Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_error.h"
35#include "xfs_bmap.h"
36#include "xfs_cksum.h"
37#include "xfs_trans.h"
38#include "xfs_buf_item.h"
39#include "xfs_icreate_item.h"
40#include "xfs_icache.h"
41#include "xfs_trace.h"
42#include "xfs_log.h"
43#include "xfs_rmap.h"
44
45
46/*
47 * Allocation group level functions.
48 */
49static inline int
50xfs_ialloc_cluster_alignment(
51 struct xfs_mount *mp)
52{
53 if (xfs_sb_version_hasalign(&mp->m_sb) &&
54 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
55 return mp->m_sb.sb_inoalignmt;
56 return 1;
57}
58
59/*
60 * Lookup a record by ino in the btree given by cur.
61 */
62int /* error */
63xfs_inobt_lookup(
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
66 xfs_lookup_t dir, /* <=, >=, == */
67 int *stat) /* success/failure */
68{
69 cur->bc_rec.i.ir_startino = ino;
70 cur->bc_rec.i.ir_holemask = 0;
71 cur->bc_rec.i.ir_count = 0;
72 cur->bc_rec.i.ir_freecount = 0;
73 cur->bc_rec.i.ir_free = 0;
74 return xfs_btree_lookup(cur, dir, stat);
75}
76
77/*
78 * Update the record referred to by cur to the value given.
79 * This either works (return 0) or gets an EFSCORRUPTED error.
80 */
81STATIC int /* error */
82xfs_inobt_update(
83 struct xfs_btree_cur *cur, /* btree cursor */
84 xfs_inobt_rec_incore_t *irec) /* btree record */
85{
86 union xfs_btree_rec rec;
87
88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 } else {
94 /* ir_holemask/ir_count not supported on-disk */
95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 }
97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
98 return xfs_btree_update(cur, &rec);
99}
100
101/*
102 * Get the data from the pointed-to record.
103 */
104int /* error */
105xfs_inobt_get_rec(
106 struct xfs_btree_cur *cur, /* btree cursor */
107 xfs_inobt_rec_incore_t *irec, /* btree record */
108 int *stat) /* output: success/failure */
109{
110 union xfs_btree_rec *rec;
111 int error;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
118 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
119 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
120 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
121 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
122 } else {
123 /*
124 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
125 * values for full inode chunks.
126 */
127 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
128 irec->ir_count = XFS_INODES_PER_CHUNK;
129 irec->ir_freecount =
130 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
131 }
132 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
133
134 return 0;
135}
136
137/*
138 * Insert a single inobt record. Cursor must already point to desired location.
139 */
140STATIC int
141xfs_inobt_insert_rec(
142 struct xfs_btree_cur *cur,
143 __uint16_t holemask,
144 __uint8_t count,
145 __int32_t freecount,
146 xfs_inofree_t free,
147 int *stat)
148{
149 cur->bc_rec.i.ir_holemask = holemask;
150 cur->bc_rec.i.ir_count = count;
151 cur->bc_rec.i.ir_freecount = freecount;
152 cur->bc_rec.i.ir_free = free;
153 return xfs_btree_insert(cur, stat);
154}
155
156/*
157 * Insert records describing a newly allocated inode chunk into the inobt.
158 */
159STATIC int
160xfs_inobt_insert(
161 struct xfs_mount *mp,
162 struct xfs_trans *tp,
163 struct xfs_buf *agbp,
164 xfs_agino_t newino,
165 xfs_agino_t newlen,
166 xfs_btnum_t btnum)
167{
168 struct xfs_btree_cur *cur;
169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
170 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
171 xfs_agino_t thisino;
172 int i;
173 int error;
174
175 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
176
177 for (thisino = newino;
178 thisino < newino + newlen;
179 thisino += XFS_INODES_PER_CHUNK) {
180 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
181 if (error) {
182 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
183 return error;
184 }
185 ASSERT(i == 0);
186
187 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
188 XFS_INODES_PER_CHUNK,
189 XFS_INODES_PER_CHUNK,
190 XFS_INOBT_ALL_FREE, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 1);
196 }
197
198 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
199
200 return 0;
201}
202
203/*
204 * Verify that the number of free inodes in the AGI is correct.
205 */
206#ifdef DEBUG
207STATIC int
208xfs_check_agi_freecount(
209 struct xfs_btree_cur *cur,
210 struct xfs_agi *agi)
211{
212 if (cur->bc_nlevels == 1) {
213 xfs_inobt_rec_incore_t rec;
214 int freecount = 0;
215 int error;
216 int i;
217
218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
219 if (error)
220 return error;
221
222 do {
223 error = xfs_inobt_get_rec(cur, &rec, &i);
224 if (error)
225 return error;
226
227 if (i) {
228 freecount += rec.ir_freecount;
229 error = xfs_btree_increment(cur, 0, &i);
230 if (error)
231 return error;
232 }
233 } while (i == 1);
234
235 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
236 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
237 }
238 return 0;
239}
240#else
241#define xfs_check_agi_freecount(cur, agi) 0
242#endif
243
244/*
245 * Initialise a new set of inodes. When called without a transaction context
246 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
247 * than logging them (which in a transaction context puts them into the AIL
248 * for writeback rather than the xfsbufd queue).
249 */
250int
251xfs_ialloc_inode_init(
252 struct xfs_mount *mp,
253 struct xfs_trans *tp,
254 struct list_head *buffer_list,
255 int icount,
256 xfs_agnumber_t agno,
257 xfs_agblock_t agbno,
258 xfs_agblock_t length,
259 unsigned int gen)
260{
261 struct xfs_buf *fbuf;
262 struct xfs_dinode *free;
263 int nbufs, blks_per_cluster, inodes_per_cluster;
264 int version;
265 int i, j;
266 xfs_daddr_t d;
267 xfs_ino_t ino = 0;
268
269 /*
270 * Loop over the new block(s), filling in the inodes. For small block
271 * sizes, manipulate the inodes in buffers which are multiples of the
272 * blocks size.
273 */
274 blks_per_cluster = xfs_icluster_size_fsb(mp);
275 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
276 nbufs = length / blks_per_cluster;
277
278 /*
279 * Figure out what version number to use in the inodes we create. If
280 * the superblock version has caught up to the one that supports the new
281 * inode format, then use the new inode version. Otherwise use the old
282 * version so that old kernels will continue to be able to use the file
283 * system.
284 *
285 * For v3 inodes, we also need to write the inode number into the inode,
286 * so calculate the first inode number of the chunk here as
287 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
288 * across multiple filesystem blocks (such as a cluster) and so cannot
289 * be used in the cluster buffer loop below.
290 *
291 * Further, because we are writing the inode directly into the buffer
292 * and calculating a CRC on the entire inode, we have ot log the entire
293 * inode so that the entire range the CRC covers is present in the log.
294 * That means for v3 inode we log the entire buffer rather than just the
295 * inode cores.
296 */
297 if (xfs_sb_version_hascrc(&mp->m_sb)) {
298 version = 3;
299 ino = XFS_AGINO_TO_INO(mp, agno,
300 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
301
302 /*
303 * log the initialisation that is about to take place as an
304 * logical operation. This means the transaction does not
305 * need to log the physical changes to the inode buffers as log
306 * recovery will know what initialisation is actually needed.
307 * Hence we only need to log the buffers as "ordered" buffers so
308 * they track in the AIL as if they were physically logged.
309 */
310 if (tp)
311 xfs_icreate_log(tp, agno, agbno, icount,
312 mp->m_sb.sb_inodesize, length, gen);
313 } else
314 version = 2;
315
316 for (j = 0; j < nbufs; j++) {
317 /*
318 * Get the block.
319 */
320 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
321 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
322 mp->m_bsize * blks_per_cluster,
323 XBF_UNMAPPED);
324 if (!fbuf)
325 return -ENOMEM;
326
327 /* Initialize the inode buffers and log them appropriately. */
328 fbuf->b_ops = &xfs_inode_buf_ops;
329 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
330 for (i = 0; i < inodes_per_cluster; i++) {
331 int ioffset = i << mp->m_sb.sb_inodelog;
332 uint isize = xfs_dinode_size(version);
333
334 free = xfs_make_iptr(mp, fbuf, i);
335 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
336 free->di_version = version;
337 free->di_gen = cpu_to_be32(gen);
338 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
339
340 if (version == 3) {
341 free->di_ino = cpu_to_be64(ino);
342 ino++;
343 uuid_copy(&free->di_uuid,
344 &mp->m_sb.sb_meta_uuid);
345 xfs_dinode_calc_crc(mp, free);
346 } else if (tp) {
347 /* just log the inode core */
348 xfs_trans_log_buf(tp, fbuf, ioffset,
349 ioffset + isize - 1);
350 }
351 }
352
353 if (tp) {
354 /*
355 * Mark the buffer as an inode allocation buffer so it
356 * sticks in AIL at the point of this allocation
357 * transaction. This ensures the they are on disk before
358 * the tail of the log can be moved past this
359 * transaction (i.e. by preventing relogging from moving
360 * it forward in the log).
361 */
362 xfs_trans_inode_alloc_buf(tp, fbuf);
363 if (version == 3) {
364 /*
365 * Mark the buffer as ordered so that they are
366 * not physically logged in the transaction but
367 * still tracked in the AIL as part of the
368 * transaction and pin the log appropriately.
369 */
370 xfs_trans_ordered_buf(tp, fbuf);
371 xfs_trans_log_buf(tp, fbuf, 0,
372 BBTOB(fbuf->b_length) - 1);
373 }
374 } else {
375 fbuf->b_flags |= XBF_DONE;
376 xfs_buf_delwri_queue(fbuf, buffer_list);
377 xfs_buf_relse(fbuf);
378 }
379 }
380 return 0;
381}
382
383/*
384 * Align startino and allocmask for a recently allocated sparse chunk such that
385 * they are fit for insertion (or merge) into the on-disk inode btrees.
386 *
387 * Background:
388 *
389 * When enabled, sparse inode support increases the inode alignment from cluster
390 * size to inode chunk size. This means that the minimum range between two
391 * non-adjacent inode records in the inobt is large enough for a full inode
392 * record. This allows for cluster sized, cluster aligned block allocation
393 * without need to worry about whether the resulting inode record overlaps with
394 * another record in the tree. Without this basic rule, we would have to deal
395 * with the consequences of overlap by potentially undoing recent allocations in
396 * the inode allocation codepath.
397 *
398 * Because of this alignment rule (which is enforced on mount), there are two
399 * inobt possibilities for newly allocated sparse chunks. One is that the
400 * aligned inode record for the chunk covers a range of inodes not already
401 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
402 * other is that a record already exists at the aligned startino that considers
403 * the newly allocated range as sparse. In the latter case, record content is
404 * merged in hope that sparse inode chunks fill to full chunks over time.
405 */
406STATIC void
407xfs_align_sparse_ino(
408 struct xfs_mount *mp,
409 xfs_agino_t *startino,
410 uint16_t *allocmask)
411{
412 xfs_agblock_t agbno;
413 xfs_agblock_t mod;
414 int offset;
415
416 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
417 mod = agbno % mp->m_sb.sb_inoalignmt;
418 if (!mod)
419 return;
420
421 /* calculate the inode offset and align startino */
422 offset = mod << mp->m_sb.sb_inopblog;
423 *startino -= offset;
424
425 /*
426 * Since startino has been aligned down, left shift allocmask such that
427 * it continues to represent the same physical inodes relative to the
428 * new startino.
429 */
430 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
431}
432
433/*
434 * Determine whether the source inode record can merge into the target. Both
435 * records must be sparse, the inode ranges must match and there must be no
436 * allocation overlap between the records.
437 */
438STATIC bool
439__xfs_inobt_can_merge(
440 struct xfs_inobt_rec_incore *trec, /* tgt record */
441 struct xfs_inobt_rec_incore *srec) /* src record */
442{
443 uint64_t talloc;
444 uint64_t salloc;
445
446 /* records must cover the same inode range */
447 if (trec->ir_startino != srec->ir_startino)
448 return false;
449
450 /* both records must be sparse */
451 if (!xfs_inobt_issparse(trec->ir_holemask) ||
452 !xfs_inobt_issparse(srec->ir_holemask))
453 return false;
454
455 /* both records must track some inodes */
456 if (!trec->ir_count || !srec->ir_count)
457 return false;
458
459 /* can't exceed capacity of a full record */
460 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
461 return false;
462
463 /* verify there is no allocation overlap */
464 talloc = xfs_inobt_irec_to_allocmask(trec);
465 salloc = xfs_inobt_irec_to_allocmask(srec);
466 if (talloc & salloc)
467 return false;
468
469 return true;
470}
471
472/*
473 * Merge the source inode record into the target. The caller must call
474 * __xfs_inobt_can_merge() to ensure the merge is valid.
475 */
476STATIC void
477__xfs_inobt_rec_merge(
478 struct xfs_inobt_rec_incore *trec, /* target */
479 struct xfs_inobt_rec_incore *srec) /* src */
480{
481 ASSERT(trec->ir_startino == srec->ir_startino);
482
483 /* combine the counts */
484 trec->ir_count += srec->ir_count;
485 trec->ir_freecount += srec->ir_freecount;
486
487 /*
488 * Merge the holemask and free mask. For both fields, 0 bits refer to
489 * allocated inodes. We combine the allocated ranges with bitwise AND.
490 */
491 trec->ir_holemask &= srec->ir_holemask;
492 trec->ir_free &= srec->ir_free;
493}
494
495/*
496 * Insert a new sparse inode chunk into the associated inode btree. The inode
497 * record for the sparse chunk is pre-aligned to a startino that should match
498 * any pre-existing sparse inode record in the tree. This allows sparse chunks
499 * to fill over time.
500 *
501 * This function supports two modes of handling preexisting records depending on
502 * the merge flag. If merge is true, the provided record is merged with the
503 * existing record and updated in place. The merged record is returned in nrec.
504 * If merge is false, an existing record is replaced with the provided record.
505 * If no preexisting record exists, the provided record is always inserted.
506 *
507 * It is considered corruption if a merge is requested and not possible. Given
508 * the sparse inode alignment constraints, this should never happen.
509 */
510STATIC int
511xfs_inobt_insert_sprec(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 int btnum,
516 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
517 bool merge) /* merge or replace */
518{
519 struct xfs_btree_cur *cur;
520 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
521 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
522 int error;
523 int i;
524 struct xfs_inobt_rec_incore rec;
525
526 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
527
528 /* the new record is pre-aligned so we know where to look */
529 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
530 if (error)
531 goto error;
532 /* if nothing there, insert a new record and return */
533 if (i == 0) {
534 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
535 nrec->ir_count, nrec->ir_freecount,
536 nrec->ir_free, &i);
537 if (error)
538 goto error;
539 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
540
541 goto out;
542 }
543
544 /*
545 * A record exists at this startino. Merge or replace the record
546 * depending on what we've been asked to do.
547 */
548 if (merge) {
549 error = xfs_inobt_get_rec(cur, &rec, &i);
550 if (error)
551 goto error;
552 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
553 XFS_WANT_CORRUPTED_GOTO(mp,
554 rec.ir_startino == nrec->ir_startino,
555 error);
556
557 /*
558 * This should never fail. If we have coexisting records that
559 * cannot merge, something is seriously wrong.
560 */
561 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
562 error);
563
564 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
565 rec.ir_holemask, nrec->ir_startino,
566 nrec->ir_holemask);
567
568 /* merge to nrec to output the updated record */
569 __xfs_inobt_rec_merge(nrec, &rec);
570
571 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
572 nrec->ir_holemask);
573
574 error = xfs_inobt_rec_check_count(mp, nrec);
575 if (error)
576 goto error;
577 }
578
579 error = xfs_inobt_update(cur, nrec);
580 if (error)
581 goto error;
582
583out:
584 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
585 return 0;
586error:
587 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
588 return error;
589}
590
591/*
592 * Allocate new inodes in the allocation group specified by agbp.
593 * Return 0 for success, else error code.
594 */
595STATIC int /* error code or 0 */
596xfs_ialloc_ag_alloc(
597 xfs_trans_t *tp, /* transaction pointer */
598 xfs_buf_t *agbp, /* alloc group buffer */
599 int *alloc)
600{
601 xfs_agi_t *agi; /* allocation group header */
602 xfs_alloc_arg_t args; /* allocation argument structure */
603 xfs_agnumber_t agno;
604 int error;
605 xfs_agino_t newino; /* new first inode's number */
606 xfs_agino_t newlen; /* new number of inodes */
607 int isaligned = 0; /* inode allocation at stripe unit */
608 /* boundary */
609 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
610 struct xfs_inobt_rec_incore rec;
611 struct xfs_perag *pag;
612 int do_sparse = 0;
613
614 memset(&args, 0, sizeof(args));
615 args.tp = tp;
616 args.mp = tp->t_mountp;
617 args.fsbno = NULLFSBLOCK;
618 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
619
620#ifdef DEBUG
621 /* randomly do sparse inode allocations */
622 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
623 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
624 do_sparse = prandom_u32() & 1;
625#endif
626
627 /*
628 * Locking will ensure that we don't have two callers in here
629 * at one time.
630 */
631 newlen = args.mp->m_ialloc_inos;
632 if (args.mp->m_maxicount &&
633 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
634 args.mp->m_maxicount)
635 return -ENOSPC;
636 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
637 /*
638 * First try to allocate inodes contiguous with the last-allocated
639 * chunk of inodes. If the filesystem is striped, this will fill
640 * an entire stripe unit with inodes.
641 */
642 agi = XFS_BUF_TO_AGI(agbp);
643 newino = be32_to_cpu(agi->agi_newino);
644 agno = be32_to_cpu(agi->agi_seqno);
645 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
646 args.mp->m_ialloc_blks;
647 if (do_sparse)
648 goto sparse_alloc;
649 if (likely(newino != NULLAGINO &&
650 (args.agbno < be32_to_cpu(agi->agi_length)))) {
651 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
652 args.type = XFS_ALLOCTYPE_THIS_BNO;
653 args.prod = 1;
654
655 /*
656 * We need to take into account alignment here to ensure that
657 * we don't modify the free list if we fail to have an exact
658 * block. If we don't have an exact match, and every oher
659 * attempt allocation attempt fails, we'll end up cancelling
660 * a dirty transaction and shutting down.
661 *
662 * For an exact allocation, alignment must be 1,
663 * however we need to take cluster alignment into account when
664 * fixing up the freelist. Use the minalignslop field to
665 * indicate that extra blocks might be required for alignment,
666 * but not to use them in the actual exact allocation.
667 */
668 args.alignment = 1;
669 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
670
671 /* Allow space for the inode btree to split. */
672 args.minleft = args.mp->m_in_maxlevels - 1;
673 if ((error = xfs_alloc_vextent(&args)))
674 return error;
675
676 /*
677 * This request might have dirtied the transaction if the AG can
678 * satisfy the request, but the exact block was not available.
679 * If the allocation did fail, subsequent requests will relax
680 * the exact agbno requirement and increase the alignment
681 * instead. It is critical that the total size of the request
682 * (len + alignment + slop) does not increase from this point
683 * on, so reset minalignslop to ensure it is not included in
684 * subsequent requests.
685 */
686 args.minalignslop = 0;
687 }
688
689 if (unlikely(args.fsbno == NULLFSBLOCK)) {
690 /*
691 * Set the alignment for the allocation.
692 * If stripe alignment is turned on then align at stripe unit
693 * boundary.
694 * If the cluster size is smaller than a filesystem block
695 * then we're doing I/O for inodes in filesystem block size
696 * pieces, so don't need alignment anyway.
697 */
698 isaligned = 0;
699 if (args.mp->m_sinoalign) {
700 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
701 args.alignment = args.mp->m_dalign;
702 isaligned = 1;
703 } else
704 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
705 /*
706 * Need to figure out where to allocate the inode blocks.
707 * Ideally they should be spaced out through the a.g.
708 * For now, just allocate blocks up front.
709 */
710 args.agbno = be32_to_cpu(agi->agi_root);
711 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
712 /*
713 * Allocate a fixed-size extent of inodes.
714 */
715 args.type = XFS_ALLOCTYPE_NEAR_BNO;
716 args.prod = 1;
717 /*
718 * Allow space for the inode btree to split.
719 */
720 args.minleft = args.mp->m_in_maxlevels - 1;
721 if ((error = xfs_alloc_vextent(&args)))
722 return error;
723 }
724
725 /*
726 * If stripe alignment is turned on, then try again with cluster
727 * alignment.
728 */
729 if (isaligned && args.fsbno == NULLFSBLOCK) {
730 args.type = XFS_ALLOCTYPE_NEAR_BNO;
731 args.agbno = be32_to_cpu(agi->agi_root);
732 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
733 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
734 if ((error = xfs_alloc_vextent(&args)))
735 return error;
736 }
737
738 /*
739 * Finally, try a sparse allocation if the filesystem supports it and
740 * the sparse allocation length is smaller than a full chunk.
741 */
742 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
743 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
744 args.fsbno == NULLFSBLOCK) {
745sparse_alloc:
746 args.type = XFS_ALLOCTYPE_NEAR_BNO;
747 args.agbno = be32_to_cpu(agi->agi_root);
748 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
749 args.alignment = args.mp->m_sb.sb_spino_align;
750 args.prod = 1;
751
752 args.minlen = args.mp->m_ialloc_min_blks;
753 args.maxlen = args.minlen;
754
755 /*
756 * The inode record will be aligned to full chunk size. We must
757 * prevent sparse allocation from AG boundaries that result in
758 * invalid inode records, such as records that start at agbno 0
759 * or extend beyond the AG.
760 *
761 * Set min agbno to the first aligned, non-zero agbno and max to
762 * the last aligned agbno that is at least one full chunk from
763 * the end of the AG.
764 */
765 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
766 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
767 args.mp->m_sb.sb_inoalignmt) -
768 args.mp->m_ialloc_blks;
769
770 error = xfs_alloc_vextent(&args);
771 if (error)
772 return error;
773
774 newlen = args.len << args.mp->m_sb.sb_inopblog;
775 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
776 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
777 }
778
779 if (args.fsbno == NULLFSBLOCK) {
780 *alloc = 0;
781 return 0;
782 }
783 ASSERT(args.len == args.minlen);
784
785 /*
786 * Stamp and write the inode buffers.
787 *
788 * Seed the new inode cluster with a random generation number. This
789 * prevents short-term reuse of generation numbers if a chunk is
790 * freed and then immediately reallocated. We use random numbers
791 * rather than a linear progression to prevent the next generation
792 * number from being easily guessable.
793 */
794 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
795 args.agbno, args.len, prandom_u32());
796
797 if (error)
798 return error;
799 /*
800 * Convert the results.
801 */
802 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
803
804 if (xfs_inobt_issparse(~allocmask)) {
805 /*
806 * We've allocated a sparse chunk. Align the startino and mask.
807 */
808 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
809
810 rec.ir_startino = newino;
811 rec.ir_holemask = ~allocmask;
812 rec.ir_count = newlen;
813 rec.ir_freecount = newlen;
814 rec.ir_free = XFS_INOBT_ALL_FREE;
815
816 /*
817 * Insert the sparse record into the inobt and allow for a merge
818 * if necessary. If a merge does occur, rec is updated to the
819 * merged record.
820 */
821 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
822 &rec, true);
823 if (error == -EFSCORRUPTED) {
824 xfs_alert(args.mp,
825 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
826 XFS_AGINO_TO_INO(args.mp, agno,
827 rec.ir_startino),
828 rec.ir_holemask, rec.ir_count);
829 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
830 }
831 if (error)
832 return error;
833
834 /*
835 * We can't merge the part we've just allocated as for the inobt
836 * due to finobt semantics. The original record may or may not
837 * exist independent of whether physical inodes exist in this
838 * sparse chunk.
839 *
840 * We must update the finobt record based on the inobt record.
841 * rec contains the fully merged and up to date inobt record
842 * from the previous call. Set merge false to replace any
843 * existing record with this one.
844 */
845 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
846 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
847 XFS_BTNUM_FINO, &rec,
848 false);
849 if (error)
850 return error;
851 }
852 } else {
853 /* full chunk - insert new records to both btrees */
854 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
855 XFS_BTNUM_INO);
856 if (error)
857 return error;
858
859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
860 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
861 newlen, XFS_BTNUM_FINO);
862 if (error)
863 return error;
864 }
865 }
866
867 /*
868 * Update AGI counts and newino.
869 */
870 be32_add_cpu(&agi->agi_count, newlen);
871 be32_add_cpu(&agi->agi_freecount, newlen);
872 pag = xfs_perag_get(args.mp, agno);
873 pag->pagi_freecount += newlen;
874 xfs_perag_put(pag);
875 agi->agi_newino = cpu_to_be32(newino);
876
877 /*
878 * Log allocation group header fields
879 */
880 xfs_ialloc_log_agi(tp, agbp,
881 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
882 /*
883 * Modify/log superblock values for inode count and inode free count.
884 */
885 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
886 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
887 *alloc = 1;
888 return 0;
889}
890
891STATIC xfs_agnumber_t
892xfs_ialloc_next_ag(
893 xfs_mount_t *mp)
894{
895 xfs_agnumber_t agno;
896
897 spin_lock(&mp->m_agirotor_lock);
898 agno = mp->m_agirotor;
899 if (++mp->m_agirotor >= mp->m_maxagi)
900 mp->m_agirotor = 0;
901 spin_unlock(&mp->m_agirotor_lock);
902
903 return agno;
904}
905
906/*
907 * Select an allocation group to look for a free inode in, based on the parent
908 * inode and the mode. Return the allocation group buffer.
909 */
910STATIC xfs_agnumber_t
911xfs_ialloc_ag_select(
912 xfs_trans_t *tp, /* transaction pointer */
913 xfs_ino_t parent, /* parent directory inode number */
914 umode_t mode, /* bits set to indicate file type */
915 int okalloc) /* ok to allocate more space */
916{
917 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
918 xfs_agnumber_t agno; /* current ag number */
919 int flags; /* alloc buffer locking flags */
920 xfs_extlen_t ineed; /* blocks needed for inode allocation */
921 xfs_extlen_t longest = 0; /* longest extent available */
922 xfs_mount_t *mp; /* mount point structure */
923 int needspace; /* file mode implies space allocated */
924 xfs_perag_t *pag; /* per allocation group data */
925 xfs_agnumber_t pagno; /* parent (starting) ag number */
926 int error;
927
928 /*
929 * Files of these types need at least one block if length > 0
930 * (and they won't fit in the inode, but that's hard to figure out).
931 */
932 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
933 mp = tp->t_mountp;
934 agcount = mp->m_maxagi;
935 if (S_ISDIR(mode))
936 pagno = xfs_ialloc_next_ag(mp);
937 else {
938 pagno = XFS_INO_TO_AGNO(mp, parent);
939 if (pagno >= agcount)
940 pagno = 0;
941 }
942
943 ASSERT(pagno < agcount);
944
945 /*
946 * Loop through allocation groups, looking for one with a little
947 * free space in it. Note we don't look for free inodes, exactly.
948 * Instead, we include whether there is a need to allocate inodes
949 * to mean that blocks must be allocated for them,
950 * if none are currently free.
951 */
952 agno = pagno;
953 flags = XFS_ALLOC_FLAG_TRYLOCK;
954 for (;;) {
955 pag = xfs_perag_get(mp, agno);
956 if (!pag->pagi_inodeok) {
957 xfs_ialloc_next_ag(mp);
958 goto nextag;
959 }
960
961 if (!pag->pagi_init) {
962 error = xfs_ialloc_pagi_init(mp, tp, agno);
963 if (error)
964 goto nextag;
965 }
966
967 if (pag->pagi_freecount) {
968 xfs_perag_put(pag);
969 return agno;
970 }
971
972 if (!okalloc)
973 goto nextag;
974
975 if (!pag->pagf_init) {
976 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
977 if (error)
978 goto nextag;
979 }
980
981 /*
982 * Check that there is enough free space for the file plus a
983 * chunk of inodes if we need to allocate some. If this is the
984 * first pass across the AGs, take into account the potential
985 * space needed for alignment of inode chunks when checking the
986 * longest contiguous free space in the AG - this prevents us
987 * from getting ENOSPC because we have free space larger than
988 * m_ialloc_blks but alignment constraints prevent us from using
989 * it.
990 *
991 * If we can't find an AG with space for full alignment slack to
992 * be taken into account, we must be near ENOSPC in all AGs.
993 * Hence we don't include alignment for the second pass and so
994 * if we fail allocation due to alignment issues then it is most
995 * likely a real ENOSPC condition.
996 */
997 ineed = mp->m_ialloc_min_blks;
998 if (flags && ineed > 1)
999 ineed += xfs_ialloc_cluster_alignment(mp);
1000 longest = pag->pagf_longest;
1001 if (!longest)
1002 longest = pag->pagf_flcount > 0;
1003
1004 if (pag->pagf_freeblks >= needspace + ineed &&
1005 longest >= ineed) {
1006 xfs_perag_put(pag);
1007 return agno;
1008 }
1009nextag:
1010 xfs_perag_put(pag);
1011 /*
1012 * No point in iterating over the rest, if we're shutting
1013 * down.
1014 */
1015 if (XFS_FORCED_SHUTDOWN(mp))
1016 return NULLAGNUMBER;
1017 agno++;
1018 if (agno >= agcount)
1019 agno = 0;
1020 if (agno == pagno) {
1021 if (flags == 0)
1022 return NULLAGNUMBER;
1023 flags = 0;
1024 }
1025 }
1026}
1027
1028/*
1029 * Try to retrieve the next record to the left/right from the current one.
1030 */
1031STATIC int
1032xfs_ialloc_next_rec(
1033 struct xfs_btree_cur *cur,
1034 xfs_inobt_rec_incore_t *rec,
1035 int *done,
1036 int left)
1037{
1038 int error;
1039 int i;
1040
1041 if (left)
1042 error = xfs_btree_decrement(cur, 0, &i);
1043 else
1044 error = xfs_btree_increment(cur, 0, &i);
1045
1046 if (error)
1047 return error;
1048 *done = !i;
1049 if (i) {
1050 error = xfs_inobt_get_rec(cur, rec, &i);
1051 if (error)
1052 return error;
1053 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1054 }
1055
1056 return 0;
1057}
1058
1059STATIC int
1060xfs_ialloc_get_rec(
1061 struct xfs_btree_cur *cur,
1062 xfs_agino_t agino,
1063 xfs_inobt_rec_incore_t *rec,
1064 int *done)
1065{
1066 int error;
1067 int i;
1068
1069 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1070 if (error)
1071 return error;
1072 *done = !i;
1073 if (i) {
1074 error = xfs_inobt_get_rec(cur, rec, &i);
1075 if (error)
1076 return error;
1077 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1078 }
1079
1080 return 0;
1081}
1082
1083/*
1084 * Return the offset of the first free inode in the record. If the inode chunk
1085 * is sparsely allocated, we convert the record holemask to inode granularity
1086 * and mask off the unallocated regions from the inode free mask.
1087 */
1088STATIC int
1089xfs_inobt_first_free_inode(
1090 struct xfs_inobt_rec_incore *rec)
1091{
1092 xfs_inofree_t realfree;
1093
1094 /* if there are no holes, return the first available offset */
1095 if (!xfs_inobt_issparse(rec->ir_holemask))
1096 return xfs_lowbit64(rec->ir_free);
1097
1098 realfree = xfs_inobt_irec_to_allocmask(rec);
1099 realfree &= rec->ir_free;
1100
1101 return xfs_lowbit64(realfree);
1102}
1103
1104/*
1105 * Allocate an inode using the inobt-only algorithm.
1106 */
1107STATIC int
1108xfs_dialloc_ag_inobt(
1109 struct xfs_trans *tp,
1110 struct xfs_buf *agbp,
1111 xfs_ino_t parent,
1112 xfs_ino_t *inop)
1113{
1114 struct xfs_mount *mp = tp->t_mountp;
1115 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1116 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1117 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1118 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1119 struct xfs_perag *pag;
1120 struct xfs_btree_cur *cur, *tcur;
1121 struct xfs_inobt_rec_incore rec, trec;
1122 xfs_ino_t ino;
1123 int error;
1124 int offset;
1125 int i, j;
1126
1127 pag = xfs_perag_get(mp, agno);
1128
1129 ASSERT(pag->pagi_init);
1130 ASSERT(pag->pagi_inodeok);
1131 ASSERT(pag->pagi_freecount > 0);
1132
1133 restart_pagno:
1134 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1135 /*
1136 * If pagino is 0 (this is the root inode allocation) use newino.
1137 * This must work because we've just allocated some.
1138 */
1139 if (!pagino)
1140 pagino = be32_to_cpu(agi->agi_newino);
1141
1142 error = xfs_check_agi_freecount(cur, agi);
1143 if (error)
1144 goto error0;
1145
1146 /*
1147 * If in the same AG as the parent, try to get near the parent.
1148 */
1149 if (pagno == agno) {
1150 int doneleft; /* done, to the left */
1151 int doneright; /* done, to the right */
1152 int searchdistance = 10;
1153
1154 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1155 if (error)
1156 goto error0;
1157 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1158
1159 error = xfs_inobt_get_rec(cur, &rec, &j);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1163
1164 if (rec.ir_freecount > 0) {
1165 /*
1166 * Found a free inode in the same chunk
1167 * as the parent, done.
1168 */
1169 goto alloc_inode;
1170 }
1171
1172
1173 /*
1174 * In the same AG as parent, but parent's chunk is full.
1175 */
1176
1177 /* duplicate the cursor, search left & right simultaneously */
1178 error = xfs_btree_dup_cursor(cur, &tcur);
1179 if (error)
1180 goto error0;
1181
1182 /*
1183 * Skip to last blocks looked up if same parent inode.
1184 */
1185 if (pagino != NULLAGINO &&
1186 pag->pagl_pagino == pagino &&
1187 pag->pagl_leftrec != NULLAGINO &&
1188 pag->pagl_rightrec != NULLAGINO) {
1189 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1190 &trec, &doneleft);
1191 if (error)
1192 goto error1;
1193
1194 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1195 &rec, &doneright);
1196 if (error)
1197 goto error1;
1198 } else {
1199 /* search left with tcur, back up 1 record */
1200 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1201 if (error)
1202 goto error1;
1203
1204 /* search right with cur, go forward 1 record. */
1205 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1206 if (error)
1207 goto error1;
1208 }
1209
1210 /*
1211 * Loop until we find an inode chunk with a free inode.
1212 */
1213 while (!doneleft || !doneright) {
1214 int useleft; /* using left inode chunk this time */
1215
1216 if (!--searchdistance) {
1217 /*
1218 * Not in range - save last search
1219 * location and allocate a new inode
1220 */
1221 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1222 pag->pagl_leftrec = trec.ir_startino;
1223 pag->pagl_rightrec = rec.ir_startino;
1224 pag->pagl_pagino = pagino;
1225 goto newino;
1226 }
1227
1228 /* figure out the closer block if both are valid. */
1229 if (!doneleft && !doneright) {
1230 useleft = pagino -
1231 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1232 rec.ir_startino - pagino;
1233 } else {
1234 useleft = !doneleft;
1235 }
1236
1237 /* free inodes to the left? */
1238 if (useleft && trec.ir_freecount) {
1239 rec = trec;
1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 cur = tcur;
1242
1243 pag->pagl_leftrec = trec.ir_startino;
1244 pag->pagl_rightrec = rec.ir_startino;
1245 pag->pagl_pagino = pagino;
1246 goto alloc_inode;
1247 }
1248
1249 /* free inodes to the right? */
1250 if (!useleft && rec.ir_freecount) {
1251 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1252
1253 pag->pagl_leftrec = trec.ir_startino;
1254 pag->pagl_rightrec = rec.ir_startino;
1255 pag->pagl_pagino = pagino;
1256 goto alloc_inode;
1257 }
1258
1259 /* get next record to check */
1260 if (useleft) {
1261 error = xfs_ialloc_next_rec(tcur, &trec,
1262 &doneleft, 1);
1263 } else {
1264 error = xfs_ialloc_next_rec(cur, &rec,
1265 &doneright, 0);
1266 }
1267 if (error)
1268 goto error1;
1269 }
1270
1271 /*
1272 * We've reached the end of the btree. because
1273 * we are only searching a small chunk of the
1274 * btree each search, there is obviously free
1275 * inodes closer to the parent inode than we
1276 * are now. restart the search again.
1277 */
1278 pag->pagl_pagino = NULLAGINO;
1279 pag->pagl_leftrec = NULLAGINO;
1280 pag->pagl_rightrec = NULLAGINO;
1281 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1282 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1283 goto restart_pagno;
1284 }
1285
1286 /*
1287 * In a different AG from the parent.
1288 * See if the most recently allocated block has any free.
1289 */
1290newino:
1291 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1292 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1293 XFS_LOOKUP_EQ, &i);
1294 if (error)
1295 goto error0;
1296
1297 if (i == 1) {
1298 error = xfs_inobt_get_rec(cur, &rec, &j);
1299 if (error)
1300 goto error0;
1301
1302 if (j == 1 && rec.ir_freecount > 0) {
1303 /*
1304 * The last chunk allocated in the group
1305 * still has a free inode.
1306 */
1307 goto alloc_inode;
1308 }
1309 }
1310 }
1311
1312 /*
1313 * None left in the last group, search the whole AG
1314 */
1315 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1316 if (error)
1317 goto error0;
1318 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1319
1320 for (;;) {
1321 error = xfs_inobt_get_rec(cur, &rec, &i);
1322 if (error)
1323 goto error0;
1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325 if (rec.ir_freecount > 0)
1326 break;
1327 error = xfs_btree_increment(cur, 0, &i);
1328 if (error)
1329 goto error0;
1330 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331 }
1332
1333alloc_inode:
1334 offset = xfs_inobt_first_free_inode(&rec);
1335 ASSERT(offset >= 0);
1336 ASSERT(offset < XFS_INODES_PER_CHUNK);
1337 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338 XFS_INODES_PER_CHUNK) == 0);
1339 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1340 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1341 rec.ir_freecount--;
1342 error = xfs_inobt_update(cur, &rec);
1343 if (error)
1344 goto error0;
1345 be32_add_cpu(&agi->agi_freecount, -1);
1346 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1347 pag->pagi_freecount--;
1348
1349 error = xfs_check_agi_freecount(cur, agi);
1350 if (error)
1351 goto error0;
1352
1353 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1354 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1355 xfs_perag_put(pag);
1356 *inop = ino;
1357 return 0;
1358error1:
1359 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1360error0:
1361 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1362 xfs_perag_put(pag);
1363 return error;
1364}
1365
1366/*
1367 * Use the free inode btree to allocate an inode based on distance from the
1368 * parent. Note that the provided cursor may be deleted and replaced.
1369 */
1370STATIC int
1371xfs_dialloc_ag_finobt_near(
1372 xfs_agino_t pagino,
1373 struct xfs_btree_cur **ocur,
1374 struct xfs_inobt_rec_incore *rec)
1375{
1376 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1377 struct xfs_btree_cur *rcur; /* right search cursor */
1378 struct xfs_inobt_rec_incore rrec;
1379 int error;
1380 int i, j;
1381
1382 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1383 if (error)
1384 return error;
1385
1386 if (i == 1) {
1387 error = xfs_inobt_get_rec(lcur, rec, &i);
1388 if (error)
1389 return error;
1390 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1391
1392 /*
1393 * See if we've landed in the parent inode record. The finobt
1394 * only tracks chunks with at least one free inode, so record
1395 * existence is enough.
1396 */
1397 if (pagino >= rec->ir_startino &&
1398 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1399 return 0;
1400 }
1401
1402 error = xfs_btree_dup_cursor(lcur, &rcur);
1403 if (error)
1404 return error;
1405
1406 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1407 if (error)
1408 goto error_rcur;
1409 if (j == 1) {
1410 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1411 if (error)
1412 goto error_rcur;
1413 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1414 }
1415
1416 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1417 if (i == 1 && j == 1) {
1418 /*
1419 * Both the left and right records are valid. Choose the closer
1420 * inode chunk to the target.
1421 */
1422 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1423 (rrec.ir_startino - pagino)) {
1424 *rec = rrec;
1425 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1426 *ocur = rcur;
1427 } else {
1428 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1429 }
1430 } else if (j == 1) {
1431 /* only the right record is valid */
1432 *rec = rrec;
1433 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1434 *ocur = rcur;
1435 } else if (i == 1) {
1436 /* only the left record is valid */
1437 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1438 }
1439
1440 return 0;
1441
1442error_rcur:
1443 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1444 return error;
1445}
1446
1447/*
1448 * Use the free inode btree to find a free inode based on a newino hint. If
1449 * the hint is NULL, find the first free inode in the AG.
1450 */
1451STATIC int
1452xfs_dialloc_ag_finobt_newino(
1453 struct xfs_agi *agi,
1454 struct xfs_btree_cur *cur,
1455 struct xfs_inobt_rec_incore *rec)
1456{
1457 int error;
1458 int i;
1459
1460 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1461 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1462 XFS_LOOKUP_EQ, &i);
1463 if (error)
1464 return error;
1465 if (i == 1) {
1466 error = xfs_inobt_get_rec(cur, rec, &i);
1467 if (error)
1468 return error;
1469 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1470 return 0;
1471 }
1472 }
1473
1474 /*
1475 * Find the first inode available in the AG.
1476 */
1477 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1478 if (error)
1479 return error;
1480 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1481
1482 error = xfs_inobt_get_rec(cur, rec, &i);
1483 if (error)
1484 return error;
1485 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486
1487 return 0;
1488}
1489
1490/*
1491 * Update the inobt based on a modification made to the finobt. Also ensure that
1492 * the records from both trees are equivalent post-modification.
1493 */
1494STATIC int
1495xfs_dialloc_ag_update_inobt(
1496 struct xfs_btree_cur *cur, /* inobt cursor */
1497 struct xfs_inobt_rec_incore *frec, /* finobt record */
1498 int offset) /* inode offset */
1499{
1500 struct xfs_inobt_rec_incore rec;
1501 int error;
1502 int i;
1503
1504 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1505 if (error)
1506 return error;
1507 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1508
1509 error = xfs_inobt_get_rec(cur, &rec, &i);
1510 if (error)
1511 return error;
1512 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1513 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1514 XFS_INODES_PER_CHUNK) == 0);
1515
1516 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1517 rec.ir_freecount--;
1518
1519 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1520 (rec.ir_freecount == frec->ir_freecount));
1521
1522 return xfs_inobt_update(cur, &rec);
1523}
1524
1525/*
1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527 * back to the inobt search algorithm.
1528 *
1529 * The caller selected an AG for us, and made sure that free inodes are
1530 * available.
1531 */
1532STATIC int
1533xfs_dialloc_ag(
1534 struct xfs_trans *tp,
1535 struct xfs_buf *agbp,
1536 xfs_ino_t parent,
1537 xfs_ino_t *inop)
1538{
1539 struct xfs_mount *mp = tp->t_mountp;
1540 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1541 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1542 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1543 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1544 struct xfs_perag *pag;
1545 struct xfs_btree_cur *cur; /* finobt cursor */
1546 struct xfs_btree_cur *icur; /* inobt cursor */
1547 struct xfs_inobt_rec_incore rec;
1548 xfs_ino_t ino;
1549 int error;
1550 int offset;
1551 int i;
1552
1553 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1554 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1555
1556 pag = xfs_perag_get(mp, agno);
1557
1558 /*
1559 * If pagino is 0 (this is the root inode allocation) use newino.
1560 * This must work because we've just allocated some.
1561 */
1562 if (!pagino)
1563 pagino = be32_to_cpu(agi->agi_newino);
1564
1565 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1566
1567 error = xfs_check_agi_freecount(cur, agi);
1568 if (error)
1569 goto error_cur;
1570
1571 /*
1572 * The search algorithm depends on whether we're in the same AG as the
1573 * parent. If so, find the closest available inode to the parent. If
1574 * not, consider the agi hint or find the first free inode in the AG.
1575 */
1576 if (agno == pagno)
1577 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1578 else
1579 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1580 if (error)
1581 goto error_cur;
1582
1583 offset = xfs_inobt_first_free_inode(&rec);
1584 ASSERT(offset >= 0);
1585 ASSERT(offset < XFS_INODES_PER_CHUNK);
1586 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1587 XFS_INODES_PER_CHUNK) == 0);
1588 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1589
1590 /*
1591 * Modify or remove the finobt record.
1592 */
1593 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1594 rec.ir_freecount--;
1595 if (rec.ir_freecount)
1596 error = xfs_inobt_update(cur, &rec);
1597 else
1598 error = xfs_btree_delete(cur, &i);
1599 if (error)
1600 goto error_cur;
1601
1602 /*
1603 * The finobt has now been updated appropriately. We haven't updated the
1604 * agi and superblock yet, so we can create an inobt cursor and validate
1605 * the original freecount. If all is well, make the equivalent update to
1606 * the inobt using the finobt record and offset information.
1607 */
1608 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1609
1610 error = xfs_check_agi_freecount(icur, agi);
1611 if (error)
1612 goto error_icur;
1613
1614 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1615 if (error)
1616 goto error_icur;
1617
1618 /*
1619 * Both trees have now been updated. We must update the perag and
1620 * superblock before we can check the freecount for each btree.
1621 */
1622 be32_add_cpu(&agi->agi_freecount, -1);
1623 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1624 pag->pagi_freecount--;
1625
1626 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1627
1628 error = xfs_check_agi_freecount(icur, agi);
1629 if (error)
1630 goto error_icur;
1631 error = xfs_check_agi_freecount(cur, agi);
1632 if (error)
1633 goto error_icur;
1634
1635 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1636 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1637 xfs_perag_put(pag);
1638 *inop = ino;
1639 return 0;
1640
1641error_icur:
1642 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1643error_cur:
1644 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1645 xfs_perag_put(pag);
1646 return error;
1647}
1648
1649/*
1650 * Allocate an inode on disk.
1651 *
1652 * Mode is used to tell whether the new inode will need space, and whether it
1653 * is a directory.
1654 *
1655 * This function is designed to be called twice if it has to do an allocation
1656 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1657 * If an inode is available without having to performn an allocation, an inode
1658 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1659 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1660 * The caller should then commit the current transaction, allocate a
1661 * new transaction, and call xfs_dialloc() again, passing in the previous value
1662 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1663 * buffer is locked across the two calls, the second call is guaranteed to have
1664 * a free inode available.
1665 *
1666 * Once we successfully pick an inode its number is returned and the on-disk
1667 * data structures are updated. The inode itself is not read in, since doing so
1668 * would break ordering constraints with xfs_reclaim.
1669 */
1670int
1671xfs_dialloc(
1672 struct xfs_trans *tp,
1673 xfs_ino_t parent,
1674 umode_t mode,
1675 int okalloc,
1676 struct xfs_buf **IO_agbp,
1677 xfs_ino_t *inop)
1678{
1679 struct xfs_mount *mp = tp->t_mountp;
1680 struct xfs_buf *agbp;
1681 xfs_agnumber_t agno;
1682 int error;
1683 int ialloced;
1684 int noroom = 0;
1685 xfs_agnumber_t start_agno;
1686 struct xfs_perag *pag;
1687
1688 if (*IO_agbp) {
1689 /*
1690 * If the caller passes in a pointer to the AGI buffer,
1691 * continue where we left off before. In this case, we
1692 * know that the allocation group has free inodes.
1693 */
1694 agbp = *IO_agbp;
1695 goto out_alloc;
1696 }
1697
1698 /*
1699 * We do not have an agbp, so select an initial allocation
1700 * group for inode allocation.
1701 */
1702 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1703 if (start_agno == NULLAGNUMBER) {
1704 *inop = NULLFSINO;
1705 return 0;
1706 }
1707
1708 /*
1709 * If we have already hit the ceiling of inode blocks then clear
1710 * okalloc so we scan all available agi structures for a free
1711 * inode.
1712 *
1713 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1714 * which will sacrifice the preciseness but improve the performance.
1715 */
1716 if (mp->m_maxicount &&
1717 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1718 > mp->m_maxicount) {
1719 noroom = 1;
1720 okalloc = 0;
1721 }
1722
1723 /*
1724 * Loop until we find an allocation group that either has free inodes
1725 * or in which we can allocate some inodes. Iterate through the
1726 * allocation groups upward, wrapping at the end.
1727 */
1728 agno = start_agno;
1729 for (;;) {
1730 pag = xfs_perag_get(mp, agno);
1731 if (!pag->pagi_inodeok) {
1732 xfs_ialloc_next_ag(mp);
1733 goto nextag;
1734 }
1735
1736 if (!pag->pagi_init) {
1737 error = xfs_ialloc_pagi_init(mp, tp, agno);
1738 if (error)
1739 goto out_error;
1740 }
1741
1742 /*
1743 * Do a first racy fast path check if this AG is usable.
1744 */
1745 if (!pag->pagi_freecount && !okalloc)
1746 goto nextag;
1747
1748 /*
1749 * Then read in the AGI buffer and recheck with the AGI buffer
1750 * lock held.
1751 */
1752 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1753 if (error)
1754 goto out_error;
1755
1756 if (pag->pagi_freecount) {
1757 xfs_perag_put(pag);
1758 goto out_alloc;
1759 }
1760
1761 if (!okalloc)
1762 goto nextag_relse_buffer;
1763
1764
1765 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1766 if (error) {
1767 xfs_trans_brelse(tp, agbp);
1768
1769 if (error != -ENOSPC)
1770 goto out_error;
1771
1772 xfs_perag_put(pag);
1773 *inop = NULLFSINO;
1774 return 0;
1775 }
1776
1777 if (ialloced) {
1778 /*
1779 * We successfully allocated some inodes, return
1780 * the current context to the caller so that it
1781 * can commit the current transaction and call
1782 * us again where we left off.
1783 */
1784 ASSERT(pag->pagi_freecount > 0);
1785 xfs_perag_put(pag);
1786
1787 *IO_agbp = agbp;
1788 *inop = NULLFSINO;
1789 return 0;
1790 }
1791
1792nextag_relse_buffer:
1793 xfs_trans_brelse(tp, agbp);
1794nextag:
1795 xfs_perag_put(pag);
1796 if (++agno == mp->m_sb.sb_agcount)
1797 agno = 0;
1798 if (agno == start_agno) {
1799 *inop = NULLFSINO;
1800 return noroom ? -ENOSPC : 0;
1801 }
1802 }
1803
1804out_alloc:
1805 *IO_agbp = NULL;
1806 return xfs_dialloc_ag(tp, agbp, parent, inop);
1807out_error:
1808 xfs_perag_put(pag);
1809 return error;
1810}
1811
1812/*
1813 * Free the blocks of an inode chunk. We must consider that the inode chunk
1814 * might be sparse and only free the regions that are allocated as part of the
1815 * chunk.
1816 */
1817STATIC void
1818xfs_difree_inode_chunk(
1819 struct xfs_mount *mp,
1820 xfs_agnumber_t agno,
1821 struct xfs_inobt_rec_incore *rec,
1822 struct xfs_defer_ops *dfops)
1823{
1824 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1825 int startidx, endidx;
1826 int nextbit;
1827 xfs_agblock_t agbno;
1828 int contigblk;
1829 struct xfs_owner_info oinfo;
1830 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1831 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1832
1833 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1834 /* not sparse, calculate extent info directly */
1835 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1836 mp->m_ialloc_blks, &oinfo);
1837 return;
1838 }
1839
1840 /* holemask is only 16-bits (fits in an unsigned long) */
1841 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1842 holemask[0] = rec->ir_holemask;
1843
1844 /*
1845 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1846 * holemask and convert the start/end index of each range to an extent.
1847 * We start with the start and end index both pointing at the first 0 in
1848 * the mask.
1849 */
1850 startidx = endidx = find_first_zero_bit(holemask,
1851 XFS_INOBT_HOLEMASK_BITS);
1852 nextbit = startidx + 1;
1853 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1854 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1855 nextbit);
1856 /*
1857 * If the next zero bit is contiguous, update the end index of
1858 * the current range and continue.
1859 */
1860 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1861 nextbit == endidx + 1) {
1862 endidx = nextbit;
1863 goto next;
1864 }
1865
1866 /*
1867 * nextbit is not contiguous with the current end index. Convert
1868 * the current start/end to an extent and add it to the free
1869 * list.
1870 */
1871 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873 contigblk = ((endidx - startidx + 1) *
1874 XFS_INODES_PER_HOLEMASK_BIT) /
1875 mp->m_sb.sb_inopblock;
1876
1877 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1878 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1879 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1880 contigblk, &oinfo);
1881
1882 /* reset range to current bit and carry on... */
1883 startidx = endidx = nextbit;
1884
1885next:
1886 nextbit++;
1887 }
1888}
1889
1890STATIC int
1891xfs_difree_inobt(
1892 struct xfs_mount *mp,
1893 struct xfs_trans *tp,
1894 struct xfs_buf *agbp,
1895 xfs_agino_t agino,
1896 struct xfs_defer_ops *dfops,
1897 struct xfs_icluster *xic,
1898 struct xfs_inobt_rec_incore *orec)
1899{
1900 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1901 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1902 struct xfs_perag *pag;
1903 struct xfs_btree_cur *cur;
1904 struct xfs_inobt_rec_incore rec;
1905 int ilen;
1906 int error;
1907 int i;
1908 int off;
1909
1910 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1911 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1912
1913 /*
1914 * Initialize the cursor.
1915 */
1916 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1917
1918 error = xfs_check_agi_freecount(cur, agi);
1919 if (error)
1920 goto error0;
1921
1922 /*
1923 * Look for the entry describing this inode.
1924 */
1925 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1926 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1927 __func__, error);
1928 goto error0;
1929 }
1930 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1931 error = xfs_inobt_get_rec(cur, &rec, &i);
1932 if (error) {
1933 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1934 __func__, error);
1935 goto error0;
1936 }
1937 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1938 /*
1939 * Get the offset in the inode chunk.
1940 */
1941 off = agino - rec.ir_startino;
1942 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944 /*
1945 * Mark the inode free & increment the count.
1946 */
1947 rec.ir_free |= XFS_INOBT_MASK(off);
1948 rec.ir_freecount++;
1949
1950 /*
1951 * When an inode chunk is free, it becomes eligible for removal. Don't
1952 * remove the chunk if the block size is large enough for multiple inode
1953 * chunks (that might not be free).
1954 */
1955 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1956 rec.ir_free == XFS_INOBT_ALL_FREE &&
1957 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1958 xic->deleted = 1;
1959 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1960 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1961
1962 /*
1963 * Remove the inode cluster from the AGI B+Tree, adjust the
1964 * AGI and Superblock inode counts, and mark the disk space
1965 * to be freed when the transaction is committed.
1966 */
1967 ilen = rec.ir_freecount;
1968 be32_add_cpu(&agi->agi_count, -ilen);
1969 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1970 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1971 pag = xfs_perag_get(mp, agno);
1972 pag->pagi_freecount -= ilen - 1;
1973 xfs_perag_put(pag);
1974 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1975 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1976
1977 if ((error = xfs_btree_delete(cur, &i))) {
1978 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1979 __func__, error);
1980 goto error0;
1981 }
1982
1983 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1984 } else {
1985 xic->deleted = 0;
1986
1987 error = xfs_inobt_update(cur, &rec);
1988 if (error) {
1989 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1990 __func__, error);
1991 goto error0;
1992 }
1993
1994 /*
1995 * Change the inode free counts and log the ag/sb changes.
1996 */
1997 be32_add_cpu(&agi->agi_freecount, 1);
1998 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1999 pag = xfs_perag_get(mp, agno);
2000 pag->pagi_freecount++;
2001 xfs_perag_put(pag);
2002 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2003 }
2004
2005 error = xfs_check_agi_freecount(cur, agi);
2006 if (error)
2007 goto error0;
2008
2009 *orec = rec;
2010 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2011 return 0;
2012
2013error0:
2014 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2015 return error;
2016}
2017
2018/*
2019 * Free an inode in the free inode btree.
2020 */
2021STATIC int
2022xfs_difree_finobt(
2023 struct xfs_mount *mp,
2024 struct xfs_trans *tp,
2025 struct xfs_buf *agbp,
2026 xfs_agino_t agino,
2027 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2028{
2029 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2030 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2031 struct xfs_btree_cur *cur;
2032 struct xfs_inobt_rec_incore rec;
2033 int offset = agino - ibtrec->ir_startino;
2034 int error;
2035 int i;
2036
2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2038
2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 if (error)
2041 goto error;
2042 if (i == 0) {
2043 /*
2044 * If the record does not exist in the finobt, we must have just
2045 * freed an inode in a previously fully allocated chunk. If not,
2046 * something is out of sync.
2047 */
2048 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2049
2050 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2051 ibtrec->ir_count,
2052 ibtrec->ir_freecount,
2053 ibtrec->ir_free, &i);
2054 if (error)
2055 goto error;
2056 ASSERT(i == 1);
2057
2058 goto out;
2059 }
2060
2061 /*
2062 * Read and update the existing record. We could just copy the ibtrec
2063 * across here, but that would defeat the purpose of having redundant
2064 * metadata. By making the modifications independently, we can catch
2065 * corruptions that we wouldn't see if we just copied from one record
2066 * to another.
2067 */
2068 error = xfs_inobt_get_rec(cur, &rec, &i);
2069 if (error)
2070 goto error;
2071 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2072
2073 rec.ir_free |= XFS_INOBT_MASK(offset);
2074 rec.ir_freecount++;
2075
2076 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2077 (rec.ir_freecount == ibtrec->ir_freecount),
2078 error);
2079
2080 /*
2081 * The content of inobt records should always match between the inobt
2082 * and finobt. The lifecycle of records in the finobt is different from
2083 * the inobt in that the finobt only tracks records with at least one
2084 * free inode. Hence, if all of the inodes are free and we aren't
2085 * keeping inode chunks permanently on disk, remove the record.
2086 * Otherwise, update the record with the new information.
2087 *
2088 * Note that we currently can't free chunks when the block size is large
2089 * enough for multiple chunks. Leave the finobt record to remain in sync
2090 * with the inobt.
2091 */
2092 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2093 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2094 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2095 error = xfs_btree_delete(cur, &i);
2096 if (error)
2097 goto error;
2098 ASSERT(i == 1);
2099 } else {
2100 error = xfs_inobt_update(cur, &rec);
2101 if (error)
2102 goto error;
2103 }
2104
2105out:
2106 error = xfs_check_agi_freecount(cur, agi);
2107 if (error)
2108 goto error;
2109
2110 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2111 return 0;
2112
2113error:
2114 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2115 return error;
2116}
2117
2118/*
2119 * Free disk inode. Carefully avoids touching the incore inode, all
2120 * manipulations incore are the caller's responsibility.
2121 * The on-disk inode is not changed by this operation, only the
2122 * btree (free inode mask) is changed.
2123 */
2124int
2125xfs_difree(
2126 struct xfs_trans *tp, /* transaction pointer */
2127 xfs_ino_t inode, /* inode to be freed */
2128 struct xfs_defer_ops *dfops, /* extents to free */
2129 struct xfs_icluster *xic) /* cluster info if deleted */
2130{
2131 /* REFERENCED */
2132 xfs_agblock_t agbno; /* block number containing inode */
2133 struct xfs_buf *agbp; /* buffer for allocation group header */
2134 xfs_agino_t agino; /* allocation group inode number */
2135 xfs_agnumber_t agno; /* allocation group number */
2136 int error; /* error return value */
2137 struct xfs_mount *mp; /* mount structure for filesystem */
2138 struct xfs_inobt_rec_incore rec;/* btree record */
2139
2140 mp = tp->t_mountp;
2141
2142 /*
2143 * Break up inode number into its components.
2144 */
2145 agno = XFS_INO_TO_AGNO(mp, inode);
2146 if (agno >= mp->m_sb.sb_agcount) {
2147 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2148 __func__, agno, mp->m_sb.sb_agcount);
2149 ASSERT(0);
2150 return -EINVAL;
2151 }
2152 agino = XFS_INO_TO_AGINO(mp, inode);
2153 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2154 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2155 __func__, (unsigned long long)inode,
2156 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2157 ASSERT(0);
2158 return -EINVAL;
2159 }
2160 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2161 if (agbno >= mp->m_sb.sb_agblocks) {
2162 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2163 __func__, agbno, mp->m_sb.sb_agblocks);
2164 ASSERT(0);
2165 return -EINVAL;
2166 }
2167 /*
2168 * Get the allocation group header.
2169 */
2170 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2171 if (error) {
2172 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2173 __func__, error);
2174 return error;
2175 }
2176
2177 /*
2178 * Fix up the inode allocation btree.
2179 */
2180 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2181 if (error)
2182 goto error0;
2183
2184 /*
2185 * Fix up the free inode btree.
2186 */
2187 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2188 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2189 if (error)
2190 goto error0;
2191 }
2192
2193 return 0;
2194
2195error0:
2196 return error;
2197}
2198
2199STATIC int
2200xfs_imap_lookup(
2201 struct xfs_mount *mp,
2202 struct xfs_trans *tp,
2203 xfs_agnumber_t agno,
2204 xfs_agino_t agino,
2205 xfs_agblock_t agbno,
2206 xfs_agblock_t *chunk_agbno,
2207 xfs_agblock_t *offset_agbno,
2208 int flags)
2209{
2210 struct xfs_inobt_rec_incore rec;
2211 struct xfs_btree_cur *cur;
2212 struct xfs_buf *agbp;
2213 int error;
2214 int i;
2215
2216 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2217 if (error) {
2218 xfs_alert(mp,
2219 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2220 __func__, error, agno);
2221 return error;
2222 }
2223
2224 /*
2225 * Lookup the inode record for the given agino. If the record cannot be
2226 * found, then it's an invalid inode number and we should abort. Once
2227 * we have a record, we need to ensure it contains the inode number
2228 * we are looking up.
2229 */
2230 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2231 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2232 if (!error) {
2233 if (i)
2234 error = xfs_inobt_get_rec(cur, &rec, &i);
2235 if (!error && i == 0)
2236 error = -EINVAL;
2237 }
2238
2239 xfs_trans_brelse(tp, agbp);
2240 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2241 if (error)
2242 return error;
2243
2244 /* check that the returned record contains the required inode */
2245 if (rec.ir_startino > agino ||
2246 rec.ir_startino + mp->m_ialloc_inos <= agino)
2247 return -EINVAL;
2248
2249 /* for untrusted inodes check it is allocated first */
2250 if ((flags & XFS_IGET_UNTRUSTED) &&
2251 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2252 return -EINVAL;
2253
2254 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2255 *offset_agbno = agbno - *chunk_agbno;
2256 return 0;
2257}
2258
2259/*
2260 * Return the location of the inode in imap, for mapping it into a buffer.
2261 */
2262int
2263xfs_imap(
2264 xfs_mount_t *mp, /* file system mount structure */
2265 xfs_trans_t *tp, /* transaction pointer */
2266 xfs_ino_t ino, /* inode to locate */
2267 struct xfs_imap *imap, /* location map structure */
2268 uint flags) /* flags for inode btree lookup */
2269{
2270 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2271 xfs_agino_t agino; /* inode number within alloc group */
2272 xfs_agnumber_t agno; /* allocation group number */
2273 int blks_per_cluster; /* num blocks per inode cluster */
2274 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2275 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2276 int error; /* error code */
2277 int offset; /* index of inode in its buffer */
2278 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2279
2280 ASSERT(ino != NULLFSINO);
2281
2282 /*
2283 * Split up the inode number into its parts.
2284 */
2285 agno = XFS_INO_TO_AGNO(mp, ino);
2286 agino = XFS_INO_TO_AGINO(mp, ino);
2287 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2288 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2289 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2290#ifdef DEBUG
2291 /*
2292 * Don't output diagnostic information for untrusted inodes
2293 * as they can be invalid without implying corruption.
2294 */
2295 if (flags & XFS_IGET_UNTRUSTED)
2296 return -EINVAL;
2297 if (agno >= mp->m_sb.sb_agcount) {
2298 xfs_alert(mp,
2299 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2300 __func__, agno, mp->m_sb.sb_agcount);
2301 }
2302 if (agbno >= mp->m_sb.sb_agblocks) {
2303 xfs_alert(mp,
2304 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2305 __func__, (unsigned long long)agbno,
2306 (unsigned long)mp->m_sb.sb_agblocks);
2307 }
2308 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2309 xfs_alert(mp,
2310 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2311 __func__, ino,
2312 XFS_AGINO_TO_INO(mp, agno, agino));
2313 }
2314 xfs_stack_trace();
2315#endif /* DEBUG */
2316 return -EINVAL;
2317 }
2318
2319 blks_per_cluster = xfs_icluster_size_fsb(mp);
2320
2321 /*
2322 * For bulkstat and handle lookups, we have an untrusted inode number
2323 * that we have to verify is valid. We cannot do this just by reading
2324 * the inode buffer as it may have been unlinked and removed leaving
2325 * inodes in stale state on disk. Hence we have to do a btree lookup
2326 * in all cases where an untrusted inode number is passed.
2327 */
2328 if (flags & XFS_IGET_UNTRUSTED) {
2329 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2330 &chunk_agbno, &offset_agbno, flags);
2331 if (error)
2332 return error;
2333 goto out_map;
2334 }
2335
2336 /*
2337 * If the inode cluster size is the same as the blocksize or
2338 * smaller we get to the buffer by simple arithmetics.
2339 */
2340 if (blks_per_cluster == 1) {
2341 offset = XFS_INO_TO_OFFSET(mp, ino);
2342 ASSERT(offset < mp->m_sb.sb_inopblock);
2343
2344 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2345 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2346 imap->im_boffset = (unsigned short)(offset <<
2347 mp->m_sb.sb_inodelog);
2348 return 0;
2349 }
2350
2351 /*
2352 * If the inode chunks are aligned then use simple maths to
2353 * find the location. Otherwise we have to do a btree
2354 * lookup to find the location.
2355 */
2356 if (mp->m_inoalign_mask) {
2357 offset_agbno = agbno & mp->m_inoalign_mask;
2358 chunk_agbno = agbno - offset_agbno;
2359 } else {
2360 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2361 &chunk_agbno, &offset_agbno, flags);
2362 if (error)
2363 return error;
2364 }
2365
2366out_map:
2367 ASSERT(agbno >= chunk_agbno);
2368 cluster_agbno = chunk_agbno +
2369 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2370 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2371 XFS_INO_TO_OFFSET(mp, ino);
2372
2373 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2374 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2375 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2376
2377 /*
2378 * If the inode number maps to a block outside the bounds
2379 * of the file system then return NULL rather than calling
2380 * read_buf and panicing when we get an error from the
2381 * driver.
2382 */
2383 if ((imap->im_blkno + imap->im_len) >
2384 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2385 xfs_alert(mp,
2386 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387 __func__, (unsigned long long) imap->im_blkno,
2388 (unsigned long long) imap->im_len,
2389 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2390 return -EINVAL;
2391 }
2392 return 0;
2393}
2394
2395/*
2396 * Compute and fill in value of m_in_maxlevels.
2397 */
2398void
2399xfs_ialloc_compute_maxlevels(
2400 xfs_mount_t *mp) /* file system mount structure */
2401{
2402 uint inodes;
2403
2404 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2405 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2406 inodes);
2407}
2408
2409/*
2410 * Log specified fields for the ag hdr (inode section). The growth of the agi
2411 * structure over time requires that we interpret the buffer as two logical
2412 * regions delineated by the end of the unlinked list. This is due to the size
2413 * of the hash table and its location in the middle of the agi.
2414 *
2415 * For example, a request to log a field before agi_unlinked and a field after
2416 * agi_unlinked could cause us to log the entire hash table and use an excessive
2417 * amount of log space. To avoid this behavior, log the region up through
2418 * agi_unlinked in one call and the region after agi_unlinked through the end of
2419 * the structure in another.
2420 */
2421void
2422xfs_ialloc_log_agi(
2423 xfs_trans_t *tp, /* transaction pointer */
2424 xfs_buf_t *bp, /* allocation group header buffer */
2425 int fields) /* bitmask of fields to log */
2426{
2427 int first; /* first byte number */
2428 int last; /* last byte number */
2429 static const short offsets[] = { /* field starting offsets */
2430 /* keep in sync with bit definitions */
2431 offsetof(xfs_agi_t, agi_magicnum),
2432 offsetof(xfs_agi_t, agi_versionnum),
2433 offsetof(xfs_agi_t, agi_seqno),
2434 offsetof(xfs_agi_t, agi_length),
2435 offsetof(xfs_agi_t, agi_count),
2436 offsetof(xfs_agi_t, agi_root),
2437 offsetof(xfs_agi_t, agi_level),
2438 offsetof(xfs_agi_t, agi_freecount),
2439 offsetof(xfs_agi_t, agi_newino),
2440 offsetof(xfs_agi_t, agi_dirino),
2441 offsetof(xfs_agi_t, agi_unlinked),
2442 offsetof(xfs_agi_t, agi_free_root),
2443 offsetof(xfs_agi_t, agi_free_level),
2444 sizeof(xfs_agi_t)
2445 };
2446#ifdef DEBUG
2447 xfs_agi_t *agi; /* allocation group header */
2448
2449 agi = XFS_BUF_TO_AGI(bp);
2450 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451#endif
2452
2453 /*
2454 * Compute byte offsets for the first and last fields in the first
2455 * region and log the agi buffer. This only logs up through
2456 * agi_unlinked.
2457 */
2458 if (fields & XFS_AGI_ALL_BITS_R1) {
2459 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2460 &first, &last);
2461 xfs_trans_log_buf(tp, bp, first, last);
2462 }
2463
2464 /*
2465 * Mask off the bits in the first region and calculate the first and
2466 * last field offsets for any bits in the second region.
2467 */
2468 fields &= ~XFS_AGI_ALL_BITS_R1;
2469 if (fields) {
2470 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2471 &first, &last);
2472 xfs_trans_log_buf(tp, bp, first, last);
2473 }
2474}
2475
2476#ifdef DEBUG
2477STATIC void
2478xfs_check_agi_unlinked(
2479 struct xfs_agi *agi)
2480{
2481 int i;
2482
2483 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2484 ASSERT(agi->agi_unlinked[i]);
2485}
2486#else
2487#define xfs_check_agi_unlinked(agi)
2488#endif
2489
2490static bool
2491xfs_agi_verify(
2492 struct xfs_buf *bp)
2493{
2494 struct xfs_mount *mp = bp->b_target->bt_mount;
2495 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2496
2497 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2498 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2499 return false;
2500 if (!xfs_log_check_lsn(mp,
2501 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2502 return false;
2503 }
2504
2505 /*
2506 * Validate the magic number of the agi block.
2507 */
2508 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2509 return false;
2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511 return false;
2512
2513 if (be32_to_cpu(agi->agi_level) < 1 ||
2514 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2515 return false;
2516
2517 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2518 (be32_to_cpu(agi->agi_free_level) < 1 ||
2519 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2520 return false;
2521
2522 /*
2523 * during growfs operations, the perag is not fully initialised,
2524 * so we can't use it for any useful checking. growfs ensures we can't
2525 * use it by using uncached buffers that don't have the perag attached
2526 * so we can detect and avoid this problem.
2527 */
2528 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529 return false;
2530
2531 xfs_check_agi_unlinked(agi);
2532 return true;
2533}
2534
2535static void
2536xfs_agi_read_verify(
2537 struct xfs_buf *bp)
2538{
2539 struct xfs_mount *mp = bp->b_target->bt_mount;
2540
2541 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543 xfs_buf_ioerror(bp, -EFSBADCRC);
2544 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545 XFS_ERRTAG_IALLOC_READ_AGI,
2546 XFS_RANDOM_IALLOC_READ_AGI))
2547 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548
2549 if (bp->b_error)
2550 xfs_verifier_error(bp);
2551}
2552
2553static void
2554xfs_agi_write_verify(
2555 struct xfs_buf *bp)
2556{
2557 struct xfs_mount *mp = bp->b_target->bt_mount;
2558 struct xfs_buf_log_item *bip = bp->b_fspriv;
2559
2560 if (!xfs_agi_verify(bp)) {
2561 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 xfs_verifier_error(bp);
2563 return;
2564 }
2565
2566 if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 return;
2568
2569 if (bip)
2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572}
2573
2574const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 .name = "xfs_agi",
2576 .verify_read = xfs_agi_read_verify,
2577 .verify_write = xfs_agi_write_verify,
2578};
2579
2580/*
2581 * Read in the allocation group header (inode allocation section)
2582 */
2583int
2584xfs_read_agi(
2585 struct xfs_mount *mp, /* file system mount structure */
2586 struct xfs_trans *tp, /* transaction pointer */
2587 xfs_agnumber_t agno, /* allocation group number */
2588 struct xfs_buf **bpp) /* allocation group hdr buf */
2589{
2590 int error;
2591
2592 trace_xfs_read_agi(mp, agno);
2593
2594 ASSERT(agno != NULLAGNUMBER);
2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598 if (error)
2599 return error;
2600 if (tp)
2601 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2602
2603 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2604 return 0;
2605}
2606
2607int
2608xfs_ialloc_read_agi(
2609 struct xfs_mount *mp, /* file system mount structure */
2610 struct xfs_trans *tp, /* transaction pointer */
2611 xfs_agnumber_t agno, /* allocation group number */
2612 struct xfs_buf **bpp) /* allocation group hdr buf */
2613{
2614 struct xfs_agi *agi; /* allocation group header */
2615 struct xfs_perag *pag; /* per allocation group data */
2616 int error;
2617
2618 trace_xfs_ialloc_read_agi(mp, agno);
2619
2620 error = xfs_read_agi(mp, tp, agno, bpp);
2621 if (error)
2622 return error;
2623
2624 agi = XFS_BUF_TO_AGI(*bpp);
2625 pag = xfs_perag_get(mp, agno);
2626 if (!pag->pagi_init) {
2627 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2628 pag->pagi_count = be32_to_cpu(agi->agi_count);
2629 pag->pagi_init = 1;
2630 }
2631
2632 /*
2633 * It's possible for these to be out of sync if
2634 * we are in the middle of a forced shutdown.
2635 */
2636 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2637 XFS_FORCED_SHUTDOWN(mp));
2638 xfs_perag_put(pag);
2639 return 0;
2640}
2641
2642/*
2643 * Read in the agi to initialise the per-ag data in the mount structure
2644 */
2645int
2646xfs_ialloc_pagi_init(
2647 xfs_mount_t *mp, /* file system mount structure */
2648 xfs_trans_t *tp, /* transaction pointer */
2649 xfs_agnumber_t agno) /* allocation group number */
2650{
2651 xfs_buf_t *bp = NULL;
2652 int error;
2653
2654 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2655 if (error)
2656 return error;
2657 if (bp)
2658 xfs_trans_brelse(tp, bp);
2659 return 0;
2660}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30#include "xfs_health.h"
31
32/*
33 * Lookup a record by ino in the btree given by cur.
34 */
35int /* error */
36xfs_inobt_lookup(
37 struct xfs_btree_cur *cur, /* btree cursor */
38 xfs_agino_t ino, /* starting inode of chunk */
39 xfs_lookup_t dir, /* <=, >=, == */
40 int *stat) /* success/failure */
41{
42 cur->bc_rec.i.ir_startino = ino;
43 cur->bc_rec.i.ir_holemask = 0;
44 cur->bc_rec.i.ir_count = 0;
45 cur->bc_rec.i.ir_freecount = 0;
46 cur->bc_rec.i.ir_free = 0;
47 return xfs_btree_lookup(cur, dir, stat);
48}
49
50/*
51 * Update the record referred to by cur to the value given.
52 * This either works (return 0) or gets an EFSCORRUPTED error.
53 */
54STATIC int /* error */
55xfs_inobt_update(
56 struct xfs_btree_cur *cur, /* btree cursor */
57 xfs_inobt_rec_incore_t *irec) /* btree record */
58{
59 union xfs_btree_rec rec;
60
61 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 if (xfs_has_sparseinodes(cur->bc_mp)) {
63 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 } else {
67 /* ir_holemask/ir_count not supported on-disk */
68 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 }
70 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 return xfs_btree_update(cur, &rec);
72}
73
74/* Convert on-disk btree record to incore inobt record. */
75void
76xfs_inobt_btrec_to_irec(
77 struct xfs_mount *mp,
78 const union xfs_btree_rec *rec,
79 struct xfs_inobt_rec_incore *irec)
80{
81 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 if (xfs_has_sparseinodes(mp)) {
83 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 } else {
87 /*
88 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 * values for full inode chunks.
90 */
91 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 irec->ir_count = XFS_INODES_PER_CHUNK;
93 irec->ir_freecount =
94 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 }
96 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97}
98
99/* Compute the freecount of an incore inode record. */
100uint8_t
101xfs_inobt_rec_freecount(
102 const struct xfs_inobt_rec_incore *irec)
103{
104 uint64_t realfree = irec->ir_free;
105
106 if (xfs_inobt_issparse(irec->ir_holemask))
107 realfree &= xfs_inobt_irec_to_allocmask(irec);
108 return hweight64(realfree);
109}
110
111/* Simple checks for inode records. */
112xfs_failaddr_t
113xfs_inobt_check_irec(
114 struct xfs_perag *pag,
115 const struct xfs_inobt_rec_incore *irec)
116{
117 /* Record has to be properly aligned within the AG. */
118 if (!xfs_verify_agino(pag, irec->ir_startino))
119 return __this_address;
120 if (!xfs_verify_agino(pag,
121 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 return __this_address;
123 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 irec->ir_count > XFS_INODES_PER_CHUNK)
125 return __this_address;
126 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 return __this_address;
128
129 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 return __this_address;
131
132 return NULL;
133}
134
135static inline int
136xfs_inobt_complain_bad_rec(
137 struct xfs_btree_cur *cur,
138 xfs_failaddr_t fa,
139 const struct xfs_inobt_rec_incore *irec)
140{
141 struct xfs_mount *mp = cur->bc_mp;
142
143 xfs_warn(mp,
144 "%sbt record corruption in AG %d detected at %pS!",
145 cur->bc_ops->name, cur->bc_group->xg_gno, fa);
146 xfs_warn(mp,
147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 xfs_btree_mark_sick(cur);
151 return -EFSCORRUPTED;
152}
153
154/*
155 * Get the data from the pointed-to record.
156 */
157int
158xfs_inobt_get_rec(
159 struct xfs_btree_cur *cur,
160 struct xfs_inobt_rec_incore *irec,
161 int *stat)
162{
163 struct xfs_mount *mp = cur->bc_mp;
164 union xfs_btree_rec *rec;
165 xfs_failaddr_t fa;
166 int error;
167
168 error = xfs_btree_get_rec(cur, &rec, stat);
169 if (error || *stat == 0)
170 return error;
171
172 xfs_inobt_btrec_to_irec(mp, rec, irec);
173 fa = xfs_inobt_check_irec(to_perag(cur->bc_group), irec);
174 if (fa)
175 return xfs_inobt_complain_bad_rec(cur, fa, irec);
176
177 return 0;
178}
179
180/*
181 * Insert a single inobt record. Cursor must already point to desired location.
182 */
183int
184xfs_inobt_insert_rec(
185 struct xfs_btree_cur *cur,
186 uint16_t holemask,
187 uint8_t count,
188 int32_t freecount,
189 xfs_inofree_t free,
190 int *stat)
191{
192 cur->bc_rec.i.ir_holemask = holemask;
193 cur->bc_rec.i.ir_count = count;
194 cur->bc_rec.i.ir_freecount = freecount;
195 cur->bc_rec.i.ir_free = free;
196 return xfs_btree_insert(cur, stat);
197}
198
199/*
200 * Insert records describing a newly allocated inode chunk into the inobt.
201 */
202STATIC int
203xfs_inobt_insert(
204 struct xfs_perag *pag,
205 struct xfs_trans *tp,
206 struct xfs_buf *agbp,
207 xfs_agino_t newino,
208 xfs_agino_t newlen,
209 bool is_finobt)
210{
211 struct xfs_btree_cur *cur;
212 xfs_agino_t thisino;
213 int i;
214 int error;
215
216 if (is_finobt)
217 cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 else
219 cur = xfs_inobt_init_cursor(pag, tp, agbp);
220
221 for (thisino = newino;
222 thisino < newino + newlen;
223 thisino += XFS_INODES_PER_CHUNK) {
224 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 if (error) {
226 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 return error;
228 }
229 ASSERT(i == 0);
230
231 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 XFS_INODES_PER_CHUNK,
233 XFS_INODES_PER_CHUNK,
234 XFS_INOBT_ALL_FREE, &i);
235 if (error) {
236 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 return error;
238 }
239 ASSERT(i == 1);
240 }
241
242 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243
244 return 0;
245}
246
247/*
248 * Verify that the number of free inodes in the AGI is correct.
249 */
250#ifdef DEBUG
251static int
252xfs_check_agi_freecount(
253 struct xfs_btree_cur *cur)
254{
255 if (cur->bc_nlevels == 1) {
256 xfs_inobt_rec_incore_t rec;
257 int freecount = 0;
258 int error;
259 int i;
260
261 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 if (error)
263 return error;
264
265 do {
266 error = xfs_inobt_get_rec(cur, &rec, &i);
267 if (error)
268 return error;
269
270 if (i) {
271 freecount += rec.ir_freecount;
272 error = xfs_btree_increment(cur, 0, &i);
273 if (error)
274 return error;
275 }
276 } while (i == 1);
277
278 if (!xfs_is_shutdown(cur->bc_mp)) {
279 ASSERT(freecount ==
280 to_perag(cur->bc_group)->pagi_freecount);
281 }
282 }
283 return 0;
284}
285#else
286#define xfs_check_agi_freecount(cur) 0
287#endif
288
289/*
290 * Initialise a new set of inodes. When called without a transaction context
291 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
292 * than logging them (which in a transaction context puts them into the AIL
293 * for writeback rather than the xfsbufd queue).
294 */
295int
296xfs_ialloc_inode_init(
297 struct xfs_mount *mp,
298 struct xfs_trans *tp,
299 struct list_head *buffer_list,
300 int icount,
301 xfs_agnumber_t agno,
302 xfs_agblock_t agbno,
303 xfs_agblock_t length,
304 unsigned int gen)
305{
306 struct xfs_buf *fbuf;
307 struct xfs_dinode *free;
308 int nbufs;
309 int version;
310 int i, j;
311 xfs_daddr_t d;
312 xfs_ino_t ino = 0;
313 int error;
314
315 /*
316 * Loop over the new block(s), filling in the inodes. For small block
317 * sizes, manipulate the inodes in buffers which are multiples of the
318 * blocks size.
319 */
320 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
321
322 /*
323 * Figure out what version number to use in the inodes we create. If
324 * the superblock version has caught up to the one that supports the new
325 * inode format, then use the new inode version. Otherwise use the old
326 * version so that old kernels will continue to be able to use the file
327 * system.
328 *
329 * For v3 inodes, we also need to write the inode number into the inode,
330 * so calculate the first inode number of the chunk here as
331 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
332 * across multiple filesystem blocks (such as a cluster) and so cannot
333 * be used in the cluster buffer loop below.
334 *
335 * Further, because we are writing the inode directly into the buffer
336 * and calculating a CRC on the entire inode, we have ot log the entire
337 * inode so that the entire range the CRC covers is present in the log.
338 * That means for v3 inode we log the entire buffer rather than just the
339 * inode cores.
340 */
341 if (xfs_has_v3inodes(mp)) {
342 version = 3;
343 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
344
345 /*
346 * log the initialisation that is about to take place as an
347 * logical operation. This means the transaction does not
348 * need to log the physical changes to the inode buffers as log
349 * recovery will know what initialisation is actually needed.
350 * Hence we only need to log the buffers as "ordered" buffers so
351 * they track in the AIL as if they were physically logged.
352 */
353 if (tp)
354 xfs_icreate_log(tp, agno, agbno, icount,
355 mp->m_sb.sb_inodesize, length, gen);
356 } else
357 version = 2;
358
359 for (j = 0; j < nbufs; j++) {
360 /*
361 * Get the block.
362 */
363 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
364 (j * M_IGEO(mp)->blocks_per_cluster));
365 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
366 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
367 XBF_UNMAPPED, &fbuf);
368 if (error)
369 return error;
370
371 /* Initialize the inode buffers and log them appropriately. */
372 fbuf->b_ops = &xfs_inode_buf_ops;
373 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
374 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
375 int ioffset = i << mp->m_sb.sb_inodelog;
376
377 free = xfs_make_iptr(mp, fbuf, i);
378 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
379 free->di_version = version;
380 free->di_gen = cpu_to_be32(gen);
381 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
382
383 if (version == 3) {
384 free->di_ino = cpu_to_be64(ino);
385 ino++;
386 uuid_copy(&free->di_uuid,
387 &mp->m_sb.sb_meta_uuid);
388 xfs_dinode_calc_crc(mp, free);
389 } else if (tp) {
390 /* just log the inode core */
391 xfs_trans_log_buf(tp, fbuf, ioffset,
392 ioffset + XFS_DINODE_SIZE(mp) - 1);
393 }
394 }
395
396 if (tp) {
397 /*
398 * Mark the buffer as an inode allocation buffer so it
399 * sticks in AIL at the point of this allocation
400 * transaction. This ensures the they are on disk before
401 * the tail of the log can be moved past this
402 * transaction (i.e. by preventing relogging from moving
403 * it forward in the log).
404 */
405 xfs_trans_inode_alloc_buf(tp, fbuf);
406 if (version == 3) {
407 /*
408 * Mark the buffer as ordered so that they are
409 * not physically logged in the transaction but
410 * still tracked in the AIL as part of the
411 * transaction and pin the log appropriately.
412 */
413 xfs_trans_ordered_buf(tp, fbuf);
414 }
415 } else {
416 fbuf->b_flags |= XBF_DONE;
417 xfs_buf_delwri_queue(fbuf, buffer_list);
418 xfs_buf_relse(fbuf);
419 }
420 }
421 return 0;
422}
423
424/*
425 * Align startino and allocmask for a recently allocated sparse chunk such that
426 * they are fit for insertion (or merge) into the on-disk inode btrees.
427 *
428 * Background:
429 *
430 * When enabled, sparse inode support increases the inode alignment from cluster
431 * size to inode chunk size. This means that the minimum range between two
432 * non-adjacent inode records in the inobt is large enough for a full inode
433 * record. This allows for cluster sized, cluster aligned block allocation
434 * without need to worry about whether the resulting inode record overlaps with
435 * another record in the tree. Without this basic rule, we would have to deal
436 * with the consequences of overlap by potentially undoing recent allocations in
437 * the inode allocation codepath.
438 *
439 * Because of this alignment rule (which is enforced on mount), there are two
440 * inobt possibilities for newly allocated sparse chunks. One is that the
441 * aligned inode record for the chunk covers a range of inodes not already
442 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
443 * other is that a record already exists at the aligned startino that considers
444 * the newly allocated range as sparse. In the latter case, record content is
445 * merged in hope that sparse inode chunks fill to full chunks over time.
446 */
447STATIC void
448xfs_align_sparse_ino(
449 struct xfs_mount *mp,
450 xfs_agino_t *startino,
451 uint16_t *allocmask)
452{
453 xfs_agblock_t agbno;
454 xfs_agblock_t mod;
455 int offset;
456
457 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
458 mod = agbno % mp->m_sb.sb_inoalignmt;
459 if (!mod)
460 return;
461
462 /* calculate the inode offset and align startino */
463 offset = XFS_AGB_TO_AGINO(mp, mod);
464 *startino -= offset;
465
466 /*
467 * Since startino has been aligned down, left shift allocmask such that
468 * it continues to represent the same physical inodes relative to the
469 * new startino.
470 */
471 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
472}
473
474/*
475 * Determine whether the source inode record can merge into the target. Both
476 * records must be sparse, the inode ranges must match and there must be no
477 * allocation overlap between the records.
478 */
479STATIC bool
480__xfs_inobt_can_merge(
481 struct xfs_inobt_rec_incore *trec, /* tgt record */
482 struct xfs_inobt_rec_incore *srec) /* src record */
483{
484 uint64_t talloc;
485 uint64_t salloc;
486
487 /* records must cover the same inode range */
488 if (trec->ir_startino != srec->ir_startino)
489 return false;
490
491 /* both records must be sparse */
492 if (!xfs_inobt_issparse(trec->ir_holemask) ||
493 !xfs_inobt_issparse(srec->ir_holemask))
494 return false;
495
496 /* both records must track some inodes */
497 if (!trec->ir_count || !srec->ir_count)
498 return false;
499
500 /* can't exceed capacity of a full record */
501 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
502 return false;
503
504 /* verify there is no allocation overlap */
505 talloc = xfs_inobt_irec_to_allocmask(trec);
506 salloc = xfs_inobt_irec_to_allocmask(srec);
507 if (talloc & salloc)
508 return false;
509
510 return true;
511}
512
513/*
514 * Merge the source inode record into the target. The caller must call
515 * __xfs_inobt_can_merge() to ensure the merge is valid.
516 */
517STATIC void
518__xfs_inobt_rec_merge(
519 struct xfs_inobt_rec_incore *trec, /* target */
520 struct xfs_inobt_rec_incore *srec) /* src */
521{
522 ASSERT(trec->ir_startino == srec->ir_startino);
523
524 /* combine the counts */
525 trec->ir_count += srec->ir_count;
526 trec->ir_freecount += srec->ir_freecount;
527
528 /*
529 * Merge the holemask and free mask. For both fields, 0 bits refer to
530 * allocated inodes. We combine the allocated ranges with bitwise AND.
531 */
532 trec->ir_holemask &= srec->ir_holemask;
533 trec->ir_free &= srec->ir_free;
534}
535
536/*
537 * Insert a new sparse inode chunk into the associated inode allocation btree.
538 * The inode record for the sparse chunk is pre-aligned to a startino that
539 * should match any pre-existing sparse inode record in the tree. This allows
540 * sparse chunks to fill over time.
541 *
542 * If no preexisting record exists, the provided record is inserted.
543 * If there is a preexisting record, the provided record is merged with the
544 * existing record and updated in place. The merged record is returned in nrec.
545 *
546 * It is considered corruption if a merge is requested and not possible. Given
547 * the sparse inode alignment constraints, this should never happen.
548 */
549STATIC int
550xfs_inobt_insert_sprec(
551 struct xfs_perag *pag,
552 struct xfs_trans *tp,
553 struct xfs_buf *agbp,
554 struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
555{
556 struct xfs_mount *mp = pag_mount(pag);
557 struct xfs_btree_cur *cur;
558 int error;
559 int i;
560 struct xfs_inobt_rec_incore rec;
561
562 cur = xfs_inobt_init_cursor(pag, tp, agbp);
563
564 /* the new record is pre-aligned so we know where to look */
565 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
566 if (error)
567 goto error;
568 /* if nothing there, insert a new record and return */
569 if (i == 0) {
570 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
571 nrec->ir_count, nrec->ir_freecount,
572 nrec->ir_free, &i);
573 if (error)
574 goto error;
575 if (XFS_IS_CORRUPT(mp, i != 1)) {
576 xfs_btree_mark_sick(cur);
577 error = -EFSCORRUPTED;
578 goto error;
579 }
580
581 goto out;
582 }
583
584 /*
585 * A record exists at this startino. Merge the records.
586 */
587 error = xfs_inobt_get_rec(cur, &rec, &i);
588 if (error)
589 goto error;
590 if (XFS_IS_CORRUPT(mp, i != 1)) {
591 xfs_btree_mark_sick(cur);
592 error = -EFSCORRUPTED;
593 goto error;
594 }
595 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
596 xfs_btree_mark_sick(cur);
597 error = -EFSCORRUPTED;
598 goto error;
599 }
600
601 /*
602 * This should never fail. If we have coexisting records that
603 * cannot merge, something is seriously wrong.
604 */
605 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
606 xfs_btree_mark_sick(cur);
607 error = -EFSCORRUPTED;
608 goto error;
609 }
610
611 trace_xfs_irec_merge_pre(pag, &rec, nrec);
612
613 /* merge to nrec to output the updated record */
614 __xfs_inobt_rec_merge(nrec, &rec);
615
616 trace_xfs_irec_merge_post(pag, nrec);
617
618 error = xfs_inobt_rec_check_count(mp, nrec);
619 if (error)
620 goto error;
621
622 error = xfs_inobt_update(cur, nrec);
623 if (error)
624 goto error;
625
626out:
627 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 return 0;
629error:
630 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 return error;
632}
633
634/*
635 * Insert a new sparse inode chunk into the free inode btree. The inode
636 * record for the sparse chunk is pre-aligned to a startino that should match
637 * any pre-existing sparse inode record in the tree. This allows sparse chunks
638 * to fill over time.
639 *
640 * The new record is always inserted, overwriting a pre-existing record if
641 * there is one.
642 */
643STATIC int
644xfs_finobt_insert_sprec(
645 struct xfs_perag *pag,
646 struct xfs_trans *tp,
647 struct xfs_buf *agbp,
648 struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
649{
650 struct xfs_mount *mp = pag_mount(pag);
651 struct xfs_btree_cur *cur;
652 int error;
653 int i;
654
655 cur = xfs_finobt_init_cursor(pag, tp, agbp);
656
657 /* the new record is pre-aligned so we know where to look */
658 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
659 if (error)
660 goto error;
661 /* if nothing there, insert a new record and return */
662 if (i == 0) {
663 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
664 nrec->ir_count, nrec->ir_freecount,
665 nrec->ir_free, &i);
666 if (error)
667 goto error;
668 if (XFS_IS_CORRUPT(mp, i != 1)) {
669 xfs_btree_mark_sick(cur);
670 error = -EFSCORRUPTED;
671 goto error;
672 }
673 } else {
674 error = xfs_inobt_update(cur, nrec);
675 if (error)
676 goto error;
677 }
678
679 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
680 return 0;
681error:
682 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
683 return error;
684}
685
686
687/*
688 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
689 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
690 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
691 * inode count threshold, or the usual negative error code for other errors.
692 */
693STATIC int
694xfs_ialloc_ag_alloc(
695 struct xfs_perag *pag,
696 struct xfs_trans *tp,
697 struct xfs_buf *agbp)
698{
699 struct xfs_agi *agi;
700 struct xfs_alloc_arg args;
701 int error;
702 xfs_agino_t newino; /* new first inode's number */
703 xfs_agino_t newlen; /* new number of inodes */
704 int isaligned = 0; /* inode allocation at stripe */
705 /* unit boundary */
706 /* init. to full chunk */
707 struct xfs_inobt_rec_incore rec;
708 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
709 uint16_t allocmask = (uint16_t) -1;
710 int do_sparse = 0;
711
712 memset(&args, 0, sizeof(args));
713 args.tp = tp;
714 args.mp = tp->t_mountp;
715 args.fsbno = NULLFSBLOCK;
716 args.oinfo = XFS_RMAP_OINFO_INODES;
717 args.pag = pag;
718
719#ifdef DEBUG
720 /* randomly do sparse inode allocations */
721 if (xfs_has_sparseinodes(tp->t_mountp) &&
722 igeo->ialloc_min_blks < igeo->ialloc_blks)
723 do_sparse = get_random_u32_below(2);
724#endif
725
726 /*
727 * Locking will ensure that we don't have two callers in here
728 * at one time.
729 */
730 newlen = igeo->ialloc_inos;
731 if (igeo->maxicount &&
732 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
733 igeo->maxicount)
734 return -ENOSPC;
735 args.minlen = args.maxlen = igeo->ialloc_blks;
736 /*
737 * First try to allocate inodes contiguous with the last-allocated
738 * chunk of inodes. If the filesystem is striped, this will fill
739 * an entire stripe unit with inodes.
740 */
741 agi = agbp->b_addr;
742 newino = be32_to_cpu(agi->agi_newino);
743 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
744 igeo->ialloc_blks;
745 if (do_sparse)
746 goto sparse_alloc;
747 if (likely(newino != NULLAGINO &&
748 (args.agbno < be32_to_cpu(agi->agi_length)))) {
749 args.prod = 1;
750
751 /*
752 * We need to take into account alignment here to ensure that
753 * we don't modify the free list if we fail to have an exact
754 * block. If we don't have an exact match, and every oher
755 * attempt allocation attempt fails, we'll end up cancelling
756 * a dirty transaction and shutting down.
757 *
758 * For an exact allocation, alignment must be 1,
759 * however we need to take cluster alignment into account when
760 * fixing up the freelist. Use the minalignslop field to
761 * indicate that extra blocks might be required for alignment,
762 * but not to use them in the actual exact allocation.
763 */
764 args.alignment = 1;
765 args.minalignslop = igeo->cluster_align - 1;
766
767 /* Allow space for the inode btree to split. */
768 args.minleft = igeo->inobt_maxlevels;
769 error = xfs_alloc_vextent_exact_bno(&args,
770 xfs_agbno_to_fsb(pag, args.agbno));
771 if (error)
772 return error;
773
774 /*
775 * This request might have dirtied the transaction if the AG can
776 * satisfy the request, but the exact block was not available.
777 * If the allocation did fail, subsequent requests will relax
778 * the exact agbno requirement and increase the alignment
779 * instead. It is critical that the total size of the request
780 * (len + alignment + slop) does not increase from this point
781 * on, so reset minalignslop to ensure it is not included in
782 * subsequent requests.
783 */
784 args.minalignslop = 0;
785 }
786
787 if (unlikely(args.fsbno == NULLFSBLOCK)) {
788 /*
789 * Set the alignment for the allocation.
790 * If stripe alignment is turned on then align at stripe unit
791 * boundary.
792 * If the cluster size is smaller than a filesystem block
793 * then we're doing I/O for inodes in filesystem block size
794 * pieces, so don't need alignment anyway.
795 */
796 isaligned = 0;
797 if (igeo->ialloc_align) {
798 ASSERT(!xfs_has_noalign(args.mp));
799 args.alignment = args.mp->m_dalign;
800 isaligned = 1;
801 } else
802 args.alignment = igeo->cluster_align;
803 /*
804 * Allocate a fixed-size extent of inodes.
805 */
806 args.prod = 1;
807 /*
808 * Allow space for the inode btree to split.
809 */
810 args.minleft = igeo->inobt_maxlevels;
811 error = xfs_alloc_vextent_near_bno(&args,
812 xfs_agbno_to_fsb(pag,
813 be32_to_cpu(agi->agi_root)));
814 if (error)
815 return error;
816 }
817
818 /*
819 * If stripe alignment is turned on, then try again with cluster
820 * alignment.
821 */
822 if (isaligned && args.fsbno == NULLFSBLOCK) {
823 args.alignment = igeo->cluster_align;
824 error = xfs_alloc_vextent_near_bno(&args,
825 xfs_agbno_to_fsb(pag,
826 be32_to_cpu(agi->agi_root)));
827 if (error)
828 return error;
829 }
830
831 /*
832 * Finally, try a sparse allocation if the filesystem supports it and
833 * the sparse allocation length is smaller than a full chunk.
834 */
835 if (xfs_has_sparseinodes(args.mp) &&
836 igeo->ialloc_min_blks < igeo->ialloc_blks &&
837 args.fsbno == NULLFSBLOCK) {
838sparse_alloc:
839 args.alignment = args.mp->m_sb.sb_spino_align;
840 args.prod = 1;
841
842 args.minlen = igeo->ialloc_min_blks;
843 args.maxlen = args.minlen;
844
845 /*
846 * The inode record will be aligned to full chunk size. We must
847 * prevent sparse allocation from AG boundaries that result in
848 * invalid inode records, such as records that start at agbno 0
849 * or extend beyond the AG.
850 *
851 * Set min agbno to the first aligned, non-zero agbno and max to
852 * the last aligned agbno that is at least one full chunk from
853 * the end of the AG.
854 */
855 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
856 args.max_agbno = round_down(xfs_ag_block_count(args.mp,
857 pag_agno(pag)),
858 args.mp->m_sb.sb_inoalignmt) -
859 igeo->ialloc_blks;
860
861 error = xfs_alloc_vextent_near_bno(&args,
862 xfs_agbno_to_fsb(pag,
863 be32_to_cpu(agi->agi_root)));
864 if (error)
865 return error;
866
867 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
868 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
869 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
870 }
871
872 if (args.fsbno == NULLFSBLOCK)
873 return -EAGAIN;
874
875 ASSERT(args.len == args.minlen);
876
877 /*
878 * Stamp and write the inode buffers.
879 *
880 * Seed the new inode cluster with a random generation number. This
881 * prevents short-term reuse of generation numbers if a chunk is
882 * freed and then immediately reallocated. We use random numbers
883 * rather than a linear progression to prevent the next generation
884 * number from being easily guessable.
885 */
886 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag_agno(pag),
887 args.agbno, args.len, get_random_u32());
888
889 if (error)
890 return error;
891 /*
892 * Convert the results.
893 */
894 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
895
896 if (xfs_inobt_issparse(~allocmask)) {
897 /*
898 * We've allocated a sparse chunk. Align the startino and mask.
899 */
900 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
901
902 rec.ir_startino = newino;
903 rec.ir_holemask = ~allocmask;
904 rec.ir_count = newlen;
905 rec.ir_freecount = newlen;
906 rec.ir_free = XFS_INOBT_ALL_FREE;
907
908 /*
909 * Insert the sparse record into the inobt and allow for a merge
910 * if necessary. If a merge does occur, rec is updated to the
911 * merged record.
912 */
913 error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
914 if (error == -EFSCORRUPTED) {
915 xfs_alert(args.mp,
916 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
917 xfs_agino_to_ino(pag, rec.ir_startino),
918 rec.ir_holemask, rec.ir_count);
919 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
920 }
921 if (error)
922 return error;
923
924 /*
925 * We can't merge the part we've just allocated as for the inobt
926 * due to finobt semantics. The original record may or may not
927 * exist independent of whether physical inodes exist in this
928 * sparse chunk.
929 *
930 * We must update the finobt record based on the inobt record.
931 * rec contains the fully merged and up to date inobt record
932 * from the previous call. Set merge false to replace any
933 * existing record with this one.
934 */
935 if (xfs_has_finobt(args.mp)) {
936 error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
937 if (error)
938 return error;
939 }
940 } else {
941 /* full chunk - insert new records to both btrees */
942 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
943 if (error)
944 return error;
945
946 if (xfs_has_finobt(args.mp)) {
947 error = xfs_inobt_insert(pag, tp, agbp, newino,
948 newlen, true);
949 if (error)
950 return error;
951 }
952 }
953
954 /*
955 * Update AGI counts and newino.
956 */
957 be32_add_cpu(&agi->agi_count, newlen);
958 be32_add_cpu(&agi->agi_freecount, newlen);
959 pag->pagi_freecount += newlen;
960 pag->pagi_count += newlen;
961 agi->agi_newino = cpu_to_be32(newino);
962
963 /*
964 * Log allocation group header fields
965 */
966 xfs_ialloc_log_agi(tp, agbp,
967 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
968 /*
969 * Modify/log superblock values for inode count and inode free count.
970 */
971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
973 return 0;
974}
975
976/*
977 * Try to retrieve the next record to the left/right from the current one.
978 */
979STATIC int
980xfs_ialloc_next_rec(
981 struct xfs_btree_cur *cur,
982 xfs_inobt_rec_incore_t *rec,
983 int *done,
984 int left)
985{
986 int error;
987 int i;
988
989 if (left)
990 error = xfs_btree_decrement(cur, 0, &i);
991 else
992 error = xfs_btree_increment(cur, 0, &i);
993
994 if (error)
995 return error;
996 *done = !i;
997 if (i) {
998 error = xfs_inobt_get_rec(cur, rec, &i);
999 if (error)
1000 return error;
1001 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1002 xfs_btree_mark_sick(cur);
1003 return -EFSCORRUPTED;
1004 }
1005 }
1006
1007 return 0;
1008}
1009
1010STATIC int
1011xfs_ialloc_get_rec(
1012 struct xfs_btree_cur *cur,
1013 xfs_agino_t agino,
1014 xfs_inobt_rec_incore_t *rec,
1015 int *done)
1016{
1017 int error;
1018 int i;
1019
1020 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1021 if (error)
1022 return error;
1023 *done = !i;
1024 if (i) {
1025 error = xfs_inobt_get_rec(cur, rec, &i);
1026 if (error)
1027 return error;
1028 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1029 xfs_btree_mark_sick(cur);
1030 return -EFSCORRUPTED;
1031 }
1032 }
1033
1034 return 0;
1035}
1036
1037/*
1038 * Return the offset of the first free inode in the record. If the inode chunk
1039 * is sparsely allocated, we convert the record holemask to inode granularity
1040 * and mask off the unallocated regions from the inode free mask.
1041 */
1042STATIC int
1043xfs_inobt_first_free_inode(
1044 struct xfs_inobt_rec_incore *rec)
1045{
1046 xfs_inofree_t realfree;
1047
1048 /* if there are no holes, return the first available offset */
1049 if (!xfs_inobt_issparse(rec->ir_holemask))
1050 return xfs_lowbit64(rec->ir_free);
1051
1052 realfree = xfs_inobt_irec_to_allocmask(rec);
1053 realfree &= rec->ir_free;
1054
1055 return xfs_lowbit64(realfree);
1056}
1057
1058/*
1059 * If this AG has corrupt inodes, check if allocating this inode would fail
1060 * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again
1061 * somewhere else.
1062 */
1063static int
1064xfs_dialloc_check_ino(
1065 struct xfs_perag *pag,
1066 struct xfs_trans *tp,
1067 xfs_ino_t ino)
1068{
1069 struct xfs_imap imap;
1070 struct xfs_buf *bp;
1071 int error;
1072
1073 error = xfs_imap(pag, tp, ino, &imap, 0);
1074 if (error)
1075 return -EAGAIN;
1076
1077 error = xfs_imap_to_bp(pag_mount(pag), tp, &imap, &bp);
1078 if (error)
1079 return -EAGAIN;
1080
1081 xfs_trans_brelse(tp, bp);
1082 return 0;
1083}
1084
1085/*
1086 * Allocate an inode using the inobt-only algorithm.
1087 */
1088STATIC int
1089xfs_dialloc_ag_inobt(
1090 struct xfs_perag *pag,
1091 struct xfs_trans *tp,
1092 struct xfs_buf *agbp,
1093 xfs_ino_t parent,
1094 xfs_ino_t *inop)
1095{
1096 struct xfs_mount *mp = tp->t_mountp;
1097 struct xfs_agi *agi = agbp->b_addr;
1098 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1099 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1100 struct xfs_btree_cur *cur, *tcur;
1101 struct xfs_inobt_rec_incore rec, trec;
1102 xfs_ino_t ino;
1103 int error;
1104 int offset;
1105 int i, j;
1106 int searchdistance = 10;
1107
1108 ASSERT(xfs_perag_initialised_agi(pag));
1109 ASSERT(xfs_perag_allows_inodes(pag));
1110 ASSERT(pag->pagi_freecount > 0);
1111
1112 restart_pagno:
1113 cur = xfs_inobt_init_cursor(pag, tp, agbp);
1114 /*
1115 * If pagino is 0 (this is the root inode allocation) use newino.
1116 * This must work because we've just allocated some.
1117 */
1118 if (!pagino)
1119 pagino = be32_to_cpu(agi->agi_newino);
1120
1121 error = xfs_check_agi_freecount(cur);
1122 if (error)
1123 goto error0;
1124
1125 /*
1126 * If in the same AG as the parent, try to get near the parent.
1127 */
1128 if (pagno == pag_agno(pag)) {
1129 int doneleft; /* done, to the left */
1130 int doneright; /* done, to the right */
1131
1132 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1133 if (error)
1134 goto error0;
1135 if (XFS_IS_CORRUPT(mp, i != 1)) {
1136 xfs_btree_mark_sick(cur);
1137 error = -EFSCORRUPTED;
1138 goto error0;
1139 }
1140
1141 error = xfs_inobt_get_rec(cur, &rec, &j);
1142 if (error)
1143 goto error0;
1144 if (XFS_IS_CORRUPT(mp, j != 1)) {
1145 xfs_btree_mark_sick(cur);
1146 error = -EFSCORRUPTED;
1147 goto error0;
1148 }
1149
1150 if (rec.ir_freecount > 0) {
1151 /*
1152 * Found a free inode in the same chunk
1153 * as the parent, done.
1154 */
1155 goto alloc_inode;
1156 }
1157
1158
1159 /*
1160 * In the same AG as parent, but parent's chunk is full.
1161 */
1162
1163 /* duplicate the cursor, search left & right simultaneously */
1164 error = xfs_btree_dup_cursor(cur, &tcur);
1165 if (error)
1166 goto error0;
1167
1168 /*
1169 * Skip to last blocks looked up if same parent inode.
1170 */
1171 if (pagino != NULLAGINO &&
1172 pag->pagl_pagino == pagino &&
1173 pag->pagl_leftrec != NULLAGINO &&
1174 pag->pagl_rightrec != NULLAGINO) {
1175 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1176 &trec, &doneleft);
1177 if (error)
1178 goto error1;
1179
1180 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1181 &rec, &doneright);
1182 if (error)
1183 goto error1;
1184 } else {
1185 /* search left with tcur, back up 1 record */
1186 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1187 if (error)
1188 goto error1;
1189
1190 /* search right with cur, go forward 1 record. */
1191 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1192 if (error)
1193 goto error1;
1194 }
1195
1196 /*
1197 * Loop until we find an inode chunk with a free inode.
1198 */
1199 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1200 int useleft; /* using left inode chunk this time */
1201
1202 /* figure out the closer block if both are valid. */
1203 if (!doneleft && !doneright) {
1204 useleft = pagino -
1205 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1206 rec.ir_startino - pagino;
1207 } else {
1208 useleft = !doneleft;
1209 }
1210
1211 /* free inodes to the left? */
1212 if (useleft && trec.ir_freecount) {
1213 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1214 cur = tcur;
1215
1216 pag->pagl_leftrec = trec.ir_startino;
1217 pag->pagl_rightrec = rec.ir_startino;
1218 pag->pagl_pagino = pagino;
1219 rec = trec;
1220 goto alloc_inode;
1221 }
1222
1223 /* free inodes to the right? */
1224 if (!useleft && rec.ir_freecount) {
1225 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226
1227 pag->pagl_leftrec = trec.ir_startino;
1228 pag->pagl_rightrec = rec.ir_startino;
1229 pag->pagl_pagino = pagino;
1230 goto alloc_inode;
1231 }
1232
1233 /* get next record to check */
1234 if (useleft) {
1235 error = xfs_ialloc_next_rec(tcur, &trec,
1236 &doneleft, 1);
1237 } else {
1238 error = xfs_ialloc_next_rec(cur, &rec,
1239 &doneright, 0);
1240 }
1241 if (error)
1242 goto error1;
1243 }
1244
1245 if (searchdistance <= 0) {
1246 /*
1247 * Not in range - save last search
1248 * location and allocate a new inode
1249 */
1250 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1251 pag->pagl_leftrec = trec.ir_startino;
1252 pag->pagl_rightrec = rec.ir_startino;
1253 pag->pagl_pagino = pagino;
1254
1255 } else {
1256 /*
1257 * We've reached the end of the btree. because
1258 * we are only searching a small chunk of the
1259 * btree each search, there is obviously free
1260 * inodes closer to the parent inode than we
1261 * are now. restart the search again.
1262 */
1263 pag->pagl_pagino = NULLAGINO;
1264 pag->pagl_leftrec = NULLAGINO;
1265 pag->pagl_rightrec = NULLAGINO;
1266 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1267 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1268 goto restart_pagno;
1269 }
1270 }
1271
1272 /*
1273 * In a different AG from the parent.
1274 * See if the most recently allocated block has any free.
1275 */
1276 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1277 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1278 XFS_LOOKUP_EQ, &i);
1279 if (error)
1280 goto error0;
1281
1282 if (i == 1) {
1283 error = xfs_inobt_get_rec(cur, &rec, &j);
1284 if (error)
1285 goto error0;
1286
1287 if (j == 1 && rec.ir_freecount > 0) {
1288 /*
1289 * The last chunk allocated in the group
1290 * still has a free inode.
1291 */
1292 goto alloc_inode;
1293 }
1294 }
1295 }
1296
1297 /*
1298 * None left in the last group, search the whole AG
1299 */
1300 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1301 if (error)
1302 goto error0;
1303 if (XFS_IS_CORRUPT(mp, i != 1)) {
1304 xfs_btree_mark_sick(cur);
1305 error = -EFSCORRUPTED;
1306 goto error0;
1307 }
1308
1309 for (;;) {
1310 error = xfs_inobt_get_rec(cur, &rec, &i);
1311 if (error)
1312 goto error0;
1313 if (XFS_IS_CORRUPT(mp, i != 1)) {
1314 xfs_btree_mark_sick(cur);
1315 error = -EFSCORRUPTED;
1316 goto error0;
1317 }
1318 if (rec.ir_freecount > 0)
1319 break;
1320 error = xfs_btree_increment(cur, 0, &i);
1321 if (error)
1322 goto error0;
1323 if (XFS_IS_CORRUPT(mp, i != 1)) {
1324 xfs_btree_mark_sick(cur);
1325 error = -EFSCORRUPTED;
1326 goto error0;
1327 }
1328 }
1329
1330alloc_inode:
1331 offset = xfs_inobt_first_free_inode(&rec);
1332 ASSERT(offset >= 0);
1333 ASSERT(offset < XFS_INODES_PER_CHUNK);
1334 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1335 XFS_INODES_PER_CHUNK) == 0);
1336 ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1337
1338 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1339 error = xfs_dialloc_check_ino(pag, tp, ino);
1340 if (error)
1341 goto error0;
1342 }
1343
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 *inop = ino;
1360 return 0;
1361error1:
1362 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1363error0:
1364 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1365 return error;
1366}
1367
1368/*
1369 * Use the free inode btree to allocate an inode based on distance from the
1370 * parent. Note that the provided cursor may be deleted and replaced.
1371 */
1372STATIC int
1373xfs_dialloc_ag_finobt_near(
1374 xfs_agino_t pagino,
1375 struct xfs_btree_cur **ocur,
1376 struct xfs_inobt_rec_incore *rec)
1377{
1378 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1379 struct xfs_btree_cur *rcur; /* right search cursor */
1380 struct xfs_inobt_rec_incore rrec;
1381 int error;
1382 int i, j;
1383
1384 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1385 if (error)
1386 return error;
1387
1388 if (i == 1) {
1389 error = xfs_inobt_get_rec(lcur, rec, &i);
1390 if (error)
1391 return error;
1392 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1393 xfs_btree_mark_sick(lcur);
1394 return -EFSCORRUPTED;
1395 }
1396
1397 /*
1398 * See if we've landed in the parent inode record. The finobt
1399 * only tracks chunks with at least one free inode, so record
1400 * existence is enough.
1401 */
1402 if (pagino >= rec->ir_startino &&
1403 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1404 return 0;
1405 }
1406
1407 error = xfs_btree_dup_cursor(lcur, &rcur);
1408 if (error)
1409 return error;
1410
1411 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1412 if (error)
1413 goto error_rcur;
1414 if (j == 1) {
1415 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1416 if (error)
1417 goto error_rcur;
1418 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1419 xfs_btree_mark_sick(lcur);
1420 error = -EFSCORRUPTED;
1421 goto error_rcur;
1422 }
1423 }
1424
1425 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1426 xfs_btree_mark_sick(lcur);
1427 error = -EFSCORRUPTED;
1428 goto error_rcur;
1429 }
1430 if (i == 1 && j == 1) {
1431 /*
1432 * Both the left and right records are valid. Choose the closer
1433 * inode chunk to the target.
1434 */
1435 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1436 (rrec.ir_startino - pagino)) {
1437 *rec = rrec;
1438 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1439 *ocur = rcur;
1440 } else {
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443 } else if (j == 1) {
1444 /* only the right record is valid */
1445 *rec = rrec;
1446 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1447 *ocur = rcur;
1448 } else if (i == 1) {
1449 /* only the left record is valid */
1450 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1451 }
1452
1453 return 0;
1454
1455error_rcur:
1456 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1457 return error;
1458}
1459
1460/*
1461 * Use the free inode btree to find a free inode based on a newino hint. If
1462 * the hint is NULL, find the first free inode in the AG.
1463 */
1464STATIC int
1465xfs_dialloc_ag_finobt_newino(
1466 struct xfs_agi *agi,
1467 struct xfs_btree_cur *cur,
1468 struct xfs_inobt_rec_incore *rec)
1469{
1470 int error;
1471 int i;
1472
1473 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1474 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1475 XFS_LOOKUP_EQ, &i);
1476 if (error)
1477 return error;
1478 if (i == 1) {
1479 error = xfs_inobt_get_rec(cur, rec, &i);
1480 if (error)
1481 return error;
1482 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1483 xfs_btree_mark_sick(cur);
1484 return -EFSCORRUPTED;
1485 }
1486 return 0;
1487 }
1488 }
1489
1490 /*
1491 * Find the first inode available in the AG.
1492 */
1493 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1494 if (error)
1495 return error;
1496 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1497 xfs_btree_mark_sick(cur);
1498 return -EFSCORRUPTED;
1499 }
1500
1501 error = xfs_inobt_get_rec(cur, rec, &i);
1502 if (error)
1503 return error;
1504 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1505 xfs_btree_mark_sick(cur);
1506 return -EFSCORRUPTED;
1507 }
1508
1509 return 0;
1510}
1511
1512/*
1513 * Update the inobt based on a modification made to the finobt. Also ensure that
1514 * the records from both trees are equivalent post-modification.
1515 */
1516STATIC int
1517xfs_dialloc_ag_update_inobt(
1518 struct xfs_btree_cur *cur, /* inobt cursor */
1519 struct xfs_inobt_rec_incore *frec, /* finobt record */
1520 int offset) /* inode offset */
1521{
1522 struct xfs_inobt_rec_incore rec;
1523 int error;
1524 int i;
1525
1526 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1527 if (error)
1528 return error;
1529 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1530 xfs_btree_mark_sick(cur);
1531 return -EFSCORRUPTED;
1532 }
1533
1534 error = xfs_inobt_get_rec(cur, &rec, &i);
1535 if (error)
1536 return error;
1537 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1538 xfs_btree_mark_sick(cur);
1539 return -EFSCORRUPTED;
1540 }
1541 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1542 XFS_INODES_PER_CHUNK) == 0);
1543
1544 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1545 rec.ir_freecount--;
1546
1547 if (XFS_IS_CORRUPT(cur->bc_mp,
1548 rec.ir_free != frec->ir_free ||
1549 rec.ir_freecount != frec->ir_freecount)) {
1550 xfs_btree_mark_sick(cur);
1551 return -EFSCORRUPTED;
1552 }
1553
1554 return xfs_inobt_update(cur, &rec);
1555}
1556
1557/*
1558 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1559 * back to the inobt search algorithm.
1560 *
1561 * The caller selected an AG for us, and made sure that free inodes are
1562 * available.
1563 */
1564static int
1565xfs_dialloc_ag(
1566 struct xfs_perag *pag,
1567 struct xfs_trans *tp,
1568 struct xfs_buf *agbp,
1569 xfs_ino_t parent,
1570 xfs_ino_t *inop)
1571{
1572 struct xfs_mount *mp = tp->t_mountp;
1573 struct xfs_agi *agi = agbp->b_addr;
1574 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1575 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1576 struct xfs_btree_cur *cur; /* finobt cursor */
1577 struct xfs_btree_cur *icur; /* inobt cursor */
1578 struct xfs_inobt_rec_incore rec;
1579 xfs_ino_t ino;
1580 int error;
1581 int offset;
1582 int i;
1583
1584 if (!xfs_has_finobt(mp))
1585 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1586
1587 /*
1588 * If pagino is 0 (this is the root inode allocation) use newino.
1589 * This must work because we've just allocated some.
1590 */
1591 if (!pagino)
1592 pagino = be32_to_cpu(agi->agi_newino);
1593
1594 cur = xfs_finobt_init_cursor(pag, tp, agbp);
1595
1596 error = xfs_check_agi_freecount(cur);
1597 if (error)
1598 goto error_cur;
1599
1600 /*
1601 * The search algorithm depends on whether we're in the same AG as the
1602 * parent. If so, find the closest available inode to the parent. If
1603 * not, consider the agi hint or find the first free inode in the AG.
1604 */
1605 if (pag_agno(pag) == pagno)
1606 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1607 else
1608 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1609 if (error)
1610 goto error_cur;
1611
1612 offset = xfs_inobt_first_free_inode(&rec);
1613 ASSERT(offset >= 0);
1614 ASSERT(offset < XFS_INODES_PER_CHUNK);
1615 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1616 XFS_INODES_PER_CHUNK) == 0);
1617 ino = xfs_agino_to_ino(pag, rec.ir_startino + offset);
1618
1619 if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1620 error = xfs_dialloc_check_ino(pag, tp, ino);
1621 if (error)
1622 goto error_cur;
1623 }
1624
1625 /*
1626 * Modify or remove the finobt record.
1627 */
1628 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1629 rec.ir_freecount--;
1630 if (rec.ir_freecount)
1631 error = xfs_inobt_update(cur, &rec);
1632 else
1633 error = xfs_btree_delete(cur, &i);
1634 if (error)
1635 goto error_cur;
1636
1637 /*
1638 * The finobt has now been updated appropriately. We haven't updated the
1639 * agi and superblock yet, so we can create an inobt cursor and validate
1640 * the original freecount. If all is well, make the equivalent update to
1641 * the inobt using the finobt record and offset information.
1642 */
1643 icur = xfs_inobt_init_cursor(pag, tp, agbp);
1644
1645 error = xfs_check_agi_freecount(icur);
1646 if (error)
1647 goto error_icur;
1648
1649 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1650 if (error)
1651 goto error_icur;
1652
1653 /*
1654 * Both trees have now been updated. We must update the perag and
1655 * superblock before we can check the freecount for each btree.
1656 */
1657 be32_add_cpu(&agi->agi_freecount, -1);
1658 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1659 pag->pagi_freecount--;
1660
1661 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1662
1663 error = xfs_check_agi_freecount(icur);
1664 if (error)
1665 goto error_icur;
1666 error = xfs_check_agi_freecount(cur);
1667 if (error)
1668 goto error_icur;
1669
1670 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1671 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1672 *inop = ino;
1673 return 0;
1674
1675error_icur:
1676 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1677error_cur:
1678 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1679 return error;
1680}
1681
1682static int
1683xfs_dialloc_roll(
1684 struct xfs_trans **tpp,
1685 struct xfs_buf *agibp)
1686{
1687 struct xfs_trans *tp = *tpp;
1688 struct xfs_dquot_acct *dqinfo;
1689 int error;
1690
1691 /*
1692 * Hold to on to the agibp across the commit so no other allocation can
1693 * come in and take the free inodes we just allocated for our caller.
1694 */
1695 xfs_trans_bhold(tp, agibp);
1696
1697 /*
1698 * We want the quota changes to be associated with the next transaction,
1699 * NOT this one. So, detach the dqinfo from this and attach it to the
1700 * next transaction.
1701 */
1702 dqinfo = tp->t_dqinfo;
1703 tp->t_dqinfo = NULL;
1704
1705 error = xfs_trans_roll(&tp);
1706
1707 /* Re-attach the quota info that we detached from prev trx. */
1708 tp->t_dqinfo = dqinfo;
1709
1710 /*
1711 * Join the buffer even on commit error so that the buffer is released
1712 * when the caller cancels the transaction and doesn't have to handle
1713 * this error case specially.
1714 */
1715 xfs_trans_bjoin(tp, agibp);
1716 *tpp = tp;
1717 return error;
1718}
1719
1720static bool
1721xfs_dialloc_good_ag(
1722 struct xfs_perag *pag,
1723 struct xfs_trans *tp,
1724 umode_t mode,
1725 int flags,
1726 bool ok_alloc)
1727{
1728 struct xfs_mount *mp = tp->t_mountp;
1729 xfs_extlen_t ineed;
1730 xfs_extlen_t longest = 0;
1731 int needspace;
1732 int error;
1733
1734 if (!pag)
1735 return false;
1736 if (!xfs_perag_allows_inodes(pag))
1737 return false;
1738
1739 if (!xfs_perag_initialised_agi(pag)) {
1740 error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1741 if (error)
1742 return false;
1743 }
1744
1745 if (pag->pagi_freecount)
1746 return true;
1747 if (!ok_alloc)
1748 return false;
1749
1750 if (!xfs_perag_initialised_agf(pag)) {
1751 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1752 if (error)
1753 return false;
1754 }
1755
1756 /*
1757 * Check that there is enough free space for the file plus a chunk of
1758 * inodes if we need to allocate some. If this is the first pass across
1759 * the AGs, take into account the potential space needed for alignment
1760 * of inode chunks when checking the longest contiguous free space in
1761 * the AG - this prevents us from getting ENOSPC because we have free
1762 * space larger than ialloc_blks but alignment constraints prevent us
1763 * from using it.
1764 *
1765 * If we can't find an AG with space for full alignment slack to be
1766 * taken into account, we must be near ENOSPC in all AGs. Hence we
1767 * don't include alignment for the second pass and so if we fail
1768 * allocation due to alignment issues then it is most likely a real
1769 * ENOSPC condition.
1770 *
1771 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1772 * reservations that xfs_alloc_fix_freelist() now does via
1773 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1774 * be more than large enough for the check below to succeed, but
1775 * xfs_alloc_space_available() will fail because of the non-zero
1776 * metadata reservation and hence we won't actually be able to allocate
1777 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1778 * because of this.
1779 */
1780 ineed = M_IGEO(mp)->ialloc_min_blks;
1781 if (flags && ineed > 1)
1782 ineed += M_IGEO(mp)->cluster_align;
1783 longest = pag->pagf_longest;
1784 if (!longest)
1785 longest = pag->pagf_flcount > 0;
1786 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1787
1788 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1789 return false;
1790 return true;
1791}
1792
1793static int
1794xfs_dialloc_try_ag(
1795 struct xfs_perag *pag,
1796 struct xfs_trans **tpp,
1797 xfs_ino_t parent,
1798 xfs_ino_t *new_ino,
1799 bool ok_alloc)
1800{
1801 struct xfs_buf *agbp;
1802 xfs_ino_t ino;
1803 int error;
1804
1805 /*
1806 * Then read in the AGI buffer and recheck with the AGI buffer
1807 * lock held.
1808 */
1809 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1810 if (error)
1811 return error;
1812
1813 if (!pag->pagi_freecount) {
1814 if (!ok_alloc) {
1815 error = -EAGAIN;
1816 goto out_release;
1817 }
1818
1819 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1820 if (error < 0)
1821 goto out_release;
1822
1823 /*
1824 * We successfully allocated space for an inode cluster in this
1825 * AG. Roll the transaction so that we can allocate one of the
1826 * new inodes.
1827 */
1828 ASSERT(pag->pagi_freecount > 0);
1829 error = xfs_dialloc_roll(tpp, agbp);
1830 if (error)
1831 goto out_release;
1832 }
1833
1834 /* Allocate an inode in the found AG */
1835 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1836 if (!error)
1837 *new_ino = ino;
1838 return error;
1839
1840out_release:
1841 xfs_trans_brelse(*tpp, agbp);
1842 return error;
1843}
1844
1845/*
1846 * Pick an AG for the new inode.
1847 *
1848 * Directories, symlinks, and regular files frequently allocate at least one
1849 * block, so factor that potential expansion when we examine whether an AG has
1850 * enough space for file creation. Try to keep metadata files all in the same
1851 * AG.
1852 */
1853static inline xfs_agnumber_t
1854xfs_dialloc_pick_ag(
1855 struct xfs_mount *mp,
1856 struct xfs_inode *dp,
1857 umode_t mode)
1858{
1859 xfs_agnumber_t start_agno;
1860
1861 if (!dp)
1862 return 0;
1863 if (xfs_is_metadir_inode(dp)) {
1864 if (mp->m_sb.sb_logstart)
1865 return XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
1866 return 0;
1867 }
1868
1869 if (S_ISDIR(mode))
1870 return (atomic_inc_return(&mp->m_agirotor) - 1) % mp->m_maxagi;
1871
1872 start_agno = XFS_INO_TO_AGNO(mp, dp->i_ino);
1873 if (start_agno >= mp->m_maxagi)
1874 start_agno = 0;
1875
1876 return start_agno;
1877}
1878
1879/*
1880 * Allocate an on-disk inode.
1881 *
1882 * Mode is used to tell whether the new inode is a directory and hence where to
1883 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1884 * on success, otherwise an error will be set to indicate the failure (e.g.
1885 * -ENOSPC).
1886 */
1887int
1888xfs_dialloc(
1889 struct xfs_trans **tpp,
1890 const struct xfs_icreate_args *args,
1891 xfs_ino_t *new_ino)
1892{
1893 struct xfs_mount *mp = (*tpp)->t_mountp;
1894 struct xfs_perag *pag;
1895 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1896 xfs_ino_t ino = NULLFSINO;
1897 xfs_ino_t parent = args->pip ? args->pip->i_ino : 0;
1898 xfs_agnumber_t agno;
1899 xfs_agnumber_t start_agno;
1900 umode_t mode = args->mode & S_IFMT;
1901 bool ok_alloc = true;
1902 bool low_space = false;
1903 int flags;
1904 int error = 0;
1905
1906 start_agno = xfs_dialloc_pick_ag(mp, args->pip, mode);
1907
1908 /*
1909 * If we have already hit the ceiling of inode blocks then clear
1910 * ok_alloc so we scan all available agi structures for a free
1911 * inode.
1912 *
1913 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1914 * which will sacrifice the preciseness but improve the performance.
1915 */
1916 if (igeo->maxicount &&
1917 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1918 > igeo->maxicount) {
1919 ok_alloc = false;
1920 }
1921
1922 /*
1923 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1924 * have free inodes in them rather than use up free space allocating new
1925 * inode chunks. Hence we turn off allocation for the first non-blocking
1926 * pass through the AGs if we are near ENOSPC to consume free inodes
1927 * that we can immediately allocate, but then we allow allocation on the
1928 * second pass if we fail to find an AG with free inodes in it.
1929 */
1930 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1931 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1932 ok_alloc = false;
1933 low_space = true;
1934 }
1935
1936 /*
1937 * Loop until we find an allocation group that either has free inodes
1938 * or in which we can allocate some inodes. Iterate through the
1939 * allocation groups upward, wrapping at the end.
1940 */
1941 flags = XFS_ALLOC_FLAG_TRYLOCK;
1942retry:
1943 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1944 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1945 error = xfs_dialloc_try_ag(pag, tpp, parent,
1946 &ino, ok_alloc);
1947 if (error != -EAGAIN)
1948 break;
1949 error = 0;
1950 }
1951
1952 if (xfs_is_shutdown(mp)) {
1953 error = -EFSCORRUPTED;
1954 break;
1955 }
1956 }
1957 if (pag)
1958 xfs_perag_rele(pag);
1959 if (error)
1960 return error;
1961 if (ino == NULLFSINO) {
1962 if (flags) {
1963 flags = 0;
1964 if (low_space)
1965 ok_alloc = true;
1966 goto retry;
1967 }
1968 return -ENOSPC;
1969 }
1970
1971 /*
1972 * Protect against obviously corrupt allocation btree records. Later
1973 * xfs_iget checks will catch re-allocation of other active in-memory
1974 * and on-disk inodes. If we don't catch reallocating the parent inode
1975 * here we will deadlock in xfs_iget() so we have to do these checks
1976 * first.
1977 */
1978 if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1979 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1980 xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1981 XFS_SICK_AG_INOBT);
1982 return -EFSCORRUPTED;
1983 }
1984
1985 *new_ino = ino;
1986 return 0;
1987}
1988
1989/*
1990 * Free the blocks of an inode chunk. We must consider that the inode chunk
1991 * might be sparse and only free the regions that are allocated as part of the
1992 * chunk.
1993 */
1994static int
1995xfs_difree_inode_chunk(
1996 struct xfs_trans *tp,
1997 struct xfs_perag *pag,
1998 struct xfs_inobt_rec_incore *rec)
1999{
2000 struct xfs_mount *mp = tp->t_mountp;
2001 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
2002 rec->ir_startino);
2003 int startidx, endidx;
2004 int nextbit;
2005 xfs_agblock_t agbno;
2006 int contigblk;
2007 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
2008
2009 if (!xfs_inobt_issparse(rec->ir_holemask)) {
2010 /* not sparse, calculate extent info directly */
2011 return xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, sagbno),
2012 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
2013 XFS_AG_RESV_NONE, 0);
2014 }
2015
2016 /* holemask is only 16-bits (fits in an unsigned long) */
2017 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2018 holemask[0] = rec->ir_holemask;
2019
2020 /*
2021 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2022 * holemask and convert the start/end index of each range to an extent.
2023 * We start with the start and end index both pointing at the first 0 in
2024 * the mask.
2025 */
2026 startidx = endidx = find_first_zero_bit(holemask,
2027 XFS_INOBT_HOLEMASK_BITS);
2028 nextbit = startidx + 1;
2029 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2030 int error;
2031
2032 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2033 nextbit);
2034 /*
2035 * If the next zero bit is contiguous, update the end index of
2036 * the current range and continue.
2037 */
2038 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2039 nextbit == endidx + 1) {
2040 endidx = nextbit;
2041 goto next;
2042 }
2043
2044 /*
2045 * nextbit is not contiguous with the current end index. Convert
2046 * the current start/end to an extent and add it to the free
2047 * list.
2048 */
2049 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2050 mp->m_sb.sb_inopblock;
2051 contigblk = ((endidx - startidx + 1) *
2052 XFS_INODES_PER_HOLEMASK_BIT) /
2053 mp->m_sb.sb_inopblock;
2054
2055 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2056 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2057 error = xfs_free_extent_later(tp, xfs_agbno_to_fsb(pag, agbno),
2058 contigblk, &XFS_RMAP_OINFO_INODES,
2059 XFS_AG_RESV_NONE, 0);
2060 if (error)
2061 return error;
2062
2063 /* reset range to current bit and carry on... */
2064 startidx = endidx = nextbit;
2065
2066next:
2067 nextbit++;
2068 }
2069 return 0;
2070}
2071
2072STATIC int
2073xfs_difree_inobt(
2074 struct xfs_perag *pag,
2075 struct xfs_trans *tp,
2076 struct xfs_buf *agbp,
2077 xfs_agino_t agino,
2078 struct xfs_icluster *xic,
2079 struct xfs_inobt_rec_incore *orec)
2080{
2081 struct xfs_mount *mp = pag_mount(pag);
2082 struct xfs_agi *agi = agbp->b_addr;
2083 struct xfs_btree_cur *cur;
2084 struct xfs_inobt_rec_incore rec;
2085 int ilen;
2086 int error;
2087 int i;
2088 int off;
2089
2090 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2091 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2092
2093 /*
2094 * Initialize the cursor.
2095 */
2096 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2097
2098 error = xfs_check_agi_freecount(cur);
2099 if (error)
2100 goto error0;
2101
2102 /*
2103 * Look for the entry describing this inode.
2104 */
2105 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2106 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2107 __func__, error);
2108 goto error0;
2109 }
2110 if (XFS_IS_CORRUPT(mp, i != 1)) {
2111 xfs_btree_mark_sick(cur);
2112 error = -EFSCORRUPTED;
2113 goto error0;
2114 }
2115 error = xfs_inobt_get_rec(cur, &rec, &i);
2116 if (error) {
2117 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2118 __func__, error);
2119 goto error0;
2120 }
2121 if (XFS_IS_CORRUPT(mp, i != 1)) {
2122 xfs_btree_mark_sick(cur);
2123 error = -EFSCORRUPTED;
2124 goto error0;
2125 }
2126 /*
2127 * Get the offset in the inode chunk.
2128 */
2129 off = agino - rec.ir_startino;
2130 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2131 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2132 /*
2133 * Mark the inode free & increment the count.
2134 */
2135 rec.ir_free |= XFS_INOBT_MASK(off);
2136 rec.ir_freecount++;
2137
2138 /*
2139 * When an inode chunk is free, it becomes eligible for removal. Don't
2140 * remove the chunk if the block size is large enough for multiple inode
2141 * chunks (that might not be free).
2142 */
2143 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2144 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2145 xic->deleted = true;
2146 xic->first_ino = xfs_agino_to_ino(pag, rec.ir_startino);
2147 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2148
2149 /*
2150 * Remove the inode cluster from the AGI B+Tree, adjust the
2151 * AGI and Superblock inode counts, and mark the disk space
2152 * to be freed when the transaction is committed.
2153 */
2154 ilen = rec.ir_freecount;
2155 be32_add_cpu(&agi->agi_count, -ilen);
2156 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2157 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2158 pag->pagi_freecount -= ilen - 1;
2159 pag->pagi_count -= ilen;
2160 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2161 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2162
2163 if ((error = xfs_btree_delete(cur, &i))) {
2164 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2165 __func__, error);
2166 goto error0;
2167 }
2168
2169 error = xfs_difree_inode_chunk(tp, pag, &rec);
2170 if (error)
2171 goto error0;
2172 } else {
2173 xic->deleted = false;
2174
2175 error = xfs_inobt_update(cur, &rec);
2176 if (error) {
2177 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2178 __func__, error);
2179 goto error0;
2180 }
2181
2182 /*
2183 * Change the inode free counts and log the ag/sb changes.
2184 */
2185 be32_add_cpu(&agi->agi_freecount, 1);
2186 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2187 pag->pagi_freecount++;
2188 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2189 }
2190
2191 error = xfs_check_agi_freecount(cur);
2192 if (error)
2193 goto error0;
2194
2195 *orec = rec;
2196 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2197 return 0;
2198
2199error0:
2200 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2201 return error;
2202}
2203
2204/*
2205 * Free an inode in the free inode btree.
2206 */
2207STATIC int
2208xfs_difree_finobt(
2209 struct xfs_perag *pag,
2210 struct xfs_trans *tp,
2211 struct xfs_buf *agbp,
2212 xfs_agino_t agino,
2213 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2214{
2215 struct xfs_mount *mp = pag_mount(pag);
2216 struct xfs_btree_cur *cur;
2217 struct xfs_inobt_rec_incore rec;
2218 int offset = agino - ibtrec->ir_startino;
2219 int error;
2220 int i;
2221
2222 cur = xfs_finobt_init_cursor(pag, tp, agbp);
2223
2224 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2225 if (error)
2226 goto error;
2227 if (i == 0) {
2228 /*
2229 * If the record does not exist in the finobt, we must have just
2230 * freed an inode in a previously fully allocated chunk. If not,
2231 * something is out of sync.
2232 */
2233 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2234 xfs_btree_mark_sick(cur);
2235 error = -EFSCORRUPTED;
2236 goto error;
2237 }
2238
2239 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2240 ibtrec->ir_count,
2241 ibtrec->ir_freecount,
2242 ibtrec->ir_free, &i);
2243 if (error)
2244 goto error;
2245 ASSERT(i == 1);
2246
2247 goto out;
2248 }
2249
2250 /*
2251 * Read and update the existing record. We could just copy the ibtrec
2252 * across here, but that would defeat the purpose of having redundant
2253 * metadata. By making the modifications independently, we can catch
2254 * corruptions that we wouldn't see if we just copied from one record
2255 * to another.
2256 */
2257 error = xfs_inobt_get_rec(cur, &rec, &i);
2258 if (error)
2259 goto error;
2260 if (XFS_IS_CORRUPT(mp, i != 1)) {
2261 xfs_btree_mark_sick(cur);
2262 error = -EFSCORRUPTED;
2263 goto error;
2264 }
2265
2266 rec.ir_free |= XFS_INOBT_MASK(offset);
2267 rec.ir_freecount++;
2268
2269 if (XFS_IS_CORRUPT(mp,
2270 rec.ir_free != ibtrec->ir_free ||
2271 rec.ir_freecount != ibtrec->ir_freecount)) {
2272 xfs_btree_mark_sick(cur);
2273 error = -EFSCORRUPTED;
2274 goto error;
2275 }
2276
2277 /*
2278 * The content of inobt records should always match between the inobt
2279 * and finobt. The lifecycle of records in the finobt is different from
2280 * the inobt in that the finobt only tracks records with at least one
2281 * free inode. Hence, if all of the inodes are free and we aren't
2282 * keeping inode chunks permanently on disk, remove the record.
2283 * Otherwise, update the record with the new information.
2284 *
2285 * Note that we currently can't free chunks when the block size is large
2286 * enough for multiple chunks. Leave the finobt record to remain in sync
2287 * with the inobt.
2288 */
2289 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2290 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2291 error = xfs_btree_delete(cur, &i);
2292 if (error)
2293 goto error;
2294 ASSERT(i == 1);
2295 } else {
2296 error = xfs_inobt_update(cur, &rec);
2297 if (error)
2298 goto error;
2299 }
2300
2301out:
2302 error = xfs_check_agi_freecount(cur);
2303 if (error)
2304 goto error;
2305
2306 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2307 return 0;
2308
2309error:
2310 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2311 return error;
2312}
2313
2314/*
2315 * Free disk inode. Carefully avoids touching the incore inode, all
2316 * manipulations incore are the caller's responsibility.
2317 * The on-disk inode is not changed by this operation, only the
2318 * btree (free inode mask) is changed.
2319 */
2320int
2321xfs_difree(
2322 struct xfs_trans *tp,
2323 struct xfs_perag *pag,
2324 xfs_ino_t inode,
2325 struct xfs_icluster *xic)
2326{
2327 /* REFERENCED */
2328 xfs_agblock_t agbno; /* block number containing inode */
2329 struct xfs_buf *agbp; /* buffer for allocation group header */
2330 xfs_agino_t agino; /* allocation group inode number */
2331 int error; /* error return value */
2332 struct xfs_mount *mp = tp->t_mountp;
2333 struct xfs_inobt_rec_incore rec;/* btree record */
2334
2335 /*
2336 * Break up inode number into its components.
2337 */
2338 if (pag_agno(pag) != XFS_INO_TO_AGNO(mp, inode)) {
2339 xfs_warn(mp, "%s: agno != pag_agno(pag) (%d != %d).",
2340 __func__, XFS_INO_TO_AGNO(mp, inode), pag_agno(pag));
2341 ASSERT(0);
2342 return -EINVAL;
2343 }
2344 agino = XFS_INO_TO_AGINO(mp, inode);
2345 if (inode != xfs_agino_to_ino(pag, agino)) {
2346 xfs_warn(mp, "%s: inode != xfs_agino_to_ino() (%llu != %llu).",
2347 __func__, (unsigned long long)inode,
2348 (unsigned long long)xfs_agino_to_ino(pag, agino));
2349 ASSERT(0);
2350 return -EINVAL;
2351 }
2352 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2353 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
2354 xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).",
2355 __func__, agbno, xfs_ag_block_count(mp, pag_agno(pag)));
2356 ASSERT(0);
2357 return -EINVAL;
2358 }
2359 /*
2360 * Get the allocation group header.
2361 */
2362 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2363 if (error) {
2364 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2365 __func__, error);
2366 return error;
2367 }
2368
2369 /*
2370 * Fix up the inode allocation btree.
2371 */
2372 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2373 if (error)
2374 goto error0;
2375
2376 /*
2377 * Fix up the free inode btree.
2378 */
2379 if (xfs_has_finobt(mp)) {
2380 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2381 if (error)
2382 goto error0;
2383 }
2384
2385 return 0;
2386
2387error0:
2388 return error;
2389}
2390
2391STATIC int
2392xfs_imap_lookup(
2393 struct xfs_perag *pag,
2394 struct xfs_trans *tp,
2395 xfs_agino_t agino,
2396 xfs_agblock_t agbno,
2397 xfs_agblock_t *chunk_agbno,
2398 xfs_agblock_t *offset_agbno,
2399 int flags)
2400{
2401 struct xfs_mount *mp = pag_mount(pag);
2402 struct xfs_inobt_rec_incore rec;
2403 struct xfs_btree_cur *cur;
2404 struct xfs_buf *agbp;
2405 int error;
2406 int i;
2407
2408 error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2409 if (error) {
2410 xfs_alert(mp,
2411 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2412 __func__, error, pag_agno(pag));
2413 return error;
2414 }
2415
2416 /*
2417 * Lookup the inode record for the given agino. If the record cannot be
2418 * found, then it's an invalid inode number and we should abort. Once
2419 * we have a record, we need to ensure it contains the inode number
2420 * we are looking up.
2421 */
2422 cur = xfs_inobt_init_cursor(pag, tp, agbp);
2423 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2424 if (!error) {
2425 if (i)
2426 error = xfs_inobt_get_rec(cur, &rec, &i);
2427 if (!error && i == 0)
2428 error = -EINVAL;
2429 }
2430
2431 xfs_trans_brelse(tp, agbp);
2432 xfs_btree_del_cursor(cur, error);
2433 if (error)
2434 return error;
2435
2436 /* check that the returned record contains the required inode */
2437 if (rec.ir_startino > agino ||
2438 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2439 return -EINVAL;
2440
2441 /* for untrusted inodes check it is allocated first */
2442 if ((flags & XFS_IGET_UNTRUSTED) &&
2443 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2444 return -EINVAL;
2445
2446 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2447 *offset_agbno = agbno - *chunk_agbno;
2448 return 0;
2449}
2450
2451/*
2452 * Return the location of the inode in imap, for mapping it into a buffer.
2453 */
2454int
2455xfs_imap(
2456 struct xfs_perag *pag,
2457 struct xfs_trans *tp,
2458 xfs_ino_t ino, /* inode to locate */
2459 struct xfs_imap *imap, /* location map structure */
2460 uint flags) /* flags for inode btree lookup */
2461{
2462 struct xfs_mount *mp = pag_mount(pag);
2463 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2464 xfs_agino_t agino; /* inode number within alloc group */
2465 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2466 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2467 int error; /* error code */
2468 int offset; /* index of inode in its buffer */
2469 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2470
2471 ASSERT(ino != NULLFSINO);
2472
2473 /*
2474 * Split up the inode number into its parts.
2475 */
2476 agino = XFS_INO_TO_AGINO(mp, ino);
2477 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2478 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag)) ||
2479 ino != xfs_agino_to_ino(pag, agino)) {
2480 error = -EINVAL;
2481#ifdef DEBUG
2482 /*
2483 * Don't output diagnostic information for untrusted inodes
2484 * as they can be invalid without implying corruption.
2485 */
2486 if (flags & XFS_IGET_UNTRUSTED)
2487 return error;
2488 if (agbno >= xfs_ag_block_count(mp, pag_agno(pag))) {
2489 xfs_alert(mp,
2490 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2491 __func__, (unsigned long long)agbno,
2492 (unsigned long)xfs_ag_block_count(mp,
2493 pag_agno(pag)));
2494 }
2495 if (ino != xfs_agino_to_ino(pag, agino)) {
2496 xfs_alert(mp,
2497 "%s: ino (0x%llx) != xfs_agino_to_ino() (0x%llx)",
2498 __func__, ino,
2499 xfs_agino_to_ino(pag, agino));
2500 }
2501 xfs_stack_trace();
2502#endif /* DEBUG */
2503 return error;
2504 }
2505
2506 /*
2507 * For bulkstat and handle lookups, we have an untrusted inode number
2508 * that we have to verify is valid. We cannot do this just by reading
2509 * the inode buffer as it may have been unlinked and removed leaving
2510 * inodes in stale state on disk. Hence we have to do a btree lookup
2511 * in all cases where an untrusted inode number is passed.
2512 */
2513 if (flags & XFS_IGET_UNTRUSTED) {
2514 error = xfs_imap_lookup(pag, tp, agino, agbno,
2515 &chunk_agbno, &offset_agbno, flags);
2516 if (error)
2517 return error;
2518 goto out_map;
2519 }
2520
2521 /*
2522 * If the inode cluster size is the same as the blocksize or
2523 * smaller we get to the buffer by simple arithmetics.
2524 */
2525 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2526 offset = XFS_INO_TO_OFFSET(mp, ino);
2527 ASSERT(offset < mp->m_sb.sb_inopblock);
2528
2529 imap->im_blkno = xfs_agbno_to_daddr(pag, agbno);
2530 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2531 imap->im_boffset = (unsigned short)(offset <<
2532 mp->m_sb.sb_inodelog);
2533 return 0;
2534 }
2535
2536 /*
2537 * If the inode chunks are aligned then use simple maths to
2538 * find the location. Otherwise we have to do a btree
2539 * lookup to find the location.
2540 */
2541 if (M_IGEO(mp)->inoalign_mask) {
2542 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2543 chunk_agbno = agbno - offset_agbno;
2544 } else {
2545 error = xfs_imap_lookup(pag, tp, agino, agbno,
2546 &chunk_agbno, &offset_agbno, flags);
2547 if (error)
2548 return error;
2549 }
2550
2551out_map:
2552 ASSERT(agbno >= chunk_agbno);
2553 cluster_agbno = chunk_agbno +
2554 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2555 M_IGEO(mp)->blocks_per_cluster);
2556 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2557 XFS_INO_TO_OFFSET(mp, ino);
2558
2559 imap->im_blkno = xfs_agbno_to_daddr(pag, cluster_agbno);
2560 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2561 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2562
2563 /*
2564 * If the inode number maps to a block outside the bounds
2565 * of the file system then return NULL rather than calling
2566 * read_buf and panicing when we get an error from the
2567 * driver.
2568 */
2569 if ((imap->im_blkno + imap->im_len) >
2570 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2571 xfs_alert(mp,
2572 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2573 __func__, (unsigned long long) imap->im_blkno,
2574 (unsigned long long) imap->im_len,
2575 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2576 return -EINVAL;
2577 }
2578 return 0;
2579}
2580
2581/*
2582 * Log specified fields for the ag hdr (inode section). The growth of the agi
2583 * structure over time requires that we interpret the buffer as two logical
2584 * regions delineated by the end of the unlinked list. This is due to the size
2585 * of the hash table and its location in the middle of the agi.
2586 *
2587 * For example, a request to log a field before agi_unlinked and a field after
2588 * agi_unlinked could cause us to log the entire hash table and use an excessive
2589 * amount of log space. To avoid this behavior, log the region up through
2590 * agi_unlinked in one call and the region after agi_unlinked through the end of
2591 * the structure in another.
2592 */
2593void
2594xfs_ialloc_log_agi(
2595 struct xfs_trans *tp,
2596 struct xfs_buf *bp,
2597 uint32_t fields)
2598{
2599 int first; /* first byte number */
2600 int last; /* last byte number */
2601 static const short offsets[] = { /* field starting offsets */
2602 /* keep in sync with bit definitions */
2603 offsetof(xfs_agi_t, agi_magicnum),
2604 offsetof(xfs_agi_t, agi_versionnum),
2605 offsetof(xfs_agi_t, agi_seqno),
2606 offsetof(xfs_agi_t, agi_length),
2607 offsetof(xfs_agi_t, agi_count),
2608 offsetof(xfs_agi_t, agi_root),
2609 offsetof(xfs_agi_t, agi_level),
2610 offsetof(xfs_agi_t, agi_freecount),
2611 offsetof(xfs_agi_t, agi_newino),
2612 offsetof(xfs_agi_t, agi_dirino),
2613 offsetof(xfs_agi_t, agi_unlinked),
2614 offsetof(xfs_agi_t, agi_free_root),
2615 offsetof(xfs_agi_t, agi_free_level),
2616 offsetof(xfs_agi_t, agi_iblocks),
2617 sizeof(xfs_agi_t)
2618 };
2619#ifdef DEBUG
2620 struct xfs_agi *agi = bp->b_addr;
2621
2622 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2623#endif
2624
2625 /*
2626 * Compute byte offsets for the first and last fields in the first
2627 * region and log the agi buffer. This only logs up through
2628 * agi_unlinked.
2629 */
2630 if (fields & XFS_AGI_ALL_BITS_R1) {
2631 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2632 &first, &last);
2633 xfs_trans_log_buf(tp, bp, first, last);
2634 }
2635
2636 /*
2637 * Mask off the bits in the first region and calculate the first and
2638 * last field offsets for any bits in the second region.
2639 */
2640 fields &= ~XFS_AGI_ALL_BITS_R1;
2641 if (fields) {
2642 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2643 &first, &last);
2644 xfs_trans_log_buf(tp, bp, first, last);
2645 }
2646}
2647
2648static xfs_failaddr_t
2649xfs_agi_verify(
2650 struct xfs_buf *bp)
2651{
2652 struct xfs_mount *mp = bp->b_mount;
2653 struct xfs_agi *agi = bp->b_addr;
2654 xfs_failaddr_t fa;
2655 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2656 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2657 int i;
2658
2659 if (xfs_has_crc(mp)) {
2660 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2661 return __this_address;
2662 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2663 return __this_address;
2664 }
2665
2666 /*
2667 * Validate the magic number of the agi block.
2668 */
2669 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2670 return __this_address;
2671 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2672 return __this_address;
2673
2674 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2675 if (fa)
2676 return fa;
2677
2678 if (be32_to_cpu(agi->agi_level) < 1 ||
2679 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2680 return __this_address;
2681
2682 if (xfs_has_finobt(mp) &&
2683 (be32_to_cpu(agi->agi_free_level) < 1 ||
2684 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2685 return __this_address;
2686
2687 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2688 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2689 continue;
2690 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2691 return __this_address;
2692 }
2693
2694 return NULL;
2695}
2696
2697static void
2698xfs_agi_read_verify(
2699 struct xfs_buf *bp)
2700{
2701 struct xfs_mount *mp = bp->b_mount;
2702 xfs_failaddr_t fa;
2703
2704 if (xfs_has_crc(mp) &&
2705 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2706 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2707 else {
2708 fa = xfs_agi_verify(bp);
2709 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2710 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2711 }
2712}
2713
2714static void
2715xfs_agi_write_verify(
2716 struct xfs_buf *bp)
2717{
2718 struct xfs_mount *mp = bp->b_mount;
2719 struct xfs_buf_log_item *bip = bp->b_log_item;
2720 struct xfs_agi *agi = bp->b_addr;
2721 xfs_failaddr_t fa;
2722
2723 fa = xfs_agi_verify(bp);
2724 if (fa) {
2725 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2726 return;
2727 }
2728
2729 if (!xfs_has_crc(mp))
2730 return;
2731
2732 if (bip)
2733 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2734 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2735}
2736
2737const struct xfs_buf_ops xfs_agi_buf_ops = {
2738 .name = "xfs_agi",
2739 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2740 .verify_read = xfs_agi_read_verify,
2741 .verify_write = xfs_agi_write_verify,
2742 .verify_struct = xfs_agi_verify,
2743};
2744
2745/*
2746 * Read in the allocation group header (inode allocation section)
2747 */
2748int
2749xfs_read_agi(
2750 struct xfs_perag *pag,
2751 struct xfs_trans *tp,
2752 xfs_buf_flags_t flags,
2753 struct xfs_buf **agibpp)
2754{
2755 struct xfs_mount *mp = pag_mount(pag);
2756 int error;
2757
2758 trace_xfs_read_agi(pag);
2759
2760 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2761 XFS_AG_DADDR(mp, pag_agno(pag), XFS_AGI_DADDR(mp)),
2762 XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2763 if (xfs_metadata_is_sick(error))
2764 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2765 if (error)
2766 return error;
2767 if (tp)
2768 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2769
2770 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2771 return 0;
2772}
2773
2774/*
2775 * Read in the agi and initialise the per-ag data. If the caller supplies a
2776 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2777 */
2778int
2779xfs_ialloc_read_agi(
2780 struct xfs_perag *pag,
2781 struct xfs_trans *tp,
2782 int flags,
2783 struct xfs_buf **agibpp)
2784{
2785 struct xfs_buf *agibp;
2786 struct xfs_agi *agi;
2787 int error;
2788
2789 trace_xfs_ialloc_read_agi(pag);
2790
2791 error = xfs_read_agi(pag, tp,
2792 (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2793 &agibp);
2794 if (error)
2795 return error;
2796
2797 agi = agibp->b_addr;
2798 if (!xfs_perag_initialised_agi(pag)) {
2799 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2800 pag->pagi_count = be32_to_cpu(agi->agi_count);
2801 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2802 }
2803
2804 /*
2805 * It's possible for these to be out of sync if
2806 * we are in the middle of a forced shutdown.
2807 */
2808 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2809 xfs_is_shutdown(pag_mount(pag)));
2810 if (agibpp)
2811 *agibpp = agibp;
2812 else
2813 xfs_trans_brelse(tp, agibp);
2814 return 0;
2815}
2816
2817/* How many inodes are backed by inode clusters ondisk? */
2818STATIC int
2819xfs_ialloc_count_ondisk(
2820 struct xfs_btree_cur *cur,
2821 xfs_agino_t low,
2822 xfs_agino_t high,
2823 unsigned int *allocated)
2824{
2825 struct xfs_inobt_rec_incore irec;
2826 unsigned int ret = 0;
2827 int has_record;
2828 int error;
2829
2830 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2831 if (error)
2832 return error;
2833
2834 while (has_record) {
2835 unsigned int i, hole_idx;
2836
2837 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2838 if (error)
2839 return error;
2840 if (irec.ir_startino > high)
2841 break;
2842
2843 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2844 if (irec.ir_startino + i < low)
2845 continue;
2846 if (irec.ir_startino + i > high)
2847 break;
2848
2849 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2850 if (!(irec.ir_holemask & (1U << hole_idx)))
2851 ret++;
2852 }
2853
2854 error = xfs_btree_increment(cur, 0, &has_record);
2855 if (error)
2856 return error;
2857 }
2858
2859 *allocated = ret;
2860 return 0;
2861}
2862
2863/* Is there an inode record covering a given extent? */
2864int
2865xfs_ialloc_has_inodes_at_extent(
2866 struct xfs_btree_cur *cur,
2867 xfs_agblock_t bno,
2868 xfs_extlen_t len,
2869 enum xbtree_recpacking *outcome)
2870{
2871 xfs_agino_t agino;
2872 xfs_agino_t last_agino;
2873 unsigned int allocated;
2874 int error;
2875
2876 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2877 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2878
2879 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2880 if (error)
2881 return error;
2882
2883 if (allocated == 0)
2884 *outcome = XBTREE_RECPACKING_EMPTY;
2885 else if (allocated == last_agino - agino + 1)
2886 *outcome = XBTREE_RECPACKING_FULL;
2887 else
2888 *outcome = XBTREE_RECPACKING_SPARSE;
2889 return 0;
2890}
2891
2892struct xfs_ialloc_count_inodes {
2893 xfs_agino_t count;
2894 xfs_agino_t freecount;
2895};
2896
2897/* Record inode counts across all inobt records. */
2898STATIC int
2899xfs_ialloc_count_inodes_rec(
2900 struct xfs_btree_cur *cur,
2901 const union xfs_btree_rec *rec,
2902 void *priv)
2903{
2904 struct xfs_inobt_rec_incore irec;
2905 struct xfs_ialloc_count_inodes *ci = priv;
2906 xfs_failaddr_t fa;
2907
2908 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2909 fa = xfs_inobt_check_irec(to_perag(cur->bc_group), &irec);
2910 if (fa)
2911 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2912
2913 ci->count += irec.ir_count;
2914 ci->freecount += irec.ir_freecount;
2915
2916 return 0;
2917}
2918
2919/* Count allocated and free inodes under an inobt. */
2920int
2921xfs_ialloc_count_inodes(
2922 struct xfs_btree_cur *cur,
2923 xfs_agino_t *count,
2924 xfs_agino_t *freecount)
2925{
2926 struct xfs_ialloc_count_inodes ci = {0};
2927 int error;
2928
2929 ASSERT(xfs_btree_is_ino(cur->bc_ops));
2930 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2931 if (error)
2932 return error;
2933
2934 *count = ci.count;
2935 *freecount = ci.freecount;
2936 return 0;
2937}
2938
2939/*
2940 * Initialize inode-related geometry information.
2941 *
2942 * Compute the inode btree min and max levels and set maxicount.
2943 *
2944 * Set the inode cluster size. This may still be overridden by the file
2945 * system block size if it is larger than the chosen cluster size.
2946 *
2947 * For v5 filesystems, scale the cluster size with the inode size to keep a
2948 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2949 * inode alignment value appropriately for larger cluster sizes.
2950 *
2951 * Then compute the inode cluster alignment information.
2952 */
2953void
2954xfs_ialloc_setup_geometry(
2955 struct xfs_mount *mp)
2956{
2957 struct xfs_sb *sbp = &mp->m_sb;
2958 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2959 uint64_t icount;
2960 uint inodes;
2961
2962 igeo->new_diflags2 = 0;
2963 if (xfs_has_bigtime(mp))
2964 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2965 if (xfs_has_large_extent_counts(mp))
2966 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2967
2968 /* Compute inode btree geometry. */
2969 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2970 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2971 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2972 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2973 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2974
2975 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2976 sbp->sb_inopblock);
2977 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2978
2979 if (sbp->sb_spino_align)
2980 igeo->ialloc_min_blks = sbp->sb_spino_align;
2981 else
2982 igeo->ialloc_min_blks = igeo->ialloc_blks;
2983
2984 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2985 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2986 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2987 inodes);
2988 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2989
2990 /*
2991 * Set the maximum inode count for this filesystem, being careful not
2992 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2993 * users should never get here due to failing sb verification, but
2994 * certain users (xfs_db) need to be usable even with corrupt metadata.
2995 */
2996 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2997 /*
2998 * Make sure the maximum inode count is a multiple
2999 * of the units we allocate inodes in.
3000 */
3001 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
3002 do_div(icount, 100);
3003 do_div(icount, igeo->ialloc_blks);
3004 igeo->maxicount = XFS_FSB_TO_INO(mp,
3005 icount * igeo->ialloc_blks);
3006 } else {
3007 igeo->maxicount = 0;
3008 }
3009
3010 /*
3011 * Compute the desired size of an inode cluster buffer size, which
3012 * starts at 8K and (on v5 filesystems) scales up with larger inode
3013 * sizes.
3014 *
3015 * Preserve the desired inode cluster size because the sparse inodes
3016 * feature uses that desired size (not the actual size) to compute the
3017 * sparse inode alignment. The mount code validates this value, so we
3018 * cannot change the behavior.
3019 */
3020 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3021 if (xfs_has_v3inodes(mp)) {
3022 int new_size = igeo->inode_cluster_size_raw;
3023
3024 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3025 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3026 igeo->inode_cluster_size_raw = new_size;
3027 }
3028
3029 /* Calculate inode cluster ratios. */
3030 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3031 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3032 igeo->inode_cluster_size_raw);
3033 else
3034 igeo->blocks_per_cluster = 1;
3035 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3036 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3037
3038 /* Calculate inode cluster alignment. */
3039 if (xfs_has_align(mp) &&
3040 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3041 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3042 else
3043 igeo->cluster_align = 1;
3044 igeo->inoalign_mask = igeo->cluster_align - 1;
3045 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3046
3047 /*
3048 * If we are using stripe alignment, check whether
3049 * the stripe unit is a multiple of the inode alignment
3050 */
3051 if (mp->m_dalign && igeo->inoalign_mask &&
3052 !(mp->m_dalign & igeo->inoalign_mask))
3053 igeo->ialloc_align = mp->m_dalign;
3054 else
3055 igeo->ialloc_align = 0;
3056
3057 if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3058 igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3059 else
3060 igeo->min_folio_order = 0;
3061}
3062
3063/* Compute the location of the root directory inode that is laid out by mkfs. */
3064xfs_ino_t
3065xfs_ialloc_calc_rootino(
3066 struct xfs_mount *mp,
3067 int sunit)
3068{
3069 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3070 xfs_agblock_t first_bno;
3071
3072 /*
3073 * Pre-calculate the geometry of AG 0. We know what it looks like
3074 * because libxfs knows how to create allocation groups now.
3075 *
3076 * first_bno is the first block in which mkfs could possibly have
3077 * allocated the root directory inode, once we factor in the metadata
3078 * that mkfs formats before it. Namely, the four AG headers...
3079 */
3080 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3081
3082 /* ...the two free space btree roots... */
3083 first_bno += 2;
3084
3085 /* ...the inode btree root... */
3086 first_bno += 1;
3087
3088 /* ...the initial AGFL... */
3089 first_bno += xfs_alloc_min_freelist(mp, NULL);
3090
3091 /* ...the free inode btree root... */
3092 if (xfs_has_finobt(mp))
3093 first_bno++;
3094
3095 /* ...the reverse mapping btree root... */
3096 if (xfs_has_rmapbt(mp))
3097 first_bno++;
3098
3099 /* ...the reference count btree... */
3100 if (xfs_has_reflink(mp))
3101 first_bno++;
3102
3103 /*
3104 * ...and the log, if it is allocated in the first allocation group.
3105 *
3106 * This can happen with filesystems that only have a single
3107 * allocation group, or very odd geometries created by old mkfs
3108 * versions on very small filesystems.
3109 */
3110 if (xfs_ag_contains_log(mp, 0))
3111 first_bno += mp->m_sb.sb_logblocks;
3112
3113 /*
3114 * Now round first_bno up to whatever allocation alignment is given
3115 * by the filesystem or was passed in.
3116 */
3117 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3118 first_bno = roundup(first_bno, sunit);
3119 else if (xfs_has_align(mp) &&
3120 mp->m_sb.sb_inoalignmt > 1)
3121 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3122
3123 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3124}
3125
3126/*
3127 * Ensure there are not sparse inode clusters that cross the new EOAG.
3128 *
3129 * This is a no-op for non-spinode filesystems since clusters are always fully
3130 * allocated and checking the bnobt suffices. However, a spinode filesystem
3131 * could have a record where the upper inodes are free blocks. If those blocks
3132 * were removed from the filesystem, the inode record would extend beyond EOAG,
3133 * which will be flagged as corruption.
3134 */
3135int
3136xfs_ialloc_check_shrink(
3137 struct xfs_perag *pag,
3138 struct xfs_trans *tp,
3139 struct xfs_buf *agibp,
3140 xfs_agblock_t new_length)
3141{
3142 struct xfs_inobt_rec_incore rec;
3143 struct xfs_btree_cur *cur;
3144 xfs_agino_t agino;
3145 int has;
3146 int error;
3147
3148 if (!xfs_has_sparseinodes(pag_mount(pag)))
3149 return 0;
3150
3151 cur = xfs_inobt_init_cursor(pag, tp, agibp);
3152
3153 /* Look up the inobt record that would correspond to the new EOFS. */
3154 agino = XFS_AGB_TO_AGINO(pag_mount(pag), new_length);
3155 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3156 if (error || !has)
3157 goto out;
3158
3159 error = xfs_inobt_get_rec(cur, &rec, &has);
3160 if (error)
3161 goto out;
3162
3163 if (!has) {
3164 xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3165 error = -EFSCORRUPTED;
3166 goto out;
3167 }
3168
3169 /* If the record covers inodes that would be beyond EOFS, bail out. */
3170 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3171 error = -ENOSPC;
3172 goto out;
3173 }
3174out:
3175 xfs_btree_del_cursor(cur, error);
3176 return error;
3177}