Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Pid namespaces
  3 *
  4 * Authors:
  5 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  6 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  7 *     Many thanks to Oleg Nesterov for comments and help
  8 *
  9 */
 10
 11#include <linux/pid.h>
 12#include <linux/pid_namespace.h>
 13#include <linux/user_namespace.h>
 14#include <linux/syscalls.h>
 
 15#include <linux/err.h>
 16#include <linux/acct.h>
 17#include <linux/slab.h>
 18#include <linux/proc_ns.h>
 19#include <linux/reboot.h>
 20#include <linux/export.h>
 
 
 
 21
 22struct pid_cache {
 23	int nr_ids;
 24	char name[16];
 25	struct kmem_cache *cachep;
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(pid_caches_lh);
 30static DEFINE_MUTEX(pid_caches_mutex);
 31static struct kmem_cache *pid_ns_cachep;
 
 
 32
 33/*
 34 * creates the kmem cache to allocate pids from.
 35 * @nr_ids: the number of numerical ids this pid will have to carry
 36 */
 37
 38static struct kmem_cache *create_pid_cachep(int nr_ids)
 39{
 40	struct pid_cache *pcache;
 41	struct kmem_cache *cachep;
 
 
 
 
 
 
 
 42
 
 
 43	mutex_lock(&pid_caches_mutex);
 44	list_for_each_entry(pcache, &pid_caches_lh, list)
 45		if (pcache->nr_ids == nr_ids)
 46			goto out;
 47
 48	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
 49	if (pcache == NULL)
 50		goto err_alloc;
 51
 52	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
 53	cachep = kmem_cache_create(pcache->name,
 54			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
 55			0, SLAB_HWCACHE_ALIGN, NULL);
 56	if (cachep == NULL)
 57		goto err_cachep;
 58
 59	pcache->nr_ids = nr_ids;
 60	pcache->cachep = cachep;
 61	list_add(&pcache->list, &pid_caches_lh);
 62out:
 63	mutex_unlock(&pid_caches_mutex);
 64	return pcache->cachep;
 65
 66err_cachep:
 67	kfree(pcache);
 68err_alloc:
 69	mutex_unlock(&pid_caches_mutex);
 70	return NULL;
 71}
 72
 73static void proc_cleanup_work(struct work_struct *work)
 74{
 75	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
 76	pid_ns_release_proc(ns);
 77}
 78
 79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
 80#define MAX_PID_NS_LEVEL 32
 81
 82static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 83{
 84	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 85}
 86
 87static void dec_pid_namespaces(struct ucounts *ucounts)
 88{
 89	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 90}
 91
 92static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 93	struct pid_namespace *parent_pid_ns)
 94{
 95	struct pid_namespace *ns;
 96	unsigned int level = parent_pid_ns->level + 1;
 97	struct ucounts *ucounts;
 98	int i;
 99	int err;
100
 
 
 
 
101	err = -ENOSPC;
102	if (level > MAX_PID_NS_LEVEL)
103		goto out;
104	ucounts = inc_pid_namespaces(user_ns);
105	if (!ucounts)
106		goto out;
107
108	err = -ENOMEM;
109	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
110	if (ns == NULL)
111		goto out_dec;
112
113	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114	if (!ns->pidmap[0].page)
115		goto out_free;
116
117	ns->pid_cachep = create_pid_cachep(level + 1);
118	if (ns->pid_cachep == NULL)
119		goto out_free_map;
120
121	err = ns_alloc_inum(&ns->ns);
122	if (err)
123		goto out_free_map;
124	ns->ns.ops = &pidns_operations;
125
126	kref_init(&ns->kref);
127	ns->level = level;
128	ns->parent = get_pid_ns(parent_pid_ns);
129	ns->user_ns = get_user_ns(user_ns);
130	ns->ucounts = ucounts;
131	ns->nr_hashed = PIDNS_HASH_ADDING;
132	INIT_WORK(&ns->proc_work, proc_cleanup_work);
133
134	set_bit(0, ns->pidmap[0].page);
135	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136
137	for (i = 1; i < PIDMAP_ENTRIES; i++)
138		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
139
140	return ns;
141
142out_free_map:
143	kfree(ns->pidmap[0].page);
144out_free:
145	kmem_cache_free(pid_ns_cachep, ns);
146out_dec:
147	dec_pid_namespaces(ucounts);
148out:
149	return ERR_PTR(err);
150}
151
152static void delayed_free_pidns(struct rcu_head *p)
153{
154	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
155
156	dec_pid_namespaces(ns->ucounts);
157	put_user_ns(ns->user_ns);
158
159	kmem_cache_free(pid_ns_cachep, ns);
160}
161
162static void destroy_pid_namespace(struct pid_namespace *ns)
163{
164	int i;
165
166	ns_free_inum(&ns->ns);
167	for (i = 0; i < PIDMAP_ENTRIES; i++)
168		kfree(ns->pidmap[i].page);
169	call_rcu(&ns->rcu, delayed_free_pidns);
170}
171
172struct pid_namespace *copy_pid_ns(unsigned long flags,
173	struct user_namespace *user_ns, struct pid_namespace *old_ns)
174{
175	if (!(flags & CLONE_NEWPID))
176		return get_pid_ns(old_ns);
177	if (task_active_pid_ns(current) != old_ns)
178		return ERR_PTR(-EINVAL);
179	return create_pid_namespace(user_ns, old_ns);
180}
181
182static void free_pid_ns(struct kref *kref)
183{
184	struct pid_namespace *ns;
185
186	ns = container_of(kref, struct pid_namespace, kref);
187	destroy_pid_namespace(ns);
188}
189
190void put_pid_ns(struct pid_namespace *ns)
191{
192	struct pid_namespace *parent;
193
194	while (ns != &init_pid_ns) {
195		parent = ns->parent;
196		if (!kref_put(&ns->kref, free_pid_ns))
197			break;
 
198		ns = parent;
199	}
200}
201EXPORT_SYMBOL_GPL(put_pid_ns);
202
203void zap_pid_ns_processes(struct pid_namespace *pid_ns)
204{
205	int nr;
206	int rc;
207	struct task_struct *task, *me = current;
208	int init_pids = thread_group_leader(me) ? 1 : 2;
 
209
210	/* Don't allow any more processes into the pid namespace */
211	disable_pid_allocation(pid_ns);
212
213	/*
214	 * Ignore SIGCHLD causing any terminated children to autoreap.
215	 * This speeds up the namespace shutdown, plus see the comment
216	 * below.
217	 */
218	spin_lock_irq(&me->sighand->siglock);
219	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
220	spin_unlock_irq(&me->sighand->siglock);
221
222	/*
223	 * The last thread in the cgroup-init thread group is terminating.
224	 * Find remaining pid_ts in the namespace, signal and wait for them
225	 * to exit.
226	 *
227	 * Note:  This signals each threads in the namespace - even those that
228	 * 	  belong to the same thread group, To avoid this, we would have
229	 * 	  to walk the entire tasklist looking a processes in this
230	 * 	  namespace, but that could be unnecessarily expensive if the
231	 * 	  pid namespace has just a few processes. Or we need to
232	 * 	  maintain a tasklist for each pid namespace.
233	 *
234	 */
 
235	read_lock(&tasklist_lock);
236	nr = next_pidmap(pid_ns, 1);
237	while (nr > 0) {
238		rcu_read_lock();
239
240		task = pid_task(find_vpid(nr), PIDTYPE_PID);
241		if (task && !__fatal_signal_pending(task))
242			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
243
244		rcu_read_unlock();
245
246		nr = next_pidmap(pid_ns, nr);
247	}
248	read_unlock(&tasklist_lock);
 
249
250	/*
251	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
252	 * sys_wait4() will also block until our children traced from the
253	 * parent namespace are detached and become EXIT_DEAD.
254	 */
255	do {
256		clear_thread_flag(TIF_SIGPENDING);
257		rc = sys_wait4(-1, NULL, __WALL, NULL);
258	} while (rc != -ECHILD);
259
260	/*
261	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
262	 * really care, we could reparent them to the global init. We could
263	 * exit and reap ->child_reaper even if it is not the last thread in
264	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
265	 * pid_ns can not go away until proc_kill_sb() drops the reference.
 
 
 
266	 *
267	 * But this ns can also have other tasks injected by setns()+fork().
268	 * Again, ignoring the user visible semantics we do not really need
269	 * to wait until they are all reaped, but they can be reparented to
270	 * us and thus we need to ensure that pid->child_reaper stays valid
271	 * until they all go away. See free_pid()->wake_up_process().
272	 *
273	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
274	 * if reparented.
 
 
 
 
 
 
275	 */
276	for (;;) {
277		set_current_state(TASK_UNINTERRUPTIBLE);
278		if (pid_ns->nr_hashed == init_pids)
279			break;
280		schedule();
281	}
282	__set_current_state(TASK_RUNNING);
283
284	if (pid_ns->reboot)
285		current->signal->group_exit_code = pid_ns->reboot;
286
287	acct_exit_ns(pid_ns);
288	return;
289}
290
291#ifdef CONFIG_CHECKPOINT_RESTORE
292static int pid_ns_ctl_handler(struct ctl_table *table, int write,
293		void __user *buffer, size_t *lenp, loff_t *ppos)
294{
295	struct pid_namespace *pid_ns = task_active_pid_ns(current);
296	struct ctl_table tmp = *table;
 
297
298	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
299		return -EPERM;
300
301	/*
302	 * Writing directly to ns' last_pid field is OK, since this field
303	 * is volatile in a living namespace anyway and a code writing to
304	 * it should synchronize its usage with external means.
305	 */
306
307	tmp.data = &pid_ns->last_pid;
308	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
 
 
 
 
 
 
309}
310
311extern int pid_max;
312static int zero = 0;
313static struct ctl_table pid_ns_ctl_table[] = {
314	{
315		.procname = "ns_last_pid",
316		.maxlen = sizeof(int),
317		.mode = 0666, /* permissions are checked in the handler */
318		.proc_handler = pid_ns_ctl_handler,
319		.extra1 = &zero,
320		.extra2 = &pid_max,
321	},
322	{ }
323};
324static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
325#endif	/* CONFIG_CHECKPOINT_RESTORE */
326
327int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328{
329	if (pid_ns == &init_pid_ns)
330		return 0;
331
332	switch (cmd) {
333	case LINUX_REBOOT_CMD_RESTART2:
334	case LINUX_REBOOT_CMD_RESTART:
335		pid_ns->reboot = SIGHUP;
336		break;
337
338	case LINUX_REBOOT_CMD_POWER_OFF:
339	case LINUX_REBOOT_CMD_HALT:
340		pid_ns->reboot = SIGINT;
341		break;
342	default:
343		return -EINVAL;
344	}
345
346	read_lock(&tasklist_lock);
347	force_sig(SIGKILL, pid_ns->child_reaper);
348	read_unlock(&tasklist_lock);
349
350	do_exit(0);
351
352	/* Not reached */
353	return 0;
354}
355
356static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357{
358	return container_of(ns, struct pid_namespace, ns);
359}
360
361static struct ns_common *pidns_get(struct task_struct *task)
362{
363	struct pid_namespace *ns;
364
365	rcu_read_lock();
366	ns = task_active_pid_ns(task);
367	if (ns)
368		get_pid_ns(ns);
369	rcu_read_unlock();
370
371	return ns ? &ns->ns : NULL;
372}
373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374static void pidns_put(struct ns_common *ns)
375{
376	put_pid_ns(to_pid_ns(ns));
377}
378
379static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
380{
 
381	struct pid_namespace *active = task_active_pid_ns(current);
382	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
383
384	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
385	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
386		return -EPERM;
387
388	/*
389	 * Only allow entering the current active pid namespace
390	 * or a child of the current active pid namespace.
391	 *
392	 * This is required for fork to return a usable pid value and
393	 * this maintains the property that processes and their
394	 * children can not escape their current pid namespace.
395	 */
396	if (new->level < active->level)
397		return -EINVAL;
398
399	ancestor = new;
400	while (ancestor->level > active->level)
401		ancestor = ancestor->parent;
402	if (ancestor != active)
403		return -EINVAL;
404
405	put_pid_ns(nsproxy->pid_ns_for_children);
406	nsproxy->pid_ns_for_children = get_pid_ns(new);
407	return 0;
408}
409
410static struct ns_common *pidns_get_parent(struct ns_common *ns)
411{
412	struct pid_namespace *active = task_active_pid_ns(current);
413	struct pid_namespace *pid_ns, *p;
414
415	/* See if the parent is in the current namespace */
416	pid_ns = p = to_pid_ns(ns)->parent;
417	for (;;) {
418		if (!p)
419			return ERR_PTR(-EPERM);
420		if (p == active)
421			break;
422		p = p->parent;
423	}
424
425	return &get_pid_ns(pid_ns)->ns;
426}
427
428static struct user_namespace *pidns_owner(struct ns_common *ns)
429{
430	return to_pid_ns(ns)->user_ns;
431}
432
433const struct proc_ns_operations pidns_operations = {
434	.name		= "pid",
435	.type		= CLONE_NEWPID,
436	.get		= pidns_get,
437	.put		= pidns_put,
438	.install	= pidns_install,
439	.owner		= pidns_owner,
440	.get_parent	= pidns_get_parent,
441};
442
 
 
 
 
 
 
 
 
 
 
 
443static __init int pid_namespaces_init(void)
444{
445	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
446
447#ifdef CONFIG_CHECKPOINT_RESTORE
448	register_sysctl_paths(kern_path, pid_ns_ctl_table);
449#endif
450	return 0;
451}
452
453__initcall(pid_namespaces_init);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Pid namespaces
  4 *
  5 * Authors:
  6 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  7 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  8 *     Many thanks to Oleg Nesterov for comments and help
  9 *
 10 */
 11
 12#include <linux/pid.h>
 13#include <linux/pid_namespace.h>
 14#include <linux/user_namespace.h>
 15#include <linux/syscalls.h>
 16#include <linux/cred.h>
 17#include <linux/err.h>
 18#include <linux/acct.h>
 19#include <linux/slab.h>
 20#include <linux/proc_ns.h>
 21#include <linux/reboot.h>
 22#include <linux/export.h>
 23#include <linux/sched/task.h>
 24#include <linux/sched/signal.h>
 25#include <linux/idr.h>
 26
 
 
 
 
 
 
 
 
 27static DEFINE_MUTEX(pid_caches_mutex);
 28static struct kmem_cache *pid_ns_cachep;
 29/* Write once array, filled from the beginning. */
 30static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
 31
 32/*
 33 * creates the kmem cache to allocate pids from.
 34 * @level: pid namespace level
 35 */
 36
 37static struct kmem_cache *create_pid_cachep(unsigned int level)
 38{
 39	/* Level 0 is init_pid_ns.pid_cachep */
 40	struct kmem_cache **pkc = &pid_cache[level - 1];
 41	struct kmem_cache *kc;
 42	char name[4 + 10 + 1];
 43	unsigned int len;
 44
 45	kc = READ_ONCE(*pkc);
 46	if (kc)
 47		return kc;
 48
 49	snprintf(name, sizeof(name), "pid_%u", level + 1);
 50	len = sizeof(struct pid) + level * sizeof(struct upid);
 51	mutex_lock(&pid_caches_mutex);
 52	/* Name collision forces to do allocation under mutex. */
 53	if (!*pkc)
 54		*pkc = kmem_cache_create(name, len, 0,
 55					 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56	mutex_unlock(&pid_caches_mutex);
 57	/* current can fail, but someone else can succeed. */
 58	return READ_ONCE(*pkc);
 
 
 
 
 
 
 
 
 
 
 
 59}
 60
 
 
 
 61static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
 62{
 63	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
 64}
 65
 66static void dec_pid_namespaces(struct ucounts *ucounts)
 67{
 68	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
 69}
 70
 71static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
 72	struct pid_namespace *parent_pid_ns)
 73{
 74	struct pid_namespace *ns;
 75	unsigned int level = parent_pid_ns->level + 1;
 76	struct ucounts *ucounts;
 
 77	int err;
 78
 79	err = -EINVAL;
 80	if (!in_userns(parent_pid_ns->user_ns, user_ns))
 81		goto out;
 82
 83	err = -ENOSPC;
 84	if (level > MAX_PID_NS_LEVEL)
 85		goto out;
 86	ucounts = inc_pid_namespaces(user_ns);
 87	if (!ucounts)
 88		goto out;
 89
 90	err = -ENOMEM;
 91	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
 92	if (ns == NULL)
 93		goto out_dec;
 94
 95	idr_init(&ns->idr);
 
 
 96
 97	ns->pid_cachep = create_pid_cachep(level);
 98	if (ns->pid_cachep == NULL)
 99		goto out_free_idr;
100
101	err = ns_alloc_inum(&ns->ns);
102	if (err)
103		goto out_free_idr;
104	ns->ns.ops = &pidns_operations;
105
106	refcount_set(&ns->ns.count, 1);
107	ns->level = level;
108	ns->parent = get_pid_ns(parent_pid_ns);
109	ns->user_ns = get_user_ns(user_ns);
110	ns->ucounts = ucounts;
111	ns->pid_allocated = PIDNS_ADDING;
 
 
 
 
 
 
 
112
113	return ns;
114
115out_free_idr:
116	idr_destroy(&ns->idr);
 
117	kmem_cache_free(pid_ns_cachep, ns);
118out_dec:
119	dec_pid_namespaces(ucounts);
120out:
121	return ERR_PTR(err);
122}
123
124static void delayed_free_pidns(struct rcu_head *p)
125{
126	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127
128	dec_pid_namespaces(ns->ucounts);
129	put_user_ns(ns->user_ns);
130
131	kmem_cache_free(pid_ns_cachep, ns);
132}
133
134static void destroy_pid_namespace(struct pid_namespace *ns)
135{
 
 
136	ns_free_inum(&ns->ns);
137
138	idr_destroy(&ns->idr);
139	call_rcu(&ns->rcu, delayed_free_pidns);
140}
141
142struct pid_namespace *copy_pid_ns(unsigned long flags,
143	struct user_namespace *user_ns, struct pid_namespace *old_ns)
144{
145	if (!(flags & CLONE_NEWPID))
146		return get_pid_ns(old_ns);
147	if (task_active_pid_ns(current) != old_ns)
148		return ERR_PTR(-EINVAL);
149	return create_pid_namespace(user_ns, old_ns);
150}
151
 
 
 
 
 
 
 
 
152void put_pid_ns(struct pid_namespace *ns)
153{
154	struct pid_namespace *parent;
155
156	while (ns != &init_pid_ns) {
157		parent = ns->parent;
158		if (!refcount_dec_and_test(&ns->ns.count))
159			break;
160		destroy_pid_namespace(ns);
161		ns = parent;
162	}
163}
164EXPORT_SYMBOL_GPL(put_pid_ns);
165
166void zap_pid_ns_processes(struct pid_namespace *pid_ns)
167{
168	int nr;
169	int rc;
170	struct task_struct *task, *me = current;
171	int init_pids = thread_group_leader(me) ? 1 : 2;
172	struct pid *pid;
173
174	/* Don't allow any more processes into the pid namespace */
175	disable_pid_allocation(pid_ns);
176
177	/*
178	 * Ignore SIGCHLD causing any terminated children to autoreap.
179	 * This speeds up the namespace shutdown, plus see the comment
180	 * below.
181	 */
182	spin_lock_irq(&me->sighand->siglock);
183	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
184	spin_unlock_irq(&me->sighand->siglock);
185
186	/*
187	 * The last thread in the cgroup-init thread group is terminating.
188	 * Find remaining pid_ts in the namespace, signal and wait for them
189	 * to exit.
190	 *
191	 * Note:  This signals each threads in the namespace - even those that
192	 * 	  belong to the same thread group, To avoid this, we would have
193	 * 	  to walk the entire tasklist looking a processes in this
194	 * 	  namespace, but that could be unnecessarily expensive if the
195	 * 	  pid namespace has just a few processes. Or we need to
196	 * 	  maintain a tasklist for each pid namespace.
197	 *
198	 */
199	rcu_read_lock();
200	read_lock(&tasklist_lock);
201	nr = 2;
202	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
203		task = pid_task(pid, PIDTYPE_PID);
 
 
204		if (task && !__fatal_signal_pending(task))
205			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
 
 
 
 
206	}
207	read_unlock(&tasklist_lock);
208	rcu_read_unlock();
209
210	/*
211	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
212	 * kernel_wait4() will also block until our children traced from the
213	 * parent namespace are detached and become EXIT_DEAD.
214	 */
215	do {
216		clear_thread_flag(TIF_SIGPENDING);
217		rc = kernel_wait4(-1, NULL, __WALL, NULL);
218	} while (rc != -ECHILD);
219
220	/*
221	 * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
222	 * process whose parents processes are outside of the pid
223	 * namespace.  Such processes are created with setns()+fork().
224	 *
225	 * If those EXIT_ZOMBIE processes are not reaped by their
226	 * parents before their parents exit, they will be reparented
227	 * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
228	 * stay valid until they all go away.
229	 *
230	 * The code relies on the pid_ns->child_reaper ignoring
231	 * SIGCHILD to cause those EXIT_ZOMBIE processes to be
232	 * autoreaped if reparented.
 
 
233	 *
234	 * Semantically it is also desirable to wait for EXIT_ZOMBIE
235	 * processes before allowing the child_reaper to be reaped, as
236	 * that gives the invariant that when the init process of a
237	 * pid namespace is reaped all of the processes in the pid
238	 * namespace are gone.
239	 *
240	 * Once all of the other tasks are gone from the pid_namespace
241	 * free_pid() will awaken this task.
242	 */
243	for (;;) {
244		set_current_state(TASK_INTERRUPTIBLE);
245		if (pid_ns->pid_allocated == init_pids)
246			break;
247		schedule();
248	}
249	__set_current_state(TASK_RUNNING);
250
251	if (pid_ns->reboot)
252		current->signal->group_exit_code = pid_ns->reboot;
253
254	acct_exit_ns(pid_ns);
255	return;
256}
257
258#ifdef CONFIG_CHECKPOINT_RESTORE
259static int pid_ns_ctl_handler(struct ctl_table *table, int write,
260		void *buffer, size_t *lenp, loff_t *ppos)
261{
262	struct pid_namespace *pid_ns = task_active_pid_ns(current);
263	struct ctl_table tmp = *table;
264	int ret, next;
265
266	if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
267		return -EPERM;
268
269	/*
270	 * Writing directly to ns' last_pid field is OK, since this field
271	 * is volatile in a living namespace anyway and a code writing to
272	 * it should synchronize its usage with external means.
273	 */
274
275	next = idr_get_cursor(&pid_ns->idr) - 1;
276
277	tmp.data = &next;
278	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
279	if (!ret && write)
280		idr_set_cursor(&pid_ns->idr, next + 1);
281
282	return ret;
283}
284
285extern int pid_max;
 
286static struct ctl_table pid_ns_ctl_table[] = {
287	{
288		.procname = "ns_last_pid",
289		.maxlen = sizeof(int),
290		.mode = 0666, /* permissions are checked in the handler */
291		.proc_handler = pid_ns_ctl_handler,
292		.extra1 = SYSCTL_ZERO,
293		.extra2 = &pid_max,
294	},
295	{ }
296};
297static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
298#endif	/* CONFIG_CHECKPOINT_RESTORE */
299
300int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
301{
302	if (pid_ns == &init_pid_ns)
303		return 0;
304
305	switch (cmd) {
306	case LINUX_REBOOT_CMD_RESTART2:
307	case LINUX_REBOOT_CMD_RESTART:
308		pid_ns->reboot = SIGHUP;
309		break;
310
311	case LINUX_REBOOT_CMD_POWER_OFF:
312	case LINUX_REBOOT_CMD_HALT:
313		pid_ns->reboot = SIGINT;
314		break;
315	default:
316		return -EINVAL;
317	}
318
319	read_lock(&tasklist_lock);
320	send_sig(SIGKILL, pid_ns->child_reaper, 1);
321	read_unlock(&tasklist_lock);
322
323	do_exit(0);
324
325	/* Not reached */
326	return 0;
327}
328
329static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
330{
331	return container_of(ns, struct pid_namespace, ns);
332}
333
334static struct ns_common *pidns_get(struct task_struct *task)
335{
336	struct pid_namespace *ns;
337
338	rcu_read_lock();
339	ns = task_active_pid_ns(task);
340	if (ns)
341		get_pid_ns(ns);
342	rcu_read_unlock();
343
344	return ns ? &ns->ns : NULL;
345}
346
347static struct ns_common *pidns_for_children_get(struct task_struct *task)
348{
349	struct pid_namespace *ns = NULL;
350
351	task_lock(task);
352	if (task->nsproxy) {
353		ns = task->nsproxy->pid_ns_for_children;
354		get_pid_ns(ns);
355	}
356	task_unlock(task);
357
358	if (ns) {
359		read_lock(&tasklist_lock);
360		if (!ns->child_reaper) {
361			put_pid_ns(ns);
362			ns = NULL;
363		}
364		read_unlock(&tasklist_lock);
365	}
366
367	return ns ? &ns->ns : NULL;
368}
369
370static void pidns_put(struct ns_common *ns)
371{
372	put_pid_ns(to_pid_ns(ns));
373}
374
375static int pidns_install(struct nsset *nsset, struct ns_common *ns)
376{
377	struct nsproxy *nsproxy = nsset->nsproxy;
378	struct pid_namespace *active = task_active_pid_ns(current);
379	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
380
381	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
382	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
383		return -EPERM;
384
385	/*
386	 * Only allow entering the current active pid namespace
387	 * or a child of the current active pid namespace.
388	 *
389	 * This is required for fork to return a usable pid value and
390	 * this maintains the property that processes and their
391	 * children can not escape their current pid namespace.
392	 */
393	if (new->level < active->level)
394		return -EINVAL;
395
396	ancestor = new;
397	while (ancestor->level > active->level)
398		ancestor = ancestor->parent;
399	if (ancestor != active)
400		return -EINVAL;
401
402	put_pid_ns(nsproxy->pid_ns_for_children);
403	nsproxy->pid_ns_for_children = get_pid_ns(new);
404	return 0;
405}
406
407static struct ns_common *pidns_get_parent(struct ns_common *ns)
408{
409	struct pid_namespace *active = task_active_pid_ns(current);
410	struct pid_namespace *pid_ns, *p;
411
412	/* See if the parent is in the current namespace */
413	pid_ns = p = to_pid_ns(ns)->parent;
414	for (;;) {
415		if (!p)
416			return ERR_PTR(-EPERM);
417		if (p == active)
418			break;
419		p = p->parent;
420	}
421
422	return &get_pid_ns(pid_ns)->ns;
423}
424
425static struct user_namespace *pidns_owner(struct ns_common *ns)
426{
427	return to_pid_ns(ns)->user_ns;
428}
429
430const struct proc_ns_operations pidns_operations = {
431	.name		= "pid",
432	.type		= CLONE_NEWPID,
433	.get		= pidns_get,
434	.put		= pidns_put,
435	.install	= pidns_install,
436	.owner		= pidns_owner,
437	.get_parent	= pidns_get_parent,
438};
439
440const struct proc_ns_operations pidns_for_children_operations = {
441	.name		= "pid_for_children",
442	.real_ns_name	= "pid",
443	.type		= CLONE_NEWPID,
444	.get		= pidns_for_children_get,
445	.put		= pidns_put,
446	.install	= pidns_install,
447	.owner		= pidns_owner,
448	.get_parent	= pidns_get_parent,
449};
450
451static __init int pid_namespaces_init(void)
452{
453	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
454
455#ifdef CONFIG_CHECKPOINT_RESTORE
456	register_sysctl_paths(kern_path, pid_ns_ctl_table);
457#endif
458	return 0;
459}
460
461__initcall(pid_namespaces_init);