Linux Audio

Check our new training course

Loading...
v4.10.11
  1#define pr_fmt(fmt) "%s: " fmt "\n", __func__
  2
  3#include <linux/kernel.h>
  4#include <linux/sched.h>
  5#include <linux/wait.h>
  6#include <linux/percpu-refcount.h>
  7
  8/*
  9 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
 10 * don't try to detect the ref hitting 0 - which means that get/put can just
 11 * increment or decrement the local counter. Note that the counter on a
 12 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
 13 * percpu counters will all sum to the correct value
 14 *
 15 * (More precisely: because modular arithmetic is commutative the sum of all the
 16 * percpu_count vars will be equal to what it would have been if all the gets
 17 * and puts were done to a single integer, even if some of the percpu integers
 18 * overflow or underflow).
 19 *
 20 * The real trick to implementing percpu refcounts is shutdown. We can't detect
 21 * the ref hitting 0 on every put - this would require global synchronization
 22 * and defeat the whole purpose of using percpu refs.
 23 *
 24 * What we do is require the user to keep track of the initial refcount; we know
 25 * the ref can't hit 0 before the user drops the initial ref, so as long as we
 26 * convert to non percpu mode before the initial ref is dropped everything
 27 * works.
 28 *
 29 * Converting to non percpu mode is done with some RCUish stuff in
 30 * percpu_ref_kill. Additionally, we need a bias value so that the
 31 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
 32 */
 33
 34#define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))
 35
 36static DEFINE_SPINLOCK(percpu_ref_switch_lock);
 37static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
 38
 39static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
 40{
 41	return (unsigned long __percpu *)
 42		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
 43}
 44
 45/**
 46 * percpu_ref_init - initialize a percpu refcount
 47 * @ref: percpu_ref to initialize
 48 * @release: function which will be called when refcount hits 0
 49 * @flags: PERCPU_REF_INIT_* flags
 50 * @gfp: allocation mask to use
 51 *
 52 * Initializes @ref.  If @flags is zero, @ref starts in percpu mode with a
 53 * refcount of 1; analagous to atomic_long_set(ref, 1).  See the
 54 * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
 55 *
 56 * Note that @release must not sleep - it may potentially be called from RCU
 57 * callback context by percpu_ref_kill().
 58 */
 59int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
 60		    unsigned int flags, gfp_t gfp)
 61{
 62	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
 63			     __alignof__(unsigned long));
 64	unsigned long start_count = 0;
 65
 66	ref->percpu_count_ptr = (unsigned long)
 67		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
 68	if (!ref->percpu_count_ptr)
 69		return -ENOMEM;
 70
 71	ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
 72
 73	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
 74		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 75	else
 76		start_count += PERCPU_COUNT_BIAS;
 77
 78	if (flags & PERCPU_REF_INIT_DEAD)
 79		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
 80	else
 81		start_count++;
 82
 83	atomic_long_set(&ref->count, start_count);
 84
 85	ref->release = release;
 86	ref->confirm_switch = NULL;
 87	return 0;
 88}
 89EXPORT_SYMBOL_GPL(percpu_ref_init);
 90
 91/**
 92 * percpu_ref_exit - undo percpu_ref_init()
 93 * @ref: percpu_ref to exit
 94 *
 95 * This function exits @ref.  The caller is responsible for ensuring that
 96 * @ref is no longer in active use.  The usual places to invoke this
 97 * function from are the @ref->release() callback or in init failure path
 98 * where percpu_ref_init() succeeded but other parts of the initialization
 99 * of the embedding object failed.
100 */
101void percpu_ref_exit(struct percpu_ref *ref)
102{
103	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
104
105	if (percpu_count) {
106		/* non-NULL confirm_switch indicates switching in progress */
107		WARN_ON_ONCE(ref->confirm_switch);
108		free_percpu(percpu_count);
109		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
110	}
111}
112EXPORT_SYMBOL_GPL(percpu_ref_exit);
113
114static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
115{
116	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
117
118	ref->confirm_switch(ref);
119	ref->confirm_switch = NULL;
120	wake_up_all(&percpu_ref_switch_waitq);
121
122	/* drop ref from percpu_ref_switch_to_atomic() */
123	percpu_ref_put(ref);
124}
125
126static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
127{
128	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
129	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
130	unsigned long count = 0;
131	int cpu;
132
133	for_each_possible_cpu(cpu)
134		count += *per_cpu_ptr(percpu_count, cpu);
135
136	pr_debug("global %ld percpu %ld",
137		 atomic_long_read(&ref->count), (long)count);
138
139	/*
140	 * It's crucial that we sum the percpu counters _before_ adding the sum
141	 * to &ref->count; since gets could be happening on one cpu while puts
142	 * happen on another, adding a single cpu's count could cause
143	 * @ref->count to hit 0 before we've got a consistent value - but the
144	 * sum of all the counts will be consistent and correct.
145	 *
146	 * Subtracting the bias value then has to happen _after_ adding count to
147	 * &ref->count; we need the bias value to prevent &ref->count from
148	 * reaching 0 before we add the percpu counts. But doing it at the same
149	 * time is equivalent and saves us atomic operations:
150	 */
151	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
152
153	WARN_ONCE(atomic_long_read(&ref->count) <= 0,
154		  "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
155		  ref->release, atomic_long_read(&ref->count));
156
157	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
158	percpu_ref_call_confirm_rcu(rcu);
159}
160
161static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
162{
163}
164
165static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
166					  percpu_ref_func_t *confirm_switch)
167{
168	if (ref->percpu_count_ptr & __PERCPU_REF_ATOMIC) {
169		if (confirm_switch)
170			confirm_switch(ref);
171		return;
172	}
173
174	/* switching from percpu to atomic */
175	ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
176
177	/*
178	 * Non-NULL ->confirm_switch is used to indicate that switching is
179	 * in progress.  Use noop one if unspecified.
180	 */
181	ref->confirm_switch = confirm_switch ?: percpu_ref_noop_confirm_switch;
182
183	percpu_ref_get(ref);	/* put after confirmation */
184	call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
185}
186
187static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
188{
189	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
190	int cpu;
191
192	BUG_ON(!percpu_count);
193
194	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
195		return;
196
197	atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
198
199	/*
200	 * Restore per-cpu operation.  smp_store_release() is paired with
201	 * smp_read_barrier_depends() in __ref_is_percpu() and guarantees
202	 * that the zeroing is visible to all percpu accesses which can see
203	 * the following __PERCPU_REF_ATOMIC clearing.
204	 */
205	for_each_possible_cpu(cpu)
206		*per_cpu_ptr(percpu_count, cpu) = 0;
207
208	smp_store_release(&ref->percpu_count_ptr,
209			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
210}
211
212static void __percpu_ref_switch_mode(struct percpu_ref *ref,
213				     percpu_ref_func_t *confirm_switch)
214{
215	lockdep_assert_held(&percpu_ref_switch_lock);
 
 
 
216
217	/*
218	 * If the previous ATOMIC switching hasn't finished yet, wait for
219	 * its completion.  If the caller ensures that ATOMIC switching
220	 * isn't in progress, this function can be called from any context.
221	 */
222	wait_event_lock_irq(percpu_ref_switch_waitq, !ref->confirm_switch,
223			    percpu_ref_switch_lock);
 
 
 
 
 
224
225	if (ref->force_atomic || (ref->percpu_count_ptr & __PERCPU_REF_DEAD))
226		__percpu_ref_switch_to_atomic(ref, confirm_switch);
227	else
228		__percpu_ref_switch_to_percpu(ref);
229}
230
231/**
232 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
233 * @ref: percpu_ref to switch to atomic mode
234 * @confirm_switch: optional confirmation callback
235 *
236 * There's no reason to use this function for the usual reference counting.
237 * Use percpu_ref_kill[_and_confirm]().
238 *
239 * Schedule switching of @ref to atomic mode.  All its percpu counts will
240 * be collected to the main atomic counter.  On completion, when all CPUs
241 * are guaraneed to be in atomic mode, @confirm_switch, which may not
242 * block, is invoked.  This function may be invoked concurrently with all
243 * the get/put operations and can safely be mixed with kill and reinit
244 * operations.  Note that @ref will stay in atomic mode across kill/reinit
245 * cycles until percpu_ref_switch_to_percpu() is called.
246 *
247 * This function may block if @ref is in the process of switching to atomic
248 * mode.  If the caller ensures that @ref is not in the process of
249 * switching to atomic mode, this function can be called from any context.
 
 
 
 
 
250 */
251void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
252				 percpu_ref_func_t *confirm_switch)
253{
254	unsigned long flags;
 
 
255
256	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
 
 
 
257
258	ref->force_atomic = true;
259	__percpu_ref_switch_mode(ref, confirm_switch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260
261	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 
262}
263
264/**
265 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
266 * @ref: percpu_ref to switch to percpu mode
267 *
268 * There's no reason to use this function for the usual reference counting.
269 * To re-use an expired ref, use percpu_ref_reinit().
270 *
271 * Switch @ref to percpu mode.  This function may be invoked concurrently
272 * with all the get/put operations and can safely be mixed with kill and
273 * reinit operations.  This function reverses the sticky atomic state set
274 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
275 * dying or dead, the actual switching takes place on the following
276 * percpu_ref_reinit().
277 *
278 * This function may block if @ref is in the process of switching to atomic
279 * mode.  If the caller ensures that @ref is not in the process of
280 * switching to atomic mode, this function can be called from any context.
281 */
282void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
283{
284	unsigned long flags;
285
286	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
287
288	ref->force_atomic = false;
289	__percpu_ref_switch_mode(ref, NULL);
290
291	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
 
 
292}
293
294/**
295 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
296 * @ref: percpu_ref to kill
297 * @confirm_kill: optional confirmation callback
298 *
299 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
300 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
301 * called after @ref is seen as dead from all CPUs at which point all
302 * further invocations of percpu_ref_tryget_live() will fail.  See
303 * percpu_ref_tryget_live() for details.
304 *
305 * This function normally doesn't block and can be called from any context
306 * but it may block if @confirm_kill is specified and @ref is in the
307 * process of switching to atomic mode by percpu_ref_switch_to_atomic().
 
 
 
 
308 */
309void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
310				 percpu_ref_func_t *confirm_kill)
311{
312	unsigned long flags;
313
314	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
315
316	WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
317		  "%s called more than once on %pf!", __func__, ref->release);
318
319	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
320	__percpu_ref_switch_mode(ref, confirm_kill);
321	percpu_ref_put(ref);
322
323	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
324}
325EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
326
327/**
328 * percpu_ref_reinit - re-initialize a percpu refcount
329 * @ref: perpcu_ref to re-initialize
330 *
331 * Re-initialize @ref so that it's in the same state as when it finished
332 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
333 * initialized successfully and reached 0 but not exited.
334 *
335 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
336 * this function is in progress.
337 */
338void percpu_ref_reinit(struct percpu_ref *ref)
339{
340	unsigned long flags;
341
342	spin_lock_irqsave(&percpu_ref_switch_lock, flags);
343
344	WARN_ON_ONCE(!percpu_ref_is_zero(ref));
345
346	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
347	percpu_ref_get(ref);
348	__percpu_ref_switch_mode(ref, NULL);
349
350	spin_unlock_irqrestore(&percpu_ref_switch_lock, flags);
351}
352EXPORT_SYMBOL_GPL(percpu_ref_reinit);
v4.6
  1#define pr_fmt(fmt) "%s: " fmt "\n", __func__
  2
  3#include <linux/kernel.h>
  4#include <linux/sched.h>
  5#include <linux/wait.h>
  6#include <linux/percpu-refcount.h>
  7
  8/*
  9 * Initially, a percpu refcount is just a set of percpu counters. Initially, we
 10 * don't try to detect the ref hitting 0 - which means that get/put can just
 11 * increment or decrement the local counter. Note that the counter on a
 12 * particular cpu can (and will) wrap - this is fine, when we go to shutdown the
 13 * percpu counters will all sum to the correct value
 14 *
 15 * (More precisely: because modular arithmetic is commutative the sum of all the
 16 * percpu_count vars will be equal to what it would have been if all the gets
 17 * and puts were done to a single integer, even if some of the percpu integers
 18 * overflow or underflow).
 19 *
 20 * The real trick to implementing percpu refcounts is shutdown. We can't detect
 21 * the ref hitting 0 on every put - this would require global synchronization
 22 * and defeat the whole purpose of using percpu refs.
 23 *
 24 * What we do is require the user to keep track of the initial refcount; we know
 25 * the ref can't hit 0 before the user drops the initial ref, so as long as we
 26 * convert to non percpu mode before the initial ref is dropped everything
 27 * works.
 28 *
 29 * Converting to non percpu mode is done with some RCUish stuff in
 30 * percpu_ref_kill. Additionally, we need a bias value so that the
 31 * atomic_long_t can't hit 0 before we've added up all the percpu refs.
 32 */
 33
 34#define PERCPU_COUNT_BIAS	(1LU << (BITS_PER_LONG - 1))
 35
 
 36static DECLARE_WAIT_QUEUE_HEAD(percpu_ref_switch_waitq);
 37
 38static unsigned long __percpu *percpu_count_ptr(struct percpu_ref *ref)
 39{
 40	return (unsigned long __percpu *)
 41		(ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC_DEAD);
 42}
 43
 44/**
 45 * percpu_ref_init - initialize a percpu refcount
 46 * @ref: percpu_ref to initialize
 47 * @release: function which will be called when refcount hits 0
 48 * @flags: PERCPU_REF_INIT_* flags
 49 * @gfp: allocation mask to use
 50 *
 51 * Initializes @ref.  If @flags is zero, @ref starts in percpu mode with a
 52 * refcount of 1; analagous to atomic_long_set(ref, 1).  See the
 53 * definitions of PERCPU_REF_INIT_* flags for flag behaviors.
 54 *
 55 * Note that @release must not sleep - it may potentially be called from RCU
 56 * callback context by percpu_ref_kill().
 57 */
 58int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release,
 59		    unsigned int flags, gfp_t gfp)
 60{
 61	size_t align = max_t(size_t, 1 << __PERCPU_REF_FLAG_BITS,
 62			     __alignof__(unsigned long));
 63	unsigned long start_count = 0;
 64
 65	ref->percpu_count_ptr = (unsigned long)
 66		__alloc_percpu_gfp(sizeof(unsigned long), align, gfp);
 67	if (!ref->percpu_count_ptr)
 68		return -ENOMEM;
 69
 70	ref->force_atomic = flags & PERCPU_REF_INIT_ATOMIC;
 71
 72	if (flags & (PERCPU_REF_INIT_ATOMIC | PERCPU_REF_INIT_DEAD))
 73		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 74	else
 75		start_count += PERCPU_COUNT_BIAS;
 76
 77	if (flags & PERCPU_REF_INIT_DEAD)
 78		ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
 79	else
 80		start_count++;
 81
 82	atomic_long_set(&ref->count, start_count);
 83
 84	ref->release = release;
 
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(percpu_ref_init);
 88
 89/**
 90 * percpu_ref_exit - undo percpu_ref_init()
 91 * @ref: percpu_ref to exit
 92 *
 93 * This function exits @ref.  The caller is responsible for ensuring that
 94 * @ref is no longer in active use.  The usual places to invoke this
 95 * function from are the @ref->release() callback or in init failure path
 96 * where percpu_ref_init() succeeded but other parts of the initialization
 97 * of the embedding object failed.
 98 */
 99void percpu_ref_exit(struct percpu_ref *ref)
100{
101	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
102
103	if (percpu_count) {
 
 
104		free_percpu(percpu_count);
105		ref->percpu_count_ptr = __PERCPU_REF_ATOMIC_DEAD;
106	}
107}
108EXPORT_SYMBOL_GPL(percpu_ref_exit);
109
110static void percpu_ref_call_confirm_rcu(struct rcu_head *rcu)
111{
112	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
113
114	ref->confirm_switch(ref);
115	ref->confirm_switch = NULL;
116	wake_up_all(&percpu_ref_switch_waitq);
117
118	/* drop ref from percpu_ref_switch_to_atomic() */
119	percpu_ref_put(ref);
120}
121
122static void percpu_ref_switch_to_atomic_rcu(struct rcu_head *rcu)
123{
124	struct percpu_ref *ref = container_of(rcu, struct percpu_ref, rcu);
125	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
126	unsigned long count = 0;
127	int cpu;
128
129	for_each_possible_cpu(cpu)
130		count += *per_cpu_ptr(percpu_count, cpu);
131
132	pr_debug("global %ld percpu %ld",
133		 atomic_long_read(&ref->count), (long)count);
134
135	/*
136	 * It's crucial that we sum the percpu counters _before_ adding the sum
137	 * to &ref->count; since gets could be happening on one cpu while puts
138	 * happen on another, adding a single cpu's count could cause
139	 * @ref->count to hit 0 before we've got a consistent value - but the
140	 * sum of all the counts will be consistent and correct.
141	 *
142	 * Subtracting the bias value then has to happen _after_ adding count to
143	 * &ref->count; we need the bias value to prevent &ref->count from
144	 * reaching 0 before we add the percpu counts. But doing it at the same
145	 * time is equivalent and saves us atomic operations:
146	 */
147	atomic_long_add((long)count - PERCPU_COUNT_BIAS, &ref->count);
148
149	WARN_ONCE(atomic_long_read(&ref->count) <= 0,
150		  "percpu ref (%pf) <= 0 (%ld) after switching to atomic",
151		  ref->release, atomic_long_read(&ref->count));
152
153	/* @ref is viewed as dead on all CPUs, send out switch confirmation */
154	percpu_ref_call_confirm_rcu(rcu);
155}
156
157static void percpu_ref_noop_confirm_switch(struct percpu_ref *ref)
158{
159}
160
161static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
162					  percpu_ref_func_t *confirm_switch)
163{
164	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC)) {
165		/* switching from percpu to atomic */
166		ref->percpu_count_ptr |= __PERCPU_REF_ATOMIC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168		/*
169		 * Non-NULL ->confirm_switch is used to indicate that
170		 * switching is in progress.  Use noop one if unspecified.
171		 */
172		WARN_ON_ONCE(ref->confirm_switch);
173		ref->confirm_switch =
174			confirm_switch ?: percpu_ref_noop_confirm_switch;
175
176		percpu_ref_get(ref);	/* put after confirmation */
177		call_rcu_sched(&ref->rcu, percpu_ref_switch_to_atomic_rcu);
178	} else if (confirm_switch) {
179		/*
180		 * Somebody already set ATOMIC.  Switching may still be in
181		 * progress.  @confirm_switch must be invoked after the
182		 * switching is complete and a full sched RCU grace period
183		 * has passed.  Wait synchronously for the previous
184		 * switching and schedule @confirm_switch invocation.
185		 */
186		wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
187		ref->confirm_switch = confirm_switch;
188
189		percpu_ref_get(ref);	/* put after confirmation */
190		call_rcu_sched(&ref->rcu, percpu_ref_call_confirm_rcu);
191	}
 
192}
193
194/**
195 * percpu_ref_switch_to_atomic - switch a percpu_ref to atomic mode
196 * @ref: percpu_ref to switch to atomic mode
197 * @confirm_switch: optional confirmation callback
198 *
199 * There's no reason to use this function for the usual reference counting.
200 * Use percpu_ref_kill[_and_confirm]().
201 *
202 * Schedule switching of @ref to atomic mode.  All its percpu counts will
203 * be collected to the main atomic counter.  On completion, when all CPUs
204 * are guaraneed to be in atomic mode, @confirm_switch, which may not
205 * block, is invoked.  This function may be invoked concurrently with all
206 * the get/put operations and can safely be mixed with kill and reinit
207 * operations.  Note that @ref will stay in atomic mode across kill/reinit
208 * cycles until percpu_ref_switch_to_percpu() is called.
209 *
210 * This function normally doesn't block and can be called from any context
211 * but it may block if @confirm_kill is specified and @ref is already in
212 * the process of switching to atomic mode.  In such cases, @confirm_switch
213 * will be invoked after the switching is complete.
214 *
215 * Due to the way percpu_ref is implemented, @confirm_switch will be called
216 * after at least one full sched RCU grace period has passed but this is an
217 * implementation detail and must not be depended upon.
218 */
219void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
220				 percpu_ref_func_t *confirm_switch)
221{
222	ref->force_atomic = true;
223	__percpu_ref_switch_to_atomic(ref, confirm_switch);
224}
225
226static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
227{
228	unsigned long __percpu *percpu_count = percpu_count_ptr(ref);
229	int cpu;
230
231	BUG_ON(!percpu_count);
232
233	if (!(ref->percpu_count_ptr & __PERCPU_REF_ATOMIC))
234		return;
235
236	wait_event(percpu_ref_switch_waitq, !ref->confirm_switch);
237
238	atomic_long_add(PERCPU_COUNT_BIAS, &ref->count);
239
240	/*
241	 * Restore per-cpu operation.  smp_store_release() is paired with
242	 * smp_read_barrier_depends() in __ref_is_percpu() and guarantees
243	 * that the zeroing is visible to all percpu accesses which can see
244	 * the following __PERCPU_REF_ATOMIC clearing.
245	 */
246	for_each_possible_cpu(cpu)
247		*per_cpu_ptr(percpu_count, cpu) = 0;
248
249	smp_store_release(&ref->percpu_count_ptr,
250			  ref->percpu_count_ptr & ~__PERCPU_REF_ATOMIC);
251}
252
253/**
254 * percpu_ref_switch_to_percpu - switch a percpu_ref to percpu mode
255 * @ref: percpu_ref to switch to percpu mode
256 *
257 * There's no reason to use this function for the usual reference counting.
258 * To re-use an expired ref, use percpu_ref_reinit().
259 *
260 * Switch @ref to percpu mode.  This function may be invoked concurrently
261 * with all the get/put operations and can safely be mixed with kill and
262 * reinit operations.  This function reverses the sticky atomic state set
263 * by PERCPU_REF_INIT_ATOMIC or percpu_ref_switch_to_atomic().  If @ref is
264 * dying or dead, the actual switching takes place on the following
265 * percpu_ref_reinit().
266 *
267 * This function normally doesn't block and can be called from any context
268 * but it may block if @ref is in the process of switching to atomic mode
269 * by percpu_ref_switch_atomic().
270 */
271void percpu_ref_switch_to_percpu(struct percpu_ref *ref)
272{
 
 
 
 
273	ref->force_atomic = false;
 
274
275	/* a dying or dead ref can't be switched to percpu mode w/o reinit */
276	if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD))
277		__percpu_ref_switch_to_percpu(ref);
278}
279
280/**
281 * percpu_ref_kill_and_confirm - drop the initial ref and schedule confirmation
282 * @ref: percpu_ref to kill
283 * @confirm_kill: optional confirmation callback
284 *
285 * Equivalent to percpu_ref_kill() but also schedules kill confirmation if
286 * @confirm_kill is not NULL.  @confirm_kill, which may not block, will be
287 * called after @ref is seen as dead from all CPUs at which point all
288 * further invocations of percpu_ref_tryget_live() will fail.  See
289 * percpu_ref_tryget_live() for details.
290 *
291 * This function normally doesn't block and can be called from any context
292 * but it may block if @confirm_kill is specified and @ref is in the
293 * process of switching to atomic mode by percpu_ref_switch_atomic().
294 *
295 * Due to the way percpu_ref is implemented, @confirm_switch will be called
296 * after at least one full sched RCU grace period has passed but this is an
297 * implementation detail and must not be depended upon.
298 */
299void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
300				 percpu_ref_func_t *confirm_kill)
301{
 
 
 
 
302	WARN_ONCE(ref->percpu_count_ptr & __PERCPU_REF_DEAD,
303		  "%s called more than once on %pf!", __func__, ref->release);
304
305	ref->percpu_count_ptr |= __PERCPU_REF_DEAD;
306	__percpu_ref_switch_to_atomic(ref, confirm_kill);
307	percpu_ref_put(ref);
 
 
308}
309EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
310
311/**
312 * percpu_ref_reinit - re-initialize a percpu refcount
313 * @ref: perpcu_ref to re-initialize
314 *
315 * Re-initialize @ref so that it's in the same state as when it finished
316 * percpu_ref_init() ignoring %PERCPU_REF_INIT_DEAD.  @ref must have been
317 * initialized successfully and reached 0 but not exited.
318 *
319 * Note that percpu_ref_tryget[_live]() are safe to perform on @ref while
320 * this function is in progress.
321 */
322void percpu_ref_reinit(struct percpu_ref *ref)
323{
 
 
 
 
324	WARN_ON_ONCE(!percpu_ref_is_zero(ref));
325
326	ref->percpu_count_ptr &= ~__PERCPU_REF_DEAD;
327	percpu_ref_get(ref);
328	if (!ref->force_atomic)
329		__percpu_ref_switch_to_percpu(ref);
 
330}
331EXPORT_SYMBOL_GPL(percpu_ref_reinit);