Linux Audio

Check our new training course

Loading...
v4.10.11
  1#define pr_fmt(fmt) "%s: " fmt "\n", __func__
 
  2
  3#include <linux/kernel.h>
  4#include <linux/sched.h>
  5#include <linux/wait.h>
  6#include <linux/percpu-refcount.h>
  7
  8/*
  9 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
 10 * don't try to detect the ref hitting 0 - which means that get/put can just
 11 * increment or decrement the local counter. Note that the counter on a
 12 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
 13 * percpu counters will all sum to the correct value
 14 *
 15 * (More precisely: because modular arithmetic is commutative the sum of all the
 16 * percpu_count vars will be equal to what it would have been if all the gets
 17 * and puts were done to a single integer, even if some of the percpu integers
 18 * overflow or underflow).
 19 *
 20 * The real trick to implementing percpu refcounts is shutdown. We can't detect
 21 * the ref hitting 0 on every put - this would require global synchronization
 22 * and defeat the whole purpose of using percpu refs.
 23 *
 24 * What we do is require the user to keep track of the initial refcount; we know
 25 * the ref can't hit 0 before the user drops the initial ref, so as long as we
 26 * convert to non percpu mode before the initial ref is dropped everything
 27 * works.
 28 *
 29 * Converting to non percpu mode is done with some RCUish stuff in
 30 * percpu_ref_kill. Additionally, we need a bias value so that the
 31 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
 32 */
 33
 34#define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))
 35
 36static DEFINE_SPINLOCK(percpu_ref_switch_lock);
 37static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
 38
 39static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
 40{
 41	return (unsigned long __percpu *)
 42		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
 43}
 44
 45/**
 46 * percpu_ref_init - initialize a percpu refcount
 47 * @ref: percpu_ref to initialize
 48 * @release: function which will be called when refcount hits 0
 49 * @flags: PERCPU_REF_INIT_* flags
 50 * @gfp: allocation mask to use
 51 *
 52 * Initializes @ref.  If @flags is zero, @ref starts in percpu mode with a
 53 * refcount of 1; analagous to atomic_long_set(ref, 1).  See the
 54 * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
 
 55 *
 56 * Note that @release must not sleep - it may potentially be called from RCU
 57 * callback context by percpu_ref_kill().
 58 */
 59int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
 60		    unsigned int flags, gfp_t gfp)
 61{
 62	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
 63			     __alignof__(unsigned long));
 64	unsigned long start_count = 0;
 65
 66	ref->percpu_count_ptr = (unsigned long)
 67		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
 68	if (!ref->percpu_count_ptr)
 69		return -ENOMEM;
 70
 71	ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
 
 72
 73	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
 74		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 75	else
 
 76		start_count += PERCPU_COUNT_BIAS;
 
 77
 78	if (flags & PERCPU_REF_INIT_DEAD)
 79		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
 80	else
 81		start_count++;
 82
 83	atomic_long_set(&ref->count, start_count);
 84
 85	ref->release = release;
 86	ref->confirm_switch = NULL;
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(percpu_ref_init);
 90
 91/**
 92 * percpu_ref_exit - undo percpu_ref_init()
 93 * @ref: percpu_ref to exit
 94 *
 95 * This function exits @ref.  The caller is responsible for ensuring that
 96 * @ref is no longer in active use.  The usual places to invoke this
 97 * function from are the @ref->release() callback or in init failure path
 98 * where percpu_ref_init() succeeded but other parts of the initialization
 99 * of the embedding object failed.
100 */
101void percpu_ref_exit(struct percpu_ref *ref)
102{
103	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
104
105	if (percpu_count) {
106		/* non-NULL confirm_switch indicates switching in progress */
107		WARN_ON_ONCE(ref->confirm_switch);
108		free_percpu(percpu_count);
109		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
110	}
111}
112EXPORT_SYMBOL_GPL(percpu_ref_exit);
113
114static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
115{
116	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
117
118	ref->confirm_switch(ref);
119	ref->confirm_switch = NULL;
120	wake_up_all(&percpu_ref_switch_waitq);
121
 
 
 
122	/* drop ref from percpu_ref_switch_to_atomic() */
123	percpu_ref_put(ref);
124}
125
126static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
127{
128	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
129	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
130	unsigned long count = 0;
131	int cpu;
132
133	for_each_possible_cpu(cpu)
134		count += *per_cpu_ptr(percpu_count, cpu);
135
136	pr_debug("global %ld percpu %ld",
137		 atomic_long_read(&ref->count), (long)count);
138
139	/*
140	 * It's crucial that we sum the percpu counters _before_ adding the sum
141	 * to &ref->count; since gets could be happening on one cpu while puts
142	 * happen on another, adding a single cpu's count could cause
143	 * @ref->count to hit 0 before we've got a consistent value - but the
144	 * sum of all the counts will be consistent and correct.
145	 *
146	 * Subtracting the bias value then has to happen _after_ adding count to
147	 * &ref->count; we need the bias value to prevent &ref->count from
148	 * reaching 0 before we add the percpu counts. But doing it at the same
149	 * time is equivalent and saves us atomic operations:
150	 */
151	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
152
153	WARN_ONCE(atomic_long_read(&ref->count) <= 0,
154		  "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
155		  ref->release, atomic_long_read(&ref->count));
156
157	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
158	percpu_ref_call_confirm_rcu(rcu);
159}
160
161static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
162{
163}
164
165static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
166					  percpu_ref_func_t *confirm_switch)
167{
168	if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
169		if (confirm_switch)
170			confirm_switch(ref);
171		return;
172	}
173
174	/* switching from percpu to atomic */
175	ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
176
177	/*
178	 * Non-NULL ->confirm_switch is used to indicate that switching is
179	 * in progress.  Use noop one if unspecified.
180	 */
181	ref->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch;
182
183	percpu_ref_get(ref);	/* put after confirmation */
184	call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
185}
186
187static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
188{
189	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
190	int cpu;
191
192	BUG_ON(!percpu_count);
193
194	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
195		return;
196
 
 
 
197	atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
198
199	/*
200	 * Restore per-cpu operation.  smp_store_release() is paired with
201	 * smp_read_barrier_depends() in __ref_is_percpu() and guarantees
202	 * that the zeroing is visible to all percpu accesses which can see
203	 * the following __PERCPU_REF_ATOMIC clearing.
204	 */
205	for_each_possible_cpu(cpu)
206		*per_cpu_ptr(percpu_count, cpu) = 0;
207
208	smp_store_release(&ref->percpu_count_ptr,
209			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
210}
211
212static void __percpu_ref_switch_mode(struct percpu_ref *ref,
213				     percpu_ref_func_t *confirm_switch)
214{
215	lockdep_assert_held(&percpu_ref_switch_lock);
216
217	/*
218	 * If the previous ATOMIC switching hasn't finished yet, wait for
219	 * its completion.  If the caller ensures that ATOMIC switching
220	 * isn't in progress, this function can be called from any context.
221	 */
222	wait_event_lock_irq(percpu_ref_switch_waitq, !ref->confirm_switch,
223			    percpu_ref_switch_lock);
224
225	if (ref->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
226		__percpu_ref_switch_to_atomic(ref, confirm_switch);
227	else
228		__percpu_ref_switch_to_percpu(ref);
229}
230
231/**
232 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
233 * @ref: percpu_ref to switch to atomic mode
234 * @confirm_switch: optional confirmation callback
235 *
236 * There's no reason to use this function for the usual reference counting.
237 * Use percpu_ref_kill[_and_confirm]().
238 *
239 * Schedule switching of @ref to atomic mode.  All its percpu counts will
240 * be collected to the main atomic counter.  On completion, when all CPUs
241 * are guaraneed to be in atomic mode, @confirm_switch, which may not
242 * block, is invoked.  This function may be invoked concurrently with all
243 * the get/put operations and can safely be mixed with kill and reinit
244 * operations.  Note that @ref will stay in atomic mode across kill/reinit
245 * cycles until percpu_ref_switch_to_percpu() is called.
246 *
247 * This function may block if @ref is in the process of switching to atomic
248 * mode.  If the caller ensures that @ref is not in the process of
249 * switching to atomic mode, this function can be called from any context.
250 */
251void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
252				 percpu_ref_func_t *confirm_switch)
253{
254	unsigned long flags;
255
256	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
257
258	ref->force_atomic = true;
259	__percpu_ref_switch_mode(ref, confirm_switch);
260
261	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
262}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263
264/**
265 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
266 * @ref: percpu_ref to switch to percpu mode
267 *
268 * There's no reason to use this function for the usual reference counting.
269 * To re-use an expired ref, use percpu_ref_reinit().
270 *
271 * Switch @ref to percpu mode.  This function may be invoked concurrently
272 * with all the get/put operations and can safely be mixed with kill and
273 * reinit operations.  This function reverses the sticky atomic state set
274 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
275 * dying or dead, the actual switching takes place on the following
276 * percpu_ref_reinit().
277 *
278 * This function may block if @ref is in the process of switching to atomic
279 * mode.  If the caller ensures that @ref is not in the process of
280 * switching to atomic mode, this function can be called from any context.
281 */
282void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
283{
284	unsigned long flags;
285
286	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
287
288	ref->force_atomic = false;
289	__percpu_ref_switch_mode(ref, NULL);
290
291	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
292}
 
293
294/**
295 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
296 * @ref: percpu_ref to kill
297 * @confirm_kill: optional confirmation callback
298 *
299 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
300 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
301 * called after @ref is seen as dead from all CPUs at which point all
302 * further invocations of percpu_ref_tryget_live() will fail.  See
303 * percpu_ref_tryget_live() for details.
304 *
305 * This function normally doesn't block and can be called from any context
306 * but it may block if @confirm_kill is specified and @ref is in the
307 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
 
 
308 */
309void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
310				 percpu_ref_func_t *confirm_kill)
311{
312	unsigned long flags;
313
314	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
315
316	WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
317		  "%s called more than once on %pf!", __func__, ref->release);
318
319	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
320	__percpu_ref_switch_mode(ref, confirm_kill);
321	percpu_ref_put(ref);
322
323	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
324}
325EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
326
327/**
328 * percpu_ref_reinit - re-initialize a percpu refcount
329 * @ref: perpcu_ref to re-initialize
330 *
331 * Re-initialize @ref so that it's in the same state as when it finished
332 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
333 * initialized successfully and reached 0 but not exited.
334 *
335 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
336 * this function is in progress.
337 */
338void percpu_ref_reinit(struct percpu_ref *ref)
339{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340	unsigned long flags;
341
342	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
343
344	WARN_ON_ONCE(!percpu_ref_is_zero(ref));
 
345
346	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
347	percpu_ref_get(ref);
348	__percpu_ref_switch_mode(ref, NULL);
349
350	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
351}
352EXPORT_SYMBOL_GPL(percpu_ref_reinit);
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2#define pr_fmt(fmt) "%s: " fmt, __func__
  3
  4#include <linux/kernel.h>
  5#include <linux/sched.h>
  6#include <linux/wait.h>
  7#include <linux/percpu-refcount.h>
  8
  9/*
 10 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
 11 * don't try to detect the ref hitting 0 - which means that get/put can just
 12 * increment or decrement the local counter. Note that the counter on a
 13 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
 14 * percpu counters will all sum to the correct value
 15 *
 16 * (More precisely: because modular arithmetic is commutative the sum of all the
 17 * percpu_count vars will be equal to what it would have been if all the gets
 18 * and puts were done to a single integer, even if some of the percpu integers
 19 * overflow or underflow).
 20 *
 21 * The real trick to implementing percpu refcounts is shutdown. We can't detect
 22 * the ref hitting 0 on every put - this would require global synchronization
 23 * and defeat the whole purpose of using percpu refs.
 24 *
 25 * What we do is require the user to keep track of the initial refcount; we know
 26 * the ref can't hit 0 before the user drops the initial ref, so as long as we
 27 * convert to non percpu mode before the initial ref is dropped everything
 28 * works.
 29 *
 30 * Converting to non percpu mode is done with some RCUish stuff in
 31 * percpu_ref_kill. Additionally, we need a bias value so that the
 32 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
 33 */
 34
 35#define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))
 36
 37static DEFINE_SPINLOCK(percpu_ref_switch_lock);
 38static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
 39
 40static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
 41{
 42	return (unsigned long __percpu *)
 43		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
 44}
 45
 46/**
 47 * percpu_ref_init - initialize a percpu refcount
 48 * @ref: percpu_ref to initialize
 49 * @release: function which will be called when refcount hits 0
 50 * @flags: PERCPU_REF_INIT_* flags
 51 * @gfp: allocation mask to use
 52 *
 53 * Initializes @ref.  @ref starts out in percpu mode with a refcount of 1 unless
 54 * @flags contains PERCPU_REF_INIT_ATOMIC or PERCPU_REF_INIT_DEAD.  These flags
 55 * change the start state to atomic with the latter setting the initial refcount
 56 * to 0.  See the definitions of PERCPU_REF_INIT_* flags for flag behaviors.
 57 *
 58 * Note that @release must not sleep - it may potentially be called from RCU
 59 * callback context by percpu_ref_kill().
 60 */
 61int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
 62		    unsigned int flags, gfp_t gfp)
 63{
 64	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
 65			     __alignof__(unsigned long));
 66	unsigned long start_count = 0;
 67
 68	ref->percpu_count_ptr = (unsigned long)
 69		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
 70	if (!ref->percpu_count_ptr)
 71		return -ENOMEM;
 72
 73	ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
 74	ref->allow_reinit = flags & PERCPU_REF_ALLOW_REINIT;
 75
 76	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD)) {
 77		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 78		ref->allow_reinit = true;
 79	} else {
 80		start_count += PERCPU_COUNT_BIAS;
 81	}
 82
 83	if (flags & PERCPU_REF_INIT_DEAD)
 84		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
 85	else
 86		start_count++;
 87
 88	atomic_long_set(&ref->count, start_count);
 89
 90	ref->release = release;
 91	ref->confirm_switch = NULL;
 92	return 0;
 93}
 94EXPORT_SYMBOL_GPL(percpu_ref_init);
 95
 96/**
 97 * percpu_ref_exit - undo percpu_ref_init()
 98 * @ref: percpu_ref to exit
 99 *
100 * This function exits @ref.  The caller is responsible for ensuring that
101 * @ref is no longer in active use.  The usual places to invoke this
102 * function from are the @ref->release() callback or in init failure path
103 * where percpu_ref_init() succeeded but other parts of the initialization
104 * of the embedding object failed.
105 */
106void percpu_ref_exit(struct percpu_ref *ref)
107{
108	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
109
110	if (percpu_count) {
111		/* non-NULL confirm_switch indicates switching in progress */
112		WARN_ON_ONCE(ref->confirm_switch);
113		free_percpu(percpu_count);
114		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
115	}
116}
117EXPORT_SYMBOL_GPL(percpu_ref_exit);
118
119static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
120{
121	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
122
123	ref->confirm_switch(ref);
124	ref->confirm_switch = NULL;
125	wake_up_all(&percpu_ref_switch_waitq);
126
127	if (!ref->allow_reinit)
128		percpu_ref_exit(ref);
129
130	/* drop ref from percpu_ref_switch_to_atomic() */
131	percpu_ref_put(ref);
132}
133
134static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
135{
136	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
137	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
138	unsigned long count = 0;
139	int cpu;
140
141	for_each_possible_cpu(cpu)
142		count += *per_cpu_ptr(percpu_count, cpu);
143
144	pr_debug("global %lu percpu %lu\n",
145		 atomic_long_read(&ref->count), count);
146
147	/*
148	 * It's crucial that we sum the percpu counters _before_ adding the sum
149	 * to &ref->count; since gets could be happening on one cpu while puts
150	 * happen on another, adding a single cpu's count could cause
151	 * @ref->count to hit 0 before we've got a consistent value - but the
152	 * sum of all the counts will be consistent and correct.
153	 *
154	 * Subtracting the bias value then has to happen _after_ adding count to
155	 * &ref->count; we need the bias value to prevent &ref->count from
156	 * reaching 0 before we add the percpu counts. But doing it at the same
157	 * time is equivalent and saves us atomic operations:
158	 */
159	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
160
161	WARN_ONCE(atomic_long_read(&ref->count) <= 0,
162		  "percpu ref (%ps) <= 0 (%ld) after switching to atomic",
163		  ref->release, atomic_long_read(&ref->count));
164
165	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
166	percpu_ref_call_confirm_rcu(rcu);
167}
168
169static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
170{
171}
172
173static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
174					  percpu_ref_func_t *confirm_switch)
175{
176	if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
177		if (confirm_switch)
178			confirm_switch(ref);
179		return;
180	}
181
182	/* switching from percpu to atomic */
183	ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
184
185	/*
186	 * Non-NULL ->confirm_switch is used to indicate that switching is
187	 * in progress.  Use noop one if unspecified.
188	 */
189	ref->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch;
190
191	percpu_ref_get(ref);	/* put after confirmation */
192	call_rcu(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
193}
194
195static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
196{
197	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
198	int cpu;
199
200	BUG_ON(!percpu_count);
201
202	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
203		return;
204
205	if (WARN_ON_ONCE(!ref->allow_reinit))
206		return;
207
208	atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
209
210	/*
211	 * Restore per-cpu operation.  smp_store_release() is paired
212	 * with READ_ONCE() in __ref_is_percpu() and guarantees that the
213	 * zeroing is visible to all percpu accesses which can see the
214	 * following __PERCPU_REF_ATOMIC clearing.
215	 */
216	for_each_possible_cpu(cpu)
217		*per_cpu_ptr(percpu_count, cpu) = 0;
218
219	smp_store_release(&ref->percpu_count_ptr,
220			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
221}
222
223static void __percpu_ref_switch_mode(struct percpu_ref *ref,
224				     percpu_ref_func_t *confirm_switch)
225{
226	lockdep_assert_held(&percpu_ref_switch_lock);
227
228	/*
229	 * If the previous ATOMIC switching hasn't finished yet, wait for
230	 * its completion.  If the caller ensures that ATOMIC switching
231	 * isn't in progress, this function can be called from any context.
232	 */
233	wait_event_lock_irq(percpu_ref_switch_waitq, !ref->confirm_switch,
234			    percpu_ref_switch_lock);
235
236	if (ref->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
237		__percpu_ref_switch_to_atomic(ref, confirm_switch);
238	else
239		__percpu_ref_switch_to_percpu(ref);
240}
241
242/**
243 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
244 * @ref: percpu_ref to switch to atomic mode
245 * @confirm_switch: optional confirmation callback
246 *
247 * There's no reason to use this function for the usual reference counting.
248 * Use percpu_ref_kill[_and_confirm]().
249 *
250 * Schedule switching of @ref to atomic mode.  All its percpu counts will
251 * be collected to the main atomic counter.  On completion, when all CPUs
252 * are guaraneed to be in atomic mode, @confirm_switch, which may not
253 * block, is invoked.  This function may be invoked concurrently with all
254 * the get/put operations and can safely be mixed with kill and reinit
255 * operations.  Note that @ref will stay in atomic mode across kill/reinit
256 * cycles until percpu_ref_switch_to_percpu() is called.
257 *
258 * This function may block if @ref is in the process of switching to atomic
259 * mode.  If the caller ensures that @ref is not in the process of
260 * switching to atomic mode, this function can be called from any context.
261 */
262void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
263				 percpu_ref_func_t *confirm_switch)
264{
265	unsigned long flags;
266
267	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
268
269	ref->force_atomic = true;
270	__percpu_ref_switch_mode(ref, confirm_switch);
271
272	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
273}
274EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic);
275
276/**
277 * percpu_ref_switch_to_atomic_sync - switch a percpu_ref to atomic mode
278 * @ref: percpu_ref to switch to atomic mode
279 *
280 * Schedule switching the ref to atomic mode, and wait for the
281 * switch to complete.  Caller must ensure that no other thread
282 * will switch back to percpu mode.
283 */
284void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref)
285{
286	percpu_ref_switch_to_atomic(ref, NULL);
287	wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
288}
289EXPORT_SYMBOL_GPL(percpu_ref_switch_to_atomic_sync);
290
291/**
292 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
293 * @ref: percpu_ref to switch to percpu mode
294 *
295 * There's no reason to use this function for the usual reference counting.
296 * To re-use an expired ref, use percpu_ref_reinit().
297 *
298 * Switch @ref to percpu mode.  This function may be invoked concurrently
299 * with all the get/put operations and can safely be mixed with kill and
300 * reinit operations.  This function reverses the sticky atomic state set
301 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
302 * dying or dead, the actual switching takes place on the following
303 * percpu_ref_reinit().
304 *
305 * This function may block if @ref is in the process of switching to atomic
306 * mode.  If the caller ensures that @ref is not in the process of
307 * switching to atomic mode, this function can be called from any context.
308 */
309void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
310{
311	unsigned long flags;
312
313	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
314
315	ref->force_atomic = false;
316	__percpu_ref_switch_mode(ref, NULL);
317
318	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
319}
320EXPORT_SYMBOL_GPL(percpu_ref_switch_to_percpu);
321
322/**
323 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
324 * @ref: percpu_ref to kill
325 * @confirm_kill: optional confirmation callback
326 *
327 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
328 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
329 * called after @ref is seen as dead from all CPUs at which point all
330 * further invocations of percpu_ref_tryget_live() will fail.  See
331 * percpu_ref_tryget_live() for details.
332 *
333 * This function normally doesn't block and can be called from any context
334 * but it may block if @confirm_kill is specified and @ref is in the
335 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
336 *
337 * There are no implied RCU grace periods between kill and release.
338 */
339void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
340				 percpu_ref_func_t *confirm_kill)
341{
342	unsigned long flags;
343
344	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
345
346	WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
347		  "%s called more than once on %ps!", __func__, ref->release);
348
349	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
350	__percpu_ref_switch_mode(ref, confirm_kill);
351	percpu_ref_put(ref);
352
353	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
354}
355EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
356
357/**
358 * percpu_ref_reinit - re-initialize a percpu refcount
359 * @ref: perpcu_ref to re-initialize
360 *
361 * Re-initialize @ref so that it's in the same state as when it finished
362 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
363 * initialized successfully and reached 0 but not exited.
364 *
365 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
366 * this function is in progress.
367 */
368void percpu_ref_reinit(struct percpu_ref *ref)
369{
370	WARN_ON_ONCE(!percpu_ref_is_zero(ref));
371
372	percpu_ref_resurrect(ref);
373}
374EXPORT_SYMBOL_GPL(percpu_ref_reinit);
375
376/**
377 * percpu_ref_resurrect - modify a percpu refcount from dead to live
378 * @ref: perpcu_ref to resurrect
379 *
380 * Modify @ref so that it's in the same state as before percpu_ref_kill() was
381 * called. @ref must be dead but must not yet have exited.
382 *
383 * If @ref->release() frees @ref then the caller is responsible for
384 * guaranteeing that @ref->release() does not get called while this
385 * function is in progress.
386 *
387 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
388 * this function is in progress.
389 */
390void percpu_ref_resurrect(struct percpu_ref *ref)
391{
392	unsigned long __percpu *percpu_count;
393	unsigned long flags;
394
395	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
396
397	WARN_ON_ONCE(!(ref->percpu_count_ptr & __PERCPU_REF_DEAD));
398	WARN_ON_ONCE(__ref_is_percpu(ref, &percpu_count));
399
400	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
401	percpu_ref_get(ref);
402	__percpu_ref_switch_mode(ref, NULL);
403
404	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
405}
406EXPORT_SYMBOL_GPL(percpu_ref_resurrect);