Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/err.h>
20#include <linux/uuid.h>
21#include "ctree.h"
22#include "transaction.h"
23#include "disk-io.h"
24#include "print-tree.h"
25
26/*
27 * Read a root item from the tree. In case we detect a root item smaller then
28 * sizeof(root_item), we know it's an old version of the root structure and
29 * initialize all new fields to zero. The same happens if we detect mismatching
30 * generation numbers as then we know the root was once mounted with an older
31 * kernel that was not aware of the root item structure change.
32 */
33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
34 struct btrfs_root_item *item)
35{
36 uuid_le uuid;
37 int len;
38 int need_reset = 0;
39
40 len = btrfs_item_size_nr(eb, slot);
41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 min_t(int, len, (int)sizeof(*item)));
43 if (len < sizeof(*item))
44 need_reset = 1;
45 if (!need_reset && btrfs_root_generation(item)
46 != btrfs_root_generation_v2(item)) {
47 if (btrfs_root_generation_v2(item) != 0) {
48 btrfs_warn(eb->fs_info,
49 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
50 }
51 need_reset = 1;
52 }
53 if (need_reset) {
54 memset(&item->generation_v2, 0,
55 sizeof(*item) - offsetof(struct btrfs_root_item,
56 generation_v2));
57
58 uuid_le_gen(&uuid);
59 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
60 }
61}
62
63/*
64 * btrfs_find_root - lookup the root by the key.
65 * root: the root of the root tree
66 * search_key: the key to search
67 * path: the path we search
68 * root_item: the root item of the tree we look for
69 * root_key: the root key of the tree we look for
70 *
71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
72 * of the search key, just lookup the root with the highest offset for a
73 * given objectid.
74 *
75 * If we find something return 0, otherwise > 0, < 0 on error.
76 */
77int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
78 struct btrfs_path *path, struct btrfs_root_item *root_item,
79 struct btrfs_key *root_key)
80{
81 struct btrfs_key found_key;
82 struct extent_buffer *l;
83 int ret;
84 int slot;
85
86 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
87 if (ret < 0)
88 return ret;
89
90 if (search_key->offset != -1ULL) { /* the search key is exact */
91 if (ret > 0)
92 goto out;
93 } else {
94 BUG_ON(ret == 0); /* Logical error */
95 if (path->slots[0] == 0)
96 goto out;
97 path->slots[0]--;
98 ret = 0;
99 }
100
101 l = path->nodes[0];
102 slot = path->slots[0];
103
104 btrfs_item_key_to_cpu(l, &found_key, slot);
105 if (found_key.objectid != search_key->objectid ||
106 found_key.type != BTRFS_ROOT_ITEM_KEY) {
107 ret = 1;
108 goto out;
109 }
110
111 if (root_item)
112 btrfs_read_root_item(l, slot, root_item);
113 if (root_key)
114 memcpy(root_key, &found_key, sizeof(found_key));
115out:
116 btrfs_release_path(path);
117 return ret;
118}
119
120void btrfs_set_root_node(struct btrfs_root_item *item,
121 struct extent_buffer *node)
122{
123 btrfs_set_root_bytenr(item, node->start);
124 btrfs_set_root_level(item, btrfs_header_level(node));
125 btrfs_set_root_generation(item, btrfs_header_generation(node));
126}
127
128/*
129 * copy the data in 'item' into the btree
130 */
131int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
132 *root, struct btrfs_key *key, struct btrfs_root_item
133 *item)
134{
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 struct btrfs_path *path;
137 struct extent_buffer *l;
138 int ret;
139 int slot;
140 unsigned long ptr;
141 u32 old_len;
142
143 path = btrfs_alloc_path();
144 if (!path)
145 return -ENOMEM;
146
147 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
148 if (ret < 0) {
149 btrfs_abort_transaction(trans, ret);
150 goto out;
151 }
152
153 if (ret != 0) {
154 btrfs_print_leaf(fs_info, path->nodes[0]);
155 btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
156 key->objectid, key->type, key->offset);
157 BUG_ON(1);
158 }
159
160 l = path->nodes[0];
161 slot = path->slots[0];
162 ptr = btrfs_item_ptr_offset(l, slot);
163 old_len = btrfs_item_size_nr(l, slot);
164
165 /*
166 * If this is the first time we update the root item which originated
167 * from an older kernel, we need to enlarge the item size to make room
168 * for the added fields.
169 */
170 if (old_len < sizeof(*item)) {
171 btrfs_release_path(path);
172 ret = btrfs_search_slot(trans, root, key, path,
173 -1, 1);
174 if (ret < 0) {
175 btrfs_abort_transaction(trans, ret);
176 goto out;
177 }
178
179 ret = btrfs_del_item(trans, root, path);
180 if (ret < 0) {
181 btrfs_abort_transaction(trans, ret);
182 goto out;
183 }
184 btrfs_release_path(path);
185 ret = btrfs_insert_empty_item(trans, root, path,
186 key, sizeof(*item));
187 if (ret < 0) {
188 btrfs_abort_transaction(trans, ret);
189 goto out;
190 }
191 l = path->nodes[0];
192 slot = path->slots[0];
193 ptr = btrfs_item_ptr_offset(l, slot);
194 }
195
196 /*
197 * Update generation_v2 so at the next mount we know the new root
198 * fields are valid.
199 */
200 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
201
202 write_extent_buffer(l, item, ptr, sizeof(*item));
203 btrfs_mark_buffer_dirty(path->nodes[0]);
204out:
205 btrfs_free_path(path);
206 return ret;
207}
208
209int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
210 struct btrfs_key *key, struct btrfs_root_item *item)
211{
212 /*
213 * Make sure generation v1 and v2 match. See update_root for details.
214 */
215 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
216 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
217}
218
219int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
220{
221 struct btrfs_root *tree_root = fs_info->tree_root;
222 struct extent_buffer *leaf;
223 struct btrfs_path *path;
224 struct btrfs_key key;
225 struct btrfs_key root_key;
226 struct btrfs_root *root;
227 int err = 0;
228 int ret;
229 bool can_recover = true;
230
231 if (fs_info->sb->s_flags & MS_RDONLY)
232 can_recover = false;
233
234 path = btrfs_alloc_path();
235 if (!path)
236 return -ENOMEM;
237
238 key.objectid = BTRFS_ORPHAN_OBJECTID;
239 key.type = BTRFS_ORPHAN_ITEM_KEY;
240 key.offset = 0;
241
242 root_key.type = BTRFS_ROOT_ITEM_KEY;
243 root_key.offset = (u64)-1;
244
245 while (1) {
246 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
247 if (ret < 0) {
248 err = ret;
249 break;
250 }
251
252 leaf = path->nodes[0];
253 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
254 ret = btrfs_next_leaf(tree_root, path);
255 if (ret < 0)
256 err = ret;
257 if (ret != 0)
258 break;
259 leaf = path->nodes[0];
260 }
261
262 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
263 btrfs_release_path(path);
264
265 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
266 key.type != BTRFS_ORPHAN_ITEM_KEY)
267 break;
268
269 root_key.objectid = key.offset;
270 key.offset++;
271
272 /*
273 * The root might have been inserted already, as before we look
274 * for orphan roots, log replay might have happened, which
275 * triggers a transaction commit and qgroup accounting, which
276 * in turn reads and inserts fs roots while doing backref
277 * walking.
278 */
279 root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
280 if (root) {
281 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
282 &root->state));
283 if (btrfs_root_refs(&root->root_item) == 0)
284 btrfs_add_dead_root(root);
285 continue;
286 }
287
288 root = btrfs_read_fs_root(tree_root, &root_key);
289 err = PTR_ERR_OR_ZERO(root);
290 if (err && err != -ENOENT) {
291 break;
292 } else if (err == -ENOENT) {
293 struct btrfs_trans_handle *trans;
294
295 btrfs_release_path(path);
296
297 trans = btrfs_join_transaction(tree_root);
298 if (IS_ERR(trans)) {
299 err = PTR_ERR(trans);
300 btrfs_handle_fs_error(fs_info, err,
301 "Failed to start trans to delete orphan item");
302 break;
303 }
304 err = btrfs_del_orphan_item(trans, tree_root,
305 root_key.objectid);
306 btrfs_end_transaction(trans);
307 if (err) {
308 btrfs_handle_fs_error(fs_info, err,
309 "Failed to delete root orphan item");
310 break;
311 }
312 continue;
313 }
314
315 err = btrfs_init_fs_root(root);
316 if (err) {
317 btrfs_free_fs_root(root);
318 break;
319 }
320
321 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
322
323 err = btrfs_insert_fs_root(fs_info, root);
324 if (err) {
325 BUG_ON(err == -EEXIST);
326 btrfs_free_fs_root(root);
327 break;
328 }
329
330 if (btrfs_root_refs(&root->root_item) == 0)
331 btrfs_add_dead_root(root);
332 }
333
334 btrfs_free_path(path);
335 return err;
336}
337
338/* drop the root item for 'key' from 'root' */
339int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
340 struct btrfs_key *key)
341{
342 struct btrfs_path *path;
343 int ret;
344
345 path = btrfs_alloc_path();
346 if (!path)
347 return -ENOMEM;
348 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
349 if (ret < 0)
350 goto out;
351
352 BUG_ON(ret != 0);
353
354 ret = btrfs_del_item(trans, root, path);
355out:
356 btrfs_free_path(path);
357 return ret;
358}
359
360int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
361 struct btrfs_fs_info *fs_info,
362 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
363 const char *name, int name_len)
364
365{
366 struct btrfs_root *tree_root = fs_info->tree_root;
367 struct btrfs_path *path;
368 struct btrfs_root_ref *ref;
369 struct extent_buffer *leaf;
370 struct btrfs_key key;
371 unsigned long ptr;
372 int err = 0;
373 int ret;
374
375 path = btrfs_alloc_path();
376 if (!path)
377 return -ENOMEM;
378
379 key.objectid = root_id;
380 key.type = BTRFS_ROOT_BACKREF_KEY;
381 key.offset = ref_id;
382again:
383 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
384 BUG_ON(ret < 0);
385 if (ret == 0) {
386 leaf = path->nodes[0];
387 ref = btrfs_item_ptr(leaf, path->slots[0],
388 struct btrfs_root_ref);
389
390 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
391 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
392 ptr = (unsigned long)(ref + 1);
393 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
394 *sequence = btrfs_root_ref_sequence(leaf, ref);
395
396 ret = btrfs_del_item(trans, tree_root, path);
397 if (ret) {
398 err = ret;
399 goto out;
400 }
401 } else
402 err = -ENOENT;
403
404 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
405 btrfs_release_path(path);
406 key.objectid = ref_id;
407 key.type = BTRFS_ROOT_REF_KEY;
408 key.offset = root_id;
409 goto again;
410 }
411
412out:
413 btrfs_free_path(path);
414 return err;
415}
416
417/*
418 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
419 * or BTRFS_ROOT_BACKREF_KEY.
420 *
421 * The dirid, sequence, name and name_len refer to the directory entry
422 * that is referencing the root.
423 *
424 * For a forward ref, the root_id is the id of the tree referencing
425 * the root and ref_id is the id of the subvol or snapshot.
426 *
427 * For a back ref the root_id is the id of the subvol or snapshot and
428 * ref_id is the id of the tree referencing it.
429 *
430 * Will return 0, -ENOMEM, or anything from the CoW path
431 */
432int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
433 struct btrfs_fs_info *fs_info,
434 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
435 const char *name, int name_len)
436{
437 struct btrfs_root *tree_root = fs_info->tree_root;
438 struct btrfs_key key;
439 int ret;
440 struct btrfs_path *path;
441 struct btrfs_root_ref *ref;
442 struct extent_buffer *leaf;
443 unsigned long ptr;
444
445 path = btrfs_alloc_path();
446 if (!path)
447 return -ENOMEM;
448
449 key.objectid = root_id;
450 key.type = BTRFS_ROOT_BACKREF_KEY;
451 key.offset = ref_id;
452again:
453 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
454 sizeof(*ref) + name_len);
455 if (ret) {
456 btrfs_abort_transaction(trans, ret);
457 btrfs_free_path(path);
458 return ret;
459 }
460
461 leaf = path->nodes[0];
462 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
463 btrfs_set_root_ref_dirid(leaf, ref, dirid);
464 btrfs_set_root_ref_sequence(leaf, ref, sequence);
465 btrfs_set_root_ref_name_len(leaf, ref, name_len);
466 ptr = (unsigned long)(ref + 1);
467 write_extent_buffer(leaf, name, ptr, name_len);
468 btrfs_mark_buffer_dirty(leaf);
469
470 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
471 btrfs_release_path(path);
472 key.objectid = ref_id;
473 key.type = BTRFS_ROOT_REF_KEY;
474 key.offset = root_id;
475 goto again;
476 }
477
478 btrfs_free_path(path);
479 return 0;
480}
481
482/*
483 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484 * for subvolumes. To work around this problem, we steal a bit from
485 * root_item->inode_item->flags, and use it to indicate if those fields
486 * have been properly initialized.
487 */
488void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
489{
490 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
491
492 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
493 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
494 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
495 btrfs_set_root_flags(root_item, 0);
496 btrfs_set_root_limit(root_item, 0);
497 }
498}
499
500void btrfs_update_root_times(struct btrfs_trans_handle *trans,
501 struct btrfs_root *root)
502{
503 struct btrfs_root_item *item = &root->root_item;
504 struct timespec ct = current_fs_time(root->fs_info->sb);
505
506 spin_lock(&root->root_item_lock);
507 btrfs_set_root_ctransid(item, trans->transid);
508 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
509 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
510 spin_unlock(&root->root_item_lock);
511}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/err.h>
7#include <linux/uuid.h>
8#include "ctree.h"
9#include "fs.h"
10#include "messages.h"
11#include "transaction.h"
12#include "disk-io.h"
13#include "qgroup.h"
14#include "space-info.h"
15#include "accessors.h"
16#include "root-tree.h"
17#include "orphan.h"
18
19/*
20 * Read a root item from the tree. In case we detect a root item smaller then
21 * sizeof(root_item), we know it's an old version of the root structure and
22 * initialize all new fields to zero. The same happens if we detect mismatching
23 * generation numbers as then we know the root was once mounted with an older
24 * kernel that was not aware of the root item structure change.
25 */
26static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
27 struct btrfs_root_item *item)
28{
29 u32 len;
30 int need_reset = 0;
31
32 len = btrfs_item_size(eb, slot);
33 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
34 min_t(u32, len, sizeof(*item)));
35 if (len < sizeof(*item))
36 need_reset = 1;
37 if (!need_reset && btrfs_root_generation(item)
38 != btrfs_root_generation_v2(item)) {
39 if (btrfs_root_generation_v2(item) != 0) {
40 btrfs_warn(eb->fs_info,
41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
42 }
43 need_reset = 1;
44 }
45 if (need_reset) {
46 /* Clear all members from generation_v2 onwards. */
47 memset_startat(item, 0, generation_v2);
48 generate_random_guid(item->uuid);
49 }
50}
51
52/*
53 * Lookup the root by the key.
54 *
55 * root: the root of the root tree
56 * search_key: the key to search
57 * path: the path we search
58 * root_item: the root item of the tree we look for
59 * root_key: the root key of the tree we look for
60 *
61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62 * of the search key, just lookup the root with the highest offset for a
63 * given objectid.
64 *
65 * If we find something return 0, otherwise > 0, < 0 on error.
66 */
67int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
68 struct btrfs_path *path, struct btrfs_root_item *root_item,
69 struct btrfs_key *root_key)
70{
71 struct btrfs_key found_key;
72 struct extent_buffer *l;
73 int ret;
74 int slot;
75
76 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
77 if (ret < 0)
78 return ret;
79
80 if (search_key->offset != -1ULL) { /* the search key is exact */
81 if (ret > 0)
82 goto out;
83 } else {
84 /*
85 * Key with offset -1 found, there would have to exist a root
86 * with such id, but this is out of the valid range.
87 */
88 if (ret == 0) {
89 ret = -EUCLEAN;
90 goto out;
91 }
92 if (path->slots[0] == 0)
93 goto out;
94 path->slots[0]--;
95 ret = 0;
96 }
97
98 l = path->nodes[0];
99 slot = path->slots[0];
100
101 btrfs_item_key_to_cpu(l, &found_key, slot);
102 if (found_key.objectid != search_key->objectid ||
103 found_key.type != BTRFS_ROOT_ITEM_KEY) {
104 ret = 1;
105 goto out;
106 }
107
108 if (root_item)
109 btrfs_read_root_item(l, slot, root_item);
110 if (root_key)
111 memcpy(root_key, &found_key, sizeof(found_key));
112out:
113 btrfs_release_path(path);
114 return ret;
115}
116
117void btrfs_set_root_node(struct btrfs_root_item *item,
118 struct extent_buffer *node)
119{
120 btrfs_set_root_bytenr(item, node->start);
121 btrfs_set_root_level(item, btrfs_header_level(node));
122 btrfs_set_root_generation(item, btrfs_header_generation(node));
123}
124
125/*
126 * copy the data in 'item' into the btree
127 */
128int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
129 *root, struct btrfs_key *key, struct btrfs_root_item
130 *item)
131{
132 struct btrfs_fs_info *fs_info = root->fs_info;
133 struct btrfs_path *path;
134 struct extent_buffer *l;
135 int ret;
136 int slot;
137 unsigned long ptr;
138 u32 old_len;
139
140 path = btrfs_alloc_path();
141 if (!path)
142 return -ENOMEM;
143
144 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
145 if (ret < 0)
146 goto out;
147
148 if (ret > 0) {
149 btrfs_crit(fs_info,
150 "unable to find root key (%llu %u %llu) in tree %llu",
151 key->objectid, key->type, key->offset, btrfs_root_id(root));
152 ret = -EUCLEAN;
153 btrfs_abort_transaction(trans, ret);
154 goto out;
155 }
156
157 l = path->nodes[0];
158 slot = path->slots[0];
159 ptr = btrfs_item_ptr_offset(l, slot);
160 old_len = btrfs_item_size(l, slot);
161
162 /*
163 * If this is the first time we update the root item which originated
164 * from an older kernel, we need to enlarge the item size to make room
165 * for the added fields.
166 */
167 if (old_len < sizeof(*item)) {
168 btrfs_release_path(path);
169 ret = btrfs_search_slot(trans, root, key, path,
170 -1, 1);
171 if (ret < 0) {
172 btrfs_abort_transaction(trans, ret);
173 goto out;
174 }
175
176 ret = btrfs_del_item(trans, root, path);
177 if (ret < 0) {
178 btrfs_abort_transaction(trans, ret);
179 goto out;
180 }
181 btrfs_release_path(path);
182 ret = btrfs_insert_empty_item(trans, root, path,
183 key, sizeof(*item));
184 if (ret < 0) {
185 btrfs_abort_transaction(trans, ret);
186 goto out;
187 }
188 l = path->nodes[0];
189 slot = path->slots[0];
190 ptr = btrfs_item_ptr_offset(l, slot);
191 }
192
193 /*
194 * Update generation_v2 so at the next mount we know the new root
195 * fields are valid.
196 */
197 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
198
199 write_extent_buffer(l, item, ptr, sizeof(*item));
200 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
201out:
202 btrfs_free_path(path);
203 return ret;
204}
205
206int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
207 const struct btrfs_key *key, struct btrfs_root_item *item)
208{
209 /*
210 * Make sure generation v1 and v2 match. See update_root for details.
211 */
212 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
213 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
214}
215
216int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
217{
218 struct btrfs_root *tree_root = fs_info->tree_root;
219 struct extent_buffer *leaf;
220 struct btrfs_path *path;
221 struct btrfs_key key;
222 struct btrfs_root *root;
223 int err = 0;
224 int ret;
225
226 path = btrfs_alloc_path();
227 if (!path)
228 return -ENOMEM;
229
230 key.objectid = BTRFS_ORPHAN_OBJECTID;
231 key.type = BTRFS_ORPHAN_ITEM_KEY;
232 key.offset = 0;
233
234 while (1) {
235 u64 root_objectid;
236
237 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
238 if (ret < 0) {
239 err = ret;
240 break;
241 }
242
243 leaf = path->nodes[0];
244 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
245 ret = btrfs_next_leaf(tree_root, path);
246 if (ret < 0)
247 err = ret;
248 if (ret != 0)
249 break;
250 leaf = path->nodes[0];
251 }
252
253 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
254 btrfs_release_path(path);
255
256 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
257 key.type != BTRFS_ORPHAN_ITEM_KEY)
258 break;
259
260 root_objectid = key.offset;
261 key.offset++;
262
263 root = btrfs_get_fs_root(fs_info, root_objectid, false);
264 err = PTR_ERR_OR_ZERO(root);
265 if (err && err != -ENOENT) {
266 break;
267 } else if (err == -ENOENT) {
268 struct btrfs_trans_handle *trans;
269
270 btrfs_release_path(path);
271
272 trans = btrfs_join_transaction(tree_root);
273 if (IS_ERR(trans)) {
274 err = PTR_ERR(trans);
275 btrfs_handle_fs_error(fs_info, err,
276 "Failed to start trans to delete orphan item");
277 break;
278 }
279 err = btrfs_del_orphan_item(trans, tree_root,
280 root_objectid);
281 btrfs_end_transaction(trans);
282 if (err) {
283 btrfs_handle_fs_error(fs_info, err,
284 "Failed to delete root orphan item");
285 break;
286 }
287 continue;
288 }
289
290 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
291 if (btrfs_root_refs(&root->root_item) == 0) {
292 struct btrfs_key drop_key;
293
294 btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
295 /*
296 * If we have a non-zero drop_progress then we know we
297 * made it partly through deleting this snapshot, and
298 * thus we need to make sure we block any balance from
299 * happening until this snapshot is completely dropped.
300 */
301 if (drop_key.objectid != 0 || drop_key.type != 0 ||
302 drop_key.offset != 0) {
303 set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
304 set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
305 }
306
307 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
308 btrfs_add_dead_root(root);
309 }
310 btrfs_put_root(root);
311 }
312
313 btrfs_free_path(path);
314 return err;
315}
316
317/* drop the root item for 'key' from the tree root */
318int btrfs_del_root(struct btrfs_trans_handle *trans,
319 const struct btrfs_key *key)
320{
321 struct btrfs_root *root = trans->fs_info->tree_root;
322 struct btrfs_path *path;
323 int ret;
324
325 path = btrfs_alloc_path();
326 if (!path)
327 return -ENOMEM;
328 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
329 if (ret < 0)
330 goto out;
331 if (ret != 0) {
332 /* The root must exist but we did not find it by the key. */
333 ret = -EUCLEAN;
334 goto out;
335 }
336
337 ret = btrfs_del_item(trans, root, path);
338out:
339 btrfs_free_path(path);
340 return ret;
341}
342
343int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
344 u64 ref_id, u64 dirid, u64 *sequence,
345 const struct fscrypt_str *name)
346{
347 struct btrfs_root *tree_root = trans->fs_info->tree_root;
348 struct btrfs_path *path;
349 struct btrfs_root_ref *ref;
350 struct extent_buffer *leaf;
351 struct btrfs_key key;
352 unsigned long ptr;
353 int ret;
354
355 path = btrfs_alloc_path();
356 if (!path)
357 return -ENOMEM;
358
359 key.objectid = root_id;
360 key.type = BTRFS_ROOT_BACKREF_KEY;
361 key.offset = ref_id;
362again:
363 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
364 if (ret < 0) {
365 goto out;
366 } else if (ret == 0) {
367 leaf = path->nodes[0];
368 ref = btrfs_item_ptr(leaf, path->slots[0],
369 struct btrfs_root_ref);
370 ptr = (unsigned long)(ref + 1);
371 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
372 (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
373 memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
374 ret = -ENOENT;
375 goto out;
376 }
377 *sequence = btrfs_root_ref_sequence(leaf, ref);
378
379 ret = btrfs_del_item(trans, tree_root, path);
380 if (ret)
381 goto out;
382 } else {
383 ret = -ENOENT;
384 goto out;
385 }
386
387 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
388 btrfs_release_path(path);
389 key.objectid = ref_id;
390 key.type = BTRFS_ROOT_REF_KEY;
391 key.offset = root_id;
392 goto again;
393 }
394
395out:
396 btrfs_free_path(path);
397 return ret;
398}
399
400/*
401 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
402 * or BTRFS_ROOT_BACKREF_KEY.
403 *
404 * The dirid, sequence, name and name_len refer to the directory entry
405 * that is referencing the root.
406 *
407 * For a forward ref, the root_id is the id of the tree referencing
408 * the root and ref_id is the id of the subvol or snapshot.
409 *
410 * For a back ref the root_id is the id of the subvol or snapshot and
411 * ref_id is the id of the tree referencing it.
412 *
413 * Will return 0, -ENOMEM, or anything from the CoW path
414 */
415int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
416 u64 ref_id, u64 dirid, u64 sequence,
417 const struct fscrypt_str *name)
418{
419 struct btrfs_root *tree_root = trans->fs_info->tree_root;
420 struct btrfs_key key;
421 int ret;
422 struct btrfs_path *path;
423 struct btrfs_root_ref *ref;
424 struct extent_buffer *leaf;
425 unsigned long ptr;
426
427 path = btrfs_alloc_path();
428 if (!path)
429 return -ENOMEM;
430
431 key.objectid = root_id;
432 key.type = BTRFS_ROOT_BACKREF_KEY;
433 key.offset = ref_id;
434again:
435 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
436 sizeof(*ref) + name->len);
437 if (ret) {
438 btrfs_abort_transaction(trans, ret);
439 btrfs_free_path(path);
440 return ret;
441 }
442
443 leaf = path->nodes[0];
444 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
445 btrfs_set_root_ref_dirid(leaf, ref, dirid);
446 btrfs_set_root_ref_sequence(leaf, ref, sequence);
447 btrfs_set_root_ref_name_len(leaf, ref, name->len);
448 ptr = (unsigned long)(ref + 1);
449 write_extent_buffer(leaf, name->name, ptr, name->len);
450 btrfs_mark_buffer_dirty(trans, leaf);
451
452 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
453 btrfs_release_path(path);
454 key.objectid = ref_id;
455 key.type = BTRFS_ROOT_REF_KEY;
456 key.offset = root_id;
457 goto again;
458 }
459
460 btrfs_free_path(path);
461 return 0;
462}
463
464/*
465 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
466 * for subvolumes. To work around this problem, we steal a bit from
467 * root_item->inode_item->flags, and use it to indicate if those fields
468 * have been properly initialized.
469 */
470void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
471{
472 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
473
474 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
475 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
476 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
477 btrfs_set_root_flags(root_item, 0);
478 btrfs_set_root_limit(root_item, 0);
479 }
480}
481
482void btrfs_update_root_times(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484{
485 struct btrfs_root_item *item = &root->root_item;
486 struct timespec64 ct;
487
488 ktime_get_real_ts64(&ct);
489 spin_lock(&root->root_item_lock);
490 btrfs_set_root_ctransid(item, trans->transid);
491 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
492 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
493 spin_unlock(&root->root_item_lock);
494}
495
496/*
497 * Reserve space for subvolume operation.
498 *
499 * root: the root of the parent directory
500 * rsv: block reservation
501 * items: the number of items that we need do reservation
502 * use_global_rsv: allow fallback to the global block reservation
503 *
504 * This function is used to reserve the space for snapshot/subvolume
505 * creation and deletion. Those operations are different with the
506 * common file/directory operations, they change two fs/file trees
507 * and root tree, the number of items that the qgroup reserves is
508 * different with the free space reservation. So we can not use
509 * the space reservation mechanism in start_transaction().
510 */
511int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
512 struct btrfs_block_rsv *rsv, int items,
513 bool use_global_rsv)
514{
515 u64 qgroup_num_bytes = 0;
516 u64 num_bytes;
517 int ret;
518 struct btrfs_fs_info *fs_info = root->fs_info;
519 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
520
521 if (btrfs_qgroup_enabled(fs_info)) {
522 /* One for parent inode, two for dir entries */
523 qgroup_num_bytes = 3 * fs_info->nodesize;
524 ret = btrfs_qgroup_reserve_meta_prealloc(root,
525 qgroup_num_bytes, true,
526 false);
527 if (ret)
528 return ret;
529 }
530
531 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
532 rsv->space_info = btrfs_find_space_info(fs_info,
533 BTRFS_BLOCK_GROUP_METADATA);
534 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
535 BTRFS_RESERVE_FLUSH_ALL);
536
537 if (ret == -ENOSPC && use_global_rsv)
538 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
539
540 if (ret && qgroup_num_bytes)
541 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
542
543 if (!ret) {
544 spin_lock(&rsv->lock);
545 rsv->qgroup_rsv_reserved += qgroup_num_bytes;
546 spin_unlock(&rsv->lock);
547 }
548 return ret;
549}