Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   5 * Copyright 2013-2014  Intel Mobile Communications GmbH
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/bitops.h>
   9#include <linux/etherdevice.h>
  10#include <linux/slab.h>
 
  11#include <net/cfg80211.h>
  12#include <net/ip.h>
  13#include <net/dsfield.h>
  14#include <linux/if_vlan.h>
  15#include <linux/mpls.h>
  16#include <linux/gcd.h>
 
 
  17#include "core.h"
  18#include "rdev-ops.h"
  19
  20
  21struct ieee80211_rate *
  22ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  23			    u32 basic_rates, int bitrate)
  24{
  25	struct ieee80211_rate *result = &sband->bitrates[0];
  26	int i;
  27
  28	for (i = 0; i < sband->n_bitrates; i++) {
  29		if (!(basic_rates & BIT(i)))
  30			continue;
  31		if (sband->bitrates[i].bitrate > bitrate)
  32			continue;
  33		result = &sband->bitrates[i];
  34	}
  35
  36	return result;
  37}
  38EXPORT_SYMBOL(ieee80211_get_response_rate);
  39
  40u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  41			      enum nl80211_bss_scan_width scan_width)
  42{
  43	struct ieee80211_rate *bitrates;
  44	u32 mandatory_rates = 0;
  45	enum ieee80211_rate_flags mandatory_flag;
  46	int i;
  47
  48	if (WARN_ON(!sband))
  49		return 1;
  50
  51	if (sband->band == NL80211_BAND_2GHZ) {
  52		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  53		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  54			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  55		else
  56			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  57	} else {
  58		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  59	}
  60
  61	bitrates = sband->bitrates;
  62	for (i = 0; i < sband->n_bitrates; i++)
  63		if (bitrates[i].flags & mandatory_flag)
  64			mandatory_rates |= BIT(i);
  65	return mandatory_rates;
  66}
  67EXPORT_SYMBOL(ieee80211_mandatory_rates);
  68
  69int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  70{
  71	/* see 802.11 17.3.8.3.2 and Annex J
  72	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  73	if (chan <= 0)
  74		return 0; /* not supported */
  75	switch (band) {
  76	case NL80211_BAND_2GHZ:
  77		if (chan == 14)
  78			return 2484;
  79		else if (chan < 14)
  80			return 2407 + chan * 5;
  81		break;
  82	case NL80211_BAND_5GHZ:
  83		if (chan >= 182 && chan <= 196)
  84			return 4000 + chan * 5;
  85		else
  86			return 5000 + chan * 5;
 
 
 
 
 
 
 
  87		break;
  88	case NL80211_BAND_60GHZ:
  89		if (chan < 5)
  90			return 56160 + chan * 2160;
  91		break;
 
 
  92	default:
  93		;
  94	}
  95	return 0; /* not supported */
  96}
  97EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  98
  99int ieee80211_frequency_to_channel(int freq)
 100{
 
 
 
 101	/* see 802.11 17.3.8.3.2 and Annex J */
 102	if (freq == 2484)
 103		return 14;
 104	else if (freq < 2484)
 105		return (freq - 2407) / 5;
 106	else if (freq >= 4910 && freq <= 4980)
 107		return (freq - 4000) / 5;
 108	else if (freq <= 45000) /* DMG band lower limit */
 109		return (freq - 5000) / 5;
 110	else if (freq >= 58320 && freq <= 64800)
 
 
 
 
 
 111		return (freq - 56160) / 2160;
 112	else
 113		return 0;
 114}
 115EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 116
 117struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
 118						  int freq)
 119{
 120	enum nl80211_band band;
 121	struct ieee80211_supported_band *sband;
 122	int i;
 123
 124	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 125		sband = wiphy->bands[band];
 126
 127		if (!sband)
 128			continue;
 129
 130		for (i = 0; i < sband->n_channels; i++) {
 131			if (sband->channels[i].center_freq == freq)
 132				return &sband->channels[i];
 
 
 133		}
 134	}
 135
 136	return NULL;
 137}
 138EXPORT_SYMBOL(__ieee80211_get_channel);
 139
 140static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
 141				     enum nl80211_band band)
 142{
 143	int i, want;
 144
 145	switch (band) {
 146	case NL80211_BAND_5GHZ:
 
 147		want = 3;
 148		for (i = 0; i < sband->n_bitrates; i++) {
 149			if (sband->bitrates[i].bitrate == 60 ||
 150			    sband->bitrates[i].bitrate == 120 ||
 151			    sband->bitrates[i].bitrate == 240) {
 152				sband->bitrates[i].flags |=
 153					IEEE80211_RATE_MANDATORY_A;
 154				want--;
 155			}
 156		}
 157		WARN_ON(want);
 158		break;
 159	case NL80211_BAND_2GHZ:
 160		want = 7;
 161		for (i = 0; i < sband->n_bitrates; i++) {
 162			if (sband->bitrates[i].bitrate == 10) {
 
 
 
 
 163				sband->bitrates[i].flags |=
 164					IEEE80211_RATE_MANDATORY_B |
 165					IEEE80211_RATE_MANDATORY_G;
 166				want--;
 167			}
 168
 169			if (sband->bitrates[i].bitrate == 20 ||
 170			    sband->bitrates[i].bitrate == 55 ||
 171			    sband->bitrates[i].bitrate == 110 ||
 172			    sband->bitrates[i].bitrate == 60 ||
 173			    sband->bitrates[i].bitrate == 120 ||
 174			    sband->bitrates[i].bitrate == 240) {
 175				sband->bitrates[i].flags |=
 176					IEEE80211_RATE_MANDATORY_G;
 177				want--;
 178			}
 179
 180			if (sband->bitrates[i].bitrate != 10 &&
 181			    sband->bitrates[i].bitrate != 20 &&
 182			    sband->bitrates[i].bitrate != 55 &&
 183			    sband->bitrates[i].bitrate != 110)
 184				sband->bitrates[i].flags |=
 185					IEEE80211_RATE_ERP_G;
 
 
 186		}
 187		WARN_ON(want != 0 && want != 3 && want != 6);
 188		break;
 189	case NL80211_BAND_60GHZ:
 190		/* check for mandatory HT MCS 1..4 */
 191		WARN_ON(!sband->ht_cap.ht_supported);
 192		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 193		break;
 
 
 
 
 
 
 194	case NUM_NL80211_BANDS:
 
 195		WARN_ON(1);
 196		break;
 197	}
 198}
 199
 200void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 201{
 202	enum nl80211_band band;
 203
 204	for (band = 0; band < NUM_NL80211_BANDS; band++)
 205		if (wiphy->bands[band])
 206			set_mandatory_flags_band(wiphy->bands[band], band);
 207}
 208
 209bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 210{
 211	int i;
 212	for (i = 0; i < wiphy->n_cipher_suites; i++)
 213		if (cipher == wiphy->cipher_suites[i])
 214			return true;
 215	return false;
 216}
 217
 218int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 219				   struct key_params *params, int key_idx,
 220				   bool pairwise, const u8 *mac_addr)
 221{
 222	if (key_idx < 0 || key_idx > 5)
 
 
 
 
 
 
 
 223		return -EINVAL;
 224
 225	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 226		return -EINVAL;
 227
 228	if (pairwise && !mac_addr)
 229		return -EINVAL;
 230
 231	switch (params->cipher) {
 232	case WLAN_CIPHER_SUITE_TKIP:
 
 
 
 
 
 233	case WLAN_CIPHER_SUITE_CCMP:
 234	case WLAN_CIPHER_SUITE_CCMP_256:
 235	case WLAN_CIPHER_SUITE_GCMP:
 236	case WLAN_CIPHER_SUITE_GCMP_256:
 237		/* Disallow pairwise keys with non-zero index unless it's WEP
 238		 * or a vendor specific cipher (because current deployments use
 239		 * pairwise WEP keys with non-zero indices and for vendor
 240		 * specific ciphers this should be validated in the driver or
 241		 * hardware level - but 802.11i clearly specifies to use zero)
 
 242		 */
 243		if (pairwise && key_idx)
 
 244			return -EINVAL;
 
 
 
 
 
 
 
 245		break;
 246	case WLAN_CIPHER_SUITE_AES_CMAC:
 247	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 248	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 249	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 250		/* Disallow BIP (group-only) cipher as pairwise cipher */
 251		if (pairwise)
 252			return -EINVAL;
 253		if (key_idx < 4)
 254			return -EINVAL;
 255		break;
 256	case WLAN_CIPHER_SUITE_WEP40:
 257	case WLAN_CIPHER_SUITE_WEP104:
 258		if (key_idx > 3)
 259			return -EINVAL;
 260	default:
 261		break;
 262	}
 263
 264	switch (params->cipher) {
 265	case WLAN_CIPHER_SUITE_WEP40:
 266		if (params->key_len != WLAN_KEY_LEN_WEP40)
 267			return -EINVAL;
 268		break;
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		if (params->key_len != WLAN_KEY_LEN_TKIP)
 271			return -EINVAL;
 272		break;
 273	case WLAN_CIPHER_SUITE_CCMP:
 274		if (params->key_len != WLAN_KEY_LEN_CCMP)
 275			return -EINVAL;
 276		break;
 277	case WLAN_CIPHER_SUITE_CCMP_256:
 278		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 279			return -EINVAL;
 280		break;
 281	case WLAN_CIPHER_SUITE_GCMP:
 282		if (params->key_len != WLAN_KEY_LEN_GCMP)
 283			return -EINVAL;
 284		break;
 285	case WLAN_CIPHER_SUITE_GCMP_256:
 286		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 287			return -EINVAL;
 288		break;
 289	case WLAN_CIPHER_SUITE_WEP104:
 290		if (params->key_len != WLAN_KEY_LEN_WEP104)
 291			return -EINVAL;
 292		break;
 293	case WLAN_CIPHER_SUITE_AES_CMAC:
 294		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 295			return -EINVAL;
 296		break;
 297	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 298		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 299			return -EINVAL;
 300		break;
 301	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 302		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 303			return -EINVAL;
 304		break;
 305	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 306		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 307			return -EINVAL;
 308		break;
 309	default:
 310		/*
 311		 * We don't know anything about this algorithm,
 312		 * allow using it -- but the driver must check
 313		 * all parameters! We still check below whether
 314		 * or not the driver supports this algorithm,
 315		 * of course.
 316		 */
 317		break;
 318	}
 319
 320	if (params->seq) {
 321		switch (params->cipher) {
 322		case WLAN_CIPHER_SUITE_WEP40:
 323		case WLAN_CIPHER_SUITE_WEP104:
 324			/* These ciphers do not use key sequence */
 325			return -EINVAL;
 326		case WLAN_CIPHER_SUITE_TKIP:
 327		case WLAN_CIPHER_SUITE_CCMP:
 328		case WLAN_CIPHER_SUITE_CCMP_256:
 329		case WLAN_CIPHER_SUITE_GCMP:
 330		case WLAN_CIPHER_SUITE_GCMP_256:
 331		case WLAN_CIPHER_SUITE_AES_CMAC:
 332		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 333		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 334		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 335			if (params->seq_len != 6)
 336				return -EINVAL;
 337			break;
 338		}
 339	}
 340
 341	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 342		return -EINVAL;
 343
 344	return 0;
 345}
 346
 347unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 348{
 349	unsigned int hdrlen = 24;
 350
 351	if (ieee80211_is_data(fc)) {
 352		if (ieee80211_has_a4(fc))
 353			hdrlen = 30;
 354		if (ieee80211_is_data_qos(fc)) {
 355			hdrlen += IEEE80211_QOS_CTL_LEN;
 356			if (ieee80211_has_order(fc))
 357				hdrlen += IEEE80211_HT_CTL_LEN;
 358		}
 359		goto out;
 360	}
 361
 362	if (ieee80211_is_mgmt(fc)) {
 363		if (ieee80211_has_order(fc))
 364			hdrlen += IEEE80211_HT_CTL_LEN;
 365		goto out;
 366	}
 367
 368	if (ieee80211_is_ctl(fc)) {
 369		/*
 370		 * ACK and CTS are 10 bytes, all others 16. To see how
 371		 * to get this condition consider
 372		 *   subtype mask:   0b0000000011110000 (0x00F0)
 373		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 374		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 375		 *   bits that matter:         ^^^      (0x00E0)
 376		 *   value of those: 0b0000000011000000 (0x00C0)
 377		 */
 378		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 379			hdrlen = 10;
 380		else
 381			hdrlen = 16;
 382	}
 383out:
 384	return hdrlen;
 385}
 386EXPORT_SYMBOL(ieee80211_hdrlen);
 387
 388unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 389{
 390	const struct ieee80211_hdr *hdr =
 391			(const struct ieee80211_hdr *)skb->data;
 392	unsigned int hdrlen;
 393
 394	if (unlikely(skb->len < 10))
 395		return 0;
 396	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 397	if (unlikely(hdrlen > skb->len))
 398		return 0;
 399	return hdrlen;
 400}
 401EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 402
 403static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 404{
 405	int ae = flags & MESH_FLAGS_AE;
 406	/* 802.11-2012, 8.2.4.7.3 */
 407	switch (ae) {
 408	default:
 409	case 0:
 410		return 6;
 411	case MESH_FLAGS_AE_A4:
 412		return 12;
 413	case MESH_FLAGS_AE_A5_A6:
 414		return 18;
 415	}
 416}
 417
 418unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 419{
 420	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 421}
 422EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 423
 424int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 425				  const u8 *addr, enum nl80211_iftype iftype)
 
 426{
 427	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 428	struct {
 429		u8 hdr[ETH_ALEN] __aligned(2);
 430		__be16 proto;
 431	} payload;
 432	struct ethhdr tmp;
 433	u16 hdrlen;
 434	u8 mesh_flags = 0;
 435
 436	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 437		return -1;
 438
 439	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 440	if (skb->len < hdrlen + 8)
 441		return -1;
 442
 443	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 444	 * header
 445	 * IEEE 802.11 address fields:
 446	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 447	 *   0     0   DA    SA    BSSID n/a
 448	 *   0     1   DA    BSSID SA    n/a
 449	 *   1     0   BSSID SA    DA    n/a
 450	 *   1     1   RA    TA    DA    SA
 451	 */
 452	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 453	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 454
 455	if (iftype == NL80211_IFTYPE_MESH_POINT)
 456		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 457
 
 
 458	switch (hdr->frame_control &
 459		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 460	case cpu_to_le16(IEEE80211_FCTL_TODS):
 461		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 462			     iftype != NL80211_IFTYPE_AP_VLAN &&
 463			     iftype != NL80211_IFTYPE_P2P_GO))
 464			return -1;
 465		break;
 466	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 467		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 468			     iftype != NL80211_IFTYPE_MESH_POINT &&
 469			     iftype != NL80211_IFTYPE_AP_VLAN &&
 470			     iftype != NL80211_IFTYPE_STATION))
 471			return -1;
 472		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 473			if (mesh_flags & MESH_FLAGS_AE_A4)
 474				return -1;
 475			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
 476				skb_copy_bits(skb, hdrlen +
 477					offsetof(struct ieee80211s_hdr, eaddr1),
 478					tmp.h_dest, 2 * ETH_ALEN);
 479			}
 480			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 481		}
 482		break;
 483	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 484		if ((iftype != NL80211_IFTYPE_STATION &&
 485		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 486		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 487		    (is_multicast_ether_addr(tmp.h_dest) &&
 488		     ether_addr_equal(tmp.h_source, addr)))
 489			return -1;
 490		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 491			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
 492				return -1;
 493			if (mesh_flags & MESH_FLAGS_AE_A4)
 494				skb_copy_bits(skb, hdrlen +
 495					offsetof(struct ieee80211s_hdr, eaddr1),
 496					tmp.h_source, ETH_ALEN);
 497			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 498		}
 499		break;
 500	case cpu_to_le16(0):
 501		if (iftype != NL80211_IFTYPE_ADHOC &&
 502		    iftype != NL80211_IFTYPE_STATION &&
 503		    iftype != NL80211_IFTYPE_OCB)
 504				return -1;
 505		break;
 506	}
 507
 508	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 509	tmp.h_proto = payload.proto;
 510
 511	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 512		    tmp.h_proto != htons(ETH_P_AARP) &&
 513		    tmp.h_proto != htons(ETH_P_IPX)) ||
 514		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 515		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 516		 * replace EtherType */
 517		hdrlen += ETH_ALEN + 2;
 518	else
 519		tmp.h_proto = htons(skb->len - hdrlen);
 520
 521	pskb_pull(skb, hdrlen);
 522
 523	if (!ehdr)
 524		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 525	memcpy(ehdr, &tmp, sizeof(tmp));
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 530
 531int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 532			     enum nl80211_iftype iftype,
 533			     const u8 *bssid, bool qos)
 534{
 535	struct ieee80211_hdr hdr;
 536	u16 hdrlen, ethertype;
 537	__le16 fc;
 538	const u8 *encaps_data;
 539	int encaps_len, skip_header_bytes;
 540	int nh_pos, h_pos;
 541	int head_need;
 542
 543	if (unlikely(skb->len < ETH_HLEN))
 544		return -EINVAL;
 545
 546	nh_pos = skb_network_header(skb) - skb->data;
 547	h_pos = skb_transport_header(skb) - skb->data;
 548
 549	/* convert Ethernet header to proper 802.11 header (based on
 550	 * operation mode) */
 551	ethertype = (skb->data[12] << 8) | skb->data[13];
 552	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 553
 554	switch (iftype) {
 555	case NL80211_IFTYPE_AP:
 556	case NL80211_IFTYPE_AP_VLAN:
 557	case NL80211_IFTYPE_P2P_GO:
 558		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 559		/* DA BSSID SA */
 560		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 561		memcpy(hdr.addr2, addr, ETH_ALEN);
 562		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 563		hdrlen = 24;
 564		break;
 565	case NL80211_IFTYPE_STATION:
 566	case NL80211_IFTYPE_P2P_CLIENT:
 567		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 568		/* BSSID SA DA */
 569		memcpy(hdr.addr1, bssid, ETH_ALEN);
 570		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 571		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 572		hdrlen = 24;
 573		break;
 574	case NL80211_IFTYPE_OCB:
 575	case NL80211_IFTYPE_ADHOC:
 576		/* DA SA BSSID */
 577		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 578		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 579		memcpy(hdr.addr3, bssid, ETH_ALEN);
 580		hdrlen = 24;
 581		break;
 582	default:
 583		return -EOPNOTSUPP;
 584	}
 585
 586	if (qos) {
 587		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 588		hdrlen += 2;
 589	}
 590
 591	hdr.frame_control = fc;
 592	hdr.duration_id = 0;
 593	hdr.seq_ctrl = 0;
 594
 595	skip_header_bytes = ETH_HLEN;
 596	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 597		encaps_data = bridge_tunnel_header;
 598		encaps_len = sizeof(bridge_tunnel_header);
 599		skip_header_bytes -= 2;
 600	} else if (ethertype >= ETH_P_802_3_MIN) {
 601		encaps_data = rfc1042_header;
 602		encaps_len = sizeof(rfc1042_header);
 603		skip_header_bytes -= 2;
 604	} else {
 605		encaps_data = NULL;
 606		encaps_len = 0;
 607	}
 608
 609	skb_pull(skb, skip_header_bytes);
 610	nh_pos -= skip_header_bytes;
 611	h_pos -= skip_header_bytes;
 612
 613	head_need = hdrlen + encaps_len - skb_headroom(skb);
 614
 615	if (head_need > 0 || skb_cloned(skb)) {
 616		head_need = max(head_need, 0);
 617		if (head_need)
 618			skb_orphan(skb);
 619
 620		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
 621			return -ENOMEM;
 622
 623		skb->truesize += head_need;
 624	}
 625
 626	if (encaps_data) {
 627		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 628		nh_pos += encaps_len;
 629		h_pos += encaps_len;
 630	}
 631
 632	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 633
 634	nh_pos += hdrlen;
 635	h_pos += hdrlen;
 636
 637	/* Update skb pointers to various headers since this modified frame
 638	 * is going to go through Linux networking code that may potentially
 639	 * need things like pointer to IP header. */
 640	skb_reset_mac_header(skb);
 641	skb_set_network_header(skb, nh_pos);
 642	skb_set_transport_header(skb, h_pos);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL(ieee80211_data_from_8023);
 647
 648static void
 649__frame_add_frag(struct sk_buff *skb, struct page *page,
 650		 void *ptr, int len, int size)
 651{
 652	struct skb_shared_info *sh = skb_shinfo(skb);
 653	int page_offset;
 654
 655	page_ref_inc(page);
 656	page_offset = ptr - page_address(page);
 657	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 658}
 659
 660static void
 661__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 662			    int offset, int len)
 663{
 664	struct skb_shared_info *sh = skb_shinfo(skb);
 665	const skb_frag_t *frag = &sh->frags[-1];
 666	struct page *frag_page;
 667	void *frag_ptr;
 668	int frag_len, frag_size;
 669	int head_size = skb->len - skb->data_len;
 670	int cur_len;
 671
 672	frag_page = virt_to_head_page(skb->head);
 673	frag_ptr = skb->data;
 674	frag_size = head_size;
 675
 676	while (offset >= frag_size) {
 677		offset -= frag_size;
 678		frag++;
 679		frag_page = skb_frag_page(frag);
 680		frag_ptr = skb_frag_address(frag);
 681		frag_size = skb_frag_size(frag);
 
 682	}
 683
 684	frag_ptr += offset;
 685	frag_len = frag_size - offset;
 686
 687	cur_len = min(len, frag_len);
 688
 689	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 690	len -= cur_len;
 691
 692	while (len > 0) {
 693		frag++;
 694		frag_len = skb_frag_size(frag);
 695		cur_len = min(len, frag_len);
 696		__frame_add_frag(frame, skb_frag_page(frag),
 697				 skb_frag_address(frag), cur_len, frag_len);
 698		len -= cur_len;
 
 699	}
 700}
 701
 702static struct sk_buff *
 703__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 704		       int offset, int len, bool reuse_frag)
 705{
 706	struct sk_buff *frame;
 707	int cur_len = len;
 708
 709	if (skb->len - offset < len)
 710		return NULL;
 711
 712	/*
 713	 * When reusing framents, copy some data to the head to simplify
 714	 * ethernet header handling and speed up protocol header processing
 715	 * in the stack later.
 716	 */
 717	if (reuse_frag)
 718		cur_len = min_t(int, len, 32);
 719
 720	/*
 721	 * Allocate and reserve two bytes more for payload
 722	 * alignment since sizeof(struct ethhdr) is 14.
 723	 */
 724	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 725	if (!frame)
 726		return NULL;
 727
 728	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 729	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 730
 731	len -= cur_len;
 732	if (!len)
 733		return frame;
 734
 735	offset += cur_len;
 736	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 737
 738	return frame;
 739}
 740
 741void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 742			      const u8 *addr, enum nl80211_iftype iftype,
 743			      const unsigned int extra_headroom,
 744			      const u8 *check_da, const u8 *check_sa)
 745{
 746	unsigned int hlen = ALIGN(extra_headroom, 4);
 747	struct sk_buff *frame = NULL;
 748	u16 ethertype;
 749	u8 *payload;
 750	int offset = 0, remaining;
 751	struct ethhdr eth;
 752	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 753	bool reuse_skb = false;
 754	bool last = false;
 755
 756	while (!last) {
 757		unsigned int subframe_len;
 758		int len;
 759		u8 padding;
 760
 761		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 762		len = ntohs(eth.h_proto);
 763		subframe_len = sizeof(struct ethhdr) + len;
 764		padding = (4 - subframe_len) & 0x3;
 765
 766		/* the last MSDU has no padding */
 767		remaining = skb->len - offset;
 768		if (subframe_len > remaining)
 769			goto purge;
 770
 771		offset += sizeof(struct ethhdr);
 772		last = remaining <= subframe_len + padding;
 773
 774		/* FIXME: should we really accept multicast DA? */
 775		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 776		     !ether_addr_equal(check_da, eth.h_dest)) ||
 777		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 778			offset += len + padding;
 779			continue;
 780		}
 781
 782		/* reuse skb for the last subframe */
 783		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 784			skb_pull(skb, offset);
 785			frame = skb;
 786			reuse_skb = true;
 787		} else {
 788			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 789						       reuse_frag);
 790			if (!frame)
 791				goto purge;
 792
 793			offset += len + padding;
 794		}
 795
 796		skb_reset_network_header(frame);
 797		frame->dev = skb->dev;
 798		frame->priority = skb->priority;
 799
 800		payload = frame->data;
 801		ethertype = (payload[6] << 8) | payload[7];
 802		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 803			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 804			   ether_addr_equal(payload, bridge_tunnel_header))) {
 805			eth.h_proto = htons(ethertype);
 806			skb_pull(frame, ETH_ALEN + 2);
 807		}
 808
 809		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 810		__skb_queue_tail(list, frame);
 811	}
 812
 813	if (!reuse_skb)
 814		dev_kfree_skb(skb);
 815
 816	return;
 817
 818 purge:
 819	__skb_queue_purge(list);
 820	dev_kfree_skb(skb);
 821}
 822EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 823
 824/* Given a data frame determine the 802.1p/1d tag to use. */
 825unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 826				    struct cfg80211_qos_map *qos_map)
 827{
 828	unsigned int dscp;
 829	unsigned char vlan_priority;
 
 830
 831	/* skb->priority values from 256->263 are magic values to
 832	 * directly indicate a specific 802.1d priority.  This is used
 833	 * to allow 802.1d priority to be passed directly in from VLAN
 834	 * tags, etc.
 835	 */
 836	if (skb->priority >= 256 && skb->priority <= 263)
 837		return skb->priority - 256;
 
 
 838
 839	if (skb_vlan_tag_present(skb)) {
 840		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 841			>> VLAN_PRIO_SHIFT;
 842		if (vlan_priority > 0)
 843			return vlan_priority;
 
 
 844	}
 845
 846	switch (skb->protocol) {
 847	case htons(ETH_P_IP):
 848		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 849		break;
 850	case htons(ETH_P_IPV6):
 851		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 852		break;
 853	case htons(ETH_P_MPLS_UC):
 854	case htons(ETH_P_MPLS_MC): {
 855		struct mpls_label mpls_tmp, *mpls;
 856
 857		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 858					  sizeof(*mpls), &mpls_tmp);
 859		if (!mpls)
 860			return 0;
 861
 862		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 863			>> MPLS_LS_TC_SHIFT;
 
 864	}
 865	case htons(ETH_P_80221):
 866		/* 802.21 is always network control traffic */
 867		return 7;
 868	default:
 869		return 0;
 870	}
 871
 872	if (qos_map) {
 873		unsigned int i, tmp_dscp = dscp >> 2;
 874
 875		for (i = 0; i < qos_map->num_des; i++) {
 876			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
 877				return qos_map->dscp_exception[i].up;
 
 
 878		}
 879
 880		for (i = 0; i < 8; i++) {
 881			if (tmp_dscp >= qos_map->up[i].low &&
 882			    tmp_dscp <= qos_map->up[i].high)
 883				return i;
 
 
 884		}
 885	}
 886
 887	return dscp >> 5;
 
 
 888}
 889EXPORT_SYMBOL(cfg80211_classify8021d);
 890
 891const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 892{
 893	const struct cfg80211_bss_ies *ies;
 894
 895	ies = rcu_dereference(bss->ies);
 896	if (!ies)
 897		return NULL;
 898
 899	return cfg80211_find_ie(ie, ies->data, ies->len);
 900}
 901EXPORT_SYMBOL(ieee80211_bss_get_ie);
 902
 903void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 904{
 905	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 906	struct net_device *dev = wdev->netdev;
 907	int i;
 908
 909	if (!wdev->connect_keys)
 910		return;
 911
 912	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 913		if (!wdev->connect_keys->params[i].cipher)
 914			continue;
 915		if (rdev_add_key(rdev, dev, i, false, NULL,
 916				 &wdev->connect_keys->params[i])) {
 917			netdev_err(dev, "failed to set key %d\n", i);
 918			continue;
 919		}
 920		if (wdev->connect_keys->def == i)
 921			if (rdev_set_default_key(rdev, dev, i, true, true)) {
 922				netdev_err(dev, "failed to set defkey %d\n", i);
 923				continue;
 924			}
 925	}
 926
 927	kzfree(wdev->connect_keys);
 928	wdev->connect_keys = NULL;
 929}
 930
 931void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 932{
 933	struct cfg80211_event *ev;
 934	unsigned long flags;
 935	const u8 *bssid = NULL;
 936
 937	spin_lock_irqsave(&wdev->event_lock, flags);
 938	while (!list_empty(&wdev->event_list)) {
 939		ev = list_first_entry(&wdev->event_list,
 940				      struct cfg80211_event, list);
 941		list_del(&ev->list);
 942		spin_unlock_irqrestore(&wdev->event_lock, flags);
 943
 944		wdev_lock(wdev);
 945		switch (ev->type) {
 946		case EVENT_CONNECT_RESULT:
 947			if (!is_zero_ether_addr(ev->cr.bssid))
 948				bssid = ev->cr.bssid;
 949			__cfg80211_connect_result(
 950				wdev->netdev, bssid,
 951				ev->cr.req_ie, ev->cr.req_ie_len,
 952				ev->cr.resp_ie, ev->cr.resp_ie_len,
 953				ev->cr.status,
 954				ev->cr.status == WLAN_STATUS_SUCCESS,
 955				ev->cr.bss);
 956			break;
 957		case EVENT_ROAMED:
 958			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
 959					  ev->rm.req_ie_len, ev->rm.resp_ie,
 960					  ev->rm.resp_ie_len);
 961			break;
 962		case EVENT_DISCONNECTED:
 963			__cfg80211_disconnected(wdev->netdev,
 964						ev->dc.ie, ev->dc.ie_len,
 965						ev->dc.reason,
 966						!ev->dc.locally_generated);
 967			break;
 968		case EVENT_IBSS_JOINED:
 969			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 970					       ev->ij.channel);
 971			break;
 972		case EVENT_STOPPED:
 973			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 974			break;
 
 
 
 975		}
 976		wdev_unlock(wdev);
 977
 978		kfree(ev);
 979
 980		spin_lock_irqsave(&wdev->event_lock, flags);
 981	}
 982	spin_unlock_irqrestore(&wdev->event_lock, flags);
 983}
 984
 985void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 986{
 987	struct wireless_dev *wdev;
 988
 989	ASSERT_RTNL();
 990
 991	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 992		cfg80211_process_wdev_events(wdev);
 993}
 994
 995int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 996			  struct net_device *dev, enum nl80211_iftype ntype,
 997			  u32 *flags, struct vif_params *params)
 998{
 999	int err;
1000	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001
1002	ASSERT_RTNL();
1003
1004	/* don't support changing VLANs, you just re-create them */
1005	if (otype == NL80211_IFTYPE_AP_VLAN)
1006		return -EOPNOTSUPP;
1007
1008	/* cannot change into P2P device or NAN */
1009	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010	    ntype == NL80211_IFTYPE_NAN)
1011		return -EOPNOTSUPP;
1012
1013	if (!rdev->ops->change_virtual_intf ||
1014	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1015		return -EOPNOTSUPP;
1016
1017	/* if it's part of a bridge, reject changing type to station/ibss */
1018	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019	    (ntype == NL80211_IFTYPE_ADHOC ||
1020	     ntype == NL80211_IFTYPE_STATION ||
1021	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1022		return -EBUSY;
1023
1024	if (ntype != otype) {
1025		dev->ieee80211_ptr->use_4addr = false;
1026		dev->ieee80211_ptr->mesh_id_up_len = 0;
1027		wdev_lock(dev->ieee80211_ptr);
1028		rdev_set_qos_map(rdev, dev, NULL);
1029		wdev_unlock(dev->ieee80211_ptr);
1030
1031		switch (otype) {
1032		case NL80211_IFTYPE_AP:
1033			cfg80211_stop_ap(rdev, dev, true);
1034			break;
1035		case NL80211_IFTYPE_ADHOC:
1036			cfg80211_leave_ibss(rdev, dev, false);
1037			break;
1038		case NL80211_IFTYPE_STATION:
1039		case NL80211_IFTYPE_P2P_CLIENT:
1040			wdev_lock(dev->ieee80211_ptr);
1041			cfg80211_disconnect(rdev, dev,
1042					    WLAN_REASON_DEAUTH_LEAVING, true);
1043			wdev_unlock(dev->ieee80211_ptr);
1044			break;
1045		case NL80211_IFTYPE_MESH_POINT:
1046			/* mesh should be handled? */
1047			break;
1048		default:
1049			break;
1050		}
1051
1052		cfg80211_process_rdev_events(rdev);
 
1053	}
1054
1055	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056
1057	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058
1059	if (!err && params && params->use_4addr != -1)
1060		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061
1062	if (!err) {
1063		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064		switch (ntype) {
1065		case NL80211_IFTYPE_STATION:
1066			if (dev->ieee80211_ptr->use_4addr)
1067				break;
1068			/* fall through */
1069		case NL80211_IFTYPE_OCB:
1070		case NL80211_IFTYPE_P2P_CLIENT:
1071		case NL80211_IFTYPE_ADHOC:
1072			dev->priv_flags |= IFF_DONT_BRIDGE;
1073			break;
1074		case NL80211_IFTYPE_P2P_GO:
1075		case NL80211_IFTYPE_AP:
1076		case NL80211_IFTYPE_AP_VLAN:
1077		case NL80211_IFTYPE_WDS:
1078		case NL80211_IFTYPE_MESH_POINT:
1079			/* bridging OK */
1080			break;
1081		case NL80211_IFTYPE_MONITOR:
1082			/* monitor can't bridge anyway */
1083			break;
1084		case NL80211_IFTYPE_UNSPECIFIED:
1085		case NUM_NL80211_IFTYPES:
1086			/* not happening */
1087			break;
1088		case NL80211_IFTYPE_P2P_DEVICE:
1089		case NL80211_IFTYPE_NAN:
1090			WARN_ON(1);
1091			break;
1092		}
1093	}
1094
1095	if (!err && ntype != otype && netif_running(dev)) {
1096		cfg80211_update_iface_num(rdev, ntype, 1);
1097		cfg80211_update_iface_num(rdev, otype, -1);
1098	}
1099
1100	return err;
1101}
1102
1103static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104{
1105	static const u32 __mcs2bitrate[] = {
1106		/* control PHY */
1107		[0] =   275,
1108		/* SC PHY */
1109		[1] =  3850,
1110		[2] =  7700,
1111		[3] =  9625,
1112		[4] = 11550,
1113		[5] = 12512, /* 1251.25 mbps */
1114		[6] = 15400,
1115		[7] = 19250,
1116		[8] = 23100,
1117		[9] = 25025,
1118		[10] = 30800,
1119		[11] = 38500,
1120		[12] = 46200,
1121		/* OFDM PHY */
1122		[13] =  6930,
1123		[14] =  8662, /* 866.25 mbps */
1124		[15] = 13860,
1125		[16] = 17325,
1126		[17] = 20790,
1127		[18] = 27720,
1128		[19] = 34650,
1129		[20] = 41580,
1130		[21] = 45045,
1131		[22] = 51975,
1132		[23] = 62370,
1133		[24] = 67568, /* 6756.75 mbps */
1134		/* LP-SC PHY */
1135		[25] =  6260,
1136		[26] =  8340,
1137		[27] = 11120,
1138		[28] = 12510,
1139		[29] = 16680,
1140		[30] = 22240,
1141		[31] = 25030,
1142	};
1143
1144	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145		return 0;
1146
1147	return __mcs2bitrate[rate->mcs];
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151{
1152	static const u32 base[4][10] = {
1153		{   6500000,
1154		   13000000,
1155		   19500000,
1156		   26000000,
1157		   39000000,
1158		   52000000,
1159		   58500000,
1160		   65000000,
1161		   78000000,
1162		/* not in the spec, but some devices use this: */
1163		   86500000,
1164		},
1165		{  13500000,
1166		   27000000,
1167		   40500000,
1168		   54000000,
1169		   81000000,
1170		  108000000,
1171		  121500000,
1172		  135000000,
1173		  162000000,
1174		  180000000,
1175		},
1176		{  29300000,
1177		   58500000,
1178		   87800000,
1179		  117000000,
1180		  175500000,
1181		  234000000,
1182		  263300000,
1183		  292500000,
1184		  351000000,
1185		  390000000,
1186		},
1187		{  58500000,
1188		  117000000,
1189		  175500000,
1190		  234000000,
1191		  351000000,
1192		  468000000,
1193		  526500000,
1194		  585000000,
1195		  702000000,
1196		  780000000,
1197		},
1198	};
1199	u32 bitrate;
1200	int idx;
1201
1202	if (WARN_ON_ONCE(rate->mcs > 9))
1203		return 0;
1204
1205	switch (rate->bw) {
1206	case RATE_INFO_BW_160:
1207		idx = 3;
1208		break;
1209	case RATE_INFO_BW_80:
1210		idx = 2;
1211		break;
1212	case RATE_INFO_BW_40:
1213		idx = 1;
1214		break;
1215	case RATE_INFO_BW_5:
1216	case RATE_INFO_BW_10:
1217	default:
1218		WARN_ON(1);
1219		/* fall through */
1220	case RATE_INFO_BW_20:
1221		idx = 0;
1222	}
1223
1224	bitrate = base[idx][rate->mcs];
1225	bitrate *= rate->nss;
1226
1227	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228		bitrate = (bitrate / 9) * 10;
1229
1230	/* do NOT round down here */
1231	return (bitrate + 50000) / 100000;
 
 
 
 
1232}
1233
1234u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235{
1236	int modulation, streams, bitrate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240		return rate->legacy;
1241	if (rate->flags & RATE_INFO_FLAGS_60G)
1242		return cfg80211_calculate_bitrate_60g(rate);
1243	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244		return cfg80211_calculate_bitrate_vht(rate);
1245
1246	/* the formula below does only work for MCS values smaller than 32 */
1247	if (WARN_ON_ONCE(rate->mcs >= 32))
 
 
 
 
1248		return 0;
1249
1250	modulation = rate->mcs & 7;
1251	streams = (rate->mcs >> 3) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252
1253	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
 
 
 
 
 
 
 
 
 
1254
1255	if (modulation < 4)
1256		bitrate *= (modulation + 1);
1257	else if (modulation == 4)
1258		bitrate *= (modulation + 2);
1259	else
1260		bitrate *= (modulation + 3);
1261
1262	bitrate *= streams;
1263
1264	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265		bitrate = (bitrate / 9) * 10;
 
 
 
 
 
 
 
 
 
 
1266
1267	/* do NOT round down here */
1268	return (bitrate + 50000) / 100000;
1269}
1270EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271
1272int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273			  enum ieee80211_p2p_attr_id attr,
1274			  u8 *buf, unsigned int bufsize)
1275{
1276	u8 *out = buf;
1277	u16 attr_remaining = 0;
1278	bool desired_attr = false;
1279	u16 desired_len = 0;
1280
1281	while (len > 0) {
1282		unsigned int iedatalen;
1283		unsigned int copy;
1284		const u8 *iedata;
1285
1286		if (len < 2)
1287			return -EILSEQ;
1288		iedatalen = ies[1];
1289		if (iedatalen + 2 > len)
1290			return -EILSEQ;
1291
1292		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293			goto cont;
1294
1295		if (iedatalen < 4)
1296			goto cont;
1297
1298		iedata = ies + 2;
1299
1300		/* check WFA OUI, P2P subtype */
1301		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303			goto cont;
1304
1305		iedatalen -= 4;
1306		iedata += 4;
1307
1308		/* check attribute continuation into this IE */
1309		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310		if (copy && desired_attr) {
1311			desired_len += copy;
1312			if (out) {
1313				memcpy(out, iedata, min(bufsize, copy));
1314				out += min(bufsize, copy);
1315				bufsize -= min(bufsize, copy);
1316			}
1317
1318
1319			if (copy == attr_remaining)
1320				return desired_len;
1321		}
1322
1323		attr_remaining -= copy;
1324		if (attr_remaining)
1325			goto cont;
1326
1327		iedatalen -= copy;
1328		iedata += copy;
1329
1330		while (iedatalen > 0) {
1331			u16 attr_len;
1332
1333			/* P2P attribute ID & size must fit */
1334			if (iedatalen < 3)
1335				return -EILSEQ;
1336			desired_attr = iedata[0] == attr;
1337			attr_len = get_unaligned_le16(iedata + 1);
1338			iedatalen -= 3;
1339			iedata += 3;
1340
1341			copy = min_t(unsigned int, attr_len, iedatalen);
1342
1343			if (desired_attr) {
1344				desired_len += copy;
1345				if (out) {
1346					memcpy(out, iedata, min(bufsize, copy));
1347					out += min(bufsize, copy);
1348					bufsize -= min(bufsize, copy);
1349				}
1350
1351				if (copy == attr_len)
1352					return desired_len;
1353			}
1354
1355			iedata += copy;
1356			iedatalen -= copy;
1357			attr_remaining = attr_len - copy;
1358		}
1359
1360 cont:
1361		len -= ies[1] + 2;
1362		ies += ies[1] + 2;
1363	}
1364
1365	if (attr_remaining && desired_attr)
1366		return -EILSEQ;
1367
1368	return -ENOENT;
1369}
1370EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371
1372static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373{
1374	int i;
1375
1376	for (i = 0; i < n_ids; i++)
1377		if (ids[i] == id)
 
 
 
 
 
 
 
 
 
 
 
 
 
1378			return true;
 
 
 
1379	return false;
1380}
1381
1382static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383{
1384	/* we assume a validly formed IEs buffer */
1385	u8 len = ies[pos + 1];
1386
1387	pos += 2 + len;
1388
1389	/* the IE itself must have 255 bytes for fragments to follow */
1390	if (len < 255)
1391		return pos;
1392
1393	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394		len = ies[pos + 1];
1395		pos += 2 + len;
1396	}
1397
1398	return pos;
1399}
1400
1401size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402			      const u8 *ids, int n_ids,
1403			      const u8 *after_ric, int n_after_ric,
1404			      size_t offset)
1405{
1406	size_t pos = offset;
1407
1408	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
 
 
 
 
 
 
 
 
 
 
 
1409		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410			pos = skip_ie(ies, ielen, pos);
1411
1412			while (pos < ielen &&
1413			       !ieee80211_id_in_list(after_ric, n_after_ric,
1414						     ies[pos]))
1415				pos = skip_ie(ies, ielen, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
1416		} else {
1417			pos = skip_ie(ies, ielen, pos);
1418		}
1419	}
1420
1421	return pos;
1422}
1423EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424
1425bool ieee80211_operating_class_to_band(u8 operating_class,
1426				       enum nl80211_band *band)
1427{
1428	switch (operating_class) {
1429	case 112:
1430	case 115 ... 127:
1431	case 128 ... 130:
1432		*band = NL80211_BAND_5GHZ;
1433		return true;
 
 
 
1434	case 81:
1435	case 82:
1436	case 83:
1437	case 84:
1438		*band = NL80211_BAND_2GHZ;
1439		return true;
1440	case 180:
1441		*band = NL80211_BAND_60GHZ;
1442		return true;
1443	}
1444
1445	return false;
1446}
1447EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448
1449bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450					  u8 *op_class)
1451{
1452	u8 vht_opclass;
1453	u16 freq = chandef->center_freq1;
1454
1455	if (freq >= 2412 && freq <= 2472) {
1456		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457			return false;
1458
1459		/* 2.407 GHz, channels 1..13 */
1460		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461			if (freq > chandef->chan->center_freq)
1462				*op_class = 83; /* HT40+ */
1463			else
1464				*op_class = 84; /* HT40- */
1465		} else {
1466			*op_class = 81;
1467		}
1468
1469		return true;
1470	}
1471
1472	if (freq == 2484) {
1473		if (chandef->width > NL80211_CHAN_WIDTH_40)
 
1474			return false;
1475
1476		*op_class = 82; /* channel 14 */
1477		return true;
1478	}
1479
1480	switch (chandef->width) {
1481	case NL80211_CHAN_WIDTH_80:
1482		vht_opclass = 128;
1483		break;
1484	case NL80211_CHAN_WIDTH_160:
1485		vht_opclass = 129;
1486		break;
1487	case NL80211_CHAN_WIDTH_80P80:
1488		vht_opclass = 130;
1489		break;
1490	case NL80211_CHAN_WIDTH_10:
1491	case NL80211_CHAN_WIDTH_5:
1492		return false; /* unsupported for now */
1493	default:
1494		vht_opclass = 0;
1495		break;
1496	}
1497
1498	/* 5 GHz, channels 36..48 */
1499	if (freq >= 5180 && freq <= 5240) {
1500		if (vht_opclass) {
1501			*op_class = vht_opclass;
1502		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503			if (freq > chandef->chan->center_freq)
1504				*op_class = 116;
1505			else
1506				*op_class = 117;
1507		} else {
1508			*op_class = 115;
1509		}
1510
1511		return true;
1512	}
1513
1514	/* 5 GHz, channels 52..64 */
1515	if (freq >= 5260 && freq <= 5320) {
1516		if (vht_opclass) {
1517			*op_class = vht_opclass;
1518		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519			if (freq > chandef->chan->center_freq)
1520				*op_class = 119;
1521			else
1522				*op_class = 120;
1523		} else {
1524			*op_class = 118;
1525		}
1526
1527		return true;
1528	}
1529
1530	/* 5 GHz, channels 100..144 */
1531	if (freq >= 5500 && freq <= 5720) {
1532		if (vht_opclass) {
1533			*op_class = vht_opclass;
1534		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535			if (freq > chandef->chan->center_freq)
1536				*op_class = 122;
1537			else
1538				*op_class = 123;
1539		} else {
1540			*op_class = 121;
1541		}
1542
1543		return true;
1544	}
1545
1546	/* 5 GHz, channels 149..169 */
1547	if (freq >= 5745 && freq <= 5845) {
1548		if (vht_opclass) {
1549			*op_class = vht_opclass;
1550		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551			if (freq > chandef->chan->center_freq)
1552				*op_class = 126;
1553			else
1554				*op_class = 127;
1555		} else if (freq <= 5805) {
1556			*op_class = 124;
1557		} else {
1558			*op_class = 125;
1559		}
1560
1561		return true;
1562	}
1563
1564	/* 56.16 GHz, channel 1..4 */
1565	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567			return false;
1568
1569		*op_class = 180;
1570		return true;
1571	}
1572
1573	/* not supported yet */
1574	return false;
1575}
1576EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577
1578static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579				       u32 *beacon_int_gcd,
1580				       bool *beacon_int_different)
1581{
1582	struct wireless_dev *wdev;
1583
1584	*beacon_int_gcd = 0;
1585	*beacon_int_different = false;
1586
1587	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588		if (!wdev->beacon_interval)
1589			continue;
1590
1591		if (!*beacon_int_gcd) {
1592			*beacon_int_gcd = wdev->beacon_interval;
1593			continue;
1594		}
1595
1596		if (wdev->beacon_interval == *beacon_int_gcd)
1597			continue;
1598
1599		*beacon_int_different = true;
1600		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601	}
1602
1603	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604		if (*beacon_int_gcd)
1605			*beacon_int_different = true;
1606		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607	}
1608}
1609
1610int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611				 enum nl80211_iftype iftype, u32 beacon_int)
1612{
1613	/*
1614	 * This is just a basic pre-condition check; if interface combinations
1615	 * are possible the driver must already be checking those with a call
1616	 * to cfg80211_check_combinations(), in which case we'll validate more
1617	 * through the cfg80211_calculate_bi_data() call and code in
1618	 * cfg80211_iter_combinations().
1619	 */
1620
1621	if (beacon_int < 10 || beacon_int > 10000)
1622		return -EINVAL;
1623
1624	return 0;
1625}
1626
1627int cfg80211_iter_combinations(struct wiphy *wiphy,
1628			       struct iface_combination_params *params,
1629			       void (*iter)(const struct ieee80211_iface_combination *c,
1630					    void *data),
1631			       void *data)
1632{
1633	const struct ieee80211_regdomain *regdom;
1634	enum nl80211_dfs_regions region = 0;
1635	int i, j, iftype;
1636	int num_interfaces = 0;
1637	u32 used_iftypes = 0;
1638	u32 beacon_int_gcd;
1639	bool beacon_int_different;
1640
1641	/*
1642	 * This is a bit strange, since the iteration used to rely only on
1643	 * the data given by the driver, but here it now relies on context,
1644	 * in form of the currently operating interfaces.
1645	 * This is OK for all current users, and saves us from having to
1646	 * push the GCD calculations into all the drivers.
1647	 * In the future, this should probably rely more on data that's in
1648	 * cfg80211 already - the only thing not would appear to be any new
1649	 * interfaces (while being brought up) and channel/radar data.
1650	 */
1651	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652				   &beacon_int_gcd, &beacon_int_different);
1653
1654	if (params->radar_detect) {
1655		rcu_read_lock();
1656		regdom = rcu_dereference(cfg80211_regdomain);
1657		if (regdom)
1658			region = regdom->dfs_region;
1659		rcu_read_unlock();
1660	}
1661
1662	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663		num_interfaces += params->iftype_num[iftype];
1664		if (params->iftype_num[iftype] > 0 &&
1665		    !(wiphy->software_iftypes & BIT(iftype)))
1666			used_iftypes |= BIT(iftype);
1667	}
1668
1669	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670		const struct ieee80211_iface_combination *c;
1671		struct ieee80211_iface_limit *limits;
1672		u32 all_iftypes = 0;
1673
1674		c = &wiphy->iface_combinations[i];
1675
1676		if (num_interfaces > c->max_interfaces)
1677			continue;
1678		if (params->num_different_channels > c->num_different_channels)
1679			continue;
1680
1681		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682				 GFP_KERNEL);
1683		if (!limits)
1684			return -ENOMEM;
1685
1686		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687			if (wiphy->software_iftypes & BIT(iftype))
1688				continue;
1689			for (j = 0; j < c->n_limits; j++) {
1690				all_iftypes |= limits[j].types;
1691				if (!(limits[j].types & BIT(iftype)))
1692					continue;
1693				if (limits[j].max < params->iftype_num[iftype])
1694					goto cont;
1695				limits[j].max -= params->iftype_num[iftype];
1696			}
1697		}
1698
1699		if (params->radar_detect !=
1700			(c->radar_detect_widths & params->radar_detect))
1701			goto cont;
1702
1703		if (params->radar_detect && c->radar_detect_regions &&
1704		    !(c->radar_detect_regions & BIT(region)))
1705			goto cont;
1706
1707		/* Finally check that all iftypes that we're currently
1708		 * using are actually part of this combination. If they
1709		 * aren't then we can't use this combination and have
1710		 * to continue to the next.
1711		 */
1712		if ((all_iftypes & used_iftypes) != used_iftypes)
1713			goto cont;
1714
1715		if (beacon_int_gcd) {
1716			if (c->beacon_int_min_gcd &&
1717			    beacon_int_gcd < c->beacon_int_min_gcd)
1718				goto cont;
1719			if (!c->beacon_int_min_gcd && beacon_int_different)
1720				goto cont;
1721		}
1722
1723		/* This combination covered all interface types and
1724		 * supported the requested numbers, so we're good.
1725		 */
1726
1727		(*iter)(c, data);
1728 cont:
1729		kfree(limits);
1730	}
1731
1732	return 0;
1733}
1734EXPORT_SYMBOL(cfg80211_iter_combinations);
1735
1736static void
1737cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738			  void *data)
1739{
1740	int *num = data;
1741	(*num)++;
1742}
1743
1744int cfg80211_check_combinations(struct wiphy *wiphy,
1745				struct iface_combination_params *params)
1746{
1747	int err, num = 0;
1748
1749	err = cfg80211_iter_combinations(wiphy, params,
1750					 cfg80211_iter_sum_ifcombs, &num);
1751	if (err)
1752		return err;
1753	if (num == 0)
1754		return -EBUSY;
1755
1756	return 0;
1757}
1758EXPORT_SYMBOL(cfg80211_check_combinations);
1759
1760int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761			   const u8 *rates, unsigned int n_rates,
1762			   u32 *mask)
1763{
1764	int i, j;
1765
1766	if (!sband)
1767		return -EINVAL;
1768
1769	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770		return -EINVAL;
1771
1772	*mask = 0;
1773
1774	for (i = 0; i < n_rates; i++) {
1775		int rate = (rates[i] & 0x7f) * 5;
1776		bool found = false;
1777
1778		for (j = 0; j < sband->n_bitrates; j++) {
1779			if (sband->bitrates[j].bitrate == rate) {
1780				found = true;
1781				*mask |= BIT(j);
1782				break;
1783			}
1784		}
1785		if (!found)
1786			return -EINVAL;
1787	}
1788
1789	/*
1790	 * mask must have at least one bit set here since we
1791	 * didn't accept a 0-length rates array nor allowed
1792	 * entries in the array that didn't exist
1793	 */
1794
1795	return 0;
1796}
1797
1798unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799{
1800	enum nl80211_band band;
1801	unsigned int n_channels = 0;
1802
1803	for (band = 0; band < NUM_NL80211_BANDS; band++)
1804		if (wiphy->bands[band])
1805			n_channels += wiphy->bands[band]->n_channels;
1806
1807	return n_channels;
1808}
1809EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810
1811int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812			 struct station_info *sinfo)
1813{
1814	struct cfg80211_registered_device *rdev;
1815	struct wireless_dev *wdev;
1816
1817	wdev = dev->ieee80211_ptr;
1818	if (!wdev)
1819		return -EOPNOTSUPP;
1820
1821	rdev = wiphy_to_rdev(wdev->wiphy);
1822	if (!rdev->ops->get_station)
1823		return -EOPNOTSUPP;
1824
 
 
1825	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826}
1827EXPORT_SYMBOL(cfg80211_get_station);
1828
1829void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830{
1831	int i;
1832
1833	if (!f)
1834		return;
1835
1836	kfree(f->serv_spec_info);
1837	kfree(f->srf_bf);
1838	kfree(f->srf_macs);
1839	for (i = 0; i < f->num_rx_filters; i++)
1840		kfree(f->rx_filters[i].filter);
1841
1842	for (i = 0; i < f->num_tx_filters; i++)
1843		kfree(f->tx_filters[i].filter);
1844
1845	kfree(f->rx_filters);
1846	kfree(f->tx_filters);
1847	kfree(f);
1848}
1849EXPORT_SYMBOL(cfg80211_free_nan_func);
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853const unsigned char rfc1042_header[] __aligned(2) =
1854	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855EXPORT_SYMBOL(rfc1042_header);
1856
1857/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858const unsigned char bridge_tunnel_header[] __aligned(2) =
1859	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860EXPORT_SYMBOL(bridge_tunnel_header);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
  83		if (chan == 14)
  84			return MHZ_TO_KHZ(2484);
  85		else if (chan < 14)
  86			return MHZ_TO_KHZ(2407 + chan * 5);
  87		break;
  88	case NL80211_BAND_5GHZ:
  89		if (chan >= 182 && chan <= 196)
  90			return MHZ_TO_KHZ(4000 + chan * 5);
  91		else
  92			return MHZ_TO_KHZ(5000 + chan * 5);
  93		break;
  94	case NL80211_BAND_6GHZ:
  95		/* see 802.11ax D6.1 27.3.23.2 */
  96		if (chan == 2)
  97			return MHZ_TO_KHZ(5935);
  98		if (chan <= 233)
  99			return MHZ_TO_KHZ(5950 + chan * 5);
 100		break;
 101	case NL80211_BAND_60GHZ:
 102		if (chan < 7)
 103			return MHZ_TO_KHZ(56160 + chan * 2160);
 104		break;
 105	case NL80211_BAND_S1GHZ:
 106		return 902000 + chan * 500;
 107	default:
 108		;
 109	}
 110	return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 114int ieee80211_freq_khz_to_channel(u32 freq)
 115{
 116	/* TODO: just handle MHz for now */
 117	freq = KHZ_TO_MHZ(freq);
 118
 119	/* see 802.11 17.3.8.3.2 and Annex J */
 120	if (freq == 2484)
 121		return 14;
 122	else if (freq < 2484)
 123		return (freq - 2407) / 5;
 124	else if (freq >= 4910 && freq <= 4980)
 125		return (freq - 4000) / 5;
 126	else if (freq < 5925)
 127		return (freq - 5000) / 5;
 128	else if (freq == 5935)
 129		return 2;
 130	else if (freq <= 45000) /* DMG band lower limit */
 131		/* see 802.11ax D6.1 27.3.22.2 */
 132		return (freq - 5950) / 5;
 133	else if (freq >= 58320 && freq <= 70200)
 134		return (freq - 56160) / 2160;
 135	else
 136		return 0;
 137}
 138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 139
 140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 141						    u32 freq)
 142{
 143	enum nl80211_band band;
 144	struct ieee80211_supported_band *sband;
 145	int i;
 146
 147	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 148		sband = wiphy->bands[band];
 149
 150		if (!sband)
 151			continue;
 152
 153		for (i = 0; i < sband->n_channels; i++) {
 154			struct ieee80211_channel *chan = &sband->channels[i];
 155
 156			if (ieee80211_channel_to_khz(chan) == freq)
 157				return chan;
 158		}
 159	}
 160
 161	return NULL;
 162}
 163EXPORT_SYMBOL(ieee80211_get_channel_khz);
 164
 165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 
 166{
 167	int i, want;
 168
 169	switch (sband->band) {
 170	case NL80211_BAND_5GHZ:
 171	case NL80211_BAND_6GHZ:
 172		want = 3;
 173		for (i = 0; i < sband->n_bitrates; i++) {
 174			if (sband->bitrates[i].bitrate == 60 ||
 175			    sband->bitrates[i].bitrate == 120 ||
 176			    sband->bitrates[i].bitrate == 240) {
 177				sband->bitrates[i].flags |=
 178					IEEE80211_RATE_MANDATORY_A;
 179				want--;
 180			}
 181		}
 182		WARN_ON(want);
 183		break;
 184	case NL80211_BAND_2GHZ:
 185		want = 7;
 186		for (i = 0; i < sband->n_bitrates; i++) {
 187			switch (sband->bitrates[i].bitrate) {
 188			case 10:
 189			case 20:
 190			case 55:
 191			case 110:
 192				sband->bitrates[i].flags |=
 193					IEEE80211_RATE_MANDATORY_B |
 194					IEEE80211_RATE_MANDATORY_G;
 195				want--;
 196				break;
 197			case 60:
 198			case 120:
 199			case 240:
 
 
 
 
 200				sband->bitrates[i].flags |=
 201					IEEE80211_RATE_MANDATORY_G;
 202				want--;
 203				fallthrough;
 204			default:
 
 
 
 
 205				sband->bitrates[i].flags |=
 206					IEEE80211_RATE_ERP_G;
 207				break;
 208			}
 209		}
 210		WARN_ON(want != 0 && want != 3);
 211		break;
 212	case NL80211_BAND_60GHZ:
 213		/* check for mandatory HT MCS 1..4 */
 214		WARN_ON(!sband->ht_cap.ht_supported);
 215		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 216		break;
 217	case NL80211_BAND_S1GHZ:
 218		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 219		 * mandatory is ok.
 220		 */
 221		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 222		break;
 223	case NUM_NL80211_BANDS:
 224	default:
 225		WARN_ON(1);
 226		break;
 227	}
 228}
 229
 230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 231{
 232	enum nl80211_band band;
 233
 234	for (band = 0; band < NUM_NL80211_BANDS; band++)
 235		if (wiphy->bands[band])
 236			set_mandatory_flags_band(wiphy->bands[band]);
 237}
 238
 239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 240{
 241	int i;
 242	for (i = 0; i < wiphy->n_cipher_suites; i++)
 243		if (cipher == wiphy->cipher_suites[i])
 244			return true;
 245	return false;
 246}
 247
 248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 249				   struct key_params *params, int key_idx,
 250				   bool pairwise, const u8 *mac_addr)
 251{
 252	int max_key_idx = 5;
 253
 254	if (wiphy_ext_feature_isset(&rdev->wiphy,
 255				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 256	    wiphy_ext_feature_isset(&rdev->wiphy,
 257				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 258		max_key_idx = 7;
 259	if (key_idx < 0 || key_idx > max_key_idx)
 260		return -EINVAL;
 261
 262	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 263		return -EINVAL;
 264
 265	if (pairwise && !mac_addr)
 266		return -EINVAL;
 267
 268	switch (params->cipher) {
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 271		if ((pairwise && key_idx) ||
 272		    params->mode != NL80211_KEY_RX_TX)
 273			return -EINVAL;
 274		break;
 275	case WLAN_CIPHER_SUITE_CCMP:
 276	case WLAN_CIPHER_SUITE_CCMP_256:
 277	case WLAN_CIPHER_SUITE_GCMP:
 278	case WLAN_CIPHER_SUITE_GCMP_256:
 279		/* IEEE802.11-2016 allows only 0 and - when supporting
 280		 * Extended Key ID - 1 as index for pairwise keys.
 281		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 282		 * the driver supports Extended Key ID.
 283		 * @NL80211_KEY_SET_TX can't be set when installing and
 284		 * validating a key.
 285		 */
 286		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 287		    params->mode == NL80211_KEY_SET_TX)
 288			return -EINVAL;
 289		if (wiphy_ext_feature_isset(&rdev->wiphy,
 290					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 291			if (pairwise && (key_idx < 0 || key_idx > 1))
 292				return -EINVAL;
 293		} else if (pairwise && key_idx) {
 294			return -EINVAL;
 295		}
 296		break;
 297	case WLAN_CIPHER_SUITE_AES_CMAC:
 298	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 299	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 300	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 301		/* Disallow BIP (group-only) cipher as pairwise cipher */
 302		if (pairwise)
 303			return -EINVAL;
 304		if (key_idx < 4)
 305			return -EINVAL;
 306		break;
 307	case WLAN_CIPHER_SUITE_WEP40:
 308	case WLAN_CIPHER_SUITE_WEP104:
 309		if (key_idx > 3)
 310			return -EINVAL;
 311	default:
 312		break;
 313	}
 314
 315	switch (params->cipher) {
 316	case WLAN_CIPHER_SUITE_WEP40:
 317		if (params->key_len != WLAN_KEY_LEN_WEP40)
 318			return -EINVAL;
 319		break;
 320	case WLAN_CIPHER_SUITE_TKIP:
 321		if (params->key_len != WLAN_KEY_LEN_TKIP)
 322			return -EINVAL;
 323		break;
 324	case WLAN_CIPHER_SUITE_CCMP:
 325		if (params->key_len != WLAN_KEY_LEN_CCMP)
 326			return -EINVAL;
 327		break;
 328	case WLAN_CIPHER_SUITE_CCMP_256:
 329		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 330			return -EINVAL;
 331		break;
 332	case WLAN_CIPHER_SUITE_GCMP:
 333		if (params->key_len != WLAN_KEY_LEN_GCMP)
 334			return -EINVAL;
 335		break;
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 338			return -EINVAL;
 339		break;
 340	case WLAN_CIPHER_SUITE_WEP104:
 341		if (params->key_len != WLAN_KEY_LEN_WEP104)
 342			return -EINVAL;
 343		break;
 344	case WLAN_CIPHER_SUITE_AES_CMAC:
 345		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 346			return -EINVAL;
 347		break;
 348	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 349		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 350			return -EINVAL;
 351		break;
 352	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 353		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 354			return -EINVAL;
 355		break;
 356	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 357		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 358			return -EINVAL;
 359		break;
 360	default:
 361		/*
 362		 * We don't know anything about this algorithm,
 363		 * allow using it -- but the driver must check
 364		 * all parameters! We still check below whether
 365		 * or not the driver supports this algorithm,
 366		 * of course.
 367		 */
 368		break;
 369	}
 370
 371	if (params->seq) {
 372		switch (params->cipher) {
 373		case WLAN_CIPHER_SUITE_WEP40:
 374		case WLAN_CIPHER_SUITE_WEP104:
 375			/* These ciphers do not use key sequence */
 376			return -EINVAL;
 377		case WLAN_CIPHER_SUITE_TKIP:
 378		case WLAN_CIPHER_SUITE_CCMP:
 379		case WLAN_CIPHER_SUITE_CCMP_256:
 380		case WLAN_CIPHER_SUITE_GCMP:
 381		case WLAN_CIPHER_SUITE_GCMP_256:
 382		case WLAN_CIPHER_SUITE_AES_CMAC:
 383		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 384		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 385		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 386			if (params->seq_len != 6)
 387				return -EINVAL;
 388			break;
 389		}
 390	}
 391
 392	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 393		return -EINVAL;
 394
 395	return 0;
 396}
 397
 398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 399{
 400	unsigned int hdrlen = 24;
 401
 402	if (ieee80211_is_data(fc)) {
 403		if (ieee80211_has_a4(fc))
 404			hdrlen = 30;
 405		if (ieee80211_is_data_qos(fc)) {
 406			hdrlen += IEEE80211_QOS_CTL_LEN;
 407			if (ieee80211_has_order(fc))
 408				hdrlen += IEEE80211_HT_CTL_LEN;
 409		}
 410		goto out;
 411	}
 412
 413	if (ieee80211_is_mgmt(fc)) {
 414		if (ieee80211_has_order(fc))
 415			hdrlen += IEEE80211_HT_CTL_LEN;
 416		goto out;
 417	}
 418
 419	if (ieee80211_is_ctl(fc)) {
 420		/*
 421		 * ACK and CTS are 10 bytes, all others 16. To see how
 422		 * to get this condition consider
 423		 *   subtype mask:   0b0000000011110000 (0x00F0)
 424		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 425		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 426		 *   bits that matter:         ^^^      (0x00E0)
 427		 *   value of those: 0b0000000011000000 (0x00C0)
 428		 */
 429		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 430			hdrlen = 10;
 431		else
 432			hdrlen = 16;
 433	}
 434out:
 435	return hdrlen;
 436}
 437EXPORT_SYMBOL(ieee80211_hdrlen);
 438
 439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 440{
 441	const struct ieee80211_hdr *hdr =
 442			(const struct ieee80211_hdr *)skb->data;
 443	unsigned int hdrlen;
 444
 445	if (unlikely(skb->len < 10))
 446		return 0;
 447	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 448	if (unlikely(hdrlen > skb->len))
 449		return 0;
 450	return hdrlen;
 451}
 452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 453
 454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 455{
 456	int ae = flags & MESH_FLAGS_AE;
 457	/* 802.11-2012, 8.2.4.7.3 */
 458	switch (ae) {
 459	default:
 460	case 0:
 461		return 6;
 462	case MESH_FLAGS_AE_A4:
 463		return 12;
 464	case MESH_FLAGS_AE_A5_A6:
 465		return 18;
 466	}
 467}
 468
 469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 470{
 471	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 472}
 473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 474
 475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 476				  const u8 *addr, enum nl80211_iftype iftype,
 477				  u8 data_offset)
 478{
 479	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 480	struct {
 481		u8 hdr[ETH_ALEN] __aligned(2);
 482		__be16 proto;
 483	} payload;
 484	struct ethhdr tmp;
 485	u16 hdrlen;
 486	u8 mesh_flags = 0;
 487
 488	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 489		return -1;
 490
 491	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 492	if (skb->len < hdrlen + 8)
 493		return -1;
 494
 495	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 496	 * header
 497	 * IEEE 802.11 address fields:
 498	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 499	 *   0     0   DA    SA    BSSID n/a
 500	 *   0     1   DA    BSSID SA    n/a
 501	 *   1     0   BSSID SA    DA    n/a
 502	 *   1     1   RA    TA    DA    SA
 503	 */
 504	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 505	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 506
 507	if (iftype == NL80211_IFTYPE_MESH_POINT)
 508		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 509
 510	mesh_flags &= MESH_FLAGS_AE;
 511
 512	switch (hdr->frame_control &
 513		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 514	case cpu_to_le16(IEEE80211_FCTL_TODS):
 515		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 516			     iftype != NL80211_IFTYPE_AP_VLAN &&
 517			     iftype != NL80211_IFTYPE_P2P_GO))
 518			return -1;
 519		break;
 520	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 521		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 522			     iftype != NL80211_IFTYPE_MESH_POINT &&
 523			     iftype != NL80211_IFTYPE_AP_VLAN &&
 524			     iftype != NL80211_IFTYPE_STATION))
 525			return -1;
 526		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 527			if (mesh_flags == MESH_FLAGS_AE_A4)
 528				return -1;
 529			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 530				skb_copy_bits(skb, hdrlen +
 531					offsetof(struct ieee80211s_hdr, eaddr1),
 532					tmp.h_dest, 2 * ETH_ALEN);
 533			}
 534			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 535		}
 536		break;
 537	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 538		if ((iftype != NL80211_IFTYPE_STATION &&
 539		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 540		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 541		    (is_multicast_ether_addr(tmp.h_dest) &&
 542		     ether_addr_equal(tmp.h_source, addr)))
 543			return -1;
 544		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 545			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 546				return -1;
 547			if (mesh_flags == MESH_FLAGS_AE_A4)
 548				skb_copy_bits(skb, hdrlen +
 549					offsetof(struct ieee80211s_hdr, eaddr1),
 550					tmp.h_source, ETH_ALEN);
 551			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 552		}
 553		break;
 554	case cpu_to_le16(0):
 555		if (iftype != NL80211_IFTYPE_ADHOC &&
 556		    iftype != NL80211_IFTYPE_STATION &&
 557		    iftype != NL80211_IFTYPE_OCB)
 558				return -1;
 559		break;
 560	}
 561
 562	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 563	tmp.h_proto = payload.proto;
 564
 565	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 566		    tmp.h_proto != htons(ETH_P_AARP) &&
 567		    tmp.h_proto != htons(ETH_P_IPX)) ||
 568		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 569		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 570		 * replace EtherType */
 571		hdrlen += ETH_ALEN + 2;
 572	else
 573		tmp.h_proto = htons(skb->len - hdrlen);
 574
 575	pskb_pull(skb, hdrlen);
 576
 577	if (!ehdr)
 578		ehdr = skb_push(skb, sizeof(struct ethhdr));
 579	memcpy(ehdr, &tmp, sizeof(tmp));
 580
 581	return 0;
 582}
 583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585static void
 586__frame_add_frag(struct sk_buff *skb, struct page *page,
 587		 void *ptr, int len, int size)
 588{
 589	struct skb_shared_info *sh = skb_shinfo(skb);
 590	int page_offset;
 591
 592	get_page(page);
 593	page_offset = ptr - page_address(page);
 594	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 595}
 596
 597static void
 598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 599			    int offset, int len)
 600{
 601	struct skb_shared_info *sh = skb_shinfo(skb);
 602	const skb_frag_t *frag = &sh->frags[0];
 603	struct page *frag_page;
 604	void *frag_ptr;
 605	int frag_len, frag_size;
 606	int head_size = skb->len - skb->data_len;
 607	int cur_len;
 608
 609	frag_page = virt_to_head_page(skb->head);
 610	frag_ptr = skb->data;
 611	frag_size = head_size;
 612
 613	while (offset >= frag_size) {
 614		offset -= frag_size;
 
 615		frag_page = skb_frag_page(frag);
 616		frag_ptr = skb_frag_address(frag);
 617		frag_size = skb_frag_size(frag);
 618		frag++;
 619	}
 620
 621	frag_ptr += offset;
 622	frag_len = frag_size - offset;
 623
 624	cur_len = min(len, frag_len);
 625
 626	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 627	len -= cur_len;
 628
 629	while (len > 0) {
 
 630		frag_len = skb_frag_size(frag);
 631		cur_len = min(len, frag_len);
 632		__frame_add_frag(frame, skb_frag_page(frag),
 633				 skb_frag_address(frag), cur_len, frag_len);
 634		len -= cur_len;
 635		frag++;
 636	}
 637}
 638
 639static struct sk_buff *
 640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 641		       int offset, int len, bool reuse_frag)
 642{
 643	struct sk_buff *frame;
 644	int cur_len = len;
 645
 646	if (skb->len - offset < len)
 647		return NULL;
 648
 649	/*
 650	 * When reusing framents, copy some data to the head to simplify
 651	 * ethernet header handling and speed up protocol header processing
 652	 * in the stack later.
 653	 */
 654	if (reuse_frag)
 655		cur_len = min_t(int, len, 32);
 656
 657	/*
 658	 * Allocate and reserve two bytes more for payload
 659	 * alignment since sizeof(struct ethhdr) is 14.
 660	 */
 661	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 662	if (!frame)
 663		return NULL;
 664
 665	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 666	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 667
 668	len -= cur_len;
 669	if (!len)
 670		return frame;
 671
 672	offset += cur_len;
 673	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 674
 675	return frame;
 676}
 677
 678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 679			      const u8 *addr, enum nl80211_iftype iftype,
 680			      const unsigned int extra_headroom,
 681			      const u8 *check_da, const u8 *check_sa)
 682{
 683	unsigned int hlen = ALIGN(extra_headroom, 4);
 684	struct sk_buff *frame = NULL;
 685	u16 ethertype;
 686	u8 *payload;
 687	int offset = 0, remaining;
 688	struct ethhdr eth;
 689	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 690	bool reuse_skb = false;
 691	bool last = false;
 692
 693	while (!last) {
 694		unsigned int subframe_len;
 695		int len;
 696		u8 padding;
 697
 698		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 699		len = ntohs(eth.h_proto);
 700		subframe_len = sizeof(struct ethhdr) + len;
 701		padding = (4 - subframe_len) & 0x3;
 702
 703		/* the last MSDU has no padding */
 704		remaining = skb->len - offset;
 705		if (subframe_len > remaining)
 706			goto purge;
 707
 708		offset += sizeof(struct ethhdr);
 709		last = remaining <= subframe_len + padding;
 710
 711		/* FIXME: should we really accept multicast DA? */
 712		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 713		     !ether_addr_equal(check_da, eth.h_dest)) ||
 714		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 715			offset += len + padding;
 716			continue;
 717		}
 718
 719		/* reuse skb for the last subframe */
 720		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 721			skb_pull(skb, offset);
 722			frame = skb;
 723			reuse_skb = true;
 724		} else {
 725			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 726						       reuse_frag);
 727			if (!frame)
 728				goto purge;
 729
 730			offset += len + padding;
 731		}
 732
 733		skb_reset_network_header(frame);
 734		frame->dev = skb->dev;
 735		frame->priority = skb->priority;
 736
 737		payload = frame->data;
 738		ethertype = (payload[6] << 8) | payload[7];
 739		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 740			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 741			   ether_addr_equal(payload, bridge_tunnel_header))) {
 742			eth.h_proto = htons(ethertype);
 743			skb_pull(frame, ETH_ALEN + 2);
 744		}
 745
 746		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 747		__skb_queue_tail(list, frame);
 748	}
 749
 750	if (!reuse_skb)
 751		dev_kfree_skb(skb);
 752
 753	return;
 754
 755 purge:
 756	__skb_queue_purge(list);
 757	dev_kfree_skb(skb);
 758}
 759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 760
 761/* Given a data frame determine the 802.1p/1d tag to use. */
 762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 763				    struct cfg80211_qos_map *qos_map)
 764{
 765	unsigned int dscp;
 766	unsigned char vlan_priority;
 767	unsigned int ret;
 768
 769	/* skb->priority values from 256->263 are magic values to
 770	 * directly indicate a specific 802.1d priority.  This is used
 771	 * to allow 802.1d priority to be passed directly in from VLAN
 772	 * tags, etc.
 773	 */
 774	if (skb->priority >= 256 && skb->priority <= 263) {
 775		ret = skb->priority - 256;
 776		goto out;
 777	}
 778
 779	if (skb_vlan_tag_present(skb)) {
 780		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 781			>> VLAN_PRIO_SHIFT;
 782		if (vlan_priority > 0) {
 783			ret = vlan_priority;
 784			goto out;
 785		}
 786	}
 787
 788	switch (skb->protocol) {
 789	case htons(ETH_P_IP):
 790		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 791		break;
 792	case htons(ETH_P_IPV6):
 793		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 794		break;
 795	case htons(ETH_P_MPLS_UC):
 796	case htons(ETH_P_MPLS_MC): {
 797		struct mpls_label mpls_tmp, *mpls;
 798
 799		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 800					  sizeof(*mpls), &mpls_tmp);
 801		if (!mpls)
 802			return 0;
 803
 804		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 805			>> MPLS_LS_TC_SHIFT;
 806		goto out;
 807	}
 808	case htons(ETH_P_80221):
 809		/* 802.21 is always network control traffic */
 810		return 7;
 811	default:
 812		return 0;
 813	}
 814
 815	if (qos_map) {
 816		unsigned int i, tmp_dscp = dscp >> 2;
 817
 818		for (i = 0; i < qos_map->num_des; i++) {
 819			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 820				ret = qos_map->dscp_exception[i].up;
 821				goto out;
 822			}
 823		}
 824
 825		for (i = 0; i < 8; i++) {
 826			if (tmp_dscp >= qos_map->up[i].low &&
 827			    tmp_dscp <= qos_map->up[i].high) {
 828				ret = i;
 829				goto out;
 830			}
 831		}
 832	}
 833
 834	ret = dscp >> 5;
 835out:
 836	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 837}
 838EXPORT_SYMBOL(cfg80211_classify8021d);
 839
 840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 841{
 842	const struct cfg80211_bss_ies *ies;
 843
 844	ies = rcu_dereference(bss->ies);
 845	if (!ies)
 846		return NULL;
 847
 848	return cfg80211_find_elem(id, ies->data, ies->len);
 849}
 850EXPORT_SYMBOL(ieee80211_bss_get_elem);
 851
 852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 853{
 854	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 855	struct net_device *dev = wdev->netdev;
 856	int i;
 857
 858	if (!wdev->connect_keys)
 859		return;
 860
 861	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 862		if (!wdev->connect_keys->params[i].cipher)
 863			continue;
 864		if (rdev_add_key(rdev, dev, i, false, NULL,
 865				 &wdev->connect_keys->params[i])) {
 866			netdev_err(dev, "failed to set key %d\n", i);
 867			continue;
 868		}
 869		if (wdev->connect_keys->def == i &&
 870		    rdev_set_default_key(rdev, dev, i, true, true)) {
 871			netdev_err(dev, "failed to set defkey %d\n", i);
 872			continue;
 873		}
 874	}
 875
 876	kfree_sensitive(wdev->connect_keys);
 877	wdev->connect_keys = NULL;
 878}
 879
 880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 881{
 882	struct cfg80211_event *ev;
 883	unsigned long flags;
 
 884
 885	spin_lock_irqsave(&wdev->event_lock, flags);
 886	while (!list_empty(&wdev->event_list)) {
 887		ev = list_first_entry(&wdev->event_list,
 888				      struct cfg80211_event, list);
 889		list_del(&ev->list);
 890		spin_unlock_irqrestore(&wdev->event_lock, flags);
 891
 892		wdev_lock(wdev);
 893		switch (ev->type) {
 894		case EVENT_CONNECT_RESULT:
 
 
 895			__cfg80211_connect_result(
 896				wdev->netdev,
 897				&ev->cr,
 898				ev->cr.status == WLAN_STATUS_SUCCESS);
 
 
 
 899			break;
 900		case EVENT_ROAMED:
 901			__cfg80211_roamed(wdev, &ev->rm);
 
 
 902			break;
 903		case EVENT_DISCONNECTED:
 904			__cfg80211_disconnected(wdev->netdev,
 905						ev->dc.ie, ev->dc.ie_len,
 906						ev->dc.reason,
 907						!ev->dc.locally_generated);
 908			break;
 909		case EVENT_IBSS_JOINED:
 910			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 911					       ev->ij.channel);
 912			break;
 913		case EVENT_STOPPED:
 914			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 915			break;
 916		case EVENT_PORT_AUTHORIZED:
 917			__cfg80211_port_authorized(wdev, ev->pa.bssid);
 918			break;
 919		}
 920		wdev_unlock(wdev);
 921
 922		kfree(ev);
 923
 924		spin_lock_irqsave(&wdev->event_lock, flags);
 925	}
 926	spin_unlock_irqrestore(&wdev->event_lock, flags);
 927}
 928
 929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 930{
 931	struct wireless_dev *wdev;
 932
 933	ASSERT_RTNL();
 934
 935	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 936		cfg80211_process_wdev_events(wdev);
 937}
 938
 939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 940			  struct net_device *dev, enum nl80211_iftype ntype,
 941			  struct vif_params *params)
 942{
 943	int err;
 944	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 945
 946	ASSERT_RTNL();
 947
 948	/* don't support changing VLANs, you just re-create them */
 949	if (otype == NL80211_IFTYPE_AP_VLAN)
 950		return -EOPNOTSUPP;
 951
 952	/* cannot change into P2P device or NAN */
 953	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 954	    ntype == NL80211_IFTYPE_NAN)
 955		return -EOPNOTSUPP;
 956
 957	if (!rdev->ops->change_virtual_intf ||
 958	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 959		return -EOPNOTSUPP;
 960
 961	/* if it's part of a bridge, reject changing type to station/ibss */
 962	if (netif_is_bridge_port(dev) &&
 963	    (ntype == NL80211_IFTYPE_ADHOC ||
 964	     ntype == NL80211_IFTYPE_STATION ||
 965	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 966		return -EBUSY;
 967
 968	if (ntype != otype) {
 969		dev->ieee80211_ptr->use_4addr = false;
 970		dev->ieee80211_ptr->mesh_id_up_len = 0;
 971		wdev_lock(dev->ieee80211_ptr);
 972		rdev_set_qos_map(rdev, dev, NULL);
 973		wdev_unlock(dev->ieee80211_ptr);
 974
 975		switch (otype) {
 976		case NL80211_IFTYPE_AP:
 977			cfg80211_stop_ap(rdev, dev, true);
 978			break;
 979		case NL80211_IFTYPE_ADHOC:
 980			cfg80211_leave_ibss(rdev, dev, false);
 981			break;
 982		case NL80211_IFTYPE_STATION:
 983		case NL80211_IFTYPE_P2P_CLIENT:
 984			wdev_lock(dev->ieee80211_ptr);
 985			cfg80211_disconnect(rdev, dev,
 986					    WLAN_REASON_DEAUTH_LEAVING, true);
 987			wdev_unlock(dev->ieee80211_ptr);
 988			break;
 989		case NL80211_IFTYPE_MESH_POINT:
 990			/* mesh should be handled? */
 991			break;
 992		default:
 993			break;
 994		}
 995
 996		cfg80211_process_rdev_events(rdev);
 997		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 998	}
 999
1000	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004	if (!err && params && params->use_4addr != -1)
1005		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007	if (!err) {
1008		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009		switch (ntype) {
1010		case NL80211_IFTYPE_STATION:
1011			if (dev->ieee80211_ptr->use_4addr)
1012				break;
1013			fallthrough;
1014		case NL80211_IFTYPE_OCB:
1015		case NL80211_IFTYPE_P2P_CLIENT:
1016		case NL80211_IFTYPE_ADHOC:
1017			dev->priv_flags |= IFF_DONT_BRIDGE;
1018			break;
1019		case NL80211_IFTYPE_P2P_GO:
1020		case NL80211_IFTYPE_AP:
1021		case NL80211_IFTYPE_AP_VLAN:
1022		case NL80211_IFTYPE_WDS:
1023		case NL80211_IFTYPE_MESH_POINT:
1024			/* bridging OK */
1025			break;
1026		case NL80211_IFTYPE_MONITOR:
1027			/* monitor can't bridge anyway */
1028			break;
1029		case NL80211_IFTYPE_UNSPECIFIED:
1030		case NUM_NL80211_IFTYPES:
1031			/* not happening */
1032			break;
1033		case NL80211_IFTYPE_P2P_DEVICE:
1034		case NL80211_IFTYPE_NAN:
1035			WARN_ON(1);
1036			break;
1037		}
1038	}
1039
1040	if (!err && ntype != otype && netif_running(dev)) {
1041		cfg80211_update_iface_num(rdev, ntype, 1);
1042		cfg80211_update_iface_num(rdev, otype, -1);
1043	}
1044
1045	return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050	int modulation, streams, bitrate;
1051
1052	/* the formula below does only work for MCS values smaller than 32 */
1053	if (WARN_ON_ONCE(rate->mcs >= 32))
1054		return 0;
1055
1056	modulation = rate->mcs & 7;
1057	streams = (rate->mcs >> 3) + 1;
1058
1059	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061	if (modulation < 4)
1062		bitrate *= (modulation + 1);
1063	else if (modulation == 4)
1064		bitrate *= (modulation + 2);
1065	else
1066		bitrate *= (modulation + 3);
1067
1068	bitrate *= streams;
1069
1070	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071		bitrate = (bitrate / 9) * 10;
1072
1073	/* do NOT round down here */
1074	return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078{
1079	static const u32 __mcs2bitrate[] = {
1080		/* control PHY */
1081		[0] =   275,
1082		/* SC PHY */
1083		[1] =  3850,
1084		[2] =  7700,
1085		[3] =  9625,
1086		[4] = 11550,
1087		[5] = 12512, /* 1251.25 mbps */
1088		[6] = 15400,
1089		[7] = 19250,
1090		[8] = 23100,
1091		[9] = 25025,
1092		[10] = 30800,
1093		[11] = 38500,
1094		[12] = 46200,
1095		/* OFDM PHY */
1096		[13] =  6930,
1097		[14] =  8662, /* 866.25 mbps */
1098		[15] = 13860,
1099		[16] = 17325,
1100		[17] = 20790,
1101		[18] = 27720,
1102		[19] = 34650,
1103		[20] = 41580,
1104		[21] = 45045,
1105		[22] = 51975,
1106		[23] = 62370,
1107		[24] = 67568, /* 6756.75 mbps */
1108		/* LP-SC PHY */
1109		[25] =  6260,
1110		[26] =  8340,
1111		[27] = 11120,
1112		[28] = 12510,
1113		[29] = 16680,
1114		[30] = 22240,
1115		[31] = 25030,
1116	};
1117
1118	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119		return 0;
1120
1121	return __mcs2bitrate[rate->mcs];
1122}
1123
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126	static const u32 __mcs2bitrate[] = {
1127		/* control PHY */
1128		[0] =   275,
1129		/* SC PHY */
1130		[1] =  3850,
1131		[2] =  7700,
1132		[3] =  9625,
1133		[4] = 11550,
1134		[5] = 12512, /* 1251.25 mbps */
1135		[6] = 13475,
1136		[7] = 15400,
1137		[8] = 19250,
1138		[9] = 23100,
1139		[10] = 25025,
1140		[11] = 26950,
1141		[12] = 30800,
1142		[13] = 38500,
1143		[14] = 46200,
1144		[15] = 50050,
1145		[16] = 53900,
1146		[17] = 57750,
1147		[18] = 69300,
1148		[19] = 75075,
1149		[20] = 80850,
1150	};
1151
1152	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153		return 0;
1154
1155	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160	static const u32 base[4][10] = {
1161		{   6500000,
1162		   13000000,
1163		   19500000,
1164		   26000000,
1165		   39000000,
1166		   52000000,
1167		   58500000,
1168		   65000000,
1169		   78000000,
1170		/* not in the spec, but some devices use this: */
1171		   86500000,
1172		},
1173		{  13500000,
1174		   27000000,
1175		   40500000,
1176		   54000000,
1177		   81000000,
1178		  108000000,
1179		  121500000,
1180		  135000000,
1181		  162000000,
1182		  180000000,
1183		},
1184		{  29300000,
1185		   58500000,
1186		   87800000,
1187		  117000000,
1188		  175500000,
1189		  234000000,
1190		  263300000,
1191		  292500000,
1192		  351000000,
1193		  390000000,
1194		},
1195		{  58500000,
1196		  117000000,
1197		  175500000,
1198		  234000000,
1199		  351000000,
1200		  468000000,
1201		  526500000,
1202		  585000000,
1203		  702000000,
1204		  780000000,
1205		},
1206	};
1207	u32 bitrate;
1208	int idx;
1209
1210	if (rate->mcs > 9)
1211		goto warn;
1212
1213	switch (rate->bw) {
1214	case RATE_INFO_BW_160:
1215		idx = 3;
1216		break;
1217	case RATE_INFO_BW_80:
1218		idx = 2;
1219		break;
1220	case RATE_INFO_BW_40:
1221		idx = 1;
1222		break;
1223	case RATE_INFO_BW_5:
1224	case RATE_INFO_BW_10:
1225	default:
1226		goto warn;
 
1227	case RATE_INFO_BW_20:
1228		idx = 0;
1229	}
1230
1231	bitrate = base[idx][rate->mcs];
1232	bitrate *= rate->nss;
1233
1234	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235		bitrate = (bitrate / 9) * 10;
1236
1237	/* do NOT round down here */
1238	return (bitrate + 50000) / 100000;
1239 warn:
1240	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241		  rate->bw, rate->mcs, rate->nss);
1242	return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246{
1247#define SCALE 2048
1248	u16 mcs_divisors[12] = {
1249		34133, /* 16.666666... */
1250		17067, /*  8.333333... */
1251		11378, /*  5.555555... */
1252		 8533, /*  4.166666... */
1253		 5689, /*  2.777777... */
1254		 4267, /*  2.083333... */
1255		 3923, /*  1.851851... */
1256		 3413, /*  1.666666... */
1257		 2844, /*  1.388888... */
1258		 2560, /*  1.250000... */
1259		 2276, /*  1.111111... */
1260		 2048, /*  1.000000... */
1261	};
1262	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1264	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1265	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1266	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1267	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1268	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1269	u64 tmp;
1270	u32 result;
1271
1272	if (WARN_ON_ONCE(rate->mcs > 11))
1273		return 0;
 
 
 
 
 
1274
1275	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276		return 0;
1277	if (WARN_ON_ONCE(rate->he_ru_alloc >
1278			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279		return 0;
1280	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281		return 0;
1282
1283	if (rate->bw == RATE_INFO_BW_160)
1284		result = rates_160M[rate->he_gi];
1285	else if (rate->bw == RATE_INFO_BW_80 ||
1286		 (rate->bw == RATE_INFO_BW_HE_RU &&
1287		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288		result = rates_969[rate->he_gi];
1289	else if (rate->bw == RATE_INFO_BW_40 ||
1290		 (rate->bw == RATE_INFO_BW_HE_RU &&
1291		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292		result = rates_484[rate->he_gi];
1293	else if (rate->bw == RATE_INFO_BW_20 ||
1294		 (rate->bw == RATE_INFO_BW_HE_RU &&
1295		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296		result = rates_242[rate->he_gi];
1297	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299		result = rates_106[rate->he_gi];
1300	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302		result = rates_52[rate->he_gi];
1303	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305		result = rates_26[rate->he_gi];
1306	else {
1307		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308		     rate->bw, rate->he_ru_alloc);
1309		return 0;
1310	}
1311
1312	/* now scale to the appropriate MCS */
1313	tmp = result;
1314	tmp *= SCALE;
1315	do_div(tmp, mcs_divisors[rate->mcs]);
1316	result = tmp;
1317
1318	/* and take NSS, DCM into account */
1319	result = (result * rate->nss) / 8;
1320	if (rate->he_dcm)
1321		result /= 2;
1322
1323	return result / 10000;
1324}
 
 
 
 
 
 
1325
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328	if (rate->flags & RATE_INFO_FLAGS_MCS)
1329		return cfg80211_calculate_bitrate_ht(rate);
1330	if (rate->flags & RATE_INFO_FLAGS_DMG)
1331		return cfg80211_calculate_bitrate_dmg(rate);
1332	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333		return cfg80211_calculate_bitrate_edmg(rate);
1334	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335		return cfg80211_calculate_bitrate_vht(rate);
1336	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337		return cfg80211_calculate_bitrate_he(rate);
1338
1339	return rate->legacy;
 
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344			  enum ieee80211_p2p_attr_id attr,
1345			  u8 *buf, unsigned int bufsize)
1346{
1347	u8 *out = buf;
1348	u16 attr_remaining = 0;
1349	bool desired_attr = false;
1350	u16 desired_len = 0;
1351
1352	while (len > 0) {
1353		unsigned int iedatalen;
1354		unsigned int copy;
1355		const u8 *iedata;
1356
1357		if (len < 2)
1358			return -EILSEQ;
1359		iedatalen = ies[1];
1360		if (iedatalen + 2 > len)
1361			return -EILSEQ;
1362
1363		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364			goto cont;
1365
1366		if (iedatalen < 4)
1367			goto cont;
1368
1369		iedata = ies + 2;
1370
1371		/* check WFA OUI, P2P subtype */
1372		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373		    iedata[2] != 0x9a || iedata[3] != 0x09)
1374			goto cont;
1375
1376		iedatalen -= 4;
1377		iedata += 4;
1378
1379		/* check attribute continuation into this IE */
1380		copy = min_t(unsigned int, attr_remaining, iedatalen);
1381		if (copy && desired_attr) {
1382			desired_len += copy;
1383			if (out) {
1384				memcpy(out, iedata, min(bufsize, copy));
1385				out += min(bufsize, copy);
1386				bufsize -= min(bufsize, copy);
1387			}
1388
1389
1390			if (copy == attr_remaining)
1391				return desired_len;
1392		}
1393
1394		attr_remaining -= copy;
1395		if (attr_remaining)
1396			goto cont;
1397
1398		iedatalen -= copy;
1399		iedata += copy;
1400
1401		while (iedatalen > 0) {
1402			u16 attr_len;
1403
1404			/* P2P attribute ID & size must fit */
1405			if (iedatalen < 3)
1406				return -EILSEQ;
1407			desired_attr = iedata[0] == attr;
1408			attr_len = get_unaligned_le16(iedata + 1);
1409			iedatalen -= 3;
1410			iedata += 3;
1411
1412			copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414			if (desired_attr) {
1415				desired_len += copy;
1416				if (out) {
1417					memcpy(out, iedata, min(bufsize, copy));
1418					out += min(bufsize, copy);
1419					bufsize -= min(bufsize, copy);
1420				}
1421
1422				if (copy == attr_len)
1423					return desired_len;
1424			}
1425
1426			iedata += copy;
1427			iedatalen -= copy;
1428			attr_remaining = attr_len - copy;
1429		}
1430
1431 cont:
1432		len -= ies[1] + 2;
1433		ies += ies[1] + 2;
1434	}
1435
1436	if (attr_remaining && desired_attr)
1437		return -EILSEQ;
1438
1439	return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445	int i;
1446
1447	/* Make sure array values are legal */
1448	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449		return false;
1450
1451	i = 0;
1452	while (i < n_ids) {
1453		if (ids[i] == WLAN_EID_EXTENSION) {
1454			if (id_ext && (ids[i + 1] == id))
1455				return true;
1456
1457			i += 2;
1458			continue;
1459		}
1460
1461		if (ids[i] == id && !id_ext)
1462			return true;
1463
1464		i++;
1465	}
1466	return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471	/* we assume a validly formed IEs buffer */
1472	u8 len = ies[pos + 1];
1473
1474	pos += 2 + len;
1475
1476	/* the IE itself must have 255 bytes for fragments to follow */
1477	if (len < 255)
1478		return pos;
1479
1480	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481		len = ies[pos + 1];
1482		pos += 2 + len;
1483	}
1484
1485	return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489			      const u8 *ids, int n_ids,
1490			      const u8 *after_ric, int n_after_ric,
1491			      size_t offset)
1492{
1493	size_t pos = offset;
1494
1495	while (pos < ielen) {
1496		u8 ext = 0;
1497
1498		if (ies[pos] == WLAN_EID_EXTENSION)
1499			ext = 2;
1500		if ((pos + ext) >= ielen)
1501			break;
1502
1503		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504					  ies[pos] == WLAN_EID_EXTENSION))
1505			break;
1506
1507		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508			pos = skip_ie(ies, ielen, pos);
1509
1510			while (pos < ielen) {
1511				if (ies[pos] == WLAN_EID_EXTENSION)
1512					ext = 2;
1513				else
1514					ext = 0;
1515
1516				if ((pos + ext) >= ielen)
1517					break;
1518
1519				if (!ieee80211_id_in_list(after_ric,
1520							  n_after_ric,
1521							  ies[pos + ext],
1522							  ext == 2))
1523					pos = skip_ie(ies, ielen, pos);
1524				else
1525					break;
1526			}
1527		} else {
1528			pos = skip_ie(ies, ielen, pos);
1529		}
1530	}
1531
1532	return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537				       enum nl80211_band *band)
1538{
1539	switch (operating_class) {
1540	case 112:
1541	case 115 ... 127:
1542	case 128 ... 130:
1543		*band = NL80211_BAND_5GHZ;
1544		return true;
1545	case 131 ... 135:
1546		*band = NL80211_BAND_6GHZ;
1547		return true;
1548	case 81:
1549	case 82:
1550	case 83:
1551	case 84:
1552		*band = NL80211_BAND_2GHZ;
1553		return true;
1554	case 180:
1555		*band = NL80211_BAND_60GHZ;
1556		return true;
1557	}
1558
1559	return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564					  u8 *op_class)
1565{
1566	u8 vht_opclass;
1567	u32 freq = chandef->center_freq1;
1568
1569	if (freq >= 2412 && freq <= 2472) {
1570		if (chandef->width > NL80211_CHAN_WIDTH_40)
1571			return false;
1572
1573		/* 2.407 GHz, channels 1..13 */
1574		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575			if (freq > chandef->chan->center_freq)
1576				*op_class = 83; /* HT40+ */
1577			else
1578				*op_class = 84; /* HT40- */
1579		} else {
1580			*op_class = 81;
1581		}
1582
1583		return true;
1584	}
1585
1586	if (freq == 2484) {
1587		/* channel 14 is only for IEEE 802.11b */
1588		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589			return false;
1590
1591		*op_class = 82; /* channel 14 */
1592		return true;
1593	}
1594
1595	switch (chandef->width) {
1596	case NL80211_CHAN_WIDTH_80:
1597		vht_opclass = 128;
1598		break;
1599	case NL80211_CHAN_WIDTH_160:
1600		vht_opclass = 129;
1601		break;
1602	case NL80211_CHAN_WIDTH_80P80:
1603		vht_opclass = 130;
1604		break;
1605	case NL80211_CHAN_WIDTH_10:
1606	case NL80211_CHAN_WIDTH_5:
1607		return false; /* unsupported for now */
1608	default:
1609		vht_opclass = 0;
1610		break;
1611	}
1612
1613	/* 5 GHz, channels 36..48 */
1614	if (freq >= 5180 && freq <= 5240) {
1615		if (vht_opclass) {
1616			*op_class = vht_opclass;
1617		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618			if (freq > chandef->chan->center_freq)
1619				*op_class = 116;
1620			else
1621				*op_class = 117;
1622		} else {
1623			*op_class = 115;
1624		}
1625
1626		return true;
1627	}
1628
1629	/* 5 GHz, channels 52..64 */
1630	if (freq >= 5260 && freq <= 5320) {
1631		if (vht_opclass) {
1632			*op_class = vht_opclass;
1633		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634			if (freq > chandef->chan->center_freq)
1635				*op_class = 119;
1636			else
1637				*op_class = 120;
1638		} else {
1639			*op_class = 118;
1640		}
1641
1642		return true;
1643	}
1644
1645	/* 5 GHz, channels 100..144 */
1646	if (freq >= 5500 && freq <= 5720) {
1647		if (vht_opclass) {
1648			*op_class = vht_opclass;
1649		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650			if (freq > chandef->chan->center_freq)
1651				*op_class = 122;
1652			else
1653				*op_class = 123;
1654		} else {
1655			*op_class = 121;
1656		}
1657
1658		return true;
1659	}
1660
1661	/* 5 GHz, channels 149..169 */
1662	if (freq >= 5745 && freq <= 5845) {
1663		if (vht_opclass) {
1664			*op_class = vht_opclass;
1665		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666			if (freq > chandef->chan->center_freq)
1667				*op_class = 126;
1668			else
1669				*op_class = 127;
1670		} else if (freq <= 5805) {
1671			*op_class = 124;
1672		} else {
1673			*op_class = 125;
1674		}
1675
1676		return true;
1677	}
1678
1679	/* 56.16 GHz, channel 1..4 */
1680	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682			return false;
1683
1684		*op_class = 180;
1685		return true;
1686	}
1687
1688	/* not supported yet */
1689	return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694				       u32 *beacon_int_gcd,
1695				       bool *beacon_int_different)
1696{
1697	struct wireless_dev *wdev;
1698
1699	*beacon_int_gcd = 0;
1700	*beacon_int_different = false;
1701
1702	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703		if (!wdev->beacon_interval)
1704			continue;
1705
1706		if (!*beacon_int_gcd) {
1707			*beacon_int_gcd = wdev->beacon_interval;
1708			continue;
1709		}
1710
1711		if (wdev->beacon_interval == *beacon_int_gcd)
1712			continue;
1713
1714		*beacon_int_different = true;
1715		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716	}
1717
1718	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719		if (*beacon_int_gcd)
1720			*beacon_int_different = true;
1721		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722	}
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726				 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728	/*
1729	 * This is just a basic pre-condition check; if interface combinations
1730	 * are possible the driver must already be checking those with a call
1731	 * to cfg80211_check_combinations(), in which case we'll validate more
1732	 * through the cfg80211_calculate_bi_data() call and code in
1733	 * cfg80211_iter_combinations().
1734	 */
1735
1736	if (beacon_int < 10 || beacon_int > 10000)
1737		return -EINVAL;
1738
1739	return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743			       struct iface_combination_params *params,
1744			       void (*iter)(const struct ieee80211_iface_combination *c,
1745					    void *data),
1746			       void *data)
1747{
1748	const struct ieee80211_regdomain *regdom;
1749	enum nl80211_dfs_regions region = 0;
1750	int i, j, iftype;
1751	int num_interfaces = 0;
1752	u32 used_iftypes = 0;
1753	u32 beacon_int_gcd;
1754	bool beacon_int_different;
1755
1756	/*
1757	 * This is a bit strange, since the iteration used to rely only on
1758	 * the data given by the driver, but here it now relies on context,
1759	 * in form of the currently operating interfaces.
1760	 * This is OK for all current users, and saves us from having to
1761	 * push the GCD calculations into all the drivers.
1762	 * In the future, this should probably rely more on data that's in
1763	 * cfg80211 already - the only thing not would appear to be any new
1764	 * interfaces (while being brought up) and channel/radar data.
1765	 */
1766	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767				   &beacon_int_gcd, &beacon_int_different);
1768
1769	if (params->radar_detect) {
1770		rcu_read_lock();
1771		regdom = rcu_dereference(cfg80211_regdomain);
1772		if (regdom)
1773			region = regdom->dfs_region;
1774		rcu_read_unlock();
1775	}
1776
1777	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778		num_interfaces += params->iftype_num[iftype];
1779		if (params->iftype_num[iftype] > 0 &&
1780		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781			used_iftypes |= BIT(iftype);
1782	}
1783
1784	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785		const struct ieee80211_iface_combination *c;
1786		struct ieee80211_iface_limit *limits;
1787		u32 all_iftypes = 0;
1788
1789		c = &wiphy->iface_combinations[i];
1790
1791		if (num_interfaces > c->max_interfaces)
1792			continue;
1793		if (params->num_different_channels > c->num_different_channels)
1794			continue;
1795
1796		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797				 GFP_KERNEL);
1798		if (!limits)
1799			return -ENOMEM;
1800
1801		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803				continue;
1804			for (j = 0; j < c->n_limits; j++) {
1805				all_iftypes |= limits[j].types;
1806				if (!(limits[j].types & BIT(iftype)))
1807					continue;
1808				if (limits[j].max < params->iftype_num[iftype])
1809					goto cont;
1810				limits[j].max -= params->iftype_num[iftype];
1811			}
1812		}
1813
1814		if (params->radar_detect !=
1815			(c->radar_detect_widths & params->radar_detect))
1816			goto cont;
1817
1818		if (params->radar_detect && c->radar_detect_regions &&
1819		    !(c->radar_detect_regions & BIT(region)))
1820			goto cont;
1821
1822		/* Finally check that all iftypes that we're currently
1823		 * using are actually part of this combination. If they
1824		 * aren't then we can't use this combination and have
1825		 * to continue to the next.
1826		 */
1827		if ((all_iftypes & used_iftypes) != used_iftypes)
1828			goto cont;
1829
1830		if (beacon_int_gcd) {
1831			if (c->beacon_int_min_gcd &&
1832			    beacon_int_gcd < c->beacon_int_min_gcd)
1833				goto cont;
1834			if (!c->beacon_int_min_gcd && beacon_int_different)
1835				goto cont;
1836		}
1837
1838		/* This combination covered all interface types and
1839		 * supported the requested numbers, so we're good.
1840		 */
1841
1842		(*iter)(c, data);
1843 cont:
1844		kfree(limits);
1845	}
1846
1847	return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853			  void *data)
1854{
1855	int *num = data;
1856	(*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860				struct iface_combination_params *params)
1861{
1862	int err, num = 0;
1863
1864	err = cfg80211_iter_combinations(wiphy, params,
1865					 cfg80211_iter_sum_ifcombs, &num);
1866	if (err)
1867		return err;
1868	if (num == 0)
1869		return -EBUSY;
1870
1871	return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876			   const u8 *rates, unsigned int n_rates,
1877			   u32 *mask)
1878{
1879	int i, j;
1880
1881	if (!sband)
1882		return -EINVAL;
1883
1884	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885		return -EINVAL;
1886
1887	*mask = 0;
1888
1889	for (i = 0; i < n_rates; i++) {
1890		int rate = (rates[i] & 0x7f) * 5;
1891		bool found = false;
1892
1893		for (j = 0; j < sband->n_bitrates; j++) {
1894			if (sband->bitrates[j].bitrate == rate) {
1895				found = true;
1896				*mask |= BIT(j);
1897				break;
1898			}
1899		}
1900		if (!found)
1901			return -EINVAL;
1902	}
1903
1904	/*
1905	 * mask must have at least one bit set here since we
1906	 * didn't accept a 0-length rates array nor allowed
1907	 * entries in the array that didn't exist
1908	 */
1909
1910	return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915	enum nl80211_band band;
1916	unsigned int n_channels = 0;
1917
1918	for (band = 0; band < NUM_NL80211_BANDS; band++)
1919		if (wiphy->bands[band])
1920			n_channels += wiphy->bands[band]->n_channels;
1921
1922	return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927			 struct station_info *sinfo)
1928{
1929	struct cfg80211_registered_device *rdev;
1930	struct wireless_dev *wdev;
1931
1932	wdev = dev->ieee80211_ptr;
1933	if (!wdev)
1934		return -EOPNOTSUPP;
1935
1936	rdev = wiphy_to_rdev(wdev->wiphy);
1937	if (!rdev->ops->get_station)
1938		return -EOPNOTSUPP;
1939
1940	memset(sinfo, 0, sizeof(*sinfo));
1941
1942	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948	int i;
1949
1950	if (!f)
1951		return;
1952
1953	kfree(f->serv_spec_info);
1954	kfree(f->srf_bf);
1955	kfree(f->srf_macs);
1956	for (i = 0; i < f->num_rx_filters; i++)
1957		kfree(f->rx_filters[i].filter);
1958
1959	for (i = 0; i < f->num_tx_filters; i++)
1960		kfree(f->tx_filters[i].filter);
1961
1962	kfree(f->rx_filters);
1963	kfree(f->tx_filters);
1964	kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969				u32 center_freq_khz, u32 bw_khz)
1970{
1971	u32 start_freq_khz, end_freq_khz;
1972
1973	start_freq_khz = center_freq_khz - (bw_khz / 2);
1974	end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976	if (start_freq_khz >= freq_range->start_freq_khz &&
1977	    end_freq_khz <= freq_range->end_freq_khz)
1978		return true;
1979
1980	return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986				sizeof(*(sinfo->pertid)),
1987				gfp);
1988	if (!sinfo->pertid)
1989		return -ENOMEM;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008	u8 da[ETH_ALEN];	/* broadcast */
2009	u8 sa[ETH_ALEN];	/* STA addr */
2010	__be16 len;		/* 6 */
2011	u8 dsap;		/* 0 */
2012	u8 ssap;		/* 0 */
2013	u8 control;
2014	u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019	struct iapp_layer2_update *msg;
2020	struct sk_buff *skb;
2021
2022	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2023	 * bridge devices */
2024
2025	skb = dev_alloc_skb(sizeof(*msg));
2026	if (!skb)
2027		return;
2028	msg = skb_put(skb, sizeof(*msg));
2029
2030	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033	eth_broadcast_addr(msg->da);
2034	ether_addr_copy(msg->sa, addr);
2035	msg->len = htons(6);
2036	msg->dsap = 0;
2037	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2038	msg->control = 0xaf;	/* XID response lsb.1111F101.
2039				 * F=0 (no poll command; unsolicited frame) */
2040	msg->xid_info[0] = 0x81;	/* XID format identifier */
2041	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2042	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2043
2044	skb->dev = dev;
2045	skb->protocol = eth_type_trans(skb, dev);
2046	memset(skb->cb, 0, sizeof(skb->cb));
2047	netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052			      enum ieee80211_vht_chanwidth bw,
2053			      int mcs, bool ext_nss_bw_capable,
2054			      unsigned int max_vht_nss)
2055{
2056	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057	int ext_nss_bw;
2058	int supp_width;
2059	int i, mcs_encoding;
2060
2061	if (map == 0xffff)
2062		return 0;
2063
2064	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065		return 0;
2066	if (mcs <= 7)
2067		mcs_encoding = 0;
2068	else if (mcs == 8)
2069		mcs_encoding = 1;
2070	else
2071		mcs_encoding = 2;
2072
2073	if (!max_vht_nss) {
2074		/* find max_vht_nss for the given MCS */
2075		for (i = 7; i >= 0; i--) {
2076			int supp = (map >> (2 * i)) & 3;
2077
2078			if (supp == 3)
2079				continue;
2080
2081			if (supp >= mcs_encoding) {
2082				max_vht_nss = i + 1;
2083				break;
2084			}
2085		}
2086	}
2087
2088	if (!(cap->supp_mcs.tx_mcs_map &
2089			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090		return max_vht_nss;
2091
2092	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094	supp_width = le32_get_bits(cap->vht_cap_info,
2095				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097	/* if not capable, treat ext_nss_bw as 0 */
2098	if (!ext_nss_bw_capable)
2099		ext_nss_bw = 0;
2100
2101	/* This is invalid */
2102	if (supp_width == 3)
2103		return 0;
2104
2105	/* This is an invalid combination so pretend nothing is supported */
2106	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107		return 0;
2108
2109	/*
2110	 * Cover all the special cases according to IEEE 802.11-2016
2111	 * Table 9-250. All other cases are either factor of 1 or not
2112	 * valid/supported.
2113	 */
2114	switch (bw) {
2115	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117		if ((supp_width == 1 || supp_width == 2) &&
2118		    ext_nss_bw == 3)
2119			return 2 * max_vht_nss;
2120		break;
2121	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122		if (supp_width == 0 &&
2123		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2124			return max_vht_nss / 2;
2125		if (supp_width == 0 &&
2126		    ext_nss_bw == 3)
2127			return (3 * max_vht_nss) / 4;
2128		if (supp_width == 1 &&
2129		    ext_nss_bw == 3)
2130			return 2 * max_vht_nss;
2131		break;
2132	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133		if (supp_width == 0 && ext_nss_bw == 1)
2134			return 0; /* not possible */
2135		if (supp_width == 0 &&
2136		    ext_nss_bw == 2)
2137			return max_vht_nss / 2;
2138		if (supp_width == 0 &&
2139		    ext_nss_bw == 3)
2140			return (3 * max_vht_nss) / 4;
2141		if (supp_width == 1 &&
2142		    ext_nss_bw == 0)
2143			return 0; /* not possible */
2144		if (supp_width == 1 &&
2145		    ext_nss_bw == 1)
2146			return max_vht_nss / 2;
2147		if (supp_width == 1 &&
2148		    ext_nss_bw == 2)
2149			return (3 * max_vht_nss) / 4;
2150		break;
2151	}
2152
2153	/* not covered or invalid combination received */
2154	return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159			     bool is_4addr, u8 check_swif)
2160
2161{
2162	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164	switch (check_swif) {
2165	case 0:
2166		if (is_vlan && is_4addr)
2167			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168		return wiphy->interface_modes & BIT(iftype);
2169	case 1:
2170		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172		return wiphy->software_iftypes & BIT(iftype);
2173	default:
2174		break;
2175	}
2176
2177	return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);