Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_inode.h"
  29#include "xfs_btree.h"
  30#include "xfs_ialloc.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_error.h"
  35#include "xfs_bmap.h"
  36#include "xfs_cksum.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_icreate_item.h"
  40#include "xfs_icache.h"
  41#include "xfs_trace.h"
  42#include "xfs_log.h"
  43#include "xfs_rmap.h"
  44
  45
  46/*
  47 * Allocation group level functions.
  48 */
  49static inline int
  50xfs_ialloc_cluster_alignment(
  51	struct xfs_mount	*mp)
  52{
  53	if (xfs_sb_version_hasalign(&mp->m_sb) &&
  54	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
  55		return mp->m_sb.sb_inoalignmt;
  56	return 1;
  57}
  58
  59/*
  60 * Lookup a record by ino in the btree given by cur.
  61 */
  62int					/* error */
  63xfs_inobt_lookup(
  64	struct xfs_btree_cur	*cur,	/* btree cursor */
  65	xfs_agino_t		ino,	/* starting inode of chunk */
  66	xfs_lookup_t		dir,	/* <=, >=, == */
  67	int			*stat)	/* success/failure */
  68{
  69	cur->bc_rec.i.ir_startino = ino;
  70	cur->bc_rec.i.ir_holemask = 0;
  71	cur->bc_rec.i.ir_count = 0;
  72	cur->bc_rec.i.ir_freecount = 0;
  73	cur->bc_rec.i.ir_free = 0;
  74	return xfs_btree_lookup(cur, dir, stat);
  75}
  76
  77/*
  78 * Update the record referred to by cur to the value given.
  79 * This either works (return 0) or gets an EFSCORRUPTED error.
  80 */
  81STATIC int				/* error */
  82xfs_inobt_update(
  83	struct xfs_btree_cur	*cur,	/* btree cursor */
  84	xfs_inobt_rec_incore_t	*irec)	/* btree record */
  85{
  86	union xfs_btree_rec	rec;
  87
  88	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  89	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  90		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  91		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  92		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  93	} else {
  94		/* ir_holemask/ir_count not supported on-disk */
  95		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  96	}
  97	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  98	return xfs_btree_update(cur, &rec);
  99}
 100
 101/*
 102 * Get the data from the pointed-to record.
 103 */
 104int					/* error */
 105xfs_inobt_get_rec(
 106	struct xfs_btree_cur	*cur,	/* btree cursor */
 107	xfs_inobt_rec_incore_t	*irec,	/* btree record */
 108	int			*stat)	/* output: success/failure */
 109{
 110	union xfs_btree_rec	*rec;
 111	int			error;
 112
 113	error = xfs_btree_get_rec(cur, &rec, stat);
 114	if (error || *stat == 0)
 115		return error;
 116
 117	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
 118	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
 119		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
 120		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
 121		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
 122	} else {
 123		/*
 124		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
 125		 * values for full inode chunks.
 126		 */
 127		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
 128		irec->ir_count = XFS_INODES_PER_CHUNK;
 129		irec->ir_freecount =
 130				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
 131	}
 132	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
 133
 134	return 0;
 135}
 136
 137/*
 138 * Insert a single inobt record. Cursor must already point to desired location.
 139 */
 140STATIC int
 141xfs_inobt_insert_rec(
 142	struct xfs_btree_cur	*cur,
 143	__uint16_t		holemask,
 144	__uint8_t		count,
 145	__int32_t		freecount,
 146	xfs_inofree_t		free,
 147	int			*stat)
 148{
 149	cur->bc_rec.i.ir_holemask = holemask;
 150	cur->bc_rec.i.ir_count = count;
 151	cur->bc_rec.i.ir_freecount = freecount;
 152	cur->bc_rec.i.ir_free = free;
 153	return xfs_btree_insert(cur, stat);
 154}
 155
 156/*
 157 * Insert records describing a newly allocated inode chunk into the inobt.
 158 */
 159STATIC int
 160xfs_inobt_insert(
 161	struct xfs_mount	*mp,
 162	struct xfs_trans	*tp,
 163	struct xfs_buf		*agbp,
 164	xfs_agino_t		newino,
 165	xfs_agino_t		newlen,
 166	xfs_btnum_t		btnum)
 167{
 168	struct xfs_btree_cur	*cur;
 169	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 170	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
 171	xfs_agino_t		thisino;
 172	int			i;
 173	int			error;
 174
 175	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 176
 177	for (thisino = newino;
 178	     thisino < newino + newlen;
 179	     thisino += XFS_INODES_PER_CHUNK) {
 180		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 181		if (error) {
 182			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 183			return error;
 184		}
 185		ASSERT(i == 0);
 186
 187		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 188					     XFS_INODES_PER_CHUNK,
 189					     XFS_INODES_PER_CHUNK,
 190					     XFS_INOBT_ALL_FREE, &i);
 191		if (error) {
 192			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 193			return error;
 194		}
 195		ASSERT(i == 1);
 196	}
 197
 198	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 199
 200	return 0;
 201}
 202
 203/*
 204 * Verify that the number of free inodes in the AGI is correct.
 205 */
 206#ifdef DEBUG
 207STATIC int
 208xfs_check_agi_freecount(
 209	struct xfs_btree_cur	*cur,
 210	struct xfs_agi		*agi)
 211{
 212	if (cur->bc_nlevels == 1) {
 213		xfs_inobt_rec_incore_t rec;
 214		int		freecount = 0;
 215		int		error;
 216		int		i;
 217
 218		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 219		if (error)
 220			return error;
 221
 222		do {
 223			error = xfs_inobt_get_rec(cur, &rec, &i);
 224			if (error)
 225				return error;
 226
 227			if (i) {
 228				freecount += rec.ir_freecount;
 229				error = xfs_btree_increment(cur, 0, &i);
 230				if (error)
 231					return error;
 232			}
 233		} while (i == 1);
 234
 235		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 236			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 237	}
 238	return 0;
 239}
 240#else
 241#define xfs_check_agi_freecount(cur, agi)	0
 242#endif
 243
 244/*
 245 * Initialise a new set of inodes. When called without a transaction context
 246 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 247 * than logging them (which in a transaction context puts them into the AIL
 248 * for writeback rather than the xfsbufd queue).
 249 */
 250int
 251xfs_ialloc_inode_init(
 252	struct xfs_mount	*mp,
 253	struct xfs_trans	*tp,
 254	struct list_head	*buffer_list,
 255	int			icount,
 256	xfs_agnumber_t		agno,
 257	xfs_agblock_t		agbno,
 258	xfs_agblock_t		length,
 259	unsigned int		gen)
 260{
 261	struct xfs_buf		*fbuf;
 262	struct xfs_dinode	*free;
 263	int			nbufs, blks_per_cluster, inodes_per_cluster;
 264	int			version;
 265	int			i, j;
 266	xfs_daddr_t		d;
 267	xfs_ino_t		ino = 0;
 268
 269	/*
 270	 * Loop over the new block(s), filling in the inodes.  For small block
 271	 * sizes, manipulate the inodes in buffers  which are multiples of the
 272	 * blocks size.
 273	 */
 274	blks_per_cluster = xfs_icluster_size_fsb(mp);
 275	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
 276	nbufs = length / blks_per_cluster;
 277
 278	/*
 279	 * Figure out what version number to use in the inodes we create.  If
 280	 * the superblock version has caught up to the one that supports the new
 281	 * inode format, then use the new inode version.  Otherwise use the old
 282	 * version so that old kernels will continue to be able to use the file
 283	 * system.
 284	 *
 285	 * For v3 inodes, we also need to write the inode number into the inode,
 286	 * so calculate the first inode number of the chunk here as
 287	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
 288	 * across multiple filesystem blocks (such as a cluster) and so cannot
 289	 * be used in the cluster buffer loop below.
 290	 *
 291	 * Further, because we are writing the inode directly into the buffer
 292	 * and calculating a CRC on the entire inode, we have ot log the entire
 293	 * inode so that the entire range the CRC covers is present in the log.
 294	 * That means for v3 inode we log the entire buffer rather than just the
 295	 * inode cores.
 296	 */
 297	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 298		version = 3;
 299		ino = XFS_AGINO_TO_INO(mp, agno,
 300				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
 301
 302		/*
 303		 * log the initialisation that is about to take place as an
 304		 * logical operation. This means the transaction does not
 305		 * need to log the physical changes to the inode buffers as log
 306		 * recovery will know what initialisation is actually needed.
 307		 * Hence we only need to log the buffers as "ordered" buffers so
 308		 * they track in the AIL as if they were physically logged.
 309		 */
 310		if (tp)
 311			xfs_icreate_log(tp, agno, agbno, icount,
 312					mp->m_sb.sb_inodesize, length, gen);
 313	} else
 314		version = 2;
 315
 316	for (j = 0; j < nbufs; j++) {
 317		/*
 318		 * Get the block.
 319		 */
 320		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
 321		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 322					 mp->m_bsize * blks_per_cluster,
 323					 XBF_UNMAPPED);
 324		if (!fbuf)
 325			return -ENOMEM;
 326
 327		/* Initialize the inode buffers and log them appropriately. */
 328		fbuf->b_ops = &xfs_inode_buf_ops;
 329		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 330		for (i = 0; i < inodes_per_cluster; i++) {
 331			int	ioffset = i << mp->m_sb.sb_inodelog;
 332			uint	isize = xfs_dinode_size(version);
 333
 334			free = xfs_make_iptr(mp, fbuf, i);
 335			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 336			free->di_version = version;
 337			free->di_gen = cpu_to_be32(gen);
 338			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 339
 340			if (version == 3) {
 341				free->di_ino = cpu_to_be64(ino);
 342				ino++;
 343				uuid_copy(&free->di_uuid,
 344					  &mp->m_sb.sb_meta_uuid);
 345				xfs_dinode_calc_crc(mp, free);
 346			} else if (tp) {
 347				/* just log the inode core */
 348				xfs_trans_log_buf(tp, fbuf, ioffset,
 349						  ioffset + isize - 1);
 350			}
 351		}
 352
 353		if (tp) {
 354			/*
 355			 * Mark the buffer as an inode allocation buffer so it
 356			 * sticks in AIL at the point of this allocation
 357			 * transaction. This ensures the they are on disk before
 358			 * the tail of the log can be moved past this
 359			 * transaction (i.e. by preventing relogging from moving
 360			 * it forward in the log).
 361			 */
 362			xfs_trans_inode_alloc_buf(tp, fbuf);
 363			if (version == 3) {
 364				/*
 365				 * Mark the buffer as ordered so that they are
 366				 * not physically logged in the transaction but
 367				 * still tracked in the AIL as part of the
 368				 * transaction and pin the log appropriately.
 369				 */
 370				xfs_trans_ordered_buf(tp, fbuf);
 371				xfs_trans_log_buf(tp, fbuf, 0,
 372						  BBTOB(fbuf->b_length) - 1);
 373			}
 374		} else {
 375			fbuf->b_flags |= XBF_DONE;
 376			xfs_buf_delwri_queue(fbuf, buffer_list);
 377			xfs_buf_relse(fbuf);
 378		}
 379	}
 380	return 0;
 381}
 382
 383/*
 384 * Align startino and allocmask for a recently allocated sparse chunk such that
 385 * they are fit for insertion (or merge) into the on-disk inode btrees.
 386 *
 387 * Background:
 388 *
 389 * When enabled, sparse inode support increases the inode alignment from cluster
 390 * size to inode chunk size. This means that the minimum range between two
 391 * non-adjacent inode records in the inobt is large enough for a full inode
 392 * record. This allows for cluster sized, cluster aligned block allocation
 393 * without need to worry about whether the resulting inode record overlaps with
 394 * another record in the tree. Without this basic rule, we would have to deal
 395 * with the consequences of overlap by potentially undoing recent allocations in
 396 * the inode allocation codepath.
 397 *
 398 * Because of this alignment rule (which is enforced on mount), there are two
 399 * inobt possibilities for newly allocated sparse chunks. One is that the
 400 * aligned inode record for the chunk covers a range of inodes not already
 401 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 402 * other is that a record already exists at the aligned startino that considers
 403 * the newly allocated range as sparse. In the latter case, record content is
 404 * merged in hope that sparse inode chunks fill to full chunks over time.
 405 */
 406STATIC void
 407xfs_align_sparse_ino(
 408	struct xfs_mount		*mp,
 409	xfs_agino_t			*startino,
 410	uint16_t			*allocmask)
 411{
 412	xfs_agblock_t			agbno;
 413	xfs_agblock_t			mod;
 414	int				offset;
 415
 416	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 417	mod = agbno % mp->m_sb.sb_inoalignmt;
 418	if (!mod)
 419		return;
 420
 421	/* calculate the inode offset and align startino */
 422	offset = mod << mp->m_sb.sb_inopblog;
 423	*startino -= offset;
 424
 425	/*
 426	 * Since startino has been aligned down, left shift allocmask such that
 427	 * it continues to represent the same physical inodes relative to the
 428	 * new startino.
 429	 */
 430	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 431}
 432
 433/*
 434 * Determine whether the source inode record can merge into the target. Both
 435 * records must be sparse, the inode ranges must match and there must be no
 436 * allocation overlap between the records.
 437 */
 438STATIC bool
 439__xfs_inobt_can_merge(
 440	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 441	struct xfs_inobt_rec_incore	*srec)	/* src record */
 442{
 443	uint64_t			talloc;
 444	uint64_t			salloc;
 445
 446	/* records must cover the same inode range */
 447	if (trec->ir_startino != srec->ir_startino)
 448		return false;
 449
 450	/* both records must be sparse */
 451	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 452	    !xfs_inobt_issparse(srec->ir_holemask))
 453		return false;
 454
 455	/* both records must track some inodes */
 456	if (!trec->ir_count || !srec->ir_count)
 457		return false;
 458
 459	/* can't exceed capacity of a full record */
 460	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 461		return false;
 462
 463	/* verify there is no allocation overlap */
 464	talloc = xfs_inobt_irec_to_allocmask(trec);
 465	salloc = xfs_inobt_irec_to_allocmask(srec);
 466	if (talloc & salloc)
 467		return false;
 468
 469	return true;
 470}
 471
 472/*
 473 * Merge the source inode record into the target. The caller must call
 474 * __xfs_inobt_can_merge() to ensure the merge is valid.
 475 */
 476STATIC void
 477__xfs_inobt_rec_merge(
 478	struct xfs_inobt_rec_incore	*trec,	/* target */
 479	struct xfs_inobt_rec_incore	*srec)	/* src */
 480{
 481	ASSERT(trec->ir_startino == srec->ir_startino);
 482
 483	/* combine the counts */
 484	trec->ir_count += srec->ir_count;
 485	trec->ir_freecount += srec->ir_freecount;
 486
 487	/*
 488	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 489	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 490	 */
 491	trec->ir_holemask &= srec->ir_holemask;
 492	trec->ir_free &= srec->ir_free;
 493}
 494
 495/*
 496 * Insert a new sparse inode chunk into the associated inode btree. The inode
 497 * record for the sparse chunk is pre-aligned to a startino that should match
 498 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 499 * to fill over time.
 500 *
 501 * This function supports two modes of handling preexisting records depending on
 502 * the merge flag. If merge is true, the provided record is merged with the
 503 * existing record and updated in place. The merged record is returned in nrec.
 504 * If merge is false, an existing record is replaced with the provided record.
 505 * If no preexisting record exists, the provided record is always inserted.
 506 *
 507 * It is considered corruption if a merge is requested and not possible. Given
 508 * the sparse inode alignment constraints, this should never happen.
 509 */
 510STATIC int
 511xfs_inobt_insert_sprec(
 512	struct xfs_mount		*mp,
 513	struct xfs_trans		*tp,
 514	struct xfs_buf			*agbp,
 515	int				btnum,
 516	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
 517	bool				merge)	/* merge or replace */
 518{
 519	struct xfs_btree_cur		*cur;
 520	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 521	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 522	int				error;
 523	int				i;
 524	struct xfs_inobt_rec_incore	rec;
 525
 526	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 527
 528	/* the new record is pre-aligned so we know where to look */
 529	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 530	if (error)
 531		goto error;
 532	/* if nothing there, insert a new record and return */
 533	if (i == 0) {
 534		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 535					     nrec->ir_count, nrec->ir_freecount,
 536					     nrec->ir_free, &i);
 537		if (error)
 538			goto error;
 539		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 540
 541		goto out;
 542	}
 543
 544	/*
 545	 * A record exists at this startino. Merge or replace the record
 546	 * depending on what we've been asked to do.
 547	 */
 548	if (merge) {
 549		error = xfs_inobt_get_rec(cur, &rec, &i);
 550		if (error)
 551			goto error;
 552		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 553		XFS_WANT_CORRUPTED_GOTO(mp,
 554					rec.ir_startino == nrec->ir_startino,
 555					error);
 556
 557		/*
 558		 * This should never fail. If we have coexisting records that
 559		 * cannot merge, something is seriously wrong.
 560		 */
 561		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 562					error);
 563
 564		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 565					 rec.ir_holemask, nrec->ir_startino,
 566					 nrec->ir_holemask);
 567
 568		/* merge to nrec to output the updated record */
 569		__xfs_inobt_rec_merge(nrec, &rec);
 570
 571		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 572					  nrec->ir_holemask);
 573
 574		error = xfs_inobt_rec_check_count(mp, nrec);
 575		if (error)
 576			goto error;
 577	}
 578
 579	error = xfs_inobt_update(cur, nrec);
 580	if (error)
 581		goto error;
 582
 583out:
 584	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 585	return 0;
 586error:
 587	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 588	return error;
 589}
 590
 591/*
 592 * Allocate new inodes in the allocation group specified by agbp.
 593 * Return 0 for success, else error code.
 594 */
 595STATIC int				/* error code or 0 */
 596xfs_ialloc_ag_alloc(
 597	xfs_trans_t	*tp,		/* transaction pointer */
 598	xfs_buf_t	*agbp,		/* alloc group buffer */
 599	int		*alloc)
 600{
 601	xfs_agi_t	*agi;		/* allocation group header */
 602	xfs_alloc_arg_t	args;		/* allocation argument structure */
 603	xfs_agnumber_t	agno;
 604	int		error;
 605	xfs_agino_t	newino;		/* new first inode's number */
 606	xfs_agino_t	newlen;		/* new number of inodes */
 607	int		isaligned = 0;	/* inode allocation at stripe unit */
 608					/* boundary */
 609	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
 610	struct xfs_inobt_rec_incore rec;
 611	struct xfs_perag *pag;
 612	int		do_sparse = 0;
 613
 614	memset(&args, 0, sizeof(args));
 615	args.tp = tp;
 616	args.mp = tp->t_mountp;
 617	args.fsbno = NULLFSBLOCK;
 618	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
 619
 620#ifdef DEBUG
 621	/* randomly do sparse inode allocations */
 622	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 623	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
 624		do_sparse = prandom_u32() & 1;
 625#endif
 626
 627	/*
 628	 * Locking will ensure that we don't have two callers in here
 629	 * at one time.
 630	 */
 631	newlen = args.mp->m_ialloc_inos;
 632	if (args.mp->m_maxicount &&
 633	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 634							args.mp->m_maxicount)
 635		return -ENOSPC;
 636	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
 637	/*
 638	 * First try to allocate inodes contiguous with the last-allocated
 639	 * chunk of inodes.  If the filesystem is striped, this will fill
 640	 * an entire stripe unit with inodes.
 641	 */
 642	agi = XFS_BUF_TO_AGI(agbp);
 643	newino = be32_to_cpu(agi->agi_newino);
 644	agno = be32_to_cpu(agi->agi_seqno);
 645	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 646		     args.mp->m_ialloc_blks;
 647	if (do_sparse)
 648		goto sparse_alloc;
 649	if (likely(newino != NULLAGINO &&
 650		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 651		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 652		args.type = XFS_ALLOCTYPE_THIS_BNO;
 653		args.prod = 1;
 654
 655		/*
 656		 * We need to take into account alignment here to ensure that
 657		 * we don't modify the free list if we fail to have an exact
 658		 * block. If we don't have an exact match, and every oher
 659		 * attempt allocation attempt fails, we'll end up cancelling
 660		 * a dirty transaction and shutting down.
 661		 *
 662		 * For an exact allocation, alignment must be 1,
 663		 * however we need to take cluster alignment into account when
 664		 * fixing up the freelist. Use the minalignslop field to
 665		 * indicate that extra blocks might be required for alignment,
 666		 * but not to use them in the actual exact allocation.
 667		 */
 668		args.alignment = 1;
 669		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
 670
 671		/* Allow space for the inode btree to split. */
 672		args.minleft = args.mp->m_in_maxlevels - 1;
 673		if ((error = xfs_alloc_vextent(&args)))
 674			return error;
 675
 676		/*
 677		 * This request might have dirtied the transaction if the AG can
 678		 * satisfy the request, but the exact block was not available.
 679		 * If the allocation did fail, subsequent requests will relax
 680		 * the exact agbno requirement and increase the alignment
 681		 * instead. It is critical that the total size of the request
 682		 * (len + alignment + slop) does not increase from this point
 683		 * on, so reset minalignslop to ensure it is not included in
 684		 * subsequent requests.
 685		 */
 686		args.minalignslop = 0;
 687	}
 688
 689	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 690		/*
 691		 * Set the alignment for the allocation.
 692		 * If stripe alignment is turned on then align at stripe unit
 693		 * boundary.
 694		 * If the cluster size is smaller than a filesystem block
 695		 * then we're doing I/O for inodes in filesystem block size
 696		 * pieces, so don't need alignment anyway.
 697		 */
 698		isaligned = 0;
 699		if (args.mp->m_sinoalign) {
 700			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 701			args.alignment = args.mp->m_dalign;
 702			isaligned = 1;
 703		} else
 704			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 705		/*
 706		 * Need to figure out where to allocate the inode blocks.
 707		 * Ideally they should be spaced out through the a.g.
 708		 * For now, just allocate blocks up front.
 709		 */
 710		args.agbno = be32_to_cpu(agi->agi_root);
 711		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 712		/*
 713		 * Allocate a fixed-size extent of inodes.
 714		 */
 715		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 716		args.prod = 1;
 717		/*
 718		 * Allow space for the inode btree to split.
 719		 */
 720		args.minleft = args.mp->m_in_maxlevels - 1;
 721		if ((error = xfs_alloc_vextent(&args)))
 722			return error;
 723	}
 724
 725	/*
 726	 * If stripe alignment is turned on, then try again with cluster
 727	 * alignment.
 728	 */
 729	if (isaligned && args.fsbno == NULLFSBLOCK) {
 730		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 731		args.agbno = be32_to_cpu(agi->agi_root);
 732		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 733		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 734		if ((error = xfs_alloc_vextent(&args)))
 735			return error;
 736	}
 737
 738	/*
 739	 * Finally, try a sparse allocation if the filesystem supports it and
 740	 * the sparse allocation length is smaller than a full chunk.
 741	 */
 742	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 743	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
 744	    args.fsbno == NULLFSBLOCK) {
 745sparse_alloc:
 746		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 747		args.agbno = be32_to_cpu(agi->agi_root);
 748		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 749		args.alignment = args.mp->m_sb.sb_spino_align;
 750		args.prod = 1;
 751
 752		args.minlen = args.mp->m_ialloc_min_blks;
 753		args.maxlen = args.minlen;
 754
 755		/*
 756		 * The inode record will be aligned to full chunk size. We must
 757		 * prevent sparse allocation from AG boundaries that result in
 758		 * invalid inode records, such as records that start at agbno 0
 759		 * or extend beyond the AG.
 760		 *
 761		 * Set min agbno to the first aligned, non-zero agbno and max to
 762		 * the last aligned agbno that is at least one full chunk from
 763		 * the end of the AG.
 764		 */
 765		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 766		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 767					    args.mp->m_sb.sb_inoalignmt) -
 768				 args.mp->m_ialloc_blks;
 769
 770		error = xfs_alloc_vextent(&args);
 771		if (error)
 772			return error;
 773
 774		newlen = args.len << args.mp->m_sb.sb_inopblog;
 775		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 776		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 777	}
 778
 779	if (args.fsbno == NULLFSBLOCK) {
 780		*alloc = 0;
 781		return 0;
 782	}
 783	ASSERT(args.len == args.minlen);
 784
 785	/*
 786	 * Stamp and write the inode buffers.
 787	 *
 788	 * Seed the new inode cluster with a random generation number. This
 789	 * prevents short-term reuse of generation numbers if a chunk is
 790	 * freed and then immediately reallocated. We use random numbers
 791	 * rather than a linear progression to prevent the next generation
 792	 * number from being easily guessable.
 793	 */
 794	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 795			args.agbno, args.len, prandom_u32());
 796
 797	if (error)
 798		return error;
 799	/*
 800	 * Convert the results.
 801	 */
 802	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
 803
 804	if (xfs_inobt_issparse(~allocmask)) {
 805		/*
 806		 * We've allocated a sparse chunk. Align the startino and mask.
 807		 */
 808		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 809
 810		rec.ir_startino = newino;
 811		rec.ir_holemask = ~allocmask;
 812		rec.ir_count = newlen;
 813		rec.ir_freecount = newlen;
 814		rec.ir_free = XFS_INOBT_ALL_FREE;
 815
 816		/*
 817		 * Insert the sparse record into the inobt and allow for a merge
 818		 * if necessary. If a merge does occur, rec is updated to the
 819		 * merged record.
 820		 */
 821		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 822					       &rec, true);
 823		if (error == -EFSCORRUPTED) {
 824			xfs_alert(args.mp,
 825	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 826				  XFS_AGINO_TO_INO(args.mp, agno,
 827						   rec.ir_startino),
 828				  rec.ir_holemask, rec.ir_count);
 829			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 830		}
 831		if (error)
 832			return error;
 833
 834		/*
 835		 * We can't merge the part we've just allocated as for the inobt
 836		 * due to finobt semantics. The original record may or may not
 837		 * exist independent of whether physical inodes exist in this
 838		 * sparse chunk.
 839		 *
 840		 * We must update the finobt record based on the inobt record.
 841		 * rec contains the fully merged and up to date inobt record
 842		 * from the previous call. Set merge false to replace any
 843		 * existing record with this one.
 844		 */
 845		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 846			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 847						       XFS_BTNUM_FINO, &rec,
 848						       false);
 849			if (error)
 850				return error;
 851		}
 852	} else {
 853		/* full chunk - insert new records to both btrees */
 854		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 855					 XFS_BTNUM_INO);
 856		if (error)
 857			return error;
 858
 859		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 860			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 861						 newlen, XFS_BTNUM_FINO);
 862			if (error)
 863				return error;
 864		}
 865	}
 866
 867	/*
 868	 * Update AGI counts and newino.
 869	 */
 870	be32_add_cpu(&agi->agi_count, newlen);
 871	be32_add_cpu(&agi->agi_freecount, newlen);
 872	pag = xfs_perag_get(args.mp, agno);
 873	pag->pagi_freecount += newlen;
 874	xfs_perag_put(pag);
 875	agi->agi_newino = cpu_to_be32(newino);
 876
 877	/*
 878	 * Log allocation group header fields
 879	 */
 880	xfs_ialloc_log_agi(tp, agbp,
 881		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 882	/*
 883	 * Modify/log superblock values for inode count and inode free count.
 884	 */
 885	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 886	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 887	*alloc = 1;
 888	return 0;
 889}
 890
 891STATIC xfs_agnumber_t
 892xfs_ialloc_next_ag(
 893	xfs_mount_t	*mp)
 894{
 895	xfs_agnumber_t	agno;
 896
 897	spin_lock(&mp->m_agirotor_lock);
 898	agno = mp->m_agirotor;
 899	if (++mp->m_agirotor >= mp->m_maxagi)
 900		mp->m_agirotor = 0;
 901	spin_unlock(&mp->m_agirotor_lock);
 902
 903	return agno;
 904}
 905
 906/*
 907 * Select an allocation group to look for a free inode in, based on the parent
 908 * inode and the mode.  Return the allocation group buffer.
 909 */
 910STATIC xfs_agnumber_t
 911xfs_ialloc_ag_select(
 912	xfs_trans_t	*tp,		/* transaction pointer */
 913	xfs_ino_t	parent,		/* parent directory inode number */
 914	umode_t		mode,		/* bits set to indicate file type */
 915	int		okalloc)	/* ok to allocate more space */
 916{
 917	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
 918	xfs_agnumber_t	agno;		/* current ag number */
 919	int		flags;		/* alloc buffer locking flags */
 920	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
 921	xfs_extlen_t	longest = 0;	/* longest extent available */
 922	xfs_mount_t	*mp;		/* mount point structure */
 923	int		needspace;	/* file mode implies space allocated */
 924	xfs_perag_t	*pag;		/* per allocation group data */
 925	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
 926	int		error;
 927
 928	/*
 929	 * Files of these types need at least one block if length > 0
 930	 * (and they won't fit in the inode, but that's hard to figure out).
 931	 */
 932	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 933	mp = tp->t_mountp;
 934	agcount = mp->m_maxagi;
 935	if (S_ISDIR(mode))
 936		pagno = xfs_ialloc_next_ag(mp);
 937	else {
 938		pagno = XFS_INO_TO_AGNO(mp, parent);
 939		if (pagno >= agcount)
 940			pagno = 0;
 941	}
 942
 943	ASSERT(pagno < agcount);
 944
 945	/*
 946	 * Loop through allocation groups, looking for one with a little
 947	 * free space in it.  Note we don't look for free inodes, exactly.
 948	 * Instead, we include whether there is a need to allocate inodes
 949	 * to mean that blocks must be allocated for them,
 950	 * if none are currently free.
 951	 */
 952	agno = pagno;
 953	flags = XFS_ALLOC_FLAG_TRYLOCK;
 954	for (;;) {
 955		pag = xfs_perag_get(mp, agno);
 956		if (!pag->pagi_inodeok) {
 957			xfs_ialloc_next_ag(mp);
 958			goto nextag;
 959		}
 960
 961		if (!pag->pagi_init) {
 962			error = xfs_ialloc_pagi_init(mp, tp, agno);
 963			if (error)
 964				goto nextag;
 965		}
 966
 967		if (pag->pagi_freecount) {
 968			xfs_perag_put(pag);
 969			return agno;
 970		}
 971
 972		if (!okalloc)
 973			goto nextag;
 974
 975		if (!pag->pagf_init) {
 976			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 977			if (error)
 978				goto nextag;
 979		}
 980
 981		/*
 982		 * Check that there is enough free space for the file plus a
 983		 * chunk of inodes if we need to allocate some. If this is the
 984		 * first pass across the AGs, take into account the potential
 985		 * space needed for alignment of inode chunks when checking the
 986		 * longest contiguous free space in the AG - this prevents us
 987		 * from getting ENOSPC because we have free space larger than
 988		 * m_ialloc_blks but alignment constraints prevent us from using
 989		 * it.
 990		 *
 991		 * If we can't find an AG with space for full alignment slack to
 992		 * be taken into account, we must be near ENOSPC in all AGs.
 993		 * Hence we don't include alignment for the second pass and so
 994		 * if we fail allocation due to alignment issues then it is most
 995		 * likely a real ENOSPC condition.
 996		 */
 997		ineed = mp->m_ialloc_min_blks;
 998		if (flags && ineed > 1)
 999			ineed += xfs_ialloc_cluster_alignment(mp);
1000		longest = pag->pagf_longest;
1001		if (!longest)
1002			longest = pag->pagf_flcount > 0;
1003
1004		if (pag->pagf_freeblks >= needspace + ineed &&
1005		    longest >= ineed) {
1006			xfs_perag_put(pag);
1007			return agno;
1008		}
1009nextag:
1010		xfs_perag_put(pag);
1011		/*
1012		 * No point in iterating over the rest, if we're shutting
1013		 * down.
1014		 */
1015		if (XFS_FORCED_SHUTDOWN(mp))
1016			return NULLAGNUMBER;
1017		agno++;
1018		if (agno >= agcount)
1019			agno = 0;
1020		if (agno == pagno) {
1021			if (flags == 0)
1022				return NULLAGNUMBER;
1023			flags = 0;
1024		}
1025	}
1026}
1027
1028/*
1029 * Try to retrieve the next record to the left/right from the current one.
1030 */
1031STATIC int
1032xfs_ialloc_next_rec(
1033	struct xfs_btree_cur	*cur,
1034	xfs_inobt_rec_incore_t	*rec,
1035	int			*done,
1036	int			left)
1037{
1038	int                     error;
1039	int			i;
1040
1041	if (left)
1042		error = xfs_btree_decrement(cur, 0, &i);
1043	else
1044		error = xfs_btree_increment(cur, 0, &i);
1045
1046	if (error)
1047		return error;
1048	*done = !i;
1049	if (i) {
1050		error = xfs_inobt_get_rec(cur, rec, &i);
1051		if (error)
1052			return error;
1053		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1054	}
1055
1056	return 0;
1057}
1058
1059STATIC int
1060xfs_ialloc_get_rec(
1061	struct xfs_btree_cur	*cur,
1062	xfs_agino_t		agino,
1063	xfs_inobt_rec_incore_t	*rec,
1064	int			*done)
1065{
1066	int                     error;
1067	int			i;
1068
1069	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1070	if (error)
1071		return error;
1072	*done = !i;
1073	if (i) {
1074		error = xfs_inobt_get_rec(cur, rec, &i);
1075		if (error)
1076			return error;
1077		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1078	}
1079
1080	return 0;
1081}
1082
1083/*
1084 * Return the offset of the first free inode in the record. If the inode chunk
1085 * is sparsely allocated, we convert the record holemask to inode granularity
1086 * and mask off the unallocated regions from the inode free mask.
1087 */
1088STATIC int
1089xfs_inobt_first_free_inode(
1090	struct xfs_inobt_rec_incore	*rec)
1091{
1092	xfs_inofree_t			realfree;
1093
1094	/* if there are no holes, return the first available offset */
1095	if (!xfs_inobt_issparse(rec->ir_holemask))
1096		return xfs_lowbit64(rec->ir_free);
1097
1098	realfree = xfs_inobt_irec_to_allocmask(rec);
1099	realfree &= rec->ir_free;
1100
1101	return xfs_lowbit64(realfree);
1102}
1103
1104/*
1105 * Allocate an inode using the inobt-only algorithm.
1106 */
1107STATIC int
1108xfs_dialloc_ag_inobt(
1109	struct xfs_trans	*tp,
1110	struct xfs_buf		*agbp,
1111	xfs_ino_t		parent,
1112	xfs_ino_t		*inop)
1113{
1114	struct xfs_mount	*mp = tp->t_mountp;
1115	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1116	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1117	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1118	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1119	struct xfs_perag	*pag;
1120	struct xfs_btree_cur	*cur, *tcur;
1121	struct xfs_inobt_rec_incore rec, trec;
1122	xfs_ino_t		ino;
1123	int			error;
1124	int			offset;
1125	int			i, j;
1126
1127	pag = xfs_perag_get(mp, agno);
1128
1129	ASSERT(pag->pagi_init);
1130	ASSERT(pag->pagi_inodeok);
1131	ASSERT(pag->pagi_freecount > 0);
1132
1133 restart_pagno:
1134	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1135	/*
1136	 * If pagino is 0 (this is the root inode allocation) use newino.
1137	 * This must work because we've just allocated some.
1138	 */
1139	if (!pagino)
1140		pagino = be32_to_cpu(agi->agi_newino);
1141
1142	error = xfs_check_agi_freecount(cur, agi);
1143	if (error)
1144		goto error0;
1145
1146	/*
1147	 * If in the same AG as the parent, try to get near the parent.
1148	 */
1149	if (pagno == agno) {
1150		int		doneleft;	/* done, to the left */
1151		int		doneright;	/* done, to the right */
1152		int		searchdistance = 10;
1153
1154		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1155		if (error)
1156			goto error0;
1157		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1158
1159		error = xfs_inobt_get_rec(cur, &rec, &j);
1160		if (error)
1161			goto error0;
1162		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1163
1164		if (rec.ir_freecount > 0) {
1165			/*
1166			 * Found a free inode in the same chunk
1167			 * as the parent, done.
1168			 */
1169			goto alloc_inode;
1170		}
1171
1172
1173		/*
1174		 * In the same AG as parent, but parent's chunk is full.
1175		 */
1176
1177		/* duplicate the cursor, search left & right simultaneously */
1178		error = xfs_btree_dup_cursor(cur, &tcur);
1179		if (error)
1180			goto error0;
1181
1182		/*
1183		 * Skip to last blocks looked up if same parent inode.
1184		 */
1185		if (pagino != NULLAGINO &&
1186		    pag->pagl_pagino == pagino &&
1187		    pag->pagl_leftrec != NULLAGINO &&
1188		    pag->pagl_rightrec != NULLAGINO) {
1189			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1190						   &trec, &doneleft);
1191			if (error)
1192				goto error1;
1193
1194			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1195						   &rec, &doneright);
1196			if (error)
1197				goto error1;
1198		} else {
1199			/* search left with tcur, back up 1 record */
1200			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1201			if (error)
1202				goto error1;
1203
1204			/* search right with cur, go forward 1 record. */
1205			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1206			if (error)
1207				goto error1;
1208		}
1209
1210		/*
1211		 * Loop until we find an inode chunk with a free inode.
1212		 */
1213		while (!doneleft || !doneright) {
1214			int	useleft;  /* using left inode chunk this time */
1215
1216			if (!--searchdistance) {
1217				/*
1218				 * Not in range - save last search
1219				 * location and allocate a new inode
1220				 */
1221				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1222				pag->pagl_leftrec = trec.ir_startino;
1223				pag->pagl_rightrec = rec.ir_startino;
1224				pag->pagl_pagino = pagino;
1225				goto newino;
1226			}
1227
1228			/* figure out the closer block if both are valid. */
1229			if (!doneleft && !doneright) {
1230				useleft = pagino -
1231				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1232				  rec.ir_startino - pagino;
1233			} else {
1234				useleft = !doneleft;
1235			}
1236
1237			/* free inodes to the left? */
1238			if (useleft && trec.ir_freecount) {
1239				rec = trec;
1240				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241				cur = tcur;
1242
1243				pag->pagl_leftrec = trec.ir_startino;
1244				pag->pagl_rightrec = rec.ir_startino;
1245				pag->pagl_pagino = pagino;
1246				goto alloc_inode;
1247			}
1248
1249			/* free inodes to the right? */
1250			if (!useleft && rec.ir_freecount) {
1251				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1252
1253				pag->pagl_leftrec = trec.ir_startino;
1254				pag->pagl_rightrec = rec.ir_startino;
1255				pag->pagl_pagino = pagino;
1256				goto alloc_inode;
1257			}
1258
1259			/* get next record to check */
1260			if (useleft) {
1261				error = xfs_ialloc_next_rec(tcur, &trec,
1262								 &doneleft, 1);
1263			} else {
1264				error = xfs_ialloc_next_rec(cur, &rec,
1265								 &doneright, 0);
1266			}
1267			if (error)
1268				goto error1;
1269		}
1270
1271		/*
1272		 * We've reached the end of the btree. because
1273		 * we are only searching a small chunk of the
1274		 * btree each search, there is obviously free
1275		 * inodes closer to the parent inode than we
1276		 * are now. restart the search again.
1277		 */
1278		pag->pagl_pagino = NULLAGINO;
1279		pag->pagl_leftrec = NULLAGINO;
1280		pag->pagl_rightrec = NULLAGINO;
1281		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1282		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1283		goto restart_pagno;
1284	}
1285
1286	/*
1287	 * In a different AG from the parent.
1288	 * See if the most recently allocated block has any free.
1289	 */
1290newino:
1291	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1292		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1293					 XFS_LOOKUP_EQ, &i);
1294		if (error)
1295			goto error0;
1296
1297		if (i == 1) {
1298			error = xfs_inobt_get_rec(cur, &rec, &j);
1299			if (error)
1300				goto error0;
1301
1302			if (j == 1 && rec.ir_freecount > 0) {
1303				/*
1304				 * The last chunk allocated in the group
1305				 * still has a free inode.
1306				 */
1307				goto alloc_inode;
1308			}
1309		}
1310	}
1311
1312	/*
1313	 * None left in the last group, search the whole AG
1314	 */
1315	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1316	if (error)
1317		goto error0;
1318	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1319
1320	for (;;) {
1321		error = xfs_inobt_get_rec(cur, &rec, &i);
1322		if (error)
1323			goto error0;
1324		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325		if (rec.ir_freecount > 0)
1326			break;
1327		error = xfs_btree_increment(cur, 0, &i);
1328		if (error)
1329			goto error0;
1330		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331	}
1332
1333alloc_inode:
1334	offset = xfs_inobt_first_free_inode(&rec);
1335	ASSERT(offset >= 0);
1336	ASSERT(offset < XFS_INODES_PER_CHUNK);
1337	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338				   XFS_INODES_PER_CHUNK) == 0);
1339	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1340	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1341	rec.ir_freecount--;
1342	error = xfs_inobt_update(cur, &rec);
1343	if (error)
1344		goto error0;
1345	be32_add_cpu(&agi->agi_freecount, -1);
1346	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1347	pag->pagi_freecount--;
1348
1349	error = xfs_check_agi_freecount(cur, agi);
1350	if (error)
1351		goto error0;
1352
1353	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1354	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1355	xfs_perag_put(pag);
1356	*inop = ino;
1357	return 0;
1358error1:
1359	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1360error0:
1361	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1362	xfs_perag_put(pag);
1363	return error;
1364}
1365
1366/*
1367 * Use the free inode btree to allocate an inode based on distance from the
1368 * parent. Note that the provided cursor may be deleted and replaced.
1369 */
1370STATIC int
1371xfs_dialloc_ag_finobt_near(
1372	xfs_agino_t			pagino,
1373	struct xfs_btree_cur		**ocur,
1374	struct xfs_inobt_rec_incore	*rec)
1375{
1376	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1377	struct xfs_btree_cur		*rcur;	/* right search cursor */
1378	struct xfs_inobt_rec_incore	rrec;
1379	int				error;
1380	int				i, j;
1381
1382	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1383	if (error)
1384		return error;
1385
1386	if (i == 1) {
1387		error = xfs_inobt_get_rec(lcur, rec, &i);
1388		if (error)
1389			return error;
1390		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1391
1392		/*
1393		 * See if we've landed in the parent inode record. The finobt
1394		 * only tracks chunks with at least one free inode, so record
1395		 * existence is enough.
1396		 */
1397		if (pagino >= rec->ir_startino &&
1398		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1399			return 0;
1400	}
1401
1402	error = xfs_btree_dup_cursor(lcur, &rcur);
1403	if (error)
1404		return error;
1405
1406	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1407	if (error)
1408		goto error_rcur;
1409	if (j == 1) {
1410		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1411		if (error)
1412			goto error_rcur;
1413		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1414	}
1415
1416	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1417	if (i == 1 && j == 1) {
1418		/*
1419		 * Both the left and right records are valid. Choose the closer
1420		 * inode chunk to the target.
1421		 */
1422		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1423		    (rrec.ir_startino - pagino)) {
1424			*rec = rrec;
1425			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1426			*ocur = rcur;
1427		} else {
1428			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1429		}
1430	} else if (j == 1) {
1431		/* only the right record is valid */
1432		*rec = rrec;
1433		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1434		*ocur = rcur;
1435	} else if (i == 1) {
1436		/* only the left record is valid */
1437		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1438	}
1439
1440	return 0;
1441
1442error_rcur:
1443	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1444	return error;
1445}
1446
1447/*
1448 * Use the free inode btree to find a free inode based on a newino hint. If
1449 * the hint is NULL, find the first free inode in the AG.
1450 */
1451STATIC int
1452xfs_dialloc_ag_finobt_newino(
1453	struct xfs_agi			*agi,
1454	struct xfs_btree_cur		*cur,
1455	struct xfs_inobt_rec_incore	*rec)
1456{
1457	int error;
1458	int i;
1459
1460	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1461		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1462					 XFS_LOOKUP_EQ, &i);
1463		if (error)
1464			return error;
1465		if (i == 1) {
1466			error = xfs_inobt_get_rec(cur, rec, &i);
1467			if (error)
1468				return error;
1469			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1470			return 0;
1471		}
1472	}
1473
1474	/*
1475	 * Find the first inode available in the AG.
1476	 */
1477	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1478	if (error)
1479		return error;
1480	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1481
1482	error = xfs_inobt_get_rec(cur, rec, &i);
1483	if (error)
1484		return error;
1485	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486
1487	return 0;
1488}
1489
1490/*
1491 * Update the inobt based on a modification made to the finobt. Also ensure that
1492 * the records from both trees are equivalent post-modification.
1493 */
1494STATIC int
1495xfs_dialloc_ag_update_inobt(
1496	struct xfs_btree_cur		*cur,	/* inobt cursor */
1497	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1498	int				offset) /* inode offset */
1499{
1500	struct xfs_inobt_rec_incore	rec;
1501	int				error;
1502	int				i;
1503
1504	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1505	if (error)
1506		return error;
1507	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1508
1509	error = xfs_inobt_get_rec(cur, &rec, &i);
1510	if (error)
1511		return error;
1512	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1513	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1514				   XFS_INODES_PER_CHUNK) == 0);
1515
1516	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1517	rec.ir_freecount--;
1518
1519	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1520				  (rec.ir_freecount == frec->ir_freecount));
1521
1522	return xfs_inobt_update(cur, &rec);
1523}
1524
1525/*
1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527 * back to the inobt search algorithm.
1528 *
1529 * The caller selected an AG for us, and made sure that free inodes are
1530 * available.
1531 */
1532STATIC int
1533xfs_dialloc_ag(
1534	struct xfs_trans	*tp,
1535	struct xfs_buf		*agbp,
1536	xfs_ino_t		parent,
1537	xfs_ino_t		*inop)
1538{
1539	struct xfs_mount		*mp = tp->t_mountp;
1540	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1541	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1542	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1543	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1544	struct xfs_perag		*pag;
1545	struct xfs_btree_cur		*cur;	/* finobt cursor */
1546	struct xfs_btree_cur		*icur;	/* inobt cursor */
1547	struct xfs_inobt_rec_incore	rec;
1548	xfs_ino_t			ino;
1549	int				error;
1550	int				offset;
1551	int				i;
1552
1553	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1554		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1555
1556	pag = xfs_perag_get(mp, agno);
1557
1558	/*
1559	 * If pagino is 0 (this is the root inode allocation) use newino.
1560	 * This must work because we've just allocated some.
1561	 */
1562	if (!pagino)
1563		pagino = be32_to_cpu(agi->agi_newino);
1564
1565	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1566
1567	error = xfs_check_agi_freecount(cur, agi);
1568	if (error)
1569		goto error_cur;
1570
1571	/*
1572	 * The search algorithm depends on whether we're in the same AG as the
1573	 * parent. If so, find the closest available inode to the parent. If
1574	 * not, consider the agi hint or find the first free inode in the AG.
1575	 */
1576	if (agno == pagno)
1577		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1578	else
1579		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1580	if (error)
1581		goto error_cur;
1582
1583	offset = xfs_inobt_first_free_inode(&rec);
1584	ASSERT(offset >= 0);
1585	ASSERT(offset < XFS_INODES_PER_CHUNK);
1586	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1587				   XFS_INODES_PER_CHUNK) == 0);
1588	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1589
1590	/*
1591	 * Modify or remove the finobt record.
1592	 */
1593	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1594	rec.ir_freecount--;
1595	if (rec.ir_freecount)
1596		error = xfs_inobt_update(cur, &rec);
1597	else
1598		error = xfs_btree_delete(cur, &i);
1599	if (error)
1600		goto error_cur;
1601
1602	/*
1603	 * The finobt has now been updated appropriately. We haven't updated the
1604	 * agi and superblock yet, so we can create an inobt cursor and validate
1605	 * the original freecount. If all is well, make the equivalent update to
1606	 * the inobt using the finobt record and offset information.
1607	 */
1608	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1609
1610	error = xfs_check_agi_freecount(icur, agi);
1611	if (error)
1612		goto error_icur;
1613
1614	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1615	if (error)
1616		goto error_icur;
1617
1618	/*
1619	 * Both trees have now been updated. We must update the perag and
1620	 * superblock before we can check the freecount for each btree.
1621	 */
1622	be32_add_cpu(&agi->agi_freecount, -1);
1623	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1624	pag->pagi_freecount--;
1625
1626	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1627
1628	error = xfs_check_agi_freecount(icur, agi);
1629	if (error)
1630		goto error_icur;
1631	error = xfs_check_agi_freecount(cur, agi);
1632	if (error)
1633		goto error_icur;
1634
1635	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1636	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1637	xfs_perag_put(pag);
1638	*inop = ino;
1639	return 0;
1640
1641error_icur:
1642	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1643error_cur:
1644	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1645	xfs_perag_put(pag);
1646	return error;
1647}
1648
1649/*
1650 * Allocate an inode on disk.
1651 *
1652 * Mode is used to tell whether the new inode will need space, and whether it
1653 * is a directory.
1654 *
1655 * This function is designed to be called twice if it has to do an allocation
1656 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1657 * If an inode is available without having to performn an allocation, an inode
1658 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1659 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1660 * The caller should then commit the current transaction, allocate a
1661 * new transaction, and call xfs_dialloc() again, passing in the previous value
1662 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1663 * buffer is locked across the two calls, the second call is guaranteed to have
1664 * a free inode available.
1665 *
1666 * Once we successfully pick an inode its number is returned and the on-disk
1667 * data structures are updated.  The inode itself is not read in, since doing so
1668 * would break ordering constraints with xfs_reclaim.
1669 */
1670int
1671xfs_dialloc(
1672	struct xfs_trans	*tp,
1673	xfs_ino_t		parent,
1674	umode_t			mode,
1675	int			okalloc,
1676	struct xfs_buf		**IO_agbp,
1677	xfs_ino_t		*inop)
1678{
1679	struct xfs_mount	*mp = tp->t_mountp;
1680	struct xfs_buf		*agbp;
1681	xfs_agnumber_t		agno;
1682	int			error;
1683	int			ialloced;
1684	int			noroom = 0;
1685	xfs_agnumber_t		start_agno;
1686	struct xfs_perag	*pag;
1687
1688	if (*IO_agbp) {
1689		/*
1690		 * If the caller passes in a pointer to the AGI buffer,
1691		 * continue where we left off before.  In this case, we
1692		 * know that the allocation group has free inodes.
1693		 */
1694		agbp = *IO_agbp;
1695		goto out_alloc;
1696	}
1697
1698	/*
1699	 * We do not have an agbp, so select an initial allocation
1700	 * group for inode allocation.
1701	 */
1702	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1703	if (start_agno == NULLAGNUMBER) {
1704		*inop = NULLFSINO;
1705		return 0;
1706	}
1707
1708	/*
1709	 * If we have already hit the ceiling of inode blocks then clear
1710	 * okalloc so we scan all available agi structures for a free
1711	 * inode.
1712	 *
1713	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1714	 * which will sacrifice the preciseness but improve the performance.
1715	 */
1716	if (mp->m_maxicount &&
1717	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1718							> mp->m_maxicount) {
1719		noroom = 1;
1720		okalloc = 0;
1721	}
1722
1723	/*
1724	 * Loop until we find an allocation group that either has free inodes
1725	 * or in which we can allocate some inodes.  Iterate through the
1726	 * allocation groups upward, wrapping at the end.
1727	 */
1728	agno = start_agno;
1729	for (;;) {
1730		pag = xfs_perag_get(mp, agno);
1731		if (!pag->pagi_inodeok) {
1732			xfs_ialloc_next_ag(mp);
1733			goto nextag;
1734		}
1735
1736		if (!pag->pagi_init) {
1737			error = xfs_ialloc_pagi_init(mp, tp, agno);
1738			if (error)
1739				goto out_error;
1740		}
1741
1742		/*
1743		 * Do a first racy fast path check if this AG is usable.
1744		 */
1745		if (!pag->pagi_freecount && !okalloc)
1746			goto nextag;
1747
1748		/*
1749		 * Then read in the AGI buffer and recheck with the AGI buffer
1750		 * lock held.
1751		 */
1752		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1753		if (error)
1754			goto out_error;
1755
1756		if (pag->pagi_freecount) {
1757			xfs_perag_put(pag);
1758			goto out_alloc;
1759		}
1760
1761		if (!okalloc)
1762			goto nextag_relse_buffer;
1763
1764
1765		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1766		if (error) {
1767			xfs_trans_brelse(tp, agbp);
1768
1769			if (error != -ENOSPC)
1770				goto out_error;
1771
1772			xfs_perag_put(pag);
1773			*inop = NULLFSINO;
1774			return 0;
1775		}
1776
1777		if (ialloced) {
1778			/*
1779			 * We successfully allocated some inodes, return
1780			 * the current context to the caller so that it
1781			 * can commit the current transaction and call
1782			 * us again where we left off.
1783			 */
1784			ASSERT(pag->pagi_freecount > 0);
1785			xfs_perag_put(pag);
1786
1787			*IO_agbp = agbp;
1788			*inop = NULLFSINO;
1789			return 0;
1790		}
1791
1792nextag_relse_buffer:
1793		xfs_trans_brelse(tp, agbp);
1794nextag:
1795		xfs_perag_put(pag);
1796		if (++agno == mp->m_sb.sb_agcount)
1797			agno = 0;
1798		if (agno == start_agno) {
1799			*inop = NULLFSINO;
1800			return noroom ? -ENOSPC : 0;
1801		}
1802	}
1803
1804out_alloc:
1805	*IO_agbp = NULL;
1806	return xfs_dialloc_ag(tp, agbp, parent, inop);
1807out_error:
1808	xfs_perag_put(pag);
1809	return error;
1810}
1811
1812/*
1813 * Free the blocks of an inode chunk. We must consider that the inode chunk
1814 * might be sparse and only free the regions that are allocated as part of the
1815 * chunk.
1816 */
1817STATIC void
1818xfs_difree_inode_chunk(
1819	struct xfs_mount		*mp,
1820	xfs_agnumber_t			agno,
1821	struct xfs_inobt_rec_incore	*rec,
1822	struct xfs_defer_ops		*dfops)
1823{
1824	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1825	int		startidx, endidx;
1826	int		nextbit;
1827	xfs_agblock_t	agbno;
1828	int		contigblk;
1829	struct xfs_owner_info	oinfo;
1830	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1831	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1832
1833	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1834		/* not sparse, calculate extent info directly */
1835		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1836				  mp->m_ialloc_blks, &oinfo);
1837		return;
1838	}
1839
1840	/* holemask is only 16-bits (fits in an unsigned long) */
1841	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1842	holemask[0] = rec->ir_holemask;
1843
1844	/*
1845	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1846	 * holemask and convert the start/end index of each range to an extent.
1847	 * We start with the start and end index both pointing at the first 0 in
1848	 * the mask.
1849	 */
1850	startidx = endidx = find_first_zero_bit(holemask,
1851						XFS_INOBT_HOLEMASK_BITS);
1852	nextbit = startidx + 1;
1853	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1854		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1855					     nextbit);
1856		/*
1857		 * If the next zero bit is contiguous, update the end index of
1858		 * the current range and continue.
1859		 */
1860		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1861		    nextbit == endidx + 1) {
1862			endidx = nextbit;
1863			goto next;
1864		}
1865
1866		/*
1867		 * nextbit is not contiguous with the current end index. Convert
1868		 * the current start/end to an extent and add it to the free
1869		 * list.
1870		 */
1871		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1872				  mp->m_sb.sb_inopblock;
1873		contigblk = ((endidx - startidx + 1) *
1874			     XFS_INODES_PER_HOLEMASK_BIT) /
1875			    mp->m_sb.sb_inopblock;
1876
1877		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1878		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1879		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1880				  contigblk, &oinfo);
1881
1882		/* reset range to current bit and carry on... */
1883		startidx = endidx = nextbit;
1884
1885next:
1886		nextbit++;
1887	}
1888}
1889
1890STATIC int
1891xfs_difree_inobt(
1892	struct xfs_mount		*mp,
1893	struct xfs_trans		*tp,
1894	struct xfs_buf			*agbp,
1895	xfs_agino_t			agino,
1896	struct xfs_defer_ops		*dfops,
1897	struct xfs_icluster		*xic,
1898	struct xfs_inobt_rec_incore	*orec)
1899{
1900	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1901	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1902	struct xfs_perag		*pag;
1903	struct xfs_btree_cur		*cur;
1904	struct xfs_inobt_rec_incore	rec;
1905	int				ilen;
1906	int				error;
1907	int				i;
1908	int				off;
1909
1910	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1911	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1912
1913	/*
1914	 * Initialize the cursor.
1915	 */
1916	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1917
1918	error = xfs_check_agi_freecount(cur, agi);
1919	if (error)
1920		goto error0;
1921
1922	/*
1923	 * Look for the entry describing this inode.
1924	 */
1925	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1926		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1927			__func__, error);
1928		goto error0;
1929	}
1930	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1931	error = xfs_inobt_get_rec(cur, &rec, &i);
1932	if (error) {
1933		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1934			__func__, error);
1935		goto error0;
1936	}
1937	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1938	/*
1939	 * Get the offset in the inode chunk.
1940	 */
1941	off = agino - rec.ir_startino;
1942	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944	/*
1945	 * Mark the inode free & increment the count.
1946	 */
1947	rec.ir_free |= XFS_INOBT_MASK(off);
1948	rec.ir_freecount++;
1949
1950	/*
1951	 * When an inode chunk is free, it becomes eligible for removal. Don't
1952	 * remove the chunk if the block size is large enough for multiple inode
1953	 * chunks (that might not be free).
1954	 */
1955	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1956	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1957	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1958		xic->deleted = 1;
1959		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1960		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1961
1962		/*
1963		 * Remove the inode cluster from the AGI B+Tree, adjust the
1964		 * AGI and Superblock inode counts, and mark the disk space
1965		 * to be freed when the transaction is committed.
1966		 */
1967		ilen = rec.ir_freecount;
1968		be32_add_cpu(&agi->agi_count, -ilen);
1969		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1970		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1971		pag = xfs_perag_get(mp, agno);
1972		pag->pagi_freecount -= ilen - 1;
1973		xfs_perag_put(pag);
1974		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1975		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1976
1977		if ((error = xfs_btree_delete(cur, &i))) {
1978			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1979				__func__, error);
1980			goto error0;
1981		}
1982
1983		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1984	} else {
1985		xic->deleted = 0;
1986
1987		error = xfs_inobt_update(cur, &rec);
1988		if (error) {
1989			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1990				__func__, error);
1991			goto error0;
1992		}
1993
1994		/* 
1995		 * Change the inode free counts and log the ag/sb changes.
1996		 */
1997		be32_add_cpu(&agi->agi_freecount, 1);
1998		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1999		pag = xfs_perag_get(mp, agno);
2000		pag->pagi_freecount++;
2001		xfs_perag_put(pag);
2002		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2003	}
2004
2005	error = xfs_check_agi_freecount(cur, agi);
2006	if (error)
2007		goto error0;
2008
2009	*orec = rec;
2010	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2011	return 0;
2012
2013error0:
2014	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2015	return error;
2016}
2017
2018/*
2019 * Free an inode in the free inode btree.
2020 */
2021STATIC int
2022xfs_difree_finobt(
2023	struct xfs_mount		*mp,
2024	struct xfs_trans		*tp,
2025	struct xfs_buf			*agbp,
2026	xfs_agino_t			agino,
2027	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2028{
2029	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2030	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2031	struct xfs_btree_cur		*cur;
2032	struct xfs_inobt_rec_incore	rec;
2033	int				offset = agino - ibtrec->ir_startino;
2034	int				error;
2035	int				i;
2036
2037	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2038
2039	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040	if (error)
2041		goto error;
2042	if (i == 0) {
2043		/*
2044		 * If the record does not exist in the finobt, we must have just
2045		 * freed an inode in a previously fully allocated chunk. If not,
2046		 * something is out of sync.
2047		 */
2048		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2049
2050		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2051					     ibtrec->ir_count,
2052					     ibtrec->ir_freecount,
2053					     ibtrec->ir_free, &i);
2054		if (error)
2055			goto error;
2056		ASSERT(i == 1);
2057
2058		goto out;
2059	}
2060
2061	/*
2062	 * Read and update the existing record. We could just copy the ibtrec
2063	 * across here, but that would defeat the purpose of having redundant
2064	 * metadata. By making the modifications independently, we can catch
2065	 * corruptions that we wouldn't see if we just copied from one record
2066	 * to another.
2067	 */
2068	error = xfs_inobt_get_rec(cur, &rec, &i);
2069	if (error)
2070		goto error;
2071	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2072
2073	rec.ir_free |= XFS_INOBT_MASK(offset);
2074	rec.ir_freecount++;
2075
2076	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2077				(rec.ir_freecount == ibtrec->ir_freecount),
2078				error);
2079
2080	/*
2081	 * The content of inobt records should always match between the inobt
2082	 * and finobt. The lifecycle of records in the finobt is different from
2083	 * the inobt in that the finobt only tracks records with at least one
2084	 * free inode. Hence, if all of the inodes are free and we aren't
2085	 * keeping inode chunks permanently on disk, remove the record.
2086	 * Otherwise, update the record with the new information.
2087	 *
2088	 * Note that we currently can't free chunks when the block size is large
2089	 * enough for multiple chunks. Leave the finobt record to remain in sync
2090	 * with the inobt.
2091	 */
2092	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2093	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2094	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2095		error = xfs_btree_delete(cur, &i);
2096		if (error)
2097			goto error;
2098		ASSERT(i == 1);
2099	} else {
2100		error = xfs_inobt_update(cur, &rec);
2101		if (error)
2102			goto error;
2103	}
2104
2105out:
2106	error = xfs_check_agi_freecount(cur, agi);
2107	if (error)
2108		goto error;
2109
2110	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2111	return 0;
2112
2113error:
2114	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2115	return error;
2116}
2117
2118/*
2119 * Free disk inode.  Carefully avoids touching the incore inode, all
2120 * manipulations incore are the caller's responsibility.
2121 * The on-disk inode is not changed by this operation, only the
2122 * btree (free inode mask) is changed.
2123 */
2124int
2125xfs_difree(
2126	struct xfs_trans	*tp,		/* transaction pointer */
2127	xfs_ino_t		inode,		/* inode to be freed */
2128	struct xfs_defer_ops	*dfops,		/* extents to free */
2129	struct xfs_icluster	*xic)	/* cluster info if deleted */
2130{
2131	/* REFERENCED */
2132	xfs_agblock_t		agbno;	/* block number containing inode */
2133	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2134	xfs_agino_t		agino;	/* allocation group inode number */
2135	xfs_agnumber_t		agno;	/* allocation group number */
2136	int			error;	/* error return value */
2137	struct xfs_mount	*mp;	/* mount structure for filesystem */
2138	struct xfs_inobt_rec_incore rec;/* btree record */
2139
2140	mp = tp->t_mountp;
2141
2142	/*
2143	 * Break up inode number into its components.
2144	 */
2145	agno = XFS_INO_TO_AGNO(mp, inode);
2146	if (agno >= mp->m_sb.sb_agcount)  {
2147		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2148			__func__, agno, mp->m_sb.sb_agcount);
2149		ASSERT(0);
2150		return -EINVAL;
2151	}
2152	agino = XFS_INO_TO_AGINO(mp, inode);
2153	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2154		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2155			__func__, (unsigned long long)inode,
2156			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2157		ASSERT(0);
2158		return -EINVAL;
2159	}
2160	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2161	if (agbno >= mp->m_sb.sb_agblocks)  {
2162		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2163			__func__, agbno, mp->m_sb.sb_agblocks);
2164		ASSERT(0);
2165		return -EINVAL;
2166	}
2167	/*
2168	 * Get the allocation group header.
2169	 */
2170	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2171	if (error) {
2172		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2173			__func__, error);
2174		return error;
2175	}
2176
2177	/*
2178	 * Fix up the inode allocation btree.
2179	 */
2180	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2181	if (error)
2182		goto error0;
2183
2184	/*
2185	 * Fix up the free inode btree.
2186	 */
2187	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2188		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2189		if (error)
2190			goto error0;
2191	}
2192
2193	return 0;
2194
2195error0:
2196	return error;
2197}
2198
2199STATIC int
2200xfs_imap_lookup(
2201	struct xfs_mount	*mp,
2202	struct xfs_trans	*tp,
2203	xfs_agnumber_t		agno,
2204	xfs_agino_t		agino,
2205	xfs_agblock_t		agbno,
2206	xfs_agblock_t		*chunk_agbno,
2207	xfs_agblock_t		*offset_agbno,
2208	int			flags)
2209{
2210	struct xfs_inobt_rec_incore rec;
2211	struct xfs_btree_cur	*cur;
2212	struct xfs_buf		*agbp;
2213	int			error;
2214	int			i;
2215
2216	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2217	if (error) {
2218		xfs_alert(mp,
2219			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2220			__func__, error, agno);
2221		return error;
2222	}
2223
2224	/*
2225	 * Lookup the inode record for the given agino. If the record cannot be
2226	 * found, then it's an invalid inode number and we should abort. Once
2227	 * we have a record, we need to ensure it contains the inode number
2228	 * we are looking up.
2229	 */
2230	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2231	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2232	if (!error) {
2233		if (i)
2234			error = xfs_inobt_get_rec(cur, &rec, &i);
2235		if (!error && i == 0)
2236			error = -EINVAL;
2237	}
2238
2239	xfs_trans_brelse(tp, agbp);
2240	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2241	if (error)
2242		return error;
2243
2244	/* check that the returned record contains the required inode */
2245	if (rec.ir_startino > agino ||
2246	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2247		return -EINVAL;
2248
2249	/* for untrusted inodes check it is allocated first */
2250	if ((flags & XFS_IGET_UNTRUSTED) &&
2251	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2252		return -EINVAL;
2253
2254	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2255	*offset_agbno = agbno - *chunk_agbno;
2256	return 0;
2257}
2258
2259/*
2260 * Return the location of the inode in imap, for mapping it into a buffer.
2261 */
2262int
2263xfs_imap(
2264	xfs_mount_t	 *mp,	/* file system mount structure */
2265	xfs_trans_t	 *tp,	/* transaction pointer */
2266	xfs_ino_t	ino,	/* inode to locate */
2267	struct xfs_imap	*imap,	/* location map structure */
2268	uint		flags)	/* flags for inode btree lookup */
2269{
2270	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2271	xfs_agino_t	agino;	/* inode number within alloc group */
2272	xfs_agnumber_t	agno;	/* allocation group number */
2273	int		blks_per_cluster; /* num blocks per inode cluster */
2274	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2275	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2276	int		error;	/* error code */
2277	int		offset;	/* index of inode in its buffer */
2278	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2279
2280	ASSERT(ino != NULLFSINO);
2281
2282	/*
2283	 * Split up the inode number into its parts.
2284	 */
2285	agno = XFS_INO_TO_AGNO(mp, ino);
2286	agino = XFS_INO_TO_AGINO(mp, ino);
2287	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2288	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2289	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2290#ifdef DEBUG
2291		/*
2292		 * Don't output diagnostic information for untrusted inodes
2293		 * as they can be invalid without implying corruption.
2294		 */
2295		if (flags & XFS_IGET_UNTRUSTED)
2296			return -EINVAL;
2297		if (agno >= mp->m_sb.sb_agcount) {
2298			xfs_alert(mp,
2299				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2300				__func__, agno, mp->m_sb.sb_agcount);
2301		}
2302		if (agbno >= mp->m_sb.sb_agblocks) {
2303			xfs_alert(mp,
2304		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2305				__func__, (unsigned long long)agbno,
2306				(unsigned long)mp->m_sb.sb_agblocks);
2307		}
2308		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2309			xfs_alert(mp,
2310		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2311				__func__, ino,
2312				XFS_AGINO_TO_INO(mp, agno, agino));
2313		}
2314		xfs_stack_trace();
2315#endif /* DEBUG */
2316		return -EINVAL;
2317	}
2318
2319	blks_per_cluster = xfs_icluster_size_fsb(mp);
2320
2321	/*
2322	 * For bulkstat and handle lookups, we have an untrusted inode number
2323	 * that we have to verify is valid. We cannot do this just by reading
2324	 * the inode buffer as it may have been unlinked and removed leaving
2325	 * inodes in stale state on disk. Hence we have to do a btree lookup
2326	 * in all cases where an untrusted inode number is passed.
2327	 */
2328	if (flags & XFS_IGET_UNTRUSTED) {
2329		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2330					&chunk_agbno, &offset_agbno, flags);
2331		if (error)
2332			return error;
2333		goto out_map;
2334	}
2335
2336	/*
2337	 * If the inode cluster size is the same as the blocksize or
2338	 * smaller we get to the buffer by simple arithmetics.
2339	 */
2340	if (blks_per_cluster == 1) {
2341		offset = XFS_INO_TO_OFFSET(mp, ino);
2342		ASSERT(offset < mp->m_sb.sb_inopblock);
2343
2344		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2345		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2346		imap->im_boffset = (unsigned short)(offset <<
2347							mp->m_sb.sb_inodelog);
2348		return 0;
2349	}
2350
2351	/*
2352	 * If the inode chunks are aligned then use simple maths to
2353	 * find the location. Otherwise we have to do a btree
2354	 * lookup to find the location.
2355	 */
2356	if (mp->m_inoalign_mask) {
2357		offset_agbno = agbno & mp->m_inoalign_mask;
2358		chunk_agbno = agbno - offset_agbno;
2359	} else {
2360		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2361					&chunk_agbno, &offset_agbno, flags);
2362		if (error)
2363			return error;
2364	}
2365
2366out_map:
2367	ASSERT(agbno >= chunk_agbno);
2368	cluster_agbno = chunk_agbno +
2369		((offset_agbno / blks_per_cluster) * blks_per_cluster);
2370	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2371		XFS_INO_TO_OFFSET(mp, ino);
2372
2373	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2374	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2375	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2376
2377	/*
2378	 * If the inode number maps to a block outside the bounds
2379	 * of the file system then return NULL rather than calling
2380	 * read_buf and panicing when we get an error from the
2381	 * driver.
2382	 */
2383	if ((imap->im_blkno + imap->im_len) >
2384	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2385		xfs_alert(mp,
2386	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2387			__func__, (unsigned long long) imap->im_blkno,
2388			(unsigned long long) imap->im_len,
2389			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2390		return -EINVAL;
2391	}
2392	return 0;
2393}
2394
2395/*
2396 * Compute and fill in value of m_in_maxlevels.
2397 */
2398void
2399xfs_ialloc_compute_maxlevels(
2400	xfs_mount_t	*mp)		/* file system mount structure */
2401{
2402	uint		inodes;
2403
2404	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2405	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2406							 inodes);
2407}
2408
2409/*
2410 * Log specified fields for the ag hdr (inode section). The growth of the agi
2411 * structure over time requires that we interpret the buffer as two logical
2412 * regions delineated by the end of the unlinked list. This is due to the size
2413 * of the hash table and its location in the middle of the agi.
2414 *
2415 * For example, a request to log a field before agi_unlinked and a field after
2416 * agi_unlinked could cause us to log the entire hash table and use an excessive
2417 * amount of log space. To avoid this behavior, log the region up through
2418 * agi_unlinked in one call and the region after agi_unlinked through the end of
2419 * the structure in another.
2420 */
2421void
2422xfs_ialloc_log_agi(
2423	xfs_trans_t	*tp,		/* transaction pointer */
2424	xfs_buf_t	*bp,		/* allocation group header buffer */
2425	int		fields)		/* bitmask of fields to log */
2426{
2427	int			first;		/* first byte number */
2428	int			last;		/* last byte number */
2429	static const short	offsets[] = {	/* field starting offsets */
2430					/* keep in sync with bit definitions */
2431		offsetof(xfs_agi_t, agi_magicnum),
2432		offsetof(xfs_agi_t, agi_versionnum),
2433		offsetof(xfs_agi_t, agi_seqno),
2434		offsetof(xfs_agi_t, agi_length),
2435		offsetof(xfs_agi_t, agi_count),
2436		offsetof(xfs_agi_t, agi_root),
2437		offsetof(xfs_agi_t, agi_level),
2438		offsetof(xfs_agi_t, agi_freecount),
2439		offsetof(xfs_agi_t, agi_newino),
2440		offsetof(xfs_agi_t, agi_dirino),
2441		offsetof(xfs_agi_t, agi_unlinked),
2442		offsetof(xfs_agi_t, agi_free_root),
2443		offsetof(xfs_agi_t, agi_free_level),
2444		sizeof(xfs_agi_t)
2445	};
2446#ifdef DEBUG
2447	xfs_agi_t		*agi;	/* allocation group header */
2448
2449	agi = XFS_BUF_TO_AGI(bp);
2450	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2451#endif
2452
2453	/*
2454	 * Compute byte offsets for the first and last fields in the first
2455	 * region and log the agi buffer. This only logs up through
2456	 * agi_unlinked.
2457	 */
2458	if (fields & XFS_AGI_ALL_BITS_R1) {
2459		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2460				  &first, &last);
2461		xfs_trans_log_buf(tp, bp, first, last);
2462	}
2463
2464	/*
2465	 * Mask off the bits in the first region and calculate the first and
2466	 * last field offsets for any bits in the second region.
2467	 */
2468	fields &= ~XFS_AGI_ALL_BITS_R1;
2469	if (fields) {
2470		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2471				  &first, &last);
2472		xfs_trans_log_buf(tp, bp, first, last);
2473	}
2474}
2475
2476#ifdef DEBUG
2477STATIC void
2478xfs_check_agi_unlinked(
2479	struct xfs_agi		*agi)
2480{
2481	int			i;
2482
2483	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2484		ASSERT(agi->agi_unlinked[i]);
2485}
2486#else
2487#define xfs_check_agi_unlinked(agi)
2488#endif
2489
2490static bool
2491xfs_agi_verify(
2492	struct xfs_buf	*bp)
2493{
2494	struct xfs_mount *mp = bp->b_target->bt_mount;
2495	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2496
2497	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2498		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2499			return false;
2500		if (!xfs_log_check_lsn(mp,
2501				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2502			return false;
2503	}
2504
2505	/*
2506	 * Validate the magic number of the agi block.
2507	 */
2508	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2509		return false;
2510	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2511		return false;
2512
2513	if (be32_to_cpu(agi->agi_level) < 1 ||
2514	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2515		return false;
2516
2517	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2518	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2519	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2520		return false;
2521
2522	/*
2523	 * during growfs operations, the perag is not fully initialised,
2524	 * so we can't use it for any useful checking. growfs ensures we can't
2525	 * use it by using uncached buffers that don't have the perag attached
2526	 * so we can detect and avoid this problem.
2527	 */
2528	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529		return false;
2530
2531	xfs_check_agi_unlinked(agi);
2532	return true;
2533}
2534
2535static void
2536xfs_agi_read_verify(
2537	struct xfs_buf	*bp)
2538{
2539	struct xfs_mount *mp = bp->b_target->bt_mount;
2540
2541	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543		xfs_buf_ioerror(bp, -EFSBADCRC);
2544	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545				XFS_ERRTAG_IALLOC_READ_AGI,
2546				XFS_RANDOM_IALLOC_READ_AGI))
2547		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548
2549	if (bp->b_error)
2550		xfs_verifier_error(bp);
2551}
2552
2553static void
2554xfs_agi_write_verify(
2555	struct xfs_buf	*bp)
2556{
2557	struct xfs_mount *mp = bp->b_target->bt_mount;
2558	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2559
2560	if (!xfs_agi_verify(bp)) {
2561		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562		xfs_verifier_error(bp);
2563		return;
2564	}
2565
2566	if (!xfs_sb_version_hascrc(&mp->m_sb))
2567		return;
2568
2569	if (bip)
2570		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572}
2573
2574const struct xfs_buf_ops xfs_agi_buf_ops = {
2575	.name = "xfs_agi",
2576	.verify_read = xfs_agi_read_verify,
2577	.verify_write = xfs_agi_write_verify,
2578};
2579
2580/*
2581 * Read in the allocation group header (inode allocation section)
2582 */
2583int
2584xfs_read_agi(
2585	struct xfs_mount	*mp,	/* file system mount structure */
2586	struct xfs_trans	*tp,	/* transaction pointer */
2587	xfs_agnumber_t		agno,	/* allocation group number */
2588	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2589{
2590	int			error;
2591
2592	trace_xfs_read_agi(mp, agno);
2593
2594	ASSERT(agno != NULLAGNUMBER);
2595	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598	if (error)
2599		return error;
2600	if (tp)
2601		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2602
2603	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2604	return 0;
2605}
2606
2607int
2608xfs_ialloc_read_agi(
2609	struct xfs_mount	*mp,	/* file system mount structure */
2610	struct xfs_trans	*tp,	/* transaction pointer */
2611	xfs_agnumber_t		agno,	/* allocation group number */
2612	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2613{
2614	struct xfs_agi		*agi;	/* allocation group header */
2615	struct xfs_perag	*pag;	/* per allocation group data */
2616	int			error;
2617
2618	trace_xfs_ialloc_read_agi(mp, agno);
2619
2620	error = xfs_read_agi(mp, tp, agno, bpp);
2621	if (error)
2622		return error;
2623
2624	agi = XFS_BUF_TO_AGI(*bpp);
2625	pag = xfs_perag_get(mp, agno);
2626	if (!pag->pagi_init) {
2627		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2628		pag->pagi_count = be32_to_cpu(agi->agi_count);
2629		pag->pagi_init = 1;
2630	}
2631
2632	/*
2633	 * It's possible for these to be out of sync if
2634	 * we are in the middle of a forced shutdown.
2635	 */
2636	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2637		XFS_FORCED_SHUTDOWN(mp));
2638	xfs_perag_put(pag);
2639	return 0;
2640}
2641
2642/*
2643 * Read in the agi to initialise the per-ag data in the mount structure
2644 */
2645int
2646xfs_ialloc_pagi_init(
2647	xfs_mount_t	*mp,		/* file system mount structure */
2648	xfs_trans_t	*tp,		/* transaction pointer */
2649	xfs_agnumber_t	agno)		/* allocation group number */
2650{
2651	xfs_buf_t	*bp = NULL;
2652	int		error;
2653
2654	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2655	if (error)
2656		return error;
2657	if (bp)
2658		xfs_trans_brelse(tp, bp);
2659	return 0;
2660}