Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/export.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched.h>
  42#include <linux/sched/sysctl.h>
 
 
  43#include <linux/slab.h>
  44#include <linux/compat.h>
 
 
  45
  46#include <linux/uaccess.h>
  47#include <asm/unistd.h>
  48#include <asm/div64.h>
  49#include <asm/timex.h>
  50#include <asm/io.h>
  51
  52#include "tick-internal.h"
 
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/timer.h>
  56
  57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  58
  59EXPORT_SYMBOL(jiffies_64);
  60
  61/*
  62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  64 * level has a different granularity.
  65 *
  66 * The level granularity is:		LVL_CLK_DIV ^ lvl
  67 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  68 *
  69 * The array level of a newly armed timer depends on the relative expiry
  70 * time. The farther the expiry time is away the higher the array level and
  71 * therefor the granularity becomes.
  72 *
  73 * Contrary to the original timer wheel implementation, which aims for 'exact'
  74 * expiry of the timers, this implementation removes the need for recascading
  75 * the timers into the lower array levels. The previous 'classic' timer wheel
  76 * implementation of the kernel already violated the 'exact' expiry by adding
  77 * slack to the expiry time to provide batched expiration. The granularity
  78 * levels provide implicit batching.
  79 *
  80 * This is an optimization of the original timer wheel implementation for the
  81 * majority of the timer wheel use cases: timeouts. The vast majority of
  82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  83 * the timeout expires it indicates that normal operation is disturbed, so it
  84 * does not matter much whether the timeout comes with a slight delay.
  85 *
  86 * The only exception to this are networking timers with a small expiry
  87 * time. They rely on the granularity. Those fit into the first wheel level,
  88 * which has HZ granularity.
  89 *
  90 * We don't have cascading anymore. timers with a expiry time above the
  91 * capacity of the last wheel level are force expired at the maximum timeout
  92 * value of the last wheel level. From data sampling we know that the maximum
  93 * value observed is 5 days (network connection tracking), so this should not
  94 * be an issue.
  95 *
  96 * The currently chosen array constants values are a good compromise between
  97 * array size and granularity.
  98 *
  99 * This results in the following granularity and range levels:
 100 *
 101 * HZ 1000 steps
 102 * Level Offset  Granularity            Range
 103 *  0      0         1 ms                0 ms -         63 ms
 104 *  1     64         8 ms               64 ms -        511 ms
 105 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 106 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 107 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 108 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 109 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 110 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 111 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 112 *
 113 * HZ  300
 114 * Level Offset  Granularity            Range
 115 *  0	   0         3 ms                0 ms -        210 ms
 116 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 117 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 118 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 119 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 120 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 121 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 122 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 123 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 124 *
 125 * HZ  250
 126 * Level Offset  Granularity            Range
 127 *  0	   0         4 ms                0 ms -        255 ms
 128 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 129 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 130 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 131 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 132 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 133 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 134 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 135 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 136 *
 137 * HZ  100
 138 * Level Offset  Granularity            Range
 139 *  0	   0         10 ms               0 ms -        630 ms
 140 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 141 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 142 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 143 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 144 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 145 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 146 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 147 */
 148
 149/* Clock divisor for the next level */
 150#define LVL_CLK_SHIFT	3
 151#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 152#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 153#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 154#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 155
 156/*
 157 * The time start value for each level to select the bucket at enqueue
 158 * time.
 
 159 */
 160#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 161
 162/* Size of each clock level */
 163#define LVL_BITS	6
 164#define LVL_SIZE	(1UL << LVL_BITS)
 165#define LVL_MASK	(LVL_SIZE - 1)
 166#define LVL_OFFS(n)	((n) * LVL_SIZE)
 167
 168/* Level depth */
 169#if HZ > 100
 170# define LVL_DEPTH	9
 171# else
 172# define LVL_DEPTH	8
 173#endif
 174
 175/* The cutoff (max. capacity of the wheel) */
 176#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 177#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 178
 179/*
 180 * The resulting wheel size. If NOHZ is configured we allocate two
 181 * wheels so we have a separate storage for the deferrable timers.
 182 */
 183#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 184
 185#ifdef CONFIG_NO_HZ_COMMON
 186# define NR_BASES	2
 187# define BASE_STD	0
 188# define BASE_DEF	1
 
 
 
 
 
 189#else
 190# define NR_BASES	1
 191# define BASE_STD	0
 
 192# define BASE_DEF	0
 193#endif
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195struct timer_base {
 196	spinlock_t		lock;
 197	struct timer_list	*running_timer;
 
 
 
 
 198	unsigned long		clk;
 199	unsigned long		next_expiry;
 200	unsigned int		cpu;
 201	bool			migration_enabled;
 202	bool			nohz_active;
 203	bool			is_idle;
 
 204	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 205	struct hlist_head	vectors[WHEEL_SIZE];
 206} ____cacheline_aligned;
 207
 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 209
 210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 211unsigned int sysctl_timer_migration = 1;
 212
 213void timers_update_migration(bool update_nohz)
 214{
 215	bool on = sysctl_timer_migration && tick_nohz_active;
 216	unsigned int cpu;
 217
 218	/* Avoid the loop, if nothing to update */
 219	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
 220		return;
 221
 222	for_each_possible_cpu(cpu) {
 223		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
 224		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
 225		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
 226		if (!update_nohz)
 227			continue;
 228		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
 229		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
 230		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
 231	}
 
 232}
 233
 234int timer_migration_handler(struct ctl_table *table, int write,
 235			    void __user *buffer, size_t *lenp,
 236			    loff_t *ppos)
 237{
 238	static DEFINE_MUTEX(mutex);
 239	int ret;
 240
 241	mutex_lock(&mutex);
 242	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 243	if (!ret && write)
 244		timers_update_migration(false);
 245	mutex_unlock(&mutex);
 246	return ret;
 247}
 248#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250static unsigned long round_jiffies_common(unsigned long j, int cpu,
 251		bool force_up)
 252{
 253	int rem;
 254	unsigned long original = j;
 255
 256	/*
 257	 * We don't want all cpus firing their timers at once hitting the
 258	 * same lock or cachelines, so we skew each extra cpu with an extra
 259	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 260	 * already did this.
 261	 * The skew is done by adding 3*cpunr, then round, then subtract this
 262	 * extra offset again.
 263	 */
 264	j += cpu * 3;
 265
 266	rem = j % HZ;
 267
 268	/*
 269	 * If the target jiffie is just after a whole second (which can happen
 270	 * due to delays of the timer irq, long irq off times etc etc) then
 271	 * we should round down to the whole second, not up. Use 1/4th second
 272	 * as cutoff for this rounding as an extreme upper bound for this.
 273	 * But never round down if @force_up is set.
 274	 */
 275	if (rem < HZ/4 && !force_up) /* round down */
 276		j = j - rem;
 277	else /* round up */
 278		j = j - rem + HZ;
 279
 280	/* now that we have rounded, subtract the extra skew again */
 281	j -= cpu * 3;
 282
 283	/*
 284	 * Make sure j is still in the future. Otherwise return the
 285	 * unmodified value.
 286	 */
 287	return time_is_after_jiffies(j) ? j : original;
 288}
 289
 290/**
 291 * __round_jiffies - function to round jiffies to a full second
 292 * @j: the time in (absolute) jiffies that should be rounded
 293 * @cpu: the processor number on which the timeout will happen
 294 *
 295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 296 * up or down to (approximately) full seconds. This is useful for timers
 297 * for which the exact time they fire does not matter too much, as long as
 298 * they fire approximately every X seconds.
 299 *
 300 * By rounding these timers to whole seconds, all such timers will fire
 301 * at the same time, rather than at various times spread out. The goal
 302 * of this is to have the CPU wake up less, which saves power.
 303 *
 304 * The exact rounding is skewed for each processor to avoid all
 305 * processors firing at the exact same time, which could lead
 306 * to lock contention or spurious cache line bouncing.
 307 *
 308 * The return value is the rounded version of the @j parameter.
 309 */
 310unsigned long __round_jiffies(unsigned long j, int cpu)
 311{
 312	return round_jiffies_common(j, cpu, false);
 313}
 314EXPORT_SYMBOL_GPL(__round_jiffies);
 315
 316/**
 317 * __round_jiffies_relative - function to round jiffies to a full second
 318 * @j: the time in (relative) jiffies that should be rounded
 319 * @cpu: the processor number on which the timeout will happen
 320 *
 321 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 322 * up or down to (approximately) full seconds. This is useful for timers
 323 * for which the exact time they fire does not matter too much, as long as
 324 * they fire approximately every X seconds.
 325 *
 326 * By rounding these timers to whole seconds, all such timers will fire
 327 * at the same time, rather than at various times spread out. The goal
 328 * of this is to have the CPU wake up less, which saves power.
 329 *
 330 * The exact rounding is skewed for each processor to avoid all
 331 * processors firing at the exact same time, which could lead
 332 * to lock contention or spurious cache line bouncing.
 333 *
 334 * The return value is the rounded version of the @j parameter.
 335 */
 336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 337{
 338	unsigned long j0 = jiffies;
 339
 340	/* Use j0 because jiffies might change while we run */
 341	return round_jiffies_common(j + j0, cpu, false) - j0;
 342}
 343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 344
 345/**
 346 * round_jiffies - function to round jiffies to a full second
 347 * @j: the time in (absolute) jiffies that should be rounded
 348 *
 349 * round_jiffies() rounds an absolute time in the future (in jiffies)
 350 * up or down to (approximately) full seconds. This is useful for timers
 351 * for which the exact time they fire does not matter too much, as long as
 352 * they fire approximately every X seconds.
 353 *
 354 * By rounding these timers to whole seconds, all such timers will fire
 355 * at the same time, rather than at various times spread out. The goal
 356 * of this is to have the CPU wake up less, which saves power.
 357 *
 358 * The return value is the rounded version of the @j parameter.
 359 */
 360unsigned long round_jiffies(unsigned long j)
 361{
 362	return round_jiffies_common(j, raw_smp_processor_id(), false);
 363}
 364EXPORT_SYMBOL_GPL(round_jiffies);
 365
 366/**
 367 * round_jiffies_relative - function to round jiffies to a full second
 368 * @j: the time in (relative) jiffies that should be rounded
 369 *
 370 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 371 * up or down to (approximately) full seconds. This is useful for timers
 372 * for which the exact time they fire does not matter too much, as long as
 373 * they fire approximately every X seconds.
 374 *
 375 * By rounding these timers to whole seconds, all such timers will fire
 376 * at the same time, rather than at various times spread out. The goal
 377 * of this is to have the CPU wake up less, which saves power.
 378 *
 379 * The return value is the rounded version of the @j parameter.
 380 */
 381unsigned long round_jiffies_relative(unsigned long j)
 382{
 383	return __round_jiffies_relative(j, raw_smp_processor_id());
 384}
 385EXPORT_SYMBOL_GPL(round_jiffies_relative);
 386
 387/**
 388 * __round_jiffies_up - function to round jiffies up to a full second
 389 * @j: the time in (absolute) jiffies that should be rounded
 390 * @cpu: the processor number on which the timeout will happen
 391 *
 392 * This is the same as __round_jiffies() except that it will never
 393 * round down.  This is useful for timeouts for which the exact time
 394 * of firing does not matter too much, as long as they don't fire too
 395 * early.
 396 */
 397unsigned long __round_jiffies_up(unsigned long j, int cpu)
 398{
 399	return round_jiffies_common(j, cpu, true);
 400}
 401EXPORT_SYMBOL_GPL(__round_jiffies_up);
 402
 403/**
 404 * __round_jiffies_up_relative - function to round jiffies up to a full second
 405 * @j: the time in (relative) jiffies that should be rounded
 406 * @cpu: the processor number on which the timeout will happen
 407 *
 408 * This is the same as __round_jiffies_relative() except that it will never
 409 * round down.  This is useful for timeouts for which the exact time
 410 * of firing does not matter too much, as long as they don't fire too
 411 * early.
 412 */
 413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 414{
 415	unsigned long j0 = jiffies;
 416
 417	/* Use j0 because jiffies might change while we run */
 418	return round_jiffies_common(j + j0, cpu, true) - j0;
 419}
 420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 421
 422/**
 423 * round_jiffies_up - function to round jiffies up to a full second
 424 * @j: the time in (absolute) jiffies that should be rounded
 425 *
 426 * This is the same as round_jiffies() except that it will never
 427 * round down.  This is useful for timeouts for which the exact time
 428 * of firing does not matter too much, as long as they don't fire too
 429 * early.
 430 */
 431unsigned long round_jiffies_up(unsigned long j)
 432{
 433	return round_jiffies_common(j, raw_smp_processor_id(), true);
 434}
 435EXPORT_SYMBOL_GPL(round_jiffies_up);
 436
 437/**
 438 * round_jiffies_up_relative - function to round jiffies up to a full second
 439 * @j: the time in (relative) jiffies that should be rounded
 440 *
 441 * This is the same as round_jiffies_relative() except that it will never
 442 * round down.  This is useful for timeouts for which the exact time
 443 * of firing does not matter too much, as long as they don't fire too
 444 * early.
 445 */
 446unsigned long round_jiffies_up_relative(unsigned long j)
 447{
 448	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 449}
 450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 451
 452
 453static inline unsigned int timer_get_idx(struct timer_list *timer)
 454{
 455	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 456}
 457
 458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 459{
 460	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 461			idx << TIMER_ARRAYSHIFT;
 462}
 463
 464/*
 465 * Helper function to calculate the array index for a given expiry
 466 * time.
 467 */
 468static inline unsigned calc_index(unsigned expires, unsigned lvl)
 
 469{
 470	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 
 
 
 
 
 
 
 
 
 
 471	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 472}
 473
 474static int calc_wheel_index(unsigned long expires, unsigned long clk)
 
 475{
 476	unsigned long delta = expires - clk;
 477	unsigned int idx;
 478
 479	if (delta < LVL_START(1)) {
 480		idx = calc_index(expires, 0);
 481	} else if (delta < LVL_START(2)) {
 482		idx = calc_index(expires, 1);
 483	} else if (delta < LVL_START(3)) {
 484		idx = calc_index(expires, 2);
 485	} else if (delta < LVL_START(4)) {
 486		idx = calc_index(expires, 3);
 487	} else if (delta < LVL_START(5)) {
 488		idx = calc_index(expires, 4);
 489	} else if (delta < LVL_START(6)) {
 490		idx = calc_index(expires, 5);
 491	} else if (delta < LVL_START(7)) {
 492		idx = calc_index(expires, 6);
 493	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 494		idx = calc_index(expires, 7);
 495	} else if ((long) delta < 0) {
 496		idx = clk & LVL_MASK;
 
 497	} else {
 498		/*
 499		 * Force expire obscene large timeouts to expire at the
 500		 * capacity limit of the wheel.
 501		 */
 502		if (expires >= WHEEL_TIMEOUT_CUTOFF)
 503			expires = WHEEL_TIMEOUT_MAX;
 504
 505		idx = calc_index(expires, LVL_DEPTH - 1);
 506	}
 507	return idx;
 508}
 509
 510/*
 511 * Enqueue the timer into the hash bucket, mark it pending in
 512 * the bitmap and store the index in the timer flags.
 513 */
 514static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 515			  unsigned int idx)
 516{
 517	hlist_add_head(&timer->entry, base->vectors + idx);
 518	__set_bit(idx, base->pending_map);
 519	timer_set_idx(timer, idx);
 520}
 521
 522static void
 523__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 524{
 525	unsigned int idx;
 526
 527	idx = calc_wheel_index(timer->expires, base->clk);
 528	enqueue_timer(base, timer, idx);
 529}
 530
 531static void
 532trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 533{
 534	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
 535		return;
 536
 537	/*
 538	 * TODO: This wants some optimizing similar to the code below, but we
 539	 * will do that when we switch from push to pull for deferrable timers.
 
 
 
 540	 */
 541	if (timer->flags & TIMER_DEFERRABLE) {
 542		if (tick_nohz_full_cpu(base->cpu))
 543			wake_up_nohz_cpu(base->cpu);
 544		return;
 545	}
 546
 547	/*
 548	 * We might have to IPI the remote CPU if the base is idle and the
 549	 * timer is not deferrable. If the other CPU is on the way to idle
 550	 * then it can't set base->is_idle as we hold the base lock:
 551	 */
 552	if (!base->is_idle)
 553		return;
 554
 555	/* Check whether this is the new first expiring timer: */
 556	if (time_after_eq(timer->expires, base->next_expiry))
 557		return;
 558
 559	/*
 560	 * Set the next expiry time and kick the CPU so it can reevaluate the
 561	 * wheel:
 562	 */
 563	base->next_expiry = timer->expires;
 564		wake_up_nohz_cpu(base->cpu);
 
 565}
 566
 567static void
 568internal_add_timer(struct timer_base *base, struct timer_list *timer)
 569{
 570	__internal_add_timer(base, timer);
 571	trigger_dyntick_cpu(base, timer);
 572}
 573
 574#ifdef CONFIG_TIMER_STATS
 575void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
 576{
 577	if (timer->start_site)
 578		return;
 579
 580	timer->start_site = addr;
 581	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 582	timer->start_pid = current->pid;
 583}
 584
 585static void timer_stats_account_timer(struct timer_list *timer)
 586{
 587	void *site;
 588
 589	/*
 590	 * start_site can be concurrently reset by
 591	 * timer_stats_timer_clear_start_info()
 
 592	 */
 593	site = READ_ONCE(timer->start_site);
 594	if (likely(!site))
 595		return;
 596
 597	timer_stats_update_stats(timer, timer->start_pid, site,
 598				 timer->function, timer->start_comm,
 599				 timer->flags);
 
 
 
 600}
 601
 602#else
 603static void timer_stats_account_timer(struct timer_list *timer) {}
 604#endif
 
 
 
 
 
 605
 606#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 607
 608static struct debug_obj_descr timer_debug_descr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609
 610static void *timer_debug_hint(void *addr)
 611{
 612	return ((struct timer_list *) addr)->function;
 
 
 
 
 
 
 
 
 
 
 
 613}
 614
 615static bool timer_is_static_object(void *addr)
 616{
 617	struct timer_list *timer = addr;
 618
 619	return (timer->entry.pprev == NULL &&
 620		timer->entry.next == TIMER_ENTRY_STATIC);
 621}
 622
 623/*
 624 * fixup_init is called when:
 625 * - an active object is initialized
 626 */
 627static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 628{
 629	struct timer_list *timer = addr;
 630
 631	switch (state) {
 632	case ODEBUG_STATE_ACTIVE:
 633		del_timer_sync(timer);
 634		debug_object_init(timer, &timer_debug_descr);
 635		return true;
 636	default:
 637		return false;
 638	}
 639}
 640
 641/* Stub timer callback for improperly used timers. */
 642static void stub_timer(unsigned long data)
 643{
 644	WARN_ON(1);
 645}
 646
 647/*
 648 * fixup_activate is called when:
 649 * - an active object is activated
 650 * - an unknown non-static object is activated
 651 */
 652static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 653{
 654	struct timer_list *timer = addr;
 655
 656	switch (state) {
 657	case ODEBUG_STATE_NOTAVAILABLE:
 658		setup_timer(timer, stub_timer, 0);
 659		return true;
 660
 661	case ODEBUG_STATE_ACTIVE:
 662		WARN_ON(1);
 663
 664	default:
 665		return false;
 666	}
 667}
 668
 669/*
 670 * fixup_free is called when:
 671 * - an active object is freed
 672 */
 673static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 674{
 675	struct timer_list *timer = addr;
 676
 677	switch (state) {
 678	case ODEBUG_STATE_ACTIVE:
 679		del_timer_sync(timer);
 680		debug_object_free(timer, &timer_debug_descr);
 681		return true;
 682	default:
 683		return false;
 684	}
 685}
 686
 687/*
 688 * fixup_assert_init is called when:
 689 * - an untracked/uninit-ed object is found
 690 */
 691static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 692{
 693	struct timer_list *timer = addr;
 694
 695	switch (state) {
 696	case ODEBUG_STATE_NOTAVAILABLE:
 697		setup_timer(timer, stub_timer, 0);
 698		return true;
 699	default:
 700		return false;
 701	}
 702}
 703
 704static struct debug_obj_descr timer_debug_descr = {
 705	.name			= "timer_list",
 706	.debug_hint		= timer_debug_hint,
 707	.is_static_object	= timer_is_static_object,
 708	.fixup_init		= timer_fixup_init,
 709	.fixup_activate		= timer_fixup_activate,
 710	.fixup_free		= timer_fixup_free,
 711	.fixup_assert_init	= timer_fixup_assert_init,
 712};
 713
 714static inline void debug_timer_init(struct timer_list *timer)
 715{
 716	debug_object_init(timer, &timer_debug_descr);
 717}
 718
 719static inline void debug_timer_activate(struct timer_list *timer)
 720{
 721	debug_object_activate(timer, &timer_debug_descr);
 722}
 723
 724static inline void debug_timer_deactivate(struct timer_list *timer)
 725{
 726	debug_object_deactivate(timer, &timer_debug_descr);
 727}
 728
 729static inline void debug_timer_free(struct timer_list *timer)
 730{
 731	debug_object_free(timer, &timer_debug_descr);
 732}
 733
 734static inline void debug_timer_assert_init(struct timer_list *timer)
 735{
 736	debug_object_assert_init(timer, &timer_debug_descr);
 737}
 738
 739static void do_init_timer(struct timer_list *timer, unsigned int flags,
 
 
 740			  const char *name, struct lock_class_key *key);
 741
 742void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
 
 
 743			     const char *name, struct lock_class_key *key)
 744{
 745	debug_object_init_on_stack(timer, &timer_debug_descr);
 746	do_init_timer(timer, flags, name, key);
 747}
 748EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 749
 750void destroy_timer_on_stack(struct timer_list *timer)
 751{
 752	debug_object_free(timer, &timer_debug_descr);
 753}
 754EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 755
 756#else
 757static inline void debug_timer_init(struct timer_list *timer) { }
 758static inline void debug_timer_activate(struct timer_list *timer) { }
 759static inline void debug_timer_deactivate(struct timer_list *timer) { }
 760static inline void debug_timer_assert_init(struct timer_list *timer) { }
 761#endif
 762
 763static inline void debug_init(struct timer_list *timer)
 764{
 765	debug_timer_init(timer);
 766	trace_timer_init(timer);
 767}
 768
 769static inline void
 770debug_activate(struct timer_list *timer, unsigned long expires)
 771{
 772	debug_timer_activate(timer);
 773	trace_timer_start(timer, expires, timer->flags);
 774}
 775
 776static inline void debug_deactivate(struct timer_list *timer)
 777{
 778	debug_timer_deactivate(timer);
 779	trace_timer_cancel(timer);
 780}
 781
 782static inline void debug_assert_init(struct timer_list *timer)
 783{
 784	debug_timer_assert_init(timer);
 785}
 786
 787static void do_init_timer(struct timer_list *timer, unsigned int flags,
 
 
 788			  const char *name, struct lock_class_key *key)
 789{
 790	timer->entry.pprev = NULL;
 
 
 
 791	timer->flags = flags | raw_smp_processor_id();
 792#ifdef CONFIG_TIMER_STATS
 793	timer->start_site = NULL;
 794	timer->start_pid = -1;
 795	memset(timer->start_comm, 0, TASK_COMM_LEN);
 796#endif
 797	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 798}
 799
 800/**
 801 * init_timer_key - initialize a timer
 802 * @timer: the timer to be initialized
 
 803 * @flags: timer flags
 804 * @name: name of the timer
 805 * @key: lockdep class key of the fake lock used for tracking timer
 806 *       sync lock dependencies
 807 *
 808 * init_timer_key() must be done to a timer prior calling *any* of the
 809 * other timer functions.
 810 */
 811void init_timer_key(struct timer_list *timer, unsigned int flags,
 
 812		    const char *name, struct lock_class_key *key)
 813{
 814	debug_init(timer);
 815	do_init_timer(timer, flags, name, key);
 816}
 817EXPORT_SYMBOL(init_timer_key);
 818
 819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 820{
 821	struct hlist_node *entry = &timer->entry;
 822
 823	debug_deactivate(timer);
 824
 825	__hlist_del(entry);
 826	if (clear_pending)
 827		entry->pprev = NULL;
 828	entry->next = LIST_POISON2;
 829}
 830
 831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 832			     bool clear_pending)
 833{
 834	unsigned idx = timer_get_idx(timer);
 835
 836	if (!timer_pending(timer))
 837		return 0;
 838
 839	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 840		__clear_bit(idx, base->pending_map);
 
 
 841
 842	detach_timer(timer, clear_pending);
 843	return 1;
 844}
 845
 846static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 847{
 848	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 
 
 
 849
 850	/*
 851	 * If the timer is deferrable and nohz is active then we need to use
 852	 * the deferrable base.
 853	 */
 854	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 855	    (tflags & TIMER_DEFERRABLE))
 856		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 857	return base;
 858}
 859
 860static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 861{
 862	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 
 
 
 863
 864	/*
 865	 * If the timer is deferrable and nohz is active then we need to use
 866	 * the deferrable base.
 867	 */
 868	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 869	    (tflags & TIMER_DEFERRABLE))
 870		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 871	return base;
 872}
 873
 874static inline struct timer_base *get_timer_base(u32 tflags)
 875{
 876	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 877}
 878
 879#ifdef CONFIG_NO_HZ_COMMON
 880static inline struct timer_base *
 881get_target_base(struct timer_base *base, unsigned tflags)
 882{
 883#ifdef CONFIG_SMP
 884	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
 885		return get_timer_this_cpu_base(tflags);
 886	return get_timer_cpu_base(tflags, get_nohz_timer_target());
 887#else
 888	return get_timer_this_cpu_base(tflags);
 889#endif
 890}
 891
 892static inline void forward_timer_base(struct timer_base *base)
 893{
 894	unsigned long jnow = READ_ONCE(jiffies);
 895
 896	/*
 897	 * We only forward the base when it's idle and we have a delta between
 898	 * base clock and jiffies.
 899	 */
 900	if (!base->is_idle || (long) (jnow - base->clk) < 2)
 901		return;
 902
 903	/*
 904	 * If the next expiry value is > jiffies, then we fast forward to
 905	 * jiffies otherwise we forward to the next expiry value.
 906	 */
 907	if (time_after(base->next_expiry, jnow))
 908		base->clk = jnow;
 909	else
 
 
 910		base->clk = base->next_expiry;
 
 
 911}
 912#else
 913static inline struct timer_base *
 914get_target_base(struct timer_base *base, unsigned tflags)
 915{
 916	return get_timer_this_cpu_base(tflags);
 917}
 918
 919static inline void forward_timer_base(struct timer_base *base) { }
 920#endif
 921
 922
 923/*
 924 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 925 * that all timers which are tied to this base are locked, and the base itself
 926 * is locked too.
 927 *
 928 * So __run_timers/migrate_timers can safely modify all timers which could
 929 * be found in the base->vectors array.
 930 *
 931 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 932 * to wait until the migration is done.
 933 */
 934static struct timer_base *lock_timer_base(struct timer_list *timer,
 935					  unsigned long *flags)
 936	__acquires(timer->base->lock)
 937{
 938	for (;;) {
 939		struct timer_base *base;
 940		u32 tf;
 941
 942		/*
 943		 * We need to use READ_ONCE() here, otherwise the compiler
 944		 * might re-read @tf between the check for TIMER_MIGRATING
 945		 * and spin_lock().
 946		 */
 947		tf = READ_ONCE(timer->flags);
 948
 949		if (!(tf & TIMER_MIGRATING)) {
 950			base = get_timer_base(tf);
 951			spin_lock_irqsave(&base->lock, *flags);
 952			if (timer->flags == tf)
 953				return base;
 954			spin_unlock_irqrestore(&base->lock, *flags);
 955		}
 956		cpu_relax();
 957	}
 958}
 959
 
 
 
 
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
 962{
 
 963	struct timer_base *base, *new_base;
 964	unsigned int idx = UINT_MAX;
 965	unsigned long clk = 0, flags;
 966	int ret = 0;
 967
 968	BUG_ON(!timer->function);
 969
 970	/*
 971	 * This is a common optimization triggered by the networking code - if
 972	 * the timer is re-modified to have the same timeout or ends up in the
 973	 * same array bucket then just return:
 974	 */
 975	if (timer_pending(timer)) {
 976		if (timer->expires == expires)
 
 
 
 
 
 
 
 
 
 977			return 1;
 978
 979		/*
 980		 * We lock timer base and calculate the bucket index right
 981		 * here. If the timer ends up in the same bucket, then we
 982		 * just update the expiry time and avoid the whole
 983		 * dequeue/enqueue dance.
 984		 */
 985		base = lock_timer_base(timer, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986
 987		clk = base->clk;
 988		idx = calc_wheel_index(expires, clk);
 989
 990		/*
 991		 * Retrieve and compare the array index of the pending
 992		 * timer. If it matches set the expiry to the new value so a
 993		 * subsequent call will exit in the expires check above.
 994		 */
 995		if (idx == timer_get_idx(timer)) {
 996			timer->expires = expires;
 
 
 
 997			ret = 1;
 998			goto out_unlock;
 999		}
1000	} else {
1001		base = lock_timer_base(timer, &flags);
1002	}
 
 
 
 
 
 
1003
1004	timer_stats_timer_set_start_info(timer);
 
1005
1006	ret = detach_if_pending(timer, base, false);
1007	if (!ret && pending_only)
1008		goto out_unlock;
1009
1010	debug_activate(timer, expires);
1011
1012	new_base = get_target_base(base, timer->flags);
1013
1014	if (base != new_base) {
1015		/*
1016		 * We are trying to schedule the timer on the new base.
1017		 * However we can't change timer's base while it is running,
1018		 * otherwise del_timer_sync() can't detect that the timer's
1019		 * handler yet has not finished. This also guarantees that the
1020		 * timer is serialized wrt itself.
1021		 */
1022		if (likely(base->running_timer != timer)) {
1023			/* See the comment in lock_timer_base() */
1024			timer->flags |= TIMER_MIGRATING;
1025
1026			spin_unlock(&base->lock);
1027			base = new_base;
1028			spin_lock(&base->lock);
1029			WRITE_ONCE(timer->flags,
1030				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
 
1031		}
1032	}
1033
1034	/* Try to forward a stale timer base clock */
1035	forward_timer_base(base);
1036
1037	timer->expires = expires;
1038	/*
1039	 * If 'idx' was calculated above and the base time did not advance
1040	 * between calculating 'idx' and possibly switching the base, only
1041	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042	 * we need to (re)calculate the wheel index via
1043	 * internal_add_timer().
1044	 */
1045	if (idx != UINT_MAX && clk == base->clk) {
1046		enqueue_timer(base, timer, idx);
1047		trigger_dyntick_cpu(base, timer);
1048	} else {
1049		internal_add_timer(base, timer);
1050	}
1051
1052out_unlock:
1053	spin_unlock_irqrestore(&base->lock, flags);
1054
1055	return ret;
1056}
1057
1058/**
1059 * mod_timer_pending - modify a pending timer's timeout
1060 * @timer: the pending timer to be modified
1061 * @expires: new timeout in jiffies
1062 *
1063 * mod_timer_pending() is the same for pending timers as mod_timer(),
1064 * but will not re-activate and modify already deleted timers.
1065 *
1066 * It is useful for unserialized use of timers.
 
 
 
 
 
 
1067 */
1068int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069{
1070	return __mod_timer(timer, expires, true);
1071}
1072EXPORT_SYMBOL(mod_timer_pending);
1073
1074/**
1075 * mod_timer - modify a timer's timeout
1076 * @timer: the timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer() is a more efficient way to update the expire field of an
1080 * active timer (if the timer is inactive it will be activated)
1081 *
1082 * mod_timer(timer, expires) is equivalent to:
1083 *
1084 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085 *
 
 
 
 
1086 * Note that if there are multiple unserialized concurrent users of the
1087 * same timer, then mod_timer() is the only safe way to modify the timeout,
1088 * since add_timer() cannot modify an already running timer.
1089 *
1090 * The function returns whether it has modified a pending timer or not.
1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092 * active timer returns 1.)
 
 
 
 
 
 
1093 */
1094int mod_timer(struct timer_list *timer, unsigned long expires)
1095{
1096	return __mod_timer(timer, expires, false);
1097}
1098EXPORT_SYMBOL(mod_timer);
1099
1100/**
1101 * add_timer - start a timer
1102 * @timer: the timer to be added
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103 *
1104 * The kernel will do a ->function(->data) callback from the
1105 * timer interrupt at the ->expires point in the future. The
1106 * current time is 'jiffies'.
1107 *
1108 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1109 * fields must be set prior calling this function.
1110 *
1111 * Timers with an ->expires field in the past will be executed in the next
1112 * timer tick.
1113 */
1114void add_timer(struct timer_list *timer)
1115{
1116	BUG_ON(timer_pending(timer));
1117	mod_timer(timer, timer->expires);
 
1118}
1119EXPORT_SYMBOL(add_timer);
1120
1121/**
1122 * add_timer_on - start a timer on a particular CPU
1123 * @timer: the timer to be added
1124 * @cpu: the CPU to start it on
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125 *
1126 * This is not very scalable on SMP. Double adds are not possible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127 */
1128void add_timer_on(struct timer_list *timer, int cpu)
1129{
1130	struct timer_base *new_base, *base;
1131	unsigned long flags;
1132
1133	timer_stats_timer_set_start_info(timer);
1134	BUG_ON(timer_pending(timer) || !timer->function);
 
 
 
 
 
1135
1136	new_base = get_timer_cpu_base(timer->flags, cpu);
1137
1138	/*
1139	 * If @timer was on a different CPU, it should be migrated with the
1140	 * old base locked to prevent other operations proceeding with the
1141	 * wrong base locked.  See lock_timer_base().
1142	 */
1143	base = lock_timer_base(timer, &flags);
 
 
 
 
 
 
 
1144	if (base != new_base) {
1145		timer->flags |= TIMER_MIGRATING;
1146
1147		spin_unlock(&base->lock);
1148		base = new_base;
1149		spin_lock(&base->lock);
1150		WRITE_ONCE(timer->flags,
1151			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1152	}
 
1153
1154	debug_activate(timer, timer->expires);
1155	internal_add_timer(base, timer);
1156	spin_unlock_irqrestore(&base->lock, flags);
 
1157}
1158EXPORT_SYMBOL_GPL(add_timer_on);
1159
1160/**
1161 * del_timer - deactive a timer.
1162 * @timer: the timer to be deactivated
1163 *
1164 * del_timer() deactivates a timer - this works on both active and inactive
1165 * timers.
1166 *
1167 * The function returns whether it has deactivated a pending timer or not.
1168 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1169 * active timer returns 1.)
 
 
 
 
1170 */
1171int del_timer(struct timer_list *timer)
1172{
1173	struct timer_base *base;
1174	unsigned long flags;
1175	int ret = 0;
1176
1177	debug_assert_init(timer);
1178
1179	timer_stats_timer_clear_start_info(timer);
1180	if (timer_pending(timer)) {
 
 
 
 
 
 
 
 
 
 
1181		base = lock_timer_base(timer, &flags);
1182		ret = detach_if_pending(timer, base, true);
1183		spin_unlock_irqrestore(&base->lock, flags);
 
 
1184	}
1185
1186	return ret;
1187}
1188EXPORT_SYMBOL(del_timer);
1189
1190/**
1191 * try_to_del_timer_sync - Try to deactivate a timer
1192 * @timer: timer do del
1193 *
1194 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1195 * exit the timer is not queued and the handler is not running on any CPU.
 
 
 
 
 
 
 
1196 */
1197int try_to_del_timer_sync(struct timer_list *timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198{
1199	struct timer_base *base;
1200	unsigned long flags;
1201	int ret = -1;
1202
1203	debug_assert_init(timer);
1204
1205	base = lock_timer_base(timer, &flags);
1206
1207	if (base->running_timer != timer) {
1208		timer_stats_timer_clear_start_info(timer);
1209		ret = detach_if_pending(timer, base, true);
1210	}
1211	spin_unlock_irqrestore(&base->lock, flags);
 
 
1212
1213	return ret;
1214}
1215EXPORT_SYMBOL(try_to_del_timer_sync);
1216
1217#ifdef CONFIG_SMP
1218/**
1219 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1220 * @timer: the timer to be deactivated
1221 *
1222 * This function only differs from del_timer() on SMP: besides deactivating
1223 * the timer it also makes sure the handler has finished executing on other
1224 * CPUs.
1225 *
1226 * Synchronization rules: Callers must prevent restarting of the timer,
1227 * otherwise this function is meaningless. It must not be called from
1228 * interrupt contexts unless the timer is an irqsafe one. The caller must
1229 * not hold locks which would prevent completion of the timer's
1230 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1231 * timer is not queued and the handler is not running on any CPU.
1232 *
1233 * Note: For !irqsafe timers, you must not hold locks that are held in
1234 *   interrupt context while calling this function. Even if the lock has
1235 *   nothing to do with the timer in question.  Here's why:
1236 *
1237 *    CPU0                             CPU1
1238 *    ----                             ----
1239 *                                   <SOFTIRQ>
1240 *                                   call_timer_fn();
1241 *                                     base->running_timer = mytimer;
1242 *  spin_lock_irq(somelock);
1243 *                                     <IRQ>
1244 *                                        spin_lock(somelock);
1245 *  del_timer_sync(mytimer);
1246 *   while (base->running_timer == mytimer);
1247 *
1248 * Now del_timer_sync() will never return and never release somelock.
1249 * The interrupt on the other CPU is waiting to grab somelock but
1250 * it has interrupted the softirq that CPU0 is waiting to finish.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251 *
1252 * The function returns whether it has deactivated a pending timer or not.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253 */
1254int del_timer_sync(struct timer_list *timer)
1255{
 
 
1256#ifdef CONFIG_LOCKDEP
1257	unsigned long flags;
1258
1259	/*
1260	 * If lockdep gives a backtrace here, please reference
1261	 * the synchronization rules above.
1262	 */
1263	local_irq_save(flags);
1264	lock_map_acquire(&timer->lockdep_map);
1265	lock_map_release(&timer->lockdep_map);
1266	local_irq_restore(flags);
1267#endif
1268	/*
1269	 * don't use it in hardirq context, because it
1270	 * could lead to deadlock.
1271	 */
1272	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1273	for (;;) {
1274		int ret = try_to_del_timer_sync(timer);
1275		if (ret >= 0)
1276			return ret;
1277		cpu_relax();
1278	}
 
 
 
 
 
 
 
 
 
 
 
 
1279}
1280EXPORT_SYMBOL(del_timer_sync);
1281#endif
1282
1283static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1284			  unsigned long data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285{
1286	int count = preempt_count();
1287
1288#ifdef CONFIG_LOCKDEP
1289	/*
1290	 * It is permissible to free the timer from inside the
1291	 * function that is called from it, this we need to take into
1292	 * account for lockdep too. To avoid bogus "held lock freed"
1293	 * warnings as well as problems when looking into
1294	 * timer->lockdep_map, make a copy and use that here.
1295	 */
1296	struct lockdep_map lockdep_map;
1297
1298	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1299#endif
1300	/*
1301	 * Couple the lock chain with the lock chain at
1302	 * del_timer_sync() by acquiring the lock_map around the fn()
1303	 * call here and in del_timer_sync().
1304	 */
1305	lock_map_acquire(&lockdep_map);
1306
1307	trace_timer_expire_entry(timer);
1308	fn(data);
1309	trace_timer_expire_exit(timer);
1310
1311	lock_map_release(&lockdep_map);
1312
1313	if (count != preempt_count()) {
1314		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1315			  fn, count, preempt_count());
1316		/*
1317		 * Restore the preempt count. That gives us a decent
1318		 * chance to survive and extract information. If the
1319		 * callback kept a lock held, bad luck, but not worse
1320		 * than the BUG() we had.
1321		 */
1322		preempt_count_set(count);
1323	}
1324}
1325
1326static void expire_timers(struct timer_base *base, struct hlist_head *head)
1327{
 
 
 
 
 
 
 
1328	while (!hlist_empty(head)) {
1329		struct timer_list *timer;
1330		void (*fn)(unsigned long);
1331		unsigned long data;
1332
1333		timer = hlist_entry(head->first, struct timer_list, entry);
1334		timer_stats_account_timer(timer);
1335
1336		base->running_timer = timer;
1337		detach_timer(timer, true);
1338
1339		fn = timer->function;
1340		data = timer->data;
 
 
 
 
 
1341
1342		if (timer->flags & TIMER_IRQSAFE) {
1343			spin_unlock(&base->lock);
1344			call_timer_fn(timer, fn, data);
1345			spin_lock(&base->lock);
 
1346		} else {
1347			spin_unlock_irq(&base->lock);
1348			call_timer_fn(timer, fn, data);
1349			spin_lock_irq(&base->lock);
 
 
1350		}
1351	}
1352}
1353
1354static int __collect_expired_timers(struct timer_base *base,
1355				    struct hlist_head *heads)
1356{
1357	unsigned long clk = base->clk;
1358	struct hlist_head *vec;
1359	int i, levels = 0;
1360	unsigned int idx;
1361
1362	for (i = 0; i < LVL_DEPTH; i++) {
1363		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1364
1365		if (__test_and_clear_bit(idx, base->pending_map)) {
1366			vec = base->vectors + idx;
1367			hlist_move_list(vec, heads++);
1368			levels++;
1369		}
1370		/* Is it time to look at the next level? */
1371		if (clk & LVL_CLK_MASK)
1372			break;
1373		/* Shift clock for the next level granularity */
1374		clk >>= LVL_CLK_SHIFT;
1375	}
1376	return levels;
1377}
1378
1379#ifdef CONFIG_NO_HZ_COMMON
1380/*
1381 * Find the next pending bucket of a level. Search from level start (@offset)
1382 * + @clk upwards and if nothing there, search from start of the level
1383 * (@offset) up to @offset + clk.
1384 */
1385static int next_pending_bucket(struct timer_base *base, unsigned offset,
1386			       unsigned clk)
1387{
1388	unsigned pos, start = offset + clk;
1389	unsigned end = offset + LVL_SIZE;
1390
1391	pos = find_next_bit(base->pending_map, end, start);
1392	if (pos < end)
1393		return pos - start;
1394
1395	pos = find_next_bit(base->pending_map, start, offset);
1396	return pos < start ? pos + LVL_SIZE - start : -1;
1397}
1398
1399/*
1400 * Search the first expiring timer in the various clock levels. Caller must
1401 * hold base->lock.
 
 
1402 */
1403static unsigned long __next_timer_interrupt(struct timer_base *base)
1404{
1405	unsigned long clk, next, adj;
1406	unsigned lvl, offset = 0;
1407
1408	next = base->clk + NEXT_TIMER_MAX_DELTA;
1409	clk = base->clk;
1410	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1411		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
 
1412
1413		if (pos >= 0) {
1414			unsigned long tmp = clk + (unsigned long) pos;
1415
1416			tmp <<= LVL_SHIFT(lvl);
1417			if (time_before(tmp, next))
1418				next = tmp;
 
 
 
 
 
 
 
1419		}
1420		/*
1421		 * Clock for the next level. If the current level clock lower
1422		 * bits are zero, we look at the next level as is. If not we
1423		 * need to advance it by one because that's going to be the
1424		 * next expiring bucket in that level. base->clk is the next
1425		 * expiring jiffie. So in case of:
1426		 *
1427		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1428		 *  0    0    0    0    0    0
1429		 *
1430		 * we have to look at all levels @index 0. With
1431		 *
1432		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1433		 *  0    0    0    0    0    2
1434		 *
1435		 * LVL0 has the next expiring bucket @index 2. The upper
1436		 * levels have the next expiring bucket @index 1.
1437		 *
1438		 * In case that the propagation wraps the next level the same
1439		 * rules apply:
1440		 *
1441		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442		 *  0    0    0    0    F    2
1443		 *
1444		 * So after looking at LVL0 we get:
1445		 *
1446		 * LVL5 LVL4 LVL3 LVL2 LVL1
1447		 *  0    0    0    1    0
1448		 *
1449		 * So no propagation from LVL1 to LVL2 because that happened
1450		 * with the add already, but then we need to propagate further
1451		 * from LVL2 to LVL3.
1452		 *
1453		 * So the simple check whether the lower bits of the current
1454		 * level are 0 or not is sufficient for all cases.
1455		 */
1456		adj = clk & LVL_CLK_MASK ? 1 : 0;
1457		clk >>= LVL_CLK_SHIFT;
1458		clk += adj;
1459	}
1460	return next;
 
 
 
1461}
1462
 
1463/*
1464 * Check, if the next hrtimer event is before the next timer wheel
1465 * event:
1466 */
1467static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1468{
1469	u64 nextevt = hrtimer_get_next_event();
1470
1471	/*
1472	 * If high resolution timers are enabled
1473	 * hrtimer_get_next_event() returns KTIME_MAX.
1474	 */
1475	if (expires <= nextevt)
1476		return expires;
1477
1478	/*
1479	 * If the next timer is already expired, return the tick base
1480	 * time so the tick is fired immediately.
1481	 */
1482	if (nextevt <= basem)
1483		return basem;
1484
1485	/*
1486	 * Round up to the next jiffie. High resolution timers are
1487	 * off, so the hrtimers are expired in the tick and we need to
1488	 * make sure that this tick really expires the timer to avoid
1489	 * a ping pong of the nohz stop code.
1490	 *
1491	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1492	 */
1493	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1494}
1495
1496/**
1497 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1498 * @basej:	base time jiffies
1499 * @basem:	base time clock monotonic
1500 *
1501 * Returns the tick aligned clock monotonic time of the next pending
1502 * timer or KTIME_MAX if no timer is pending.
1503 */
1504u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1505{
1506	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1507	u64 expires = KTIME_MAX;
1508	unsigned long nextevt;
1509	bool is_max_delta;
1510
1511	/*
1512	 * Pretend that there is no timer pending if the cpu is offline.
1513	 * Possible pending timers will be migrated later to an active cpu.
 
 
 
 
1514	 */
1515	if (cpu_is_offline(smp_processor_id()))
1516		return expires;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517
1518	spin_lock(&base->lock);
1519	nextevt = __next_timer_interrupt(base);
1520	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1521	base->next_expiry = nextevt;
1522	/*
1523	 * We have a fresh next event. Check whether we can forward the
1524	 * base. We can only do that when @basej is past base->clk
1525	 * otherwise we might rewind base->clk.
1526	 */
1527	if (time_after(basej, base->clk)) {
1528		if (time_after(nextevt, basej))
1529			base->clk = basej;
1530		else if (time_after(nextevt, base->clk))
1531			base->clk = nextevt;
1532	}
1533
1534	if (time_before_eq(nextevt, basej)) {
1535		expires = basem;
1536		base->is_idle = false;
1537	} else {
1538		if (!is_max_delta)
1539			expires = basem + (nextevt - basej) * TICK_NSEC;
1540		/*
1541		 * If we expect to sleep more than a tick, mark the base idle:
 
 
 
 
 
 
 
 
 
1542		 */
1543		if ((expires - basem) > TICK_NSEC)
1544			base->is_idle = true;
 
1545	}
1546	spin_unlock(&base->lock);
1547
1548	return cmp_next_hrtimer_event(basem, expires);
 
 
 
 
 
 
 
 
 
 
 
 
1549}
1550
 
1551/**
1552 * timer_clear_idle - Clear the idle state of the timer base
 
 
 
 
1553 *
1554 * Called with interrupts disabled
 
 
 
 
 
 
1555 */
1556void timer_clear_idle(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1557{
1558	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 
 
 
 
 
 
 
1559
1560	/*
1561	 * We do this unlocked. The worst outcome is a remote enqueue sending
1562	 * a pointless IPI, but taking the lock would just make the window for
1563	 * sending the IPI a few instructions smaller for the cost of taking
1564	 * the lock in the exit from idle path.
1565	 */
1566	base->is_idle = false;
 
 
 
 
 
 
 
 
 
 
 
1567}
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569static int collect_expired_timers(struct timer_base *base,
1570				  struct hlist_head *heads)
1571{
 
 
 
 
 
1572	/*
1573	 * NOHZ optimization. After a long idle sleep we need to forward the
1574	 * base to current jiffies. Avoid a loop by searching the bitfield for
1575	 * the next expiring timer.
1576	 */
1577	if ((long)(jiffies - base->clk) > 2) {
1578		unsigned long next = __next_timer_interrupt(base);
 
 
 
 
 
 
 
 
 
 
 
 
1579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580		/*
1581		 * If the next timer is ahead of time forward to current
1582		 * jiffies, otherwise forward to the next expiry time:
 
 
 
 
 
 
 
 
1583		 */
1584		if (time_after(next, jiffies)) {
1585			/* The call site will increment clock! */
1586			base->clk = jiffies - 1;
1587			return 0;
 
 
 
 
 
 
1588		}
1589		base->clk = next;
 
 
 
 
 
 
 
 
 
 
 
1590	}
1591	return __collect_expired_timers(base, heads);
 
 
 
 
1592}
1593#else
1594static inline int collect_expired_timers(struct timer_base *base,
1595					 struct hlist_head *heads)
 
 
 
 
 
 
 
 
 
 
1596{
1597	return __collect_expired_timers(base, heads);
1598}
1599#endif
1600
1601/*
1602 * Called from the timer interrupt handler to charge one tick to the current
1603 * process.  user_tick is 1 if the tick is user time, 0 for system.
 
 
 
 
 
 
 
1604 */
1605void update_process_times(int user_tick)
1606{
1607	struct task_struct *p = current;
 
1608
1609	/* Note: this timer irq context must be accounted for as well. */
1610	account_process_tick(p, user_tick);
1611	run_local_timers();
1612	rcu_check_callbacks(user_tick);
1613#ifdef CONFIG_IRQ_WORK
1614	if (in_irq())
1615		irq_work_tick();
1616#endif
1617	scheduler_tick();
1618	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1619		run_posix_cpu_timers(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
1620}
 
1621
1622/**
1623 * __run_timers - run all expired timers (if any) on this CPU.
1624 * @base: the timer vector to be processed.
1625 */
1626static inline void __run_timers(struct timer_base *base)
1627{
1628	struct hlist_head heads[LVL_DEPTH];
1629	int levels;
1630
1631	if (!time_after_eq(jiffies, base->clk))
1632		return;
1633
1634	spin_lock_irq(&base->lock);
1635
1636	while (time_after_eq(jiffies, base->clk)) {
 
1637
 
 
1638		levels = collect_expired_timers(base, heads);
 
 
 
 
 
 
 
 
 
 
 
 
 
1639		base->clk++;
 
1640
1641		while (levels--)
1642			expire_timers(base, heads + levels);
1643	}
1644	base->running_timer = NULL;
1645	spin_unlock_irq(&base->lock);
1646}
1647
1648/*
1649 * This function runs timers and the timer-tq in bottom half context.
1650 */
1651static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1652{
1653	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 
 
1654
 
 
1655	__run_timers(base);
1656	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1657		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1658}
1659
1660/*
1661 * Called by the local, per-CPU timer interrupt on SMP.
1662 */
1663void run_local_timers(void)
1664{
1665	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1666
1667	hrtimer_run_queues();
1668	/* Raise the softirq only if required. */
1669	if (time_before(jiffies, base->clk)) {
1670		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1671			return;
1672		/* CPU is awake, so check the deferrable base. */
1673		base++;
1674		if (time_before(jiffies, base->clk))
1675			return;
1676	}
1677	raise_softirq(TIMER_SOFTIRQ);
1678}
1679
1680static void process_timeout(unsigned long __data)
1681{
1682	wake_up_process((struct task_struct *)__data);
1683}
1684
1685/**
1686 * schedule_timeout - sleep until timeout
1687 * @timeout: timeout value in jiffies
1688 *
1689 * Make the current task sleep until @timeout jiffies have
1690 * elapsed. The routine will return immediately unless
1691 * the current task state has been set (see set_current_state()).
1692 *
1693 * You can set the task state as follows -
1694 *
1695 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1696 * pass before the routine returns unless the current task is explicitly
1697 * woken up, (e.g. by wake_up_process())".
1698 *
1699 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1700 * delivered to the current task or the current task is explicitly woken
1701 * up.
1702 *
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1704 * routine returns.
1705 *
1706 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1707 * the CPU away without a bound on the timeout. In this case the return
1708 * value will be %MAX_SCHEDULE_TIMEOUT.
1709 *
1710 * Returns 0 when the timer has expired otherwise the remaining time in
1711 * jiffies will be returned.  In all cases the return value is guaranteed
1712 * to be non-negative.
1713 */
1714signed long __sched schedule_timeout(signed long timeout)
1715{
1716	struct timer_list timer;
1717	unsigned long expire;
 
 
1718
1719	switch (timeout)
1720	{
1721	case MAX_SCHEDULE_TIMEOUT:
1722		/*
1723		 * These two special cases are useful to be comfortable
1724		 * in the caller. Nothing more. We could take
1725		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1726		 * but I' d like to return a valid offset (>=0) to allow
1727		 * the caller to do everything it want with the retval.
1728		 */
1729		schedule();
1730		goto out;
1731	default:
1732		/*
1733		 * Another bit of PARANOID. Note that the retval will be
1734		 * 0 since no piece of kernel is supposed to do a check
1735		 * for a negative retval of schedule_timeout() (since it
1736		 * should never happens anyway). You just have the printk()
1737		 * that will tell you if something is gone wrong and where.
1738		 */
1739		if (timeout < 0) {
1740			printk(KERN_ERR "schedule_timeout: wrong timeout "
1741				"value %lx\n", timeout);
1742			dump_stack();
1743			current->state = TASK_RUNNING;
1744			goto out;
1745		}
1746	}
1747
1748	expire = timeout + jiffies;
1749
1750	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1751	__mod_timer(&timer, expire, false);
1752	schedule();
1753	del_singleshot_timer_sync(&timer);
1754
1755	/* Remove the timer from the object tracker */
1756	destroy_timer_on_stack(&timer);
1757
1758	timeout = expire - jiffies;
1759
1760 out:
1761	return timeout < 0 ? 0 : timeout;
1762}
1763EXPORT_SYMBOL(schedule_timeout);
1764
1765/*
1766 * We can use __set_current_state() here because schedule_timeout() calls
1767 * schedule() unconditionally.
1768 */
1769signed long __sched schedule_timeout_interruptible(signed long timeout)
1770{
1771	__set_current_state(TASK_INTERRUPTIBLE);
1772	return schedule_timeout(timeout);
1773}
1774EXPORT_SYMBOL(schedule_timeout_interruptible);
1775
1776signed long __sched schedule_timeout_killable(signed long timeout)
1777{
1778	__set_current_state(TASK_KILLABLE);
1779	return schedule_timeout(timeout);
1780}
1781EXPORT_SYMBOL(schedule_timeout_killable);
1782
1783signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1784{
1785	__set_current_state(TASK_UNINTERRUPTIBLE);
1786	return schedule_timeout(timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787}
1788EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1789
1790/*
1791 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1792 * to load average.
1793 */
1794signed long __sched schedule_timeout_idle(signed long timeout)
1795{
1796	__set_current_state(TASK_IDLE);
1797	return schedule_timeout(timeout);
 
 
 
 
 
 
 
 
 
 
 
1798}
1799EXPORT_SYMBOL(schedule_timeout_idle);
1800
1801#ifdef CONFIG_HOTPLUG_CPU
1802static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1803{
1804	struct timer_list *timer;
1805	int cpu = new_base->cpu;
1806
1807	while (!hlist_empty(head)) {
1808		timer = hlist_entry(head->first, struct timer_list, entry);
1809		detach_timer(timer, false);
1810		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1811		internal_add_timer(new_base, timer);
1812	}
1813}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815int timers_dead_cpu(unsigned int cpu)
1816{
1817	struct timer_base *old_base;
1818	struct timer_base *new_base;
1819	int b, i;
1820
1821	BUG_ON(cpu_online(cpu));
1822
1823	for (b = 0; b < NR_BASES; b++) {
1824		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1825		new_base = get_cpu_ptr(&timer_bases[b]);
1826		/*
1827		 * The caller is globally serialized and nobody else
1828		 * takes two locks at once, deadlock is not possible.
1829		 */
1830		spin_lock_irq(&new_base->lock);
1831		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1832
1833		BUG_ON(old_base->running_timer);
 
 
 
 
 
 
 
1834
1835		for (i = 0; i < WHEEL_SIZE; i++)
1836			migrate_timer_list(new_base, old_base->vectors + i);
1837
1838		spin_unlock(&old_base->lock);
1839		spin_unlock_irq(&new_base->lock);
1840		put_cpu_ptr(&timer_bases);
1841	}
1842	return 0;
1843}
1844
1845#endif /* CONFIG_HOTPLUG_CPU */
1846
1847static void __init init_timer_cpu(int cpu)
1848{
1849	struct timer_base *base;
1850	int i;
1851
1852	for (i = 0; i < NR_BASES; i++) {
1853		base = per_cpu_ptr(&timer_bases[i], cpu);
1854		base->cpu = cpu;
1855		spin_lock_init(&base->lock);
1856		base->clk = jiffies;
 
 
1857	}
1858}
1859
1860static void __init init_timer_cpus(void)
1861{
1862	int cpu;
1863
1864	for_each_possible_cpu(cpu)
1865		init_timer_cpu(cpu);
1866}
1867
1868void __init init_timers(void)
1869{
1870	init_timer_cpus();
1871	init_timer_stats();
1872	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1873}
1874
1875/**
1876 * msleep - sleep safely even with waitqueue interruptions
1877 * @msecs: Time in milliseconds to sleep for
1878 */
1879void msleep(unsigned int msecs)
1880{
1881	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1882
1883	while (timeout)
1884		timeout = schedule_timeout_uninterruptible(timeout);
1885}
1886
1887EXPORT_SYMBOL(msleep);
1888
1889/**
1890 * msleep_interruptible - sleep waiting for signals
1891 * @msecs: Time in milliseconds to sleep for
1892 */
1893unsigned long msleep_interruptible(unsigned int msecs)
1894{
1895	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1896
1897	while (timeout && !signal_pending(current))
1898		timeout = schedule_timeout_interruptible(timeout);
1899	return jiffies_to_msecs(timeout);
1900}
1901
1902EXPORT_SYMBOL(msleep_interruptible);
1903
1904/**
1905 * usleep_range - Sleep for an approximate time
1906 * @min: Minimum time in usecs to sleep
1907 * @max: Maximum time in usecs to sleep
1908 *
1909 * In non-atomic context where the exact wakeup time is flexible, use
1910 * usleep_range() instead of udelay().  The sleep improves responsiveness
1911 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1912 * power usage by allowing hrtimers to take advantage of an already-
1913 * scheduled interrupt instead of scheduling a new one just for this sleep.
1914 */
1915void __sched usleep_range(unsigned long min, unsigned long max)
1916{
1917	ktime_t exp = ktime_add_us(ktime_get(), min);
1918	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1919
1920	for (;;) {
1921		__set_current_state(TASK_UNINTERRUPTIBLE);
1922		/* Do not return before the requested sleep time has elapsed */
1923		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1924			break;
1925	}
1926}
1927EXPORT_SYMBOL(usleep_range);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
 
  40#include <linux/sched/sysctl.h>
  41#include <linux/sched/nohz.h>
  42#include <linux/sched/debug.h>
  43#include <linux/slab.h>
  44#include <linux/compat.h>
  45#include <linux/random.h>
  46#include <linux/sysctl.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/div64.h>
  51#include <asm/timex.h>
  52#include <asm/io.h>
  53
  54#include "tick-internal.h"
  55#include "timer_migration.h"
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/timer.h>
  59
  60__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  61
  62EXPORT_SYMBOL(jiffies_64);
  63
  64/*
  65 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  66 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
  67 * level has a different granularity.
  68 *
  69 * The level granularity is:		LVL_CLK_DIV ^ level
  70 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  71 *
  72 * The array level of a newly armed timer depends on the relative expiry
  73 * time. The farther the expiry time is away the higher the array level and
  74 * therefore the granularity becomes.
  75 *
  76 * Contrary to the original timer wheel implementation, which aims for 'exact'
  77 * expiry of the timers, this implementation removes the need for recascading
  78 * the timers into the lower array levels. The previous 'classic' timer wheel
  79 * implementation of the kernel already violated the 'exact' expiry by adding
  80 * slack to the expiry time to provide batched expiration. The granularity
  81 * levels provide implicit batching.
  82 *
  83 * This is an optimization of the original timer wheel implementation for the
  84 * majority of the timer wheel use cases: timeouts. The vast majority of
  85 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  86 * the timeout expires it indicates that normal operation is disturbed, so it
  87 * does not matter much whether the timeout comes with a slight delay.
  88 *
  89 * The only exception to this are networking timers with a small expiry
  90 * time. They rely on the granularity. Those fit into the first wheel level,
  91 * which has HZ granularity.
  92 *
  93 * We don't have cascading anymore. timers with a expiry time above the
  94 * capacity of the last wheel level are force expired at the maximum timeout
  95 * value of the last wheel level. From data sampling we know that the maximum
  96 * value observed is 5 days (network connection tracking), so this should not
  97 * be an issue.
  98 *
  99 * The currently chosen array constants values are a good compromise between
 100 * array size and granularity.
 101 *
 102 * This results in the following granularity and range levels:
 103 *
 104 * HZ 1000 steps
 105 * Level Offset  Granularity            Range
 106 *  0      0         1 ms                0 ms -         63 ms
 107 *  1     64         8 ms               64 ms -        511 ms
 108 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 109 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 110 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 111 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 112 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 113 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 114 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 115 *
 116 * HZ  300
 117 * Level Offset  Granularity            Range
 118 *  0	   0         3 ms                0 ms -        210 ms
 119 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 120 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 121 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 122 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 123 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 124 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 125 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 126 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 127 *
 128 * HZ  250
 129 * Level Offset  Granularity            Range
 130 *  0	   0         4 ms                0 ms -        255 ms
 131 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 132 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 133 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 134 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 135 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 136 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 137 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 138 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 139 *
 140 * HZ  100
 141 * Level Offset  Granularity            Range
 142 *  0	   0         10 ms               0 ms -        630 ms
 143 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 144 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 145 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 146 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 147 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 148 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 149 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 150 */
 151
 152/* Clock divisor for the next level */
 153#define LVL_CLK_SHIFT	3
 154#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 155#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 156#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 157#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 158
 159/*
 160 * The time start value for each level to select the bucket at enqueue
 161 * time. We start from the last possible delta of the previous level
 162 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 163 */
 164#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 165
 166/* Size of each clock level */
 167#define LVL_BITS	6
 168#define LVL_SIZE	(1UL << LVL_BITS)
 169#define LVL_MASK	(LVL_SIZE - 1)
 170#define LVL_OFFS(n)	((n) * LVL_SIZE)
 171
 172/* Level depth */
 173#if HZ > 100
 174# define LVL_DEPTH	9
 175# else
 176# define LVL_DEPTH	8
 177#endif
 178
 179/* The cutoff (max. capacity of the wheel) */
 180#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 181#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 182
 183/*
 184 * The resulting wheel size. If NOHZ is configured we allocate two
 185 * wheels so we have a separate storage for the deferrable timers.
 186 */
 187#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 188
 189#ifdef CONFIG_NO_HZ_COMMON
 190/*
 191 * If multiple bases need to be locked, use the base ordering for lock
 192 * nesting, i.e. lowest number first.
 193 */
 194# define NR_BASES	3
 195# define BASE_LOCAL	0
 196# define BASE_GLOBAL	1
 197# define BASE_DEF	2
 198#else
 199# define NR_BASES	1
 200# define BASE_LOCAL	0
 201# define BASE_GLOBAL	0
 202# define BASE_DEF	0
 203#endif
 204
 205/**
 206 * struct timer_base - Per CPU timer base (number of base depends on config)
 207 * @lock:		Lock protecting the timer_base
 208 * @running_timer:	When expiring timers, the lock is dropped. To make
 209 *			sure not to race against deleting/modifying a
 210 *			currently running timer, the pointer is set to the
 211 *			timer, which expires at the moment. If no timer is
 212 *			running, the pointer is NULL.
 213 * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
 214 *			timer expiry callback execution and when trying to
 215 *			delete a running timer and it wasn't successful in
 216 *			the first glance. It prevents priority inversion
 217 *			when callback was preempted on a remote CPU and a
 218 *			caller tries to delete the running timer. It also
 219 *			prevents a life lock, when the task which tries to
 220 *			delete a timer preempted the softirq thread which
 221 *			is running the timer callback function.
 222 * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
 223 *			waiting for the end of the timer callback function
 224 *			execution.
 225 * @clk:		clock of the timer base; is updated before enqueue
 226 *			of a timer; during expiry, it is 1 offset ahead of
 227 *			jiffies to avoid endless requeuing to current
 228 *			jiffies
 229 * @next_expiry:	expiry value of the first timer; it is updated when
 230 *			finding the next timer and during enqueue; the
 231 *			value is not valid, when next_expiry_recalc is set
 232 * @cpu:		Number of CPU the timer base belongs to
 233 * @next_expiry_recalc: States, whether a recalculation of next_expiry is
 234 *			required. Value is set true, when a timer was
 235 *			deleted.
 236 * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
 237 *			code. This state is only used in standard
 238 *			base. Deferrable timers, which are enqueued remotely
 239 *			never wake up an idle CPU. So no matter of supporting it
 240 *			for this base.
 241 * @timers_pending:	Is set, when a timer is pending in the base. It is only
 242 *			reliable when next_expiry_recalc is not set.
 243 * @pending_map:	bitmap of the timer wheel; each bit reflects a
 244 *			bucket of the wheel. When a bit is set, at least a
 245 *			single timer is enqueued in the related bucket.
 246 * @vectors:		Array of lists; Each array member reflects a bucket
 247 *			of the timer wheel. The list contains all timers
 248 *			which are enqueued into a specific bucket.
 249 */
 250struct timer_base {
 251	raw_spinlock_t		lock;
 252	struct timer_list	*running_timer;
 253#ifdef CONFIG_PREEMPT_RT
 254	spinlock_t		expiry_lock;
 255	atomic_t		timer_waiters;
 256#endif
 257	unsigned long		clk;
 258	unsigned long		next_expiry;
 259	unsigned int		cpu;
 260	bool			next_expiry_recalc;
 
 261	bool			is_idle;
 262	bool			timers_pending;
 263	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 264	struct hlist_head	vectors[WHEEL_SIZE];
 265} ____cacheline_aligned;
 266
 267static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 268
 269#ifdef CONFIG_NO_HZ_COMMON
 
 270
 271static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 272static DEFINE_MUTEX(timer_keys_mutex);
 
 
 273
 274static void timer_update_keys(struct work_struct *work);
 275static DECLARE_WORK(timer_update_work, timer_update_keys);
 
 276
 277#ifdef CONFIG_SMP
 278static unsigned int sysctl_timer_migration = 1;
 279
 280DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 281
 282static void timers_update_migration(void)
 283{
 284	if (sysctl_timer_migration && tick_nohz_active)
 285		static_branch_enable(&timers_migration_enabled);
 286	else
 287		static_branch_disable(&timers_migration_enabled);
 288}
 289
 290#ifdef CONFIG_SYSCTL
 291static int timer_migration_handler(const struct ctl_table *table, int write,
 292			    void *buffer, size_t *lenp, loff_t *ppos)
 293{
 
 294	int ret;
 295
 296	mutex_lock(&timer_keys_mutex);
 297	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 298	if (!ret && write)
 299		timers_update_migration();
 300	mutex_unlock(&timer_keys_mutex);
 301	return ret;
 302}
 303
 304static struct ctl_table timer_sysctl[] = {
 305	{
 306		.procname	= "timer_migration",
 307		.data		= &sysctl_timer_migration,
 308		.maxlen		= sizeof(unsigned int),
 309		.mode		= 0644,
 310		.proc_handler	= timer_migration_handler,
 311		.extra1		= SYSCTL_ZERO,
 312		.extra2		= SYSCTL_ONE,
 313	},
 314};
 315
 316static int __init timer_sysctl_init(void)
 317{
 318	register_sysctl("kernel", timer_sysctl);
 319	return 0;
 320}
 321device_initcall(timer_sysctl_init);
 322#endif /* CONFIG_SYSCTL */
 323#else /* CONFIG_SMP */
 324static inline void timers_update_migration(void) { }
 325#endif /* !CONFIG_SMP */
 326
 327static void timer_update_keys(struct work_struct *work)
 328{
 329	mutex_lock(&timer_keys_mutex);
 330	timers_update_migration();
 331	static_branch_enable(&timers_nohz_active);
 332	mutex_unlock(&timer_keys_mutex);
 333}
 334
 335void timers_update_nohz(void)
 336{
 337	schedule_work(&timer_update_work);
 338}
 339
 340static inline bool is_timers_nohz_active(void)
 341{
 342	return static_branch_unlikely(&timers_nohz_active);
 343}
 344#else
 345static inline bool is_timers_nohz_active(void) { return false; }
 346#endif /* NO_HZ_COMMON */
 347
 348static unsigned long round_jiffies_common(unsigned long j, int cpu,
 349		bool force_up)
 350{
 351	int rem;
 352	unsigned long original = j;
 353
 354	/*
 355	 * We don't want all cpus firing their timers at once hitting the
 356	 * same lock or cachelines, so we skew each extra cpu with an extra
 357	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 358	 * already did this.
 359	 * The skew is done by adding 3*cpunr, then round, then subtract this
 360	 * extra offset again.
 361	 */
 362	j += cpu * 3;
 363
 364	rem = j % HZ;
 365
 366	/*
 367	 * If the target jiffy is just after a whole second (which can happen
 368	 * due to delays of the timer irq, long irq off times etc etc) then
 369	 * we should round down to the whole second, not up. Use 1/4th second
 370	 * as cutoff for this rounding as an extreme upper bound for this.
 371	 * But never round down if @force_up is set.
 372	 */
 373	if (rem < HZ/4 && !force_up) /* round down */
 374		j = j - rem;
 375	else /* round up */
 376		j = j - rem + HZ;
 377
 378	/* now that we have rounded, subtract the extra skew again */
 379	j -= cpu * 3;
 380
 381	/*
 382	 * Make sure j is still in the future. Otherwise return the
 383	 * unmodified value.
 384	 */
 385	return time_is_after_jiffies(j) ? j : original;
 386}
 387
 388/**
 389 * __round_jiffies - function to round jiffies to a full second
 390 * @j: the time in (absolute) jiffies that should be rounded
 391 * @cpu: the processor number on which the timeout will happen
 392 *
 393 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 394 * up or down to (approximately) full seconds. This is useful for timers
 395 * for which the exact time they fire does not matter too much, as long as
 396 * they fire approximately every X seconds.
 397 *
 398 * By rounding these timers to whole seconds, all such timers will fire
 399 * at the same time, rather than at various times spread out. The goal
 400 * of this is to have the CPU wake up less, which saves power.
 401 *
 402 * The exact rounding is skewed for each processor to avoid all
 403 * processors firing at the exact same time, which could lead
 404 * to lock contention or spurious cache line bouncing.
 405 *
 406 * The return value is the rounded version of the @j parameter.
 407 */
 408unsigned long __round_jiffies(unsigned long j, int cpu)
 409{
 410	return round_jiffies_common(j, cpu, false);
 411}
 412EXPORT_SYMBOL_GPL(__round_jiffies);
 413
 414/**
 415 * __round_jiffies_relative - function to round jiffies to a full second
 416 * @j: the time in (relative) jiffies that should be rounded
 417 * @cpu: the processor number on which the timeout will happen
 418 *
 419 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 420 * up or down to (approximately) full seconds. This is useful for timers
 421 * for which the exact time they fire does not matter too much, as long as
 422 * they fire approximately every X seconds.
 423 *
 424 * By rounding these timers to whole seconds, all such timers will fire
 425 * at the same time, rather than at various times spread out. The goal
 426 * of this is to have the CPU wake up less, which saves power.
 427 *
 428 * The exact rounding is skewed for each processor to avoid all
 429 * processors firing at the exact same time, which could lead
 430 * to lock contention or spurious cache line bouncing.
 431 *
 432 * The return value is the rounded version of the @j parameter.
 433 */
 434unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 435{
 436	unsigned long j0 = jiffies;
 437
 438	/* Use j0 because jiffies might change while we run */
 439	return round_jiffies_common(j + j0, cpu, false) - j0;
 440}
 441EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 442
 443/**
 444 * round_jiffies - function to round jiffies to a full second
 445 * @j: the time in (absolute) jiffies that should be rounded
 446 *
 447 * round_jiffies() rounds an absolute time in the future (in jiffies)
 448 * up or down to (approximately) full seconds. This is useful for timers
 449 * for which the exact time they fire does not matter too much, as long as
 450 * they fire approximately every X seconds.
 451 *
 452 * By rounding these timers to whole seconds, all such timers will fire
 453 * at the same time, rather than at various times spread out. The goal
 454 * of this is to have the CPU wake up less, which saves power.
 455 *
 456 * The return value is the rounded version of the @j parameter.
 457 */
 458unsigned long round_jiffies(unsigned long j)
 459{
 460	return round_jiffies_common(j, raw_smp_processor_id(), false);
 461}
 462EXPORT_SYMBOL_GPL(round_jiffies);
 463
 464/**
 465 * round_jiffies_relative - function to round jiffies to a full second
 466 * @j: the time in (relative) jiffies that should be rounded
 467 *
 468 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 469 * up or down to (approximately) full seconds. This is useful for timers
 470 * for which the exact time they fire does not matter too much, as long as
 471 * they fire approximately every X seconds.
 472 *
 473 * By rounding these timers to whole seconds, all such timers will fire
 474 * at the same time, rather than at various times spread out. The goal
 475 * of this is to have the CPU wake up less, which saves power.
 476 *
 477 * The return value is the rounded version of the @j parameter.
 478 */
 479unsigned long round_jiffies_relative(unsigned long j)
 480{
 481	return __round_jiffies_relative(j, raw_smp_processor_id());
 482}
 483EXPORT_SYMBOL_GPL(round_jiffies_relative);
 484
 485/**
 486 * __round_jiffies_up - function to round jiffies up to a full second
 487 * @j: the time in (absolute) jiffies that should be rounded
 488 * @cpu: the processor number on which the timeout will happen
 489 *
 490 * This is the same as __round_jiffies() except that it will never
 491 * round down.  This is useful for timeouts for which the exact time
 492 * of firing does not matter too much, as long as they don't fire too
 493 * early.
 494 */
 495unsigned long __round_jiffies_up(unsigned long j, int cpu)
 496{
 497	return round_jiffies_common(j, cpu, true);
 498}
 499EXPORT_SYMBOL_GPL(__round_jiffies_up);
 500
 501/**
 502 * __round_jiffies_up_relative - function to round jiffies up to a full second
 503 * @j: the time in (relative) jiffies that should be rounded
 504 * @cpu: the processor number on which the timeout will happen
 505 *
 506 * This is the same as __round_jiffies_relative() except that it will never
 507 * round down.  This is useful for timeouts for which the exact time
 508 * of firing does not matter too much, as long as they don't fire too
 509 * early.
 510 */
 511unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 512{
 513	unsigned long j0 = jiffies;
 514
 515	/* Use j0 because jiffies might change while we run */
 516	return round_jiffies_common(j + j0, cpu, true) - j0;
 517}
 518EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 519
 520/**
 521 * round_jiffies_up - function to round jiffies up to a full second
 522 * @j: the time in (absolute) jiffies that should be rounded
 523 *
 524 * This is the same as round_jiffies() except that it will never
 525 * round down.  This is useful for timeouts for which the exact time
 526 * of firing does not matter too much, as long as they don't fire too
 527 * early.
 528 */
 529unsigned long round_jiffies_up(unsigned long j)
 530{
 531	return round_jiffies_common(j, raw_smp_processor_id(), true);
 532}
 533EXPORT_SYMBOL_GPL(round_jiffies_up);
 534
 535/**
 536 * round_jiffies_up_relative - function to round jiffies up to a full second
 537 * @j: the time in (relative) jiffies that should be rounded
 538 *
 539 * This is the same as round_jiffies_relative() except that it will never
 540 * round down.  This is useful for timeouts for which the exact time
 541 * of firing does not matter too much, as long as they don't fire too
 542 * early.
 543 */
 544unsigned long round_jiffies_up_relative(unsigned long j)
 545{
 546	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 547}
 548EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 549
 550
 551static inline unsigned int timer_get_idx(struct timer_list *timer)
 552{
 553	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 554}
 555
 556static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 557{
 558	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 559			idx << TIMER_ARRAYSHIFT;
 560}
 561
 562/*
 563 * Helper function to calculate the array index for a given expiry
 564 * time.
 565 */
 566static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 567				  unsigned long *bucket_expiry)
 568{
 569
 570	/*
 571	 * The timer wheel has to guarantee that a timer does not fire
 572	 * early. Early expiry can happen due to:
 573	 * - Timer is armed at the edge of a tick
 574	 * - Truncation of the expiry time in the outer wheel levels
 575	 *
 576	 * Round up with level granularity to prevent this.
 577	 */
 578	expires = (expires >> LVL_SHIFT(lvl)) + 1;
 579	*bucket_expiry = expires << LVL_SHIFT(lvl);
 580	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 581}
 582
 583static int calc_wheel_index(unsigned long expires, unsigned long clk,
 584			    unsigned long *bucket_expiry)
 585{
 586	unsigned long delta = expires - clk;
 587	unsigned int idx;
 588
 589	if (delta < LVL_START(1)) {
 590		idx = calc_index(expires, 0, bucket_expiry);
 591	} else if (delta < LVL_START(2)) {
 592		idx = calc_index(expires, 1, bucket_expiry);
 593	} else if (delta < LVL_START(3)) {
 594		idx = calc_index(expires, 2, bucket_expiry);
 595	} else if (delta < LVL_START(4)) {
 596		idx = calc_index(expires, 3, bucket_expiry);
 597	} else if (delta < LVL_START(5)) {
 598		idx = calc_index(expires, 4, bucket_expiry);
 599	} else if (delta < LVL_START(6)) {
 600		idx = calc_index(expires, 5, bucket_expiry);
 601	} else if (delta < LVL_START(7)) {
 602		idx = calc_index(expires, 6, bucket_expiry);
 603	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 604		idx = calc_index(expires, 7, bucket_expiry);
 605	} else if ((long) delta < 0) {
 606		idx = clk & LVL_MASK;
 607		*bucket_expiry = clk;
 608	} else {
 609		/*
 610		 * Force expire obscene large timeouts to expire at the
 611		 * capacity limit of the wheel.
 612		 */
 613		if (delta >= WHEEL_TIMEOUT_CUTOFF)
 614			expires = clk + WHEEL_TIMEOUT_MAX;
 615
 616		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 617	}
 618	return idx;
 619}
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621static void
 622trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 623{
 
 
 
 624	/*
 625	 * Deferrable timers do not prevent the CPU from entering dynticks and
 626	 * are not taken into account on the idle/nohz_full path. An IPI when a
 627	 * new deferrable timer is enqueued will wake up the remote CPU but
 628	 * nothing will be done with the deferrable timer base. Therefore skip
 629	 * the remote IPI for deferrable timers completely.
 630	 */
 631	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
 
 
 632		return;
 
 633
 634	/*
 635	 * We might have to IPI the remote CPU if the base is idle and the
 636	 * timer is pinned. If it is a non pinned timer, it is only queued
 637	 * on the remote CPU, when timer was running during queueing. Then
 638	 * everything is handled by remote CPU anyway. If the other CPU is
 639	 * on the way to idle then it can't set base->is_idle as we hold
 640	 * the base lock:
 641	 */
 642	if (base->is_idle) {
 643		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
 644			       tick_nohz_full_cpu(base->cpu)));
 
 
 
 
 
 
 645		wake_up_nohz_cpu(base->cpu);
 646	}
 647}
 648
 649/*
 650 * Enqueue the timer into the hash bucket, mark it pending in
 651 * the bitmap, store the index in the timer flags then wake up
 652 * the target CPU if needed.
 653 */
 654static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 655			  unsigned int idx, unsigned long bucket_expiry)
 
 
 656{
 
 
 657
 658	hlist_add_head(&timer->entry, base->vectors + idx);
 659	__set_bit(idx, base->pending_map);
 660	timer_set_idx(timer, idx);
 
 661
 662	trace_timer_start(timer, bucket_expiry);
 
 
 663
 664	/*
 665	 * Check whether this is the new first expiring timer. The
 666	 * effective expiry time of the timer is required here
 667	 * (bucket_expiry) instead of timer->expires.
 668	 */
 669	if (time_before(bucket_expiry, base->next_expiry)) {
 670		/*
 671		 * Set the next expiry time and kick the CPU so it
 672		 * can reevaluate the wheel:
 673		 */
 674		WRITE_ONCE(base->next_expiry, bucket_expiry);
 675		base->timers_pending = true;
 676		base->next_expiry_recalc = false;
 677		trigger_dyntick_cpu(base, timer);
 678	}
 679}
 680
 681static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 682{
 683	unsigned long bucket_expiry;
 684	unsigned int idx;
 685
 686	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 687	enqueue_timer(base, timer, idx, bucket_expiry);
 688}
 689
 690#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 691
 692static const struct debug_obj_descr timer_debug_descr;
 693
 694struct timer_hint {
 695	void	(*function)(struct timer_list *t);
 696	long	offset;
 697};
 698
 699#define TIMER_HINT(fn, container, timr, hintfn)			\
 700	{							\
 701		.function = fn,					\
 702		.offset	  = offsetof(container, hintfn) -	\
 703			    offsetof(container, timr)		\
 704	}
 705
 706static const struct timer_hint timer_hints[] = {
 707	TIMER_HINT(delayed_work_timer_fn,
 708		   struct delayed_work, timer, work.func),
 709	TIMER_HINT(kthread_delayed_work_timer_fn,
 710		   struct kthread_delayed_work, timer, work.func),
 711};
 712
 713static void *timer_debug_hint(void *addr)
 714{
 715	struct timer_list *timer = addr;
 716	int i;
 717
 718	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
 719		if (timer_hints[i].function == timer->function) {
 720			void (**fn)(void) = addr + timer_hints[i].offset;
 721
 722			return *fn;
 723		}
 724	}
 725
 726	return timer->function;
 727}
 728
 729static bool timer_is_static_object(void *addr)
 730{
 731	struct timer_list *timer = addr;
 732
 733	return (timer->entry.pprev == NULL &&
 734		timer->entry.next == TIMER_ENTRY_STATIC);
 735}
 736
 737/*
 738 * timer_fixup_init is called when:
 739 * - an active object is initialized
 740 */
 741static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 742{
 743	struct timer_list *timer = addr;
 744
 745	switch (state) {
 746	case ODEBUG_STATE_ACTIVE:
 747		del_timer_sync(timer);
 748		debug_object_init(timer, &timer_debug_descr);
 749		return true;
 750	default:
 751		return false;
 752	}
 753}
 754
 755/* Stub timer callback for improperly used timers. */
 756static void stub_timer(struct timer_list *unused)
 757{
 758	WARN_ON(1);
 759}
 760
 761/*
 762 * timer_fixup_activate is called when:
 763 * - an active object is activated
 764 * - an unknown non-static object is activated
 765 */
 766static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 767{
 768	struct timer_list *timer = addr;
 769
 770	switch (state) {
 771	case ODEBUG_STATE_NOTAVAILABLE:
 772		timer_setup(timer, stub_timer, 0);
 773		return true;
 774
 775	case ODEBUG_STATE_ACTIVE:
 776		WARN_ON(1);
 777		fallthrough;
 778	default:
 779		return false;
 780	}
 781}
 782
 783/*
 784 * timer_fixup_free is called when:
 785 * - an active object is freed
 786 */
 787static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 788{
 789	struct timer_list *timer = addr;
 790
 791	switch (state) {
 792	case ODEBUG_STATE_ACTIVE:
 793		del_timer_sync(timer);
 794		debug_object_free(timer, &timer_debug_descr);
 795		return true;
 796	default:
 797		return false;
 798	}
 799}
 800
 801/*
 802 * timer_fixup_assert_init is called when:
 803 * - an untracked/uninit-ed object is found
 804 */
 805static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 806{
 807	struct timer_list *timer = addr;
 808
 809	switch (state) {
 810	case ODEBUG_STATE_NOTAVAILABLE:
 811		timer_setup(timer, stub_timer, 0);
 812		return true;
 813	default:
 814		return false;
 815	}
 816}
 817
 818static const struct debug_obj_descr timer_debug_descr = {
 819	.name			= "timer_list",
 820	.debug_hint		= timer_debug_hint,
 821	.is_static_object	= timer_is_static_object,
 822	.fixup_init		= timer_fixup_init,
 823	.fixup_activate		= timer_fixup_activate,
 824	.fixup_free		= timer_fixup_free,
 825	.fixup_assert_init	= timer_fixup_assert_init,
 826};
 827
 828static inline void debug_timer_init(struct timer_list *timer)
 829{
 830	debug_object_init(timer, &timer_debug_descr);
 831}
 832
 833static inline void debug_timer_activate(struct timer_list *timer)
 834{
 835	debug_object_activate(timer, &timer_debug_descr);
 836}
 837
 838static inline void debug_timer_deactivate(struct timer_list *timer)
 839{
 840	debug_object_deactivate(timer, &timer_debug_descr);
 841}
 842
 
 
 
 
 
 843static inline void debug_timer_assert_init(struct timer_list *timer)
 844{
 845	debug_object_assert_init(timer, &timer_debug_descr);
 846}
 847
 848static void do_init_timer(struct timer_list *timer,
 849			  void (*func)(struct timer_list *),
 850			  unsigned int flags,
 851			  const char *name, struct lock_class_key *key);
 852
 853void init_timer_on_stack_key(struct timer_list *timer,
 854			     void (*func)(struct timer_list *),
 855			     unsigned int flags,
 856			     const char *name, struct lock_class_key *key)
 857{
 858	debug_object_init_on_stack(timer, &timer_debug_descr);
 859	do_init_timer(timer, func, flags, name, key);
 860}
 861EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 862
 863void destroy_timer_on_stack(struct timer_list *timer)
 864{
 865	debug_object_free(timer, &timer_debug_descr);
 866}
 867EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 868
 869#else
 870static inline void debug_timer_init(struct timer_list *timer) { }
 871static inline void debug_timer_activate(struct timer_list *timer) { }
 872static inline void debug_timer_deactivate(struct timer_list *timer) { }
 873static inline void debug_timer_assert_init(struct timer_list *timer) { }
 874#endif
 875
 876static inline void debug_init(struct timer_list *timer)
 877{
 878	debug_timer_init(timer);
 879	trace_timer_init(timer);
 880}
 881
 
 
 
 
 
 
 
 882static inline void debug_deactivate(struct timer_list *timer)
 883{
 884	debug_timer_deactivate(timer);
 885	trace_timer_cancel(timer);
 886}
 887
 888static inline void debug_assert_init(struct timer_list *timer)
 889{
 890	debug_timer_assert_init(timer);
 891}
 892
 893static void do_init_timer(struct timer_list *timer,
 894			  void (*func)(struct timer_list *),
 895			  unsigned int flags,
 896			  const char *name, struct lock_class_key *key)
 897{
 898	timer->entry.pprev = NULL;
 899	timer->function = func;
 900	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
 901		flags &= TIMER_INIT_FLAGS;
 902	timer->flags = flags | raw_smp_processor_id();
 
 
 
 
 
 903	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 904}
 905
 906/**
 907 * init_timer_key - initialize a timer
 908 * @timer: the timer to be initialized
 909 * @func: timer callback function
 910 * @flags: timer flags
 911 * @name: name of the timer
 912 * @key: lockdep class key of the fake lock used for tracking timer
 913 *       sync lock dependencies
 914 *
 915 * init_timer_key() must be done to a timer prior to calling *any* of the
 916 * other timer functions.
 917 */
 918void init_timer_key(struct timer_list *timer,
 919		    void (*func)(struct timer_list *), unsigned int flags,
 920		    const char *name, struct lock_class_key *key)
 921{
 922	debug_init(timer);
 923	do_init_timer(timer, func, flags, name, key);
 924}
 925EXPORT_SYMBOL(init_timer_key);
 926
 927static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 928{
 929	struct hlist_node *entry = &timer->entry;
 930
 931	debug_deactivate(timer);
 932
 933	__hlist_del(entry);
 934	if (clear_pending)
 935		entry->pprev = NULL;
 936	entry->next = LIST_POISON2;
 937}
 938
 939static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 940			     bool clear_pending)
 941{
 942	unsigned idx = timer_get_idx(timer);
 943
 944	if (!timer_pending(timer))
 945		return 0;
 946
 947	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 948		__clear_bit(idx, base->pending_map);
 949		base->next_expiry_recalc = true;
 950	}
 951
 952	detach_timer(timer, clear_pending);
 953	return 1;
 954}
 955
 956static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 957{
 958	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
 959	struct timer_base *base;
 960
 961	base = per_cpu_ptr(&timer_bases[index], cpu);
 962
 963	/*
 964	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 965	 * to use the deferrable base.
 966	 */
 967	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 
 968		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 969	return base;
 970}
 971
 972static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 973{
 974	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
 975	struct timer_base *base;
 976
 977	base = this_cpu_ptr(&timer_bases[index]);
 978
 979	/*
 980	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 981	 * to use the deferrable base.
 982	 */
 983	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 
 984		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 985	return base;
 986}
 987
 988static inline struct timer_base *get_timer_base(u32 tflags)
 989{
 990	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 991}
 992
 993static inline void __forward_timer_base(struct timer_base *base,
 994					unsigned long basej)
 
 995{
 
 
 
 
 
 
 
 
 
 
 
 
 
 996	/*
 997	 * Check whether we can forward the base. We can only do that when
 998	 * @basej is past base->clk otherwise we might rewind base->clk.
 999	 */
1000	if (time_before_eq(basej, base->clk))
1001		return;
1002
1003	/*
1004	 * If the next expiry value is > jiffies, then we fast forward to
1005	 * jiffies otherwise we forward to the next expiry value.
1006	 */
1007	if (time_after(base->next_expiry, basej)) {
1008		base->clk = basej;
1009	} else {
1010		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1011			return;
1012		base->clk = base->next_expiry;
1013	}
1014
1015}
1016
1017static inline void forward_timer_base(struct timer_base *base)
 
1018{
1019	__forward_timer_base(base, READ_ONCE(jiffies));
1020}
1021
 
 
 
 
1022/*
1023 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1024 * that all timers which are tied to this base are locked, and the base itself
1025 * is locked too.
1026 *
1027 * So __run_timers/migrate_timers can safely modify all timers which could
1028 * be found in the base->vectors array.
1029 *
1030 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1031 * to wait until the migration is done.
1032 */
1033static struct timer_base *lock_timer_base(struct timer_list *timer,
1034					  unsigned long *flags)
1035	__acquires(timer->base->lock)
1036{
1037	for (;;) {
1038		struct timer_base *base;
1039		u32 tf;
1040
1041		/*
1042		 * We need to use READ_ONCE() here, otherwise the compiler
1043		 * might re-read @tf between the check for TIMER_MIGRATING
1044		 * and spin_lock().
1045		 */
1046		tf = READ_ONCE(timer->flags);
1047
1048		if (!(tf & TIMER_MIGRATING)) {
1049			base = get_timer_base(tf);
1050			raw_spin_lock_irqsave(&base->lock, *flags);
1051			if (timer->flags == tf)
1052				return base;
1053			raw_spin_unlock_irqrestore(&base->lock, *flags);
1054		}
1055		cpu_relax();
1056	}
1057}
1058
1059#define MOD_TIMER_PENDING_ONLY		0x01
1060#define MOD_TIMER_REDUCE		0x02
1061#define MOD_TIMER_NOTPENDING		0x04
1062
1063static inline int
1064__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1065{
1066	unsigned long clk = 0, flags, bucket_expiry;
1067	struct timer_base *base, *new_base;
1068	unsigned int idx = UINT_MAX;
 
1069	int ret = 0;
1070
1071	debug_assert_init(timer);
1072
1073	/*
1074	 * This is a common optimization triggered by the networking code - if
1075	 * the timer is re-modified to have the same timeout or ends up in the
1076	 * same array bucket then just return:
1077	 */
1078	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1079		/*
1080		 * The downside of this optimization is that it can result in
1081		 * larger granularity than you would get from adding a new
1082		 * timer with this expiry.
1083		 */
1084		long diff = timer->expires - expires;
1085
1086		if (!diff)
1087			return 1;
1088		if (options & MOD_TIMER_REDUCE && diff <= 0)
1089			return 1;
1090
1091		/*
1092		 * We lock timer base and calculate the bucket index right
1093		 * here. If the timer ends up in the same bucket, then we
1094		 * just update the expiry time and avoid the whole
1095		 * dequeue/enqueue dance.
1096		 */
1097		base = lock_timer_base(timer, &flags);
1098		/*
1099		 * Has @timer been shutdown? This needs to be evaluated
1100		 * while holding base lock to prevent a race against the
1101		 * shutdown code.
1102		 */
1103		if (!timer->function)
1104			goto out_unlock;
1105
1106		forward_timer_base(base);
1107
1108		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1109		    time_before_eq(timer->expires, expires)) {
1110			ret = 1;
1111			goto out_unlock;
1112		}
1113
1114		clk = base->clk;
1115		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1116
1117		/*
1118		 * Retrieve and compare the array index of the pending
1119		 * timer. If it matches set the expiry to the new value so a
1120		 * subsequent call will exit in the expires check above.
1121		 */
1122		if (idx == timer_get_idx(timer)) {
1123			if (!(options & MOD_TIMER_REDUCE))
1124				timer->expires = expires;
1125			else if (time_after(timer->expires, expires))
1126				timer->expires = expires;
1127			ret = 1;
1128			goto out_unlock;
1129		}
1130	} else {
1131		base = lock_timer_base(timer, &flags);
1132		/*
1133		 * Has @timer been shutdown? This needs to be evaluated
1134		 * while holding base lock to prevent a race against the
1135		 * shutdown code.
1136		 */
1137		if (!timer->function)
1138			goto out_unlock;
1139
1140		forward_timer_base(base);
1141	}
1142
1143	ret = detach_if_pending(timer, base, false);
1144	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1145		goto out_unlock;
1146
1147	new_base = get_timer_this_cpu_base(timer->flags);
 
 
1148
1149	if (base != new_base) {
1150		/*
1151		 * We are trying to schedule the timer on the new base.
1152		 * However we can't change timer's base while it is running,
1153		 * otherwise timer_delete_sync() can't detect that the timer's
1154		 * handler yet has not finished. This also guarantees that the
1155		 * timer is serialized wrt itself.
1156		 */
1157		if (likely(base->running_timer != timer)) {
1158			/* See the comment in lock_timer_base() */
1159			timer->flags |= TIMER_MIGRATING;
1160
1161			raw_spin_unlock(&base->lock);
1162			base = new_base;
1163			raw_spin_lock(&base->lock);
1164			WRITE_ONCE(timer->flags,
1165				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1166			forward_timer_base(base);
1167		}
1168	}
1169
1170	debug_timer_activate(timer);
 
1171
1172	timer->expires = expires;
1173	/*
1174	 * If 'idx' was calculated above and the base time did not advance
1175	 * between calculating 'idx' and possibly switching the base, only
1176	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1177	 * the wheel index via internal_add_timer().
 
1178	 */
1179	if (idx != UINT_MAX && clk == base->clk)
1180		enqueue_timer(base, timer, idx, bucket_expiry);
1181	else
 
1182		internal_add_timer(base, timer);
 
1183
1184out_unlock:
1185	raw_spin_unlock_irqrestore(&base->lock, flags);
1186
1187	return ret;
1188}
1189
1190/**
1191 * mod_timer_pending - Modify a pending timer's timeout
1192 * @timer:	The pending timer to be modified
1193 * @expires:	New absolute timeout in jiffies
1194 *
1195 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1196 * will not activate inactive timers.
1197 *
1198 * If @timer->function == NULL then the start operation is silently
1199 * discarded.
1200 *
1201 * Return:
1202 * * %0 - The timer was inactive and not modified or was in
1203 *	  shutdown state and the operation was discarded
1204 * * %1 - The timer was active and requeued to expire at @expires
1205 */
1206int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1207{
1208	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1209}
1210EXPORT_SYMBOL(mod_timer_pending);
1211
1212/**
1213 * mod_timer - Modify a timer's timeout
1214 * @timer:	The timer to be modified
1215 * @expires:	New absolute timeout in jiffies
 
 
 
1216 *
1217 * mod_timer(timer, expires) is equivalent to:
1218 *
1219 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1220 *
1221 * mod_timer() is more efficient than the above open coded sequence. In
1222 * case that the timer is inactive, the del_timer() part is a NOP. The
1223 * timer is in any case activated with the new expiry time @expires.
1224 *
1225 * Note that if there are multiple unserialized concurrent users of the
1226 * same timer, then mod_timer() is the only safe way to modify the timeout,
1227 * since add_timer() cannot modify an already running timer.
1228 *
1229 * If @timer->function == NULL then the start operation is silently
1230 * discarded. In this case the return value is 0 and meaningless.
1231 *
1232 * Return:
1233 * * %0 - The timer was inactive and started or was in shutdown
1234 *	  state and the operation was discarded
1235 * * %1 - The timer was active and requeued to expire at @expires or
1236 *	  the timer was active and not modified because @expires did
1237 *	  not change the effective expiry time
1238 */
1239int mod_timer(struct timer_list *timer, unsigned long expires)
1240{
1241	return __mod_timer(timer, expires, 0);
1242}
1243EXPORT_SYMBOL(mod_timer);
1244
1245/**
1246 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1247 * @timer:	The timer to be modified
1248 * @expires:	New absolute timeout in jiffies
1249 *
1250 * timer_reduce() is very similar to mod_timer(), except that it will only
1251 * modify an enqueued timer if that would reduce the expiration time. If
1252 * @timer is not enqueued it starts the timer.
1253 *
1254 * If @timer->function == NULL then the start operation is silently
1255 * discarded.
1256 *
1257 * Return:
1258 * * %0 - The timer was inactive and started or was in shutdown
1259 *	  state and the operation was discarded
1260 * * %1 - The timer was active and requeued to expire at @expires or
1261 *	  the timer was active and not modified because @expires
1262 *	  did not change the effective expiry time such that the
1263 *	  timer would expire earlier than already scheduled
1264 */
1265int timer_reduce(struct timer_list *timer, unsigned long expires)
1266{
1267	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1268}
1269EXPORT_SYMBOL(timer_reduce);
1270
1271/**
1272 * add_timer - Start a timer
1273 * @timer:	The timer to be started
1274 *
1275 * Start @timer to expire at @timer->expires in the future. @timer->expires
1276 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1277 * timer->function(timer) will be invoked from soft interrupt context.
1278 *
1279 * The @timer->expires and @timer->function fields must be set prior
1280 * to calling this function.
1281 *
1282 * If @timer->function == NULL then the start operation is silently
1283 * discarded.
 
1284 *
1285 * If @timer->expires is already in the past @timer will be queued to
1286 * expire at the next timer tick.
1287 *
1288 * This can only operate on an inactive timer. Attempts to invoke this on
1289 * an active timer are rejected with a warning.
1290 */
1291void add_timer(struct timer_list *timer)
1292{
1293	if (WARN_ON_ONCE(timer_pending(timer)))
1294		return;
1295	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1296}
1297EXPORT_SYMBOL(add_timer);
1298
1299/**
1300 * add_timer_local() - Start a timer on the local CPU
1301 * @timer:	The timer to be started
1302 *
1303 * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1304 *
1305 * See add_timer() for further details.
1306 */
1307void add_timer_local(struct timer_list *timer)
1308{
1309	if (WARN_ON_ONCE(timer_pending(timer)))
1310		return;
1311	timer->flags |= TIMER_PINNED;
1312	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1313}
1314EXPORT_SYMBOL(add_timer_local);
1315
1316/**
1317 * add_timer_global() - Start a timer without TIMER_PINNED flag set
1318 * @timer:	The timer to be started
1319 *
1320 * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1321 *
1322 * See add_timer() for further details.
1323 */
1324void add_timer_global(struct timer_list *timer)
1325{
1326	if (WARN_ON_ONCE(timer_pending(timer)))
1327		return;
1328	timer->flags &= ~TIMER_PINNED;
1329	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1330}
1331EXPORT_SYMBOL(add_timer_global);
1332
1333/**
1334 * add_timer_on - Start a timer on a particular CPU
1335 * @timer:	The timer to be started
1336 * @cpu:	The CPU to start it on
1337 *
1338 * Same as add_timer() except that it starts the timer on the given CPU and
1339 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1340 * the next round, add_timer_global() should be used instead as it unsets
1341 * the TIMER_PINNED flag.
1342 *
1343 * See add_timer() for further details.
1344 */
1345void add_timer_on(struct timer_list *timer, int cpu)
1346{
1347	struct timer_base *new_base, *base;
1348	unsigned long flags;
1349
1350	debug_assert_init(timer);
1351
1352	if (WARN_ON_ONCE(timer_pending(timer)))
1353		return;
1354
1355	/* Make sure timer flags have TIMER_PINNED flag set */
1356	timer->flags |= TIMER_PINNED;
1357
1358	new_base = get_timer_cpu_base(timer->flags, cpu);
1359
1360	/*
1361	 * If @timer was on a different CPU, it should be migrated with the
1362	 * old base locked to prevent other operations proceeding with the
1363	 * wrong base locked.  See lock_timer_base().
1364	 */
1365	base = lock_timer_base(timer, &flags);
1366	/*
1367	 * Has @timer been shutdown? This needs to be evaluated while
1368	 * holding base lock to prevent a race against the shutdown code.
1369	 */
1370	if (!timer->function)
1371		goto out_unlock;
1372
1373	if (base != new_base) {
1374		timer->flags |= TIMER_MIGRATING;
1375
1376		raw_spin_unlock(&base->lock);
1377		base = new_base;
1378		raw_spin_lock(&base->lock);
1379		WRITE_ONCE(timer->flags,
1380			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1381	}
1382	forward_timer_base(base);
1383
1384	debug_timer_activate(timer);
1385	internal_add_timer(base, timer);
1386out_unlock:
1387	raw_spin_unlock_irqrestore(&base->lock, flags);
1388}
1389EXPORT_SYMBOL_GPL(add_timer_on);
1390
1391/**
1392 * __timer_delete - Internal function: Deactivate a timer
1393 * @timer:	The timer to be deactivated
1394 * @shutdown:	If true, this indicates that the timer is about to be
1395 *		shutdown permanently.
1396 *
1397 * If @shutdown is true then @timer->function is set to NULL under the
1398 * timer base lock which prevents further rearming of the time. In that
1399 * case any attempt to rearm @timer after this function returns will be
1400 * silently ignored.
1401 *
1402 * Return:
1403 * * %0 - The timer was not pending
1404 * * %1 - The timer was pending and deactivated
1405 */
1406static int __timer_delete(struct timer_list *timer, bool shutdown)
1407{
1408	struct timer_base *base;
1409	unsigned long flags;
1410	int ret = 0;
1411
1412	debug_assert_init(timer);
1413
1414	/*
1415	 * If @shutdown is set then the lock has to be taken whether the
1416	 * timer is pending or not to protect against a concurrent rearm
1417	 * which might hit between the lockless pending check and the lock
1418	 * acquisition. By taking the lock it is ensured that such a newly
1419	 * enqueued timer is dequeued and cannot end up with
1420	 * timer->function == NULL in the expiry code.
1421	 *
1422	 * If timer->function is currently executed, then this makes sure
1423	 * that the callback cannot requeue the timer.
1424	 */
1425	if (timer_pending(timer) || shutdown) {
1426		base = lock_timer_base(timer, &flags);
1427		ret = detach_if_pending(timer, base, true);
1428		if (shutdown)
1429			timer->function = NULL;
1430		raw_spin_unlock_irqrestore(&base->lock, flags);
1431	}
1432
1433	return ret;
1434}
 
1435
1436/**
1437 * timer_delete - Deactivate a timer
1438 * @timer:	The timer to be deactivated
1439 *
1440 * The function only deactivates a pending timer, but contrary to
1441 * timer_delete_sync() it does not take into account whether the timer's
1442 * callback function is concurrently executed on a different CPU or not.
1443 * It neither prevents rearming of the timer.  If @timer can be rearmed
1444 * concurrently then the return value of this function is meaningless.
1445 *
1446 * Return:
1447 * * %0 - The timer was not pending
1448 * * %1 - The timer was pending and deactivated
1449 */
1450int timer_delete(struct timer_list *timer)
1451{
1452	return __timer_delete(timer, false);
1453}
1454EXPORT_SYMBOL(timer_delete);
1455
1456/**
1457 * timer_shutdown - Deactivate a timer and prevent rearming
1458 * @timer:	The timer to be deactivated
1459 *
1460 * The function does not wait for an eventually running timer callback on a
1461 * different CPU but it prevents rearming of the timer. Any attempt to arm
1462 * @timer after this function returns will be silently ignored.
1463 *
1464 * This function is useful for teardown code and should only be used when
1465 * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1466 *
1467 * Return:
1468 * * %0 - The timer was not pending
1469 * * %1 - The timer was pending
1470 */
1471int timer_shutdown(struct timer_list *timer)
1472{
1473	return __timer_delete(timer, true);
1474}
1475EXPORT_SYMBOL_GPL(timer_shutdown);
1476
1477/**
1478 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1479 * @timer:	Timer to deactivate
1480 * @shutdown:	If true, this indicates that the timer is about to be
1481 *		shutdown permanently.
1482 *
1483 * If @shutdown is true then @timer->function is set to NULL under the
1484 * timer base lock which prevents further rearming of the timer. Any
1485 * attempt to rearm @timer after this function returns will be silently
1486 * ignored.
1487 *
1488 * This function cannot guarantee that the timer cannot be rearmed
1489 * right after dropping the base lock if @shutdown is false. That
1490 * needs to be prevented by the calling code if necessary.
1491 *
1492 * Return:
1493 * * %0  - The timer was not pending
1494 * * %1  - The timer was pending and deactivated
1495 * * %-1 - The timer callback function is running on a different CPU
1496 */
1497static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1498{
1499	struct timer_base *base;
1500	unsigned long flags;
1501	int ret = -1;
1502
1503	debug_assert_init(timer);
1504
1505	base = lock_timer_base(timer, &flags);
1506
1507	if (base->running_timer != timer)
 
1508		ret = detach_if_pending(timer, base, true);
1509	if (shutdown)
1510		timer->function = NULL;
1511
1512	raw_spin_unlock_irqrestore(&base->lock, flags);
1513
1514	return ret;
1515}
 
1516
 
1517/**
1518 * try_to_del_timer_sync - Try to deactivate a timer
1519 * @timer:	Timer to deactivate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520 *
1521 * This function tries to deactivate a timer. On success the timer is not
1522 * queued and the timer callback function is not running on any CPU.
 
 
 
 
 
 
 
 
1523 *
1524 * This function does not guarantee that the timer cannot be rearmed right
1525 * after dropping the base lock. That needs to be prevented by the calling
1526 * code if necessary.
1527 *
1528 * Return:
1529 * * %0  - The timer was not pending
1530 * * %1  - The timer was pending and deactivated
1531 * * %-1 - The timer callback function is running on a different CPU
1532 */
1533int try_to_del_timer_sync(struct timer_list *timer)
1534{
1535	return __try_to_del_timer_sync(timer, false);
1536}
1537EXPORT_SYMBOL(try_to_del_timer_sync);
1538
1539#ifdef CONFIG_PREEMPT_RT
1540static __init void timer_base_init_expiry_lock(struct timer_base *base)
1541{
1542	spin_lock_init(&base->expiry_lock);
1543}
1544
1545static inline void timer_base_lock_expiry(struct timer_base *base)
1546{
1547	spin_lock(&base->expiry_lock);
1548}
1549
1550static inline void timer_base_unlock_expiry(struct timer_base *base)
1551{
1552	spin_unlock(&base->expiry_lock);
1553}
1554
1555/*
1556 * The counterpart to del_timer_wait_running().
1557 *
1558 * If there is a waiter for base->expiry_lock, then it was waiting for the
1559 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1560 * the waiter to acquire the lock and make progress.
1561 */
1562static void timer_sync_wait_running(struct timer_base *base)
1563	__releases(&base->lock) __releases(&base->expiry_lock)
1564	__acquires(&base->expiry_lock) __acquires(&base->lock)
1565{
1566	if (atomic_read(&base->timer_waiters)) {
1567		raw_spin_unlock_irq(&base->lock);
1568		spin_unlock(&base->expiry_lock);
1569		spin_lock(&base->expiry_lock);
1570		raw_spin_lock_irq(&base->lock);
1571	}
1572}
1573
1574/*
1575 * This function is called on PREEMPT_RT kernels when the fast path
1576 * deletion of a timer failed because the timer callback function was
1577 * running.
1578 *
1579 * This prevents priority inversion, if the softirq thread on a remote CPU
1580 * got preempted, and it prevents a life lock when the task which tries to
1581 * delete a timer preempted the softirq thread running the timer callback
1582 * function.
1583 */
1584static void del_timer_wait_running(struct timer_list *timer)
1585{
1586	u32 tf;
1587
1588	tf = READ_ONCE(timer->flags);
1589	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1590		struct timer_base *base = get_timer_base(tf);
1591
1592		/*
1593		 * Mark the base as contended and grab the expiry lock,
1594		 * which is held by the softirq across the timer
1595		 * callback. Drop the lock immediately so the softirq can
1596		 * expire the next timer. In theory the timer could already
1597		 * be running again, but that's more than unlikely and just
1598		 * causes another wait loop.
1599		 */
1600		atomic_inc(&base->timer_waiters);
1601		spin_lock_bh(&base->expiry_lock);
1602		atomic_dec(&base->timer_waiters);
1603		spin_unlock_bh(&base->expiry_lock);
1604	}
1605}
1606#else
1607static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1608static inline void timer_base_lock_expiry(struct timer_base *base) { }
1609static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1610static inline void timer_sync_wait_running(struct timer_base *base) { }
1611static inline void del_timer_wait_running(struct timer_list *timer) { }
1612#endif
1613
1614/**
1615 * __timer_delete_sync - Internal function: Deactivate a timer and wait
1616 *			 for the handler to finish.
1617 * @timer:	The timer to be deactivated
1618 * @shutdown:	If true, @timer->function will be set to NULL under the
1619 *		timer base lock which prevents rearming of @timer
1620 *
1621 * If @shutdown is not set the timer can be rearmed later. If the timer can
1622 * be rearmed concurrently, i.e. after dropping the base lock then the
1623 * return value is meaningless.
1624 *
1625 * If @shutdown is set then @timer->function is set to NULL under timer
1626 * base lock which prevents rearming of the timer. Any attempt to rearm
1627 * a shutdown timer is silently ignored.
1628 *
1629 * If the timer should be reused after shutdown it has to be initialized
1630 * again.
1631 *
1632 * Return:
1633 * * %0	- The timer was not pending
1634 * * %1	- The timer was pending and deactivated
1635 */
1636static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1637{
1638	int ret;
1639
1640#ifdef CONFIG_LOCKDEP
1641	unsigned long flags;
1642
1643	/*
1644	 * If lockdep gives a backtrace here, please reference
1645	 * the synchronization rules above.
1646	 */
1647	local_irq_save(flags);
1648	lock_map_acquire(&timer->lockdep_map);
1649	lock_map_release(&timer->lockdep_map);
1650	local_irq_restore(flags);
1651#endif
1652	/*
1653	 * don't use it in hardirq context, because it
1654	 * could lead to deadlock.
1655	 */
1656	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1657
1658	/*
1659	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1660	 * del_timer_wait_running().
1661	 */
1662	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1663		lockdep_assert_preemption_enabled();
1664
1665	do {
1666		ret = __try_to_del_timer_sync(timer, shutdown);
1667
1668		if (unlikely(ret < 0)) {
1669			del_timer_wait_running(timer);
1670			cpu_relax();
1671		}
1672	} while (ret < 0);
1673
1674	return ret;
1675}
 
 
1676
1677/**
1678 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1679 * @timer:	The timer to be deactivated
1680 *
1681 * Synchronization rules: Callers must prevent restarting of the timer,
1682 * otherwise this function is meaningless. It must not be called from
1683 * interrupt contexts unless the timer is an irqsafe one. The caller must
1684 * not hold locks which would prevent completion of the timer's callback
1685 * function. The timer's handler must not call add_timer_on(). Upon exit
1686 * the timer is not queued and the handler is not running on any CPU.
1687 *
1688 * For !irqsafe timers, the caller must not hold locks that are held in
1689 * interrupt context. Even if the lock has nothing to do with the timer in
1690 * question.  Here's why::
1691 *
1692 *    CPU0                             CPU1
1693 *    ----                             ----
1694 *                                     <SOFTIRQ>
1695 *                                       call_timer_fn();
1696 *                                       base->running_timer = mytimer;
1697 *    spin_lock_irq(somelock);
1698 *                                     <IRQ>
1699 *                                        spin_lock(somelock);
1700 *    timer_delete_sync(mytimer);
1701 *    while (base->running_timer == mytimer);
1702 *
1703 * Now timer_delete_sync() will never return and never release somelock.
1704 * The interrupt on the other CPU is waiting to grab somelock but it has
1705 * interrupted the softirq that CPU0 is waiting to finish.
1706 *
1707 * This function cannot guarantee that the timer is not rearmed again by
1708 * some concurrent or preempting code, right after it dropped the base
1709 * lock. If there is the possibility of a concurrent rearm then the return
1710 * value of the function is meaningless.
1711 *
1712 * If such a guarantee is needed, e.g. for teardown situations then use
1713 * timer_shutdown_sync() instead.
1714 *
1715 * Return:
1716 * * %0	- The timer was not pending
1717 * * %1	- The timer was pending and deactivated
1718 */
1719int timer_delete_sync(struct timer_list *timer)
1720{
1721	return __timer_delete_sync(timer, false);
1722}
1723EXPORT_SYMBOL(timer_delete_sync);
1724
1725/**
1726 * timer_shutdown_sync - Shutdown a timer and prevent rearming
1727 * @timer: The timer to be shutdown
1728 *
1729 * When the function returns it is guaranteed that:
1730 *   - @timer is not queued
1731 *   - The callback function of @timer is not running
1732 *   - @timer cannot be enqueued again. Any attempt to rearm
1733 *     @timer is silently ignored.
1734 *
1735 * See timer_delete_sync() for synchronization rules.
1736 *
1737 * This function is useful for final teardown of an infrastructure where
1738 * the timer is subject to a circular dependency problem.
1739 *
1740 * A common pattern for this is a timer and a workqueue where the timer can
1741 * schedule work and work can arm the timer. On shutdown the workqueue must
1742 * be destroyed and the timer must be prevented from rearming. Unless the
1743 * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1744 * there is no way to get this correct with timer_delete_sync().
1745 *
1746 * timer_shutdown_sync() is solving the problem. The correct ordering of
1747 * calls in this case is:
1748 *
1749 *	timer_shutdown_sync(&mything->timer);
1750 *	workqueue_destroy(&mything->workqueue);
1751 *
1752 * After this 'mything' can be safely freed.
1753 *
1754 * This obviously implies that the timer is not required to be functional
1755 * for the rest of the shutdown operation.
1756 *
1757 * Return:
1758 * * %0 - The timer was not pending
1759 * * %1 - The timer was pending
1760 */
1761int timer_shutdown_sync(struct timer_list *timer)
1762{
1763	return __timer_delete_sync(timer, true);
1764}
1765EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1766
1767static void call_timer_fn(struct timer_list *timer,
1768			  void (*fn)(struct timer_list *),
1769			  unsigned long baseclk)
1770{
1771	int count = preempt_count();
1772
1773#ifdef CONFIG_LOCKDEP
1774	/*
1775	 * It is permissible to free the timer from inside the
1776	 * function that is called from it, this we need to take into
1777	 * account for lockdep too. To avoid bogus "held lock freed"
1778	 * warnings as well as problems when looking into
1779	 * timer->lockdep_map, make a copy and use that here.
1780	 */
1781	struct lockdep_map lockdep_map;
1782
1783	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1784#endif
1785	/*
1786	 * Couple the lock chain with the lock chain at
1787	 * timer_delete_sync() by acquiring the lock_map around the fn()
1788	 * call here and in timer_delete_sync().
1789	 */
1790	lock_map_acquire(&lockdep_map);
1791
1792	trace_timer_expire_entry(timer, baseclk);
1793	fn(timer);
1794	trace_timer_expire_exit(timer);
1795
1796	lock_map_release(&lockdep_map);
1797
1798	if (count != preempt_count()) {
1799		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1800			  fn, count, preempt_count());
1801		/*
1802		 * Restore the preempt count. That gives us a decent
1803		 * chance to survive and extract information. If the
1804		 * callback kept a lock held, bad luck, but not worse
1805		 * than the BUG() we had.
1806		 */
1807		preempt_count_set(count);
1808	}
1809}
1810
1811static void expire_timers(struct timer_base *base, struct hlist_head *head)
1812{
1813	/*
1814	 * This value is required only for tracing. base->clk was
1815	 * incremented directly before expire_timers was called. But expiry
1816	 * is related to the old base->clk value.
1817	 */
1818	unsigned long baseclk = base->clk - 1;
1819
1820	while (!hlist_empty(head)) {
1821		struct timer_list *timer;
1822		void (*fn)(struct timer_list *);
 
1823
1824		timer = hlist_entry(head->first, struct timer_list, entry);
 
1825
1826		base->running_timer = timer;
1827		detach_timer(timer, true);
1828
1829		fn = timer->function;
1830
1831		if (WARN_ON_ONCE(!fn)) {
1832			/* Should never happen. Emphasis on should! */
1833			base->running_timer = NULL;
1834			continue;
1835		}
1836
1837		if (timer->flags & TIMER_IRQSAFE) {
1838			raw_spin_unlock(&base->lock);
1839			call_timer_fn(timer, fn, baseclk);
1840			raw_spin_lock(&base->lock);
1841			base->running_timer = NULL;
1842		} else {
1843			raw_spin_unlock_irq(&base->lock);
1844			call_timer_fn(timer, fn, baseclk);
1845			raw_spin_lock_irq(&base->lock);
1846			base->running_timer = NULL;
1847			timer_sync_wait_running(base);
1848		}
1849	}
1850}
1851
1852static int collect_expired_timers(struct timer_base *base,
1853				  struct hlist_head *heads)
1854{
1855	unsigned long clk = base->clk = base->next_expiry;
1856	struct hlist_head *vec;
1857	int i, levels = 0;
1858	unsigned int idx;
1859
1860	for (i = 0; i < LVL_DEPTH; i++) {
1861		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1862
1863		if (__test_and_clear_bit(idx, base->pending_map)) {
1864			vec = base->vectors + idx;
1865			hlist_move_list(vec, heads++);
1866			levels++;
1867		}
1868		/* Is it time to look at the next level? */
1869		if (clk & LVL_CLK_MASK)
1870			break;
1871		/* Shift clock for the next level granularity */
1872		clk >>= LVL_CLK_SHIFT;
1873	}
1874	return levels;
1875}
1876
 
1877/*
1878 * Find the next pending bucket of a level. Search from level start (@offset)
1879 * + @clk upwards and if nothing there, search from start of the level
1880 * (@offset) up to @offset + clk.
1881 */
1882static int next_pending_bucket(struct timer_base *base, unsigned offset,
1883			       unsigned clk)
1884{
1885	unsigned pos, start = offset + clk;
1886	unsigned end = offset + LVL_SIZE;
1887
1888	pos = find_next_bit(base->pending_map, end, start);
1889	if (pos < end)
1890		return pos - start;
1891
1892	pos = find_next_bit(base->pending_map, start, offset);
1893	return pos < start ? pos + LVL_SIZE - start : -1;
1894}
1895
1896/*
1897 * Search the first expiring timer in the various clock levels. Caller must
1898 * hold base->lock.
1899 *
1900 * Store next expiry time in base->next_expiry.
1901 */
1902static void timer_recalc_next_expiry(struct timer_base *base)
1903{
1904	unsigned long clk, next, adj;
1905	unsigned lvl, offset = 0;
1906
1907	next = base->clk + NEXT_TIMER_MAX_DELTA;
1908	clk = base->clk;
1909	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1910		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1911		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1912
1913		if (pos >= 0) {
1914			unsigned long tmp = clk + (unsigned long) pos;
1915
1916			tmp <<= LVL_SHIFT(lvl);
1917			if (time_before(tmp, next))
1918				next = tmp;
1919
1920			/*
1921			 * If the next expiration happens before we reach
1922			 * the next level, no need to check further.
1923			 */
1924			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1925				break;
1926		}
1927		/*
1928		 * Clock for the next level. If the current level clock lower
1929		 * bits are zero, we look at the next level as is. If not we
1930		 * need to advance it by one because that's going to be the
1931		 * next expiring bucket in that level. base->clk is the next
1932		 * expiring jiffy. So in case of:
1933		 *
1934		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1935		 *  0    0    0    0    0    0
1936		 *
1937		 * we have to look at all levels @index 0. With
1938		 *
1939		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1940		 *  0    0    0    0    0    2
1941		 *
1942		 * LVL0 has the next expiring bucket @index 2. The upper
1943		 * levels have the next expiring bucket @index 1.
1944		 *
1945		 * In case that the propagation wraps the next level the same
1946		 * rules apply:
1947		 *
1948		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1949		 *  0    0    0    0    F    2
1950		 *
1951		 * So after looking at LVL0 we get:
1952		 *
1953		 * LVL5 LVL4 LVL3 LVL2 LVL1
1954		 *  0    0    0    1    0
1955		 *
1956		 * So no propagation from LVL1 to LVL2 because that happened
1957		 * with the add already, but then we need to propagate further
1958		 * from LVL2 to LVL3.
1959		 *
1960		 * So the simple check whether the lower bits of the current
1961		 * level are 0 or not is sufficient for all cases.
1962		 */
1963		adj = lvl_clk ? 1 : 0;
1964		clk >>= LVL_CLK_SHIFT;
1965		clk += adj;
1966	}
1967
1968	WRITE_ONCE(base->next_expiry, next);
1969	base->next_expiry_recalc = false;
1970	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1971}
1972
1973#ifdef CONFIG_NO_HZ_COMMON
1974/*
1975 * Check, if the next hrtimer event is before the next timer wheel
1976 * event:
1977 */
1978static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1979{
1980	u64 nextevt = hrtimer_get_next_event();
1981
1982	/*
1983	 * If high resolution timers are enabled
1984	 * hrtimer_get_next_event() returns KTIME_MAX.
1985	 */
1986	if (expires <= nextevt)
1987		return expires;
1988
1989	/*
1990	 * If the next timer is already expired, return the tick base
1991	 * time so the tick is fired immediately.
1992	 */
1993	if (nextevt <= basem)
1994		return basem;
1995
1996	/*
1997	 * Round up to the next jiffy. High resolution timers are
1998	 * off, so the hrtimers are expired in the tick and we need to
1999	 * make sure that this tick really expires the timer to avoid
2000	 * a ping pong of the nohz stop code.
2001	 *
2002	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2003	 */
2004	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2005}
2006
2007static unsigned long next_timer_interrupt(struct timer_base *base,
2008					  unsigned long basej)
 
 
 
 
 
 
 
2009{
2010	if (base->next_expiry_recalc)
2011		timer_recalc_next_expiry(base);
 
 
2012
2013	/*
2014	 * Move next_expiry for the empty base into the future to prevent an
2015	 * unnecessary raise of the timer softirq when the next_expiry value
2016	 * will be reached even if there is no timer pending.
2017	 *
2018	 * This update is also required to make timer_base::next_expiry values
2019	 * easy comparable to find out which base holds the first pending timer.
2020	 */
2021	if (!base->timers_pending)
2022		WRITE_ONCE(base->next_expiry, basej + NEXT_TIMER_MAX_DELTA);
2023
2024	return base->next_expiry;
2025}
2026
2027static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2028						struct timer_base *base_local,
2029						struct timer_base *base_global,
2030						struct timer_events *tevt)
2031{
2032	unsigned long nextevt, nextevt_local, nextevt_global;
2033	bool local_first;
2034
2035	nextevt_local = next_timer_interrupt(base_local, basej);
2036	nextevt_global = next_timer_interrupt(base_global, basej);
2037
2038	local_first = time_before_eq(nextevt_local, nextevt_global);
2039
2040	nextevt = local_first ? nextevt_local : nextevt_global;
2041
 
 
 
 
2042	/*
2043	 * If the @nextevt is at max. one tick away, use @nextevt and store
2044	 * it in the local expiry value. The next global event is irrelevant in
2045	 * this case and can be left as KTIME_MAX.
2046	 */
2047	if (time_before_eq(nextevt, basej + 1)) {
2048		/* If we missed a tick already, force 0 delta */
2049		if (time_before(nextevt, basej))
2050			nextevt = basej;
2051		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
 
2052
 
 
 
 
 
 
2053		/*
2054		 * This is required for the remote check only but it doesn't
2055		 * hurt, when it is done for both call sites:
2056		 *
2057		 * * The remote callers will only take care of the global timers
2058		 *   as local timers will be handled by CPU itself. When not
2059		 *   updating tevt->global with the already missed first global
2060		 *   timer, it is possible that it will be missed completely.
2061		 *
2062		 * * The local callers will ignore the tevt->global anyway, when
2063		 *   nextevt is max. one tick away.
2064		 */
2065		if (!local_first)
2066			tevt->global = tevt->local;
2067		return nextevt;
2068	}
 
2069
2070	/*
2071	 * Update tevt.* values:
2072	 *
2073	 * If the local queue expires first, then the global event can be
2074	 * ignored. If the global queue is empty, nothing to do either.
2075	 */
2076	if (!local_first && base_global->timers_pending)
2077		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2078
2079	if (base_local->timers_pending)
2080		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2081
2082	return nextevt;
2083}
2084
2085# ifdef CONFIG_SMP
2086/**
2087 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2088 * @basej:	base time jiffies
2089 * @basem:	base time clock monotonic
2090 * @tevt:	Pointer to the storage for the expiry values
2091 * @cpu:	Remote CPU
2092 *
2093 * Stores the next pending local and global timer expiry values in the
2094 * struct pointed to by @tevt. If a queue is empty the corresponding
2095 * field is set to KTIME_MAX. If local event expires before global
2096 * event, global event is set to KTIME_MAX as well.
2097 *
2098 * Caller needs to make sure timer base locks are held (use
2099 * timer_lock_remote_bases() for this purpose).
2100 */
2101void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2102				       struct timer_events *tevt,
2103				       unsigned int cpu)
2104{
2105	struct timer_base *base_local, *base_global;
2106
2107	/* Preset local / global events */
2108	tevt->local = tevt->global = KTIME_MAX;
2109
2110	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2111	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2112
2113	lockdep_assert_held(&base_local->lock);
2114	lockdep_assert_held(&base_global->lock);
2115
2116	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2117}
2118
2119/**
2120 * timer_unlock_remote_bases - unlock timer bases of cpu
2121 * @cpu:	Remote CPU
2122 *
2123 * Unlocks the remote timer bases.
2124 */
2125void timer_unlock_remote_bases(unsigned int cpu)
2126	__releases(timer_bases[BASE_LOCAL]->lock)
2127	__releases(timer_bases[BASE_GLOBAL]->lock)
2128{
2129	struct timer_base *base_local, *base_global;
2130
2131	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2132	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2133
2134	raw_spin_unlock(&base_global->lock);
2135	raw_spin_unlock(&base_local->lock);
2136}
2137
2138/**
2139 * timer_lock_remote_bases - lock timer bases of cpu
2140 * @cpu:	Remote CPU
2141 *
2142 * Locks the remote timer bases.
2143 */
2144void timer_lock_remote_bases(unsigned int cpu)
2145	__acquires(timer_bases[BASE_LOCAL]->lock)
2146	__acquires(timer_bases[BASE_GLOBAL]->lock)
2147{
2148	struct timer_base *base_local, *base_global;
2149
2150	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2151	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2152
2153	lockdep_assert_irqs_disabled();
2154
2155	raw_spin_lock(&base_local->lock);
2156	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2157}
2158
2159/**
2160 * timer_base_is_idle() - Return whether timer base is set idle
2161 *
2162 * Returns value of local timer base is_idle value.
2163 */
2164bool timer_base_is_idle(void)
2165{
2166	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2167}
2168
2169static void __run_timer_base(struct timer_base *base);
2170
2171/**
2172 * timer_expire_remote() - expire global timers of cpu
2173 * @cpu:	Remote CPU
2174 *
2175 * Expire timers of global base of remote CPU.
2176 */
2177void timer_expire_remote(unsigned int cpu)
2178{
2179	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2180
2181	__run_timer_base(base);
2182}
2183
2184static void timer_use_tmigr(unsigned long basej, u64 basem,
2185			    unsigned long *nextevt, bool *tick_stop_path,
2186			    bool timer_base_idle, struct timer_events *tevt)
2187{
2188	u64 next_tmigr;
2189
2190	if (timer_base_idle)
2191		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2192	else if (tick_stop_path)
2193		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2194	else
2195		next_tmigr = tmigr_quick_check(tevt->global);
2196
2197	/*
2198	 * If the CPU is the last going idle in timer migration hierarchy, make
2199	 * sure the CPU will wake up in time to handle remote timers.
2200	 * next_tmigr == KTIME_MAX if other CPUs are still active.
 
2201	 */
2202	if (next_tmigr < tevt->local) {
2203		u64 tmp;
2204
2205		/* If we missed a tick already, force 0 delta */
2206		if (next_tmigr < basem)
2207			next_tmigr = basem;
2208
2209		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2210
2211		*nextevt = basej + (unsigned long)tmp;
2212		tevt->local = next_tmigr;
2213	}
2214}
2215# else
2216static void timer_use_tmigr(unsigned long basej, u64 basem,
2217			    unsigned long *nextevt, bool *tick_stop_path,
2218			    bool timer_base_idle, struct timer_events *tevt)
2219{
2220	/*
2221	 * Make sure first event is written into tevt->local to not miss a
2222	 * timer on !SMP systems.
2223	 */
2224	tevt->local = min_t(u64, tevt->local, tevt->global);
2225}
2226# endif /* CONFIG_SMP */
2227
2228static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2229					     bool *idle)
2230{
2231	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2232	struct timer_base *base_local, *base_global;
2233	unsigned long nextevt;
2234	bool idle_is_possible;
2235
2236	/*
2237	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2238	 * to try to stop it.
 
2239	 */
2240	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2241		if (idle)
2242			*idle = true;
2243		return tevt.local;
2244	}
2245
2246	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2247	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2248
2249	raw_spin_lock(&base_local->lock);
2250	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2251
2252	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2253					     base_global, &tevt);
2254
2255	/*
2256	 * If the next event is only one jiffy ahead there is no need to call
2257	 * timer migration hierarchy related functions. The value for the next
2258	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2259	 * true, when the timer base is idle.
2260	 *
2261	 * The proper timer migration hierarchy function depends on the callsite
2262	 * and whether timer base is idle or not. @nextevt will be updated when
2263	 * this CPU needs to handle the first timer migration hierarchy
2264	 * event. See timer_use_tmigr() for detailed information.
2265	 */
2266	idle_is_possible = time_after(nextevt, basej + 1);
2267	if (idle_is_possible)
2268		timer_use_tmigr(basej, basem, &nextevt, idle,
2269				base_local->is_idle, &tevt);
2270
2271	/*
2272	 * We have a fresh next event. Check whether we can forward the
2273	 * base.
2274	 */
2275	__forward_timer_base(base_local, basej);
2276	__forward_timer_base(base_global, basej);
2277
2278	/*
2279	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2280	 */
2281	if (idle) {
2282		/*
2283		 * Bases are idle if the next event is more than a tick
2284		 * away. Caution: @nextevt could have changed by enqueueing a
2285		 * global timer into timer migration hierarchy. Therefore a new
2286		 * check is required here.
2287		 *
2288		 * If the base is marked idle then any timer add operation must
2289		 * forward the base clk itself to keep granularity small. This
2290		 * idle logic is only maintained for the BASE_LOCAL and
2291		 * BASE_GLOBAL base, deferrable timers may still see large
2292		 * granularity skew (by design).
2293		 */
2294		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2295			base_local->is_idle = true;
2296			/*
2297			 * Global timers queued locally while running in a task
2298			 * in nohz_full mode need a self-IPI to kick reprogramming
2299			 * in IRQ tail.
2300			 */
2301			if (tick_nohz_full_cpu(base_local->cpu))
2302				base_global->is_idle = true;
2303			trace_timer_base_idle(true, base_local->cpu);
2304		}
2305		*idle = base_local->is_idle;
2306
2307		/*
2308		 * When timer base is not set idle, undo the effect of
2309		 * tmigr_cpu_deactivate() to prevent inconsistent states - active
2310		 * timer base but inactive timer migration hierarchy.
2311		 *
2312		 * When timer base was already marked idle, nothing will be
2313		 * changed here.
2314		 */
2315		if (!base_local->is_idle && idle_is_possible)
2316			tmigr_cpu_activate();
2317	}
2318
2319	raw_spin_unlock(&base_global->lock);
2320	raw_spin_unlock(&base_local->lock);
2321
2322	return cmp_next_hrtimer_event(basem, tevt.local);
2323}
2324
2325/**
2326 * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2327 * @basej:	base time jiffies
2328 * @basem:	base time clock monotonic
2329 *
2330 * Returns the tick aligned clock monotonic time of the next pending timer or
2331 * KTIME_MAX if no timer is pending. If timer of global base was queued into
2332 * timer migration hierarchy, first global timer is not taken into account. If
2333 * it was the last CPU of timer migration hierarchy going idle, first global
2334 * event is taken into account.
2335 */
2336u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2337{
2338	return __get_next_timer_interrupt(basej, basem, NULL);
2339}
 
2340
2341/**
2342 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2343 * @basej:	base time jiffies
2344 * @basem:	base time clock monotonic
2345 * @idle:	pointer to store the value of timer_base->is_idle on return;
2346 *		*idle contains the information whether tick was already stopped
2347 *
2348 * Returns the tick aligned clock monotonic time of the next pending timer or
2349 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2350 * returned as well.
2351 */
2352u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2353{
2354	if (*idle)
2355		return KTIME_MAX;
2356
2357	return __get_next_timer_interrupt(basej, basem, idle);
2358}
2359
2360/**
2361 * timer_clear_idle - Clear the idle state of the timer base
2362 *
2363 * Called with interrupts disabled
2364 */
2365void timer_clear_idle(void)
2366{
2367	/*
2368	 * We do this unlocked. The worst outcome is a remote pinned timer
2369	 * enqueue sending a pointless IPI, but taking the lock would just
2370	 * make the window for sending the IPI a few instructions smaller
2371	 * for the cost of taking the lock in the exit from idle
2372	 * path. Required for BASE_LOCAL only.
2373	 */
2374	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2375	if (tick_nohz_full_cpu(smp_processor_id()))
2376		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2377	trace_timer_base_idle(false, smp_processor_id());
2378
2379	/* Activate without holding the timer_base->lock */
2380	tmigr_cpu_activate();
2381}
2382#endif
2383
2384/**
2385 * __run_timers - run all expired timers (if any) on this CPU.
2386 * @base: the timer vector to be processed.
2387 */
2388static inline void __run_timers(struct timer_base *base)
2389{
2390	struct hlist_head heads[LVL_DEPTH];
2391	int levels;
2392
2393	lockdep_assert_held(&base->lock);
 
 
 
2394
2395	if (base->running_timer)
2396		return;
2397
2398	while (time_after_eq(jiffies, base->clk) &&
2399	       time_after_eq(jiffies, base->next_expiry)) {
2400		levels = collect_expired_timers(base, heads);
2401		/*
2402		 * The two possible reasons for not finding any expired
2403		 * timer at this clk are that all matching timers have been
2404		 * dequeued or no timer has been queued since
2405		 * base::next_expiry was set to base::clk +
2406		 * NEXT_TIMER_MAX_DELTA.
2407		 */
2408		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2409			     && base->timers_pending);
2410		/*
2411		 * While executing timers, base->clk is set 1 offset ahead of
2412		 * jiffies to avoid endless requeuing to current jiffies.
2413		 */
2414		base->clk++;
2415		timer_recalc_next_expiry(base);
2416
2417		while (levels--)
2418			expire_timers(base, heads + levels);
2419	}
 
 
2420}
2421
2422static void __run_timer_base(struct timer_base *base)
 
 
 
2423{
2424	/* Can race against a remote CPU updating next_expiry under the lock */
2425	if (time_before(jiffies, READ_ONCE(base->next_expiry)))
2426		return;
2427
2428	timer_base_lock_expiry(base);
2429	raw_spin_lock_irq(&base->lock);
2430	__run_timers(base);
2431	raw_spin_unlock_irq(&base->lock);
2432	timer_base_unlock_expiry(base);
2433}
2434
2435static void run_timer_base(int index)
 
 
 
2436{
2437	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2438
2439	__run_timer_base(base);
 
 
 
 
 
 
 
 
 
 
2440}
2441
2442/*
2443 * This function runs timers and the timer-tq in bottom half context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444 */
2445static __latent_entropy void run_timer_softirq(void)
2446{
2447	run_timer_base(BASE_LOCAL);
2448	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2449		run_timer_base(BASE_GLOBAL);
2450		run_timer_base(BASE_DEF);
2451
2452		if (is_timers_nohz_active())
2453			tmigr_handle_remote();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2455}
 
2456
2457/*
2458 * Called by the local, per-CPU timer interrupt on SMP.
 
2459 */
2460static void run_local_timers(void)
2461{
2462	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
 
 
 
2463
2464	hrtimer_run_queues();
 
 
 
 
 
2465
2466	for (int i = 0; i < NR_BASES; i++, base++) {
2467		/*
2468		 * Raise the softirq only if required.
2469		 *
2470		 * timer_base::next_expiry can be written by a remote CPU while
2471		 * holding the lock. If this write happens at the same time than
2472		 * the lockless local read, sanity checker could complain about
2473		 * data corruption.
2474		 *
2475		 * There are two possible situations where
2476		 * timer_base::next_expiry is written by a remote CPU:
2477		 *
2478		 * 1. Remote CPU expires global timers of this CPU and updates
2479		 * timer_base::next_expiry of BASE_GLOBAL afterwards in
2480		 * next_timer_interrupt() or timer_recalc_next_expiry(). The
2481		 * worst outcome is a superfluous raise of the timer softirq
2482		 * when the not yet updated value is read.
2483		 *
2484		 * 2. A new first pinned timer is enqueued by a remote CPU
2485		 * and therefore timer_base::next_expiry of BASE_LOCAL is
2486		 * updated. When this update is missed, this isn't a
2487		 * problem, as an IPI is executed nevertheless when the CPU
2488		 * was idle before. When the CPU wasn't idle but the update
2489		 * is missed, then the timer would expire one jiffy late -
2490		 * bad luck.
2491		 *
2492		 * Those unlikely corner cases where the worst outcome is only a
2493		 * one jiffy delay or a superfluous raise of the softirq are
2494		 * not that expensive as doing the check always while holding
2495		 * the lock.
2496		 *
2497		 * Possible remote writers are using WRITE_ONCE(). Local reader
2498		 * uses therefore READ_ONCE().
2499		 */
2500		if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
2501		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2502			raise_timer_softirq(TIMER_SOFTIRQ);
2503			return;
2504		}
2505	}
2506}
 
2507
2508/*
2509 * Called from the timer interrupt handler to charge one tick to the current
2510 * process.  user_tick is 1 if the tick is user time, 0 for system.
2511 */
2512void update_process_times(int user_tick)
2513{
2514	struct task_struct *p = current;
2515
2516	/* Note: this timer irq context must be accounted for as well. */
2517	account_process_tick(p, user_tick);
2518	run_local_timers();
2519	rcu_sched_clock_irq(user_tick);
2520#ifdef CONFIG_IRQ_WORK
2521	if (in_irq())
2522		irq_work_tick();
2523#endif
2524	sched_tick();
2525	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2526		run_posix_cpu_timers();
2527}
 
2528
2529#ifdef CONFIG_HOTPLUG_CPU
2530static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2531{
2532	struct timer_list *timer;
2533	int cpu = new_base->cpu;
2534
2535	while (!hlist_empty(head)) {
2536		timer = hlist_entry(head->first, struct timer_list, entry);
2537		detach_timer(timer, false);
2538		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2539		internal_add_timer(new_base, timer);
2540	}
2541}
2542
2543int timers_prepare_cpu(unsigned int cpu)
2544{
2545	struct timer_base *base;
2546	int b;
2547
2548	for (b = 0; b < NR_BASES; b++) {
2549		base = per_cpu_ptr(&timer_bases[b], cpu);
2550		base->clk = jiffies;
2551		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2552		base->next_expiry_recalc = false;
2553		base->timers_pending = false;
2554		base->is_idle = false;
2555	}
2556	return 0;
2557}
2558
2559int timers_dead_cpu(unsigned int cpu)
2560{
2561	struct timer_base *old_base;
2562	struct timer_base *new_base;
2563	int b, i;
2564
 
 
2565	for (b = 0; b < NR_BASES; b++) {
2566		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2567		new_base = get_cpu_ptr(&timer_bases[b]);
2568		/*
2569		 * The caller is globally serialized and nobody else
2570		 * takes two locks at once, deadlock is not possible.
2571		 */
2572		raw_spin_lock_irq(&new_base->lock);
2573		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2574
2575		/*
2576		 * The current CPUs base clock might be stale. Update it
2577		 * before moving the timers over.
2578		 */
2579		forward_timer_base(new_base);
2580
2581		WARN_ON_ONCE(old_base->running_timer);
2582		old_base->running_timer = NULL;
2583
2584		for (i = 0; i < WHEEL_SIZE; i++)
2585			migrate_timer_list(new_base, old_base->vectors + i);
2586
2587		raw_spin_unlock(&old_base->lock);
2588		raw_spin_unlock_irq(&new_base->lock);
2589		put_cpu_ptr(&timer_bases);
2590	}
2591	return 0;
2592}
2593
2594#endif /* CONFIG_HOTPLUG_CPU */
2595
2596static void __init init_timer_cpu(int cpu)
2597{
2598	struct timer_base *base;
2599	int i;
2600
2601	for (i = 0; i < NR_BASES; i++) {
2602		base = per_cpu_ptr(&timer_bases[i], cpu);
2603		base->cpu = cpu;
2604		raw_spin_lock_init(&base->lock);
2605		base->clk = jiffies;
2606		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2607		timer_base_init_expiry_lock(base);
2608	}
2609}
2610
2611static void __init init_timer_cpus(void)
2612{
2613	int cpu;
2614
2615	for_each_possible_cpu(cpu)
2616		init_timer_cpu(cpu);
2617}
2618
2619void __init init_timers(void)
2620{
2621	init_timer_cpus();
2622	posix_cputimers_init_work();
2623	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2624}