Loading...
1/*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7#include <linux/export.h>
8#include <linux/bitops.h>
9#include <linux/etherdevice.h>
10#include <linux/slab.h>
11#include <net/cfg80211.h>
12#include <net/ip.h>
13#include <net/dsfield.h>
14#include <linux/if_vlan.h>
15#include <linux/mpls.h>
16#include <linux/gcd.h>
17#include "core.h"
18#include "rdev-ops.h"
19
20
21struct ieee80211_rate *
22ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 u32 basic_rates, int bitrate)
24{
25 struct ieee80211_rate *result = &sband->bitrates[0];
26 int i;
27
28 for (i = 0; i < sband->n_bitrates; i++) {
29 if (!(basic_rates & BIT(i)))
30 continue;
31 if (sband->bitrates[i].bitrate > bitrate)
32 continue;
33 result = &sband->bitrates[i];
34 }
35
36 return result;
37}
38EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 enum nl80211_bss_scan_width scan_width)
42{
43 struct ieee80211_rate *bitrates;
44 u32 mandatory_rates = 0;
45 enum ieee80211_rate_flags mandatory_flag;
46 int i;
47
48 if (WARN_ON(!sband))
49 return 1;
50
51 if (sband->band == NL80211_BAND_2GHZ) {
52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 else
56 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 } else {
58 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 }
60
61 bitrates = sband->bitrates;
62 for (i = 0; i < sband->n_bitrates; i++)
63 if (bitrates[i].flags & mandatory_flag)
64 mandatory_rates |= BIT(i);
65 return mandatory_rates;
66}
67EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70{
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 if (chan <= 0)
74 return 0; /* not supported */
75 switch (band) {
76 case NL80211_BAND_2GHZ:
77 if (chan == 14)
78 return 2484;
79 else if (chan < 14)
80 return 2407 + chan * 5;
81 break;
82 case NL80211_BAND_5GHZ:
83 if (chan >= 182 && chan <= 196)
84 return 4000 + chan * 5;
85 else
86 return 5000 + chan * 5;
87 break;
88 case NL80211_BAND_60GHZ:
89 if (chan < 5)
90 return 56160 + chan * 2160;
91 break;
92 default:
93 ;
94 }
95 return 0; /* not supported */
96}
97EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99int ieee80211_frequency_to_channel(int freq)
100{
101 /* see 802.11 17.3.8.3.2 and Annex J */
102 if (freq == 2484)
103 return 14;
104 else if (freq < 2484)
105 return (freq - 2407) / 5;
106 else if (freq >= 4910 && freq <= 4980)
107 return (freq - 4000) / 5;
108 else if (freq <= 45000) /* DMG band lower limit */
109 return (freq - 5000) / 5;
110 else if (freq >= 58320 && freq <= 64800)
111 return (freq - 56160) / 2160;
112 else
113 return 0;
114}
115EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
118 int freq)
119{
120 enum nl80211_band band;
121 struct ieee80211_supported_band *sband;
122 int i;
123
124 for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 sband = wiphy->bands[band];
126
127 if (!sband)
128 continue;
129
130 for (i = 0; i < sband->n_channels; i++) {
131 if (sband->channels[i].center_freq == freq)
132 return &sband->channels[i];
133 }
134 }
135
136 return NULL;
137}
138EXPORT_SYMBOL(__ieee80211_get_channel);
139
140static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
141 enum nl80211_band band)
142{
143 int i, want;
144
145 switch (band) {
146 case NL80211_BAND_5GHZ:
147 want = 3;
148 for (i = 0; i < sband->n_bitrates; i++) {
149 if (sband->bitrates[i].bitrate == 60 ||
150 sband->bitrates[i].bitrate == 120 ||
151 sband->bitrates[i].bitrate == 240) {
152 sband->bitrates[i].flags |=
153 IEEE80211_RATE_MANDATORY_A;
154 want--;
155 }
156 }
157 WARN_ON(want);
158 break;
159 case NL80211_BAND_2GHZ:
160 want = 7;
161 for (i = 0; i < sband->n_bitrates; i++) {
162 if (sband->bitrates[i].bitrate == 10) {
163 sband->bitrates[i].flags |=
164 IEEE80211_RATE_MANDATORY_B |
165 IEEE80211_RATE_MANDATORY_G;
166 want--;
167 }
168
169 if (sband->bitrates[i].bitrate == 20 ||
170 sband->bitrates[i].bitrate == 55 ||
171 sband->bitrates[i].bitrate == 110 ||
172 sband->bitrates[i].bitrate == 60 ||
173 sband->bitrates[i].bitrate == 120 ||
174 sband->bitrates[i].bitrate == 240) {
175 sband->bitrates[i].flags |=
176 IEEE80211_RATE_MANDATORY_G;
177 want--;
178 }
179
180 if (sband->bitrates[i].bitrate != 10 &&
181 sband->bitrates[i].bitrate != 20 &&
182 sband->bitrates[i].bitrate != 55 &&
183 sband->bitrates[i].bitrate != 110)
184 sband->bitrates[i].flags |=
185 IEEE80211_RATE_ERP_G;
186 }
187 WARN_ON(want != 0 && want != 3 && want != 6);
188 break;
189 case NL80211_BAND_60GHZ:
190 /* check for mandatory HT MCS 1..4 */
191 WARN_ON(!sband->ht_cap.ht_supported);
192 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
193 break;
194 case NUM_NL80211_BANDS:
195 WARN_ON(1);
196 break;
197 }
198}
199
200void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201{
202 enum nl80211_band band;
203
204 for (band = 0; band < NUM_NL80211_BANDS; band++)
205 if (wiphy->bands[band])
206 set_mandatory_flags_band(wiphy->bands[band], band);
207}
208
209bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210{
211 int i;
212 for (i = 0; i < wiphy->n_cipher_suites; i++)
213 if (cipher == wiphy->cipher_suites[i])
214 return true;
215 return false;
216}
217
218int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
219 struct key_params *params, int key_idx,
220 bool pairwise, const u8 *mac_addr)
221{
222 if (key_idx < 0 || key_idx > 5)
223 return -EINVAL;
224
225 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
226 return -EINVAL;
227
228 if (pairwise && !mac_addr)
229 return -EINVAL;
230
231 switch (params->cipher) {
232 case WLAN_CIPHER_SUITE_TKIP:
233 case WLAN_CIPHER_SUITE_CCMP:
234 case WLAN_CIPHER_SUITE_CCMP_256:
235 case WLAN_CIPHER_SUITE_GCMP:
236 case WLAN_CIPHER_SUITE_GCMP_256:
237 /* Disallow pairwise keys with non-zero index unless it's WEP
238 * or a vendor specific cipher (because current deployments use
239 * pairwise WEP keys with non-zero indices and for vendor
240 * specific ciphers this should be validated in the driver or
241 * hardware level - but 802.11i clearly specifies to use zero)
242 */
243 if (pairwise && key_idx)
244 return -EINVAL;
245 break;
246 case WLAN_CIPHER_SUITE_AES_CMAC:
247 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
249 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
250 /* Disallow BIP (group-only) cipher as pairwise cipher */
251 if (pairwise)
252 return -EINVAL;
253 if (key_idx < 4)
254 return -EINVAL;
255 break;
256 case WLAN_CIPHER_SUITE_WEP40:
257 case WLAN_CIPHER_SUITE_WEP104:
258 if (key_idx > 3)
259 return -EINVAL;
260 default:
261 break;
262 }
263
264 switch (params->cipher) {
265 case WLAN_CIPHER_SUITE_WEP40:
266 if (params->key_len != WLAN_KEY_LEN_WEP40)
267 return -EINVAL;
268 break;
269 case WLAN_CIPHER_SUITE_TKIP:
270 if (params->key_len != WLAN_KEY_LEN_TKIP)
271 return -EINVAL;
272 break;
273 case WLAN_CIPHER_SUITE_CCMP:
274 if (params->key_len != WLAN_KEY_LEN_CCMP)
275 return -EINVAL;
276 break;
277 case WLAN_CIPHER_SUITE_CCMP_256:
278 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
279 return -EINVAL;
280 break;
281 case WLAN_CIPHER_SUITE_GCMP:
282 if (params->key_len != WLAN_KEY_LEN_GCMP)
283 return -EINVAL;
284 break;
285 case WLAN_CIPHER_SUITE_GCMP_256:
286 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
287 return -EINVAL;
288 break;
289 case WLAN_CIPHER_SUITE_WEP104:
290 if (params->key_len != WLAN_KEY_LEN_WEP104)
291 return -EINVAL;
292 break;
293 case WLAN_CIPHER_SUITE_AES_CMAC:
294 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
295 return -EINVAL;
296 break;
297 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
298 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
299 return -EINVAL;
300 break;
301 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
302 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
303 return -EINVAL;
304 break;
305 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
306 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
307 return -EINVAL;
308 break;
309 default:
310 /*
311 * We don't know anything about this algorithm,
312 * allow using it -- but the driver must check
313 * all parameters! We still check below whether
314 * or not the driver supports this algorithm,
315 * of course.
316 */
317 break;
318 }
319
320 if (params->seq) {
321 switch (params->cipher) {
322 case WLAN_CIPHER_SUITE_WEP40:
323 case WLAN_CIPHER_SUITE_WEP104:
324 /* These ciphers do not use key sequence */
325 return -EINVAL;
326 case WLAN_CIPHER_SUITE_TKIP:
327 case WLAN_CIPHER_SUITE_CCMP:
328 case WLAN_CIPHER_SUITE_CCMP_256:
329 case WLAN_CIPHER_SUITE_GCMP:
330 case WLAN_CIPHER_SUITE_GCMP_256:
331 case WLAN_CIPHER_SUITE_AES_CMAC:
332 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
334 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
335 if (params->seq_len != 6)
336 return -EINVAL;
337 break;
338 }
339 }
340
341 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
342 return -EINVAL;
343
344 return 0;
345}
346
347unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348{
349 unsigned int hdrlen = 24;
350
351 if (ieee80211_is_data(fc)) {
352 if (ieee80211_has_a4(fc))
353 hdrlen = 30;
354 if (ieee80211_is_data_qos(fc)) {
355 hdrlen += IEEE80211_QOS_CTL_LEN;
356 if (ieee80211_has_order(fc))
357 hdrlen += IEEE80211_HT_CTL_LEN;
358 }
359 goto out;
360 }
361
362 if (ieee80211_is_mgmt(fc)) {
363 if (ieee80211_has_order(fc))
364 hdrlen += IEEE80211_HT_CTL_LEN;
365 goto out;
366 }
367
368 if (ieee80211_is_ctl(fc)) {
369 /*
370 * ACK and CTS are 10 bytes, all others 16. To see how
371 * to get this condition consider
372 * subtype mask: 0b0000000011110000 (0x00F0)
373 * ACK subtype: 0b0000000011010000 (0x00D0)
374 * CTS subtype: 0b0000000011000000 (0x00C0)
375 * bits that matter: ^^^ (0x00E0)
376 * value of those: 0b0000000011000000 (0x00C0)
377 */
378 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
379 hdrlen = 10;
380 else
381 hdrlen = 16;
382 }
383out:
384 return hdrlen;
385}
386EXPORT_SYMBOL(ieee80211_hdrlen);
387
388unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389{
390 const struct ieee80211_hdr *hdr =
391 (const struct ieee80211_hdr *)skb->data;
392 unsigned int hdrlen;
393
394 if (unlikely(skb->len < 10))
395 return 0;
396 hdrlen = ieee80211_hdrlen(hdr->frame_control);
397 if (unlikely(hdrlen > skb->len))
398 return 0;
399 return hdrlen;
400}
401EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402
403static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404{
405 int ae = flags & MESH_FLAGS_AE;
406 /* 802.11-2012, 8.2.4.7.3 */
407 switch (ae) {
408 default:
409 case 0:
410 return 6;
411 case MESH_FLAGS_AE_A4:
412 return 12;
413 case MESH_FLAGS_AE_A5_A6:
414 return 18;
415 }
416}
417
418unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419{
420 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421}
422EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423
424int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
425 const u8 *addr, enum nl80211_iftype iftype)
426{
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 struct {
429 u8 hdr[ETH_ALEN] __aligned(2);
430 __be16 proto;
431 } payload;
432 struct ethhdr tmp;
433 u16 hdrlen;
434 u8 mesh_flags = 0;
435
436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 return -1;
438
439 hdrlen = ieee80211_hdrlen(hdr->frame_control);
440 if (skb->len < hdrlen + 8)
441 return -1;
442
443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 * header
445 * IEEE 802.11 address fields:
446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 * 0 0 DA SA BSSID n/a
448 * 0 1 DA BSSID SA n/a
449 * 1 0 BSSID SA DA n/a
450 * 1 1 RA TA DA SA
451 */
452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454
455 if (iftype == NL80211_IFTYPE_MESH_POINT)
456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457
458 switch (hdr->frame_control &
459 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
460 case cpu_to_le16(IEEE80211_FCTL_TODS):
461 if (unlikely(iftype != NL80211_IFTYPE_AP &&
462 iftype != NL80211_IFTYPE_AP_VLAN &&
463 iftype != NL80211_IFTYPE_P2P_GO))
464 return -1;
465 break;
466 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
467 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
468 iftype != NL80211_IFTYPE_MESH_POINT &&
469 iftype != NL80211_IFTYPE_AP_VLAN &&
470 iftype != NL80211_IFTYPE_STATION))
471 return -1;
472 if (iftype == NL80211_IFTYPE_MESH_POINT) {
473 if (mesh_flags & MESH_FLAGS_AE_A4)
474 return -1;
475 if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
476 skb_copy_bits(skb, hdrlen +
477 offsetof(struct ieee80211s_hdr, eaddr1),
478 tmp.h_dest, 2 * ETH_ALEN);
479 }
480 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
481 }
482 break;
483 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
484 if ((iftype != NL80211_IFTYPE_STATION &&
485 iftype != NL80211_IFTYPE_P2P_CLIENT &&
486 iftype != NL80211_IFTYPE_MESH_POINT) ||
487 (is_multicast_ether_addr(tmp.h_dest) &&
488 ether_addr_equal(tmp.h_source, addr)))
489 return -1;
490 if (iftype == NL80211_IFTYPE_MESH_POINT) {
491 if (mesh_flags & MESH_FLAGS_AE_A5_A6)
492 return -1;
493 if (mesh_flags & MESH_FLAGS_AE_A4)
494 skb_copy_bits(skb, hdrlen +
495 offsetof(struct ieee80211s_hdr, eaddr1),
496 tmp.h_source, ETH_ALEN);
497 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
498 }
499 break;
500 case cpu_to_le16(0):
501 if (iftype != NL80211_IFTYPE_ADHOC &&
502 iftype != NL80211_IFTYPE_STATION &&
503 iftype != NL80211_IFTYPE_OCB)
504 return -1;
505 break;
506 }
507
508 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
509 tmp.h_proto = payload.proto;
510
511 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
512 tmp.h_proto != htons(ETH_P_AARP) &&
513 tmp.h_proto != htons(ETH_P_IPX)) ||
514 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
515 /* remove RFC1042 or Bridge-Tunnel encapsulation and
516 * replace EtherType */
517 hdrlen += ETH_ALEN + 2;
518 else
519 tmp.h_proto = htons(skb->len - hdrlen);
520
521 pskb_pull(skb, hdrlen);
522
523 if (!ehdr)
524 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
525 memcpy(ehdr, &tmp, sizeof(tmp));
526
527 return 0;
528}
529EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
530
531int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
532 enum nl80211_iftype iftype,
533 const u8 *bssid, bool qos)
534{
535 struct ieee80211_hdr hdr;
536 u16 hdrlen, ethertype;
537 __le16 fc;
538 const u8 *encaps_data;
539 int encaps_len, skip_header_bytes;
540 int nh_pos, h_pos;
541 int head_need;
542
543 if (unlikely(skb->len < ETH_HLEN))
544 return -EINVAL;
545
546 nh_pos = skb_network_header(skb) - skb->data;
547 h_pos = skb_transport_header(skb) - skb->data;
548
549 /* convert Ethernet header to proper 802.11 header (based on
550 * operation mode) */
551 ethertype = (skb->data[12] << 8) | skb->data[13];
552 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
553
554 switch (iftype) {
555 case NL80211_IFTYPE_AP:
556 case NL80211_IFTYPE_AP_VLAN:
557 case NL80211_IFTYPE_P2P_GO:
558 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
559 /* DA BSSID SA */
560 memcpy(hdr.addr1, skb->data, ETH_ALEN);
561 memcpy(hdr.addr2, addr, ETH_ALEN);
562 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
563 hdrlen = 24;
564 break;
565 case NL80211_IFTYPE_STATION:
566 case NL80211_IFTYPE_P2P_CLIENT:
567 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
568 /* BSSID SA DA */
569 memcpy(hdr.addr1, bssid, ETH_ALEN);
570 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
571 memcpy(hdr.addr3, skb->data, ETH_ALEN);
572 hdrlen = 24;
573 break;
574 case NL80211_IFTYPE_OCB:
575 case NL80211_IFTYPE_ADHOC:
576 /* DA SA BSSID */
577 memcpy(hdr.addr1, skb->data, ETH_ALEN);
578 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
579 memcpy(hdr.addr3, bssid, ETH_ALEN);
580 hdrlen = 24;
581 break;
582 default:
583 return -EOPNOTSUPP;
584 }
585
586 if (qos) {
587 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
588 hdrlen += 2;
589 }
590
591 hdr.frame_control = fc;
592 hdr.duration_id = 0;
593 hdr.seq_ctrl = 0;
594
595 skip_header_bytes = ETH_HLEN;
596 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
597 encaps_data = bridge_tunnel_header;
598 encaps_len = sizeof(bridge_tunnel_header);
599 skip_header_bytes -= 2;
600 } else if (ethertype >= ETH_P_802_3_MIN) {
601 encaps_data = rfc1042_header;
602 encaps_len = sizeof(rfc1042_header);
603 skip_header_bytes -= 2;
604 } else {
605 encaps_data = NULL;
606 encaps_len = 0;
607 }
608
609 skb_pull(skb, skip_header_bytes);
610 nh_pos -= skip_header_bytes;
611 h_pos -= skip_header_bytes;
612
613 head_need = hdrlen + encaps_len - skb_headroom(skb);
614
615 if (head_need > 0 || skb_cloned(skb)) {
616 head_need = max(head_need, 0);
617 if (head_need)
618 skb_orphan(skb);
619
620 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
621 return -ENOMEM;
622
623 skb->truesize += head_need;
624 }
625
626 if (encaps_data) {
627 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
628 nh_pos += encaps_len;
629 h_pos += encaps_len;
630 }
631
632 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633
634 nh_pos += hdrlen;
635 h_pos += hdrlen;
636
637 /* Update skb pointers to various headers since this modified frame
638 * is going to go through Linux networking code that may potentially
639 * need things like pointer to IP header. */
640 skb_reset_mac_header(skb);
641 skb_set_network_header(skb, nh_pos);
642 skb_set_transport_header(skb, h_pos);
643
644 return 0;
645}
646EXPORT_SYMBOL(ieee80211_data_from_8023);
647
648static void
649__frame_add_frag(struct sk_buff *skb, struct page *page,
650 void *ptr, int len, int size)
651{
652 struct skb_shared_info *sh = skb_shinfo(skb);
653 int page_offset;
654
655 page_ref_inc(page);
656 page_offset = ptr - page_address(page);
657 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
658}
659
660static void
661__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
662 int offset, int len)
663{
664 struct skb_shared_info *sh = skb_shinfo(skb);
665 const skb_frag_t *frag = &sh->frags[-1];
666 struct page *frag_page;
667 void *frag_ptr;
668 int frag_len, frag_size;
669 int head_size = skb->len - skb->data_len;
670 int cur_len;
671
672 frag_page = virt_to_head_page(skb->head);
673 frag_ptr = skb->data;
674 frag_size = head_size;
675
676 while (offset >= frag_size) {
677 offset -= frag_size;
678 frag++;
679 frag_page = skb_frag_page(frag);
680 frag_ptr = skb_frag_address(frag);
681 frag_size = skb_frag_size(frag);
682 }
683
684 frag_ptr += offset;
685 frag_len = frag_size - offset;
686
687 cur_len = min(len, frag_len);
688
689 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
690 len -= cur_len;
691
692 while (len > 0) {
693 frag++;
694 frag_len = skb_frag_size(frag);
695 cur_len = min(len, frag_len);
696 __frame_add_frag(frame, skb_frag_page(frag),
697 skb_frag_address(frag), cur_len, frag_len);
698 len -= cur_len;
699 }
700}
701
702static struct sk_buff *
703__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
704 int offset, int len, bool reuse_frag)
705{
706 struct sk_buff *frame;
707 int cur_len = len;
708
709 if (skb->len - offset < len)
710 return NULL;
711
712 /*
713 * When reusing framents, copy some data to the head to simplify
714 * ethernet header handling and speed up protocol header processing
715 * in the stack later.
716 */
717 if (reuse_frag)
718 cur_len = min_t(int, len, 32);
719
720 /*
721 * Allocate and reserve two bytes more for payload
722 * alignment since sizeof(struct ethhdr) is 14.
723 */
724 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725 if (!frame)
726 return NULL;
727
728 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
729 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
730
731 len -= cur_len;
732 if (!len)
733 return frame;
734
735 offset += cur_len;
736 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
737
738 return frame;
739}
740
741void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
742 const u8 *addr, enum nl80211_iftype iftype,
743 const unsigned int extra_headroom,
744 const u8 *check_da, const u8 *check_sa)
745{
746 unsigned int hlen = ALIGN(extra_headroom, 4);
747 struct sk_buff *frame = NULL;
748 u16 ethertype;
749 u8 *payload;
750 int offset = 0, remaining;
751 struct ethhdr eth;
752 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
753 bool reuse_skb = false;
754 bool last = false;
755
756 while (!last) {
757 unsigned int subframe_len;
758 int len;
759 u8 padding;
760
761 skb_copy_bits(skb, offset, ð, sizeof(eth));
762 len = ntohs(eth.h_proto);
763 subframe_len = sizeof(struct ethhdr) + len;
764 padding = (4 - subframe_len) & 0x3;
765
766 /* the last MSDU has no padding */
767 remaining = skb->len - offset;
768 if (subframe_len > remaining)
769 goto purge;
770
771 offset += sizeof(struct ethhdr);
772 last = remaining <= subframe_len + padding;
773
774 /* FIXME: should we really accept multicast DA? */
775 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
776 !ether_addr_equal(check_da, eth.h_dest)) ||
777 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
778 offset += len + padding;
779 continue;
780 }
781
782 /* reuse skb for the last subframe */
783 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
784 skb_pull(skb, offset);
785 frame = skb;
786 reuse_skb = true;
787 } else {
788 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
789 reuse_frag);
790 if (!frame)
791 goto purge;
792
793 offset += len + padding;
794 }
795
796 skb_reset_network_header(frame);
797 frame->dev = skb->dev;
798 frame->priority = skb->priority;
799
800 payload = frame->data;
801 ethertype = (payload[6] << 8) | payload[7];
802 if (likely((ether_addr_equal(payload, rfc1042_header) &&
803 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
804 ether_addr_equal(payload, bridge_tunnel_header))) {
805 eth.h_proto = htons(ethertype);
806 skb_pull(frame, ETH_ALEN + 2);
807 }
808
809 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
810 __skb_queue_tail(list, frame);
811 }
812
813 if (!reuse_skb)
814 dev_kfree_skb(skb);
815
816 return;
817
818 purge:
819 __skb_queue_purge(list);
820 dev_kfree_skb(skb);
821}
822EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
823
824/* Given a data frame determine the 802.1p/1d tag to use. */
825unsigned int cfg80211_classify8021d(struct sk_buff *skb,
826 struct cfg80211_qos_map *qos_map)
827{
828 unsigned int dscp;
829 unsigned char vlan_priority;
830
831 /* skb->priority values from 256->263 are magic values to
832 * directly indicate a specific 802.1d priority. This is used
833 * to allow 802.1d priority to be passed directly in from VLAN
834 * tags, etc.
835 */
836 if (skb->priority >= 256 && skb->priority <= 263)
837 return skb->priority - 256;
838
839 if (skb_vlan_tag_present(skb)) {
840 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
841 >> VLAN_PRIO_SHIFT;
842 if (vlan_priority > 0)
843 return vlan_priority;
844 }
845
846 switch (skb->protocol) {
847 case htons(ETH_P_IP):
848 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
849 break;
850 case htons(ETH_P_IPV6):
851 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
852 break;
853 case htons(ETH_P_MPLS_UC):
854 case htons(ETH_P_MPLS_MC): {
855 struct mpls_label mpls_tmp, *mpls;
856
857 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
858 sizeof(*mpls), &mpls_tmp);
859 if (!mpls)
860 return 0;
861
862 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
863 >> MPLS_LS_TC_SHIFT;
864 }
865 case htons(ETH_P_80221):
866 /* 802.21 is always network control traffic */
867 return 7;
868 default:
869 return 0;
870 }
871
872 if (qos_map) {
873 unsigned int i, tmp_dscp = dscp >> 2;
874
875 for (i = 0; i < qos_map->num_des; i++) {
876 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
877 return qos_map->dscp_exception[i].up;
878 }
879
880 for (i = 0; i < 8; i++) {
881 if (tmp_dscp >= qos_map->up[i].low &&
882 tmp_dscp <= qos_map->up[i].high)
883 return i;
884 }
885 }
886
887 return dscp >> 5;
888}
889EXPORT_SYMBOL(cfg80211_classify8021d);
890
891const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
892{
893 const struct cfg80211_bss_ies *ies;
894
895 ies = rcu_dereference(bss->ies);
896 if (!ies)
897 return NULL;
898
899 return cfg80211_find_ie(ie, ies->data, ies->len);
900}
901EXPORT_SYMBOL(ieee80211_bss_get_ie);
902
903void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
904{
905 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
906 struct net_device *dev = wdev->netdev;
907 int i;
908
909 if (!wdev->connect_keys)
910 return;
911
912 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
913 if (!wdev->connect_keys->params[i].cipher)
914 continue;
915 if (rdev_add_key(rdev, dev, i, false, NULL,
916 &wdev->connect_keys->params[i])) {
917 netdev_err(dev, "failed to set key %d\n", i);
918 continue;
919 }
920 if (wdev->connect_keys->def == i)
921 if (rdev_set_default_key(rdev, dev, i, true, true)) {
922 netdev_err(dev, "failed to set defkey %d\n", i);
923 continue;
924 }
925 }
926
927 kzfree(wdev->connect_keys);
928 wdev->connect_keys = NULL;
929}
930
931void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932{
933 struct cfg80211_event *ev;
934 unsigned long flags;
935 const u8 *bssid = NULL;
936
937 spin_lock_irqsave(&wdev->event_lock, flags);
938 while (!list_empty(&wdev->event_list)) {
939 ev = list_first_entry(&wdev->event_list,
940 struct cfg80211_event, list);
941 list_del(&ev->list);
942 spin_unlock_irqrestore(&wdev->event_lock, flags);
943
944 wdev_lock(wdev);
945 switch (ev->type) {
946 case EVENT_CONNECT_RESULT:
947 if (!is_zero_ether_addr(ev->cr.bssid))
948 bssid = ev->cr.bssid;
949 __cfg80211_connect_result(
950 wdev->netdev, bssid,
951 ev->cr.req_ie, ev->cr.req_ie_len,
952 ev->cr.resp_ie, ev->cr.resp_ie_len,
953 ev->cr.status,
954 ev->cr.status == WLAN_STATUS_SUCCESS,
955 ev->cr.bss);
956 break;
957 case EVENT_ROAMED:
958 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
959 ev->rm.req_ie_len, ev->rm.resp_ie,
960 ev->rm.resp_ie_len);
961 break;
962 case EVENT_DISCONNECTED:
963 __cfg80211_disconnected(wdev->netdev,
964 ev->dc.ie, ev->dc.ie_len,
965 ev->dc.reason,
966 !ev->dc.locally_generated);
967 break;
968 case EVENT_IBSS_JOINED:
969 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
970 ev->ij.channel);
971 break;
972 case EVENT_STOPPED:
973 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
974 break;
975 }
976 wdev_unlock(wdev);
977
978 kfree(ev);
979
980 spin_lock_irqsave(&wdev->event_lock, flags);
981 }
982 spin_unlock_irqrestore(&wdev->event_lock, flags);
983}
984
985void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
986{
987 struct wireless_dev *wdev;
988
989 ASSERT_RTNL();
990
991 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
992 cfg80211_process_wdev_events(wdev);
993}
994
995int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
996 struct net_device *dev, enum nl80211_iftype ntype,
997 u32 *flags, struct vif_params *params)
998{
999 int err;
1000 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002 ASSERT_RTNL();
1003
1004 /* don't support changing VLANs, you just re-create them */
1005 if (otype == NL80211_IFTYPE_AP_VLAN)
1006 return -EOPNOTSUPP;
1007
1008 /* cannot change into P2P device or NAN */
1009 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010 ntype == NL80211_IFTYPE_NAN)
1011 return -EOPNOTSUPP;
1012
1013 if (!rdev->ops->change_virtual_intf ||
1014 !(rdev->wiphy.interface_modes & (1 << ntype)))
1015 return -EOPNOTSUPP;
1016
1017 /* if it's part of a bridge, reject changing type to station/ibss */
1018 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019 (ntype == NL80211_IFTYPE_ADHOC ||
1020 ntype == NL80211_IFTYPE_STATION ||
1021 ntype == NL80211_IFTYPE_P2P_CLIENT))
1022 return -EBUSY;
1023
1024 if (ntype != otype) {
1025 dev->ieee80211_ptr->use_4addr = false;
1026 dev->ieee80211_ptr->mesh_id_up_len = 0;
1027 wdev_lock(dev->ieee80211_ptr);
1028 rdev_set_qos_map(rdev, dev, NULL);
1029 wdev_unlock(dev->ieee80211_ptr);
1030
1031 switch (otype) {
1032 case NL80211_IFTYPE_AP:
1033 cfg80211_stop_ap(rdev, dev, true);
1034 break;
1035 case NL80211_IFTYPE_ADHOC:
1036 cfg80211_leave_ibss(rdev, dev, false);
1037 break;
1038 case NL80211_IFTYPE_STATION:
1039 case NL80211_IFTYPE_P2P_CLIENT:
1040 wdev_lock(dev->ieee80211_ptr);
1041 cfg80211_disconnect(rdev, dev,
1042 WLAN_REASON_DEAUTH_LEAVING, true);
1043 wdev_unlock(dev->ieee80211_ptr);
1044 break;
1045 case NL80211_IFTYPE_MESH_POINT:
1046 /* mesh should be handled? */
1047 break;
1048 default:
1049 break;
1050 }
1051
1052 cfg80211_process_rdev_events(rdev);
1053 }
1054
1055 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056
1057 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058
1059 if (!err && params && params->use_4addr != -1)
1060 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061
1062 if (!err) {
1063 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064 switch (ntype) {
1065 case NL80211_IFTYPE_STATION:
1066 if (dev->ieee80211_ptr->use_4addr)
1067 break;
1068 /* fall through */
1069 case NL80211_IFTYPE_OCB:
1070 case NL80211_IFTYPE_P2P_CLIENT:
1071 case NL80211_IFTYPE_ADHOC:
1072 dev->priv_flags |= IFF_DONT_BRIDGE;
1073 break;
1074 case NL80211_IFTYPE_P2P_GO:
1075 case NL80211_IFTYPE_AP:
1076 case NL80211_IFTYPE_AP_VLAN:
1077 case NL80211_IFTYPE_WDS:
1078 case NL80211_IFTYPE_MESH_POINT:
1079 /* bridging OK */
1080 break;
1081 case NL80211_IFTYPE_MONITOR:
1082 /* monitor can't bridge anyway */
1083 break;
1084 case NL80211_IFTYPE_UNSPECIFIED:
1085 case NUM_NL80211_IFTYPES:
1086 /* not happening */
1087 break;
1088 case NL80211_IFTYPE_P2P_DEVICE:
1089 case NL80211_IFTYPE_NAN:
1090 WARN_ON(1);
1091 break;
1092 }
1093 }
1094
1095 if (!err && ntype != otype && netif_running(dev)) {
1096 cfg80211_update_iface_num(rdev, ntype, 1);
1097 cfg80211_update_iface_num(rdev, otype, -1);
1098 }
1099
1100 return err;
1101}
1102
1103static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1104{
1105 static const u32 __mcs2bitrate[] = {
1106 /* control PHY */
1107 [0] = 275,
1108 /* SC PHY */
1109 [1] = 3850,
1110 [2] = 7700,
1111 [3] = 9625,
1112 [4] = 11550,
1113 [5] = 12512, /* 1251.25 mbps */
1114 [6] = 15400,
1115 [7] = 19250,
1116 [8] = 23100,
1117 [9] = 25025,
1118 [10] = 30800,
1119 [11] = 38500,
1120 [12] = 46200,
1121 /* OFDM PHY */
1122 [13] = 6930,
1123 [14] = 8662, /* 866.25 mbps */
1124 [15] = 13860,
1125 [16] = 17325,
1126 [17] = 20790,
1127 [18] = 27720,
1128 [19] = 34650,
1129 [20] = 41580,
1130 [21] = 45045,
1131 [22] = 51975,
1132 [23] = 62370,
1133 [24] = 67568, /* 6756.75 mbps */
1134 /* LP-SC PHY */
1135 [25] = 6260,
1136 [26] = 8340,
1137 [27] = 11120,
1138 [28] = 12510,
1139 [29] = 16680,
1140 [30] = 22240,
1141 [31] = 25030,
1142 };
1143
1144 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145 return 0;
1146
1147 return __mcs2bitrate[rate->mcs];
1148}
1149
1150static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151{
1152 static const u32 base[4][10] = {
1153 { 6500000,
1154 13000000,
1155 19500000,
1156 26000000,
1157 39000000,
1158 52000000,
1159 58500000,
1160 65000000,
1161 78000000,
1162 /* not in the spec, but some devices use this: */
1163 86500000,
1164 },
1165 { 13500000,
1166 27000000,
1167 40500000,
1168 54000000,
1169 81000000,
1170 108000000,
1171 121500000,
1172 135000000,
1173 162000000,
1174 180000000,
1175 },
1176 { 29300000,
1177 58500000,
1178 87800000,
1179 117000000,
1180 175500000,
1181 234000000,
1182 263300000,
1183 292500000,
1184 351000000,
1185 390000000,
1186 },
1187 { 58500000,
1188 117000000,
1189 175500000,
1190 234000000,
1191 351000000,
1192 468000000,
1193 526500000,
1194 585000000,
1195 702000000,
1196 780000000,
1197 },
1198 };
1199 u32 bitrate;
1200 int idx;
1201
1202 if (WARN_ON_ONCE(rate->mcs > 9))
1203 return 0;
1204
1205 switch (rate->bw) {
1206 case RATE_INFO_BW_160:
1207 idx = 3;
1208 break;
1209 case RATE_INFO_BW_80:
1210 idx = 2;
1211 break;
1212 case RATE_INFO_BW_40:
1213 idx = 1;
1214 break;
1215 case RATE_INFO_BW_5:
1216 case RATE_INFO_BW_10:
1217 default:
1218 WARN_ON(1);
1219 /* fall through */
1220 case RATE_INFO_BW_20:
1221 idx = 0;
1222 }
1223
1224 bitrate = base[idx][rate->mcs];
1225 bitrate *= rate->nss;
1226
1227 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228 bitrate = (bitrate / 9) * 10;
1229
1230 /* do NOT round down here */
1231 return (bitrate + 50000) / 100000;
1232}
1233
1234u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235{
1236 int modulation, streams, bitrate;
1237
1238 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240 return rate->legacy;
1241 if (rate->flags & RATE_INFO_FLAGS_60G)
1242 return cfg80211_calculate_bitrate_60g(rate);
1243 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244 return cfg80211_calculate_bitrate_vht(rate);
1245
1246 /* the formula below does only work for MCS values smaller than 32 */
1247 if (WARN_ON_ONCE(rate->mcs >= 32))
1248 return 0;
1249
1250 modulation = rate->mcs & 7;
1251 streams = (rate->mcs >> 3) + 1;
1252
1253 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1254
1255 if (modulation < 4)
1256 bitrate *= (modulation + 1);
1257 else if (modulation == 4)
1258 bitrate *= (modulation + 2);
1259 else
1260 bitrate *= (modulation + 3);
1261
1262 bitrate *= streams;
1263
1264 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265 bitrate = (bitrate / 9) * 10;
1266
1267 /* do NOT round down here */
1268 return (bitrate + 50000) / 100000;
1269}
1270EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271
1272int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273 enum ieee80211_p2p_attr_id attr,
1274 u8 *buf, unsigned int bufsize)
1275{
1276 u8 *out = buf;
1277 u16 attr_remaining = 0;
1278 bool desired_attr = false;
1279 u16 desired_len = 0;
1280
1281 while (len > 0) {
1282 unsigned int iedatalen;
1283 unsigned int copy;
1284 const u8 *iedata;
1285
1286 if (len < 2)
1287 return -EILSEQ;
1288 iedatalen = ies[1];
1289 if (iedatalen + 2 > len)
1290 return -EILSEQ;
1291
1292 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293 goto cont;
1294
1295 if (iedatalen < 4)
1296 goto cont;
1297
1298 iedata = ies + 2;
1299
1300 /* check WFA OUI, P2P subtype */
1301 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302 iedata[2] != 0x9a || iedata[3] != 0x09)
1303 goto cont;
1304
1305 iedatalen -= 4;
1306 iedata += 4;
1307
1308 /* check attribute continuation into this IE */
1309 copy = min_t(unsigned int, attr_remaining, iedatalen);
1310 if (copy && desired_attr) {
1311 desired_len += copy;
1312 if (out) {
1313 memcpy(out, iedata, min(bufsize, copy));
1314 out += min(bufsize, copy);
1315 bufsize -= min(bufsize, copy);
1316 }
1317
1318
1319 if (copy == attr_remaining)
1320 return desired_len;
1321 }
1322
1323 attr_remaining -= copy;
1324 if (attr_remaining)
1325 goto cont;
1326
1327 iedatalen -= copy;
1328 iedata += copy;
1329
1330 while (iedatalen > 0) {
1331 u16 attr_len;
1332
1333 /* P2P attribute ID & size must fit */
1334 if (iedatalen < 3)
1335 return -EILSEQ;
1336 desired_attr = iedata[0] == attr;
1337 attr_len = get_unaligned_le16(iedata + 1);
1338 iedatalen -= 3;
1339 iedata += 3;
1340
1341 copy = min_t(unsigned int, attr_len, iedatalen);
1342
1343 if (desired_attr) {
1344 desired_len += copy;
1345 if (out) {
1346 memcpy(out, iedata, min(bufsize, copy));
1347 out += min(bufsize, copy);
1348 bufsize -= min(bufsize, copy);
1349 }
1350
1351 if (copy == attr_len)
1352 return desired_len;
1353 }
1354
1355 iedata += copy;
1356 iedatalen -= copy;
1357 attr_remaining = attr_len - copy;
1358 }
1359
1360 cont:
1361 len -= ies[1] + 2;
1362 ies += ies[1] + 2;
1363 }
1364
1365 if (attr_remaining && desired_attr)
1366 return -EILSEQ;
1367
1368 return -ENOENT;
1369}
1370EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371
1372static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373{
1374 int i;
1375
1376 for (i = 0; i < n_ids; i++)
1377 if (ids[i] == id)
1378 return true;
1379 return false;
1380}
1381
1382static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383{
1384 /* we assume a validly formed IEs buffer */
1385 u8 len = ies[pos + 1];
1386
1387 pos += 2 + len;
1388
1389 /* the IE itself must have 255 bytes for fragments to follow */
1390 if (len < 255)
1391 return pos;
1392
1393 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394 len = ies[pos + 1];
1395 pos += 2 + len;
1396 }
1397
1398 return pos;
1399}
1400
1401size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402 const u8 *ids, int n_ids,
1403 const u8 *after_ric, int n_after_ric,
1404 size_t offset)
1405{
1406 size_t pos = offset;
1407
1408 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1409 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410 pos = skip_ie(ies, ielen, pos);
1411
1412 while (pos < ielen &&
1413 !ieee80211_id_in_list(after_ric, n_after_ric,
1414 ies[pos]))
1415 pos = skip_ie(ies, ielen, pos);
1416 } else {
1417 pos = skip_ie(ies, ielen, pos);
1418 }
1419 }
1420
1421 return pos;
1422}
1423EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424
1425bool ieee80211_operating_class_to_band(u8 operating_class,
1426 enum nl80211_band *band)
1427{
1428 switch (operating_class) {
1429 case 112:
1430 case 115 ... 127:
1431 case 128 ... 130:
1432 *band = NL80211_BAND_5GHZ;
1433 return true;
1434 case 81:
1435 case 82:
1436 case 83:
1437 case 84:
1438 *band = NL80211_BAND_2GHZ;
1439 return true;
1440 case 180:
1441 *band = NL80211_BAND_60GHZ;
1442 return true;
1443 }
1444
1445 return false;
1446}
1447EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448
1449bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450 u8 *op_class)
1451{
1452 u8 vht_opclass;
1453 u16 freq = chandef->center_freq1;
1454
1455 if (freq >= 2412 && freq <= 2472) {
1456 if (chandef->width > NL80211_CHAN_WIDTH_40)
1457 return false;
1458
1459 /* 2.407 GHz, channels 1..13 */
1460 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461 if (freq > chandef->chan->center_freq)
1462 *op_class = 83; /* HT40+ */
1463 else
1464 *op_class = 84; /* HT40- */
1465 } else {
1466 *op_class = 81;
1467 }
1468
1469 return true;
1470 }
1471
1472 if (freq == 2484) {
1473 if (chandef->width > NL80211_CHAN_WIDTH_40)
1474 return false;
1475
1476 *op_class = 82; /* channel 14 */
1477 return true;
1478 }
1479
1480 switch (chandef->width) {
1481 case NL80211_CHAN_WIDTH_80:
1482 vht_opclass = 128;
1483 break;
1484 case NL80211_CHAN_WIDTH_160:
1485 vht_opclass = 129;
1486 break;
1487 case NL80211_CHAN_WIDTH_80P80:
1488 vht_opclass = 130;
1489 break;
1490 case NL80211_CHAN_WIDTH_10:
1491 case NL80211_CHAN_WIDTH_5:
1492 return false; /* unsupported for now */
1493 default:
1494 vht_opclass = 0;
1495 break;
1496 }
1497
1498 /* 5 GHz, channels 36..48 */
1499 if (freq >= 5180 && freq <= 5240) {
1500 if (vht_opclass) {
1501 *op_class = vht_opclass;
1502 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503 if (freq > chandef->chan->center_freq)
1504 *op_class = 116;
1505 else
1506 *op_class = 117;
1507 } else {
1508 *op_class = 115;
1509 }
1510
1511 return true;
1512 }
1513
1514 /* 5 GHz, channels 52..64 */
1515 if (freq >= 5260 && freq <= 5320) {
1516 if (vht_opclass) {
1517 *op_class = vht_opclass;
1518 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519 if (freq > chandef->chan->center_freq)
1520 *op_class = 119;
1521 else
1522 *op_class = 120;
1523 } else {
1524 *op_class = 118;
1525 }
1526
1527 return true;
1528 }
1529
1530 /* 5 GHz, channels 100..144 */
1531 if (freq >= 5500 && freq <= 5720) {
1532 if (vht_opclass) {
1533 *op_class = vht_opclass;
1534 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535 if (freq > chandef->chan->center_freq)
1536 *op_class = 122;
1537 else
1538 *op_class = 123;
1539 } else {
1540 *op_class = 121;
1541 }
1542
1543 return true;
1544 }
1545
1546 /* 5 GHz, channels 149..169 */
1547 if (freq >= 5745 && freq <= 5845) {
1548 if (vht_opclass) {
1549 *op_class = vht_opclass;
1550 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551 if (freq > chandef->chan->center_freq)
1552 *op_class = 126;
1553 else
1554 *op_class = 127;
1555 } else if (freq <= 5805) {
1556 *op_class = 124;
1557 } else {
1558 *op_class = 125;
1559 }
1560
1561 return true;
1562 }
1563
1564 /* 56.16 GHz, channel 1..4 */
1565 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567 return false;
1568
1569 *op_class = 180;
1570 return true;
1571 }
1572
1573 /* not supported yet */
1574 return false;
1575}
1576EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577
1578static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579 u32 *beacon_int_gcd,
1580 bool *beacon_int_different)
1581{
1582 struct wireless_dev *wdev;
1583
1584 *beacon_int_gcd = 0;
1585 *beacon_int_different = false;
1586
1587 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588 if (!wdev->beacon_interval)
1589 continue;
1590
1591 if (!*beacon_int_gcd) {
1592 *beacon_int_gcd = wdev->beacon_interval;
1593 continue;
1594 }
1595
1596 if (wdev->beacon_interval == *beacon_int_gcd)
1597 continue;
1598
1599 *beacon_int_different = true;
1600 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601 }
1602
1603 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604 if (*beacon_int_gcd)
1605 *beacon_int_different = true;
1606 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607 }
1608}
1609
1610int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611 enum nl80211_iftype iftype, u32 beacon_int)
1612{
1613 /*
1614 * This is just a basic pre-condition check; if interface combinations
1615 * are possible the driver must already be checking those with a call
1616 * to cfg80211_check_combinations(), in which case we'll validate more
1617 * through the cfg80211_calculate_bi_data() call and code in
1618 * cfg80211_iter_combinations().
1619 */
1620
1621 if (beacon_int < 10 || beacon_int > 10000)
1622 return -EINVAL;
1623
1624 return 0;
1625}
1626
1627int cfg80211_iter_combinations(struct wiphy *wiphy,
1628 struct iface_combination_params *params,
1629 void (*iter)(const struct ieee80211_iface_combination *c,
1630 void *data),
1631 void *data)
1632{
1633 const struct ieee80211_regdomain *regdom;
1634 enum nl80211_dfs_regions region = 0;
1635 int i, j, iftype;
1636 int num_interfaces = 0;
1637 u32 used_iftypes = 0;
1638 u32 beacon_int_gcd;
1639 bool beacon_int_different;
1640
1641 /*
1642 * This is a bit strange, since the iteration used to rely only on
1643 * the data given by the driver, but here it now relies on context,
1644 * in form of the currently operating interfaces.
1645 * This is OK for all current users, and saves us from having to
1646 * push the GCD calculations into all the drivers.
1647 * In the future, this should probably rely more on data that's in
1648 * cfg80211 already - the only thing not would appear to be any new
1649 * interfaces (while being brought up) and channel/radar data.
1650 */
1651 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652 &beacon_int_gcd, &beacon_int_different);
1653
1654 if (params->radar_detect) {
1655 rcu_read_lock();
1656 regdom = rcu_dereference(cfg80211_regdomain);
1657 if (regdom)
1658 region = regdom->dfs_region;
1659 rcu_read_unlock();
1660 }
1661
1662 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663 num_interfaces += params->iftype_num[iftype];
1664 if (params->iftype_num[iftype] > 0 &&
1665 !(wiphy->software_iftypes & BIT(iftype)))
1666 used_iftypes |= BIT(iftype);
1667 }
1668
1669 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670 const struct ieee80211_iface_combination *c;
1671 struct ieee80211_iface_limit *limits;
1672 u32 all_iftypes = 0;
1673
1674 c = &wiphy->iface_combinations[i];
1675
1676 if (num_interfaces > c->max_interfaces)
1677 continue;
1678 if (params->num_different_channels > c->num_different_channels)
1679 continue;
1680
1681 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682 GFP_KERNEL);
1683 if (!limits)
1684 return -ENOMEM;
1685
1686 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687 if (wiphy->software_iftypes & BIT(iftype))
1688 continue;
1689 for (j = 0; j < c->n_limits; j++) {
1690 all_iftypes |= limits[j].types;
1691 if (!(limits[j].types & BIT(iftype)))
1692 continue;
1693 if (limits[j].max < params->iftype_num[iftype])
1694 goto cont;
1695 limits[j].max -= params->iftype_num[iftype];
1696 }
1697 }
1698
1699 if (params->radar_detect !=
1700 (c->radar_detect_widths & params->radar_detect))
1701 goto cont;
1702
1703 if (params->radar_detect && c->radar_detect_regions &&
1704 !(c->radar_detect_regions & BIT(region)))
1705 goto cont;
1706
1707 /* Finally check that all iftypes that we're currently
1708 * using are actually part of this combination. If they
1709 * aren't then we can't use this combination and have
1710 * to continue to the next.
1711 */
1712 if ((all_iftypes & used_iftypes) != used_iftypes)
1713 goto cont;
1714
1715 if (beacon_int_gcd) {
1716 if (c->beacon_int_min_gcd &&
1717 beacon_int_gcd < c->beacon_int_min_gcd)
1718 goto cont;
1719 if (!c->beacon_int_min_gcd && beacon_int_different)
1720 goto cont;
1721 }
1722
1723 /* This combination covered all interface types and
1724 * supported the requested numbers, so we're good.
1725 */
1726
1727 (*iter)(c, data);
1728 cont:
1729 kfree(limits);
1730 }
1731
1732 return 0;
1733}
1734EXPORT_SYMBOL(cfg80211_iter_combinations);
1735
1736static void
1737cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738 void *data)
1739{
1740 int *num = data;
1741 (*num)++;
1742}
1743
1744int cfg80211_check_combinations(struct wiphy *wiphy,
1745 struct iface_combination_params *params)
1746{
1747 int err, num = 0;
1748
1749 err = cfg80211_iter_combinations(wiphy, params,
1750 cfg80211_iter_sum_ifcombs, &num);
1751 if (err)
1752 return err;
1753 if (num == 0)
1754 return -EBUSY;
1755
1756 return 0;
1757}
1758EXPORT_SYMBOL(cfg80211_check_combinations);
1759
1760int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761 const u8 *rates, unsigned int n_rates,
1762 u32 *mask)
1763{
1764 int i, j;
1765
1766 if (!sband)
1767 return -EINVAL;
1768
1769 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770 return -EINVAL;
1771
1772 *mask = 0;
1773
1774 for (i = 0; i < n_rates; i++) {
1775 int rate = (rates[i] & 0x7f) * 5;
1776 bool found = false;
1777
1778 for (j = 0; j < sband->n_bitrates; j++) {
1779 if (sband->bitrates[j].bitrate == rate) {
1780 found = true;
1781 *mask |= BIT(j);
1782 break;
1783 }
1784 }
1785 if (!found)
1786 return -EINVAL;
1787 }
1788
1789 /*
1790 * mask must have at least one bit set here since we
1791 * didn't accept a 0-length rates array nor allowed
1792 * entries in the array that didn't exist
1793 */
1794
1795 return 0;
1796}
1797
1798unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799{
1800 enum nl80211_band band;
1801 unsigned int n_channels = 0;
1802
1803 for (band = 0; band < NUM_NL80211_BANDS; band++)
1804 if (wiphy->bands[band])
1805 n_channels += wiphy->bands[band]->n_channels;
1806
1807 return n_channels;
1808}
1809EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810
1811int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812 struct station_info *sinfo)
1813{
1814 struct cfg80211_registered_device *rdev;
1815 struct wireless_dev *wdev;
1816
1817 wdev = dev->ieee80211_ptr;
1818 if (!wdev)
1819 return -EOPNOTSUPP;
1820
1821 rdev = wiphy_to_rdev(wdev->wiphy);
1822 if (!rdev->ops->get_station)
1823 return -EOPNOTSUPP;
1824
1825 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826}
1827EXPORT_SYMBOL(cfg80211_get_station);
1828
1829void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830{
1831 int i;
1832
1833 if (!f)
1834 return;
1835
1836 kfree(f->serv_spec_info);
1837 kfree(f->srf_bf);
1838 kfree(f->srf_macs);
1839 for (i = 0; i < f->num_rx_filters; i++)
1840 kfree(f->rx_filters[i].filter);
1841
1842 for (i = 0; i < f->num_tx_filters; i++)
1843 kfree(f->tx_filters[i].filter);
1844
1845 kfree(f->rx_filters);
1846 kfree(f->tx_filters);
1847 kfree(f);
1848}
1849EXPORT_SYMBOL(cfg80211_free_nan_func);
1850
1851/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853const unsigned char rfc1042_header[] __aligned(2) =
1854 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855EXPORT_SYMBOL(rfc1042_header);
1856
1857/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858const unsigned char bridge_tunnel_header[] __aligned(2) =
1859 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860EXPORT_SYMBOL(bridge_tunnel_header);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48{
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76{
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
108 ;
109 }
110 return 0; /* not supported */
111}
112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114int ieee80211_freq_khz_to_channel(u32 freq)
115{
116 /* TODO: just handle MHz for now */
117 freq = KHZ_TO_MHZ(freq);
118
119 /* see 802.11 17.3.8.3.2 and Annex J */
120 if (freq == 2484)
121 return 14;
122 else if (freq < 2484)
123 return (freq - 2407) / 5;
124 else if (freq >= 4910 && freq <= 4980)
125 return (freq - 4000) / 5;
126 else if (freq < 5925)
127 return (freq - 5000) / 5;
128 else if (freq == 5935)
129 return 2;
130 else if (freq <= 45000) /* DMG band lower limit */
131 /* see 802.11ax D6.1 27.3.22.2 */
132 return (freq - 5950) / 5;
133 else if (freq >= 58320 && freq <= 70200)
134 return (freq - 56160) / 2160;
135 else
136 return 0;
137}
138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
139
140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
141 u32 freq)
142{
143 enum nl80211_band band;
144 struct ieee80211_supported_band *sband;
145 int i;
146
147 for (band = 0; band < NUM_NL80211_BANDS; band++) {
148 sband = wiphy->bands[band];
149
150 if (!sband)
151 continue;
152
153 for (i = 0; i < sband->n_channels; i++) {
154 struct ieee80211_channel *chan = &sband->channels[i];
155
156 if (ieee80211_channel_to_khz(chan) == freq)
157 return chan;
158 }
159 }
160
161 return NULL;
162}
163EXPORT_SYMBOL(ieee80211_get_channel_khz);
164
165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
166{
167 int i, want;
168
169 switch (sband->band) {
170 case NL80211_BAND_5GHZ:
171 case NL80211_BAND_6GHZ:
172 want = 3;
173 for (i = 0; i < sband->n_bitrates; i++) {
174 if (sband->bitrates[i].bitrate == 60 ||
175 sband->bitrates[i].bitrate == 120 ||
176 sband->bitrates[i].bitrate == 240) {
177 sband->bitrates[i].flags |=
178 IEEE80211_RATE_MANDATORY_A;
179 want--;
180 }
181 }
182 WARN_ON(want);
183 break;
184 case NL80211_BAND_2GHZ:
185 want = 7;
186 for (i = 0; i < sband->n_bitrates; i++) {
187 switch (sband->bitrates[i].bitrate) {
188 case 10:
189 case 20:
190 case 55:
191 case 110:
192 sband->bitrates[i].flags |=
193 IEEE80211_RATE_MANDATORY_B |
194 IEEE80211_RATE_MANDATORY_G;
195 want--;
196 break;
197 case 60:
198 case 120:
199 case 240:
200 sband->bitrates[i].flags |=
201 IEEE80211_RATE_MANDATORY_G;
202 want--;
203 fallthrough;
204 default:
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_ERP_G;
207 break;
208 }
209 }
210 WARN_ON(want != 0 && want != 3);
211 break;
212 case NL80211_BAND_60GHZ:
213 /* check for mandatory HT MCS 1..4 */
214 WARN_ON(!sband->ht_cap.ht_supported);
215 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
216 break;
217 case NL80211_BAND_S1GHZ:
218 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
219 * mandatory is ok.
220 */
221 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
222 break;
223 case NUM_NL80211_BANDS:
224 default:
225 WARN_ON(1);
226 break;
227 }
228}
229
230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
231{
232 enum nl80211_band band;
233
234 for (band = 0; band < NUM_NL80211_BANDS; band++)
235 if (wiphy->bands[band])
236 set_mandatory_flags_band(wiphy->bands[band]);
237}
238
239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
240{
241 int i;
242 for (i = 0; i < wiphy->n_cipher_suites; i++)
243 if (cipher == wiphy->cipher_suites[i])
244 return true;
245 return false;
246}
247
248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
249 struct key_params *params, int key_idx,
250 bool pairwise, const u8 *mac_addr)
251{
252 int max_key_idx = 5;
253
254 if (wiphy_ext_feature_isset(&rdev->wiphy,
255 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
256 wiphy_ext_feature_isset(&rdev->wiphy,
257 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
258 max_key_idx = 7;
259 if (key_idx < 0 || key_idx > max_key_idx)
260 return -EINVAL;
261
262 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
263 return -EINVAL;
264
265 if (pairwise && !mac_addr)
266 return -EINVAL;
267
268 switch (params->cipher) {
269 case WLAN_CIPHER_SUITE_TKIP:
270 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
271 if ((pairwise && key_idx) ||
272 params->mode != NL80211_KEY_RX_TX)
273 return -EINVAL;
274 break;
275 case WLAN_CIPHER_SUITE_CCMP:
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 case WLAN_CIPHER_SUITE_GCMP:
278 case WLAN_CIPHER_SUITE_GCMP_256:
279 /* IEEE802.11-2016 allows only 0 and - when supporting
280 * Extended Key ID - 1 as index for pairwise keys.
281 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
282 * the driver supports Extended Key ID.
283 * @NL80211_KEY_SET_TX can't be set when installing and
284 * validating a key.
285 */
286 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
287 params->mode == NL80211_KEY_SET_TX)
288 return -EINVAL;
289 if (wiphy_ext_feature_isset(&rdev->wiphy,
290 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
291 if (pairwise && (key_idx < 0 || key_idx > 1))
292 return -EINVAL;
293 } else if (pairwise && key_idx) {
294 return -EINVAL;
295 }
296 break;
297 case WLAN_CIPHER_SUITE_AES_CMAC:
298 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
299 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
301 /* Disallow BIP (group-only) cipher as pairwise cipher */
302 if (pairwise)
303 return -EINVAL;
304 if (key_idx < 4)
305 return -EINVAL;
306 break;
307 case WLAN_CIPHER_SUITE_WEP40:
308 case WLAN_CIPHER_SUITE_WEP104:
309 if (key_idx > 3)
310 return -EINVAL;
311 default:
312 break;
313 }
314
315 switch (params->cipher) {
316 case WLAN_CIPHER_SUITE_WEP40:
317 if (params->key_len != WLAN_KEY_LEN_WEP40)
318 return -EINVAL;
319 break;
320 case WLAN_CIPHER_SUITE_TKIP:
321 if (params->key_len != WLAN_KEY_LEN_TKIP)
322 return -EINVAL;
323 break;
324 case WLAN_CIPHER_SUITE_CCMP:
325 if (params->key_len != WLAN_KEY_LEN_CCMP)
326 return -EINVAL;
327 break;
328 case WLAN_CIPHER_SUITE_CCMP_256:
329 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
330 return -EINVAL;
331 break;
332 case WLAN_CIPHER_SUITE_GCMP:
333 if (params->key_len != WLAN_KEY_LEN_GCMP)
334 return -EINVAL;
335 break;
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
338 return -EINVAL;
339 break;
340 case WLAN_CIPHER_SUITE_WEP104:
341 if (params->key_len != WLAN_KEY_LEN_WEP104)
342 return -EINVAL;
343 break;
344 case WLAN_CIPHER_SUITE_AES_CMAC:
345 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
346 return -EINVAL;
347 break;
348 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
349 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
350 return -EINVAL;
351 break;
352 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
353 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
354 return -EINVAL;
355 break;
356 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
357 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
358 return -EINVAL;
359 break;
360 default:
361 /*
362 * We don't know anything about this algorithm,
363 * allow using it -- but the driver must check
364 * all parameters! We still check below whether
365 * or not the driver supports this algorithm,
366 * of course.
367 */
368 break;
369 }
370
371 if (params->seq) {
372 switch (params->cipher) {
373 case WLAN_CIPHER_SUITE_WEP40:
374 case WLAN_CIPHER_SUITE_WEP104:
375 /* These ciphers do not use key sequence */
376 return -EINVAL;
377 case WLAN_CIPHER_SUITE_TKIP:
378 case WLAN_CIPHER_SUITE_CCMP:
379 case WLAN_CIPHER_SUITE_CCMP_256:
380 case WLAN_CIPHER_SUITE_GCMP:
381 case WLAN_CIPHER_SUITE_GCMP_256:
382 case WLAN_CIPHER_SUITE_AES_CMAC:
383 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
384 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
386 if (params->seq_len != 6)
387 return -EINVAL;
388 break;
389 }
390 }
391
392 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
393 return -EINVAL;
394
395 return 0;
396}
397
398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
399{
400 unsigned int hdrlen = 24;
401
402 if (ieee80211_is_data(fc)) {
403 if (ieee80211_has_a4(fc))
404 hdrlen = 30;
405 if (ieee80211_is_data_qos(fc)) {
406 hdrlen += IEEE80211_QOS_CTL_LEN;
407 if (ieee80211_has_order(fc))
408 hdrlen += IEEE80211_HT_CTL_LEN;
409 }
410 goto out;
411 }
412
413 if (ieee80211_is_mgmt(fc)) {
414 if (ieee80211_has_order(fc))
415 hdrlen += IEEE80211_HT_CTL_LEN;
416 goto out;
417 }
418
419 if (ieee80211_is_ctl(fc)) {
420 /*
421 * ACK and CTS are 10 bytes, all others 16. To see how
422 * to get this condition consider
423 * subtype mask: 0b0000000011110000 (0x00F0)
424 * ACK subtype: 0b0000000011010000 (0x00D0)
425 * CTS subtype: 0b0000000011000000 (0x00C0)
426 * bits that matter: ^^^ (0x00E0)
427 * value of those: 0b0000000011000000 (0x00C0)
428 */
429 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
430 hdrlen = 10;
431 else
432 hdrlen = 16;
433 }
434out:
435 return hdrlen;
436}
437EXPORT_SYMBOL(ieee80211_hdrlen);
438
439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
440{
441 const struct ieee80211_hdr *hdr =
442 (const struct ieee80211_hdr *)skb->data;
443 unsigned int hdrlen;
444
445 if (unlikely(skb->len < 10))
446 return 0;
447 hdrlen = ieee80211_hdrlen(hdr->frame_control);
448 if (unlikely(hdrlen > skb->len))
449 return 0;
450 return hdrlen;
451}
452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
453
454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
455{
456 int ae = flags & MESH_FLAGS_AE;
457 /* 802.11-2012, 8.2.4.7.3 */
458 switch (ae) {
459 default:
460 case 0:
461 return 6;
462 case MESH_FLAGS_AE_A4:
463 return 12;
464 case MESH_FLAGS_AE_A5_A6:
465 return 18;
466 }
467}
468
469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
470{
471 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
472}
473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
474
475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
476 const u8 *addr, enum nl80211_iftype iftype,
477 u8 data_offset)
478{
479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
480 struct {
481 u8 hdr[ETH_ALEN] __aligned(2);
482 __be16 proto;
483 } payload;
484 struct ethhdr tmp;
485 u16 hdrlen;
486 u8 mesh_flags = 0;
487
488 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
489 return -1;
490
491 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
492 if (skb->len < hdrlen + 8)
493 return -1;
494
495 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
496 * header
497 * IEEE 802.11 address fields:
498 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
499 * 0 0 DA SA BSSID n/a
500 * 0 1 DA BSSID SA n/a
501 * 1 0 BSSID SA DA n/a
502 * 1 1 RA TA DA SA
503 */
504 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
505 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
506
507 if (iftype == NL80211_IFTYPE_MESH_POINT)
508 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
509
510 mesh_flags &= MESH_FLAGS_AE;
511
512 switch (hdr->frame_control &
513 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
514 case cpu_to_le16(IEEE80211_FCTL_TODS):
515 if (unlikely(iftype != NL80211_IFTYPE_AP &&
516 iftype != NL80211_IFTYPE_AP_VLAN &&
517 iftype != NL80211_IFTYPE_P2P_GO))
518 return -1;
519 break;
520 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
521 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
522 iftype != NL80211_IFTYPE_MESH_POINT &&
523 iftype != NL80211_IFTYPE_AP_VLAN &&
524 iftype != NL80211_IFTYPE_STATION))
525 return -1;
526 if (iftype == NL80211_IFTYPE_MESH_POINT) {
527 if (mesh_flags == MESH_FLAGS_AE_A4)
528 return -1;
529 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
530 skb_copy_bits(skb, hdrlen +
531 offsetof(struct ieee80211s_hdr, eaddr1),
532 tmp.h_dest, 2 * ETH_ALEN);
533 }
534 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
535 }
536 break;
537 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
538 if ((iftype != NL80211_IFTYPE_STATION &&
539 iftype != NL80211_IFTYPE_P2P_CLIENT &&
540 iftype != NL80211_IFTYPE_MESH_POINT) ||
541 (is_multicast_ether_addr(tmp.h_dest) &&
542 ether_addr_equal(tmp.h_source, addr)))
543 return -1;
544 if (iftype == NL80211_IFTYPE_MESH_POINT) {
545 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
546 return -1;
547 if (mesh_flags == MESH_FLAGS_AE_A4)
548 skb_copy_bits(skb, hdrlen +
549 offsetof(struct ieee80211s_hdr, eaddr1),
550 tmp.h_source, ETH_ALEN);
551 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
552 }
553 break;
554 case cpu_to_le16(0):
555 if (iftype != NL80211_IFTYPE_ADHOC &&
556 iftype != NL80211_IFTYPE_STATION &&
557 iftype != NL80211_IFTYPE_OCB)
558 return -1;
559 break;
560 }
561
562 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
563 tmp.h_proto = payload.proto;
564
565 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
566 tmp.h_proto != htons(ETH_P_AARP) &&
567 tmp.h_proto != htons(ETH_P_IPX)) ||
568 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
569 /* remove RFC1042 or Bridge-Tunnel encapsulation and
570 * replace EtherType */
571 hdrlen += ETH_ALEN + 2;
572 else
573 tmp.h_proto = htons(skb->len - hdrlen);
574
575 pskb_pull(skb, hdrlen);
576
577 if (!ehdr)
578 ehdr = skb_push(skb, sizeof(struct ethhdr));
579 memcpy(ehdr, &tmp, sizeof(tmp));
580
581 return 0;
582}
583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
584
585static void
586__frame_add_frag(struct sk_buff *skb, struct page *page,
587 void *ptr, int len, int size)
588{
589 struct skb_shared_info *sh = skb_shinfo(skb);
590 int page_offset;
591
592 get_page(page);
593 page_offset = ptr - page_address(page);
594 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
595}
596
597static void
598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
599 int offset, int len)
600{
601 struct skb_shared_info *sh = skb_shinfo(skb);
602 const skb_frag_t *frag = &sh->frags[0];
603 struct page *frag_page;
604 void *frag_ptr;
605 int frag_len, frag_size;
606 int head_size = skb->len - skb->data_len;
607 int cur_len;
608
609 frag_page = virt_to_head_page(skb->head);
610 frag_ptr = skb->data;
611 frag_size = head_size;
612
613 while (offset >= frag_size) {
614 offset -= frag_size;
615 frag_page = skb_frag_page(frag);
616 frag_ptr = skb_frag_address(frag);
617 frag_size = skb_frag_size(frag);
618 frag++;
619 }
620
621 frag_ptr += offset;
622 frag_len = frag_size - offset;
623
624 cur_len = min(len, frag_len);
625
626 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
627 len -= cur_len;
628
629 while (len > 0) {
630 frag_len = skb_frag_size(frag);
631 cur_len = min(len, frag_len);
632 __frame_add_frag(frame, skb_frag_page(frag),
633 skb_frag_address(frag), cur_len, frag_len);
634 len -= cur_len;
635 frag++;
636 }
637}
638
639static struct sk_buff *
640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
641 int offset, int len, bool reuse_frag)
642{
643 struct sk_buff *frame;
644 int cur_len = len;
645
646 if (skb->len - offset < len)
647 return NULL;
648
649 /*
650 * When reusing framents, copy some data to the head to simplify
651 * ethernet header handling and speed up protocol header processing
652 * in the stack later.
653 */
654 if (reuse_frag)
655 cur_len = min_t(int, len, 32);
656
657 /*
658 * Allocate and reserve two bytes more for payload
659 * alignment since sizeof(struct ethhdr) is 14.
660 */
661 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
662 if (!frame)
663 return NULL;
664
665 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
666 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
667
668 len -= cur_len;
669 if (!len)
670 return frame;
671
672 offset += cur_len;
673 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
674
675 return frame;
676}
677
678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
679 const u8 *addr, enum nl80211_iftype iftype,
680 const unsigned int extra_headroom,
681 const u8 *check_da, const u8 *check_sa)
682{
683 unsigned int hlen = ALIGN(extra_headroom, 4);
684 struct sk_buff *frame = NULL;
685 u16 ethertype;
686 u8 *payload;
687 int offset = 0, remaining;
688 struct ethhdr eth;
689 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
690 bool reuse_skb = false;
691 bool last = false;
692
693 while (!last) {
694 unsigned int subframe_len;
695 int len;
696 u8 padding;
697
698 skb_copy_bits(skb, offset, ð, sizeof(eth));
699 len = ntohs(eth.h_proto);
700 subframe_len = sizeof(struct ethhdr) + len;
701 padding = (4 - subframe_len) & 0x3;
702
703 /* the last MSDU has no padding */
704 remaining = skb->len - offset;
705 if (subframe_len > remaining)
706 goto purge;
707
708 offset += sizeof(struct ethhdr);
709 last = remaining <= subframe_len + padding;
710
711 /* FIXME: should we really accept multicast DA? */
712 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
713 !ether_addr_equal(check_da, eth.h_dest)) ||
714 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
715 offset += len + padding;
716 continue;
717 }
718
719 /* reuse skb for the last subframe */
720 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
721 skb_pull(skb, offset);
722 frame = skb;
723 reuse_skb = true;
724 } else {
725 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
726 reuse_frag);
727 if (!frame)
728 goto purge;
729
730 offset += len + padding;
731 }
732
733 skb_reset_network_header(frame);
734 frame->dev = skb->dev;
735 frame->priority = skb->priority;
736
737 payload = frame->data;
738 ethertype = (payload[6] << 8) | payload[7];
739 if (likely((ether_addr_equal(payload, rfc1042_header) &&
740 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
741 ether_addr_equal(payload, bridge_tunnel_header))) {
742 eth.h_proto = htons(ethertype);
743 skb_pull(frame, ETH_ALEN + 2);
744 }
745
746 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
747 __skb_queue_tail(list, frame);
748 }
749
750 if (!reuse_skb)
751 dev_kfree_skb(skb);
752
753 return;
754
755 purge:
756 __skb_queue_purge(list);
757 dev_kfree_skb(skb);
758}
759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
760
761/* Given a data frame determine the 802.1p/1d tag to use. */
762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
763 struct cfg80211_qos_map *qos_map)
764{
765 unsigned int dscp;
766 unsigned char vlan_priority;
767 unsigned int ret;
768
769 /* skb->priority values from 256->263 are magic values to
770 * directly indicate a specific 802.1d priority. This is used
771 * to allow 802.1d priority to be passed directly in from VLAN
772 * tags, etc.
773 */
774 if (skb->priority >= 256 && skb->priority <= 263) {
775 ret = skb->priority - 256;
776 goto out;
777 }
778
779 if (skb_vlan_tag_present(skb)) {
780 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
781 >> VLAN_PRIO_SHIFT;
782 if (vlan_priority > 0) {
783 ret = vlan_priority;
784 goto out;
785 }
786 }
787
788 switch (skb->protocol) {
789 case htons(ETH_P_IP):
790 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
791 break;
792 case htons(ETH_P_IPV6):
793 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
794 break;
795 case htons(ETH_P_MPLS_UC):
796 case htons(ETH_P_MPLS_MC): {
797 struct mpls_label mpls_tmp, *mpls;
798
799 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
800 sizeof(*mpls), &mpls_tmp);
801 if (!mpls)
802 return 0;
803
804 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
805 >> MPLS_LS_TC_SHIFT;
806 goto out;
807 }
808 case htons(ETH_P_80221):
809 /* 802.21 is always network control traffic */
810 return 7;
811 default:
812 return 0;
813 }
814
815 if (qos_map) {
816 unsigned int i, tmp_dscp = dscp >> 2;
817
818 for (i = 0; i < qos_map->num_des; i++) {
819 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
820 ret = qos_map->dscp_exception[i].up;
821 goto out;
822 }
823 }
824
825 for (i = 0; i < 8; i++) {
826 if (tmp_dscp >= qos_map->up[i].low &&
827 tmp_dscp <= qos_map->up[i].high) {
828 ret = i;
829 goto out;
830 }
831 }
832 }
833
834 ret = dscp >> 5;
835out:
836 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
837}
838EXPORT_SYMBOL(cfg80211_classify8021d);
839
840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
841{
842 const struct cfg80211_bss_ies *ies;
843
844 ies = rcu_dereference(bss->ies);
845 if (!ies)
846 return NULL;
847
848 return cfg80211_find_elem(id, ies->data, ies->len);
849}
850EXPORT_SYMBOL(ieee80211_bss_get_elem);
851
852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
853{
854 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
855 struct net_device *dev = wdev->netdev;
856 int i;
857
858 if (!wdev->connect_keys)
859 return;
860
861 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
862 if (!wdev->connect_keys->params[i].cipher)
863 continue;
864 if (rdev_add_key(rdev, dev, i, false, NULL,
865 &wdev->connect_keys->params[i])) {
866 netdev_err(dev, "failed to set key %d\n", i);
867 continue;
868 }
869 if (wdev->connect_keys->def == i &&
870 rdev_set_default_key(rdev, dev, i, true, true)) {
871 netdev_err(dev, "failed to set defkey %d\n", i);
872 continue;
873 }
874 }
875
876 kfree_sensitive(wdev->connect_keys);
877 wdev->connect_keys = NULL;
878}
879
880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
881{
882 struct cfg80211_event *ev;
883 unsigned long flags;
884
885 spin_lock_irqsave(&wdev->event_lock, flags);
886 while (!list_empty(&wdev->event_list)) {
887 ev = list_first_entry(&wdev->event_list,
888 struct cfg80211_event, list);
889 list_del(&ev->list);
890 spin_unlock_irqrestore(&wdev->event_lock, flags);
891
892 wdev_lock(wdev);
893 switch (ev->type) {
894 case EVENT_CONNECT_RESULT:
895 __cfg80211_connect_result(
896 wdev->netdev,
897 &ev->cr,
898 ev->cr.status == WLAN_STATUS_SUCCESS);
899 break;
900 case EVENT_ROAMED:
901 __cfg80211_roamed(wdev, &ev->rm);
902 break;
903 case EVENT_DISCONNECTED:
904 __cfg80211_disconnected(wdev->netdev,
905 ev->dc.ie, ev->dc.ie_len,
906 ev->dc.reason,
907 !ev->dc.locally_generated);
908 break;
909 case EVENT_IBSS_JOINED:
910 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
911 ev->ij.channel);
912 break;
913 case EVENT_STOPPED:
914 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
915 break;
916 case EVENT_PORT_AUTHORIZED:
917 __cfg80211_port_authorized(wdev, ev->pa.bssid);
918 break;
919 }
920 wdev_unlock(wdev);
921
922 kfree(ev);
923
924 spin_lock_irqsave(&wdev->event_lock, flags);
925 }
926 spin_unlock_irqrestore(&wdev->event_lock, flags);
927}
928
929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
930{
931 struct wireless_dev *wdev;
932
933 ASSERT_RTNL();
934
935 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
936 cfg80211_process_wdev_events(wdev);
937}
938
939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
940 struct net_device *dev, enum nl80211_iftype ntype,
941 struct vif_params *params)
942{
943 int err;
944 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
945
946 ASSERT_RTNL();
947
948 /* don't support changing VLANs, you just re-create them */
949 if (otype == NL80211_IFTYPE_AP_VLAN)
950 return -EOPNOTSUPP;
951
952 /* cannot change into P2P device or NAN */
953 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
954 ntype == NL80211_IFTYPE_NAN)
955 return -EOPNOTSUPP;
956
957 if (!rdev->ops->change_virtual_intf ||
958 !(rdev->wiphy.interface_modes & (1 << ntype)))
959 return -EOPNOTSUPP;
960
961 /* if it's part of a bridge, reject changing type to station/ibss */
962 if (netif_is_bridge_port(dev) &&
963 (ntype == NL80211_IFTYPE_ADHOC ||
964 ntype == NL80211_IFTYPE_STATION ||
965 ntype == NL80211_IFTYPE_P2P_CLIENT))
966 return -EBUSY;
967
968 if (ntype != otype) {
969 dev->ieee80211_ptr->use_4addr = false;
970 dev->ieee80211_ptr->mesh_id_up_len = 0;
971 wdev_lock(dev->ieee80211_ptr);
972 rdev_set_qos_map(rdev, dev, NULL);
973 wdev_unlock(dev->ieee80211_ptr);
974
975 switch (otype) {
976 case NL80211_IFTYPE_AP:
977 cfg80211_stop_ap(rdev, dev, true);
978 break;
979 case NL80211_IFTYPE_ADHOC:
980 cfg80211_leave_ibss(rdev, dev, false);
981 break;
982 case NL80211_IFTYPE_STATION:
983 case NL80211_IFTYPE_P2P_CLIENT:
984 wdev_lock(dev->ieee80211_ptr);
985 cfg80211_disconnect(rdev, dev,
986 WLAN_REASON_DEAUTH_LEAVING, true);
987 wdev_unlock(dev->ieee80211_ptr);
988 break;
989 case NL80211_IFTYPE_MESH_POINT:
990 /* mesh should be handled? */
991 break;
992 default:
993 break;
994 }
995
996 cfg80211_process_rdev_events(rdev);
997 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
998 }
999
1000 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004 if (!err && params && params->use_4addr != -1)
1005 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007 if (!err) {
1008 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009 switch (ntype) {
1010 case NL80211_IFTYPE_STATION:
1011 if (dev->ieee80211_ptr->use_4addr)
1012 break;
1013 fallthrough;
1014 case NL80211_IFTYPE_OCB:
1015 case NL80211_IFTYPE_P2P_CLIENT:
1016 case NL80211_IFTYPE_ADHOC:
1017 dev->priv_flags |= IFF_DONT_BRIDGE;
1018 break;
1019 case NL80211_IFTYPE_P2P_GO:
1020 case NL80211_IFTYPE_AP:
1021 case NL80211_IFTYPE_AP_VLAN:
1022 case NL80211_IFTYPE_WDS:
1023 case NL80211_IFTYPE_MESH_POINT:
1024 /* bridging OK */
1025 break;
1026 case NL80211_IFTYPE_MONITOR:
1027 /* monitor can't bridge anyway */
1028 break;
1029 case NL80211_IFTYPE_UNSPECIFIED:
1030 case NUM_NL80211_IFTYPES:
1031 /* not happening */
1032 break;
1033 case NL80211_IFTYPE_P2P_DEVICE:
1034 case NL80211_IFTYPE_NAN:
1035 WARN_ON(1);
1036 break;
1037 }
1038 }
1039
1040 if (!err && ntype != otype && netif_running(dev)) {
1041 cfg80211_update_iface_num(rdev, ntype, 1);
1042 cfg80211_update_iface_num(rdev, otype, -1);
1043 }
1044
1045 return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050 int modulation, streams, bitrate;
1051
1052 /* the formula below does only work for MCS values smaller than 32 */
1053 if (WARN_ON_ONCE(rate->mcs >= 32))
1054 return 0;
1055
1056 modulation = rate->mcs & 7;
1057 streams = (rate->mcs >> 3) + 1;
1058
1059 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061 if (modulation < 4)
1062 bitrate *= (modulation + 1);
1063 else if (modulation == 4)
1064 bitrate *= (modulation + 2);
1065 else
1066 bitrate *= (modulation + 3);
1067
1068 bitrate *= streams;
1069
1070 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071 bitrate = (bitrate / 9) * 10;
1072
1073 /* do NOT round down here */
1074 return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078{
1079 static const u32 __mcs2bitrate[] = {
1080 /* control PHY */
1081 [0] = 275,
1082 /* SC PHY */
1083 [1] = 3850,
1084 [2] = 7700,
1085 [3] = 9625,
1086 [4] = 11550,
1087 [5] = 12512, /* 1251.25 mbps */
1088 [6] = 15400,
1089 [7] = 19250,
1090 [8] = 23100,
1091 [9] = 25025,
1092 [10] = 30800,
1093 [11] = 38500,
1094 [12] = 46200,
1095 /* OFDM PHY */
1096 [13] = 6930,
1097 [14] = 8662, /* 866.25 mbps */
1098 [15] = 13860,
1099 [16] = 17325,
1100 [17] = 20790,
1101 [18] = 27720,
1102 [19] = 34650,
1103 [20] = 41580,
1104 [21] = 45045,
1105 [22] = 51975,
1106 [23] = 62370,
1107 [24] = 67568, /* 6756.75 mbps */
1108 /* LP-SC PHY */
1109 [25] = 6260,
1110 [26] = 8340,
1111 [27] = 11120,
1112 [28] = 12510,
1113 [29] = 16680,
1114 [30] = 22240,
1115 [31] = 25030,
1116 };
1117
1118 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119 return 0;
1120
1121 return __mcs2bitrate[rate->mcs];
1122}
1123
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126 static const u32 __mcs2bitrate[] = {
1127 /* control PHY */
1128 [0] = 275,
1129 /* SC PHY */
1130 [1] = 3850,
1131 [2] = 7700,
1132 [3] = 9625,
1133 [4] = 11550,
1134 [5] = 12512, /* 1251.25 mbps */
1135 [6] = 13475,
1136 [7] = 15400,
1137 [8] = 19250,
1138 [9] = 23100,
1139 [10] = 25025,
1140 [11] = 26950,
1141 [12] = 30800,
1142 [13] = 38500,
1143 [14] = 46200,
1144 [15] = 50050,
1145 [16] = 53900,
1146 [17] = 57750,
1147 [18] = 69300,
1148 [19] = 75075,
1149 [20] = 80850,
1150 };
1151
1152 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153 return 0;
1154
1155 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160 static const u32 base[4][10] = {
1161 { 6500000,
1162 13000000,
1163 19500000,
1164 26000000,
1165 39000000,
1166 52000000,
1167 58500000,
1168 65000000,
1169 78000000,
1170 /* not in the spec, but some devices use this: */
1171 86500000,
1172 },
1173 { 13500000,
1174 27000000,
1175 40500000,
1176 54000000,
1177 81000000,
1178 108000000,
1179 121500000,
1180 135000000,
1181 162000000,
1182 180000000,
1183 },
1184 { 29300000,
1185 58500000,
1186 87800000,
1187 117000000,
1188 175500000,
1189 234000000,
1190 263300000,
1191 292500000,
1192 351000000,
1193 390000000,
1194 },
1195 { 58500000,
1196 117000000,
1197 175500000,
1198 234000000,
1199 351000000,
1200 468000000,
1201 526500000,
1202 585000000,
1203 702000000,
1204 780000000,
1205 },
1206 };
1207 u32 bitrate;
1208 int idx;
1209
1210 if (rate->mcs > 9)
1211 goto warn;
1212
1213 switch (rate->bw) {
1214 case RATE_INFO_BW_160:
1215 idx = 3;
1216 break;
1217 case RATE_INFO_BW_80:
1218 idx = 2;
1219 break;
1220 case RATE_INFO_BW_40:
1221 idx = 1;
1222 break;
1223 case RATE_INFO_BW_5:
1224 case RATE_INFO_BW_10:
1225 default:
1226 goto warn;
1227 case RATE_INFO_BW_20:
1228 idx = 0;
1229 }
1230
1231 bitrate = base[idx][rate->mcs];
1232 bitrate *= rate->nss;
1233
1234 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235 bitrate = (bitrate / 9) * 10;
1236
1237 /* do NOT round down here */
1238 return (bitrate + 50000) / 100000;
1239 warn:
1240 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241 rate->bw, rate->mcs, rate->nss);
1242 return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246{
1247#define SCALE 2048
1248 u16 mcs_divisors[12] = {
1249 34133, /* 16.666666... */
1250 17067, /* 8.333333... */
1251 11378, /* 5.555555... */
1252 8533, /* 4.166666... */
1253 5689, /* 2.777777... */
1254 4267, /* 2.083333... */
1255 3923, /* 1.851851... */
1256 3413, /* 1.666666... */
1257 2844, /* 1.388888... */
1258 2560, /* 1.250000... */
1259 2276, /* 1.111111... */
1260 2048, /* 1.000000... */
1261 };
1262 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1264 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1265 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1266 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1267 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1268 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1269 u64 tmp;
1270 u32 result;
1271
1272 if (WARN_ON_ONCE(rate->mcs > 11))
1273 return 0;
1274
1275 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276 return 0;
1277 if (WARN_ON_ONCE(rate->he_ru_alloc >
1278 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279 return 0;
1280 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281 return 0;
1282
1283 if (rate->bw == RATE_INFO_BW_160)
1284 result = rates_160M[rate->he_gi];
1285 else if (rate->bw == RATE_INFO_BW_80 ||
1286 (rate->bw == RATE_INFO_BW_HE_RU &&
1287 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288 result = rates_969[rate->he_gi];
1289 else if (rate->bw == RATE_INFO_BW_40 ||
1290 (rate->bw == RATE_INFO_BW_HE_RU &&
1291 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292 result = rates_484[rate->he_gi];
1293 else if (rate->bw == RATE_INFO_BW_20 ||
1294 (rate->bw == RATE_INFO_BW_HE_RU &&
1295 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296 result = rates_242[rate->he_gi];
1297 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299 result = rates_106[rate->he_gi];
1300 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302 result = rates_52[rate->he_gi];
1303 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305 result = rates_26[rate->he_gi];
1306 else {
1307 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308 rate->bw, rate->he_ru_alloc);
1309 return 0;
1310 }
1311
1312 /* now scale to the appropriate MCS */
1313 tmp = result;
1314 tmp *= SCALE;
1315 do_div(tmp, mcs_divisors[rate->mcs]);
1316 result = tmp;
1317
1318 /* and take NSS, DCM into account */
1319 result = (result * rate->nss) / 8;
1320 if (rate->he_dcm)
1321 result /= 2;
1322
1323 return result / 10000;
1324}
1325
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328 if (rate->flags & RATE_INFO_FLAGS_MCS)
1329 return cfg80211_calculate_bitrate_ht(rate);
1330 if (rate->flags & RATE_INFO_FLAGS_DMG)
1331 return cfg80211_calculate_bitrate_dmg(rate);
1332 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333 return cfg80211_calculate_bitrate_edmg(rate);
1334 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335 return cfg80211_calculate_bitrate_vht(rate);
1336 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337 return cfg80211_calculate_bitrate_he(rate);
1338
1339 return rate->legacy;
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344 enum ieee80211_p2p_attr_id attr,
1345 u8 *buf, unsigned int bufsize)
1346{
1347 u8 *out = buf;
1348 u16 attr_remaining = 0;
1349 bool desired_attr = false;
1350 u16 desired_len = 0;
1351
1352 while (len > 0) {
1353 unsigned int iedatalen;
1354 unsigned int copy;
1355 const u8 *iedata;
1356
1357 if (len < 2)
1358 return -EILSEQ;
1359 iedatalen = ies[1];
1360 if (iedatalen + 2 > len)
1361 return -EILSEQ;
1362
1363 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364 goto cont;
1365
1366 if (iedatalen < 4)
1367 goto cont;
1368
1369 iedata = ies + 2;
1370
1371 /* check WFA OUI, P2P subtype */
1372 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373 iedata[2] != 0x9a || iedata[3] != 0x09)
1374 goto cont;
1375
1376 iedatalen -= 4;
1377 iedata += 4;
1378
1379 /* check attribute continuation into this IE */
1380 copy = min_t(unsigned int, attr_remaining, iedatalen);
1381 if (copy && desired_attr) {
1382 desired_len += copy;
1383 if (out) {
1384 memcpy(out, iedata, min(bufsize, copy));
1385 out += min(bufsize, copy);
1386 bufsize -= min(bufsize, copy);
1387 }
1388
1389
1390 if (copy == attr_remaining)
1391 return desired_len;
1392 }
1393
1394 attr_remaining -= copy;
1395 if (attr_remaining)
1396 goto cont;
1397
1398 iedatalen -= copy;
1399 iedata += copy;
1400
1401 while (iedatalen > 0) {
1402 u16 attr_len;
1403
1404 /* P2P attribute ID & size must fit */
1405 if (iedatalen < 3)
1406 return -EILSEQ;
1407 desired_attr = iedata[0] == attr;
1408 attr_len = get_unaligned_le16(iedata + 1);
1409 iedatalen -= 3;
1410 iedata += 3;
1411
1412 copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414 if (desired_attr) {
1415 desired_len += copy;
1416 if (out) {
1417 memcpy(out, iedata, min(bufsize, copy));
1418 out += min(bufsize, copy);
1419 bufsize -= min(bufsize, copy);
1420 }
1421
1422 if (copy == attr_len)
1423 return desired_len;
1424 }
1425
1426 iedata += copy;
1427 iedatalen -= copy;
1428 attr_remaining = attr_len - copy;
1429 }
1430
1431 cont:
1432 len -= ies[1] + 2;
1433 ies += ies[1] + 2;
1434 }
1435
1436 if (attr_remaining && desired_attr)
1437 return -EILSEQ;
1438
1439 return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445 int i;
1446
1447 /* Make sure array values are legal */
1448 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449 return false;
1450
1451 i = 0;
1452 while (i < n_ids) {
1453 if (ids[i] == WLAN_EID_EXTENSION) {
1454 if (id_ext && (ids[i + 1] == id))
1455 return true;
1456
1457 i += 2;
1458 continue;
1459 }
1460
1461 if (ids[i] == id && !id_ext)
1462 return true;
1463
1464 i++;
1465 }
1466 return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471 /* we assume a validly formed IEs buffer */
1472 u8 len = ies[pos + 1];
1473
1474 pos += 2 + len;
1475
1476 /* the IE itself must have 255 bytes for fragments to follow */
1477 if (len < 255)
1478 return pos;
1479
1480 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481 len = ies[pos + 1];
1482 pos += 2 + len;
1483 }
1484
1485 return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489 const u8 *ids, int n_ids,
1490 const u8 *after_ric, int n_after_ric,
1491 size_t offset)
1492{
1493 size_t pos = offset;
1494
1495 while (pos < ielen) {
1496 u8 ext = 0;
1497
1498 if (ies[pos] == WLAN_EID_EXTENSION)
1499 ext = 2;
1500 if ((pos + ext) >= ielen)
1501 break;
1502
1503 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504 ies[pos] == WLAN_EID_EXTENSION))
1505 break;
1506
1507 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508 pos = skip_ie(ies, ielen, pos);
1509
1510 while (pos < ielen) {
1511 if (ies[pos] == WLAN_EID_EXTENSION)
1512 ext = 2;
1513 else
1514 ext = 0;
1515
1516 if ((pos + ext) >= ielen)
1517 break;
1518
1519 if (!ieee80211_id_in_list(after_ric,
1520 n_after_ric,
1521 ies[pos + ext],
1522 ext == 2))
1523 pos = skip_ie(ies, ielen, pos);
1524 else
1525 break;
1526 }
1527 } else {
1528 pos = skip_ie(ies, ielen, pos);
1529 }
1530 }
1531
1532 return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537 enum nl80211_band *band)
1538{
1539 switch (operating_class) {
1540 case 112:
1541 case 115 ... 127:
1542 case 128 ... 130:
1543 *band = NL80211_BAND_5GHZ;
1544 return true;
1545 case 131 ... 135:
1546 *band = NL80211_BAND_6GHZ;
1547 return true;
1548 case 81:
1549 case 82:
1550 case 83:
1551 case 84:
1552 *band = NL80211_BAND_2GHZ;
1553 return true;
1554 case 180:
1555 *band = NL80211_BAND_60GHZ;
1556 return true;
1557 }
1558
1559 return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564 u8 *op_class)
1565{
1566 u8 vht_opclass;
1567 u32 freq = chandef->center_freq1;
1568
1569 if (freq >= 2412 && freq <= 2472) {
1570 if (chandef->width > NL80211_CHAN_WIDTH_40)
1571 return false;
1572
1573 /* 2.407 GHz, channels 1..13 */
1574 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575 if (freq > chandef->chan->center_freq)
1576 *op_class = 83; /* HT40+ */
1577 else
1578 *op_class = 84; /* HT40- */
1579 } else {
1580 *op_class = 81;
1581 }
1582
1583 return true;
1584 }
1585
1586 if (freq == 2484) {
1587 /* channel 14 is only for IEEE 802.11b */
1588 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589 return false;
1590
1591 *op_class = 82; /* channel 14 */
1592 return true;
1593 }
1594
1595 switch (chandef->width) {
1596 case NL80211_CHAN_WIDTH_80:
1597 vht_opclass = 128;
1598 break;
1599 case NL80211_CHAN_WIDTH_160:
1600 vht_opclass = 129;
1601 break;
1602 case NL80211_CHAN_WIDTH_80P80:
1603 vht_opclass = 130;
1604 break;
1605 case NL80211_CHAN_WIDTH_10:
1606 case NL80211_CHAN_WIDTH_5:
1607 return false; /* unsupported for now */
1608 default:
1609 vht_opclass = 0;
1610 break;
1611 }
1612
1613 /* 5 GHz, channels 36..48 */
1614 if (freq >= 5180 && freq <= 5240) {
1615 if (vht_opclass) {
1616 *op_class = vht_opclass;
1617 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618 if (freq > chandef->chan->center_freq)
1619 *op_class = 116;
1620 else
1621 *op_class = 117;
1622 } else {
1623 *op_class = 115;
1624 }
1625
1626 return true;
1627 }
1628
1629 /* 5 GHz, channels 52..64 */
1630 if (freq >= 5260 && freq <= 5320) {
1631 if (vht_opclass) {
1632 *op_class = vht_opclass;
1633 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634 if (freq > chandef->chan->center_freq)
1635 *op_class = 119;
1636 else
1637 *op_class = 120;
1638 } else {
1639 *op_class = 118;
1640 }
1641
1642 return true;
1643 }
1644
1645 /* 5 GHz, channels 100..144 */
1646 if (freq >= 5500 && freq <= 5720) {
1647 if (vht_opclass) {
1648 *op_class = vht_opclass;
1649 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650 if (freq > chandef->chan->center_freq)
1651 *op_class = 122;
1652 else
1653 *op_class = 123;
1654 } else {
1655 *op_class = 121;
1656 }
1657
1658 return true;
1659 }
1660
1661 /* 5 GHz, channels 149..169 */
1662 if (freq >= 5745 && freq <= 5845) {
1663 if (vht_opclass) {
1664 *op_class = vht_opclass;
1665 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666 if (freq > chandef->chan->center_freq)
1667 *op_class = 126;
1668 else
1669 *op_class = 127;
1670 } else if (freq <= 5805) {
1671 *op_class = 124;
1672 } else {
1673 *op_class = 125;
1674 }
1675
1676 return true;
1677 }
1678
1679 /* 56.16 GHz, channel 1..4 */
1680 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682 return false;
1683
1684 *op_class = 180;
1685 return true;
1686 }
1687
1688 /* not supported yet */
1689 return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694 u32 *beacon_int_gcd,
1695 bool *beacon_int_different)
1696{
1697 struct wireless_dev *wdev;
1698
1699 *beacon_int_gcd = 0;
1700 *beacon_int_different = false;
1701
1702 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703 if (!wdev->beacon_interval)
1704 continue;
1705
1706 if (!*beacon_int_gcd) {
1707 *beacon_int_gcd = wdev->beacon_interval;
1708 continue;
1709 }
1710
1711 if (wdev->beacon_interval == *beacon_int_gcd)
1712 continue;
1713
1714 *beacon_int_different = true;
1715 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716 }
1717
1718 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719 if (*beacon_int_gcd)
1720 *beacon_int_different = true;
1721 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722 }
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728 /*
1729 * This is just a basic pre-condition check; if interface combinations
1730 * are possible the driver must already be checking those with a call
1731 * to cfg80211_check_combinations(), in which case we'll validate more
1732 * through the cfg80211_calculate_bi_data() call and code in
1733 * cfg80211_iter_combinations().
1734 */
1735
1736 if (beacon_int < 10 || beacon_int > 10000)
1737 return -EINVAL;
1738
1739 return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743 struct iface_combination_params *params,
1744 void (*iter)(const struct ieee80211_iface_combination *c,
1745 void *data),
1746 void *data)
1747{
1748 const struct ieee80211_regdomain *regdom;
1749 enum nl80211_dfs_regions region = 0;
1750 int i, j, iftype;
1751 int num_interfaces = 0;
1752 u32 used_iftypes = 0;
1753 u32 beacon_int_gcd;
1754 bool beacon_int_different;
1755
1756 /*
1757 * This is a bit strange, since the iteration used to rely only on
1758 * the data given by the driver, but here it now relies on context,
1759 * in form of the currently operating interfaces.
1760 * This is OK for all current users, and saves us from having to
1761 * push the GCD calculations into all the drivers.
1762 * In the future, this should probably rely more on data that's in
1763 * cfg80211 already - the only thing not would appear to be any new
1764 * interfaces (while being brought up) and channel/radar data.
1765 */
1766 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767 &beacon_int_gcd, &beacon_int_different);
1768
1769 if (params->radar_detect) {
1770 rcu_read_lock();
1771 regdom = rcu_dereference(cfg80211_regdomain);
1772 if (regdom)
1773 region = regdom->dfs_region;
1774 rcu_read_unlock();
1775 }
1776
1777 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778 num_interfaces += params->iftype_num[iftype];
1779 if (params->iftype_num[iftype] > 0 &&
1780 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781 used_iftypes |= BIT(iftype);
1782 }
1783
1784 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785 const struct ieee80211_iface_combination *c;
1786 struct ieee80211_iface_limit *limits;
1787 u32 all_iftypes = 0;
1788
1789 c = &wiphy->iface_combinations[i];
1790
1791 if (num_interfaces > c->max_interfaces)
1792 continue;
1793 if (params->num_different_channels > c->num_different_channels)
1794 continue;
1795
1796 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797 GFP_KERNEL);
1798 if (!limits)
1799 return -ENOMEM;
1800
1801 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803 continue;
1804 for (j = 0; j < c->n_limits; j++) {
1805 all_iftypes |= limits[j].types;
1806 if (!(limits[j].types & BIT(iftype)))
1807 continue;
1808 if (limits[j].max < params->iftype_num[iftype])
1809 goto cont;
1810 limits[j].max -= params->iftype_num[iftype];
1811 }
1812 }
1813
1814 if (params->radar_detect !=
1815 (c->radar_detect_widths & params->radar_detect))
1816 goto cont;
1817
1818 if (params->radar_detect && c->radar_detect_regions &&
1819 !(c->radar_detect_regions & BIT(region)))
1820 goto cont;
1821
1822 /* Finally check that all iftypes that we're currently
1823 * using are actually part of this combination. If they
1824 * aren't then we can't use this combination and have
1825 * to continue to the next.
1826 */
1827 if ((all_iftypes & used_iftypes) != used_iftypes)
1828 goto cont;
1829
1830 if (beacon_int_gcd) {
1831 if (c->beacon_int_min_gcd &&
1832 beacon_int_gcd < c->beacon_int_min_gcd)
1833 goto cont;
1834 if (!c->beacon_int_min_gcd && beacon_int_different)
1835 goto cont;
1836 }
1837
1838 /* This combination covered all interface types and
1839 * supported the requested numbers, so we're good.
1840 */
1841
1842 (*iter)(c, data);
1843 cont:
1844 kfree(limits);
1845 }
1846
1847 return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853 void *data)
1854{
1855 int *num = data;
1856 (*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860 struct iface_combination_params *params)
1861{
1862 int err, num = 0;
1863
1864 err = cfg80211_iter_combinations(wiphy, params,
1865 cfg80211_iter_sum_ifcombs, &num);
1866 if (err)
1867 return err;
1868 if (num == 0)
1869 return -EBUSY;
1870
1871 return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876 const u8 *rates, unsigned int n_rates,
1877 u32 *mask)
1878{
1879 int i, j;
1880
1881 if (!sband)
1882 return -EINVAL;
1883
1884 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885 return -EINVAL;
1886
1887 *mask = 0;
1888
1889 for (i = 0; i < n_rates; i++) {
1890 int rate = (rates[i] & 0x7f) * 5;
1891 bool found = false;
1892
1893 for (j = 0; j < sband->n_bitrates; j++) {
1894 if (sband->bitrates[j].bitrate == rate) {
1895 found = true;
1896 *mask |= BIT(j);
1897 break;
1898 }
1899 }
1900 if (!found)
1901 return -EINVAL;
1902 }
1903
1904 /*
1905 * mask must have at least one bit set here since we
1906 * didn't accept a 0-length rates array nor allowed
1907 * entries in the array that didn't exist
1908 */
1909
1910 return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915 enum nl80211_band band;
1916 unsigned int n_channels = 0;
1917
1918 for (band = 0; band < NUM_NL80211_BANDS; band++)
1919 if (wiphy->bands[band])
1920 n_channels += wiphy->bands[band]->n_channels;
1921
1922 return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927 struct station_info *sinfo)
1928{
1929 struct cfg80211_registered_device *rdev;
1930 struct wireless_dev *wdev;
1931
1932 wdev = dev->ieee80211_ptr;
1933 if (!wdev)
1934 return -EOPNOTSUPP;
1935
1936 rdev = wiphy_to_rdev(wdev->wiphy);
1937 if (!rdev->ops->get_station)
1938 return -EOPNOTSUPP;
1939
1940 memset(sinfo, 0, sizeof(*sinfo));
1941
1942 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948 int i;
1949
1950 if (!f)
1951 return;
1952
1953 kfree(f->serv_spec_info);
1954 kfree(f->srf_bf);
1955 kfree(f->srf_macs);
1956 for (i = 0; i < f->num_rx_filters; i++)
1957 kfree(f->rx_filters[i].filter);
1958
1959 for (i = 0; i < f->num_tx_filters; i++)
1960 kfree(f->tx_filters[i].filter);
1961
1962 kfree(f->rx_filters);
1963 kfree(f->tx_filters);
1964 kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969 u32 center_freq_khz, u32 bw_khz)
1970{
1971 u32 start_freq_khz, end_freq_khz;
1972
1973 start_freq_khz = center_freq_khz - (bw_khz / 2);
1974 end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976 if (start_freq_khz >= freq_range->start_freq_khz &&
1977 end_freq_khz <= freq_range->end_freq_khz)
1978 return true;
1979
1980 return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986 sizeof(*(sinfo->pertid)),
1987 gfp);
1988 if (!sinfo->pertid)
1989 return -ENOMEM;
1990
1991 return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008 u8 da[ETH_ALEN]; /* broadcast */
2009 u8 sa[ETH_ALEN]; /* STA addr */
2010 __be16 len; /* 6 */
2011 u8 dsap; /* 0 */
2012 u8 ssap; /* 0 */
2013 u8 control;
2014 u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019 struct iapp_layer2_update *msg;
2020 struct sk_buff *skb;
2021
2022 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2023 * bridge devices */
2024
2025 skb = dev_alloc_skb(sizeof(*msg));
2026 if (!skb)
2027 return;
2028 msg = skb_put(skb, sizeof(*msg));
2029
2030 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033 eth_broadcast_addr(msg->da);
2034 ether_addr_copy(msg->sa, addr);
2035 msg->len = htons(6);
2036 msg->dsap = 0;
2037 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2038 msg->control = 0xaf; /* XID response lsb.1111F101.
2039 * F=0 (no poll command; unsolicited frame) */
2040 msg->xid_info[0] = 0x81; /* XID format identifier */
2041 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2042 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2043
2044 skb->dev = dev;
2045 skb->protocol = eth_type_trans(skb, dev);
2046 memset(skb->cb, 0, sizeof(skb->cb));
2047 netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052 enum ieee80211_vht_chanwidth bw,
2053 int mcs, bool ext_nss_bw_capable,
2054 unsigned int max_vht_nss)
2055{
2056 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057 int ext_nss_bw;
2058 int supp_width;
2059 int i, mcs_encoding;
2060
2061 if (map == 0xffff)
2062 return 0;
2063
2064 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065 return 0;
2066 if (mcs <= 7)
2067 mcs_encoding = 0;
2068 else if (mcs == 8)
2069 mcs_encoding = 1;
2070 else
2071 mcs_encoding = 2;
2072
2073 if (!max_vht_nss) {
2074 /* find max_vht_nss for the given MCS */
2075 for (i = 7; i >= 0; i--) {
2076 int supp = (map >> (2 * i)) & 3;
2077
2078 if (supp == 3)
2079 continue;
2080
2081 if (supp >= mcs_encoding) {
2082 max_vht_nss = i + 1;
2083 break;
2084 }
2085 }
2086 }
2087
2088 if (!(cap->supp_mcs.tx_mcs_map &
2089 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090 return max_vht_nss;
2091
2092 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094 supp_width = le32_get_bits(cap->vht_cap_info,
2095 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097 /* if not capable, treat ext_nss_bw as 0 */
2098 if (!ext_nss_bw_capable)
2099 ext_nss_bw = 0;
2100
2101 /* This is invalid */
2102 if (supp_width == 3)
2103 return 0;
2104
2105 /* This is an invalid combination so pretend nothing is supported */
2106 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107 return 0;
2108
2109 /*
2110 * Cover all the special cases according to IEEE 802.11-2016
2111 * Table 9-250. All other cases are either factor of 1 or not
2112 * valid/supported.
2113 */
2114 switch (bw) {
2115 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117 if ((supp_width == 1 || supp_width == 2) &&
2118 ext_nss_bw == 3)
2119 return 2 * max_vht_nss;
2120 break;
2121 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122 if (supp_width == 0 &&
2123 (ext_nss_bw == 1 || ext_nss_bw == 2))
2124 return max_vht_nss / 2;
2125 if (supp_width == 0 &&
2126 ext_nss_bw == 3)
2127 return (3 * max_vht_nss) / 4;
2128 if (supp_width == 1 &&
2129 ext_nss_bw == 3)
2130 return 2 * max_vht_nss;
2131 break;
2132 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133 if (supp_width == 0 && ext_nss_bw == 1)
2134 return 0; /* not possible */
2135 if (supp_width == 0 &&
2136 ext_nss_bw == 2)
2137 return max_vht_nss / 2;
2138 if (supp_width == 0 &&
2139 ext_nss_bw == 3)
2140 return (3 * max_vht_nss) / 4;
2141 if (supp_width == 1 &&
2142 ext_nss_bw == 0)
2143 return 0; /* not possible */
2144 if (supp_width == 1 &&
2145 ext_nss_bw == 1)
2146 return max_vht_nss / 2;
2147 if (supp_width == 1 &&
2148 ext_nss_bw == 2)
2149 return (3 * max_vht_nss) / 4;
2150 break;
2151 }
2152
2153 /* not covered or invalid combination received */
2154 return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159 bool is_4addr, u8 check_swif)
2160
2161{
2162 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164 switch (check_swif) {
2165 case 0:
2166 if (is_vlan && is_4addr)
2167 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168 return wiphy->interface_modes & BIT(iftype);
2169 case 1:
2170 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172 return wiphy->software_iftypes & BIT(iftype);
2173 default:
2174 break;
2175 }
2176
2177 return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);