Loading...
1/*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11#include <linux/pid.h>
12#include <linux/pid_namespace.h>
13#include <linux/user_namespace.h>
14#include <linux/syscalls.h>
15#include <linux/err.h>
16#include <linux/acct.h>
17#include <linux/slab.h>
18#include <linux/proc_ns.h>
19#include <linux/reboot.h>
20#include <linux/export.h>
21
22struct pid_cache {
23 int nr_ids;
24 char name[16];
25 struct kmem_cache *cachep;
26 struct list_head list;
27};
28
29static LIST_HEAD(pid_caches_lh);
30static DEFINE_MUTEX(pid_caches_mutex);
31static struct kmem_cache *pid_ns_cachep;
32
33/*
34 * creates the kmem cache to allocate pids from.
35 * @nr_ids: the number of numerical ids this pid will have to carry
36 */
37
38static struct kmem_cache *create_pid_cachep(int nr_ids)
39{
40 struct pid_cache *pcache;
41 struct kmem_cache *cachep;
42
43 mutex_lock(&pid_caches_mutex);
44 list_for_each_entry(pcache, &pid_caches_lh, list)
45 if (pcache->nr_ids == nr_ids)
46 goto out;
47
48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 if (pcache == NULL)
50 goto err_alloc;
51
52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 cachep = kmem_cache_create(pcache->name,
54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 0, SLAB_HWCACHE_ALIGN, NULL);
56 if (cachep == NULL)
57 goto err_cachep;
58
59 pcache->nr_ids = nr_ids;
60 pcache->cachep = cachep;
61 list_add(&pcache->list, &pid_caches_lh);
62out:
63 mutex_unlock(&pid_caches_mutex);
64 return pcache->cachep;
65
66err_cachep:
67 kfree(pcache);
68err_alloc:
69 mutex_unlock(&pid_caches_mutex);
70 return NULL;
71}
72
73static void proc_cleanup_work(struct work_struct *work)
74{
75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 pid_ns_release_proc(ns);
77}
78
79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80#define MAX_PID_NS_LEVEL 32
81
82static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
83{
84 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
85}
86
87static void dec_pid_namespaces(struct ucounts *ucounts)
88{
89 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
90}
91
92static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
93 struct pid_namespace *parent_pid_ns)
94{
95 struct pid_namespace *ns;
96 unsigned int level = parent_pid_ns->level + 1;
97 struct ucounts *ucounts;
98 int i;
99 int err;
100
101 err = -ENOSPC;
102 if (level > MAX_PID_NS_LEVEL)
103 goto out;
104 ucounts = inc_pid_namespaces(user_ns);
105 if (!ucounts)
106 goto out;
107
108 err = -ENOMEM;
109 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
110 if (ns == NULL)
111 goto out_dec;
112
113 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114 if (!ns->pidmap[0].page)
115 goto out_free;
116
117 ns->pid_cachep = create_pid_cachep(level + 1);
118 if (ns->pid_cachep == NULL)
119 goto out_free_map;
120
121 err = ns_alloc_inum(&ns->ns);
122 if (err)
123 goto out_free_map;
124 ns->ns.ops = &pidns_operations;
125
126 kref_init(&ns->kref);
127 ns->level = level;
128 ns->parent = get_pid_ns(parent_pid_ns);
129 ns->user_ns = get_user_ns(user_ns);
130 ns->ucounts = ucounts;
131 ns->nr_hashed = PIDNS_HASH_ADDING;
132 INIT_WORK(&ns->proc_work, proc_cleanup_work);
133
134 set_bit(0, ns->pidmap[0].page);
135 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136
137 for (i = 1; i < PIDMAP_ENTRIES; i++)
138 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
139
140 return ns;
141
142out_free_map:
143 kfree(ns->pidmap[0].page);
144out_free:
145 kmem_cache_free(pid_ns_cachep, ns);
146out_dec:
147 dec_pid_namespaces(ucounts);
148out:
149 return ERR_PTR(err);
150}
151
152static void delayed_free_pidns(struct rcu_head *p)
153{
154 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
155
156 dec_pid_namespaces(ns->ucounts);
157 put_user_ns(ns->user_ns);
158
159 kmem_cache_free(pid_ns_cachep, ns);
160}
161
162static void destroy_pid_namespace(struct pid_namespace *ns)
163{
164 int i;
165
166 ns_free_inum(&ns->ns);
167 for (i = 0; i < PIDMAP_ENTRIES; i++)
168 kfree(ns->pidmap[i].page);
169 call_rcu(&ns->rcu, delayed_free_pidns);
170}
171
172struct pid_namespace *copy_pid_ns(unsigned long flags,
173 struct user_namespace *user_ns, struct pid_namespace *old_ns)
174{
175 if (!(flags & CLONE_NEWPID))
176 return get_pid_ns(old_ns);
177 if (task_active_pid_ns(current) != old_ns)
178 return ERR_PTR(-EINVAL);
179 return create_pid_namespace(user_ns, old_ns);
180}
181
182static void free_pid_ns(struct kref *kref)
183{
184 struct pid_namespace *ns;
185
186 ns = container_of(kref, struct pid_namespace, kref);
187 destroy_pid_namespace(ns);
188}
189
190void put_pid_ns(struct pid_namespace *ns)
191{
192 struct pid_namespace *parent;
193
194 while (ns != &init_pid_ns) {
195 parent = ns->parent;
196 if (!kref_put(&ns->kref, free_pid_ns))
197 break;
198 ns = parent;
199 }
200}
201EXPORT_SYMBOL_GPL(put_pid_ns);
202
203void zap_pid_ns_processes(struct pid_namespace *pid_ns)
204{
205 int nr;
206 int rc;
207 struct task_struct *task, *me = current;
208 int init_pids = thread_group_leader(me) ? 1 : 2;
209
210 /* Don't allow any more processes into the pid namespace */
211 disable_pid_allocation(pid_ns);
212
213 /*
214 * Ignore SIGCHLD causing any terminated children to autoreap.
215 * This speeds up the namespace shutdown, plus see the comment
216 * below.
217 */
218 spin_lock_irq(&me->sighand->siglock);
219 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
220 spin_unlock_irq(&me->sighand->siglock);
221
222 /*
223 * The last thread in the cgroup-init thread group is terminating.
224 * Find remaining pid_ts in the namespace, signal and wait for them
225 * to exit.
226 *
227 * Note: This signals each threads in the namespace - even those that
228 * belong to the same thread group, To avoid this, we would have
229 * to walk the entire tasklist looking a processes in this
230 * namespace, but that could be unnecessarily expensive if the
231 * pid namespace has just a few processes. Or we need to
232 * maintain a tasklist for each pid namespace.
233 *
234 */
235 read_lock(&tasklist_lock);
236 nr = next_pidmap(pid_ns, 1);
237 while (nr > 0) {
238 rcu_read_lock();
239
240 task = pid_task(find_vpid(nr), PIDTYPE_PID);
241 if (task && !__fatal_signal_pending(task))
242 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
243
244 rcu_read_unlock();
245
246 nr = next_pidmap(pid_ns, nr);
247 }
248 read_unlock(&tasklist_lock);
249
250 /*
251 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
252 * sys_wait4() will also block until our children traced from the
253 * parent namespace are detached and become EXIT_DEAD.
254 */
255 do {
256 clear_thread_flag(TIF_SIGPENDING);
257 rc = sys_wait4(-1, NULL, __WALL, NULL);
258 } while (rc != -ECHILD);
259
260 /*
261 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
262 * really care, we could reparent them to the global init. We could
263 * exit and reap ->child_reaper even if it is not the last thread in
264 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
265 * pid_ns can not go away until proc_kill_sb() drops the reference.
266 *
267 * But this ns can also have other tasks injected by setns()+fork().
268 * Again, ignoring the user visible semantics we do not really need
269 * to wait until they are all reaped, but they can be reparented to
270 * us and thus we need to ensure that pid->child_reaper stays valid
271 * until they all go away. See free_pid()->wake_up_process().
272 *
273 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
274 * if reparented.
275 */
276 for (;;) {
277 set_current_state(TASK_UNINTERRUPTIBLE);
278 if (pid_ns->nr_hashed == init_pids)
279 break;
280 schedule();
281 }
282 __set_current_state(TASK_RUNNING);
283
284 if (pid_ns->reboot)
285 current->signal->group_exit_code = pid_ns->reboot;
286
287 acct_exit_ns(pid_ns);
288 return;
289}
290
291#ifdef CONFIG_CHECKPOINT_RESTORE
292static int pid_ns_ctl_handler(struct ctl_table *table, int write,
293 void __user *buffer, size_t *lenp, loff_t *ppos)
294{
295 struct pid_namespace *pid_ns = task_active_pid_ns(current);
296 struct ctl_table tmp = *table;
297
298 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
299 return -EPERM;
300
301 /*
302 * Writing directly to ns' last_pid field is OK, since this field
303 * is volatile in a living namespace anyway and a code writing to
304 * it should synchronize its usage with external means.
305 */
306
307 tmp.data = &pid_ns->last_pid;
308 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
309}
310
311extern int pid_max;
312static int zero = 0;
313static struct ctl_table pid_ns_ctl_table[] = {
314 {
315 .procname = "ns_last_pid",
316 .maxlen = sizeof(int),
317 .mode = 0666, /* permissions are checked in the handler */
318 .proc_handler = pid_ns_ctl_handler,
319 .extra1 = &zero,
320 .extra2 = &pid_max,
321 },
322 { }
323};
324static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
325#endif /* CONFIG_CHECKPOINT_RESTORE */
326
327int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328{
329 if (pid_ns == &init_pid_ns)
330 return 0;
331
332 switch (cmd) {
333 case LINUX_REBOOT_CMD_RESTART2:
334 case LINUX_REBOOT_CMD_RESTART:
335 pid_ns->reboot = SIGHUP;
336 break;
337
338 case LINUX_REBOOT_CMD_POWER_OFF:
339 case LINUX_REBOOT_CMD_HALT:
340 pid_ns->reboot = SIGINT;
341 break;
342 default:
343 return -EINVAL;
344 }
345
346 read_lock(&tasklist_lock);
347 force_sig(SIGKILL, pid_ns->child_reaper);
348 read_unlock(&tasklist_lock);
349
350 do_exit(0);
351
352 /* Not reached */
353 return 0;
354}
355
356static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357{
358 return container_of(ns, struct pid_namespace, ns);
359}
360
361static struct ns_common *pidns_get(struct task_struct *task)
362{
363 struct pid_namespace *ns;
364
365 rcu_read_lock();
366 ns = task_active_pid_ns(task);
367 if (ns)
368 get_pid_ns(ns);
369 rcu_read_unlock();
370
371 return ns ? &ns->ns : NULL;
372}
373
374static void pidns_put(struct ns_common *ns)
375{
376 put_pid_ns(to_pid_ns(ns));
377}
378
379static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
380{
381 struct pid_namespace *active = task_active_pid_ns(current);
382 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
383
384 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
385 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
386 return -EPERM;
387
388 /*
389 * Only allow entering the current active pid namespace
390 * or a child of the current active pid namespace.
391 *
392 * This is required for fork to return a usable pid value and
393 * this maintains the property that processes and their
394 * children can not escape their current pid namespace.
395 */
396 if (new->level < active->level)
397 return -EINVAL;
398
399 ancestor = new;
400 while (ancestor->level > active->level)
401 ancestor = ancestor->parent;
402 if (ancestor != active)
403 return -EINVAL;
404
405 put_pid_ns(nsproxy->pid_ns_for_children);
406 nsproxy->pid_ns_for_children = get_pid_ns(new);
407 return 0;
408}
409
410static struct ns_common *pidns_get_parent(struct ns_common *ns)
411{
412 struct pid_namespace *active = task_active_pid_ns(current);
413 struct pid_namespace *pid_ns, *p;
414
415 /* See if the parent is in the current namespace */
416 pid_ns = p = to_pid_ns(ns)->parent;
417 for (;;) {
418 if (!p)
419 return ERR_PTR(-EPERM);
420 if (p == active)
421 break;
422 p = p->parent;
423 }
424
425 return &get_pid_ns(pid_ns)->ns;
426}
427
428static struct user_namespace *pidns_owner(struct ns_common *ns)
429{
430 return to_pid_ns(ns)->user_ns;
431}
432
433const struct proc_ns_operations pidns_operations = {
434 .name = "pid",
435 .type = CLONE_NEWPID,
436 .get = pidns_get,
437 .put = pidns_put,
438 .install = pidns_install,
439 .owner = pidns_owner,
440 .get_parent = pidns_get_parent,
441};
442
443static __init int pid_namespaces_init(void)
444{
445 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
446
447#ifdef CONFIG_CHECKPOINT_RESTORE
448 register_sysctl_paths(kern_path, pid_ns_ctl_table);
449#endif
450 return 0;
451}
452
453__initcall(pid_namespaces_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Pid namespaces
4 *
5 * Authors:
6 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8 * Many thanks to Oleg Nesterov for comments and help
9 *
10 */
11
12#include <linux/pid.h>
13#include <linux/pid_namespace.h>
14#include <linux/user_namespace.h>
15#include <linux/syscalls.h>
16#include <linux/cred.h>
17#include <linux/err.h>
18#include <linux/acct.h>
19#include <linux/slab.h>
20#include <linux/proc_ns.h>
21#include <linux/reboot.h>
22#include <linux/export.h>
23#include <linux/sched/task.h>
24#include <linux/sched/signal.h>
25#include <linux/idr.h>
26
27static DEFINE_MUTEX(pid_caches_mutex);
28static struct kmem_cache *pid_ns_cachep;
29/* Write once array, filled from the beginning. */
30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31
32/*
33 * creates the kmem cache to allocate pids from.
34 * @level: pid namespace level
35 */
36
37static struct kmem_cache *create_pid_cachep(unsigned int level)
38{
39 /* Level 0 is init_pid_ns.pid_cachep */
40 struct kmem_cache **pkc = &pid_cache[level - 1];
41 struct kmem_cache *kc;
42 char name[4 + 10 + 1];
43 unsigned int len;
44
45 kc = READ_ONCE(*pkc);
46 if (kc)
47 return kc;
48
49 snprintf(name, sizeof(name), "pid_%u", level + 1);
50 len = sizeof(struct pid) + level * sizeof(struct upid);
51 mutex_lock(&pid_caches_mutex);
52 /* Name collision forces to do allocation under mutex. */
53 if (!*pkc)
54 *pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
55 mutex_unlock(&pid_caches_mutex);
56 /* current can fail, but someone else can succeed. */
57 return READ_ONCE(*pkc);
58}
59
60static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
61{
62 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
63}
64
65static void dec_pid_namespaces(struct ucounts *ucounts)
66{
67 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
68}
69
70static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
71 struct pid_namespace *parent_pid_ns)
72{
73 struct pid_namespace *ns;
74 unsigned int level = parent_pid_ns->level + 1;
75 struct ucounts *ucounts;
76 int err;
77
78 err = -EINVAL;
79 if (!in_userns(parent_pid_ns->user_ns, user_ns))
80 goto out;
81
82 err = -ENOSPC;
83 if (level > MAX_PID_NS_LEVEL)
84 goto out;
85 ucounts = inc_pid_namespaces(user_ns);
86 if (!ucounts)
87 goto out;
88
89 err = -ENOMEM;
90 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
91 if (ns == NULL)
92 goto out_dec;
93
94 idr_init(&ns->idr);
95
96 ns->pid_cachep = create_pid_cachep(level);
97 if (ns->pid_cachep == NULL)
98 goto out_free_idr;
99
100 err = ns_alloc_inum(&ns->ns);
101 if (err)
102 goto out_free_idr;
103 ns->ns.ops = &pidns_operations;
104
105 kref_init(&ns->kref);
106 ns->level = level;
107 ns->parent = get_pid_ns(parent_pid_ns);
108 ns->user_ns = get_user_ns(user_ns);
109 ns->ucounts = ucounts;
110 ns->pid_allocated = PIDNS_ADDING;
111
112 return ns;
113
114out_free_idr:
115 idr_destroy(&ns->idr);
116 kmem_cache_free(pid_ns_cachep, ns);
117out_dec:
118 dec_pid_namespaces(ucounts);
119out:
120 return ERR_PTR(err);
121}
122
123static void delayed_free_pidns(struct rcu_head *p)
124{
125 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
126
127 dec_pid_namespaces(ns->ucounts);
128 put_user_ns(ns->user_ns);
129
130 kmem_cache_free(pid_ns_cachep, ns);
131}
132
133static void destroy_pid_namespace(struct pid_namespace *ns)
134{
135 ns_free_inum(&ns->ns);
136
137 idr_destroy(&ns->idr);
138 call_rcu(&ns->rcu, delayed_free_pidns);
139}
140
141struct pid_namespace *copy_pid_ns(unsigned long flags,
142 struct user_namespace *user_ns, struct pid_namespace *old_ns)
143{
144 if (!(flags & CLONE_NEWPID))
145 return get_pid_ns(old_ns);
146 if (task_active_pid_ns(current) != old_ns)
147 return ERR_PTR(-EINVAL);
148 return create_pid_namespace(user_ns, old_ns);
149}
150
151static void free_pid_ns(struct kref *kref)
152{
153 struct pid_namespace *ns;
154
155 ns = container_of(kref, struct pid_namespace, kref);
156 destroy_pid_namespace(ns);
157}
158
159void put_pid_ns(struct pid_namespace *ns)
160{
161 struct pid_namespace *parent;
162
163 while (ns != &init_pid_ns) {
164 parent = ns->parent;
165 if (!kref_put(&ns->kref, free_pid_ns))
166 break;
167 ns = parent;
168 }
169}
170EXPORT_SYMBOL_GPL(put_pid_ns);
171
172void zap_pid_ns_processes(struct pid_namespace *pid_ns)
173{
174 int nr;
175 int rc;
176 struct task_struct *task, *me = current;
177 int init_pids = thread_group_leader(me) ? 1 : 2;
178 struct pid *pid;
179
180 /* Don't allow any more processes into the pid namespace */
181 disable_pid_allocation(pid_ns);
182
183 /*
184 * Ignore SIGCHLD causing any terminated children to autoreap.
185 * This speeds up the namespace shutdown, plus see the comment
186 * below.
187 */
188 spin_lock_irq(&me->sighand->siglock);
189 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
190 spin_unlock_irq(&me->sighand->siglock);
191
192 /*
193 * The last thread in the cgroup-init thread group is terminating.
194 * Find remaining pid_ts in the namespace, signal and wait for them
195 * to exit.
196 *
197 * Note: This signals each threads in the namespace - even those that
198 * belong to the same thread group, To avoid this, we would have
199 * to walk the entire tasklist looking a processes in this
200 * namespace, but that could be unnecessarily expensive if the
201 * pid namespace has just a few processes. Or we need to
202 * maintain a tasklist for each pid namespace.
203 *
204 */
205 rcu_read_lock();
206 read_lock(&tasklist_lock);
207 nr = 2;
208 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
209 task = pid_task(pid, PIDTYPE_PID);
210 if (task && !__fatal_signal_pending(task))
211 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
212 }
213 read_unlock(&tasklist_lock);
214 rcu_read_unlock();
215
216 /*
217 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
218 * kernel_wait4() will also block until our children traced from the
219 * parent namespace are detached and become EXIT_DEAD.
220 */
221 do {
222 clear_thread_flag(TIF_SIGPENDING);
223 rc = kernel_wait4(-1, NULL, __WALL, NULL);
224 } while (rc != -ECHILD);
225
226 /*
227 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
228 * process whose parents processes are outside of the pid
229 * namespace. Such processes are created with setns()+fork().
230 *
231 * If those EXIT_ZOMBIE processes are not reaped by their
232 * parents before their parents exit, they will be reparented
233 * to pid_ns->child_reaper. Thus pidns->child_reaper needs to
234 * stay valid until they all go away.
235 *
236 * The code relies on the the pid_ns->child_reaper ignoring
237 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
238 * autoreaped if reparented.
239 *
240 * Semantically it is also desirable to wait for EXIT_ZOMBIE
241 * processes before allowing the child_reaper to be reaped, as
242 * that gives the invariant that when the init process of a
243 * pid namespace is reaped all of the processes in the pid
244 * namespace are gone.
245 *
246 * Once all of the other tasks are gone from the pid_namespace
247 * free_pid() will awaken this task.
248 */
249 for (;;) {
250 set_current_state(TASK_INTERRUPTIBLE);
251 if (pid_ns->pid_allocated == init_pids)
252 break;
253 schedule();
254 }
255 __set_current_state(TASK_RUNNING);
256
257 if (pid_ns->reboot)
258 current->signal->group_exit_code = pid_ns->reboot;
259
260 acct_exit_ns(pid_ns);
261 return;
262}
263
264#ifdef CONFIG_CHECKPOINT_RESTORE
265static int pid_ns_ctl_handler(struct ctl_table *table, int write,
266 void *buffer, size_t *lenp, loff_t *ppos)
267{
268 struct pid_namespace *pid_ns = task_active_pid_ns(current);
269 struct ctl_table tmp = *table;
270 int ret, next;
271
272 if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
273 return -EPERM;
274
275 /*
276 * Writing directly to ns' last_pid field is OK, since this field
277 * is volatile in a living namespace anyway and a code writing to
278 * it should synchronize its usage with external means.
279 */
280
281 next = idr_get_cursor(&pid_ns->idr) - 1;
282
283 tmp.data = &next;
284 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
285 if (!ret && write)
286 idr_set_cursor(&pid_ns->idr, next + 1);
287
288 return ret;
289}
290
291extern int pid_max;
292static struct ctl_table pid_ns_ctl_table[] = {
293 {
294 .procname = "ns_last_pid",
295 .maxlen = sizeof(int),
296 .mode = 0666, /* permissions are checked in the handler */
297 .proc_handler = pid_ns_ctl_handler,
298 .extra1 = SYSCTL_ZERO,
299 .extra2 = &pid_max,
300 },
301 { }
302};
303static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
304#endif /* CONFIG_CHECKPOINT_RESTORE */
305
306int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
307{
308 if (pid_ns == &init_pid_ns)
309 return 0;
310
311 switch (cmd) {
312 case LINUX_REBOOT_CMD_RESTART2:
313 case LINUX_REBOOT_CMD_RESTART:
314 pid_ns->reboot = SIGHUP;
315 break;
316
317 case LINUX_REBOOT_CMD_POWER_OFF:
318 case LINUX_REBOOT_CMD_HALT:
319 pid_ns->reboot = SIGINT;
320 break;
321 default:
322 return -EINVAL;
323 }
324
325 read_lock(&tasklist_lock);
326 send_sig(SIGKILL, pid_ns->child_reaper, 1);
327 read_unlock(&tasklist_lock);
328
329 do_exit(0);
330
331 /* Not reached */
332 return 0;
333}
334
335static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
336{
337 return container_of(ns, struct pid_namespace, ns);
338}
339
340static struct ns_common *pidns_get(struct task_struct *task)
341{
342 struct pid_namespace *ns;
343
344 rcu_read_lock();
345 ns = task_active_pid_ns(task);
346 if (ns)
347 get_pid_ns(ns);
348 rcu_read_unlock();
349
350 return ns ? &ns->ns : NULL;
351}
352
353static struct ns_common *pidns_for_children_get(struct task_struct *task)
354{
355 struct pid_namespace *ns = NULL;
356
357 task_lock(task);
358 if (task->nsproxy) {
359 ns = task->nsproxy->pid_ns_for_children;
360 get_pid_ns(ns);
361 }
362 task_unlock(task);
363
364 if (ns) {
365 read_lock(&tasklist_lock);
366 if (!ns->child_reaper) {
367 put_pid_ns(ns);
368 ns = NULL;
369 }
370 read_unlock(&tasklist_lock);
371 }
372
373 return ns ? &ns->ns : NULL;
374}
375
376static void pidns_put(struct ns_common *ns)
377{
378 put_pid_ns(to_pid_ns(ns));
379}
380
381static int pidns_install(struct nsset *nsset, struct ns_common *ns)
382{
383 struct nsproxy *nsproxy = nsset->nsproxy;
384 struct pid_namespace *active = task_active_pid_ns(current);
385 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
386
387 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
388 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
389 return -EPERM;
390
391 /*
392 * Only allow entering the current active pid namespace
393 * or a child of the current active pid namespace.
394 *
395 * This is required for fork to return a usable pid value and
396 * this maintains the property that processes and their
397 * children can not escape their current pid namespace.
398 */
399 if (new->level < active->level)
400 return -EINVAL;
401
402 ancestor = new;
403 while (ancestor->level > active->level)
404 ancestor = ancestor->parent;
405 if (ancestor != active)
406 return -EINVAL;
407
408 put_pid_ns(nsproxy->pid_ns_for_children);
409 nsproxy->pid_ns_for_children = get_pid_ns(new);
410 return 0;
411}
412
413static struct ns_common *pidns_get_parent(struct ns_common *ns)
414{
415 struct pid_namespace *active = task_active_pid_ns(current);
416 struct pid_namespace *pid_ns, *p;
417
418 /* See if the parent is in the current namespace */
419 pid_ns = p = to_pid_ns(ns)->parent;
420 for (;;) {
421 if (!p)
422 return ERR_PTR(-EPERM);
423 if (p == active)
424 break;
425 p = p->parent;
426 }
427
428 return &get_pid_ns(pid_ns)->ns;
429}
430
431static struct user_namespace *pidns_owner(struct ns_common *ns)
432{
433 return to_pid_ns(ns)->user_ns;
434}
435
436const struct proc_ns_operations pidns_operations = {
437 .name = "pid",
438 .type = CLONE_NEWPID,
439 .get = pidns_get,
440 .put = pidns_put,
441 .install = pidns_install,
442 .owner = pidns_owner,
443 .get_parent = pidns_get_parent,
444};
445
446const struct proc_ns_operations pidns_for_children_operations = {
447 .name = "pid_for_children",
448 .real_ns_name = "pid",
449 .type = CLONE_NEWPID,
450 .get = pidns_for_children_get,
451 .put = pidns_put,
452 .install = pidns_install,
453 .owner = pidns_owner,
454 .get_parent = pidns_get_parent,
455};
456
457static __init int pid_namespaces_init(void)
458{
459 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
460
461#ifdef CONFIG_CHECKPOINT_RESTORE
462 register_sysctl_paths(kern_path, pid_ns_ctl_table);
463#endif
464 return 0;
465}
466
467__initcall(pid_namespaces_init);