5140 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5141 if (parent == 0)
5142 parent = ins.objectid;
5143 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5144 owning_root = reloc_src_root;
5145 } else
5146 BUG_ON(parent > 0);
5147
5148 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5149 struct btrfs_delayed_extent_op *extent_op;
5150 struct btrfs_ref generic_ref = {
5151 .action = BTRFS_ADD_DELAYED_EXTENT,
5152 .bytenr = ins.objectid,
5153 .num_bytes = ins.offset,
5154 .parent = parent,
5155 .owning_root = owning_root,
5156 .ref_root = root_objectid,
5157 };
5158
5159 if (!skinny_metadata || flags != 0) {
5160 extent_op = btrfs_alloc_delayed_extent_op();
5161 if (!extent_op) {
5162 ret = -ENOMEM;
5163 goto out_free_buf;
5164 }
5165 if (key)
5166 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5167 else
5168 memset(&extent_op->key, 0, sizeof(extent_op->key));
5169 extent_op->flags_to_set = flags;
5170 extent_op->update_key = (skinny_metadata ? false : true);
5171 extent_op->update_flags = (flags != 0);
5172 } else {
5173 extent_op = NULL;
5174 }
5175
5176 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5177 btrfs_ref_tree_mod(fs_info, &generic_ref);
5178 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5179 if (ret) {
5180 btrfs_free_delayed_extent_op(extent_op);
5181 goto out_free_buf;
5182 }
5183 }
5184 return buf;
5185
5186out_free_buf:
5187 btrfs_tree_unlock(buf);
5188 free_extent_buffer(buf);
5189out_free_reserved:
5190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5191out_unuse:
5192 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5193 return ERR_PTR(ret);
5194}
5195
5196struct walk_control {
5197 u64 refs[BTRFS_MAX_LEVEL];
5198 u64 flags[BTRFS_MAX_LEVEL];
5199 struct btrfs_key update_progress;
5200 struct btrfs_key drop_progress;
5201 int drop_level;
5202 int stage;
5203 int level;
5204 int shared_level;
5205 int update_ref;
5206 int keep_locks;
5207 int reada_slot;
5208 int reada_count;
5209 int restarted;
5210 /* Indicate that extent info needs to be looked up when walking the tree. */
5211 int lookup_info;
5212};
5213
5214/*
5215 * This is our normal stage. We are traversing blocks the current snapshot owns
5216 * and we are dropping any of our references to any children we are able to, and
5217 * then freeing the block once we've processed all of the children.
5218 */
5219#define DROP_REFERENCE 1
5220
5221/*
5222 * We enter this stage when we have to walk into a child block (meaning we can't
5223 * simply drop our reference to it from our current parent node) and there are
5224 * more than one reference on it. If we are the owner of any of the children
5225 * blocks from the current parent node then we have to do the FULL_BACKREF dance
5226 * on them in order to drop our normal ref and add the shared ref.
5227 */
5228#define UPDATE_BACKREF 2
5229
5230/*
5231 * Decide if we need to walk down into this node to adjust the references.
5232 *
5233 * @root: the root we are currently deleting
5234 * @wc: the walk control for this deletion
5235 * @eb: the parent eb that we're currently visiting
5236 * @refs: the number of refs for wc->level - 1
5237 * @flags: the flags for wc->level - 1
5238 * @slot: the slot in the eb that we're currently checking
5239 *
5240 * This is meant to be called when we're evaluating if a node we point to at
5241 * wc->level should be read and walked into, or if we can simply delete our
5242 * reference to it. We return true if we should walk into the node, false if we
5243 * can skip it.
5244 *
5245 * We have assertions in here to make sure this is called correctly. We assume
5246 * that sanity checking on the blocks read to this point has been done, so any
5247 * corrupted file systems must have been caught before calling this function.
5248 */
5249static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5250 struct extent_buffer *eb, u64 flags, int slot)
5251{
5252 struct btrfs_key key;
5253 u64 generation;
5254 int level = wc->level;
5255
5256 ASSERT(level > 0);
5257 ASSERT(wc->refs[level - 1] > 0);
5258
5259 /*
5260 * The update backref stage we only want to skip if we already have
5261 * FULL_BACKREF set, otherwise we need to read.
5262 */
5263 if (wc->stage == UPDATE_BACKREF) {
5264 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5265 return false;
5266 return true;
5267 }
5268
5269 /*
5270 * We're the last ref on this block, we must walk into it and process
5271 * any refs it's pointing at.
5272 */
5273 if (wc->refs[level - 1] == 1)
5274 return true;
5275
5276 /*
5277 * If we're already FULL_BACKREF then we know we can just drop our
5278 * current reference.
5279 */
5280 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5281 return false;
5282
5283 /*
5284 * This block is older than our creation generation, we can drop our
5285 * reference to it.
5286 */
5287 generation = btrfs_node_ptr_generation(eb, slot);
5288 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5289 return false;
5290
5291 /*
5292 * This block was processed from a previous snapshot deletion run, we
5293 * can skip it.
5294 */
5295 btrfs_node_key_to_cpu(eb, &key, slot);
5296 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5297 return false;
5298
5299 /* All other cases we need to wander into the node. */
5300 return true;
5301}
5302
5303static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5304 struct btrfs_root *root,
5305 struct walk_control *wc,
5306 struct btrfs_path *path)
5307{
5308 struct btrfs_fs_info *fs_info = root->fs_info;
5309 u64 bytenr;
5310 u64 generation;
5311 u64 refs;
5312 u64 flags;
5313 u32 nritems;
5314 struct extent_buffer *eb;
5315 int ret;
5316 int slot;
5317 int nread = 0;
5318
5319 if (path->slots[wc->level] < wc->reada_slot) {
5320 wc->reada_count = wc->reada_count * 2 / 3;
5321 wc->reada_count = max(wc->reada_count, 2);
5322 } else {
5323 wc->reada_count = wc->reada_count * 3 / 2;
5324 wc->reada_count = min_t(int, wc->reada_count,
5325 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5326 }
5327
5328 eb = path->nodes[wc->level];
5329 nritems = btrfs_header_nritems(eb);
5330
5331 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5332 if (nread >= wc->reada_count)
5333 break;
5334
5335 cond_resched();
5336 bytenr = btrfs_node_blockptr(eb, slot);
5337 generation = btrfs_node_ptr_generation(eb, slot);
5338
5339 if (slot == path->slots[wc->level])
5340 goto reada;
5341
5342 if (wc->stage == UPDATE_BACKREF &&
5343 generation <= btrfs_root_origin_generation(root))
5344 continue;
5345
5346 /* We don't lock the tree block, it's OK to be racy here */
5347 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5348 wc->level - 1, 1, &refs,
5349 &flags, NULL);
5350 /* We don't care about errors in readahead. */
5351 if (ret < 0)
5352 continue;
5353
5354 /*
5355 * This could be racey, it's conceivable that we raced and end
5356 * up with a bogus refs count, if that's the case just skip, if
5357 * we are actually corrupt we will notice when we look up
5358 * everything again with our locks.
5359 */
5360 if (refs == 0)
5361 continue;
5362
5363 /* If we don't need to visit this node don't reada. */
5364 if (!visit_node_for_delete(root, wc, eb, flags, slot))
5365 continue;
5366reada:
5367 btrfs_readahead_node_child(eb, slot);
5368 nread++;
5369 }
5370 wc->reada_slot = slot;
5371}
5372
5373/*
5374 * helper to process tree block while walking down the tree.
5375 *
5376 * when wc->stage == UPDATE_BACKREF, this function updates
5377 * back refs for pointers in the block.
5378 *
5379 * NOTE: return value 1 means we should stop walking down.
5380 */
5381static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5382 struct btrfs_root *root,
5383 struct btrfs_path *path,
5384 struct walk_control *wc)
5385{
5386 struct btrfs_fs_info *fs_info = root->fs_info;
5387 int level = wc->level;
5388 struct extent_buffer *eb = path->nodes[level];
5389 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5390 int ret;
5391
5392 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5393 return 1;
5394
5395 /*
5396 * when reference count of tree block is 1, it won't increase
5397 * again. once full backref flag is set, we never clear it.
5398 */
5399 if (wc->lookup_info &&
5400 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5401 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5402 ASSERT(path->locks[level]);
5403 ret = btrfs_lookup_extent_info(trans, fs_info,
5404 eb->start, level, 1,
5405 &wc->refs[level],
5406 &wc->flags[level],
5407 NULL);
5408 if (ret)
5409 return ret;
5410 if (unlikely(wc->refs[level] == 0)) {
5411 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5412 eb->start);
5413 return -EUCLEAN;
5414 }
5415 }
5416
5417 if (wc->stage == DROP_REFERENCE) {
5418 if (wc->refs[level] > 1)
5419 return 1;
5420
5421 if (path->locks[level] && !wc->keep_locks) {
5422 btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 path->locks[level] = 0;
5424 }
5425 return 0;
5426 }
5427
5428 /* wc->stage == UPDATE_BACKREF */
5429 if (!(wc->flags[level] & flag)) {
5430 ASSERT(path->locks[level]);
5431 ret = btrfs_inc_ref(trans, root, eb, 1);
5432 if (ret) {
5433 btrfs_abort_transaction(trans, ret);
5434 return ret;
5435 }
5436 ret = btrfs_dec_ref(trans, root, eb, 0);
5437 if (ret) {
5438 btrfs_abort_transaction(trans, ret);
5439 return ret;
5440 }
5441 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5442 if (ret) {
5443 btrfs_abort_transaction(trans, ret);
5444 return ret;
5445 }
5446 wc->flags[level] |= flag;
5447 }
5448
5449 /*
5450 * the block is shared by multiple trees, so it's not good to
5451 * keep the tree lock
5452 */
5453 if (path->locks[level] && level > 0) {
5454 btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 path->locks[level] = 0;
5456 }
5457 return 0;
5458}
5459
5460/*
5461 * This is used to verify a ref exists for this root to deal with a bug where we
5462 * would have a drop_progress key that hadn't been updated properly.
5463 */
5464static int check_ref_exists(struct btrfs_trans_handle *trans,
5465 struct btrfs_root *root, u64 bytenr, u64 parent,
5466 int level)
5467{
5468 struct btrfs_delayed_ref_root *delayed_refs;
5469 struct btrfs_delayed_ref_head *head;
5470 struct btrfs_path *path;
5471 struct btrfs_extent_inline_ref *iref;
5472 int ret;
5473 bool exists = false;
5474
5475 path = btrfs_alloc_path();
5476 if (!path)
5477 return -ENOMEM;
5478again:
5479 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5480 root->fs_info->nodesize, parent,
5481 btrfs_root_id(root), level, 0);
5482 if (ret != -ENOENT) {
5483 /*
5484 * If we get 0 then we found our reference, return 1, else
5485 * return the error if it's not -ENOENT;
5486 */
5487 btrfs_free_path(path);
5488 return (ret < 0 ) ? ret : 1;
5489 }
5490
5491 /*
5492 * We could have a delayed ref with this reference, so look it up while
5493 * we're holding the path open to make sure we don't race with the
5494 * delayed ref running.
5495 */
5496 delayed_refs = &trans->transaction->delayed_refs;
5497 spin_lock(&delayed_refs->lock);
5498 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5499 if (!head)
5500 goto out;
5501 if (!mutex_trylock(&head->mutex)) {
5502 /*
5503 * We're contended, means that the delayed ref is running, get a
5504 * reference and wait for the ref head to be complete and then
5505 * try again.
5506 */
5507 refcount_inc(&head->refs);
5508 spin_unlock(&delayed_refs->lock);
5509
5510 btrfs_release_path(path);
5511
5512 mutex_lock(&head->mutex);
5513 mutex_unlock(&head->mutex);
5514 btrfs_put_delayed_ref_head(head);
5515 goto again;
5516 }
5517
5518 exists = btrfs_find_delayed_tree_ref(head, root->root_key.objectid, parent);
5519 mutex_unlock(&head->mutex);
5520out:
5521 spin_unlock(&delayed_refs->lock);
5522 btrfs_free_path(path);
5523 return exists ? 1 : 0;
5524}
5525
5526/*
5527 * We may not have an uptodate block, so if we are going to walk down into this
5528 * block we need to drop the lock, read it off of the disk, re-lock it and
5529 * return to continue dropping the snapshot.
5530 */
5531static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5532 struct btrfs_root *root,
5533 struct btrfs_path *path,
5534 struct walk_control *wc,
5535 struct extent_buffer *next)
5536{
5537 struct btrfs_tree_parent_check check = { 0 };
5538 u64 generation;
5539 int level = wc->level;
5540 int ret;
5541
5542 btrfs_assert_tree_write_locked(next);
5543
5544 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5545
5546 if (btrfs_buffer_uptodate(next, generation, 0))
5547 return 0;
5548
5549 check.level = level - 1;
5550 check.transid = generation;
5551 check.owner_root = btrfs_root_id(root);
5552 check.has_first_key = true;
5553 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5554
5555 btrfs_tree_unlock(next);
5556 if (level == 1)
5557 reada_walk_down(trans, root, wc, path);
5558 ret = btrfs_read_extent_buffer(next, &check);
5559 if (ret) {
5560 free_extent_buffer(next);
5561 return ret;
5562 }
5563 btrfs_tree_lock(next);
5564 wc->lookup_info = 1;
5565 return 0;
5566}
5567
5568/*
5569 * If we determine that we don't have to visit wc->level - 1 then we need to
5570 * determine if we can drop our reference.
5571 *
5572 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5573 *
5574 * If we are DROP_REFERENCE this will figure out if we need to drop our current
5575 * reference, skipping it if we dropped it from a previous incompleted drop, or
5576 * dropping it if we still have a reference to it.
5577 */
5578static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5579 struct btrfs_path *path, struct walk_control *wc,
5580 struct extent_buffer *next, u64 owner_root)
5581{
5582 struct btrfs_ref ref = {
5583 .action = BTRFS_DROP_DELAYED_REF,
5584 .bytenr = next->start,
5585 .num_bytes = root->fs_info->nodesize,
5586 .owning_root = owner_root,
5587 .ref_root = btrfs_root_id(root),
5588 };
5589 int level = wc->level;
5590 int ret;
5591
5592 /* We are UPDATE_BACKREF, we're not dropping anything. */
5593 if (wc->stage == UPDATE_BACKREF)
5594 return 0;
5595
5596 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5597 ref.parent = path->nodes[level]->start;
5598 } else {
5599 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5600 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5601 btrfs_err(root->fs_info, "mismatched block owner");
5602 return -EIO;
5603 }
5604 }
5605
5606 /*
5607 * If we had a drop_progress we need to verify the refs are set as
5608 * expected. If we find our ref then we know that from here on out
5609 * everything should be correct, and we can clear the
5610 * ->restarted flag.
5611 */
5612 if (wc->restarted) {
5613 ret = check_ref_exists(trans, root, next->start, ref.parent,
5614 level - 1);
5615 if (ret <= 0)
5616 return ret;
5617 ret = 0;
5618 wc->restarted = 0;
5619 }
5620
5621 /*
5622 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5623 * accounted them at merge time (replace_path), thus we could skip
5624 * expensive subtree trace here.
5625 */
5626 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5627 wc->refs[level - 1] > 1) {
5628 u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5629 path->slots[level]);
5630
5631 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5632 if (ret) {
5633 btrfs_err_rl(root->fs_info,
5634"error %d accounting shared subtree, quota is out of sync, rescan required",
5635 ret);
5636 }
5637 }
5638
5639 /*
5640 * We need to update the next key in our walk control so we can update
5641 * the drop_progress key accordingly. We don't care if find_next_key
5642 * doesn't find a key because that means we're at the end and are going
5643 * to clean up now.
5644 */
5645 wc->drop_level = level;
5646 find_next_key(path, level, &wc->drop_progress);
5647
5648 btrfs_init_tree_ref(&ref, level - 1, 0, false);
5649 return btrfs_free_extent(trans, &ref);
5650}
5651
5652/*
5653 * helper to process tree block pointer.
5654 *
5655 * when wc->stage == DROP_REFERENCE, this function checks
5656 * reference count of the block pointed to. if the block
5657 * is shared and we need update back refs for the subtree
5658 * rooted at the block, this function changes wc->stage to
5659 * UPDATE_BACKREF. if the block is shared and there is no
5660 * need to update back, this function drops the reference
5661 * to the block.
5662 *
5663 * NOTE: return value 1 means we should stop walking down.
5664 */
5665static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5666 struct btrfs_root *root,
5667 struct btrfs_path *path,
5668 struct walk_control *wc)
5669{
5670 struct btrfs_fs_info *fs_info = root->fs_info;
5671 u64 bytenr;
5672 u64 generation;
5673 u64 owner_root = 0;
5674 struct extent_buffer *next;
5675 int level = wc->level;
5676 int ret = 0;
5677
5678 generation = btrfs_node_ptr_generation(path->nodes[level],
5679 path->slots[level]);
5680 /*
5681 * if the lower level block was created before the snapshot
5682 * was created, we know there is no need to update back refs
5683 * for the subtree
5684 */
5685 if (wc->stage == UPDATE_BACKREF &&
5686 generation <= btrfs_root_origin_generation(root)) {
5687 wc->lookup_info = 1;
5688 return 1;
5689 }
5690
5691 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5692
5693 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5694 level - 1);
5695 if (IS_ERR(next))
5696 return PTR_ERR(next);
5697
5698 btrfs_tree_lock(next);
5699
5700 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5701 &wc->refs[level - 1],
5702 &wc->flags[level - 1],
5703 &owner_root);
5704 if (ret < 0)
5705 goto out_unlock;
5706
5707 if (unlikely(wc->refs[level - 1] == 0)) {
5708 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5709 bytenr);
5710 ret = -EUCLEAN;
5711 goto out_unlock;
5712 }
5713 wc->lookup_info = 0;
5714
5715 /* If we don't have to walk into this node skip it. */
5716 if (!visit_node_for_delete(root, wc, path->nodes[level],
5717 wc->flags[level - 1], path->slots[level]))
5718 goto skip;
5719
5720 /*
5721 * We have to walk down into this node, and if we're currently at the
5722 * DROP_REFERNCE stage and this block is shared then we need to switch
5723 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5724 */
5725 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5726 wc->stage = UPDATE_BACKREF;
5727 wc->shared_level = level - 1;
5728 }
5729
5730 ret = check_next_block_uptodate(trans, root, path, wc, next);
5731 if (ret)
5732 return ret;
5733
5734 level--;
5735 ASSERT(level == btrfs_header_level(next));
5736 if (level != btrfs_header_level(next)) {
5737 btrfs_err(root->fs_info, "mismatched level");
5738 ret = -EIO;
5739 goto out_unlock;
5740 }
5741 path->nodes[level] = next;
5742 path->slots[level] = 0;
5743 path->locks[level] = BTRFS_WRITE_LOCK;
5744 wc->level = level;
5745 if (wc->level == 1)
5746 wc->reada_slot = 0;
5747 return 0;
5748skip:
5749 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5750 if (ret)
5751 goto out_unlock;
5752 wc->refs[level - 1] = 0;
5753 wc->flags[level - 1] = 0;
5754 wc->lookup_info = 1;
5755 ret = 1;
5756
5757out_unlock:
5758 btrfs_tree_unlock(next);
5759 free_extent_buffer(next);
5760
5761 return ret;
5762}
5763
5764/*
5765 * helper to process tree block while walking up the tree.
5766 *
5767 * when wc->stage == DROP_REFERENCE, this function drops
5768 * reference count on the block.
5769 *
5770 * when wc->stage == UPDATE_BACKREF, this function changes
5771 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5772 * to UPDATE_BACKREF previously while processing the block.
5773 *
5774 * NOTE: return value 1 means we should stop walking up.
5775 */
5776static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5777 struct btrfs_root *root,
5778 struct btrfs_path *path,
5779 struct walk_control *wc)
5780{
5781 struct btrfs_fs_info *fs_info = root->fs_info;
5782 int ret = 0;
5783 int level = wc->level;
5784 struct extent_buffer *eb = path->nodes[level];
5785 u64 parent = 0;
5786
5787 if (wc->stage == UPDATE_BACKREF) {
5788 ASSERT(wc->shared_level >= level);
5789 if (level < wc->shared_level)
5790 goto out;
5791
5792 ret = find_next_key(path, level + 1, &wc->update_progress);
5793 if (ret > 0)
5794 wc->update_ref = 0;
5795
5796 wc->stage = DROP_REFERENCE;
5797 wc->shared_level = -1;
5798 path->slots[level] = 0;
5799
5800 /*
5801 * check reference count again if the block isn't locked.
5802 * we should start walking down the tree again if reference
5803 * count is one.
5804 */
5805 if (!path->locks[level]) {
5806 ASSERT(level > 0);
5807 btrfs_tree_lock(eb);
5808 path->locks[level] = BTRFS_WRITE_LOCK;
5809
5810 ret = btrfs_lookup_extent_info(trans, fs_info,
5811 eb->start, level, 1,
5812 &wc->refs[level],
5813 &wc->flags[level],
5814 NULL);
5815 if (ret < 0) {
5816 btrfs_tree_unlock_rw(eb, path->locks[level]);
5817 path->locks[level] = 0;
5818 return ret;
5819 }
5820 if (unlikely(wc->refs[level] == 0)) {
5821 btrfs_tree_unlock_rw(eb, path->locks[level]);
5822 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5823 eb->start);
5824 return -EUCLEAN;
5825 }
5826 if (wc->refs[level] == 1) {
5827 btrfs_tree_unlock_rw(eb, path->locks[level]);
5828 path->locks[level] = 0;
5829 return 1;
5830 }
5831 }
5832 }
5833
5834 /* wc->stage == DROP_REFERENCE */
5835 ASSERT(path->locks[level] || wc->refs[level] == 1);
5836
5837 if (wc->refs[level] == 1) {
5838 if (level == 0) {
5839 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5840 ret = btrfs_dec_ref(trans, root, eb, 1);
5841 else
5842 ret = btrfs_dec_ref(trans, root, eb, 0);
5843 if (ret) {
5844 btrfs_abort_transaction(trans, ret);
5845 return ret;
5846 }
5847 if (is_fstree(btrfs_root_id(root))) {
5848 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5849 if (ret) {
5850 btrfs_err_rl(fs_info,
5851 "error %d accounting leaf items, quota is out of sync, rescan required",
5852 ret);
5853 }
5854 }
5855 }
5856 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5857 if (!path->locks[level]) {
5858 btrfs_tree_lock(eb);
5859 path->locks[level] = BTRFS_WRITE_LOCK;
5860 }
5861 btrfs_clear_buffer_dirty(trans, eb);
5862 }
5863
5864 if (eb == root->node) {
5865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5866 parent = eb->start;
5867 else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5868 goto owner_mismatch;
5869 } else {
5870 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5871 parent = path->nodes[level + 1]->start;
5872 else if (btrfs_root_id(root) !=
5873 btrfs_header_owner(path->nodes[level + 1]))
5874 goto owner_mismatch;
5875 }
5876
5877 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5878 wc->refs[level] == 1);
5879 if (ret < 0)
5880 btrfs_abort_transaction(trans, ret);
5881out:
5882 wc->refs[level] = 0;
5883 wc->flags[level] = 0;
5884 return ret;
5885
5886owner_mismatch:
5887 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5888 btrfs_header_owner(eb), btrfs_root_id(root));
5889 return -EUCLEAN;
5890}
5891
5892/*
5893 * walk_down_tree consists of two steps.
5894 *
5895 * walk_down_proc(). Look up the reference count and reference of our current
5896 * wc->level. At this point path->nodes[wc->level] should be populated and
5897 * uptodate, and in most cases should already be locked. If we are in
5898 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5899 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5900 * FULL_BACKREF on this node if it's not already set, and then do the
5901 * FULL_BACKREF conversion dance, which is to drop the root reference and add
5902 * the shared reference to all of this nodes children.
5903 *
5904 * do_walk_down(). This is where we actually start iterating on the children of
5905 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5906 * our reference to the children that return false from visit_node_for_delete(),
5907 * which has various conditions where we know we can just drop our reference
5908 * without visiting the node. For UPDATE_BACKREF we will skip any children that
5909 * visit_node_for_delete() returns false for, only walking down when necessary.
5910 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5911 * snapshot deletion.
5912 */
5913static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5914 struct btrfs_root *root,
5915 struct btrfs_path *path,
5916 struct walk_control *wc)
5917{
5918 int level = wc->level;
5919 int ret = 0;
5920
5921 wc->lookup_info = 1;
5922 while (level >= 0) {
5923 ret = walk_down_proc(trans, root, path, wc);
5924 if (ret)
5925 break;
5926
5927 if (level == 0)
5928 break;
5929
5930 if (path->slots[level] >=
5931 btrfs_header_nritems(path->nodes[level]))
5932 break;
5933
5934 ret = do_walk_down(trans, root, path, wc);
5935 if (ret > 0) {
5936 path->slots[level]++;
5937 continue;
5938 } else if (ret < 0)
5939 break;
5940 level = wc->level;
5941 }
5942 return (ret == 1) ? 0 : ret;
5943}
5944
5945/*
5946 * walk_up_tree() is responsible for making sure we visit every slot on our
5947 * current node, and if we're at the end of that node then we call
5948 * walk_up_proc() on our current node which will do one of a few things based on
5949 * our stage.
5950 *
5951 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5952 * then we need to walk back up the tree, and then going back down into the
5953 * other slots via walk_down_tree to update any other children from our original
5954 * wc->shared_level. Once we're at or above our wc->shared_level we can switch
5955 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5956 *
5957 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5958 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5959 * in our current leaf. After that we call btrfs_free_tree_block() on the
5960 * current node and walk up to the next node to walk down the next slot.
5961 */
5962static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5963 struct btrfs_root *root,
5964 struct btrfs_path *path,
5965 struct walk_control *wc, int max_level)
5966{
5967 int level = wc->level;
5968 int ret;
5969
5970 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5971 while (level < max_level && path->nodes[level]) {
5972 wc->level = level;
5973 if (path->slots[level] + 1 <
5974 btrfs_header_nritems(path->nodes[level])) {
5975 path->slots[level]++;
5976 return 0;
5977 } else {
5978 ret = walk_up_proc(trans, root, path, wc);
5979 if (ret > 0)
5980 return 0;
5981 if (ret < 0)
5982 return ret;
5983
5984 if (path->locks[level]) {
5985 btrfs_tree_unlock_rw(path->nodes[level],
5986 path->locks[level]);
5987 path->locks[level] = 0;
5988 }
5989 free_extent_buffer(path->nodes[level]);
5990 path->nodes[level] = NULL;
5991 level++;
5992 }
5993 }
5994 return 1;
5995}
5996
5997/*
5998 * drop a subvolume tree.
5999 *
6000 * this function traverses the tree freeing any blocks that only
6001 * referenced by the tree.
6002 *
6003 * when a shared tree block is found. this function decreases its
6004 * reference count by one. if update_ref is true, this function
6005 * also make sure backrefs for the shared block and all lower level
6006 * blocks are properly updated.
6007 *
6008 * If called with for_reloc == 0, may exit early with -EAGAIN
6009 */
6010int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6011{
6012 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct btrfs_path *path;
6015 struct btrfs_trans_handle *trans;
6016 struct btrfs_root *tree_root = fs_info->tree_root;
6017 struct btrfs_root_item *root_item = &root->root_item;
6018 struct walk_control *wc;
6019 struct btrfs_key key;
6020 const u64 rootid = btrfs_root_id(root);
6021 int ret = 0;
6022 int level;
6023 bool root_dropped = false;
6024 bool unfinished_drop = false;
6025
6026 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6027
6028 path = btrfs_alloc_path();
6029 if (!path) {
6030 ret = -ENOMEM;
6031 goto out;
6032 }
6033
6034 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6035 if (!wc) {
6036 btrfs_free_path(path);
6037 ret = -ENOMEM;
6038 goto out;
6039 }
6040
6041 /*
6042 * Use join to avoid potential EINTR from transaction start. See
6043 * wait_reserve_ticket and the whole reservation callchain.
6044 */
6045 if (for_reloc)
6046 trans = btrfs_join_transaction(tree_root);
6047 else
6048 trans = btrfs_start_transaction(tree_root, 0);
6049 if (IS_ERR(trans)) {
6050 ret = PTR_ERR(trans);
6051 goto out_free;
6052 }
6053
6054 ret = btrfs_run_delayed_items(trans);
6055 if (ret)
6056 goto out_end_trans;
6057
6058 /*
6059 * This will help us catch people modifying the fs tree while we're
6060 * dropping it. It is unsafe to mess with the fs tree while it's being
6061 * dropped as we unlock the root node and parent nodes as we walk down
6062 * the tree, assuming nothing will change. If something does change
6063 * then we'll have stale information and drop references to blocks we've
6064 * already dropped.
6065 */
6066 set_bit(BTRFS_ROOT_DELETING, &root->state);
6067 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6068
6069 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6070 level = btrfs_header_level(root->node);
6071 path->nodes[level] = btrfs_lock_root_node(root);
6072 path->slots[level] = 0;
6073 path->locks[level] = BTRFS_WRITE_LOCK;
6074 memset(&wc->update_progress, 0,
6075 sizeof(wc->update_progress));
6076 } else {
6077 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6078 memcpy(&wc->update_progress, &key,
6079 sizeof(wc->update_progress));
6080
6081 level = btrfs_root_drop_level(root_item);
6082 BUG_ON(level == 0);
6083 path->lowest_level = level;
6084 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6085 path->lowest_level = 0;
6086 if (ret < 0)
6087 goto out_end_trans;
6088
6089 WARN_ON(ret > 0);
6090 ret = 0;
6091
6092 /*
6093 * unlock our path, this is safe because only this
6094 * function is allowed to delete this snapshot
6095 */
6096 btrfs_unlock_up_safe(path, 0);
6097
6098 level = btrfs_header_level(root->node);
6099 while (1) {
6100 btrfs_tree_lock(path->nodes[level]);
6101 path->locks[level] = BTRFS_WRITE_LOCK;
6102
6103 /*
6104 * btrfs_lookup_extent_info() returns 0 for success,
6105 * or < 0 for error.
6106 */
6107 ret = btrfs_lookup_extent_info(trans, fs_info,
6108 path->nodes[level]->start,
6109 level, 1, &wc->refs[level],
6110 &wc->flags[level], NULL);
6111 if (ret < 0)
6112 goto out_end_trans;
6113
6114 BUG_ON(wc->refs[level] == 0);
6115
6116 if (level == btrfs_root_drop_level(root_item))
6117 break;
6118
6119 btrfs_tree_unlock(path->nodes[level]);
6120 path->locks[level] = 0;
6121 WARN_ON(wc->refs[level] != 1);
6122 level--;
6123 }
6124 }
6125
6126 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6127 wc->level = level;
6128 wc->shared_level = -1;
6129 wc->stage = DROP_REFERENCE;
6130 wc->update_ref = update_ref;
6131 wc->keep_locks = 0;
6132 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6133
6134 while (1) {
6135
6136 ret = walk_down_tree(trans, root, path, wc);
6137 if (ret < 0) {
6138 btrfs_abort_transaction(trans, ret);
6139 break;
6140 }
6141
6142 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6143 if (ret < 0) {
6144 btrfs_abort_transaction(trans, ret);
6145 break;
6146 }
6147
6148 if (ret > 0) {
6149 BUG_ON(wc->stage != DROP_REFERENCE);
6150 ret = 0;
6151 break;
6152 }
6153
6154 if (wc->stage == DROP_REFERENCE) {
6155 wc->drop_level = wc->level;
6156 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6157 &wc->drop_progress,
6158 path->slots[wc->drop_level]);
6159 }
6160 btrfs_cpu_key_to_disk(&root_item->drop_progress,
6161 &wc->drop_progress);
6162 btrfs_set_root_drop_level(root_item, wc->drop_level);
6163
6164 BUG_ON(wc->level == 0);
6165 if (btrfs_should_end_transaction(trans) ||
6166 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6167 ret = btrfs_update_root(trans, tree_root,
6168 &root->root_key,
6169 root_item);
6170 if (ret) {
6171 btrfs_abort_transaction(trans, ret);
6172 goto out_end_trans;
6173 }
6174
6175 if (!is_reloc_root)
6176 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6177
6178 btrfs_end_transaction_throttle(trans);
6179 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6180 btrfs_debug(fs_info,
6181 "drop snapshot early exit");
6182 ret = -EAGAIN;
6183 goto out_free;
6184 }
6185
6186 /*
6187 * Use join to avoid potential EINTR from transaction
6188 * start. See wait_reserve_ticket and the whole
6189 * reservation callchain.
6190 */
6191 if (for_reloc)
6192 trans = btrfs_join_transaction(tree_root);
6193 else
6194 trans = btrfs_start_transaction(tree_root, 0);
6195 if (IS_ERR(trans)) {
6196 ret = PTR_ERR(trans);
6197 goto out_free;
6198 }
6199 }
6200 }
6201 btrfs_release_path(path);
6202 if (ret)
6203 goto out_end_trans;
6204
6205 ret = btrfs_del_root(trans, &root->root_key);
6206 if (ret) {
6207 btrfs_abort_transaction(trans, ret);
6208 goto out_end_trans;
6209 }
6210
6211 if (!is_reloc_root) {
6212 ret = btrfs_find_root(tree_root, &root->root_key, path,
6213 NULL, NULL);
6214 if (ret < 0) {
6215 btrfs_abort_transaction(trans, ret);
6216 goto out_end_trans;
6217 } else if (ret > 0) {
6218 ret = 0;
6219 /*
6220 * If we fail to delete the orphan item this time
6221 * around, it'll get picked up the next time.
6222 *
6223 * The most common failure here is just -ENOENT.
6224 */
6225 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6226 }
6227 }
6228
6229 /*
6230 * This subvolume is going to be completely dropped, and won't be
6231 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6232 * commit transaction time. So free it here manually.
6233 */
6234 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6235 btrfs_qgroup_free_meta_all_pertrans(root);
6236
6237 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6238 btrfs_add_dropped_root(trans, root);
6239 else
6240 btrfs_put_root(root);
6241 root_dropped = true;
6242out_end_trans:
6243 if (!is_reloc_root)
6244 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6245
6246 btrfs_end_transaction_throttle(trans);
6247out_free:
6248 kfree(wc);
6249 btrfs_free_path(path);
6250out:
6251 if (!ret && root_dropped) {
6252 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6253 if (ret < 0)
6254 btrfs_warn_rl(fs_info,
6255 "failed to cleanup qgroup 0/%llu: %d",
6256 rootid, ret);
6257 ret = 0;
6258 }
6259 /*
6260 * We were an unfinished drop root, check to see if there are any
6261 * pending, and if not clear and wake up any waiters.
6262 */
6263 if (!ret && unfinished_drop)
6264 btrfs_maybe_wake_unfinished_drop(fs_info);
6265
6266 /*
6267 * So if we need to stop dropping the snapshot for whatever reason we
6268 * need to make sure to add it back to the dead root list so that we
6269 * keep trying to do the work later. This also cleans up roots if we
6270 * don't have it in the radix (like when we recover after a power fail
6271 * or unmount) so we don't leak memory.
6272 */
6273 if (!for_reloc && !root_dropped)
6274 btrfs_add_dead_root(root);
6275 return ret;
6276}
6277
6278/*
6279 * drop subtree rooted at tree block 'node'.
6280 *
6281 * NOTE: this function will unlock and release tree block 'node'
6282 * only used by relocation code
6283 */
6284int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6285 struct btrfs_root *root,
6286 struct extent_buffer *node,
6287 struct extent_buffer *parent)
6288{
6289 struct btrfs_fs_info *fs_info = root->fs_info;
6290 struct btrfs_path *path;
6291 struct walk_control *wc;
6292 int level;
6293 int parent_level;
6294 int ret = 0;
6295
6296 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6297
6298 path = btrfs_alloc_path();
6299 if (!path)
6300 return -ENOMEM;
6301
6302 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6303 if (!wc) {
6304 btrfs_free_path(path);
6305 return -ENOMEM;
6306 }
6307
6308 btrfs_assert_tree_write_locked(parent);
6309 parent_level = btrfs_header_level(parent);
6310 atomic_inc(&parent->refs);
6311 path->nodes[parent_level] = parent;
6312 path->slots[parent_level] = btrfs_header_nritems(parent);
6313
6314 btrfs_assert_tree_write_locked(node);
6315 level = btrfs_header_level(node);
6316 path->nodes[level] = node;
6317 path->slots[level] = 0;
6318 path->locks[level] = BTRFS_WRITE_LOCK;
6319
6320 wc->refs[parent_level] = 1;
6321 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6322 wc->level = level;
6323 wc->shared_level = -1;
6324 wc->stage = DROP_REFERENCE;
6325 wc->update_ref = 0;
6326 wc->keep_locks = 1;
6327 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6328
6329 while (1) {
6330 ret = walk_down_tree(trans, root, path, wc);
6331 if (ret < 0)
6332 break;
6333
6334 ret = walk_up_tree(trans, root, path, wc, parent_level);
6335 if (ret) {
6336 if (ret > 0)
6337 ret = 0;
6338 break;
6339 }
6340 }
6341
6342 kfree(wc);
6343 btrfs_free_path(path);
6344 return ret;
6345}
6346
6347/*
6348 * Unpin the extent range in an error context and don't add the space back.
6349 * Errors are not propagated further.
6350 */
6351void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6352{
6353 unpin_extent_range(fs_info, start, end, false);
6354}
6355
6356/*
6357 * It used to be that old block groups would be left around forever.
6358 * Iterating over them would be enough to trim unused space. Since we
6359 * now automatically remove them, we also need to iterate over unallocated
6360 * space.
6361 *
6362 * We don't want a transaction for this since the discard may take a
6363 * substantial amount of time. We don't require that a transaction be
6364 * running, but we do need to take a running transaction into account
6365 * to ensure that we're not discarding chunks that were released or
6366 * allocated in the current transaction.
6367 *
6368 * Holding the chunks lock will prevent other threads from allocating
6369 * or releasing chunks, but it won't prevent a running transaction
6370 * from committing and releasing the memory that the pending chunks
6371 * list head uses. For that, we need to take a reference to the
6372 * transaction and hold the commit root sem. We only need to hold
6373 * it while performing the free space search since we have already
6374 * held back allocations.
6375 */
6376static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6377{
6378 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6379 int ret;
6380
6381 *trimmed = 0;
6382
6383 /* Discard not supported = nothing to do. */
6384 if (!bdev_max_discard_sectors(device->bdev))
6385 return 0;
6386
6387 /* Not writable = nothing to do. */
6388 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6389 return 0;
6390
6391 /* No free space = nothing to do. */
6392 if (device->total_bytes <= device->bytes_used)
6393 return 0;
6394
6395 ret = 0;
6396
6397 while (1) {
6398 struct btrfs_fs_info *fs_info = device->fs_info;
6399 u64 bytes;
6400
6401 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6402 if (ret)
6403 break;
6404
6405 find_first_clear_extent_bit(&device->alloc_state, start,
6406 &start, &end,
6407 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6408
6409 /* Check if there are any CHUNK_* bits left */
6410 if (start > device->total_bytes) {
6411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6412 btrfs_warn_in_rcu(fs_info,
6413"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6414 start, end - start + 1,
6415 btrfs_dev_name(device),
6416 device->total_bytes);
6417 mutex_unlock(&fs_info->chunk_mutex);
6418 ret = 0;
6419 break;
6420 }
6421
6422 /* Ensure we skip the reserved space on each device. */
6423 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6424
6425 /*
6426 * If find_first_clear_extent_bit find a range that spans the
6427 * end of the device it will set end to -1, in this case it's up
6428 * to the caller to trim the value to the size of the device.
6429 */
6430 end = min(end, device->total_bytes - 1);
6431
6432 len = end - start + 1;
6433
6434 /* We didn't find any extents */
6435 if (!len) {
6436 mutex_unlock(&fs_info->chunk_mutex);
6437 ret = 0;
6438 break;
6439 }
6440
6441 ret = btrfs_issue_discard(device->bdev, start, len,
6442 &bytes);
6443 if (!ret)
6444 set_extent_bit(&device->alloc_state, start,
6445 start + bytes - 1, CHUNK_TRIMMED, NULL);
6446 mutex_unlock(&fs_info->chunk_mutex);
6447
6448 if (ret)
6449 break;
6450
6451 start += len;
6452 *trimmed += bytes;
6453
6454 if (btrfs_trim_interrupted()) {
6455 ret = -ERESTARTSYS;
6456 break;
6457 }
6458
6459 cond_resched();
6460 }
6461
6462 return ret;
6463}
6464
6465/*
6466 * Trim the whole filesystem by:
6467 * 1) trimming the free space in each block group
6468 * 2) trimming the unallocated space on each device
6469 *
6470 * This will also continue trimming even if a block group or device encounters
6471 * an error. The return value will be the last error, or 0 if nothing bad
6472 * happens.
6473 */
6474int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6475{
6476 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6477 struct btrfs_block_group *cache = NULL;
6478 struct btrfs_device *device;
6479 u64 group_trimmed;
6480 u64 range_end = U64_MAX;
6481 u64 start;
6482 u64 end;
6483 u64 trimmed = 0;
6484 u64 bg_failed = 0;
6485 u64 dev_failed = 0;
6486 int bg_ret = 0;
6487 int dev_ret = 0;
6488 int ret = 0;
6489
6490 if (range->start == U64_MAX)
6491 return -EINVAL;
6492
6493 /*
6494 * Check range overflow if range->len is set.
6495 * The default range->len is U64_MAX.
6496 */
6497 if (range->len != U64_MAX &&
6498 check_add_overflow(range->start, range->len, &range_end))
6499 return -EINVAL;
6500
6501 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6502 for (; cache; cache = btrfs_next_block_group(cache)) {
6503 if (cache->start >= range_end) {
6504 btrfs_put_block_group(cache);
6505 break;
6506 }
6507
6508 start = max(range->start, cache->start);
6509 end = min(range_end, cache->start + cache->length);
6510
6511 if (end - start >= range->minlen) {
6512 if (!btrfs_block_group_done(cache)) {
6513 ret = btrfs_cache_block_group(cache, true);
6514 if (ret) {
6515 bg_failed++;
6516 bg_ret = ret;
6517 continue;
6518 }
6519 }
6520 ret = btrfs_trim_block_group(cache,
6521 &group_trimmed,
6522 start,
6523 end,
6524 range->minlen);
6525
6526 trimmed += group_trimmed;
6527 if (ret) {
6528 bg_failed++;
6529 bg_ret = ret;
6530 continue;
6531 }
6532 }
6533 }
6534
6535 if (bg_failed)
6536 btrfs_warn(fs_info,
6537 "failed to trim %llu block group(s), last error %d",
6538 bg_failed, bg_ret);
6539
6540 mutex_lock(&fs_devices->device_list_mutex);
6541 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6542 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6543 continue;
6544
6545 ret = btrfs_trim_free_extents(device, &group_trimmed);
6546
6547 trimmed += group_trimmed;
6548 if (ret) {
6549 dev_failed++;
6550 dev_ret = ret;
6551 break;
6552 }
6553 }
6554 mutex_unlock(&fs_devices->device_list_mutex);
6555
6556 if (dev_failed)
6557 btrfs_warn(fs_info,
6558 "failed to trim %llu device(s), last error %d",
6559 dev_failed, dev_ret);
6560 range->len = trimmed;
6561 if (bg_ret)
6562 return bg_ret;
6563 return dev_ret;
6564}