Linux Audio

Check our new training course

Loading...
v4.10.11
 
    1/*
    2 * Copyright (C) 2007 Oracle.  All rights reserved.
    3 *
    4 * This program is free software; you can redistribute it and/or
    5 * modify it under the terms of the GNU General Public
    6 * License v2 as published by the Free Software Foundation.
    7 *
    8 * This program is distributed in the hope that it will be useful,
    9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   11 * General Public License for more details.
   12 *
   13 * You should have received a copy of the GNU General Public
   14 * License along with this program; if not, write to the
   15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   16 * Boston, MA 021110-1307, USA.
   17 */
 
   18#include <linux/sched.h>
 
   19#include <linux/pagemap.h>
   20#include <linux/writeback.h>
   21#include <linux/blkdev.h>
   22#include <linux/sort.h>
   23#include <linux/rcupdate.h>
   24#include <linux/kthread.h>
   25#include <linux/slab.h>
   26#include <linux/ratelimit.h>
   27#include <linux/percpu_counter.h>
   28#include "hash.h"
 
 
   29#include "tree-log.h"
   30#include "disk-io.h"
   31#include "print-tree.h"
   32#include "volumes.h"
   33#include "raid56.h"
   34#include "locking.h"
   35#include "free-space-cache.h"
   36#include "free-space-tree.h"
   37#include "math.h"
   38#include "sysfs.h"
   39#include "qgroup.h"
 
 
 
 
 
   40
   41#undef SCRAMBLE_DELAYED_REFS
   42
   43/*
   44 * control flags for do_chunk_alloc's force field
   45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
   46 * if we really need one.
   47 *
   48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
   49 * if we have very few chunks already allocated.  This is
   50 * used as part of the clustering code to help make sure
   51 * we have a good pool of storage to cluster in, without
   52 * filling the FS with empty chunks
   53 *
   54 * CHUNK_ALLOC_FORCE means it must try to allocate one
   55 *
   56 */
   57enum {
   58	CHUNK_ALLOC_NO_FORCE = 0,
   59	CHUNK_ALLOC_LIMITED = 1,
   60	CHUNK_ALLOC_FORCE = 2,
   61};
   62
   63static int update_block_group(struct btrfs_trans_handle *trans,
   64			      struct btrfs_fs_info *fs_info, u64 bytenr,
   65			      u64 num_bytes, int alloc);
   66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
   67			       struct btrfs_fs_info *fs_info,
   68				struct btrfs_delayed_ref_node *node, u64 parent,
   69				u64 root_objectid, u64 owner_objectid,
   70				u64 owner_offset, int refs_to_drop,
   71				struct btrfs_delayed_extent_op *extra_op);
   72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
   73				    struct extent_buffer *leaf,
   74				    struct btrfs_extent_item *ei);
   75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
   76				      struct btrfs_fs_info *fs_info,
   77				      u64 parent, u64 root_objectid,
   78				      u64 flags, u64 owner, u64 offset,
   79				      struct btrfs_key *ins, int ref_mod);
   80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
   81				     struct btrfs_fs_info *fs_info,
   82				     u64 parent, u64 root_objectid,
   83				     u64 flags, struct btrfs_disk_key *key,
   84				     int level, struct btrfs_key *ins);
   85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
   86			  struct btrfs_fs_info *fs_info, u64 flags,
   87			  int force);
   88static int find_next_key(struct btrfs_path *path, int level,
   89			 struct btrfs_key *key);
   90static void dump_space_info(struct btrfs_fs_info *fs_info,
   91			    struct btrfs_space_info *info, u64 bytes,
   92			    int dump_block_groups);
   93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
   94				    u64 ram_bytes, u64 num_bytes, int delalloc);
   95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
   96				     u64 num_bytes, int delalloc);
   97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
   98			       u64 num_bytes);
   99static int __reserve_metadata_bytes(struct btrfs_root *root,
  100				    struct btrfs_space_info *space_info,
  101				    u64 orig_bytes,
  102				    enum btrfs_reserve_flush_enum flush);
  103static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
  104				     struct btrfs_space_info *space_info,
  105				     u64 num_bytes);
  106static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
  107				     struct btrfs_space_info *space_info,
  108				     u64 num_bytes);
  109
  110static noinline int
  111block_group_cache_done(struct btrfs_block_group_cache *cache)
  112{
  113	smp_mb();
  114	return cache->cached == BTRFS_CACHE_FINISHED ||
  115		cache->cached == BTRFS_CACHE_ERROR;
  116}
  117
  118static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  119{
  120	return (cache->flags & bits) == bits;
  121}
  122
  123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  124{
  125	atomic_inc(&cache->count);
  126}
  127
  128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  129{
  130	if (atomic_dec_and_test(&cache->count)) {
  131		WARN_ON(cache->pinned > 0);
  132		WARN_ON(cache->reserved > 0);
  133		kfree(cache->free_space_ctl);
  134		kfree(cache);
  135	}
  136}
  137
  138/*
  139 * this adds the block group to the fs_info rb tree for the block group
  140 * cache
  141 */
  142static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  143				struct btrfs_block_group_cache *block_group)
  144{
  145	struct rb_node **p;
  146	struct rb_node *parent = NULL;
  147	struct btrfs_block_group_cache *cache;
  148
  149	spin_lock(&info->block_group_cache_lock);
  150	p = &info->block_group_cache_tree.rb_node;
  151
  152	while (*p) {
  153		parent = *p;
  154		cache = rb_entry(parent, struct btrfs_block_group_cache,
  155				 cache_node);
  156		if (block_group->key.objectid < cache->key.objectid) {
  157			p = &(*p)->rb_left;
  158		} else if (block_group->key.objectid > cache->key.objectid) {
  159			p = &(*p)->rb_right;
  160		} else {
  161			spin_unlock(&info->block_group_cache_lock);
  162			return -EEXIST;
  163		}
  164	}
  165
  166	rb_link_node(&block_group->cache_node, parent, p);
  167	rb_insert_color(&block_group->cache_node,
  168			&info->block_group_cache_tree);
  169
  170	if (info->first_logical_byte > block_group->key.objectid)
  171		info->first_logical_byte = block_group->key.objectid;
  172
  173	spin_unlock(&info->block_group_cache_lock);
  174
  175	return 0;
  176}
  177
  178/*
  179 * This will return the block group at or after bytenr if contains is 0, else
  180 * it will return the block group that contains the bytenr
  181 */
  182static struct btrfs_block_group_cache *
  183block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  184			      int contains)
  185{
  186	struct btrfs_block_group_cache *cache, *ret = NULL;
  187	struct rb_node *n;
  188	u64 end, start;
  189
  190	spin_lock(&info->block_group_cache_lock);
  191	n = info->block_group_cache_tree.rb_node;
  192
  193	while (n) {
  194		cache = rb_entry(n, struct btrfs_block_group_cache,
  195				 cache_node);
  196		end = cache->key.objectid + cache->key.offset - 1;
  197		start = cache->key.objectid;
  198
  199		if (bytenr < start) {
  200			if (!contains && (!ret || start < ret->key.objectid))
  201				ret = cache;
  202			n = n->rb_left;
  203		} else if (bytenr > start) {
  204			if (contains && bytenr <= end) {
  205				ret = cache;
  206				break;
  207			}
  208			n = n->rb_right;
  209		} else {
  210			ret = cache;
  211			break;
  212		}
  213	}
  214	if (ret) {
  215		btrfs_get_block_group(ret);
  216		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  217			info->first_logical_byte = ret->key.objectid;
  218	}
  219	spin_unlock(&info->block_group_cache_lock);
  220
  221	return ret;
  222}
  223
  224static int add_excluded_extent(struct btrfs_fs_info *fs_info,
  225			       u64 start, u64 num_bytes)
  226{
  227	u64 end = start + num_bytes - 1;
  228	set_extent_bits(&fs_info->freed_extents[0],
  229			start, end, EXTENT_UPTODATE);
  230	set_extent_bits(&fs_info->freed_extents[1],
  231			start, end, EXTENT_UPTODATE);
  232	return 0;
  233}
  234
  235static void free_excluded_extents(struct btrfs_fs_info *fs_info,
  236				  struct btrfs_block_group_cache *cache)
  237{
 
  238	u64 start, end;
  239
  240	start = cache->key.objectid;
  241	end = start + cache->key.offset - 1;
  242
  243	clear_extent_bits(&fs_info->freed_extents[0],
  244			  start, end, EXTENT_UPTODATE);
  245	clear_extent_bits(&fs_info->freed_extents[1],
  246			  start, end, EXTENT_UPTODATE);
  247}
  248
  249static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
  250				 struct btrfs_block_group_cache *cache)
  251{
  252	u64 bytenr;
  253	u64 *logical;
  254	int stripe_len;
  255	int i, nr, ret;
  256
  257	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  258		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  259		cache->bytes_super += stripe_len;
  260		ret = add_excluded_extent(fs_info, cache->key.objectid,
  261					  stripe_len);
  262		if (ret)
  263			return ret;
  264	}
  265
  266	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  267		bytenr = btrfs_sb_offset(i);
  268		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
  269				       bytenr, 0, &logical, &nr, &stripe_len);
  270		if (ret)
  271			return ret;
  272
  273		while (nr--) {
  274			u64 start, len;
  275
  276			if (logical[nr] > cache->key.objectid +
  277			    cache->key.offset)
  278				continue;
  279
  280			if (logical[nr] + stripe_len <= cache->key.objectid)
  281				continue;
  282
  283			start = logical[nr];
  284			if (start < cache->key.objectid) {
  285				start = cache->key.objectid;
  286				len = (logical[nr] + stripe_len) - start;
  287			} else {
  288				len = min_t(u64, stripe_len,
  289					    cache->key.objectid +
  290					    cache->key.offset - start);
  291			}
  292
  293			cache->bytes_super += len;
  294			ret = add_excluded_extent(fs_info, start, len);
  295			if (ret) {
  296				kfree(logical);
  297				return ret;
  298			}
  299		}
  300
  301		kfree(logical);
  302	}
  303	return 0;
  304}
  305
  306static struct btrfs_caching_control *
  307get_caching_control(struct btrfs_block_group_cache *cache)
  308{
  309	struct btrfs_caching_control *ctl;
  310
  311	spin_lock(&cache->lock);
  312	if (!cache->caching_ctl) {
  313		spin_unlock(&cache->lock);
  314		return NULL;
  315	}
  316
  317	ctl = cache->caching_ctl;
  318	atomic_inc(&ctl->count);
  319	spin_unlock(&cache->lock);
  320	return ctl;
  321}
  322
  323static void put_caching_control(struct btrfs_caching_control *ctl)
  324{
  325	if (atomic_dec_and_test(&ctl->count))
  326		kfree(ctl);
  327}
  328
  329#ifdef CONFIG_BTRFS_DEBUG
  330static void fragment_free_space(struct btrfs_block_group_cache *block_group)
  331{
  332	struct btrfs_fs_info *fs_info = block_group->fs_info;
  333	u64 start = block_group->key.objectid;
  334	u64 len = block_group->key.offset;
  335	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
  336		fs_info->nodesize : fs_info->sectorsize;
  337	u64 step = chunk << 1;
  338
  339	while (len > chunk) {
  340		btrfs_remove_free_space(block_group, start, chunk);
  341		start += step;
  342		if (len < step)
  343			len = 0;
  344		else
  345			len -= step;
  346	}
  347}
  348#endif
  349
  350/*
  351 * this is only called by cache_block_group, since we could have freed extents
  352 * we need to check the pinned_extents for any extents that can't be used yet
  353 * since their free space will be released as soon as the transaction commits.
  354 */
  355u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  356		       struct btrfs_fs_info *info, u64 start, u64 end)
  357{
  358	u64 extent_start, extent_end, size, total_added = 0;
  359	int ret;
  360
  361	while (start < end) {
  362		ret = find_first_extent_bit(info->pinned_extents, start,
  363					    &extent_start, &extent_end,
  364					    EXTENT_DIRTY | EXTENT_UPTODATE,
  365					    NULL);
  366		if (ret)
  367			break;
  368
  369		if (extent_start <= start) {
  370			start = extent_end + 1;
  371		} else if (extent_start > start && extent_start < end) {
  372			size = extent_start - start;
  373			total_added += size;
  374			ret = btrfs_add_free_space(block_group, start,
  375						   size);
  376			BUG_ON(ret); /* -ENOMEM or logic error */
  377			start = extent_end + 1;
  378		} else {
  379			break;
  380		}
  381	}
  382
  383	if (start < end) {
  384		size = end - start;
  385		total_added += size;
  386		ret = btrfs_add_free_space(block_group, start, size);
  387		BUG_ON(ret); /* -ENOMEM or logic error */
  388	}
  389
  390	return total_added;
  391}
  392
  393static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
  394{
  395	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
  396	struct btrfs_fs_info *fs_info = block_group->fs_info;
  397	struct btrfs_root *extent_root = fs_info->extent_root;
  398	struct btrfs_path *path;
  399	struct extent_buffer *leaf;
  400	struct btrfs_key key;
  401	u64 total_found = 0;
  402	u64 last = 0;
  403	u32 nritems;
  404	int ret;
  405	bool wakeup = true;
  406
  407	path = btrfs_alloc_path();
  408	if (!path)
  409		return -ENOMEM;
  410
  411	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  412
  413#ifdef CONFIG_BTRFS_DEBUG
  414	/*
  415	 * If we're fragmenting we don't want to make anybody think we can
  416	 * allocate from this block group until we've had a chance to fragment
  417	 * the free space.
  418	 */
  419	if (btrfs_should_fragment_free_space(block_group))
  420		wakeup = false;
  421#endif
  422	/*
  423	 * We don't want to deadlock with somebody trying to allocate a new
  424	 * extent for the extent root while also trying to search the extent
  425	 * root to add free space.  So we skip locking and search the commit
  426	 * root, since its read-only
  427	 */
  428	path->skip_locking = 1;
  429	path->search_commit_root = 1;
  430	path->reada = READA_FORWARD;
  431
  432	key.objectid = last;
  433	key.offset = 0;
  434	key.type = BTRFS_EXTENT_ITEM_KEY;
  435
  436next:
  437	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  438	if (ret < 0)
  439		goto out;
  440
  441	leaf = path->nodes[0];
  442	nritems = btrfs_header_nritems(leaf);
  443
  444	while (1) {
  445		if (btrfs_fs_closing(fs_info) > 1) {
  446			last = (u64)-1;
  447			break;
  448		}
  449
  450		if (path->slots[0] < nritems) {
  451			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  452		} else {
  453			ret = find_next_key(path, 0, &key);
  454			if (ret)
  455				break;
  456
  457			if (need_resched() ||
  458			    rwsem_is_contended(&fs_info->commit_root_sem)) {
  459				if (wakeup)
  460					caching_ctl->progress = last;
  461				btrfs_release_path(path);
  462				up_read(&fs_info->commit_root_sem);
  463				mutex_unlock(&caching_ctl->mutex);
  464				cond_resched();
  465				mutex_lock(&caching_ctl->mutex);
  466				down_read(&fs_info->commit_root_sem);
  467				goto next;
  468			}
  469
  470			ret = btrfs_next_leaf(extent_root, path);
  471			if (ret < 0)
  472				goto out;
  473			if (ret)
  474				break;
  475			leaf = path->nodes[0];
  476			nritems = btrfs_header_nritems(leaf);
  477			continue;
  478		}
  479
  480		if (key.objectid < last) {
  481			key.objectid = last;
  482			key.offset = 0;
  483			key.type = BTRFS_EXTENT_ITEM_KEY;
  484
  485			if (wakeup)
  486				caching_ctl->progress = last;
  487			btrfs_release_path(path);
  488			goto next;
  489		}
  490
  491		if (key.objectid < block_group->key.objectid) {
  492			path->slots[0]++;
  493			continue;
  494		}
  495
  496		if (key.objectid >= block_group->key.objectid +
  497		    block_group->key.offset)
  498			break;
  499
  500		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  501		    key.type == BTRFS_METADATA_ITEM_KEY) {
  502			total_found += add_new_free_space(block_group,
  503							  fs_info, last,
  504							  key.objectid);
  505			if (key.type == BTRFS_METADATA_ITEM_KEY)
  506				last = key.objectid +
  507					fs_info->nodesize;
  508			else
  509				last = key.objectid + key.offset;
  510
  511			if (total_found > CACHING_CTL_WAKE_UP) {
  512				total_found = 0;
  513				if (wakeup)
  514					wake_up(&caching_ctl->wait);
  515			}
  516		}
  517		path->slots[0]++;
  518	}
  519	ret = 0;
  520
  521	total_found += add_new_free_space(block_group, fs_info, last,
  522					  block_group->key.objectid +
  523					  block_group->key.offset);
  524	caching_ctl->progress = (u64)-1;
  525
  526out:
  527	btrfs_free_path(path);
  528	return ret;
  529}
  530
  531static noinline void caching_thread(struct btrfs_work *work)
 
  532{
  533	struct btrfs_block_group_cache *block_group;
  534	struct btrfs_fs_info *fs_info;
  535	struct btrfs_caching_control *caching_ctl;
  536	struct btrfs_root *extent_root;
  537	int ret;
  538
  539	caching_ctl = container_of(work, struct btrfs_caching_control, work);
  540	block_group = caching_ctl->block_group;
  541	fs_info = block_group->fs_info;
  542	extent_root = fs_info->extent_root;
  543
  544	mutex_lock(&caching_ctl->mutex);
  545	down_read(&fs_info->commit_root_sem);
  546
  547	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
  548		ret = load_free_space_tree(caching_ctl);
  549	else
  550		ret = load_extent_tree_free(caching_ctl);
  551
  552	spin_lock(&block_group->lock);
  553	block_group->caching_ctl = NULL;
  554	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
  555	spin_unlock(&block_group->lock);
  556
  557#ifdef CONFIG_BTRFS_DEBUG
  558	if (btrfs_should_fragment_free_space(block_group)) {
  559		u64 bytes_used;
  560
  561		spin_lock(&block_group->space_info->lock);
  562		spin_lock(&block_group->lock);
  563		bytes_used = block_group->key.offset -
  564			btrfs_block_group_used(&block_group->item);
  565		block_group->space_info->bytes_used += bytes_used >> 1;
  566		spin_unlock(&block_group->lock);
  567		spin_unlock(&block_group->space_info->lock);
  568		fragment_free_space(block_group);
  569	}
  570#endif
  571
  572	caching_ctl->progress = (u64)-1;
  573
  574	up_read(&fs_info->commit_root_sem);
  575	free_excluded_extents(fs_info, block_group);
  576	mutex_unlock(&caching_ctl->mutex);
  577
  578	wake_up(&caching_ctl->wait);
  579
  580	put_caching_control(caching_ctl);
  581	btrfs_put_block_group(block_group);
  582}
  583
  584static int cache_block_group(struct btrfs_block_group_cache *cache,
  585			     int load_cache_only)
  586{
  587	DEFINE_WAIT(wait);
  588	struct btrfs_fs_info *fs_info = cache->fs_info;
  589	struct btrfs_caching_control *caching_ctl;
  590	int ret = 0;
  591
  592	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  593	if (!caching_ctl)
  594		return -ENOMEM;
  595
  596	INIT_LIST_HEAD(&caching_ctl->list);
  597	mutex_init(&caching_ctl->mutex);
  598	init_waitqueue_head(&caching_ctl->wait);
  599	caching_ctl->block_group = cache;
  600	caching_ctl->progress = cache->key.objectid;
  601	atomic_set(&caching_ctl->count, 1);
  602	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
  603			caching_thread, NULL, NULL);
  604
  605	spin_lock(&cache->lock);
  606	/*
  607	 * This should be a rare occasion, but this could happen I think in the
  608	 * case where one thread starts to load the space cache info, and then
  609	 * some other thread starts a transaction commit which tries to do an
  610	 * allocation while the other thread is still loading the space cache
  611	 * info.  The previous loop should have kept us from choosing this block
  612	 * group, but if we've moved to the state where we will wait on caching
  613	 * block groups we need to first check if we're doing a fast load here,
  614	 * so we can wait for it to finish, otherwise we could end up allocating
  615	 * from a block group who's cache gets evicted for one reason or
  616	 * another.
  617	 */
  618	while (cache->cached == BTRFS_CACHE_FAST) {
  619		struct btrfs_caching_control *ctl;
  620
  621		ctl = cache->caching_ctl;
  622		atomic_inc(&ctl->count);
  623		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  624		spin_unlock(&cache->lock);
  625
  626		schedule();
  627
  628		finish_wait(&ctl->wait, &wait);
  629		put_caching_control(ctl);
  630		spin_lock(&cache->lock);
  631	}
  632
  633	if (cache->cached != BTRFS_CACHE_NO) {
  634		spin_unlock(&cache->lock);
  635		kfree(caching_ctl);
  636		return 0;
  637	}
  638	WARN_ON(cache->caching_ctl);
  639	cache->caching_ctl = caching_ctl;
  640	cache->cached = BTRFS_CACHE_FAST;
  641	spin_unlock(&cache->lock);
  642
  643	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  644		mutex_lock(&caching_ctl->mutex);
  645		ret = load_free_space_cache(fs_info, cache);
  646
  647		spin_lock(&cache->lock);
  648		if (ret == 1) {
  649			cache->caching_ctl = NULL;
  650			cache->cached = BTRFS_CACHE_FINISHED;
  651			cache->last_byte_to_unpin = (u64)-1;
  652			caching_ctl->progress = (u64)-1;
  653		} else {
  654			if (load_cache_only) {
  655				cache->caching_ctl = NULL;
  656				cache->cached = BTRFS_CACHE_NO;
  657			} else {
  658				cache->cached = BTRFS_CACHE_STARTED;
  659				cache->has_caching_ctl = 1;
  660			}
  661		}
  662		spin_unlock(&cache->lock);
  663#ifdef CONFIG_BTRFS_DEBUG
  664		if (ret == 1 &&
  665		    btrfs_should_fragment_free_space(cache)) {
  666			u64 bytes_used;
  667
  668			spin_lock(&cache->space_info->lock);
  669			spin_lock(&cache->lock);
  670			bytes_used = cache->key.offset -
  671				btrfs_block_group_used(&cache->item);
  672			cache->space_info->bytes_used += bytes_used >> 1;
  673			spin_unlock(&cache->lock);
  674			spin_unlock(&cache->space_info->lock);
  675			fragment_free_space(cache);
  676		}
  677#endif
  678		mutex_unlock(&caching_ctl->mutex);
  679
  680		wake_up(&caching_ctl->wait);
  681		if (ret == 1) {
  682			put_caching_control(caching_ctl);
  683			free_excluded_extents(fs_info, cache);
  684			return 0;
  685		}
  686	} else {
  687		/*
  688		 * We're either using the free space tree or no caching at all.
  689		 * Set cached to the appropriate value and wakeup any waiters.
  690		 */
  691		spin_lock(&cache->lock);
  692		if (load_cache_only) {
  693			cache->caching_ctl = NULL;
  694			cache->cached = BTRFS_CACHE_NO;
  695		} else {
  696			cache->cached = BTRFS_CACHE_STARTED;
  697			cache->has_caching_ctl = 1;
  698		}
  699		spin_unlock(&cache->lock);
  700		wake_up(&caching_ctl->wait);
  701	}
  702
  703	if (load_cache_only) {
  704		put_caching_control(caching_ctl);
  705		return 0;
  706	}
  707
  708	down_write(&fs_info->commit_root_sem);
  709	atomic_inc(&caching_ctl->count);
  710	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  711	up_write(&fs_info->commit_root_sem);
  712
  713	btrfs_get_block_group(cache);
  714
  715	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
  716
  717	return ret;
  718}
  719
  720/*
  721 * return the block group that starts at or after bytenr
  722 */
  723static struct btrfs_block_group_cache *
  724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  725{
  726	return block_group_cache_tree_search(info, bytenr, 0);
  727}
  728
  729/*
  730 * return the block group that contains the given bytenr
  731 */
  732struct btrfs_block_group_cache *btrfs_lookup_block_group(
  733						 struct btrfs_fs_info *info,
  734						 u64 bytenr)
  735{
  736	return block_group_cache_tree_search(info, bytenr, 1);
  737}
  738
  739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  740						  u64 flags)
  741{
  742	struct list_head *head = &info->space_info;
  743	struct btrfs_space_info *found;
  744
  745	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  746
  747	rcu_read_lock();
  748	list_for_each_entry_rcu(found, head, list) {
  749		if (found->flags & flags) {
  750			rcu_read_unlock();
  751			return found;
  752		}
  753	}
  754	rcu_read_unlock();
  755	return NULL;
  756}
  757
  758/*
  759 * after adding space to the filesystem, we need to clear the full flags
  760 * on all the space infos.
  761 */
  762void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  763{
  764	struct list_head *head = &info->space_info;
  765	struct btrfs_space_info *found;
  766
  767	rcu_read_lock();
  768	list_for_each_entry_rcu(found, head, list)
  769		found->full = 0;
  770	rcu_read_unlock();
  771}
  772
  773/* simple helper to search for an existing data extent at a given offset */
  774int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
  775{
  776	int ret;
  777	struct btrfs_key key;
  778	struct btrfs_path *path;
  779
  780	path = btrfs_alloc_path();
  781	if (!path)
  782		return -ENOMEM;
  783
  784	key.objectid = start;
  785	key.offset = len;
  786	key.type = BTRFS_EXTENT_ITEM_KEY;
  787	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  788	btrfs_free_path(path);
  789	return ret;
  790}
  791
  792/*
  793 * helper function to lookup reference count and flags of a tree block.
  794 *
  795 * the head node for delayed ref is used to store the sum of all the
  796 * reference count modifications queued up in the rbtree. the head
  797 * node may also store the extent flags to set. This way you can check
  798 * to see what the reference count and extent flags would be if all of
  799 * the delayed refs are not processed.
  800 */
  801int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  802			     struct btrfs_fs_info *fs_info, u64 bytenr,
  803			     u64 offset, int metadata, u64 *refs, u64 *flags)
  804{
  805	struct btrfs_delayed_ref_head *head;
  806	struct btrfs_delayed_ref_root *delayed_refs;
  807	struct btrfs_path *path;
  808	struct btrfs_extent_item *ei;
  809	struct extent_buffer *leaf;
  810	struct btrfs_key key;
  811	u32 item_size;
  812	u64 num_refs;
  813	u64 extent_flags;
  814	int ret;
  815
  816	/*
  817	 * If we don't have skinny metadata, don't bother doing anything
  818	 * different
  819	 */
  820	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
  821		offset = fs_info->nodesize;
  822		metadata = 0;
  823	}
  824
  825	path = btrfs_alloc_path();
  826	if (!path)
  827		return -ENOMEM;
  828
  829	if (!trans) {
  830		path->skip_locking = 1;
  831		path->search_commit_root = 1;
  832	}
  833
  834search_again:
  835	key.objectid = bytenr;
  836	key.offset = offset;
  837	if (metadata)
  838		key.type = BTRFS_METADATA_ITEM_KEY;
  839	else
  840		key.type = BTRFS_EXTENT_ITEM_KEY;
  841
  842	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  843	if (ret < 0)
  844		goto out_free;
  845
  846	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  847		if (path->slots[0]) {
  848			path->slots[0]--;
  849			btrfs_item_key_to_cpu(path->nodes[0], &key,
  850					      path->slots[0]);
  851			if (key.objectid == bytenr &&
  852			    key.type == BTRFS_EXTENT_ITEM_KEY &&
  853			    key.offset == fs_info->nodesize)
  854				ret = 0;
  855		}
  856	}
  857
  858	if (ret == 0) {
  859		leaf = path->nodes[0];
  860		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  861		if (item_size >= sizeof(*ei)) {
  862			ei = btrfs_item_ptr(leaf, path->slots[0],
  863					    struct btrfs_extent_item);
  864			num_refs = btrfs_extent_refs(leaf, ei);
  865			extent_flags = btrfs_extent_flags(leaf, ei);
  866		} else {
  867#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  868			struct btrfs_extent_item_v0 *ei0;
  869			BUG_ON(item_size != sizeof(*ei0));
  870			ei0 = btrfs_item_ptr(leaf, path->slots[0],
  871					     struct btrfs_extent_item_v0);
  872			num_refs = btrfs_extent_refs_v0(leaf, ei0);
  873			/* FIXME: this isn't correct for data */
  874			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  875#else
  876			BUG();
  877#endif
  878		}
 
  879		BUG_ON(num_refs == 0);
  880	} else {
  881		num_refs = 0;
  882		extent_flags = 0;
  883		ret = 0;
  884	}
  885
  886	if (!trans)
  887		goto out;
  888
  889	delayed_refs = &trans->transaction->delayed_refs;
  890	spin_lock(&delayed_refs->lock);
  891	head = btrfs_find_delayed_ref_head(trans, bytenr);
  892	if (head) {
  893		if (!mutex_trylock(&head->mutex)) {
  894			atomic_inc(&head->node.refs);
  895			spin_unlock(&delayed_refs->lock);
  896
  897			btrfs_release_path(path);
  898
  899			/*
  900			 * Mutex was contended, block until it's released and try
  901			 * again
  902			 */
  903			mutex_lock(&head->mutex);
  904			mutex_unlock(&head->mutex);
  905			btrfs_put_delayed_ref(&head->node);
  906			goto search_again;
  907		}
  908		spin_lock(&head->lock);
  909		if (head->extent_op && head->extent_op->update_flags)
  910			extent_flags |= head->extent_op->flags_to_set;
  911		else
  912			BUG_ON(num_refs == 0);
  913
  914		num_refs += head->node.ref_mod;
  915		spin_unlock(&head->lock);
  916		mutex_unlock(&head->mutex);
  917	}
  918	spin_unlock(&delayed_refs->lock);
  919out:
  920	WARN_ON(num_refs == 0);
  921	if (refs)
  922		*refs = num_refs;
  923	if (flags)
  924		*flags = extent_flags;
  925out_free:
  926	btrfs_free_path(path);
  927	return ret;
  928}
  929
  930/*
  931 * Back reference rules.  Back refs have three main goals:
  932 *
  933 * 1) differentiate between all holders of references to an extent so that
  934 *    when a reference is dropped we can make sure it was a valid reference
  935 *    before freeing the extent.
  936 *
  937 * 2) Provide enough information to quickly find the holders of an extent
  938 *    if we notice a given block is corrupted or bad.
  939 *
  940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  941 *    maintenance.  This is actually the same as #2, but with a slightly
  942 *    different use case.
  943 *
  944 * There are two kinds of back refs. The implicit back refs is optimized
  945 * for pointers in non-shared tree blocks. For a given pointer in a block,
  946 * back refs of this kind provide information about the block's owner tree
  947 * and the pointer's key. These information allow us to find the block by
  948 * b-tree searching. The full back refs is for pointers in tree blocks not
  949 * referenced by their owner trees. The location of tree block is recorded
  950 * in the back refs. Actually the full back refs is generic, and can be
  951 * used in all cases the implicit back refs is used. The major shortcoming
  952 * of the full back refs is its overhead. Every time a tree block gets
  953 * COWed, we have to update back refs entry for all pointers in it.
  954 *
  955 * For a newly allocated tree block, we use implicit back refs for
  956 * pointers in it. This means most tree related operations only involve
  957 * implicit back refs. For a tree block created in old transaction, the
  958 * only way to drop a reference to it is COW it. So we can detect the
  959 * event that tree block loses its owner tree's reference and do the
  960 * back refs conversion.
  961 *
  962 * When a tree block is COWed through a tree, there are four cases:
  963 *
  964 * The reference count of the block is one and the tree is the block's
  965 * owner tree. Nothing to do in this case.
  966 *
  967 * The reference count of the block is one and the tree is not the
  968 * block's owner tree. In this case, full back refs is used for pointers
  969 * in the block. Remove these full back refs, add implicit back refs for
  970 * every pointers in the new block.
  971 *
  972 * The reference count of the block is greater than one and the tree is
  973 * the block's owner tree. In this case, implicit back refs is used for
  974 * pointers in the block. Add full back refs for every pointers in the
  975 * block, increase lower level extents' reference counts. The original
  976 * implicit back refs are entailed to the new block.
  977 *
  978 * The reference count of the block is greater than one and the tree is
  979 * not the block's owner tree. Add implicit back refs for every pointer in
  980 * the new block, increase lower level extents' reference count.
  981 *
  982 * Back Reference Key composing:
  983 *
  984 * The key objectid corresponds to the first byte in the extent,
  985 * The key type is used to differentiate between types of back refs.
  986 * There are different meanings of the key offset for different types
  987 * of back refs.
  988 *
  989 * File extents can be referenced by:
  990 *
  991 * - multiple snapshots, subvolumes, or different generations in one subvol
  992 * - different files inside a single subvolume
  993 * - different offsets inside a file (bookend extents in file.c)
  994 *
  995 * The extent ref structure for the implicit back refs has fields for:
  996 *
  997 * - Objectid of the subvolume root
  998 * - objectid of the file holding the reference
  999 * - original offset in the file
 1000 * - how many bookend extents
 1001 *
 1002 * The key offset for the implicit back refs is hash of the first
 1003 * three fields.
 1004 *
 1005 * The extent ref structure for the full back refs has field for:
 1006 *
 1007 * - number of pointers in the tree leaf
 1008 *
 1009 * The key offset for the implicit back refs is the first byte of
 1010 * the tree leaf
 1011 *
 1012 * When a file extent is allocated, The implicit back refs is used.
 1013 * the fields are filled in:
 1014 *
 1015 *     (root_key.objectid, inode objectid, offset in file, 1)
 1016 *
 1017 * When a file extent is removed file truncation, we find the
 1018 * corresponding implicit back refs and check the following fields:
 1019 *
 1020 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 1021 *
 1022 * Btree extents can be referenced by:
 1023 *
 1024 * - Different subvolumes
 1025 *
 1026 * Both the implicit back refs and the full back refs for tree blocks
 1027 * only consist of key. The key offset for the implicit back refs is
 1028 * objectid of block's owner tree. The key offset for the full back refs
 1029 * is the first byte of parent block.
 1030 *
 1031 * When implicit back refs is used, information about the lowest key and
 1032 * level of the tree block are required. These information are stored in
 1033 * tree block info structure.
 1034 */
 1035
 1036#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1037static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
 1038				  struct btrfs_root *root,
 1039				  struct btrfs_path *path,
 1040				  u64 owner, u32 extra_size)
 1041{
 1042	struct btrfs_extent_item *item;
 1043	struct btrfs_extent_item_v0 *ei0;
 1044	struct btrfs_extent_ref_v0 *ref0;
 1045	struct btrfs_tree_block_info *bi;
 1046	struct extent_buffer *leaf;
 1047	struct btrfs_key key;
 1048	struct btrfs_key found_key;
 1049	u32 new_size = sizeof(*item);
 1050	u64 refs;
 1051	int ret;
 1052
 1053	leaf = path->nodes[0];
 1054	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
 1055
 1056	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1057	ei0 = btrfs_item_ptr(leaf, path->slots[0],
 1058			     struct btrfs_extent_item_v0);
 1059	refs = btrfs_extent_refs_v0(leaf, ei0);
 1060
 1061	if (owner == (u64)-1) {
 1062		while (1) {
 1063			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 1064				ret = btrfs_next_leaf(root, path);
 1065				if (ret < 0)
 1066					return ret;
 1067				BUG_ON(ret > 0); /* Corruption */
 1068				leaf = path->nodes[0];
 1069			}
 1070			btrfs_item_key_to_cpu(leaf, &found_key,
 1071					      path->slots[0]);
 1072			BUG_ON(key.objectid != found_key.objectid);
 1073			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
 1074				path->slots[0]++;
 1075				continue;
 
 
 
 1076			}
 1077			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1078					      struct btrfs_extent_ref_v0);
 1079			owner = btrfs_ref_objectid_v0(leaf, ref0);
 1080			break;
 1081		}
 1082	}
 1083	btrfs_release_path(path);
 1084
 1085	if (owner < BTRFS_FIRST_FREE_OBJECTID)
 1086		new_size += sizeof(*bi);
 1087
 1088	new_size -= sizeof(*ei0);
 1089	ret = btrfs_search_slot(trans, root, &key, path,
 1090				new_size + extra_size, 1);
 1091	if (ret < 0)
 1092		return ret;
 1093	BUG_ON(ret); /* Corruption */
 1094
 1095	btrfs_extend_item(root->fs_info, path, new_size);
 1096
 1097	leaf = path->nodes[0];
 1098	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1099	btrfs_set_extent_refs(leaf, item, refs);
 1100	/* FIXME: get real generation */
 1101	btrfs_set_extent_generation(leaf, item, 0);
 1102	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1103		btrfs_set_extent_flags(leaf, item,
 1104				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
 1105				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
 1106		bi = (struct btrfs_tree_block_info *)(item + 1);
 1107		/* FIXME: get first key of the block */
 1108		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
 1109		btrfs_set_tree_block_level(leaf, bi, (int)owner);
 1110	} else {
 1111		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
 1112	}
 1113	btrfs_mark_buffer_dirty(leaf);
 1114	return 0;
 1115}
 1116#endif
 1117
 1118static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 1119{
 1120	u32 high_crc = ~(u32)0;
 1121	u32 low_crc = ~(u32)0;
 1122	__le64 lenum;
 1123
 1124	lenum = cpu_to_le64(root_objectid);
 1125	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 1126	lenum = cpu_to_le64(owner);
 1127	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1128	lenum = cpu_to_le64(offset);
 1129	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 1130
 1131	return ((u64)high_crc << 31) ^ (u64)low_crc;
 1132}
 1133
 1134static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 1135				     struct btrfs_extent_data_ref *ref)
 1136{
 1137	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 1138				    btrfs_extent_data_ref_objectid(leaf, ref),
 1139				    btrfs_extent_data_ref_offset(leaf, ref));
 1140}
 1141
 1142static int match_extent_data_ref(struct extent_buffer *leaf,
 1143				 struct btrfs_extent_data_ref *ref,
 1144				 u64 root_objectid, u64 owner, u64 offset)
 1145{
 1146	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 1147	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 1148	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 1149		return 0;
 1150	return 1;
 1151}
 1152
 1153static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 1154					   struct btrfs_root *root,
 1155					   struct btrfs_path *path,
 1156					   u64 bytenr, u64 parent,
 1157					   u64 root_objectid,
 1158					   u64 owner, u64 offset)
 1159{
 
 1160	struct btrfs_key key;
 1161	struct btrfs_extent_data_ref *ref;
 1162	struct extent_buffer *leaf;
 1163	u32 nritems;
 1164	int ret;
 1165	int recow;
 1166	int err = -ENOENT;
 1167
 1168	key.objectid = bytenr;
 1169	if (parent) {
 1170		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1171		key.offset = parent;
 1172	} else {
 1173		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1174		key.offset = hash_extent_data_ref(root_objectid,
 1175						  owner, offset);
 1176	}
 1177again:
 1178	recow = 0;
 1179	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1180	if (ret < 0) {
 1181		err = ret;
 1182		goto fail;
 1183	}
 1184
 1185	if (parent) {
 1186		if (!ret)
 1187			return 0;
 1188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1189		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1190		btrfs_release_path(path);
 1191		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1192		if (ret < 0) {
 1193			err = ret;
 1194			goto fail;
 1195		}
 1196		if (!ret)
 1197			return 0;
 1198#endif
 1199		goto fail;
 1200	}
 1201
 1202	leaf = path->nodes[0];
 1203	nritems = btrfs_header_nritems(leaf);
 1204	while (1) {
 1205		if (path->slots[0] >= nritems) {
 1206			ret = btrfs_next_leaf(root, path);
 1207			if (ret < 0)
 1208				err = ret;
 1209			if (ret)
 1210				goto fail;
 1211
 1212			leaf = path->nodes[0];
 1213			nritems = btrfs_header_nritems(leaf);
 1214			recow = 1;
 1215		}
 1216
 1217		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1218		if (key.objectid != bytenr ||
 1219		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 1220			goto fail;
 1221
 1222		ref = btrfs_item_ptr(leaf, path->slots[0],
 1223				     struct btrfs_extent_data_ref);
 1224
 1225		if (match_extent_data_ref(leaf, ref, root_objectid,
 1226					  owner, offset)) {
 1227			if (recow) {
 1228				btrfs_release_path(path);
 1229				goto again;
 1230			}
 1231			err = 0;
 1232			break;
 1233		}
 1234		path->slots[0]++;
 1235	}
 1236fail:
 1237	return err;
 1238}
 1239
 1240static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 1241					   struct btrfs_root *root,
 1242					   struct btrfs_path *path,
 1243					   u64 bytenr, u64 parent,
 1244					   u64 root_objectid, u64 owner,
 1245					   u64 offset, int refs_to_add)
 1246{
 
 1247	struct btrfs_key key;
 1248	struct extent_buffer *leaf;
 1249	u32 size;
 1250	u32 num_refs;
 1251	int ret;
 1252
 1253	key.objectid = bytenr;
 1254	if (parent) {
 1255		key.type = BTRFS_SHARED_DATA_REF_KEY;
 1256		key.offset = parent;
 1257		size = sizeof(struct btrfs_shared_data_ref);
 1258	} else {
 1259		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 1260		key.offset = hash_extent_data_ref(root_objectid,
 1261						  owner, offset);
 1262		size = sizeof(struct btrfs_extent_data_ref);
 1263	}
 1264
 1265	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 1266	if (ret && ret != -EEXIST)
 1267		goto fail;
 1268
 1269	leaf = path->nodes[0];
 1270	if (parent) {
 1271		struct btrfs_shared_data_ref *ref;
 1272		ref = btrfs_item_ptr(leaf, path->slots[0],
 1273				     struct btrfs_shared_data_ref);
 1274		if (ret == 0) {
 1275			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 1276		} else {
 1277			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 1278			num_refs += refs_to_add;
 1279			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 1280		}
 1281	} else {
 1282		struct btrfs_extent_data_ref *ref;
 1283		while (ret == -EEXIST) {
 1284			ref = btrfs_item_ptr(leaf, path->slots[0],
 1285					     struct btrfs_extent_data_ref);
 1286			if (match_extent_data_ref(leaf, ref, root_objectid,
 1287						  owner, offset))
 1288				break;
 1289			btrfs_release_path(path);
 1290			key.offset++;
 1291			ret = btrfs_insert_empty_item(trans, root, path, &key,
 1292						      size);
 1293			if (ret && ret != -EEXIST)
 1294				goto fail;
 1295
 1296			leaf = path->nodes[0];
 1297		}
 1298		ref = btrfs_item_ptr(leaf, path->slots[0],
 1299				     struct btrfs_extent_data_ref);
 1300		if (ret == 0) {
 1301			btrfs_set_extent_data_ref_root(leaf, ref,
 1302						       root_objectid);
 1303			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 1304			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 1305			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 1306		} else {
 1307			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 1308			num_refs += refs_to_add;
 1309			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 1310		}
 1311	}
 1312	btrfs_mark_buffer_dirty(leaf);
 1313	ret = 0;
 1314fail:
 1315	btrfs_release_path(path);
 1316	return ret;
 1317}
 1318
 1319static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 1320					   struct btrfs_root *root,
 1321					   struct btrfs_path *path,
 1322					   int refs_to_drop, int *last_ref)
 1323{
 1324	struct btrfs_key key;
 1325	struct btrfs_extent_data_ref *ref1 = NULL;
 1326	struct btrfs_shared_data_ref *ref2 = NULL;
 1327	struct extent_buffer *leaf;
 1328	u32 num_refs = 0;
 1329	int ret = 0;
 1330
 1331	leaf = path->nodes[0];
 1332	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 1333
 1334	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1335		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1336				      struct btrfs_extent_data_ref);
 1337		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1338	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1339		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1340				      struct btrfs_shared_data_ref);
 1341		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1342#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1343	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1344		struct btrfs_extent_ref_v0 *ref0;
 1345		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1346				      struct btrfs_extent_ref_v0);
 1347		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1348#endif
 1349	} else {
 1350		BUG();
 1351	}
 1352
 1353	BUG_ON(num_refs < refs_to_drop);
 1354	num_refs -= refs_to_drop;
 1355
 1356	if (num_refs == 0) {
 1357		ret = btrfs_del_item(trans, root, path);
 1358		*last_ref = 1;
 1359	} else {
 1360		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 1361			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 1362		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 1363			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 1364#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1365		else {
 1366			struct btrfs_extent_ref_v0 *ref0;
 1367			ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1368					struct btrfs_extent_ref_v0);
 1369			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
 1370		}
 1371#endif
 1372		btrfs_mark_buffer_dirty(leaf);
 1373	}
 1374	return ret;
 1375}
 1376
 1377static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 1378					  struct btrfs_extent_inline_ref *iref)
 1379{
 1380	struct btrfs_key key;
 1381	struct extent_buffer *leaf;
 1382	struct btrfs_extent_data_ref *ref1;
 1383	struct btrfs_shared_data_ref *ref2;
 1384	u32 num_refs = 0;
 
 1385
 1386	leaf = path->nodes[0];
 1387	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 
 
 1388	if (iref) {
 1389		if (btrfs_extent_inline_ref_type(leaf, iref) ==
 1390		    BTRFS_EXTENT_DATA_REF_KEY) {
 
 
 
 
 
 1391			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 1392			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1393		} else {
 1394			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 1395			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1396		}
 1397	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 1398		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 1399				      struct btrfs_extent_data_ref);
 1400		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 1401	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 1402		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 1403				      struct btrfs_shared_data_ref);
 1404		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 1405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1406	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 1407		struct btrfs_extent_ref_v0 *ref0;
 1408		ref0 = btrfs_item_ptr(leaf, path->slots[0],
 1409				      struct btrfs_extent_ref_v0);
 1410		num_refs = btrfs_ref_count_v0(leaf, ref0);
 1411#endif
 1412	} else {
 1413		WARN_ON(1);
 1414	}
 1415	return num_refs;
 1416}
 1417
 1418static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 1419					  struct btrfs_root *root,
 1420					  struct btrfs_path *path,
 1421					  u64 bytenr, u64 parent,
 1422					  u64 root_objectid)
 1423{
 
 1424	struct btrfs_key key;
 1425	int ret;
 1426
 1427	key.objectid = bytenr;
 1428	if (parent) {
 1429		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1430		key.offset = parent;
 1431	} else {
 1432		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1433		key.offset = root_objectid;
 1434	}
 1435
 1436	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1437	if (ret > 0)
 1438		ret = -ENOENT;
 1439#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1440	if (ret == -ENOENT && parent) {
 1441		btrfs_release_path(path);
 1442		key.type = BTRFS_EXTENT_REF_V0_KEY;
 1443		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 1444		if (ret > 0)
 1445			ret = -ENOENT;
 1446	}
 1447#endif
 1448	return ret;
 1449}
 1450
 1451static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 1452					  struct btrfs_root *root,
 1453					  struct btrfs_path *path,
 1454					  u64 bytenr, u64 parent,
 1455					  u64 root_objectid)
 1456{
 1457	struct btrfs_key key;
 1458	int ret;
 1459
 1460	key.objectid = bytenr;
 1461	if (parent) {
 1462		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 1463		key.offset = parent;
 1464	} else {
 1465		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 1466		key.offset = root_objectid;
 1467	}
 1468
 1469	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
 
 1470	btrfs_release_path(path);
 1471	return ret;
 1472}
 1473
 1474static inline int extent_ref_type(u64 parent, u64 owner)
 1475{
 1476	int type;
 1477	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1478		if (parent > 0)
 1479			type = BTRFS_SHARED_BLOCK_REF_KEY;
 1480		else
 1481			type = BTRFS_TREE_BLOCK_REF_KEY;
 1482	} else {
 1483		if (parent > 0)
 1484			type = BTRFS_SHARED_DATA_REF_KEY;
 1485		else
 1486			type = BTRFS_EXTENT_DATA_REF_KEY;
 1487	}
 1488	return type;
 1489}
 1490
 1491static int find_next_key(struct btrfs_path *path, int level,
 1492			 struct btrfs_key *key)
 1493
 1494{
 1495	for (; level < BTRFS_MAX_LEVEL; level++) {
 1496		if (!path->nodes[level])
 1497			break;
 1498		if (path->slots[level] + 1 >=
 1499		    btrfs_header_nritems(path->nodes[level]))
 1500			continue;
 1501		if (level == 0)
 1502			btrfs_item_key_to_cpu(path->nodes[level], key,
 1503					      path->slots[level] + 1);
 1504		else
 1505			btrfs_node_key_to_cpu(path->nodes[level], key,
 1506					      path->slots[level] + 1);
 1507		return 0;
 1508	}
 1509	return 1;
 1510}
 1511
 1512/*
 1513 * look for inline back ref. if back ref is found, *ref_ret is set
 1514 * to the address of inline back ref, and 0 is returned.
 1515 *
 1516 * if back ref isn't found, *ref_ret is set to the address where it
 1517 * should be inserted, and -ENOENT is returned.
 1518 *
 1519 * if insert is true and there are too many inline back refs, the path
 1520 * points to the extent item, and -EAGAIN is returned.
 1521 *
 1522 * NOTE: inline back refs are ordered in the same way that back ref
 1523 *	 items in the tree are ordered.
 1524 */
 1525static noinline_for_stack
 1526int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 1527				 struct btrfs_root *root,
 1528				 struct btrfs_path *path,
 1529				 struct btrfs_extent_inline_ref **ref_ret,
 1530				 u64 bytenr, u64 num_bytes,
 1531				 u64 parent, u64 root_objectid,
 1532				 u64 owner, u64 offset, int insert)
 1533{
 1534	struct btrfs_fs_info *fs_info = root->fs_info;
 
 1535	struct btrfs_key key;
 1536	struct extent_buffer *leaf;
 1537	struct btrfs_extent_item *ei;
 1538	struct btrfs_extent_inline_ref *iref;
 1539	u64 flags;
 1540	u64 item_size;
 1541	unsigned long ptr;
 1542	unsigned long end;
 1543	int extra_size;
 1544	int type;
 1545	int want;
 1546	int ret;
 1547	int err = 0;
 1548	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
 1549
 1550	key.objectid = bytenr;
 1551	key.type = BTRFS_EXTENT_ITEM_KEY;
 1552	key.offset = num_bytes;
 1553
 1554	want = extent_ref_type(parent, owner);
 1555	if (insert) {
 1556		extra_size = btrfs_extent_inline_ref_size(want);
 1557		path->keep_locks = 1;
 1558	} else
 1559		extra_size = -1;
 1560
 1561	/*
 1562	 * Owner is our parent level, so we can just add one to get the level
 1563	 * for the block we are interested in.
 1564	 */
 1565	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 1566		key.type = BTRFS_METADATA_ITEM_KEY;
 1567		key.offset = owner;
 1568	}
 1569
 1570again:
 1571	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 1572	if (ret < 0) {
 1573		err = ret;
 1574		goto out;
 1575	}
 1576
 1577	/*
 1578	 * We may be a newly converted file system which still has the old fat
 1579	 * extent entries for metadata, so try and see if we have one of those.
 1580	 */
 1581	if (ret > 0 && skinny_metadata) {
 1582		skinny_metadata = false;
 1583		if (path->slots[0]) {
 1584			path->slots[0]--;
 1585			btrfs_item_key_to_cpu(path->nodes[0], &key,
 1586					      path->slots[0]);
 1587			if (key.objectid == bytenr &&
 1588			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 1589			    key.offset == num_bytes)
 1590				ret = 0;
 1591		}
 1592		if (ret) {
 1593			key.objectid = bytenr;
 1594			key.type = BTRFS_EXTENT_ITEM_KEY;
 1595			key.offset = num_bytes;
 1596			btrfs_release_path(path);
 1597			goto again;
 1598		}
 1599	}
 1600
 1601	if (ret && !insert) {
 1602		err = -ENOENT;
 1603		goto out;
 1604	} else if (WARN_ON(ret)) {
 1605		err = -EIO;
 1606		goto out;
 1607	}
 1608
 1609	leaf = path->nodes[0];
 1610	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1611#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 1612	if (item_size < sizeof(*ei)) {
 1613		if (!insert) {
 1614			err = -ENOENT;
 1615			goto out;
 1616		}
 1617		ret = convert_extent_item_v0(trans, root, path, owner,
 1618					     extra_size);
 1619		if (ret < 0) {
 1620			err = ret;
 1621			goto out;
 1622		}
 1623		leaf = path->nodes[0];
 1624		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1625	}
 1626#endif
 1627	BUG_ON(item_size < sizeof(*ei));
 1628
 1629	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1630	flags = btrfs_extent_flags(leaf, ei);
 1631
 1632	ptr = (unsigned long)(ei + 1);
 1633	end = (unsigned long)ei + item_size;
 1634
 1635	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 1636		ptr += sizeof(struct btrfs_tree_block_info);
 1637		BUG_ON(ptr > end);
 1638	}
 1639
 
 
 
 
 
 1640	err = -ENOENT;
 1641	while (1) {
 1642		if (ptr >= end) {
 1643			WARN_ON(ptr > end);
 1644			break;
 1645		}
 1646		iref = (struct btrfs_extent_inline_ref *)ptr;
 1647		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 1648		if (want < type)
 1649			break;
 1650		if (want > type) {
 1651			ptr += btrfs_extent_inline_ref_size(type);
 1652			continue;
 1653		}
 1654
 1655		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1656			struct btrfs_extent_data_ref *dref;
 1657			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1658			if (match_extent_data_ref(leaf, dref, root_objectid,
 1659						  owner, offset)) {
 1660				err = 0;
 1661				break;
 1662			}
 1663			if (hash_extent_data_ref_item(leaf, dref) <
 1664			    hash_extent_data_ref(root_objectid, owner, offset))
 1665				break;
 1666		} else {
 1667			u64 ref_offset;
 1668			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 1669			if (parent > 0) {
 1670				if (parent == ref_offset) {
 1671					err = 0;
 1672					break;
 1673				}
 1674				if (ref_offset < parent)
 1675					break;
 1676			} else {
 1677				if (root_objectid == ref_offset) {
 1678					err = 0;
 1679					break;
 1680				}
 1681				if (ref_offset < root_objectid)
 1682					break;
 1683			}
 1684		}
 1685		ptr += btrfs_extent_inline_ref_size(type);
 1686	}
 1687	if (err == -ENOENT && insert) {
 1688		if (item_size + extra_size >=
 1689		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 1690			err = -EAGAIN;
 1691			goto out;
 1692		}
 1693		/*
 1694		 * To add new inline back ref, we have to make sure
 1695		 * there is no corresponding back ref item.
 1696		 * For simplicity, we just do not add new inline back
 1697		 * ref if there is any kind of item for this block
 1698		 */
 1699		if (find_next_key(path, 0, &key) == 0 &&
 1700		    key.objectid == bytenr &&
 1701		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 1702			err = -EAGAIN;
 1703			goto out;
 1704		}
 1705	}
 1706	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 1707out:
 1708	if (insert) {
 1709		path->keep_locks = 0;
 1710		btrfs_unlock_up_safe(path, 1);
 1711	}
 1712	return err;
 1713}
 1714
 1715/*
 1716 * helper to add new inline back ref
 1717 */
 1718static noinline_for_stack
 1719void setup_inline_extent_backref(struct btrfs_root *root,
 1720				 struct btrfs_path *path,
 1721				 struct btrfs_extent_inline_ref *iref,
 1722				 u64 parent, u64 root_objectid,
 1723				 u64 owner, u64 offset, int refs_to_add,
 1724				 struct btrfs_delayed_extent_op *extent_op)
 1725{
 1726	struct extent_buffer *leaf;
 1727	struct btrfs_extent_item *ei;
 1728	unsigned long ptr;
 1729	unsigned long end;
 1730	unsigned long item_offset;
 1731	u64 refs;
 1732	int size;
 1733	int type;
 1734
 1735	leaf = path->nodes[0];
 1736	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1737	item_offset = (unsigned long)iref - (unsigned long)ei;
 1738
 1739	type = extent_ref_type(parent, owner);
 1740	size = btrfs_extent_inline_ref_size(type);
 1741
 1742	btrfs_extend_item(root->fs_info, path, size);
 1743
 1744	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1745	refs = btrfs_extent_refs(leaf, ei);
 1746	refs += refs_to_add;
 1747	btrfs_set_extent_refs(leaf, ei, refs);
 1748	if (extent_op)
 1749		__run_delayed_extent_op(extent_op, leaf, ei);
 1750
 1751	ptr = (unsigned long)ei + item_offset;
 1752	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
 1753	if (ptr < end - size)
 1754		memmove_extent_buffer(leaf, ptr + size, ptr,
 1755				      end - size - ptr);
 1756
 1757	iref = (struct btrfs_extent_inline_ref *)ptr;
 1758	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 1759	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1760		struct btrfs_extent_data_ref *dref;
 1761		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1762		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
 1763		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
 1764		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
 1765		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
 1766	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1767		struct btrfs_shared_data_ref *sref;
 1768		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1769		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
 1770		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1771	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 1772		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 1773	} else {
 1774		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 1775	}
 1776	btrfs_mark_buffer_dirty(leaf);
 1777}
 1778
 1779static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 1780				 struct btrfs_root *root,
 1781				 struct btrfs_path *path,
 1782				 struct btrfs_extent_inline_ref **ref_ret,
 1783				 u64 bytenr, u64 num_bytes, u64 parent,
 1784				 u64 root_objectid, u64 owner, u64 offset)
 1785{
 1786	int ret;
 1787
 1788	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
 1789					   bytenr, num_bytes, parent,
 1790					   root_objectid, owner, offset, 0);
 1791	if (ret != -ENOENT)
 1792		return ret;
 1793
 1794	btrfs_release_path(path);
 1795	*ref_ret = NULL;
 1796
 1797	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1798		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
 1799					    root_objectid);
 1800	} else {
 1801		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
 1802					     root_objectid, owner, offset);
 1803	}
 1804	return ret;
 1805}
 1806
 1807/*
 1808 * helper to update/remove inline back ref
 1809 */
 1810static noinline_for_stack
 1811void update_inline_extent_backref(struct btrfs_root *root,
 1812				  struct btrfs_path *path,
 1813				  struct btrfs_extent_inline_ref *iref,
 1814				  int refs_to_mod,
 1815				  struct btrfs_delayed_extent_op *extent_op,
 1816				  int *last_ref)
 1817{
 1818	struct extent_buffer *leaf;
 1819	struct btrfs_extent_item *ei;
 1820	struct btrfs_extent_data_ref *dref = NULL;
 1821	struct btrfs_shared_data_ref *sref = NULL;
 1822	unsigned long ptr;
 1823	unsigned long end;
 1824	u32 item_size;
 1825	int size;
 1826	int type;
 1827	u64 refs;
 1828
 1829	leaf = path->nodes[0];
 1830	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 1831	refs = btrfs_extent_refs(leaf, ei);
 1832	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
 1833	refs += refs_to_mod;
 1834	btrfs_set_extent_refs(leaf, ei, refs);
 1835	if (extent_op)
 1836		__run_delayed_extent_op(extent_op, leaf, ei);
 1837
 1838	type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 
 1839
 1840	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 1841		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 1842		refs = btrfs_extent_data_ref_count(leaf, dref);
 1843	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
 1844		sref = (struct btrfs_shared_data_ref *)(iref + 1);
 1845		refs = btrfs_shared_data_ref_count(leaf, sref);
 1846	} else {
 1847		refs = 1;
 1848		BUG_ON(refs_to_mod != -1);
 1849	}
 1850
 1851	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
 1852	refs += refs_to_mod;
 1853
 1854	if (refs > 0) {
 1855		if (type == BTRFS_EXTENT_DATA_REF_KEY)
 1856			btrfs_set_extent_data_ref_count(leaf, dref, refs);
 1857		else
 1858			btrfs_set_shared_data_ref_count(leaf, sref, refs);
 1859	} else {
 1860		*last_ref = 1;
 1861		size =  btrfs_extent_inline_ref_size(type);
 1862		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 1863		ptr = (unsigned long)iref;
 1864		end = (unsigned long)ei + item_size;
 1865		if (ptr + size < end)
 1866			memmove_extent_buffer(leaf, ptr, ptr + size,
 1867					      end - ptr - size);
 1868		item_size -= size;
 1869		btrfs_truncate_item(root->fs_info, path, item_size, 1);
 1870	}
 1871	btrfs_mark_buffer_dirty(leaf);
 1872}
 1873
 1874static noinline_for_stack
 1875int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 1876				 struct btrfs_root *root,
 1877				 struct btrfs_path *path,
 1878				 u64 bytenr, u64 num_bytes, u64 parent,
 1879				 u64 root_objectid, u64 owner,
 1880				 u64 offset, int refs_to_add,
 1881				 struct btrfs_delayed_extent_op *extent_op)
 1882{
 1883	struct btrfs_extent_inline_ref *iref;
 1884	int ret;
 1885
 1886	ret = lookup_inline_extent_backref(trans, root, path, &iref,
 1887					   bytenr, num_bytes, parent,
 1888					   root_objectid, owner, offset, 1);
 1889	if (ret == 0) {
 1890		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
 1891		update_inline_extent_backref(root, path, iref,
 1892					     refs_to_add, extent_op, NULL);
 1893	} else if (ret == -ENOENT) {
 1894		setup_inline_extent_backref(root, path, iref, parent,
 1895					    root_objectid, owner, offset,
 1896					    refs_to_add, extent_op);
 1897		ret = 0;
 1898	}
 1899	return ret;
 1900}
 1901
 1902static int insert_extent_backref(struct btrfs_trans_handle *trans,
 1903				 struct btrfs_root *root,
 1904				 struct btrfs_path *path,
 1905				 u64 bytenr, u64 parent, u64 root_objectid,
 1906				 u64 owner, u64 offset, int refs_to_add)
 1907{
 1908	int ret;
 1909	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 1910		BUG_ON(refs_to_add != 1);
 1911		ret = insert_tree_block_ref(trans, root, path, bytenr,
 1912					    parent, root_objectid);
 1913	} else {
 1914		ret = insert_extent_data_ref(trans, root, path, bytenr,
 1915					     parent, root_objectid,
 1916					     owner, offset, refs_to_add);
 1917	}
 1918	return ret;
 1919}
 1920
 1921static int remove_extent_backref(struct btrfs_trans_handle *trans,
 1922				 struct btrfs_root *root,
 1923				 struct btrfs_path *path,
 1924				 struct btrfs_extent_inline_ref *iref,
 1925				 int refs_to_drop, int is_data, int *last_ref)
 1926{
 1927	int ret = 0;
 1928
 1929	BUG_ON(!is_data && refs_to_drop != 1);
 1930	if (iref) {
 1931		update_inline_extent_backref(root, path, iref,
 1932					     -refs_to_drop, NULL, last_ref);
 1933	} else if (is_data) {
 1934		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
 1935					     last_ref);
 1936	} else {
 1937		*last_ref = 1;
 1938		ret = btrfs_del_item(trans, root, path);
 1939	}
 1940	return ret;
 1941}
 1942
 1943#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
 1944static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
 1945			       u64 *discarded_bytes)
 1946{
 1947	int j, ret = 0;
 1948	u64 bytes_left, end;
 1949	u64 aligned_start = ALIGN(start, 1 << 9);
 1950
 1951	if (WARN_ON(start != aligned_start)) {
 1952		len -= aligned_start - start;
 1953		len = round_down(len, 1 << 9);
 1954		start = aligned_start;
 1955	}
 1956
 1957	*discarded_bytes = 0;
 1958
 1959	if (!len)
 1960		return 0;
 1961
 1962	end = start + len;
 1963	bytes_left = len;
 1964
 1965	/* Skip any superblocks on this device. */
 1966	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
 1967		u64 sb_start = btrfs_sb_offset(j);
 1968		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
 1969		u64 size = sb_start - start;
 1970
 1971		if (!in_range(sb_start, start, bytes_left) &&
 1972		    !in_range(sb_end, start, bytes_left) &&
 1973		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
 1974			continue;
 1975
 1976		/*
 1977		 * Superblock spans beginning of range.  Adjust start and
 1978		 * try again.
 1979		 */
 1980		if (sb_start <= start) {
 1981			start += sb_end - start;
 1982			if (start > end) {
 1983				bytes_left = 0;
 1984				break;
 1985			}
 1986			bytes_left = end - start;
 1987			continue;
 1988		}
 1989
 1990		if (size) {
 1991			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
 1992						   GFP_NOFS, 0);
 1993			if (!ret)
 1994				*discarded_bytes += size;
 1995			else if (ret != -EOPNOTSUPP)
 1996				return ret;
 1997		}
 1998
 1999		start = sb_end;
 2000		if (start > end) {
 2001			bytes_left = 0;
 2002			break;
 2003		}
 2004		bytes_left = end - start;
 2005	}
 2006
 2007	if (bytes_left) {
 2008		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
 2009					   GFP_NOFS, 0);
 2010		if (!ret)
 2011			*discarded_bytes += bytes_left;
 2012	}
 2013	return ret;
 2014}
 2015
 2016int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
 2017			 u64 num_bytes, u64 *actual_bytes)
 2018{
 2019	int ret;
 2020	u64 discarded_bytes = 0;
 2021	struct btrfs_bio *bbio = NULL;
 2022
 2023
 2024	/*
 2025	 * Avoid races with device replace and make sure our bbio has devices
 2026	 * associated to its stripes that don't go away while we are discarding.
 2027	 */
 2028	btrfs_bio_counter_inc_blocked(fs_info);
 2029	/* Tell the block device(s) that the sectors can be discarded */
 2030	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
 2031			      &bbio, 0);
 2032	/* Error condition is -ENOMEM */
 2033	if (!ret) {
 2034		struct btrfs_bio_stripe *stripe = bbio->stripes;
 2035		int i;
 2036
 2037
 2038		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
 2039			u64 bytes;
 2040			if (!stripe->dev->can_discard)
 
 
 
 
 
 
 
 2041				continue;
 2042
 2043			ret = btrfs_issue_discard(stripe->dev->bdev,
 2044						  stripe->physical,
 2045						  stripe->length,
 2046						  &bytes);
 2047			if (!ret)
 2048				discarded_bytes += bytes;
 2049			else if (ret != -EOPNOTSUPP)
 2050				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
 2051
 2052			/*
 2053			 * Just in case we get back EOPNOTSUPP for some reason,
 2054			 * just ignore the return value so we don't screw up
 2055			 * people calling discard_extent.
 2056			 */
 2057			ret = 0;
 2058		}
 2059		btrfs_put_bbio(bbio);
 2060	}
 2061	btrfs_bio_counter_dec(fs_info);
 2062
 2063	if (actual_bytes)
 2064		*actual_bytes = discarded_bytes;
 2065
 2066
 2067	if (ret == -EOPNOTSUPP)
 2068		ret = 0;
 2069	return ret;
 2070}
 2071
 2072/* Can return -ENOMEM */
 2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2074			 struct btrfs_fs_info *fs_info,
 2075			 u64 bytenr, u64 num_bytes, u64 parent,
 2076			 u64 root_objectid, u64 owner, u64 offset)
 2077{
 
 
 2078	int ret;
 2079
 2080	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
 2081	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2082
 2083	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 2084		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 2085					num_bytes,
 2086					parent, root_objectid, (int)owner,
 2087					BTRFS_ADD_DELAYED_REF, NULL);
 2088	} else {
 2089		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 2090					num_bytes, parent, root_objectid,
 2091					owner, offset, 0,
 2092					BTRFS_ADD_DELAYED_REF, NULL);
 2093	}
 2094	return ret;
 2095}
 2096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2097static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 2098				  struct btrfs_fs_info *fs_info,
 2099				  struct btrfs_delayed_ref_node *node,
 2100				  u64 parent, u64 root_objectid,
 2101				  u64 owner, u64 offset, int refs_to_add,
 2102				  struct btrfs_delayed_extent_op *extent_op)
 2103{
 2104	struct btrfs_path *path;
 2105	struct extent_buffer *leaf;
 2106	struct btrfs_extent_item *item;
 2107	struct btrfs_key key;
 2108	u64 bytenr = node->bytenr;
 2109	u64 num_bytes = node->num_bytes;
 2110	u64 refs;
 2111	int ret;
 2112
 2113	path = btrfs_alloc_path();
 2114	if (!path)
 2115		return -ENOMEM;
 2116
 2117	path->reada = READA_FORWARD;
 2118	path->leave_spinning = 1;
 2119	/* this will setup the path even if it fails to insert the back ref */
 2120	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
 2121					   bytenr, num_bytes, parent,
 2122					   root_objectid, owner, offset,
 2123					   refs_to_add, extent_op);
 2124	if ((ret < 0 && ret != -EAGAIN) || !ret)
 2125		goto out;
 2126
 2127	/*
 2128	 * Ok we had -EAGAIN which means we didn't have space to insert and
 2129	 * inline extent ref, so just update the reference count and add a
 2130	 * normal backref.
 2131	 */
 2132	leaf = path->nodes[0];
 2133	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 2134	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2135	refs = btrfs_extent_refs(leaf, item);
 2136	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
 2137	if (extent_op)
 2138		__run_delayed_extent_op(extent_op, leaf, item);
 2139
 2140	btrfs_mark_buffer_dirty(leaf);
 2141	btrfs_release_path(path);
 2142
 2143	path->reada = READA_FORWARD;
 2144	path->leave_spinning = 1;
 2145	/* now insert the actual backref */
 2146	ret = insert_extent_backref(trans, fs_info->extent_root,
 2147				    path, bytenr, parent, root_objectid,
 2148				    owner, offset, refs_to_add);
 2149	if (ret)
 2150		btrfs_abort_transaction(trans, ret);
 2151out:
 2152	btrfs_free_path(path);
 2153	return ret;
 2154}
 2155
 2156static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 2157				struct btrfs_fs_info *fs_info,
 2158				struct btrfs_delayed_ref_node *node,
 2159				struct btrfs_delayed_extent_op *extent_op,
 2160				int insert_reserved)
 2161{
 2162	int ret = 0;
 2163	struct btrfs_delayed_data_ref *ref;
 2164	struct btrfs_key ins;
 2165	u64 parent = 0;
 2166	u64 ref_root = 0;
 2167	u64 flags = 0;
 2168
 2169	ins.objectid = node->bytenr;
 2170	ins.offset = node->num_bytes;
 2171	ins.type = BTRFS_EXTENT_ITEM_KEY;
 2172
 2173	ref = btrfs_delayed_node_to_data_ref(node);
 2174	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
 2175
 2176	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
 2177		parent = ref->parent;
 2178	ref_root = ref->root;
 2179
 2180	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 2181		if (extent_op)
 2182			flags |= extent_op->flags_to_set;
 2183		ret = alloc_reserved_file_extent(trans, fs_info,
 2184						 parent, ref_root, flags,
 2185						 ref->objectid, ref->offset,
 2186						 &ins, node->ref_mod);
 2187	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2188		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
 2189					     ref_root, ref->objectid,
 2190					     ref->offset, node->ref_mod,
 2191					     extent_op);
 2192	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2193		ret = __btrfs_free_extent(trans, fs_info, node, parent,
 2194					  ref_root, ref->objectid,
 2195					  ref->offset, node->ref_mod,
 2196					  extent_op);
 2197	} else {
 2198		BUG();
 2199	}
 2200	return ret;
 2201}
 2202
 2203static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
 2204				    struct extent_buffer *leaf,
 2205				    struct btrfs_extent_item *ei)
 2206{
 2207	u64 flags = btrfs_extent_flags(leaf, ei);
 2208	if (extent_op->update_flags) {
 2209		flags |= extent_op->flags_to_set;
 2210		btrfs_set_extent_flags(leaf, ei, flags);
 2211	}
 2212
 2213	if (extent_op->update_key) {
 2214		struct btrfs_tree_block_info *bi;
 2215		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
 2216		bi = (struct btrfs_tree_block_info *)(ei + 1);
 2217		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
 2218	}
 2219}
 2220
 2221static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
 2222				 struct btrfs_fs_info *fs_info,
 2223				 struct btrfs_delayed_ref_node *node,
 2224				 struct btrfs_delayed_extent_op *extent_op)
 2225{
 
 2226	struct btrfs_key key;
 2227	struct btrfs_path *path;
 2228	struct btrfs_extent_item *ei;
 2229	struct extent_buffer *leaf;
 2230	u32 item_size;
 2231	int ret;
 2232	int err = 0;
 2233	int metadata = !extent_op->is_data;
 2234
 2235	if (trans->aborted)
 2236		return 0;
 2237
 2238	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 2239		metadata = 0;
 2240
 2241	path = btrfs_alloc_path();
 2242	if (!path)
 2243		return -ENOMEM;
 2244
 2245	key.objectid = node->bytenr;
 2246
 2247	if (metadata) {
 2248		key.type = BTRFS_METADATA_ITEM_KEY;
 2249		key.offset = extent_op->level;
 2250	} else {
 2251		key.type = BTRFS_EXTENT_ITEM_KEY;
 2252		key.offset = node->num_bytes;
 2253	}
 2254
 2255again:
 2256	path->reada = READA_FORWARD;
 2257	path->leave_spinning = 1;
 2258	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
 2259	if (ret < 0) {
 2260		err = ret;
 2261		goto out;
 2262	}
 2263	if (ret > 0) {
 2264		if (metadata) {
 2265			if (path->slots[0] > 0) {
 2266				path->slots[0]--;
 2267				btrfs_item_key_to_cpu(path->nodes[0], &key,
 2268						      path->slots[0]);
 2269				if (key.objectid == node->bytenr &&
 2270				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 2271				    key.offset == node->num_bytes)
 2272					ret = 0;
 2273			}
 2274			if (ret > 0) {
 2275				btrfs_release_path(path);
 2276				metadata = 0;
 2277
 2278				key.objectid = node->bytenr;
 2279				key.offset = node->num_bytes;
 2280				key.type = BTRFS_EXTENT_ITEM_KEY;
 2281				goto again;
 2282			}
 2283		} else {
 2284			err = -EIO;
 2285			goto out;
 2286		}
 2287	}
 2288
 2289	leaf = path->nodes[0];
 2290	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2291#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 2292	if (item_size < sizeof(*ei)) {
 2293		ret = convert_extent_item_v0(trans, fs_info->extent_root,
 2294					     path, (u64)-1, 0);
 2295		if (ret < 0) {
 2296			err = ret;
 2297			goto out;
 2298		}
 2299		leaf = path->nodes[0];
 2300		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 2301	}
 2302#endif
 2303	BUG_ON(item_size < sizeof(*ei));
 2304	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 2305	__run_delayed_extent_op(extent_op, leaf, ei);
 2306
 2307	btrfs_mark_buffer_dirty(leaf);
 2308out:
 2309	btrfs_free_path(path);
 2310	return err;
 2311}
 2312
 2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 2314				struct btrfs_fs_info *fs_info,
 2315				struct btrfs_delayed_ref_node *node,
 2316				struct btrfs_delayed_extent_op *extent_op,
 2317				int insert_reserved)
 2318{
 2319	int ret = 0;
 2320	struct btrfs_delayed_tree_ref *ref;
 2321	struct btrfs_key ins;
 2322	u64 parent = 0;
 2323	u64 ref_root = 0;
 2324	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 2325
 2326	ref = btrfs_delayed_node_to_tree_ref(node);
 2327	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
 2328
 2329	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2330		parent = ref->parent;
 2331	ref_root = ref->root;
 2332
 2333	ins.objectid = node->bytenr;
 2334	if (skinny_metadata) {
 2335		ins.offset = ref->level;
 2336		ins.type = BTRFS_METADATA_ITEM_KEY;
 2337	} else {
 2338		ins.offset = node->num_bytes;
 2339		ins.type = BTRFS_EXTENT_ITEM_KEY;
 2340	}
 2341
 2342	if (node->ref_mod != 1) {
 2343		btrfs_err(fs_info,
 2344	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
 2345			  node->bytenr, node->ref_mod, node->action, ref_root,
 2346			  parent);
 2347		return -EIO;
 2348	}
 2349	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
 2350		BUG_ON(!extent_op || !extent_op->update_flags);
 2351		ret = alloc_reserved_tree_block(trans, fs_info,
 2352						parent, ref_root,
 2353						extent_op->flags_to_set,
 2354						&extent_op->key,
 2355						ref->level, &ins);
 2356	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
 2357		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
 2358					     parent, ref_root,
 2359					     ref->level, 0, 1,
 2360					     extent_op);
 2361	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
 2362		ret = __btrfs_free_extent(trans, fs_info, node,
 2363					  parent, ref_root,
 2364					  ref->level, 0, 1, extent_op);
 2365	} else {
 2366		BUG();
 2367	}
 2368	return ret;
 2369}
 2370
 2371/* helper function to actually process a single delayed ref entry */
 2372static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 2373			       struct btrfs_fs_info *fs_info,
 2374			       struct btrfs_delayed_ref_node *node,
 2375			       struct btrfs_delayed_extent_op *extent_op,
 2376			       int insert_reserved)
 2377{
 2378	int ret = 0;
 2379
 2380	if (trans->aborted) {
 2381		if (insert_reserved)
 2382			btrfs_pin_extent(fs_info, node->bytenr,
 2383					 node->num_bytes, 1);
 2384		return 0;
 2385	}
 2386
 2387	if (btrfs_delayed_ref_is_head(node)) {
 2388		struct btrfs_delayed_ref_head *head;
 2389		/*
 2390		 * we've hit the end of the chain and we were supposed
 2391		 * to insert this extent into the tree.  But, it got
 2392		 * deleted before we ever needed to insert it, so all
 2393		 * we have to do is clean up the accounting
 2394		 */
 2395		BUG_ON(extent_op);
 2396		head = btrfs_delayed_node_to_head(node);
 2397		trace_run_delayed_ref_head(fs_info, node, head, node->action);
 2398
 2399		if (insert_reserved) {
 2400			btrfs_pin_extent(fs_info, node->bytenr,
 2401					 node->num_bytes, 1);
 2402			if (head->is_data) {
 2403				ret = btrfs_del_csums(trans, fs_info,
 2404						      node->bytenr,
 2405						      node->num_bytes);
 2406			}
 2407		}
 2408
 2409		/* Also free its reserved qgroup space */
 2410		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
 2411					      head->qgroup_reserved);
 2412		return ret;
 2413	}
 2414
 2415	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
 2416	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
 2417		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
 2418					   insert_reserved);
 2419	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
 2420		 node->type == BTRFS_SHARED_DATA_REF_KEY)
 2421		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
 2422					   insert_reserved);
 2423	else
 2424		BUG();
 
 
 
 2425	return ret;
 2426}
 2427
 2428static inline struct btrfs_delayed_ref_node *
 2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
 2430{
 2431	struct btrfs_delayed_ref_node *ref;
 2432
 2433	if (list_empty(&head->ref_list))
 2434		return NULL;
 2435
 2436	/*
 2437	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
 2438	 * This is to prevent a ref count from going down to zero, which deletes
 2439	 * the extent item from the extent tree, when there still are references
 2440	 * to add, which would fail because they would not find the extent item.
 2441	 */
 2442	if (!list_empty(&head->ref_add_list))
 2443		return list_first_entry(&head->ref_add_list,
 2444				struct btrfs_delayed_ref_node, add_list);
 2445
 2446	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
 2447			       list);
 2448	ASSERT(list_empty(&ref->add_list));
 2449	return ref;
 2450}
 2451
 2452/*
 2453 * Returns 0 on success or if called with an already aborted transaction.
 2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
 2455 */
 2456static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2457					     struct btrfs_fs_info *fs_info,
 2458					     unsigned long nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2459{
 2460	struct btrfs_delayed_ref_root *delayed_refs;
 2461	struct btrfs_delayed_ref_node *ref;
 2462	struct btrfs_delayed_ref_head *locked_ref = NULL;
 2463	struct btrfs_delayed_extent_op *extent_op;
 2464	ktime_t start = ktime_get();
 2465	int ret;
 2466	unsigned long count = 0;
 2467	unsigned long actual_count = 0;
 2468	int must_insert_reserved = 0;
 2469
 2470	delayed_refs = &trans->transaction->delayed_refs;
 2471	while (1) {
 2472		if (!locked_ref) {
 2473			if (count >= nr)
 2474				break;
 
 
 
 
 2475
 2476			spin_lock(&delayed_refs->lock);
 2477			locked_ref = btrfs_select_ref_head(trans);
 2478			if (!locked_ref) {
 2479				spin_unlock(&delayed_refs->lock);
 2480				break;
 2481			}
 2482
 2483			/* grab the lock that says we are going to process
 2484			 * all the refs for this head */
 2485			ret = btrfs_delayed_ref_lock(trans, locked_ref);
 2486			spin_unlock(&delayed_refs->lock);
 2487			/*
 2488			 * we may have dropped the spin lock to get the head
 2489			 * mutex lock, and that might have given someone else
 2490			 * time to free the head.  If that's true, it has been
 2491			 * removed from our list and we can move on.
 2492			 */
 2493			if (ret == -EAGAIN) {
 2494				locked_ref = NULL;
 2495				count++;
 2496				continue;
 2497			}
 2498		}
 2499
 2500		/*
 2501		 * We need to try and merge add/drops of the same ref since we
 2502		 * can run into issues with relocate dropping the implicit ref
 2503		 * and then it being added back again before the drop can
 2504		 * finish.  If we merged anything we need to re-loop so we can
 2505		 * get a good ref.
 2506		 * Or we can get node references of the same type that weren't
 2507		 * merged when created due to bumps in the tree mod seq, and
 2508		 * we need to merge them to prevent adding an inline extent
 2509		 * backref before dropping it (triggering a BUG_ON at
 2510		 * insert_inline_extent_backref()).
 2511		 */
 2512		spin_lock(&locked_ref->lock);
 2513		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
 2514					 locked_ref);
 2515
 2516		/*
 2517		 * locked_ref is the head node, so we have to go one
 2518		 * node back for any delayed ref updates
 
 2519		 */
 2520		ref = select_delayed_ref(locked_ref);
 2521
 2522		if (ref && ref->seq &&
 2523		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
 2524			spin_unlock(&locked_ref->lock);
 2525			spin_lock(&delayed_refs->lock);
 2526			locked_ref->processing = 0;
 2527			delayed_refs->num_heads_ready++;
 2528			spin_unlock(&delayed_refs->lock);
 2529			btrfs_delayed_ref_unlock(locked_ref);
 2530			locked_ref = NULL;
 2531			cond_resched();
 2532			count++;
 2533			continue;
 2534		}
 
 2535
 2536		/*
 2537		 * record the must insert reserved flag before we
 2538		 * drop the spin lock.
 2539		 */
 2540		must_insert_reserved = locked_ref->must_insert_reserved;
 2541		locked_ref->must_insert_reserved = 0;
 2542
 2543		extent_op = locked_ref->extent_op;
 2544		locked_ref->extent_op = NULL;
 
 2545
 2546		if (!ref) {
 
 
 2547
 
 2548
 2549			/* All delayed refs have been processed, Go ahead
 2550			 * and send the head node to run_one_delayed_ref,
 2551			 * so that any accounting fixes can happen
 2552			 */
 2553			ref = &locked_ref->node;
 
 
 
 2554
 2555			if (extent_op && must_insert_reserved) {
 2556				btrfs_free_delayed_extent_op(extent_op);
 2557				extent_op = NULL;
 2558			}
 
 
 
 
 
 
 
 
 
 
 
 2559
 2560			if (extent_op) {
 2561				spin_unlock(&locked_ref->lock);
 2562				ret = run_delayed_extent_op(trans, fs_info,
 2563							    ref, extent_op);
 2564				btrfs_free_delayed_extent_op(extent_op);
 
 
 
 2565
 2566				if (ret) {
 2567					/*
 2568					 * Need to reset must_insert_reserved if
 2569					 * there was an error so the abort stuff
 2570					 * can cleanup the reserved space
 2571					 * properly.
 2572					 */
 2573					if (must_insert_reserved)
 2574						locked_ref->must_insert_reserved = 1;
 2575					spin_lock(&delayed_refs->lock);
 2576					locked_ref->processing = 0;
 2577					delayed_refs->num_heads_ready++;
 2578					spin_unlock(&delayed_refs->lock);
 2579					btrfs_debug(fs_info,
 2580						    "run_delayed_extent_op returned %d",
 2581						    ret);
 2582					btrfs_delayed_ref_unlock(locked_ref);
 2583					return ret;
 2584				}
 2585				continue;
 2586			}
 2587
 2588			/*
 2589			 * Need to drop our head ref lock and re-acquire the
 2590			 * delayed ref lock and then re-check to make sure
 2591			 * nobody got added.
 2592			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2593			spin_unlock(&locked_ref->lock);
 2594			spin_lock(&delayed_refs->lock);
 2595			spin_lock(&locked_ref->lock);
 2596			if (!list_empty(&locked_ref->ref_list) ||
 2597			    locked_ref->extent_op) {
 2598				spin_unlock(&locked_ref->lock);
 2599				spin_unlock(&delayed_refs->lock);
 2600				continue;
 2601			}
 2602			ref->in_tree = 0;
 2603			delayed_refs->num_heads--;
 2604			rb_erase(&locked_ref->href_node,
 2605				 &delayed_refs->href_root);
 2606			spin_unlock(&delayed_refs->lock);
 2607		} else {
 2608			actual_count++;
 2609			ref->in_tree = 0;
 2610			list_del(&ref->list);
 2611			if (!list_empty(&ref->add_list))
 2612				list_del(&ref->add_list);
 2613		}
 2614		atomic_dec(&delayed_refs->num_entries);
 2615
 2616		if (!btrfs_delayed_ref_is_head(ref)) {
 2617			/*
 2618			 * when we play the delayed ref, also correct the
 2619			 * ref_mod on head
 2620			 */
 2621			switch (ref->action) {
 2622			case BTRFS_ADD_DELAYED_REF:
 2623			case BTRFS_ADD_DELAYED_EXTENT:
 2624				locked_ref->node.ref_mod -= ref->ref_mod;
 2625				break;
 2626			case BTRFS_DROP_DELAYED_REF:
 2627				locked_ref->node.ref_mod += ref->ref_mod;
 2628				break;
 2629			default:
 2630				WARN_ON(1);
 2631			}
 
 
 
 
 2632		}
 
 
 
 
 
 
 
 
 
 
 
 2633		spin_unlock(&locked_ref->lock);
 2634
 2635		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
 2636					  must_insert_reserved);
 2637
 2638		btrfs_free_delayed_extent_op(extent_op);
 2639		if (ret) {
 2640			spin_lock(&delayed_refs->lock);
 2641			locked_ref->processing = 0;
 2642			delayed_refs->num_heads_ready++;
 2643			spin_unlock(&delayed_refs->lock);
 2644			btrfs_delayed_ref_unlock(locked_ref);
 2645			btrfs_put_delayed_ref(ref);
 2646			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
 2647				    ret);
 2648			return ret;
 2649		}
 2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2651		/*
 2652		 * If this node is a head, that means all the refs in this head
 2653		 * have been dealt with, and we will pick the next head to deal
 2654		 * with, so we must unlock the head and drop it from the cluster
 2655		 * list before we release it.
 
 
 
 
 
 
 2656		 */
 2657		if (btrfs_delayed_ref_is_head(ref)) {
 2658			if (locked_ref->is_data &&
 2659			    locked_ref->total_ref_mod < 0) {
 2660				spin_lock(&delayed_refs->lock);
 2661				delayed_refs->pending_csums -= ref->num_bytes;
 2662				spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2663			}
 2664			btrfs_delayed_ref_unlock(locked_ref);
 2665			locked_ref = NULL;
 2666		}
 2667		btrfs_put_delayed_ref(ref);
 2668		count++;
 
 
 
 
 
 2669		cond_resched();
 2670	}
 2671
 2672	/*
 2673	 * We don't want to include ref heads since we can have empty ref heads
 2674	 * and those will drastically skew our runtime down since we just do
 2675	 * accounting, no actual extent tree updates.
 2676	 */
 2677	if (actual_count > 0) {
 2678		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
 2679		u64 avg;
 2680
 2681		/*
 2682		 * We weigh the current average higher than our current runtime
 2683		 * to avoid large swings in the average.
 2684		 */
 2685		spin_lock(&delayed_refs->lock);
 2686		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
 2687		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
 2688		spin_unlock(&delayed_refs->lock);
 2689	}
 2690	return 0;
 2691}
 2692
 2693#ifdef SCRAMBLE_DELAYED_REFS
 2694/*
 2695 * Normally delayed refs get processed in ascending bytenr order. This
 2696 * correlates in most cases to the order added. To expose dependencies on this
 2697 * order, we start to process the tree in the middle instead of the beginning
 2698 */
 2699static u64 find_middle(struct rb_root *root)
 2700{
 2701	struct rb_node *n = root->rb_node;
 2702	struct btrfs_delayed_ref_node *entry;
 2703	int alt = 1;
 2704	u64 middle;
 2705	u64 first = 0, last = 0;
 2706
 2707	n = rb_first(root);
 2708	if (n) {
 2709		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2710		first = entry->bytenr;
 2711	}
 2712	n = rb_last(root);
 2713	if (n) {
 2714		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2715		last = entry->bytenr;
 2716	}
 2717	n = root->rb_node;
 2718
 2719	while (n) {
 2720		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
 2721		WARN_ON(!entry->in_tree);
 2722
 2723		middle = entry->bytenr;
 2724
 2725		if (alt)
 2726			n = n->rb_left;
 2727		else
 2728			n = n->rb_right;
 2729
 2730		alt = 1 - alt;
 2731	}
 2732	return middle;
 2733}
 2734#endif
 2735
 2736static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
 2737{
 2738	u64 num_bytes;
 2739
 2740	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
 2741			     sizeof(struct btrfs_extent_inline_ref));
 2742	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 2743		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
 2744
 2745	/*
 2746	 * We don't ever fill up leaves all the way so multiply by 2 just to be
 2747	 * closer to what we're really going to want to use.
 2748	 */
 2749	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
 2750}
 2751
 2752/*
 2753 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
 2754 * would require to store the csums for that many bytes.
 2755 */
 2756u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
 2757{
 2758	u64 csum_size;
 2759	u64 num_csums_per_leaf;
 2760	u64 num_csums;
 2761
 2762	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
 2763	num_csums_per_leaf = div64_u64(csum_size,
 2764			(u64)btrfs_super_csum_size(fs_info->super_copy));
 2765	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
 2766	num_csums += num_csums_per_leaf - 1;
 2767	num_csums = div64_u64(num_csums, num_csums_per_leaf);
 2768	return num_csums;
 2769}
 2770
 2771int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
 2772				       struct btrfs_fs_info *fs_info)
 2773{
 2774	struct btrfs_block_rsv *global_rsv;
 2775	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
 2776	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
 2777	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
 2778	u64 num_bytes, num_dirty_bgs_bytes;
 2779	int ret = 0;
 2780
 2781	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 2782	num_heads = heads_to_leaves(fs_info, num_heads);
 2783	if (num_heads > 1)
 2784		num_bytes += (num_heads - 1) * fs_info->nodesize;
 2785	num_bytes <<= 1;
 2786	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
 2787							fs_info->nodesize;
 2788	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
 2789							     num_dirty_bgs);
 2790	global_rsv = &fs_info->global_block_rsv;
 2791
 2792	/*
 2793	 * If we can't allocate any more chunks lets make sure we have _lots_ of
 2794	 * wiggle room since running delayed refs can create more delayed refs.
 2795	 */
 2796	if (global_rsv->space_info->full) {
 2797		num_dirty_bgs_bytes <<= 1;
 2798		num_bytes <<= 1;
 2799	}
 2800
 2801	spin_lock(&global_rsv->lock);
 2802	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
 2803		ret = 1;
 2804	spin_unlock(&global_rsv->lock);
 2805	return ret;
 2806}
 2807
 2808int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
 2809				       struct btrfs_fs_info *fs_info)
 2810{
 2811	u64 num_entries =
 2812		atomic_read(&trans->transaction->delayed_refs.num_entries);
 2813	u64 avg_runtime;
 2814	u64 val;
 2815
 2816	smp_mb();
 2817	avg_runtime = fs_info->avg_delayed_ref_runtime;
 2818	val = num_entries * avg_runtime;
 2819	if (val >= NSEC_PER_SEC)
 2820		return 1;
 2821	if (val >= NSEC_PER_SEC / 2)
 2822		return 2;
 2823
 2824	return btrfs_check_space_for_delayed_refs(trans, fs_info);
 2825}
 2826
 2827struct async_delayed_refs {
 2828	struct btrfs_root *root;
 2829	u64 transid;
 2830	int count;
 2831	int error;
 2832	int sync;
 2833	struct completion wait;
 2834	struct btrfs_work work;
 2835};
 2836
 2837static inline struct async_delayed_refs *
 2838to_async_delayed_refs(struct btrfs_work *work)
 2839{
 2840	return container_of(work, struct async_delayed_refs, work);
 2841}
 2842
 2843static void delayed_ref_async_start(struct btrfs_work *work)
 2844{
 2845	struct async_delayed_refs *async = to_async_delayed_refs(work);
 2846	struct btrfs_trans_handle *trans;
 2847	struct btrfs_fs_info *fs_info = async->root->fs_info;
 2848	int ret;
 2849
 2850	/* if the commit is already started, we don't need to wait here */
 2851	if (btrfs_transaction_blocked(fs_info))
 2852		goto done;
 2853
 2854	trans = btrfs_join_transaction(async->root);
 2855	if (IS_ERR(trans)) {
 2856		async->error = PTR_ERR(trans);
 2857		goto done;
 2858	}
 2859
 2860	/*
 2861	 * trans->sync means that when we call end_transaction, we won't
 2862	 * wait on delayed refs
 2863	 */
 2864	trans->sync = true;
 2865
 2866	/* Don't bother flushing if we got into a different transaction */
 2867	if (trans->transid > async->transid)
 2868		goto end;
 2869
 2870	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
 2871	if (ret)
 2872		async->error = ret;
 2873end:
 2874	ret = btrfs_end_transaction(trans);
 2875	if (ret && !async->error)
 2876		async->error = ret;
 2877done:
 2878	if (async->sync)
 2879		complete(&async->wait);
 2880	else
 2881		kfree(async);
 2882}
 2883
 2884int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
 2885				 unsigned long count, u64 transid, int wait)
 2886{
 2887	struct async_delayed_refs *async;
 2888	int ret;
 2889
 2890	async = kmalloc(sizeof(*async), GFP_NOFS);
 2891	if (!async)
 2892		return -ENOMEM;
 2893
 2894	async->root = fs_info->tree_root;
 2895	async->count = count;
 2896	async->error = 0;
 2897	async->transid = transid;
 2898	if (wait)
 2899		async->sync = 1;
 2900	else
 2901		async->sync = 0;
 2902	init_completion(&async->wait);
 2903
 2904	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
 2905			delayed_ref_async_start, NULL, NULL);
 2906
 2907	btrfs_queue_work(fs_info->extent_workers, &async->work);
 2908
 2909	if (wait) {
 2910		wait_for_completion(&async->wait);
 2911		ret = async->error;
 2912		kfree(async);
 2913		return ret;
 2914	}
 2915	return 0;
 2916}
 2917
 2918/*
 2919 * this starts processing the delayed reference count updates and
 2920 * extent insertions we have queued up so far.  count can be
 2921 * 0, which means to process everything in the tree at the start
 2922 * of the run (but not newly added entries), or it can be some target
 2923 * number you'd like to process.
 2924 *
 2925 * Returns 0 on success or if called with an aborted transaction
 2926 * Returns <0 on error and aborts the transaction
 2927 */
 2928int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
 2929			   struct btrfs_fs_info *fs_info, unsigned long count)
 2930{
 
 2931	struct rb_node *node;
 2932	struct btrfs_delayed_ref_root *delayed_refs;
 2933	struct btrfs_delayed_ref_head *head;
 2934	int ret;
 2935	int run_all = count == (unsigned long)-1;
 2936	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
 2937
 2938	/* We'll clean this up in btrfs_cleanup_transaction */
 2939	if (trans->aborted)
 2940		return 0;
 2941
 2942	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
 2943		return 0;
 2944
 2945	delayed_refs = &trans->transaction->delayed_refs;
 2946	if (count == 0)
 2947		count = atomic_read(&delayed_refs->num_entries) * 2;
 2948
 2949again:
 2950#ifdef SCRAMBLE_DELAYED_REFS
 2951	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
 2952#endif
 2953	trans->can_flush_pending_bgs = false;
 2954	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
 2955	if (ret < 0) {
 2956		btrfs_abort_transaction(trans, ret);
 2957		return ret;
 2958	}
 2959
 2960	if (run_all) {
 2961		if (!list_empty(&trans->new_bgs))
 2962			btrfs_create_pending_block_groups(trans, fs_info);
 2963
 2964		spin_lock(&delayed_refs->lock);
 2965		node = rb_first(&delayed_refs->href_root);
 2966		if (!node) {
 2967			spin_unlock(&delayed_refs->lock);
 2968			goto out;
 2969		}
 
 
 
 
 2970
 2971		while (node) {
 2972			head = rb_entry(node, struct btrfs_delayed_ref_head,
 2973					href_node);
 2974			if (btrfs_delayed_ref_is_head(&head->node)) {
 2975				struct btrfs_delayed_ref_node *ref;
 2976
 2977				ref = &head->node;
 2978				atomic_inc(&ref->refs);
 2979
 2980				spin_unlock(&delayed_refs->lock);
 2981				/*
 2982				 * Mutex was contended, block until it's
 2983				 * released and try again
 2984				 */
 2985				mutex_lock(&head->mutex);
 2986				mutex_unlock(&head->mutex);
 2987
 2988				btrfs_put_delayed_ref(ref);
 2989				cond_resched();
 2990				goto again;
 2991			} else {
 2992				WARN_ON(1);
 2993			}
 2994			node = rb_next(node);
 2995		}
 2996		spin_unlock(&delayed_refs->lock);
 2997		cond_resched();
 2998		goto again;
 2999	}
 3000out:
 3001	assert_qgroups_uptodate(trans);
 3002	trans->can_flush_pending_bgs = can_flush_pending_bgs;
 3003	return 0;
 3004}
 3005
 3006int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 3007				struct btrfs_fs_info *fs_info,
 3008				u64 bytenr, u64 num_bytes, u64 flags,
 3009				int level, int is_data)
 3010{
 3011	struct btrfs_delayed_extent_op *extent_op;
 3012	int ret;
 3013
 3014	extent_op = btrfs_alloc_delayed_extent_op();
 3015	if (!extent_op)
 3016		return -ENOMEM;
 3017
 3018	extent_op->flags_to_set = flags;
 3019	extent_op->update_flags = true;
 3020	extent_op->update_key = false;
 3021	extent_op->is_data = is_data ? true : false;
 3022	extent_op->level = level;
 3023
 3024	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
 3025					  num_bytes, extent_op);
 3026	if (ret)
 3027		btrfs_free_delayed_extent_op(extent_op);
 3028	return ret;
 3029}
 3030
 3031static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
 3032				      struct btrfs_root *root,
 3033				      struct btrfs_path *path,
 3034				      u64 objectid, u64 offset, u64 bytenr)
 3035{
 3036	struct btrfs_delayed_ref_head *head;
 3037	struct btrfs_delayed_ref_node *ref;
 3038	struct btrfs_delayed_data_ref *data_ref;
 3039	struct btrfs_delayed_ref_root *delayed_refs;
 
 
 3040	int ret = 0;
 3041
 3042	delayed_refs = &trans->transaction->delayed_refs;
 
 
 
 
 
 
 
 
 3043	spin_lock(&delayed_refs->lock);
 3044	head = btrfs_find_delayed_ref_head(trans, bytenr);
 3045	if (!head) {
 3046		spin_unlock(&delayed_refs->lock);
 
 3047		return 0;
 3048	}
 3049
 3050	if (!mutex_trylock(&head->mutex)) {
 3051		atomic_inc(&head->node.refs);
 3052		spin_unlock(&delayed_refs->lock);
 3053
 3054		btrfs_release_path(path);
 3055
 3056		/*
 3057		 * Mutex was contended, block until it's released and let
 3058		 * caller try again
 3059		 */
 3060		mutex_lock(&head->mutex);
 3061		mutex_unlock(&head->mutex);
 3062		btrfs_put_delayed_ref(&head->node);
 
 3063		return -EAGAIN;
 3064	}
 3065	spin_unlock(&delayed_refs->lock);
 3066
 3067	spin_lock(&head->lock);
 3068	list_for_each_entry(ref, &head->ref_list, list) {
 
 
 
 
 
 
 3069		/* If it's a shared ref we know a cross reference exists */
 3070		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
 3071			ret = 1;
 3072			break;
 3073		}
 3074
 3075		data_ref = btrfs_delayed_node_to_data_ref(ref);
 3076
 3077		/*
 3078		 * If our ref doesn't match the one we're currently looking at
 3079		 * then we have a cross reference.
 3080		 */
 3081		if (data_ref->root != root->root_key.objectid ||
 3082		    data_ref->objectid != objectid ||
 3083		    data_ref->offset != offset) {
 3084			ret = 1;
 3085			break;
 3086		}
 3087	}
 3088	spin_unlock(&head->lock);
 3089	mutex_unlock(&head->mutex);
 
 3090	return ret;
 3091}
 3092
 3093static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
 3094					struct btrfs_root *root,
 3095					struct btrfs_path *path,
 3096					u64 objectid, u64 offset, u64 bytenr)
 3097{
 3098	struct btrfs_fs_info *fs_info = root->fs_info;
 3099	struct btrfs_root *extent_root = fs_info->extent_root;
 3100	struct extent_buffer *leaf;
 3101	struct btrfs_extent_data_ref *ref;
 3102	struct btrfs_extent_inline_ref *iref;
 3103	struct btrfs_extent_item *ei;
 3104	struct btrfs_key key;
 3105	u32 item_size;
 
 3106	int ret;
 3107
 3108	key.objectid = bytenr;
 3109	key.offset = (u64)-1;
 3110	key.type = BTRFS_EXTENT_ITEM_KEY;
 3111
 3112	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 3113	if (ret < 0)
 3114		goto out;
 3115	BUG_ON(ret == 0); /* Corruption */
 3116
 3117	ret = -ENOENT;
 3118	if (path->slots[0] == 0)
 3119		goto out;
 3120
 3121	path->slots[0]--;
 3122	leaf = path->nodes[0];
 3123	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 3124
 3125	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
 3126		goto out;
 3127
 3128	ret = 1;
 3129	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 3130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 3131	if (item_size < sizeof(*ei)) {
 3132		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 3133		goto out;
 3134	}
 3135#endif
 3136	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 3137
 
 3138	if (item_size != sizeof(*ei) +
 3139	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
 3140		goto out;
 3141
 
 3142	if (btrfs_extent_generation(leaf, ei) <=
 3143	    btrfs_root_last_snapshot(&root->root_item))
 3144		goto out;
 3145
 3146	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
 3147	if (btrfs_extent_inline_ref_type(leaf, iref) !=
 3148	    BTRFS_EXTENT_DATA_REF_KEY)
 
 
 3149		goto out;
 3150
 3151	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 3152	if (btrfs_extent_refs(leaf, ei) !=
 3153	    btrfs_extent_data_ref_count(leaf, ref) ||
 3154	    btrfs_extent_data_ref_root(leaf, ref) !=
 3155	    root->root_key.objectid ||
 3156	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
 3157	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 3158		goto out;
 3159
 3160	ret = 0;
 3161out:
 3162	return ret;
 3163}
 3164
 3165int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
 3166			  struct btrfs_root *root,
 3167			  u64 objectid, u64 offset, u64 bytenr)
 3168{
 3169	struct btrfs_path *path;
 3170	int ret;
 3171	int ret2;
 3172
 3173	path = btrfs_alloc_path();
 3174	if (!path)
 3175		return -ENOENT;
 3176
 3177	do {
 3178		ret = check_committed_ref(trans, root, path, objectid,
 3179					  offset, bytenr);
 3180		if (ret && ret != -ENOENT)
 3181			goto out;
 3182
 3183		ret2 = check_delayed_ref(trans, root, path, objectid,
 3184					 offset, bytenr);
 3185	} while (ret2 == -EAGAIN);
 3186
 3187	if (ret2 && ret2 != -ENOENT) {
 3188		ret = ret2;
 3189		goto out;
 3190	}
 3191
 3192	if (ret != -ENOENT || ret2 != -ENOENT)
 3193		ret = 0;
 3194out:
 3195	btrfs_free_path(path);
 3196	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
 3197		WARN_ON(ret > 0);
 3198	return ret;
 3199}
 3200
 3201static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
 3202			   struct btrfs_root *root,
 3203			   struct extent_buffer *buf,
 3204			   int full_backref, int inc)
 3205{
 3206	struct btrfs_fs_info *fs_info = root->fs_info;
 3207	u64 bytenr;
 3208	u64 num_bytes;
 3209	u64 parent;
 3210	u64 ref_root;
 3211	u32 nritems;
 3212	struct btrfs_key key;
 3213	struct btrfs_file_extent_item *fi;
 
 
 3214	int i;
 
 3215	int level;
 3216	int ret = 0;
 3217	int (*process_func)(struct btrfs_trans_handle *,
 3218			    struct btrfs_fs_info *,
 3219			    u64, u64, u64, u64, u64, u64);
 3220
 3221
 3222	if (btrfs_is_testing(fs_info))
 3223		return 0;
 3224
 3225	ref_root = btrfs_header_owner(buf);
 3226	nritems = btrfs_header_nritems(buf);
 3227	level = btrfs_header_level(buf);
 3228
 3229	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
 3230		return 0;
 3231
 3232	if (inc)
 3233		process_func = btrfs_inc_extent_ref;
 3234	else
 3235		process_func = btrfs_free_extent;
 3236
 3237	if (full_backref)
 3238		parent = buf->start;
 3239	else
 3240		parent = 0;
 
 
 
 
 3241
 3242	for (i = 0; i < nritems; i++) {
 3243		if (level == 0) {
 3244			btrfs_item_key_to_cpu(buf, &key, i);
 3245			if (key.type != BTRFS_EXTENT_DATA_KEY)
 3246				continue;
 3247			fi = btrfs_item_ptr(buf, i,
 3248					    struct btrfs_file_extent_item);
 3249			if (btrfs_file_extent_type(buf, fi) ==
 3250			    BTRFS_FILE_EXTENT_INLINE)
 3251				continue;
 3252			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
 3253			if (bytenr == 0)
 3254				continue;
 3255
 3256			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
 3257			key.offset -= btrfs_file_extent_offset(buf, fi);
 3258			ret = process_func(trans, fs_info, bytenr, num_bytes,
 3259					   parent, ref_root, key.objectid,
 3260					   key.offset);
 
 
 
 
 
 
 
 3261			if (ret)
 3262				goto fail;
 3263		} else {
 3264			bytenr = btrfs_node_blockptr(buf, i);
 3265			num_bytes = fs_info->nodesize;
 3266			ret = process_func(trans, fs_info, bytenr, num_bytes,
 3267					   parent, ref_root, level - 1, 0);
 
 
 
 
 
 
 
 3268			if (ret)
 3269				goto fail;
 3270		}
 3271	}
 3272	return 0;
 3273fail:
 3274	return ret;
 3275}
 3276
 3277int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3278		  struct extent_buffer *buf, int full_backref)
 3279{
 3280	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
 3281}
 3282
 3283int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 3284		  struct extent_buffer *buf, int full_backref)
 3285{
 3286	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
 3287}
 3288
 3289static int write_one_cache_group(struct btrfs_trans_handle *trans,
 3290				 struct btrfs_fs_info *fs_info,
 3291				 struct btrfs_path *path,
 3292				 struct btrfs_block_group_cache *cache)
 3293{
 3294	int ret;
 3295	struct btrfs_root *extent_root = fs_info->extent_root;
 3296	unsigned long bi;
 3297	struct extent_buffer *leaf;
 3298
 3299	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
 3300	if (ret) {
 3301		if (ret > 0)
 3302			ret = -ENOENT;
 3303		goto fail;
 3304	}
 3305
 3306	leaf = path->nodes[0];
 3307	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
 3308	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
 3309	btrfs_mark_buffer_dirty(leaf);
 3310fail:
 3311	btrfs_release_path(path);
 3312	return ret;
 3313
 3314}
 3315
 3316static struct btrfs_block_group_cache *
 3317next_block_group(struct btrfs_fs_info *fs_info,
 3318		 struct btrfs_block_group_cache *cache)
 3319{
 3320	struct rb_node *node;
 3321
 3322	spin_lock(&fs_info->block_group_cache_lock);
 3323
 3324	/* If our block group was removed, we need a full search. */
 3325	if (RB_EMPTY_NODE(&cache->cache_node)) {
 3326		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
 3327
 3328		spin_unlock(&fs_info->block_group_cache_lock);
 3329		btrfs_put_block_group(cache);
 3330		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
 3331	}
 3332	node = rb_next(&cache->cache_node);
 3333	btrfs_put_block_group(cache);
 3334	if (node) {
 3335		cache = rb_entry(node, struct btrfs_block_group_cache,
 3336				 cache_node);
 3337		btrfs_get_block_group(cache);
 3338	} else
 3339		cache = NULL;
 3340	spin_unlock(&fs_info->block_group_cache_lock);
 3341	return cache;
 3342}
 3343
 3344static int cache_save_setup(struct btrfs_block_group_cache *block_group,
 3345			    struct btrfs_trans_handle *trans,
 3346			    struct btrfs_path *path)
 3347{
 3348	struct btrfs_fs_info *fs_info = block_group->fs_info;
 3349	struct btrfs_root *root = fs_info->tree_root;
 3350	struct inode *inode = NULL;
 3351	u64 alloc_hint = 0;
 3352	int dcs = BTRFS_DC_ERROR;
 3353	u64 num_pages = 0;
 3354	int retries = 0;
 3355	int ret = 0;
 3356
 3357	/*
 3358	 * If this block group is smaller than 100 megs don't bother caching the
 3359	 * block group.
 3360	 */
 3361	if (block_group->key.offset < (100 * SZ_1M)) {
 3362		spin_lock(&block_group->lock);
 3363		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 3364		spin_unlock(&block_group->lock);
 3365		return 0;
 3366	}
 3367
 3368	if (trans->aborted)
 3369		return 0;
 3370again:
 3371	inode = lookup_free_space_inode(root, block_group, path);
 3372	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
 3373		ret = PTR_ERR(inode);
 3374		btrfs_release_path(path);
 3375		goto out;
 3376	}
 3377
 3378	if (IS_ERR(inode)) {
 3379		BUG_ON(retries);
 3380		retries++;
 3381
 3382		if (block_group->ro)
 3383			goto out_free;
 3384
 3385		ret = create_free_space_inode(root, trans, block_group, path);
 3386		if (ret)
 3387			goto out_free;
 3388		goto again;
 3389	}
 3390
 3391	/* We've already setup this transaction, go ahead and exit */
 3392	if (block_group->cache_generation == trans->transid &&
 3393	    i_size_read(inode)) {
 3394		dcs = BTRFS_DC_SETUP;
 3395		goto out_put;
 3396	}
 3397
 3398	/*
 3399	 * We want to set the generation to 0, that way if anything goes wrong
 3400	 * from here on out we know not to trust this cache when we load up next
 3401	 * time.
 3402	 */
 3403	BTRFS_I(inode)->generation = 0;
 3404	ret = btrfs_update_inode(trans, root, inode);
 3405	if (ret) {
 3406		/*
 3407		 * So theoretically we could recover from this, simply set the
 3408		 * super cache generation to 0 so we know to invalidate the
 3409		 * cache, but then we'd have to keep track of the block groups
 3410		 * that fail this way so we know we _have_ to reset this cache
 3411		 * before the next commit or risk reading stale cache.  So to
 3412		 * limit our exposure to horrible edge cases lets just abort the
 3413		 * transaction, this only happens in really bad situations
 3414		 * anyway.
 3415		 */
 3416		btrfs_abort_transaction(trans, ret);
 3417		goto out_put;
 3418	}
 3419	WARN_ON(ret);
 3420
 3421	if (i_size_read(inode) > 0) {
 3422		ret = btrfs_check_trunc_cache_free_space(fs_info,
 3423					&fs_info->global_block_rsv);
 3424		if (ret)
 3425			goto out_put;
 3426
 3427		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
 3428		if (ret)
 3429			goto out_put;
 3430	}
 3431
 3432	spin_lock(&block_group->lock);
 3433	if (block_group->cached != BTRFS_CACHE_FINISHED ||
 3434	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
 3435		/*
 3436		 * don't bother trying to write stuff out _if_
 3437		 * a) we're not cached,
 3438		 * b) we're with nospace_cache mount option.
 3439		 */
 3440		dcs = BTRFS_DC_WRITTEN;
 3441		spin_unlock(&block_group->lock);
 3442		goto out_put;
 3443	}
 3444	spin_unlock(&block_group->lock);
 3445
 3446	/*
 3447	 * We hit an ENOSPC when setting up the cache in this transaction, just
 3448	 * skip doing the setup, we've already cleared the cache so we're safe.
 3449	 */
 3450	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
 3451		ret = -ENOSPC;
 3452		goto out_put;
 3453	}
 3454
 3455	/*
 3456	 * Try to preallocate enough space based on how big the block group is.
 3457	 * Keep in mind this has to include any pinned space which could end up
 3458	 * taking up quite a bit since it's not folded into the other space
 3459	 * cache.
 3460	 */
 3461	num_pages = div_u64(block_group->key.offset, SZ_256M);
 3462	if (!num_pages)
 3463		num_pages = 1;
 3464
 3465	num_pages *= 16;
 3466	num_pages *= PAGE_SIZE;
 3467
 3468	ret = btrfs_check_data_free_space(inode, 0, num_pages);
 3469	if (ret)
 3470		goto out_put;
 3471
 3472	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
 3473					      num_pages, num_pages,
 3474					      &alloc_hint);
 3475	/*
 3476	 * Our cache requires contiguous chunks so that we don't modify a bunch
 3477	 * of metadata or split extents when writing the cache out, which means
 3478	 * we can enospc if we are heavily fragmented in addition to just normal
 3479	 * out of space conditions.  So if we hit this just skip setting up any
 3480	 * other block groups for this transaction, maybe we'll unpin enough
 3481	 * space the next time around.
 3482	 */
 3483	if (!ret)
 3484		dcs = BTRFS_DC_SETUP;
 3485	else if (ret == -ENOSPC)
 3486		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
 3487
 3488out_put:
 3489	iput(inode);
 3490out_free:
 3491	btrfs_release_path(path);
 3492out:
 3493	spin_lock(&block_group->lock);
 3494	if (!ret && dcs == BTRFS_DC_SETUP)
 3495		block_group->cache_generation = trans->transid;
 3496	block_group->disk_cache_state = dcs;
 3497	spin_unlock(&block_group->lock);
 3498
 3499	return ret;
 3500}
 3501
 3502int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
 3503			    struct btrfs_fs_info *fs_info)
 3504{
 3505	struct btrfs_block_group_cache *cache, *tmp;
 3506	struct btrfs_transaction *cur_trans = trans->transaction;
 3507	struct btrfs_path *path;
 3508
 3509	if (list_empty(&cur_trans->dirty_bgs) ||
 3510	    !btrfs_test_opt(fs_info, SPACE_CACHE))
 3511		return 0;
 3512
 3513	path = btrfs_alloc_path();
 3514	if (!path)
 3515		return -ENOMEM;
 3516
 3517	/* Could add new block groups, use _safe just in case */
 3518	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
 3519				 dirty_list) {
 3520		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
 3521			cache_save_setup(cache, trans, path);
 3522	}
 3523
 3524	btrfs_free_path(path);
 3525	return 0;
 3526}
 3527
 3528/*
 3529 * transaction commit does final block group cache writeback during a
 3530 * critical section where nothing is allowed to change the FS.  This is
 3531 * required in order for the cache to actually match the block group,
 3532 * but can introduce a lot of latency into the commit.
 3533 *
 3534 * So, btrfs_start_dirty_block_groups is here to kick off block group
 3535 * cache IO.  There's a chance we'll have to redo some of it if the
 3536 * block group changes again during the commit, but it greatly reduces
 3537 * the commit latency by getting rid of the easy block groups while
 3538 * we're still allowing others to join the commit.
 3539 */
 3540int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
 3541				   struct btrfs_fs_info *fs_info)
 3542{
 3543	struct btrfs_block_group_cache *cache;
 3544	struct btrfs_transaction *cur_trans = trans->transaction;
 3545	int ret = 0;
 3546	int should_put;
 3547	struct btrfs_path *path = NULL;
 3548	LIST_HEAD(dirty);
 3549	struct list_head *io = &cur_trans->io_bgs;
 3550	int num_started = 0;
 3551	int loops = 0;
 3552
 3553	spin_lock(&cur_trans->dirty_bgs_lock);
 3554	if (list_empty(&cur_trans->dirty_bgs)) {
 3555		spin_unlock(&cur_trans->dirty_bgs_lock);
 3556		return 0;
 3557	}
 3558	list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3559	spin_unlock(&cur_trans->dirty_bgs_lock);
 3560
 3561again:
 3562	/*
 3563	 * make sure all the block groups on our dirty list actually
 3564	 * exist
 3565	 */
 3566	btrfs_create_pending_block_groups(trans, fs_info);
 3567
 3568	if (!path) {
 3569		path = btrfs_alloc_path();
 3570		if (!path)
 3571			return -ENOMEM;
 3572	}
 3573
 3574	/*
 3575	 * cache_write_mutex is here only to save us from balance or automatic
 3576	 * removal of empty block groups deleting this block group while we are
 3577	 * writing out the cache
 3578	 */
 3579	mutex_lock(&trans->transaction->cache_write_mutex);
 3580	while (!list_empty(&dirty)) {
 3581		cache = list_first_entry(&dirty,
 3582					 struct btrfs_block_group_cache,
 3583					 dirty_list);
 3584		/*
 3585		 * this can happen if something re-dirties a block
 3586		 * group that is already under IO.  Just wait for it to
 3587		 * finish and then do it all again
 3588		 */
 3589		if (!list_empty(&cache->io_list)) {
 3590			list_del_init(&cache->io_list);
 3591			btrfs_wait_cache_io(trans, cache, path);
 3592			btrfs_put_block_group(cache);
 3593		}
 3594
 3595
 3596		/*
 3597		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
 3598		 * if it should update the cache_state.  Don't delete
 3599		 * until after we wait.
 3600		 *
 3601		 * Since we're not running in the commit critical section
 3602		 * we need the dirty_bgs_lock to protect from update_block_group
 3603		 */
 3604		spin_lock(&cur_trans->dirty_bgs_lock);
 3605		list_del_init(&cache->dirty_list);
 3606		spin_unlock(&cur_trans->dirty_bgs_lock);
 3607
 3608		should_put = 1;
 3609
 3610		cache_save_setup(cache, trans, path);
 3611
 3612		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
 3613			cache->io_ctl.inode = NULL;
 3614			ret = btrfs_write_out_cache(fs_info, trans,
 3615						    cache, path);
 3616			if (ret == 0 && cache->io_ctl.inode) {
 3617				num_started++;
 3618				should_put = 0;
 3619
 3620				/*
 3621				 * the cache_write_mutex is protecting
 3622				 * the io_list
 3623				 */
 3624				list_add_tail(&cache->io_list, io);
 3625			} else {
 3626				/*
 3627				 * if we failed to write the cache, the
 3628				 * generation will be bad and life goes on
 3629				 */
 3630				ret = 0;
 3631			}
 3632		}
 3633		if (!ret) {
 3634			ret = write_one_cache_group(trans, fs_info,
 3635						    path, cache);
 3636			/*
 3637			 * Our block group might still be attached to the list
 3638			 * of new block groups in the transaction handle of some
 3639			 * other task (struct btrfs_trans_handle->new_bgs). This
 3640			 * means its block group item isn't yet in the extent
 3641			 * tree. If this happens ignore the error, as we will
 3642			 * try again later in the critical section of the
 3643			 * transaction commit.
 3644			 */
 3645			if (ret == -ENOENT) {
 3646				ret = 0;
 3647				spin_lock(&cur_trans->dirty_bgs_lock);
 3648				if (list_empty(&cache->dirty_list)) {
 3649					list_add_tail(&cache->dirty_list,
 3650						      &cur_trans->dirty_bgs);
 3651					btrfs_get_block_group(cache);
 3652				}
 3653				spin_unlock(&cur_trans->dirty_bgs_lock);
 3654			} else if (ret) {
 3655				btrfs_abort_transaction(trans, ret);
 3656			}
 3657		}
 3658
 3659		/* if its not on the io list, we need to put the block group */
 3660		if (should_put)
 3661			btrfs_put_block_group(cache);
 3662
 3663		if (ret)
 3664			break;
 3665
 3666		/*
 3667		 * Avoid blocking other tasks for too long. It might even save
 3668		 * us from writing caches for block groups that are going to be
 3669		 * removed.
 3670		 */
 3671		mutex_unlock(&trans->transaction->cache_write_mutex);
 3672		mutex_lock(&trans->transaction->cache_write_mutex);
 3673	}
 3674	mutex_unlock(&trans->transaction->cache_write_mutex);
 3675
 3676	/*
 3677	 * go through delayed refs for all the stuff we've just kicked off
 3678	 * and then loop back (just once)
 3679	 */
 3680	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
 3681	if (!ret && loops == 0) {
 3682		loops++;
 3683		spin_lock(&cur_trans->dirty_bgs_lock);
 3684		list_splice_init(&cur_trans->dirty_bgs, &dirty);
 3685		/*
 3686		 * dirty_bgs_lock protects us from concurrent block group
 3687		 * deletes too (not just cache_write_mutex).
 3688		 */
 3689		if (!list_empty(&dirty)) {
 3690			spin_unlock(&cur_trans->dirty_bgs_lock);
 3691			goto again;
 3692		}
 3693		spin_unlock(&cur_trans->dirty_bgs_lock);
 3694	} else if (ret < 0) {
 3695		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
 3696	}
 3697
 3698	btrfs_free_path(path);
 3699	return ret;
 3700}
 3701
 3702int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
 3703				   struct btrfs_fs_info *fs_info)
 3704{
 3705	struct btrfs_block_group_cache *cache;
 3706	struct btrfs_transaction *cur_trans = trans->transaction;
 3707	int ret = 0;
 3708	int should_put;
 3709	struct btrfs_path *path;
 3710	struct list_head *io = &cur_trans->io_bgs;
 3711	int num_started = 0;
 3712
 3713	path = btrfs_alloc_path();
 3714	if (!path)
 3715		return -ENOMEM;
 3716
 3717	/*
 3718	 * Even though we are in the critical section of the transaction commit,
 3719	 * we can still have concurrent tasks adding elements to this
 3720	 * transaction's list of dirty block groups. These tasks correspond to
 3721	 * endio free space workers started when writeback finishes for a
 3722	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
 3723	 * allocate new block groups as a result of COWing nodes of the root
 3724	 * tree when updating the free space inode. The writeback for the space
 3725	 * caches is triggered by an earlier call to
 3726	 * btrfs_start_dirty_block_groups() and iterations of the following
 3727	 * loop.
 3728	 * Also we want to do the cache_save_setup first and then run the
 3729	 * delayed refs to make sure we have the best chance at doing this all
 3730	 * in one shot.
 3731	 */
 3732	spin_lock(&cur_trans->dirty_bgs_lock);
 3733	while (!list_empty(&cur_trans->dirty_bgs)) {
 3734		cache = list_first_entry(&cur_trans->dirty_bgs,
 3735					 struct btrfs_block_group_cache,
 3736					 dirty_list);
 3737
 3738		/*
 3739		 * this can happen if cache_save_setup re-dirties a block
 3740		 * group that is already under IO.  Just wait for it to
 3741		 * finish and then do it all again
 3742		 */
 3743		if (!list_empty(&cache->io_list)) {
 3744			spin_unlock(&cur_trans->dirty_bgs_lock);
 3745			list_del_init(&cache->io_list);
 3746			btrfs_wait_cache_io(trans, cache, path);
 3747			btrfs_put_block_group(cache);
 3748			spin_lock(&cur_trans->dirty_bgs_lock);
 3749		}
 3750
 3751		/*
 3752		 * don't remove from the dirty list until after we've waited
 3753		 * on any pending IO
 3754		 */
 3755		list_del_init(&cache->dirty_list);
 3756		spin_unlock(&cur_trans->dirty_bgs_lock);
 3757		should_put = 1;
 3758
 3759		cache_save_setup(cache, trans, path);
 3760
 3761		if (!ret)
 3762			ret = btrfs_run_delayed_refs(trans, fs_info,
 3763						     (unsigned long) -1);
 3764
 3765		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
 3766			cache->io_ctl.inode = NULL;
 3767			ret = btrfs_write_out_cache(fs_info, trans,
 3768						    cache, path);
 3769			if (ret == 0 && cache->io_ctl.inode) {
 3770				num_started++;
 3771				should_put = 0;
 3772				list_add_tail(&cache->io_list, io);
 3773			} else {
 3774				/*
 3775				 * if we failed to write the cache, the
 3776				 * generation will be bad and life goes on
 3777				 */
 3778				ret = 0;
 3779			}
 3780		}
 3781		if (!ret) {
 3782			ret = write_one_cache_group(trans, fs_info,
 3783						    path, cache);
 3784			/*
 3785			 * One of the free space endio workers might have
 3786			 * created a new block group while updating a free space
 3787			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
 3788			 * and hasn't released its transaction handle yet, in
 3789			 * which case the new block group is still attached to
 3790			 * its transaction handle and its creation has not
 3791			 * finished yet (no block group item in the extent tree
 3792			 * yet, etc). If this is the case, wait for all free
 3793			 * space endio workers to finish and retry. This is a
 3794			 * a very rare case so no need for a more efficient and
 3795			 * complex approach.
 3796			 */
 3797			if (ret == -ENOENT) {
 3798				wait_event(cur_trans->writer_wait,
 3799				   atomic_read(&cur_trans->num_writers) == 1);
 3800				ret = write_one_cache_group(trans, fs_info,
 3801							    path, cache);
 3802			}
 3803			if (ret)
 3804				btrfs_abort_transaction(trans, ret);
 3805		}
 3806
 3807		/* if its not on the io list, we need to put the block group */
 3808		if (should_put)
 3809			btrfs_put_block_group(cache);
 3810		spin_lock(&cur_trans->dirty_bgs_lock);
 3811	}
 3812	spin_unlock(&cur_trans->dirty_bgs_lock);
 3813
 3814	while (!list_empty(io)) {
 3815		cache = list_first_entry(io, struct btrfs_block_group_cache,
 3816					 io_list);
 3817		list_del_init(&cache->io_list);
 3818		btrfs_wait_cache_io(trans, cache, path);
 3819		btrfs_put_block_group(cache);
 3820	}
 3821
 3822	btrfs_free_path(path);
 3823	return ret;
 3824}
 3825
 3826int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
 3827{
 3828	struct btrfs_block_group_cache *block_group;
 3829	int readonly = 0;
 3830
 3831	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 3832	if (!block_group || block_group->ro)
 3833		readonly = 1;
 3834	if (block_group)
 3835		btrfs_put_block_group(block_group);
 3836	return readonly;
 3837}
 3838
 3839bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 3840{
 3841	struct btrfs_block_group_cache *bg;
 3842	bool ret = true;
 3843
 3844	bg = btrfs_lookup_block_group(fs_info, bytenr);
 3845	if (!bg)
 3846		return false;
 3847
 3848	spin_lock(&bg->lock);
 3849	if (bg->ro)
 3850		ret = false;
 3851	else
 3852		atomic_inc(&bg->nocow_writers);
 3853	spin_unlock(&bg->lock);
 3854
 3855	/* no put on block group, done by btrfs_dec_nocow_writers */
 3856	if (!ret)
 3857		btrfs_put_block_group(bg);
 3858
 3859	return ret;
 3860
 3861}
 3862
 3863void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
 3864{
 3865	struct btrfs_block_group_cache *bg;
 3866
 3867	bg = btrfs_lookup_block_group(fs_info, bytenr);
 3868	ASSERT(bg);
 3869	if (atomic_dec_and_test(&bg->nocow_writers))
 3870		wake_up_atomic_t(&bg->nocow_writers);
 3871	/*
 3872	 * Once for our lookup and once for the lookup done by a previous call
 3873	 * to btrfs_inc_nocow_writers()
 3874	 */
 3875	btrfs_put_block_group(bg);
 3876	btrfs_put_block_group(bg);
 3877}
 3878
 3879static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
 3880{
 3881	schedule();
 3882	return 0;
 3883}
 3884
 3885void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
 3886{
 3887	wait_on_atomic_t(&bg->nocow_writers,
 3888			 btrfs_wait_nocow_writers_atomic_t,
 3889			 TASK_UNINTERRUPTIBLE);
 3890}
 3891
 3892static const char *alloc_name(u64 flags)
 3893{
 3894	switch (flags) {
 3895	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
 3896		return "mixed";
 3897	case BTRFS_BLOCK_GROUP_METADATA:
 3898		return "metadata";
 3899	case BTRFS_BLOCK_GROUP_DATA:
 3900		return "data";
 3901	case BTRFS_BLOCK_GROUP_SYSTEM:
 3902		return "system";
 3903	default:
 3904		WARN_ON(1);
 3905		return "invalid-combination";
 3906	};
 3907}
 3908
 3909static int update_space_info(struct btrfs_fs_info *info, u64 flags,
 3910			     u64 total_bytes, u64 bytes_used,
 3911			     u64 bytes_readonly,
 3912			     struct btrfs_space_info **space_info)
 3913{
 3914	struct btrfs_space_info *found;
 3915	int i;
 3916	int factor;
 3917	int ret;
 3918
 3919	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
 3920		     BTRFS_BLOCK_GROUP_RAID10))
 3921		factor = 2;
 3922	else
 3923		factor = 1;
 3924
 3925	found = __find_space_info(info, flags);
 3926	if (found) {
 3927		spin_lock(&found->lock);
 3928		found->total_bytes += total_bytes;
 3929		found->disk_total += total_bytes * factor;
 3930		found->bytes_used += bytes_used;
 3931		found->disk_used += bytes_used * factor;
 3932		found->bytes_readonly += bytes_readonly;
 3933		if (total_bytes > 0)
 3934			found->full = 0;
 3935		space_info_add_new_bytes(info, found, total_bytes -
 3936					 bytes_used - bytes_readonly);
 3937		spin_unlock(&found->lock);
 3938		*space_info = found;
 3939		return 0;
 3940	}
 3941	found = kzalloc(sizeof(*found), GFP_NOFS);
 3942	if (!found)
 3943		return -ENOMEM;
 3944
 3945	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
 3946	if (ret) {
 3947		kfree(found);
 3948		return ret;
 3949	}
 3950
 3951	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 3952		INIT_LIST_HEAD(&found->block_groups[i]);
 3953	init_rwsem(&found->groups_sem);
 3954	spin_lock_init(&found->lock);
 3955	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 3956	found->total_bytes = total_bytes;
 3957	found->disk_total = total_bytes * factor;
 3958	found->bytes_used = bytes_used;
 3959	found->disk_used = bytes_used * factor;
 3960	found->bytes_pinned = 0;
 3961	found->bytes_reserved = 0;
 3962	found->bytes_readonly = bytes_readonly;
 3963	found->bytes_may_use = 0;
 3964	found->full = 0;
 3965	found->max_extent_size = 0;
 3966	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
 3967	found->chunk_alloc = 0;
 3968	found->flush = 0;
 3969	init_waitqueue_head(&found->wait);
 3970	INIT_LIST_HEAD(&found->ro_bgs);
 3971	INIT_LIST_HEAD(&found->tickets);
 3972	INIT_LIST_HEAD(&found->priority_tickets);
 3973
 3974	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
 3975				    info->space_info_kobj, "%s",
 3976				    alloc_name(found->flags));
 3977	if (ret) {
 3978		kfree(found);
 3979		return ret;
 3980	}
 3981
 3982	*space_info = found;
 3983	list_add_rcu(&found->list, &info->space_info);
 3984	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3985		info->data_sinfo = found;
 3986
 3987	return ret;
 3988}
 3989
 3990static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
 3991{
 3992	u64 extra_flags = chunk_to_extended(flags) &
 3993				BTRFS_EXTENDED_PROFILE_MASK;
 3994
 3995	write_seqlock(&fs_info->profiles_lock);
 3996	if (flags & BTRFS_BLOCK_GROUP_DATA)
 3997		fs_info->avail_data_alloc_bits |= extra_flags;
 3998	if (flags & BTRFS_BLOCK_GROUP_METADATA)
 3999		fs_info->avail_metadata_alloc_bits |= extra_flags;
 4000	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 4001		fs_info->avail_system_alloc_bits |= extra_flags;
 4002	write_sequnlock(&fs_info->profiles_lock);
 4003}
 4004
 4005/*
 4006 * returns target flags in extended format or 0 if restripe for this
 4007 * chunk_type is not in progress
 4008 *
 4009 * should be called with either volume_mutex or balance_lock held
 4010 */
 4011static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
 4012{
 4013	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 4014	u64 target = 0;
 4015
 4016	if (!bctl)
 4017		return 0;
 4018
 4019	if (flags & BTRFS_BLOCK_GROUP_DATA &&
 4020	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4021		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
 4022	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
 4023		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4024		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
 4025	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
 4026		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
 4027		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
 4028	}
 4029
 4030	return target;
 4031}
 4032
 4033/*
 4034 * @flags: available profiles in extended format (see ctree.h)
 4035 *
 4036 * Returns reduced profile in chunk format.  If profile changing is in
 4037 * progress (either running or paused) picks the target profile (if it's
 4038 * already available), otherwise falls back to plain reducing.
 4039 */
 4040static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
 4041{
 4042	u64 num_devices = fs_info->fs_devices->rw_devices;
 4043	u64 target;
 4044	u64 raid_type;
 4045	u64 allowed = 0;
 4046
 4047	/*
 4048	 * see if restripe for this chunk_type is in progress, if so
 4049	 * try to reduce to the target profile
 4050	 */
 4051	spin_lock(&fs_info->balance_lock);
 4052	target = get_restripe_target(fs_info, flags);
 4053	if (target) {
 4054		/* pick target profile only if it's already available */
 4055		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
 4056			spin_unlock(&fs_info->balance_lock);
 4057			return extended_to_chunk(target);
 4058		}
 4059	}
 4060	spin_unlock(&fs_info->balance_lock);
 4061
 4062	/* First, mask out the RAID levels which aren't possible */
 4063	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
 4064		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
 4065			allowed |= btrfs_raid_group[raid_type];
 4066	}
 4067	allowed &= flags;
 4068
 4069	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
 4070		allowed = BTRFS_BLOCK_GROUP_RAID6;
 4071	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
 4072		allowed = BTRFS_BLOCK_GROUP_RAID5;
 4073	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
 4074		allowed = BTRFS_BLOCK_GROUP_RAID10;
 4075	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
 4076		allowed = BTRFS_BLOCK_GROUP_RAID1;
 4077	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
 4078		allowed = BTRFS_BLOCK_GROUP_RAID0;
 4079
 4080	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
 4081
 4082	return extended_to_chunk(flags | allowed);
 4083}
 4084
 4085static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
 4086{
 4087	unsigned seq;
 4088	u64 flags;
 4089
 4090	do {
 4091		flags = orig_flags;
 4092		seq = read_seqbegin(&fs_info->profiles_lock);
 4093
 4094		if (flags & BTRFS_BLOCK_GROUP_DATA)
 4095			flags |= fs_info->avail_data_alloc_bits;
 4096		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 4097			flags |= fs_info->avail_system_alloc_bits;
 4098		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
 4099			flags |= fs_info->avail_metadata_alloc_bits;
 4100	} while (read_seqretry(&fs_info->profiles_lock, seq));
 4101
 4102	return btrfs_reduce_alloc_profile(fs_info, flags);
 4103}
 4104
 4105u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
 4106{
 4107	struct btrfs_fs_info *fs_info = root->fs_info;
 4108	u64 flags;
 4109	u64 ret;
 4110
 4111	if (data)
 4112		flags = BTRFS_BLOCK_GROUP_DATA;
 4113	else if (root == fs_info->chunk_root)
 4114		flags = BTRFS_BLOCK_GROUP_SYSTEM;
 4115	else
 4116		flags = BTRFS_BLOCK_GROUP_METADATA;
 4117
 4118	ret = get_alloc_profile(fs_info, flags);
 4119	return ret;
 4120}
 4121
 4122int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
 4123{
 4124	struct btrfs_space_info *data_sinfo;
 4125	struct btrfs_root *root = BTRFS_I(inode)->root;
 4126	struct btrfs_fs_info *fs_info = root->fs_info;
 4127	u64 used;
 4128	int ret = 0;
 4129	int need_commit = 2;
 4130	int have_pinned_space;
 4131
 4132	/* make sure bytes are sectorsize aligned */
 4133	bytes = ALIGN(bytes, fs_info->sectorsize);
 4134
 4135	if (btrfs_is_free_space_inode(inode)) {
 4136		need_commit = 0;
 4137		ASSERT(current->journal_info);
 4138	}
 4139
 4140	data_sinfo = fs_info->data_sinfo;
 4141	if (!data_sinfo)
 4142		goto alloc;
 4143
 4144again:
 4145	/* make sure we have enough space to handle the data first */
 4146	spin_lock(&data_sinfo->lock);
 4147	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
 4148		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
 4149		data_sinfo->bytes_may_use;
 4150
 4151	if (used + bytes > data_sinfo->total_bytes) {
 4152		struct btrfs_trans_handle *trans;
 4153
 4154		/*
 4155		 * if we don't have enough free bytes in this space then we need
 4156		 * to alloc a new chunk.
 4157		 */
 4158		if (!data_sinfo->full) {
 4159			u64 alloc_target;
 4160
 4161			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
 4162			spin_unlock(&data_sinfo->lock);
 4163alloc:
 4164			alloc_target = btrfs_get_alloc_profile(root, 1);
 4165			/*
 4166			 * It is ugly that we don't call nolock join
 4167			 * transaction for the free space inode case here.
 4168			 * But it is safe because we only do the data space
 4169			 * reservation for the free space cache in the
 4170			 * transaction context, the common join transaction
 4171			 * just increase the counter of the current transaction
 4172			 * handler, doesn't try to acquire the trans_lock of
 4173			 * the fs.
 4174			 */
 4175			trans = btrfs_join_transaction(root);
 4176			if (IS_ERR(trans))
 4177				return PTR_ERR(trans);
 4178
 4179			ret = do_chunk_alloc(trans, fs_info, alloc_target,
 4180					     CHUNK_ALLOC_NO_FORCE);
 4181			btrfs_end_transaction(trans);
 4182			if (ret < 0) {
 4183				if (ret != -ENOSPC)
 4184					return ret;
 4185				else {
 4186					have_pinned_space = 1;
 4187					goto commit_trans;
 4188				}
 4189			}
 4190
 4191			if (!data_sinfo)
 4192				data_sinfo = fs_info->data_sinfo;
 4193
 4194			goto again;
 4195		}
 4196
 4197		/*
 4198		 * If we don't have enough pinned space to deal with this
 4199		 * allocation, and no removed chunk in current transaction,
 4200		 * don't bother committing the transaction.
 4201		 */
 4202		have_pinned_space = percpu_counter_compare(
 4203			&data_sinfo->total_bytes_pinned,
 4204			used + bytes - data_sinfo->total_bytes);
 4205		spin_unlock(&data_sinfo->lock);
 4206
 4207		/* commit the current transaction and try again */
 4208commit_trans:
 4209		if (need_commit &&
 4210		    !atomic_read(&fs_info->open_ioctl_trans)) {
 4211			need_commit--;
 4212
 4213			if (need_commit > 0) {
 4214				btrfs_start_delalloc_roots(fs_info, 0, -1);
 4215				btrfs_wait_ordered_roots(fs_info, -1, 0,
 4216							 (u64)-1);
 4217			}
 4218
 4219			trans = btrfs_join_transaction(root);
 4220			if (IS_ERR(trans))
 4221				return PTR_ERR(trans);
 4222			if (have_pinned_space >= 0 ||
 4223			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
 4224				     &trans->transaction->flags) ||
 4225			    need_commit > 0) {
 4226				ret = btrfs_commit_transaction(trans);
 4227				if (ret)
 4228					return ret;
 4229				/*
 4230				 * The cleaner kthread might still be doing iput
 4231				 * operations. Wait for it to finish so that
 4232				 * more space is released.
 4233				 */
 4234				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
 4235				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
 4236				goto again;
 4237			} else {
 4238				btrfs_end_transaction(trans);
 4239			}
 4240		}
 4241
 4242		trace_btrfs_space_reservation(fs_info,
 4243					      "space_info:enospc",
 4244					      data_sinfo->flags, bytes, 1);
 4245		return -ENOSPC;
 4246	}
 4247	data_sinfo->bytes_may_use += bytes;
 4248	trace_btrfs_space_reservation(fs_info, "space_info",
 4249				      data_sinfo->flags, bytes, 1);
 4250	spin_unlock(&data_sinfo->lock);
 4251
 4252	return ret;
 4253}
 4254
 4255/*
 4256 * New check_data_free_space() with ability for precious data reservation
 4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
 4258 * add a new function first and then replace it.
 4259 */
 4260int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
 4261{
 4262	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 4263	int ret;
 4264
 4265	/* align the range */
 4266	len = round_up(start + len, fs_info->sectorsize) -
 4267	      round_down(start, fs_info->sectorsize);
 4268	start = round_down(start, fs_info->sectorsize);
 4269
 4270	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
 4271	if (ret < 0)
 4272		return ret;
 4273
 4274	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
 4275	ret = btrfs_qgroup_reserve_data(inode, start, len);
 4276	if (ret)
 4277		btrfs_free_reserved_data_space_noquota(inode, start, len);
 4278	return ret;
 4279}
 4280
 4281/*
 4282 * Called if we need to clear a data reservation for this inode
 4283 * Normally in a error case.
 4284 *
 4285 * This one will *NOT* use accurate qgroup reserved space API, just for case
 4286 * which we can't sleep and is sure it won't affect qgroup reserved space.
 4287 * Like clear_bit_hook().
 4288 */
 4289void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
 4290					    u64 len)
 4291{
 4292	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 4293	struct btrfs_space_info *data_sinfo;
 4294
 4295	/* Make sure the range is aligned to sectorsize */
 4296	len = round_up(start + len, fs_info->sectorsize) -
 4297	      round_down(start, fs_info->sectorsize);
 4298	start = round_down(start, fs_info->sectorsize);
 4299
 4300	data_sinfo = fs_info->data_sinfo;
 4301	spin_lock(&data_sinfo->lock);
 4302	if (WARN_ON(data_sinfo->bytes_may_use < len))
 4303		data_sinfo->bytes_may_use = 0;
 4304	else
 4305		data_sinfo->bytes_may_use -= len;
 4306	trace_btrfs_space_reservation(fs_info, "space_info",
 4307				      data_sinfo->flags, len, 0);
 4308	spin_unlock(&data_sinfo->lock);
 4309}
 4310
 4311/*
 4312 * Called if we need to clear a data reservation for this inode
 4313 * Normally in a error case.
 4314 *
 4315 * This one will handle the per-inode data rsv map for accurate reserved
 4316 * space framework.
 4317 */
 4318void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
 4319{
 4320	struct btrfs_root *root = BTRFS_I(inode)->root;
 4321
 4322	/* Make sure the range is aligned to sectorsize */
 4323	len = round_up(start + len, root->fs_info->sectorsize) -
 4324	      round_down(start, root->fs_info->sectorsize);
 4325	start = round_down(start, root->fs_info->sectorsize);
 4326
 4327	btrfs_free_reserved_data_space_noquota(inode, start, len);
 4328	btrfs_qgroup_free_data(inode, start, len);
 4329}
 4330
 4331static void force_metadata_allocation(struct btrfs_fs_info *info)
 4332{
 4333	struct list_head *head = &info->space_info;
 4334	struct btrfs_space_info *found;
 4335
 4336	rcu_read_lock();
 4337	list_for_each_entry_rcu(found, head, list) {
 4338		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
 4339			found->force_alloc = CHUNK_ALLOC_FORCE;
 4340	}
 4341	rcu_read_unlock();
 4342}
 4343
 4344static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 4345{
 4346	return (global->size << 1);
 4347}
 4348
 4349static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
 4350			      struct btrfs_space_info *sinfo, int force)
 4351{
 4352	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 4353	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
 4354	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
 4355	u64 thresh;
 4356
 4357	if (force == CHUNK_ALLOC_FORCE)
 4358		return 1;
 4359
 4360	/*
 4361	 * We need to take into account the global rsv because for all intents
 4362	 * and purposes it's used space.  Don't worry about locking the
 4363	 * global_rsv, it doesn't change except when the transaction commits.
 4364	 */
 4365	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
 4366		num_allocated += calc_global_rsv_need_space(global_rsv);
 4367
 4368	/*
 4369	 * in limited mode, we want to have some free space up to
 4370	 * about 1% of the FS size.
 4371	 */
 4372	if (force == CHUNK_ALLOC_LIMITED) {
 4373		thresh = btrfs_super_total_bytes(fs_info->super_copy);
 4374		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
 4375
 4376		if (num_bytes - num_allocated < thresh)
 4377			return 1;
 4378	}
 4379
 4380	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
 4381		return 0;
 4382	return 1;
 4383}
 4384
 4385static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
 4386{
 4387	u64 num_dev;
 4388
 4389	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
 4390		    BTRFS_BLOCK_GROUP_RAID0 |
 4391		    BTRFS_BLOCK_GROUP_RAID5 |
 4392		    BTRFS_BLOCK_GROUP_RAID6))
 4393		num_dev = fs_info->fs_devices->rw_devices;
 4394	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 4395		num_dev = 2;
 4396	else
 4397		num_dev = 1;	/* DUP or single */
 4398
 4399	return num_dev;
 4400}
 4401
 4402/*
 4403 * If @is_allocation is true, reserve space in the system space info necessary
 4404 * for allocating a chunk, otherwise if it's false, reserve space necessary for
 4405 * removing a chunk.
 4406 */
 4407void check_system_chunk(struct btrfs_trans_handle *trans,
 4408			struct btrfs_fs_info *fs_info, u64 type)
 4409{
 4410	struct btrfs_space_info *info;
 4411	u64 left;
 4412	u64 thresh;
 4413	int ret = 0;
 4414	u64 num_devs;
 4415
 4416	/*
 4417	 * Needed because we can end up allocating a system chunk and for an
 4418	 * atomic and race free space reservation in the chunk block reserve.
 4419	 */
 4420	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
 4421
 4422	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 4423	spin_lock(&info->lock);
 4424	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
 4425		info->bytes_reserved - info->bytes_readonly -
 4426		info->bytes_may_use;
 4427	spin_unlock(&info->lock);
 4428
 4429	num_devs = get_profile_num_devs(fs_info, type);
 4430
 4431	/* num_devs device items to update and 1 chunk item to add or remove */
 4432	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
 4433		btrfs_calc_trans_metadata_size(fs_info, 1);
 4434
 4435	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 4436		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
 4437			   left, thresh, type);
 4438		dump_space_info(fs_info, info, 0, 0);
 4439	}
 4440
 4441	if (left < thresh) {
 4442		u64 flags;
 4443
 4444		flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
 4445		/*
 4446		 * Ignore failure to create system chunk. We might end up not
 4447		 * needing it, as we might not need to COW all nodes/leafs from
 4448		 * the paths we visit in the chunk tree (they were already COWed
 4449		 * or created in the current transaction for example).
 4450		 */
 4451		ret = btrfs_alloc_chunk(trans, fs_info, flags);
 4452	}
 4453
 4454	if (!ret) {
 4455		ret = btrfs_block_rsv_add(fs_info->chunk_root,
 4456					  &fs_info->chunk_block_rsv,
 4457					  thresh, BTRFS_RESERVE_NO_FLUSH);
 4458		if (!ret)
 4459			trans->chunk_bytes_reserved += thresh;
 4460	}
 4461}
 4462
 4463/*
 4464 * If force is CHUNK_ALLOC_FORCE:
 4465 *    - return 1 if it successfully allocates a chunk,
 4466 *    - return errors including -ENOSPC otherwise.
 4467 * If force is NOT CHUNK_ALLOC_FORCE:
 4468 *    - return 0 if it doesn't need to allocate a new chunk,
 4469 *    - return 1 if it successfully allocates a chunk,
 4470 *    - return errors including -ENOSPC otherwise.
 4471 */
 4472static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 4473			  struct btrfs_fs_info *fs_info, u64 flags, int force)
 4474{
 4475	struct btrfs_space_info *space_info;
 4476	int wait_for_alloc = 0;
 4477	int ret = 0;
 4478
 4479	/* Don't re-enter if we're already allocating a chunk */
 4480	if (trans->allocating_chunk)
 4481		return -ENOSPC;
 4482
 4483	space_info = __find_space_info(fs_info, flags);
 4484	if (!space_info) {
 4485		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
 4486		BUG_ON(ret); /* -ENOMEM */
 4487	}
 4488	BUG_ON(!space_info); /* Logic error */
 4489
 4490again:
 4491	spin_lock(&space_info->lock);
 4492	if (force < space_info->force_alloc)
 4493		force = space_info->force_alloc;
 4494	if (space_info->full) {
 4495		if (should_alloc_chunk(fs_info, space_info, force))
 4496			ret = -ENOSPC;
 4497		else
 4498			ret = 0;
 4499		spin_unlock(&space_info->lock);
 4500		return ret;
 4501	}
 4502
 4503	if (!should_alloc_chunk(fs_info, space_info, force)) {
 4504		spin_unlock(&space_info->lock);
 4505		return 0;
 4506	} else if (space_info->chunk_alloc) {
 4507		wait_for_alloc = 1;
 4508	} else {
 4509		space_info->chunk_alloc = 1;
 4510	}
 4511
 4512	spin_unlock(&space_info->lock);
 4513
 4514	mutex_lock(&fs_info->chunk_mutex);
 4515
 4516	/*
 4517	 * The chunk_mutex is held throughout the entirety of a chunk
 4518	 * allocation, so once we've acquired the chunk_mutex we know that the
 4519	 * other guy is done and we need to recheck and see if we should
 4520	 * allocate.
 4521	 */
 4522	if (wait_for_alloc) {
 4523		mutex_unlock(&fs_info->chunk_mutex);
 4524		wait_for_alloc = 0;
 4525		goto again;
 4526	}
 4527
 4528	trans->allocating_chunk = true;
 4529
 4530	/*
 4531	 * If we have mixed data/metadata chunks we want to make sure we keep
 4532	 * allocating mixed chunks instead of individual chunks.
 4533	 */
 4534	if (btrfs_mixed_space_info(space_info))
 4535		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
 4536
 4537	/*
 4538	 * if we're doing a data chunk, go ahead and make sure that
 4539	 * we keep a reasonable number of metadata chunks allocated in the
 4540	 * FS as well.
 4541	 */
 4542	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
 4543		fs_info->data_chunk_allocations++;
 4544		if (!(fs_info->data_chunk_allocations %
 4545		      fs_info->metadata_ratio))
 4546			force_metadata_allocation(fs_info);
 4547	}
 4548
 4549	/*
 4550	 * Check if we have enough space in SYSTEM chunk because we may need
 4551	 * to update devices.
 4552	 */
 4553	check_system_chunk(trans, fs_info, flags);
 4554
 4555	ret = btrfs_alloc_chunk(trans, fs_info, flags);
 4556	trans->allocating_chunk = false;
 4557
 4558	spin_lock(&space_info->lock);
 4559	if (ret < 0 && ret != -ENOSPC)
 4560		goto out;
 4561	if (ret)
 4562		space_info->full = 1;
 4563	else
 4564		ret = 1;
 4565
 4566	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 4567out:
 4568	space_info->chunk_alloc = 0;
 4569	spin_unlock(&space_info->lock);
 4570	mutex_unlock(&fs_info->chunk_mutex);
 4571	/*
 4572	 * When we allocate a new chunk we reserve space in the chunk block
 4573	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
 4574	 * add new nodes/leafs to it if we end up needing to do it when
 4575	 * inserting the chunk item and updating device items as part of the
 4576	 * second phase of chunk allocation, performed by
 4577	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
 4578	 * large number of new block groups to create in our transaction
 4579	 * handle's new_bgs list to avoid exhausting the chunk block reserve
 4580	 * in extreme cases - like having a single transaction create many new
 4581	 * block groups when starting to write out the free space caches of all
 4582	 * the block groups that were made dirty during the lifetime of the
 4583	 * transaction.
 4584	 */
 4585	if (trans->can_flush_pending_bgs &&
 4586	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
 4587		btrfs_create_pending_block_groups(trans, fs_info);
 4588		btrfs_trans_release_chunk_metadata(trans);
 4589	}
 4590	return ret;
 4591}
 4592
 4593static int can_overcommit(struct btrfs_root *root,
 4594			  struct btrfs_space_info *space_info, u64 bytes,
 4595			  enum btrfs_reserve_flush_enum flush)
 4596{
 4597	struct btrfs_fs_info *fs_info = root->fs_info;
 4598	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 4599	u64 profile;
 4600	u64 space_size;
 4601	u64 avail;
 4602	u64 used;
 4603
 4604	/* Don't overcommit when in mixed mode. */
 4605	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 4606		return 0;
 4607
 4608	profile = btrfs_get_alloc_profile(root, 0);
 4609	used = space_info->bytes_used + space_info->bytes_reserved +
 4610		space_info->bytes_pinned + space_info->bytes_readonly;
 4611
 4612	/*
 4613	 * We only want to allow over committing if we have lots of actual space
 4614	 * free, but if we don't have enough space to handle the global reserve
 4615	 * space then we could end up having a real enospc problem when trying
 4616	 * to allocate a chunk or some other such important allocation.
 4617	 */
 4618	spin_lock(&global_rsv->lock);
 4619	space_size = calc_global_rsv_need_space(global_rsv);
 4620	spin_unlock(&global_rsv->lock);
 4621	if (used + space_size >= space_info->total_bytes)
 4622		return 0;
 4623
 4624	used += space_info->bytes_may_use;
 4625
 4626	spin_lock(&fs_info->free_chunk_lock);
 4627	avail = fs_info->free_chunk_space;
 4628	spin_unlock(&fs_info->free_chunk_lock);
 4629
 4630	/*
 4631	 * If we have dup, raid1 or raid10 then only half of the free
 4632	 * space is actually useable.  For raid56, the space info used
 4633	 * doesn't include the parity drive, so we don't have to
 4634	 * change the math
 4635	 */
 4636	if (profile & (BTRFS_BLOCK_GROUP_DUP |
 4637		       BTRFS_BLOCK_GROUP_RAID1 |
 4638		       BTRFS_BLOCK_GROUP_RAID10))
 4639		avail >>= 1;
 4640
 4641	/*
 4642	 * If we aren't flushing all things, let us overcommit up to
 4643	 * 1/2th of the space. If we can flush, don't let us overcommit
 4644	 * too much, let it overcommit up to 1/8 of the space.
 4645	 */
 4646	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 4647		avail >>= 3;
 4648	else
 4649		avail >>= 1;
 4650
 4651	if (used + bytes < space_info->total_bytes + avail)
 4652		return 1;
 4653	return 0;
 4654}
 4655
 4656static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 4657					 unsigned long nr_pages, int nr_items)
 4658{
 4659	struct super_block *sb = fs_info->sb;
 4660
 4661	if (down_read_trylock(&sb->s_umount)) {
 4662		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 4663		up_read(&sb->s_umount);
 4664	} else {
 4665		/*
 4666		 * We needn't worry the filesystem going from r/w to r/o though
 4667		 * we don't acquire ->s_umount mutex, because the filesystem
 4668		 * should guarantee the delalloc inodes list be empty after
 4669		 * the filesystem is readonly(all dirty pages are written to
 4670		 * the disk).
 4671		 */
 4672		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
 4673		if (!current->journal_info)
 4674			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 4675	}
 4676}
 4677
 4678static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 4679					u64 to_reclaim)
 4680{
 4681	u64 bytes;
 4682	int nr;
 4683
 4684	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 4685	nr = (int)div64_u64(to_reclaim, bytes);
 4686	if (!nr)
 4687		nr = 1;
 4688	return nr;
 4689}
 4690
 4691#define EXTENT_SIZE_PER_ITEM	SZ_256K
 4692
 4693/*
 4694 * shrink metadata reservation for delalloc
 4695 */
 4696static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
 4697			    bool wait_ordered)
 4698{
 4699	struct btrfs_fs_info *fs_info = root->fs_info;
 4700	struct btrfs_block_rsv *block_rsv;
 4701	struct btrfs_space_info *space_info;
 4702	struct btrfs_trans_handle *trans;
 4703	u64 delalloc_bytes;
 4704	u64 max_reclaim;
 4705	long time_left;
 4706	unsigned long nr_pages;
 4707	int loops;
 4708	int items;
 4709	enum btrfs_reserve_flush_enum flush;
 4710
 4711	/* Calc the number of the pages we need flush for space reservation */
 4712	items = calc_reclaim_items_nr(fs_info, to_reclaim);
 4713	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
 4714
 4715	trans = (struct btrfs_trans_handle *)current->journal_info;
 4716	block_rsv = &fs_info->delalloc_block_rsv;
 4717	space_info = block_rsv->space_info;
 4718
 4719	delalloc_bytes = percpu_counter_sum_positive(
 4720						&fs_info->delalloc_bytes);
 4721	if (delalloc_bytes == 0) {
 4722		if (trans)
 4723			return;
 4724		if (wait_ordered)
 4725			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 4726		return;
 4727	}
 4728
 4729	loops = 0;
 4730	while (delalloc_bytes && loops < 3) {
 4731		max_reclaim = min(delalloc_bytes, to_reclaim);
 4732		nr_pages = max_reclaim >> PAGE_SHIFT;
 4733		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 4734		/*
 4735		 * We need to wait for the async pages to actually start before
 4736		 * we do anything.
 4737		 */
 4738		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
 4739		if (!max_reclaim)
 4740			goto skip_async;
 4741
 4742		if (max_reclaim <= nr_pages)
 4743			max_reclaim = 0;
 4744		else
 4745			max_reclaim -= nr_pages;
 4746
 4747		wait_event(fs_info->async_submit_wait,
 4748			   atomic_read(&fs_info->async_delalloc_pages) <=
 4749			   (int)max_reclaim);
 4750skip_async:
 4751		if (!trans)
 4752			flush = BTRFS_RESERVE_FLUSH_ALL;
 4753		else
 4754			flush = BTRFS_RESERVE_NO_FLUSH;
 4755		spin_lock(&space_info->lock);
 4756		if (can_overcommit(root, space_info, orig, flush)) {
 4757			spin_unlock(&space_info->lock);
 4758			break;
 4759		}
 4760		if (list_empty(&space_info->tickets) &&
 4761		    list_empty(&space_info->priority_tickets)) {
 4762			spin_unlock(&space_info->lock);
 4763			break;
 4764		}
 4765		spin_unlock(&space_info->lock);
 4766
 4767		loops++;
 4768		if (wait_ordered && !trans) {
 4769			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 4770		} else {
 4771			time_left = schedule_timeout_killable(1);
 4772			if (time_left)
 4773				break;
 4774		}
 4775		delalloc_bytes = percpu_counter_sum_positive(
 4776						&fs_info->delalloc_bytes);
 4777	}
 4778}
 4779
 4780/**
 4781 * maybe_commit_transaction - possibly commit the transaction if its ok to
 4782 * @root - the root we're allocating for
 4783 * @bytes - the number of bytes we want to reserve
 4784 * @force - force the commit
 4785 *
 4786 * This will check to make sure that committing the transaction will actually
 4787 * get us somewhere and then commit the transaction if it does.  Otherwise it
 4788 * will return -ENOSPC.
 4789 */
 4790static int may_commit_transaction(struct btrfs_root *root,
 4791				  struct btrfs_space_info *space_info,
 4792				  u64 bytes, int force)
 4793{
 4794	struct btrfs_fs_info *fs_info = root->fs_info;
 4795	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 4796	struct btrfs_trans_handle *trans;
 4797
 4798	trans = (struct btrfs_trans_handle *)current->journal_info;
 4799	if (trans)
 4800		return -EAGAIN;
 4801
 4802	if (force)
 4803		goto commit;
 4804
 4805	/* See if there is enough pinned space to make this reservation */
 4806	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4807				   bytes) >= 0)
 4808		goto commit;
 4809
 4810	/*
 4811	 * See if there is some space in the delayed insertion reservation for
 4812	 * this reservation.
 4813	 */
 4814	if (space_info != delayed_rsv->space_info)
 4815		return -ENOSPC;
 4816
 4817	spin_lock(&delayed_rsv->lock);
 4818	if (percpu_counter_compare(&space_info->total_bytes_pinned,
 4819				   bytes - delayed_rsv->size) >= 0) {
 4820		spin_unlock(&delayed_rsv->lock);
 4821		return -ENOSPC;
 4822	}
 4823	spin_unlock(&delayed_rsv->lock);
 4824
 4825commit:
 4826	trans = btrfs_join_transaction(root);
 4827	if (IS_ERR(trans))
 4828		return -ENOSPC;
 4829
 4830	return btrfs_commit_transaction(trans);
 4831}
 4832
 4833struct reserve_ticket {
 4834	u64 bytes;
 4835	int error;
 4836	struct list_head list;
 4837	wait_queue_head_t wait;
 4838};
 4839
 4840static int flush_space(struct btrfs_root *root,
 4841		       struct btrfs_space_info *space_info, u64 num_bytes,
 4842		       u64 orig_bytes, int state)
 4843{
 4844	struct btrfs_fs_info *fs_info = root->fs_info;
 4845	struct btrfs_trans_handle *trans;
 4846	int nr;
 4847	int ret = 0;
 4848
 4849	switch (state) {
 4850	case FLUSH_DELAYED_ITEMS_NR:
 4851	case FLUSH_DELAYED_ITEMS:
 4852		if (state == FLUSH_DELAYED_ITEMS_NR)
 4853			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 4854		else
 4855			nr = -1;
 4856
 4857		trans = btrfs_join_transaction(root);
 4858		if (IS_ERR(trans)) {
 4859			ret = PTR_ERR(trans);
 4860			break;
 4861		}
 4862		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
 4863		btrfs_end_transaction(trans);
 4864		break;
 4865	case FLUSH_DELALLOC:
 4866	case FLUSH_DELALLOC_WAIT:
 4867		shrink_delalloc(root, num_bytes * 2, orig_bytes,
 4868				state == FLUSH_DELALLOC_WAIT);
 4869		break;
 4870	case ALLOC_CHUNK:
 4871		trans = btrfs_join_transaction(root);
 4872		if (IS_ERR(trans)) {
 4873			ret = PTR_ERR(trans);
 4874			break;
 4875		}
 4876		ret = do_chunk_alloc(trans, fs_info,
 4877				     btrfs_get_alloc_profile(root, 0),
 4878				     CHUNK_ALLOC_NO_FORCE);
 4879		btrfs_end_transaction(trans);
 4880		if (ret > 0 || ret == -ENOSPC)
 4881			ret = 0;
 4882		break;
 4883	case COMMIT_TRANS:
 4884		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
 4885		break;
 4886	default:
 4887		ret = -ENOSPC;
 4888		break;
 4889	}
 4890
 4891	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
 4892				orig_bytes, state, ret);
 4893	return ret;
 4894}
 4895
 4896static inline u64
 4897btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
 4898				 struct btrfs_space_info *space_info)
 4899{
 4900	struct reserve_ticket *ticket;
 4901	u64 used;
 4902	u64 expected;
 4903	u64 to_reclaim = 0;
 4904
 4905	list_for_each_entry(ticket, &space_info->tickets, list)
 4906		to_reclaim += ticket->bytes;
 4907	list_for_each_entry(ticket, &space_info->priority_tickets, list)
 4908		to_reclaim += ticket->bytes;
 4909	if (to_reclaim)
 4910		return to_reclaim;
 4911
 4912	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 4913	if (can_overcommit(root, space_info, to_reclaim,
 4914			   BTRFS_RESERVE_FLUSH_ALL))
 4915		return 0;
 4916
 4917	used = space_info->bytes_used + space_info->bytes_reserved +
 4918	       space_info->bytes_pinned + space_info->bytes_readonly +
 4919	       space_info->bytes_may_use;
 4920	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
 4921		expected = div_factor_fine(space_info->total_bytes, 95);
 4922	else
 4923		expected = div_factor_fine(space_info->total_bytes, 90);
 4924
 4925	if (used > expected)
 4926		to_reclaim = used - expected;
 4927	else
 4928		to_reclaim = 0;
 4929	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 4930				     space_info->bytes_reserved);
 4931	return to_reclaim;
 4932}
 4933
 4934static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
 4935					struct btrfs_root *root, u64 used)
 4936{
 4937	struct btrfs_fs_info *fs_info = root->fs_info;
 4938	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 4939
 4940	/* If we're just plain full then async reclaim just slows us down. */
 4941	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 4942		return 0;
 4943
 4944	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
 4945		return 0;
 4946
 4947	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 4948		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 4949}
 4950
 4951static void wake_all_tickets(struct list_head *head)
 4952{
 4953	struct reserve_ticket *ticket;
 4954
 4955	while (!list_empty(head)) {
 4956		ticket = list_first_entry(head, struct reserve_ticket, list);
 4957		list_del_init(&ticket->list);
 4958		ticket->error = -ENOSPC;
 4959		wake_up(&ticket->wait);
 4960	}
 4961}
 4962
 4963/*
 4964 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 4965 * will loop and continuously try to flush as long as we are making progress.
 4966 * We count progress as clearing off tickets each time we have to loop.
 4967 */
 4968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 4969{
 4970	struct btrfs_fs_info *fs_info;
 4971	struct btrfs_space_info *space_info;
 4972	u64 to_reclaim;
 4973	int flush_state;
 4974	int commit_cycles = 0;
 4975	u64 last_tickets_id;
 4976
 4977	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 4978	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 4979
 4980	spin_lock(&space_info->lock);
 4981	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 4982						      space_info);
 4983	if (!to_reclaim) {
 4984		space_info->flush = 0;
 4985		spin_unlock(&space_info->lock);
 4986		return;
 4987	}
 4988	last_tickets_id = space_info->tickets_id;
 4989	spin_unlock(&space_info->lock);
 4990
 4991	flush_state = FLUSH_DELAYED_ITEMS_NR;
 4992	do {
 4993		struct reserve_ticket *ticket;
 4994		int ret;
 4995
 4996		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
 4997			    to_reclaim, flush_state);
 4998		spin_lock(&space_info->lock);
 4999		if (list_empty(&space_info->tickets)) {
 5000			space_info->flush = 0;
 5001			spin_unlock(&space_info->lock);
 5002			return;
 5003		}
 5004		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 5005							      space_info);
 5006		ticket = list_first_entry(&space_info->tickets,
 5007					  struct reserve_ticket, list);
 5008		if (last_tickets_id == space_info->tickets_id) {
 5009			flush_state++;
 5010		} else {
 5011			last_tickets_id = space_info->tickets_id;
 5012			flush_state = FLUSH_DELAYED_ITEMS_NR;
 5013			if (commit_cycles)
 5014				commit_cycles--;
 5015		}
 5016
 5017		if (flush_state > COMMIT_TRANS) {
 5018			commit_cycles++;
 5019			if (commit_cycles > 2) {
 5020				wake_all_tickets(&space_info->tickets);
 5021				space_info->flush = 0;
 5022			} else {
 5023				flush_state = FLUSH_DELAYED_ITEMS_NR;
 5024			}
 5025		}
 5026		spin_unlock(&space_info->lock);
 5027	} while (flush_state <= COMMIT_TRANS);
 5028}
 5029
 5030void btrfs_init_async_reclaim_work(struct work_struct *work)
 5031{
 5032	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
 5033}
 5034
 5035static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
 5036					    struct btrfs_space_info *space_info,
 5037					    struct reserve_ticket *ticket)
 5038{
 5039	u64 to_reclaim;
 5040	int flush_state = FLUSH_DELAYED_ITEMS_NR;
 5041
 5042	spin_lock(&space_info->lock);
 5043	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
 5044						      space_info);
 5045	if (!to_reclaim) {
 5046		spin_unlock(&space_info->lock);
 5047		return;
 5048	}
 5049	spin_unlock(&space_info->lock);
 5050
 5051	do {
 5052		flush_space(fs_info->fs_root, space_info, to_reclaim,
 5053			    to_reclaim, flush_state);
 5054		flush_state++;
 5055		spin_lock(&space_info->lock);
 5056		if (ticket->bytes == 0) {
 5057			spin_unlock(&space_info->lock);
 5058			return;
 5059		}
 5060		spin_unlock(&space_info->lock);
 5061
 5062		/*
 5063		 * Priority flushers can't wait on delalloc without
 5064		 * deadlocking.
 5065		 */
 5066		if (flush_state == FLUSH_DELALLOC ||
 5067		    flush_state == FLUSH_DELALLOC_WAIT)
 5068			flush_state = ALLOC_CHUNK;
 5069	} while (flush_state < COMMIT_TRANS);
 5070}
 5071
 5072static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
 5073			       struct btrfs_space_info *space_info,
 5074			       struct reserve_ticket *ticket, u64 orig_bytes)
 5075
 5076{
 5077	DEFINE_WAIT(wait);
 5078	int ret = 0;
 5079
 5080	spin_lock(&space_info->lock);
 5081	while (ticket->bytes > 0 && ticket->error == 0) {
 5082		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
 5083		if (ret) {
 5084			ret = -EINTR;
 5085			break;
 5086		}
 5087		spin_unlock(&space_info->lock);
 5088
 5089		schedule();
 5090
 5091		finish_wait(&ticket->wait, &wait);
 5092		spin_lock(&space_info->lock);
 5093	}
 5094	if (!ret)
 5095		ret = ticket->error;
 5096	if (!list_empty(&ticket->list))
 5097		list_del_init(&ticket->list);
 5098	if (ticket->bytes && ticket->bytes < orig_bytes) {
 5099		u64 num_bytes = orig_bytes - ticket->bytes;
 5100		space_info->bytes_may_use -= num_bytes;
 5101		trace_btrfs_space_reservation(fs_info, "space_info",
 5102					      space_info->flags, num_bytes, 0);
 5103	}
 5104	spin_unlock(&space_info->lock);
 5105
 5106	return ret;
 5107}
 5108
 5109/**
 5110 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 5111 * @root - the root we're allocating for
 5112 * @space_info - the space info we want to allocate from
 5113 * @orig_bytes - the number of bytes we want
 5114 * @flush - whether or not we can flush to make our reservation
 5115 *
 5116 * This will reserve orig_bytes number of bytes from the space info associated
 5117 * with the block_rsv.  If there is not enough space it will make an attempt to
 5118 * flush out space to make room.  It will do this by flushing delalloc if
 5119 * possible or committing the transaction.  If flush is 0 then no attempts to
 5120 * regain reservations will be made and this will fail if there is not enough
 5121 * space already.
 5122 */
 5123static int __reserve_metadata_bytes(struct btrfs_root *root,
 5124				    struct btrfs_space_info *space_info,
 5125				    u64 orig_bytes,
 5126				    enum btrfs_reserve_flush_enum flush)
 5127{
 5128	struct btrfs_fs_info *fs_info = root->fs_info;
 5129	struct reserve_ticket ticket;
 5130	u64 used;
 5131	int ret = 0;
 5132
 5133	ASSERT(orig_bytes);
 5134	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
 5135
 5136	spin_lock(&space_info->lock);
 5137	ret = -ENOSPC;
 5138	used = space_info->bytes_used + space_info->bytes_reserved +
 5139		space_info->bytes_pinned + space_info->bytes_readonly +
 5140		space_info->bytes_may_use;
 5141
 5142	/*
 5143	 * If we have enough space then hooray, make our reservation and carry
 5144	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
 5145	 * If not things get more complicated.
 5146	 */
 5147	if (used + orig_bytes <= space_info->total_bytes) {
 5148		space_info->bytes_may_use += orig_bytes;
 5149		trace_btrfs_space_reservation(fs_info, "space_info",
 5150					      space_info->flags, orig_bytes, 1);
 5151		ret = 0;
 5152	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
 5153		space_info->bytes_may_use += orig_bytes;
 5154		trace_btrfs_space_reservation(fs_info, "space_info",
 5155					      space_info->flags, orig_bytes, 1);
 5156		ret = 0;
 5157	}
 5158
 5159	/*
 5160	 * If we couldn't make a reservation then setup our reservation ticket
 5161	 * and kick the async worker if it's not already running.
 5162	 *
 5163	 * If we are a priority flusher then we just need to add our ticket to
 5164	 * the list and we will do our own flushing further down.
 5165	 */
 5166	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
 5167		ticket.bytes = orig_bytes;
 5168		ticket.error = 0;
 5169		init_waitqueue_head(&ticket.wait);
 5170		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
 5171			list_add_tail(&ticket.list, &space_info->tickets);
 5172			if (!space_info->flush) {
 5173				space_info->flush = 1;
 5174				trace_btrfs_trigger_flush(fs_info,
 5175							  space_info->flags,
 5176							  orig_bytes, flush,
 5177							  "enospc");
 5178				queue_work(system_unbound_wq,
 5179					   &root->fs_info->async_reclaim_work);
 5180			}
 5181		} else {
 5182			list_add_tail(&ticket.list,
 5183				      &space_info->priority_tickets);
 5184		}
 5185	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 5186		used += orig_bytes;
 5187		/*
 5188		 * We will do the space reservation dance during log replay,
 5189		 * which means we won't have fs_info->fs_root set, so don't do
 5190		 * the async reclaim as we will panic.
 5191		 */
 5192		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
 5193		    need_do_async_reclaim(space_info, root, used) &&
 5194		    !work_busy(&fs_info->async_reclaim_work)) {
 5195			trace_btrfs_trigger_flush(fs_info, space_info->flags,
 5196						  orig_bytes, flush, "preempt");
 5197			queue_work(system_unbound_wq,
 5198				   &fs_info->async_reclaim_work);
 5199		}
 5200	}
 5201	spin_unlock(&space_info->lock);
 5202	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
 5203		return ret;
 5204
 5205	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 5206		return wait_reserve_ticket(fs_info, space_info, &ticket,
 5207					   orig_bytes);
 5208
 5209	ret = 0;
 5210	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
 5211	spin_lock(&space_info->lock);
 5212	if (ticket.bytes) {
 5213		if (ticket.bytes < orig_bytes) {
 5214			u64 num_bytes = orig_bytes - ticket.bytes;
 5215			space_info->bytes_may_use -= num_bytes;
 5216			trace_btrfs_space_reservation(fs_info, "space_info",
 5217						      space_info->flags,
 5218						      num_bytes, 0);
 5219
 5220		}
 5221		list_del_init(&ticket.list);
 5222		ret = -ENOSPC;
 5223	}
 5224	spin_unlock(&space_info->lock);
 5225	ASSERT(list_empty(&ticket.list));
 5226	return ret;
 5227}
 5228
 5229/**
 5230 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
 5231 * @root - the root we're allocating for
 5232 * @block_rsv - the block_rsv we're allocating for
 5233 * @orig_bytes - the number of bytes we want
 5234 * @flush - whether or not we can flush to make our reservation
 5235 *
 5236 * This will reserve orgi_bytes number of bytes from the space info associated
 5237 * with the block_rsv.  If there is not enough space it will make an attempt to
 5238 * flush out space to make room.  It will do this by flushing delalloc if
 5239 * possible or committing the transaction.  If flush is 0 then no attempts to
 5240 * regain reservations will be made and this will fail if there is not enough
 5241 * space already.
 5242 */
 5243static int reserve_metadata_bytes(struct btrfs_root *root,
 5244				  struct btrfs_block_rsv *block_rsv,
 5245				  u64 orig_bytes,
 5246				  enum btrfs_reserve_flush_enum flush)
 5247{
 5248	struct btrfs_fs_info *fs_info = root->fs_info;
 5249	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5250	int ret;
 5251
 5252	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
 5253				       flush);
 5254	if (ret == -ENOSPC &&
 5255	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
 5256		if (block_rsv != global_rsv &&
 5257		    !block_rsv_use_bytes(global_rsv, orig_bytes))
 5258			ret = 0;
 5259	}
 5260	if (ret == -ENOSPC)
 5261		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
 5262					      block_rsv->space_info->flags,
 5263					      orig_bytes, 1);
 5264	return ret;
 5265}
 5266
 5267static struct btrfs_block_rsv *get_block_rsv(
 5268					const struct btrfs_trans_handle *trans,
 5269					const struct btrfs_root *root)
 5270{
 5271	struct btrfs_fs_info *fs_info = root->fs_info;
 5272	struct btrfs_block_rsv *block_rsv = NULL;
 5273
 5274	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 5275	    (root == fs_info->csum_root && trans->adding_csums) ||
 5276	    (root == fs_info->uuid_root))
 5277		block_rsv = trans->block_rsv;
 5278
 5279	if (!block_rsv)
 5280		block_rsv = root->block_rsv;
 5281
 5282	if (!block_rsv)
 5283		block_rsv = &fs_info->empty_block_rsv;
 5284
 5285	return block_rsv;
 5286}
 5287
 5288static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 5289			       u64 num_bytes)
 5290{
 5291	int ret = -ENOSPC;
 5292	spin_lock(&block_rsv->lock);
 5293	if (block_rsv->reserved >= num_bytes) {
 5294		block_rsv->reserved -= num_bytes;
 5295		if (block_rsv->reserved < block_rsv->size)
 5296			block_rsv->full = 0;
 5297		ret = 0;
 5298	}
 5299	spin_unlock(&block_rsv->lock);
 5300	return ret;
 5301}
 5302
 5303static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
 5304				u64 num_bytes, int update_size)
 5305{
 5306	spin_lock(&block_rsv->lock);
 5307	block_rsv->reserved += num_bytes;
 5308	if (update_size)
 5309		block_rsv->size += num_bytes;
 5310	else if (block_rsv->reserved >= block_rsv->size)
 5311		block_rsv->full = 1;
 5312	spin_unlock(&block_rsv->lock);
 5313}
 5314
 5315int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
 5316			     struct btrfs_block_rsv *dest, u64 num_bytes,
 5317			     int min_factor)
 5318{
 5319	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5320	u64 min_bytes;
 5321
 5322	if (global_rsv->space_info != dest->space_info)
 5323		return -ENOSPC;
 5324
 5325	spin_lock(&global_rsv->lock);
 5326	min_bytes = div_factor(global_rsv->size, min_factor);
 5327	if (global_rsv->reserved < min_bytes + num_bytes) {
 5328		spin_unlock(&global_rsv->lock);
 5329		return -ENOSPC;
 5330	}
 5331	global_rsv->reserved -= num_bytes;
 5332	if (global_rsv->reserved < global_rsv->size)
 5333		global_rsv->full = 0;
 5334	spin_unlock(&global_rsv->lock);
 5335
 5336	block_rsv_add_bytes(dest, num_bytes, 1);
 5337	return 0;
 5338}
 5339
 5340/*
 5341 * This is for space we already have accounted in space_info->bytes_may_use, so
 5342 * basically when we're returning space from block_rsv's.
 5343 */
 5344static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
 5345				     struct btrfs_space_info *space_info,
 5346				     u64 num_bytes)
 5347{
 5348	struct reserve_ticket *ticket;
 5349	struct list_head *head;
 5350	u64 used;
 5351	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 5352	bool check_overcommit = false;
 5353
 5354	spin_lock(&space_info->lock);
 5355	head = &space_info->priority_tickets;
 5356
 5357	/*
 5358	 * If we are over our limit then we need to check and see if we can
 5359	 * overcommit, and if we can't then we just need to free up our space
 5360	 * and not satisfy any requests.
 5361	 */
 5362	used = space_info->bytes_used + space_info->bytes_reserved +
 5363		space_info->bytes_pinned + space_info->bytes_readonly +
 5364		space_info->bytes_may_use;
 5365	if (used - num_bytes >= space_info->total_bytes)
 5366		check_overcommit = true;
 5367again:
 5368	while (!list_empty(head) && num_bytes) {
 5369		ticket = list_first_entry(head, struct reserve_ticket,
 5370					  list);
 5371		/*
 5372		 * We use 0 bytes because this space is already reserved, so
 5373		 * adding the ticket space would be a double count.
 5374		 */
 5375		if (check_overcommit &&
 5376		    !can_overcommit(fs_info->extent_root, space_info, 0,
 5377				    flush))
 5378			break;
 5379		if (num_bytes >= ticket->bytes) {
 5380			list_del_init(&ticket->list);
 5381			num_bytes -= ticket->bytes;
 5382			ticket->bytes = 0;
 5383			space_info->tickets_id++;
 5384			wake_up(&ticket->wait);
 5385		} else {
 5386			ticket->bytes -= num_bytes;
 5387			num_bytes = 0;
 5388		}
 5389	}
 5390
 5391	if (num_bytes && head == &space_info->priority_tickets) {
 5392		head = &space_info->tickets;
 5393		flush = BTRFS_RESERVE_FLUSH_ALL;
 5394		goto again;
 5395	}
 5396	space_info->bytes_may_use -= num_bytes;
 5397	trace_btrfs_space_reservation(fs_info, "space_info",
 5398				      space_info->flags, num_bytes, 0);
 5399	spin_unlock(&space_info->lock);
 5400}
 5401
 5402/*
 5403 * This is for newly allocated space that isn't accounted in
 5404 * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
 5405 * we use this helper.
 5406 */
 5407static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
 5408				     struct btrfs_space_info *space_info,
 5409				     u64 num_bytes)
 5410{
 5411	struct reserve_ticket *ticket;
 5412	struct list_head *head = &space_info->priority_tickets;
 5413
 5414again:
 5415	while (!list_empty(head) && num_bytes) {
 5416		ticket = list_first_entry(head, struct reserve_ticket,
 5417					  list);
 5418		if (num_bytes >= ticket->bytes) {
 5419			trace_btrfs_space_reservation(fs_info, "space_info",
 5420						      space_info->flags,
 5421						      ticket->bytes, 1);
 5422			list_del_init(&ticket->list);
 5423			num_bytes -= ticket->bytes;
 5424			space_info->bytes_may_use += ticket->bytes;
 5425			ticket->bytes = 0;
 5426			space_info->tickets_id++;
 5427			wake_up(&ticket->wait);
 5428		} else {
 5429			trace_btrfs_space_reservation(fs_info, "space_info",
 5430						      space_info->flags,
 5431						      num_bytes, 1);
 5432			space_info->bytes_may_use += num_bytes;
 5433			ticket->bytes -= num_bytes;
 5434			num_bytes = 0;
 5435		}
 5436	}
 5437
 5438	if (num_bytes && head == &space_info->priority_tickets) {
 5439		head = &space_info->tickets;
 5440		goto again;
 5441	}
 5442}
 5443
 5444static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
 5445				    struct btrfs_block_rsv *block_rsv,
 5446				    struct btrfs_block_rsv *dest, u64 num_bytes)
 5447{
 5448	struct btrfs_space_info *space_info = block_rsv->space_info;
 5449
 5450	spin_lock(&block_rsv->lock);
 5451	if (num_bytes == (u64)-1)
 5452		num_bytes = block_rsv->size;
 5453	block_rsv->size -= num_bytes;
 5454	if (block_rsv->reserved >= block_rsv->size) {
 5455		num_bytes = block_rsv->reserved - block_rsv->size;
 5456		block_rsv->reserved = block_rsv->size;
 5457		block_rsv->full = 1;
 5458	} else {
 5459		num_bytes = 0;
 5460	}
 5461	spin_unlock(&block_rsv->lock);
 5462
 5463	if (num_bytes > 0) {
 5464		if (dest) {
 5465			spin_lock(&dest->lock);
 5466			if (!dest->full) {
 5467				u64 bytes_to_add;
 5468
 5469				bytes_to_add = dest->size - dest->reserved;
 5470				bytes_to_add = min(num_bytes, bytes_to_add);
 5471				dest->reserved += bytes_to_add;
 5472				if (dest->reserved >= dest->size)
 5473					dest->full = 1;
 5474				num_bytes -= bytes_to_add;
 5475			}
 5476			spin_unlock(&dest->lock);
 5477		}
 5478		if (num_bytes)
 5479			space_info_add_old_bytes(fs_info, space_info,
 5480						 num_bytes);
 5481	}
 5482}
 5483
 5484int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
 5485			    struct btrfs_block_rsv *dst, u64 num_bytes,
 5486			    int update_size)
 5487{
 5488	int ret;
 5489
 5490	ret = block_rsv_use_bytes(src, num_bytes);
 5491	if (ret)
 5492		return ret;
 5493
 5494	block_rsv_add_bytes(dst, num_bytes, update_size);
 5495	return 0;
 5496}
 5497
 5498void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
 5499{
 5500	memset(rsv, 0, sizeof(*rsv));
 5501	spin_lock_init(&rsv->lock);
 5502	rsv->type = type;
 5503}
 5504
 5505struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
 5506					      unsigned short type)
 5507{
 5508	struct btrfs_block_rsv *block_rsv;
 5509
 5510	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
 5511	if (!block_rsv)
 5512		return NULL;
 5513
 5514	btrfs_init_block_rsv(block_rsv, type);
 5515	block_rsv->space_info = __find_space_info(fs_info,
 5516						  BTRFS_BLOCK_GROUP_METADATA);
 5517	return block_rsv;
 5518}
 5519
 5520void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
 5521			  struct btrfs_block_rsv *rsv)
 5522{
 5523	if (!rsv)
 5524		return;
 5525	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
 5526	kfree(rsv);
 5527}
 5528
 5529void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
 5530{
 5531	kfree(rsv);
 5532}
 5533
 5534int btrfs_block_rsv_add(struct btrfs_root *root,
 5535			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
 5536			enum btrfs_reserve_flush_enum flush)
 5537{
 5538	int ret;
 5539
 5540	if (num_bytes == 0)
 5541		return 0;
 5542
 5543	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5544	if (!ret) {
 5545		block_rsv_add_bytes(block_rsv, num_bytes, 1);
 5546		return 0;
 5547	}
 5548
 5549	return ret;
 5550}
 5551
 5552int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
 5553{
 5554	u64 num_bytes = 0;
 5555	int ret = -ENOSPC;
 5556
 5557	if (!block_rsv)
 5558		return 0;
 5559
 5560	spin_lock(&block_rsv->lock);
 5561	num_bytes = div_factor(block_rsv->size, min_factor);
 5562	if (block_rsv->reserved >= num_bytes)
 5563		ret = 0;
 5564	spin_unlock(&block_rsv->lock);
 5565
 5566	return ret;
 5567}
 5568
 5569int btrfs_block_rsv_refill(struct btrfs_root *root,
 5570			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
 5571			   enum btrfs_reserve_flush_enum flush)
 5572{
 5573	u64 num_bytes = 0;
 5574	int ret = -ENOSPC;
 5575
 5576	if (!block_rsv)
 5577		return 0;
 5578
 5579	spin_lock(&block_rsv->lock);
 5580	num_bytes = min_reserved;
 5581	if (block_rsv->reserved >= num_bytes)
 5582		ret = 0;
 5583	else
 5584		num_bytes -= block_rsv->reserved;
 5585	spin_unlock(&block_rsv->lock);
 5586
 5587	if (!ret)
 5588		return 0;
 5589
 5590	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
 5591	if (!ret) {
 5592		block_rsv_add_bytes(block_rsv, num_bytes, 0);
 5593		return 0;
 5594	}
 5595
 5596	return ret;
 5597}
 5598
 5599void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
 5600			     struct btrfs_block_rsv *block_rsv,
 5601			     u64 num_bytes)
 5602{
 5603	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5604
 5605	if (global_rsv == block_rsv ||
 5606	    block_rsv->space_info != global_rsv->space_info)
 5607		global_rsv = NULL;
 5608	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
 5609}
 5610
 5611static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
 5612{
 5613	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
 5614	struct btrfs_space_info *sinfo = block_rsv->space_info;
 5615	u64 num_bytes;
 5616
 5617	/*
 5618	 * The global block rsv is based on the size of the extent tree, the
 5619	 * checksum tree and the root tree.  If the fs is empty we want to set
 5620	 * it to a minimal amount for safety.
 5621	 */
 5622	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
 5623		btrfs_root_used(&fs_info->csum_root->root_item) +
 5624		btrfs_root_used(&fs_info->tree_root->root_item);
 5625	num_bytes = max_t(u64, num_bytes, SZ_16M);
 5626
 5627	spin_lock(&sinfo->lock);
 5628	spin_lock(&block_rsv->lock);
 5629
 5630	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
 5631
 5632	if (block_rsv->reserved < block_rsv->size) {
 5633		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
 5634			sinfo->bytes_reserved + sinfo->bytes_readonly +
 5635			sinfo->bytes_may_use;
 5636		if (sinfo->total_bytes > num_bytes) {
 5637			num_bytes = sinfo->total_bytes - num_bytes;
 5638			num_bytes = min(num_bytes,
 5639					block_rsv->size - block_rsv->reserved);
 5640			block_rsv->reserved += num_bytes;
 5641			sinfo->bytes_may_use += num_bytes;
 5642			trace_btrfs_space_reservation(fs_info, "space_info",
 5643						      sinfo->flags, num_bytes,
 5644						      1);
 5645		}
 5646	} else if (block_rsv->reserved > block_rsv->size) {
 5647		num_bytes = block_rsv->reserved - block_rsv->size;
 5648		sinfo->bytes_may_use -= num_bytes;
 5649		trace_btrfs_space_reservation(fs_info, "space_info",
 5650				      sinfo->flags, num_bytes, 0);
 5651		block_rsv->reserved = block_rsv->size;
 5652	}
 5653
 5654	if (block_rsv->reserved == block_rsv->size)
 5655		block_rsv->full = 1;
 5656	else
 5657		block_rsv->full = 0;
 5658
 5659	spin_unlock(&block_rsv->lock);
 5660	spin_unlock(&sinfo->lock);
 5661}
 5662
 5663static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
 5664{
 5665	struct btrfs_space_info *space_info;
 5666
 5667	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
 5668	fs_info->chunk_block_rsv.space_info = space_info;
 5669
 5670	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 5671	fs_info->global_block_rsv.space_info = space_info;
 5672	fs_info->delalloc_block_rsv.space_info = space_info;
 5673	fs_info->trans_block_rsv.space_info = space_info;
 5674	fs_info->empty_block_rsv.space_info = space_info;
 5675	fs_info->delayed_block_rsv.space_info = space_info;
 5676
 5677	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
 5678	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
 5679	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
 5680	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
 5681	if (fs_info->quota_root)
 5682		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
 5683	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
 5684
 5685	update_global_block_rsv(fs_info);
 5686}
 5687
 5688static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
 5689{
 5690	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
 5691				(u64)-1);
 5692	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
 5693	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
 5694	WARN_ON(fs_info->trans_block_rsv.size > 0);
 5695	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
 5696	WARN_ON(fs_info->chunk_block_rsv.size > 0);
 5697	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
 5698	WARN_ON(fs_info->delayed_block_rsv.size > 0);
 5699	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
 5700}
 5701
 5702void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
 5703				  struct btrfs_fs_info *fs_info)
 5704{
 5705	if (!trans->block_rsv)
 5706		return;
 5707
 5708	if (!trans->bytes_reserved)
 5709		return;
 5710
 5711	trace_btrfs_space_reservation(fs_info, "transaction",
 5712				      trans->transid, trans->bytes_reserved, 0);
 5713	btrfs_block_rsv_release(fs_info, trans->block_rsv,
 5714				trans->bytes_reserved);
 5715	trans->bytes_reserved = 0;
 5716}
 5717
 5718/*
 5719 * To be called after all the new block groups attached to the transaction
 5720 * handle have been created (btrfs_create_pending_block_groups()).
 5721 */
 5722void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
 5723{
 5724	struct btrfs_fs_info *fs_info = trans->fs_info;
 5725
 5726	if (!trans->chunk_bytes_reserved)
 5727		return;
 5728
 5729	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
 5730
 5731	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
 5732				trans->chunk_bytes_reserved);
 5733	trans->chunk_bytes_reserved = 0;
 5734}
 5735
 5736/* Can only return 0 or -ENOSPC */
 5737int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
 5738				  struct inode *inode)
 5739{
 5740	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5741	struct btrfs_root *root = BTRFS_I(inode)->root;
 5742	/*
 5743	 * We always use trans->block_rsv here as we will have reserved space
 5744	 * for our orphan when starting the transaction, using get_block_rsv()
 5745	 * here will sometimes make us choose the wrong block rsv as we could be
 5746	 * doing a reloc inode for a non refcounted root.
 5747	 */
 5748	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
 5749	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
 5750
 5751	/*
 5752	 * We need to hold space in order to delete our orphan item once we've
 5753	 * added it, so this takes the reservation so we can release it later
 5754	 * when we are truly done with the orphan item.
 5755	 */
 5756	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 5757
 5758	trace_btrfs_space_reservation(fs_info, "orphan",
 5759				      btrfs_ino(inode), num_bytes, 1);
 5760	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 5761}
 5762
 5763void btrfs_orphan_release_metadata(struct inode *inode)
 5764{
 5765	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5766	struct btrfs_root *root = BTRFS_I(inode)->root;
 5767	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 5768
 5769	trace_btrfs_space_reservation(fs_info, "orphan",
 5770				      btrfs_ino(inode), num_bytes, 0);
 5771	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
 5772}
 5773
 5774/*
 5775 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
 5776 * root: the root of the parent directory
 5777 * rsv: block reservation
 5778 * items: the number of items that we need do reservation
 5779 * qgroup_reserved: used to return the reserved size in qgroup
 5780 *
 5781 * This function is used to reserve the space for snapshot/subvolume
 5782 * creation and deletion. Those operations are different with the
 5783 * common file/directory operations, they change two fs/file trees
 5784 * and root tree, the number of items that the qgroup reserves is
 5785 * different with the free space reservation. So we can not use
 5786 * the space reservation mechanism in start_transaction().
 5787 */
 5788int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
 5789				     struct btrfs_block_rsv *rsv,
 5790				     int items,
 5791				     u64 *qgroup_reserved,
 5792				     bool use_global_rsv)
 5793{
 5794	u64 num_bytes;
 5795	int ret;
 5796	struct btrfs_fs_info *fs_info = root->fs_info;
 5797	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 5798
 5799	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
 5800		/* One for parent inode, two for dir entries */
 5801		num_bytes = 3 * fs_info->nodesize;
 5802		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
 5803		if (ret)
 5804			return ret;
 5805	} else {
 5806		num_bytes = 0;
 5807	}
 5808
 5809	*qgroup_reserved = num_bytes;
 5810
 5811	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
 5812	rsv->space_info = __find_space_info(fs_info,
 5813					    BTRFS_BLOCK_GROUP_METADATA);
 5814	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
 5815				  BTRFS_RESERVE_FLUSH_ALL);
 5816
 5817	if (ret == -ENOSPC && use_global_rsv)
 5818		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
 5819
 5820	if (ret && *qgroup_reserved)
 5821		btrfs_qgroup_free_meta(root, *qgroup_reserved);
 5822
 5823	return ret;
 5824}
 5825
 5826void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
 5827				      struct btrfs_block_rsv *rsv,
 5828				      u64 qgroup_reserved)
 5829{
 5830	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
 5831}
 5832
 5833/**
 5834 * drop_outstanding_extent - drop an outstanding extent
 5835 * @inode: the inode we're dropping the extent for
 5836 * @num_bytes: the number of bytes we're releasing.
 5837 *
 5838 * This is called when we are freeing up an outstanding extent, either called
 5839 * after an error or after an extent is written.  This will return the number of
 5840 * reserved extents that need to be freed.  This must be called with
 5841 * BTRFS_I(inode)->lock held.
 5842 */
 5843static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
 5844{
 5845	unsigned drop_inode_space = 0;
 5846	unsigned dropped_extents = 0;
 5847	unsigned num_extents = 0;
 5848
 5849	num_extents = (unsigned)div64_u64(num_bytes +
 5850					  BTRFS_MAX_EXTENT_SIZE - 1,
 5851					  BTRFS_MAX_EXTENT_SIZE);
 5852	ASSERT(num_extents);
 5853	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
 5854	BTRFS_I(inode)->outstanding_extents -= num_extents;
 5855
 5856	if (BTRFS_I(inode)->outstanding_extents == 0 &&
 5857	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5858			       &BTRFS_I(inode)->runtime_flags))
 5859		drop_inode_space = 1;
 5860
 5861	/*
 5862	 * If we have more or the same amount of outstanding extents than we have
 5863	 * reserved then we need to leave the reserved extents count alone.
 5864	 */
 5865	if (BTRFS_I(inode)->outstanding_extents >=
 5866	    BTRFS_I(inode)->reserved_extents)
 5867		return drop_inode_space;
 5868
 5869	dropped_extents = BTRFS_I(inode)->reserved_extents -
 5870		BTRFS_I(inode)->outstanding_extents;
 5871	BTRFS_I(inode)->reserved_extents -= dropped_extents;
 5872	return dropped_extents + drop_inode_space;
 5873}
 5874
 5875/**
 5876 * calc_csum_metadata_size - return the amount of metadata space that must be
 5877 *	reserved/freed for the given bytes.
 5878 * @inode: the inode we're manipulating
 5879 * @num_bytes: the number of bytes in question
 5880 * @reserve: 1 if we are reserving space, 0 if we are freeing space
 5881 *
 5882 * This adjusts the number of csum_bytes in the inode and then returns the
 5883 * correct amount of metadata that must either be reserved or freed.  We
 5884 * calculate how many checksums we can fit into one leaf and then divide the
 5885 * number of bytes that will need to be checksumed by this value to figure out
 5886 * how many checksums will be required.  If we are adding bytes then the number
 5887 * may go up and we will return the number of additional bytes that must be
 5888 * reserved.  If it is going down we will return the number of bytes that must
 5889 * be freed.
 5890 *
 5891 * This must be called with BTRFS_I(inode)->lock held.
 5892 */
 5893static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
 5894				   int reserve)
 5895{
 5896	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5897	u64 old_csums, num_csums;
 5898
 5899	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
 5900	    BTRFS_I(inode)->csum_bytes == 0)
 5901		return 0;
 5902
 5903	old_csums = btrfs_csum_bytes_to_leaves(fs_info,
 5904					       BTRFS_I(inode)->csum_bytes);
 5905	if (reserve)
 5906		BTRFS_I(inode)->csum_bytes += num_bytes;
 5907	else
 5908		BTRFS_I(inode)->csum_bytes -= num_bytes;
 5909	num_csums = btrfs_csum_bytes_to_leaves(fs_info,
 5910					       BTRFS_I(inode)->csum_bytes);
 5911
 5912	/* No change, no need to reserve more */
 5913	if (old_csums == num_csums)
 5914		return 0;
 5915
 5916	if (reserve)
 5917		return btrfs_calc_trans_metadata_size(fs_info,
 5918						      num_csums - old_csums);
 5919
 5920	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
 5921}
 5922
 5923int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
 5924{
 5925	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 5926	struct btrfs_root *root = BTRFS_I(inode)->root;
 5927	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
 5928	u64 to_reserve = 0;
 5929	u64 csum_bytes;
 5930	unsigned nr_extents = 0;
 5931	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
 5932	int ret = 0;
 5933	bool delalloc_lock = true;
 5934	u64 to_free = 0;
 5935	unsigned dropped;
 5936	bool release_extra = false;
 5937
 5938	/* If we are a free space inode we need to not flush since we will be in
 5939	 * the middle of a transaction commit.  We also don't need the delalloc
 5940	 * mutex since we won't race with anybody.  We need this mostly to make
 5941	 * lockdep shut its filthy mouth.
 5942	 *
 5943	 * If we have a transaction open (can happen if we call truncate_block
 5944	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
 5945	 */
 5946	if (btrfs_is_free_space_inode(inode)) {
 5947		flush = BTRFS_RESERVE_NO_FLUSH;
 5948		delalloc_lock = false;
 5949	} else if (current->journal_info) {
 5950		flush = BTRFS_RESERVE_FLUSH_LIMIT;
 5951	}
 5952
 5953	if (flush != BTRFS_RESERVE_NO_FLUSH &&
 5954	    btrfs_transaction_in_commit(fs_info))
 5955		schedule_timeout(1);
 5956
 5957	if (delalloc_lock)
 5958		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
 5959
 5960	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 5961
 5962	spin_lock(&BTRFS_I(inode)->lock);
 5963	nr_extents = (unsigned)div64_u64(num_bytes +
 5964					 BTRFS_MAX_EXTENT_SIZE - 1,
 5965					 BTRFS_MAX_EXTENT_SIZE);
 5966	BTRFS_I(inode)->outstanding_extents += nr_extents;
 5967
 5968	nr_extents = 0;
 5969	if (BTRFS_I(inode)->outstanding_extents >
 5970	    BTRFS_I(inode)->reserved_extents)
 5971		nr_extents += BTRFS_I(inode)->outstanding_extents -
 5972			BTRFS_I(inode)->reserved_extents;
 5973
 5974	/* We always want to reserve a slot for updating the inode. */
 5975	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
 5976	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
 5977	csum_bytes = BTRFS_I(inode)->csum_bytes;
 5978	spin_unlock(&BTRFS_I(inode)->lock);
 5979
 5980	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
 5981		ret = btrfs_qgroup_reserve_meta(root,
 5982				nr_extents * fs_info->nodesize);
 5983		if (ret)
 5984			goto out_fail;
 5985	}
 5986
 5987	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
 5988	if (unlikely(ret)) {
 5989		btrfs_qgroup_free_meta(root,
 5990				       nr_extents * fs_info->nodesize);
 5991		goto out_fail;
 5992	}
 5993
 5994	spin_lock(&BTRFS_I(inode)->lock);
 5995	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
 5996			     &BTRFS_I(inode)->runtime_flags)) {
 5997		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
 5998		release_extra = true;
 5999	}
 6000	BTRFS_I(inode)->reserved_extents += nr_extents;
 6001	spin_unlock(&BTRFS_I(inode)->lock);
 6002
 6003	if (delalloc_lock)
 6004		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 6005
 6006	if (to_reserve)
 6007		trace_btrfs_space_reservation(fs_info, "delalloc",
 6008					      btrfs_ino(inode), to_reserve, 1);
 6009	if (release_extra)
 6010		btrfs_block_rsv_release(fs_info, block_rsv,
 6011				btrfs_calc_trans_metadata_size(fs_info, 1));
 6012	return 0;
 6013
 6014out_fail:
 6015	spin_lock(&BTRFS_I(inode)->lock);
 6016	dropped = drop_outstanding_extent(inode, num_bytes);
 6017	/*
 6018	 * If the inodes csum_bytes is the same as the original
 6019	 * csum_bytes then we know we haven't raced with any free()ers
 6020	 * so we can just reduce our inodes csum bytes and carry on.
 6021	 */
 6022	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
 6023		calc_csum_metadata_size(inode, num_bytes, 0);
 6024	} else {
 6025		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
 6026		u64 bytes;
 6027
 6028		/*
 6029		 * This is tricky, but first we need to figure out how much we
 6030		 * freed from any free-ers that occurred during this
 6031		 * reservation, so we reset ->csum_bytes to the csum_bytes
 6032		 * before we dropped our lock, and then call the free for the
 6033		 * number of bytes that were freed while we were trying our
 6034		 * reservation.
 6035		 */
 6036		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
 6037		BTRFS_I(inode)->csum_bytes = csum_bytes;
 6038		to_free = calc_csum_metadata_size(inode, bytes, 0);
 6039
 6040
 6041		/*
 6042		 * Now we need to see how much we would have freed had we not
 6043		 * been making this reservation and our ->csum_bytes were not
 6044		 * artificially inflated.
 6045		 */
 6046		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
 6047		bytes = csum_bytes - orig_csum_bytes;
 6048		bytes = calc_csum_metadata_size(inode, bytes, 0);
 6049
 6050		/*
 6051		 * Now reset ->csum_bytes to what it should be.  If bytes is
 6052		 * more than to_free then we would have freed more space had we
 6053		 * not had an artificially high ->csum_bytes, so we need to free
 6054		 * the remainder.  If bytes is the same or less then we don't
 6055		 * need to do anything, the other free-ers did the correct
 6056		 * thing.
 6057		 */
 6058		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
 6059		if (bytes > to_free)
 6060			to_free = bytes - to_free;
 6061		else
 6062			to_free = 0;
 6063	}
 6064	spin_unlock(&BTRFS_I(inode)->lock);
 6065	if (dropped)
 6066		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
 6067
 6068	if (to_free) {
 6069		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
 6070		trace_btrfs_space_reservation(fs_info, "delalloc",
 6071					      btrfs_ino(inode), to_free, 0);
 6072	}
 6073	if (delalloc_lock)
 6074		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
 6075	return ret;
 6076}
 6077
 6078/**
 6079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
 6080 * @inode: the inode to release the reservation for
 6081 * @num_bytes: the number of bytes we're releasing
 6082 *
 6083 * This will release the metadata reservation for an inode.  This can be called
 6084 * once we complete IO for a given set of bytes to release their metadata
 6085 * reservations.
 6086 */
 6087void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
 6088{
 6089	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 6090	u64 to_free = 0;
 6091	unsigned dropped;
 6092
 6093	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
 6094	spin_lock(&BTRFS_I(inode)->lock);
 6095	dropped = drop_outstanding_extent(inode, num_bytes);
 6096
 6097	if (num_bytes)
 6098		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
 6099	spin_unlock(&BTRFS_I(inode)->lock);
 6100	if (dropped > 0)
 6101		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
 6102
 6103	if (btrfs_is_testing(fs_info))
 6104		return;
 6105
 6106	trace_btrfs_space_reservation(fs_info, "delalloc",
 6107				      btrfs_ino(inode), to_free, 0);
 6108
 6109	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
 6110}
 6111
 6112/**
 6113 * btrfs_delalloc_reserve_space - reserve data and metadata space for
 6114 * delalloc
 6115 * @inode: inode we're writing to
 6116 * @start: start range we are writing to
 6117 * @len: how long the range we are writing to
 6118 *
 6119 * This will do the following things
 6120 *
 6121 * o reserve space in data space info for num bytes
 6122 *   and reserve precious corresponding qgroup space
 6123 *   (Done in check_data_free_space)
 6124 *
 6125 * o reserve space for metadata space, based on the number of outstanding
 6126 *   extents and how much csums will be needed
 6127 *   also reserve metadata space in a per root over-reserve method.
 6128 * o add to the inodes->delalloc_bytes
 6129 * o add it to the fs_info's delalloc inodes list.
 6130 *   (Above 3 all done in delalloc_reserve_metadata)
 6131 *
 6132 * Return 0 for success
 6133 * Return <0 for error(-ENOSPC or -EQUOT)
 6134 */
 6135int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
 6136{
 6137	int ret;
 6138
 6139	ret = btrfs_check_data_free_space(inode, start, len);
 6140	if (ret < 0)
 6141		return ret;
 6142	ret = btrfs_delalloc_reserve_metadata(inode, len);
 6143	if (ret < 0)
 6144		btrfs_free_reserved_data_space(inode, start, len);
 6145	return ret;
 6146}
 6147
 6148/**
 6149 * btrfs_delalloc_release_space - release data and metadata space for delalloc
 6150 * @inode: inode we're releasing space for
 6151 * @start: start position of the space already reserved
 6152 * @len: the len of the space already reserved
 6153 *
 6154 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
 6155 * called in the case that we don't need the metadata AND data reservations
 6156 * anymore.  So if there is an error or we insert an inline extent.
 6157 *
 6158 * This function will release the metadata space that was not used and will
 6159 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
 6160 * list if there are no delalloc bytes left.
 6161 * Also it will handle the qgroup reserved space.
 6162 */
 6163void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
 6164{
 6165	btrfs_delalloc_release_metadata(inode, len);
 6166	btrfs_free_reserved_data_space(inode, start, len);
 6167}
 6168
 6169static int update_block_group(struct btrfs_trans_handle *trans,
 6170			      struct btrfs_fs_info *info, u64 bytenr,
 6171			      u64 num_bytes, int alloc)
 6172{
 6173	struct btrfs_block_group_cache *cache = NULL;
 6174	u64 total = num_bytes;
 6175	u64 old_val;
 6176	u64 byte_in_group;
 6177	int factor;
 6178
 6179	/* block accounting for super block */
 6180	spin_lock(&info->delalloc_root_lock);
 6181	old_val = btrfs_super_bytes_used(info->super_copy);
 6182	if (alloc)
 6183		old_val += num_bytes;
 6184	else
 6185		old_val -= num_bytes;
 6186	btrfs_set_super_bytes_used(info->super_copy, old_val);
 6187	spin_unlock(&info->delalloc_root_lock);
 6188
 6189	while (total) {
 6190		cache = btrfs_lookup_block_group(info, bytenr);
 6191		if (!cache)
 6192			return -ENOENT;
 6193		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
 6194				    BTRFS_BLOCK_GROUP_RAID1 |
 6195				    BTRFS_BLOCK_GROUP_RAID10))
 6196			factor = 2;
 6197		else
 6198			factor = 1;
 6199		/*
 6200		 * If this block group has free space cache written out, we
 6201		 * need to make sure to load it if we are removing space.  This
 6202		 * is because we need the unpinning stage to actually add the
 6203		 * space back to the block group, otherwise we will leak space.
 6204		 */
 6205		if (!alloc && cache->cached == BTRFS_CACHE_NO)
 6206			cache_block_group(cache, 1);
 6207
 6208		byte_in_group = bytenr - cache->key.objectid;
 6209		WARN_ON(byte_in_group > cache->key.offset);
 6210
 6211		spin_lock(&cache->space_info->lock);
 6212		spin_lock(&cache->lock);
 6213
 6214		if (btrfs_test_opt(info, SPACE_CACHE) &&
 6215		    cache->disk_cache_state < BTRFS_DC_CLEAR)
 6216			cache->disk_cache_state = BTRFS_DC_CLEAR;
 6217
 6218		old_val = btrfs_block_group_used(&cache->item);
 6219		num_bytes = min(total, cache->key.offset - byte_in_group);
 6220		if (alloc) {
 6221			old_val += num_bytes;
 6222			btrfs_set_block_group_used(&cache->item, old_val);
 6223			cache->reserved -= num_bytes;
 6224			cache->space_info->bytes_reserved -= num_bytes;
 6225			cache->space_info->bytes_used += num_bytes;
 6226			cache->space_info->disk_used += num_bytes * factor;
 6227			spin_unlock(&cache->lock);
 6228			spin_unlock(&cache->space_info->lock);
 6229		} else {
 6230			old_val -= num_bytes;
 6231			btrfs_set_block_group_used(&cache->item, old_val);
 6232			cache->pinned += num_bytes;
 6233			cache->space_info->bytes_pinned += num_bytes;
 6234			cache->space_info->bytes_used -= num_bytes;
 6235			cache->space_info->disk_used -= num_bytes * factor;
 6236			spin_unlock(&cache->lock);
 6237			spin_unlock(&cache->space_info->lock);
 6238
 6239			trace_btrfs_space_reservation(info, "pinned",
 6240						      cache->space_info->flags,
 6241						      num_bytes, 1);
 6242			set_extent_dirty(info->pinned_extents,
 6243					 bytenr, bytenr + num_bytes - 1,
 6244					 GFP_NOFS | __GFP_NOFAIL);
 6245		}
 6246
 6247		spin_lock(&trans->transaction->dirty_bgs_lock);
 6248		if (list_empty(&cache->dirty_list)) {
 6249			list_add_tail(&cache->dirty_list,
 6250				      &trans->transaction->dirty_bgs);
 6251				trans->transaction->num_dirty_bgs++;
 6252			btrfs_get_block_group(cache);
 6253		}
 6254		spin_unlock(&trans->transaction->dirty_bgs_lock);
 6255
 6256		/*
 6257		 * No longer have used bytes in this block group, queue it for
 6258		 * deletion. We do this after adding the block group to the
 6259		 * dirty list to avoid races between cleaner kthread and space
 6260		 * cache writeout.
 6261		 */
 6262		if (!alloc && old_val == 0) {
 6263			spin_lock(&info->unused_bgs_lock);
 6264			if (list_empty(&cache->bg_list)) {
 6265				btrfs_get_block_group(cache);
 6266				list_add_tail(&cache->bg_list,
 6267					      &info->unused_bgs);
 6268			}
 6269			spin_unlock(&info->unused_bgs_lock);
 6270		}
 6271
 6272		btrfs_put_block_group(cache);
 6273		total -= num_bytes;
 6274		bytenr += num_bytes;
 6275	}
 6276	return 0;
 6277}
 6278
 6279static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
 6280{
 6281	struct btrfs_block_group_cache *cache;
 6282	u64 bytenr;
 6283
 6284	spin_lock(&fs_info->block_group_cache_lock);
 6285	bytenr = fs_info->first_logical_byte;
 6286	spin_unlock(&fs_info->block_group_cache_lock);
 6287
 6288	if (bytenr < (u64)-1)
 6289		return bytenr;
 6290
 6291	cache = btrfs_lookup_first_block_group(fs_info, search_start);
 6292	if (!cache)
 6293		return 0;
 6294
 6295	bytenr = cache->key.objectid;
 6296	btrfs_put_block_group(cache);
 6297
 6298	return bytenr;
 6299}
 6300
 6301static int pin_down_extent(struct btrfs_fs_info *fs_info,
 6302			   struct btrfs_block_group_cache *cache,
 6303			   u64 bytenr, u64 num_bytes, int reserved)
 6304{
 
 
 6305	spin_lock(&cache->space_info->lock);
 6306	spin_lock(&cache->lock);
 6307	cache->pinned += num_bytes;
 6308	cache->space_info->bytes_pinned += num_bytes;
 
 6309	if (reserved) {
 6310		cache->reserved -= num_bytes;
 6311		cache->space_info->bytes_reserved -= num_bytes;
 6312	}
 6313	spin_unlock(&cache->lock);
 6314	spin_unlock(&cache->space_info->lock);
 6315
 6316	trace_btrfs_space_reservation(fs_info, "pinned",
 6317				      cache->space_info->flags, num_bytes, 1);
 6318	set_extent_dirty(fs_info->pinned_extents, bytenr,
 6319			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
 6320	return 0;
 6321}
 6322
 6323/*
 6324 * this function must be called within transaction
 6325 */
 6326int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
 6327		     u64 bytenr, u64 num_bytes, int reserved)
 6328{
 6329	struct btrfs_block_group_cache *cache;
 6330
 6331	cache = btrfs_lookup_block_group(fs_info, bytenr);
 6332	BUG_ON(!cache); /* Logic error */
 6333
 6334	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
 6335
 6336	btrfs_put_block_group(cache);
 6337	return 0;
 6338}
 6339
 6340/*
 6341 * this function must be called within transaction
 6342 */
 6343int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
 6344				    u64 bytenr, u64 num_bytes)
 6345{
 6346	struct btrfs_block_group_cache *cache;
 6347	int ret;
 6348
 6349	cache = btrfs_lookup_block_group(fs_info, bytenr);
 6350	if (!cache)
 6351		return -EINVAL;
 6352
 6353	/*
 6354	 * pull in the free space cache (if any) so that our pin
 6355	 * removes the free space from the cache.  We have load_only set
 6356	 * to one because the slow code to read in the free extents does check
 6357	 * the pinned extents.
 6358	 */
 6359	cache_block_group(cache, 1);
 6360
 6361	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
 6362
 6363	/* remove us from the free space cache (if we're there at all) */
 6364	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
 6365	btrfs_put_block_group(cache);
 6366	return ret;
 6367}
 6368
 6369static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
 6370				   u64 start, u64 num_bytes)
 6371{
 6372	int ret;
 6373	struct btrfs_block_group_cache *block_group;
 6374	struct btrfs_caching_control *caching_ctl;
 6375
 6376	block_group = btrfs_lookup_block_group(fs_info, start);
 6377	if (!block_group)
 6378		return -EINVAL;
 6379
 6380	cache_block_group(block_group, 0);
 6381	caching_ctl = get_caching_control(block_group);
 6382
 6383	if (!caching_ctl) {
 6384		/* Logic error */
 6385		BUG_ON(!block_group_cache_done(block_group));
 6386		ret = btrfs_remove_free_space(block_group, start, num_bytes);
 6387	} else {
 6388		mutex_lock(&caching_ctl->mutex);
 6389
 6390		if (start >= caching_ctl->progress) {
 6391			ret = add_excluded_extent(fs_info, start, num_bytes);
 
 6392		} else if (start + num_bytes <= caching_ctl->progress) {
 6393			ret = btrfs_remove_free_space(block_group,
 6394						      start, num_bytes);
 6395		} else {
 6396			num_bytes = caching_ctl->progress - start;
 6397			ret = btrfs_remove_free_space(block_group,
 6398						      start, num_bytes);
 6399			if (ret)
 6400				goto out_lock;
 6401
 6402			num_bytes = (start + num_bytes) -
 6403				caching_ctl->progress;
 6404			start = caching_ctl->progress;
 6405			ret = add_excluded_extent(fs_info, start, num_bytes);
 
 6406		}
 6407out_lock:
 6408		mutex_unlock(&caching_ctl->mutex);
 6409		put_caching_control(caching_ctl);
 6410	}
 6411	btrfs_put_block_group(block_group);
 6412	return ret;
 6413}
 6414
 6415int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
 6416				 struct extent_buffer *eb)
 6417{
 
 6418	struct btrfs_file_extent_item *item;
 6419	struct btrfs_key key;
 6420	int found_type;
 6421	int i;
 
 6422
 6423	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
 6424		return 0;
 6425
 6426	for (i = 0; i < btrfs_header_nritems(eb); i++) {
 6427		btrfs_item_key_to_cpu(eb, &key, i);
 6428		if (key.type != BTRFS_EXTENT_DATA_KEY)
 6429			continue;
 6430		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
 6431		found_type = btrfs_file_extent_type(eb, item);
 6432		if (found_type == BTRFS_FILE_EXTENT_INLINE)
 6433			continue;
 6434		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 6435			continue;
 6436		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 6437		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 6438		__exclude_logged_extent(fs_info, key.objectid, key.offset);
 
 
 6439	}
 6440
 6441	return 0;
 6442}
 6443
 6444static void
 6445btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
 6446{
 6447	atomic_inc(&bg->reservations);
 6448}
 6449
 6450void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
 6451					const u64 start)
 6452{
 6453	struct btrfs_block_group_cache *bg;
 6454
 6455	bg = btrfs_lookup_block_group(fs_info, start);
 6456	ASSERT(bg);
 6457	if (atomic_dec_and_test(&bg->reservations))
 6458		wake_up_atomic_t(&bg->reservations);
 6459	btrfs_put_block_group(bg);
 6460}
 6461
 6462static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
 6463{
 6464	schedule();
 6465	return 0;
 6466}
 6467
 6468void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
 6469{
 6470	struct btrfs_space_info *space_info = bg->space_info;
 6471
 6472	ASSERT(bg->ro);
 6473
 6474	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
 6475		return;
 6476
 6477	/*
 6478	 * Our block group is read only but before we set it to read only,
 6479	 * some task might have had allocated an extent from it already, but it
 6480	 * has not yet created a respective ordered extent (and added it to a
 6481	 * root's list of ordered extents).
 6482	 * Therefore wait for any task currently allocating extents, since the
 6483	 * block group's reservations counter is incremented while a read lock
 6484	 * on the groups' semaphore is held and decremented after releasing
 6485	 * the read access on that semaphore and creating the ordered extent.
 6486	 */
 6487	down_write(&space_info->groups_sem);
 6488	up_write(&space_info->groups_sem);
 6489
 6490	wait_on_atomic_t(&bg->reservations,
 6491			 btrfs_wait_bg_reservations_atomic_t,
 6492			 TASK_UNINTERRUPTIBLE);
 6493}
 6494
 6495/**
 6496 * btrfs_add_reserved_bytes - update the block_group and space info counters
 6497 * @cache:	The cache we are manipulating
 6498 * @ram_bytes:  The number of bytes of file content, and will be same to
 6499 *              @num_bytes except for the compress path.
 6500 * @num_bytes:	The number of bytes in question
 6501 * @delalloc:   The blocks are allocated for the delalloc write
 6502 *
 6503 * This is called by the allocator when it reserves space. If this is a
 6504 * reservation and the block group has become read only we cannot make the
 6505 * reservation and return -EAGAIN, otherwise this function always succeeds.
 6506 */
 6507static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
 6508				    u64 ram_bytes, u64 num_bytes, int delalloc)
 6509{
 6510	struct btrfs_space_info *space_info = cache->space_info;
 6511	int ret = 0;
 6512
 6513	spin_lock(&space_info->lock);
 6514	spin_lock(&cache->lock);
 6515	if (cache->ro) {
 6516		ret = -EAGAIN;
 6517	} else {
 6518		cache->reserved += num_bytes;
 6519		space_info->bytes_reserved += num_bytes;
 6520
 6521		trace_btrfs_space_reservation(cache->fs_info,
 6522				"space_info", space_info->flags,
 6523				ram_bytes, 0);
 6524		space_info->bytes_may_use -= ram_bytes;
 6525		if (delalloc)
 6526			cache->delalloc_bytes += num_bytes;
 6527	}
 6528	spin_unlock(&cache->lock);
 6529	spin_unlock(&space_info->lock);
 6530	return ret;
 6531}
 6532
 6533/**
 6534 * btrfs_free_reserved_bytes - update the block_group and space info counters
 6535 * @cache:      The cache we are manipulating
 6536 * @num_bytes:  The number of bytes in question
 6537 * @delalloc:   The blocks are allocated for the delalloc write
 6538 *
 6539 * This is called by somebody who is freeing space that was never actually used
 6540 * on disk.  For example if you reserve some space for a new leaf in transaction
 6541 * A and before transaction A commits you free that leaf, you call this with
 6542 * reserve set to 0 in order to clear the reservation.
 6543 */
 6544
 6545static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
 6546				     u64 num_bytes, int delalloc)
 6547{
 6548	struct btrfs_space_info *space_info = cache->space_info;
 6549	int ret = 0;
 6550
 6551	spin_lock(&space_info->lock);
 6552	spin_lock(&cache->lock);
 6553	if (cache->ro)
 6554		space_info->bytes_readonly += num_bytes;
 6555	cache->reserved -= num_bytes;
 6556	space_info->bytes_reserved -= num_bytes;
 6557
 6558	if (delalloc)
 6559		cache->delalloc_bytes -= num_bytes;
 6560	spin_unlock(&cache->lock);
 6561	spin_unlock(&space_info->lock);
 6562	return ret;
 6563}
 6564void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
 6565				struct btrfs_fs_info *fs_info)
 6566{
 6567	struct btrfs_caching_control *next;
 6568	struct btrfs_caching_control *caching_ctl;
 6569	struct btrfs_block_group_cache *cache;
 6570
 6571	down_write(&fs_info->commit_root_sem);
 6572
 6573	list_for_each_entry_safe(caching_ctl, next,
 6574				 &fs_info->caching_block_groups, list) {
 6575		cache = caching_ctl->block_group;
 6576		if (block_group_cache_done(cache)) {
 6577			cache->last_byte_to_unpin = (u64)-1;
 6578			list_del_init(&caching_ctl->list);
 6579			put_caching_control(caching_ctl);
 6580		} else {
 6581			cache->last_byte_to_unpin = caching_ctl->progress;
 6582		}
 6583	}
 6584
 6585	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6586		fs_info->pinned_extents = &fs_info->freed_extents[1];
 6587	else
 6588		fs_info->pinned_extents = &fs_info->freed_extents[0];
 6589
 6590	up_write(&fs_info->commit_root_sem);
 6591
 6592	update_global_block_rsv(fs_info);
 6593}
 6594
 6595/*
 6596 * Returns the free cluster for the given space info and sets empty_cluster to
 6597 * what it should be based on the mount options.
 6598 */
 6599static struct btrfs_free_cluster *
 6600fetch_cluster_info(struct btrfs_fs_info *fs_info,
 6601		   struct btrfs_space_info *space_info, u64 *empty_cluster)
 6602{
 6603	struct btrfs_free_cluster *ret = NULL;
 6604	bool ssd = btrfs_test_opt(fs_info, SSD);
 6605
 6606	*empty_cluster = 0;
 6607	if (btrfs_mixed_space_info(space_info))
 6608		return ret;
 6609
 6610	if (ssd)
 6611		*empty_cluster = SZ_2M;
 6612	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 6613		ret = &fs_info->meta_alloc_cluster;
 6614		if (!ssd)
 
 
 6615			*empty_cluster = SZ_64K;
 6616	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
 
 
 6617		ret = &fs_info->data_alloc_cluster;
 6618	}
 6619
 6620	return ret;
 6621}
 6622
 6623static int unpin_extent_range(struct btrfs_fs_info *fs_info,
 6624			      u64 start, u64 end,
 6625			      const bool return_free_space)
 6626{
 6627	struct btrfs_block_group_cache *cache = NULL;
 6628	struct btrfs_space_info *space_info;
 6629	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 6630	struct btrfs_free_cluster *cluster = NULL;
 6631	u64 len;
 6632	u64 total_unpinned = 0;
 6633	u64 empty_cluster = 0;
 6634	bool readonly;
 6635
 6636	while (start <= end) {
 6637		readonly = false;
 6638		if (!cache ||
 6639		    start >= cache->key.objectid + cache->key.offset) {
 6640			if (cache)
 6641				btrfs_put_block_group(cache);
 6642			total_unpinned = 0;
 6643			cache = btrfs_lookup_block_group(fs_info, start);
 6644			BUG_ON(!cache); /* Logic error */
 6645
 6646			cluster = fetch_cluster_info(fs_info,
 6647						     cache->space_info,
 6648						     &empty_cluster);
 6649			empty_cluster <<= 1;
 6650		}
 6651
 6652		len = cache->key.objectid + cache->key.offset - start;
 6653		len = min(len, end + 1 - start);
 6654
 6655		if (start < cache->last_byte_to_unpin) {
 6656			len = min(len, cache->last_byte_to_unpin - start);
 6657			if (return_free_space)
 6658				btrfs_add_free_space(cache, start, len);
 6659		}
 6660
 6661		start += len;
 6662		total_unpinned += len;
 6663		space_info = cache->space_info;
 6664
 6665		/*
 6666		 * If this space cluster has been marked as fragmented and we've
 6667		 * unpinned enough in this block group to potentially allow a
 6668		 * cluster to be created inside of it go ahead and clear the
 6669		 * fragmented check.
 6670		 */
 6671		if (cluster && cluster->fragmented &&
 6672		    total_unpinned > empty_cluster) {
 6673			spin_lock(&cluster->lock);
 6674			cluster->fragmented = 0;
 6675			spin_unlock(&cluster->lock);
 6676		}
 6677
 6678		spin_lock(&space_info->lock);
 6679		spin_lock(&cache->lock);
 6680		cache->pinned -= len;
 6681		space_info->bytes_pinned -= len;
 6682
 6683		trace_btrfs_space_reservation(fs_info, "pinned",
 6684					      space_info->flags, len, 0);
 6685		space_info->max_extent_size = 0;
 6686		percpu_counter_add(&space_info->total_bytes_pinned, -len);
 
 6687		if (cache->ro) {
 6688			space_info->bytes_readonly += len;
 6689			readonly = true;
 6690		}
 6691		spin_unlock(&cache->lock);
 6692		if (!readonly && return_free_space &&
 6693		    global_rsv->space_info == space_info) {
 6694			u64 to_add = len;
 6695			WARN_ON(!return_free_space);
 6696			spin_lock(&global_rsv->lock);
 6697			if (!global_rsv->full) {
 6698				to_add = min(len, global_rsv->size -
 6699					     global_rsv->reserved);
 6700				global_rsv->reserved += to_add;
 6701				space_info->bytes_may_use += to_add;
 
 6702				if (global_rsv->reserved >= global_rsv->size)
 6703					global_rsv->full = 1;
 6704				trace_btrfs_space_reservation(fs_info,
 6705							      "space_info",
 6706							      space_info->flags,
 6707							      to_add, 1);
 6708				len -= to_add;
 6709			}
 6710			spin_unlock(&global_rsv->lock);
 6711			/* Add to any tickets we may have */
 6712			if (len)
 6713				space_info_add_new_bytes(fs_info, space_info,
 6714							 len);
 6715		}
 6716		spin_unlock(&space_info->lock);
 6717	}
 6718
 6719	if (cache)
 6720		btrfs_put_block_group(cache);
 6721	return 0;
 6722}
 6723
 6724int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
 6725			       struct btrfs_fs_info *fs_info)
 6726{
 
 6727	struct btrfs_block_group_cache *block_group, *tmp;
 6728	struct list_head *deleted_bgs;
 6729	struct extent_io_tree *unpin;
 6730	u64 start;
 6731	u64 end;
 6732	int ret;
 6733
 6734	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
 6735		unpin = &fs_info->freed_extents[1];
 6736	else
 6737		unpin = &fs_info->freed_extents[0];
 6738
 6739	while (!trans->aborted) {
 
 
 6740		mutex_lock(&fs_info->unused_bg_unpin_mutex);
 6741		ret = find_first_extent_bit(unpin, 0, &start, &end,
 6742					    EXTENT_DIRTY, NULL);
 6743		if (ret) {
 6744			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 6745			break;
 6746		}
 6747
 6748		if (btrfs_test_opt(fs_info, DISCARD))
 6749			ret = btrfs_discard_extent(fs_info, start,
 6750						   end + 1 - start, NULL);
 6751
 6752		clear_extent_dirty(unpin, start, end);
 6753		unpin_extent_range(fs_info, start, end, true);
 6754		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 
 6755		cond_resched();
 6756	}
 6757
 6758	/*
 6759	 * Transaction is finished.  We don't need the lock anymore.  We
 6760	 * do need to clean up the block groups in case of a transaction
 6761	 * abort.
 6762	 */
 6763	deleted_bgs = &trans->transaction->deleted_bgs;
 6764	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
 6765		u64 trimmed = 0;
 6766
 6767		ret = -EROFS;
 6768		if (!trans->aborted)
 6769			ret = btrfs_discard_extent(fs_info,
 6770						   block_group->key.objectid,
 6771						   block_group->key.offset,
 6772						   &trimmed);
 6773
 6774		list_del_init(&block_group->bg_list);
 6775		btrfs_put_block_group_trimming(block_group);
 6776		btrfs_put_block_group(block_group);
 6777
 6778		if (ret) {
 6779			const char *errstr = btrfs_decode_error(ret);
 6780			btrfs_warn(fs_info,
 6781				   "Discard failed while removing blockgroup: errno=%d %s\n",
 6782				   ret, errstr);
 6783		}
 6784	}
 6785
 6786	return 0;
 6787}
 6788
 6789static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
 6790			     u64 owner, u64 root_objectid)
 6791{
 6792	struct btrfs_space_info *space_info;
 6793	u64 flags;
 6794
 6795	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 6796		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
 6797			flags = BTRFS_BLOCK_GROUP_SYSTEM;
 6798		else
 6799			flags = BTRFS_BLOCK_GROUP_METADATA;
 6800	} else {
 6801		flags = BTRFS_BLOCK_GROUP_DATA;
 6802	}
 6803
 6804	space_info = __find_space_info(fs_info, flags);
 6805	BUG_ON(!space_info); /* Logic bug */
 6806	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
 6807}
 6808
 6809
 6810static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
 6811				struct btrfs_fs_info *info,
 6812				struct btrfs_delayed_ref_node *node, u64 parent,
 6813				u64 root_objectid, u64 owner_objectid,
 6814				u64 owner_offset, int refs_to_drop,
 6815				struct btrfs_delayed_extent_op *extent_op)
 6816{
 
 6817	struct btrfs_key key;
 6818	struct btrfs_path *path;
 6819	struct btrfs_root *extent_root = info->extent_root;
 6820	struct extent_buffer *leaf;
 6821	struct btrfs_extent_item *ei;
 6822	struct btrfs_extent_inline_ref *iref;
 6823	int ret;
 6824	int is_data;
 6825	int extent_slot = 0;
 6826	int found_extent = 0;
 6827	int num_to_del = 1;
 6828	u32 item_size;
 6829	u64 refs;
 6830	u64 bytenr = node->bytenr;
 6831	u64 num_bytes = node->num_bytes;
 6832	int last_ref = 0;
 6833	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
 6834
 6835	path = btrfs_alloc_path();
 6836	if (!path)
 6837		return -ENOMEM;
 6838
 6839	path->reada = READA_FORWARD;
 6840	path->leave_spinning = 1;
 6841
 6842	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
 6843	BUG_ON(!is_data && refs_to_drop != 1);
 6844
 6845	if (is_data)
 6846		skinny_metadata = 0;
 6847
 6848	ret = lookup_extent_backref(trans, extent_root, path, &iref,
 6849				    bytenr, num_bytes, parent,
 6850				    root_objectid, owner_objectid,
 6851				    owner_offset);
 6852	if (ret == 0) {
 6853		extent_slot = path->slots[0];
 6854		while (extent_slot >= 0) {
 6855			btrfs_item_key_to_cpu(path->nodes[0], &key,
 6856					      extent_slot);
 6857			if (key.objectid != bytenr)
 6858				break;
 6859			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 6860			    key.offset == num_bytes) {
 6861				found_extent = 1;
 6862				break;
 6863			}
 6864			if (key.type == BTRFS_METADATA_ITEM_KEY &&
 6865			    key.offset == owner_objectid) {
 6866				found_extent = 1;
 6867				break;
 6868			}
 6869			if (path->slots[0] - extent_slot > 5)
 6870				break;
 6871			extent_slot--;
 6872		}
 6873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6874		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
 6875		if (found_extent && item_size < sizeof(*ei))
 6876			found_extent = 0;
 6877#endif
 6878		if (!found_extent) {
 6879			BUG_ON(iref);
 6880			ret = remove_extent_backref(trans, extent_root, path,
 6881						    NULL, refs_to_drop,
 6882						    is_data, &last_ref);
 6883			if (ret) {
 6884				btrfs_abort_transaction(trans, ret);
 6885				goto out;
 6886			}
 6887			btrfs_release_path(path);
 6888			path->leave_spinning = 1;
 6889
 6890			key.objectid = bytenr;
 6891			key.type = BTRFS_EXTENT_ITEM_KEY;
 6892			key.offset = num_bytes;
 6893
 6894			if (!is_data && skinny_metadata) {
 6895				key.type = BTRFS_METADATA_ITEM_KEY;
 6896				key.offset = owner_objectid;
 6897			}
 6898
 6899			ret = btrfs_search_slot(trans, extent_root,
 6900						&key, path, -1, 1);
 6901			if (ret > 0 && skinny_metadata && path->slots[0]) {
 6902				/*
 6903				 * Couldn't find our skinny metadata item,
 6904				 * see if we have ye olde extent item.
 6905				 */
 6906				path->slots[0]--;
 6907				btrfs_item_key_to_cpu(path->nodes[0], &key,
 6908						      path->slots[0]);
 6909				if (key.objectid == bytenr &&
 6910				    key.type == BTRFS_EXTENT_ITEM_KEY &&
 6911				    key.offset == num_bytes)
 6912					ret = 0;
 6913			}
 6914
 6915			if (ret > 0 && skinny_metadata) {
 6916				skinny_metadata = false;
 6917				key.objectid = bytenr;
 6918				key.type = BTRFS_EXTENT_ITEM_KEY;
 6919				key.offset = num_bytes;
 6920				btrfs_release_path(path);
 6921				ret = btrfs_search_slot(trans, extent_root,
 6922							&key, path, -1, 1);
 6923			}
 6924
 6925			if (ret) {
 6926				btrfs_err(info,
 6927					  "umm, got %d back from search, was looking for %llu",
 6928					  ret, bytenr);
 6929				if (ret > 0)
 6930					btrfs_print_leaf(info, path->nodes[0]);
 6931			}
 6932			if (ret < 0) {
 6933				btrfs_abort_transaction(trans, ret);
 6934				goto out;
 6935			}
 6936			extent_slot = path->slots[0];
 6937		}
 6938	} else if (WARN_ON(ret == -ENOENT)) {
 6939		btrfs_print_leaf(info, path->nodes[0]);
 6940		btrfs_err(info,
 6941			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
 6942			bytenr, parent, root_objectid, owner_objectid,
 6943			owner_offset);
 6944		btrfs_abort_transaction(trans, ret);
 6945		goto out;
 6946	} else {
 6947		btrfs_abort_transaction(trans, ret);
 6948		goto out;
 6949	}
 6950
 6951	leaf = path->nodes[0];
 6952	item_size = btrfs_item_size_nr(leaf, extent_slot);
 6953#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 6954	if (item_size < sizeof(*ei)) {
 6955		BUG_ON(found_extent || extent_slot != path->slots[0]);
 6956		ret = convert_extent_item_v0(trans, extent_root, path,
 6957					     owner_objectid, 0);
 6958		if (ret < 0) {
 6959			btrfs_abort_transaction(trans, ret);
 6960			goto out;
 6961		}
 6962
 6963		btrfs_release_path(path);
 6964		path->leave_spinning = 1;
 6965
 6966		key.objectid = bytenr;
 6967		key.type = BTRFS_EXTENT_ITEM_KEY;
 6968		key.offset = num_bytes;
 6969
 6970		ret = btrfs_search_slot(trans, extent_root, &key, path,
 6971					-1, 1);
 6972		if (ret) {
 6973			btrfs_err(info,
 6974				  "umm, got %d back from search, was looking for %llu",
 6975				ret, bytenr);
 6976			btrfs_print_leaf(info, path->nodes[0]);
 6977		}
 6978		if (ret < 0) {
 6979			btrfs_abort_transaction(trans, ret);
 6980			goto out;
 6981		}
 6982
 6983		extent_slot = path->slots[0];
 6984		leaf = path->nodes[0];
 6985		item_size = btrfs_item_size_nr(leaf, extent_slot);
 6986	}
 6987#endif
 6988	BUG_ON(item_size < sizeof(*ei));
 6989	ei = btrfs_item_ptr(leaf, extent_slot,
 6990			    struct btrfs_extent_item);
 6991	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
 6992	    key.type == BTRFS_EXTENT_ITEM_KEY) {
 6993		struct btrfs_tree_block_info *bi;
 6994		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
 6995		bi = (struct btrfs_tree_block_info *)(ei + 1);
 6996		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
 6997	}
 6998
 6999	refs = btrfs_extent_refs(leaf, ei);
 7000	if (refs < refs_to_drop) {
 7001		btrfs_err(info,
 7002			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
 7003			  refs_to_drop, refs, bytenr);
 7004		ret = -EINVAL;
 7005		btrfs_abort_transaction(trans, ret);
 7006		goto out;
 7007	}
 7008	refs -= refs_to_drop;
 7009
 7010	if (refs > 0) {
 7011		if (extent_op)
 7012			__run_delayed_extent_op(extent_op, leaf, ei);
 7013		/*
 7014		 * In the case of inline back ref, reference count will
 7015		 * be updated by remove_extent_backref
 7016		 */
 7017		if (iref) {
 7018			BUG_ON(!found_extent);
 7019		} else {
 7020			btrfs_set_extent_refs(leaf, ei, refs);
 7021			btrfs_mark_buffer_dirty(leaf);
 7022		}
 7023		if (found_extent) {
 7024			ret = remove_extent_backref(trans, extent_root, path,
 7025						    iref, refs_to_drop,
 7026						    is_data, &last_ref);
 7027			if (ret) {
 7028				btrfs_abort_transaction(trans, ret);
 7029				goto out;
 7030			}
 7031		}
 7032		add_pinned_bytes(info, -num_bytes, owner_objectid,
 7033				 root_objectid);
 7034	} else {
 7035		if (found_extent) {
 7036			BUG_ON(is_data && refs_to_drop !=
 7037			       extent_data_ref_count(path, iref));
 7038			if (iref) {
 7039				BUG_ON(path->slots[0] != extent_slot);
 7040			} else {
 7041				BUG_ON(path->slots[0] != extent_slot + 1);
 7042				path->slots[0] = extent_slot;
 7043				num_to_del = 2;
 7044			}
 7045		}
 7046
 7047		last_ref = 1;
 7048		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
 7049				      num_to_del);
 7050		if (ret) {
 7051			btrfs_abort_transaction(trans, ret);
 7052			goto out;
 7053		}
 7054		btrfs_release_path(path);
 7055
 7056		if (is_data) {
 7057			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
 7058			if (ret) {
 7059				btrfs_abort_transaction(trans, ret);
 7060				goto out;
 7061			}
 7062		}
 7063
 7064		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
 7065		if (ret) {
 7066			btrfs_abort_transaction(trans, ret);
 7067			goto out;
 7068		}
 7069
 7070		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
 7071		if (ret) {
 7072			btrfs_abort_transaction(trans, ret);
 7073			goto out;
 7074		}
 7075	}
 7076	btrfs_release_path(path);
 7077
 7078out:
 7079	btrfs_free_path(path);
 7080	return ret;
 7081}
 7082
 7083/*
 7084 * when we free an block, it is possible (and likely) that we free the last
 7085 * delayed ref for that extent as well.  This searches the delayed ref tree for
 7086 * a given extent, and if there are no other delayed refs to be processed, it
 7087 * removes it from the tree.
 7088 */
 7089static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
 7090				      u64 bytenr)
 7091{
 7092	struct btrfs_delayed_ref_head *head;
 7093	struct btrfs_delayed_ref_root *delayed_refs;
 7094	int ret = 0;
 7095
 7096	delayed_refs = &trans->transaction->delayed_refs;
 7097	spin_lock(&delayed_refs->lock);
 7098	head = btrfs_find_delayed_ref_head(trans, bytenr);
 7099	if (!head)
 7100		goto out_delayed_unlock;
 7101
 7102	spin_lock(&head->lock);
 7103	if (!list_empty(&head->ref_list))
 7104		goto out;
 7105
 7106	if (head->extent_op) {
 7107		if (!head->must_insert_reserved)
 7108			goto out;
 7109		btrfs_free_delayed_extent_op(head->extent_op);
 7110		head->extent_op = NULL;
 7111	}
 7112
 7113	/*
 7114	 * waiting for the lock here would deadlock.  If someone else has it
 7115	 * locked they are already in the process of dropping it anyway
 7116	 */
 7117	if (!mutex_trylock(&head->mutex))
 7118		goto out;
 7119
 7120	/*
 7121	 * at this point we have a head with no other entries.  Go
 7122	 * ahead and process it.
 7123	 */
 7124	head->node.in_tree = 0;
 7125	rb_erase(&head->href_node, &delayed_refs->href_root);
 7126
 7127	atomic_dec(&delayed_refs->num_entries);
 7128
 7129	/*
 7130	 * we don't take a ref on the node because we're removing it from the
 7131	 * tree, so we just steal the ref the tree was holding.
 7132	 */
 7133	delayed_refs->num_heads--;
 7134	if (head->processing == 0)
 7135		delayed_refs->num_heads_ready--;
 7136	head->processing = 0;
 
 7137	spin_unlock(&head->lock);
 7138	spin_unlock(&delayed_refs->lock);
 7139
 7140	BUG_ON(head->extent_op);
 7141	if (head->must_insert_reserved)
 7142		ret = 1;
 7143
 
 7144	mutex_unlock(&head->mutex);
 7145	btrfs_put_delayed_ref(&head->node);
 7146	return ret;
 7147out:
 7148	spin_unlock(&head->lock);
 7149
 7150out_delayed_unlock:
 7151	spin_unlock(&delayed_refs->lock);
 7152	return 0;
 7153}
 7154
 7155void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
 7156			   struct btrfs_root *root,
 7157			   struct extent_buffer *buf,
 7158			   u64 parent, int last_ref)
 7159{
 7160	struct btrfs_fs_info *fs_info = root->fs_info;
 
 7161	int pin = 1;
 7162	int ret;
 7163
 
 
 
 
 
 7164	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 7165		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
 7166						 buf->start, buf->len,
 7167						 parent,
 7168						 root->root_key.objectid,
 7169						 btrfs_header_level(buf),
 7170						 BTRFS_DROP_DELAYED_REF, NULL);
 7171		BUG_ON(ret); /* -ENOMEM */
 
 7172	}
 7173
 7174	if (!last_ref)
 7175		return;
 7176
 7177	if (btrfs_header_generation(buf) == trans->transid) {
 7178		struct btrfs_block_group_cache *cache;
 7179
 7180		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
 7181			ret = check_ref_cleanup(trans, buf->start);
 7182			if (!ret)
 7183				goto out;
 7184		}
 7185
 
 7186		cache = btrfs_lookup_block_group(fs_info, buf->start);
 7187
 7188		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
 7189			pin_down_extent(fs_info, cache, buf->start,
 7190					buf->len, 1);
 7191			btrfs_put_block_group(cache);
 7192			goto out;
 7193		}
 7194
 7195		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
 7196
 7197		btrfs_add_free_space(cache, buf->start, buf->len);
 7198		btrfs_free_reserved_bytes(cache, buf->len, 0);
 7199		btrfs_put_block_group(cache);
 7200		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 7201		pin = 0;
 7202	}
 7203out:
 7204	if (pin)
 7205		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
 7206				 root->root_key.objectid);
 7207
 7208	/*
 7209	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
 7210	 * anymore.
 7211	 */
 7212	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
 
 
 7213}
 7214
 7215/* Can return -ENOMEM */
 7216int btrfs_free_extent(struct btrfs_trans_handle *trans,
 7217		      struct btrfs_fs_info *fs_info,
 7218		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
 7219		      u64 owner, u64 offset)
 7220{
 
 
 7221	int ret;
 7222
 7223	if (btrfs_is_testing(fs_info))
 7224		return 0;
 7225
 7226	add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
 7227
 7228	/*
 7229	 * tree log blocks never actually go into the extent allocation
 7230	 * tree, just update pinning info and exit early.
 7231	 */
 7232	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
 7233		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
 
 
 7234		/* unlocks the pinned mutex */
 7235		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
 
 7236		ret = 0;
 7237	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 7238		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
 7239					num_bytes,
 7240					parent, root_objectid, (int)owner,
 7241					BTRFS_DROP_DELAYED_REF, NULL);
 7242	} else {
 7243		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
 7244						num_bytes,
 7245						parent, root_objectid, owner,
 7246						offset, 0,
 7247						BTRFS_DROP_DELAYED_REF, NULL);
 7248	}
 7249	return ret;
 7250}
 7251
 7252/*
 7253 * when we wait for progress in the block group caching, its because
 7254 * our allocation attempt failed at least once.  So, we must sleep
 7255 * and let some progress happen before we try again.
 7256 *
 7257 * This function will sleep at least once waiting for new free space to
 7258 * show up, and then it will check the block group free space numbers
 7259 * for our min num_bytes.  Another option is to have it go ahead
 7260 * and look in the rbtree for a free extent of a given size, but this
 7261 * is a good start.
 7262 *
 7263 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
 7264 * any of the information in this block group.
 7265 */
 7266static noinline void
 7267wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
 7268				u64 num_bytes)
 7269{
 7270	struct btrfs_caching_control *caching_ctl;
 7271
 7272	caching_ctl = get_caching_control(cache);
 7273	if (!caching_ctl)
 7274		return;
 7275
 7276	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
 7277		   (cache->free_space_ctl->free_space >= num_bytes));
 7278
 7279	put_caching_control(caching_ctl);
 7280}
 7281
 7282static noinline int
 7283wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
 7284{
 7285	struct btrfs_caching_control *caching_ctl;
 7286	int ret = 0;
 7287
 7288	caching_ctl = get_caching_control(cache);
 7289	if (!caching_ctl)
 7290		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
 7291
 7292	wait_event(caching_ctl->wait, block_group_cache_done(cache));
 7293	if (cache->cached == BTRFS_CACHE_ERROR)
 7294		ret = -EIO;
 7295	put_caching_control(caching_ctl);
 7296	return ret;
 7297}
 7298
 7299int __get_raid_index(u64 flags)
 7300{
 7301	if (flags & BTRFS_BLOCK_GROUP_RAID10)
 7302		return BTRFS_RAID_RAID10;
 7303	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
 7304		return BTRFS_RAID_RAID1;
 7305	else if (flags & BTRFS_BLOCK_GROUP_DUP)
 7306		return BTRFS_RAID_DUP;
 7307	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
 7308		return BTRFS_RAID_RAID0;
 7309	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
 7310		return BTRFS_RAID_RAID5;
 7311	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
 7312		return BTRFS_RAID_RAID6;
 7313
 7314	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
 7315}
 7316
 7317int get_block_group_index(struct btrfs_block_group_cache *cache)
 7318{
 7319	return __get_raid_index(cache->flags);
 7320}
 7321
 7322static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
 7323	[BTRFS_RAID_RAID10]	= "raid10",
 7324	[BTRFS_RAID_RAID1]	= "raid1",
 7325	[BTRFS_RAID_DUP]	= "dup",
 7326	[BTRFS_RAID_RAID0]	= "raid0",
 7327	[BTRFS_RAID_SINGLE]	= "single",
 7328	[BTRFS_RAID_RAID5]	= "raid5",
 7329	[BTRFS_RAID_RAID6]	= "raid6",
 7330};
 7331
 7332static const char *get_raid_name(enum btrfs_raid_types type)
 7333{
 7334	if (type >= BTRFS_NR_RAID_TYPES)
 7335		return NULL;
 7336
 7337	return btrfs_raid_type_names[type];
 7338}
 7339
 7340enum btrfs_loop_type {
 7341	LOOP_CACHING_NOWAIT = 0,
 7342	LOOP_CACHING_WAIT = 1,
 7343	LOOP_ALLOC_CHUNK = 2,
 7344	LOOP_NO_EMPTY_SIZE = 3,
 7345};
 7346
 7347static inline void
 7348btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
 7349		       int delalloc)
 7350{
 7351	if (delalloc)
 7352		down_read(&cache->data_rwsem);
 7353}
 7354
 7355static inline void
 7356btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
 7357		       int delalloc)
 7358{
 7359	btrfs_get_block_group(cache);
 7360	if (delalloc)
 7361		down_read(&cache->data_rwsem);
 7362}
 7363
 7364static struct btrfs_block_group_cache *
 7365btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
 7366		   struct btrfs_free_cluster *cluster,
 7367		   int delalloc)
 7368{
 7369	struct btrfs_block_group_cache *used_bg = NULL;
 7370
 7371	spin_lock(&cluster->refill_lock);
 7372	while (1) {
 7373		used_bg = cluster->block_group;
 7374		if (!used_bg)
 7375			return NULL;
 7376
 7377		if (used_bg == block_group)
 7378			return used_bg;
 7379
 7380		btrfs_get_block_group(used_bg);
 7381
 7382		if (!delalloc)
 7383			return used_bg;
 7384
 7385		if (down_read_trylock(&used_bg->data_rwsem))
 7386			return used_bg;
 7387
 7388		spin_unlock(&cluster->refill_lock);
 7389
 7390		/* We should only have one-level nested. */
 7391		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
 7392
 7393		spin_lock(&cluster->refill_lock);
 7394		if (used_bg == cluster->block_group)
 7395			return used_bg;
 7396
 7397		up_read(&used_bg->data_rwsem);
 7398		btrfs_put_block_group(used_bg);
 7399	}
 7400}
 7401
 7402static inline void
 7403btrfs_release_block_group(struct btrfs_block_group_cache *cache,
 7404			 int delalloc)
 7405{
 7406	if (delalloc)
 7407		up_read(&cache->data_rwsem);
 7408	btrfs_put_block_group(cache);
 7409}
 7410
 7411/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7412 * walks the btree of allocated extents and find a hole of a given size.
 7413 * The key ins is changed to record the hole:
 7414 * ins->objectid == start position
 7415 * ins->flags = BTRFS_EXTENT_ITEM_KEY
 7416 * ins->offset == the size of the hole.
 7417 * Any available blocks before search_start are skipped.
 7418 *
 7419 * If there is no suitable free space, we will record the max size of
 7420 * the free space extent currently.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7421 */
 7422static noinline int find_free_extent(struct btrfs_root *orig_root,
 7423				u64 ram_bytes, u64 num_bytes, u64 empty_size,
 7424				u64 hint_byte, struct btrfs_key *ins,
 7425				u64 flags, int delalloc)
 7426{
 7427	struct btrfs_fs_info *fs_info = orig_root->fs_info;
 7428	int ret = 0;
 7429	struct btrfs_root *root = fs_info->extent_root;
 7430	struct btrfs_free_cluster *last_ptr = NULL;
 7431	struct btrfs_block_group_cache *block_group = NULL;
 7432	u64 search_start = 0;
 7433	u64 max_extent_size = 0;
 7434	u64 empty_cluster = 0;
 7435	struct btrfs_space_info *space_info;
 7436	int loop = 0;
 7437	int index = __get_raid_index(flags);
 7438	bool failed_cluster_refill = false;
 7439	bool failed_alloc = false;
 7440	bool use_cluster = true;
 7441	bool have_caching_bg = false;
 7442	bool orig_have_caching_bg = false;
 7443	bool full_search = false;
 7444
 7445	WARN_ON(num_bytes < fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7446	ins->type = BTRFS_EXTENT_ITEM_KEY;
 7447	ins->objectid = 0;
 7448	ins->offset = 0;
 7449
 7450	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
 7451
 7452	space_info = __find_space_info(fs_info, flags);
 7453	if (!space_info) {
 7454		btrfs_err(fs_info, "No space info for %llu", flags);
 7455		return -ENOSPC;
 7456	}
 7457
 7458	/*
 7459	 * If our free space is heavily fragmented we may not be able to make
 7460	 * big contiguous allocations, so instead of doing the expensive search
 7461	 * for free space, simply return ENOSPC with our max_extent_size so we
 7462	 * can go ahead and search for a more manageable chunk.
 7463	 *
 7464	 * If our max_extent_size is large enough for our allocation simply
 7465	 * disable clustering since we will likely not be able to find enough
 7466	 * space to create a cluster and induce latency trying.
 7467	 */
 7468	if (unlikely(space_info->max_extent_size)) {
 7469		spin_lock(&space_info->lock);
 7470		if (space_info->max_extent_size &&
 7471		    num_bytes > space_info->max_extent_size) {
 7472			ins->offset = space_info->max_extent_size;
 7473			spin_unlock(&space_info->lock);
 7474			return -ENOSPC;
 7475		} else if (space_info->max_extent_size) {
 7476			use_cluster = false;
 7477		}
 7478		spin_unlock(&space_info->lock);
 7479	}
 7480
 7481	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
 
 7482	if (last_ptr) {
 7483		spin_lock(&last_ptr->lock);
 7484		if (last_ptr->block_group)
 7485			hint_byte = last_ptr->window_start;
 7486		if (last_ptr->fragmented) {
 7487			/*
 7488			 * We still set window_start so we can keep track of the
 7489			 * last place we found an allocation to try and save
 7490			 * some time.
 7491			 */
 7492			hint_byte = last_ptr->window_start;
 7493			use_cluster = false;
 7494		}
 7495		spin_unlock(&last_ptr->lock);
 7496	}
 7497
 7498	search_start = max(search_start, first_logical_byte(fs_info, 0));
 7499	search_start = max(search_start, hint_byte);
 7500	if (search_start == hint_byte) {
 7501		block_group = btrfs_lookup_block_group(fs_info, search_start);
 
 
 7502		/*
 7503		 * we don't want to use the block group if it doesn't match our
 7504		 * allocation bits, or if its not cached.
 7505		 *
 7506		 * However if we are re-searching with an ideal block group
 7507		 * picked out then we don't care that the block group is cached.
 7508		 */
 7509		if (block_group && block_group_bits(block_group, flags) &&
 7510		    block_group->cached != BTRFS_CACHE_NO) {
 7511			down_read(&space_info->groups_sem);
 7512			if (list_empty(&block_group->list) ||
 7513			    block_group->ro) {
 7514				/*
 7515				 * someone is removing this block group,
 7516				 * we can't jump into the have_block_group
 7517				 * target because our list pointers are not
 7518				 * valid
 7519				 */
 7520				btrfs_put_block_group(block_group);
 7521				up_read(&space_info->groups_sem);
 7522			} else {
 7523				index = get_block_group_index(block_group);
 
 7524				btrfs_lock_block_group(block_group, delalloc);
 7525				goto have_block_group;
 7526			}
 7527		} else if (block_group) {
 7528			btrfs_put_block_group(block_group);
 7529		}
 7530	}
 7531search:
 7532	have_caching_bg = false;
 7533	if (index == 0 || index == __get_raid_index(flags))
 
 7534		full_search = true;
 7535	down_read(&space_info->groups_sem);
 7536	list_for_each_entry(block_group, &space_info->block_groups[index],
 7537			    list) {
 7538		u64 offset;
 7539		int cached;
 
 7540
 7541		btrfs_grab_block_group(block_group, delalloc);
 7542		search_start = block_group->key.objectid;
 7543
 7544		/*
 7545		 * this can happen if we end up cycling through all the
 7546		 * raid types, but we want to make sure we only allocate
 7547		 * for the proper type.
 7548		 */
 7549		if (!block_group_bits(block_group, flags)) {
 7550		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
 7551				BTRFS_BLOCK_GROUP_RAID1 |
 7552				BTRFS_BLOCK_GROUP_RAID5 |
 7553				BTRFS_BLOCK_GROUP_RAID6 |
 7554				BTRFS_BLOCK_GROUP_RAID10;
 7555
 7556			/*
 7557			 * if they asked for extra copies and this block group
 7558			 * doesn't provide them, bail.  This does allow us to
 7559			 * fill raid0 from raid1.
 7560			 */
 7561			if ((flags & extra) && !(block_group->flags & extra))
 7562				goto loop;
 
 
 
 
 
 
 
 
 7563		}
 7564
 7565have_block_group:
 7566		cached = block_group_cache_done(block_group);
 7567		if (unlikely(!cached)) {
 7568			have_caching_bg = true;
 7569			ret = cache_block_group(block_group, 0);
 7570			BUG_ON(ret < 0);
 7571			ret = 0;
 7572		}
 7573
 7574		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
 7575			goto loop;
 7576		if (unlikely(block_group->ro))
 7577			goto loop;
 7578
 7579		/*
 7580		 * Ok we want to try and use the cluster allocator, so
 7581		 * lets look there
 7582		 */
 7583		if (last_ptr && use_cluster) {
 7584			struct btrfs_block_group_cache *used_block_group;
 7585			unsigned long aligned_cluster;
 7586			/*
 7587			 * the refill lock keeps out other
 7588			 * people trying to start a new cluster
 7589			 */
 7590			used_block_group = btrfs_lock_cluster(block_group,
 7591							      last_ptr,
 7592							      delalloc);
 7593			if (!used_block_group)
 7594				goto refill_cluster;
 7595
 7596			if (used_block_group != block_group &&
 7597			    (used_block_group->ro ||
 7598			     !block_group_bits(used_block_group, flags)))
 7599				goto release_cluster;
 7600
 7601			offset = btrfs_alloc_from_cluster(used_block_group,
 7602						last_ptr,
 7603						num_bytes,
 7604						used_block_group->key.objectid,
 7605						&max_extent_size);
 7606			if (offset) {
 7607				/* we have a block, we're done */
 7608				spin_unlock(&last_ptr->refill_lock);
 7609				trace_btrfs_reserve_extent_cluster(fs_info,
 7610						used_block_group,
 7611						search_start, num_bytes);
 7612				if (used_block_group != block_group) {
 7613					btrfs_release_block_group(block_group,
 7614								  delalloc);
 7615					block_group = used_block_group;
 7616				}
 7617				goto checks;
 7618			}
 7619
 7620			WARN_ON(last_ptr->block_group != used_block_group);
 7621release_cluster:
 7622			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
 7623			 * set up a new clusters, so lets just skip it
 7624			 * and let the allocator find whatever block
 7625			 * it can find.  If we reach this point, we
 7626			 * will have tried the cluster allocator
 7627			 * plenty of times and not have found
 7628			 * anything, so we are likely way too
 7629			 * fragmented for the clustering stuff to find
 7630			 * anything.
 7631			 *
 7632			 * However, if the cluster is taken from the
 7633			 * current block group, release the cluster
 7634			 * first, so that we stand a better chance of
 7635			 * succeeding in the unclustered
 7636			 * allocation.  */
 7637			if (loop >= LOOP_NO_EMPTY_SIZE &&
 7638			    used_block_group != block_group) {
 7639				spin_unlock(&last_ptr->refill_lock);
 7640				btrfs_release_block_group(used_block_group,
 7641							  delalloc);
 7642				goto unclustered_alloc;
 7643			}
 7644
 7645			/*
 7646			 * this cluster didn't work out, free it and
 7647			 * start over
 7648			 */
 7649			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7650
 7651			if (used_block_group != block_group)
 7652				btrfs_release_block_group(used_block_group,
 7653							  delalloc);
 7654refill_cluster:
 7655			if (loop >= LOOP_NO_EMPTY_SIZE) {
 7656				spin_unlock(&last_ptr->refill_lock);
 7657				goto unclustered_alloc;
 7658			}
 7659
 7660			aligned_cluster = max_t(unsigned long,
 7661						empty_cluster + empty_size,
 7662					      block_group->full_stripe_len);
 7663
 7664			/* allocate a cluster in this block group */
 7665			ret = btrfs_find_space_cluster(fs_info, block_group,
 7666						       last_ptr, search_start,
 7667						       num_bytes,
 7668						       aligned_cluster);
 7669			if (ret == 0) {
 7670				/*
 7671				 * now pull our allocation out of this
 7672				 * cluster
 7673				 */
 7674				offset = btrfs_alloc_from_cluster(block_group,
 7675							last_ptr,
 7676							num_bytes,
 7677							search_start,
 7678							&max_extent_size);
 7679				if (offset) {
 7680					/* we found one, proceed */
 7681					spin_unlock(&last_ptr->refill_lock);
 7682					trace_btrfs_reserve_extent_cluster(fs_info,
 7683						block_group, search_start,
 7684						num_bytes);
 7685					goto checks;
 7686				}
 7687			} else if (!cached && loop > LOOP_CACHING_NOWAIT
 7688				   && !failed_cluster_refill) {
 7689				spin_unlock(&last_ptr->refill_lock);
 7690
 7691				failed_cluster_refill = true;
 7692				wait_block_group_cache_progress(block_group,
 7693				       num_bytes + empty_cluster + empty_size);
 7694				goto have_block_group;
 
 
 7695			}
 7696
 7697			/*
 7698			 * at this point we either didn't find a cluster
 7699			 * or we weren't able to allocate a block from our
 7700			 * cluster.  Free the cluster we've been trying
 7701			 * to use, and go to the next block group
 7702			 */
 7703			btrfs_return_cluster_to_free_space(NULL, last_ptr);
 7704			spin_unlock(&last_ptr->refill_lock);
 7705			goto loop;
 7706		}
 7707
 7708unclustered_alloc:
 7709		/*
 7710		 * We are doing an unclustered alloc, set the fragmented flag so
 7711		 * we don't bother trying to setup a cluster again until we get
 7712		 * more space.
 7713		 */
 7714		if (unlikely(last_ptr)) {
 7715			spin_lock(&last_ptr->lock);
 7716			last_ptr->fragmented = 1;
 7717			spin_unlock(&last_ptr->lock);
 7718		}
 7719		spin_lock(&block_group->free_space_ctl->tree_lock);
 7720		if (cached &&
 7721		    block_group->free_space_ctl->free_space <
 7722		    num_bytes + empty_cluster + empty_size) {
 7723			if (block_group->free_space_ctl->free_space >
 7724			    max_extent_size)
 7725				max_extent_size =
 7726					block_group->free_space_ctl->free_space;
 7727			spin_unlock(&block_group->free_space_ctl->tree_lock);
 7728			goto loop;
 7729		}
 7730		spin_unlock(&block_group->free_space_ctl->tree_lock);
 7731
 7732		offset = btrfs_find_space_for_alloc(block_group, search_start,
 7733						    num_bytes, empty_size,
 7734						    &max_extent_size);
 7735		/*
 7736		 * If we didn't find a chunk, and we haven't failed on this
 7737		 * block group before, and this block group is in the middle of
 7738		 * caching and we are ok with waiting, then go ahead and wait
 7739		 * for progress to be made, and set failed_alloc to true.
 7740		 *
 7741		 * If failed_alloc is true then we've already waited on this
 7742		 * block group once and should move on to the next block group.
 7743		 */
 7744		if (!offset && !failed_alloc && !cached &&
 7745		    loop > LOOP_CACHING_NOWAIT) {
 7746			wait_block_group_cache_progress(block_group,
 7747						num_bytes + empty_size);
 7748			failed_alloc = true;
 7749			goto have_block_group;
 7750		} else if (!offset) {
 7751			goto loop;
 7752		}
 7753checks:
 7754		search_start = ALIGN(offset, fs_info->stripesize);
 
 7755
 7756		/* move on to the next group */
 7757		if (search_start + num_bytes >
 7758		    block_group->key.objectid + block_group->key.offset) {
 7759			btrfs_add_free_space(block_group, offset, num_bytes);
 
 7760			goto loop;
 7761		}
 7762
 7763		if (offset < search_start)
 7764			btrfs_add_free_space(block_group, offset,
 7765					     search_start - offset);
 7766		BUG_ON(offset > search_start);
 7767
 7768		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
 7769				num_bytes, delalloc);
 7770		if (ret == -EAGAIN) {
 7771			btrfs_add_free_space(block_group, offset, num_bytes);
 
 7772			goto loop;
 7773		}
 7774		btrfs_inc_block_group_reservations(block_group);
 7775
 7776		/* we are all good, lets return */
 7777		ins->objectid = search_start;
 7778		ins->offset = num_bytes;
 7779
 7780		trace_btrfs_reserve_extent(fs_info, block_group,
 7781					   search_start, num_bytes);
 7782		btrfs_release_block_group(block_group, delalloc);
 7783		break;
 7784loop:
 7785		failed_cluster_refill = false;
 7786		failed_alloc = false;
 7787		BUG_ON(index != get_block_group_index(block_group));
 
 7788		btrfs_release_block_group(block_group, delalloc);
 
 7789	}
 7790	up_read(&space_info->groups_sem);
 7791
 7792	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
 7793		&& !orig_have_caching_bg)
 7794		orig_have_caching_bg = true;
 7795
 7796	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
 7797		goto search;
 7798
 7799	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
 7800		goto search;
 7801
 7802	/*
 7803	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
 7804	 *			caching kthreads as we move along
 7805	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
 7806	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
 7807	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
 7808	 *			again
 7809	 */
 7810	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
 7811		index = 0;
 7812		if (loop == LOOP_CACHING_NOWAIT) {
 7813			/*
 7814			 * We want to skip the LOOP_CACHING_WAIT step if we
 7815			 * don't have any uncached bgs and we've already done a
 7816			 * full search through.
 7817			 */
 7818			if (orig_have_caching_bg || !full_search)
 7819				loop = LOOP_CACHING_WAIT;
 7820			else
 7821				loop = LOOP_ALLOC_CHUNK;
 7822		} else {
 7823			loop++;
 7824		}
 7825
 7826		if (loop == LOOP_ALLOC_CHUNK) {
 7827			struct btrfs_trans_handle *trans;
 7828			int exist = 0;
 7829
 7830			trans = current->journal_info;
 7831			if (trans)
 7832				exist = 1;
 7833			else
 7834				trans = btrfs_join_transaction(root);
 7835
 7836			if (IS_ERR(trans)) {
 7837				ret = PTR_ERR(trans);
 7838				goto out;
 7839			}
 7840
 7841			ret = do_chunk_alloc(trans, fs_info, flags,
 7842					     CHUNK_ALLOC_FORCE);
 7843
 7844			/*
 7845			 * If we can't allocate a new chunk we've already looped
 7846			 * through at least once, move on to the NO_EMPTY_SIZE
 7847			 * case.
 7848			 */
 7849			if (ret == -ENOSPC)
 7850				loop = LOOP_NO_EMPTY_SIZE;
 7851
 7852			/*
 7853			 * Do not bail out on ENOSPC since we
 7854			 * can do more things.
 7855			 */
 7856			if (ret < 0 && ret != -ENOSPC)
 7857				btrfs_abort_transaction(trans, ret);
 7858			else
 7859				ret = 0;
 7860			if (!exist)
 7861				btrfs_end_transaction(trans);
 7862			if (ret)
 7863				goto out;
 7864		}
 7865
 7866		if (loop == LOOP_NO_EMPTY_SIZE) {
 7867			/*
 7868			 * Don't loop again if we already have no empty_size and
 7869			 * no empty_cluster.
 7870			 */
 7871			if (empty_size == 0 &&
 7872			    empty_cluster == 0) {
 7873				ret = -ENOSPC;
 7874				goto out;
 7875			}
 7876			empty_size = 0;
 7877			empty_cluster = 0;
 7878		}
 7879
 7880		goto search;
 7881	} else if (!ins->objectid) {
 7882		ret = -ENOSPC;
 7883	} else if (ins->objectid) {
 7884		if (!use_cluster && last_ptr) {
 7885			spin_lock(&last_ptr->lock);
 7886			last_ptr->window_start = ins->objectid;
 7887			spin_unlock(&last_ptr->lock);
 7888		}
 7889		ret = 0;
 7890	}
 7891out:
 7892	if (ret == -ENOSPC) {
 
 
 
 
 
 
 7893		spin_lock(&space_info->lock);
 7894		space_info->max_extent_size = max_extent_size;
 7895		spin_unlock(&space_info->lock);
 7896		ins->offset = max_extent_size;
 7897	}
 7898	return ret;
 7899}
 7900
 7901static void dump_space_info(struct btrfs_fs_info *fs_info,
 7902			    struct btrfs_space_info *info, u64 bytes,
 7903			    int dump_block_groups)
 7904{
 7905	struct btrfs_block_group_cache *cache;
 7906	int index = 0;
 7907
 7908	spin_lock(&info->lock);
 7909	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 7910		   info->flags,
 7911		   info->total_bytes - info->bytes_used - info->bytes_pinned -
 7912		   info->bytes_reserved - info->bytes_readonly -
 7913		   info->bytes_may_use, (info->full) ? "" : "not ");
 7914	btrfs_info(fs_info,
 7915		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 7916		info->total_bytes, info->bytes_used, info->bytes_pinned,
 7917		info->bytes_reserved, info->bytes_may_use,
 7918		info->bytes_readonly);
 7919	spin_unlock(&info->lock);
 7920
 7921	if (!dump_block_groups)
 7922		return;
 7923
 7924	down_read(&info->groups_sem);
 7925again:
 7926	list_for_each_entry(cache, &info->block_groups[index], list) {
 7927		spin_lock(&cache->lock);
 7928		btrfs_info(fs_info,
 7929			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 7930			cache->key.objectid, cache->key.offset,
 7931			btrfs_block_group_used(&cache->item), cache->pinned,
 7932			cache->reserved, cache->ro ? "[readonly]" : "");
 7933		btrfs_dump_free_space(cache, bytes);
 7934		spin_unlock(&cache->lock);
 7935	}
 7936	if (++index < BTRFS_NR_RAID_TYPES)
 7937		goto again;
 7938	up_read(&info->groups_sem);
 7939}
 7940
 
 
 
 
 
 7941int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
 7942			 u64 num_bytes, u64 min_alloc_size,
 7943			 u64 empty_size, u64 hint_byte,
 7944			 struct btrfs_key *ins, int is_data, int delalloc)
 7945{
 7946	struct btrfs_fs_info *fs_info = root->fs_info;
 7947	bool final_tried = num_bytes == min_alloc_size;
 7948	u64 flags;
 7949	int ret;
 7950
 7951	flags = btrfs_get_alloc_profile(root, is_data);
 7952again:
 7953	WARN_ON(num_bytes < fs_info->sectorsize);
 7954	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
 7955			       hint_byte, ins, flags, delalloc);
 7956	if (!ret && !is_data) {
 7957		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
 7958	} else if (ret == -ENOSPC) {
 7959		if (!final_tried && ins->offset) {
 7960			num_bytes = min(num_bytes >> 1, ins->offset);
 7961			num_bytes = round_down(num_bytes,
 7962					       fs_info->sectorsize);
 7963			num_bytes = max(num_bytes, min_alloc_size);
 7964			ram_bytes = num_bytes;
 7965			if (num_bytes == min_alloc_size)
 7966				final_tried = true;
 7967			goto again;
 7968		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 7969			struct btrfs_space_info *sinfo;
 7970
 7971			sinfo = __find_space_info(fs_info, flags);
 7972			btrfs_err(fs_info,
 7973				  "allocation failed flags %llu, wanted %llu",
 7974				  flags, num_bytes);
 7975			if (sinfo)
 7976				dump_space_info(fs_info, sinfo, num_bytes, 1);
 
 7977		}
 7978	}
 7979
 7980	return ret;
 7981}
 7982
 7983static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 7984					u64 start, u64 len,
 7985					int pin, int delalloc)
 7986{
 7987	struct btrfs_block_group_cache *cache;
 7988	int ret = 0;
 7989
 7990	cache = btrfs_lookup_block_group(fs_info, start);
 7991	if (!cache) {
 7992		btrfs_err(fs_info, "Unable to find block group for %llu",
 7993			  start);
 7994		return -ENOSPC;
 7995	}
 7996
 7997	if (pin)
 7998		pin_down_extent(fs_info, cache, start, len, 1);
 7999	else {
 8000		if (btrfs_test_opt(fs_info, DISCARD))
 8001			ret = btrfs_discard_extent(fs_info, start, len, NULL);
 8002		btrfs_add_free_space(cache, start, len);
 8003		btrfs_free_reserved_bytes(cache, len, delalloc);
 8004		trace_btrfs_reserved_extent_free(fs_info, start, len);
 8005	}
 8006
 8007	btrfs_put_block_group(cache);
 8008	return ret;
 8009}
 8010
 8011int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
 8012			       u64 start, u64 len, int delalloc)
 8013{
 8014	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
 8015}
 8016
 8017int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
 8018				       u64 start, u64 len)
 8019{
 8020	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
 8021}
 8022
 8023static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 8024				      struct btrfs_fs_info *fs_info,
 8025				      u64 parent, u64 root_objectid,
 8026				      u64 flags, u64 owner, u64 offset,
 8027				      struct btrfs_key *ins, int ref_mod)
 8028{
 
 8029	int ret;
 8030	struct btrfs_extent_item *extent_item;
 8031	struct btrfs_extent_inline_ref *iref;
 8032	struct btrfs_path *path;
 8033	struct extent_buffer *leaf;
 8034	int type;
 8035	u32 size;
 8036
 8037	if (parent > 0)
 8038		type = BTRFS_SHARED_DATA_REF_KEY;
 8039	else
 8040		type = BTRFS_EXTENT_DATA_REF_KEY;
 8041
 8042	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
 8043
 8044	path = btrfs_alloc_path();
 8045	if (!path)
 8046		return -ENOMEM;
 8047
 8048	path->leave_spinning = 1;
 8049	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 8050				      ins, size);
 8051	if (ret) {
 8052		btrfs_free_path(path);
 8053		return ret;
 8054	}
 8055
 8056	leaf = path->nodes[0];
 8057	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 8058				     struct btrfs_extent_item);
 8059	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
 8060	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 8061	btrfs_set_extent_flags(leaf, extent_item,
 8062			       flags | BTRFS_EXTENT_FLAG_DATA);
 8063
 8064	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 8065	btrfs_set_extent_inline_ref_type(leaf, iref, type);
 8066	if (parent > 0) {
 8067		struct btrfs_shared_data_ref *ref;
 8068		ref = (struct btrfs_shared_data_ref *)(iref + 1);
 8069		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 8070		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
 8071	} else {
 8072		struct btrfs_extent_data_ref *ref;
 8073		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
 8074		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
 8075		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 8076		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 8077		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
 8078	}
 8079
 8080	btrfs_mark_buffer_dirty(path->nodes[0]);
 8081	btrfs_free_path(path);
 8082
 8083	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 8084					  ins->offset);
 8085	if (ret)
 8086		return ret;
 8087
 8088	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
 8089	if (ret) { /* -ENOENT, logic error */
 8090		btrfs_err(fs_info, "update block group failed for %llu %llu",
 8091			ins->objectid, ins->offset);
 8092		BUG();
 8093	}
 8094	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
 8095	return ret;
 8096}
 8097
 8098static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
 8099				     struct btrfs_fs_info *fs_info,
 8100				     u64 parent, u64 root_objectid,
 8101				     u64 flags, struct btrfs_disk_key *key,
 8102				     int level, struct btrfs_key *ins)
 8103{
 
 8104	int ret;
 8105	struct btrfs_extent_item *extent_item;
 
 8106	struct btrfs_tree_block_info *block_info;
 8107	struct btrfs_extent_inline_ref *iref;
 8108	struct btrfs_path *path;
 8109	struct extent_buffer *leaf;
 
 8110	u32 size = sizeof(*extent_item) + sizeof(*iref);
 8111	u64 num_bytes = ins->offset;
 
 8112	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 8113
 8114	if (!skinny_metadata)
 
 
 
 
 
 
 
 
 
 8115		size += sizeof(*block_info);
 
 
 8116
 8117	path = btrfs_alloc_path();
 8118	if (!path) {
 8119		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
 8120						   fs_info->nodesize);
 8121		return -ENOMEM;
 8122	}
 8123
 8124	path->leave_spinning = 1;
 8125	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
 8126				      ins, size);
 8127	if (ret) {
 8128		btrfs_free_path(path);
 8129		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
 8130						   fs_info->nodesize);
 8131		return ret;
 8132	}
 8133
 8134	leaf = path->nodes[0];
 8135	extent_item = btrfs_item_ptr(leaf, path->slots[0],
 8136				     struct btrfs_extent_item);
 8137	btrfs_set_extent_refs(leaf, extent_item, 1);
 8138	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
 8139	btrfs_set_extent_flags(leaf, extent_item,
 8140			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
 8141
 8142	if (skinny_metadata) {
 8143		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 8144		num_bytes = fs_info->nodesize;
 8145	} else {
 8146		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
 8147		btrfs_set_tree_block_key(leaf, block_info, key);
 8148		btrfs_set_tree_block_level(leaf, block_info, level);
 8149		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
 8150	}
 8151
 8152	if (parent > 0) {
 8153		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 8154		btrfs_set_extent_inline_ref_type(leaf, iref,
 8155						 BTRFS_SHARED_BLOCK_REF_KEY);
 8156		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
 8157	} else {
 8158		btrfs_set_extent_inline_ref_type(leaf, iref,
 8159						 BTRFS_TREE_BLOCK_REF_KEY);
 8160		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
 8161	}
 8162
 8163	btrfs_mark_buffer_dirty(leaf);
 8164	btrfs_free_path(path);
 8165
 8166	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
 8167					  num_bytes);
 8168	if (ret)
 8169		return ret;
 8170
 8171	ret = update_block_group(trans, fs_info, ins->objectid,
 8172				 fs_info->nodesize, 1);
 8173	if (ret) { /* -ENOENT, logic error */
 8174		btrfs_err(fs_info, "update block group failed for %llu %llu",
 8175			ins->objectid, ins->offset);
 8176		BUG();
 8177	}
 8178
 8179	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
 8180					  fs_info->nodesize);
 8181	return ret;
 8182}
 8183
 8184int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 8185				     u64 root_objectid, u64 owner,
 8186				     u64 offset, u64 ram_bytes,
 8187				     struct btrfs_key *ins)
 8188{
 8189	struct btrfs_fs_info *fs_info = trans->fs_info;
 8190	int ret;
 8191
 8192	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
 8193
 8194	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
 8195					 ins->offset, 0,
 8196					 root_objectid, owner, offset,
 8197					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
 8198					 NULL);
 
 8199	return ret;
 8200}
 8201
 8202/*
 8203 * this is used by the tree logging recovery code.  It records that
 8204 * an extent has been allocated and makes sure to clear the free
 8205 * space cache bits as well
 8206 */
 8207int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 8208				   struct btrfs_fs_info *fs_info,
 8209				   u64 root_objectid, u64 owner, u64 offset,
 8210				   struct btrfs_key *ins)
 8211{
 
 8212	int ret;
 8213	struct btrfs_block_group_cache *block_group;
 8214	struct btrfs_space_info *space_info;
 8215
 8216	/*
 8217	 * Mixed block groups will exclude before processing the log so we only
 8218	 * need to do the exclude dance if this fs isn't mixed.
 8219	 */
 8220	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 8221		ret = __exclude_logged_extent(fs_info, ins->objectid,
 8222					      ins->offset);
 8223		if (ret)
 8224			return ret;
 8225	}
 8226
 8227	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
 8228	if (!block_group)
 8229		return -EINVAL;
 8230
 8231	space_info = block_group->space_info;
 8232	spin_lock(&space_info->lock);
 8233	spin_lock(&block_group->lock);
 8234	space_info->bytes_reserved += ins->offset;
 8235	block_group->reserved += ins->offset;
 8236	spin_unlock(&block_group->lock);
 8237	spin_unlock(&space_info->lock);
 8238
 8239	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
 8240					 0, owner, offset, ins, 1);
 8241	btrfs_put_block_group(block_group);
 8242	return ret;
 8243}
 8244
 8245static struct extent_buffer *
 8246btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 8247		      u64 bytenr, int level)
 8248{
 8249	struct btrfs_fs_info *fs_info = root->fs_info;
 8250	struct extent_buffer *buf;
 8251
 8252	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 8253	if (IS_ERR(buf))
 8254		return buf;
 8255
 8256	btrfs_set_header_generation(buf, trans->transid);
 
 
 
 
 
 
 
 
 
 
 
 
 8257	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
 8258	btrfs_tree_lock(buf);
 8259	clean_tree_block(trans, fs_info, buf);
 8260	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
 8261
 8262	btrfs_set_lock_blocking(buf);
 8263	set_extent_buffer_uptodate(buf);
 8264
 
 
 
 
 
 
 
 
 8265	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
 8266		buf->log_index = root->log_transid % 2;
 8267		/*
 8268		 * we allow two log transactions at a time, use different
 8269		 * EXENT bit to differentiate dirty pages.
 8270		 */
 8271		if (buf->log_index == 0)
 8272			set_extent_dirty(&root->dirty_log_pages, buf->start,
 8273					buf->start + buf->len - 1, GFP_NOFS);
 8274		else
 8275			set_extent_new(&root->dirty_log_pages, buf->start,
 8276					buf->start + buf->len - 1);
 8277	} else {
 8278		buf->log_index = -1;
 8279		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
 8280			 buf->start + buf->len - 1, GFP_NOFS);
 8281	}
 8282	trans->dirty = true;
 8283	/* this returns a buffer locked for blocking */
 8284	return buf;
 8285}
 8286
 8287static struct btrfs_block_rsv *
 8288use_block_rsv(struct btrfs_trans_handle *trans,
 8289	      struct btrfs_root *root, u32 blocksize)
 8290{
 8291	struct btrfs_fs_info *fs_info = root->fs_info;
 8292	struct btrfs_block_rsv *block_rsv;
 8293	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 8294	int ret;
 8295	bool global_updated = false;
 8296
 8297	block_rsv = get_block_rsv(trans, root);
 8298
 8299	if (unlikely(block_rsv->size == 0))
 8300		goto try_reserve;
 8301again:
 8302	ret = block_rsv_use_bytes(block_rsv, blocksize);
 8303	if (!ret)
 8304		return block_rsv;
 8305
 8306	if (block_rsv->failfast)
 8307		return ERR_PTR(ret);
 8308
 8309	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
 8310		global_updated = true;
 8311		update_global_block_rsv(fs_info);
 8312		goto again;
 8313	}
 8314
 8315	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 8316		static DEFINE_RATELIMIT_STATE(_rs,
 8317				DEFAULT_RATELIMIT_INTERVAL * 10,
 8318				/*DEFAULT_RATELIMIT_BURST*/ 1);
 8319		if (__ratelimit(&_rs))
 8320			WARN(1, KERN_DEBUG
 8321				"BTRFS: block rsv returned %d\n", ret);
 8322	}
 8323try_reserve:
 8324	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
 8325				     BTRFS_RESERVE_NO_FLUSH);
 8326	if (!ret)
 8327		return block_rsv;
 8328	/*
 8329	 * If we couldn't reserve metadata bytes try and use some from
 8330	 * the global reserve if its space type is the same as the global
 8331	 * reservation.
 8332	 */
 8333	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
 8334	    block_rsv->space_info == global_rsv->space_info) {
 8335		ret = block_rsv_use_bytes(global_rsv, blocksize);
 8336		if (!ret)
 8337			return global_rsv;
 8338	}
 8339	return ERR_PTR(ret);
 8340}
 8341
 8342static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
 8343			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
 8344{
 8345	block_rsv_add_bytes(block_rsv, blocksize, 0);
 8346	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
 8347}
 8348
 8349/*
 8350 * finds a free extent and does all the dirty work required for allocation
 8351 * returns the tree buffer or an ERR_PTR on error.
 8352 */
 8353struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
 8354					struct btrfs_root *root,
 8355					u64 parent, u64 root_objectid,
 8356					struct btrfs_disk_key *key, int level,
 8357					u64 hint, u64 empty_size)
 
 8358{
 8359	struct btrfs_fs_info *fs_info = root->fs_info;
 8360	struct btrfs_key ins;
 8361	struct btrfs_block_rsv *block_rsv;
 8362	struct extent_buffer *buf;
 8363	struct btrfs_delayed_extent_op *extent_op;
 
 8364	u64 flags = 0;
 8365	int ret;
 8366	u32 blocksize = fs_info->nodesize;
 8367	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 8368
 8369#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 8370	if (btrfs_is_testing(fs_info)) {
 8371		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
 8372					    level);
 8373		if (!IS_ERR(buf))
 8374			root->alloc_bytenr += blocksize;
 8375		return buf;
 8376	}
 8377#endif
 8378
 8379	block_rsv = use_block_rsv(trans, root, blocksize);
 8380	if (IS_ERR(block_rsv))
 8381		return ERR_CAST(block_rsv);
 8382
 8383	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
 8384				   empty_size, hint, &ins, 0, 0);
 8385	if (ret)
 8386		goto out_unuse;
 8387
 8388	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
 
 8389	if (IS_ERR(buf)) {
 8390		ret = PTR_ERR(buf);
 8391		goto out_free_reserved;
 8392	}
 8393
 8394	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
 8395		if (parent == 0)
 8396			parent = ins.objectid;
 8397		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 8398	} else
 8399		BUG_ON(parent > 0);
 8400
 8401	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
 8402		extent_op = btrfs_alloc_delayed_extent_op();
 8403		if (!extent_op) {
 8404			ret = -ENOMEM;
 8405			goto out_free_buf;
 8406		}
 8407		if (key)
 8408			memcpy(&extent_op->key, key, sizeof(extent_op->key));
 8409		else
 8410			memset(&extent_op->key, 0, sizeof(extent_op->key));
 8411		extent_op->flags_to_set = flags;
 8412		extent_op->update_key = skinny_metadata ? false : true;
 8413		extent_op->update_flags = true;
 8414		extent_op->is_data = false;
 8415		extent_op->level = level;
 8416
 8417		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
 8418						 ins.objectid, ins.offset,
 8419						 parent, root_objectid, level,
 8420						 BTRFS_ADD_DELAYED_EXTENT,
 8421						 extent_op);
 
 
 8422		if (ret)
 8423			goto out_free_delayed;
 8424	}
 8425	return buf;
 8426
 8427out_free_delayed:
 8428	btrfs_free_delayed_extent_op(extent_op);
 8429out_free_buf:
 8430	free_extent_buffer(buf);
 8431out_free_reserved:
 8432	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
 8433out_unuse:
 8434	unuse_block_rsv(fs_info, block_rsv, blocksize);
 8435	return ERR_PTR(ret);
 8436}
 8437
 8438struct walk_control {
 8439	u64 refs[BTRFS_MAX_LEVEL];
 8440	u64 flags[BTRFS_MAX_LEVEL];
 8441	struct btrfs_key update_progress;
 
 
 8442	int stage;
 8443	int level;
 8444	int shared_level;
 8445	int update_ref;
 8446	int keep_locks;
 8447	int reada_slot;
 8448	int reada_count;
 8449	int for_reloc;
 8450};
 8451
 8452#define DROP_REFERENCE	1
 8453#define UPDATE_BACKREF	2
 8454
 8455static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
 8456				     struct btrfs_root *root,
 8457				     struct walk_control *wc,
 8458				     struct btrfs_path *path)
 8459{
 8460	struct btrfs_fs_info *fs_info = root->fs_info;
 8461	u64 bytenr;
 8462	u64 generation;
 8463	u64 refs;
 8464	u64 flags;
 8465	u32 nritems;
 8466	struct btrfs_key key;
 8467	struct extent_buffer *eb;
 8468	int ret;
 8469	int slot;
 8470	int nread = 0;
 8471
 8472	if (path->slots[wc->level] < wc->reada_slot) {
 8473		wc->reada_count = wc->reada_count * 2 / 3;
 8474		wc->reada_count = max(wc->reada_count, 2);
 8475	} else {
 8476		wc->reada_count = wc->reada_count * 3 / 2;
 8477		wc->reada_count = min_t(int, wc->reada_count,
 8478					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 8479	}
 8480
 8481	eb = path->nodes[wc->level];
 8482	nritems = btrfs_header_nritems(eb);
 8483
 8484	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
 8485		if (nread >= wc->reada_count)
 8486			break;
 8487
 8488		cond_resched();
 8489		bytenr = btrfs_node_blockptr(eb, slot);
 8490		generation = btrfs_node_ptr_generation(eb, slot);
 8491
 8492		if (slot == path->slots[wc->level])
 8493			goto reada;
 8494
 8495		if (wc->stage == UPDATE_BACKREF &&
 8496		    generation <= root->root_key.offset)
 8497			continue;
 8498
 8499		/* We don't lock the tree block, it's OK to be racy here */
 8500		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
 8501					       wc->level - 1, 1, &refs,
 8502					       &flags);
 8503		/* We don't care about errors in readahead. */
 8504		if (ret < 0)
 8505			continue;
 8506		BUG_ON(refs == 0);
 8507
 8508		if (wc->stage == DROP_REFERENCE) {
 8509			if (refs == 1)
 8510				goto reada;
 8511
 8512			if (wc->level == 1 &&
 8513			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8514				continue;
 8515			if (!wc->update_ref ||
 8516			    generation <= root->root_key.offset)
 8517				continue;
 8518			btrfs_node_key_to_cpu(eb, &key, slot);
 8519			ret = btrfs_comp_cpu_keys(&key,
 8520						  &wc->update_progress);
 8521			if (ret < 0)
 8522				continue;
 8523		} else {
 8524			if (wc->level == 1 &&
 8525			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8526				continue;
 8527		}
 8528reada:
 8529		readahead_tree_block(fs_info, bytenr);
 8530		nread++;
 8531	}
 8532	wc->reada_slot = slot;
 8533}
 8534
 8535/*
 8536 * helper to process tree block while walking down the tree.
 8537 *
 8538 * when wc->stage == UPDATE_BACKREF, this function updates
 8539 * back refs for pointers in the block.
 8540 *
 8541 * NOTE: return value 1 means we should stop walking down.
 8542 */
 8543static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
 8544				   struct btrfs_root *root,
 8545				   struct btrfs_path *path,
 8546				   struct walk_control *wc, int lookup_info)
 8547{
 8548	struct btrfs_fs_info *fs_info = root->fs_info;
 8549	int level = wc->level;
 8550	struct extent_buffer *eb = path->nodes[level];
 8551	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 8552	int ret;
 8553
 8554	if (wc->stage == UPDATE_BACKREF &&
 8555	    btrfs_header_owner(eb) != root->root_key.objectid)
 8556		return 1;
 8557
 8558	/*
 8559	 * when reference count of tree block is 1, it won't increase
 8560	 * again. once full backref flag is set, we never clear it.
 8561	 */
 8562	if (lookup_info &&
 8563	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
 8564	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
 8565		BUG_ON(!path->locks[level]);
 8566		ret = btrfs_lookup_extent_info(trans, fs_info,
 8567					       eb->start, level, 1,
 8568					       &wc->refs[level],
 8569					       &wc->flags[level]);
 8570		BUG_ON(ret == -ENOMEM);
 8571		if (ret)
 8572			return ret;
 8573		BUG_ON(wc->refs[level] == 0);
 8574	}
 8575
 8576	if (wc->stage == DROP_REFERENCE) {
 8577		if (wc->refs[level] > 1)
 8578			return 1;
 8579
 8580		if (path->locks[level] && !wc->keep_locks) {
 8581			btrfs_tree_unlock_rw(eb, path->locks[level]);
 8582			path->locks[level] = 0;
 8583		}
 8584		return 0;
 8585	}
 8586
 8587	/* wc->stage == UPDATE_BACKREF */
 8588	if (!(wc->flags[level] & flag)) {
 8589		BUG_ON(!path->locks[level]);
 8590		ret = btrfs_inc_ref(trans, root, eb, 1);
 8591		BUG_ON(ret); /* -ENOMEM */
 8592		ret = btrfs_dec_ref(trans, root, eb, 0);
 8593		BUG_ON(ret); /* -ENOMEM */
 8594		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
 8595						  eb->len, flag,
 8596						  btrfs_header_level(eb), 0);
 8597		BUG_ON(ret); /* -ENOMEM */
 8598		wc->flags[level] |= flag;
 8599	}
 8600
 8601	/*
 8602	 * the block is shared by multiple trees, so it's not good to
 8603	 * keep the tree lock
 8604	 */
 8605	if (path->locks[level] && level > 0) {
 8606		btrfs_tree_unlock_rw(eb, path->locks[level]);
 8607		path->locks[level] = 0;
 8608	}
 8609	return 0;
 8610}
 8611
 8612/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8613 * helper to process tree block pointer.
 8614 *
 8615 * when wc->stage == DROP_REFERENCE, this function checks
 8616 * reference count of the block pointed to. if the block
 8617 * is shared and we need update back refs for the subtree
 8618 * rooted at the block, this function changes wc->stage to
 8619 * UPDATE_BACKREF. if the block is shared and there is no
 8620 * need to update back, this function drops the reference
 8621 * to the block.
 8622 *
 8623 * NOTE: return value 1 means we should stop walking down.
 8624 */
 8625static noinline int do_walk_down(struct btrfs_trans_handle *trans,
 8626				 struct btrfs_root *root,
 8627				 struct btrfs_path *path,
 8628				 struct walk_control *wc, int *lookup_info)
 8629{
 8630	struct btrfs_fs_info *fs_info = root->fs_info;
 8631	u64 bytenr;
 8632	u64 generation;
 8633	u64 parent;
 8634	u32 blocksize;
 8635	struct btrfs_key key;
 
 
 8636	struct extent_buffer *next;
 8637	int level = wc->level;
 8638	int reada = 0;
 8639	int ret = 0;
 8640	bool need_account = false;
 8641
 8642	generation = btrfs_node_ptr_generation(path->nodes[level],
 8643					       path->slots[level]);
 8644	/*
 8645	 * if the lower level block was created before the snapshot
 8646	 * was created, we know there is no need to update back refs
 8647	 * for the subtree
 8648	 */
 8649	if (wc->stage == UPDATE_BACKREF &&
 8650	    generation <= root->root_key.offset) {
 8651		*lookup_info = 1;
 8652		return 1;
 8653	}
 8654
 8655	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
 8656	blocksize = fs_info->nodesize;
 
 8657
 8658	next = find_extent_buffer(fs_info, bytenr);
 8659	if (!next) {
 8660		next = btrfs_find_create_tree_block(fs_info, bytenr);
 8661		if (IS_ERR(next))
 8662			return PTR_ERR(next);
 8663
 8664		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
 8665					       level - 1);
 8666		reada = 1;
 8667	}
 8668	btrfs_tree_lock(next);
 8669	btrfs_set_lock_blocking(next);
 8670
 8671	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
 8672				       &wc->refs[level - 1],
 8673				       &wc->flags[level - 1]);
 8674	if (ret < 0)
 8675		goto out_unlock;
 8676
 8677	if (unlikely(wc->refs[level - 1] == 0)) {
 8678		btrfs_err(fs_info, "Missing references.");
 8679		ret = -EIO;
 8680		goto out_unlock;
 8681	}
 8682	*lookup_info = 0;
 8683
 8684	if (wc->stage == DROP_REFERENCE) {
 8685		if (wc->refs[level - 1] > 1) {
 8686			need_account = true;
 8687			if (level == 1 &&
 8688			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8689				goto skip;
 8690
 8691			if (!wc->update_ref ||
 8692			    generation <= root->root_key.offset)
 8693				goto skip;
 8694
 8695			btrfs_node_key_to_cpu(path->nodes[level], &key,
 8696					      path->slots[level]);
 8697			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
 8698			if (ret < 0)
 8699				goto skip;
 8700
 8701			wc->stage = UPDATE_BACKREF;
 8702			wc->shared_level = level - 1;
 8703		}
 8704	} else {
 8705		if (level == 1 &&
 8706		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
 8707			goto skip;
 8708	}
 8709
 8710	if (!btrfs_buffer_uptodate(next, generation, 0)) {
 8711		btrfs_tree_unlock(next);
 8712		free_extent_buffer(next);
 8713		next = NULL;
 8714		*lookup_info = 1;
 8715	}
 8716
 8717	if (!next) {
 8718		if (reada && level == 1)
 8719			reada_walk_down(trans, root, wc, path);
 8720		next = read_tree_block(fs_info, bytenr, generation);
 
 8721		if (IS_ERR(next)) {
 8722			return PTR_ERR(next);
 8723		} else if (!extent_buffer_uptodate(next)) {
 8724			free_extent_buffer(next);
 8725			return -EIO;
 8726		}
 8727		btrfs_tree_lock(next);
 8728		btrfs_set_lock_blocking(next);
 8729	}
 8730
 8731	level--;
 8732	ASSERT(level == btrfs_header_level(next));
 8733	if (level != btrfs_header_level(next)) {
 8734		btrfs_err(root->fs_info, "mismatched level");
 8735		ret = -EIO;
 8736		goto out_unlock;
 8737	}
 8738	path->nodes[level] = next;
 8739	path->slots[level] = 0;
 8740	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8741	wc->level = level;
 8742	if (wc->level == 1)
 8743		wc->reada_slot = 0;
 8744	return 0;
 8745skip:
 8746	wc->refs[level - 1] = 0;
 8747	wc->flags[level - 1] = 0;
 8748	if (wc->stage == DROP_REFERENCE) {
 8749		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 8750			parent = path->nodes[level]->start;
 8751		} else {
 8752			ASSERT(root->root_key.objectid ==
 8753			       btrfs_header_owner(path->nodes[level]));
 8754			if (root->root_key.objectid !=
 8755			    btrfs_header_owner(path->nodes[level])) {
 8756				btrfs_err(root->fs_info,
 8757						"mismatched block owner");
 8758				ret = -EIO;
 8759				goto out_unlock;
 8760			}
 8761			parent = 0;
 8762		}
 8763
 8764		if (need_account) {
 8765			ret = btrfs_qgroup_trace_subtree(trans, root, next,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8766							 generation, level - 1);
 8767			if (ret) {
 8768				btrfs_err_rl(fs_info,
 8769					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
 8770					     ret);
 8771			}
 8772		}
 8773		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
 8774					parent, root->root_key.objectid,
 8775					level - 1, 0);
 
 
 
 
 
 
 
 
 
 
 
 8776		if (ret)
 8777			goto out_unlock;
 8778	}
 8779
 8780	*lookup_info = 1;
 8781	ret = 1;
 8782
 8783out_unlock:
 8784	btrfs_tree_unlock(next);
 8785	free_extent_buffer(next);
 8786
 8787	return ret;
 8788}
 8789
 8790/*
 8791 * helper to process tree block while walking up the tree.
 8792 *
 8793 * when wc->stage == DROP_REFERENCE, this function drops
 8794 * reference count on the block.
 8795 *
 8796 * when wc->stage == UPDATE_BACKREF, this function changes
 8797 * wc->stage back to DROP_REFERENCE if we changed wc->stage
 8798 * to UPDATE_BACKREF previously while processing the block.
 8799 *
 8800 * NOTE: return value 1 means we should stop walking up.
 8801 */
 8802static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
 8803				 struct btrfs_root *root,
 8804				 struct btrfs_path *path,
 8805				 struct walk_control *wc)
 8806{
 8807	struct btrfs_fs_info *fs_info = root->fs_info;
 8808	int ret;
 8809	int level = wc->level;
 8810	struct extent_buffer *eb = path->nodes[level];
 8811	u64 parent = 0;
 8812
 8813	if (wc->stage == UPDATE_BACKREF) {
 8814		BUG_ON(wc->shared_level < level);
 8815		if (level < wc->shared_level)
 8816			goto out;
 8817
 8818		ret = find_next_key(path, level + 1, &wc->update_progress);
 8819		if (ret > 0)
 8820			wc->update_ref = 0;
 8821
 8822		wc->stage = DROP_REFERENCE;
 8823		wc->shared_level = -1;
 8824		path->slots[level] = 0;
 8825
 8826		/*
 8827		 * check reference count again if the block isn't locked.
 8828		 * we should start walking down the tree again if reference
 8829		 * count is one.
 8830		 */
 8831		if (!path->locks[level]) {
 8832			BUG_ON(level == 0);
 8833			btrfs_tree_lock(eb);
 8834			btrfs_set_lock_blocking(eb);
 8835			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8836
 8837			ret = btrfs_lookup_extent_info(trans, fs_info,
 8838						       eb->start, level, 1,
 8839						       &wc->refs[level],
 8840						       &wc->flags[level]);
 8841			if (ret < 0) {
 8842				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8843				path->locks[level] = 0;
 8844				return ret;
 8845			}
 8846			BUG_ON(wc->refs[level] == 0);
 8847			if (wc->refs[level] == 1) {
 8848				btrfs_tree_unlock_rw(eb, path->locks[level]);
 8849				path->locks[level] = 0;
 8850				return 1;
 8851			}
 8852		}
 8853	}
 8854
 8855	/* wc->stage == DROP_REFERENCE */
 8856	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
 8857
 8858	if (wc->refs[level] == 1) {
 8859		if (level == 0) {
 8860			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8861				ret = btrfs_dec_ref(trans, root, eb, 1);
 8862			else
 8863				ret = btrfs_dec_ref(trans, root, eb, 0);
 8864			BUG_ON(ret); /* -ENOMEM */
 8865			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
 8866			if (ret) {
 8867				btrfs_err_rl(fs_info,
 8868					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
 
 8869					     ret);
 
 8870			}
 8871		}
 8872		/* make block locked assertion in clean_tree_block happy */
 8873		if (!path->locks[level] &&
 8874		    btrfs_header_generation(eb) == trans->transid) {
 8875			btrfs_tree_lock(eb);
 8876			btrfs_set_lock_blocking(eb);
 8877			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 8878		}
 8879		clean_tree_block(trans, fs_info, eb);
 8880	}
 8881
 8882	if (eb == root->node) {
 8883		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8884			parent = eb->start;
 8885		else
 8886			BUG_ON(root->root_key.objectid !=
 8887			       btrfs_header_owner(eb));
 8888	} else {
 8889		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
 8890			parent = path->nodes[level + 1]->start;
 8891		else
 8892			BUG_ON(root->root_key.objectid !=
 8893			       btrfs_header_owner(path->nodes[level + 1]));
 8894	}
 8895
 8896	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
 8897out:
 8898	wc->refs[level] = 0;
 8899	wc->flags[level] = 0;
 8900	return 0;
 
 
 
 
 
 8901}
 8902
 8903static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
 8904				   struct btrfs_root *root,
 8905				   struct btrfs_path *path,
 8906				   struct walk_control *wc)
 8907{
 8908	int level = wc->level;
 8909	int lookup_info = 1;
 8910	int ret;
 8911
 8912	while (level >= 0) {
 8913		ret = walk_down_proc(trans, root, path, wc, lookup_info);
 8914		if (ret > 0)
 8915			break;
 8916
 8917		if (level == 0)
 8918			break;
 8919
 8920		if (path->slots[level] >=
 8921		    btrfs_header_nritems(path->nodes[level]))
 8922			break;
 8923
 8924		ret = do_walk_down(trans, root, path, wc, &lookup_info);
 8925		if (ret > 0) {
 8926			path->slots[level]++;
 8927			continue;
 8928		} else if (ret < 0)
 8929			return ret;
 8930		level = wc->level;
 8931	}
 8932	return 0;
 8933}
 8934
 8935static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
 8936				 struct btrfs_root *root,
 8937				 struct btrfs_path *path,
 8938				 struct walk_control *wc, int max_level)
 8939{
 8940	int level = wc->level;
 8941	int ret;
 8942
 8943	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
 8944	while (level < max_level && path->nodes[level]) {
 8945		wc->level = level;
 8946		if (path->slots[level] + 1 <
 8947		    btrfs_header_nritems(path->nodes[level])) {
 8948			path->slots[level]++;
 8949			return 0;
 8950		} else {
 8951			ret = walk_up_proc(trans, root, path, wc);
 8952			if (ret > 0)
 8953				return 0;
 
 
 8954
 8955			if (path->locks[level]) {
 8956				btrfs_tree_unlock_rw(path->nodes[level],
 8957						     path->locks[level]);
 8958				path->locks[level] = 0;
 8959			}
 8960			free_extent_buffer(path->nodes[level]);
 8961			path->nodes[level] = NULL;
 8962			level++;
 8963		}
 8964	}
 8965	return 1;
 8966}
 8967
 8968/*
 8969 * drop a subvolume tree.
 8970 *
 8971 * this function traverses the tree freeing any blocks that only
 8972 * referenced by the tree.
 8973 *
 8974 * when a shared tree block is found. this function decreases its
 8975 * reference count by one. if update_ref is true, this function
 8976 * also make sure backrefs for the shared block and all lower level
 8977 * blocks are properly updated.
 8978 *
 8979 * If called with for_reloc == 0, may exit early with -EAGAIN
 8980 */
 8981int btrfs_drop_snapshot(struct btrfs_root *root,
 8982			 struct btrfs_block_rsv *block_rsv, int update_ref,
 8983			 int for_reloc)
 8984{
 8985	struct btrfs_fs_info *fs_info = root->fs_info;
 8986	struct btrfs_path *path;
 8987	struct btrfs_trans_handle *trans;
 8988	struct btrfs_root *tree_root = fs_info->tree_root;
 8989	struct btrfs_root_item *root_item = &root->root_item;
 8990	struct walk_control *wc;
 8991	struct btrfs_key key;
 8992	int err = 0;
 8993	int ret;
 8994	int level;
 8995	bool root_dropped = false;
 8996
 8997	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
 8998
 8999	path = btrfs_alloc_path();
 9000	if (!path) {
 9001		err = -ENOMEM;
 9002		goto out;
 9003	}
 9004
 9005	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 9006	if (!wc) {
 9007		btrfs_free_path(path);
 9008		err = -ENOMEM;
 9009		goto out;
 9010	}
 9011
 9012	trans = btrfs_start_transaction(tree_root, 0);
 9013	if (IS_ERR(trans)) {
 9014		err = PTR_ERR(trans);
 9015		goto out_free;
 9016	}
 9017
 
 
 
 
 9018	if (block_rsv)
 9019		trans->block_rsv = block_rsv;
 9020
 
 
 
 
 
 
 
 
 
 9021	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
 9022		level = btrfs_header_level(root->node);
 9023		path->nodes[level] = btrfs_lock_root_node(root);
 9024		btrfs_set_lock_blocking(path->nodes[level]);
 9025		path->slots[level] = 0;
 9026		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9027		memset(&wc->update_progress, 0,
 9028		       sizeof(wc->update_progress));
 9029	} else {
 9030		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
 9031		memcpy(&wc->update_progress, &key,
 9032		       sizeof(wc->update_progress));
 9033
 9034		level = root_item->drop_level;
 9035		BUG_ON(level == 0);
 9036		path->lowest_level = level;
 9037		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 9038		path->lowest_level = 0;
 9039		if (ret < 0) {
 9040			err = ret;
 9041			goto out_end_trans;
 9042		}
 9043		WARN_ON(ret > 0);
 9044
 9045		/*
 9046		 * unlock our path, this is safe because only this
 9047		 * function is allowed to delete this snapshot
 9048		 */
 9049		btrfs_unlock_up_safe(path, 0);
 9050
 9051		level = btrfs_header_level(root->node);
 9052		while (1) {
 9053			btrfs_tree_lock(path->nodes[level]);
 9054			btrfs_set_lock_blocking(path->nodes[level]);
 9055			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9056
 9057			ret = btrfs_lookup_extent_info(trans, fs_info,
 9058						path->nodes[level]->start,
 9059						level, 1, &wc->refs[level],
 9060						&wc->flags[level]);
 9061			if (ret < 0) {
 9062				err = ret;
 9063				goto out_end_trans;
 9064			}
 9065			BUG_ON(wc->refs[level] == 0);
 9066
 9067			if (level == root_item->drop_level)
 9068				break;
 9069
 9070			btrfs_tree_unlock(path->nodes[level]);
 9071			path->locks[level] = 0;
 9072			WARN_ON(wc->refs[level] != 1);
 9073			level--;
 9074		}
 9075	}
 9076
 
 9077	wc->level = level;
 9078	wc->shared_level = -1;
 9079	wc->stage = DROP_REFERENCE;
 9080	wc->update_ref = update_ref;
 9081	wc->keep_locks = 0;
 9082	wc->for_reloc = for_reloc;
 9083	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 9084
 9085	while (1) {
 9086
 9087		ret = walk_down_tree(trans, root, path, wc);
 9088		if (ret < 0) {
 9089			err = ret;
 9090			break;
 9091		}
 9092
 9093		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
 9094		if (ret < 0) {
 9095			err = ret;
 9096			break;
 9097		}
 9098
 9099		if (ret > 0) {
 9100			BUG_ON(wc->stage != DROP_REFERENCE);
 9101			break;
 9102		}
 9103
 9104		if (wc->stage == DROP_REFERENCE) {
 9105			level = wc->level;
 9106			btrfs_node_key(path->nodes[level],
 9107				       &root_item->drop_progress,
 9108				       path->slots[level]);
 9109			root_item->drop_level = level;
 9110		}
 
 
 9111
 9112		BUG_ON(wc->level == 0);
 9113		if (btrfs_should_end_transaction(trans) ||
 9114		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
 9115			ret = btrfs_update_root(trans, tree_root,
 9116						&root->root_key,
 9117						root_item);
 9118			if (ret) {
 9119				btrfs_abort_transaction(trans, ret);
 9120				err = ret;
 9121				goto out_end_trans;
 9122			}
 9123
 9124			btrfs_end_transaction_throttle(trans);
 9125			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
 9126				btrfs_debug(fs_info,
 9127					    "drop snapshot early exit");
 9128				err = -EAGAIN;
 9129				goto out_free;
 9130			}
 9131
 9132			trans = btrfs_start_transaction(tree_root, 0);
 9133			if (IS_ERR(trans)) {
 9134				err = PTR_ERR(trans);
 9135				goto out_free;
 9136			}
 9137			if (block_rsv)
 9138				trans->block_rsv = block_rsv;
 9139		}
 9140	}
 9141	btrfs_release_path(path);
 9142	if (err)
 9143		goto out_end_trans;
 9144
 9145	ret = btrfs_del_root(trans, tree_root, &root->root_key);
 9146	if (ret) {
 9147		btrfs_abort_transaction(trans, ret);
 
 9148		goto out_end_trans;
 9149	}
 9150
 9151	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
 9152		ret = btrfs_find_root(tree_root, &root->root_key, path,
 9153				      NULL, NULL);
 9154		if (ret < 0) {
 9155			btrfs_abort_transaction(trans, ret);
 9156			err = ret;
 9157			goto out_end_trans;
 9158		} else if (ret > 0) {
 9159			/* if we fail to delete the orphan item this time
 9160			 * around, it'll get picked up the next time.
 9161			 *
 9162			 * The most common failure here is just -ENOENT.
 9163			 */
 9164			btrfs_del_orphan_item(trans, tree_root,
 9165					      root->root_key.objectid);
 9166		}
 9167	}
 9168
 9169	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
 9170		btrfs_add_dropped_root(trans, root);
 9171	} else {
 9172		free_extent_buffer(root->node);
 9173		free_extent_buffer(root->commit_root);
 9174		btrfs_put_fs_root(root);
 9175	}
 9176	root_dropped = true;
 9177out_end_trans:
 9178	btrfs_end_transaction_throttle(trans);
 9179out_free:
 9180	kfree(wc);
 9181	btrfs_free_path(path);
 9182out:
 9183	/*
 9184	 * So if we need to stop dropping the snapshot for whatever reason we
 9185	 * need to make sure to add it back to the dead root list so that we
 9186	 * keep trying to do the work later.  This also cleans up roots if we
 9187	 * don't have it in the radix (like when we recover after a power fail
 9188	 * or unmount) so we don't leak memory.
 9189	 */
 9190	if (!for_reloc && root_dropped == false)
 9191		btrfs_add_dead_root(root);
 9192	if (err && err != -EAGAIN)
 9193		btrfs_handle_fs_error(fs_info, err, NULL);
 9194	return err;
 9195}
 9196
 9197/*
 9198 * drop subtree rooted at tree block 'node'.
 9199 *
 9200 * NOTE: this function will unlock and release tree block 'node'
 9201 * only used by relocation code
 9202 */
 9203int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
 9204			struct btrfs_root *root,
 9205			struct extent_buffer *node,
 9206			struct extent_buffer *parent)
 9207{
 9208	struct btrfs_fs_info *fs_info = root->fs_info;
 9209	struct btrfs_path *path;
 9210	struct walk_control *wc;
 9211	int level;
 9212	int parent_level;
 9213	int ret = 0;
 9214	int wret;
 9215
 9216	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
 9217
 9218	path = btrfs_alloc_path();
 9219	if (!path)
 9220		return -ENOMEM;
 9221
 9222	wc = kzalloc(sizeof(*wc), GFP_NOFS);
 9223	if (!wc) {
 9224		btrfs_free_path(path);
 9225		return -ENOMEM;
 9226	}
 9227
 9228	btrfs_assert_tree_locked(parent);
 9229	parent_level = btrfs_header_level(parent);
 9230	extent_buffer_get(parent);
 9231	path->nodes[parent_level] = parent;
 9232	path->slots[parent_level] = btrfs_header_nritems(parent);
 9233
 9234	btrfs_assert_tree_locked(node);
 9235	level = btrfs_header_level(node);
 9236	path->nodes[level] = node;
 9237	path->slots[level] = 0;
 9238	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
 9239
 9240	wc->refs[parent_level] = 1;
 9241	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 9242	wc->level = level;
 9243	wc->shared_level = -1;
 9244	wc->stage = DROP_REFERENCE;
 9245	wc->update_ref = 0;
 9246	wc->keep_locks = 1;
 9247	wc->for_reloc = 1;
 9248	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
 9249
 9250	while (1) {
 9251		wret = walk_down_tree(trans, root, path, wc);
 9252		if (wret < 0) {
 9253			ret = wret;
 9254			break;
 9255		}
 9256
 9257		wret = walk_up_tree(trans, root, path, wc, parent_level);
 9258		if (wret < 0)
 9259			ret = wret;
 9260		if (wret != 0)
 9261			break;
 9262	}
 9263
 9264	kfree(wc);
 9265	btrfs_free_path(path);
 9266	return ret;
 9267}
 9268
 9269static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
 9270{
 9271	u64 num_devices;
 9272	u64 stripped;
 9273
 9274	/*
 9275	 * if restripe for this chunk_type is on pick target profile and
 9276	 * return, otherwise do the usual balance
 9277	 */
 9278	stripped = get_restripe_target(fs_info, flags);
 9279	if (stripped)
 9280		return extended_to_chunk(stripped);
 9281
 9282	num_devices = fs_info->fs_devices->rw_devices;
 9283
 9284	stripped = BTRFS_BLOCK_GROUP_RAID0 |
 9285		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
 9286		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
 9287
 9288	if (num_devices == 1) {
 9289		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9290		stripped = flags & ~stripped;
 9291
 9292		/* turn raid0 into single device chunks */
 9293		if (flags & BTRFS_BLOCK_GROUP_RAID0)
 9294			return stripped;
 9295
 9296		/* turn mirroring into duplication */
 9297		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9298			     BTRFS_BLOCK_GROUP_RAID10))
 9299			return stripped | BTRFS_BLOCK_GROUP_DUP;
 9300	} else {
 9301		/* they already had raid on here, just return */
 9302		if (flags & stripped)
 9303			return flags;
 9304
 9305		stripped |= BTRFS_BLOCK_GROUP_DUP;
 9306		stripped = flags & ~stripped;
 9307
 9308		/* switch duplicated blocks with raid1 */
 9309		if (flags & BTRFS_BLOCK_GROUP_DUP)
 9310			return stripped | BTRFS_BLOCK_GROUP_RAID1;
 9311
 9312		/* this is drive concat, leave it alone */
 9313	}
 9314
 9315	return flags;
 9316}
 9317
 9318static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
 9319{
 9320	struct btrfs_space_info *sinfo = cache->space_info;
 9321	u64 num_bytes;
 9322	u64 min_allocable_bytes;
 9323	int ret = -ENOSPC;
 9324
 9325	/*
 9326	 * We need some metadata space and system metadata space for
 9327	 * allocating chunks in some corner cases until we force to set
 9328	 * it to be readonly.
 9329	 */
 9330	if ((sinfo->flags &
 9331	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
 9332	    !force)
 9333		min_allocable_bytes = SZ_1M;
 9334	else
 9335		min_allocable_bytes = 0;
 9336
 9337	spin_lock(&sinfo->lock);
 9338	spin_lock(&cache->lock);
 9339
 9340	if (cache->ro) {
 9341		cache->ro++;
 9342		ret = 0;
 9343		goto out;
 9344	}
 9345
 9346	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
 9347		    cache->bytes_super - btrfs_block_group_used(&cache->item);
 9348
 9349	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
 9350	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
 9351	    min_allocable_bytes <= sinfo->total_bytes) {
 9352		sinfo->bytes_readonly += num_bytes;
 9353		cache->ro++;
 9354		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
 9355		ret = 0;
 9356	}
 9357out:
 9358	spin_unlock(&cache->lock);
 9359	spin_unlock(&sinfo->lock);
 9360	return ret;
 9361}
 9362
 9363int btrfs_inc_block_group_ro(struct btrfs_root *root,
 9364			     struct btrfs_block_group_cache *cache)
 9365
 9366{
 9367	struct btrfs_fs_info *fs_info = root->fs_info;
 9368	struct btrfs_trans_handle *trans;
 9369	u64 alloc_flags;
 9370	int ret;
 9371
 9372again:
 9373	trans = btrfs_join_transaction(root);
 9374	if (IS_ERR(trans))
 9375		return PTR_ERR(trans);
 9376
 9377	/*
 9378	 * we're not allowed to set block groups readonly after the dirty
 9379	 * block groups cache has started writing.  If it already started,
 9380	 * back off and let this transaction commit
 9381	 */
 9382	mutex_lock(&fs_info->ro_block_group_mutex);
 9383	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
 9384		u64 transid = trans->transid;
 9385
 9386		mutex_unlock(&fs_info->ro_block_group_mutex);
 9387		btrfs_end_transaction(trans);
 9388
 9389		ret = btrfs_wait_for_commit(fs_info, transid);
 9390		if (ret)
 9391			return ret;
 9392		goto again;
 9393	}
 9394
 9395	/*
 9396	 * if we are changing raid levels, try to allocate a corresponding
 9397	 * block group with the new raid level.
 9398	 */
 9399	alloc_flags = update_block_group_flags(fs_info, cache->flags);
 9400	if (alloc_flags != cache->flags) {
 9401		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
 9402				     CHUNK_ALLOC_FORCE);
 9403		/*
 9404		 * ENOSPC is allowed here, we may have enough space
 9405		 * already allocated at the new raid level to
 9406		 * carry on
 9407		 */
 9408		if (ret == -ENOSPC)
 9409			ret = 0;
 9410		if (ret < 0)
 9411			goto out;
 9412	}
 9413
 9414	ret = inc_block_group_ro(cache, 0);
 9415	if (!ret)
 9416		goto out;
 9417	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
 9418	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
 9419			     CHUNK_ALLOC_FORCE);
 9420	if (ret < 0)
 9421		goto out;
 9422	ret = inc_block_group_ro(cache, 0);
 9423out:
 9424	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
 9425		alloc_flags = update_block_group_flags(fs_info, cache->flags);
 9426		mutex_lock(&fs_info->chunk_mutex);
 9427		check_system_chunk(trans, fs_info, alloc_flags);
 9428		mutex_unlock(&fs_info->chunk_mutex);
 9429	}
 9430	mutex_unlock(&fs_info->ro_block_group_mutex);
 9431
 9432	btrfs_end_transaction(trans);
 9433	return ret;
 9434}
 9435
 9436int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
 9437			    struct btrfs_fs_info *fs_info, u64 type)
 9438{
 9439	u64 alloc_flags = get_alloc_profile(fs_info, type);
 9440
 9441	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
 9442}
 9443
 9444/*
 9445 * helper to account the unused space of all the readonly block group in the
 9446 * space_info. takes mirrors into account.
 9447 */
 9448u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
 9449{
 9450	struct btrfs_block_group_cache *block_group;
 9451	u64 free_bytes = 0;
 9452	int factor;
 9453
 9454	/* It's df, we don't care if it's racy */
 9455	if (list_empty(&sinfo->ro_bgs))
 9456		return 0;
 9457
 9458	spin_lock(&sinfo->lock);
 9459	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
 9460		spin_lock(&block_group->lock);
 9461
 9462		if (!block_group->ro) {
 9463			spin_unlock(&block_group->lock);
 9464			continue;
 9465		}
 9466
 9467		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
 9468					  BTRFS_BLOCK_GROUP_RAID10 |
 9469					  BTRFS_BLOCK_GROUP_DUP))
 9470			factor = 2;
 9471		else
 9472			factor = 1;
 9473
 9474		free_bytes += (block_group->key.offset -
 9475			       btrfs_block_group_used(&block_group->item)) *
 9476			       factor;
 9477
 9478		spin_unlock(&block_group->lock);
 9479	}
 9480	spin_unlock(&sinfo->lock);
 9481
 9482	return free_bytes;
 9483}
 9484
 9485void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
 9486{
 9487	struct btrfs_space_info *sinfo = cache->space_info;
 9488	u64 num_bytes;
 9489
 9490	BUG_ON(!cache->ro);
 9491
 9492	spin_lock(&sinfo->lock);
 9493	spin_lock(&cache->lock);
 9494	if (!--cache->ro) {
 9495		num_bytes = cache->key.offset - cache->reserved -
 9496			    cache->pinned - cache->bytes_super -
 9497			    btrfs_block_group_used(&cache->item);
 9498		sinfo->bytes_readonly -= num_bytes;
 9499		list_del_init(&cache->ro_list);
 9500	}
 9501	spin_unlock(&cache->lock);
 9502	spin_unlock(&sinfo->lock);
 9503}
 9504
 9505/*
 9506 * checks to see if its even possible to relocate this block group.
 9507 *
 9508 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
 9509 * ok to go ahead and try.
 9510 */
 9511int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
 9512{
 9513	struct btrfs_root *root = fs_info->extent_root;
 9514	struct btrfs_block_group_cache *block_group;
 9515	struct btrfs_space_info *space_info;
 9516	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 9517	struct btrfs_device *device;
 9518	struct btrfs_trans_handle *trans;
 9519	u64 min_free;
 9520	u64 dev_min = 1;
 9521	u64 dev_nr = 0;
 9522	u64 target;
 9523	int debug;
 9524	int index;
 9525	int full = 0;
 9526	int ret = 0;
 9527
 9528	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
 9529
 9530	block_group = btrfs_lookup_block_group(fs_info, bytenr);
 9531
 9532	/* odd, couldn't find the block group, leave it alone */
 9533	if (!block_group) {
 9534		if (debug)
 9535			btrfs_warn(fs_info,
 9536				   "can't find block group for bytenr %llu",
 9537				   bytenr);
 9538		return -1;
 9539	}
 9540
 9541	min_free = btrfs_block_group_used(&block_group->item);
 9542
 9543	/* no bytes used, we're good */
 9544	if (!min_free)
 9545		goto out;
 9546
 9547	space_info = block_group->space_info;
 9548	spin_lock(&space_info->lock);
 9549
 9550	full = space_info->full;
 9551
 9552	/*
 9553	 * if this is the last block group we have in this space, we can't
 9554	 * relocate it unless we're able to allocate a new chunk below.
 9555	 *
 9556	 * Otherwise, we need to make sure we have room in the space to handle
 9557	 * all of the extents from this block group.  If we can, we're good
 9558	 */
 9559	if ((space_info->total_bytes != block_group->key.offset) &&
 9560	    (space_info->bytes_used + space_info->bytes_reserved +
 9561	     space_info->bytes_pinned + space_info->bytes_readonly +
 9562	     min_free < space_info->total_bytes)) {
 9563		spin_unlock(&space_info->lock);
 9564		goto out;
 9565	}
 9566	spin_unlock(&space_info->lock);
 9567
 9568	/*
 9569	 * ok we don't have enough space, but maybe we have free space on our
 9570	 * devices to allocate new chunks for relocation, so loop through our
 9571	 * alloc devices and guess if we have enough space.  if this block
 9572	 * group is going to be restriped, run checks against the target
 9573	 * profile instead of the current one.
 9574	 */
 9575	ret = -1;
 9576
 9577	/*
 9578	 * index:
 9579	 *      0: raid10
 9580	 *      1: raid1
 9581	 *      2: dup
 9582	 *      3: raid0
 9583	 *      4: single
 9584	 */
 9585	target = get_restripe_target(fs_info, block_group->flags);
 9586	if (target) {
 9587		index = __get_raid_index(extended_to_chunk(target));
 9588	} else {
 9589		/*
 9590		 * this is just a balance, so if we were marked as full
 9591		 * we know there is no space for a new chunk
 9592		 */
 9593		if (full) {
 9594			if (debug)
 9595				btrfs_warn(fs_info,
 9596					   "no space to alloc new chunk for block group %llu",
 9597					   block_group->key.objectid);
 9598			goto out;
 9599		}
 9600
 9601		index = get_block_group_index(block_group);
 9602	}
 9603
 9604	if (index == BTRFS_RAID_RAID10) {
 9605		dev_min = 4;
 9606		/* Divide by 2 */
 9607		min_free >>= 1;
 9608	} else if (index == BTRFS_RAID_RAID1) {
 9609		dev_min = 2;
 9610	} else if (index == BTRFS_RAID_DUP) {
 9611		/* Multiply by 2 */
 9612		min_free <<= 1;
 9613	} else if (index == BTRFS_RAID_RAID0) {
 9614		dev_min = fs_devices->rw_devices;
 9615		min_free = div64_u64(min_free, dev_min);
 9616	}
 9617
 9618	/* We need to do this so that we can look at pending chunks */
 9619	trans = btrfs_join_transaction(root);
 9620	if (IS_ERR(trans)) {
 9621		ret = PTR_ERR(trans);
 9622		goto out;
 9623	}
 9624
 9625	mutex_lock(&fs_info->chunk_mutex);
 9626	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 9627		u64 dev_offset;
 9628
 9629		/*
 9630		 * check to make sure we can actually find a chunk with enough
 9631		 * space to fit our block group in.
 9632		 */
 9633		if (device->total_bytes > device->bytes_used + min_free &&
 9634		    !device->is_tgtdev_for_dev_replace) {
 9635			ret = find_free_dev_extent(trans, device, min_free,
 9636						   &dev_offset, NULL);
 9637			if (!ret)
 9638				dev_nr++;
 9639
 9640			if (dev_nr >= dev_min)
 9641				break;
 9642
 9643			ret = -1;
 9644		}
 9645	}
 9646	if (debug && ret == -1)
 9647		btrfs_warn(fs_info,
 9648			   "no space to allocate a new chunk for block group %llu",
 9649			   block_group->key.objectid);
 9650	mutex_unlock(&fs_info->chunk_mutex);
 9651	btrfs_end_transaction(trans);
 9652out:
 9653	btrfs_put_block_group(block_group);
 9654	return ret;
 9655}
 9656
 9657static int find_first_block_group(struct btrfs_fs_info *fs_info,
 9658				  struct btrfs_path *path,
 9659				  struct btrfs_key *key)
 9660{
 9661	struct btrfs_root *root = fs_info->extent_root;
 9662	int ret = 0;
 9663	struct btrfs_key found_key;
 9664	struct extent_buffer *leaf;
 9665	int slot;
 9666
 9667	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 9668	if (ret < 0)
 9669		goto out;
 9670
 9671	while (1) {
 9672		slot = path->slots[0];
 9673		leaf = path->nodes[0];
 9674		if (slot >= btrfs_header_nritems(leaf)) {
 9675			ret = btrfs_next_leaf(root, path);
 9676			if (ret == 0)
 9677				continue;
 9678			if (ret < 0)
 9679				goto out;
 9680			break;
 9681		}
 9682		btrfs_item_key_to_cpu(leaf, &found_key, slot);
 9683
 9684		if (found_key.objectid >= key->objectid &&
 9685		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
 9686			struct extent_map_tree *em_tree;
 9687			struct extent_map *em;
 9688
 9689			em_tree = &root->fs_info->mapping_tree.map_tree;
 9690			read_lock(&em_tree->lock);
 9691			em = lookup_extent_mapping(em_tree, found_key.objectid,
 9692						   found_key.offset);
 9693			read_unlock(&em_tree->lock);
 9694			if (!em) {
 9695				btrfs_err(fs_info,
 9696			"logical %llu len %llu found bg but no related chunk",
 9697					  found_key.objectid, found_key.offset);
 9698				ret = -ENOENT;
 9699			} else {
 9700				ret = 0;
 9701			}
 9702			free_extent_map(em);
 9703			goto out;
 9704		}
 9705		path->slots[0]++;
 9706	}
 9707out:
 9708	return ret;
 9709}
 9710
 9711void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
 9712{
 9713	struct btrfs_block_group_cache *block_group;
 9714	u64 last = 0;
 9715
 9716	while (1) {
 9717		struct inode *inode;
 9718
 9719		block_group = btrfs_lookup_first_block_group(info, last);
 9720		while (block_group) {
 9721			spin_lock(&block_group->lock);
 9722			if (block_group->iref)
 9723				break;
 9724			spin_unlock(&block_group->lock);
 9725			block_group = next_block_group(info, block_group);
 9726		}
 9727		if (!block_group) {
 9728			if (last == 0)
 9729				break;
 9730			last = 0;
 9731			continue;
 9732		}
 9733
 9734		inode = block_group->inode;
 9735		block_group->iref = 0;
 9736		block_group->inode = NULL;
 9737		spin_unlock(&block_group->lock);
 9738		ASSERT(block_group->io_ctl.inode == NULL);
 9739		iput(inode);
 9740		last = block_group->key.objectid + block_group->key.offset;
 9741		btrfs_put_block_group(block_group);
 9742	}
 9743}
 9744
 9745int btrfs_free_block_groups(struct btrfs_fs_info *info)
 9746{
 9747	struct btrfs_block_group_cache *block_group;
 9748	struct btrfs_space_info *space_info;
 9749	struct btrfs_caching_control *caching_ctl;
 9750	struct rb_node *n;
 9751
 9752	down_write(&info->commit_root_sem);
 9753	while (!list_empty(&info->caching_block_groups)) {
 9754		caching_ctl = list_entry(info->caching_block_groups.next,
 9755					 struct btrfs_caching_control, list);
 9756		list_del(&caching_ctl->list);
 9757		put_caching_control(caching_ctl);
 9758	}
 9759	up_write(&info->commit_root_sem);
 9760
 9761	spin_lock(&info->unused_bgs_lock);
 9762	while (!list_empty(&info->unused_bgs)) {
 9763		block_group = list_first_entry(&info->unused_bgs,
 9764					       struct btrfs_block_group_cache,
 9765					       bg_list);
 9766		list_del_init(&block_group->bg_list);
 9767		btrfs_put_block_group(block_group);
 9768	}
 9769	spin_unlock(&info->unused_bgs_lock);
 9770
 9771	spin_lock(&info->block_group_cache_lock);
 9772	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
 9773		block_group = rb_entry(n, struct btrfs_block_group_cache,
 9774				       cache_node);
 9775		rb_erase(&block_group->cache_node,
 9776			 &info->block_group_cache_tree);
 9777		RB_CLEAR_NODE(&block_group->cache_node);
 9778		spin_unlock(&info->block_group_cache_lock);
 9779
 9780		down_write(&block_group->space_info->groups_sem);
 9781		list_del(&block_group->list);
 9782		up_write(&block_group->space_info->groups_sem);
 9783
 9784		if (block_group->cached == BTRFS_CACHE_STARTED)
 9785			wait_block_group_cache_done(block_group);
 9786
 9787		/*
 9788		 * We haven't cached this block group, which means we could
 9789		 * possibly have excluded extents on this block group.
 9790		 */
 9791		if (block_group->cached == BTRFS_CACHE_NO ||
 9792		    block_group->cached == BTRFS_CACHE_ERROR)
 9793			free_excluded_extents(info, block_group);
 9794
 9795		btrfs_remove_free_space_cache(block_group);
 9796		ASSERT(list_empty(&block_group->dirty_list));
 9797		ASSERT(list_empty(&block_group->io_list));
 9798		ASSERT(list_empty(&block_group->bg_list));
 9799		ASSERT(atomic_read(&block_group->count) == 1);
 9800		btrfs_put_block_group(block_group);
 9801
 9802		spin_lock(&info->block_group_cache_lock);
 9803	}
 9804	spin_unlock(&info->block_group_cache_lock);
 9805
 9806	/* now that all the block groups are freed, go through and
 9807	 * free all the space_info structs.  This is only called during
 9808	 * the final stages of unmount, and so we know nobody is
 9809	 * using them.  We call synchronize_rcu() once before we start,
 9810	 * just to be on the safe side.
 9811	 */
 9812	synchronize_rcu();
 9813
 9814	release_global_block_rsv(info);
 9815
 9816	while (!list_empty(&info->space_info)) {
 9817		int i;
 9818
 9819		space_info = list_entry(info->space_info.next,
 9820					struct btrfs_space_info,
 9821					list);
 9822
 9823		/*
 9824		 * Do not hide this behind enospc_debug, this is actually
 9825		 * important and indicates a real bug if this happens.
 9826		 */
 9827		if (WARN_ON(space_info->bytes_pinned > 0 ||
 9828			    space_info->bytes_reserved > 0 ||
 9829			    space_info->bytes_may_use > 0))
 9830			dump_space_info(info, space_info, 0, 0);
 9831		list_del(&space_info->list);
 9832		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
 9833			struct kobject *kobj;
 9834			kobj = space_info->block_group_kobjs[i];
 9835			space_info->block_group_kobjs[i] = NULL;
 9836			if (kobj) {
 9837				kobject_del(kobj);
 9838				kobject_put(kobj);
 9839			}
 9840		}
 9841		kobject_del(&space_info->kobj);
 9842		kobject_put(&space_info->kobj);
 9843	}
 9844	return 0;
 9845}
 9846
 9847static void __link_block_group(struct btrfs_space_info *space_info,
 9848			       struct btrfs_block_group_cache *cache)
 9849{
 9850	int index = get_block_group_index(cache);
 9851	bool first = false;
 9852
 9853	down_write(&space_info->groups_sem);
 9854	if (list_empty(&space_info->block_groups[index]))
 9855		first = true;
 9856	list_add_tail(&cache->list, &space_info->block_groups[index]);
 9857	up_write(&space_info->groups_sem);
 9858
 9859	if (first) {
 9860		struct raid_kobject *rkobj;
 9861		int ret;
 9862
 9863		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
 9864		if (!rkobj)
 9865			goto out_err;
 9866		rkobj->raid_type = index;
 9867		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
 9868		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
 9869				  "%s", get_raid_name(index));
 9870		if (ret) {
 9871			kobject_put(&rkobj->kobj);
 9872			goto out_err;
 9873		}
 9874		space_info->block_group_kobjs[index] = &rkobj->kobj;
 9875	}
 9876
 9877	return;
 9878out_err:
 9879	btrfs_warn(cache->fs_info,
 9880		   "failed to add kobject for block cache, ignoring");
 9881}
 9882
 9883static struct btrfs_block_group_cache *
 9884btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
 9885			       u64 start, u64 size)
 9886{
 9887	struct btrfs_block_group_cache *cache;
 9888
 9889	cache = kzalloc(sizeof(*cache), GFP_NOFS);
 9890	if (!cache)
 9891		return NULL;
 9892
 9893	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
 9894					GFP_NOFS);
 9895	if (!cache->free_space_ctl) {
 9896		kfree(cache);
 9897		return NULL;
 9898	}
 9899
 9900	cache->key.objectid = start;
 9901	cache->key.offset = size;
 9902	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9903
 9904	cache->sectorsize = fs_info->sectorsize;
 9905	cache->fs_info = fs_info;
 9906	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
 9907						       &fs_info->mapping_tree,
 9908						       start);
 9909	set_free_space_tree_thresholds(cache);
 9910
 9911	atomic_set(&cache->count, 1);
 9912	spin_lock_init(&cache->lock);
 9913	init_rwsem(&cache->data_rwsem);
 9914	INIT_LIST_HEAD(&cache->list);
 9915	INIT_LIST_HEAD(&cache->cluster_list);
 9916	INIT_LIST_HEAD(&cache->bg_list);
 9917	INIT_LIST_HEAD(&cache->ro_list);
 9918	INIT_LIST_HEAD(&cache->dirty_list);
 9919	INIT_LIST_HEAD(&cache->io_list);
 9920	btrfs_init_free_space_ctl(cache);
 9921	atomic_set(&cache->trimming, 0);
 9922	mutex_init(&cache->free_space_lock);
 9923
 9924	return cache;
 9925}
 9926
 9927int btrfs_read_block_groups(struct btrfs_fs_info *info)
 9928{
 9929	struct btrfs_path *path;
 9930	int ret;
 9931	struct btrfs_block_group_cache *cache;
 9932	struct btrfs_space_info *space_info;
 9933	struct btrfs_key key;
 9934	struct btrfs_key found_key;
 9935	struct extent_buffer *leaf;
 9936	int need_clear = 0;
 9937	u64 cache_gen;
 9938	u64 feature;
 9939	int mixed;
 9940
 9941	feature = btrfs_super_incompat_flags(info->super_copy);
 9942	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
 9943
 9944	key.objectid = 0;
 9945	key.offset = 0;
 9946	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
 9947	path = btrfs_alloc_path();
 9948	if (!path)
 9949		return -ENOMEM;
 9950	path->reada = READA_FORWARD;
 9951
 9952	cache_gen = btrfs_super_cache_generation(info->super_copy);
 9953	if (btrfs_test_opt(info, SPACE_CACHE) &&
 9954	    btrfs_super_generation(info->super_copy) != cache_gen)
 9955		need_clear = 1;
 9956	if (btrfs_test_opt(info, CLEAR_CACHE))
 9957		need_clear = 1;
 9958
 9959	while (1) {
 9960		ret = find_first_block_group(info, path, &key);
 9961		if (ret > 0)
 9962			break;
 9963		if (ret != 0)
 9964			goto error;
 9965
 9966		leaf = path->nodes[0];
 9967		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 9968
 9969		cache = btrfs_create_block_group_cache(info, found_key.objectid,
 9970						       found_key.offset);
 9971		if (!cache) {
 9972			ret = -ENOMEM;
 9973			goto error;
 9974		}
 9975
 9976		if (need_clear) {
 9977			/*
 9978			 * When we mount with old space cache, we need to
 9979			 * set BTRFS_DC_CLEAR and set dirty flag.
 9980			 *
 9981			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
 9982			 *    truncate the old free space cache inode and
 9983			 *    setup a new one.
 9984			 * b) Setting 'dirty flag' makes sure that we flush
 9985			 *    the new space cache info onto disk.
 9986			 */
 9987			if (btrfs_test_opt(info, SPACE_CACHE))
 9988				cache->disk_cache_state = BTRFS_DC_CLEAR;
 9989		}
 9990
 9991		read_extent_buffer(leaf, &cache->item,
 9992				   btrfs_item_ptr_offset(leaf, path->slots[0]),
 9993				   sizeof(cache->item));
 9994		cache->flags = btrfs_block_group_flags(&cache->item);
 9995		if (!mixed &&
 9996		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
 9997		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
 9998			btrfs_err(info,
 9999"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10000				  cache->key.objectid);
10001			ret = -EINVAL;
10002			goto error;
10003		}
10004
10005		key.objectid = found_key.objectid + found_key.offset;
10006		btrfs_release_path(path);
10007
10008		/*
10009		 * We need to exclude the super stripes now so that the space
10010		 * info has super bytes accounted for, otherwise we'll think
10011		 * we have more space than we actually do.
10012		 */
10013		ret = exclude_super_stripes(info, cache);
10014		if (ret) {
10015			/*
10016			 * We may have excluded something, so call this just in
10017			 * case.
10018			 */
10019			free_excluded_extents(info, cache);
10020			btrfs_put_block_group(cache);
10021			goto error;
10022		}
10023
10024		/*
10025		 * check for two cases, either we are full, and therefore
10026		 * don't need to bother with the caching work since we won't
10027		 * find any space, or we are empty, and we can just add all
10028		 * the space in and be done with it.  This saves us _alot_ of
10029		 * time, particularly in the full case.
10030		 */
10031		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10032			cache->last_byte_to_unpin = (u64)-1;
10033			cache->cached = BTRFS_CACHE_FINISHED;
10034			free_excluded_extents(info, cache);
10035		} else if (btrfs_block_group_used(&cache->item) == 0) {
10036			cache->last_byte_to_unpin = (u64)-1;
10037			cache->cached = BTRFS_CACHE_FINISHED;
10038			add_new_free_space(cache, info,
10039					   found_key.objectid,
10040					   found_key.objectid +
10041					   found_key.offset);
10042			free_excluded_extents(info, cache);
10043		}
10044
10045		ret = btrfs_add_block_group_cache(info, cache);
10046		if (ret) {
10047			btrfs_remove_free_space_cache(cache);
10048			btrfs_put_block_group(cache);
10049			goto error;
10050		}
10051
10052		trace_btrfs_add_block_group(info, cache, 0);
10053		ret = update_space_info(info, cache->flags, found_key.offset,
10054					btrfs_block_group_used(&cache->item),
10055					cache->bytes_super, &space_info);
10056		if (ret) {
10057			btrfs_remove_free_space_cache(cache);
10058			spin_lock(&info->block_group_cache_lock);
10059			rb_erase(&cache->cache_node,
10060				 &info->block_group_cache_tree);
10061			RB_CLEAR_NODE(&cache->cache_node);
10062			spin_unlock(&info->block_group_cache_lock);
10063			btrfs_put_block_group(cache);
10064			goto error;
10065		}
10066
10067		cache->space_info = space_info;
10068
10069		__link_block_group(space_info, cache);
10070
10071		set_avail_alloc_bits(info, cache->flags);
10072		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10073			inc_block_group_ro(cache, 1);
10074		} else if (btrfs_block_group_used(&cache->item) == 0) {
10075			spin_lock(&info->unused_bgs_lock);
10076			/* Should always be true but just in case. */
10077			if (list_empty(&cache->bg_list)) {
10078				btrfs_get_block_group(cache);
10079				list_add_tail(&cache->bg_list,
10080					      &info->unused_bgs);
10081			}
10082			spin_unlock(&info->unused_bgs_lock);
10083		}
10084	}
10085
10086	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10087		if (!(get_alloc_profile(info, space_info->flags) &
10088		      (BTRFS_BLOCK_GROUP_RAID10 |
10089		       BTRFS_BLOCK_GROUP_RAID1 |
10090		       BTRFS_BLOCK_GROUP_RAID5 |
10091		       BTRFS_BLOCK_GROUP_RAID6 |
10092		       BTRFS_BLOCK_GROUP_DUP)))
10093			continue;
10094		/*
10095		 * avoid allocating from un-mirrored block group if there are
10096		 * mirrored block groups.
10097		 */
10098		list_for_each_entry(cache,
10099				&space_info->block_groups[BTRFS_RAID_RAID0],
10100				list)
10101			inc_block_group_ro(cache, 1);
10102		list_for_each_entry(cache,
10103				&space_info->block_groups[BTRFS_RAID_SINGLE],
10104				list)
10105			inc_block_group_ro(cache, 1);
10106	}
10107
10108	init_global_block_rsv(info);
10109	ret = 0;
10110error:
10111	btrfs_free_path(path);
10112	return ret;
10113}
10114
10115void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10116				       struct btrfs_fs_info *fs_info)
10117{
10118	struct btrfs_block_group_cache *block_group, *tmp;
10119	struct btrfs_root *extent_root = fs_info->extent_root;
10120	struct btrfs_block_group_item item;
10121	struct btrfs_key key;
10122	int ret = 0;
10123	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10124
10125	trans->can_flush_pending_bgs = false;
10126	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10127		if (ret)
10128			goto next;
10129
10130		spin_lock(&block_group->lock);
10131		memcpy(&item, &block_group->item, sizeof(item));
10132		memcpy(&key, &block_group->key, sizeof(key));
10133		spin_unlock(&block_group->lock);
10134
10135		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10136					sizeof(item));
10137		if (ret)
10138			btrfs_abort_transaction(trans, ret);
10139		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10140					       key.offset);
10141		if (ret)
10142			btrfs_abort_transaction(trans, ret);
10143		add_block_group_free_space(trans, fs_info, block_group);
10144		/* already aborted the transaction if it failed. */
10145next:
10146		list_del_init(&block_group->bg_list);
10147	}
10148	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10149}
10150
10151int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10152			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10153			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10154			   u64 size)
10155{
10156	struct btrfs_block_group_cache *cache;
10157	int ret;
10158
10159	btrfs_set_log_full_commit(fs_info, trans);
10160
10161	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10162	if (!cache)
10163		return -ENOMEM;
10164
10165	btrfs_set_block_group_used(&cache->item, bytes_used);
10166	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10167	btrfs_set_block_group_flags(&cache->item, type);
10168
10169	cache->flags = type;
10170	cache->last_byte_to_unpin = (u64)-1;
10171	cache->cached = BTRFS_CACHE_FINISHED;
10172	cache->needs_free_space = 1;
10173	ret = exclude_super_stripes(fs_info, cache);
10174	if (ret) {
10175		/*
10176		 * We may have excluded something, so call this just in
10177		 * case.
10178		 */
10179		free_excluded_extents(fs_info, cache);
10180		btrfs_put_block_group(cache);
10181		return ret;
10182	}
10183
10184	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10185
10186	free_excluded_extents(fs_info, cache);
10187
10188#ifdef CONFIG_BTRFS_DEBUG
10189	if (btrfs_should_fragment_free_space(cache)) {
10190		u64 new_bytes_used = size - bytes_used;
10191
10192		bytes_used += new_bytes_used >> 1;
10193		fragment_free_space(cache);
10194	}
10195#endif
10196	/*
10197	 * Call to ensure the corresponding space_info object is created and
10198	 * assigned to our block group, but don't update its counters just yet.
10199	 * We want our bg to be added to the rbtree with its ->space_info set.
10200	 */
10201	ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10202				&cache->space_info);
10203	if (ret) {
10204		btrfs_remove_free_space_cache(cache);
10205		btrfs_put_block_group(cache);
10206		return ret;
10207	}
10208
10209	ret = btrfs_add_block_group_cache(fs_info, cache);
10210	if (ret) {
10211		btrfs_remove_free_space_cache(cache);
10212		btrfs_put_block_group(cache);
10213		return ret;
10214	}
10215
10216	/*
10217	 * Now that our block group has its ->space_info set and is inserted in
10218	 * the rbtree, update the space info's counters.
10219	 */
10220	trace_btrfs_add_block_group(fs_info, cache, 1);
10221	ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10222				cache->bytes_super, &cache->space_info);
10223	if (ret) {
10224		btrfs_remove_free_space_cache(cache);
10225		spin_lock(&fs_info->block_group_cache_lock);
10226		rb_erase(&cache->cache_node,
10227			 &fs_info->block_group_cache_tree);
10228		RB_CLEAR_NODE(&cache->cache_node);
10229		spin_unlock(&fs_info->block_group_cache_lock);
10230		btrfs_put_block_group(cache);
10231		return ret;
10232	}
10233	update_global_block_rsv(fs_info);
10234
10235	__link_block_group(cache->space_info, cache);
10236
10237	list_add_tail(&cache->bg_list, &trans->new_bgs);
10238
10239	set_avail_alloc_bits(fs_info, type);
10240	return 0;
10241}
10242
10243static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10244{
10245	u64 extra_flags = chunk_to_extended(flags) &
10246				BTRFS_EXTENDED_PROFILE_MASK;
10247
10248	write_seqlock(&fs_info->profiles_lock);
10249	if (flags & BTRFS_BLOCK_GROUP_DATA)
10250		fs_info->avail_data_alloc_bits &= ~extra_flags;
10251	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10252		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10253	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10254		fs_info->avail_system_alloc_bits &= ~extra_flags;
10255	write_sequnlock(&fs_info->profiles_lock);
10256}
10257
10258int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10259			     struct btrfs_fs_info *fs_info, u64 group_start,
10260			     struct extent_map *em)
10261{
10262	struct btrfs_root *root = fs_info->extent_root;
10263	struct btrfs_path *path;
10264	struct btrfs_block_group_cache *block_group;
10265	struct btrfs_free_cluster *cluster;
10266	struct btrfs_root *tree_root = fs_info->tree_root;
10267	struct btrfs_key key;
10268	struct inode *inode;
10269	struct kobject *kobj = NULL;
10270	int ret;
10271	int index;
10272	int factor;
10273	struct btrfs_caching_control *caching_ctl = NULL;
10274	bool remove_em;
10275
10276	block_group = btrfs_lookup_block_group(fs_info, group_start);
10277	BUG_ON(!block_group);
10278	BUG_ON(!block_group->ro);
10279
10280	/*
10281	 * Free the reserved super bytes from this block group before
10282	 * remove it.
10283	 */
10284	free_excluded_extents(fs_info, block_group);
10285
10286	memcpy(&key, &block_group->key, sizeof(key));
10287	index = get_block_group_index(block_group);
10288	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10289				  BTRFS_BLOCK_GROUP_RAID1 |
10290				  BTRFS_BLOCK_GROUP_RAID10))
10291		factor = 2;
10292	else
10293		factor = 1;
10294
10295	/* make sure this block group isn't part of an allocation cluster */
10296	cluster = &fs_info->data_alloc_cluster;
10297	spin_lock(&cluster->refill_lock);
10298	btrfs_return_cluster_to_free_space(block_group, cluster);
10299	spin_unlock(&cluster->refill_lock);
10300
10301	/*
10302	 * make sure this block group isn't part of a metadata
10303	 * allocation cluster
10304	 */
10305	cluster = &fs_info->meta_alloc_cluster;
10306	spin_lock(&cluster->refill_lock);
10307	btrfs_return_cluster_to_free_space(block_group, cluster);
10308	spin_unlock(&cluster->refill_lock);
10309
10310	path = btrfs_alloc_path();
10311	if (!path) {
10312		ret = -ENOMEM;
10313		goto out;
10314	}
10315
10316	/*
10317	 * get the inode first so any iput calls done for the io_list
10318	 * aren't the final iput (no unlinks allowed now)
10319	 */
10320	inode = lookup_free_space_inode(tree_root, block_group, path);
10321
10322	mutex_lock(&trans->transaction->cache_write_mutex);
10323	/*
10324	 * make sure our free spache cache IO is done before remove the
10325	 * free space inode
10326	 */
10327	spin_lock(&trans->transaction->dirty_bgs_lock);
10328	if (!list_empty(&block_group->io_list)) {
10329		list_del_init(&block_group->io_list);
10330
10331		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10332
10333		spin_unlock(&trans->transaction->dirty_bgs_lock);
10334		btrfs_wait_cache_io(trans, block_group, path);
10335		btrfs_put_block_group(block_group);
10336		spin_lock(&trans->transaction->dirty_bgs_lock);
10337	}
10338
10339	if (!list_empty(&block_group->dirty_list)) {
10340		list_del_init(&block_group->dirty_list);
10341		btrfs_put_block_group(block_group);
10342	}
10343	spin_unlock(&trans->transaction->dirty_bgs_lock);
10344	mutex_unlock(&trans->transaction->cache_write_mutex);
10345
10346	if (!IS_ERR(inode)) {
10347		ret = btrfs_orphan_add(trans, inode);
10348		if (ret) {
10349			btrfs_add_delayed_iput(inode);
10350			goto out;
10351		}
10352		clear_nlink(inode);
10353		/* One for the block groups ref */
10354		spin_lock(&block_group->lock);
10355		if (block_group->iref) {
10356			block_group->iref = 0;
10357			block_group->inode = NULL;
10358			spin_unlock(&block_group->lock);
10359			iput(inode);
10360		} else {
10361			spin_unlock(&block_group->lock);
10362		}
10363		/* One for our lookup ref */
10364		btrfs_add_delayed_iput(inode);
10365	}
10366
10367	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10368	key.offset = block_group->key.objectid;
10369	key.type = 0;
10370
10371	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10372	if (ret < 0)
10373		goto out;
10374	if (ret > 0)
10375		btrfs_release_path(path);
10376	if (ret == 0) {
10377		ret = btrfs_del_item(trans, tree_root, path);
10378		if (ret)
10379			goto out;
10380		btrfs_release_path(path);
10381	}
10382
10383	spin_lock(&fs_info->block_group_cache_lock);
10384	rb_erase(&block_group->cache_node,
10385		 &fs_info->block_group_cache_tree);
10386	RB_CLEAR_NODE(&block_group->cache_node);
10387
10388	if (fs_info->first_logical_byte == block_group->key.objectid)
10389		fs_info->first_logical_byte = (u64)-1;
10390	spin_unlock(&fs_info->block_group_cache_lock);
10391
10392	down_write(&block_group->space_info->groups_sem);
10393	/*
10394	 * we must use list_del_init so people can check to see if they
10395	 * are still on the list after taking the semaphore
10396	 */
10397	list_del_init(&block_group->list);
10398	if (list_empty(&block_group->space_info->block_groups[index])) {
10399		kobj = block_group->space_info->block_group_kobjs[index];
10400		block_group->space_info->block_group_kobjs[index] = NULL;
10401		clear_avail_alloc_bits(fs_info, block_group->flags);
10402	}
10403	up_write(&block_group->space_info->groups_sem);
10404	if (kobj) {
10405		kobject_del(kobj);
10406		kobject_put(kobj);
10407	}
10408
10409	if (block_group->has_caching_ctl)
10410		caching_ctl = get_caching_control(block_group);
10411	if (block_group->cached == BTRFS_CACHE_STARTED)
10412		wait_block_group_cache_done(block_group);
10413	if (block_group->has_caching_ctl) {
10414		down_write(&fs_info->commit_root_sem);
10415		if (!caching_ctl) {
10416			struct btrfs_caching_control *ctl;
10417
10418			list_for_each_entry(ctl,
10419				    &fs_info->caching_block_groups, list)
10420				if (ctl->block_group == block_group) {
10421					caching_ctl = ctl;
10422					atomic_inc(&caching_ctl->count);
10423					break;
10424				}
10425		}
10426		if (caching_ctl)
10427			list_del_init(&caching_ctl->list);
10428		up_write(&fs_info->commit_root_sem);
10429		if (caching_ctl) {
10430			/* Once for the caching bgs list and once for us. */
10431			put_caching_control(caching_ctl);
10432			put_caching_control(caching_ctl);
10433		}
10434	}
10435
10436	spin_lock(&trans->transaction->dirty_bgs_lock);
10437	if (!list_empty(&block_group->dirty_list)) {
10438		WARN_ON(1);
10439	}
10440	if (!list_empty(&block_group->io_list)) {
10441		WARN_ON(1);
10442	}
10443	spin_unlock(&trans->transaction->dirty_bgs_lock);
10444	btrfs_remove_free_space_cache(block_group);
10445
10446	spin_lock(&block_group->space_info->lock);
10447	list_del_init(&block_group->ro_list);
10448
10449	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10450		WARN_ON(block_group->space_info->total_bytes
10451			< block_group->key.offset);
10452		WARN_ON(block_group->space_info->bytes_readonly
10453			< block_group->key.offset);
10454		WARN_ON(block_group->space_info->disk_total
10455			< block_group->key.offset * factor);
10456	}
10457	block_group->space_info->total_bytes -= block_group->key.offset;
10458	block_group->space_info->bytes_readonly -= block_group->key.offset;
10459	block_group->space_info->disk_total -= block_group->key.offset * factor;
10460
10461	spin_unlock(&block_group->space_info->lock);
10462
10463	memcpy(&key, &block_group->key, sizeof(key));
10464
10465	mutex_lock(&fs_info->chunk_mutex);
10466	if (!list_empty(&em->list)) {
10467		/* We're in the transaction->pending_chunks list. */
10468		free_extent_map(em);
10469	}
10470	spin_lock(&block_group->lock);
10471	block_group->removed = 1;
10472	/*
10473	 * At this point trimming can't start on this block group, because we
10474	 * removed the block group from the tree fs_info->block_group_cache_tree
10475	 * so no one can't find it anymore and even if someone already got this
10476	 * block group before we removed it from the rbtree, they have already
10477	 * incremented block_group->trimming - if they didn't, they won't find
10478	 * any free space entries because we already removed them all when we
10479	 * called btrfs_remove_free_space_cache().
10480	 *
10481	 * And we must not remove the extent map from the fs_info->mapping_tree
10482	 * to prevent the same logical address range and physical device space
10483	 * ranges from being reused for a new block group. This is because our
10484	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10485	 * completely transactionless, so while it is trimming a range the
10486	 * currently running transaction might finish and a new one start,
10487	 * allowing for new block groups to be created that can reuse the same
10488	 * physical device locations unless we take this special care.
10489	 *
10490	 * There may also be an implicit trim operation if the file system
10491	 * is mounted with -odiscard. The same protections must remain
10492	 * in place until the extents have been discarded completely when
10493	 * the transaction commit has completed.
10494	 */
10495	remove_em = (atomic_read(&block_group->trimming) == 0);
10496	/*
10497	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10498	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10499	 * before checking block_group->removed).
10500	 */
10501	if (!remove_em) {
10502		/*
10503		 * Our em might be in trans->transaction->pending_chunks which
10504		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10505		 * and so is the fs_info->pinned_chunks list.
10506		 *
10507		 * So at this point we must be holding the chunk_mutex to avoid
10508		 * any races with chunk allocation (more specifically at
10509		 * volumes.c:contains_pending_extent()), to ensure it always
10510		 * sees the em, either in the pending_chunks list or in the
10511		 * pinned_chunks list.
10512		 */
10513		list_move_tail(&em->list, &fs_info->pinned_chunks);
10514	}
10515	spin_unlock(&block_group->lock);
10516
10517	if (remove_em) {
10518		struct extent_map_tree *em_tree;
10519
10520		em_tree = &fs_info->mapping_tree.map_tree;
10521		write_lock(&em_tree->lock);
10522		/*
10523		 * The em might be in the pending_chunks list, so make sure the
10524		 * chunk mutex is locked, since remove_extent_mapping() will
10525		 * delete us from that list.
10526		 */
10527		remove_extent_mapping(em_tree, em);
10528		write_unlock(&em_tree->lock);
10529		/* once for the tree */
10530		free_extent_map(em);
10531	}
10532
10533	mutex_unlock(&fs_info->chunk_mutex);
10534
10535	ret = remove_block_group_free_space(trans, fs_info, block_group);
10536	if (ret)
10537		goto out;
10538
10539	btrfs_put_block_group(block_group);
10540	btrfs_put_block_group(block_group);
10541
10542	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10543	if (ret > 0)
10544		ret = -EIO;
10545	if (ret < 0)
10546		goto out;
10547
10548	ret = btrfs_del_item(trans, root, path);
10549out:
10550	btrfs_free_path(path);
10551	return ret;
10552}
10553
10554struct btrfs_trans_handle *
10555btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10556				     const u64 chunk_offset)
10557{
10558	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10559	struct extent_map *em;
10560	struct map_lookup *map;
10561	unsigned int num_items;
10562
10563	read_lock(&em_tree->lock);
10564	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10565	read_unlock(&em_tree->lock);
10566	ASSERT(em && em->start == chunk_offset);
10567
10568	/*
10569	 * We need to reserve 3 + N units from the metadata space info in order
10570	 * to remove a block group (done at btrfs_remove_chunk() and at
10571	 * btrfs_remove_block_group()), which are used for:
10572	 *
10573	 * 1 unit for adding the free space inode's orphan (located in the tree
10574	 * of tree roots).
10575	 * 1 unit for deleting the block group item (located in the extent
10576	 * tree).
10577	 * 1 unit for deleting the free space item (located in tree of tree
10578	 * roots).
10579	 * N units for deleting N device extent items corresponding to each
10580	 * stripe (located in the device tree).
10581	 *
10582	 * In order to remove a block group we also need to reserve units in the
10583	 * system space info in order to update the chunk tree (update one or
10584	 * more device items and remove one chunk item), but this is done at
10585	 * btrfs_remove_chunk() through a call to check_system_chunk().
10586	 */
10587	map = em->map_lookup;
10588	num_items = 3 + map->num_stripes;
10589	free_extent_map(em);
10590
10591	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10592							   num_items, 1);
10593}
10594
10595/*
10596 * Process the unused_bgs list and remove any that don't have any allocated
10597 * space inside of them.
10598 */
10599void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10600{
10601	struct btrfs_block_group_cache *block_group;
10602	struct btrfs_space_info *space_info;
10603	struct btrfs_trans_handle *trans;
10604	int ret = 0;
10605
10606	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10607		return;
10608
10609	spin_lock(&fs_info->unused_bgs_lock);
10610	while (!list_empty(&fs_info->unused_bgs)) {
10611		u64 start, end;
10612		int trimming;
10613
10614		block_group = list_first_entry(&fs_info->unused_bgs,
10615					       struct btrfs_block_group_cache,
10616					       bg_list);
10617		list_del_init(&block_group->bg_list);
10618
10619		space_info = block_group->space_info;
10620
10621		if (ret || btrfs_mixed_space_info(space_info)) {
10622			btrfs_put_block_group(block_group);
10623			continue;
10624		}
10625		spin_unlock(&fs_info->unused_bgs_lock);
10626
10627		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10628
10629		/* Don't want to race with allocators so take the groups_sem */
10630		down_write(&space_info->groups_sem);
10631		spin_lock(&block_group->lock);
10632		if (block_group->reserved ||
10633		    btrfs_block_group_used(&block_group->item) ||
10634		    block_group->ro ||
10635		    list_is_singular(&block_group->list)) {
10636			/*
10637			 * We want to bail if we made new allocations or have
10638			 * outstanding allocations in this block group.  We do
10639			 * the ro check in case balance is currently acting on
10640			 * this block group.
10641			 */
10642			spin_unlock(&block_group->lock);
10643			up_write(&space_info->groups_sem);
10644			goto next;
10645		}
10646		spin_unlock(&block_group->lock);
10647
10648		/* We don't want to force the issue, only flip if it's ok. */
10649		ret = inc_block_group_ro(block_group, 0);
10650		up_write(&space_info->groups_sem);
10651		if (ret < 0) {
10652			ret = 0;
10653			goto next;
10654		}
10655
10656		/*
10657		 * Want to do this before we do anything else so we can recover
10658		 * properly if we fail to join the transaction.
10659		 */
10660		trans = btrfs_start_trans_remove_block_group(fs_info,
10661						     block_group->key.objectid);
10662		if (IS_ERR(trans)) {
10663			btrfs_dec_block_group_ro(block_group);
10664			ret = PTR_ERR(trans);
10665			goto next;
10666		}
10667
10668		/*
10669		 * We could have pending pinned extents for this block group,
10670		 * just delete them, we don't care about them anymore.
10671		 */
10672		start = block_group->key.objectid;
10673		end = start + block_group->key.offset - 1;
10674		/*
10675		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10676		 * btrfs_finish_extent_commit(). If we are at transaction N,
10677		 * another task might be running finish_extent_commit() for the
10678		 * previous transaction N - 1, and have seen a range belonging
10679		 * to the block group in freed_extents[] before we were able to
10680		 * clear the whole block group range from freed_extents[]. This
10681		 * means that task can lookup for the block group after we
10682		 * unpinned it from freed_extents[] and removed it, leading to
10683		 * a BUG_ON() at btrfs_unpin_extent_range().
10684		 */
10685		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10686		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10687				  EXTENT_DIRTY);
10688		if (ret) {
10689			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10690			btrfs_dec_block_group_ro(block_group);
10691			goto end_trans;
10692		}
10693		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10694				  EXTENT_DIRTY);
10695		if (ret) {
10696			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10697			btrfs_dec_block_group_ro(block_group);
10698			goto end_trans;
10699		}
10700		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10701
10702		/* Reset pinned so btrfs_put_block_group doesn't complain */
10703		spin_lock(&space_info->lock);
10704		spin_lock(&block_group->lock);
10705
10706		space_info->bytes_pinned -= block_group->pinned;
10707		space_info->bytes_readonly += block_group->pinned;
10708		percpu_counter_add(&space_info->total_bytes_pinned,
10709				   -block_group->pinned);
10710		block_group->pinned = 0;
10711
10712		spin_unlock(&block_group->lock);
10713		spin_unlock(&space_info->lock);
10714
10715		/* DISCARD can flip during remount */
10716		trimming = btrfs_test_opt(fs_info, DISCARD);
10717
10718		/* Implicit trim during transaction commit. */
10719		if (trimming)
10720			btrfs_get_block_group_trimming(block_group);
10721
10722		/*
10723		 * Btrfs_remove_chunk will abort the transaction if things go
10724		 * horribly wrong.
10725		 */
10726		ret = btrfs_remove_chunk(trans, fs_info,
10727					 block_group->key.objectid);
10728
10729		if (ret) {
10730			if (trimming)
10731				btrfs_put_block_group_trimming(block_group);
10732			goto end_trans;
10733		}
10734
10735		/*
10736		 * If we're not mounted with -odiscard, we can just forget
10737		 * about this block group. Otherwise we'll need to wait
10738		 * until transaction commit to do the actual discard.
10739		 */
10740		if (trimming) {
10741			spin_lock(&fs_info->unused_bgs_lock);
10742			/*
10743			 * A concurrent scrub might have added us to the list
10744			 * fs_info->unused_bgs, so use a list_move operation
10745			 * to add the block group to the deleted_bgs list.
10746			 */
10747			list_move(&block_group->bg_list,
10748				  &trans->transaction->deleted_bgs);
10749			spin_unlock(&fs_info->unused_bgs_lock);
10750			btrfs_get_block_group(block_group);
10751		}
10752end_trans:
10753		btrfs_end_transaction(trans);
10754next:
10755		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10756		btrfs_put_block_group(block_group);
10757		spin_lock(&fs_info->unused_bgs_lock);
10758	}
10759	spin_unlock(&fs_info->unused_bgs_lock);
10760}
10761
10762int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10763{
10764	struct btrfs_space_info *space_info;
10765	struct btrfs_super_block *disk_super;
10766	u64 features;
10767	u64 flags;
10768	int mixed = 0;
10769	int ret;
10770
10771	disk_super = fs_info->super_copy;
10772	if (!btrfs_super_root(disk_super))
10773		return -EINVAL;
10774
10775	features = btrfs_super_incompat_flags(disk_super);
10776	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10777		mixed = 1;
10778
10779	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10780	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10781	if (ret)
10782		goto out;
10783
10784	if (mixed) {
10785		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10786		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787	} else {
10788		flags = BTRFS_BLOCK_GROUP_METADATA;
10789		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10790		if (ret)
10791			goto out;
10792
10793		flags = BTRFS_BLOCK_GROUP_DATA;
10794		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10795	}
10796out:
10797	return ret;
10798}
10799
10800int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10801				   u64 start, u64 end)
10802{
10803	return unpin_extent_range(fs_info, start, end, false);
10804}
10805
10806/*
10807 * It used to be that old block groups would be left around forever.
10808 * Iterating over them would be enough to trim unused space.  Since we
10809 * now automatically remove them, we also need to iterate over unallocated
10810 * space.
10811 *
10812 * We don't want a transaction for this since the discard may take a
10813 * substantial amount of time.  We don't require that a transaction be
10814 * running, but we do need to take a running transaction into account
10815 * to ensure that we're not discarding chunks that were released in
10816 * the current transaction.
10817 *
10818 * Holding the chunks lock will prevent other threads from allocating
10819 * or releasing chunks, but it won't prevent a running transaction
10820 * from committing and releasing the memory that the pending chunks
10821 * list head uses.  For that, we need to take a reference to the
10822 * transaction.
 
 
10823 */
10824static int btrfs_trim_free_extents(struct btrfs_device *device,
10825				   u64 minlen, u64 *trimmed)
10826{
10827	u64 start = 0, len = 0;
10828	int ret;
10829
10830	*trimmed = 0;
10831
10832	/* Not writeable = nothing to do. */
10833	if (!device->writeable)
 
 
 
 
10834		return 0;
10835
10836	/* No free space = nothing to do. */
10837	if (device->total_bytes <= device->bytes_used)
10838		return 0;
10839
10840	ret = 0;
10841
10842	while (1) {
10843		struct btrfs_fs_info *fs_info = device->fs_info;
10844		struct btrfs_transaction *trans;
10845		u64 bytes;
10846
10847		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10848		if (ret)
10849			return ret;
10850
10851		down_read(&fs_info->commit_root_sem);
 
 
10852
10853		spin_lock(&fs_info->trans_lock);
10854		trans = fs_info->running_transaction;
10855		if (trans)
10856			atomic_inc(&trans->use_count);
10857		spin_unlock(&fs_info->trans_lock);
10858
10859		ret = find_free_dev_extent_start(trans, device, minlen, start,
10860						 &start, &len);
10861		if (trans)
10862			btrfs_put_transaction(trans);
10863
10864		if (ret) {
10865			up_read(&fs_info->commit_root_sem);
 
 
 
 
 
 
 
 
 
10866			mutex_unlock(&fs_info->chunk_mutex);
10867			if (ret == -ENOSPC)
10868				ret = 0;
10869			break;
10870		}
10871
10872		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10873		up_read(&fs_info->commit_root_sem);
 
 
 
 
10874		mutex_unlock(&fs_info->chunk_mutex);
10875
10876		if (ret)
10877			break;
10878
10879		start += len;
10880		*trimmed += bytes;
10881
10882		if (fatal_signal_pending(current)) {
10883			ret = -ERESTARTSYS;
10884			break;
10885		}
10886
10887		cond_resched();
10888	}
10889
10890	return ret;
10891}
10892
 
 
 
 
 
 
 
 
 
10893int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10894{
10895	struct btrfs_block_group_cache *cache = NULL;
10896	struct btrfs_device *device;
10897	struct list_head *devices;
10898	u64 group_trimmed;
 
10899	u64 start;
10900	u64 end;
10901	u64 trimmed = 0;
10902	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
 
 
 
10903	int ret = 0;
10904
10905	/*
10906	 * try to trim all FS space, our block group may start from non-zero.
 
10907	 */
10908	if (range->len == total_bytes)
10909		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10910	else
10911		cache = btrfs_lookup_block_group(fs_info, range->start);
10912
10913	while (cache) {
10914		if (cache->key.objectid >= (range->start + range->len)) {
 
10915			btrfs_put_block_group(cache);
10916			break;
10917		}
10918
10919		start = max(range->start, cache->key.objectid);
10920		end = min(range->start + range->len,
10921				cache->key.objectid + cache->key.offset);
10922
10923		if (end - start >= range->minlen) {
10924			if (!block_group_cache_done(cache)) {
10925				ret = cache_block_group(cache, 0);
10926				if (ret) {
10927					btrfs_put_block_group(cache);
10928					break;
 
10929				}
10930				ret = wait_block_group_cache_done(cache);
10931				if (ret) {
10932					btrfs_put_block_group(cache);
10933					break;
 
10934				}
10935			}
10936			ret = btrfs_trim_block_group(cache,
10937						     &group_trimmed,
10938						     start,
10939						     end,
10940						     range->minlen);
10941
10942			trimmed += group_trimmed;
10943			if (ret) {
10944				btrfs_put_block_group(cache);
10945				break;
 
10946			}
10947		}
10948
10949		cache = next_block_group(fs_info, cache);
10950	}
10951
 
 
 
 
10952	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10953	devices = &fs_info->fs_devices->alloc_list;
10954	list_for_each_entry(device, devices, dev_alloc_list) {
10955		ret = btrfs_trim_free_extents(device, range->minlen,
10956					      &group_trimmed);
10957		if (ret)
 
10958			break;
 
10959
10960		trimmed += group_trimmed;
10961	}
10962	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10963
 
 
 
 
10964	range->len = trimmed;
10965	return ret;
 
 
10966}
10967
10968/*
10969 * btrfs_{start,end}_write_no_snapshoting() are similar to
10970 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10971 * data into the page cache through nocow before the subvolume is snapshoted,
10972 * but flush the data into disk after the snapshot creation, or to prevent
10973 * operations while snapshoting is ongoing and that cause the snapshot to be
10974 * inconsistent (writes followed by expanding truncates for example).
10975 */
10976void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10977{
10978	percpu_counter_dec(&root->subv_writers->counter);
10979	/*
10980	 * Make sure counter is updated before we wake up waiters.
10981	 */
10982	smp_mb();
10983	if (waitqueue_active(&root->subv_writers->wait))
10984		wake_up(&root->subv_writers->wait);
10985}
10986
10987int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10988{
10989	if (atomic_read(&root->will_be_snapshoted))
10990		return 0;
10991
10992	percpu_counter_inc(&root->subv_writers->counter);
10993	/*
10994	 * Make sure counter is updated before we check for snapshot creation.
10995	 */
10996	smp_mb();
10997	if (atomic_read(&root->will_be_snapshoted)) {
10998		btrfs_end_write_no_snapshoting(root);
10999		return 0;
11000	}
11001	return 1;
11002}
11003
11004static int wait_snapshoting_atomic_t(atomic_t *a)
11005{
11006	schedule();
11007	return 0;
11008}
11009
11010void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11011{
11012	while (true) {
11013		int ret;
11014
11015		ret = btrfs_start_write_no_snapshoting(root);
11016		if (ret)
11017			break;
11018		wait_on_atomic_t(&root->will_be_snapshoted,
11019				 wait_snapshoting_atomic_t,
11020				 TASK_UNINTERRUPTIBLE);
11021	}
11022}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/signal.h>
   8#include <linux/pagemap.h>
   9#include <linux/writeback.h>
  10#include <linux/blkdev.h>
  11#include <linux/sort.h>
  12#include <linux/rcupdate.h>
  13#include <linux/kthread.h>
  14#include <linux/slab.h>
  15#include <linux/ratelimit.h>
  16#include <linux/percpu_counter.h>
  17#include <linux/lockdep.h>
  18#include <linux/crc32c.h>
  19#include "misc.h"
  20#include "tree-log.h"
  21#include "disk-io.h"
  22#include "print-tree.h"
  23#include "volumes.h"
  24#include "raid56.h"
  25#include "locking.h"
  26#include "free-space-cache.h"
  27#include "free-space-tree.h"
 
  28#include "sysfs.h"
  29#include "qgroup.h"
  30#include "ref-verify.h"
  31#include "space-info.h"
  32#include "block-rsv.h"
  33#include "delalloc-space.h"
  34#include "block-group.h"
  35
  36#undef SCRAMBLE_DELAYED_REFS
  37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
 
 
 
  39static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  40			       struct btrfs_delayed_ref_node *node, u64 parent,
  41			       u64 root_objectid, u64 owner_objectid,
  42			       u64 owner_offset, int refs_to_drop,
  43			       struct btrfs_delayed_extent_op *extra_op);
 
  44static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  45				    struct extent_buffer *leaf,
  46				    struct btrfs_extent_item *ei);
  47static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
  48				      u64 parent, u64 root_objectid,
  49				      u64 flags, u64 owner, u64 offset,
  50				      struct btrfs_key *ins, int ref_mod);
  51static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  52				     struct btrfs_delayed_ref_node *node,
  53				     struct btrfs_delayed_extent_op *extent_op);
 
 
 
 
 
  54static int find_next_key(struct btrfs_path *path, int level,
  55			 struct btrfs_key *key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
  57static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  58{
  59	return (cache->flags & bits) == bits;
  60}
  61
  62int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
  63			      u64 start, u64 num_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64{
  65	u64 end = start + num_bytes - 1;
  66	set_extent_bits(&fs_info->freed_extents[0],
  67			start, end, EXTENT_UPTODATE);
  68	set_extent_bits(&fs_info->freed_extents[1],
  69			start, end, EXTENT_UPTODATE);
  70	return 0;
  71}
  72
  73void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache)
 
  74{
  75	struct btrfs_fs_info *fs_info = cache->fs_info;
  76	u64 start, end;
  77
  78	start = cache->key.objectid;
  79	end = start + cache->key.offset - 1;
  80
  81	clear_extent_bits(&fs_info->freed_extents[0],
  82			  start, end, EXTENT_UPTODATE);
  83	clear_extent_bits(&fs_info->freed_extents[1],
  84			  start, end, EXTENT_UPTODATE);
  85}
  86
  87static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
 
  88{
  89	if (ref->type == BTRFS_REF_METADATA) {
  90		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
  91			return BTRFS_BLOCK_GROUP_SYSTEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92		else
  93			return BTRFS_BLOCK_GROUP_METADATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94	}
  95	return BTRFS_BLOCK_GROUP_DATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
  99			     struct btrfs_ref *ref)
 100{
 101	struct btrfs_space_info *space_info;
 102	u64 flags = generic_ref_to_space_flags(ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104	space_info = btrfs_find_space_info(fs_info, flags);
 105	ASSERT(space_info);
 106	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
 107		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 
 
 
 
 
 108}
 109
 110static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
 111			     struct btrfs_ref *ref)
 
 
 
 112{
 113	struct btrfs_space_info *space_info;
 114	u64 flags = generic_ref_to_space_flags(ref);
 115
 116	space_info = btrfs_find_space_info(fs_info, flags);
 117	ASSERT(space_info);
 118	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
 119		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
 120}
 121
 122/* simple helper to search for an existing data extent at a given offset */
 123int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 124{
 125	int ret;
 126	struct btrfs_key key;
 127	struct btrfs_path *path;
 128
 129	path = btrfs_alloc_path();
 130	if (!path)
 131		return -ENOMEM;
 132
 133	key.objectid = start;
 134	key.offset = len;
 135	key.type = BTRFS_EXTENT_ITEM_KEY;
 136	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 137	btrfs_free_path(path);
 138	return ret;
 139}
 140
 141/*
 142 * helper function to lookup reference count and flags of a tree block.
 143 *
 144 * the head node for delayed ref is used to store the sum of all the
 145 * reference count modifications queued up in the rbtree. the head
 146 * node may also store the extent flags to set. This way you can check
 147 * to see what the reference count and extent flags would be if all of
 148 * the delayed refs are not processed.
 149 */
 150int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 151			     struct btrfs_fs_info *fs_info, u64 bytenr,
 152			     u64 offset, int metadata, u64 *refs, u64 *flags)
 153{
 154	struct btrfs_delayed_ref_head *head;
 155	struct btrfs_delayed_ref_root *delayed_refs;
 156	struct btrfs_path *path;
 157	struct btrfs_extent_item *ei;
 158	struct extent_buffer *leaf;
 159	struct btrfs_key key;
 160	u32 item_size;
 161	u64 num_refs;
 162	u64 extent_flags;
 163	int ret;
 164
 165	/*
 166	 * If we don't have skinny metadata, don't bother doing anything
 167	 * different
 168	 */
 169	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 170		offset = fs_info->nodesize;
 171		metadata = 0;
 172	}
 173
 174	path = btrfs_alloc_path();
 175	if (!path)
 176		return -ENOMEM;
 177
 178	if (!trans) {
 179		path->skip_locking = 1;
 180		path->search_commit_root = 1;
 181	}
 182
 183search_again:
 184	key.objectid = bytenr;
 185	key.offset = offset;
 186	if (metadata)
 187		key.type = BTRFS_METADATA_ITEM_KEY;
 188	else
 189		key.type = BTRFS_EXTENT_ITEM_KEY;
 190
 191	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 192	if (ret < 0)
 193		goto out_free;
 194
 195	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 196		if (path->slots[0]) {
 197			path->slots[0]--;
 198			btrfs_item_key_to_cpu(path->nodes[0], &key,
 199					      path->slots[0]);
 200			if (key.objectid == bytenr &&
 201			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 202			    key.offset == fs_info->nodesize)
 203				ret = 0;
 204		}
 205	}
 206
 207	if (ret == 0) {
 208		leaf = path->nodes[0];
 209		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 210		if (item_size >= sizeof(*ei)) {
 211			ei = btrfs_item_ptr(leaf, path->slots[0],
 212					    struct btrfs_extent_item);
 213			num_refs = btrfs_extent_refs(leaf, ei);
 214			extent_flags = btrfs_extent_flags(leaf, ei);
 215		} else {
 216			ret = -EINVAL;
 217			btrfs_print_v0_err(fs_info);
 218			if (trans)
 219				btrfs_abort_transaction(trans, ret);
 220			else
 221				btrfs_handle_fs_error(fs_info, ret, NULL);
 222
 223			goto out_free;
 
 
 
 224		}
 225
 226		BUG_ON(num_refs == 0);
 227	} else {
 228		num_refs = 0;
 229		extent_flags = 0;
 230		ret = 0;
 231	}
 232
 233	if (!trans)
 234		goto out;
 235
 236	delayed_refs = &trans->transaction->delayed_refs;
 237	spin_lock(&delayed_refs->lock);
 238	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 239	if (head) {
 240		if (!mutex_trylock(&head->mutex)) {
 241			refcount_inc(&head->refs);
 242			spin_unlock(&delayed_refs->lock);
 243
 244			btrfs_release_path(path);
 245
 246			/*
 247			 * Mutex was contended, block until it's released and try
 248			 * again
 249			 */
 250			mutex_lock(&head->mutex);
 251			mutex_unlock(&head->mutex);
 252			btrfs_put_delayed_ref_head(head);
 253			goto search_again;
 254		}
 255		spin_lock(&head->lock);
 256		if (head->extent_op && head->extent_op->update_flags)
 257			extent_flags |= head->extent_op->flags_to_set;
 258		else
 259			BUG_ON(num_refs == 0);
 260
 261		num_refs += head->ref_mod;
 262		spin_unlock(&head->lock);
 263		mutex_unlock(&head->mutex);
 264	}
 265	spin_unlock(&delayed_refs->lock);
 266out:
 267	WARN_ON(num_refs == 0);
 268	if (refs)
 269		*refs = num_refs;
 270	if (flags)
 271		*flags = extent_flags;
 272out_free:
 273	btrfs_free_path(path);
 274	return ret;
 275}
 276
 277/*
 278 * Back reference rules.  Back refs have three main goals:
 279 *
 280 * 1) differentiate between all holders of references to an extent so that
 281 *    when a reference is dropped we can make sure it was a valid reference
 282 *    before freeing the extent.
 283 *
 284 * 2) Provide enough information to quickly find the holders of an extent
 285 *    if we notice a given block is corrupted or bad.
 286 *
 287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 288 *    maintenance.  This is actually the same as #2, but with a slightly
 289 *    different use case.
 290 *
 291 * There are two kinds of back refs. The implicit back refs is optimized
 292 * for pointers in non-shared tree blocks. For a given pointer in a block,
 293 * back refs of this kind provide information about the block's owner tree
 294 * and the pointer's key. These information allow us to find the block by
 295 * b-tree searching. The full back refs is for pointers in tree blocks not
 296 * referenced by their owner trees. The location of tree block is recorded
 297 * in the back refs. Actually the full back refs is generic, and can be
 298 * used in all cases the implicit back refs is used. The major shortcoming
 299 * of the full back refs is its overhead. Every time a tree block gets
 300 * COWed, we have to update back refs entry for all pointers in it.
 301 *
 302 * For a newly allocated tree block, we use implicit back refs for
 303 * pointers in it. This means most tree related operations only involve
 304 * implicit back refs. For a tree block created in old transaction, the
 305 * only way to drop a reference to it is COW it. So we can detect the
 306 * event that tree block loses its owner tree's reference and do the
 307 * back refs conversion.
 308 *
 309 * When a tree block is COWed through a tree, there are four cases:
 310 *
 311 * The reference count of the block is one and the tree is the block's
 312 * owner tree. Nothing to do in this case.
 313 *
 314 * The reference count of the block is one and the tree is not the
 315 * block's owner tree. In this case, full back refs is used for pointers
 316 * in the block. Remove these full back refs, add implicit back refs for
 317 * every pointers in the new block.
 318 *
 319 * The reference count of the block is greater than one and the tree is
 320 * the block's owner tree. In this case, implicit back refs is used for
 321 * pointers in the block. Add full back refs for every pointers in the
 322 * block, increase lower level extents' reference counts. The original
 323 * implicit back refs are entailed to the new block.
 324 *
 325 * The reference count of the block is greater than one and the tree is
 326 * not the block's owner tree. Add implicit back refs for every pointer in
 327 * the new block, increase lower level extents' reference count.
 328 *
 329 * Back Reference Key composing:
 330 *
 331 * The key objectid corresponds to the first byte in the extent,
 332 * The key type is used to differentiate between types of back refs.
 333 * There are different meanings of the key offset for different types
 334 * of back refs.
 335 *
 336 * File extents can be referenced by:
 337 *
 338 * - multiple snapshots, subvolumes, or different generations in one subvol
 339 * - different files inside a single subvolume
 340 * - different offsets inside a file (bookend extents in file.c)
 341 *
 342 * The extent ref structure for the implicit back refs has fields for:
 343 *
 344 * - Objectid of the subvolume root
 345 * - objectid of the file holding the reference
 346 * - original offset in the file
 347 * - how many bookend extents
 348 *
 349 * The key offset for the implicit back refs is hash of the first
 350 * three fields.
 351 *
 352 * The extent ref structure for the full back refs has field for:
 353 *
 354 * - number of pointers in the tree leaf
 355 *
 356 * The key offset for the implicit back refs is the first byte of
 357 * the tree leaf
 358 *
 359 * When a file extent is allocated, The implicit back refs is used.
 360 * the fields are filled in:
 361 *
 362 *     (root_key.objectid, inode objectid, offset in file, 1)
 363 *
 364 * When a file extent is removed file truncation, we find the
 365 * corresponding implicit back refs and check the following fields:
 366 *
 367 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
 368 *
 369 * Btree extents can be referenced by:
 370 *
 371 * - Different subvolumes
 372 *
 373 * Both the implicit back refs and the full back refs for tree blocks
 374 * only consist of key. The key offset for the implicit back refs is
 375 * objectid of block's owner tree. The key offset for the full back refs
 376 * is the first byte of parent block.
 377 *
 378 * When implicit back refs is used, information about the lowest key and
 379 * level of the tree block are required. These information are stored in
 380 * tree block info structure.
 381 */
 382
 383/*
 384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
 385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
 386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
 387 */
 388int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
 389				     struct btrfs_extent_inline_ref *iref,
 390				     enum btrfs_inline_ref_type is_data)
 391{
 392	int type = btrfs_extent_inline_ref_type(eb, iref);
 393	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
 394
 395	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
 396	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
 397	    type == BTRFS_SHARED_DATA_REF_KEY ||
 398	    type == BTRFS_EXTENT_DATA_REF_KEY) {
 399		if (is_data == BTRFS_REF_TYPE_BLOCK) {
 400			if (type == BTRFS_TREE_BLOCK_REF_KEY)
 401				return type;
 402			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
 403				ASSERT(eb->fs_info);
 404				/*
 405				 * Every shared one has parent tree
 406				 * block, which must be aligned to
 407				 * nodesize.
 408				 */
 409				if (offset &&
 410				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 411					return type;
 412			}
 413		} else if (is_data == BTRFS_REF_TYPE_DATA) {
 414			if (type == BTRFS_EXTENT_DATA_REF_KEY)
 415				return type;
 416			if (type == BTRFS_SHARED_DATA_REF_KEY) {
 417				ASSERT(eb->fs_info);
 418				/*
 419				 * Every shared one has parent tree
 420				 * block, which must be aligned to
 421				 * nodesize.
 422				 */
 423				if (offset &&
 424				    IS_ALIGNED(offset, eb->fs_info->nodesize))
 425					return type;
 426			}
 427		} else {
 428			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
 429			return type;
 
 430		}
 431	}
 
 432
 433	btrfs_print_leaf((struct extent_buffer *)eb);
 434	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
 435		  eb->start, type);
 436	WARN_ON(1);
 
 
 
 
 
 437
 438	return BTRFS_REF_TYPE_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439}
 
 440
 441u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
 442{
 443	u32 high_crc = ~(u32)0;
 444	u32 low_crc = ~(u32)0;
 445	__le64 lenum;
 446
 447	lenum = cpu_to_le64(root_objectid);
 448	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
 449	lenum = cpu_to_le64(owner);
 450	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 451	lenum = cpu_to_le64(offset);
 452	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
 453
 454	return ((u64)high_crc << 31) ^ (u64)low_crc;
 455}
 456
 457static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
 458				     struct btrfs_extent_data_ref *ref)
 459{
 460	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
 461				    btrfs_extent_data_ref_objectid(leaf, ref),
 462				    btrfs_extent_data_ref_offset(leaf, ref));
 463}
 464
 465static int match_extent_data_ref(struct extent_buffer *leaf,
 466				 struct btrfs_extent_data_ref *ref,
 467				 u64 root_objectid, u64 owner, u64 offset)
 468{
 469	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
 470	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
 471	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
 472		return 0;
 473	return 1;
 474}
 475
 476static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
 
 477					   struct btrfs_path *path,
 478					   u64 bytenr, u64 parent,
 479					   u64 root_objectid,
 480					   u64 owner, u64 offset)
 481{
 482	struct btrfs_root *root = trans->fs_info->extent_root;
 483	struct btrfs_key key;
 484	struct btrfs_extent_data_ref *ref;
 485	struct extent_buffer *leaf;
 486	u32 nritems;
 487	int ret;
 488	int recow;
 489	int err = -ENOENT;
 490
 491	key.objectid = bytenr;
 492	if (parent) {
 493		key.type = BTRFS_SHARED_DATA_REF_KEY;
 494		key.offset = parent;
 495	} else {
 496		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 497		key.offset = hash_extent_data_ref(root_objectid,
 498						  owner, offset);
 499	}
 500again:
 501	recow = 0;
 502	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 503	if (ret < 0) {
 504		err = ret;
 505		goto fail;
 506	}
 507
 508	if (parent) {
 509		if (!ret)
 510			return 0;
 
 
 
 
 
 
 
 
 
 
 
 511		goto fail;
 512	}
 513
 514	leaf = path->nodes[0];
 515	nritems = btrfs_header_nritems(leaf);
 516	while (1) {
 517		if (path->slots[0] >= nritems) {
 518			ret = btrfs_next_leaf(root, path);
 519			if (ret < 0)
 520				err = ret;
 521			if (ret)
 522				goto fail;
 523
 524			leaf = path->nodes[0];
 525			nritems = btrfs_header_nritems(leaf);
 526			recow = 1;
 527		}
 528
 529		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 530		if (key.objectid != bytenr ||
 531		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
 532			goto fail;
 533
 534		ref = btrfs_item_ptr(leaf, path->slots[0],
 535				     struct btrfs_extent_data_ref);
 536
 537		if (match_extent_data_ref(leaf, ref, root_objectid,
 538					  owner, offset)) {
 539			if (recow) {
 540				btrfs_release_path(path);
 541				goto again;
 542			}
 543			err = 0;
 544			break;
 545		}
 546		path->slots[0]++;
 547	}
 548fail:
 549	return err;
 550}
 551
 552static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
 
 553					   struct btrfs_path *path,
 554					   u64 bytenr, u64 parent,
 555					   u64 root_objectid, u64 owner,
 556					   u64 offset, int refs_to_add)
 557{
 558	struct btrfs_root *root = trans->fs_info->extent_root;
 559	struct btrfs_key key;
 560	struct extent_buffer *leaf;
 561	u32 size;
 562	u32 num_refs;
 563	int ret;
 564
 565	key.objectid = bytenr;
 566	if (parent) {
 567		key.type = BTRFS_SHARED_DATA_REF_KEY;
 568		key.offset = parent;
 569		size = sizeof(struct btrfs_shared_data_ref);
 570	} else {
 571		key.type = BTRFS_EXTENT_DATA_REF_KEY;
 572		key.offset = hash_extent_data_ref(root_objectid,
 573						  owner, offset);
 574		size = sizeof(struct btrfs_extent_data_ref);
 575	}
 576
 577	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
 578	if (ret && ret != -EEXIST)
 579		goto fail;
 580
 581	leaf = path->nodes[0];
 582	if (parent) {
 583		struct btrfs_shared_data_ref *ref;
 584		ref = btrfs_item_ptr(leaf, path->slots[0],
 585				     struct btrfs_shared_data_ref);
 586		if (ret == 0) {
 587			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
 588		} else {
 589			num_refs = btrfs_shared_data_ref_count(leaf, ref);
 590			num_refs += refs_to_add;
 591			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
 592		}
 593	} else {
 594		struct btrfs_extent_data_ref *ref;
 595		while (ret == -EEXIST) {
 596			ref = btrfs_item_ptr(leaf, path->slots[0],
 597					     struct btrfs_extent_data_ref);
 598			if (match_extent_data_ref(leaf, ref, root_objectid,
 599						  owner, offset))
 600				break;
 601			btrfs_release_path(path);
 602			key.offset++;
 603			ret = btrfs_insert_empty_item(trans, root, path, &key,
 604						      size);
 605			if (ret && ret != -EEXIST)
 606				goto fail;
 607
 608			leaf = path->nodes[0];
 609		}
 610		ref = btrfs_item_ptr(leaf, path->slots[0],
 611				     struct btrfs_extent_data_ref);
 612		if (ret == 0) {
 613			btrfs_set_extent_data_ref_root(leaf, ref,
 614						       root_objectid);
 615			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
 616			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
 617			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
 618		} else {
 619			num_refs = btrfs_extent_data_ref_count(leaf, ref);
 620			num_refs += refs_to_add;
 621			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
 622		}
 623	}
 624	btrfs_mark_buffer_dirty(leaf);
 625	ret = 0;
 626fail:
 627	btrfs_release_path(path);
 628	return ret;
 629}
 630
 631static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
 
 632					   struct btrfs_path *path,
 633					   int refs_to_drop, int *last_ref)
 634{
 635	struct btrfs_key key;
 636	struct btrfs_extent_data_ref *ref1 = NULL;
 637	struct btrfs_shared_data_ref *ref2 = NULL;
 638	struct extent_buffer *leaf;
 639	u32 num_refs = 0;
 640	int ret = 0;
 641
 642	leaf = path->nodes[0];
 643	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 644
 645	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 646		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 647				      struct btrfs_extent_data_ref);
 648		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 649	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 650		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 651				      struct btrfs_shared_data_ref);
 652		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 653	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
 654		btrfs_print_v0_err(trans->fs_info);
 655		btrfs_abort_transaction(trans, -EINVAL);
 656		return -EINVAL;
 
 
 
 657	} else {
 658		BUG();
 659	}
 660
 661	BUG_ON(num_refs < refs_to_drop);
 662	num_refs -= refs_to_drop;
 663
 664	if (num_refs == 0) {
 665		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
 666		*last_ref = 1;
 667	} else {
 668		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
 669			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
 670		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
 671			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
 
 
 
 
 
 
 
 
 672		btrfs_mark_buffer_dirty(leaf);
 673	}
 674	return ret;
 675}
 676
 677static noinline u32 extent_data_ref_count(struct btrfs_path *path,
 678					  struct btrfs_extent_inline_ref *iref)
 679{
 680	struct btrfs_key key;
 681	struct extent_buffer *leaf;
 682	struct btrfs_extent_data_ref *ref1;
 683	struct btrfs_shared_data_ref *ref2;
 684	u32 num_refs = 0;
 685	int type;
 686
 687	leaf = path->nodes[0];
 688	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 689
 690	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 691	if (iref) {
 692		/*
 693		 * If type is invalid, we should have bailed out earlier than
 694		 * this call.
 695		 */
 696		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
 697		ASSERT(type != BTRFS_REF_TYPE_INVALID);
 698		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 699			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
 700			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 701		} else {
 702			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
 703			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 704		}
 705	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
 706		ref1 = btrfs_item_ptr(leaf, path->slots[0],
 707				      struct btrfs_extent_data_ref);
 708		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
 709	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
 710		ref2 = btrfs_item_ptr(leaf, path->slots[0],
 711				      struct btrfs_shared_data_ref);
 712		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
 
 
 
 
 
 
 
 713	} else {
 714		WARN_ON(1);
 715	}
 716	return num_refs;
 717}
 718
 719static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
 
 720					  struct btrfs_path *path,
 721					  u64 bytenr, u64 parent,
 722					  u64 root_objectid)
 723{
 724	struct btrfs_root *root = trans->fs_info->extent_root;
 725	struct btrfs_key key;
 726	int ret;
 727
 728	key.objectid = bytenr;
 729	if (parent) {
 730		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 731		key.offset = parent;
 732	} else {
 733		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 734		key.offset = root_objectid;
 735	}
 736
 737	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 738	if (ret > 0)
 739		ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 740	return ret;
 741}
 742
 743static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
 
 744					  struct btrfs_path *path,
 745					  u64 bytenr, u64 parent,
 746					  u64 root_objectid)
 747{
 748	struct btrfs_key key;
 749	int ret;
 750
 751	key.objectid = bytenr;
 752	if (parent) {
 753		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
 754		key.offset = parent;
 755	} else {
 756		key.type = BTRFS_TREE_BLOCK_REF_KEY;
 757		key.offset = root_objectid;
 758	}
 759
 760	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
 761				      path, &key, 0);
 762	btrfs_release_path(path);
 763	return ret;
 764}
 765
 766static inline int extent_ref_type(u64 parent, u64 owner)
 767{
 768	int type;
 769	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 770		if (parent > 0)
 771			type = BTRFS_SHARED_BLOCK_REF_KEY;
 772		else
 773			type = BTRFS_TREE_BLOCK_REF_KEY;
 774	} else {
 775		if (parent > 0)
 776			type = BTRFS_SHARED_DATA_REF_KEY;
 777		else
 778			type = BTRFS_EXTENT_DATA_REF_KEY;
 779	}
 780	return type;
 781}
 782
 783static int find_next_key(struct btrfs_path *path, int level,
 784			 struct btrfs_key *key)
 785
 786{
 787	for (; level < BTRFS_MAX_LEVEL; level++) {
 788		if (!path->nodes[level])
 789			break;
 790		if (path->slots[level] + 1 >=
 791		    btrfs_header_nritems(path->nodes[level]))
 792			continue;
 793		if (level == 0)
 794			btrfs_item_key_to_cpu(path->nodes[level], key,
 795					      path->slots[level] + 1);
 796		else
 797			btrfs_node_key_to_cpu(path->nodes[level], key,
 798					      path->slots[level] + 1);
 799		return 0;
 800	}
 801	return 1;
 802}
 803
 804/*
 805 * look for inline back ref. if back ref is found, *ref_ret is set
 806 * to the address of inline back ref, and 0 is returned.
 807 *
 808 * if back ref isn't found, *ref_ret is set to the address where it
 809 * should be inserted, and -ENOENT is returned.
 810 *
 811 * if insert is true and there are too many inline back refs, the path
 812 * points to the extent item, and -EAGAIN is returned.
 813 *
 814 * NOTE: inline back refs are ordered in the same way that back ref
 815 *	 items in the tree are ordered.
 816 */
 817static noinline_for_stack
 818int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
 
 819				 struct btrfs_path *path,
 820				 struct btrfs_extent_inline_ref **ref_ret,
 821				 u64 bytenr, u64 num_bytes,
 822				 u64 parent, u64 root_objectid,
 823				 u64 owner, u64 offset, int insert)
 824{
 825	struct btrfs_fs_info *fs_info = trans->fs_info;
 826	struct btrfs_root *root = fs_info->extent_root;
 827	struct btrfs_key key;
 828	struct extent_buffer *leaf;
 829	struct btrfs_extent_item *ei;
 830	struct btrfs_extent_inline_ref *iref;
 831	u64 flags;
 832	u64 item_size;
 833	unsigned long ptr;
 834	unsigned long end;
 835	int extra_size;
 836	int type;
 837	int want;
 838	int ret;
 839	int err = 0;
 840	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 841	int needed;
 842
 843	key.objectid = bytenr;
 844	key.type = BTRFS_EXTENT_ITEM_KEY;
 845	key.offset = num_bytes;
 846
 847	want = extent_ref_type(parent, owner);
 848	if (insert) {
 849		extra_size = btrfs_extent_inline_ref_size(want);
 850		path->keep_locks = 1;
 851	} else
 852		extra_size = -1;
 853
 854	/*
 855	 * Owner is our level, so we can just add one to get the level for the
 856	 * block we are interested in.
 857	 */
 858	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
 859		key.type = BTRFS_METADATA_ITEM_KEY;
 860		key.offset = owner;
 861	}
 862
 863again:
 864	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
 865	if (ret < 0) {
 866		err = ret;
 867		goto out;
 868	}
 869
 870	/*
 871	 * We may be a newly converted file system which still has the old fat
 872	 * extent entries for metadata, so try and see if we have one of those.
 873	 */
 874	if (ret > 0 && skinny_metadata) {
 875		skinny_metadata = false;
 876		if (path->slots[0]) {
 877			path->slots[0]--;
 878			btrfs_item_key_to_cpu(path->nodes[0], &key,
 879					      path->slots[0]);
 880			if (key.objectid == bytenr &&
 881			    key.type == BTRFS_EXTENT_ITEM_KEY &&
 882			    key.offset == num_bytes)
 883				ret = 0;
 884		}
 885		if (ret) {
 886			key.objectid = bytenr;
 887			key.type = BTRFS_EXTENT_ITEM_KEY;
 888			key.offset = num_bytes;
 889			btrfs_release_path(path);
 890			goto again;
 891		}
 892	}
 893
 894	if (ret && !insert) {
 895		err = -ENOENT;
 896		goto out;
 897	} else if (WARN_ON(ret)) {
 898		err = -EIO;
 899		goto out;
 900	}
 901
 902	leaf = path->nodes[0];
 903	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 904	if (unlikely(item_size < sizeof(*ei))) {
 905		err = -EINVAL;
 906		btrfs_print_v0_err(fs_info);
 907		btrfs_abort_transaction(trans, err);
 908		goto out;
 
 
 
 
 
 
 
 
 
 909	}
 
 
 910
 911	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
 912	flags = btrfs_extent_flags(leaf, ei);
 913
 914	ptr = (unsigned long)(ei + 1);
 915	end = (unsigned long)ei + item_size;
 916
 917	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
 918		ptr += sizeof(struct btrfs_tree_block_info);
 919		BUG_ON(ptr > end);
 920	}
 921
 922	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
 923		needed = BTRFS_REF_TYPE_DATA;
 924	else
 925		needed = BTRFS_REF_TYPE_BLOCK;
 926
 927	err = -ENOENT;
 928	while (1) {
 929		if (ptr >= end) {
 930			WARN_ON(ptr > end);
 931			break;
 932		}
 933		iref = (struct btrfs_extent_inline_ref *)ptr;
 934		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
 935		if (type == BTRFS_REF_TYPE_INVALID) {
 936			err = -EUCLEAN;
 937			goto out;
 938		}
 939
 940		if (want < type)
 941			break;
 942		if (want > type) {
 943			ptr += btrfs_extent_inline_ref_size(type);
 944			continue;
 945		}
 946
 947		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
 948			struct btrfs_extent_data_ref *dref;
 949			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 950			if (match_extent_data_ref(leaf, dref, root_objectid,
 951						  owner, offset)) {
 952				err = 0;
 953				break;
 954			}
 955			if (hash_extent_data_ref_item(leaf, dref) <
 956			    hash_extent_data_ref(root_objectid, owner, offset))
 957				break;
 958		} else {
 959			u64 ref_offset;
 960			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
 961			if (parent > 0) {
 962				if (parent == ref_offset) {
 963					err = 0;
 964					break;
 965				}
 966				if (ref_offset < parent)
 967					break;
 968			} else {
 969				if (root_objectid == ref_offset) {
 970					err = 0;
 971					break;
 972				}
 973				if (ref_offset < root_objectid)
 974					break;
 975			}
 976		}
 977		ptr += btrfs_extent_inline_ref_size(type);
 978	}
 979	if (err == -ENOENT && insert) {
 980		if (item_size + extra_size >=
 981		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
 982			err = -EAGAIN;
 983			goto out;
 984		}
 985		/*
 986		 * To add new inline back ref, we have to make sure
 987		 * there is no corresponding back ref item.
 988		 * For simplicity, we just do not add new inline back
 989		 * ref if there is any kind of item for this block
 990		 */
 991		if (find_next_key(path, 0, &key) == 0 &&
 992		    key.objectid == bytenr &&
 993		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
 994			err = -EAGAIN;
 995			goto out;
 996		}
 997	}
 998	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
 999out:
1000	if (insert) {
1001		path->keep_locks = 0;
1002		btrfs_unlock_up_safe(path, 1);
1003	}
1004	return err;
1005}
1006
1007/*
1008 * helper to add new inline back ref
1009 */
1010static noinline_for_stack
1011void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012				 struct btrfs_path *path,
1013				 struct btrfs_extent_inline_ref *iref,
1014				 u64 parent, u64 root_objectid,
1015				 u64 owner, u64 offset, int refs_to_add,
1016				 struct btrfs_delayed_extent_op *extent_op)
1017{
1018	struct extent_buffer *leaf;
1019	struct btrfs_extent_item *ei;
1020	unsigned long ptr;
1021	unsigned long end;
1022	unsigned long item_offset;
1023	u64 refs;
1024	int size;
1025	int type;
1026
1027	leaf = path->nodes[0];
1028	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029	item_offset = (unsigned long)iref - (unsigned long)ei;
1030
1031	type = extent_ref_type(parent, owner);
1032	size = btrfs_extent_inline_ref_size(type);
1033
1034	btrfs_extend_item(path, size);
1035
1036	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037	refs = btrfs_extent_refs(leaf, ei);
1038	refs += refs_to_add;
1039	btrfs_set_extent_refs(leaf, ei, refs);
1040	if (extent_op)
1041		__run_delayed_extent_op(extent_op, leaf, ei);
1042
1043	ptr = (unsigned long)ei + item_offset;
1044	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045	if (ptr < end - size)
1046		memmove_extent_buffer(leaf, ptr + size, ptr,
1047				      end - size - ptr);
1048
1049	iref = (struct btrfs_extent_inline_ref *)ptr;
1050	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052		struct btrfs_extent_data_ref *dref;
1053		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059		struct btrfs_shared_data_ref *sref;
1060		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065	} else {
1066		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067	}
1068	btrfs_mark_buffer_dirty(leaf);
1069}
1070
1071static int lookup_extent_backref(struct btrfs_trans_handle *trans,
 
1072				 struct btrfs_path *path,
1073				 struct btrfs_extent_inline_ref **ref_ret,
1074				 u64 bytenr, u64 num_bytes, u64 parent,
1075				 u64 root_objectid, u64 owner, u64 offset)
1076{
1077	int ret;
1078
1079	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080					   num_bytes, parent, root_objectid,
1081					   owner, offset, 0);
1082	if (ret != -ENOENT)
1083		return ret;
1084
1085	btrfs_release_path(path);
1086	*ref_ret = NULL;
1087
1088	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090					    root_objectid);
1091	} else {
1092		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093					     root_objectid, owner, offset);
1094	}
1095	return ret;
1096}
1097
1098/*
1099 * helper to update/remove inline back ref
1100 */
1101static noinline_for_stack
1102void update_inline_extent_backref(struct btrfs_path *path,
 
1103				  struct btrfs_extent_inline_ref *iref,
1104				  int refs_to_mod,
1105				  struct btrfs_delayed_extent_op *extent_op,
1106				  int *last_ref)
1107{
1108	struct extent_buffer *leaf = path->nodes[0];
1109	struct btrfs_extent_item *ei;
1110	struct btrfs_extent_data_ref *dref = NULL;
1111	struct btrfs_shared_data_ref *sref = NULL;
1112	unsigned long ptr;
1113	unsigned long end;
1114	u32 item_size;
1115	int size;
1116	int type;
1117	u64 refs;
1118
 
1119	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120	refs = btrfs_extent_refs(leaf, ei);
1121	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122	refs += refs_to_mod;
1123	btrfs_set_extent_refs(leaf, ei, refs);
1124	if (extent_op)
1125		__run_delayed_extent_op(extent_op, leaf, ei);
1126
1127	/*
1128	 * If type is invalid, we should have bailed out after
1129	 * lookup_inline_extent_backref().
1130	 */
1131	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133
1134	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136		refs = btrfs_extent_data_ref_count(leaf, dref);
1137	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139		refs = btrfs_shared_data_ref_count(leaf, sref);
1140	} else {
1141		refs = 1;
1142		BUG_ON(refs_to_mod != -1);
1143	}
1144
1145	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146	refs += refs_to_mod;
1147
1148	if (refs > 0) {
1149		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151		else
1152			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153	} else {
1154		*last_ref = 1;
1155		size =  btrfs_extent_inline_ref_size(type);
1156		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157		ptr = (unsigned long)iref;
1158		end = (unsigned long)ei + item_size;
1159		if (ptr + size < end)
1160			memmove_extent_buffer(leaf, ptr, ptr + size,
1161					      end - ptr - size);
1162		item_size -= size;
1163		btrfs_truncate_item(path, item_size, 1);
1164	}
1165	btrfs_mark_buffer_dirty(leaf);
1166}
1167
1168static noinline_for_stack
1169int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
 
1170				 struct btrfs_path *path,
1171				 u64 bytenr, u64 num_bytes, u64 parent,
1172				 u64 root_objectid, u64 owner,
1173				 u64 offset, int refs_to_add,
1174				 struct btrfs_delayed_extent_op *extent_op)
1175{
1176	struct btrfs_extent_inline_ref *iref;
1177	int ret;
1178
1179	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180					   num_bytes, parent, root_objectid,
1181					   owner, offset, 1);
1182	if (ret == 0) {
1183		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184		update_inline_extent_backref(path, iref, refs_to_add,
1185					     extent_op, NULL);
1186	} else if (ret == -ENOENT) {
1187		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188					    root_objectid, owner, offset,
1189					    refs_to_add, extent_op);
1190		ret = 0;
1191	}
1192	return ret;
1193}
1194
1195static int insert_extent_backref(struct btrfs_trans_handle *trans,
 
1196				 struct btrfs_path *path,
1197				 u64 bytenr, u64 parent, u64 root_objectid,
1198				 u64 owner, u64 offset, int refs_to_add)
1199{
1200	int ret;
1201	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202		BUG_ON(refs_to_add != 1);
1203		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204					    root_objectid);
1205	} else {
1206		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207					     root_objectid, owner, offset,
1208					     refs_to_add);
1209	}
1210	return ret;
1211}
1212
1213static int remove_extent_backref(struct btrfs_trans_handle *trans,
 
1214				 struct btrfs_path *path,
1215				 struct btrfs_extent_inline_ref *iref,
1216				 int refs_to_drop, int is_data, int *last_ref)
1217{
1218	int ret = 0;
1219
1220	BUG_ON(!is_data && refs_to_drop != 1);
1221	if (iref) {
1222		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223					     last_ref);
1224	} else if (is_data) {
1225		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226					     last_ref);
1227	} else {
1228		*last_ref = 1;
1229		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230	}
1231	return ret;
1232}
1233
 
1234static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235			       u64 *discarded_bytes)
1236{
1237	int j, ret = 0;
1238	u64 bytes_left, end;
1239	u64 aligned_start = ALIGN(start, 1 << 9);
1240
1241	if (WARN_ON(start != aligned_start)) {
1242		len -= aligned_start - start;
1243		len = round_down(len, 1 << 9);
1244		start = aligned_start;
1245	}
1246
1247	*discarded_bytes = 0;
1248
1249	if (!len)
1250		return 0;
1251
1252	end = start + len;
1253	bytes_left = len;
1254
1255	/* Skip any superblocks on this device. */
1256	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257		u64 sb_start = btrfs_sb_offset(j);
1258		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259		u64 size = sb_start - start;
1260
1261		if (!in_range(sb_start, start, bytes_left) &&
1262		    !in_range(sb_end, start, bytes_left) &&
1263		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264			continue;
1265
1266		/*
1267		 * Superblock spans beginning of range.  Adjust start and
1268		 * try again.
1269		 */
1270		if (sb_start <= start) {
1271			start += sb_end - start;
1272			if (start > end) {
1273				bytes_left = 0;
1274				break;
1275			}
1276			bytes_left = end - start;
1277			continue;
1278		}
1279
1280		if (size) {
1281			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282						   GFP_NOFS, 0);
1283			if (!ret)
1284				*discarded_bytes += size;
1285			else if (ret != -EOPNOTSUPP)
1286				return ret;
1287		}
1288
1289		start = sb_end;
1290		if (start > end) {
1291			bytes_left = 0;
1292			break;
1293		}
1294		bytes_left = end - start;
1295	}
1296
1297	if (bytes_left) {
1298		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299					   GFP_NOFS, 0);
1300		if (!ret)
1301			*discarded_bytes += bytes_left;
1302	}
1303	return ret;
1304}
1305
1306int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307			 u64 num_bytes, u64 *actual_bytes)
1308{
1309	int ret;
1310	u64 discarded_bytes = 0;
1311	struct btrfs_bio *bbio = NULL;
1312
1313
1314	/*
1315	 * Avoid races with device replace and make sure our bbio has devices
1316	 * associated to its stripes that don't go away while we are discarding.
1317	 */
1318	btrfs_bio_counter_inc_blocked(fs_info);
1319	/* Tell the block device(s) that the sectors can be discarded */
1320	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1321			      &bbio, 0);
1322	/* Error condition is -ENOMEM */
1323	if (!ret) {
1324		struct btrfs_bio_stripe *stripe = bbio->stripes;
1325		int i;
1326
1327
1328		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1329			u64 bytes;
1330			struct request_queue *req_q;
1331
1332			if (!stripe->dev->bdev) {
1333				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1334				continue;
1335			}
1336			req_q = bdev_get_queue(stripe->dev->bdev);
1337			if (!blk_queue_discard(req_q))
1338				continue;
1339
1340			ret = btrfs_issue_discard(stripe->dev->bdev,
1341						  stripe->physical,
1342						  stripe->length,
1343						  &bytes);
1344			if (!ret)
1345				discarded_bytes += bytes;
1346			else if (ret != -EOPNOTSUPP)
1347				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1348
1349			/*
1350			 * Just in case we get back EOPNOTSUPP for some reason,
1351			 * just ignore the return value so we don't screw up
1352			 * people calling discard_extent.
1353			 */
1354			ret = 0;
1355		}
1356		btrfs_put_bbio(bbio);
1357	}
1358	btrfs_bio_counter_dec(fs_info);
1359
1360	if (actual_bytes)
1361		*actual_bytes = discarded_bytes;
1362
1363
1364	if (ret == -EOPNOTSUPP)
1365		ret = 0;
1366	return ret;
1367}
1368
1369/* Can return -ENOMEM */
1370int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371			 struct btrfs_ref *generic_ref)
 
 
1372{
1373	struct btrfs_fs_info *fs_info = trans->fs_info;
1374	int old_ref_mod, new_ref_mod;
1375	int ret;
1376
1377	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378	       generic_ref->action);
1379	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381
1382	if (generic_ref->type == BTRFS_REF_METADATA)
1383		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384				NULL, &old_ref_mod, &new_ref_mod);
1385	else
1386		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387						 &old_ref_mod, &new_ref_mod);
1388
1389	btrfs_ref_tree_mod(fs_info, generic_ref);
1390
1391	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392		sub_pinned_bytes(fs_info, generic_ref);
1393
 
 
 
 
 
 
 
 
 
 
 
1394	return ret;
1395}
1396
1397/*
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1399 *
1400 * @trans:	    Handle of transaction
1401 *
1402 * @node:	    The delayed ref node used to get the bytenr/length for
1403 *		    extent whose references are incremented.
1404 *
1405 * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 *		    bytenr of the parent block. Since new extents are always
1408 *		    created with indirect references, this will only be the case
1409 *		    when relocating a shared extent. In that case, root_objectid
1410 *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411 *		    be 0
1412 *
1413 * @root_objectid:  The id of the root where this modification has originated,
1414 *		    this can be either one of the well-known metadata trees or
1415 *		    the subvolume id which references this extent.
1416 *
1417 * @owner:	    For data extents it is the inode number of the owning file.
1418 *		    For metadata extents this parameter holds the level in the
1419 *		    tree of the extent.
1420 *
1421 * @offset:	    For metadata extents the offset is ignored and is currently
1422 *		    always passed as 0. For data extents it is the fileoffset
1423 *		    this extent belongs to.
1424 *
1425 * @refs_to_add     Number of references to add
1426 *
1427 * @extent_op       Pointer to a structure, holding information necessary when
1428 *                  updating a tree block's flags
1429 *
1430 */
1431static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
 
1432				  struct btrfs_delayed_ref_node *node,
1433				  u64 parent, u64 root_objectid,
1434				  u64 owner, u64 offset, int refs_to_add,
1435				  struct btrfs_delayed_extent_op *extent_op)
1436{
1437	struct btrfs_path *path;
1438	struct extent_buffer *leaf;
1439	struct btrfs_extent_item *item;
1440	struct btrfs_key key;
1441	u64 bytenr = node->bytenr;
1442	u64 num_bytes = node->num_bytes;
1443	u64 refs;
1444	int ret;
1445
1446	path = btrfs_alloc_path();
1447	if (!path)
1448		return -ENOMEM;
1449
1450	path->reada = READA_FORWARD;
1451	path->leave_spinning = 1;
1452	/* this will setup the path even if it fails to insert the back ref */
1453	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1454					   parent, root_objectid, owner,
1455					   offset, refs_to_add, extent_op);
 
1456	if ((ret < 0 && ret != -EAGAIN) || !ret)
1457		goto out;
1458
1459	/*
1460	 * Ok we had -EAGAIN which means we didn't have space to insert and
1461	 * inline extent ref, so just update the reference count and add a
1462	 * normal backref.
1463	 */
1464	leaf = path->nodes[0];
1465	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1466	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1467	refs = btrfs_extent_refs(leaf, item);
1468	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1469	if (extent_op)
1470		__run_delayed_extent_op(extent_op, leaf, item);
1471
1472	btrfs_mark_buffer_dirty(leaf);
1473	btrfs_release_path(path);
1474
1475	path->reada = READA_FORWARD;
1476	path->leave_spinning = 1;
1477	/* now insert the actual backref */
1478	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
 
1479				    owner, offset, refs_to_add);
1480	if (ret)
1481		btrfs_abort_transaction(trans, ret);
1482out:
1483	btrfs_free_path(path);
1484	return ret;
1485}
1486
1487static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
 
1488				struct btrfs_delayed_ref_node *node,
1489				struct btrfs_delayed_extent_op *extent_op,
1490				int insert_reserved)
1491{
1492	int ret = 0;
1493	struct btrfs_delayed_data_ref *ref;
1494	struct btrfs_key ins;
1495	u64 parent = 0;
1496	u64 ref_root = 0;
1497	u64 flags = 0;
1498
1499	ins.objectid = node->bytenr;
1500	ins.offset = node->num_bytes;
1501	ins.type = BTRFS_EXTENT_ITEM_KEY;
1502
1503	ref = btrfs_delayed_node_to_data_ref(node);
1504	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1505
1506	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1507		parent = ref->parent;
1508	ref_root = ref->root;
1509
1510	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1511		if (extent_op)
1512			flags |= extent_op->flags_to_set;
1513		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1514						 flags, ref->objectid,
1515						 ref->offset, &ins,
1516						 node->ref_mod);
1517	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1518		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1519					     ref->objectid, ref->offset,
1520					     node->ref_mod, extent_op);
 
1521	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1522		ret = __btrfs_free_extent(trans, node, parent,
1523					  ref_root, ref->objectid,
1524					  ref->offset, node->ref_mod,
1525					  extent_op);
1526	} else {
1527		BUG();
1528	}
1529	return ret;
1530}
1531
1532static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1533				    struct extent_buffer *leaf,
1534				    struct btrfs_extent_item *ei)
1535{
1536	u64 flags = btrfs_extent_flags(leaf, ei);
1537	if (extent_op->update_flags) {
1538		flags |= extent_op->flags_to_set;
1539		btrfs_set_extent_flags(leaf, ei, flags);
1540	}
1541
1542	if (extent_op->update_key) {
1543		struct btrfs_tree_block_info *bi;
1544		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1545		bi = (struct btrfs_tree_block_info *)(ei + 1);
1546		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1547	}
1548}
1549
1550static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1551				 struct btrfs_delayed_ref_head *head,
 
1552				 struct btrfs_delayed_extent_op *extent_op)
1553{
1554	struct btrfs_fs_info *fs_info = trans->fs_info;
1555	struct btrfs_key key;
1556	struct btrfs_path *path;
1557	struct btrfs_extent_item *ei;
1558	struct extent_buffer *leaf;
1559	u32 item_size;
1560	int ret;
1561	int err = 0;
1562	int metadata = !extent_op->is_data;
1563
1564	if (trans->aborted)
1565		return 0;
1566
1567	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1568		metadata = 0;
1569
1570	path = btrfs_alloc_path();
1571	if (!path)
1572		return -ENOMEM;
1573
1574	key.objectid = head->bytenr;
1575
1576	if (metadata) {
1577		key.type = BTRFS_METADATA_ITEM_KEY;
1578		key.offset = extent_op->level;
1579	} else {
1580		key.type = BTRFS_EXTENT_ITEM_KEY;
1581		key.offset = head->num_bytes;
1582	}
1583
1584again:
1585	path->reada = READA_FORWARD;
1586	path->leave_spinning = 1;
1587	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1588	if (ret < 0) {
1589		err = ret;
1590		goto out;
1591	}
1592	if (ret > 0) {
1593		if (metadata) {
1594			if (path->slots[0] > 0) {
1595				path->slots[0]--;
1596				btrfs_item_key_to_cpu(path->nodes[0], &key,
1597						      path->slots[0]);
1598				if (key.objectid == head->bytenr &&
1599				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1600				    key.offset == head->num_bytes)
1601					ret = 0;
1602			}
1603			if (ret > 0) {
1604				btrfs_release_path(path);
1605				metadata = 0;
1606
1607				key.objectid = head->bytenr;
1608				key.offset = head->num_bytes;
1609				key.type = BTRFS_EXTENT_ITEM_KEY;
1610				goto again;
1611			}
1612		} else {
1613			err = -EIO;
1614			goto out;
1615		}
1616	}
1617
1618	leaf = path->nodes[0];
1619	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620
1621	if (unlikely(item_size < sizeof(*ei))) {
1622		err = -EINVAL;
1623		btrfs_print_v0_err(fs_info);
1624		btrfs_abort_transaction(trans, err);
1625		goto out;
 
 
 
 
1626	}
1627
 
1628	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1629	__run_delayed_extent_op(extent_op, leaf, ei);
1630
1631	btrfs_mark_buffer_dirty(leaf);
1632out:
1633	btrfs_free_path(path);
1634	return err;
1635}
1636
1637static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
 
1638				struct btrfs_delayed_ref_node *node,
1639				struct btrfs_delayed_extent_op *extent_op,
1640				int insert_reserved)
1641{
1642	int ret = 0;
1643	struct btrfs_delayed_tree_ref *ref;
 
1644	u64 parent = 0;
1645	u64 ref_root = 0;
 
1646
1647	ref = btrfs_delayed_node_to_tree_ref(node);
1648	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1649
1650	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1651		parent = ref->parent;
1652	ref_root = ref->root;
1653
 
 
 
 
 
 
 
 
 
1654	if (node->ref_mod != 1) {
1655		btrfs_err(trans->fs_info,
1656	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1657			  node->bytenr, node->ref_mod, node->action, ref_root,
1658			  parent);
1659		return -EIO;
1660	}
1661	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1662		BUG_ON(!extent_op || !extent_op->update_flags);
1663		ret = alloc_reserved_tree_block(trans, node, extent_op);
 
 
 
 
1664	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1665		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1666					     ref->level, 0, 1, extent_op);
 
 
1667	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1668		ret = __btrfs_free_extent(trans, node, parent, ref_root,
 
1669					  ref->level, 0, 1, extent_op);
1670	} else {
1671		BUG();
1672	}
1673	return ret;
1674}
1675
1676/* helper function to actually process a single delayed ref entry */
1677static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
 
1678			       struct btrfs_delayed_ref_node *node,
1679			       struct btrfs_delayed_extent_op *extent_op,
1680			       int insert_reserved)
1681{
1682	int ret = 0;
1683
1684	if (trans->aborted) {
1685		if (insert_reserved)
1686			btrfs_pin_extent(trans->fs_info, node->bytenr,
1687					 node->num_bytes, 1);
1688		return 0;
1689	}
1690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1692	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1693		ret = run_delayed_tree_ref(trans, node, extent_op,
1694					   insert_reserved);
1695	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1696		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1697		ret = run_delayed_data_ref(trans, node, extent_op,
1698					   insert_reserved);
1699	else
1700		BUG();
1701	if (ret && insert_reserved)
1702		btrfs_pin_extent(trans->fs_info, node->bytenr,
1703				 node->num_bytes, 1);
1704	return ret;
1705}
1706
1707static inline struct btrfs_delayed_ref_node *
1708select_delayed_ref(struct btrfs_delayed_ref_head *head)
1709{
1710	struct btrfs_delayed_ref_node *ref;
1711
1712	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1713		return NULL;
1714
1715	/*
1716	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1717	 * This is to prevent a ref count from going down to zero, which deletes
1718	 * the extent item from the extent tree, when there still are references
1719	 * to add, which would fail because they would not find the extent item.
1720	 */
1721	if (!list_empty(&head->ref_add_list))
1722		return list_first_entry(&head->ref_add_list,
1723				struct btrfs_delayed_ref_node, add_list);
1724
1725	ref = rb_entry(rb_first_cached(&head->ref_tree),
1726		       struct btrfs_delayed_ref_node, ref_node);
1727	ASSERT(list_empty(&ref->add_list));
1728	return ref;
1729}
1730
1731static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1732				      struct btrfs_delayed_ref_head *head)
1733{
1734	spin_lock(&delayed_refs->lock);
1735	head->processing = 0;
1736	delayed_refs->num_heads_ready++;
1737	spin_unlock(&delayed_refs->lock);
1738	btrfs_delayed_ref_unlock(head);
1739}
1740
1741static struct btrfs_delayed_extent_op *cleanup_extent_op(
1742				struct btrfs_delayed_ref_head *head)
1743{
1744	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1745
1746	if (!extent_op)
1747		return NULL;
1748
1749	if (head->must_insert_reserved) {
1750		head->extent_op = NULL;
1751		btrfs_free_delayed_extent_op(extent_op);
1752		return NULL;
1753	}
1754	return extent_op;
1755}
1756
1757static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1758				     struct btrfs_delayed_ref_head *head)
1759{
 
 
 
1760	struct btrfs_delayed_extent_op *extent_op;
 
1761	int ret;
 
 
 
1762
1763	extent_op = cleanup_extent_op(head);
1764	if (!extent_op)
1765		return 0;
1766	head->extent_op = NULL;
1767	spin_unlock(&head->lock);
1768	ret = run_delayed_extent_op(trans, head, extent_op);
1769	btrfs_free_delayed_extent_op(extent_op);
1770	return ret ? ret : 1;
1771}
1772
1773void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1774				  struct btrfs_delayed_ref_root *delayed_refs,
1775				  struct btrfs_delayed_ref_head *head)
1776{
1777	int nr_items = 1;	/* Dropping this ref head update. */
 
1778
1779	if (head->total_ref_mod < 0) {
1780		struct btrfs_space_info *space_info;
1781		u64 flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783		if (head->is_data)
1784			flags = BTRFS_BLOCK_GROUP_DATA;
1785		else if (head->is_system)
1786			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1787		else
1788			flags = BTRFS_BLOCK_GROUP_METADATA;
1789		space_info = btrfs_find_space_info(fs_info, flags);
1790		ASSERT(space_info);
1791		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1792				   -head->num_bytes,
1793				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
 
 
 
 
1794
1795		/*
1796		 * We had csum deletions accounted for in our delayed refs rsv,
1797		 * we need to drop the csum leaves for this update from our
1798		 * delayed_refs_rsv.
1799		 */
1800		if (head->is_data) {
 
 
 
 
1801			spin_lock(&delayed_refs->lock);
1802			delayed_refs->pending_csums -= head->num_bytes;
 
1803			spin_unlock(&delayed_refs->lock);
1804			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1805				head->num_bytes);
 
 
 
1806		}
1807	}
1808
1809	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1810}
 
 
 
 
1811
1812static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1813			    struct btrfs_delayed_ref_head *head)
1814{
1815
1816	struct btrfs_fs_info *fs_info = trans->fs_info;
1817	struct btrfs_delayed_ref_root *delayed_refs;
1818	int ret;
1819
1820	delayed_refs = &trans->transaction->delayed_refs;
1821
1822	ret = run_and_cleanup_extent_op(trans, head);
1823	if (ret < 0) {
1824		unselect_delayed_ref_head(delayed_refs, head);
1825		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1826		return ret;
1827	} else if (ret) {
1828		return ret;
1829	}
1830
1831	/*
1832	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1833	 * and then re-check to make sure nobody got added.
1834	 */
1835	spin_unlock(&head->lock);
1836	spin_lock(&delayed_refs->lock);
1837	spin_lock(&head->lock);
1838	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1839		spin_unlock(&head->lock);
1840		spin_unlock(&delayed_refs->lock);
1841		return 1;
1842	}
1843	btrfs_delete_ref_head(delayed_refs, head);
1844	spin_unlock(&head->lock);
1845	spin_unlock(&delayed_refs->lock);
1846
1847	if (head->must_insert_reserved) {
1848		btrfs_pin_extent(fs_info, head->bytenr,
1849				 head->num_bytes, 1);
1850		if (head->is_data) {
1851			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
1852					      head->num_bytes);
1853		}
1854	}
1855
1856	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858	trace_run_delayed_ref_head(fs_info, head, 0);
1859	btrfs_delayed_ref_unlock(head);
1860	btrfs_put_delayed_ref_head(head);
1861	return 0;
1862}
1863
1864static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1865					struct btrfs_trans_handle *trans)
1866{
1867	struct btrfs_delayed_ref_root *delayed_refs =
1868		&trans->transaction->delayed_refs;
1869	struct btrfs_delayed_ref_head *head = NULL;
1870	int ret;
1871
1872	spin_lock(&delayed_refs->lock);
1873	head = btrfs_select_ref_head(delayed_refs);
1874	if (!head) {
1875		spin_unlock(&delayed_refs->lock);
1876		return head;
1877	}
1878
1879	/*
1880	 * Grab the lock that says we are going to process all the refs for
1881	 * this head
1882	 */
1883	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1884	spin_unlock(&delayed_refs->lock);
1885
1886	/*
1887	 * We may have dropped the spin lock to get the head mutex lock, and
1888	 * that might have given someone else time to free the head.  If that's
1889	 * true, it has been removed from our list and we can move on.
1890	 */
1891	if (ret == -EAGAIN)
1892		head = ERR_PTR(-EAGAIN);
1893
1894	return head;
1895}
1896
1897static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1898				    struct btrfs_delayed_ref_head *locked_ref,
1899				    unsigned long *run_refs)
1900{
1901	struct btrfs_fs_info *fs_info = trans->fs_info;
1902	struct btrfs_delayed_ref_root *delayed_refs;
1903	struct btrfs_delayed_extent_op *extent_op;
1904	struct btrfs_delayed_ref_node *ref;
1905	int must_insert_reserved = 0;
1906	int ret;
1907
1908	delayed_refs = &trans->transaction->delayed_refs;
1909
1910	lockdep_assert_held(&locked_ref->mutex);
1911	lockdep_assert_held(&locked_ref->lock);
1912
1913	while ((ref = select_delayed_ref(locked_ref))) {
1914		if (ref->seq &&
1915		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1916			spin_unlock(&locked_ref->lock);
1917			unselect_delayed_ref_head(delayed_refs, locked_ref);
1918			return -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919		}
 
1920
1921		(*run_refs)++;
1922		ref->in_tree = 0;
1923		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1924		RB_CLEAR_NODE(&ref->ref_node);
1925		if (!list_empty(&ref->add_list))
1926			list_del(&ref->add_list);
1927		/*
1928		 * When we play the delayed ref, also correct the ref_mod on
1929		 * head
1930		 */
1931		switch (ref->action) {
1932		case BTRFS_ADD_DELAYED_REF:
1933		case BTRFS_ADD_DELAYED_EXTENT:
1934			locked_ref->ref_mod -= ref->ref_mod;
1935			break;
1936		case BTRFS_DROP_DELAYED_REF:
1937			locked_ref->ref_mod += ref->ref_mod;
1938			break;
1939		default:
1940			WARN_ON(1);
1941		}
1942		atomic_dec(&delayed_refs->num_entries);
1943
1944		/*
1945		 * Record the must_insert_reserved flag before we drop the
1946		 * spin lock.
1947		 */
1948		must_insert_reserved = locked_ref->must_insert_reserved;
1949		locked_ref->must_insert_reserved = 0;
1950
1951		extent_op = locked_ref->extent_op;
1952		locked_ref->extent_op = NULL;
1953		spin_unlock(&locked_ref->lock);
1954
1955		ret = run_one_delayed_ref(trans, ref, extent_op,
1956					  must_insert_reserved);
1957
1958		btrfs_free_delayed_extent_op(extent_op);
1959		if (ret) {
1960			unselect_delayed_ref_head(delayed_refs, locked_ref);
 
 
 
 
1961			btrfs_put_delayed_ref(ref);
1962			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1963				    ret);
1964			return ret;
1965		}
1966
1967		btrfs_put_delayed_ref(ref);
1968		cond_resched();
1969
1970		spin_lock(&locked_ref->lock);
1971		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1972	}
1973
1974	return 0;
1975}
1976
1977/*
1978 * Returns 0 on success or if called with an already aborted transaction.
1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1980 */
1981static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1982					     unsigned long nr)
1983{
1984	struct btrfs_fs_info *fs_info = trans->fs_info;
1985	struct btrfs_delayed_ref_root *delayed_refs;
1986	struct btrfs_delayed_ref_head *locked_ref = NULL;
1987	ktime_t start = ktime_get();
1988	int ret;
1989	unsigned long count = 0;
1990	unsigned long actual_count = 0;
1991
1992	delayed_refs = &trans->transaction->delayed_refs;
1993	do {
1994		if (!locked_ref) {
1995			locked_ref = btrfs_obtain_ref_head(trans);
1996			if (IS_ERR_OR_NULL(locked_ref)) {
1997				if (PTR_ERR(locked_ref) == -EAGAIN) {
1998					continue;
1999				} else {
2000					break;
2001				}
2002			}
2003			count++;
2004		}
2005		/*
2006		 * We need to try and merge add/drops of the same ref since we
2007		 * can run into issues with relocate dropping the implicit ref
2008		 * and then it being added back again before the drop can
2009		 * finish.  If we merged anything we need to re-loop so we can
2010		 * get a good ref.
2011		 * Or we can get node references of the same type that weren't
2012		 * merged when created due to bumps in the tree mod seq, and
2013		 * we need to merge them to prevent adding an inline extent
2014		 * backref before dropping it (triggering a BUG_ON at
2015		 * insert_inline_extent_backref()).
2016		 */
2017		spin_lock(&locked_ref->lock);
2018		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2019
2020		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2021						      &actual_count);
2022		if (ret < 0 && ret != -EAGAIN) {
2023			/*
2024			 * Error, btrfs_run_delayed_refs_for_head already
2025			 * unlocked everything so just bail out
2026			 */
2027			return ret;
2028		} else if (!ret) {
2029			/*
2030			 * Success, perform the usual cleanup of a processed
2031			 * head
2032			 */
2033			ret = cleanup_ref_head(trans, locked_ref);
2034			if (ret > 0 ) {
2035				/* We dropped our lock, we need to loop. */
2036				ret = 0;
2037				continue;
2038			} else if (ret) {
2039				return ret;
2040			}
 
 
2041		}
2042
2043		/*
2044		 * Either success case or btrfs_run_delayed_refs_for_head
2045		 * returned -EAGAIN, meaning we need to select another head
2046		 */
2047
2048		locked_ref = NULL;
2049		cond_resched();
2050	} while ((nr != -1 && count < nr) || locked_ref);
2051
2052	/*
2053	 * We don't want to include ref heads since we can have empty ref heads
2054	 * and those will drastically skew our runtime down since we just do
2055	 * accounting, no actual extent tree updates.
2056	 */
2057	if (actual_count > 0) {
2058		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2059		u64 avg;
2060
2061		/*
2062		 * We weigh the current average higher than our current runtime
2063		 * to avoid large swings in the average.
2064		 */
2065		spin_lock(&delayed_refs->lock);
2066		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2067		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2068		spin_unlock(&delayed_refs->lock);
2069	}
2070	return 0;
2071}
2072
2073#ifdef SCRAMBLE_DELAYED_REFS
2074/*
2075 * Normally delayed refs get processed in ascending bytenr order. This
2076 * correlates in most cases to the order added. To expose dependencies on this
2077 * order, we start to process the tree in the middle instead of the beginning
2078 */
2079static u64 find_middle(struct rb_root *root)
2080{
2081	struct rb_node *n = root->rb_node;
2082	struct btrfs_delayed_ref_node *entry;
2083	int alt = 1;
2084	u64 middle;
2085	u64 first = 0, last = 0;
2086
2087	n = rb_first(root);
2088	if (n) {
2089		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2090		first = entry->bytenr;
2091	}
2092	n = rb_last(root);
2093	if (n) {
2094		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2095		last = entry->bytenr;
2096	}
2097	n = root->rb_node;
2098
2099	while (n) {
2100		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101		WARN_ON(!entry->in_tree);
2102
2103		middle = entry->bytenr;
2104
2105		if (alt)
2106			n = n->rb_left;
2107		else
2108			n = n->rb_right;
2109
2110		alt = 1 - alt;
2111	}
2112	return middle;
2113}
2114#endif
2115
2116static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2117{
2118	u64 num_bytes;
2119
2120	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2121			     sizeof(struct btrfs_extent_inline_ref));
2122	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2123		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2124
2125	/*
2126	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2127	 * closer to what we're really going to want to use.
2128	 */
2129	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2130}
2131
2132/*
2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2134 * would require to store the csums for that many bytes.
2135 */
2136u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2137{
2138	u64 csum_size;
2139	u64 num_csums_per_leaf;
2140	u64 num_csums;
2141
2142	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2143	num_csums_per_leaf = div64_u64(csum_size,
2144			(u64)btrfs_super_csum_size(fs_info->super_copy));
2145	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2146	num_csums += num_csums_per_leaf - 1;
2147	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2148	return num_csums;
2149}
2150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151/*
2152 * this starts processing the delayed reference count updates and
2153 * extent insertions we have queued up so far.  count can be
2154 * 0, which means to process everything in the tree at the start
2155 * of the run (but not newly added entries), or it can be some target
2156 * number you'd like to process.
2157 *
2158 * Returns 0 on success or if called with an aborted transaction
2159 * Returns <0 on error and aborts the transaction
2160 */
2161int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2162			   unsigned long count)
2163{
2164	struct btrfs_fs_info *fs_info = trans->fs_info;
2165	struct rb_node *node;
2166	struct btrfs_delayed_ref_root *delayed_refs;
2167	struct btrfs_delayed_ref_head *head;
2168	int ret;
2169	int run_all = count == (unsigned long)-1;
 
2170
2171	/* We'll clean this up in btrfs_cleanup_transaction */
2172	if (trans->aborted)
2173		return 0;
2174
2175	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2176		return 0;
2177
2178	delayed_refs = &trans->transaction->delayed_refs;
2179	if (count == 0)
2180		count = atomic_read(&delayed_refs->num_entries) * 2;
2181
2182again:
2183#ifdef SCRAMBLE_DELAYED_REFS
2184	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2185#endif
2186	ret = __btrfs_run_delayed_refs(trans, count);
 
2187	if (ret < 0) {
2188		btrfs_abort_transaction(trans, ret);
2189		return ret;
2190	}
2191
2192	if (run_all) {
2193		btrfs_create_pending_block_groups(trans);
 
2194
2195		spin_lock(&delayed_refs->lock);
2196		node = rb_first_cached(&delayed_refs->href_root);
2197		if (!node) {
2198			spin_unlock(&delayed_refs->lock);
2199			goto out;
2200		}
2201		head = rb_entry(node, struct btrfs_delayed_ref_head,
2202				href_node);
2203		refcount_inc(&head->refs);
2204		spin_unlock(&delayed_refs->lock);
2205
2206		/* Mutex was contended, block until it's released and retry. */
2207		mutex_lock(&head->mutex);
2208		mutex_unlock(&head->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
2209
2210		btrfs_put_delayed_ref_head(head);
 
 
 
 
 
 
 
 
2211		cond_resched();
2212		goto again;
2213	}
2214out:
 
 
2215	return 0;
2216}
2217
2218int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
 
2219				u64 bytenr, u64 num_bytes, u64 flags,
2220				int level, int is_data)
2221{
2222	struct btrfs_delayed_extent_op *extent_op;
2223	int ret;
2224
2225	extent_op = btrfs_alloc_delayed_extent_op();
2226	if (!extent_op)
2227		return -ENOMEM;
2228
2229	extent_op->flags_to_set = flags;
2230	extent_op->update_flags = true;
2231	extent_op->update_key = false;
2232	extent_op->is_data = is_data ? true : false;
2233	extent_op->level = level;
2234
2235	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
 
2236	if (ret)
2237		btrfs_free_delayed_extent_op(extent_op);
2238	return ret;
2239}
2240
2241static noinline int check_delayed_ref(struct btrfs_root *root,
 
2242				      struct btrfs_path *path,
2243				      u64 objectid, u64 offset, u64 bytenr)
2244{
2245	struct btrfs_delayed_ref_head *head;
2246	struct btrfs_delayed_ref_node *ref;
2247	struct btrfs_delayed_data_ref *data_ref;
2248	struct btrfs_delayed_ref_root *delayed_refs;
2249	struct btrfs_transaction *cur_trans;
2250	struct rb_node *node;
2251	int ret = 0;
2252
2253	spin_lock(&root->fs_info->trans_lock);
2254	cur_trans = root->fs_info->running_transaction;
2255	if (cur_trans)
2256		refcount_inc(&cur_trans->use_count);
2257	spin_unlock(&root->fs_info->trans_lock);
2258	if (!cur_trans)
2259		return 0;
2260
2261	delayed_refs = &cur_trans->delayed_refs;
2262	spin_lock(&delayed_refs->lock);
2263	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2264	if (!head) {
2265		spin_unlock(&delayed_refs->lock);
2266		btrfs_put_transaction(cur_trans);
2267		return 0;
2268	}
2269
2270	if (!mutex_trylock(&head->mutex)) {
2271		refcount_inc(&head->refs);
2272		spin_unlock(&delayed_refs->lock);
2273
2274		btrfs_release_path(path);
2275
2276		/*
2277		 * Mutex was contended, block until it's released and let
2278		 * caller try again
2279		 */
2280		mutex_lock(&head->mutex);
2281		mutex_unlock(&head->mutex);
2282		btrfs_put_delayed_ref_head(head);
2283		btrfs_put_transaction(cur_trans);
2284		return -EAGAIN;
2285	}
2286	spin_unlock(&delayed_refs->lock);
2287
2288	spin_lock(&head->lock);
2289	/*
2290	 * XXX: We should replace this with a proper search function in the
2291	 * future.
2292	 */
2293	for (node = rb_first_cached(&head->ref_tree); node;
2294	     node = rb_next(node)) {
2295		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2296		/* If it's a shared ref we know a cross reference exists */
2297		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2298			ret = 1;
2299			break;
2300		}
2301
2302		data_ref = btrfs_delayed_node_to_data_ref(ref);
2303
2304		/*
2305		 * If our ref doesn't match the one we're currently looking at
2306		 * then we have a cross reference.
2307		 */
2308		if (data_ref->root != root->root_key.objectid ||
2309		    data_ref->objectid != objectid ||
2310		    data_ref->offset != offset) {
2311			ret = 1;
2312			break;
2313		}
2314	}
2315	spin_unlock(&head->lock);
2316	mutex_unlock(&head->mutex);
2317	btrfs_put_transaction(cur_trans);
2318	return ret;
2319}
2320
2321static noinline int check_committed_ref(struct btrfs_root *root,
 
2322					struct btrfs_path *path,
2323					u64 objectid, u64 offset, u64 bytenr)
2324{
2325	struct btrfs_fs_info *fs_info = root->fs_info;
2326	struct btrfs_root *extent_root = fs_info->extent_root;
2327	struct extent_buffer *leaf;
2328	struct btrfs_extent_data_ref *ref;
2329	struct btrfs_extent_inline_ref *iref;
2330	struct btrfs_extent_item *ei;
2331	struct btrfs_key key;
2332	u32 item_size;
2333	int type;
2334	int ret;
2335
2336	key.objectid = bytenr;
2337	key.offset = (u64)-1;
2338	key.type = BTRFS_EXTENT_ITEM_KEY;
2339
2340	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2341	if (ret < 0)
2342		goto out;
2343	BUG_ON(ret == 0); /* Corruption */
2344
2345	ret = -ENOENT;
2346	if (path->slots[0] == 0)
2347		goto out;
2348
2349	path->slots[0]--;
2350	leaf = path->nodes[0];
2351	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2352
2353	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2354		goto out;
2355
2356	ret = 1;
2357	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 
 
 
 
 
 
2358	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2359
2360	/* If extent item has more than 1 inline ref then it's shared */
2361	if (item_size != sizeof(*ei) +
2362	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2363		goto out;
2364
2365	/* If extent created before last snapshot => it's definitely shared */
2366	if (btrfs_extent_generation(leaf, ei) <=
2367	    btrfs_root_last_snapshot(&root->root_item))
2368		goto out;
2369
2370	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2371
2372	/* If this extent has SHARED_DATA_REF then it's shared */
2373	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2374	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2375		goto out;
2376
2377	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2378	if (btrfs_extent_refs(leaf, ei) !=
2379	    btrfs_extent_data_ref_count(leaf, ref) ||
2380	    btrfs_extent_data_ref_root(leaf, ref) !=
2381	    root->root_key.objectid ||
2382	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2383	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2384		goto out;
2385
2386	ret = 0;
2387out:
2388	return ret;
2389}
2390
2391int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2392			  u64 bytenr)
 
2393{
2394	struct btrfs_path *path;
2395	int ret;
 
2396
2397	path = btrfs_alloc_path();
2398	if (!path)
2399		return -ENOMEM;
2400
2401	do {
2402		ret = check_committed_ref(root, path, objectid,
2403					  offset, bytenr);
2404		if (ret && ret != -ENOENT)
2405			goto out;
2406
2407		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2408	} while (ret == -EAGAIN);
 
2409
 
 
 
 
 
 
 
2410out:
2411	btrfs_free_path(path);
2412	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2413		WARN_ON(ret > 0);
2414	return ret;
2415}
2416
2417static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2418			   struct btrfs_root *root,
2419			   struct extent_buffer *buf,
2420			   int full_backref, int inc)
2421{
2422	struct btrfs_fs_info *fs_info = root->fs_info;
2423	u64 bytenr;
2424	u64 num_bytes;
2425	u64 parent;
2426	u64 ref_root;
2427	u32 nritems;
2428	struct btrfs_key key;
2429	struct btrfs_file_extent_item *fi;
2430	struct btrfs_ref generic_ref = { 0 };
2431	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2432	int i;
2433	int action;
2434	int level;
2435	int ret = 0;
 
 
 
 
2436
2437	if (btrfs_is_testing(fs_info))
2438		return 0;
2439
2440	ref_root = btrfs_header_owner(buf);
2441	nritems = btrfs_header_nritems(buf);
2442	level = btrfs_header_level(buf);
2443
2444	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2445		return 0;
2446
 
 
 
 
 
2447	if (full_backref)
2448		parent = buf->start;
2449	else
2450		parent = 0;
2451	if (inc)
2452		action = BTRFS_ADD_DELAYED_REF;
2453	else
2454		action = BTRFS_DROP_DELAYED_REF;
2455
2456	for (i = 0; i < nritems; i++) {
2457		if (level == 0) {
2458			btrfs_item_key_to_cpu(buf, &key, i);
2459			if (key.type != BTRFS_EXTENT_DATA_KEY)
2460				continue;
2461			fi = btrfs_item_ptr(buf, i,
2462					    struct btrfs_file_extent_item);
2463			if (btrfs_file_extent_type(buf, fi) ==
2464			    BTRFS_FILE_EXTENT_INLINE)
2465				continue;
2466			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2467			if (bytenr == 0)
2468				continue;
2469
2470			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2471			key.offset -= btrfs_file_extent_offset(buf, fi);
2472			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2473					       num_bytes, parent);
2474			generic_ref.real_root = root->root_key.objectid;
2475			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476					    key.offset);
2477			generic_ref.skip_qgroup = for_reloc;
2478			if (inc)
2479				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480			else
2481				ret = btrfs_free_extent(trans, &generic_ref);
2482			if (ret)
2483				goto fail;
2484		} else {
2485			bytenr = btrfs_node_blockptr(buf, i);
2486			num_bytes = fs_info->nodesize;
2487			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488					       num_bytes, parent);
2489			generic_ref.real_root = root->root_key.objectid;
2490			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2491			generic_ref.skip_qgroup = for_reloc;
2492			if (inc)
2493				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2494			else
2495				ret = btrfs_free_extent(trans, &generic_ref);
2496			if (ret)
2497				goto fail;
2498		}
2499	}
2500	return 0;
2501fail:
2502	return ret;
2503}
2504
2505int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2506		  struct extent_buffer *buf, int full_backref)
2507{
2508	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2509}
2510
2511int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2512		  struct extent_buffer *buf, int full_backref)
2513{
2514	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2515}
2516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2518{
2519	struct btrfs_block_group_cache *block_group;
2520	int readonly = 0;
2521
2522	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2523	if (!block_group || block_group->ro)
2524		readonly = 1;
2525	if (block_group)
2526		btrfs_put_block_group(block_group);
2527	return readonly;
2528}
2529
2530static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531{
2532	struct btrfs_fs_info *fs_info = root->fs_info;
2533	u64 flags;
2534	u64 ret;
2535
2536	if (data)
2537		flags = BTRFS_BLOCK_GROUP_DATA;
2538	else if (root == fs_info->chunk_root)
2539		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2540	else
2541		flags = BTRFS_BLOCK_GROUP_METADATA;
2542
2543	ret = btrfs_get_alloc_profile(fs_info, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544	return ret;
2545}
2546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2548{
2549	struct btrfs_block_group_cache *cache;
2550	u64 bytenr;
2551
2552	spin_lock(&fs_info->block_group_cache_lock);
2553	bytenr = fs_info->first_logical_byte;
2554	spin_unlock(&fs_info->block_group_cache_lock);
2555
2556	if (bytenr < (u64)-1)
2557		return bytenr;
2558
2559	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2560	if (!cache)
2561		return 0;
2562
2563	bytenr = cache->key.objectid;
2564	btrfs_put_block_group(cache);
2565
2566	return bytenr;
2567}
2568
2569static int pin_down_extent(struct btrfs_block_group_cache *cache,
 
2570			   u64 bytenr, u64 num_bytes, int reserved)
2571{
2572	struct btrfs_fs_info *fs_info = cache->fs_info;
2573
2574	spin_lock(&cache->space_info->lock);
2575	spin_lock(&cache->lock);
2576	cache->pinned += num_bytes;
2577	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2578					     num_bytes);
2579	if (reserved) {
2580		cache->reserved -= num_bytes;
2581		cache->space_info->bytes_reserved -= num_bytes;
2582	}
2583	spin_unlock(&cache->lock);
2584	spin_unlock(&cache->space_info->lock);
2585
2586	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2587		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2588	set_extent_dirty(fs_info->pinned_extents, bytenr,
2589			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2590	return 0;
2591}
2592
2593/*
2594 * this function must be called within transaction
2595 */
2596int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2597		     u64 bytenr, u64 num_bytes, int reserved)
2598{
2599	struct btrfs_block_group_cache *cache;
2600
2601	cache = btrfs_lookup_block_group(fs_info, bytenr);
2602	BUG_ON(!cache); /* Logic error */
2603
2604	pin_down_extent(cache, bytenr, num_bytes, reserved);
2605
2606	btrfs_put_block_group(cache);
2607	return 0;
2608}
2609
2610/*
2611 * this function must be called within transaction
2612 */
2613int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2614				    u64 bytenr, u64 num_bytes)
2615{
2616	struct btrfs_block_group_cache *cache;
2617	int ret;
2618
2619	cache = btrfs_lookup_block_group(fs_info, bytenr);
2620	if (!cache)
2621		return -EINVAL;
2622
2623	/*
2624	 * pull in the free space cache (if any) so that our pin
2625	 * removes the free space from the cache.  We have load_only set
2626	 * to one because the slow code to read in the free extents does check
2627	 * the pinned extents.
2628	 */
2629	btrfs_cache_block_group(cache, 1);
2630
2631	pin_down_extent(cache, bytenr, num_bytes, 0);
2632
2633	/* remove us from the free space cache (if we're there at all) */
2634	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2635	btrfs_put_block_group(cache);
2636	return ret;
2637}
2638
2639static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2640				   u64 start, u64 num_bytes)
2641{
2642	int ret;
2643	struct btrfs_block_group_cache *block_group;
2644	struct btrfs_caching_control *caching_ctl;
2645
2646	block_group = btrfs_lookup_block_group(fs_info, start);
2647	if (!block_group)
2648		return -EINVAL;
2649
2650	btrfs_cache_block_group(block_group, 0);
2651	caching_ctl = btrfs_get_caching_control(block_group);
2652
2653	if (!caching_ctl) {
2654		/* Logic error */
2655		BUG_ON(!btrfs_block_group_cache_done(block_group));
2656		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2657	} else {
2658		mutex_lock(&caching_ctl->mutex);
2659
2660		if (start >= caching_ctl->progress) {
2661			ret = btrfs_add_excluded_extent(fs_info, start,
2662							num_bytes);
2663		} else if (start + num_bytes <= caching_ctl->progress) {
2664			ret = btrfs_remove_free_space(block_group,
2665						      start, num_bytes);
2666		} else {
2667			num_bytes = caching_ctl->progress - start;
2668			ret = btrfs_remove_free_space(block_group,
2669						      start, num_bytes);
2670			if (ret)
2671				goto out_lock;
2672
2673			num_bytes = (start + num_bytes) -
2674				caching_ctl->progress;
2675			start = caching_ctl->progress;
2676			ret = btrfs_add_excluded_extent(fs_info, start,
2677							num_bytes);
2678		}
2679out_lock:
2680		mutex_unlock(&caching_ctl->mutex);
2681		btrfs_put_caching_control(caching_ctl);
2682	}
2683	btrfs_put_block_group(block_group);
2684	return ret;
2685}
2686
2687int btrfs_exclude_logged_extents(struct extent_buffer *eb)
 
2688{
2689	struct btrfs_fs_info *fs_info = eb->fs_info;
2690	struct btrfs_file_extent_item *item;
2691	struct btrfs_key key;
2692	int found_type;
2693	int i;
2694	int ret = 0;
2695
2696	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2697		return 0;
2698
2699	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2700		btrfs_item_key_to_cpu(eb, &key, i);
2701		if (key.type != BTRFS_EXTENT_DATA_KEY)
2702			continue;
2703		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2704		found_type = btrfs_file_extent_type(eb, item);
2705		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2706			continue;
2707		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2708			continue;
2709		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2710		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2711		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2712		if (ret)
2713			break;
2714	}
2715
2716	return ret;
2717}
2718
2719static void
2720btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
2721{
2722	atomic_inc(&bg->reservations);
2723}
2724
2725void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2726{
2727	struct btrfs_caching_control *next;
2728	struct btrfs_caching_control *caching_ctl;
2729	struct btrfs_block_group_cache *cache;
2730
2731	down_write(&fs_info->commit_root_sem);
2732
2733	list_for_each_entry_safe(caching_ctl, next,
2734				 &fs_info->caching_block_groups, list) {
2735		cache = caching_ctl->block_group;
2736		if (btrfs_block_group_cache_done(cache)) {
2737			cache->last_byte_to_unpin = (u64)-1;
2738			list_del_init(&caching_ctl->list);
2739			btrfs_put_caching_control(caching_ctl);
2740		} else {
2741			cache->last_byte_to_unpin = caching_ctl->progress;
2742		}
2743	}
2744
2745	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2746		fs_info->pinned_extents = &fs_info->freed_extents[1];
2747	else
2748		fs_info->pinned_extents = &fs_info->freed_extents[0];
2749
2750	up_write(&fs_info->commit_root_sem);
2751
2752	btrfs_update_global_block_rsv(fs_info);
2753}
2754
2755/*
2756 * Returns the free cluster for the given space info and sets empty_cluster to
2757 * what it should be based on the mount options.
2758 */
2759static struct btrfs_free_cluster *
2760fetch_cluster_info(struct btrfs_fs_info *fs_info,
2761		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2762{
2763	struct btrfs_free_cluster *ret = NULL;
 
2764
2765	*empty_cluster = 0;
2766	if (btrfs_mixed_space_info(space_info))
2767		return ret;
2768
 
 
2769	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2770		ret = &fs_info->meta_alloc_cluster;
2771		if (btrfs_test_opt(fs_info, SSD))
2772			*empty_cluster = SZ_2M;
2773		else
2774			*empty_cluster = SZ_64K;
2775	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2776		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2777		*empty_cluster = SZ_2M;
2778		ret = &fs_info->data_alloc_cluster;
2779	}
2780
2781	return ret;
2782}
2783
2784static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2785			      u64 start, u64 end,
2786			      const bool return_free_space)
2787{
2788	struct btrfs_block_group_cache *cache = NULL;
2789	struct btrfs_space_info *space_info;
2790	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2791	struct btrfs_free_cluster *cluster = NULL;
2792	u64 len;
2793	u64 total_unpinned = 0;
2794	u64 empty_cluster = 0;
2795	bool readonly;
2796
2797	while (start <= end) {
2798		readonly = false;
2799		if (!cache ||
2800		    start >= cache->key.objectid + cache->key.offset) {
2801			if (cache)
2802				btrfs_put_block_group(cache);
2803			total_unpinned = 0;
2804			cache = btrfs_lookup_block_group(fs_info, start);
2805			BUG_ON(!cache); /* Logic error */
2806
2807			cluster = fetch_cluster_info(fs_info,
2808						     cache->space_info,
2809						     &empty_cluster);
2810			empty_cluster <<= 1;
2811		}
2812
2813		len = cache->key.objectid + cache->key.offset - start;
2814		len = min(len, end + 1 - start);
2815
2816		if (start < cache->last_byte_to_unpin) {
2817			len = min(len, cache->last_byte_to_unpin - start);
2818			if (return_free_space)
2819				btrfs_add_free_space(cache, start, len);
2820		}
2821
2822		start += len;
2823		total_unpinned += len;
2824		space_info = cache->space_info;
2825
2826		/*
2827		 * If this space cluster has been marked as fragmented and we've
2828		 * unpinned enough in this block group to potentially allow a
2829		 * cluster to be created inside of it go ahead and clear the
2830		 * fragmented check.
2831		 */
2832		if (cluster && cluster->fragmented &&
2833		    total_unpinned > empty_cluster) {
2834			spin_lock(&cluster->lock);
2835			cluster->fragmented = 0;
2836			spin_unlock(&cluster->lock);
2837		}
2838
2839		spin_lock(&space_info->lock);
2840		spin_lock(&cache->lock);
2841		cache->pinned -= len;
2842		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
 
 
 
2843		space_info->max_extent_size = 0;
2844		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2845			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2846		if (cache->ro) {
2847			space_info->bytes_readonly += len;
2848			readonly = true;
2849		}
2850		spin_unlock(&cache->lock);
2851		if (!readonly && return_free_space &&
2852		    global_rsv->space_info == space_info) {
2853			u64 to_add = len;
2854
2855			spin_lock(&global_rsv->lock);
2856			if (!global_rsv->full) {
2857				to_add = min(len, global_rsv->size -
2858					     global_rsv->reserved);
2859				global_rsv->reserved += to_add;
2860				btrfs_space_info_update_bytes_may_use(fs_info,
2861						space_info, to_add);
2862				if (global_rsv->reserved >= global_rsv->size)
2863					global_rsv->full = 1;
 
 
 
 
2864				len -= to_add;
2865			}
2866			spin_unlock(&global_rsv->lock);
2867			/* Add to any tickets we may have */
2868			if (len)
2869				btrfs_try_granting_tickets(fs_info,
2870							   space_info);
2871		}
2872		spin_unlock(&space_info->lock);
2873	}
2874
2875	if (cache)
2876		btrfs_put_block_group(cache);
2877	return 0;
2878}
2879
2880int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
 
2881{
2882	struct btrfs_fs_info *fs_info = trans->fs_info;
2883	struct btrfs_block_group_cache *block_group, *tmp;
2884	struct list_head *deleted_bgs;
2885	struct extent_io_tree *unpin;
2886	u64 start;
2887	u64 end;
2888	int ret;
2889
2890	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2891		unpin = &fs_info->freed_extents[1];
2892	else
2893		unpin = &fs_info->freed_extents[0];
2894
2895	while (!trans->aborted) {
2896		struct extent_state *cached_state = NULL;
2897
2898		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2899		ret = find_first_extent_bit(unpin, 0, &start, &end,
2900					    EXTENT_DIRTY, &cached_state);
2901		if (ret) {
2902			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2903			break;
2904		}
2905
2906		if (btrfs_test_opt(fs_info, DISCARD))
2907			ret = btrfs_discard_extent(fs_info, start,
2908						   end + 1 - start, NULL);
2909
2910		clear_extent_dirty(unpin, start, end, &cached_state);
2911		unpin_extent_range(fs_info, start, end, true);
2912		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2913		free_extent_state(cached_state);
2914		cond_resched();
2915	}
2916
2917	/*
2918	 * Transaction is finished.  We don't need the lock anymore.  We
2919	 * do need to clean up the block groups in case of a transaction
2920	 * abort.
2921	 */
2922	deleted_bgs = &trans->transaction->deleted_bgs;
2923	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2924		u64 trimmed = 0;
2925
2926		ret = -EROFS;
2927		if (!trans->aborted)
2928			ret = btrfs_discard_extent(fs_info,
2929						   block_group->key.objectid,
2930						   block_group->key.offset,
2931						   &trimmed);
2932
2933		list_del_init(&block_group->bg_list);
2934		btrfs_put_block_group_trimming(block_group);
2935		btrfs_put_block_group(block_group);
2936
2937		if (ret) {
2938			const char *errstr = btrfs_decode_error(ret);
2939			btrfs_warn(fs_info,
2940			   "discard failed while removing blockgroup: errno=%d %s",
2941				   ret, errstr);
2942		}
2943	}
2944
2945	return 0;
2946}
2947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2949			       struct btrfs_delayed_ref_node *node, u64 parent,
2950			       u64 root_objectid, u64 owner_objectid,
2951			       u64 owner_offset, int refs_to_drop,
2952			       struct btrfs_delayed_extent_op *extent_op)
 
2953{
2954	struct btrfs_fs_info *info = trans->fs_info;
2955	struct btrfs_key key;
2956	struct btrfs_path *path;
2957	struct btrfs_root *extent_root = info->extent_root;
2958	struct extent_buffer *leaf;
2959	struct btrfs_extent_item *ei;
2960	struct btrfs_extent_inline_ref *iref;
2961	int ret;
2962	int is_data;
2963	int extent_slot = 0;
2964	int found_extent = 0;
2965	int num_to_del = 1;
2966	u32 item_size;
2967	u64 refs;
2968	u64 bytenr = node->bytenr;
2969	u64 num_bytes = node->num_bytes;
2970	int last_ref = 0;
2971	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2972
2973	path = btrfs_alloc_path();
2974	if (!path)
2975		return -ENOMEM;
2976
2977	path->reada = READA_FORWARD;
2978	path->leave_spinning = 1;
2979
2980	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981	BUG_ON(!is_data && refs_to_drop != 1);
2982
2983	if (is_data)
2984		skinny_metadata = false;
2985
2986	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987				    parent, root_objectid, owner_objectid,
 
2988				    owner_offset);
2989	if (ret == 0) {
2990		extent_slot = path->slots[0];
2991		while (extent_slot >= 0) {
2992			btrfs_item_key_to_cpu(path->nodes[0], &key,
2993					      extent_slot);
2994			if (key.objectid != bytenr)
2995				break;
2996			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997			    key.offset == num_bytes) {
2998				found_extent = 1;
2999				break;
3000			}
3001			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002			    key.offset == owner_objectid) {
3003				found_extent = 1;
3004				break;
3005			}
3006			if (path->slots[0] - extent_slot > 5)
3007				break;
3008			extent_slot--;
3009		}
3010
 
 
 
 
3011		if (!found_extent) {
3012			BUG_ON(iref);
3013			ret = remove_extent_backref(trans, path, NULL,
3014						    refs_to_drop,
3015						    is_data, &last_ref);
3016			if (ret) {
3017				btrfs_abort_transaction(trans, ret);
3018				goto out;
3019			}
3020			btrfs_release_path(path);
3021			path->leave_spinning = 1;
3022
3023			key.objectid = bytenr;
3024			key.type = BTRFS_EXTENT_ITEM_KEY;
3025			key.offset = num_bytes;
3026
3027			if (!is_data && skinny_metadata) {
3028				key.type = BTRFS_METADATA_ITEM_KEY;
3029				key.offset = owner_objectid;
3030			}
3031
3032			ret = btrfs_search_slot(trans, extent_root,
3033						&key, path, -1, 1);
3034			if (ret > 0 && skinny_metadata && path->slots[0]) {
3035				/*
3036				 * Couldn't find our skinny metadata item,
3037				 * see if we have ye olde extent item.
3038				 */
3039				path->slots[0]--;
3040				btrfs_item_key_to_cpu(path->nodes[0], &key,
3041						      path->slots[0]);
3042				if (key.objectid == bytenr &&
3043				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3044				    key.offset == num_bytes)
3045					ret = 0;
3046			}
3047
3048			if (ret > 0 && skinny_metadata) {
3049				skinny_metadata = false;
3050				key.objectid = bytenr;
3051				key.type = BTRFS_EXTENT_ITEM_KEY;
3052				key.offset = num_bytes;
3053				btrfs_release_path(path);
3054				ret = btrfs_search_slot(trans, extent_root,
3055							&key, path, -1, 1);
3056			}
3057
3058			if (ret) {
3059				btrfs_err(info,
3060					  "umm, got %d back from search, was looking for %llu",
3061					  ret, bytenr);
3062				if (ret > 0)
3063					btrfs_print_leaf(path->nodes[0]);
3064			}
3065			if (ret < 0) {
3066				btrfs_abort_transaction(trans, ret);
3067				goto out;
3068			}
3069			extent_slot = path->slots[0];
3070		}
3071	} else if (WARN_ON(ret == -ENOENT)) {
3072		btrfs_print_leaf(path->nodes[0]);
3073		btrfs_err(info,
3074			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3075			bytenr, parent, root_objectid, owner_objectid,
3076			owner_offset);
3077		btrfs_abort_transaction(trans, ret);
3078		goto out;
3079	} else {
3080		btrfs_abort_transaction(trans, ret);
3081		goto out;
3082	}
3083
3084	leaf = path->nodes[0];
3085	item_size = btrfs_item_size_nr(leaf, extent_slot);
3086	if (unlikely(item_size < sizeof(*ei))) {
3087		ret = -EINVAL;
3088		btrfs_print_v0_err(info);
3089		btrfs_abort_transaction(trans, ret);
3090		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091	}
 
 
3092	ei = btrfs_item_ptr(leaf, extent_slot,
3093			    struct btrfs_extent_item);
3094	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3096		struct btrfs_tree_block_info *bi;
3097		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098		bi = (struct btrfs_tree_block_info *)(ei + 1);
3099		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100	}
3101
3102	refs = btrfs_extent_refs(leaf, ei);
3103	if (refs < refs_to_drop) {
3104		btrfs_err(info,
3105			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106			  refs_to_drop, refs, bytenr);
3107		ret = -EINVAL;
3108		btrfs_abort_transaction(trans, ret);
3109		goto out;
3110	}
3111	refs -= refs_to_drop;
3112
3113	if (refs > 0) {
3114		if (extent_op)
3115			__run_delayed_extent_op(extent_op, leaf, ei);
3116		/*
3117		 * In the case of inline back ref, reference count will
3118		 * be updated by remove_extent_backref
3119		 */
3120		if (iref) {
3121			BUG_ON(!found_extent);
3122		} else {
3123			btrfs_set_extent_refs(leaf, ei, refs);
3124			btrfs_mark_buffer_dirty(leaf);
3125		}
3126		if (found_extent) {
3127			ret = remove_extent_backref(trans, path, iref,
3128						    refs_to_drop, is_data,
3129						    &last_ref);
3130			if (ret) {
3131				btrfs_abort_transaction(trans, ret);
3132				goto out;
3133			}
3134		}
 
 
3135	} else {
3136		if (found_extent) {
3137			BUG_ON(is_data && refs_to_drop !=
3138			       extent_data_ref_count(path, iref));
3139			if (iref) {
3140				BUG_ON(path->slots[0] != extent_slot);
3141			} else {
3142				BUG_ON(path->slots[0] != extent_slot + 1);
3143				path->slots[0] = extent_slot;
3144				num_to_del = 2;
3145			}
3146		}
3147
3148		last_ref = 1;
3149		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150				      num_to_del);
3151		if (ret) {
3152			btrfs_abort_transaction(trans, ret);
3153			goto out;
3154		}
3155		btrfs_release_path(path);
3156
3157		if (is_data) {
3158			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
3159			if (ret) {
3160				btrfs_abort_transaction(trans, ret);
3161				goto out;
3162			}
3163		}
3164
3165		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3166		if (ret) {
3167			btrfs_abort_transaction(trans, ret);
3168			goto out;
3169		}
3170
3171		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3172		if (ret) {
3173			btrfs_abort_transaction(trans, ret);
3174			goto out;
3175		}
3176	}
3177	btrfs_release_path(path);
3178
3179out:
3180	btrfs_free_path(path);
3181	return ret;
3182}
3183
3184/*
3185 * when we free an block, it is possible (and likely) that we free the last
3186 * delayed ref for that extent as well.  This searches the delayed ref tree for
3187 * a given extent, and if there are no other delayed refs to be processed, it
3188 * removes it from the tree.
3189 */
3190static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3191				      u64 bytenr)
3192{
3193	struct btrfs_delayed_ref_head *head;
3194	struct btrfs_delayed_ref_root *delayed_refs;
3195	int ret = 0;
3196
3197	delayed_refs = &trans->transaction->delayed_refs;
3198	spin_lock(&delayed_refs->lock);
3199	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3200	if (!head)
3201		goto out_delayed_unlock;
3202
3203	spin_lock(&head->lock);
3204	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3205		goto out;
3206
3207	if (cleanup_extent_op(head) != NULL)
3208		goto out;
 
 
 
 
3209
3210	/*
3211	 * waiting for the lock here would deadlock.  If someone else has it
3212	 * locked they are already in the process of dropping it anyway
3213	 */
3214	if (!mutex_trylock(&head->mutex))
3215		goto out;
3216
3217	btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218	head->processing = 0;
3219
3220	spin_unlock(&head->lock);
3221	spin_unlock(&delayed_refs->lock);
3222
3223	BUG_ON(head->extent_op);
3224	if (head->must_insert_reserved)
3225		ret = 1;
3226
3227	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3228	mutex_unlock(&head->mutex);
3229	btrfs_put_delayed_ref_head(head);
3230	return ret;
3231out:
3232	spin_unlock(&head->lock);
3233
3234out_delayed_unlock:
3235	spin_unlock(&delayed_refs->lock);
3236	return 0;
3237}
3238
3239void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3240			   struct btrfs_root *root,
3241			   struct extent_buffer *buf,
3242			   u64 parent, int last_ref)
3243{
3244	struct btrfs_fs_info *fs_info = root->fs_info;
3245	struct btrfs_ref generic_ref = { 0 };
3246	int pin = 1;
3247	int ret;
3248
3249	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3250			       buf->start, buf->len, parent);
3251	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3252			    root->root_key.objectid);
3253
3254	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3255		int old_ref_mod, new_ref_mod;
3256
3257		btrfs_ref_tree_mod(fs_info, &generic_ref);
3258		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3259						 &old_ref_mod, &new_ref_mod);
 
3260		BUG_ON(ret); /* -ENOMEM */
3261		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3262	}
3263
3264	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
 
 
 
3265		struct btrfs_block_group_cache *cache;
3266
3267		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3268			ret = check_ref_cleanup(trans, buf->start);
3269			if (!ret)
3270				goto out;
3271		}
3272
3273		pin = 0;
3274		cache = btrfs_lookup_block_group(fs_info, buf->start);
3275
3276		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3277			pin_down_extent(cache, buf->start, buf->len, 1);
 
3278			btrfs_put_block_group(cache);
3279			goto out;
3280		}
3281
3282		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3283
3284		btrfs_add_free_space(cache, buf->start, buf->len);
3285		btrfs_free_reserved_bytes(cache, buf->len, 0);
3286		btrfs_put_block_group(cache);
3287		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
 
3288	}
3289out:
3290	if (pin)
3291		add_pinned_bytes(fs_info, &generic_ref);
 
3292
3293	if (last_ref) {
3294		/*
3295		 * Deleting the buffer, clear the corrupt flag since it doesn't
3296		 * matter anymore.
3297		 */
3298		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3299	}
3300}
3301
3302/* Can return -ENOMEM */
3303int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
 
 
 
3304{
3305	struct btrfs_fs_info *fs_info = trans->fs_info;
3306	int old_ref_mod, new_ref_mod;
3307	int ret;
3308
3309	if (btrfs_is_testing(fs_info))
3310		return 0;
3311
 
 
3312	/*
3313	 * tree log blocks never actually go into the extent allocation
3314	 * tree, just update pinning info and exit early.
3315	 */
3316	if ((ref->type == BTRFS_REF_METADATA &&
3317	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3318	    (ref->type == BTRFS_REF_DATA &&
3319	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3320		/* unlocks the pinned mutex */
3321		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3322		old_ref_mod = new_ref_mod = 0;
3323		ret = 0;
3324	} else if (ref->type == BTRFS_REF_METADATA) {
3325		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3326						 &old_ref_mod, &new_ref_mod);
3327	} else {
3328		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3329						 &old_ref_mod, &new_ref_mod);
3330	}
3331
3332	if (!((ref->type == BTRFS_REF_METADATA &&
3333	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3334	      (ref->type == BTRFS_REF_DATA &&
3335	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3336		btrfs_ref_tree_mod(fs_info, ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337
3338	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3339		add_pinned_bytes(fs_info, ref);
 
 
 
 
 
 
 
3340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341	return ret;
3342}
3343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344enum btrfs_loop_type {
3345	LOOP_CACHING_NOWAIT,
3346	LOOP_CACHING_WAIT,
3347	LOOP_ALLOC_CHUNK,
3348	LOOP_NO_EMPTY_SIZE,
3349};
3350
3351static inline void
3352btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
3353		       int delalloc)
3354{
3355	if (delalloc)
3356		down_read(&cache->data_rwsem);
3357}
3358
3359static inline void
3360btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
3361		       int delalloc)
3362{
3363	btrfs_get_block_group(cache);
3364	if (delalloc)
3365		down_read(&cache->data_rwsem);
3366}
3367
3368static struct btrfs_block_group_cache *
3369btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
3370		   struct btrfs_free_cluster *cluster,
3371		   int delalloc)
3372{
3373	struct btrfs_block_group_cache *used_bg = NULL;
3374
3375	spin_lock(&cluster->refill_lock);
3376	while (1) {
3377		used_bg = cluster->block_group;
3378		if (!used_bg)
3379			return NULL;
3380
3381		if (used_bg == block_group)
3382			return used_bg;
3383
3384		btrfs_get_block_group(used_bg);
3385
3386		if (!delalloc)
3387			return used_bg;
3388
3389		if (down_read_trylock(&used_bg->data_rwsem))
3390			return used_bg;
3391
3392		spin_unlock(&cluster->refill_lock);
3393
3394		/* We should only have one-level nested. */
3395		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396
3397		spin_lock(&cluster->refill_lock);
3398		if (used_bg == cluster->block_group)
3399			return used_bg;
3400
3401		up_read(&used_bg->data_rwsem);
3402		btrfs_put_block_group(used_bg);
3403	}
3404}
3405
3406static inline void
3407btrfs_release_block_group(struct btrfs_block_group_cache *cache,
3408			 int delalloc)
3409{
3410	if (delalloc)
3411		up_read(&cache->data_rwsem);
3412	btrfs_put_block_group(cache);
3413}
3414
3415/*
3416 * Structure used internally for find_free_extent() function.  Wraps needed
3417 * parameters.
3418 */
3419struct find_free_extent_ctl {
3420	/* Basic allocation info */
3421	u64 ram_bytes;
3422	u64 num_bytes;
3423	u64 empty_size;
3424	u64 flags;
3425	int delalloc;
3426
3427	/* Where to start the search inside the bg */
3428	u64 search_start;
3429
3430	/* For clustered allocation */
3431	u64 empty_cluster;
3432
3433	bool have_caching_bg;
3434	bool orig_have_caching_bg;
3435
3436	/* RAID index, converted from flags */
3437	int index;
3438
3439	/*
3440	 * Current loop number, check find_free_extent_update_loop() for details
3441	 */
3442	int loop;
3443
3444	/*
3445	 * Whether we're refilling a cluster, if true we need to re-search
3446	 * current block group but don't try to refill the cluster again.
3447	 */
3448	bool retry_clustered;
3449
3450	/*
3451	 * Whether we're updating free space cache, if true we need to re-search
3452	 * current block group but don't try updating free space cache again.
3453	 */
3454	bool retry_unclustered;
3455
3456	/* If current block group is cached */
3457	int cached;
3458
3459	/* Max contiguous hole found */
3460	u64 max_extent_size;
3461
3462	/* Total free space from free space cache, not always contiguous */
3463	u64 total_free_space;
3464
3465	/* Found result */
3466	u64 found_offset;
3467};
3468
3469
3470/*
3471 * Helper function for find_free_extent().
3472 *
3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3474 * Return -EAGAIN to inform caller that we need to re-search this block group
3475 * Return >0 to inform caller that we find nothing
3476 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3477 */
3478static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
3479		struct btrfs_free_cluster *last_ptr,
3480		struct find_free_extent_ctl *ffe_ctl,
3481		struct btrfs_block_group_cache **cluster_bg_ret)
3482{
3483	struct btrfs_block_group_cache *cluster_bg;
3484	u64 aligned_cluster;
3485	u64 offset;
3486	int ret;
3487
3488	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3489	if (!cluster_bg)
3490		goto refill_cluster;
3491	if (cluster_bg != bg && (cluster_bg->ro ||
3492	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3493		goto release_cluster;
3494
3495	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3496			ffe_ctl->num_bytes, cluster_bg->key.objectid,
3497			&ffe_ctl->max_extent_size);
3498	if (offset) {
3499		/* We have a block, we're done */
3500		spin_unlock(&last_ptr->refill_lock);
3501		trace_btrfs_reserve_extent_cluster(cluster_bg,
3502				ffe_ctl->search_start, ffe_ctl->num_bytes);
3503		*cluster_bg_ret = cluster_bg;
3504		ffe_ctl->found_offset = offset;
3505		return 0;
3506	}
3507	WARN_ON(last_ptr->block_group != cluster_bg);
3508
3509release_cluster:
3510	/*
3511	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3512	 * lets just skip it and let the allocator find whatever block it can
3513	 * find. If we reach this point, we will have tried the cluster
3514	 * allocator plenty of times and not have found anything, so we are
3515	 * likely way too fragmented for the clustering stuff to find anything.
3516	 *
3517	 * However, if the cluster is taken from the current block group,
3518	 * release the cluster first, so that we stand a better chance of
3519	 * succeeding in the unclustered allocation.
3520	 */
3521	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3522		spin_unlock(&last_ptr->refill_lock);
3523		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3524		return -ENOENT;
3525	}
3526
3527	/* This cluster didn't work out, free it and start over */
3528	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3529
3530	if (cluster_bg != bg)
3531		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3532
3533refill_cluster:
3534	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3535		spin_unlock(&last_ptr->refill_lock);
3536		return -ENOENT;
3537	}
3538
3539	aligned_cluster = max_t(u64,
3540			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3541			bg->full_stripe_len);
3542	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3543			ffe_ctl->num_bytes, aligned_cluster);
3544	if (ret == 0) {
3545		/* Now pull our allocation out of this cluster */
3546		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3547				ffe_ctl->num_bytes, ffe_ctl->search_start,
3548				&ffe_ctl->max_extent_size);
3549		if (offset) {
3550			/* We found one, proceed */
3551			spin_unlock(&last_ptr->refill_lock);
3552			trace_btrfs_reserve_extent_cluster(bg,
3553					ffe_ctl->search_start,
3554					ffe_ctl->num_bytes);
3555			ffe_ctl->found_offset = offset;
3556			return 0;
3557		}
3558	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3559		   !ffe_ctl->retry_clustered) {
3560		spin_unlock(&last_ptr->refill_lock);
3561
3562		ffe_ctl->retry_clustered = true;
3563		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3564				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3565		return -EAGAIN;
3566	}
3567	/*
3568	 * At this point we either didn't find a cluster or we weren't able to
3569	 * allocate a block from our cluster.  Free the cluster we've been
3570	 * trying to use, and go to the next block group.
3571	 */
3572	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3573	spin_unlock(&last_ptr->refill_lock);
3574	return 1;
3575}
3576
3577/*
3578 * Return >0 to inform caller that we find nothing
3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3580 * Return -EAGAIN to inform caller that we need to re-search this block group
3581 */
3582static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
3583		struct btrfs_free_cluster *last_ptr,
3584		struct find_free_extent_ctl *ffe_ctl)
3585{
3586	u64 offset;
3587
3588	/*
3589	 * We are doing an unclustered allocation, set the fragmented flag so
3590	 * we don't bother trying to setup a cluster again until we get more
3591	 * space.
3592	 */
3593	if (unlikely(last_ptr)) {
3594		spin_lock(&last_ptr->lock);
3595		last_ptr->fragmented = 1;
3596		spin_unlock(&last_ptr->lock);
3597	}
3598	if (ffe_ctl->cached) {
3599		struct btrfs_free_space_ctl *free_space_ctl;
3600
3601		free_space_ctl = bg->free_space_ctl;
3602		spin_lock(&free_space_ctl->tree_lock);
3603		if (free_space_ctl->free_space <
3604		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3605		    ffe_ctl->empty_size) {
3606			ffe_ctl->total_free_space = max_t(u64,
3607					ffe_ctl->total_free_space,
3608					free_space_ctl->free_space);
3609			spin_unlock(&free_space_ctl->tree_lock);
3610			return 1;
3611		}
3612		spin_unlock(&free_space_ctl->tree_lock);
3613	}
3614
3615	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3616			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3617			&ffe_ctl->max_extent_size);
3618
3619	/*
3620	 * If we didn't find a chunk, and we haven't failed on this block group
3621	 * before, and this block group is in the middle of caching and we are
3622	 * ok with waiting, then go ahead and wait for progress to be made, and
3623	 * set @retry_unclustered to true.
3624	 *
3625	 * If @retry_unclustered is true then we've already waited on this
3626	 * block group once and should move on to the next block group.
3627	 */
3628	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3629	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3630		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3631						      ffe_ctl->empty_size);
3632		ffe_ctl->retry_unclustered = true;
3633		return -EAGAIN;
3634	} else if (!offset) {
3635		return 1;
3636	}
3637	ffe_ctl->found_offset = offset;
3638	return 0;
3639}
3640
3641/*
3642 * Return >0 means caller needs to re-search for free extent
3643 * Return 0 means we have the needed free extent.
3644 * Return <0 means we failed to locate any free extent.
3645 */
3646static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3647					struct btrfs_free_cluster *last_ptr,
3648					struct btrfs_key *ins,
3649					struct find_free_extent_ctl *ffe_ctl,
3650					int full_search, bool use_cluster)
3651{
3652	struct btrfs_root *root = fs_info->extent_root;
3653	int ret;
3654
3655	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3656	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3657		ffe_ctl->orig_have_caching_bg = true;
3658
3659	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3660	    ffe_ctl->have_caching_bg)
3661		return 1;
3662
3663	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3664		return 1;
3665
3666	if (ins->objectid) {
3667		if (!use_cluster && last_ptr) {
3668			spin_lock(&last_ptr->lock);
3669			last_ptr->window_start = ins->objectid;
3670			spin_unlock(&last_ptr->lock);
3671		}
3672		return 0;
3673	}
3674
3675	/*
3676	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3677	 *			caching kthreads as we move along
3678	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3679	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3680	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3681	 *		       again
3682	 */
3683	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3684		ffe_ctl->index = 0;
3685		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3686			/*
3687			 * We want to skip the LOOP_CACHING_WAIT step if we
3688			 * don't have any uncached bgs and we've already done a
3689			 * full search through.
3690			 */
3691			if (ffe_ctl->orig_have_caching_bg || !full_search)
3692				ffe_ctl->loop = LOOP_CACHING_WAIT;
3693			else
3694				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3695		} else {
3696			ffe_ctl->loop++;
3697		}
3698
3699		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3700			struct btrfs_trans_handle *trans;
3701			int exist = 0;
3702
3703			trans = current->journal_info;
3704			if (trans)
3705				exist = 1;
3706			else
3707				trans = btrfs_join_transaction(root);
3708
3709			if (IS_ERR(trans)) {
3710				ret = PTR_ERR(trans);
3711				return ret;
3712			}
3713
3714			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3715						CHUNK_ALLOC_FORCE);
3716
3717			/*
3718			 * If we can't allocate a new chunk we've already looped
3719			 * through at least once, move on to the NO_EMPTY_SIZE
3720			 * case.
3721			 */
3722			if (ret == -ENOSPC)
3723				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3724
3725			/* Do not bail out on ENOSPC since we can do more. */
3726			if (ret < 0 && ret != -ENOSPC)
3727				btrfs_abort_transaction(trans, ret);
3728			else
3729				ret = 0;
3730			if (!exist)
3731				btrfs_end_transaction(trans);
3732			if (ret)
3733				return ret;
3734		}
3735
3736		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3737			/*
3738			 * Don't loop again if we already have no empty_size and
3739			 * no empty_cluster.
3740			 */
3741			if (ffe_ctl->empty_size == 0 &&
3742			    ffe_ctl->empty_cluster == 0)
3743				return -ENOSPC;
3744			ffe_ctl->empty_size = 0;
3745			ffe_ctl->empty_cluster = 0;
3746		}
3747		return 1;
3748	}
3749	return -ENOSPC;
3750}
3751
3752/*
3753 * walks the btree of allocated extents and find a hole of a given size.
3754 * The key ins is changed to record the hole:
3755 * ins->objectid == start position
3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3757 * ins->offset == the size of the hole.
3758 * Any available blocks before search_start are skipped.
3759 *
3760 * If there is no suitable free space, we will record the max size of
3761 * the free space extent currently.
3762 *
3763 * The overall logic and call chain:
3764 *
3765 * find_free_extent()
3766 * |- Iterate through all block groups
3767 * |  |- Get a valid block group
3768 * |  |- Try to do clustered allocation in that block group
3769 * |  |- Try to do unclustered allocation in that block group
3770 * |  |- Check if the result is valid
3771 * |  |  |- If valid, then exit
3772 * |  |- Jump to next block group
3773 * |
3774 * |- Push harder to find free extents
3775 *    |- If not found, re-iterate all block groups
3776 */
3777static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3778				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3779				u64 hint_byte, struct btrfs_key *ins,
3780				u64 flags, int delalloc)
3781{
 
3782	int ret = 0;
 
3783	struct btrfs_free_cluster *last_ptr = NULL;
3784	struct btrfs_block_group_cache *block_group = NULL;
3785	struct find_free_extent_ctl ffe_ctl = {0};
 
 
3786	struct btrfs_space_info *space_info;
 
 
 
 
3787	bool use_cluster = true;
 
 
3788	bool full_search = false;
3789
3790	WARN_ON(num_bytes < fs_info->sectorsize);
3791
3792	ffe_ctl.ram_bytes = ram_bytes;
3793	ffe_ctl.num_bytes = num_bytes;
3794	ffe_ctl.empty_size = empty_size;
3795	ffe_ctl.flags = flags;
3796	ffe_ctl.search_start = 0;
3797	ffe_ctl.retry_clustered = false;
3798	ffe_ctl.retry_unclustered = false;
3799	ffe_ctl.delalloc = delalloc;
3800	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3801	ffe_ctl.have_caching_bg = false;
3802	ffe_ctl.orig_have_caching_bg = false;
3803	ffe_ctl.found_offset = 0;
3804
3805	ins->type = BTRFS_EXTENT_ITEM_KEY;
3806	ins->objectid = 0;
3807	ins->offset = 0;
3808
3809	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3810
3811	space_info = btrfs_find_space_info(fs_info, flags);
3812	if (!space_info) {
3813		btrfs_err(fs_info, "No space info for %llu", flags);
3814		return -ENOSPC;
3815	}
3816
3817	/*
3818	 * If our free space is heavily fragmented we may not be able to make
3819	 * big contiguous allocations, so instead of doing the expensive search
3820	 * for free space, simply return ENOSPC with our max_extent_size so we
3821	 * can go ahead and search for a more manageable chunk.
3822	 *
3823	 * If our max_extent_size is large enough for our allocation simply
3824	 * disable clustering since we will likely not be able to find enough
3825	 * space to create a cluster and induce latency trying.
3826	 */
3827	if (unlikely(space_info->max_extent_size)) {
3828		spin_lock(&space_info->lock);
3829		if (space_info->max_extent_size &&
3830		    num_bytes > space_info->max_extent_size) {
3831			ins->offset = space_info->max_extent_size;
3832			spin_unlock(&space_info->lock);
3833			return -ENOSPC;
3834		} else if (space_info->max_extent_size) {
3835			use_cluster = false;
3836		}
3837		spin_unlock(&space_info->lock);
3838	}
3839
3840	last_ptr = fetch_cluster_info(fs_info, space_info,
3841				      &ffe_ctl.empty_cluster);
3842	if (last_ptr) {
3843		spin_lock(&last_ptr->lock);
3844		if (last_ptr->block_group)
3845			hint_byte = last_ptr->window_start;
3846		if (last_ptr->fragmented) {
3847			/*
3848			 * We still set window_start so we can keep track of the
3849			 * last place we found an allocation to try and save
3850			 * some time.
3851			 */
3852			hint_byte = last_ptr->window_start;
3853			use_cluster = false;
3854		}
3855		spin_unlock(&last_ptr->lock);
3856	}
3857
3858	ffe_ctl.search_start = max(ffe_ctl.search_start,
3859				   first_logical_byte(fs_info, 0));
3860	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3861	if (ffe_ctl.search_start == hint_byte) {
3862		block_group = btrfs_lookup_block_group(fs_info,
3863						       ffe_ctl.search_start);
3864		/*
3865		 * we don't want to use the block group if it doesn't match our
3866		 * allocation bits, or if its not cached.
3867		 *
3868		 * However if we are re-searching with an ideal block group
3869		 * picked out then we don't care that the block group is cached.
3870		 */
3871		if (block_group && block_group_bits(block_group, flags) &&
3872		    block_group->cached != BTRFS_CACHE_NO) {
3873			down_read(&space_info->groups_sem);
3874			if (list_empty(&block_group->list) ||
3875			    block_group->ro) {
3876				/*
3877				 * someone is removing this block group,
3878				 * we can't jump into the have_block_group
3879				 * target because our list pointers are not
3880				 * valid
3881				 */
3882				btrfs_put_block_group(block_group);
3883				up_read(&space_info->groups_sem);
3884			} else {
3885				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3886						block_group->flags);
3887				btrfs_lock_block_group(block_group, delalloc);
3888				goto have_block_group;
3889			}
3890		} else if (block_group) {
3891			btrfs_put_block_group(block_group);
3892		}
3893	}
3894search:
3895	ffe_ctl.have_caching_bg = false;
3896	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3897	    ffe_ctl.index == 0)
3898		full_search = true;
3899	down_read(&space_info->groups_sem);
3900	list_for_each_entry(block_group,
3901			    &space_info->block_groups[ffe_ctl.index], list) {
3902		/* If the block group is read-only, we can skip it entirely. */
3903		if (unlikely(block_group->ro))
3904			continue;
3905
3906		btrfs_grab_block_group(block_group, delalloc);
3907		ffe_ctl.search_start = block_group->key.objectid;
3908
3909		/*
3910		 * this can happen if we end up cycling through all the
3911		 * raid types, but we want to make sure we only allocate
3912		 * for the proper type.
3913		 */
3914		if (!block_group_bits(block_group, flags)) {
3915			u64 extra = BTRFS_BLOCK_GROUP_DUP |
3916				BTRFS_BLOCK_GROUP_RAID1_MASK |
3917				BTRFS_BLOCK_GROUP_RAID56_MASK |
 
3918				BTRFS_BLOCK_GROUP_RAID10;
3919
3920			/*
3921			 * if they asked for extra copies and this block group
3922			 * doesn't provide them, bail.  This does allow us to
3923			 * fill raid0 from raid1.
3924			 */
3925			if ((flags & extra) && !(block_group->flags & extra))
3926				goto loop;
3927
3928			/*
3929			 * This block group has different flags than we want.
3930			 * It's possible that we have MIXED_GROUP flag but no
3931			 * block group is mixed.  Just skip such block group.
3932			 */
3933			btrfs_release_block_group(block_group, delalloc);
3934			continue;
3935		}
3936
3937have_block_group:
3938		ffe_ctl.cached = btrfs_block_group_cache_done(block_group);
3939		if (unlikely(!ffe_ctl.cached)) {
3940			ffe_ctl.have_caching_bg = true;
3941			ret = btrfs_cache_block_group(block_group, 0);
3942			BUG_ON(ret < 0);
3943			ret = 0;
3944		}
3945
3946		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3947			goto loop;
 
 
3948
3949		/*
3950		 * Ok we want to try and use the cluster allocator, so
3951		 * lets look there
3952		 */
3953		if (last_ptr && use_cluster) {
3954			struct btrfs_block_group_cache *cluster_bg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3955
3956			ret = find_free_extent_clustered(block_group, last_ptr,
3957							 &ffe_ctl, &cluster_bg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3959			if (ret == 0) {
3960				if (cluster_bg && cluster_bg != block_group) {
3961					btrfs_release_block_group(block_group,
3962								  delalloc);
3963					block_group = cluster_bg;
 
 
 
 
 
 
 
 
 
 
 
 
3964				}
3965				goto checks;
3966			} else if (ret == -EAGAIN) {
 
 
 
 
 
3967				goto have_block_group;
3968			} else if (ret > 0) {
3969				goto loop;
3970			}
3971			/* ret == -ENOENT case falls through */
 
 
 
 
 
 
 
 
 
3972		}
3973
3974		ret = find_free_extent_unclustered(block_group, last_ptr,
3975						   &ffe_ctl);
3976		if (ret == -EAGAIN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977			goto have_block_group;
3978		else if (ret > 0)
3979			goto loop;
3980		/* ret == 0 case falls through */
3981checks:
3982		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
3983					     fs_info->stripesize);
3984
3985		/* move on to the next group */
3986		if (ffe_ctl.search_start + num_bytes >
3987		    block_group->key.objectid + block_group->key.offset) {
3988			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3989					     num_bytes);
3990			goto loop;
3991		}
3992
3993		if (ffe_ctl.found_offset < ffe_ctl.search_start)
3994			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
3995				ffe_ctl.search_start - ffe_ctl.found_offset);
 
3996
3997		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
3998				num_bytes, delalloc);
3999		if (ret == -EAGAIN) {
4000			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4001					     num_bytes);
4002			goto loop;
4003		}
4004		btrfs_inc_block_group_reservations(block_group);
4005
4006		/* we are all good, lets return */
4007		ins->objectid = ffe_ctl.search_start;
4008		ins->offset = num_bytes;
4009
4010		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4011					   num_bytes);
4012		btrfs_release_block_group(block_group, delalloc);
4013		break;
4014loop:
4015		ffe_ctl.retry_clustered = false;
4016		ffe_ctl.retry_unclustered = false;
4017		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4018		       ffe_ctl.index);
4019		btrfs_release_block_group(block_group, delalloc);
4020		cond_resched();
4021	}
4022	up_read(&space_info->groups_sem);
4023
4024	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4025					   full_search, use_cluster);
4026	if (ret > 0)
 
 
 
 
 
4027		goto search;
4028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4029	if (ret == -ENOSPC) {
4030		/*
4031		 * Use ffe_ctl->total_free_space as fallback if we can't find
4032		 * any contiguous hole.
4033		 */
4034		if (!ffe_ctl.max_extent_size)
4035			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4036		spin_lock(&space_info->lock);
4037		space_info->max_extent_size = ffe_ctl.max_extent_size;
4038		spin_unlock(&space_info->lock);
4039		ins->offset = ffe_ctl.max_extent_size;
4040	}
4041	return ret;
4042}
4043
4044/*
4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4046 *			  hole that is at least as big as @num_bytes.
4047 *
4048 * @root           -	The root that will contain this extent
4049 *
4050 * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4051 *			is used for accounting purposes. This value differs
4052 *			from @num_bytes only in the case of compressed extents.
4053 *
4054 * @num_bytes      -	Number of bytes to allocate on-disk.
4055 *
4056 * @min_alloc_size -	Indicates the minimum amount of space that the
4057 *			allocator should try to satisfy. In some cases
4058 *			@num_bytes may be larger than what is required and if
4059 *			the filesystem is fragmented then allocation fails.
4060 *			However, the presence of @min_alloc_size gives a
4061 *			chance to try and satisfy the smaller allocation.
4062 *
4063 * @empty_size     -	A hint that you plan on doing more COW. This is the
4064 *			size in bytes the allocator should try to find free
4065 *			next to the block it returns.  This is just a hint and
4066 *			may be ignored by the allocator.
4067 *
4068 * @hint_byte      -	Hint to the allocator to start searching above the byte
4069 *			address passed. It might be ignored.
4070 *
4071 * @ins            -	This key is modified to record the found hole. It will
4072 *			have the following values:
4073 *			ins->objectid == start position
4074 *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4075 *			ins->offset == the size of the hole.
4076 *
4077 * @is_data        -	Boolean flag indicating whether an extent is
4078 *			allocated for data (true) or metadata (false)
4079 *
4080 * @delalloc       -	Boolean flag indicating whether this allocation is for
4081 *			delalloc or not. If 'true' data_rwsem of block groups
4082 *			is going to be acquired.
4083 *
4084 *
4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4086 * case -ENOSPC is returned then @ins->offset will contain the size of the
4087 * largest available hole the allocator managed to find.
4088 */
4089int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4090			 u64 num_bytes, u64 min_alloc_size,
4091			 u64 empty_size, u64 hint_byte,
4092			 struct btrfs_key *ins, int is_data, int delalloc)
4093{
4094	struct btrfs_fs_info *fs_info = root->fs_info;
4095	bool final_tried = num_bytes == min_alloc_size;
4096	u64 flags;
4097	int ret;
4098
4099	flags = get_alloc_profile_by_root(root, is_data);
4100again:
4101	WARN_ON(num_bytes < fs_info->sectorsize);
4102	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4103			       hint_byte, ins, flags, delalloc);
4104	if (!ret && !is_data) {
4105		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4106	} else if (ret == -ENOSPC) {
4107		if (!final_tried && ins->offset) {
4108			num_bytes = min(num_bytes >> 1, ins->offset);
4109			num_bytes = round_down(num_bytes,
4110					       fs_info->sectorsize);
4111			num_bytes = max(num_bytes, min_alloc_size);
4112			ram_bytes = num_bytes;
4113			if (num_bytes == min_alloc_size)
4114				final_tried = true;
4115			goto again;
4116		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4117			struct btrfs_space_info *sinfo;
4118
4119			sinfo = btrfs_find_space_info(fs_info, flags);
4120			btrfs_err(fs_info,
4121				  "allocation failed flags %llu, wanted %llu",
4122				  flags, num_bytes);
4123			if (sinfo)
4124				btrfs_dump_space_info(fs_info, sinfo,
4125						      num_bytes, 1);
4126		}
4127	}
4128
4129	return ret;
4130}
4131
4132static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4133					u64 start, u64 len,
4134					int pin, int delalloc)
4135{
4136	struct btrfs_block_group_cache *cache;
4137	int ret = 0;
4138
4139	cache = btrfs_lookup_block_group(fs_info, start);
4140	if (!cache) {
4141		btrfs_err(fs_info, "Unable to find block group for %llu",
4142			  start);
4143		return -ENOSPC;
4144	}
4145
4146	if (pin)
4147		pin_down_extent(cache, start, len, 1);
4148	else {
4149		if (btrfs_test_opt(fs_info, DISCARD))
4150			ret = btrfs_discard_extent(fs_info, start, len, NULL);
4151		btrfs_add_free_space(cache, start, len);
4152		btrfs_free_reserved_bytes(cache, len, delalloc);
4153		trace_btrfs_reserved_extent_free(fs_info, start, len);
4154	}
4155
4156	btrfs_put_block_group(cache);
4157	return ret;
4158}
4159
4160int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4161			       u64 start, u64 len, int delalloc)
4162{
4163	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4164}
4165
4166int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4167				       u64 start, u64 len)
4168{
4169	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4170}
4171
4172static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
 
4173				      u64 parent, u64 root_objectid,
4174				      u64 flags, u64 owner, u64 offset,
4175				      struct btrfs_key *ins, int ref_mod)
4176{
4177	struct btrfs_fs_info *fs_info = trans->fs_info;
4178	int ret;
4179	struct btrfs_extent_item *extent_item;
4180	struct btrfs_extent_inline_ref *iref;
4181	struct btrfs_path *path;
4182	struct extent_buffer *leaf;
4183	int type;
4184	u32 size;
4185
4186	if (parent > 0)
4187		type = BTRFS_SHARED_DATA_REF_KEY;
4188	else
4189		type = BTRFS_EXTENT_DATA_REF_KEY;
4190
4191	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4192
4193	path = btrfs_alloc_path();
4194	if (!path)
4195		return -ENOMEM;
4196
4197	path->leave_spinning = 1;
4198	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4199				      ins, size);
4200	if (ret) {
4201		btrfs_free_path(path);
4202		return ret;
4203	}
4204
4205	leaf = path->nodes[0];
4206	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4207				     struct btrfs_extent_item);
4208	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4209	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4210	btrfs_set_extent_flags(leaf, extent_item,
4211			       flags | BTRFS_EXTENT_FLAG_DATA);
4212
4213	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4214	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4215	if (parent > 0) {
4216		struct btrfs_shared_data_ref *ref;
4217		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4218		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4219		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4220	} else {
4221		struct btrfs_extent_data_ref *ref;
4222		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4223		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4224		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4225		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4226		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4227	}
4228
4229	btrfs_mark_buffer_dirty(path->nodes[0]);
4230	btrfs_free_path(path);
4231
4232	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
 
4233	if (ret)
4234		return ret;
4235
4236	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4237	if (ret) { /* -ENOENT, logic error */
4238		btrfs_err(fs_info, "update block group failed for %llu %llu",
4239			ins->objectid, ins->offset);
4240		BUG();
4241	}
4242	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4243	return ret;
4244}
4245
4246static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4247				     struct btrfs_delayed_ref_node *node,
4248				     struct btrfs_delayed_extent_op *extent_op)
 
 
4249{
4250	struct btrfs_fs_info *fs_info = trans->fs_info;
4251	int ret;
4252	struct btrfs_extent_item *extent_item;
4253	struct btrfs_key extent_key;
4254	struct btrfs_tree_block_info *block_info;
4255	struct btrfs_extent_inline_ref *iref;
4256	struct btrfs_path *path;
4257	struct extent_buffer *leaf;
4258	struct btrfs_delayed_tree_ref *ref;
4259	u32 size = sizeof(*extent_item) + sizeof(*iref);
4260	u64 num_bytes;
4261	u64 flags = extent_op->flags_to_set;
4262	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4263
4264	ref = btrfs_delayed_node_to_tree_ref(node);
4265
4266	extent_key.objectid = node->bytenr;
4267	if (skinny_metadata) {
4268		extent_key.offset = ref->level;
4269		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4270		num_bytes = fs_info->nodesize;
4271	} else {
4272		extent_key.offset = node->num_bytes;
4273		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4274		size += sizeof(*block_info);
4275		num_bytes = node->num_bytes;
4276	}
4277
4278	path = btrfs_alloc_path();
4279	if (!path)
 
 
4280		return -ENOMEM;
 
4281
4282	path->leave_spinning = 1;
4283	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4284				      &extent_key, size);
4285	if (ret) {
4286		btrfs_free_path(path);
 
 
4287		return ret;
4288	}
4289
4290	leaf = path->nodes[0];
4291	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4292				     struct btrfs_extent_item);
4293	btrfs_set_extent_refs(leaf, extent_item, 1);
4294	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4295	btrfs_set_extent_flags(leaf, extent_item,
4296			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4297
4298	if (skinny_metadata) {
4299		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
 
4300	} else {
4301		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4302		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4303		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4304		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4305	}
4306
4307	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4308		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4309		btrfs_set_extent_inline_ref_type(leaf, iref,
4310						 BTRFS_SHARED_BLOCK_REF_KEY);
4311		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4312	} else {
4313		btrfs_set_extent_inline_ref_type(leaf, iref,
4314						 BTRFS_TREE_BLOCK_REF_KEY);
4315		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4316	}
4317
4318	btrfs_mark_buffer_dirty(leaf);
4319	btrfs_free_path(path);
4320
4321	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4322					  num_bytes);
4323	if (ret)
4324		return ret;
4325
4326	ret = btrfs_update_block_group(trans, extent_key.objectid,
4327				       fs_info->nodesize, 1);
4328	if (ret) { /* -ENOENT, logic error */
4329		btrfs_err(fs_info, "update block group failed for %llu %llu",
4330			extent_key.objectid, extent_key.offset);
4331		BUG();
4332	}
4333
4334	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4335					  fs_info->nodesize);
4336	return ret;
4337}
4338
4339int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4340				     struct btrfs_root *root, u64 owner,
4341				     u64 offset, u64 ram_bytes,
4342				     struct btrfs_key *ins)
4343{
4344	struct btrfs_ref generic_ref = { 0 };
4345	int ret;
4346
4347	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4348
4349	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4350			       ins->objectid, ins->offset, 0);
4351	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4352	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4353	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4354					 ram_bytes, NULL, NULL);
4355	return ret;
4356}
4357
4358/*
4359 * this is used by the tree logging recovery code.  It records that
4360 * an extent has been allocated and makes sure to clear the free
4361 * space cache bits as well
4362 */
4363int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
 
4364				   u64 root_objectid, u64 owner, u64 offset,
4365				   struct btrfs_key *ins)
4366{
4367	struct btrfs_fs_info *fs_info = trans->fs_info;
4368	int ret;
4369	struct btrfs_block_group_cache *block_group;
4370	struct btrfs_space_info *space_info;
4371
4372	/*
4373	 * Mixed block groups will exclude before processing the log so we only
4374	 * need to do the exclude dance if this fs isn't mixed.
4375	 */
4376	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4377		ret = __exclude_logged_extent(fs_info, ins->objectid,
4378					      ins->offset);
4379		if (ret)
4380			return ret;
4381	}
4382
4383	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4384	if (!block_group)
4385		return -EINVAL;
4386
4387	space_info = block_group->space_info;
4388	spin_lock(&space_info->lock);
4389	spin_lock(&block_group->lock);
4390	space_info->bytes_reserved += ins->offset;
4391	block_group->reserved += ins->offset;
4392	spin_unlock(&block_group->lock);
4393	spin_unlock(&space_info->lock);
4394
4395	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4396					 offset, ins, 1);
4397	btrfs_put_block_group(block_group);
4398	return ret;
4399}
4400
4401static struct extent_buffer *
4402btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4403		      u64 bytenr, int level, u64 owner)
4404{
4405	struct btrfs_fs_info *fs_info = root->fs_info;
4406	struct extent_buffer *buf;
4407
4408	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4409	if (IS_ERR(buf))
4410		return buf;
4411
4412	/*
4413	 * Extra safety check in case the extent tree is corrupted and extent
4414	 * allocator chooses to use a tree block which is already used and
4415	 * locked.
4416	 */
4417	if (buf->lock_owner == current->pid) {
4418		btrfs_err_rl(fs_info,
4419"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4420			buf->start, btrfs_header_owner(buf), current->pid);
4421		free_extent_buffer(buf);
4422		return ERR_PTR(-EUCLEAN);
4423	}
4424
4425	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4426	btrfs_tree_lock(buf);
4427	btrfs_clean_tree_block(buf);
4428	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4429
4430	btrfs_set_lock_blocking_write(buf);
4431	set_extent_buffer_uptodate(buf);
4432
4433	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4434	btrfs_set_header_level(buf, level);
4435	btrfs_set_header_bytenr(buf, buf->start);
4436	btrfs_set_header_generation(buf, trans->transid);
4437	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4438	btrfs_set_header_owner(buf, owner);
4439	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4440	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4441	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4442		buf->log_index = root->log_transid % 2;
4443		/*
4444		 * we allow two log transactions at a time, use different
4445		 * EXTENT bit to differentiate dirty pages.
4446		 */
4447		if (buf->log_index == 0)
4448			set_extent_dirty(&root->dirty_log_pages, buf->start,
4449					buf->start + buf->len - 1, GFP_NOFS);
4450		else
4451			set_extent_new(&root->dirty_log_pages, buf->start,
4452					buf->start + buf->len - 1);
4453	} else {
4454		buf->log_index = -1;
4455		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4456			 buf->start + buf->len - 1, GFP_NOFS);
4457	}
4458	trans->dirty = true;
4459	/* this returns a buffer locked for blocking */
4460	return buf;
4461}
4462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463/*
4464 * finds a free extent and does all the dirty work required for allocation
4465 * returns the tree buffer or an ERR_PTR on error.
4466 */
4467struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4468					     struct btrfs_root *root,
4469					     u64 parent, u64 root_objectid,
4470					     const struct btrfs_disk_key *key,
4471					     int level, u64 hint,
4472					     u64 empty_size)
4473{
4474	struct btrfs_fs_info *fs_info = root->fs_info;
4475	struct btrfs_key ins;
4476	struct btrfs_block_rsv *block_rsv;
4477	struct extent_buffer *buf;
4478	struct btrfs_delayed_extent_op *extent_op;
4479	struct btrfs_ref generic_ref = { 0 };
4480	u64 flags = 0;
4481	int ret;
4482	u32 blocksize = fs_info->nodesize;
4483	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4484
4485#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4486	if (btrfs_is_testing(fs_info)) {
4487		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4488					    level, root_objectid);
4489		if (!IS_ERR(buf))
4490			root->alloc_bytenr += blocksize;
4491		return buf;
4492	}
4493#endif
4494
4495	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4496	if (IS_ERR(block_rsv))
4497		return ERR_CAST(block_rsv);
4498
4499	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4500				   empty_size, hint, &ins, 0, 0);
4501	if (ret)
4502		goto out_unuse;
4503
4504	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4505				    root_objectid);
4506	if (IS_ERR(buf)) {
4507		ret = PTR_ERR(buf);
4508		goto out_free_reserved;
4509	}
4510
4511	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4512		if (parent == 0)
4513			parent = ins.objectid;
4514		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4515	} else
4516		BUG_ON(parent > 0);
4517
4518	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4519		extent_op = btrfs_alloc_delayed_extent_op();
4520		if (!extent_op) {
4521			ret = -ENOMEM;
4522			goto out_free_buf;
4523		}
4524		if (key)
4525			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4526		else
4527			memset(&extent_op->key, 0, sizeof(extent_op->key));
4528		extent_op->flags_to_set = flags;
4529		extent_op->update_key = skinny_metadata ? false : true;
4530		extent_op->update_flags = true;
4531		extent_op->is_data = false;
4532		extent_op->level = level;
4533
4534		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4535				       ins.objectid, ins.offset, parent);
4536		generic_ref.real_root = root->root_key.objectid;
4537		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4538		btrfs_ref_tree_mod(fs_info, &generic_ref);
4539		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4540						 extent_op, NULL, NULL);
4541		if (ret)
4542			goto out_free_delayed;
4543	}
4544	return buf;
4545
4546out_free_delayed:
4547	btrfs_free_delayed_extent_op(extent_op);
4548out_free_buf:
4549	free_extent_buffer(buf);
4550out_free_reserved:
4551	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4552out_unuse:
4553	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4554	return ERR_PTR(ret);
4555}
4556
4557struct walk_control {
4558	u64 refs[BTRFS_MAX_LEVEL];
4559	u64 flags[BTRFS_MAX_LEVEL];
4560	struct btrfs_key update_progress;
4561	struct btrfs_key drop_progress;
4562	int drop_level;
4563	int stage;
4564	int level;
4565	int shared_level;
4566	int update_ref;
4567	int keep_locks;
4568	int reada_slot;
4569	int reada_count;
4570	int restarted;
4571};
4572
4573#define DROP_REFERENCE	1
4574#define UPDATE_BACKREF	2
4575
4576static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4577				     struct btrfs_root *root,
4578				     struct walk_control *wc,
4579				     struct btrfs_path *path)
4580{
4581	struct btrfs_fs_info *fs_info = root->fs_info;
4582	u64 bytenr;
4583	u64 generation;
4584	u64 refs;
4585	u64 flags;
4586	u32 nritems;
4587	struct btrfs_key key;
4588	struct extent_buffer *eb;
4589	int ret;
4590	int slot;
4591	int nread = 0;
4592
4593	if (path->slots[wc->level] < wc->reada_slot) {
4594		wc->reada_count = wc->reada_count * 2 / 3;
4595		wc->reada_count = max(wc->reada_count, 2);
4596	} else {
4597		wc->reada_count = wc->reada_count * 3 / 2;
4598		wc->reada_count = min_t(int, wc->reada_count,
4599					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4600	}
4601
4602	eb = path->nodes[wc->level];
4603	nritems = btrfs_header_nritems(eb);
4604
4605	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4606		if (nread >= wc->reada_count)
4607			break;
4608
4609		cond_resched();
4610		bytenr = btrfs_node_blockptr(eb, slot);
4611		generation = btrfs_node_ptr_generation(eb, slot);
4612
4613		if (slot == path->slots[wc->level])
4614			goto reada;
4615
4616		if (wc->stage == UPDATE_BACKREF &&
4617		    generation <= root->root_key.offset)
4618			continue;
4619
4620		/* We don't lock the tree block, it's OK to be racy here */
4621		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4622					       wc->level - 1, 1, &refs,
4623					       &flags);
4624		/* We don't care about errors in readahead. */
4625		if (ret < 0)
4626			continue;
4627		BUG_ON(refs == 0);
4628
4629		if (wc->stage == DROP_REFERENCE) {
4630			if (refs == 1)
4631				goto reada;
4632
4633			if (wc->level == 1 &&
4634			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4635				continue;
4636			if (!wc->update_ref ||
4637			    generation <= root->root_key.offset)
4638				continue;
4639			btrfs_node_key_to_cpu(eb, &key, slot);
4640			ret = btrfs_comp_cpu_keys(&key,
4641						  &wc->update_progress);
4642			if (ret < 0)
4643				continue;
4644		} else {
4645			if (wc->level == 1 &&
4646			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4647				continue;
4648		}
4649reada:
4650		readahead_tree_block(fs_info, bytenr);
4651		nread++;
4652	}
4653	wc->reada_slot = slot;
4654}
4655
4656/*
4657 * helper to process tree block while walking down the tree.
4658 *
4659 * when wc->stage == UPDATE_BACKREF, this function updates
4660 * back refs for pointers in the block.
4661 *
4662 * NOTE: return value 1 means we should stop walking down.
4663 */
4664static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4665				   struct btrfs_root *root,
4666				   struct btrfs_path *path,
4667				   struct walk_control *wc, int lookup_info)
4668{
4669	struct btrfs_fs_info *fs_info = root->fs_info;
4670	int level = wc->level;
4671	struct extent_buffer *eb = path->nodes[level];
4672	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4673	int ret;
4674
4675	if (wc->stage == UPDATE_BACKREF &&
4676	    btrfs_header_owner(eb) != root->root_key.objectid)
4677		return 1;
4678
4679	/*
4680	 * when reference count of tree block is 1, it won't increase
4681	 * again. once full backref flag is set, we never clear it.
4682	 */
4683	if (lookup_info &&
4684	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4685	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4686		BUG_ON(!path->locks[level]);
4687		ret = btrfs_lookup_extent_info(trans, fs_info,
4688					       eb->start, level, 1,
4689					       &wc->refs[level],
4690					       &wc->flags[level]);
4691		BUG_ON(ret == -ENOMEM);
4692		if (ret)
4693			return ret;
4694		BUG_ON(wc->refs[level] == 0);
4695	}
4696
4697	if (wc->stage == DROP_REFERENCE) {
4698		if (wc->refs[level] > 1)
4699			return 1;
4700
4701		if (path->locks[level] && !wc->keep_locks) {
4702			btrfs_tree_unlock_rw(eb, path->locks[level]);
4703			path->locks[level] = 0;
4704		}
4705		return 0;
4706	}
4707
4708	/* wc->stage == UPDATE_BACKREF */
4709	if (!(wc->flags[level] & flag)) {
4710		BUG_ON(!path->locks[level]);
4711		ret = btrfs_inc_ref(trans, root, eb, 1);
4712		BUG_ON(ret); /* -ENOMEM */
4713		ret = btrfs_dec_ref(trans, root, eb, 0);
4714		BUG_ON(ret); /* -ENOMEM */
4715		ret = btrfs_set_disk_extent_flags(trans, eb->start,
4716						  eb->len, flag,
4717						  btrfs_header_level(eb), 0);
4718		BUG_ON(ret); /* -ENOMEM */
4719		wc->flags[level] |= flag;
4720	}
4721
4722	/*
4723	 * the block is shared by multiple trees, so it's not good to
4724	 * keep the tree lock
4725	 */
4726	if (path->locks[level] && level > 0) {
4727		btrfs_tree_unlock_rw(eb, path->locks[level]);
4728		path->locks[level] = 0;
4729	}
4730	return 0;
4731}
4732
4733/*
4734 * This is used to verify a ref exists for this root to deal with a bug where we
4735 * would have a drop_progress key that hadn't been updated properly.
4736 */
4737static int check_ref_exists(struct btrfs_trans_handle *trans,
4738			    struct btrfs_root *root, u64 bytenr, u64 parent,
4739			    int level)
4740{
4741	struct btrfs_path *path;
4742	struct btrfs_extent_inline_ref *iref;
4743	int ret;
4744
4745	path = btrfs_alloc_path();
4746	if (!path)
4747		return -ENOMEM;
4748
4749	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4750				    root->fs_info->nodesize, parent,
4751				    root->root_key.objectid, level, 0);
4752	btrfs_free_path(path);
4753	if (ret == -ENOENT)
4754		return 0;
4755	if (ret < 0)
4756		return ret;
4757	return 1;
4758}
4759
4760/*
4761 * helper to process tree block pointer.
4762 *
4763 * when wc->stage == DROP_REFERENCE, this function checks
4764 * reference count of the block pointed to. if the block
4765 * is shared and we need update back refs for the subtree
4766 * rooted at the block, this function changes wc->stage to
4767 * UPDATE_BACKREF. if the block is shared and there is no
4768 * need to update back, this function drops the reference
4769 * to the block.
4770 *
4771 * NOTE: return value 1 means we should stop walking down.
4772 */
4773static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4774				 struct btrfs_root *root,
4775				 struct btrfs_path *path,
4776				 struct walk_control *wc, int *lookup_info)
4777{
4778	struct btrfs_fs_info *fs_info = root->fs_info;
4779	u64 bytenr;
4780	u64 generation;
4781	u64 parent;
 
4782	struct btrfs_key key;
4783	struct btrfs_key first_key;
4784	struct btrfs_ref ref = { 0 };
4785	struct extent_buffer *next;
4786	int level = wc->level;
4787	int reada = 0;
4788	int ret = 0;
4789	bool need_account = false;
4790
4791	generation = btrfs_node_ptr_generation(path->nodes[level],
4792					       path->slots[level]);
4793	/*
4794	 * if the lower level block was created before the snapshot
4795	 * was created, we know there is no need to update back refs
4796	 * for the subtree
4797	 */
4798	if (wc->stage == UPDATE_BACKREF &&
4799	    generation <= root->root_key.offset) {
4800		*lookup_info = 1;
4801		return 1;
4802	}
4803
4804	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4805	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4806			      path->slots[level]);
4807
4808	next = find_extent_buffer(fs_info, bytenr);
4809	if (!next) {
4810		next = btrfs_find_create_tree_block(fs_info, bytenr);
4811		if (IS_ERR(next))
4812			return PTR_ERR(next);
4813
4814		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4815					       level - 1);
4816		reada = 1;
4817	}
4818	btrfs_tree_lock(next);
4819	btrfs_set_lock_blocking_write(next);
4820
4821	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4822				       &wc->refs[level - 1],
4823				       &wc->flags[level - 1]);
4824	if (ret < 0)
4825		goto out_unlock;
4826
4827	if (unlikely(wc->refs[level - 1] == 0)) {
4828		btrfs_err(fs_info, "Missing references.");
4829		ret = -EIO;
4830		goto out_unlock;
4831	}
4832	*lookup_info = 0;
4833
4834	if (wc->stage == DROP_REFERENCE) {
4835		if (wc->refs[level - 1] > 1) {
4836			need_account = true;
4837			if (level == 1 &&
4838			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4839				goto skip;
4840
4841			if (!wc->update_ref ||
4842			    generation <= root->root_key.offset)
4843				goto skip;
4844
4845			btrfs_node_key_to_cpu(path->nodes[level], &key,
4846					      path->slots[level]);
4847			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4848			if (ret < 0)
4849				goto skip;
4850
4851			wc->stage = UPDATE_BACKREF;
4852			wc->shared_level = level - 1;
4853		}
4854	} else {
4855		if (level == 1 &&
4856		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4857			goto skip;
4858	}
4859
4860	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4861		btrfs_tree_unlock(next);
4862		free_extent_buffer(next);
4863		next = NULL;
4864		*lookup_info = 1;
4865	}
4866
4867	if (!next) {
4868		if (reada && level == 1)
4869			reada_walk_down(trans, root, wc, path);
4870		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4871				       &first_key);
4872		if (IS_ERR(next)) {
4873			return PTR_ERR(next);
4874		} else if (!extent_buffer_uptodate(next)) {
4875			free_extent_buffer(next);
4876			return -EIO;
4877		}
4878		btrfs_tree_lock(next);
4879		btrfs_set_lock_blocking_write(next);
4880	}
4881
4882	level--;
4883	ASSERT(level == btrfs_header_level(next));
4884	if (level != btrfs_header_level(next)) {
4885		btrfs_err(root->fs_info, "mismatched level");
4886		ret = -EIO;
4887		goto out_unlock;
4888	}
4889	path->nodes[level] = next;
4890	path->slots[level] = 0;
4891	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4892	wc->level = level;
4893	if (wc->level == 1)
4894		wc->reada_slot = 0;
4895	return 0;
4896skip:
4897	wc->refs[level - 1] = 0;
4898	wc->flags[level - 1] = 0;
4899	if (wc->stage == DROP_REFERENCE) {
4900		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4901			parent = path->nodes[level]->start;
4902		} else {
4903			ASSERT(root->root_key.objectid ==
4904			       btrfs_header_owner(path->nodes[level]));
4905			if (root->root_key.objectid !=
4906			    btrfs_header_owner(path->nodes[level])) {
4907				btrfs_err(root->fs_info,
4908						"mismatched block owner");
4909				ret = -EIO;
4910				goto out_unlock;
4911			}
4912			parent = 0;
4913		}
4914
4915		/*
4916		 * If we had a drop_progress we need to verify the refs are set
4917		 * as expected.  If we find our ref then we know that from here
4918		 * on out everything should be correct, and we can clear the
4919		 * ->restarted flag.
4920		 */
4921		if (wc->restarted) {
4922			ret = check_ref_exists(trans, root, bytenr, parent,
4923					       level - 1);
4924			if (ret < 0)
4925				goto out_unlock;
4926			if (ret == 0)
4927				goto no_delete;
4928			ret = 0;
4929			wc->restarted = 0;
4930		}
4931
4932		/*
4933		 * Reloc tree doesn't contribute to qgroup numbers, and we have
4934		 * already accounted them at merge time (replace_path),
4935		 * thus we could skip expensive subtree trace here.
4936		 */
4937		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4938		    need_account) {
4939			ret = btrfs_qgroup_trace_subtree(trans, next,
4940							 generation, level - 1);
4941			if (ret) {
4942				btrfs_err_rl(fs_info,
4943					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4944					     ret);
4945			}
4946		}
4947
4948		/*
4949		 * We need to update the next key in our walk control so we can
4950		 * update the drop_progress key accordingly.  We don't care if
4951		 * find_next_key doesn't find a key because that means we're at
4952		 * the end and are going to clean up now.
4953		 */
4954		wc->drop_level = level;
4955		find_next_key(path, level, &wc->drop_progress);
4956
4957		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4958				       fs_info->nodesize, parent);
4959		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4960		ret = btrfs_free_extent(trans, &ref);
4961		if (ret)
4962			goto out_unlock;
4963	}
4964no_delete:
4965	*lookup_info = 1;
4966	ret = 1;
4967
4968out_unlock:
4969	btrfs_tree_unlock(next);
4970	free_extent_buffer(next);
4971
4972	return ret;
4973}
4974
4975/*
4976 * helper to process tree block while walking up the tree.
4977 *
4978 * when wc->stage == DROP_REFERENCE, this function drops
4979 * reference count on the block.
4980 *
4981 * when wc->stage == UPDATE_BACKREF, this function changes
4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage
4983 * to UPDATE_BACKREF previously while processing the block.
4984 *
4985 * NOTE: return value 1 means we should stop walking up.
4986 */
4987static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
4988				 struct btrfs_root *root,
4989				 struct btrfs_path *path,
4990				 struct walk_control *wc)
4991{
4992	struct btrfs_fs_info *fs_info = root->fs_info;
4993	int ret;
4994	int level = wc->level;
4995	struct extent_buffer *eb = path->nodes[level];
4996	u64 parent = 0;
4997
4998	if (wc->stage == UPDATE_BACKREF) {
4999		BUG_ON(wc->shared_level < level);
5000		if (level < wc->shared_level)
5001			goto out;
5002
5003		ret = find_next_key(path, level + 1, &wc->update_progress);
5004		if (ret > 0)
5005			wc->update_ref = 0;
5006
5007		wc->stage = DROP_REFERENCE;
5008		wc->shared_level = -1;
5009		path->slots[level] = 0;
5010
5011		/*
5012		 * check reference count again if the block isn't locked.
5013		 * we should start walking down the tree again if reference
5014		 * count is one.
5015		 */
5016		if (!path->locks[level]) {
5017			BUG_ON(level == 0);
5018			btrfs_tree_lock(eb);
5019			btrfs_set_lock_blocking_write(eb);
5020			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5021
5022			ret = btrfs_lookup_extent_info(trans, fs_info,
5023						       eb->start, level, 1,
5024						       &wc->refs[level],
5025						       &wc->flags[level]);
5026			if (ret < 0) {
5027				btrfs_tree_unlock_rw(eb, path->locks[level]);
5028				path->locks[level] = 0;
5029				return ret;
5030			}
5031			BUG_ON(wc->refs[level] == 0);
5032			if (wc->refs[level] == 1) {
5033				btrfs_tree_unlock_rw(eb, path->locks[level]);
5034				path->locks[level] = 0;
5035				return 1;
5036			}
5037		}
5038	}
5039
5040	/* wc->stage == DROP_REFERENCE */
5041	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5042
5043	if (wc->refs[level] == 1) {
5044		if (level == 0) {
5045			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5046				ret = btrfs_dec_ref(trans, root, eb, 1);
5047			else
5048				ret = btrfs_dec_ref(trans, root, eb, 0);
5049			BUG_ON(ret); /* -ENOMEM */
5050			if (is_fstree(root->root_key.objectid)) {
5051				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5052				if (ret) {
5053					btrfs_err_rl(fs_info,
5054	"error %d accounting leaf items, quota is out of sync, rescan required",
5055					     ret);
5056				}
5057			}
5058		}
5059		/* make block locked assertion in btrfs_clean_tree_block happy */
5060		if (!path->locks[level] &&
5061		    btrfs_header_generation(eb) == trans->transid) {
5062			btrfs_tree_lock(eb);
5063			btrfs_set_lock_blocking_write(eb);
5064			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5065		}
5066		btrfs_clean_tree_block(eb);
5067	}
5068
5069	if (eb == root->node) {
5070		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5071			parent = eb->start;
5072		else if (root->root_key.objectid != btrfs_header_owner(eb))
5073			goto owner_mismatch;
 
5074	} else {
5075		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5076			parent = path->nodes[level + 1]->start;
5077		else if (root->root_key.objectid !=
5078			 btrfs_header_owner(path->nodes[level + 1]))
5079			goto owner_mismatch;
5080	}
5081
5082	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5083out:
5084	wc->refs[level] = 0;
5085	wc->flags[level] = 0;
5086	return 0;
5087
5088owner_mismatch:
5089	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5090		     btrfs_header_owner(eb), root->root_key.objectid);
5091	return -EUCLEAN;
5092}
5093
5094static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5095				   struct btrfs_root *root,
5096				   struct btrfs_path *path,
5097				   struct walk_control *wc)
5098{
5099	int level = wc->level;
5100	int lookup_info = 1;
5101	int ret;
5102
5103	while (level >= 0) {
5104		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5105		if (ret > 0)
5106			break;
5107
5108		if (level == 0)
5109			break;
5110
5111		if (path->slots[level] >=
5112		    btrfs_header_nritems(path->nodes[level]))
5113			break;
5114
5115		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5116		if (ret > 0) {
5117			path->slots[level]++;
5118			continue;
5119		} else if (ret < 0)
5120			return ret;
5121		level = wc->level;
5122	}
5123	return 0;
5124}
5125
5126static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5127				 struct btrfs_root *root,
5128				 struct btrfs_path *path,
5129				 struct walk_control *wc, int max_level)
5130{
5131	int level = wc->level;
5132	int ret;
5133
5134	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5135	while (level < max_level && path->nodes[level]) {
5136		wc->level = level;
5137		if (path->slots[level] + 1 <
5138		    btrfs_header_nritems(path->nodes[level])) {
5139			path->slots[level]++;
5140			return 0;
5141		} else {
5142			ret = walk_up_proc(trans, root, path, wc);
5143			if (ret > 0)
5144				return 0;
5145			if (ret < 0)
5146				return ret;
5147
5148			if (path->locks[level]) {
5149				btrfs_tree_unlock_rw(path->nodes[level],
5150						     path->locks[level]);
5151				path->locks[level] = 0;
5152			}
5153			free_extent_buffer(path->nodes[level]);
5154			path->nodes[level] = NULL;
5155			level++;
5156		}
5157	}
5158	return 1;
5159}
5160
5161/*
5162 * drop a subvolume tree.
5163 *
5164 * this function traverses the tree freeing any blocks that only
5165 * referenced by the tree.
5166 *
5167 * when a shared tree block is found. this function decreases its
5168 * reference count by one. if update_ref is true, this function
5169 * also make sure backrefs for the shared block and all lower level
5170 * blocks are properly updated.
5171 *
5172 * If called with for_reloc == 0, may exit early with -EAGAIN
5173 */
5174int btrfs_drop_snapshot(struct btrfs_root *root,
5175			 struct btrfs_block_rsv *block_rsv, int update_ref,
5176			 int for_reloc)
5177{
5178	struct btrfs_fs_info *fs_info = root->fs_info;
5179	struct btrfs_path *path;
5180	struct btrfs_trans_handle *trans;
5181	struct btrfs_root *tree_root = fs_info->tree_root;
5182	struct btrfs_root_item *root_item = &root->root_item;
5183	struct walk_control *wc;
5184	struct btrfs_key key;
5185	int err = 0;
5186	int ret;
5187	int level;
5188	bool root_dropped = false;
5189
5190	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5191
5192	path = btrfs_alloc_path();
5193	if (!path) {
5194		err = -ENOMEM;
5195		goto out;
5196	}
5197
5198	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5199	if (!wc) {
5200		btrfs_free_path(path);
5201		err = -ENOMEM;
5202		goto out;
5203	}
5204
5205	trans = btrfs_start_transaction(tree_root, 0);
5206	if (IS_ERR(trans)) {
5207		err = PTR_ERR(trans);
5208		goto out_free;
5209	}
5210
5211	err = btrfs_run_delayed_items(trans);
5212	if (err)
5213		goto out_end_trans;
5214
5215	if (block_rsv)
5216		trans->block_rsv = block_rsv;
5217
5218	/*
5219	 * This will help us catch people modifying the fs tree while we're
5220	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5221	 * dropped as we unlock the root node and parent nodes as we walk down
5222	 * the tree, assuming nothing will change.  If something does change
5223	 * then we'll have stale information and drop references to blocks we've
5224	 * already dropped.
5225	 */
5226	set_bit(BTRFS_ROOT_DELETING, &root->state);
5227	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5228		level = btrfs_header_level(root->node);
5229		path->nodes[level] = btrfs_lock_root_node(root);
5230		btrfs_set_lock_blocking_write(path->nodes[level]);
5231		path->slots[level] = 0;
5232		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5233		memset(&wc->update_progress, 0,
5234		       sizeof(wc->update_progress));
5235	} else {
5236		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5237		memcpy(&wc->update_progress, &key,
5238		       sizeof(wc->update_progress));
5239
5240		level = root_item->drop_level;
5241		BUG_ON(level == 0);
5242		path->lowest_level = level;
5243		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5244		path->lowest_level = 0;
5245		if (ret < 0) {
5246			err = ret;
5247			goto out_end_trans;
5248		}
5249		WARN_ON(ret > 0);
5250
5251		/*
5252		 * unlock our path, this is safe because only this
5253		 * function is allowed to delete this snapshot
5254		 */
5255		btrfs_unlock_up_safe(path, 0);
5256
5257		level = btrfs_header_level(root->node);
5258		while (1) {
5259			btrfs_tree_lock(path->nodes[level]);
5260			btrfs_set_lock_blocking_write(path->nodes[level]);
5261			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5262
5263			ret = btrfs_lookup_extent_info(trans, fs_info,
5264						path->nodes[level]->start,
5265						level, 1, &wc->refs[level],
5266						&wc->flags[level]);
5267			if (ret < 0) {
5268				err = ret;
5269				goto out_end_trans;
5270			}
5271			BUG_ON(wc->refs[level] == 0);
5272
5273			if (level == root_item->drop_level)
5274				break;
5275
5276			btrfs_tree_unlock(path->nodes[level]);
5277			path->locks[level] = 0;
5278			WARN_ON(wc->refs[level] != 1);
5279			level--;
5280		}
5281	}
5282
5283	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5284	wc->level = level;
5285	wc->shared_level = -1;
5286	wc->stage = DROP_REFERENCE;
5287	wc->update_ref = update_ref;
5288	wc->keep_locks = 0;
 
5289	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5290
5291	while (1) {
5292
5293		ret = walk_down_tree(trans, root, path, wc);
5294		if (ret < 0) {
5295			err = ret;
5296			break;
5297		}
5298
5299		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5300		if (ret < 0) {
5301			err = ret;
5302			break;
5303		}
5304
5305		if (ret > 0) {
5306			BUG_ON(wc->stage != DROP_REFERENCE);
5307			break;
5308		}
5309
5310		if (wc->stage == DROP_REFERENCE) {
5311			wc->drop_level = wc->level;
5312			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5313					      &wc->drop_progress,
5314					      path->slots[wc->drop_level]);
5315		}
5316		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5317				      &wc->drop_progress);
5318		root_item->drop_level = wc->drop_level;
5319
5320		BUG_ON(wc->level == 0);
5321		if (btrfs_should_end_transaction(trans) ||
5322		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5323			ret = btrfs_update_root(trans, tree_root,
5324						&root->root_key,
5325						root_item);
5326			if (ret) {
5327				btrfs_abort_transaction(trans, ret);
5328				err = ret;
5329				goto out_end_trans;
5330			}
5331
5332			btrfs_end_transaction_throttle(trans);
5333			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5334				btrfs_debug(fs_info,
5335					    "drop snapshot early exit");
5336				err = -EAGAIN;
5337				goto out_free;
5338			}
5339
5340			trans = btrfs_start_transaction(tree_root, 0);
5341			if (IS_ERR(trans)) {
5342				err = PTR_ERR(trans);
5343				goto out_free;
5344			}
5345			if (block_rsv)
5346				trans->block_rsv = block_rsv;
5347		}
5348	}
5349	btrfs_release_path(path);
5350	if (err)
5351		goto out_end_trans;
5352
5353	ret = btrfs_del_root(trans, &root->root_key);
5354	if (ret) {
5355		btrfs_abort_transaction(trans, ret);
5356		err = ret;
5357		goto out_end_trans;
5358	}
5359
5360	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5361		ret = btrfs_find_root(tree_root, &root->root_key, path,
5362				      NULL, NULL);
5363		if (ret < 0) {
5364			btrfs_abort_transaction(trans, ret);
5365			err = ret;
5366			goto out_end_trans;
5367		} else if (ret > 0) {
5368			/* if we fail to delete the orphan item this time
5369			 * around, it'll get picked up the next time.
5370			 *
5371			 * The most common failure here is just -ENOENT.
5372			 */
5373			btrfs_del_orphan_item(trans, tree_root,
5374					      root->root_key.objectid);
5375		}
5376	}
5377
5378	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5379		btrfs_add_dropped_root(trans, root);
5380	} else {
5381		free_extent_buffer(root->node);
5382		free_extent_buffer(root->commit_root);
5383		btrfs_put_fs_root(root);
5384	}
5385	root_dropped = true;
5386out_end_trans:
5387	btrfs_end_transaction_throttle(trans);
5388out_free:
5389	kfree(wc);
5390	btrfs_free_path(path);
5391out:
5392	/*
5393	 * So if we need to stop dropping the snapshot for whatever reason we
5394	 * need to make sure to add it back to the dead root list so that we
5395	 * keep trying to do the work later.  This also cleans up roots if we
5396	 * don't have it in the radix (like when we recover after a power fail
5397	 * or unmount) so we don't leak memory.
5398	 */
5399	if (!for_reloc && !root_dropped)
5400		btrfs_add_dead_root(root);
5401	if (err && err != -EAGAIN)
5402		btrfs_handle_fs_error(fs_info, err, NULL);
5403	return err;
5404}
5405
5406/*
5407 * drop subtree rooted at tree block 'node'.
5408 *
5409 * NOTE: this function will unlock and release tree block 'node'
5410 * only used by relocation code
5411 */
5412int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5413			struct btrfs_root *root,
5414			struct extent_buffer *node,
5415			struct extent_buffer *parent)
5416{
5417	struct btrfs_fs_info *fs_info = root->fs_info;
5418	struct btrfs_path *path;
5419	struct walk_control *wc;
5420	int level;
5421	int parent_level;
5422	int ret = 0;
5423	int wret;
5424
5425	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5426
5427	path = btrfs_alloc_path();
5428	if (!path)
5429		return -ENOMEM;
5430
5431	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5432	if (!wc) {
5433		btrfs_free_path(path);
5434		return -ENOMEM;
5435	}
5436
5437	btrfs_assert_tree_locked(parent);
5438	parent_level = btrfs_header_level(parent);
5439	extent_buffer_get(parent);
5440	path->nodes[parent_level] = parent;
5441	path->slots[parent_level] = btrfs_header_nritems(parent);
5442
5443	btrfs_assert_tree_locked(node);
5444	level = btrfs_header_level(node);
5445	path->nodes[level] = node;
5446	path->slots[level] = 0;
5447	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5448
5449	wc->refs[parent_level] = 1;
5450	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5451	wc->level = level;
5452	wc->shared_level = -1;
5453	wc->stage = DROP_REFERENCE;
5454	wc->update_ref = 0;
5455	wc->keep_locks = 1;
 
5456	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5457
5458	while (1) {
5459		wret = walk_down_tree(trans, root, path, wc);
5460		if (wret < 0) {
5461			ret = wret;
5462			break;
5463		}
5464
5465		wret = walk_up_tree(trans, root, path, wc, parent_level);
5466		if (wret < 0)
5467			ret = wret;
5468		if (wret != 0)
5469			break;
5470	}
5471
5472	kfree(wc);
5473	btrfs_free_path(path);
5474	return ret;
5475}
5476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5477/*
5478 * helper to account the unused space of all the readonly block group in the
5479 * space_info. takes mirrors into account.
5480 */
5481u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5482{
5483	struct btrfs_block_group_cache *block_group;
5484	u64 free_bytes = 0;
5485	int factor;
5486
5487	/* It's df, we don't care if it's racy */
5488	if (list_empty(&sinfo->ro_bgs))
5489		return 0;
5490
5491	spin_lock(&sinfo->lock);
5492	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5493		spin_lock(&block_group->lock);
5494
5495		if (!block_group->ro) {
5496			spin_unlock(&block_group->lock);
5497			continue;
5498		}
5499
5500		factor = btrfs_bg_type_to_factor(block_group->flags);
 
 
 
 
 
 
5501		free_bytes += (block_group->key.offset -
5502			       btrfs_block_group_used(&block_group->item)) *
5503			       factor;
5504
5505		spin_unlock(&block_group->lock);
5506	}
5507	spin_unlock(&sinfo->lock);
5508
5509	return free_bytes;
5510}
5511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5512int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5513				   u64 start, u64 end)
5514{
5515	return unpin_extent_range(fs_info, start, end, false);
5516}
5517
5518/*
5519 * It used to be that old block groups would be left around forever.
5520 * Iterating over them would be enough to trim unused space.  Since we
5521 * now automatically remove them, we also need to iterate over unallocated
5522 * space.
5523 *
5524 * We don't want a transaction for this since the discard may take a
5525 * substantial amount of time.  We don't require that a transaction be
5526 * running, but we do need to take a running transaction into account
5527 * to ensure that we're not discarding chunks that were released or
5528 * allocated in the current transaction.
5529 *
5530 * Holding the chunks lock will prevent other threads from allocating
5531 * or releasing chunks, but it won't prevent a running transaction
5532 * from committing and releasing the memory that the pending chunks
5533 * list head uses.  For that, we need to take a reference to the
5534 * transaction and hold the commit root sem.  We only need to hold
5535 * it while performing the free space search since we have already
5536 * held back allocations.
5537 */
5538static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
 
5539{
5540	u64 start = SZ_1M, len = 0, end = 0;
5541	int ret;
5542
5543	*trimmed = 0;
5544
5545	/* Discard not supported = nothing to do. */
5546	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5547		return 0;
5548
5549	/* Not writable = nothing to do. */
5550	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5551		return 0;
5552
5553	/* No free space = nothing to do. */
5554	if (device->total_bytes <= device->bytes_used)
5555		return 0;
5556
5557	ret = 0;
5558
5559	while (1) {
5560		struct btrfs_fs_info *fs_info = device->fs_info;
 
5561		u64 bytes;
5562
5563		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5564		if (ret)
5565			break;
5566
5567		find_first_clear_extent_bit(&device->alloc_state, start,
5568					    &start, &end,
5569					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5570
5571		/* Ensure we skip the reserved area in the first 1M */
5572		start = max_t(u64, start, SZ_1M);
 
 
 
 
 
 
 
 
5573
5574		/*
5575		 * If find_first_clear_extent_bit find a range that spans the
5576		 * end of the device it will set end to -1, in this case it's up
5577		 * to the caller to trim the value to the size of the device.
5578		 */
5579		end = min(end, device->total_bytes - 1);
5580
5581		len = end - start + 1;
5582
5583		/* We didn't find any extents */
5584		if (!len) {
5585			mutex_unlock(&fs_info->chunk_mutex);
5586			ret = 0;
 
5587			break;
5588		}
5589
5590		ret = btrfs_issue_discard(device->bdev, start, len,
5591					  &bytes);
5592		if (!ret)
5593			set_extent_bits(&device->alloc_state, start,
5594					start + bytes - 1,
5595					CHUNK_TRIMMED);
5596		mutex_unlock(&fs_info->chunk_mutex);
5597
5598		if (ret)
5599			break;
5600
5601		start += len;
5602		*trimmed += bytes;
5603
5604		if (fatal_signal_pending(current)) {
5605			ret = -ERESTARTSYS;
5606			break;
5607		}
5608
5609		cond_resched();
5610	}
5611
5612	return ret;
5613}
5614
5615/*
5616 * Trim the whole filesystem by:
5617 * 1) trimming the free space in each block group
5618 * 2) trimming the unallocated space on each device
5619 *
5620 * This will also continue trimming even if a block group or device encounters
5621 * an error.  The return value will be the last error, or 0 if nothing bad
5622 * happens.
5623 */
5624int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5625{
5626	struct btrfs_block_group_cache *cache = NULL;
5627	struct btrfs_device *device;
5628	struct list_head *devices;
5629	u64 group_trimmed;
5630	u64 range_end = U64_MAX;
5631	u64 start;
5632	u64 end;
5633	u64 trimmed = 0;
5634	u64 bg_failed = 0;
5635	u64 dev_failed = 0;
5636	int bg_ret = 0;
5637	int dev_ret = 0;
5638	int ret = 0;
5639
5640	/*
5641	 * Check range overflow if range->len is set.
5642	 * The default range->len is U64_MAX.
5643	 */
5644	if (range->len != U64_MAX &&
5645	    check_add_overflow(range->start, range->len, &range_end))
5646		return -EINVAL;
 
5647
5648	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5649	for (; cache; cache = btrfs_next_block_group(cache)) {
5650		if (cache->key.objectid >= range_end) {
5651			btrfs_put_block_group(cache);
5652			break;
5653		}
5654
5655		start = max(range->start, cache->key.objectid);
5656		end = min(range_end, cache->key.objectid + cache->key.offset);
 
5657
5658		if (end - start >= range->minlen) {
5659			if (!btrfs_block_group_cache_done(cache)) {
5660				ret = btrfs_cache_block_group(cache, 0);
5661				if (ret) {
5662					bg_failed++;
5663					bg_ret = ret;
5664					continue;
5665				}
5666				ret = btrfs_wait_block_group_cache_done(cache);
5667				if (ret) {
5668					bg_failed++;
5669					bg_ret = ret;
5670					continue;
5671				}
5672			}
5673			ret = btrfs_trim_block_group(cache,
5674						     &group_trimmed,
5675						     start,
5676						     end,
5677						     range->minlen);
5678
5679			trimmed += group_trimmed;
5680			if (ret) {
5681				bg_failed++;
5682				bg_ret = ret;
5683				continue;
5684			}
5685		}
 
 
5686	}
5687
5688	if (bg_failed)
5689		btrfs_warn(fs_info,
5690			"failed to trim %llu block group(s), last error %d",
5691			bg_failed, bg_ret);
5692	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5693	devices = &fs_info->fs_devices->devices;
5694	list_for_each_entry(device, devices, dev_list) {
5695		ret = btrfs_trim_free_extents(device, &group_trimmed);
5696		if (ret) {
5697			dev_failed++;
5698			dev_ret = ret;
5699			break;
5700		}
5701
5702		trimmed += group_trimmed;
5703	}
5704	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5705
5706	if (dev_failed)
5707		btrfs_warn(fs_info,
5708			"failed to trim %llu device(s), last error %d",
5709			dev_failed, dev_ret);
5710	range->len = trimmed;
5711	if (bg_ret)
5712		return bg_ret;
5713	return dev_ret;
5714}
5715
5716/*
5717 * btrfs_{start,end}_write_no_snapshotting() are similar to
5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5719 * data into the page cache through nocow before the subvolume is snapshoted,
5720 * but flush the data into disk after the snapshot creation, or to prevent
5721 * operations while snapshotting is ongoing and that cause the snapshot to be
5722 * inconsistent (writes followed by expanding truncates for example).
5723 */
5724void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5725{
5726	percpu_counter_dec(&root->subv_writers->counter);
5727	cond_wake_up(&root->subv_writers->wait);
 
 
 
 
 
5728}
5729
5730int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5731{
5732	if (atomic_read(&root->will_be_snapshotted))
5733		return 0;
5734
5735	percpu_counter_inc(&root->subv_writers->counter);
5736	/*
5737	 * Make sure counter is updated before we check for snapshot creation.
5738	 */
5739	smp_mb();
5740	if (atomic_read(&root->will_be_snapshotted)) {
5741		btrfs_end_write_no_snapshotting(root);
5742		return 0;
5743	}
5744	return 1;
5745}
5746
 
 
 
 
 
 
5747void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5748{
5749	while (true) {
5750		int ret;
5751
5752		ret = btrfs_start_write_no_snapshotting(root);
5753		if (ret)
5754			break;
5755		wait_var_event(&root->will_be_snapshotted,
5756			       !atomic_read(&root->will_be_snapshotted));
 
5757	}
5758}