Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/export.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched.h>
  42#include <linux/sched/sysctl.h>
 
 
  43#include <linux/slab.h>
  44#include <linux/compat.h>
 
  45
  46#include <linux/uaccess.h>
  47#include <asm/unistd.h>
  48#include <asm/div64.h>
  49#include <asm/timex.h>
  50#include <asm/io.h>
  51
  52#include "tick-internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/timer.h>
  56
  57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  58
  59EXPORT_SYMBOL(jiffies_64);
  60
  61/*
  62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  64 * level has a different granularity.
  65 *
  66 * The level granularity is:		LVL_CLK_DIV ^ lvl
  67 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  68 *
  69 * The array level of a newly armed timer depends on the relative expiry
  70 * time. The farther the expiry time is away the higher the array level and
  71 * therefor the granularity becomes.
  72 *
  73 * Contrary to the original timer wheel implementation, which aims for 'exact'
  74 * expiry of the timers, this implementation removes the need for recascading
  75 * the timers into the lower array levels. The previous 'classic' timer wheel
  76 * implementation of the kernel already violated the 'exact' expiry by adding
  77 * slack to the expiry time to provide batched expiration. The granularity
  78 * levels provide implicit batching.
  79 *
  80 * This is an optimization of the original timer wheel implementation for the
  81 * majority of the timer wheel use cases: timeouts. The vast majority of
  82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  83 * the timeout expires it indicates that normal operation is disturbed, so it
  84 * does not matter much whether the timeout comes with a slight delay.
  85 *
  86 * The only exception to this are networking timers with a small expiry
  87 * time. They rely on the granularity. Those fit into the first wheel level,
  88 * which has HZ granularity.
  89 *
  90 * We don't have cascading anymore. timers with a expiry time above the
  91 * capacity of the last wheel level are force expired at the maximum timeout
  92 * value of the last wheel level. From data sampling we know that the maximum
  93 * value observed is 5 days (network connection tracking), so this should not
  94 * be an issue.
  95 *
  96 * The currently chosen array constants values are a good compromise between
  97 * array size and granularity.
  98 *
  99 * This results in the following granularity and range levels:
 100 *
 101 * HZ 1000 steps
 102 * Level Offset  Granularity            Range
 103 *  0      0         1 ms                0 ms -         63 ms
 104 *  1     64         8 ms               64 ms -        511 ms
 105 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 106 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 107 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 108 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 109 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 110 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 111 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 112 *
 113 * HZ  300
 114 * Level Offset  Granularity            Range
 115 *  0	   0         3 ms                0 ms -        210 ms
 116 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 117 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 118 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 119 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 120 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 121 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 122 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 123 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 124 *
 125 * HZ  250
 126 * Level Offset  Granularity            Range
 127 *  0	   0         4 ms                0 ms -        255 ms
 128 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 129 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 130 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 131 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 132 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 133 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 134 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 135 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 136 *
 137 * HZ  100
 138 * Level Offset  Granularity            Range
 139 *  0	   0         10 ms               0 ms -        630 ms
 140 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 141 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 142 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 143 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 144 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 145 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 146 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 147 */
 148
 149/* Clock divisor for the next level */
 150#define LVL_CLK_SHIFT	3
 151#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 152#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 153#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 154#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 155
 156/*
 157 * The time start value for each level to select the bucket at enqueue
 158 * time.
 
 159 */
 160#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 161
 162/* Size of each clock level */
 163#define LVL_BITS	6
 164#define LVL_SIZE	(1UL << LVL_BITS)
 165#define LVL_MASK	(LVL_SIZE - 1)
 166#define LVL_OFFS(n)	((n) * LVL_SIZE)
 167
 168/* Level depth */
 169#if HZ > 100
 170# define LVL_DEPTH	9
 171# else
 172# define LVL_DEPTH	8
 173#endif
 174
 175/* The cutoff (max. capacity of the wheel) */
 176#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 177#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 178
 179/*
 180 * The resulting wheel size. If NOHZ is configured we allocate two
 181 * wheels so we have a separate storage for the deferrable timers.
 182 */
 183#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 184
 185#ifdef CONFIG_NO_HZ_COMMON
 186# define NR_BASES	2
 187# define BASE_STD	0
 188# define BASE_DEF	1
 189#else
 190# define NR_BASES	1
 191# define BASE_STD	0
 192# define BASE_DEF	0
 193#endif
 194
 195struct timer_base {
 196	spinlock_t		lock;
 197	struct timer_list	*running_timer;
 
 
 
 
 198	unsigned long		clk;
 199	unsigned long		next_expiry;
 200	unsigned int		cpu;
 201	bool			migration_enabled;
 202	bool			nohz_active;
 203	bool			is_idle;
 204	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 205	struct hlist_head	vectors[WHEEL_SIZE];
 206} ____cacheline_aligned;
 207
 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 209
 210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 
 
 
 
 
 
 
 
 211unsigned int sysctl_timer_migration = 1;
 212
 213void timers_update_migration(bool update_nohz)
 
 
 214{
 215	bool on = sysctl_timer_migration && tick_nohz_active;
 216	unsigned int cpu;
 
 
 
 
 
 
 217
 218	/* Avoid the loop, if nothing to update */
 219	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
 220		return;
 
 
 
 
 221
 222	for_each_possible_cpu(cpu) {
 223		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
 224		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
 225		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
 226		if (!update_nohz)
 227			continue;
 228		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
 229		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
 230		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
 231	}
 232}
 233
 234int timer_migration_handler(struct ctl_table *table, int write,
 235			    void __user *buffer, size_t *lenp,
 236			    loff_t *ppos)
 237{
 238	static DEFINE_MUTEX(mutex);
 239	int ret;
 240
 241	mutex_lock(&mutex);
 242	ret = proc_dointvec(table, write, buffer, lenp, ppos);
 243	if (!ret && write)
 244		timers_update_migration(false);
 245	mutex_unlock(&mutex);
 246	return ret;
 247}
 248#endif
 
 
 
 
 
 
 
 249
 250static unsigned long round_jiffies_common(unsigned long j, int cpu,
 251		bool force_up)
 252{
 253	int rem;
 254	unsigned long original = j;
 255
 256	/*
 257	 * We don't want all cpus firing their timers at once hitting the
 258	 * same lock or cachelines, so we skew each extra cpu with an extra
 259	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 260	 * already did this.
 261	 * The skew is done by adding 3*cpunr, then round, then subtract this
 262	 * extra offset again.
 263	 */
 264	j += cpu * 3;
 265
 266	rem = j % HZ;
 267
 268	/*
 269	 * If the target jiffie is just after a whole second (which can happen
 270	 * due to delays of the timer irq, long irq off times etc etc) then
 271	 * we should round down to the whole second, not up. Use 1/4th second
 272	 * as cutoff for this rounding as an extreme upper bound for this.
 273	 * But never round down if @force_up is set.
 274	 */
 275	if (rem < HZ/4 && !force_up) /* round down */
 276		j = j - rem;
 277	else /* round up */
 278		j = j - rem + HZ;
 279
 280	/* now that we have rounded, subtract the extra skew again */
 281	j -= cpu * 3;
 282
 283	/*
 284	 * Make sure j is still in the future. Otherwise return the
 285	 * unmodified value.
 286	 */
 287	return time_is_after_jiffies(j) ? j : original;
 288}
 289
 290/**
 291 * __round_jiffies - function to round jiffies to a full second
 292 * @j: the time in (absolute) jiffies that should be rounded
 293 * @cpu: the processor number on which the timeout will happen
 294 *
 295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 296 * up or down to (approximately) full seconds. This is useful for timers
 297 * for which the exact time they fire does not matter too much, as long as
 298 * they fire approximately every X seconds.
 299 *
 300 * By rounding these timers to whole seconds, all such timers will fire
 301 * at the same time, rather than at various times spread out. The goal
 302 * of this is to have the CPU wake up less, which saves power.
 303 *
 304 * The exact rounding is skewed for each processor to avoid all
 305 * processors firing at the exact same time, which could lead
 306 * to lock contention or spurious cache line bouncing.
 307 *
 308 * The return value is the rounded version of the @j parameter.
 309 */
 310unsigned long __round_jiffies(unsigned long j, int cpu)
 311{
 312	return round_jiffies_common(j, cpu, false);
 313}
 314EXPORT_SYMBOL_GPL(__round_jiffies);
 315
 316/**
 317 * __round_jiffies_relative - function to round jiffies to a full second
 318 * @j: the time in (relative) jiffies that should be rounded
 319 * @cpu: the processor number on which the timeout will happen
 320 *
 321 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 322 * up or down to (approximately) full seconds. This is useful for timers
 323 * for which the exact time they fire does not matter too much, as long as
 324 * they fire approximately every X seconds.
 325 *
 326 * By rounding these timers to whole seconds, all such timers will fire
 327 * at the same time, rather than at various times spread out. The goal
 328 * of this is to have the CPU wake up less, which saves power.
 329 *
 330 * The exact rounding is skewed for each processor to avoid all
 331 * processors firing at the exact same time, which could lead
 332 * to lock contention or spurious cache line bouncing.
 333 *
 334 * The return value is the rounded version of the @j parameter.
 335 */
 336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 337{
 338	unsigned long j0 = jiffies;
 339
 340	/* Use j0 because jiffies might change while we run */
 341	return round_jiffies_common(j + j0, cpu, false) - j0;
 342}
 343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 344
 345/**
 346 * round_jiffies - function to round jiffies to a full second
 347 * @j: the time in (absolute) jiffies that should be rounded
 348 *
 349 * round_jiffies() rounds an absolute time in the future (in jiffies)
 350 * up or down to (approximately) full seconds. This is useful for timers
 351 * for which the exact time they fire does not matter too much, as long as
 352 * they fire approximately every X seconds.
 353 *
 354 * By rounding these timers to whole seconds, all such timers will fire
 355 * at the same time, rather than at various times spread out. The goal
 356 * of this is to have the CPU wake up less, which saves power.
 357 *
 358 * The return value is the rounded version of the @j parameter.
 359 */
 360unsigned long round_jiffies(unsigned long j)
 361{
 362	return round_jiffies_common(j, raw_smp_processor_id(), false);
 363}
 364EXPORT_SYMBOL_GPL(round_jiffies);
 365
 366/**
 367 * round_jiffies_relative - function to round jiffies to a full second
 368 * @j: the time in (relative) jiffies that should be rounded
 369 *
 370 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 371 * up or down to (approximately) full seconds. This is useful for timers
 372 * for which the exact time they fire does not matter too much, as long as
 373 * they fire approximately every X seconds.
 374 *
 375 * By rounding these timers to whole seconds, all such timers will fire
 376 * at the same time, rather than at various times spread out. The goal
 377 * of this is to have the CPU wake up less, which saves power.
 378 *
 379 * The return value is the rounded version of the @j parameter.
 380 */
 381unsigned long round_jiffies_relative(unsigned long j)
 382{
 383	return __round_jiffies_relative(j, raw_smp_processor_id());
 384}
 385EXPORT_SYMBOL_GPL(round_jiffies_relative);
 386
 387/**
 388 * __round_jiffies_up - function to round jiffies up to a full second
 389 * @j: the time in (absolute) jiffies that should be rounded
 390 * @cpu: the processor number on which the timeout will happen
 391 *
 392 * This is the same as __round_jiffies() except that it will never
 393 * round down.  This is useful for timeouts for which the exact time
 394 * of firing does not matter too much, as long as they don't fire too
 395 * early.
 396 */
 397unsigned long __round_jiffies_up(unsigned long j, int cpu)
 398{
 399	return round_jiffies_common(j, cpu, true);
 400}
 401EXPORT_SYMBOL_GPL(__round_jiffies_up);
 402
 403/**
 404 * __round_jiffies_up_relative - function to round jiffies up to a full second
 405 * @j: the time in (relative) jiffies that should be rounded
 406 * @cpu: the processor number on which the timeout will happen
 407 *
 408 * This is the same as __round_jiffies_relative() except that it will never
 409 * round down.  This is useful for timeouts for which the exact time
 410 * of firing does not matter too much, as long as they don't fire too
 411 * early.
 412 */
 413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 414{
 415	unsigned long j0 = jiffies;
 416
 417	/* Use j0 because jiffies might change while we run */
 418	return round_jiffies_common(j + j0, cpu, true) - j0;
 419}
 420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 421
 422/**
 423 * round_jiffies_up - function to round jiffies up to a full second
 424 * @j: the time in (absolute) jiffies that should be rounded
 425 *
 426 * This is the same as round_jiffies() except that it will never
 427 * round down.  This is useful for timeouts for which the exact time
 428 * of firing does not matter too much, as long as they don't fire too
 429 * early.
 430 */
 431unsigned long round_jiffies_up(unsigned long j)
 432{
 433	return round_jiffies_common(j, raw_smp_processor_id(), true);
 434}
 435EXPORT_SYMBOL_GPL(round_jiffies_up);
 436
 437/**
 438 * round_jiffies_up_relative - function to round jiffies up to a full second
 439 * @j: the time in (relative) jiffies that should be rounded
 440 *
 441 * This is the same as round_jiffies_relative() except that it will never
 442 * round down.  This is useful for timeouts for which the exact time
 443 * of firing does not matter too much, as long as they don't fire too
 444 * early.
 445 */
 446unsigned long round_jiffies_up_relative(unsigned long j)
 447{
 448	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 449}
 450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 451
 452
 453static inline unsigned int timer_get_idx(struct timer_list *timer)
 454{
 455	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 456}
 457
 458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 459{
 460	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 461			idx << TIMER_ARRAYSHIFT;
 462}
 463
 464/*
 465 * Helper function to calculate the array index for a given expiry
 466 * time.
 467 */
 468static inline unsigned calc_index(unsigned expires, unsigned lvl)
 
 469{
 
 
 
 
 
 
 
 
 
 470	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 
 471	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 472}
 473
 474static int calc_wheel_index(unsigned long expires, unsigned long clk)
 
 475{
 476	unsigned long delta = expires - clk;
 477	unsigned int idx;
 478
 479	if (delta < LVL_START(1)) {
 480		idx = calc_index(expires, 0);
 481	} else if (delta < LVL_START(2)) {
 482		idx = calc_index(expires, 1);
 483	} else if (delta < LVL_START(3)) {
 484		idx = calc_index(expires, 2);
 485	} else if (delta < LVL_START(4)) {
 486		idx = calc_index(expires, 3);
 487	} else if (delta < LVL_START(5)) {
 488		idx = calc_index(expires, 4);
 489	} else if (delta < LVL_START(6)) {
 490		idx = calc_index(expires, 5);
 491	} else if (delta < LVL_START(7)) {
 492		idx = calc_index(expires, 6);
 493	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 494		idx = calc_index(expires, 7);
 495	} else if ((long) delta < 0) {
 496		idx = clk & LVL_MASK;
 
 497	} else {
 498		/*
 499		 * Force expire obscene large timeouts to expire at the
 500		 * capacity limit of the wheel.
 501		 */
 502		if (expires >= WHEEL_TIMEOUT_CUTOFF)
 503			expires = WHEEL_TIMEOUT_MAX;
 504
 505		idx = calc_index(expires, LVL_DEPTH - 1);
 506	}
 507	return idx;
 508}
 509
 510/*
 511 * Enqueue the timer into the hash bucket, mark it pending in
 512 * the bitmap and store the index in the timer flags.
 513 */
 514static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 515			  unsigned int idx)
 516{
 517	hlist_add_head(&timer->entry, base->vectors + idx);
 518	__set_bit(idx, base->pending_map);
 519	timer_set_idx(timer, idx);
 520}
 521
 522static void
 523__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 524{
 525	unsigned int idx;
 526
 527	idx = calc_wheel_index(timer->expires, base->clk);
 528	enqueue_timer(base, timer, idx);
 529}
 530
 531static void
 532trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 533{
 534	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
 535		return;
 536
 537	/*
 538	 * TODO: This wants some optimizing similar to the code below, but we
 539	 * will do that when we switch from push to pull for deferrable timers.
 540	 */
 541	if (timer->flags & TIMER_DEFERRABLE) {
 542		if (tick_nohz_full_cpu(base->cpu))
 543			wake_up_nohz_cpu(base->cpu);
 544		return;
 545	}
 546
 547	/*
 548	 * We might have to IPI the remote CPU if the base is idle and the
 549	 * timer is not deferrable. If the other CPU is on the way to idle
 550	 * then it can't set base->is_idle as we hold the base lock:
 551	 */
 552	if (!base->is_idle)
 553		return;
 554
 555	/* Check whether this is the new first expiring timer: */
 556	if (time_after_eq(timer->expires, base->next_expiry))
 557		return;
 558
 559	/*
 560	 * Set the next expiry time and kick the CPU so it can reevaluate the
 561	 * wheel:
 562	 */
 563	base->next_expiry = timer->expires;
 564		wake_up_nohz_cpu(base->cpu);
 565}
 566
 567static void
 568internal_add_timer(struct timer_base *base, struct timer_list *timer)
 569{
 570	__internal_add_timer(base, timer);
 571	trigger_dyntick_cpu(base, timer);
 572}
 573
 574#ifdef CONFIG_TIMER_STATS
 575void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
 576{
 577	if (timer->start_site)
 578		return;
 579
 580	timer->start_site = addr;
 581	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 582	timer->start_pid = current->pid;
 583}
 584
 585static void timer_stats_account_timer(struct timer_list *timer)
 586{
 587	void *site;
 588
 589	/*
 590	 * start_site can be concurrently reset by
 591	 * timer_stats_timer_clear_start_info()
 
 592	 */
 593	site = READ_ONCE(timer->start_site);
 594	if (likely(!site))
 595		return;
 596
 597	timer_stats_update_stats(timer, timer->start_pid, site,
 598				 timer->function, timer->start_comm,
 599				 timer->flags);
 
 
 600}
 601
 602#else
 603static void timer_stats_account_timer(struct timer_list *timer) {}
 604#endif
 
 
 
 
 
 605
 606#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 607
 608static struct debug_obj_descr timer_debug_descr;
 609
 610static void *timer_debug_hint(void *addr)
 611{
 612	return ((struct timer_list *) addr)->function;
 613}
 614
 615static bool timer_is_static_object(void *addr)
 616{
 617	struct timer_list *timer = addr;
 618
 619	return (timer->entry.pprev == NULL &&
 620		timer->entry.next == TIMER_ENTRY_STATIC);
 621}
 622
 623/*
 624 * fixup_init is called when:
 625 * - an active object is initialized
 626 */
 627static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 628{
 629	struct timer_list *timer = addr;
 630
 631	switch (state) {
 632	case ODEBUG_STATE_ACTIVE:
 633		del_timer_sync(timer);
 634		debug_object_init(timer, &timer_debug_descr);
 635		return true;
 636	default:
 637		return false;
 638	}
 639}
 640
 641/* Stub timer callback for improperly used timers. */
 642static void stub_timer(unsigned long data)
 643{
 644	WARN_ON(1);
 645}
 646
 647/*
 648 * fixup_activate is called when:
 649 * - an active object is activated
 650 * - an unknown non-static object is activated
 651 */
 652static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 653{
 654	struct timer_list *timer = addr;
 655
 656	switch (state) {
 657	case ODEBUG_STATE_NOTAVAILABLE:
 658		setup_timer(timer, stub_timer, 0);
 659		return true;
 660
 661	case ODEBUG_STATE_ACTIVE:
 662		WARN_ON(1);
 663
 664	default:
 665		return false;
 666	}
 667}
 668
 669/*
 670 * fixup_free is called when:
 671 * - an active object is freed
 672 */
 673static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 674{
 675	struct timer_list *timer = addr;
 676
 677	switch (state) {
 678	case ODEBUG_STATE_ACTIVE:
 679		del_timer_sync(timer);
 680		debug_object_free(timer, &timer_debug_descr);
 681		return true;
 682	default:
 683		return false;
 684	}
 685}
 686
 687/*
 688 * fixup_assert_init is called when:
 689 * - an untracked/uninit-ed object is found
 690 */
 691static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 692{
 693	struct timer_list *timer = addr;
 694
 695	switch (state) {
 696	case ODEBUG_STATE_NOTAVAILABLE:
 697		setup_timer(timer, stub_timer, 0);
 698		return true;
 699	default:
 700		return false;
 701	}
 702}
 703
 704static struct debug_obj_descr timer_debug_descr = {
 705	.name			= "timer_list",
 706	.debug_hint		= timer_debug_hint,
 707	.is_static_object	= timer_is_static_object,
 708	.fixup_init		= timer_fixup_init,
 709	.fixup_activate		= timer_fixup_activate,
 710	.fixup_free		= timer_fixup_free,
 711	.fixup_assert_init	= timer_fixup_assert_init,
 712};
 713
 714static inline void debug_timer_init(struct timer_list *timer)
 715{
 716	debug_object_init(timer, &timer_debug_descr);
 717}
 718
 719static inline void debug_timer_activate(struct timer_list *timer)
 720{
 721	debug_object_activate(timer, &timer_debug_descr);
 722}
 723
 724static inline void debug_timer_deactivate(struct timer_list *timer)
 725{
 726	debug_object_deactivate(timer, &timer_debug_descr);
 727}
 728
 729static inline void debug_timer_free(struct timer_list *timer)
 730{
 731	debug_object_free(timer, &timer_debug_descr);
 732}
 733
 734static inline void debug_timer_assert_init(struct timer_list *timer)
 735{
 736	debug_object_assert_init(timer, &timer_debug_descr);
 737}
 738
 739static void do_init_timer(struct timer_list *timer, unsigned int flags,
 
 
 740			  const char *name, struct lock_class_key *key);
 741
 742void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
 
 
 743			     const char *name, struct lock_class_key *key)
 744{
 745	debug_object_init_on_stack(timer, &timer_debug_descr);
 746	do_init_timer(timer, flags, name, key);
 747}
 748EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 749
 750void destroy_timer_on_stack(struct timer_list *timer)
 751{
 752	debug_object_free(timer, &timer_debug_descr);
 753}
 754EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 755
 756#else
 757static inline void debug_timer_init(struct timer_list *timer) { }
 758static inline void debug_timer_activate(struct timer_list *timer) { }
 759static inline void debug_timer_deactivate(struct timer_list *timer) { }
 760static inline void debug_timer_assert_init(struct timer_list *timer) { }
 761#endif
 762
 763static inline void debug_init(struct timer_list *timer)
 764{
 765	debug_timer_init(timer);
 766	trace_timer_init(timer);
 767}
 768
 769static inline void
 770debug_activate(struct timer_list *timer, unsigned long expires)
 771{
 772	debug_timer_activate(timer);
 773	trace_timer_start(timer, expires, timer->flags);
 774}
 775
 776static inline void debug_deactivate(struct timer_list *timer)
 777{
 778	debug_timer_deactivate(timer);
 779	trace_timer_cancel(timer);
 780}
 781
 782static inline void debug_assert_init(struct timer_list *timer)
 783{
 784	debug_timer_assert_init(timer);
 785}
 786
 787static void do_init_timer(struct timer_list *timer, unsigned int flags,
 
 
 788			  const char *name, struct lock_class_key *key)
 789{
 790	timer->entry.pprev = NULL;
 
 791	timer->flags = flags | raw_smp_processor_id();
 792#ifdef CONFIG_TIMER_STATS
 793	timer->start_site = NULL;
 794	timer->start_pid = -1;
 795	memset(timer->start_comm, 0, TASK_COMM_LEN);
 796#endif
 797	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 798}
 799
 800/**
 801 * init_timer_key - initialize a timer
 802 * @timer: the timer to be initialized
 
 803 * @flags: timer flags
 804 * @name: name of the timer
 805 * @key: lockdep class key of the fake lock used for tracking timer
 806 *       sync lock dependencies
 807 *
 808 * init_timer_key() must be done to a timer prior calling *any* of the
 809 * other timer functions.
 810 */
 811void init_timer_key(struct timer_list *timer, unsigned int flags,
 
 812		    const char *name, struct lock_class_key *key)
 813{
 814	debug_init(timer);
 815	do_init_timer(timer, flags, name, key);
 816}
 817EXPORT_SYMBOL(init_timer_key);
 818
 819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 820{
 821	struct hlist_node *entry = &timer->entry;
 822
 823	debug_deactivate(timer);
 824
 825	__hlist_del(entry);
 826	if (clear_pending)
 827		entry->pprev = NULL;
 828	entry->next = LIST_POISON2;
 829}
 830
 831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 832			     bool clear_pending)
 833{
 834	unsigned idx = timer_get_idx(timer);
 835
 836	if (!timer_pending(timer))
 837		return 0;
 838
 839	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 840		__clear_bit(idx, base->pending_map);
 
 
 841
 842	detach_timer(timer, clear_pending);
 843	return 1;
 844}
 845
 846static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 847{
 848	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 849
 850	/*
 851	 * If the timer is deferrable and nohz is active then we need to use
 852	 * the deferrable base.
 853	 */
 854	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 855	    (tflags & TIMER_DEFERRABLE))
 856		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 857	return base;
 858}
 859
 860static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 861{
 862	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 863
 864	/*
 865	 * If the timer is deferrable and nohz is active then we need to use
 866	 * the deferrable base.
 867	 */
 868	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 869	    (tflags & TIMER_DEFERRABLE))
 870		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 871	return base;
 872}
 873
 874static inline struct timer_base *get_timer_base(u32 tflags)
 875{
 876	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 877}
 878
 879#ifdef CONFIG_NO_HZ_COMMON
 880static inline struct timer_base *
 881get_target_base(struct timer_base *base, unsigned tflags)
 882{
 883#ifdef CONFIG_SMP
 884	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
 885		return get_timer_this_cpu_base(tflags);
 886	return get_timer_cpu_base(tflags, get_nohz_timer_target());
 887#else
 888	return get_timer_this_cpu_base(tflags);
 889#endif
 
 890}
 891
 892static inline void forward_timer_base(struct timer_base *base)
 893{
 894	unsigned long jnow = READ_ONCE(jiffies);
 895
 896	/*
 897	 * We only forward the base when it's idle and we have a delta between
 898	 * base clock and jiffies.
 
 899	 */
 900	if (!base->is_idle || (long) (jnow - base->clk) < 2)
 901		return;
 902
 903	/*
 904	 * If the next expiry value is > jiffies, then we fast forward to
 905	 * jiffies otherwise we forward to the next expiry value.
 906	 */
 907	if (time_after(base->next_expiry, jnow))
 908		base->clk = jnow;
 909	else
 
 
 910		base->clk = base->next_expiry;
 911}
 912#else
 913static inline struct timer_base *
 914get_target_base(struct timer_base *base, unsigned tflags)
 915{
 916	return get_timer_this_cpu_base(tflags);
 917}
 918
 919static inline void forward_timer_base(struct timer_base *base) { }
 920#endif
 921
 922
 923/*
 924 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 925 * that all timers which are tied to this base are locked, and the base itself
 926 * is locked too.
 927 *
 928 * So __run_timers/migrate_timers can safely modify all timers which could
 929 * be found in the base->vectors array.
 930 *
 931 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 932 * to wait until the migration is done.
 933 */
 934static struct timer_base *lock_timer_base(struct timer_list *timer,
 935					  unsigned long *flags)
 936	__acquires(timer->base->lock)
 937{
 938	for (;;) {
 939		struct timer_base *base;
 940		u32 tf;
 941
 942		/*
 943		 * We need to use READ_ONCE() here, otherwise the compiler
 944		 * might re-read @tf between the check for TIMER_MIGRATING
 945		 * and spin_lock().
 946		 */
 947		tf = READ_ONCE(timer->flags);
 948
 949		if (!(tf & TIMER_MIGRATING)) {
 950			base = get_timer_base(tf);
 951			spin_lock_irqsave(&base->lock, *flags);
 952			if (timer->flags == tf)
 953				return base;
 954			spin_unlock_irqrestore(&base->lock, *flags);
 955		}
 956		cpu_relax();
 957	}
 958}
 959
 
 
 
 
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
 962{
 
 963	struct timer_base *base, *new_base;
 964	unsigned int idx = UINT_MAX;
 965	unsigned long clk = 0, flags;
 966	int ret = 0;
 967
 968	BUG_ON(!timer->function);
 969
 970	/*
 971	 * This is a common optimization triggered by the networking code - if
 972	 * the timer is re-modified to have the same timeout or ends up in the
 973	 * same array bucket then just return:
 974	 */
 975	if (timer_pending(timer)) {
 976		if (timer->expires == expires)
 
 
 
 
 
 
 
 
 
 977			return 1;
 978
 979		/*
 980		 * We lock timer base and calculate the bucket index right
 981		 * here. If the timer ends up in the same bucket, then we
 982		 * just update the expiry time and avoid the whole
 983		 * dequeue/enqueue dance.
 984		 */
 985		base = lock_timer_base(timer, &flags);
 
 
 
 
 
 
 
 986
 987		clk = base->clk;
 988		idx = calc_wheel_index(expires, clk);
 989
 990		/*
 991		 * Retrieve and compare the array index of the pending
 992		 * timer. If it matches set the expiry to the new value so a
 993		 * subsequent call will exit in the expires check above.
 994		 */
 995		if (idx == timer_get_idx(timer)) {
 996			timer->expires = expires;
 
 
 
 997			ret = 1;
 998			goto out_unlock;
 999		}
1000	} else {
1001		base = lock_timer_base(timer, &flags);
 
1002	}
1003
1004	timer_stats_timer_set_start_info(timer);
1005
1006	ret = detach_if_pending(timer, base, false);
1007	if (!ret && pending_only)
1008		goto out_unlock;
1009
1010	debug_activate(timer, expires);
1011
1012	new_base = get_target_base(base, timer->flags);
1013
1014	if (base != new_base) {
1015		/*
1016		 * We are trying to schedule the timer on the new base.
1017		 * However we can't change timer's base while it is running,
1018		 * otherwise del_timer_sync() can't detect that the timer's
1019		 * handler yet has not finished. This also guarantees that the
1020		 * timer is serialized wrt itself.
1021		 */
1022		if (likely(base->running_timer != timer)) {
1023			/* See the comment in lock_timer_base() */
1024			timer->flags |= TIMER_MIGRATING;
1025
1026			spin_unlock(&base->lock);
1027			base = new_base;
1028			spin_lock(&base->lock);
1029			WRITE_ONCE(timer->flags,
1030				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
 
1031		}
1032	}
1033
1034	/* Try to forward a stale timer base clock */
1035	forward_timer_base(base);
1036
1037	timer->expires = expires;
1038	/*
1039	 * If 'idx' was calculated above and the base time did not advance
1040	 * between calculating 'idx' and possibly switching the base, only
1041	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042	 * we need to (re)calculate the wheel index via
1043	 * internal_add_timer().
1044	 */
1045	if (idx != UINT_MAX && clk == base->clk) {
1046		enqueue_timer(base, timer, idx);
1047		trigger_dyntick_cpu(base, timer);
1048	} else {
1049		internal_add_timer(base, timer);
1050	}
1051
1052out_unlock:
1053	spin_unlock_irqrestore(&base->lock, flags);
1054
1055	return ret;
1056}
1057
1058/**
1059 * mod_timer_pending - modify a pending timer's timeout
1060 * @timer: the pending timer to be modified
1061 * @expires: new timeout in jiffies
1062 *
1063 * mod_timer_pending() is the same for pending timers as mod_timer(),
1064 * but will not re-activate and modify already deleted timers.
1065 *
1066 * It is useful for unserialized use of timers.
1067 */
1068int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069{
1070	return __mod_timer(timer, expires, true);
1071}
1072EXPORT_SYMBOL(mod_timer_pending);
1073
1074/**
1075 * mod_timer - modify a timer's timeout
1076 * @timer: the timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer() is a more efficient way to update the expire field of an
1080 * active timer (if the timer is inactive it will be activated)
1081 *
1082 * mod_timer(timer, expires) is equivalent to:
1083 *
1084 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085 *
1086 * Note that if there are multiple unserialized concurrent users of the
1087 * same timer, then mod_timer() is the only safe way to modify the timeout,
1088 * since add_timer() cannot modify an already running timer.
1089 *
1090 * The function returns whether it has modified a pending timer or not.
1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092 * active timer returns 1.)
1093 */
1094int mod_timer(struct timer_list *timer, unsigned long expires)
1095{
1096	return __mod_timer(timer, expires, false);
1097}
1098EXPORT_SYMBOL(mod_timer);
1099
1100/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101 * add_timer - start a timer
1102 * @timer: the timer to be added
1103 *
1104 * The kernel will do a ->function(->data) callback from the
1105 * timer interrupt at the ->expires point in the future. The
1106 * current time is 'jiffies'.
1107 *
1108 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1109 * fields must be set prior calling this function.
1110 *
1111 * Timers with an ->expires field in the past will be executed in the next
1112 * timer tick.
1113 */
1114void add_timer(struct timer_list *timer)
1115{
1116	BUG_ON(timer_pending(timer));
1117	mod_timer(timer, timer->expires);
1118}
1119EXPORT_SYMBOL(add_timer);
1120
1121/**
1122 * add_timer_on - start a timer on a particular CPU
1123 * @timer: the timer to be added
1124 * @cpu: the CPU to start it on
1125 *
1126 * This is not very scalable on SMP. Double adds are not possible.
1127 */
1128void add_timer_on(struct timer_list *timer, int cpu)
1129{
1130	struct timer_base *new_base, *base;
1131	unsigned long flags;
1132
1133	timer_stats_timer_set_start_info(timer);
1134	BUG_ON(timer_pending(timer) || !timer->function);
1135
1136	new_base = get_timer_cpu_base(timer->flags, cpu);
1137
1138	/*
1139	 * If @timer was on a different CPU, it should be migrated with the
1140	 * old base locked to prevent other operations proceeding with the
1141	 * wrong base locked.  See lock_timer_base().
1142	 */
1143	base = lock_timer_base(timer, &flags);
1144	if (base != new_base) {
1145		timer->flags |= TIMER_MIGRATING;
1146
1147		spin_unlock(&base->lock);
1148		base = new_base;
1149		spin_lock(&base->lock);
1150		WRITE_ONCE(timer->flags,
1151			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1152	}
 
1153
1154	debug_activate(timer, timer->expires);
1155	internal_add_timer(base, timer);
1156	spin_unlock_irqrestore(&base->lock, flags);
1157}
1158EXPORT_SYMBOL_GPL(add_timer_on);
1159
1160/**
1161 * del_timer - deactive a timer.
1162 * @timer: the timer to be deactivated
1163 *
1164 * del_timer() deactivates a timer - this works on both active and inactive
1165 * timers.
1166 *
1167 * The function returns whether it has deactivated a pending timer or not.
1168 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1169 * active timer returns 1.)
1170 */
1171int del_timer(struct timer_list *timer)
1172{
1173	struct timer_base *base;
1174	unsigned long flags;
1175	int ret = 0;
1176
1177	debug_assert_init(timer);
1178
1179	timer_stats_timer_clear_start_info(timer);
1180	if (timer_pending(timer)) {
1181		base = lock_timer_base(timer, &flags);
1182		ret = detach_if_pending(timer, base, true);
1183		spin_unlock_irqrestore(&base->lock, flags);
1184	}
1185
1186	return ret;
1187}
1188EXPORT_SYMBOL(del_timer);
1189
1190/**
1191 * try_to_del_timer_sync - Try to deactivate a timer
1192 * @timer: timer do del
1193 *
1194 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1195 * exit the timer is not queued and the handler is not running on any CPU.
1196 */
1197int try_to_del_timer_sync(struct timer_list *timer)
1198{
1199	struct timer_base *base;
1200	unsigned long flags;
1201	int ret = -1;
1202
1203	debug_assert_init(timer);
1204
1205	base = lock_timer_base(timer, &flags);
1206
1207	if (base->running_timer != timer) {
1208		timer_stats_timer_clear_start_info(timer);
1209		ret = detach_if_pending(timer, base, true);
1210	}
1211	spin_unlock_irqrestore(&base->lock, flags);
1212
1213	return ret;
1214}
1215EXPORT_SYMBOL(try_to_del_timer_sync);
1216
1217#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218/**
1219 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1220 * @timer: the timer to be deactivated
1221 *
1222 * This function only differs from del_timer() on SMP: besides deactivating
1223 * the timer it also makes sure the handler has finished executing on other
1224 * CPUs.
1225 *
1226 * Synchronization rules: Callers must prevent restarting of the timer,
1227 * otherwise this function is meaningless. It must not be called from
1228 * interrupt contexts unless the timer is an irqsafe one. The caller must
1229 * not hold locks which would prevent completion of the timer's
1230 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1231 * timer is not queued and the handler is not running on any CPU.
1232 *
1233 * Note: For !irqsafe timers, you must not hold locks that are held in
1234 *   interrupt context while calling this function. Even if the lock has
1235 *   nothing to do with the timer in question.  Here's why:
1236 *
1237 *    CPU0                             CPU1
1238 *    ----                             ----
1239 *                                   <SOFTIRQ>
1240 *                                   call_timer_fn();
1241 *                                     base->running_timer = mytimer;
1242 *  spin_lock_irq(somelock);
1243 *                                     <IRQ>
1244 *                                        spin_lock(somelock);
1245 *  del_timer_sync(mytimer);
1246 *   while (base->running_timer == mytimer);
1247 *
1248 * Now del_timer_sync() will never return and never release somelock.
1249 * The interrupt on the other CPU is waiting to grab somelock but
1250 * it has interrupted the softirq that CPU0 is waiting to finish.
1251 *
1252 * The function returns whether it has deactivated a pending timer or not.
1253 */
1254int del_timer_sync(struct timer_list *timer)
1255{
 
 
1256#ifdef CONFIG_LOCKDEP
1257	unsigned long flags;
1258
1259	/*
1260	 * If lockdep gives a backtrace here, please reference
1261	 * the synchronization rules above.
1262	 */
1263	local_irq_save(flags);
1264	lock_map_acquire(&timer->lockdep_map);
1265	lock_map_release(&timer->lockdep_map);
1266	local_irq_restore(flags);
1267#endif
1268	/*
1269	 * don't use it in hardirq context, because it
1270	 * could lead to deadlock.
1271	 */
1272	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1273	for (;;) {
1274		int ret = try_to_del_timer_sync(timer);
1275		if (ret >= 0)
1276			return ret;
1277		cpu_relax();
1278	}
 
 
 
 
 
1279}
1280EXPORT_SYMBOL(del_timer_sync);
1281#endif
1282
1283static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1284			  unsigned long data)
 
1285{
1286	int count = preempt_count();
1287
1288#ifdef CONFIG_LOCKDEP
1289	/*
1290	 * It is permissible to free the timer from inside the
1291	 * function that is called from it, this we need to take into
1292	 * account for lockdep too. To avoid bogus "held lock freed"
1293	 * warnings as well as problems when looking into
1294	 * timer->lockdep_map, make a copy and use that here.
1295	 */
1296	struct lockdep_map lockdep_map;
1297
1298	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1299#endif
1300	/*
1301	 * Couple the lock chain with the lock chain at
1302	 * del_timer_sync() by acquiring the lock_map around the fn()
1303	 * call here and in del_timer_sync().
1304	 */
1305	lock_map_acquire(&lockdep_map);
1306
1307	trace_timer_expire_entry(timer);
1308	fn(data);
1309	trace_timer_expire_exit(timer);
1310
1311	lock_map_release(&lockdep_map);
1312
1313	if (count != preempt_count()) {
1314		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1315			  fn, count, preempt_count());
1316		/*
1317		 * Restore the preempt count. That gives us a decent
1318		 * chance to survive and extract information. If the
1319		 * callback kept a lock held, bad luck, but not worse
1320		 * than the BUG() we had.
1321		 */
1322		preempt_count_set(count);
1323	}
1324}
1325
1326static void expire_timers(struct timer_base *base, struct hlist_head *head)
1327{
 
 
 
 
 
 
 
1328	while (!hlist_empty(head)) {
1329		struct timer_list *timer;
1330		void (*fn)(unsigned long);
1331		unsigned long data;
1332
1333		timer = hlist_entry(head->first, struct timer_list, entry);
1334		timer_stats_account_timer(timer);
1335
1336		base->running_timer = timer;
1337		detach_timer(timer, true);
1338
1339		fn = timer->function;
1340		data = timer->data;
1341
1342		if (timer->flags & TIMER_IRQSAFE) {
1343			spin_unlock(&base->lock);
1344			call_timer_fn(timer, fn, data);
1345			spin_lock(&base->lock);
 
1346		} else {
1347			spin_unlock_irq(&base->lock);
1348			call_timer_fn(timer, fn, data);
1349			spin_lock_irq(&base->lock);
 
 
1350		}
1351	}
1352}
1353
1354static int __collect_expired_timers(struct timer_base *base,
1355				    struct hlist_head *heads)
1356{
1357	unsigned long clk = base->clk;
1358	struct hlist_head *vec;
1359	int i, levels = 0;
1360	unsigned int idx;
1361
1362	for (i = 0; i < LVL_DEPTH; i++) {
1363		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1364
1365		if (__test_and_clear_bit(idx, base->pending_map)) {
1366			vec = base->vectors + idx;
1367			hlist_move_list(vec, heads++);
1368			levels++;
1369		}
1370		/* Is it time to look at the next level? */
1371		if (clk & LVL_CLK_MASK)
1372			break;
1373		/* Shift clock for the next level granularity */
1374		clk >>= LVL_CLK_SHIFT;
1375	}
1376	return levels;
1377}
1378
1379#ifdef CONFIG_NO_HZ_COMMON
1380/*
1381 * Find the next pending bucket of a level. Search from level start (@offset)
1382 * + @clk upwards and if nothing there, search from start of the level
1383 * (@offset) up to @offset + clk.
1384 */
1385static int next_pending_bucket(struct timer_base *base, unsigned offset,
1386			       unsigned clk)
1387{
1388	unsigned pos, start = offset + clk;
1389	unsigned end = offset + LVL_SIZE;
1390
1391	pos = find_next_bit(base->pending_map, end, start);
1392	if (pos < end)
1393		return pos - start;
1394
1395	pos = find_next_bit(base->pending_map, start, offset);
1396	return pos < start ? pos + LVL_SIZE - start : -1;
1397}
1398
1399/*
1400 * Search the first expiring timer in the various clock levels. Caller must
1401 * hold base->lock.
1402 */
1403static unsigned long __next_timer_interrupt(struct timer_base *base)
1404{
1405	unsigned long clk, next, adj;
1406	unsigned lvl, offset = 0;
1407
1408	next = base->clk + NEXT_TIMER_MAX_DELTA;
1409	clk = base->clk;
1410	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1411		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
 
1412
1413		if (pos >= 0) {
1414			unsigned long tmp = clk + (unsigned long) pos;
1415
1416			tmp <<= LVL_SHIFT(lvl);
1417			if (time_before(tmp, next))
1418				next = tmp;
 
 
 
 
 
 
 
1419		}
1420		/*
1421		 * Clock for the next level. If the current level clock lower
1422		 * bits are zero, we look at the next level as is. If not we
1423		 * need to advance it by one because that's going to be the
1424		 * next expiring bucket in that level. base->clk is the next
1425		 * expiring jiffie. So in case of:
1426		 *
1427		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1428		 *  0    0    0    0    0    0
1429		 *
1430		 * we have to look at all levels @index 0. With
1431		 *
1432		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1433		 *  0    0    0    0    0    2
1434		 *
1435		 * LVL0 has the next expiring bucket @index 2. The upper
1436		 * levels have the next expiring bucket @index 1.
1437		 *
1438		 * In case that the propagation wraps the next level the same
1439		 * rules apply:
1440		 *
1441		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442		 *  0    0    0    0    F    2
1443		 *
1444		 * So after looking at LVL0 we get:
1445		 *
1446		 * LVL5 LVL4 LVL3 LVL2 LVL1
1447		 *  0    0    0    1    0
1448		 *
1449		 * So no propagation from LVL1 to LVL2 because that happened
1450		 * with the add already, but then we need to propagate further
1451		 * from LVL2 to LVL3.
1452		 *
1453		 * So the simple check whether the lower bits of the current
1454		 * level are 0 or not is sufficient for all cases.
1455		 */
1456		adj = clk & LVL_CLK_MASK ? 1 : 0;
1457		clk >>= LVL_CLK_SHIFT;
1458		clk += adj;
1459	}
 
 
 
1460	return next;
1461}
1462
 
1463/*
1464 * Check, if the next hrtimer event is before the next timer wheel
1465 * event:
1466 */
1467static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1468{
1469	u64 nextevt = hrtimer_get_next_event();
1470
1471	/*
1472	 * If high resolution timers are enabled
1473	 * hrtimer_get_next_event() returns KTIME_MAX.
1474	 */
1475	if (expires <= nextevt)
1476		return expires;
1477
1478	/*
1479	 * If the next timer is already expired, return the tick base
1480	 * time so the tick is fired immediately.
1481	 */
1482	if (nextevt <= basem)
1483		return basem;
1484
1485	/*
1486	 * Round up to the next jiffie. High resolution timers are
1487	 * off, so the hrtimers are expired in the tick and we need to
1488	 * make sure that this tick really expires the timer to avoid
1489	 * a ping pong of the nohz stop code.
1490	 *
1491	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1492	 */
1493	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1494}
1495
1496/**
1497 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1498 * @basej:	base time jiffies
1499 * @basem:	base time clock monotonic
1500 *
1501 * Returns the tick aligned clock monotonic time of the next pending
1502 * timer or KTIME_MAX if no timer is pending.
1503 */
1504u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1505{
1506	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1507	u64 expires = KTIME_MAX;
1508	unsigned long nextevt;
1509	bool is_max_delta;
1510
1511	/*
1512	 * Pretend that there is no timer pending if the cpu is offline.
1513	 * Possible pending timers will be migrated later to an active cpu.
1514	 */
1515	if (cpu_is_offline(smp_processor_id()))
1516		return expires;
1517
1518	spin_lock(&base->lock);
1519	nextevt = __next_timer_interrupt(base);
 
 
1520	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1521	base->next_expiry = nextevt;
1522	/*
1523	 * We have a fresh next event. Check whether we can forward the
1524	 * base. We can only do that when @basej is past base->clk
1525	 * otherwise we might rewind base->clk.
1526	 */
1527	if (time_after(basej, base->clk)) {
1528		if (time_after(nextevt, basej))
1529			base->clk = basej;
1530		else if (time_after(nextevt, base->clk))
1531			base->clk = nextevt;
1532	}
1533
1534	if (time_before_eq(nextevt, basej)) {
1535		expires = basem;
1536		base->is_idle = false;
1537	} else {
1538		if (!is_max_delta)
1539			expires = basem + (nextevt - basej) * TICK_NSEC;
1540		/*
1541		 * If we expect to sleep more than a tick, mark the base idle:
 
 
 
 
1542		 */
1543		if ((expires - basem) > TICK_NSEC)
1544			base->is_idle = true;
1545	}
1546	spin_unlock(&base->lock);
1547
1548	return cmp_next_hrtimer_event(basem, expires);
1549}
1550
1551/**
1552 * timer_clear_idle - Clear the idle state of the timer base
1553 *
1554 * Called with interrupts disabled
1555 */
1556void timer_clear_idle(void)
1557{
1558	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1559
1560	/*
1561	 * We do this unlocked. The worst outcome is a remote enqueue sending
1562	 * a pointless IPI, but taking the lock would just make the window for
1563	 * sending the IPI a few instructions smaller for the cost of taking
1564	 * the lock in the exit from idle path.
1565	 */
1566	base->is_idle = false;
1567}
1568
1569static int collect_expired_timers(struct timer_base *base,
1570				  struct hlist_head *heads)
1571{
1572	/*
1573	 * NOHZ optimization. After a long idle sleep we need to forward the
1574	 * base to current jiffies. Avoid a loop by searching the bitfield for
1575	 * the next expiring timer.
1576	 */
1577	if ((long)(jiffies - base->clk) > 2) {
1578		unsigned long next = __next_timer_interrupt(base);
1579
1580		/*
1581		 * If the next timer is ahead of time forward to current
1582		 * jiffies, otherwise forward to the next expiry time:
1583		 */
1584		if (time_after(next, jiffies)) {
1585			/* The call site will increment clock! */
1586			base->clk = jiffies - 1;
1587			return 0;
1588		}
1589		base->clk = next;
1590	}
1591	return __collect_expired_timers(base, heads);
1592}
1593#else
1594static inline int collect_expired_timers(struct timer_base *base,
1595					 struct hlist_head *heads)
1596{
1597	return __collect_expired_timers(base, heads);
1598}
1599#endif
1600
1601/*
1602 * Called from the timer interrupt handler to charge one tick to the current
1603 * process.  user_tick is 1 if the tick is user time, 0 for system.
1604 */
1605void update_process_times(int user_tick)
1606{
1607	struct task_struct *p = current;
1608
1609	/* Note: this timer irq context must be accounted for as well. */
1610	account_process_tick(p, user_tick);
1611	run_local_timers();
1612	rcu_check_callbacks(user_tick);
1613#ifdef CONFIG_IRQ_WORK
1614	if (in_irq())
1615		irq_work_tick();
1616#endif
1617	scheduler_tick();
1618	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1619		run_posix_cpu_timers(p);
 
 
 
 
 
 
 
1620}
1621
1622/**
1623 * __run_timers - run all expired timers (if any) on this CPU.
1624 * @base: the timer vector to be processed.
1625 */
1626static inline void __run_timers(struct timer_base *base)
1627{
1628	struct hlist_head heads[LVL_DEPTH];
1629	int levels;
1630
1631	if (!time_after_eq(jiffies, base->clk))
1632		return;
1633
1634	spin_lock_irq(&base->lock);
1635
1636	while (time_after_eq(jiffies, base->clk)) {
1637
 
 
1638		levels = collect_expired_timers(base, heads);
 
 
 
 
 
 
1639		base->clk++;
 
1640
1641		while (levels--)
1642			expire_timers(base, heads + levels);
1643	}
1644	base->running_timer = NULL;
1645	spin_unlock_irq(&base->lock);
1646}
1647
1648/*
1649 * This function runs timers and the timer-tq in bottom half context.
1650 */
1651static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1652{
1653	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1654
1655	__run_timers(base);
1656	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1657		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1658}
1659
1660/*
1661 * Called by the local, per-CPU timer interrupt on SMP.
1662 */
1663void run_local_timers(void)
1664{
1665	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1666
1667	hrtimer_run_queues();
1668	/* Raise the softirq only if required. */
1669	if (time_before(jiffies, base->clk)) {
1670		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1671			return;
1672		/* CPU is awake, so check the deferrable base. */
1673		base++;
1674		if (time_before(jiffies, base->clk))
1675			return;
1676	}
1677	raise_softirq(TIMER_SOFTIRQ);
1678}
1679
1680static void process_timeout(unsigned long __data)
 
 
 
 
 
 
 
 
 
1681{
1682	wake_up_process((struct task_struct *)__data);
 
 
1683}
1684
1685/**
1686 * schedule_timeout - sleep until timeout
1687 * @timeout: timeout value in jiffies
1688 *
1689 * Make the current task sleep until @timeout jiffies have
1690 * elapsed. The routine will return immediately unless
1691 * the current task state has been set (see set_current_state()).
1692 *
1693 * You can set the task state as follows -
 
 
1694 *
1695 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1696 * pass before the routine returns unless the current task is explicitly
1697 * woken up, (e.g. by wake_up_process())".
1698 *
1699 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1700 * delivered to the current task or the current task is explicitly woken
1701 * up.
1702 *
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1704 * routine returns.
1705 *
1706 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1707 * the CPU away without a bound on the timeout. In this case the return
1708 * value will be %MAX_SCHEDULE_TIMEOUT.
1709 *
1710 * Returns 0 when the timer has expired otherwise the remaining time in
1711 * jiffies will be returned.  In all cases the return value is guaranteed
1712 * to be non-negative.
1713 */
1714signed long __sched schedule_timeout(signed long timeout)
1715{
1716	struct timer_list timer;
1717	unsigned long expire;
1718
1719	switch (timeout)
1720	{
1721	case MAX_SCHEDULE_TIMEOUT:
1722		/*
1723		 * These two special cases are useful to be comfortable
1724		 * in the caller. Nothing more. We could take
1725		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1726		 * but I' d like to return a valid offset (>=0) to allow
1727		 * the caller to do everything it want with the retval.
1728		 */
1729		schedule();
1730		goto out;
1731	default:
1732		/*
1733		 * Another bit of PARANOID. Note that the retval will be
1734		 * 0 since no piece of kernel is supposed to do a check
1735		 * for a negative retval of schedule_timeout() (since it
1736		 * should never happens anyway). You just have the printk()
1737		 * that will tell you if something is gone wrong and where.
1738		 */
1739		if (timeout < 0) {
1740			printk(KERN_ERR "schedule_timeout: wrong timeout "
1741				"value %lx\n", timeout);
1742			dump_stack();
1743			current->state = TASK_RUNNING;
1744			goto out;
1745		}
1746	}
1747
1748	expire = timeout + jiffies;
1749
1750	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1751	__mod_timer(&timer, expire, false);
 
1752	schedule();
1753	del_singleshot_timer_sync(&timer);
1754
1755	/* Remove the timer from the object tracker */
1756	destroy_timer_on_stack(&timer);
1757
1758	timeout = expire - jiffies;
1759
1760 out:
1761	return timeout < 0 ? 0 : timeout;
1762}
1763EXPORT_SYMBOL(schedule_timeout);
1764
1765/*
1766 * We can use __set_current_state() here because schedule_timeout() calls
1767 * schedule() unconditionally.
1768 */
1769signed long __sched schedule_timeout_interruptible(signed long timeout)
1770{
1771	__set_current_state(TASK_INTERRUPTIBLE);
1772	return schedule_timeout(timeout);
1773}
1774EXPORT_SYMBOL(schedule_timeout_interruptible);
1775
1776signed long __sched schedule_timeout_killable(signed long timeout)
1777{
1778	__set_current_state(TASK_KILLABLE);
1779	return schedule_timeout(timeout);
1780}
1781EXPORT_SYMBOL(schedule_timeout_killable);
1782
1783signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1784{
1785	__set_current_state(TASK_UNINTERRUPTIBLE);
1786	return schedule_timeout(timeout);
1787}
1788EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1789
1790/*
1791 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1792 * to load average.
1793 */
1794signed long __sched schedule_timeout_idle(signed long timeout)
1795{
1796	__set_current_state(TASK_IDLE);
1797	return schedule_timeout(timeout);
1798}
1799EXPORT_SYMBOL(schedule_timeout_idle);
1800
1801#ifdef CONFIG_HOTPLUG_CPU
1802static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1803{
1804	struct timer_list *timer;
1805	int cpu = new_base->cpu;
1806
1807	while (!hlist_empty(head)) {
1808		timer = hlist_entry(head->first, struct timer_list, entry);
1809		detach_timer(timer, false);
1810		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1811		internal_add_timer(new_base, timer);
1812	}
1813}
1814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815int timers_dead_cpu(unsigned int cpu)
1816{
1817	struct timer_base *old_base;
1818	struct timer_base *new_base;
1819	int b, i;
1820
1821	BUG_ON(cpu_online(cpu));
1822
1823	for (b = 0; b < NR_BASES; b++) {
1824		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1825		new_base = get_cpu_ptr(&timer_bases[b]);
1826		/*
1827		 * The caller is globally serialized and nobody else
1828		 * takes two locks at once, deadlock is not possible.
1829		 */
1830		spin_lock_irq(&new_base->lock);
1831		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
1832
1833		BUG_ON(old_base->running_timer);
1834
1835		for (i = 0; i < WHEEL_SIZE; i++)
1836			migrate_timer_list(new_base, old_base->vectors + i);
1837
1838		spin_unlock(&old_base->lock);
1839		spin_unlock_irq(&new_base->lock);
1840		put_cpu_ptr(&timer_bases);
1841	}
1842	return 0;
1843}
1844
1845#endif /* CONFIG_HOTPLUG_CPU */
1846
1847static void __init init_timer_cpu(int cpu)
1848{
1849	struct timer_base *base;
1850	int i;
1851
1852	for (i = 0; i < NR_BASES; i++) {
1853		base = per_cpu_ptr(&timer_bases[i], cpu);
1854		base->cpu = cpu;
1855		spin_lock_init(&base->lock);
1856		base->clk = jiffies;
 
 
1857	}
1858}
1859
1860static void __init init_timer_cpus(void)
1861{
1862	int cpu;
1863
1864	for_each_possible_cpu(cpu)
1865		init_timer_cpu(cpu);
1866}
1867
1868void __init init_timers(void)
1869{
1870	init_timer_cpus();
1871	init_timer_stats();
1872	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1873}
1874
1875/**
1876 * msleep - sleep safely even with waitqueue interruptions
1877 * @msecs: Time in milliseconds to sleep for
1878 */
1879void msleep(unsigned int msecs)
1880{
1881	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1882
1883	while (timeout)
1884		timeout = schedule_timeout_uninterruptible(timeout);
1885}
1886
1887EXPORT_SYMBOL(msleep);
1888
1889/**
1890 * msleep_interruptible - sleep waiting for signals
1891 * @msecs: Time in milliseconds to sleep for
1892 */
1893unsigned long msleep_interruptible(unsigned int msecs)
1894{
1895	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1896
1897	while (timeout && !signal_pending(current))
1898		timeout = schedule_timeout_interruptible(timeout);
1899	return jiffies_to_msecs(timeout);
1900}
1901
1902EXPORT_SYMBOL(msleep_interruptible);
1903
1904/**
1905 * usleep_range - Sleep for an approximate time
1906 * @min: Minimum time in usecs to sleep
1907 * @max: Maximum time in usecs to sleep
1908 *
1909 * In non-atomic context where the exact wakeup time is flexible, use
1910 * usleep_range() instead of udelay().  The sleep improves responsiveness
1911 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1912 * power usage by allowing hrtimers to take advantage of an already-
1913 * scheduled interrupt instead of scheduling a new one just for this sleep.
1914 */
1915void __sched usleep_range(unsigned long min, unsigned long max)
1916{
1917	ktime_t exp = ktime_add_us(ktime_get(), min);
1918	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1919
1920	for (;;) {
1921		__set_current_state(TASK_UNINTERRUPTIBLE);
1922		/* Do not return before the requested sleep time has elapsed */
1923		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1924			break;
1925	}
1926}
1927EXPORT_SYMBOL(usleep_range);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/div64.h>
  51#include <asm/timex.h>
  52#include <asm/io.h>
  53
  54#include "tick-internal.h"
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/timer.h>
  58
  59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  60
  61EXPORT_SYMBOL(jiffies_64);
  62
  63/*
  64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  66 * level has a different granularity.
  67 *
  68 * The level granularity is:		LVL_CLK_DIV ^ lvl
  69 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  70 *
  71 * The array level of a newly armed timer depends on the relative expiry
  72 * time. The farther the expiry time is away the higher the array level and
  73 * therefor the granularity becomes.
  74 *
  75 * Contrary to the original timer wheel implementation, which aims for 'exact'
  76 * expiry of the timers, this implementation removes the need for recascading
  77 * the timers into the lower array levels. The previous 'classic' timer wheel
  78 * implementation of the kernel already violated the 'exact' expiry by adding
  79 * slack to the expiry time to provide batched expiration. The granularity
  80 * levels provide implicit batching.
  81 *
  82 * This is an optimization of the original timer wheel implementation for the
  83 * majority of the timer wheel use cases: timeouts. The vast majority of
  84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  85 * the timeout expires it indicates that normal operation is disturbed, so it
  86 * does not matter much whether the timeout comes with a slight delay.
  87 *
  88 * The only exception to this are networking timers with a small expiry
  89 * time. They rely on the granularity. Those fit into the first wheel level,
  90 * which has HZ granularity.
  91 *
  92 * We don't have cascading anymore. timers with a expiry time above the
  93 * capacity of the last wheel level are force expired at the maximum timeout
  94 * value of the last wheel level. From data sampling we know that the maximum
  95 * value observed is 5 days (network connection tracking), so this should not
  96 * be an issue.
  97 *
  98 * The currently chosen array constants values are a good compromise between
  99 * array size and granularity.
 100 *
 101 * This results in the following granularity and range levels:
 102 *
 103 * HZ 1000 steps
 104 * Level Offset  Granularity            Range
 105 *  0      0         1 ms                0 ms -         63 ms
 106 *  1     64         8 ms               64 ms -        511 ms
 107 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 108 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 109 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 110 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 111 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 112 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 113 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 114 *
 115 * HZ  300
 116 * Level Offset  Granularity            Range
 117 *  0	   0         3 ms                0 ms -        210 ms
 118 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 119 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 120 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 121 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 122 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 123 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 124 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 125 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 126 *
 127 * HZ  250
 128 * Level Offset  Granularity            Range
 129 *  0	   0         4 ms                0 ms -        255 ms
 130 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 131 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 132 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 133 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 134 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 135 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 136 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 137 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 138 *
 139 * HZ  100
 140 * Level Offset  Granularity            Range
 141 *  0	   0         10 ms               0 ms -        630 ms
 142 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 143 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 144 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 145 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 146 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 147 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 148 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 149 */
 150
 151/* Clock divisor for the next level */
 152#define LVL_CLK_SHIFT	3
 153#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 154#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 155#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 156#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 157
 158/*
 159 * The time start value for each level to select the bucket at enqueue
 160 * time. We start from the last possible delta of the previous level
 161 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 162 */
 163#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 164
 165/* Size of each clock level */
 166#define LVL_BITS	6
 167#define LVL_SIZE	(1UL << LVL_BITS)
 168#define LVL_MASK	(LVL_SIZE - 1)
 169#define LVL_OFFS(n)	((n) * LVL_SIZE)
 170
 171/* Level depth */
 172#if HZ > 100
 173# define LVL_DEPTH	9
 174# else
 175# define LVL_DEPTH	8
 176#endif
 177
 178/* The cutoff (max. capacity of the wheel) */
 179#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 180#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 181
 182/*
 183 * The resulting wheel size. If NOHZ is configured we allocate two
 184 * wheels so we have a separate storage for the deferrable timers.
 185 */
 186#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 187
 188#ifdef CONFIG_NO_HZ_COMMON
 189# define NR_BASES	2
 190# define BASE_STD	0
 191# define BASE_DEF	1
 192#else
 193# define NR_BASES	1
 194# define BASE_STD	0
 195# define BASE_DEF	0
 196#endif
 197
 198struct timer_base {
 199	raw_spinlock_t		lock;
 200	struct timer_list	*running_timer;
 201#ifdef CONFIG_PREEMPT_RT
 202	spinlock_t		expiry_lock;
 203	atomic_t		timer_waiters;
 204#endif
 205	unsigned long		clk;
 206	unsigned long		next_expiry;
 207	unsigned int		cpu;
 208	bool			next_expiry_recalc;
 
 209	bool			is_idle;
 210	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 211	struct hlist_head	vectors[WHEEL_SIZE];
 212} ____cacheline_aligned;
 213
 214static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 215
 216#ifdef CONFIG_NO_HZ_COMMON
 217
 218static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 219static DEFINE_MUTEX(timer_keys_mutex);
 220
 221static void timer_update_keys(struct work_struct *work);
 222static DECLARE_WORK(timer_update_work, timer_update_keys);
 223
 224#ifdef CONFIG_SMP
 225unsigned int sysctl_timer_migration = 1;
 226
 227DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 228
 229static void timers_update_migration(void)
 230{
 231	if (sysctl_timer_migration && tick_nohz_active)
 232		static_branch_enable(&timers_migration_enabled);
 233	else
 234		static_branch_disable(&timers_migration_enabled);
 235}
 236#else
 237static inline void timers_update_migration(void) { }
 238#endif /* !CONFIG_SMP */
 239
 240static void timer_update_keys(struct work_struct *work)
 241{
 242	mutex_lock(&timer_keys_mutex);
 243	timers_update_migration();
 244	static_branch_enable(&timers_nohz_active);
 245	mutex_unlock(&timer_keys_mutex);
 246}
 247
 248void timers_update_nohz(void)
 249{
 250	schedule_work(&timer_update_work);
 
 
 
 
 
 
 
 251}
 252
 253int timer_migration_handler(struct ctl_table *table, int write,
 254			    void *buffer, size_t *lenp, loff_t *ppos)
 
 255{
 
 256	int ret;
 257
 258	mutex_lock(&timer_keys_mutex);
 259	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 260	if (!ret && write)
 261		timers_update_migration();
 262	mutex_unlock(&timer_keys_mutex);
 263	return ret;
 264}
 265
 266static inline bool is_timers_nohz_active(void)
 267{
 268	return static_branch_unlikely(&timers_nohz_active);
 269}
 270#else
 271static inline bool is_timers_nohz_active(void) { return false; }
 272#endif /* NO_HZ_COMMON */
 273
 274static unsigned long round_jiffies_common(unsigned long j, int cpu,
 275		bool force_up)
 276{
 277	int rem;
 278	unsigned long original = j;
 279
 280	/*
 281	 * We don't want all cpus firing their timers at once hitting the
 282	 * same lock or cachelines, so we skew each extra cpu with an extra
 283	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 284	 * already did this.
 285	 * The skew is done by adding 3*cpunr, then round, then subtract this
 286	 * extra offset again.
 287	 */
 288	j += cpu * 3;
 289
 290	rem = j % HZ;
 291
 292	/*
 293	 * If the target jiffie is just after a whole second (which can happen
 294	 * due to delays of the timer irq, long irq off times etc etc) then
 295	 * we should round down to the whole second, not up. Use 1/4th second
 296	 * as cutoff for this rounding as an extreme upper bound for this.
 297	 * But never round down if @force_up is set.
 298	 */
 299	if (rem < HZ/4 && !force_up) /* round down */
 300		j = j - rem;
 301	else /* round up */
 302		j = j - rem + HZ;
 303
 304	/* now that we have rounded, subtract the extra skew again */
 305	j -= cpu * 3;
 306
 307	/*
 308	 * Make sure j is still in the future. Otherwise return the
 309	 * unmodified value.
 310	 */
 311	return time_is_after_jiffies(j) ? j : original;
 312}
 313
 314/**
 315 * __round_jiffies - function to round jiffies to a full second
 316 * @j: the time in (absolute) jiffies that should be rounded
 317 * @cpu: the processor number on which the timeout will happen
 318 *
 319 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 320 * up or down to (approximately) full seconds. This is useful for timers
 321 * for which the exact time they fire does not matter too much, as long as
 322 * they fire approximately every X seconds.
 323 *
 324 * By rounding these timers to whole seconds, all such timers will fire
 325 * at the same time, rather than at various times spread out. The goal
 326 * of this is to have the CPU wake up less, which saves power.
 327 *
 328 * The exact rounding is skewed for each processor to avoid all
 329 * processors firing at the exact same time, which could lead
 330 * to lock contention or spurious cache line bouncing.
 331 *
 332 * The return value is the rounded version of the @j parameter.
 333 */
 334unsigned long __round_jiffies(unsigned long j, int cpu)
 335{
 336	return round_jiffies_common(j, cpu, false);
 337}
 338EXPORT_SYMBOL_GPL(__round_jiffies);
 339
 340/**
 341 * __round_jiffies_relative - function to round jiffies to a full second
 342 * @j: the time in (relative) jiffies that should be rounded
 343 * @cpu: the processor number on which the timeout will happen
 344 *
 345 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 346 * up or down to (approximately) full seconds. This is useful for timers
 347 * for which the exact time they fire does not matter too much, as long as
 348 * they fire approximately every X seconds.
 349 *
 350 * By rounding these timers to whole seconds, all such timers will fire
 351 * at the same time, rather than at various times spread out. The goal
 352 * of this is to have the CPU wake up less, which saves power.
 353 *
 354 * The exact rounding is skewed for each processor to avoid all
 355 * processors firing at the exact same time, which could lead
 356 * to lock contention or spurious cache line bouncing.
 357 *
 358 * The return value is the rounded version of the @j parameter.
 359 */
 360unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 361{
 362	unsigned long j0 = jiffies;
 363
 364	/* Use j0 because jiffies might change while we run */
 365	return round_jiffies_common(j + j0, cpu, false) - j0;
 366}
 367EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 368
 369/**
 370 * round_jiffies - function to round jiffies to a full second
 371 * @j: the time in (absolute) jiffies that should be rounded
 372 *
 373 * round_jiffies() rounds an absolute time in the future (in jiffies)
 374 * up or down to (approximately) full seconds. This is useful for timers
 375 * for which the exact time they fire does not matter too much, as long as
 376 * they fire approximately every X seconds.
 377 *
 378 * By rounding these timers to whole seconds, all such timers will fire
 379 * at the same time, rather than at various times spread out. The goal
 380 * of this is to have the CPU wake up less, which saves power.
 381 *
 382 * The return value is the rounded version of the @j parameter.
 383 */
 384unsigned long round_jiffies(unsigned long j)
 385{
 386	return round_jiffies_common(j, raw_smp_processor_id(), false);
 387}
 388EXPORT_SYMBOL_GPL(round_jiffies);
 389
 390/**
 391 * round_jiffies_relative - function to round jiffies to a full second
 392 * @j: the time in (relative) jiffies that should be rounded
 393 *
 394 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 395 * up or down to (approximately) full seconds. This is useful for timers
 396 * for which the exact time they fire does not matter too much, as long as
 397 * they fire approximately every X seconds.
 398 *
 399 * By rounding these timers to whole seconds, all such timers will fire
 400 * at the same time, rather than at various times spread out. The goal
 401 * of this is to have the CPU wake up less, which saves power.
 402 *
 403 * The return value is the rounded version of the @j parameter.
 404 */
 405unsigned long round_jiffies_relative(unsigned long j)
 406{
 407	return __round_jiffies_relative(j, raw_smp_processor_id());
 408}
 409EXPORT_SYMBOL_GPL(round_jiffies_relative);
 410
 411/**
 412 * __round_jiffies_up - function to round jiffies up to a full second
 413 * @j: the time in (absolute) jiffies that should be rounded
 414 * @cpu: the processor number on which the timeout will happen
 415 *
 416 * This is the same as __round_jiffies() except that it will never
 417 * round down.  This is useful for timeouts for which the exact time
 418 * of firing does not matter too much, as long as they don't fire too
 419 * early.
 420 */
 421unsigned long __round_jiffies_up(unsigned long j, int cpu)
 422{
 423	return round_jiffies_common(j, cpu, true);
 424}
 425EXPORT_SYMBOL_GPL(__round_jiffies_up);
 426
 427/**
 428 * __round_jiffies_up_relative - function to round jiffies up to a full second
 429 * @j: the time in (relative) jiffies that should be rounded
 430 * @cpu: the processor number on which the timeout will happen
 431 *
 432 * This is the same as __round_jiffies_relative() except that it will never
 433 * round down.  This is useful for timeouts for which the exact time
 434 * of firing does not matter too much, as long as they don't fire too
 435 * early.
 436 */
 437unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 438{
 439	unsigned long j0 = jiffies;
 440
 441	/* Use j0 because jiffies might change while we run */
 442	return round_jiffies_common(j + j0, cpu, true) - j0;
 443}
 444EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 445
 446/**
 447 * round_jiffies_up - function to round jiffies up to a full second
 448 * @j: the time in (absolute) jiffies that should be rounded
 449 *
 450 * This is the same as round_jiffies() except that it will never
 451 * round down.  This is useful for timeouts for which the exact time
 452 * of firing does not matter too much, as long as they don't fire too
 453 * early.
 454 */
 455unsigned long round_jiffies_up(unsigned long j)
 456{
 457	return round_jiffies_common(j, raw_smp_processor_id(), true);
 458}
 459EXPORT_SYMBOL_GPL(round_jiffies_up);
 460
 461/**
 462 * round_jiffies_up_relative - function to round jiffies up to a full second
 463 * @j: the time in (relative) jiffies that should be rounded
 464 *
 465 * This is the same as round_jiffies_relative() except that it will never
 466 * round down.  This is useful for timeouts for which the exact time
 467 * of firing does not matter too much, as long as they don't fire too
 468 * early.
 469 */
 470unsigned long round_jiffies_up_relative(unsigned long j)
 471{
 472	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 473}
 474EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 475
 476
 477static inline unsigned int timer_get_idx(struct timer_list *timer)
 478{
 479	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 480}
 481
 482static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 483{
 484	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 485			idx << TIMER_ARRAYSHIFT;
 486}
 487
 488/*
 489 * Helper function to calculate the array index for a given expiry
 490 * time.
 491 */
 492static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 493				  unsigned long *bucket_expiry)
 494{
 495
 496	/*
 497	 * The timer wheel has to guarantee that a timer does not fire
 498	 * early. Early expiry can happen due to:
 499	 * - Timer is armed at the edge of a tick
 500	 * - Truncation of the expiry time in the outer wheel levels
 501	 *
 502	 * Round up with level granularity to prevent this.
 503	 */
 504	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 505	*bucket_expiry = expires << LVL_SHIFT(lvl);
 506	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 507}
 508
 509static int calc_wheel_index(unsigned long expires, unsigned long clk,
 510			    unsigned long *bucket_expiry)
 511{
 512	unsigned long delta = expires - clk;
 513	unsigned int idx;
 514
 515	if (delta < LVL_START(1)) {
 516		idx = calc_index(expires, 0, bucket_expiry);
 517	} else if (delta < LVL_START(2)) {
 518		idx = calc_index(expires, 1, bucket_expiry);
 519	} else if (delta < LVL_START(3)) {
 520		idx = calc_index(expires, 2, bucket_expiry);
 521	} else if (delta < LVL_START(4)) {
 522		idx = calc_index(expires, 3, bucket_expiry);
 523	} else if (delta < LVL_START(5)) {
 524		idx = calc_index(expires, 4, bucket_expiry);
 525	} else if (delta < LVL_START(6)) {
 526		idx = calc_index(expires, 5, bucket_expiry);
 527	} else if (delta < LVL_START(7)) {
 528		idx = calc_index(expires, 6, bucket_expiry);
 529	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 530		idx = calc_index(expires, 7, bucket_expiry);
 531	} else if ((long) delta < 0) {
 532		idx = clk & LVL_MASK;
 533		*bucket_expiry = clk;
 534	} else {
 535		/*
 536		 * Force expire obscene large timeouts to expire at the
 537		 * capacity limit of the wheel.
 538		 */
 539		if (delta >= WHEEL_TIMEOUT_CUTOFF)
 540			expires = clk + WHEEL_TIMEOUT_MAX;
 541
 542		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 543	}
 544	return idx;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547static void
 548trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 549{
 550	if (!is_timers_nohz_active())
 551		return;
 552
 553	/*
 554	 * TODO: This wants some optimizing similar to the code below, but we
 555	 * will do that when we switch from push to pull for deferrable timers.
 556	 */
 557	if (timer->flags & TIMER_DEFERRABLE) {
 558		if (tick_nohz_full_cpu(base->cpu))
 559			wake_up_nohz_cpu(base->cpu);
 560		return;
 561	}
 562
 563	/*
 564	 * We might have to IPI the remote CPU if the base is idle and the
 565	 * timer is not deferrable. If the other CPU is on the way to idle
 566	 * then it can't set base->is_idle as we hold the base lock:
 567	 */
 568	if (base->is_idle)
 
 
 
 
 
 
 
 
 
 
 
 569		wake_up_nohz_cpu(base->cpu);
 570}
 571
 572/*
 573 * Enqueue the timer into the hash bucket, mark it pending in
 574 * the bitmap, store the index in the timer flags then wake up
 575 * the target CPU if needed.
 576 */
 577static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 578			  unsigned int idx, unsigned long bucket_expiry)
 
 
 579{
 
 
 580
 581	hlist_add_head(&timer->entry, base->vectors + idx);
 582	__set_bit(idx, base->pending_map);
 583	timer_set_idx(timer, idx);
 
 584
 585	trace_timer_start(timer, timer->expires, timer->flags);
 
 
 586
 587	/*
 588	 * Check whether this is the new first expiring timer. The
 589	 * effective expiry time of the timer is required here
 590	 * (bucket_expiry) instead of timer->expires.
 591	 */
 592	if (time_before(bucket_expiry, base->next_expiry)) {
 593		/*
 594		 * Set the next expiry time and kick the CPU so it
 595		 * can reevaluate the wheel:
 596		 */
 597		base->next_expiry = bucket_expiry;
 598		base->next_expiry_recalc = false;
 599		trigger_dyntick_cpu(base, timer);
 600	}
 601}
 602
 603static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 604{
 605	unsigned long bucket_expiry;
 606	unsigned int idx;
 607
 608	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 609	enqueue_timer(base, timer, idx, bucket_expiry);
 610}
 611
 612#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 613
 614static struct debug_obj_descr timer_debug_descr;
 615
 616static void *timer_debug_hint(void *addr)
 617{
 618	return ((struct timer_list *) addr)->function;
 619}
 620
 621static bool timer_is_static_object(void *addr)
 622{
 623	struct timer_list *timer = addr;
 624
 625	return (timer->entry.pprev == NULL &&
 626		timer->entry.next == TIMER_ENTRY_STATIC);
 627}
 628
 629/*
 630 * fixup_init is called when:
 631 * - an active object is initialized
 632 */
 633static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 634{
 635	struct timer_list *timer = addr;
 636
 637	switch (state) {
 638	case ODEBUG_STATE_ACTIVE:
 639		del_timer_sync(timer);
 640		debug_object_init(timer, &timer_debug_descr);
 641		return true;
 642	default:
 643		return false;
 644	}
 645}
 646
 647/* Stub timer callback for improperly used timers. */
 648static void stub_timer(struct timer_list *unused)
 649{
 650	WARN_ON(1);
 651}
 652
 653/*
 654 * fixup_activate is called when:
 655 * - an active object is activated
 656 * - an unknown non-static object is activated
 657 */
 658static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 659{
 660	struct timer_list *timer = addr;
 661
 662	switch (state) {
 663	case ODEBUG_STATE_NOTAVAILABLE:
 664		timer_setup(timer, stub_timer, 0);
 665		return true;
 666
 667	case ODEBUG_STATE_ACTIVE:
 668		WARN_ON(1);
 669		fallthrough;
 670	default:
 671		return false;
 672	}
 673}
 674
 675/*
 676 * fixup_free is called when:
 677 * - an active object is freed
 678 */
 679static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 680{
 681	struct timer_list *timer = addr;
 682
 683	switch (state) {
 684	case ODEBUG_STATE_ACTIVE:
 685		del_timer_sync(timer);
 686		debug_object_free(timer, &timer_debug_descr);
 687		return true;
 688	default:
 689		return false;
 690	}
 691}
 692
 693/*
 694 * fixup_assert_init is called when:
 695 * - an untracked/uninit-ed object is found
 696 */
 697static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 698{
 699	struct timer_list *timer = addr;
 700
 701	switch (state) {
 702	case ODEBUG_STATE_NOTAVAILABLE:
 703		timer_setup(timer, stub_timer, 0);
 704		return true;
 705	default:
 706		return false;
 707	}
 708}
 709
 710static struct debug_obj_descr timer_debug_descr = {
 711	.name			= "timer_list",
 712	.debug_hint		= timer_debug_hint,
 713	.is_static_object	= timer_is_static_object,
 714	.fixup_init		= timer_fixup_init,
 715	.fixup_activate		= timer_fixup_activate,
 716	.fixup_free		= timer_fixup_free,
 717	.fixup_assert_init	= timer_fixup_assert_init,
 718};
 719
 720static inline void debug_timer_init(struct timer_list *timer)
 721{
 722	debug_object_init(timer, &timer_debug_descr);
 723}
 724
 725static inline void debug_timer_activate(struct timer_list *timer)
 726{
 727	debug_object_activate(timer, &timer_debug_descr);
 728}
 729
 730static inline void debug_timer_deactivate(struct timer_list *timer)
 731{
 732	debug_object_deactivate(timer, &timer_debug_descr);
 733}
 734
 735static inline void debug_timer_free(struct timer_list *timer)
 736{
 737	debug_object_free(timer, &timer_debug_descr);
 738}
 739
 740static inline void debug_timer_assert_init(struct timer_list *timer)
 741{
 742	debug_object_assert_init(timer, &timer_debug_descr);
 743}
 744
 745static void do_init_timer(struct timer_list *timer,
 746			  void (*func)(struct timer_list *),
 747			  unsigned int flags,
 748			  const char *name, struct lock_class_key *key);
 749
 750void init_timer_on_stack_key(struct timer_list *timer,
 751			     void (*func)(struct timer_list *),
 752			     unsigned int flags,
 753			     const char *name, struct lock_class_key *key)
 754{
 755	debug_object_init_on_stack(timer, &timer_debug_descr);
 756	do_init_timer(timer, func, flags, name, key);
 757}
 758EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 759
 760void destroy_timer_on_stack(struct timer_list *timer)
 761{
 762	debug_object_free(timer, &timer_debug_descr);
 763}
 764EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 765
 766#else
 767static inline void debug_timer_init(struct timer_list *timer) { }
 768static inline void debug_timer_activate(struct timer_list *timer) { }
 769static inline void debug_timer_deactivate(struct timer_list *timer) { }
 770static inline void debug_timer_assert_init(struct timer_list *timer) { }
 771#endif
 772
 773static inline void debug_init(struct timer_list *timer)
 774{
 775	debug_timer_init(timer);
 776	trace_timer_init(timer);
 777}
 778
 
 
 
 
 
 
 
 779static inline void debug_deactivate(struct timer_list *timer)
 780{
 781	debug_timer_deactivate(timer);
 782	trace_timer_cancel(timer);
 783}
 784
 785static inline void debug_assert_init(struct timer_list *timer)
 786{
 787	debug_timer_assert_init(timer);
 788}
 789
 790static void do_init_timer(struct timer_list *timer,
 791			  void (*func)(struct timer_list *),
 792			  unsigned int flags,
 793			  const char *name, struct lock_class_key *key)
 794{
 795	timer->entry.pprev = NULL;
 796	timer->function = func;
 797	timer->flags = flags | raw_smp_processor_id();
 
 
 
 
 
 798	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 799}
 800
 801/**
 802 * init_timer_key - initialize a timer
 803 * @timer: the timer to be initialized
 804 * @func: timer callback function
 805 * @flags: timer flags
 806 * @name: name of the timer
 807 * @key: lockdep class key of the fake lock used for tracking timer
 808 *       sync lock dependencies
 809 *
 810 * init_timer_key() must be done to a timer prior calling *any* of the
 811 * other timer functions.
 812 */
 813void init_timer_key(struct timer_list *timer,
 814		    void (*func)(struct timer_list *), unsigned int flags,
 815		    const char *name, struct lock_class_key *key)
 816{
 817	debug_init(timer);
 818	do_init_timer(timer, func, flags, name, key);
 819}
 820EXPORT_SYMBOL(init_timer_key);
 821
 822static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 823{
 824	struct hlist_node *entry = &timer->entry;
 825
 826	debug_deactivate(timer);
 827
 828	__hlist_del(entry);
 829	if (clear_pending)
 830		entry->pprev = NULL;
 831	entry->next = LIST_POISON2;
 832}
 833
 834static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 835			     bool clear_pending)
 836{
 837	unsigned idx = timer_get_idx(timer);
 838
 839	if (!timer_pending(timer))
 840		return 0;
 841
 842	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 843		__clear_bit(idx, base->pending_map);
 844		base->next_expiry_recalc = true;
 845	}
 846
 847	detach_timer(timer, clear_pending);
 848	return 1;
 849}
 850
 851static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 852{
 853	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 854
 855	/*
 856	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 857	 * to use the deferrable base.
 858	 */
 859	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 
 860		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 861	return base;
 862}
 863
 864static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 865{
 866	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 867
 868	/*
 869	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 870	 * to use the deferrable base.
 871	 */
 872	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 
 873		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 874	return base;
 875}
 876
 877static inline struct timer_base *get_timer_base(u32 tflags)
 878{
 879	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 880}
 881
 
 882static inline struct timer_base *
 883get_target_base(struct timer_base *base, unsigned tflags)
 884{
 885#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 886	if (static_branch_likely(&timers_migration_enabled) &&
 887	    !(tflags & TIMER_PINNED))
 888		return get_timer_cpu_base(tflags, get_nohz_timer_target());
 
 
 889#endif
 890	return get_timer_this_cpu_base(tflags);
 891}
 892
 893static inline void forward_timer_base(struct timer_base *base)
 894{
 895	unsigned long jnow = READ_ONCE(jiffies);
 896
 897	/*
 898	 * No need to forward if we are close enough below jiffies.
 899	 * Also while executing timers, base->clk is 1 offset ahead
 900	 * of jiffies to avoid endless requeuing to current jffies.
 901	 */
 902	if ((long)(jnow - base->clk) < 1)
 903		return;
 904
 905	/*
 906	 * If the next expiry value is > jiffies, then we fast forward to
 907	 * jiffies otherwise we forward to the next expiry value.
 908	 */
 909	if (time_after(base->next_expiry, jnow)) {
 910		base->clk = jnow;
 911	} else {
 912		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
 913			return;
 914		base->clk = base->next_expiry;
 915	}
 
 
 
 
 
 916}
 917
 
 
 
 918
 919/*
 920 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 921 * that all timers which are tied to this base are locked, and the base itself
 922 * is locked too.
 923 *
 924 * So __run_timers/migrate_timers can safely modify all timers which could
 925 * be found in the base->vectors array.
 926 *
 927 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 928 * to wait until the migration is done.
 929 */
 930static struct timer_base *lock_timer_base(struct timer_list *timer,
 931					  unsigned long *flags)
 932	__acquires(timer->base->lock)
 933{
 934	for (;;) {
 935		struct timer_base *base;
 936		u32 tf;
 937
 938		/*
 939		 * We need to use READ_ONCE() here, otherwise the compiler
 940		 * might re-read @tf between the check for TIMER_MIGRATING
 941		 * and spin_lock().
 942		 */
 943		tf = READ_ONCE(timer->flags);
 944
 945		if (!(tf & TIMER_MIGRATING)) {
 946			base = get_timer_base(tf);
 947			raw_spin_lock_irqsave(&base->lock, *flags);
 948			if (timer->flags == tf)
 949				return base;
 950			raw_spin_unlock_irqrestore(&base->lock, *flags);
 951		}
 952		cpu_relax();
 953	}
 954}
 955
 956#define MOD_TIMER_PENDING_ONLY		0x01
 957#define MOD_TIMER_REDUCE		0x02
 958#define MOD_TIMER_NOTPENDING		0x04
 959
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 962{
 963	unsigned long clk = 0, flags, bucket_expiry;
 964	struct timer_base *base, *new_base;
 965	unsigned int idx = UINT_MAX;
 
 966	int ret = 0;
 967
 968	BUG_ON(!timer->function);
 969
 970	/*
 971	 * This is a common optimization triggered by the networking code - if
 972	 * the timer is re-modified to have the same timeout or ends up in the
 973	 * same array bucket then just return:
 974	 */
 975	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
 976		/*
 977		 * The downside of this optimization is that it can result in
 978		 * larger granularity than you would get from adding a new
 979		 * timer with this expiry.
 980		 */
 981		long diff = timer->expires - expires;
 982
 983		if (!diff)
 984			return 1;
 985		if (options & MOD_TIMER_REDUCE && diff <= 0)
 986			return 1;
 987
 988		/*
 989		 * We lock timer base and calculate the bucket index right
 990		 * here. If the timer ends up in the same bucket, then we
 991		 * just update the expiry time and avoid the whole
 992		 * dequeue/enqueue dance.
 993		 */
 994		base = lock_timer_base(timer, &flags);
 995		forward_timer_base(base);
 996
 997		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 998		    time_before_eq(timer->expires, expires)) {
 999			ret = 1;
1000			goto out_unlock;
1001		}
1002
1003		clk = base->clk;
1004		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1005
1006		/*
1007		 * Retrieve and compare the array index of the pending
1008		 * timer. If it matches set the expiry to the new value so a
1009		 * subsequent call will exit in the expires check above.
1010		 */
1011		if (idx == timer_get_idx(timer)) {
1012			if (!(options & MOD_TIMER_REDUCE))
1013				timer->expires = expires;
1014			else if (time_after(timer->expires, expires))
1015				timer->expires = expires;
1016			ret = 1;
1017			goto out_unlock;
1018		}
1019	} else {
1020		base = lock_timer_base(timer, &flags);
1021		forward_timer_base(base);
1022	}
1023
 
 
1024	ret = detach_if_pending(timer, base, false);
1025	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1026		goto out_unlock;
1027
 
 
1028	new_base = get_target_base(base, timer->flags);
1029
1030	if (base != new_base) {
1031		/*
1032		 * We are trying to schedule the timer on the new base.
1033		 * However we can't change timer's base while it is running,
1034		 * otherwise del_timer_sync() can't detect that the timer's
1035		 * handler yet has not finished. This also guarantees that the
1036		 * timer is serialized wrt itself.
1037		 */
1038		if (likely(base->running_timer != timer)) {
1039			/* See the comment in lock_timer_base() */
1040			timer->flags |= TIMER_MIGRATING;
1041
1042			raw_spin_unlock(&base->lock);
1043			base = new_base;
1044			raw_spin_lock(&base->lock);
1045			WRITE_ONCE(timer->flags,
1046				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1047			forward_timer_base(base);
1048		}
1049	}
1050
1051	debug_timer_activate(timer);
 
1052
1053	timer->expires = expires;
1054	/*
1055	 * If 'idx' was calculated above and the base time did not advance
1056	 * between calculating 'idx' and possibly switching the base, only
1057	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1058	 * the wheel index via internal_add_timer().
 
1059	 */
1060	if (idx != UINT_MAX && clk == base->clk)
1061		enqueue_timer(base, timer, idx, bucket_expiry);
1062	else
 
1063		internal_add_timer(base, timer);
 
1064
1065out_unlock:
1066	raw_spin_unlock_irqrestore(&base->lock, flags);
1067
1068	return ret;
1069}
1070
1071/**
1072 * mod_timer_pending - modify a pending timer's timeout
1073 * @timer: the pending timer to be modified
1074 * @expires: new timeout in jiffies
1075 *
1076 * mod_timer_pending() is the same for pending timers as mod_timer(),
1077 * but will not re-activate and modify already deleted timers.
1078 *
1079 * It is useful for unserialized use of timers.
1080 */
1081int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1082{
1083	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1084}
1085EXPORT_SYMBOL(mod_timer_pending);
1086
1087/**
1088 * mod_timer - modify a timer's timeout
1089 * @timer: the timer to be modified
1090 * @expires: new timeout in jiffies
1091 *
1092 * mod_timer() is a more efficient way to update the expire field of an
1093 * active timer (if the timer is inactive it will be activated)
1094 *
1095 * mod_timer(timer, expires) is equivalent to:
1096 *
1097 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1098 *
1099 * Note that if there are multiple unserialized concurrent users of the
1100 * same timer, then mod_timer() is the only safe way to modify the timeout,
1101 * since add_timer() cannot modify an already running timer.
1102 *
1103 * The function returns whether it has modified a pending timer or not.
1104 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1105 * active timer returns 1.)
1106 */
1107int mod_timer(struct timer_list *timer, unsigned long expires)
1108{
1109	return __mod_timer(timer, expires, 0);
1110}
1111EXPORT_SYMBOL(mod_timer);
1112
1113/**
1114 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1115 * @timer:	The timer to be modified
1116 * @expires:	New timeout in jiffies
1117 *
1118 * timer_reduce() is very similar to mod_timer(), except that it will only
1119 * modify a running timer if that would reduce the expiration time (it will
1120 * start a timer that isn't running).
1121 */
1122int timer_reduce(struct timer_list *timer, unsigned long expires)
1123{
1124	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1125}
1126EXPORT_SYMBOL(timer_reduce);
1127
1128/**
1129 * add_timer - start a timer
1130 * @timer: the timer to be added
1131 *
1132 * The kernel will do a ->function(@timer) callback from the
1133 * timer interrupt at the ->expires point in the future. The
1134 * current time is 'jiffies'.
1135 *
1136 * The timer's ->expires, ->function fields must be set prior calling this
1137 * function.
1138 *
1139 * Timers with an ->expires field in the past will be executed in the next
1140 * timer tick.
1141 */
1142void add_timer(struct timer_list *timer)
1143{
1144	BUG_ON(timer_pending(timer));
1145	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1146}
1147EXPORT_SYMBOL(add_timer);
1148
1149/**
1150 * add_timer_on - start a timer on a particular CPU
1151 * @timer: the timer to be added
1152 * @cpu: the CPU to start it on
1153 *
1154 * This is not very scalable on SMP. Double adds are not possible.
1155 */
1156void add_timer_on(struct timer_list *timer, int cpu)
1157{
1158	struct timer_base *new_base, *base;
1159	unsigned long flags;
1160
 
1161	BUG_ON(timer_pending(timer) || !timer->function);
1162
1163	new_base = get_timer_cpu_base(timer->flags, cpu);
1164
1165	/*
1166	 * If @timer was on a different CPU, it should be migrated with the
1167	 * old base locked to prevent other operations proceeding with the
1168	 * wrong base locked.  See lock_timer_base().
1169	 */
1170	base = lock_timer_base(timer, &flags);
1171	if (base != new_base) {
1172		timer->flags |= TIMER_MIGRATING;
1173
1174		raw_spin_unlock(&base->lock);
1175		base = new_base;
1176		raw_spin_lock(&base->lock);
1177		WRITE_ONCE(timer->flags,
1178			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1179	}
1180	forward_timer_base(base);
1181
1182	debug_timer_activate(timer);
1183	internal_add_timer(base, timer);
1184	raw_spin_unlock_irqrestore(&base->lock, flags);
1185}
1186EXPORT_SYMBOL_GPL(add_timer_on);
1187
1188/**
1189 * del_timer - deactivate a timer.
1190 * @timer: the timer to be deactivated
1191 *
1192 * del_timer() deactivates a timer - this works on both active and inactive
1193 * timers.
1194 *
1195 * The function returns whether it has deactivated a pending timer or not.
1196 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1197 * active timer returns 1.)
1198 */
1199int del_timer(struct timer_list *timer)
1200{
1201	struct timer_base *base;
1202	unsigned long flags;
1203	int ret = 0;
1204
1205	debug_assert_init(timer);
1206
 
1207	if (timer_pending(timer)) {
1208		base = lock_timer_base(timer, &flags);
1209		ret = detach_if_pending(timer, base, true);
1210		raw_spin_unlock_irqrestore(&base->lock, flags);
1211	}
1212
1213	return ret;
1214}
1215EXPORT_SYMBOL(del_timer);
1216
1217/**
1218 * try_to_del_timer_sync - Try to deactivate a timer
1219 * @timer: timer to delete
1220 *
1221 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1222 * exit the timer is not queued and the handler is not running on any CPU.
1223 */
1224int try_to_del_timer_sync(struct timer_list *timer)
1225{
1226	struct timer_base *base;
1227	unsigned long flags;
1228	int ret = -1;
1229
1230	debug_assert_init(timer);
1231
1232	base = lock_timer_base(timer, &flags);
1233
1234	if (base->running_timer != timer)
 
1235		ret = detach_if_pending(timer, base, true);
1236
1237	raw_spin_unlock_irqrestore(&base->lock, flags);
1238
1239	return ret;
1240}
1241EXPORT_SYMBOL(try_to_del_timer_sync);
1242
1243#ifdef CONFIG_PREEMPT_RT
1244static __init void timer_base_init_expiry_lock(struct timer_base *base)
1245{
1246	spin_lock_init(&base->expiry_lock);
1247}
1248
1249static inline void timer_base_lock_expiry(struct timer_base *base)
1250{
1251	spin_lock(&base->expiry_lock);
1252}
1253
1254static inline void timer_base_unlock_expiry(struct timer_base *base)
1255{
1256	spin_unlock(&base->expiry_lock);
1257}
1258
1259/*
1260 * The counterpart to del_timer_wait_running().
1261 *
1262 * If there is a waiter for base->expiry_lock, then it was waiting for the
1263 * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1264 * the waiter to acquire the lock and make progress.
1265 */
1266static void timer_sync_wait_running(struct timer_base *base)
1267{
1268	if (atomic_read(&base->timer_waiters)) {
1269		spin_unlock(&base->expiry_lock);
1270		spin_lock(&base->expiry_lock);
1271	}
1272}
1273
1274/*
1275 * This function is called on PREEMPT_RT kernels when the fast path
1276 * deletion of a timer failed because the timer callback function was
1277 * running.
1278 *
1279 * This prevents priority inversion, if the softirq thread on a remote CPU
1280 * got preempted, and it prevents a life lock when the task which tries to
1281 * delete a timer preempted the softirq thread running the timer callback
1282 * function.
1283 */
1284static void del_timer_wait_running(struct timer_list *timer)
1285{
1286	u32 tf;
1287
1288	tf = READ_ONCE(timer->flags);
1289	if (!(tf & TIMER_MIGRATING)) {
1290		struct timer_base *base = get_timer_base(tf);
1291
1292		/*
1293		 * Mark the base as contended and grab the expiry lock,
1294		 * which is held by the softirq across the timer
1295		 * callback. Drop the lock immediately so the softirq can
1296		 * expire the next timer. In theory the timer could already
1297		 * be running again, but that's more than unlikely and just
1298		 * causes another wait loop.
1299		 */
1300		atomic_inc(&base->timer_waiters);
1301		spin_lock_bh(&base->expiry_lock);
1302		atomic_dec(&base->timer_waiters);
1303		spin_unlock_bh(&base->expiry_lock);
1304	}
1305}
1306#else
1307static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1308static inline void timer_base_lock_expiry(struct timer_base *base) { }
1309static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1310static inline void timer_sync_wait_running(struct timer_base *base) { }
1311static inline void del_timer_wait_running(struct timer_list *timer) { }
1312#endif
1313
1314#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1315/**
1316 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1317 * @timer: the timer to be deactivated
1318 *
1319 * This function only differs from del_timer() on SMP: besides deactivating
1320 * the timer it also makes sure the handler has finished executing on other
1321 * CPUs.
1322 *
1323 * Synchronization rules: Callers must prevent restarting of the timer,
1324 * otherwise this function is meaningless. It must not be called from
1325 * interrupt contexts unless the timer is an irqsafe one. The caller must
1326 * not hold locks which would prevent completion of the timer's
1327 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1328 * timer is not queued and the handler is not running on any CPU.
1329 *
1330 * Note: For !irqsafe timers, you must not hold locks that are held in
1331 *   interrupt context while calling this function. Even if the lock has
1332 *   nothing to do with the timer in question.  Here's why::
1333 *
1334 *    CPU0                             CPU1
1335 *    ----                             ----
1336 *                                     <SOFTIRQ>
1337 *                                       call_timer_fn();
1338 *                                       base->running_timer = mytimer;
1339 *    spin_lock_irq(somelock);
1340 *                                     <IRQ>
1341 *                                        spin_lock(somelock);
1342 *    del_timer_sync(mytimer);
1343 *    while (base->running_timer == mytimer);
1344 *
1345 * Now del_timer_sync() will never return and never release somelock.
1346 * The interrupt on the other CPU is waiting to grab somelock but
1347 * it has interrupted the softirq that CPU0 is waiting to finish.
1348 *
1349 * The function returns whether it has deactivated a pending timer or not.
1350 */
1351int del_timer_sync(struct timer_list *timer)
1352{
1353	int ret;
1354
1355#ifdef CONFIG_LOCKDEP
1356	unsigned long flags;
1357
1358	/*
1359	 * If lockdep gives a backtrace here, please reference
1360	 * the synchronization rules above.
1361	 */
1362	local_irq_save(flags);
1363	lock_map_acquire(&timer->lockdep_map);
1364	lock_map_release(&timer->lockdep_map);
1365	local_irq_restore(flags);
1366#endif
1367	/*
1368	 * don't use it in hardirq context, because it
1369	 * could lead to deadlock.
1370	 */
1371	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1372
1373	do {
1374		ret = try_to_del_timer_sync(timer);
1375
1376		if (unlikely(ret < 0)) {
1377			del_timer_wait_running(timer);
1378			cpu_relax();
1379		}
1380	} while (ret < 0);
1381
1382	return ret;
1383}
1384EXPORT_SYMBOL(del_timer_sync);
1385#endif
1386
1387static void call_timer_fn(struct timer_list *timer,
1388			  void (*fn)(struct timer_list *),
1389			  unsigned long baseclk)
1390{
1391	int count = preempt_count();
1392
1393#ifdef CONFIG_LOCKDEP
1394	/*
1395	 * It is permissible to free the timer from inside the
1396	 * function that is called from it, this we need to take into
1397	 * account for lockdep too. To avoid bogus "held lock freed"
1398	 * warnings as well as problems when looking into
1399	 * timer->lockdep_map, make a copy and use that here.
1400	 */
1401	struct lockdep_map lockdep_map;
1402
1403	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1404#endif
1405	/*
1406	 * Couple the lock chain with the lock chain at
1407	 * del_timer_sync() by acquiring the lock_map around the fn()
1408	 * call here and in del_timer_sync().
1409	 */
1410	lock_map_acquire(&lockdep_map);
1411
1412	trace_timer_expire_entry(timer, baseclk);
1413	fn(timer);
1414	trace_timer_expire_exit(timer);
1415
1416	lock_map_release(&lockdep_map);
1417
1418	if (count != preempt_count()) {
1419		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1420			  fn, count, preempt_count());
1421		/*
1422		 * Restore the preempt count. That gives us a decent
1423		 * chance to survive and extract information. If the
1424		 * callback kept a lock held, bad luck, but not worse
1425		 * than the BUG() we had.
1426		 */
1427		preempt_count_set(count);
1428	}
1429}
1430
1431static void expire_timers(struct timer_base *base, struct hlist_head *head)
1432{
1433	/*
1434	 * This value is required only for tracing. base->clk was
1435	 * incremented directly before expire_timers was called. But expiry
1436	 * is related to the old base->clk value.
1437	 */
1438	unsigned long baseclk = base->clk - 1;
1439
1440	while (!hlist_empty(head)) {
1441		struct timer_list *timer;
1442		void (*fn)(struct timer_list *);
 
1443
1444		timer = hlist_entry(head->first, struct timer_list, entry);
 
1445
1446		base->running_timer = timer;
1447		detach_timer(timer, true);
1448
1449		fn = timer->function;
 
1450
1451		if (timer->flags & TIMER_IRQSAFE) {
1452			raw_spin_unlock(&base->lock);
1453			call_timer_fn(timer, fn, baseclk);
1454			base->running_timer = NULL;
1455			raw_spin_lock(&base->lock);
1456		} else {
1457			raw_spin_unlock_irq(&base->lock);
1458			call_timer_fn(timer, fn, baseclk);
1459			base->running_timer = NULL;
1460			timer_sync_wait_running(base);
1461			raw_spin_lock_irq(&base->lock);
1462		}
1463	}
1464}
1465
1466static int collect_expired_timers(struct timer_base *base,
1467				  struct hlist_head *heads)
1468{
1469	unsigned long clk = base->clk = base->next_expiry;
1470	struct hlist_head *vec;
1471	int i, levels = 0;
1472	unsigned int idx;
1473
1474	for (i = 0; i < LVL_DEPTH; i++) {
1475		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1476
1477		if (__test_and_clear_bit(idx, base->pending_map)) {
1478			vec = base->vectors + idx;
1479			hlist_move_list(vec, heads++);
1480			levels++;
1481		}
1482		/* Is it time to look at the next level? */
1483		if (clk & LVL_CLK_MASK)
1484			break;
1485		/* Shift clock for the next level granularity */
1486		clk >>= LVL_CLK_SHIFT;
1487	}
1488	return levels;
1489}
1490
 
1491/*
1492 * Find the next pending bucket of a level. Search from level start (@offset)
1493 * + @clk upwards and if nothing there, search from start of the level
1494 * (@offset) up to @offset + clk.
1495 */
1496static int next_pending_bucket(struct timer_base *base, unsigned offset,
1497			       unsigned clk)
1498{
1499	unsigned pos, start = offset + clk;
1500	unsigned end = offset + LVL_SIZE;
1501
1502	pos = find_next_bit(base->pending_map, end, start);
1503	if (pos < end)
1504		return pos - start;
1505
1506	pos = find_next_bit(base->pending_map, start, offset);
1507	return pos < start ? pos + LVL_SIZE - start : -1;
1508}
1509
1510/*
1511 * Search the first expiring timer in the various clock levels. Caller must
1512 * hold base->lock.
1513 */
1514static unsigned long __next_timer_interrupt(struct timer_base *base)
1515{
1516	unsigned long clk, next, adj;
1517	unsigned lvl, offset = 0;
1518
1519	next = base->clk + NEXT_TIMER_MAX_DELTA;
1520	clk = base->clk;
1521	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1522		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1523		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1524
1525		if (pos >= 0) {
1526			unsigned long tmp = clk + (unsigned long) pos;
1527
1528			tmp <<= LVL_SHIFT(lvl);
1529			if (time_before(tmp, next))
1530				next = tmp;
1531
1532			/*
1533			 * If the next expiration happens before we reach
1534			 * the next level, no need to check further.
1535			 */
1536			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1537				break;
1538		}
1539		/*
1540		 * Clock for the next level. If the current level clock lower
1541		 * bits are zero, we look at the next level as is. If not we
1542		 * need to advance it by one because that's going to be the
1543		 * next expiring bucket in that level. base->clk is the next
1544		 * expiring jiffie. So in case of:
1545		 *
1546		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1547		 *  0    0    0    0    0    0
1548		 *
1549		 * we have to look at all levels @index 0. With
1550		 *
1551		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1552		 *  0    0    0    0    0    2
1553		 *
1554		 * LVL0 has the next expiring bucket @index 2. The upper
1555		 * levels have the next expiring bucket @index 1.
1556		 *
1557		 * In case that the propagation wraps the next level the same
1558		 * rules apply:
1559		 *
1560		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1561		 *  0    0    0    0    F    2
1562		 *
1563		 * So after looking at LVL0 we get:
1564		 *
1565		 * LVL5 LVL4 LVL3 LVL2 LVL1
1566		 *  0    0    0    1    0
1567		 *
1568		 * So no propagation from LVL1 to LVL2 because that happened
1569		 * with the add already, but then we need to propagate further
1570		 * from LVL2 to LVL3.
1571		 *
1572		 * So the simple check whether the lower bits of the current
1573		 * level are 0 or not is sufficient for all cases.
1574		 */
1575		adj = lvl_clk ? 1 : 0;
1576		clk >>= LVL_CLK_SHIFT;
1577		clk += adj;
1578	}
1579
1580	base->next_expiry_recalc = false;
1581
1582	return next;
1583}
1584
1585#ifdef CONFIG_NO_HZ_COMMON
1586/*
1587 * Check, if the next hrtimer event is before the next timer wheel
1588 * event:
1589 */
1590static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1591{
1592	u64 nextevt = hrtimer_get_next_event();
1593
1594	/*
1595	 * If high resolution timers are enabled
1596	 * hrtimer_get_next_event() returns KTIME_MAX.
1597	 */
1598	if (expires <= nextevt)
1599		return expires;
1600
1601	/*
1602	 * If the next timer is already expired, return the tick base
1603	 * time so the tick is fired immediately.
1604	 */
1605	if (nextevt <= basem)
1606		return basem;
1607
1608	/*
1609	 * Round up to the next jiffie. High resolution timers are
1610	 * off, so the hrtimers are expired in the tick and we need to
1611	 * make sure that this tick really expires the timer to avoid
1612	 * a ping pong of the nohz stop code.
1613	 *
1614	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1615	 */
1616	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1617}
1618
1619/**
1620 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1621 * @basej:	base time jiffies
1622 * @basem:	base time clock monotonic
1623 *
1624 * Returns the tick aligned clock monotonic time of the next pending
1625 * timer or KTIME_MAX if no timer is pending.
1626 */
1627u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1628{
1629	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1630	u64 expires = KTIME_MAX;
1631	unsigned long nextevt;
1632	bool is_max_delta;
1633
1634	/*
1635	 * Pretend that there is no timer pending if the cpu is offline.
1636	 * Possible pending timers will be migrated later to an active cpu.
1637	 */
1638	if (cpu_is_offline(smp_processor_id()))
1639		return expires;
1640
1641	raw_spin_lock(&base->lock);
1642	if (base->next_expiry_recalc)
1643		base->next_expiry = __next_timer_interrupt(base);
1644	nextevt = base->next_expiry;
1645	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1646
1647	/*
1648	 * We have a fresh next event. Check whether we can forward the
1649	 * base. We can only do that when @basej is past base->clk
1650	 * otherwise we might rewind base->clk.
1651	 */
1652	if (time_after(basej, base->clk)) {
1653		if (time_after(nextevt, basej))
1654			base->clk = basej;
1655		else if (time_after(nextevt, base->clk))
1656			base->clk = nextevt;
1657	}
1658
1659	if (time_before_eq(nextevt, basej)) {
1660		expires = basem;
1661		base->is_idle = false;
1662	} else {
1663		if (!is_max_delta)
1664			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1665		/*
1666		 * If we expect to sleep more than a tick, mark the base idle.
1667		 * Also the tick is stopped so any added timer must forward
1668		 * the base clk itself to keep granularity small. This idle
1669		 * logic is only maintained for the BASE_STD base, deferrable
1670		 * timers may still see large granularity skew (by design).
1671		 */
1672		if ((expires - basem) > TICK_NSEC)
1673			base->is_idle = true;
1674	}
1675	raw_spin_unlock(&base->lock);
1676
1677	return cmp_next_hrtimer_event(basem, expires);
1678}
1679
1680/**
1681 * timer_clear_idle - Clear the idle state of the timer base
1682 *
1683 * Called with interrupts disabled
1684 */
1685void timer_clear_idle(void)
1686{
1687	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1688
1689	/*
1690	 * We do this unlocked. The worst outcome is a remote enqueue sending
1691	 * a pointless IPI, but taking the lock would just make the window for
1692	 * sending the IPI a few instructions smaller for the cost of taking
1693	 * the lock in the exit from idle path.
1694	 */
1695	base->is_idle = false;
1696}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697#endif
1698
1699/*
1700 * Called from the timer interrupt handler to charge one tick to the current
1701 * process.  user_tick is 1 if the tick is user time, 0 for system.
1702 */
1703void update_process_times(int user_tick)
1704{
1705	struct task_struct *p = current;
1706
1707	/* Note: this timer irq context must be accounted for as well. */
1708	account_process_tick(p, user_tick);
1709	run_local_timers();
1710	rcu_sched_clock_irq(user_tick);
1711#ifdef CONFIG_IRQ_WORK
1712	if (in_irq())
1713		irq_work_tick();
1714#endif
1715	scheduler_tick();
1716	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1717		run_posix_cpu_timers();
1718
1719	/* The current CPU might make use of net randoms without receiving IRQs
1720	 * to renew them often enough. Let's update the net_rand_state from a
1721	 * non-constant value that's not affine to the number of calls to make
1722	 * sure it's updated when there's some activity (we don't care in idle).
1723	 */
1724	this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
1725}
1726
1727/**
1728 * __run_timers - run all expired timers (if any) on this CPU.
1729 * @base: the timer vector to be processed.
1730 */
1731static inline void __run_timers(struct timer_base *base)
1732{
1733	struct hlist_head heads[LVL_DEPTH];
1734	int levels;
1735
1736	if (time_before(jiffies, base->next_expiry))
1737		return;
1738
1739	timer_base_lock_expiry(base);
1740	raw_spin_lock_irq(&base->lock);
 
1741
1742	while (time_after_eq(jiffies, base->clk) &&
1743	       time_after_eq(jiffies, base->next_expiry)) {
1744		levels = collect_expired_timers(base, heads);
1745		/*
1746		 * The only possible reason for not finding any expired
1747		 * timer at this clk is that all matching timers have been
1748		 * dequeued.
1749		 */
1750		WARN_ON_ONCE(!levels && !base->next_expiry_recalc);
1751		base->clk++;
1752		base->next_expiry = __next_timer_interrupt(base);
1753
1754		while (levels--)
1755			expire_timers(base, heads + levels);
1756	}
1757	raw_spin_unlock_irq(&base->lock);
1758	timer_base_unlock_expiry(base);
1759}
1760
1761/*
1762 * This function runs timers and the timer-tq in bottom half context.
1763 */
1764static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1765{
1766	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1767
1768	__run_timers(base);
1769	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1770		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1771}
1772
1773/*
1774 * Called by the local, per-CPU timer interrupt on SMP.
1775 */
1776void run_local_timers(void)
1777{
1778	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1779
1780	hrtimer_run_queues();
1781	/* Raise the softirq only if required. */
1782	if (time_before(jiffies, base->next_expiry)) {
1783		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1784			return;
1785		/* CPU is awake, so check the deferrable base. */
1786		base++;
1787		if (time_before(jiffies, base->next_expiry))
1788			return;
1789	}
1790	raise_softirq(TIMER_SOFTIRQ);
1791}
1792
1793/*
1794 * Since schedule_timeout()'s timer is defined on the stack, it must store
1795 * the target task on the stack as well.
1796 */
1797struct process_timer {
1798	struct timer_list timer;
1799	struct task_struct *task;
1800};
1801
1802static void process_timeout(struct timer_list *t)
1803{
1804	struct process_timer *timeout = from_timer(timeout, t, timer);
1805
1806	wake_up_process(timeout->task);
1807}
1808
1809/**
1810 * schedule_timeout - sleep until timeout
1811 * @timeout: timeout value in jiffies
1812 *
1813 * Make the current task sleep until @timeout jiffies have elapsed.
1814 * The function behavior depends on the current task state
1815 * (see also set_current_state() description):
1816 *
1817 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
1818 * at all. That happens because sched_submit_work() does nothing for
1819 * tasks in %TASK_RUNNING state.
1820 *
1821 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1822 * pass before the routine returns unless the current task is explicitly
1823 * woken up, (e.g. by wake_up_process()).
1824 *
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task or the current task is explicitly woken
1827 * up.
1828 *
1829 * The current task state is guaranteed to be %TASK_RUNNING when this
1830 * routine returns.
1831 *
1832 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1833 * the CPU away without a bound on the timeout. In this case the return
1834 * value will be %MAX_SCHEDULE_TIMEOUT.
1835 *
1836 * Returns 0 when the timer has expired otherwise the remaining time in
1837 * jiffies will be returned. In all cases the return value is guaranteed
1838 * to be non-negative.
1839 */
1840signed long __sched schedule_timeout(signed long timeout)
1841{
1842	struct process_timer timer;
1843	unsigned long expire;
1844
1845	switch (timeout)
1846	{
1847	case MAX_SCHEDULE_TIMEOUT:
1848		/*
1849		 * These two special cases are useful to be comfortable
1850		 * in the caller. Nothing more. We could take
1851		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1852		 * but I' d like to return a valid offset (>=0) to allow
1853		 * the caller to do everything it want with the retval.
1854		 */
1855		schedule();
1856		goto out;
1857	default:
1858		/*
1859		 * Another bit of PARANOID. Note that the retval will be
1860		 * 0 since no piece of kernel is supposed to do a check
1861		 * for a negative retval of schedule_timeout() (since it
1862		 * should never happens anyway). You just have the printk()
1863		 * that will tell you if something is gone wrong and where.
1864		 */
1865		if (timeout < 0) {
1866			printk(KERN_ERR "schedule_timeout: wrong timeout "
1867				"value %lx\n", timeout);
1868			dump_stack();
1869			current->state = TASK_RUNNING;
1870			goto out;
1871		}
1872	}
1873
1874	expire = timeout + jiffies;
1875
1876	timer.task = current;
1877	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1878	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
1879	schedule();
1880	del_singleshot_timer_sync(&timer.timer);
1881
1882	/* Remove the timer from the object tracker */
1883	destroy_timer_on_stack(&timer.timer);
1884
1885	timeout = expire - jiffies;
1886
1887 out:
1888	return timeout < 0 ? 0 : timeout;
1889}
1890EXPORT_SYMBOL(schedule_timeout);
1891
1892/*
1893 * We can use __set_current_state() here because schedule_timeout() calls
1894 * schedule() unconditionally.
1895 */
1896signed long __sched schedule_timeout_interruptible(signed long timeout)
1897{
1898	__set_current_state(TASK_INTERRUPTIBLE);
1899	return schedule_timeout(timeout);
1900}
1901EXPORT_SYMBOL(schedule_timeout_interruptible);
1902
1903signed long __sched schedule_timeout_killable(signed long timeout)
1904{
1905	__set_current_state(TASK_KILLABLE);
1906	return schedule_timeout(timeout);
1907}
1908EXPORT_SYMBOL(schedule_timeout_killable);
1909
1910signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1911{
1912	__set_current_state(TASK_UNINTERRUPTIBLE);
1913	return schedule_timeout(timeout);
1914}
1915EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1916
1917/*
1918 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1919 * to load average.
1920 */
1921signed long __sched schedule_timeout_idle(signed long timeout)
1922{
1923	__set_current_state(TASK_IDLE);
1924	return schedule_timeout(timeout);
1925}
1926EXPORT_SYMBOL(schedule_timeout_idle);
1927
1928#ifdef CONFIG_HOTPLUG_CPU
1929static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1930{
1931	struct timer_list *timer;
1932	int cpu = new_base->cpu;
1933
1934	while (!hlist_empty(head)) {
1935		timer = hlist_entry(head->first, struct timer_list, entry);
1936		detach_timer(timer, false);
1937		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1938		internal_add_timer(new_base, timer);
1939	}
1940}
1941
1942int timers_prepare_cpu(unsigned int cpu)
1943{
1944	struct timer_base *base;
1945	int b;
1946
1947	for (b = 0; b < NR_BASES; b++) {
1948		base = per_cpu_ptr(&timer_bases[b], cpu);
1949		base->clk = jiffies;
1950		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1951		base->is_idle = false;
1952	}
1953	return 0;
1954}
1955
1956int timers_dead_cpu(unsigned int cpu)
1957{
1958	struct timer_base *old_base;
1959	struct timer_base *new_base;
1960	int b, i;
1961
1962	BUG_ON(cpu_online(cpu));
1963
1964	for (b = 0; b < NR_BASES; b++) {
1965		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1966		new_base = get_cpu_ptr(&timer_bases[b]);
1967		/*
1968		 * The caller is globally serialized and nobody else
1969		 * takes two locks at once, deadlock is not possible.
1970		 */
1971		raw_spin_lock_irq(&new_base->lock);
1972		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1973
1974		/*
1975		 * The current CPUs base clock might be stale. Update it
1976		 * before moving the timers over.
1977		 */
1978		forward_timer_base(new_base);
1979
1980		BUG_ON(old_base->running_timer);
1981
1982		for (i = 0; i < WHEEL_SIZE; i++)
1983			migrate_timer_list(new_base, old_base->vectors + i);
1984
1985		raw_spin_unlock(&old_base->lock);
1986		raw_spin_unlock_irq(&new_base->lock);
1987		put_cpu_ptr(&timer_bases);
1988	}
1989	return 0;
1990}
1991
1992#endif /* CONFIG_HOTPLUG_CPU */
1993
1994static void __init init_timer_cpu(int cpu)
1995{
1996	struct timer_base *base;
1997	int i;
1998
1999	for (i = 0; i < NR_BASES; i++) {
2000		base = per_cpu_ptr(&timer_bases[i], cpu);
2001		base->cpu = cpu;
2002		raw_spin_lock_init(&base->lock);
2003		base->clk = jiffies;
2004		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2005		timer_base_init_expiry_lock(base);
2006	}
2007}
2008
2009static void __init init_timer_cpus(void)
2010{
2011	int cpu;
2012
2013	for_each_possible_cpu(cpu)
2014		init_timer_cpu(cpu);
2015}
2016
2017void __init init_timers(void)
2018{
2019	init_timer_cpus();
2020	posix_cputimers_init_work();
2021	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2022}
2023
2024/**
2025 * msleep - sleep safely even with waitqueue interruptions
2026 * @msecs: Time in milliseconds to sleep for
2027 */
2028void msleep(unsigned int msecs)
2029{
2030	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2031
2032	while (timeout)
2033		timeout = schedule_timeout_uninterruptible(timeout);
2034}
2035
2036EXPORT_SYMBOL(msleep);
2037
2038/**
2039 * msleep_interruptible - sleep waiting for signals
2040 * @msecs: Time in milliseconds to sleep for
2041 */
2042unsigned long msleep_interruptible(unsigned int msecs)
2043{
2044	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2045
2046	while (timeout && !signal_pending(current))
2047		timeout = schedule_timeout_interruptible(timeout);
2048	return jiffies_to_msecs(timeout);
2049}
2050
2051EXPORT_SYMBOL(msleep_interruptible);
2052
2053/**
2054 * usleep_range - Sleep for an approximate time
2055 * @min: Minimum time in usecs to sleep
2056 * @max: Maximum time in usecs to sleep
2057 *
2058 * In non-atomic context where the exact wakeup time is flexible, use
2059 * usleep_range() instead of udelay().  The sleep improves responsiveness
2060 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2061 * power usage by allowing hrtimers to take advantage of an already-
2062 * scheduled interrupt instead of scheduling a new one just for this sleep.
2063 */
2064void __sched usleep_range(unsigned long min, unsigned long max)
2065{
2066	ktime_t exp = ktime_add_us(ktime_get(), min);
2067	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2068
2069	for (;;) {
2070		__set_current_state(TASK_UNINTERRUPTIBLE);
2071		/* Do not return before the requested sleep time has elapsed */
2072		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2073			break;
2074	}
2075}
2076EXPORT_SYMBOL(usleep_range);