Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/time64.h>
  55#include <linux/backing-dev.h>
  56#include <linux/sort.h>
  57
  58#include <linux/uaccess.h>
  59#include <linux/atomic.h>
  60#include <linux/mutex.h>
  61#include <linux/cgroup.h>
  62#include <linux/wait.h>
  63
  64DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
  65
  66/* See "Frequency meter" comments, below. */
  67
  68struct fmeter {
  69	int cnt;		/* unprocessed events count */
  70	int val;		/* most recent output value */
  71	time64_t time;		/* clock (secs) when val computed */
  72	spinlock_t lock;	/* guards read or write of above */
  73};
  74
  75struct cpuset {
  76	struct cgroup_subsys_state css;
  77
  78	unsigned long flags;		/* "unsigned long" so bitops work */
  79
  80	/*
  81	 * On default hierarchy:
  82	 *
  83	 * The user-configured masks can only be changed by writing to
  84	 * cpuset.cpus and cpuset.mems, and won't be limited by the
  85	 * parent masks.
  86	 *
  87	 * The effective masks is the real masks that apply to the tasks
  88	 * in the cpuset. They may be changed if the configured masks are
  89	 * changed or hotplug happens.
  90	 *
  91	 * effective_mask == configured_mask & parent's effective_mask,
  92	 * and if it ends up empty, it will inherit the parent's mask.
  93	 *
  94	 *
  95	 * On legacy hierachy:
  96	 *
  97	 * The user-configured masks are always the same with effective masks.
  98	 */
  99
 100	/* user-configured CPUs and Memory Nodes allow to tasks */
 101	cpumask_var_t cpus_allowed;
 102	nodemask_t mems_allowed;
 103
 104	/* effective CPUs and Memory Nodes allow to tasks */
 105	cpumask_var_t effective_cpus;
 106	nodemask_t effective_mems;
 107
 108	/*
 109	 * This is old Memory Nodes tasks took on.
 110	 *
 111	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 112	 * - A new cpuset's old_mems_allowed is initialized when some
 113	 *   task is moved into it.
 114	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 115	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
 116	 *   then old_mems_allowed is updated to mems_allowed.
 117	 */
 118	nodemask_t old_mems_allowed;
 119
 120	struct fmeter fmeter;		/* memory_pressure filter */
 121
 122	/*
 123	 * Tasks are being attached to this cpuset.  Used to prevent
 124	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 125	 */
 126	int attach_in_progress;
 127
 128	/* partition number for rebuild_sched_domains() */
 129	int pn;
 130
 131	/* for custom sched domain */
 132	int relax_domain_level;
 133};
 134
 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 136{
 137	return css ? container_of(css, struct cpuset, css) : NULL;
 138}
 139
 140/* Retrieve the cpuset for a task */
 141static inline struct cpuset *task_cs(struct task_struct *task)
 142{
 143	return css_cs(task_css(task, cpuset_cgrp_id));
 144}
 145
 146static inline struct cpuset *parent_cs(struct cpuset *cs)
 147{
 148	return css_cs(cs->css.parent);
 149}
 150
 151#ifdef CONFIG_NUMA
 152static inline bool task_has_mempolicy(struct task_struct *task)
 153{
 154	return task->mempolicy;
 155}
 156#else
 157static inline bool task_has_mempolicy(struct task_struct *task)
 158{
 159	return false;
 160}
 161#endif
 162
 163
 164/* bits in struct cpuset flags field */
 165typedef enum {
 166	CS_ONLINE,
 167	CS_CPU_EXCLUSIVE,
 168	CS_MEM_EXCLUSIVE,
 169	CS_MEM_HARDWALL,
 170	CS_MEMORY_MIGRATE,
 171	CS_SCHED_LOAD_BALANCE,
 172	CS_SPREAD_PAGE,
 173	CS_SPREAD_SLAB,
 174} cpuset_flagbits_t;
 175
 176/* convenient tests for these bits */
 177static inline bool is_cpuset_online(const struct cpuset *cs)
 178{
 179	return test_bit(CS_ONLINE, &cs->flags);
 180}
 181
 182static inline int is_cpu_exclusive(const struct cpuset *cs)
 183{
 184	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 185}
 186
 187static inline int is_mem_exclusive(const struct cpuset *cs)
 188{
 189	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 190}
 191
 192static inline int is_mem_hardwall(const struct cpuset *cs)
 193{
 194	return test_bit(CS_MEM_HARDWALL, &cs->flags);
 195}
 196
 197static inline int is_sched_load_balance(const struct cpuset *cs)
 198{
 199	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 200}
 201
 202static inline int is_memory_migrate(const struct cpuset *cs)
 203{
 204	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 205}
 206
 207static inline int is_spread_page(const struct cpuset *cs)
 208{
 209	return test_bit(CS_SPREAD_PAGE, &cs->flags);
 210}
 211
 212static inline int is_spread_slab(const struct cpuset *cs)
 213{
 214	return test_bit(CS_SPREAD_SLAB, &cs->flags);
 215}
 216
 217static struct cpuset top_cpuset = {
 218	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 219		  (1 << CS_MEM_EXCLUSIVE)),
 220};
 221
 222/**
 223 * cpuset_for_each_child - traverse online children of a cpuset
 224 * @child_cs: loop cursor pointing to the current child
 225 * @pos_css: used for iteration
 226 * @parent_cs: target cpuset to walk children of
 227 *
 228 * Walk @child_cs through the online children of @parent_cs.  Must be used
 229 * with RCU read locked.
 230 */
 231#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
 232	css_for_each_child((pos_css), &(parent_cs)->css)		\
 233		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 234
 235/**
 236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 237 * @des_cs: loop cursor pointing to the current descendant
 238 * @pos_css: used for iteration
 239 * @root_cs: target cpuset to walk ancestor of
 240 *
 241 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 242 * with RCU read locked.  The caller may modify @pos_css by calling
 243 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 244 * iteration and the first node to be visited.
 245 */
 246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
 247	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
 248		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 249
 250/*
 251 * There are two global locks guarding cpuset structures - cpuset_mutex and
 252 * callback_lock. We also require taking task_lock() when dereferencing a
 253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 254 * comment.
 255 *
 256 * A task must hold both locks to modify cpusets.  If a task holds
 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 258 * is the only task able to also acquire callback_lock and be able to
 259 * modify cpusets.  It can perform various checks on the cpuset structure
 260 * first, knowing nothing will change.  It can also allocate memory while
 261 * just holding cpuset_mutex.  While it is performing these checks, various
 262 * callback routines can briefly acquire callback_lock to query cpusets.
 263 * Once it is ready to make the changes, it takes callback_lock, blocking
 264 * everyone else.
 265 *
 266 * Calls to the kernel memory allocator can not be made while holding
 267 * callback_lock, as that would risk double tripping on callback_lock
 268 * from one of the callbacks into the cpuset code from within
 269 * __alloc_pages().
 270 *
 271 * If a task is only holding callback_lock, then it has read-only
 272 * access to cpusets.
 273 *
 274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 275 * by other task, we use alloc_lock in the task_struct fields to protect
 276 * them.
 277 *
 278 * The cpuset_common_file_read() handlers only hold callback_lock across
 279 * small pieces of code, such as when reading out possibly multi-word
 280 * cpumasks and nodemasks.
 281 *
 282 * Accessing a task's cpuset should be done in accordance with the
 283 * guidelines for accessing subsystem state in kernel/cgroup.c
 284 */
 285
 286static DEFINE_MUTEX(cpuset_mutex);
 287static DEFINE_SPINLOCK(callback_lock);
 288
 289static struct workqueue_struct *cpuset_migrate_mm_wq;
 290
 291/*
 292 * CPU / memory hotplug is handled asynchronously.
 293 */
 294static void cpuset_hotplug_workfn(struct work_struct *work);
 295static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 296
 297static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 298
 299/*
 300 * This is ugly, but preserves the userspace API for existing cpuset
 301 * users. If someone tries to mount the "cpuset" filesystem, we
 302 * silently switch it to mount "cgroup" instead
 303 */
 304static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 305			 int flags, const char *unused_dev_name, void *data)
 306{
 307	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 308	struct dentry *ret = ERR_PTR(-ENODEV);
 309	if (cgroup_fs) {
 310		char mountopts[] =
 311			"cpuset,noprefix,"
 312			"release_agent=/sbin/cpuset_release_agent";
 313		ret = cgroup_fs->mount(cgroup_fs, flags,
 314					   unused_dev_name, mountopts);
 315		put_filesystem(cgroup_fs);
 316	}
 317	return ret;
 318}
 319
 320static struct file_system_type cpuset_fs_type = {
 321	.name = "cpuset",
 322	.mount = cpuset_mount,
 323};
 324
 325/*
 326 * Return in pmask the portion of a cpusets's cpus_allowed that
 327 * are online.  If none are online, walk up the cpuset hierarchy
 328 * until we find one that does have some online cpus.
 329 *
 330 * One way or another, we guarantee to return some non-empty subset
 331 * of cpu_online_mask.
 332 *
 333 * Call with callback_lock or cpuset_mutex held.
 334 */
 335static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 336{
 337	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
 338		cs = parent_cs(cs);
 339		if (unlikely(!cs)) {
 340			/*
 341			 * The top cpuset doesn't have any online cpu as a
 342			 * consequence of a race between cpuset_hotplug_work
 343			 * and cpu hotplug notifier.  But we know the top
 344			 * cpuset's effective_cpus is on its way to to be
 345			 * identical to cpu_online_mask.
 346			 */
 347			cpumask_copy(pmask, cpu_online_mask);
 348			return;
 349		}
 350	}
 351	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 352}
 353
 354/*
 355 * Return in *pmask the portion of a cpusets's mems_allowed that
 356 * are online, with memory.  If none are online with memory, walk
 357 * up the cpuset hierarchy until we find one that does have some
 358 * online mems.  The top cpuset always has some mems online.
 359 *
 360 * One way or another, we guarantee to return some non-empty subset
 361 * of node_states[N_MEMORY].
 362 *
 363 * Call with callback_lock or cpuset_mutex held.
 364 */
 365static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 366{
 367	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 368		cs = parent_cs(cs);
 369	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 370}
 371
 372/*
 373 * update task's spread flag if cpuset's page/slab spread flag is set
 374 *
 375 * Call with callback_lock or cpuset_mutex held.
 376 */
 377static void cpuset_update_task_spread_flag(struct cpuset *cs,
 378					struct task_struct *tsk)
 379{
 380	if (is_spread_page(cs))
 381		task_set_spread_page(tsk);
 382	else
 383		task_clear_spread_page(tsk);
 384
 385	if (is_spread_slab(cs))
 386		task_set_spread_slab(tsk);
 387	else
 388		task_clear_spread_slab(tsk);
 389}
 390
 391/*
 392 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 393 *
 394 * One cpuset is a subset of another if all its allowed CPUs and
 395 * Memory Nodes are a subset of the other, and its exclusive flags
 396 * are only set if the other's are set.  Call holding cpuset_mutex.
 397 */
 398
 399static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 400{
 401	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 402		nodes_subset(p->mems_allowed, q->mems_allowed) &&
 403		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 404		is_mem_exclusive(p) <= is_mem_exclusive(q);
 405}
 406
 407/**
 408 * alloc_trial_cpuset - allocate a trial cpuset
 409 * @cs: the cpuset that the trial cpuset duplicates
 410 */
 411static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 412{
 413	struct cpuset *trial;
 414
 415	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 416	if (!trial)
 417		return NULL;
 418
 419	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
 420		goto free_cs;
 421	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
 422		goto free_cpus;
 423
 424	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 425	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 426	return trial;
 427
 428free_cpus:
 429	free_cpumask_var(trial->cpus_allowed);
 430free_cs:
 431	kfree(trial);
 432	return NULL;
 433}
 434
 435/**
 436 * free_trial_cpuset - free the trial cpuset
 437 * @trial: the trial cpuset to be freed
 438 */
 439static void free_trial_cpuset(struct cpuset *trial)
 440{
 441	free_cpumask_var(trial->effective_cpus);
 442	free_cpumask_var(trial->cpus_allowed);
 443	kfree(trial);
 444}
 445
 446/*
 447 * validate_change() - Used to validate that any proposed cpuset change
 448 *		       follows the structural rules for cpusets.
 449 *
 450 * If we replaced the flag and mask values of the current cpuset
 451 * (cur) with those values in the trial cpuset (trial), would
 452 * our various subset and exclusive rules still be valid?  Presumes
 453 * cpuset_mutex held.
 454 *
 455 * 'cur' is the address of an actual, in-use cpuset.  Operations
 456 * such as list traversal that depend on the actual address of the
 457 * cpuset in the list must use cur below, not trial.
 458 *
 459 * 'trial' is the address of bulk structure copy of cur, with
 460 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 461 * or flags changed to new, trial values.
 462 *
 463 * Return 0 if valid, -errno if not.
 464 */
 465
 466static int validate_change(struct cpuset *cur, struct cpuset *trial)
 467{
 468	struct cgroup_subsys_state *css;
 469	struct cpuset *c, *par;
 470	int ret;
 471
 472	rcu_read_lock();
 473
 474	/* Each of our child cpusets must be a subset of us */
 475	ret = -EBUSY;
 476	cpuset_for_each_child(c, css, cur)
 477		if (!is_cpuset_subset(c, trial))
 478			goto out;
 479
 480	/* Remaining checks don't apply to root cpuset */
 481	ret = 0;
 482	if (cur == &top_cpuset)
 483		goto out;
 484
 485	par = parent_cs(cur);
 486
 487	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
 488	ret = -EACCES;
 489	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 490	    !is_cpuset_subset(trial, par))
 491		goto out;
 492
 493	/*
 494	 * If either I or some sibling (!= me) is exclusive, we can't
 495	 * overlap
 496	 */
 497	ret = -EINVAL;
 498	cpuset_for_each_child(c, css, par) {
 499		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 500		    c != cur &&
 501		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 502			goto out;
 503		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 504		    c != cur &&
 505		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 506			goto out;
 507	}
 508
 509	/*
 510	 * Cpusets with tasks - existing or newly being attached - can't
 511	 * be changed to have empty cpus_allowed or mems_allowed.
 512	 */
 513	ret = -ENOSPC;
 514	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 515		if (!cpumask_empty(cur->cpus_allowed) &&
 516		    cpumask_empty(trial->cpus_allowed))
 517			goto out;
 518		if (!nodes_empty(cur->mems_allowed) &&
 519		    nodes_empty(trial->mems_allowed))
 520			goto out;
 521	}
 522
 523	/*
 524	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
 525	 * tasks.
 526	 */
 527	ret = -EBUSY;
 528	if (is_cpu_exclusive(cur) &&
 529	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 530				       trial->cpus_allowed))
 531		goto out;
 532
 533	ret = 0;
 534out:
 535	rcu_read_unlock();
 536	return ret;
 537}
 538
 539#ifdef CONFIG_SMP
 540/*
 541 * Helper routine for generate_sched_domains().
 542 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 543 */
 544static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 545{
 546	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 547}
 548
 549static void
 550update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 551{
 552	if (dattr->relax_domain_level < c->relax_domain_level)
 553		dattr->relax_domain_level = c->relax_domain_level;
 554	return;
 555}
 556
 557static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 558				    struct cpuset *root_cs)
 559{
 560	struct cpuset *cp;
 561	struct cgroup_subsys_state *pos_css;
 562
 563	rcu_read_lock();
 564	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 565		/* skip the whole subtree if @cp doesn't have any CPU */
 566		if (cpumask_empty(cp->cpus_allowed)) {
 567			pos_css = css_rightmost_descendant(pos_css);
 568			continue;
 569		}
 570
 571		if (is_sched_load_balance(cp))
 572			update_domain_attr(dattr, cp);
 573	}
 574	rcu_read_unlock();
 575}
 576
 577/*
 578 * generate_sched_domains()
 579 *
 580 * This function builds a partial partition of the systems CPUs
 581 * A 'partial partition' is a set of non-overlapping subsets whose
 582 * union is a subset of that set.
 583 * The output of this function needs to be passed to kernel/sched/core.c
 584 * partition_sched_domains() routine, which will rebuild the scheduler's
 585 * load balancing domains (sched domains) as specified by that partial
 586 * partition.
 587 *
 588 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 589 * for a background explanation of this.
 590 *
 591 * Does not return errors, on the theory that the callers of this
 592 * routine would rather not worry about failures to rebuild sched
 593 * domains when operating in the severe memory shortage situations
 594 * that could cause allocation failures below.
 595 *
 596 * Must be called with cpuset_mutex held.
 597 *
 598 * The three key local variables below are:
 599 *    q  - a linked-list queue of cpuset pointers, used to implement a
 600 *	   top-down scan of all cpusets.  This scan loads a pointer
 601 *	   to each cpuset marked is_sched_load_balance into the
 602 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 603 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 604 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 605 *	   that need to be load balanced, for convenient iterative
 606 *	   access by the subsequent code that finds the best partition,
 607 *	   i.e the set of domains (subsets) of CPUs such that the
 608 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 609 *	   is a subset of one of these domains, while there are as
 610 *	   many such domains as possible, each as small as possible.
 611 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 612 *	   the kernel/sched/core.c routine partition_sched_domains() in a
 613 *	   convenient format, that can be easily compared to the prior
 614 *	   value to determine what partition elements (sched domains)
 615 *	   were changed (added or removed.)
 616 *
 617 * Finding the best partition (set of domains):
 618 *	The triple nested loops below over i, j, k scan over the
 619 *	load balanced cpusets (using the array of cpuset pointers in
 620 *	csa[]) looking for pairs of cpusets that have overlapping
 621 *	cpus_allowed, but which don't have the same 'pn' partition
 622 *	number and gives them in the same partition number.  It keeps
 623 *	looping on the 'restart' label until it can no longer find
 624 *	any such pairs.
 625 *
 626 *	The union of the cpus_allowed masks from the set of
 627 *	all cpusets having the same 'pn' value then form the one
 628 *	element of the partition (one sched domain) to be passed to
 629 *	partition_sched_domains().
 630 */
 631static int generate_sched_domains(cpumask_var_t **domains,
 632			struct sched_domain_attr **attributes)
 633{
 634	struct cpuset *cp;	/* scans q */
 635	struct cpuset **csa;	/* array of all cpuset ptrs */
 636	int csn;		/* how many cpuset ptrs in csa so far */
 637	int i, j, k;		/* indices for partition finding loops */
 638	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 639	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
 640	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 641	int ndoms = 0;		/* number of sched domains in result */
 642	int nslot;		/* next empty doms[] struct cpumask slot */
 643	struct cgroup_subsys_state *pos_css;
 644
 645	doms = NULL;
 646	dattr = NULL;
 647	csa = NULL;
 648
 649	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
 650		goto done;
 651	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
 652
 653	/* Special case for the 99% of systems with one, full, sched domain */
 654	if (is_sched_load_balance(&top_cpuset)) {
 655		ndoms = 1;
 656		doms = alloc_sched_domains(ndoms);
 657		if (!doms)
 658			goto done;
 659
 660		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 661		if (dattr) {
 662			*dattr = SD_ATTR_INIT;
 663			update_domain_attr_tree(dattr, &top_cpuset);
 664		}
 665		cpumask_and(doms[0], top_cpuset.effective_cpus,
 666				     non_isolated_cpus);
 667
 668		goto done;
 669	}
 670
 671	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
 672	if (!csa)
 673		goto done;
 674	csn = 0;
 675
 676	rcu_read_lock();
 677	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 678		if (cp == &top_cpuset)
 679			continue;
 680		/*
 681		 * Continue traversing beyond @cp iff @cp has some CPUs and
 682		 * isn't load balancing.  The former is obvious.  The
 683		 * latter: All child cpusets contain a subset of the
 684		 * parent's cpus, so just skip them, and then we call
 685		 * update_domain_attr_tree() to calc relax_domain_level of
 686		 * the corresponding sched domain.
 687		 */
 688		if (!cpumask_empty(cp->cpus_allowed) &&
 689		    !(is_sched_load_balance(cp) &&
 690		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
 691			continue;
 692
 693		if (is_sched_load_balance(cp))
 694			csa[csn++] = cp;
 695
 696		/* skip @cp's subtree */
 697		pos_css = css_rightmost_descendant(pos_css);
 698	}
 699	rcu_read_unlock();
 700
 701	for (i = 0; i < csn; i++)
 702		csa[i]->pn = i;
 703	ndoms = csn;
 704
 705restart:
 706	/* Find the best partition (set of sched domains) */
 707	for (i = 0; i < csn; i++) {
 708		struct cpuset *a = csa[i];
 709		int apn = a->pn;
 710
 711		for (j = 0; j < csn; j++) {
 712			struct cpuset *b = csa[j];
 713			int bpn = b->pn;
 714
 715			if (apn != bpn && cpusets_overlap(a, b)) {
 716				for (k = 0; k < csn; k++) {
 717					struct cpuset *c = csa[k];
 718
 719					if (c->pn == bpn)
 720						c->pn = apn;
 721				}
 722				ndoms--;	/* one less element */
 723				goto restart;
 724			}
 725		}
 726	}
 727
 728	/*
 729	 * Now we know how many domains to create.
 730	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 731	 */
 732	doms = alloc_sched_domains(ndoms);
 733	if (!doms)
 734		goto done;
 735
 736	/*
 737	 * The rest of the code, including the scheduler, can deal with
 738	 * dattr==NULL case. No need to abort if alloc fails.
 739	 */
 740	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 741
 742	for (nslot = 0, i = 0; i < csn; i++) {
 743		struct cpuset *a = csa[i];
 744		struct cpumask *dp;
 745		int apn = a->pn;
 746
 747		if (apn < 0) {
 748			/* Skip completed partitions */
 749			continue;
 750		}
 751
 752		dp = doms[nslot];
 753
 754		if (nslot == ndoms) {
 755			static int warnings = 10;
 756			if (warnings) {
 757				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 758					nslot, ndoms, csn, i, apn);
 759				warnings--;
 760			}
 761			continue;
 762		}
 763
 764		cpumask_clear(dp);
 765		if (dattr)
 766			*(dattr + nslot) = SD_ATTR_INIT;
 767		for (j = i; j < csn; j++) {
 768			struct cpuset *b = csa[j];
 769
 770			if (apn == b->pn) {
 771				cpumask_or(dp, dp, b->effective_cpus);
 772				cpumask_and(dp, dp, non_isolated_cpus);
 773				if (dattr)
 774					update_domain_attr_tree(dattr + nslot, b);
 775
 776				/* Done with this partition */
 777				b->pn = -1;
 778			}
 779		}
 780		nslot++;
 781	}
 782	BUG_ON(nslot != ndoms);
 783
 784done:
 785	free_cpumask_var(non_isolated_cpus);
 786	kfree(csa);
 787
 788	/*
 789	 * Fallback to the default domain if kmalloc() failed.
 790	 * See comments in partition_sched_domains().
 791	 */
 792	if (doms == NULL)
 793		ndoms = 1;
 794
 795	*domains    = doms;
 796	*attributes = dattr;
 797	return ndoms;
 798}
 799
 800/*
 801 * Rebuild scheduler domains.
 802 *
 803 * If the flag 'sched_load_balance' of any cpuset with non-empty
 804 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 805 * which has that flag enabled, or if any cpuset with a non-empty
 806 * 'cpus' is removed, then call this routine to rebuild the
 807 * scheduler's dynamic sched domains.
 808 *
 809 * Call with cpuset_mutex held.  Takes get_online_cpus().
 810 */
 811static void rebuild_sched_domains_locked(void)
 812{
 813	struct sched_domain_attr *attr;
 814	cpumask_var_t *doms;
 815	int ndoms;
 816
 817	lockdep_assert_held(&cpuset_mutex);
 818	get_online_cpus();
 819
 820	/*
 821	 * We have raced with CPU hotplug. Don't do anything to avoid
 822	 * passing doms with offlined cpu to partition_sched_domains().
 823	 * Anyways, hotplug work item will rebuild sched domains.
 824	 */
 825	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
 826		goto out;
 827
 828	/* Generate domain masks and attrs */
 829	ndoms = generate_sched_domains(&doms, &attr);
 830
 831	/* Have scheduler rebuild the domains */
 832	partition_sched_domains(ndoms, doms, attr);
 833out:
 834	put_online_cpus();
 835}
 836#else /* !CONFIG_SMP */
 837static void rebuild_sched_domains_locked(void)
 838{
 839}
 840#endif /* CONFIG_SMP */
 841
 842void rebuild_sched_domains(void)
 843{
 844	mutex_lock(&cpuset_mutex);
 845	rebuild_sched_domains_locked();
 846	mutex_unlock(&cpuset_mutex);
 847}
 848
 849/**
 850 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 851 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 852 *
 853 * Iterate through each task of @cs updating its cpus_allowed to the
 854 * effective cpuset's.  As this function is called with cpuset_mutex held,
 855 * cpuset membership stays stable.
 856 */
 857static void update_tasks_cpumask(struct cpuset *cs)
 858{
 859	struct css_task_iter it;
 860	struct task_struct *task;
 861
 862	css_task_iter_start(&cs->css, &it);
 863	while ((task = css_task_iter_next(&it)))
 864		set_cpus_allowed_ptr(task, cs->effective_cpus);
 865	css_task_iter_end(&it);
 866}
 867
 868/*
 869 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 870 * @cs: the cpuset to consider
 871 * @new_cpus: temp variable for calculating new effective_cpus
 872 *
 873 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 874 * and all its descendants need to be updated.
 875 *
 876 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
 877 *
 878 * Called with cpuset_mutex held
 879 */
 880static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
 881{
 882	struct cpuset *cp;
 883	struct cgroup_subsys_state *pos_css;
 884	bool need_rebuild_sched_domains = false;
 885
 886	rcu_read_lock();
 887	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 888		struct cpuset *parent = parent_cs(cp);
 889
 890		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
 891
 892		/*
 893		 * If it becomes empty, inherit the effective mask of the
 894		 * parent, which is guaranteed to have some CPUs.
 895		 */
 896		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 897		    cpumask_empty(new_cpus))
 898			cpumask_copy(new_cpus, parent->effective_cpus);
 899
 900		/* Skip the whole subtree if the cpumask remains the same. */
 901		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
 902			pos_css = css_rightmost_descendant(pos_css);
 903			continue;
 904		}
 905
 906		if (!css_tryget_online(&cp->css))
 907			continue;
 908		rcu_read_unlock();
 909
 910		spin_lock_irq(&callback_lock);
 911		cpumask_copy(cp->effective_cpus, new_cpus);
 912		spin_unlock_irq(&callback_lock);
 913
 914		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 915			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
 916
 917		update_tasks_cpumask(cp);
 918
 919		/*
 920		 * If the effective cpumask of any non-empty cpuset is changed,
 921		 * we need to rebuild sched domains.
 922		 */
 923		if (!cpumask_empty(cp->cpus_allowed) &&
 924		    is_sched_load_balance(cp))
 925			need_rebuild_sched_domains = true;
 926
 927		rcu_read_lock();
 928		css_put(&cp->css);
 929	}
 930	rcu_read_unlock();
 931
 932	if (need_rebuild_sched_domains)
 933		rebuild_sched_domains_locked();
 934}
 935
 936/**
 937 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 938 * @cs: the cpuset to consider
 939 * @trialcs: trial cpuset
 940 * @buf: buffer of cpu numbers written to this cpuset
 941 */
 942static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 943			  const char *buf)
 944{
 945	int retval;
 946
 947	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 948	if (cs == &top_cpuset)
 949		return -EACCES;
 950
 951	/*
 952	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
 953	 * Since cpulist_parse() fails on an empty mask, we special case
 954	 * that parsing.  The validate_change() call ensures that cpusets
 955	 * with tasks have cpus.
 956	 */
 957	if (!*buf) {
 958		cpumask_clear(trialcs->cpus_allowed);
 959	} else {
 960		retval = cpulist_parse(buf, trialcs->cpus_allowed);
 961		if (retval < 0)
 962			return retval;
 963
 964		if (!cpumask_subset(trialcs->cpus_allowed,
 965				    top_cpuset.cpus_allowed))
 966			return -EINVAL;
 967	}
 968
 969	/* Nothing to do if the cpus didn't change */
 970	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 971		return 0;
 972
 973	retval = validate_change(cs, trialcs);
 974	if (retval < 0)
 975		return retval;
 976
 977	spin_lock_irq(&callback_lock);
 978	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 979	spin_unlock_irq(&callback_lock);
 980
 981	/* use trialcs->cpus_allowed as a temp variable */
 982	update_cpumasks_hier(cs, trialcs->cpus_allowed);
 983	return 0;
 984}
 985
 986/*
 987 * Migrate memory region from one set of nodes to another.  This is
 988 * performed asynchronously as it can be called from process migration path
 989 * holding locks involved in process management.  All mm migrations are
 990 * performed in the queued order and can be waited for by flushing
 991 * cpuset_migrate_mm_wq.
 992 */
 993
 994struct cpuset_migrate_mm_work {
 995	struct work_struct	work;
 996	struct mm_struct	*mm;
 997	nodemask_t		from;
 998	nodemask_t		to;
 999};
1000
1001static void cpuset_migrate_mm_workfn(struct work_struct *work)
1002{
1003	struct cpuset_migrate_mm_work *mwork =
1004		container_of(work, struct cpuset_migrate_mm_work, work);
1005
1006	/* on a wq worker, no need to worry about %current's mems_allowed */
1007	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1008	mmput(mwork->mm);
1009	kfree(mwork);
1010}
1011
1012static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1013							const nodemask_t *to)
1014{
1015	struct cpuset_migrate_mm_work *mwork;
1016
1017	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1018	if (mwork) {
1019		mwork->mm = mm;
1020		mwork->from = *from;
1021		mwork->to = *to;
1022		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1023		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1024	} else {
1025		mmput(mm);
1026	}
1027}
1028
1029static void cpuset_post_attach(void)
1030{
1031	flush_workqueue(cpuset_migrate_mm_wq);
1032}
1033
1034/*
1035 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1036 * @tsk: the task to change
1037 * @newmems: new nodes that the task will be set
1038 *
1039 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1040 * we structure updates as setting all new allowed nodes, then clearing newly
1041 * disallowed ones.
1042 */
1043static void cpuset_change_task_nodemask(struct task_struct *tsk,
1044					nodemask_t *newmems)
1045{
1046	bool need_loop;
1047
1048	task_lock(tsk);
1049	/*
1050	 * Determine if a loop is necessary if another thread is doing
1051	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1052	 * tsk does not have a mempolicy, then an empty nodemask will not be
1053	 * possible when mems_allowed is larger than a word.
1054	 */
1055	need_loop = task_has_mempolicy(tsk) ||
1056			!nodes_intersects(*newmems, tsk->mems_allowed);
1057
1058	if (need_loop) {
1059		local_irq_disable();
1060		write_seqcount_begin(&tsk->mems_allowed_seq);
1061	}
1062
1063	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1064	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1065
1066	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1067	tsk->mems_allowed = *newmems;
1068
1069	if (need_loop) {
1070		write_seqcount_end(&tsk->mems_allowed_seq);
1071		local_irq_enable();
1072	}
1073
1074	task_unlock(tsk);
1075}
1076
1077static void *cpuset_being_rebound;
1078
1079/**
1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1082 *
1083 * Iterate through each task of @cs updating its mems_allowed to the
1084 * effective cpuset's.  As this function is called with cpuset_mutex held,
1085 * cpuset membership stays stable.
1086 */
1087static void update_tasks_nodemask(struct cpuset *cs)
1088{
1089	static nodemask_t newmems;	/* protected by cpuset_mutex */
1090	struct css_task_iter it;
1091	struct task_struct *task;
1092
1093	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1094
1095	guarantee_online_mems(cs, &newmems);
1096
1097	/*
1098	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1099	 * take while holding tasklist_lock.  Forks can happen - the
1100	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1101	 * and rebind their vma mempolicies too.  Because we still hold
1102	 * the global cpuset_mutex, we know that no other rebind effort
1103	 * will be contending for the global variable cpuset_being_rebound.
1104	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105	 * is idempotent.  Also migrate pages in each mm to new nodes.
1106	 */
1107	css_task_iter_start(&cs->css, &it);
1108	while ((task = css_task_iter_next(&it))) {
1109		struct mm_struct *mm;
1110		bool migrate;
1111
1112		cpuset_change_task_nodemask(task, &newmems);
1113
1114		mm = get_task_mm(task);
1115		if (!mm)
1116			continue;
1117
1118		migrate = is_memory_migrate(cs);
1119
1120		mpol_rebind_mm(mm, &cs->mems_allowed);
1121		if (migrate)
1122			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1123		else
1124			mmput(mm);
1125	}
1126	css_task_iter_end(&it);
1127
1128	/*
1129	 * All the tasks' nodemasks have been updated, update
1130	 * cs->old_mems_allowed.
1131	 */
1132	cs->old_mems_allowed = newmems;
1133
1134	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135	cpuset_being_rebound = NULL;
1136}
1137
1138/*
1139 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1140 * @cs: the cpuset to consider
1141 * @new_mems: a temp variable for calculating new effective_mems
1142 *
1143 * When configured nodemask is changed, the effective nodemasks of this cpuset
1144 * and all its descendants need to be updated.
1145 *
1146 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1147 *
1148 * Called with cpuset_mutex held
1149 */
1150static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1151{
1152	struct cpuset *cp;
1153	struct cgroup_subsys_state *pos_css;
1154
1155	rcu_read_lock();
1156	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1157		struct cpuset *parent = parent_cs(cp);
1158
1159		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1160
1161		/*
1162		 * If it becomes empty, inherit the effective mask of the
1163		 * parent, which is guaranteed to have some MEMs.
1164		 */
1165		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1166		    nodes_empty(*new_mems))
1167			*new_mems = parent->effective_mems;
1168
1169		/* Skip the whole subtree if the nodemask remains the same. */
1170		if (nodes_equal(*new_mems, cp->effective_mems)) {
1171			pos_css = css_rightmost_descendant(pos_css);
1172			continue;
1173		}
1174
1175		if (!css_tryget_online(&cp->css))
1176			continue;
1177		rcu_read_unlock();
1178
1179		spin_lock_irq(&callback_lock);
1180		cp->effective_mems = *new_mems;
1181		spin_unlock_irq(&callback_lock);
1182
1183		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1184			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1185
1186		update_tasks_nodemask(cp);
1187
1188		rcu_read_lock();
1189		css_put(&cp->css);
1190	}
1191	rcu_read_unlock();
1192}
1193
1194/*
1195 * Handle user request to change the 'mems' memory placement
1196 * of a cpuset.  Needs to validate the request, update the
1197 * cpusets mems_allowed, and for each task in the cpuset,
1198 * update mems_allowed and rebind task's mempolicy and any vma
1199 * mempolicies and if the cpuset is marked 'memory_migrate',
1200 * migrate the tasks pages to the new memory.
1201 *
1202 * Call with cpuset_mutex held. May take callback_lock during call.
1203 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1204 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1205 * their mempolicies to the cpusets new mems_allowed.
1206 */
1207static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1208			   const char *buf)
1209{
1210	int retval;
1211
1212	/*
1213	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1214	 * it's read-only
1215	 */
1216	if (cs == &top_cpuset) {
1217		retval = -EACCES;
1218		goto done;
1219	}
1220
1221	/*
1222	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1223	 * Since nodelist_parse() fails on an empty mask, we special case
1224	 * that parsing.  The validate_change() call ensures that cpusets
1225	 * with tasks have memory.
1226	 */
1227	if (!*buf) {
1228		nodes_clear(trialcs->mems_allowed);
1229	} else {
1230		retval = nodelist_parse(buf, trialcs->mems_allowed);
1231		if (retval < 0)
1232			goto done;
1233
1234		if (!nodes_subset(trialcs->mems_allowed,
1235				  top_cpuset.mems_allowed)) {
1236			retval = -EINVAL;
1237			goto done;
1238		}
1239	}
1240
1241	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1242		retval = 0;		/* Too easy - nothing to do */
1243		goto done;
1244	}
1245	retval = validate_change(cs, trialcs);
1246	if (retval < 0)
1247		goto done;
1248
1249	spin_lock_irq(&callback_lock);
1250	cs->mems_allowed = trialcs->mems_allowed;
1251	spin_unlock_irq(&callback_lock);
1252
1253	/* use trialcs->mems_allowed as a temp variable */
1254	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1255done:
1256	return retval;
1257}
1258
1259int current_cpuset_is_being_rebound(void)
1260{
1261	int ret;
1262
1263	rcu_read_lock();
1264	ret = task_cs(current) == cpuset_being_rebound;
1265	rcu_read_unlock();
1266
1267	return ret;
1268}
1269
1270static int update_relax_domain_level(struct cpuset *cs, s64 val)
1271{
1272#ifdef CONFIG_SMP
1273	if (val < -1 || val >= sched_domain_level_max)
1274		return -EINVAL;
1275#endif
1276
1277	if (val != cs->relax_domain_level) {
1278		cs->relax_domain_level = val;
1279		if (!cpumask_empty(cs->cpus_allowed) &&
1280		    is_sched_load_balance(cs))
1281			rebuild_sched_domains_locked();
1282	}
1283
1284	return 0;
1285}
1286
1287/**
1288 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1289 * @cs: the cpuset in which each task's spread flags needs to be changed
1290 *
1291 * Iterate through each task of @cs updating its spread flags.  As this
1292 * function is called with cpuset_mutex held, cpuset membership stays
1293 * stable.
1294 */
1295static void update_tasks_flags(struct cpuset *cs)
1296{
1297	struct css_task_iter it;
1298	struct task_struct *task;
1299
1300	css_task_iter_start(&cs->css, &it);
1301	while ((task = css_task_iter_next(&it)))
1302		cpuset_update_task_spread_flag(cs, task);
1303	css_task_iter_end(&it);
1304}
1305
1306/*
1307 * update_flag - read a 0 or a 1 in a file and update associated flag
1308 * bit:		the bit to update (see cpuset_flagbits_t)
1309 * cs:		the cpuset to update
1310 * turning_on: 	whether the flag is being set or cleared
1311 *
1312 * Call with cpuset_mutex held.
1313 */
1314
1315static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1316		       int turning_on)
1317{
1318	struct cpuset *trialcs;
1319	int balance_flag_changed;
1320	int spread_flag_changed;
1321	int err;
1322
1323	trialcs = alloc_trial_cpuset(cs);
1324	if (!trialcs)
1325		return -ENOMEM;
1326
1327	if (turning_on)
1328		set_bit(bit, &trialcs->flags);
1329	else
1330		clear_bit(bit, &trialcs->flags);
1331
1332	err = validate_change(cs, trialcs);
1333	if (err < 0)
1334		goto out;
1335
1336	balance_flag_changed = (is_sched_load_balance(cs) !=
1337				is_sched_load_balance(trialcs));
1338
1339	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1340			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1341
1342	spin_lock_irq(&callback_lock);
1343	cs->flags = trialcs->flags;
1344	spin_unlock_irq(&callback_lock);
1345
1346	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1347		rebuild_sched_domains_locked();
1348
1349	if (spread_flag_changed)
1350		update_tasks_flags(cs);
1351out:
1352	free_trial_cpuset(trialcs);
1353	return err;
1354}
1355
1356/*
1357 * Frequency meter - How fast is some event occurring?
1358 *
1359 * These routines manage a digitally filtered, constant time based,
1360 * event frequency meter.  There are four routines:
1361 *   fmeter_init() - initialize a frequency meter.
1362 *   fmeter_markevent() - called each time the event happens.
1363 *   fmeter_getrate() - returns the recent rate of such events.
1364 *   fmeter_update() - internal routine used to update fmeter.
1365 *
1366 * A common data structure is passed to each of these routines,
1367 * which is used to keep track of the state required to manage the
1368 * frequency meter and its digital filter.
1369 *
1370 * The filter works on the number of events marked per unit time.
1371 * The filter is single-pole low-pass recursive (IIR).  The time unit
1372 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1373 * simulate 3 decimal digits of precision (multiplied by 1000).
1374 *
1375 * With an FM_COEF of 933, and a time base of 1 second, the filter
1376 * has a half-life of 10 seconds, meaning that if the events quit
1377 * happening, then the rate returned from the fmeter_getrate()
1378 * will be cut in half each 10 seconds, until it converges to zero.
1379 *
1380 * It is not worth doing a real infinitely recursive filter.  If more
1381 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1382 * just compute FM_MAXTICKS ticks worth, by which point the level
1383 * will be stable.
1384 *
1385 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1386 * arithmetic overflow in the fmeter_update() routine.
1387 *
1388 * Given the simple 32 bit integer arithmetic used, this meter works
1389 * best for reporting rates between one per millisecond (msec) and
1390 * one per 32 (approx) seconds.  At constant rates faster than one
1391 * per msec it maxes out at values just under 1,000,000.  At constant
1392 * rates between one per msec, and one per second it will stabilize
1393 * to a value N*1000, where N is the rate of events per second.
1394 * At constant rates between one per second and one per 32 seconds,
1395 * it will be choppy, moving up on the seconds that have an event,
1396 * and then decaying until the next event.  At rates slower than
1397 * about one in 32 seconds, it decays all the way back to zero between
1398 * each event.
1399 */
1400
1401#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1402#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1403#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1404#define FM_SCALE 1000		/* faux fixed point scale */
1405
1406/* Initialize a frequency meter */
1407static void fmeter_init(struct fmeter *fmp)
1408{
1409	fmp->cnt = 0;
1410	fmp->val = 0;
1411	fmp->time = 0;
1412	spin_lock_init(&fmp->lock);
1413}
1414
1415/* Internal meter update - process cnt events and update value */
1416static void fmeter_update(struct fmeter *fmp)
1417{
1418	time64_t now;
1419	u32 ticks;
1420
1421	now = ktime_get_seconds();
1422	ticks = now - fmp->time;
1423
1424	if (ticks == 0)
1425		return;
1426
1427	ticks = min(FM_MAXTICKS, ticks);
1428	while (ticks-- > 0)
1429		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1430	fmp->time = now;
1431
1432	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1433	fmp->cnt = 0;
1434}
1435
1436/* Process any previous ticks, then bump cnt by one (times scale). */
1437static void fmeter_markevent(struct fmeter *fmp)
1438{
1439	spin_lock(&fmp->lock);
1440	fmeter_update(fmp);
1441	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1442	spin_unlock(&fmp->lock);
1443}
1444
1445/* Process any previous ticks, then return current value. */
1446static int fmeter_getrate(struct fmeter *fmp)
1447{
1448	int val;
1449
1450	spin_lock(&fmp->lock);
1451	fmeter_update(fmp);
1452	val = fmp->val;
1453	spin_unlock(&fmp->lock);
1454	return val;
1455}
1456
1457static struct cpuset *cpuset_attach_old_cs;
1458
1459/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1460static int cpuset_can_attach(struct cgroup_taskset *tset)
1461{
1462	struct cgroup_subsys_state *css;
1463	struct cpuset *cs;
1464	struct task_struct *task;
1465	int ret;
1466
1467	/* used later by cpuset_attach() */
1468	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1469	cs = css_cs(css);
1470
1471	mutex_lock(&cpuset_mutex);
1472
1473	/* allow moving tasks into an empty cpuset if on default hierarchy */
1474	ret = -ENOSPC;
1475	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1476	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1477		goto out_unlock;
1478
1479	cgroup_taskset_for_each(task, css, tset) {
1480		ret = task_can_attach(task, cs->cpus_allowed);
1481		if (ret)
1482			goto out_unlock;
1483		ret = security_task_setscheduler(task);
1484		if (ret)
1485			goto out_unlock;
1486	}
1487
1488	/*
1489	 * Mark attach is in progress.  This makes validate_change() fail
1490	 * changes which zero cpus/mems_allowed.
1491	 */
1492	cs->attach_in_progress++;
1493	ret = 0;
1494out_unlock:
1495	mutex_unlock(&cpuset_mutex);
1496	return ret;
1497}
1498
1499static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1500{
1501	struct cgroup_subsys_state *css;
1502	struct cpuset *cs;
1503
1504	cgroup_taskset_first(tset, &css);
1505	cs = css_cs(css);
1506
1507	mutex_lock(&cpuset_mutex);
1508	css_cs(css)->attach_in_progress--;
1509	mutex_unlock(&cpuset_mutex);
1510}
1511
1512/*
1513 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1514 * but we can't allocate it dynamically there.  Define it global and
1515 * allocate from cpuset_init().
1516 */
1517static cpumask_var_t cpus_attach;
1518
1519static void cpuset_attach(struct cgroup_taskset *tset)
1520{
1521	/* static buf protected by cpuset_mutex */
1522	static nodemask_t cpuset_attach_nodemask_to;
1523	struct task_struct *task;
1524	struct task_struct *leader;
1525	struct cgroup_subsys_state *css;
1526	struct cpuset *cs;
1527	struct cpuset *oldcs = cpuset_attach_old_cs;
1528
1529	cgroup_taskset_first(tset, &css);
1530	cs = css_cs(css);
1531
1532	mutex_lock(&cpuset_mutex);
1533
1534	/* prepare for attach */
1535	if (cs == &top_cpuset)
1536		cpumask_copy(cpus_attach, cpu_possible_mask);
1537	else
1538		guarantee_online_cpus(cs, cpus_attach);
1539
1540	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1541
1542	cgroup_taskset_for_each(task, css, tset) {
1543		/*
1544		 * can_attach beforehand should guarantee that this doesn't
1545		 * fail.  TODO: have a better way to handle failure here
1546		 */
1547		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1548
1549		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1550		cpuset_update_task_spread_flag(cs, task);
1551	}
1552
1553	/*
1554	 * Change mm for all threadgroup leaders. This is expensive and may
1555	 * sleep and should be moved outside migration path proper.
1556	 */
1557	cpuset_attach_nodemask_to = cs->effective_mems;
1558	cgroup_taskset_for_each_leader(leader, css, tset) {
1559		struct mm_struct *mm = get_task_mm(leader);
1560
1561		if (mm) {
1562			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1563
1564			/*
1565			 * old_mems_allowed is the same with mems_allowed
1566			 * here, except if this task is being moved
1567			 * automatically due to hotplug.  In that case
1568			 * @mems_allowed has been updated and is empty, so
1569			 * @old_mems_allowed is the right nodesets that we
1570			 * migrate mm from.
1571			 */
1572			if (is_memory_migrate(cs))
1573				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1574						  &cpuset_attach_nodemask_to);
1575			else
1576				mmput(mm);
1577		}
1578	}
1579
1580	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1581
1582	cs->attach_in_progress--;
1583	if (!cs->attach_in_progress)
1584		wake_up(&cpuset_attach_wq);
1585
1586	mutex_unlock(&cpuset_mutex);
1587}
1588
1589/* The various types of files and directories in a cpuset file system */
1590
1591typedef enum {
1592	FILE_MEMORY_MIGRATE,
1593	FILE_CPULIST,
1594	FILE_MEMLIST,
1595	FILE_EFFECTIVE_CPULIST,
1596	FILE_EFFECTIVE_MEMLIST,
1597	FILE_CPU_EXCLUSIVE,
1598	FILE_MEM_EXCLUSIVE,
1599	FILE_MEM_HARDWALL,
1600	FILE_SCHED_LOAD_BALANCE,
1601	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1602	FILE_MEMORY_PRESSURE_ENABLED,
1603	FILE_MEMORY_PRESSURE,
1604	FILE_SPREAD_PAGE,
1605	FILE_SPREAD_SLAB,
1606} cpuset_filetype_t;
1607
1608static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1609			    u64 val)
1610{
1611	struct cpuset *cs = css_cs(css);
1612	cpuset_filetype_t type = cft->private;
1613	int retval = 0;
1614
1615	mutex_lock(&cpuset_mutex);
1616	if (!is_cpuset_online(cs)) {
1617		retval = -ENODEV;
1618		goto out_unlock;
1619	}
1620
1621	switch (type) {
1622	case FILE_CPU_EXCLUSIVE:
1623		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1624		break;
1625	case FILE_MEM_EXCLUSIVE:
1626		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1627		break;
1628	case FILE_MEM_HARDWALL:
1629		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1630		break;
1631	case FILE_SCHED_LOAD_BALANCE:
1632		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1633		break;
1634	case FILE_MEMORY_MIGRATE:
1635		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1636		break;
1637	case FILE_MEMORY_PRESSURE_ENABLED:
1638		cpuset_memory_pressure_enabled = !!val;
1639		break;
1640	case FILE_SPREAD_PAGE:
1641		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1642		break;
1643	case FILE_SPREAD_SLAB:
1644		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1645		break;
1646	default:
1647		retval = -EINVAL;
1648		break;
1649	}
1650out_unlock:
1651	mutex_unlock(&cpuset_mutex);
1652	return retval;
1653}
1654
1655static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1656			    s64 val)
1657{
1658	struct cpuset *cs = css_cs(css);
1659	cpuset_filetype_t type = cft->private;
1660	int retval = -ENODEV;
1661
1662	mutex_lock(&cpuset_mutex);
1663	if (!is_cpuset_online(cs))
1664		goto out_unlock;
1665
1666	switch (type) {
1667	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1668		retval = update_relax_domain_level(cs, val);
1669		break;
1670	default:
1671		retval = -EINVAL;
1672		break;
1673	}
1674out_unlock:
1675	mutex_unlock(&cpuset_mutex);
1676	return retval;
1677}
1678
1679/*
1680 * Common handling for a write to a "cpus" or "mems" file.
1681 */
1682static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1683				    char *buf, size_t nbytes, loff_t off)
1684{
1685	struct cpuset *cs = css_cs(of_css(of));
1686	struct cpuset *trialcs;
1687	int retval = -ENODEV;
1688
1689	buf = strstrip(buf);
1690
1691	/*
1692	 * CPU or memory hotunplug may leave @cs w/o any execution
1693	 * resources, in which case the hotplug code asynchronously updates
1694	 * configuration and transfers all tasks to the nearest ancestor
1695	 * which can execute.
1696	 *
1697	 * As writes to "cpus" or "mems" may restore @cs's execution
1698	 * resources, wait for the previously scheduled operations before
1699	 * proceeding, so that we don't end up keep removing tasks added
1700	 * after execution capability is restored.
1701	 *
1702	 * cpuset_hotplug_work calls back into cgroup core via
1703	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1704	 * operation like this one can lead to a deadlock through kernfs
1705	 * active_ref protection.  Let's break the protection.  Losing the
1706	 * protection is okay as we check whether @cs is online after
1707	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1708	 * hierarchies.
1709	 */
1710	css_get(&cs->css);
1711	kernfs_break_active_protection(of->kn);
1712	flush_work(&cpuset_hotplug_work);
1713
1714	mutex_lock(&cpuset_mutex);
1715	if (!is_cpuset_online(cs))
1716		goto out_unlock;
1717
1718	trialcs = alloc_trial_cpuset(cs);
1719	if (!trialcs) {
1720		retval = -ENOMEM;
1721		goto out_unlock;
1722	}
1723
1724	switch (of_cft(of)->private) {
1725	case FILE_CPULIST:
1726		retval = update_cpumask(cs, trialcs, buf);
1727		break;
1728	case FILE_MEMLIST:
1729		retval = update_nodemask(cs, trialcs, buf);
1730		break;
1731	default:
1732		retval = -EINVAL;
1733		break;
1734	}
1735
1736	free_trial_cpuset(trialcs);
1737out_unlock:
1738	mutex_unlock(&cpuset_mutex);
1739	kernfs_unbreak_active_protection(of->kn);
1740	css_put(&cs->css);
1741	flush_workqueue(cpuset_migrate_mm_wq);
1742	return retval ?: nbytes;
1743}
1744
1745/*
1746 * These ascii lists should be read in a single call, by using a user
1747 * buffer large enough to hold the entire map.  If read in smaller
1748 * chunks, there is no guarantee of atomicity.  Since the display format
1749 * used, list of ranges of sequential numbers, is variable length,
1750 * and since these maps can change value dynamically, one could read
1751 * gibberish by doing partial reads while a list was changing.
1752 */
1753static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1754{
1755	struct cpuset *cs = css_cs(seq_css(sf));
1756	cpuset_filetype_t type = seq_cft(sf)->private;
1757	int ret = 0;
1758
1759	spin_lock_irq(&callback_lock);
1760
1761	switch (type) {
1762	case FILE_CPULIST:
1763		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1764		break;
1765	case FILE_MEMLIST:
1766		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1767		break;
1768	case FILE_EFFECTIVE_CPULIST:
1769		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1770		break;
1771	case FILE_EFFECTIVE_MEMLIST:
1772		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1773		break;
1774	default:
1775		ret = -EINVAL;
1776	}
1777
1778	spin_unlock_irq(&callback_lock);
1779	return ret;
1780}
1781
1782static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1783{
1784	struct cpuset *cs = css_cs(css);
1785	cpuset_filetype_t type = cft->private;
1786	switch (type) {
1787	case FILE_CPU_EXCLUSIVE:
1788		return is_cpu_exclusive(cs);
1789	case FILE_MEM_EXCLUSIVE:
1790		return is_mem_exclusive(cs);
1791	case FILE_MEM_HARDWALL:
1792		return is_mem_hardwall(cs);
1793	case FILE_SCHED_LOAD_BALANCE:
1794		return is_sched_load_balance(cs);
1795	case FILE_MEMORY_MIGRATE:
1796		return is_memory_migrate(cs);
1797	case FILE_MEMORY_PRESSURE_ENABLED:
1798		return cpuset_memory_pressure_enabled;
1799	case FILE_MEMORY_PRESSURE:
1800		return fmeter_getrate(&cs->fmeter);
1801	case FILE_SPREAD_PAGE:
1802		return is_spread_page(cs);
1803	case FILE_SPREAD_SLAB:
1804		return is_spread_slab(cs);
1805	default:
1806		BUG();
1807	}
1808
1809	/* Unreachable but makes gcc happy */
1810	return 0;
1811}
1812
1813static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1814{
1815	struct cpuset *cs = css_cs(css);
1816	cpuset_filetype_t type = cft->private;
1817	switch (type) {
1818	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1819		return cs->relax_domain_level;
1820	default:
1821		BUG();
1822	}
1823
1824	/* Unrechable but makes gcc happy */
1825	return 0;
1826}
1827
1828
1829/*
1830 * for the common functions, 'private' gives the type of file
1831 */
1832
1833static struct cftype files[] = {
1834	{
1835		.name = "cpus",
1836		.seq_show = cpuset_common_seq_show,
1837		.write = cpuset_write_resmask,
1838		.max_write_len = (100U + 6 * NR_CPUS),
1839		.private = FILE_CPULIST,
1840	},
1841
1842	{
1843		.name = "mems",
1844		.seq_show = cpuset_common_seq_show,
1845		.write = cpuset_write_resmask,
1846		.max_write_len = (100U + 6 * MAX_NUMNODES),
1847		.private = FILE_MEMLIST,
1848	},
1849
1850	{
1851		.name = "effective_cpus",
1852		.seq_show = cpuset_common_seq_show,
1853		.private = FILE_EFFECTIVE_CPULIST,
1854	},
1855
1856	{
1857		.name = "effective_mems",
1858		.seq_show = cpuset_common_seq_show,
1859		.private = FILE_EFFECTIVE_MEMLIST,
1860	},
1861
1862	{
1863		.name = "cpu_exclusive",
1864		.read_u64 = cpuset_read_u64,
1865		.write_u64 = cpuset_write_u64,
1866		.private = FILE_CPU_EXCLUSIVE,
1867	},
1868
1869	{
1870		.name = "mem_exclusive",
1871		.read_u64 = cpuset_read_u64,
1872		.write_u64 = cpuset_write_u64,
1873		.private = FILE_MEM_EXCLUSIVE,
1874	},
1875
1876	{
1877		.name = "mem_hardwall",
1878		.read_u64 = cpuset_read_u64,
1879		.write_u64 = cpuset_write_u64,
1880		.private = FILE_MEM_HARDWALL,
1881	},
1882
1883	{
1884		.name = "sched_load_balance",
1885		.read_u64 = cpuset_read_u64,
1886		.write_u64 = cpuset_write_u64,
1887		.private = FILE_SCHED_LOAD_BALANCE,
1888	},
1889
1890	{
1891		.name = "sched_relax_domain_level",
1892		.read_s64 = cpuset_read_s64,
1893		.write_s64 = cpuset_write_s64,
1894		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1895	},
1896
1897	{
1898		.name = "memory_migrate",
1899		.read_u64 = cpuset_read_u64,
1900		.write_u64 = cpuset_write_u64,
1901		.private = FILE_MEMORY_MIGRATE,
1902	},
1903
1904	{
1905		.name = "memory_pressure",
1906		.read_u64 = cpuset_read_u64,
1907	},
1908
1909	{
1910		.name = "memory_spread_page",
1911		.read_u64 = cpuset_read_u64,
1912		.write_u64 = cpuset_write_u64,
1913		.private = FILE_SPREAD_PAGE,
1914	},
1915
1916	{
1917		.name = "memory_spread_slab",
1918		.read_u64 = cpuset_read_u64,
1919		.write_u64 = cpuset_write_u64,
1920		.private = FILE_SPREAD_SLAB,
1921	},
1922
1923	{
1924		.name = "memory_pressure_enabled",
1925		.flags = CFTYPE_ONLY_ON_ROOT,
1926		.read_u64 = cpuset_read_u64,
1927		.write_u64 = cpuset_write_u64,
1928		.private = FILE_MEMORY_PRESSURE_ENABLED,
1929	},
1930
1931	{ }	/* terminate */
1932};
1933
1934/*
1935 *	cpuset_css_alloc - allocate a cpuset css
1936 *	cgrp:	control group that the new cpuset will be part of
1937 */
1938
1939static struct cgroup_subsys_state *
1940cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1941{
1942	struct cpuset *cs;
1943
1944	if (!parent_css)
1945		return &top_cpuset.css;
1946
1947	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1948	if (!cs)
1949		return ERR_PTR(-ENOMEM);
1950	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1951		goto free_cs;
1952	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1953		goto free_cpus;
1954
1955	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1956	cpumask_clear(cs->cpus_allowed);
1957	nodes_clear(cs->mems_allowed);
1958	cpumask_clear(cs->effective_cpus);
1959	nodes_clear(cs->effective_mems);
1960	fmeter_init(&cs->fmeter);
1961	cs->relax_domain_level = -1;
1962
1963	return &cs->css;
1964
1965free_cpus:
1966	free_cpumask_var(cs->cpus_allowed);
1967free_cs:
1968	kfree(cs);
1969	return ERR_PTR(-ENOMEM);
1970}
1971
1972static int cpuset_css_online(struct cgroup_subsys_state *css)
1973{
1974	struct cpuset *cs = css_cs(css);
1975	struct cpuset *parent = parent_cs(cs);
1976	struct cpuset *tmp_cs;
1977	struct cgroup_subsys_state *pos_css;
1978
1979	if (!parent)
1980		return 0;
1981
1982	mutex_lock(&cpuset_mutex);
1983
1984	set_bit(CS_ONLINE, &cs->flags);
1985	if (is_spread_page(parent))
1986		set_bit(CS_SPREAD_PAGE, &cs->flags);
1987	if (is_spread_slab(parent))
1988		set_bit(CS_SPREAD_SLAB, &cs->flags);
1989
1990	cpuset_inc();
1991
1992	spin_lock_irq(&callback_lock);
1993	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1994		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1995		cs->effective_mems = parent->effective_mems;
1996	}
1997	spin_unlock_irq(&callback_lock);
1998
1999	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2000		goto out_unlock;
2001
2002	/*
2003	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2004	 * set.  This flag handling is implemented in cgroup core for
2005	 * histrical reasons - the flag may be specified during mount.
2006	 *
2007	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2008	 * refuse to clone the configuration - thereby refusing the task to
2009	 * be entered, and as a result refusing the sys_unshare() or
2010	 * clone() which initiated it.  If this becomes a problem for some
2011	 * users who wish to allow that scenario, then this could be
2012	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2013	 * (and likewise for mems) to the new cgroup.
2014	 */
2015	rcu_read_lock();
2016	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2017		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2018			rcu_read_unlock();
2019			goto out_unlock;
2020		}
2021	}
2022	rcu_read_unlock();
2023
2024	spin_lock_irq(&callback_lock);
2025	cs->mems_allowed = parent->mems_allowed;
2026	cs->effective_mems = parent->mems_allowed;
2027	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2028	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2029	spin_unlock_irq(&callback_lock);
2030out_unlock:
2031	mutex_unlock(&cpuset_mutex);
2032	return 0;
2033}
2034
2035/*
2036 * If the cpuset being removed has its flag 'sched_load_balance'
2037 * enabled, then simulate turning sched_load_balance off, which
2038 * will call rebuild_sched_domains_locked().
2039 */
2040
2041static void cpuset_css_offline(struct cgroup_subsys_state *css)
2042{
2043	struct cpuset *cs = css_cs(css);
2044
2045	mutex_lock(&cpuset_mutex);
2046
2047	if (is_sched_load_balance(cs))
2048		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2049
2050	cpuset_dec();
2051	clear_bit(CS_ONLINE, &cs->flags);
2052
2053	mutex_unlock(&cpuset_mutex);
2054}
2055
2056static void cpuset_css_free(struct cgroup_subsys_state *css)
2057{
2058	struct cpuset *cs = css_cs(css);
2059
2060	free_cpumask_var(cs->effective_cpus);
2061	free_cpumask_var(cs->cpus_allowed);
2062	kfree(cs);
2063}
2064
2065static void cpuset_bind(struct cgroup_subsys_state *root_css)
2066{
2067	mutex_lock(&cpuset_mutex);
2068	spin_lock_irq(&callback_lock);
2069
2070	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2071		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2072		top_cpuset.mems_allowed = node_possible_map;
2073	} else {
2074		cpumask_copy(top_cpuset.cpus_allowed,
2075			     top_cpuset.effective_cpus);
2076		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2077	}
2078
2079	spin_unlock_irq(&callback_lock);
2080	mutex_unlock(&cpuset_mutex);
2081}
2082
2083/*
2084 * Make sure the new task conform to the current state of its parent,
2085 * which could have been changed by cpuset just after it inherits the
2086 * state from the parent and before it sits on the cgroup's task list.
2087 */
2088static void cpuset_fork(struct task_struct *task)
2089{
2090	if (task_css_is_root(task, cpuset_cgrp_id))
2091		return;
2092
2093	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2094	task->mems_allowed = current->mems_allowed;
2095}
2096
2097struct cgroup_subsys cpuset_cgrp_subsys = {
2098	.css_alloc	= cpuset_css_alloc,
2099	.css_online	= cpuset_css_online,
2100	.css_offline	= cpuset_css_offline,
2101	.css_free	= cpuset_css_free,
2102	.can_attach	= cpuset_can_attach,
2103	.cancel_attach	= cpuset_cancel_attach,
2104	.attach		= cpuset_attach,
2105	.post_attach	= cpuset_post_attach,
2106	.bind		= cpuset_bind,
2107	.fork		= cpuset_fork,
2108	.legacy_cftypes	= files,
2109	.early_init	= true,
2110};
2111
2112/**
2113 * cpuset_init - initialize cpusets at system boot
2114 *
2115 * Description: Initialize top_cpuset and the cpuset internal file system,
2116 **/
2117
2118int __init cpuset_init(void)
2119{
2120	int err = 0;
2121
2122	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2123		BUG();
2124	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2125		BUG();
2126
2127	cpumask_setall(top_cpuset.cpus_allowed);
2128	nodes_setall(top_cpuset.mems_allowed);
2129	cpumask_setall(top_cpuset.effective_cpus);
2130	nodes_setall(top_cpuset.effective_mems);
2131
2132	fmeter_init(&top_cpuset.fmeter);
2133	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2134	top_cpuset.relax_domain_level = -1;
2135
2136	err = register_filesystem(&cpuset_fs_type);
2137	if (err < 0)
2138		return err;
2139
2140	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2141		BUG();
2142
2143	return 0;
2144}
2145
2146/*
2147 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2148 * or memory nodes, we need to walk over the cpuset hierarchy,
2149 * removing that CPU or node from all cpusets.  If this removes the
2150 * last CPU or node from a cpuset, then move the tasks in the empty
2151 * cpuset to its next-highest non-empty parent.
2152 */
2153static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2154{
2155	struct cpuset *parent;
2156
2157	/*
2158	 * Find its next-highest non-empty parent, (top cpuset
2159	 * has online cpus, so can't be empty).
2160	 */
2161	parent = parent_cs(cs);
2162	while (cpumask_empty(parent->cpus_allowed) ||
2163			nodes_empty(parent->mems_allowed))
2164		parent = parent_cs(parent);
2165
2166	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2167		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2168		pr_cont_cgroup_name(cs->css.cgroup);
2169		pr_cont("\n");
2170	}
2171}
2172
2173static void
2174hotplug_update_tasks_legacy(struct cpuset *cs,
2175			    struct cpumask *new_cpus, nodemask_t *new_mems,
2176			    bool cpus_updated, bool mems_updated)
2177{
2178	bool is_empty;
2179
2180	spin_lock_irq(&callback_lock);
2181	cpumask_copy(cs->cpus_allowed, new_cpus);
2182	cpumask_copy(cs->effective_cpus, new_cpus);
2183	cs->mems_allowed = *new_mems;
2184	cs->effective_mems = *new_mems;
2185	spin_unlock_irq(&callback_lock);
2186
2187	/*
2188	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2189	 * as the tasks will be migratecd to an ancestor.
2190	 */
2191	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2192		update_tasks_cpumask(cs);
2193	if (mems_updated && !nodes_empty(cs->mems_allowed))
2194		update_tasks_nodemask(cs);
2195
2196	is_empty = cpumask_empty(cs->cpus_allowed) ||
2197		   nodes_empty(cs->mems_allowed);
2198
2199	mutex_unlock(&cpuset_mutex);
2200
2201	/*
2202	 * Move tasks to the nearest ancestor with execution resources,
2203	 * This is full cgroup operation which will also call back into
2204	 * cpuset. Should be done outside any lock.
2205	 */
2206	if (is_empty)
2207		remove_tasks_in_empty_cpuset(cs);
2208
2209	mutex_lock(&cpuset_mutex);
2210}
2211
2212static void
2213hotplug_update_tasks(struct cpuset *cs,
2214		     struct cpumask *new_cpus, nodemask_t *new_mems,
2215		     bool cpus_updated, bool mems_updated)
2216{
2217	if (cpumask_empty(new_cpus))
2218		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2219	if (nodes_empty(*new_mems))
2220		*new_mems = parent_cs(cs)->effective_mems;
2221
2222	spin_lock_irq(&callback_lock);
2223	cpumask_copy(cs->effective_cpus, new_cpus);
2224	cs->effective_mems = *new_mems;
2225	spin_unlock_irq(&callback_lock);
2226
2227	if (cpus_updated)
2228		update_tasks_cpumask(cs);
2229	if (mems_updated)
2230		update_tasks_nodemask(cs);
2231}
2232
2233/**
2234 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2235 * @cs: cpuset in interest
2236 *
2237 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2238 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2239 * all its tasks are moved to the nearest ancestor with both resources.
2240 */
2241static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2242{
2243	static cpumask_t new_cpus;
2244	static nodemask_t new_mems;
2245	bool cpus_updated;
2246	bool mems_updated;
2247retry:
2248	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2249
2250	mutex_lock(&cpuset_mutex);
2251
2252	/*
2253	 * We have raced with task attaching. We wait until attaching
2254	 * is finished, so we won't attach a task to an empty cpuset.
2255	 */
2256	if (cs->attach_in_progress) {
2257		mutex_unlock(&cpuset_mutex);
2258		goto retry;
2259	}
2260
2261	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2262	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2263
2264	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2265	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2266
2267	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2268		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2269				     cpus_updated, mems_updated);
2270	else
2271		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2272					    cpus_updated, mems_updated);
2273
2274	mutex_unlock(&cpuset_mutex);
2275}
2276
2277/**
2278 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2279 *
2280 * This function is called after either CPU or memory configuration has
2281 * changed and updates cpuset accordingly.  The top_cpuset is always
2282 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2283 * order to make cpusets transparent (of no affect) on systems that are
2284 * actively using CPU hotplug but making no active use of cpusets.
2285 *
2286 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2287 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2288 * all descendants.
2289 *
2290 * Note that CPU offlining during suspend is ignored.  We don't modify
2291 * cpusets across suspend/resume cycles at all.
2292 */
2293static void cpuset_hotplug_workfn(struct work_struct *work)
2294{
2295	static cpumask_t new_cpus;
2296	static nodemask_t new_mems;
2297	bool cpus_updated, mems_updated;
2298	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2299
2300	mutex_lock(&cpuset_mutex);
2301
2302	/* fetch the available cpus/mems and find out which changed how */
2303	cpumask_copy(&new_cpus, cpu_active_mask);
2304	new_mems = node_states[N_MEMORY];
2305
2306	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2307	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2308
2309	/* synchronize cpus_allowed to cpu_active_mask */
2310	if (cpus_updated) {
2311		spin_lock_irq(&callback_lock);
2312		if (!on_dfl)
2313			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2314		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2315		spin_unlock_irq(&callback_lock);
2316		/* we don't mess with cpumasks of tasks in top_cpuset */
2317	}
2318
2319	/* synchronize mems_allowed to N_MEMORY */
2320	if (mems_updated) {
2321		spin_lock_irq(&callback_lock);
2322		if (!on_dfl)
2323			top_cpuset.mems_allowed = new_mems;
2324		top_cpuset.effective_mems = new_mems;
2325		spin_unlock_irq(&callback_lock);
2326		update_tasks_nodemask(&top_cpuset);
2327	}
2328
2329	mutex_unlock(&cpuset_mutex);
2330
2331	/* if cpus or mems changed, we need to propagate to descendants */
2332	if (cpus_updated || mems_updated) {
2333		struct cpuset *cs;
2334		struct cgroup_subsys_state *pos_css;
2335
2336		rcu_read_lock();
2337		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2338			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2339				continue;
2340			rcu_read_unlock();
2341
2342			cpuset_hotplug_update_tasks(cs);
2343
2344			rcu_read_lock();
2345			css_put(&cs->css);
2346		}
2347		rcu_read_unlock();
2348	}
2349
2350	/* rebuild sched domains if cpus_allowed has changed */
2351	if (cpus_updated)
2352		rebuild_sched_domains();
2353}
2354
2355void cpuset_update_active_cpus(bool cpu_online)
2356{
2357	/*
2358	 * We're inside cpu hotplug critical region which usually nests
2359	 * inside cgroup synchronization.  Bounce actual hotplug processing
2360	 * to a work item to avoid reverse locking order.
2361	 *
2362	 * We still need to do partition_sched_domains() synchronously;
2363	 * otherwise, the scheduler will get confused and put tasks to the
2364	 * dead CPU.  Fall back to the default single domain.
2365	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2366	 */
2367	partition_sched_domains(1, NULL, NULL);
2368	schedule_work(&cpuset_hotplug_work);
2369}
2370
2371/*
2372 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2373 * Call this routine anytime after node_states[N_MEMORY] changes.
2374 * See cpuset_update_active_cpus() for CPU hotplug handling.
2375 */
2376static int cpuset_track_online_nodes(struct notifier_block *self,
2377				unsigned long action, void *arg)
2378{
2379	schedule_work(&cpuset_hotplug_work);
2380	return NOTIFY_OK;
2381}
2382
2383static struct notifier_block cpuset_track_online_nodes_nb = {
2384	.notifier_call = cpuset_track_online_nodes,
2385	.priority = 10,		/* ??! */
2386};
2387
2388/**
2389 * cpuset_init_smp - initialize cpus_allowed
2390 *
2391 * Description: Finish top cpuset after cpu, node maps are initialized
2392 */
2393void __init cpuset_init_smp(void)
2394{
2395	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2396	top_cpuset.mems_allowed = node_states[N_MEMORY];
2397	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2398
2399	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2400	top_cpuset.effective_mems = node_states[N_MEMORY];
2401
2402	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2403
2404	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2405	BUG_ON(!cpuset_migrate_mm_wq);
2406}
2407
2408/**
2409 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2410 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2411 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2412 *
2413 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2414 * attached to the specified @tsk.  Guaranteed to return some non-empty
2415 * subset of cpu_online_mask, even if this means going outside the
2416 * tasks cpuset.
2417 **/
2418
2419void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2420{
2421	unsigned long flags;
2422
2423	spin_lock_irqsave(&callback_lock, flags);
2424	rcu_read_lock();
2425	guarantee_online_cpus(task_cs(tsk), pmask);
2426	rcu_read_unlock();
2427	spin_unlock_irqrestore(&callback_lock, flags);
2428}
2429
2430void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2431{
2432	rcu_read_lock();
2433	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2434	rcu_read_unlock();
2435
2436	/*
2437	 * We own tsk->cpus_allowed, nobody can change it under us.
2438	 *
2439	 * But we used cs && cs->cpus_allowed lockless and thus can
2440	 * race with cgroup_attach_task() or update_cpumask() and get
2441	 * the wrong tsk->cpus_allowed. However, both cases imply the
2442	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2443	 * which takes task_rq_lock().
2444	 *
2445	 * If we are called after it dropped the lock we must see all
2446	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2447	 * set any mask even if it is not right from task_cs() pov,
2448	 * the pending set_cpus_allowed_ptr() will fix things.
2449	 *
2450	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2451	 * if required.
2452	 */
2453}
2454
2455void __init cpuset_init_current_mems_allowed(void)
2456{
2457	nodes_setall(current->mems_allowed);
2458}
2459
2460/**
2461 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2462 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2463 *
2464 * Description: Returns the nodemask_t mems_allowed of the cpuset
2465 * attached to the specified @tsk.  Guaranteed to return some non-empty
2466 * subset of node_states[N_MEMORY], even if this means going outside the
2467 * tasks cpuset.
2468 **/
2469
2470nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2471{
2472	nodemask_t mask;
2473	unsigned long flags;
2474
2475	spin_lock_irqsave(&callback_lock, flags);
2476	rcu_read_lock();
2477	guarantee_online_mems(task_cs(tsk), &mask);
2478	rcu_read_unlock();
2479	spin_unlock_irqrestore(&callback_lock, flags);
2480
2481	return mask;
2482}
2483
2484/**
2485 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2486 * @nodemask: the nodemask to be checked
2487 *
2488 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2489 */
2490int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2491{
2492	return nodes_intersects(*nodemask, current->mems_allowed);
2493}
2494
2495/*
2496 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2497 * mem_hardwall ancestor to the specified cpuset.  Call holding
2498 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2499 * (an unusual configuration), then returns the root cpuset.
2500 */
2501static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2502{
2503	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2504		cs = parent_cs(cs);
2505	return cs;
2506}
2507
2508/**
2509 * cpuset_node_allowed - Can we allocate on a memory node?
2510 * @node: is this an allowed node?
2511 * @gfp_mask: memory allocation flags
2512 *
2513 * If we're in interrupt, yes, we can always allocate.  If @node is set in
2514 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2515 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2516 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2517 * Otherwise, no.
2518 *
2519 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2520 * and do not allow allocations outside the current tasks cpuset
2521 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2522 * GFP_KERNEL allocations are not so marked, so can escape to the
2523 * nearest enclosing hardwalled ancestor cpuset.
2524 *
2525 * Scanning up parent cpusets requires callback_lock.  The
2526 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2527 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2528 * current tasks mems_allowed came up empty on the first pass over
2529 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2530 * cpuset are short of memory, might require taking the callback_lock.
2531 *
2532 * The first call here from mm/page_alloc:get_page_from_freelist()
2533 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2534 * so no allocation on a node outside the cpuset is allowed (unless
2535 * in interrupt, of course).
2536 *
2537 * The second pass through get_page_from_freelist() doesn't even call
2538 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2539 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2540 * in alloc_flags.  That logic and the checks below have the combined
2541 * affect that:
2542 *	in_interrupt - any node ok (current task context irrelevant)
2543 *	GFP_ATOMIC   - any node ok
2544 *	TIF_MEMDIE   - any node ok
2545 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2546 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2547 */
2548bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2549{
2550	struct cpuset *cs;		/* current cpuset ancestors */
2551	int allowed;			/* is allocation in zone z allowed? */
2552	unsigned long flags;
2553
2554	if (in_interrupt())
2555		return true;
2556	if (node_isset(node, current->mems_allowed))
2557		return true;
2558	/*
2559	 * Allow tasks that have access to memory reserves because they have
2560	 * been OOM killed to get memory anywhere.
2561	 */
2562	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2563		return true;
2564	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2565		return false;
2566
2567	if (current->flags & PF_EXITING) /* Let dying task have memory */
2568		return true;
2569
2570	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2571	spin_lock_irqsave(&callback_lock, flags);
2572
2573	rcu_read_lock();
2574	cs = nearest_hardwall_ancestor(task_cs(current));
2575	allowed = node_isset(node, cs->mems_allowed);
2576	rcu_read_unlock();
2577
2578	spin_unlock_irqrestore(&callback_lock, flags);
2579	return allowed;
2580}
2581
2582/**
2583 * cpuset_mem_spread_node() - On which node to begin search for a file page
2584 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2585 *
2586 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2587 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2588 * and if the memory allocation used cpuset_mem_spread_node()
2589 * to determine on which node to start looking, as it will for
2590 * certain page cache or slab cache pages such as used for file
2591 * system buffers and inode caches, then instead of starting on the
2592 * local node to look for a free page, rather spread the starting
2593 * node around the tasks mems_allowed nodes.
2594 *
2595 * We don't have to worry about the returned node being offline
2596 * because "it can't happen", and even if it did, it would be ok.
2597 *
2598 * The routines calling guarantee_online_mems() are careful to
2599 * only set nodes in task->mems_allowed that are online.  So it
2600 * should not be possible for the following code to return an
2601 * offline node.  But if it did, that would be ok, as this routine
2602 * is not returning the node where the allocation must be, only
2603 * the node where the search should start.  The zonelist passed to
2604 * __alloc_pages() will include all nodes.  If the slab allocator
2605 * is passed an offline node, it will fall back to the local node.
2606 * See kmem_cache_alloc_node().
2607 */
2608
2609static int cpuset_spread_node(int *rotor)
2610{
2611	return *rotor = next_node_in(*rotor, current->mems_allowed);
2612}
2613
2614int cpuset_mem_spread_node(void)
2615{
2616	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2617		current->cpuset_mem_spread_rotor =
2618			node_random(&current->mems_allowed);
2619
2620	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2621}
2622
2623int cpuset_slab_spread_node(void)
2624{
2625	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2626		current->cpuset_slab_spread_rotor =
2627			node_random(&current->mems_allowed);
2628
2629	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2630}
2631
2632EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2633
2634/**
2635 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2636 * @tsk1: pointer to task_struct of some task.
2637 * @tsk2: pointer to task_struct of some other task.
2638 *
2639 * Description: Return true if @tsk1's mems_allowed intersects the
2640 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2641 * one of the task's memory usage might impact the memory available
2642 * to the other.
2643 **/
2644
2645int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2646				   const struct task_struct *tsk2)
2647{
2648	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2649}
2650
2651/**
2652 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2653 *
2654 * Description: Prints current's name, cpuset name, and cached copy of its
2655 * mems_allowed to the kernel log.
2656 */
2657void cpuset_print_current_mems_allowed(void)
2658{
2659	struct cgroup *cgrp;
2660
2661	rcu_read_lock();
2662
2663	cgrp = task_cs(current)->css.cgroup;
2664	pr_info("%s cpuset=", current->comm);
2665	pr_cont_cgroup_name(cgrp);
2666	pr_cont(" mems_allowed=%*pbl\n",
2667		nodemask_pr_args(&current->mems_allowed));
2668
2669	rcu_read_unlock();
2670}
2671
2672/*
2673 * Collection of memory_pressure is suppressed unless
2674 * this flag is enabled by writing "1" to the special
2675 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2676 */
2677
2678int cpuset_memory_pressure_enabled __read_mostly;
2679
2680/**
2681 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2682 *
2683 * Keep a running average of the rate of synchronous (direct)
2684 * page reclaim efforts initiated by tasks in each cpuset.
2685 *
2686 * This represents the rate at which some task in the cpuset
2687 * ran low on memory on all nodes it was allowed to use, and
2688 * had to enter the kernels page reclaim code in an effort to
2689 * create more free memory by tossing clean pages or swapping
2690 * or writing dirty pages.
2691 *
2692 * Display to user space in the per-cpuset read-only file
2693 * "memory_pressure".  Value displayed is an integer
2694 * representing the recent rate of entry into the synchronous
2695 * (direct) page reclaim by any task attached to the cpuset.
2696 **/
2697
2698void __cpuset_memory_pressure_bump(void)
2699{
2700	rcu_read_lock();
2701	fmeter_markevent(&task_cs(current)->fmeter);
2702	rcu_read_unlock();
2703}
2704
2705#ifdef CONFIG_PROC_PID_CPUSET
2706/*
2707 * proc_cpuset_show()
2708 *  - Print tasks cpuset path into seq_file.
2709 *  - Used for /proc/<pid>/cpuset.
2710 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2711 *    doesn't really matter if tsk->cpuset changes after we read it,
2712 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2713 *    anyway.
2714 */
2715int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2716		     struct pid *pid, struct task_struct *tsk)
2717{
2718	char *buf;
2719	struct cgroup_subsys_state *css;
2720	int retval;
2721
2722	retval = -ENOMEM;
2723	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2724	if (!buf)
2725		goto out;
2726
2727	css = task_get_css(tsk, cpuset_cgrp_id);
2728	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2729				current->nsproxy->cgroup_ns);
2730	css_put(css);
2731	if (retval >= PATH_MAX)
2732		retval = -ENAMETOOLONG;
2733	if (retval < 0)
2734		goto out_free;
2735	seq_puts(m, buf);
2736	seq_putc(m, '\n');
2737	retval = 0;
2738out_free:
2739	kfree(buf);
2740out:
2741	return retval;
2742}
2743#endif /* CONFIG_PROC_PID_CPUSET */
2744
2745/* Display task mems_allowed in /proc/<pid>/status file. */
2746void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2747{
2748	seq_printf(m, "Mems_allowed:\t%*pb\n",
2749		   nodemask_pr_args(&task->mems_allowed));
2750	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2751		   nodemask_pr_args(&task->mems_allowed));
2752}