Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/err.h>
 20#include <linux/uuid.h>
 21#include "ctree.h"
 22#include "transaction.h"
 23#include "disk-io.h"
 24#include "print-tree.h"
 25
 26/*
 27 * Read a root item from the tree. In case we detect a root item smaller then
 28 * sizeof(root_item), we know it's an old version of the root structure and
 29 * initialize all new fields to zero. The same happens if we detect mismatching
 30 * generation numbers as then we know the root was once mounted with an older
 31 * kernel that was not aware of the root item structure change.
 32 */
 33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 34				struct btrfs_root_item *item)
 35{
 36	uuid_le uuid;
 37	int len;
 38	int need_reset = 0;
 39
 40	len = btrfs_item_size_nr(eb, slot);
 41	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 42			min_t(int, len, (int)sizeof(*item)));
 43	if (len < sizeof(*item))
 44		need_reset = 1;
 45	if (!need_reset && btrfs_root_generation(item)
 46		!= btrfs_root_generation_v2(item)) {
 47		if (btrfs_root_generation_v2(item) != 0) {
 48			btrfs_warn(eb->fs_info,
 49					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 50		}
 51		need_reset = 1;
 52	}
 53	if (need_reset) {
 54		memset(&item->generation_v2, 0,
 55			sizeof(*item) - offsetof(struct btrfs_root_item,
 56					generation_v2));
 57
 58		uuid_le_gen(&uuid);
 59		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 60	}
 61}
 62
 63/*
 64 * btrfs_find_root - lookup the root by the key.
 65 * root: the root of the root tree
 66 * search_key: the key to search
 67 * path: the path we search
 68 * root_item: the root item of the tree we look for
 69 * root_key: the root key of the tree we look for
 70 *
 71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 72 * of the search key, just lookup the root with the highest offset for a
 73 * given objectid.
 74 *
 75 * If we find something return 0, otherwise > 0, < 0 on error.
 76 */
 77int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
 78		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 79		    struct btrfs_key *root_key)
 80{
 
 
 81	struct btrfs_key found_key;
 82	struct extent_buffer *l;
 83	int ret;
 84	int slot;
 85
 86	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 
 
 
 
 
 
 
 87	if (ret < 0)
 88		return ret;
 89
 90	if (search_key->offset != -1ULL) {	/* the search key is exact */
 91		if (ret > 0)
 92			goto out;
 93	} else {
 94		BUG_ON(ret == 0);		/* Logical error */
 95		if (path->slots[0] == 0)
 96			goto out;
 97		path->slots[0]--;
 98		ret = 0;
 99	}
100
101	l = path->nodes[0];
102	slot = path->slots[0];
103
104	btrfs_item_key_to_cpu(l, &found_key, slot);
105	if (found_key.objectid != search_key->objectid ||
106	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
107		ret = 1;
108		goto out;
109	}
110
111	if (root_item)
112		btrfs_read_root_item(l, slot, root_item);
113	if (root_key)
114		memcpy(root_key, &found_key, sizeof(found_key));
 
115out:
116	btrfs_release_path(path);
117	return ret;
118}
119
120void btrfs_set_root_node(struct btrfs_root_item *item,
121			 struct extent_buffer *node)
122{
123	btrfs_set_root_bytenr(item, node->start);
124	btrfs_set_root_level(item, btrfs_header_level(node));
125	btrfs_set_root_generation(item, btrfs_header_generation(node));
126}
127
128/*
129 * copy the data in 'item' into the btree
130 */
131int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
132		      *root, struct btrfs_key *key, struct btrfs_root_item
133		      *item)
134{
135	struct btrfs_fs_info *fs_info = root->fs_info;
136	struct btrfs_path *path;
137	struct extent_buffer *l;
138	int ret;
139	int slot;
140	unsigned long ptr;
141	u32 old_len;
142
143	path = btrfs_alloc_path();
144	if (!path)
145		return -ENOMEM;
146
147	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
148	if (ret < 0) {
149		btrfs_abort_transaction(trans, ret);
150		goto out;
151	}
152
153	if (ret != 0) {
154		btrfs_print_leaf(fs_info, path->nodes[0]);
155		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
156			   key->objectid, key->type, key->offset);
 
157		BUG_ON(1);
158	}
159
160	l = path->nodes[0];
161	slot = path->slots[0];
162	ptr = btrfs_item_ptr_offset(l, slot);
163	old_len = btrfs_item_size_nr(l, slot);
164
165	/*
166	 * If this is the first time we update the root item which originated
167	 * from an older kernel, we need to enlarge the item size to make room
168	 * for the added fields.
169	 */
170	if (old_len < sizeof(*item)) {
171		btrfs_release_path(path);
172		ret = btrfs_search_slot(trans, root, key, path,
173				-1, 1);
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178
179		ret = btrfs_del_item(trans, root, path);
180		if (ret < 0) {
181			btrfs_abort_transaction(trans, ret);
182			goto out;
183		}
184		btrfs_release_path(path);
185		ret = btrfs_insert_empty_item(trans, root, path,
186				key, sizeof(*item));
187		if (ret < 0) {
188			btrfs_abort_transaction(trans, ret);
189			goto out;
190		}
191		l = path->nodes[0];
192		slot = path->slots[0];
193		ptr = btrfs_item_ptr_offset(l, slot);
194	}
195
196	/*
197	 * Update generation_v2 so at the next mount we know the new root
198	 * fields are valid.
199	 */
200	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
201
202	write_extent_buffer(l, item, ptr, sizeof(*item));
203	btrfs_mark_buffer_dirty(path->nodes[0]);
204out:
205	btrfs_free_path(path);
206	return ret;
207}
208
209int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
210		      struct btrfs_key *key, struct btrfs_root_item *item)
211{
212	/*
213	 * Make sure generation v1 and v2 match. See update_root for details.
214	 */
215	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
216	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
217}
218
219int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220{
221	struct btrfs_root *tree_root = fs_info->tree_root;
222	struct extent_buffer *leaf;
223	struct btrfs_path *path;
224	struct btrfs_key key;
225	struct btrfs_key root_key;
226	struct btrfs_root *root;
227	int err = 0;
228	int ret;
229	bool can_recover = true;
230
231	if (fs_info->sb->s_flags & MS_RDONLY)
232		can_recover = false;
233
234	path = btrfs_alloc_path();
235	if (!path)
236		return -ENOMEM;
237
238	key.objectid = BTRFS_ORPHAN_OBJECTID;
239	key.type = BTRFS_ORPHAN_ITEM_KEY;
240	key.offset = 0;
241
242	root_key.type = BTRFS_ROOT_ITEM_KEY;
243	root_key.offset = (u64)-1;
244
245	while (1) {
246		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
247		if (ret < 0) {
248			err = ret;
249			break;
250		}
251
252		leaf = path->nodes[0];
253		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
254			ret = btrfs_next_leaf(tree_root, path);
255			if (ret < 0)
256				err = ret;
257			if (ret != 0)
258				break;
259			leaf = path->nodes[0];
260		}
261
262		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
263		btrfs_release_path(path);
264
265		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
266		    key.type != BTRFS_ORPHAN_ITEM_KEY)
267			break;
268
269		root_key.objectid = key.offset;
270		key.offset++;
271
272		/*
273		 * The root might have been inserted already, as before we look
274		 * for orphan roots, log replay might have happened, which
275		 * triggers a transaction commit and qgroup accounting, which
276		 * in turn reads and inserts fs roots while doing backref
277		 * walking.
278		 */
279		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
280		if (root) {
281			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
282					  &root->state));
283			if (btrfs_root_refs(&root->root_item) == 0)
284				btrfs_add_dead_root(root);
285			continue;
286		}
287
288		root = btrfs_read_fs_root(tree_root, &root_key);
289		err = PTR_ERR_OR_ZERO(root);
290		if (err && err != -ENOENT) {
291			break;
292		} else if (err == -ENOENT) {
293			struct btrfs_trans_handle *trans;
294
295			btrfs_release_path(path);
296
297			trans = btrfs_join_transaction(tree_root);
298			if (IS_ERR(trans)) {
299				err = PTR_ERR(trans);
300				btrfs_handle_fs_error(fs_info, err,
301					    "Failed to start trans to delete orphan item");
302				break;
303			}
304			err = btrfs_del_orphan_item(trans, tree_root,
305						    root_key.objectid);
306			btrfs_end_transaction(trans);
307			if (err) {
308				btrfs_handle_fs_error(fs_info, err,
309					    "Failed to delete root orphan item");
310				break;
311			}
312			continue;
313		}
314
315		err = btrfs_init_fs_root(root);
316		if (err) {
317			btrfs_free_fs_root(root);
318			break;
319		}
320
321		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
322
323		err = btrfs_insert_fs_root(fs_info, root);
324		if (err) {
325			BUG_ON(err == -EEXIST);
326			btrfs_free_fs_root(root);
327			break;
328		}
329
330		if (btrfs_root_refs(&root->root_item) == 0)
331			btrfs_add_dead_root(root);
332	}
333
334	btrfs_free_path(path);
335	return err;
336}
337
338/* drop the root item for 'key' from 'root' */
339int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
340		   struct btrfs_key *key)
341{
342	struct btrfs_path *path;
343	int ret;
 
 
344
345	path = btrfs_alloc_path();
346	if (!path)
347		return -ENOMEM;
348	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
349	if (ret < 0)
350		goto out;
351
352	BUG_ON(ret != 0);
 
 
353
354	ret = btrfs_del_item(trans, root, path);
355out:
356	btrfs_free_path(path);
357	return ret;
358}
359
360int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
361		       struct btrfs_fs_info *fs_info,
362		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
363		       const char *name, int name_len)
364
365{
366	struct btrfs_root *tree_root = fs_info->tree_root;
367	struct btrfs_path *path;
368	struct btrfs_root_ref *ref;
369	struct extent_buffer *leaf;
370	struct btrfs_key key;
371	unsigned long ptr;
372	int err = 0;
373	int ret;
374
375	path = btrfs_alloc_path();
376	if (!path)
377		return -ENOMEM;
378
379	key.objectid = root_id;
380	key.type = BTRFS_ROOT_BACKREF_KEY;
381	key.offset = ref_id;
382again:
383	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
384	BUG_ON(ret < 0);
385	if (ret == 0) {
386		leaf = path->nodes[0];
387		ref = btrfs_item_ptr(leaf, path->slots[0],
388				     struct btrfs_root_ref);
389
390		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
391		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
392		ptr = (unsigned long)(ref + 1);
393		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
394		*sequence = btrfs_root_ref_sequence(leaf, ref);
395
396		ret = btrfs_del_item(trans, tree_root, path);
397		if (ret) {
398			err = ret;
399			goto out;
400		}
401	} else
402		err = -ENOENT;
403
404	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
405		btrfs_release_path(path);
406		key.objectid = ref_id;
407		key.type = BTRFS_ROOT_REF_KEY;
408		key.offset = root_id;
409		goto again;
410	}
411
412out:
413	btrfs_free_path(path);
414	return err;
415}
416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417/*
418 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
419 * or BTRFS_ROOT_BACKREF_KEY.
420 *
421 * The dirid, sequence, name and name_len refer to the directory entry
422 * that is referencing the root.
423 *
424 * For a forward ref, the root_id is the id of the tree referencing
425 * the root and ref_id is the id of the subvol  or snapshot.
426 *
427 * For a back ref the root_id is the id of the subvol or snapshot and
428 * ref_id is the id of the tree referencing it.
429 *
430 * Will return 0, -ENOMEM, or anything from the CoW path
431 */
432int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
433		       struct btrfs_fs_info *fs_info,
434		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
435		       const char *name, int name_len)
436{
437	struct btrfs_root *tree_root = fs_info->tree_root;
438	struct btrfs_key key;
439	int ret;
440	struct btrfs_path *path;
441	struct btrfs_root_ref *ref;
442	struct extent_buffer *leaf;
443	unsigned long ptr;
444
445	path = btrfs_alloc_path();
446	if (!path)
447		return -ENOMEM;
448
449	key.objectid = root_id;
450	key.type = BTRFS_ROOT_BACKREF_KEY;
451	key.offset = ref_id;
452again:
453	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
454				      sizeof(*ref) + name_len);
455	if (ret) {
456		btrfs_abort_transaction(trans, ret);
457		btrfs_free_path(path);
458		return ret;
459	}
460
461	leaf = path->nodes[0];
462	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
463	btrfs_set_root_ref_dirid(leaf, ref, dirid);
464	btrfs_set_root_ref_sequence(leaf, ref, sequence);
465	btrfs_set_root_ref_name_len(leaf, ref, name_len);
466	ptr = (unsigned long)(ref + 1);
467	write_extent_buffer(leaf, name, ptr, name_len);
468	btrfs_mark_buffer_dirty(leaf);
469
470	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
471		btrfs_release_path(path);
472		key.objectid = ref_id;
473		key.type = BTRFS_ROOT_REF_KEY;
474		key.offset = root_id;
475		goto again;
476	}
477
478	btrfs_free_path(path);
479	return 0;
480}
481
482/*
483 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
484 * for subvolumes. To work around this problem, we steal a bit from
485 * root_item->inode_item->flags, and use it to indicate if those fields
486 * have been properly initialized.
487 */
488void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
489{
490	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
491
492	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
493		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
494		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
495		btrfs_set_root_flags(root_item, 0);
496		btrfs_set_root_limit(root_item, 0);
497	}
498}
499
500void btrfs_update_root_times(struct btrfs_trans_handle *trans,
501			     struct btrfs_root *root)
502{
503	struct btrfs_root_item *item = &root->root_item;
504	struct timespec ct = current_fs_time(root->fs_info->sb);
505
506	spin_lock(&root->root_item_lock);
507	btrfs_set_root_ctransid(item, trans->transid);
508	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
509	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
510	spin_unlock(&root->root_item_lock);
511}
v3.5.6
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 
 
 19#include "ctree.h"
 20#include "transaction.h"
 21#include "disk-io.h"
 22#include "print-tree.h"
 23
 24/*
 25 * lookup the root with the highest offset for a given objectid.  The key we do
 26 * find is copied into 'key'.  If we find something return 0, otherwise 1, < 0
 27 * on error.
 
 
 28 */
 29int btrfs_find_last_root(struct btrfs_root *root, u64 objectid,
 30			struct btrfs_root_item *item, struct btrfs_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	struct btrfs_path *path;
 33	struct btrfs_key search_key;
 34	struct btrfs_key found_key;
 35	struct extent_buffer *l;
 36	int ret;
 37	int slot;
 38
 39	search_key.objectid = objectid;
 40	search_key.type = BTRFS_ROOT_ITEM_KEY;
 41	search_key.offset = (u64)-1;
 42
 43	path = btrfs_alloc_path();
 44	if (!path)
 45		return -ENOMEM;
 46	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 47	if (ret < 0)
 48		goto out;
 49
 50	BUG_ON(ret == 0);
 51	if (path->slots[0] == 0) {
 52		ret = 1;
 53		goto out;
 
 
 
 
 
 54	}
 
 55	l = path->nodes[0];
 56	slot = path->slots[0] - 1;
 
 57	btrfs_item_key_to_cpu(l, &found_key, slot);
 58	if (found_key.objectid != objectid ||
 59	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 60		ret = 1;
 61		goto out;
 62	}
 63	if (item)
 64		read_extent_buffer(l, item, btrfs_item_ptr_offset(l, slot),
 65				   sizeof(*item));
 66	if (key)
 67		memcpy(key, &found_key, sizeof(found_key));
 68	ret = 0;
 69out:
 70	btrfs_free_path(path);
 71	return ret;
 72}
 73
 74void btrfs_set_root_node(struct btrfs_root_item *item,
 75			 struct extent_buffer *node)
 76{
 77	btrfs_set_root_bytenr(item, node->start);
 78	btrfs_set_root_level(item, btrfs_header_level(node));
 79	btrfs_set_root_generation(item, btrfs_header_generation(node));
 80}
 81
 82/*
 83 * copy the data in 'item' into the btree
 84 */
 85int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 86		      *root, struct btrfs_key *key, struct btrfs_root_item
 87		      *item)
 88{
 
 89	struct btrfs_path *path;
 90	struct extent_buffer *l;
 91	int ret;
 92	int slot;
 93	unsigned long ptr;
 
 94
 95	path = btrfs_alloc_path();
 96	if (!path)
 97		return -ENOMEM;
 98
 99	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
100	if (ret < 0) {
101		btrfs_abort_transaction(trans, root, ret);
102		goto out;
103	}
104
105	if (ret != 0) {
106		btrfs_print_leaf(root, path->nodes[0]);
107		printk(KERN_CRIT "unable to update root key %llu %u %llu\n",
108		       (unsigned long long)key->objectid, key->type,
109		       (unsigned long long)key->offset);
110		BUG_ON(1);
111	}
112
113	l = path->nodes[0];
114	slot = path->slots[0];
115	ptr = btrfs_item_ptr_offset(l, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116	write_extent_buffer(l, item, ptr, sizeof(*item));
117	btrfs_mark_buffer_dirty(path->nodes[0]);
118out:
119	btrfs_free_path(path);
120	return ret;
121}
122
123int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
124		      struct btrfs_key *key, struct btrfs_root_item *item)
125{
 
 
 
 
126	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
127}
128
129/*
130 * at mount time we want to find all the old transaction snapshots that were in
131 * the process of being deleted if we crashed.  This is any root item with an
132 * offset lower than the latest root.  They need to be queued for deletion to
133 * finish what was happening when we crashed.
134 */
135int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid)
136{
137	struct btrfs_root *dead_root;
138	struct btrfs_root_item *ri;
139	struct btrfs_key key;
140	struct btrfs_key found_key;
141	struct btrfs_path *path;
142	int ret;
143	u32 nritems;
144	struct extent_buffer *leaf;
145	int slot;
146
147	key.objectid = objectid;
148	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
149	key.offset = 0;
150	path = btrfs_alloc_path();
151	if (!path)
152		return -ENOMEM;
153
154again:
155	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
156	if (ret < 0)
157		goto err;
158	while (1) {
159		leaf = path->nodes[0];
160		nritems = btrfs_header_nritems(leaf);
161		slot = path->slots[0];
162		if (slot >= nritems) {
163			ret = btrfs_next_leaf(root, path);
164			if (ret)
165				break;
166			leaf = path->nodes[0];
167			nritems = btrfs_header_nritems(leaf);
168			slot = path->slots[0];
169		}
170		btrfs_item_key_to_cpu(leaf, &key, slot);
171		if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY)
172			goto next;
173
174		if (key.objectid < objectid)
175			goto next;
176
177		if (key.objectid > objectid)
178			break;
179
180		ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
181		if (btrfs_disk_root_refs(leaf, ri) != 0)
182			goto next;
183
184		memcpy(&found_key, &key, sizeof(key));
185		key.offset++;
186		btrfs_release_path(path);
187		dead_root =
188			btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
189						    &found_key);
190		if (IS_ERR(dead_root)) {
191			ret = PTR_ERR(dead_root);
192			goto err;
193		}
194
195		ret = btrfs_add_dead_root(dead_root);
196		if (ret)
197			goto err;
198		goto again;
199next:
200		slot++;
201		path->slots[0]++;
202	}
203	ret = 0;
204err:
205	btrfs_free_path(path);
206	return ret;
207}
208
209int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
210{
 
211	struct extent_buffer *leaf;
212	struct btrfs_path *path;
213	struct btrfs_key key;
214	struct btrfs_key root_key;
215	struct btrfs_root *root;
216	int err = 0;
217	int ret;
 
 
 
 
218
219	path = btrfs_alloc_path();
220	if (!path)
221		return -ENOMEM;
222
223	key.objectid = BTRFS_ORPHAN_OBJECTID;
224	key.type = BTRFS_ORPHAN_ITEM_KEY;
225	key.offset = 0;
226
227	root_key.type = BTRFS_ROOT_ITEM_KEY;
228	root_key.offset = (u64)-1;
229
230	while (1) {
231		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
232		if (ret < 0) {
233			err = ret;
234			break;
235		}
236
237		leaf = path->nodes[0];
238		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
239			ret = btrfs_next_leaf(tree_root, path);
240			if (ret < 0)
241				err = ret;
242			if (ret != 0)
243				break;
244			leaf = path->nodes[0];
245		}
246
247		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
248		btrfs_release_path(path);
249
250		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
251		    key.type != BTRFS_ORPHAN_ITEM_KEY)
252			break;
253
254		root_key.objectid = key.offset;
255		key.offset++;
256
257		root = btrfs_read_fs_root_no_name(tree_root->fs_info,
258						  &root_key);
259		if (!IS_ERR(root))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260			continue;
 
261
262		ret = PTR_ERR(root);
263		if (ret != -ENOENT) {
264			err = ret;
265			break;
266		}
267
268		ret = btrfs_find_dead_roots(tree_root, root_key.objectid);
269		if (ret) {
270			err = ret;
 
 
 
271			break;
272		}
 
 
 
273	}
274
275	btrfs_free_path(path);
276	return err;
277}
278
279/* drop the root item for 'key' from 'root' */
280int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
281		   struct btrfs_key *key)
282{
283	struct btrfs_path *path;
284	int ret;
285	struct btrfs_root_item *ri;
286	struct extent_buffer *leaf;
287
288	path = btrfs_alloc_path();
289	if (!path)
290		return -ENOMEM;
291	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
292	if (ret < 0)
293		goto out;
294
295	BUG_ON(ret != 0);
296	leaf = path->nodes[0];
297	ri = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_item);
298
299	ret = btrfs_del_item(trans, root, path);
300out:
301	btrfs_free_path(path);
302	return ret;
303}
304
305int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
306		       struct btrfs_root *tree_root,
307		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
308		       const char *name, int name_len)
309
310{
 
311	struct btrfs_path *path;
312	struct btrfs_root_ref *ref;
313	struct extent_buffer *leaf;
314	struct btrfs_key key;
315	unsigned long ptr;
316	int err = 0;
317	int ret;
318
319	path = btrfs_alloc_path();
320	if (!path)
321		return -ENOMEM;
322
323	key.objectid = root_id;
324	key.type = BTRFS_ROOT_BACKREF_KEY;
325	key.offset = ref_id;
326again:
327	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
328	BUG_ON(ret < 0);
329	if (ret == 0) {
330		leaf = path->nodes[0];
331		ref = btrfs_item_ptr(leaf, path->slots[0],
332				     struct btrfs_root_ref);
333
334		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
335		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
336		ptr = (unsigned long)(ref + 1);
337		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
338		*sequence = btrfs_root_ref_sequence(leaf, ref);
339
340		ret = btrfs_del_item(trans, tree_root, path);
341		if (ret) {
342			err = ret;
343			goto out;
344		}
345	} else
346		err = -ENOENT;
347
348	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
349		btrfs_release_path(path);
350		key.objectid = ref_id;
351		key.type = BTRFS_ROOT_REF_KEY;
352		key.offset = root_id;
353		goto again;
354	}
355
356out:
357	btrfs_free_path(path);
358	return err;
359}
360
361int btrfs_find_root_ref(struct btrfs_root *tree_root,
362		   struct btrfs_path *path,
363		   u64 root_id, u64 ref_id)
364{
365	struct btrfs_key key;
366	int ret;
367
368	key.objectid = root_id;
369	key.type = BTRFS_ROOT_REF_KEY;
370	key.offset = ref_id;
371
372	ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
373	return ret;
374}
375
376/*
377 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
378 * or BTRFS_ROOT_BACKREF_KEY.
379 *
380 * The dirid, sequence, name and name_len refer to the directory entry
381 * that is referencing the root.
382 *
383 * For a forward ref, the root_id is the id of the tree referencing
384 * the root and ref_id is the id of the subvol  or snapshot.
385 *
386 * For a back ref the root_id is the id of the subvol or snapshot and
387 * ref_id is the id of the tree referencing it.
388 *
389 * Will return 0, -ENOMEM, or anything from the CoW path
390 */
391int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
392		       struct btrfs_root *tree_root,
393		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
394		       const char *name, int name_len)
395{
 
396	struct btrfs_key key;
397	int ret;
398	struct btrfs_path *path;
399	struct btrfs_root_ref *ref;
400	struct extent_buffer *leaf;
401	unsigned long ptr;
402
403	path = btrfs_alloc_path();
404	if (!path)
405		return -ENOMEM;
406
407	key.objectid = root_id;
408	key.type = BTRFS_ROOT_BACKREF_KEY;
409	key.offset = ref_id;
410again:
411	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
412				      sizeof(*ref) + name_len);
413	if (ret) {
414		btrfs_abort_transaction(trans, tree_root, ret);
415		btrfs_free_path(path);
416		return ret;
417	}
418
419	leaf = path->nodes[0];
420	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
421	btrfs_set_root_ref_dirid(leaf, ref, dirid);
422	btrfs_set_root_ref_sequence(leaf, ref, sequence);
423	btrfs_set_root_ref_name_len(leaf, ref, name_len);
424	ptr = (unsigned long)(ref + 1);
425	write_extent_buffer(leaf, name, ptr, name_len);
426	btrfs_mark_buffer_dirty(leaf);
427
428	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
429		btrfs_release_path(path);
430		key.objectid = ref_id;
431		key.type = BTRFS_ROOT_REF_KEY;
432		key.offset = root_id;
433		goto again;
434	}
435
436	btrfs_free_path(path);
437	return 0;
438}
439
440/*
441 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
442 * for subvolumes. To work around this problem, we steal a bit from
443 * root_item->inode_item->flags, and use it to indicate if those fields
444 * have been properly initialized.
445 */
446void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
447{
448	u64 inode_flags = le64_to_cpu(root_item->inode.flags);
449
450	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
451		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
452		root_item->inode.flags = cpu_to_le64(inode_flags);
453		root_item->flags = 0;
454		root_item->byte_limit = 0;
455	}
 
 
 
 
 
 
 
 
 
 
 
 
 
456}