Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   smp_mb(); (A) <-- paired with -.
 128 *                                  |
 129 *   lock(hash_bucket(futex));      |
 130 *                                  |
 131 *   uval = *futex;                 |
 132 *                                  |        *futex = newval;
 133 *                                  |        sys_futex(WAKE, futex);
 134 *                                  |          futex_wake(futex);
 135 *                                  |
 136 *                                  `--------> smp_mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *	X = Y = 0
 153 *
 154 *	w[X]=1		w[Y]=1
 155 *	MB		MB
 156 *	r[Y]=y		r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 
 
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#ifdef CONFIG_MMU
 183# define FLAGS_SHARED		0x01
 184#else
 185/*
 186 * NOMMU does not have per process address space. Let the compiler optimize
 187 * code away.
 188 */
 189# define FLAGS_SHARED		0x00
 190#endif
 191#define FLAGS_CLOCKRT		0x02
 192#define FLAGS_HAS_TIMEOUT	0x04
 193
 194/*
 195 * Priority Inheritance state:
 196 */
 197struct futex_pi_state {
 198	/*
 199	 * list of 'owned' pi_state instances - these have to be
 200	 * cleaned up in do_exit() if the task exits prematurely:
 201	 */
 202	struct list_head list;
 203
 204	/*
 205	 * The PI object:
 206	 */
 207	struct rt_mutex pi_mutex;
 208
 209	struct task_struct *owner;
 210	atomic_t refcount;
 211
 212	union futex_key key;
 213};
 214
 215/**
 216 * struct futex_q - The hashed futex queue entry, one per waiting task
 217 * @list:		priority-sorted list of tasks waiting on this futex
 218 * @task:		the task waiting on the futex
 219 * @lock_ptr:		the hash bucket lock
 220 * @key:		the key the futex is hashed on
 221 * @pi_state:		optional priority inheritance state
 222 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 223 * @requeue_pi_key:	the requeue_pi target futex key
 224 * @bitset:		bitset for the optional bitmasked wakeup
 225 *
 226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 227 * we can wake only the relevant ones (hashed queues may be shared).
 228 *
 229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 231 * The order of wakeup is always to make the first condition true, then
 232 * the second.
 233 *
 234 * PI futexes are typically woken before they are removed from the hash list via
 235 * the rt_mutex code. See unqueue_me_pi().
 236 */
 237struct futex_q {
 238	struct plist_node list;
 239
 240	struct task_struct *task;
 241	spinlock_t *lock_ptr;
 242	union futex_key key;
 243	struct futex_pi_state *pi_state;
 244	struct rt_mutex_waiter *rt_waiter;
 245	union futex_key *requeue_pi_key;
 246	u32 bitset;
 247};
 248
 249static const struct futex_q futex_q_init = {
 250	/* list gets initialized in queue_me()*/
 251	.key = FUTEX_KEY_INIT,
 252	.bitset = FUTEX_BITSET_MATCH_ANY
 253};
 254
 255/*
 256 * Hash buckets are shared by all the futex_keys that hash to the same
 257 * location.  Each key may have multiple futex_q structures, one for each task
 258 * waiting on a futex.
 259 */
 260struct futex_hash_bucket {
 261	atomic_t waiters;
 262	spinlock_t lock;
 263	struct plist_head chain;
 264} ____cacheline_aligned_in_smp;
 265
 266/*
 267 * The base of the bucket array and its size are always used together
 268 * (after initialization only in hash_futex()), so ensure that they
 269 * reside in the same cacheline.
 270 */
 271static struct {
 272	struct futex_hash_bucket *queues;
 273	unsigned long            hashsize;
 274} __futex_data __read_mostly __aligned(2*sizeof(long));
 275#define futex_queues   (__futex_data.queues)
 276#define futex_hashsize (__futex_data.hashsize)
 277
 278
 279/*
 280 * Fault injections for futexes.
 281 */
 282#ifdef CONFIG_FAIL_FUTEX
 283
 284static struct {
 285	struct fault_attr attr;
 286
 287	bool ignore_private;
 288} fail_futex = {
 289	.attr = FAULT_ATTR_INITIALIZER,
 290	.ignore_private = false,
 291};
 292
 293static int __init setup_fail_futex(char *str)
 294{
 295	return setup_fault_attr(&fail_futex.attr, str);
 296}
 297__setup("fail_futex=", setup_fail_futex);
 298
 299static bool should_fail_futex(bool fshared)
 300{
 301	if (fail_futex.ignore_private && !fshared)
 302		return false;
 303
 304	return should_fail(&fail_futex.attr, 1);
 305}
 306
 307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 308
 309static int __init fail_futex_debugfs(void)
 310{
 311	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 312	struct dentry *dir;
 313
 314	dir = fault_create_debugfs_attr("fail_futex", NULL,
 315					&fail_futex.attr);
 316	if (IS_ERR(dir))
 317		return PTR_ERR(dir);
 318
 319	if (!debugfs_create_bool("ignore-private", mode, dir,
 320				 &fail_futex.ignore_private)) {
 321		debugfs_remove_recursive(dir);
 322		return -ENOMEM;
 323	}
 324
 325	return 0;
 326}
 327
 328late_initcall(fail_futex_debugfs);
 329
 330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 331
 332#else
 333static inline bool should_fail_futex(bool fshared)
 334{
 335	return false;
 336}
 337#endif /* CONFIG_FAIL_FUTEX */
 338
 339static inline void futex_get_mm(union futex_key *key)
 340{
 341	atomic_inc(&key->private.mm->mm_count);
 342	/*
 343	 * Ensure futex_get_mm() implies a full barrier such that
 344	 * get_futex_key() implies a full barrier. This is relied upon
 345	 * as smp_mb(); (B), see the ordering comment above.
 346	 */
 347	smp_mb__after_atomic();
 348}
 349
 350/*
 351 * Reflects a new waiter being added to the waitqueue.
 352 */
 353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 354{
 355#ifdef CONFIG_SMP
 356	atomic_inc(&hb->waiters);
 357	/*
 358	 * Full barrier (A), see the ordering comment above.
 359	 */
 360	smp_mb__after_atomic();
 361#endif
 362}
 363
 364/*
 365 * Reflects a waiter being removed from the waitqueue by wakeup
 366 * paths.
 367 */
 368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 369{
 370#ifdef CONFIG_SMP
 371	atomic_dec(&hb->waiters);
 372#endif
 373}
 374
 375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 376{
 377#ifdef CONFIG_SMP
 
 
 
 
 378	return atomic_read(&hb->waiters);
 379#else
 380	return 1;
 381#endif
 382}
 383
 384/**
 385 * hash_futex - Return the hash bucket in the global hash
 386 * @key:	Pointer to the futex key for which the hash is calculated
 387 *
 388 * We hash on the keys returned from get_futex_key (see below) and return the
 389 * corresponding hash bucket in the global hash.
 390 */
 391static struct futex_hash_bucket *hash_futex(union futex_key *key)
 392{
 393	u32 hash = jhash2((u32*)&key->both.word,
 394			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 395			  key->both.offset);
 
 396	return &futex_queues[hash & (futex_hashsize - 1)];
 397}
 398
 399
 400/**
 401 * match_futex - Check whether two futex keys are equal
 402 * @key1:	Pointer to key1
 403 * @key2:	Pointer to key2
 404 *
 405 * Return 1 if two futex_keys are equal, 0 otherwise.
 406 */
 407static inline int match_futex(union futex_key *key1, union futex_key *key2)
 408{
 409	return (key1 && key2
 410		&& key1->both.word == key2->both.word
 411		&& key1->both.ptr == key2->both.ptr
 412		&& key1->both.offset == key2->both.offset);
 413}
 414
 415/*
 416 * Take a reference to the resource addressed by a key.
 417 * Can be called while holding spinlocks.
 418 *
 419 */
 420static void get_futex_key_refs(union futex_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 421{
 422	if (!key->both.ptr)
 423		return;
 424
 
 
 
 425	/*
 426	 * On MMU less systems futexes are always "private" as there is no per
 427	 * process address space. We need the smp wmb nevertheless - yes,
 428	 * arch/blackfin has MMU less SMP ...
 429	 */
 430	if (!IS_ENABLED(CONFIG_MMU)) {
 431		smp_mb(); /* explicit smp_mb(); (B) */
 432		return;
 433	}
 434
 435	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 436	case FUT_OFF_INODE:
 437		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 438		break;
 439	case FUT_OFF_MMSHARED:
 440		futex_get_mm(key); /* implies smp_mb(); (B) */
 441		break;
 442	default:
 443		/*
 444		 * Private futexes do not hold reference on an inode or
 445		 * mm, therefore the only purpose of calling get_futex_key_refs
 446		 * is because we need the barrier for the lockless waiter check.
 447		 */
 448		smp_mb(); /* explicit smp_mb(); (B) */
 449	}
 450}
 451
 452/*
 453 * Drop a reference to the resource addressed by a key.
 454 * The hash bucket spinlock must not be held. This is
 455 * a no-op for private futexes, see comment in the get
 456 * counterpart.
 
 
 
 
 
 
 
 
 
 
 
 
 457 */
 458static void drop_futex_key_refs(union futex_key *key)
 459{
 460	if (!key->both.ptr) {
 461		/* If we're here then we tried to put a key we failed to get */
 462		WARN_ON_ONCE(1);
 463		return;
 464	}
 465
 466	if (!IS_ENABLED(CONFIG_MMU))
 467		return;
 
 
 468
 469	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 470	case FUT_OFF_INODE:
 471		iput(key->shared.inode);
 472		break;
 473	case FUT_OFF_MMSHARED:
 474		mmdrop(key->private.mm);
 475		break;
 
 
 476	}
 477}
 478
 479/**
 480 * get_futex_key() - Get parameters which are the keys for a futex
 481 * @uaddr:	virtual address of the futex
 482 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 483 * @key:	address where result is stored.
 484 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 485 *              VERIFY_WRITE)
 486 *
 487 * Return: a negative error code or 0
 488 *
 489 * The key words are stored in *key on success.
 
 
 
 
 
 
 
 
 
 
 490 *
 491 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 492 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 493 * We can usually work out the index without swapping in the page.
 494 *
 495 * lock_page() might sleep, the caller should not hold a spinlock.
 496 */
 497static int
 498get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 499{
 500	unsigned long address = (unsigned long)uaddr;
 501	struct mm_struct *mm = current->mm;
 502	struct page *page, *tail;
 503	struct address_space *mapping;
 504	int err, ro = 0;
 505
 506	/*
 507	 * The futex address must be "naturally" aligned.
 508	 */
 509	key->both.offset = address % PAGE_SIZE;
 510	if (unlikely((address % sizeof(u32)) != 0))
 511		return -EINVAL;
 512	address -= key->both.offset;
 513
 514	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 515		return -EFAULT;
 516
 517	if (unlikely(should_fail_futex(fshared)))
 518		return -EFAULT;
 519
 520	/*
 521	 * PROCESS_PRIVATE futexes are fast.
 522	 * As the mm cannot disappear under us and the 'key' only needs
 523	 * virtual address, we dont even have to find the underlying vma.
 524	 * Note : We do have to check 'uaddr' is a valid user address,
 525	 *        but access_ok() should be faster than find_vma()
 526	 */
 527	if (!fshared) {
 528		key->private.mm = mm;
 529		key->private.address = address;
 530		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 531		return 0;
 532	}
 533
 534again:
 535	/* Ignore any VERIFY_READ mapping (futex common case) */
 536	if (unlikely(should_fail_futex(fshared)))
 537		return -EFAULT;
 538
 539	err = get_user_pages_fast(address, 1, 1, &page);
 540	/*
 541	 * If write access is not required (eg. FUTEX_WAIT), try
 542	 * and get read-only access.
 543	 */
 544	if (err == -EFAULT && rw == VERIFY_READ) {
 545		err = get_user_pages_fast(address, 1, 0, &page);
 546		ro = 1;
 547	}
 548	if (err < 0)
 549		return err;
 550	else
 551		err = 0;
 552
 553	/*
 554	 * The treatment of mapping from this point on is critical. The page
 555	 * lock protects many things but in this context the page lock
 556	 * stabilizes mapping, prevents inode freeing in the shared
 557	 * file-backed region case and guards against movement to swap cache.
 558	 *
 559	 * Strictly speaking the page lock is not needed in all cases being
 560	 * considered here and page lock forces unnecessarily serialization
 561	 * From this point on, mapping will be re-verified if necessary and
 562	 * page lock will be acquired only if it is unavoidable
 563	 *
 564	 * Mapping checks require the head page for any compound page so the
 565	 * head page and mapping is looked up now. For anonymous pages, it
 566	 * does not matter if the page splits in the future as the key is
 567	 * based on the address. For filesystem-backed pages, the tail is
 568	 * required as the index of the page determines the key. For
 569	 * base pages, there is no tail page and tail == page.
 570	 */
 571	tail = page;
 572	page = compound_head(page);
 573	mapping = READ_ONCE(page->mapping);
 574
 575	/*
 576	 * If page->mapping is NULL, then it cannot be a PageAnon
 577	 * page; but it might be the ZERO_PAGE or in the gate area or
 578	 * in a special mapping (all cases which we are happy to fail);
 579	 * or it may have been a good file page when get_user_pages_fast
 580	 * found it, but truncated or holepunched or subjected to
 581	 * invalidate_complete_page2 before we got the page lock (also
 582	 * cases which we are happy to fail).  And we hold a reference,
 583	 * so refcount care in invalidate_complete_page's remove_mapping
 584	 * prevents drop_caches from setting mapping to NULL beneath us.
 585	 *
 586	 * The case we do have to guard against is when memory pressure made
 587	 * shmem_writepage move it from filecache to swapcache beneath us:
 588	 * an unlikely race, but we do need to retry for page->mapping.
 589	 */
 590	if (unlikely(!mapping)) {
 591		int shmem_swizzled;
 592
 593		/*
 594		 * Page lock is required to identify which special case above
 595		 * applies. If this is really a shmem page then the page lock
 596		 * will prevent unexpected transitions.
 597		 */
 598		lock_page(page);
 599		shmem_swizzled = PageSwapCache(page) || page->mapping;
 600		unlock_page(page);
 601		put_page(page);
 602
 603		if (shmem_swizzled)
 604			goto again;
 605
 606		return -EFAULT;
 607	}
 608
 609	/*
 610	 * Private mappings are handled in a simple way.
 611	 *
 612	 * If the futex key is stored on an anonymous page, then the associated
 613	 * object is the mm which is implicitly pinned by the calling process.
 614	 *
 615	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 616	 * it's a read-only handle, it's expected that futexes attach to
 617	 * the object not the particular process.
 618	 */
 619	if (PageAnon(page)) {
 620		/*
 621		 * A RO anonymous page will never change and thus doesn't make
 622		 * sense for futex operations.
 623		 */
 624		if (unlikely(should_fail_futex(fshared)) || ro) {
 625			err = -EFAULT;
 626			goto out;
 627		}
 628
 629		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 630		key->private.mm = mm;
 631		key->private.address = address;
 632
 633		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 634
 635	} else {
 636		struct inode *inode;
 637
 638		/*
 639		 * The associated futex object in this case is the inode and
 640		 * the page->mapping must be traversed. Ordinarily this should
 641		 * be stabilised under page lock but it's not strictly
 642		 * necessary in this case as we just want to pin the inode, not
 643		 * update the radix tree or anything like that.
 644		 *
 645		 * The RCU read lock is taken as the inode is finally freed
 646		 * under RCU. If the mapping still matches expectations then the
 647		 * mapping->host can be safely accessed as being a valid inode.
 648		 */
 649		rcu_read_lock();
 650
 651		if (READ_ONCE(page->mapping) != mapping) {
 652			rcu_read_unlock();
 653			put_page(page);
 654
 655			goto again;
 656		}
 657
 658		inode = READ_ONCE(mapping->host);
 659		if (!inode) {
 660			rcu_read_unlock();
 661			put_page(page);
 662
 663			goto again;
 664		}
 665
 666		/*
 667		 * Take a reference unless it is about to be freed. Previously
 668		 * this reference was taken by ihold under the page lock
 669		 * pinning the inode in place so i_lock was unnecessary. The
 670		 * only way for this check to fail is if the inode was
 671		 * truncated in parallel so warn for now if this happens.
 672		 *
 673		 * We are not calling into get_futex_key_refs() in file-backed
 674		 * cases, therefore a successful atomic_inc return below will
 675		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 676		 */
 677		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
 678			rcu_read_unlock();
 679			put_page(page);
 680
 681			goto again;
 682		}
 683
 684		/* Should be impossible but lets be paranoid for now */
 685		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 686			err = -EFAULT;
 687			rcu_read_unlock();
 688			iput(inode);
 689
 690			goto out;
 691		}
 692
 693		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 694		key->shared.inode = inode;
 695		key->shared.pgoff = basepage_index(tail);
 696		rcu_read_unlock();
 697	}
 698
 699out:
 700	put_page(page);
 701	return err;
 702}
 703
 704static inline void put_futex_key(union futex_key *key)
 705{
 706	drop_futex_key_refs(key);
 707}
 708
 709/**
 710 * fault_in_user_writeable() - Fault in user address and verify RW access
 711 * @uaddr:	pointer to faulting user space address
 712 *
 713 * Slow path to fixup the fault we just took in the atomic write
 714 * access to @uaddr.
 715 *
 716 * We have no generic implementation of a non-destructive write to the
 717 * user address. We know that we faulted in the atomic pagefault
 718 * disabled section so we can as well avoid the #PF overhead by
 719 * calling get_user_pages() right away.
 720 */
 721static int fault_in_user_writeable(u32 __user *uaddr)
 722{
 723	struct mm_struct *mm = current->mm;
 724	int ret;
 725
 726	down_read(&mm->mmap_sem);
 727	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 728			       FAULT_FLAG_WRITE, NULL);
 729	up_read(&mm->mmap_sem);
 730
 731	return ret < 0 ? ret : 0;
 732}
 733
 734/**
 735 * futex_top_waiter() - Return the highest priority waiter on a futex
 736 * @hb:		the hash bucket the futex_q's reside in
 737 * @key:	the futex key (to distinguish it from other futex futex_q's)
 738 *
 739 * Must be called with the hb lock held.
 740 */
 741static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 742					union futex_key *key)
 743{
 744	struct futex_q *this;
 745
 746	plist_for_each_entry(this, &hb->chain, list) {
 747		if (match_futex(&this->key, key))
 748			return this;
 749	}
 750	return NULL;
 751}
 752
 753static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 754				      u32 uval, u32 newval)
 755{
 756	int ret;
 757
 758	pagefault_disable();
 759	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 760	pagefault_enable();
 761
 762	return ret;
 763}
 764
 765static int get_futex_value_locked(u32 *dest, u32 __user *from)
 766{
 767	int ret;
 768
 769	pagefault_disable();
 770	ret = __get_user(*dest, from);
 771	pagefault_enable();
 772
 773	return ret ? -EFAULT : 0;
 774}
 775
 776
 777/*
 778 * PI code:
 779 */
 780static int refill_pi_state_cache(void)
 781{
 782	struct futex_pi_state *pi_state;
 783
 784	if (likely(current->pi_state_cache))
 785		return 0;
 786
 787	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 788
 789	if (!pi_state)
 790		return -ENOMEM;
 791
 792	INIT_LIST_HEAD(&pi_state->list);
 793	/* pi_mutex gets initialized later */
 794	pi_state->owner = NULL;
 795	atomic_set(&pi_state->refcount, 1);
 796	pi_state->key = FUTEX_KEY_INIT;
 797
 798	current->pi_state_cache = pi_state;
 799
 800	return 0;
 801}
 802
 803static struct futex_pi_state * alloc_pi_state(void)
 804{
 805	struct futex_pi_state *pi_state = current->pi_state_cache;
 806
 807	WARN_ON(!pi_state);
 808	current->pi_state_cache = NULL;
 809
 810	return pi_state;
 811}
 812
 
 
 
 
 
 813/*
 814 * Drops a reference to the pi_state object and frees or caches it
 815 * when the last reference is gone.
 816 *
 817 * Must be called with the hb lock held.
 818 */
 819static void put_pi_state(struct futex_pi_state *pi_state)
 820{
 821	if (!pi_state)
 822		return;
 823
 824	if (!atomic_dec_and_test(&pi_state->refcount))
 825		return;
 826
 827	/*
 828	 * If pi_state->owner is NULL, the owner is most probably dying
 829	 * and has cleaned up the pi_state already
 830	 */
 831	if (pi_state->owner) {
 832		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 833		list_del_init(&pi_state->list);
 834		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 835
 836		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 
 
 
 
 
 
 
 
 837	}
 838
 839	if (current->pi_state_cache)
 840		kfree(pi_state);
 841	else {
 842		/*
 843		 * pi_state->list is already empty.
 844		 * clear pi_state->owner.
 845		 * refcount is at 0 - put it back to 1.
 846		 */
 847		pi_state->owner = NULL;
 848		atomic_set(&pi_state->refcount, 1);
 849		current->pi_state_cache = pi_state;
 850	}
 851}
 852
 853/*
 854 * Look up the task based on what TID userspace gave us.
 855 * We dont trust it.
 856 */
 857static struct task_struct * futex_find_get_task(pid_t pid)
 858{
 859	struct task_struct *p;
 860
 861	rcu_read_lock();
 862	p = find_task_by_vpid(pid);
 863	if (p)
 864		get_task_struct(p);
 865
 866	rcu_read_unlock();
 867
 868	return p;
 869}
 870
 871/*
 872 * This task is holding PI mutexes at exit time => bad.
 873 * Kernel cleans up PI-state, but userspace is likely hosed.
 874 * (Robust-futex cleanup is separate and might save the day for userspace.)
 875 */
 876void exit_pi_state_list(struct task_struct *curr)
 877{
 878	struct list_head *next, *head = &curr->pi_state_list;
 879	struct futex_pi_state *pi_state;
 880	struct futex_hash_bucket *hb;
 881	union futex_key key = FUTEX_KEY_INIT;
 882
 883	if (!futex_cmpxchg_enabled)
 884		return;
 885	/*
 886	 * We are a ZOMBIE and nobody can enqueue itself on
 887	 * pi_state_list anymore, but we have to be careful
 888	 * versus waiters unqueueing themselves:
 889	 */
 890	raw_spin_lock_irq(&curr->pi_lock);
 891	while (!list_empty(head)) {
 892
 893		next = head->next;
 894		pi_state = list_entry(next, struct futex_pi_state, list);
 895		key = pi_state->key;
 896		hb = hash_futex(&key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897		raw_spin_unlock_irq(&curr->pi_lock);
 898
 899		spin_lock(&hb->lock);
 900
 901		raw_spin_lock_irq(&curr->pi_lock);
 902		/*
 903		 * We dropped the pi-lock, so re-check whether this
 904		 * task still owns the PI-state:
 905		 */
 906		if (head->next != next) {
 
 
 907			spin_unlock(&hb->lock);
 
 908			continue;
 909		}
 910
 911		WARN_ON(pi_state->owner != curr);
 912		WARN_ON(list_empty(&pi_state->list));
 913		list_del_init(&pi_state->list);
 914		pi_state->owner = NULL;
 915		raw_spin_unlock_irq(&curr->pi_lock);
 916
 917		rt_mutex_unlock(&pi_state->pi_mutex);
 918
 
 
 919		spin_unlock(&hb->lock);
 920
 
 
 
 921		raw_spin_lock_irq(&curr->pi_lock);
 922	}
 923	raw_spin_unlock_irq(&curr->pi_lock);
 924}
 
 
 
 925
 926/*
 927 * We need to check the following states:
 928 *
 929 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 930 *
 931 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 932 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 933 *
 934 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 935 *
 936 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 937 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 938 *
 939 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 940 *
 941 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 942 *
 943 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 944 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 945 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 946 *
 947 * [1]	Indicates that the kernel can acquire the futex atomically. We
 948 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 949 *
 950 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 951 *      thread is found then it indicates that the owner TID has died.
 952 *
 953 * [3]	Invalid. The waiter is queued on a non PI futex
 954 *
 955 * [4]	Valid state after exit_robust_list(), which sets the user space
 956 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 957 *
 958 * [5]	The user space value got manipulated between exit_robust_list()
 959 *	and exit_pi_state_list()
 960 *
 961 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 962 *	the pi_state but cannot access the user space value.
 963 *
 964 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 965 *
 966 * [8]	Owner and user space value match
 967 *
 968 * [9]	There is no transient state which sets the user space TID to 0
 969 *	except exit_robust_list(), but this is indicated by the
 970 *	FUTEX_OWNER_DIED bit. See [4]
 971 *
 972 * [10] There is no transient state which leaves owner and user space
 973 *	TID out of sync.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974 */
 975
 976/*
 977 * Validate that the existing waiter has a pi_state and sanity check
 978 * the pi_state against the user space value. If correct, attach to
 979 * it.
 980 */
 981static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 
 982			      struct futex_pi_state **ps)
 983{
 984	pid_t pid = uval & FUTEX_TID_MASK;
 
 
 985
 986	/*
 987	 * Userspace might have messed up non-PI and PI futexes [3]
 988	 */
 989	if (unlikely(!pi_state))
 990		return -EINVAL;
 991
 992	WARN_ON(!atomic_read(&pi_state->refcount));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	/*
 995	 * Handle the owner died case:
 996	 */
 997	if (uval & FUTEX_OWNER_DIED) {
 998		/*
 999		 * exit_pi_state_list sets owner to NULL and wakes the
1000		 * topmost waiter. The task which acquires the
1001		 * pi_state->rt_mutex will fixup owner.
1002		 */
1003		if (!pi_state->owner) {
1004			/*
1005			 * No pi state owner, but the user space TID
1006			 * is not 0. Inconsistent state. [5]
1007			 */
1008			if (pid)
1009				return -EINVAL;
1010			/*
1011			 * Take a ref on the state and return success. [4]
1012			 */
1013			goto out_state;
1014		}
1015
1016		/*
1017		 * If TID is 0, then either the dying owner has not
1018		 * yet executed exit_pi_state_list() or some waiter
1019		 * acquired the rtmutex in the pi state, but did not
1020		 * yet fixup the TID in user space.
1021		 *
1022		 * Take a ref on the state and return success. [6]
1023		 */
1024		if (!pid)
1025			goto out_state;
1026	} else {
1027		/*
1028		 * If the owner died bit is not set, then the pi_state
1029		 * must have an owner. [7]
1030		 */
1031		if (!pi_state->owner)
1032			return -EINVAL;
1033	}
1034
1035	/*
1036	 * Bail out if user space manipulated the futex value. If pi
1037	 * state exists then the owner TID must be the same as the
1038	 * user space TID. [9/10]
1039	 */
1040	if (pid != task_pid_vnr(pi_state->owner))
1041		return -EINVAL;
1042out_state:
1043	atomic_inc(&pi_state->refcount);
 
 
1044	*ps = pi_state;
1045	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * Lookup the task for the TID provided from user space and attach to
1050 * it after doing proper sanity checks.
1051 */
1052static int attach_to_pi_owner(u32 uval, union futex_key *key,
1053			      struct futex_pi_state **ps)
 
1054{
1055	pid_t pid = uval & FUTEX_TID_MASK;
1056	struct futex_pi_state *pi_state;
1057	struct task_struct *p;
1058
1059	/*
1060	 * We are the first waiter - try to look up the real owner and attach
1061	 * the new pi_state to it, but bail out when TID = 0 [1]
 
 
 
1062	 */
1063	if (!pid)
1064		return -ESRCH;
1065	p = futex_find_get_task(pid);
1066	if (!p)
1067		return -ESRCH;
1068
1069	if (unlikely(p->flags & PF_KTHREAD)) {
1070		put_task_struct(p);
1071		return -EPERM;
1072	}
1073
1074	/*
1075	 * We need to look at the task state flags to figure out,
1076	 * whether the task is exiting. To protect against the do_exit
1077	 * change of the task flags, we do this protected by
1078	 * p->pi_lock:
1079	 */
1080	raw_spin_lock_irq(&p->pi_lock);
1081	if (unlikely(p->flags & PF_EXITING)) {
1082		/*
1083		 * The task is on the way out. When PF_EXITPIDONE is
1084		 * set, we know that the task has finished the
1085		 * cleanup:
1086		 */
1087		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1088
1089		raw_spin_unlock_irq(&p->pi_lock);
1090		put_task_struct(p);
 
 
 
 
 
 
 
 
 
 
 
 
1091		return ret;
1092	}
1093
1094	/*
1095	 * No existing pi state. First waiter. [2]
 
 
 
1096	 */
1097	pi_state = alloc_pi_state();
1098
1099	/*
1100	 * Initialize the pi_mutex in locked state and make @p
1101	 * the owner of it:
1102	 */
1103	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1104
1105	/* Store the key for possible exit cleanups: */
1106	pi_state->key = *key;
1107
1108	WARN_ON(!list_empty(&pi_state->list));
1109	list_add(&pi_state->list, &p->pi_state_list);
 
 
 
 
1110	pi_state->owner = p;
1111	raw_spin_unlock_irq(&p->pi_lock);
1112
1113	put_task_struct(p);
1114
1115	*ps = pi_state;
1116
1117	return 0;
1118}
1119
1120static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1121			   union futex_key *key, struct futex_pi_state **ps)
 
 
1122{
1123	struct futex_q *match = futex_top_waiter(hb, key);
1124
1125	/*
1126	 * If there is a waiter on that futex, validate it and
1127	 * attach to the pi_state when the validation succeeds.
1128	 */
1129	if (match)
1130		return attach_to_pi_state(uval, match->pi_state, ps);
1131
1132	/*
1133	 * We are the first waiter - try to look up the owner based on
1134	 * @uval and attach to it.
1135	 */
1136	return attach_to_pi_owner(uval, key, ps);
1137}
1138
1139static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1140{
1141	u32 uninitialized_var(curval);
 
1142
1143	if (unlikely(should_fail_futex(true)))
1144		return -EFAULT;
1145
1146	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1147		return -EFAULT;
 
1148
1149	/*If user space value changed, let the caller retry */
1150	return curval != uval ? -EAGAIN : 0;
1151}
1152
1153/**
1154 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1155 * @uaddr:		the pi futex user address
1156 * @hb:			the pi futex hash bucket
1157 * @key:		the futex key associated with uaddr and hb
1158 * @ps:			the pi_state pointer where we store the result of the
1159 *			lookup
1160 * @task:		the task to perform the atomic lock work for.  This will
1161 *			be "current" except in the case of requeue pi.
 
 
1162 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1163 *
1164 * Return:
1165 *  0 - ready to wait;
1166 *  1 - acquired the lock;
1167 * <0 - error
1168 *
1169 * The hb->lock and futex_key refs shall be held by the caller.
 
 
 
 
1170 */
1171static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1172				union futex_key *key,
1173				struct futex_pi_state **ps,
1174				struct task_struct *task, int set_waiters)
 
 
1175{
1176	u32 uval, newval, vpid = task_pid_vnr(task);
1177	struct futex_q *match;
1178	int ret;
1179
1180	/*
1181	 * Read the user space value first so we can validate a few
1182	 * things before proceeding further.
1183	 */
1184	if (get_futex_value_locked(&uval, uaddr))
1185		return -EFAULT;
1186
1187	if (unlikely(should_fail_futex(true)))
1188		return -EFAULT;
1189
1190	/*
1191	 * Detect deadlocks.
1192	 */
1193	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1194		return -EDEADLK;
1195
1196	if ((unlikely(should_fail_futex(true))))
1197		return -EDEADLK;
1198
1199	/*
1200	 * Lookup existing state first. If it exists, try to attach to
1201	 * its pi_state.
1202	 */
1203	match = futex_top_waiter(hb, key);
1204	if (match)
1205		return attach_to_pi_state(uval, match->pi_state, ps);
1206
1207	/*
1208	 * No waiter and user TID is 0. We are here because the
1209	 * waiters or the owner died bit is set or called from
1210	 * requeue_cmp_pi or for whatever reason something took the
1211	 * syscall.
1212	 */
1213	if (!(uval & FUTEX_TID_MASK)) {
1214		/*
1215		 * We take over the futex. No other waiters and the user space
1216		 * TID is 0. We preserve the owner died bit.
1217		 */
1218		newval = uval & FUTEX_OWNER_DIED;
1219		newval |= vpid;
1220
1221		/* The futex requeue_pi code can enforce the waiters bit */
1222		if (set_waiters)
1223			newval |= FUTEX_WAITERS;
1224
1225		ret = lock_pi_update_atomic(uaddr, uval, newval);
1226		/* If the take over worked, return 1 */
1227		return ret < 0 ? ret : 1;
1228	}
1229
1230	/*
1231	 * First waiter. Set the waiters bit before attaching ourself to
1232	 * the owner. If owner tries to unlock, it will be forced into
1233	 * the kernel and blocked on hb->lock.
1234	 */
1235	newval = uval | FUTEX_WAITERS;
1236	ret = lock_pi_update_atomic(uaddr, uval, newval);
1237	if (ret)
1238		return ret;
1239	/*
1240	 * If the update of the user space value succeeded, we try to
1241	 * attach to the owner. If that fails, no harm done, we only
1242	 * set the FUTEX_WAITERS bit in the user space variable.
1243	 */
1244	return attach_to_pi_owner(uval, key, ps);
1245}
1246
1247/**
1248 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1249 * @q:	The futex_q to unqueue
1250 *
1251 * The q->lock_ptr must not be NULL and must be held by the caller.
1252 */
1253static void __unqueue_futex(struct futex_q *q)
1254{
1255	struct futex_hash_bucket *hb;
1256
1257	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1258	    || WARN_ON(plist_node_empty(&q->list)))
1259		return;
 
1260
1261	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1262	plist_del(&q->list, &hb->chain);
1263	hb_waiters_dec(hb);
1264}
1265
1266/*
1267 * The hash bucket lock must be held when this is called.
1268 * Afterwards, the futex_q must not be accessed. Callers
1269 * must ensure to later call wake_up_q() for the actual
1270 * wakeups to occur.
1271 */
1272static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1273{
1274	struct task_struct *p = q->task;
1275
1276	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1277		return;
1278
 
 
1279	/*
1280	 * Queue the task for later wakeup for after we've released
1281	 * the hb->lock. wake_q_add() grabs reference to p.
 
 
 
1282	 */
1283	wake_q_add(wake_q, p);
1284	__unqueue_futex(q);
1285	/*
1286	 * The waiting task can free the futex_q as soon as
1287	 * q->lock_ptr = NULL is written, without taking any locks. A
1288	 * memory barrier is required here to prevent the following
1289	 * store to lock_ptr from getting ahead of the plist_del.
1290	 */
1291	smp_wmb();
1292	q->lock_ptr = NULL;
1293}
1294
1295static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1296			 struct futex_hash_bucket *hb)
 
 
1297{
 
1298	struct task_struct *new_owner;
1299	struct futex_pi_state *pi_state = this->pi_state;
1300	u32 uninitialized_var(curval), newval;
1301	DEFINE_WAKE_Q(wake_q);
1302	bool deboost;
1303	int ret = 0;
1304
1305	if (!pi_state)
1306		return -EINVAL;
1307
1308	/*
1309	 * If current does not own the pi_state then the futex is
1310	 * inconsistent and user space fiddled with the futex value.
1311	 */
1312	if (pi_state->owner != current)
1313		return -EINVAL;
1314
1315	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1316	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
1317
1318	/*
1319	 * It is possible that the next waiter (the one that brought
1320	 * this owner to the kernel) timed out and is no longer
1321	 * waiting on the lock.
1322	 */
1323	if (!new_owner)
1324		new_owner = this->task;
1325
1326	/*
1327	 * We pass it to the next owner. The WAITERS bit is always
1328	 * kept enabled while there is PI state around. We cleanup the
1329	 * owner died bit, because we are the owner.
1330	 */
1331	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1332
1333	if (unlikely(should_fail_futex(true)))
1334		ret = -EFAULT;
1335
1336	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1337		ret = -EFAULT;
1338	} else if (curval != uval) {
1339		/*
1340		 * If a unconditional UNLOCK_PI operation (user space did not
1341		 * try the TID->0 transition) raced with a waiter setting the
1342		 * FUTEX_WAITERS flag between get_user() and locking the hash
1343		 * bucket lock, retry the operation.
1344		 */
1345		if ((FUTEX_TID_MASK & curval) == uval)
1346			ret = -EAGAIN;
1347		else
1348			ret = -EINVAL;
1349	}
1350	if (ret) {
1351		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1352		return ret;
1353	}
 
 
 
 
1354
1355	raw_spin_lock(&pi_state->owner->pi_lock);
1356	WARN_ON(list_empty(&pi_state->list));
1357	list_del_init(&pi_state->list);
1358	raw_spin_unlock(&pi_state->owner->pi_lock);
1359
1360	raw_spin_lock(&new_owner->pi_lock);
1361	WARN_ON(!list_empty(&pi_state->list));
1362	list_add(&pi_state->list, &new_owner->pi_state_list);
1363	pi_state->owner = new_owner;
1364	raw_spin_unlock(&new_owner->pi_lock);
1365
1366	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1367
1368	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
 
1369
1370	/*
1371	 * First unlock HB so the waiter does not spin on it once he got woken
1372	 * up. Second wake up the waiter before the priority is adjusted. If we
1373	 * deboost first (and lose our higher priority), then the task might get
1374	 * scheduled away before the wake up can take place.
1375	 */
1376	spin_unlock(&hb->lock);
1377	wake_up_q(&wake_q);
1378	if (deboost)
1379		rt_mutex_adjust_prio(current);
1380
1381	return 0;
1382}
1383
1384/*
1385 * Express the locking dependencies for lockdep:
1386 */
1387static inline void
1388double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1389{
1390	if (hb1 <= hb2) {
1391		spin_lock(&hb1->lock);
1392		if (hb1 < hb2)
1393			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1394	} else { /* hb1 > hb2 */
1395		spin_lock(&hb2->lock);
1396		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1397	}
1398}
1399
1400static inline void
1401double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1402{
1403	spin_unlock(&hb1->lock);
1404	if (hb1 != hb2)
1405		spin_unlock(&hb2->lock);
1406}
1407
1408/*
1409 * Wake up waiters matching bitset queued on this futex (uaddr).
1410 */
1411static int
1412futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1413{
1414	struct futex_hash_bucket *hb;
1415	struct futex_q *this, *next;
1416	union futex_key key = FUTEX_KEY_INIT;
1417	int ret;
1418	DEFINE_WAKE_Q(wake_q);
1419
1420	if (!bitset)
1421		return -EINVAL;
1422
1423	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1424	if (unlikely(ret != 0))
1425		goto out;
1426
1427	hb = hash_futex(&key);
1428
1429	/* Make sure we really have tasks to wakeup */
1430	if (!hb_waiters_pending(hb))
1431		goto out_put_key;
1432
1433	spin_lock(&hb->lock);
1434
1435	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1436		if (match_futex (&this->key, &key)) {
1437			if (this->pi_state || this->rt_waiter) {
1438				ret = -EINVAL;
1439				break;
1440			}
1441
1442			/* Check if one of the bits is set in both bitsets */
1443			if (!(this->bitset & bitset))
1444				continue;
1445
1446			mark_wake_futex(&wake_q, this);
1447			if (++ret >= nr_wake)
1448				break;
1449		}
1450	}
1451
1452	spin_unlock(&hb->lock);
1453	wake_up_q(&wake_q);
1454out_put_key:
1455	put_futex_key(&key);
1456out:
1457	return ret;
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460/*
1461 * Wake up all waiters hashed on the physical page that is mapped
1462 * to this virtual address:
1463 */
1464static int
1465futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1466	      int nr_wake, int nr_wake2, int op)
1467{
1468	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1469	struct futex_hash_bucket *hb1, *hb2;
1470	struct futex_q *this, *next;
1471	int ret, op_ret;
1472	DEFINE_WAKE_Q(wake_q);
1473
1474retry:
1475	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1476	if (unlikely(ret != 0))
1477		goto out;
1478	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1479	if (unlikely(ret != 0))
1480		goto out_put_key1;
1481
1482	hb1 = hash_futex(&key1);
1483	hb2 = hash_futex(&key2);
1484
1485retry_private:
1486	double_lock_hb(hb1, hb2);
1487	op_ret = futex_atomic_op_inuser(op, uaddr2);
1488	if (unlikely(op_ret < 0)) {
1489
1490		double_unlock_hb(hb1, hb2);
1491
1492#ifndef CONFIG_MMU
1493		/*
1494		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1495		 * but we might get them from range checking
1496		 */
1497		ret = op_ret;
1498		goto out_put_keys;
1499#endif
1500
1501		if (unlikely(op_ret != -EFAULT)) {
1502			ret = op_ret;
1503			goto out_put_keys;
1504		}
1505
1506		ret = fault_in_user_writeable(uaddr2);
1507		if (ret)
1508			goto out_put_keys;
 
 
1509
1510		if (!(flags & FLAGS_SHARED))
 
1511			goto retry_private;
 
1512
1513		put_futex_key(&key2);
1514		put_futex_key(&key1);
1515		goto retry;
1516	}
1517
1518	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1519		if (match_futex (&this->key, &key1)) {
1520			if (this->pi_state || this->rt_waiter) {
1521				ret = -EINVAL;
1522				goto out_unlock;
1523			}
1524			mark_wake_futex(&wake_q, this);
1525			if (++ret >= nr_wake)
1526				break;
1527		}
1528	}
1529
1530	if (op_ret > 0) {
1531		op_ret = 0;
1532		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1533			if (match_futex (&this->key, &key2)) {
1534				if (this->pi_state || this->rt_waiter) {
1535					ret = -EINVAL;
1536					goto out_unlock;
1537				}
1538				mark_wake_futex(&wake_q, this);
1539				if (++op_ret >= nr_wake2)
1540					break;
1541			}
1542		}
1543		ret += op_ret;
1544	}
1545
1546out_unlock:
1547	double_unlock_hb(hb1, hb2);
1548	wake_up_q(&wake_q);
1549out_put_keys:
1550	put_futex_key(&key2);
1551out_put_key1:
1552	put_futex_key(&key1);
1553out:
1554	return ret;
1555}
1556
1557/**
1558 * requeue_futex() - Requeue a futex_q from one hb to another
1559 * @q:		the futex_q to requeue
1560 * @hb1:	the source hash_bucket
1561 * @hb2:	the target hash_bucket
1562 * @key2:	the new key for the requeued futex_q
1563 */
1564static inline
1565void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1566		   struct futex_hash_bucket *hb2, union futex_key *key2)
1567{
1568
1569	/*
1570	 * If key1 and key2 hash to the same bucket, no need to
1571	 * requeue.
1572	 */
1573	if (likely(&hb1->chain != &hb2->chain)) {
1574		plist_del(&q->list, &hb1->chain);
1575		hb_waiters_dec(hb1);
1576		hb_waiters_inc(hb2);
1577		plist_add(&q->list, &hb2->chain);
1578		q->lock_ptr = &hb2->lock;
1579	}
1580	get_futex_key_refs(key2);
1581	q->key = *key2;
1582}
1583
1584/**
1585 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1586 * @q:		the futex_q
1587 * @key:	the key of the requeue target futex
1588 * @hb:		the hash_bucket of the requeue target futex
1589 *
1590 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1591 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1592 * to the requeue target futex so the waiter can detect the wakeup on the right
1593 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1594 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1595 * to protect access to the pi_state to fixup the owner later.  Must be called
1596 * with both q->lock_ptr and hb->lock held.
1597 */
1598static inline
1599void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1600			   struct futex_hash_bucket *hb)
1601{
1602	get_futex_key_refs(key);
1603	q->key = *key;
1604
1605	__unqueue_futex(q);
1606
1607	WARN_ON(!q->rt_waiter);
1608	q->rt_waiter = NULL;
1609
1610	q->lock_ptr = &hb->lock;
1611
1612	wake_up_state(q->task, TASK_NORMAL);
1613}
1614
1615/**
1616 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1617 * @pifutex:		the user address of the to futex
1618 * @hb1:		the from futex hash bucket, must be locked by the caller
1619 * @hb2:		the to futex hash bucket, must be locked by the caller
1620 * @key1:		the from futex key
1621 * @key2:		the to futex key
1622 * @ps:			address to store the pi_state pointer
 
 
1623 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1624 *
1625 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1626 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1627 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1628 * hb1 and hb2 must be held by the caller.
1629 *
 
 
 
 
1630 * Return:
1631 *  0 - failed to acquire the lock atomically;
1632 * >0 - acquired the lock, return value is vpid of the top_waiter
1633 * <0 - error
1634 */
1635static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1636				 struct futex_hash_bucket *hb1,
1637				 struct futex_hash_bucket *hb2,
1638				 union futex_key *key1, union futex_key *key2,
1639				 struct futex_pi_state **ps, int set_waiters)
1640{
1641	struct futex_q *top_waiter = NULL;
1642	u32 curval;
1643	int ret, vpid;
1644
1645	if (get_futex_value_locked(&curval, pifutex))
1646		return -EFAULT;
1647
1648	if (unlikely(should_fail_futex(true)))
1649		return -EFAULT;
1650
1651	/*
1652	 * Find the top_waiter and determine if there are additional waiters.
1653	 * If the caller intends to requeue more than 1 waiter to pifutex,
1654	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1655	 * as we have means to handle the possible fault.  If not, don't set
1656	 * the bit unecessarily as it will force the subsequent unlock to enter
1657	 * the kernel.
1658	 */
1659	top_waiter = futex_top_waiter(hb1, key1);
1660
1661	/* There are no waiters, nothing for us to do. */
1662	if (!top_waiter)
1663		return 0;
1664
1665	/* Ensure we requeue to the expected futex. */
1666	if (!match_futex(top_waiter->requeue_pi_key, key2))
1667		return -EINVAL;
1668
1669	/*
1670	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1671	 * the contended case or if set_waiters is 1.  The pi_state is returned
1672	 * in ps in contended cases.
1673	 */
1674	vpid = task_pid_vnr(top_waiter->task);
1675	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1676				   set_waiters);
1677	if (ret == 1) {
1678		requeue_pi_wake_futex(top_waiter, key2, hb2);
1679		return vpid;
1680	}
1681	return ret;
1682}
1683
1684/**
1685 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1686 * @uaddr1:	source futex user address
1687 * @flags:	futex flags (FLAGS_SHARED, etc.)
1688 * @uaddr2:	target futex user address
1689 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1690 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1691 * @cmpval:	@uaddr1 expected value (or %NULL)
1692 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1693 *		pi futex (pi to pi requeue is not supported)
1694 *
1695 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1696 * uaddr2 atomically on behalf of the top waiter.
1697 *
1698 * Return:
1699 * >=0 - on success, the number of tasks requeued or woken;
1700 *  <0 - on error
1701 */
1702static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1703			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1704			 u32 *cmpval, int requeue_pi)
1705{
1706	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1707	int drop_count = 0, task_count = 0, ret;
1708	struct futex_pi_state *pi_state = NULL;
1709	struct futex_hash_bucket *hb1, *hb2;
1710	struct futex_q *this, *next;
1711	DEFINE_WAKE_Q(wake_q);
1712
 
 
 
 
 
 
 
 
 
 
 
 
1713	if (requeue_pi) {
1714		/*
1715		 * Requeue PI only works on two distinct uaddrs. This
1716		 * check is only valid for private futexes. See below.
1717		 */
1718		if (uaddr1 == uaddr2)
1719			return -EINVAL;
1720
1721		/*
1722		 * requeue_pi requires a pi_state, try to allocate it now
1723		 * without any locks in case it fails.
1724		 */
1725		if (refill_pi_state_cache())
1726			return -ENOMEM;
1727		/*
1728		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1729		 * + nr_requeue, since it acquires the rt_mutex prior to
1730		 * returning to userspace, so as to not leave the rt_mutex with
1731		 * waiters and no owner.  However, second and third wake-ups
1732		 * cannot be predicted as they involve race conditions with the
1733		 * first wake and a fault while looking up the pi_state.  Both
1734		 * pthread_cond_signal() and pthread_cond_broadcast() should
1735		 * use nr_wake=1.
1736		 */
1737		if (nr_wake != 1)
1738			return -EINVAL;
1739	}
1740
1741retry:
1742	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1743	if (unlikely(ret != 0))
1744		goto out;
1745	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1746			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1747	if (unlikely(ret != 0))
1748		goto out_put_key1;
1749
1750	/*
1751	 * The check above which compares uaddrs is not sufficient for
1752	 * shared futexes. We need to compare the keys:
1753	 */
1754	if (requeue_pi && match_futex(&key1, &key2)) {
1755		ret = -EINVAL;
1756		goto out_put_keys;
1757	}
1758
1759	hb1 = hash_futex(&key1);
1760	hb2 = hash_futex(&key2);
1761
1762retry_private:
1763	hb_waiters_inc(hb2);
1764	double_lock_hb(hb1, hb2);
1765
1766	if (likely(cmpval != NULL)) {
1767		u32 curval;
1768
1769		ret = get_futex_value_locked(&curval, uaddr1);
1770
1771		if (unlikely(ret)) {
1772			double_unlock_hb(hb1, hb2);
1773			hb_waiters_dec(hb2);
1774
1775			ret = get_user(curval, uaddr1);
1776			if (ret)
1777				goto out_put_keys;
1778
1779			if (!(flags & FLAGS_SHARED))
1780				goto retry_private;
1781
1782			put_futex_key(&key2);
1783			put_futex_key(&key1);
1784			goto retry;
1785		}
1786		if (curval != *cmpval) {
1787			ret = -EAGAIN;
1788			goto out_unlock;
1789		}
1790	}
1791
1792	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
 
 
1793		/*
1794		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1795		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1796		 * bit.  We force this here where we are able to easily handle
1797		 * faults rather in the requeue loop below.
1798		 */
1799		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1800						 &key2, &pi_state, nr_requeue);
 
1801
1802		/*
1803		 * At this point the top_waiter has either taken uaddr2 or is
1804		 * waiting on it.  If the former, then the pi_state will not
1805		 * exist yet, look it up one more time to ensure we have a
1806		 * reference to it. If the lock was taken, ret contains the
1807		 * vpid of the top waiter task.
1808		 * If the lock was not taken, we have pi_state and an initial
1809		 * refcount on it. In case of an error we have nothing.
1810		 */
1811		if (ret > 0) {
1812			WARN_ON(pi_state);
1813			drop_count++;
1814			task_count++;
1815			/*
1816			 * If we acquired the lock, then the user space value
1817			 * of uaddr2 should be vpid. It cannot be changed by
1818			 * the top waiter as it is blocked on hb2 lock if it
1819			 * tries to do so. If something fiddled with it behind
1820			 * our back the pi state lookup might unearth it. So
1821			 * we rather use the known value than rereading and
1822			 * handing potential crap to lookup_pi_state.
1823			 *
1824			 * If that call succeeds then we have pi_state and an
1825			 * initial refcount on it.
1826			 */
1827			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
 
1828		}
1829
1830		switch (ret) {
1831		case 0:
1832			/* We hold a reference on the pi state. */
1833			break;
1834
1835			/* If the above failed, then pi_state is NULL */
1836		case -EFAULT:
1837			double_unlock_hb(hb1, hb2);
1838			hb_waiters_dec(hb2);
1839			put_futex_key(&key2);
1840			put_futex_key(&key1);
1841			ret = fault_in_user_writeable(uaddr2);
1842			if (!ret)
1843				goto retry;
1844			goto out;
 
1845		case -EAGAIN:
1846			/*
1847			 * Two reasons for this:
1848			 * - Owner is exiting and we just wait for the
1849			 *   exit to complete.
1850			 * - The user space value changed.
1851			 */
1852			double_unlock_hb(hb1, hb2);
1853			hb_waiters_dec(hb2);
1854			put_futex_key(&key2);
1855			put_futex_key(&key1);
 
 
 
 
1856			cond_resched();
1857			goto retry;
1858		default:
1859			goto out_unlock;
1860		}
1861	}
1862
1863	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1864		if (task_count - nr_wake >= nr_requeue)
1865			break;
1866
1867		if (!match_futex(&this->key, &key1))
1868			continue;
1869
1870		/*
1871		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1872		 * be paired with each other and no other futex ops.
1873		 *
1874		 * We should never be requeueing a futex_q with a pi_state,
1875		 * which is awaiting a futex_unlock_pi().
1876		 */
1877		if ((requeue_pi && !this->rt_waiter) ||
1878		    (!requeue_pi && this->rt_waiter) ||
1879		    this->pi_state) {
1880			ret = -EINVAL;
1881			break;
1882		}
1883
1884		/*
1885		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1886		 * lock, we already woke the top_waiter.  If not, it will be
1887		 * woken by futex_unlock_pi().
1888		 */
1889		if (++task_count <= nr_wake && !requeue_pi) {
1890			mark_wake_futex(&wake_q, this);
1891			continue;
1892		}
1893
1894		/* Ensure we requeue to the expected futex for requeue_pi. */
1895		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1896			ret = -EINVAL;
1897			break;
1898		}
1899
1900		/*
1901		 * Requeue nr_requeue waiters and possibly one more in the case
1902		 * of requeue_pi if we couldn't acquire the lock atomically.
1903		 */
1904		if (requeue_pi) {
1905			/*
1906			 * Prepare the waiter to take the rt_mutex. Take a
1907			 * refcount on the pi_state and store the pointer in
1908			 * the futex_q object of the waiter.
1909			 */
1910			atomic_inc(&pi_state->refcount);
1911			this->pi_state = pi_state;
1912			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1913							this->rt_waiter,
1914							this->task);
1915			if (ret == 1) {
1916				/*
1917				 * We got the lock. We do neither drop the
1918				 * refcount on pi_state nor clear
1919				 * this->pi_state because the waiter needs the
1920				 * pi_state for cleaning up the user space
1921				 * value. It will drop the refcount after
1922				 * doing so.
1923				 */
1924				requeue_pi_wake_futex(this, &key2, hb2);
1925				drop_count++;
1926				continue;
1927			} else if (ret) {
1928				/*
1929				 * rt_mutex_start_proxy_lock() detected a
1930				 * potential deadlock when we tried to queue
1931				 * that waiter. Drop the pi_state reference
1932				 * which we took above and remove the pointer
1933				 * to the state from the waiters futex_q
1934				 * object.
1935				 */
1936				this->pi_state = NULL;
1937				put_pi_state(pi_state);
1938				/*
1939				 * We stop queueing more waiters and let user
1940				 * space deal with the mess.
1941				 */
1942				break;
1943			}
1944		}
1945		requeue_futex(this, hb1, hb2, &key2);
1946		drop_count++;
1947	}
1948
1949	/*
1950	 * We took an extra initial reference to the pi_state either
1951	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1952	 * need to drop it here again.
1953	 */
1954	put_pi_state(pi_state);
1955
1956out_unlock:
1957	double_unlock_hb(hb1, hb2);
1958	wake_up_q(&wake_q);
1959	hb_waiters_dec(hb2);
1960
1961	/*
1962	 * drop_futex_key_refs() must be called outside the spinlocks. During
1963	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1964	 * one at key2 and updated their key pointer.  We no longer need to
1965	 * hold the references to key1.
1966	 */
1967	while (--drop_count >= 0)
1968		drop_futex_key_refs(&key1);
1969
1970out_put_keys:
1971	put_futex_key(&key2);
1972out_put_key1:
1973	put_futex_key(&key1);
1974out:
1975	return ret ? ret : task_count;
1976}
1977
1978/* The key must be already stored in q->key. */
1979static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1980	__acquires(&hb->lock)
1981{
1982	struct futex_hash_bucket *hb;
1983
1984	hb = hash_futex(&q->key);
1985
1986	/*
1987	 * Increment the counter before taking the lock so that
1988	 * a potential waker won't miss a to-be-slept task that is
1989	 * waiting for the spinlock. This is safe as all queue_lock()
1990	 * users end up calling queue_me(). Similarly, for housekeeping,
1991	 * decrement the counter at queue_unlock() when some error has
1992	 * occurred and we don't end up adding the task to the list.
1993	 */
1994	hb_waiters_inc(hb);
1995
1996	q->lock_ptr = &hb->lock;
1997
1998	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1999	return hb;
2000}
2001
2002static inline void
2003queue_unlock(struct futex_hash_bucket *hb)
2004	__releases(&hb->lock)
2005{
2006	spin_unlock(&hb->lock);
2007	hb_waiters_dec(hb);
2008}
2009
2010/**
2011 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2012 * @q:	The futex_q to enqueue
2013 * @hb:	The destination hash bucket
2014 *
2015 * The hb->lock must be held by the caller, and is released here. A call to
2016 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2017 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2018 * or nothing if the unqueue is done as part of the wake process and the unqueue
2019 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2020 * an example).
2021 */
2022static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2023	__releases(&hb->lock)
2024{
2025	int prio;
2026
2027	/*
2028	 * The priority used to register this element is
2029	 * - either the real thread-priority for the real-time threads
2030	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2031	 * - or MAX_RT_PRIO for non-RT threads.
2032	 * Thus, all RT-threads are woken first in priority order, and
2033	 * the others are woken last, in FIFO order.
2034	 */
2035	prio = min(current->normal_prio, MAX_RT_PRIO);
2036
2037	plist_node_init(&q->list, prio);
2038	plist_add(&q->list, &hb->chain);
2039	q->task = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040	spin_unlock(&hb->lock);
2041}
2042
2043/**
2044 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2045 * @q:	The futex_q to unqueue
2046 *
2047 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2048 * be paired with exactly one earlier call to queue_me().
2049 *
2050 * Return:
2051 *   1 - if the futex_q was still queued (and we removed unqueued it);
2052 *   0 - if the futex_q was already removed by the waking thread
2053 */
2054static int unqueue_me(struct futex_q *q)
2055{
2056	spinlock_t *lock_ptr;
2057	int ret = 0;
2058
2059	/* In the common case we don't take the spinlock, which is nice. */
2060retry:
2061	/*
2062	 * q->lock_ptr can change between this read and the following spin_lock.
2063	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2064	 * optimizing lock_ptr out of the logic below.
2065	 */
2066	lock_ptr = READ_ONCE(q->lock_ptr);
2067	if (lock_ptr != NULL) {
2068		spin_lock(lock_ptr);
2069		/*
2070		 * q->lock_ptr can change between reading it and
2071		 * spin_lock(), causing us to take the wrong lock.  This
2072		 * corrects the race condition.
2073		 *
2074		 * Reasoning goes like this: if we have the wrong lock,
2075		 * q->lock_ptr must have changed (maybe several times)
2076		 * between reading it and the spin_lock().  It can
2077		 * change again after the spin_lock() but only if it was
2078		 * already changed before the spin_lock().  It cannot,
2079		 * however, change back to the original value.  Therefore
2080		 * we can detect whether we acquired the correct lock.
2081		 */
2082		if (unlikely(lock_ptr != q->lock_ptr)) {
2083			spin_unlock(lock_ptr);
2084			goto retry;
2085		}
2086		__unqueue_futex(q);
2087
2088		BUG_ON(q->pi_state);
2089
2090		spin_unlock(lock_ptr);
2091		ret = 1;
2092	}
2093
2094	drop_futex_key_refs(&q->key);
2095	return ret;
2096}
2097
2098/*
2099 * PI futexes can not be requeued and must remove themself from the
2100 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2101 * and dropped here.
2102 */
2103static void unqueue_me_pi(struct futex_q *q)
2104	__releases(q->lock_ptr)
2105{
2106	__unqueue_futex(q);
2107
2108	BUG_ON(!q->pi_state);
2109	put_pi_state(q->pi_state);
2110	q->pi_state = NULL;
2111
2112	spin_unlock(q->lock_ptr);
2113}
2114
2115/*
2116 * Fixup the pi_state owner with the new owner.
2117 *
2118 * Must be called with hash bucket lock held and mm->sem held for non
2119 * private futexes.
2120 */
2121static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2122				struct task_struct *newowner)
2123{
2124	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2125	struct futex_pi_state *pi_state = q->pi_state;
2126	struct task_struct *oldowner = pi_state->owner;
2127	u32 uval, uninitialized_var(curval), newval;
2128	int ret;
 
2129
2130	/* Owner died? */
2131	if (!pi_state->owner)
2132		newtid |= FUTEX_OWNER_DIED;
 
 
2133
2134	/*
2135	 * We are here either because we stole the rtmutex from the
2136	 * previous highest priority waiter or we are the highest priority
2137	 * waiter but failed to get the rtmutex the first time.
2138	 * We have to replace the newowner TID in the user space variable.
 
 
 
 
 
 
 
2139	 * This must be atomic as we have to preserve the owner died bit here.
2140	 *
2141	 * Note: We write the user space value _before_ changing the pi_state
2142	 * because we can fault here. Imagine swapped out pages or a fork
2143	 * that marked all the anonymous memory readonly for cow.
2144	 *
2145	 * Modifying pi_state _before_ the user space value would
2146	 * leave the pi_state in an inconsistent state when we fault
2147	 * here, because we need to drop the hash bucket lock to
2148	 * handle the fault. This might be observed in the PID check
2149	 * in lookup_pi_state.
2150	 */
2151retry:
2152	if (get_futex_value_locked(&uval, uaddr))
2153		goto handle_fault;
 
 
 
 
 
 
 
 
 
 
 
 
 
2154
2155	while (1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2157
2158		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2159			goto handle_fault;
 
 
2160		if (curval == uval)
2161			break;
2162		uval = curval;
2163	}
2164
2165	/*
2166	 * We fixed up user space. Now we need to fix the pi_state
2167	 * itself.
2168	 */
2169	if (pi_state->owner != NULL) {
2170		raw_spin_lock_irq(&pi_state->owner->pi_lock);
2171		WARN_ON(list_empty(&pi_state->list));
2172		list_del_init(&pi_state->list);
2173		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2174	}
2175
2176	pi_state->owner = newowner;
2177
2178	raw_spin_lock_irq(&newowner->pi_lock);
2179	WARN_ON(!list_empty(&pi_state->list));
2180	list_add(&pi_state->list, &newowner->pi_state_list);
2181	raw_spin_unlock_irq(&newowner->pi_lock);
 
 
2182	return 0;
2183
2184	/*
2185	 * To handle the page fault we need to drop the hash bucket
2186	 * lock here. That gives the other task (either the highest priority
2187	 * waiter itself or the task which stole the rtmutex) the
2188	 * chance to try the fixup of the pi_state. So once we are
2189	 * back from handling the fault we need to check the pi_state
2190	 * after reacquiring the hash bucket lock and before trying to
2191	 * do another fixup. When the fixup has been done already we
2192	 * simply return.
 
 
 
2193	 */
2194handle_fault:
 
2195	spin_unlock(q->lock_ptr);
2196
2197	ret = fault_in_user_writeable(uaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198
2199	spin_lock(q->lock_ptr);
 
2200
2201	/*
2202	 * Check if someone else fixed it for us:
2203	 */
2204	if (pi_state->owner != oldowner)
2205		return 0;
 
 
2206
2207	if (ret)
2208		return ret;
2209
2210	goto retry;
 
 
 
 
2211}
2212
2213static long futex_wait_restart(struct restart_block *restart);
2214
2215/**
2216 * fixup_owner() - Post lock pi_state and corner case management
2217 * @uaddr:	user address of the futex
2218 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2219 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2220 *
2221 * After attempting to lock an rt_mutex, this function is called to cleanup
2222 * the pi_state owner as well as handle race conditions that may allow us to
2223 * acquire the lock. Must be called with the hb lock held.
2224 *
2225 * Return:
2226 *  1 - success, lock taken;
2227 *  0 - success, lock not taken;
2228 * <0 - on error (-EFAULT)
2229 */
2230static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2231{
2232	struct task_struct *owner;
2233	int ret = 0;
2234
2235	if (locked) {
2236		/*
2237		 * Got the lock. We might not be the anticipated owner if we
2238		 * did a lock-steal - fix up the PI-state in that case:
 
 
 
 
2239		 */
2240		if (q->pi_state->owner != current)
2241			ret = fixup_pi_state_owner(uaddr, q, current);
2242		goto out;
2243	}
2244
2245	/*
2246	 * Catch the rare case, where the lock was released when we were on the
2247	 * way back before we locked the hash bucket.
 
 
 
 
2248	 */
2249	if (q->pi_state->owner == current) {
2250		/*
2251		 * Try to get the rt_mutex now. This might fail as some other
2252		 * task acquired the rt_mutex after we removed ourself from the
2253		 * rt_mutex waiters list.
2254		 */
2255		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2256			locked = 1;
2257			goto out;
2258		}
2259
2260		/*
2261		 * pi_state is incorrect, some other task did a lock steal and
2262		 * we returned due to timeout or signal without taking the
2263		 * rt_mutex. Too late.
2264		 */
2265		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2266		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2267		if (!owner)
2268			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2269		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2270		ret = fixup_pi_state_owner(uaddr, q, owner);
2271		goto out;
2272	}
2273
2274	/*
2275	 * Paranoia check. If we did not take the lock, then we should not be
2276	 * the owner of the rt_mutex.
2277	 */
2278	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2279		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2280				"pi-state %p\n", ret,
2281				q->pi_state->pi_mutex.owner,
2282				q->pi_state->owner);
 
2283
2284out:
2285	return ret ? ret : locked;
2286}
2287
2288/**
2289 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2290 * @hb:		the futex hash bucket, must be locked by the caller
2291 * @q:		the futex_q to queue up on
2292 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2293 */
2294static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2295				struct hrtimer_sleeper *timeout)
2296{
2297	/*
2298	 * The task state is guaranteed to be set before another task can
2299	 * wake it. set_current_state() is implemented using smp_store_mb() and
2300	 * queue_me() calls spin_unlock() upon completion, both serializing
2301	 * access to the hash list and forcing another memory barrier.
2302	 */
2303	set_current_state(TASK_INTERRUPTIBLE);
2304	queue_me(q, hb);
2305
2306	/* Arm the timer */
2307	if (timeout)
2308		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2309
2310	/*
2311	 * If we have been removed from the hash list, then another task
2312	 * has tried to wake us, and we can skip the call to schedule().
2313	 */
2314	if (likely(!plist_node_empty(&q->list))) {
2315		/*
2316		 * If the timer has already expired, current will already be
2317		 * flagged for rescheduling. Only call schedule if there
2318		 * is no timeout, or if it has yet to expire.
2319		 */
2320		if (!timeout || timeout->task)
2321			freezable_schedule();
2322	}
2323	__set_current_state(TASK_RUNNING);
2324}
2325
2326/**
2327 * futex_wait_setup() - Prepare to wait on a futex
2328 * @uaddr:	the futex userspace address
2329 * @val:	the expected value
2330 * @flags:	futex flags (FLAGS_SHARED, etc.)
2331 * @q:		the associated futex_q
2332 * @hb:		storage for hash_bucket pointer to be returned to caller
2333 *
2334 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2335 * compare it with the expected value.  Handle atomic faults internally.
2336 * Return with the hb lock held and a q.key reference on success, and unlocked
2337 * with no q.key reference on failure.
2338 *
2339 * Return:
2340 *  0 - uaddr contains val and hb has been locked;
2341 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2342 */
2343static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2344			   struct futex_q *q, struct futex_hash_bucket **hb)
2345{
2346	u32 uval;
2347	int ret;
2348
2349	/*
2350	 * Access the page AFTER the hash-bucket is locked.
2351	 * Order is important:
2352	 *
2353	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2354	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2355	 *
2356	 * The basic logical guarantee of a futex is that it blocks ONLY
2357	 * if cond(var) is known to be true at the time of blocking, for
2358	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2359	 * would open a race condition where we could block indefinitely with
2360	 * cond(var) false, which would violate the guarantee.
2361	 *
2362	 * On the other hand, we insert q and release the hash-bucket only
2363	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2364	 * absorb a wakeup if *uaddr does not match the desired values
2365	 * while the syscall executes.
2366	 */
2367retry:
2368	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2369	if (unlikely(ret != 0))
2370		return ret;
2371
2372retry_private:
2373	*hb = queue_lock(q);
2374
2375	ret = get_futex_value_locked(&uval, uaddr);
2376
2377	if (ret) {
2378		queue_unlock(*hb);
2379
2380		ret = get_user(uval, uaddr);
2381		if (ret)
2382			goto out;
2383
2384		if (!(flags & FLAGS_SHARED))
2385			goto retry_private;
2386
2387		put_futex_key(&q->key);
2388		goto retry;
2389	}
2390
2391	if (uval != val) {
2392		queue_unlock(*hb);
2393		ret = -EWOULDBLOCK;
2394	}
2395
2396out:
2397	if (ret)
2398		put_futex_key(&q->key);
2399	return ret;
2400}
2401
2402static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2403		      ktime_t *abs_time, u32 bitset)
2404{
2405	struct hrtimer_sleeper timeout, *to = NULL;
2406	struct restart_block *restart;
2407	struct futex_hash_bucket *hb;
2408	struct futex_q q = futex_q_init;
2409	int ret;
2410
2411	if (!bitset)
2412		return -EINVAL;
2413	q.bitset = bitset;
2414
2415	if (abs_time) {
2416		to = &timeout;
2417
2418		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2419				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2420				      HRTIMER_MODE_ABS);
2421		hrtimer_init_sleeper(to, current);
2422		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2423					     current->timer_slack_ns);
2424	}
2425
2426retry:
2427	/*
2428	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2429	 * q.key refs.
2430	 */
2431	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2432	if (ret)
2433		goto out;
2434
2435	/* queue_me and wait for wakeup, timeout, or a signal. */
2436	futex_wait_queue_me(hb, &q, to);
2437
2438	/* If we were woken (and unqueued), we succeeded, whatever. */
2439	ret = 0;
2440	/* unqueue_me() drops q.key ref */
2441	if (!unqueue_me(&q))
2442		goto out;
2443	ret = -ETIMEDOUT;
2444	if (to && !to->task)
2445		goto out;
2446
2447	/*
2448	 * We expect signal_pending(current), but we might be the
2449	 * victim of a spurious wakeup as well.
2450	 */
2451	if (!signal_pending(current))
2452		goto retry;
2453
2454	ret = -ERESTARTSYS;
2455	if (!abs_time)
2456		goto out;
2457
2458	restart = &current->restart_block;
2459	restart->fn = futex_wait_restart;
2460	restart->futex.uaddr = uaddr;
2461	restart->futex.val = val;
2462	restart->futex.time = *abs_time;
2463	restart->futex.bitset = bitset;
2464	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2465
2466	ret = -ERESTART_RESTARTBLOCK;
2467
2468out:
2469	if (to) {
2470		hrtimer_cancel(&to->timer);
2471		destroy_hrtimer_on_stack(&to->timer);
2472	}
2473	return ret;
2474}
2475
2476
2477static long futex_wait_restart(struct restart_block *restart)
2478{
2479	u32 __user *uaddr = restart->futex.uaddr;
2480	ktime_t t, *tp = NULL;
2481
2482	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2483		t = restart->futex.time;
2484		tp = &t;
2485	}
2486	restart->fn = do_no_restart_syscall;
2487
2488	return (long)futex_wait(uaddr, restart->futex.flags,
2489				restart->futex.val, tp, restart->futex.bitset);
2490}
2491
2492
2493/*
2494 * Userspace tried a 0 -> TID atomic transition of the futex value
2495 * and failed. The kernel side here does the whole locking operation:
2496 * if there are waiters then it will block as a consequence of relying
2497 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2498 * a 0 value of the futex too.).
2499 *
2500 * Also serves as futex trylock_pi()'ing, and due semantics.
2501 */
2502static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2503			 ktime_t *time, int trylock)
2504{
2505	struct hrtimer_sleeper timeout, *to = NULL;
 
 
 
2506	struct futex_hash_bucket *hb;
2507	struct futex_q q = futex_q_init;
2508	int res, ret;
2509
 
 
 
2510	if (refill_pi_state_cache())
2511		return -ENOMEM;
2512
2513	if (time) {
2514		to = &timeout;
2515		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2516				      HRTIMER_MODE_ABS);
2517		hrtimer_init_sleeper(to, current);
2518		hrtimer_set_expires(&to->timer, *time);
2519	}
2520
2521retry:
2522	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2523	if (unlikely(ret != 0))
2524		goto out;
2525
2526retry_private:
2527	hb = queue_lock(&q);
2528
2529	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
 
2530	if (unlikely(ret)) {
2531		/*
2532		 * Atomic work succeeded and we got the lock,
2533		 * or failed. Either way, we do _not_ block.
2534		 */
2535		switch (ret) {
2536		case 1:
2537			/* We got the lock. */
2538			ret = 0;
2539			goto out_unlock_put_key;
2540		case -EFAULT:
2541			goto uaddr_faulted;
 
2542		case -EAGAIN:
2543			/*
2544			 * Two reasons for this:
2545			 * - Task is exiting and we just wait for the
2546			 *   exit to complete.
2547			 * - The user space value changed.
2548			 */
2549			queue_unlock(hb);
2550			put_futex_key(&q.key);
 
 
 
 
 
2551			cond_resched();
2552			goto retry;
2553		default:
2554			goto out_unlock_put_key;
2555		}
2556	}
2557
 
 
2558	/*
2559	 * Only actually queue now that the atomic ops are done:
2560	 */
2561	queue_me(&q, hb);
2562
2563	WARN_ON(!q.pi_state);
2564	/*
2565	 * Block on the PI mutex:
2566	 */
2567	if (!trylock) {
2568		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2569	} else {
2570		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2571		/* Fixup the trylock return value: */
2572		ret = ret ? 0 : -EWOULDBLOCK;
 
2573	}
2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575	spin_lock(q.lock_ptr);
2576	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2577	 * Fixup the pi_state owner and possibly acquire the lock if we
2578	 * haven't already.
2579	 */
2580	res = fixup_owner(uaddr, &q, !ret);
2581	/*
2582	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2583	 * the lock, clear our -ETIMEDOUT or -EINTR.
2584	 */
2585	if (res)
2586		ret = (res < 0) ? res : 0;
2587
2588	/*
2589	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2590	 * it and return the fault to userspace.
2591	 */
2592	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2593		rt_mutex_unlock(&q.pi_state->pi_mutex);
 
 
2594
2595	/* Unqueue and drop the lock */
2596	unqueue_me_pi(&q);
2597
2598	goto out_put_key;
 
 
 
 
 
2599
2600out_unlock_put_key:
2601	queue_unlock(hb);
2602
2603out_put_key:
2604	put_futex_key(&q.key);
2605out:
2606	if (to)
 
2607		destroy_hrtimer_on_stack(&to->timer);
 
2608	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2609
2610uaddr_faulted:
2611	queue_unlock(hb);
2612
2613	ret = fault_in_user_writeable(uaddr);
2614	if (ret)
2615		goto out_put_key;
2616
2617	if (!(flags & FLAGS_SHARED))
2618		goto retry_private;
2619
2620	put_futex_key(&q.key);
2621	goto retry;
2622}
2623
2624/*
2625 * Userspace attempted a TID -> 0 atomic transition, and failed.
2626 * This is the in-kernel slowpath: we look up the PI state (if any),
2627 * and do the rt-mutex unlock.
2628 */
2629static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2630{
2631	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2632	union futex_key key = FUTEX_KEY_INIT;
2633	struct futex_hash_bucket *hb;
2634	struct futex_q *match;
2635	int ret;
2636
 
 
 
2637retry:
2638	if (get_user(uval, uaddr))
2639		return -EFAULT;
2640	/*
2641	 * We release only a lock we actually own:
2642	 */
2643	if ((uval & FUTEX_TID_MASK) != vpid)
2644		return -EPERM;
2645
2646	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2647	if (ret)
2648		return ret;
2649
2650	hb = hash_futex(&key);
2651	spin_lock(&hb->lock);
2652
2653	/*
2654	 * Check waiters first. We do not trust user space values at
2655	 * all and we at least want to know if user space fiddled
2656	 * with the futex value instead of blindly unlocking.
2657	 */
2658	match = futex_top_waiter(hb, &key);
2659	if (match) {
2660		ret = wake_futex_pi(uaddr, uval, match, hb);
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		/*
2662		 * In case of success wake_futex_pi dropped the hash
2663		 * bucket lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664		 */
2665		if (!ret)
2666			goto out_putkey;
2667		/*
2668		 * The atomic access to the futex value generated a
2669		 * pagefault, so retry the user-access and the wakeup:
2670		 */
2671		if (ret == -EFAULT)
2672			goto pi_faulted;
2673		/*
2674		 * A unconditional UNLOCK_PI op raced against a waiter
2675		 * setting the FUTEX_WAITERS bit. Try again.
2676		 */
2677		if (ret == -EAGAIN) {
2678			spin_unlock(&hb->lock);
2679			put_futex_key(&key);
2680			goto retry;
2681		}
2682		/*
2683		 * wake_futex_pi has detected invalid state. Tell user
2684		 * space.
2685		 */
2686		goto out_unlock;
2687	}
2688
2689	/*
2690	 * We have no kernel internal state, i.e. no waiters in the
2691	 * kernel. Waiters which are about to queue themselves are stuck
2692	 * on hb->lock. So we can safely ignore them. We do neither
2693	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2694	 * owner.
2695	 */
2696	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2697		goto pi_faulted;
 
 
 
 
 
 
 
 
 
 
 
 
2698
2699	/*
2700	 * If uval has changed, let user space handle it.
2701	 */
2702	ret = (curval == uval) ? 0 : -EAGAIN;
2703
2704out_unlock:
2705	spin_unlock(&hb->lock);
2706out_putkey:
2707	put_futex_key(&key);
2708	return ret;
2709
 
 
 
 
2710pi_faulted:
2711	spin_unlock(&hb->lock);
2712	put_futex_key(&key);
2713
2714	ret = fault_in_user_writeable(uaddr);
2715	if (!ret)
2716		goto retry;
2717
2718	return ret;
2719}
2720
2721/**
2722 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2723 * @hb:		the hash_bucket futex_q was original enqueued on
2724 * @q:		the futex_q woken while waiting to be requeued
2725 * @key2:	the futex_key of the requeue target futex
2726 * @timeout:	the timeout associated with the wait (NULL if none)
2727 *
2728 * Detect if the task was woken on the initial futex as opposed to the requeue
2729 * target futex.  If so, determine if it was a timeout or a signal that caused
2730 * the wakeup and return the appropriate error code to the caller.  Must be
2731 * called with the hb lock held.
2732 *
2733 * Return:
2734 *  0 = no early wakeup detected;
2735 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2736 */
2737static inline
2738int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2739				   struct futex_q *q, union futex_key *key2,
2740				   struct hrtimer_sleeper *timeout)
2741{
2742	int ret = 0;
2743
2744	/*
2745	 * With the hb lock held, we avoid races while we process the wakeup.
2746	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2747	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2748	 * It can't be requeued from uaddr2 to something else since we don't
2749	 * support a PI aware source futex for requeue.
2750	 */
2751	if (!match_futex(&q->key, key2)) {
2752		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2753		/*
2754		 * We were woken prior to requeue by a timeout or a signal.
2755		 * Unqueue the futex_q and determine which it was.
2756		 */
2757		plist_del(&q->list, &hb->chain);
2758		hb_waiters_dec(hb);
2759
2760		/* Handle spurious wakeups gracefully */
2761		ret = -EWOULDBLOCK;
2762		if (timeout && !timeout->task)
2763			ret = -ETIMEDOUT;
2764		else if (signal_pending(current))
2765			ret = -ERESTARTNOINTR;
2766	}
2767	return ret;
2768}
2769
2770/**
2771 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2772 * @uaddr:	the futex we initially wait on (non-pi)
2773 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2774 *		the same type, no requeueing from private to shared, etc.
2775 * @val:	the expected value of uaddr
2776 * @abs_time:	absolute timeout
2777 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2778 * @uaddr2:	the pi futex we will take prior to returning to user-space
2779 *
2780 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2781 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2782 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2783 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2784 * without one, the pi logic would not know which task to boost/deboost, if
2785 * there was a need to.
2786 *
2787 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2788 * via the following--
2789 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2790 * 2) wakeup on uaddr2 after a requeue
2791 * 3) signal
2792 * 4) timeout
2793 *
2794 * If 3, cleanup and return -ERESTARTNOINTR.
2795 *
2796 * If 2, we may then block on trying to take the rt_mutex and return via:
2797 * 5) successful lock
2798 * 6) signal
2799 * 7) timeout
2800 * 8) other lock acquisition failure
2801 *
2802 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2803 *
2804 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2805 *
2806 * Return:
2807 *  0 - On success;
2808 * <0 - On error
2809 */
2810static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2811				 u32 val, ktime_t *abs_time, u32 bitset,
2812				 u32 __user *uaddr2)
2813{
2814	struct hrtimer_sleeper timeout, *to = NULL;
 
2815	struct rt_mutex_waiter rt_waiter;
2816	struct futex_hash_bucket *hb;
2817	union futex_key key2 = FUTEX_KEY_INIT;
2818	struct futex_q q = futex_q_init;
2819	int res, ret;
2820
 
 
 
2821	if (uaddr == uaddr2)
2822		return -EINVAL;
2823
2824	if (!bitset)
2825		return -EINVAL;
2826
2827	if (abs_time) {
2828		to = &timeout;
2829		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2830				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2831				      HRTIMER_MODE_ABS);
2832		hrtimer_init_sleeper(to, current);
2833		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2834					     current->timer_slack_ns);
2835	}
2836
2837	/*
2838	 * The waiter is allocated on our stack, manipulated by the requeue
2839	 * code while we sleep on uaddr.
2840	 */
2841	debug_rt_mutex_init_waiter(&rt_waiter);
2842	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2843	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2844	rt_waiter.task = NULL;
2845
2846	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2847	if (unlikely(ret != 0))
2848		goto out;
2849
2850	q.bitset = bitset;
2851	q.rt_waiter = &rt_waiter;
2852	q.requeue_pi_key = &key2;
2853
2854	/*
2855	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2856	 * count.
2857	 */
2858	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2859	if (ret)
2860		goto out_key2;
2861
2862	/*
2863	 * The check above which compares uaddrs is not sufficient for
2864	 * shared futexes. We need to compare the keys:
2865	 */
2866	if (match_futex(&q.key, &key2)) {
2867		queue_unlock(hb);
2868		ret = -EINVAL;
2869		goto out_put_keys;
2870	}
2871
2872	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2873	futex_wait_queue_me(hb, &q, to);
2874
2875	spin_lock(&hb->lock);
2876	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2877	spin_unlock(&hb->lock);
2878	if (ret)
2879		goto out_put_keys;
2880
2881	/*
2882	 * In order for us to be here, we know our q.key == key2, and since
2883	 * we took the hb->lock above, we also know that futex_requeue() has
2884	 * completed and we no longer have to concern ourselves with a wakeup
2885	 * race with the atomic proxy lock acquisition by the requeue code. The
2886	 * futex_requeue dropped our key1 reference and incremented our key2
2887	 * reference count.
2888	 */
2889
2890	/* Check if the requeue code acquired the second futex for us. */
2891	if (!q.rt_waiter) {
2892		/*
2893		 * Got the lock. We might not be the anticipated owner if we
2894		 * did a lock-steal - fix up the PI-state in that case.
2895		 */
2896		if (q.pi_state && (q.pi_state->owner != current)) {
2897			spin_lock(q.lock_ptr);
2898			ret = fixup_pi_state_owner(uaddr2, &q, current);
2899			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2900				rt_mutex_unlock(&q.pi_state->pi_mutex);
 
 
2901			/*
2902			 * Drop the reference to the pi state which
2903			 * the requeue_pi() code acquired for us.
2904			 */
2905			put_pi_state(q.pi_state);
2906			spin_unlock(q.lock_ptr);
2907		}
2908	} else {
2909		struct rt_mutex *pi_mutex;
2910
2911		/*
2912		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2913		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2914		 * the pi_state.
2915		 */
2916		WARN_ON(!q.pi_state);
2917		pi_mutex = &q.pi_state->pi_mutex;
2918		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2919		debug_rt_mutex_free_waiter(&rt_waiter);
2920
2921		spin_lock(q.lock_ptr);
 
 
 
 
2922		/*
2923		 * Fixup the pi_state owner and possibly acquire the lock if we
2924		 * haven't already.
2925		 */
2926		res = fixup_owner(uaddr2, &q, !ret);
2927		/*
2928		 * If fixup_owner() returned an error, proprogate that.  If it
2929		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2930		 */
2931		if (res)
2932			ret = (res < 0) ? res : 0;
2933
2934		/*
2935		 * If fixup_pi_state_owner() faulted and was unable to handle
2936		 * the fault, unlock the rt_mutex and return the fault to
2937		 * userspace.
2938		 */
2939		if (ret && rt_mutex_owner(pi_mutex) == current)
2940			rt_mutex_unlock(pi_mutex);
 
 
2941
2942		/* Unqueue and drop the lock. */
2943		unqueue_me_pi(&q);
2944	}
2945
 
 
 
 
 
2946	if (ret == -EINTR) {
2947		/*
2948		 * We've already been requeued, but cannot restart by calling
2949		 * futex_lock_pi() directly. We could restart this syscall, but
2950		 * it would detect that the user space "val" changed and return
2951		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2952		 * -EWOULDBLOCK directly.
2953		 */
2954		ret = -EWOULDBLOCK;
2955	}
2956
2957out_put_keys:
2958	put_futex_key(&q.key);
2959out_key2:
2960	put_futex_key(&key2);
2961
2962out:
2963	if (to) {
2964		hrtimer_cancel(&to->timer);
2965		destroy_hrtimer_on_stack(&to->timer);
2966	}
2967	return ret;
2968}
2969
2970/*
2971 * Support for robust futexes: the kernel cleans up held futexes at
2972 * thread exit time.
2973 *
2974 * Implementation: user-space maintains a per-thread list of locks it
2975 * is holding. Upon do_exit(), the kernel carefully walks this list,
2976 * and marks all locks that are owned by this thread with the
2977 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2978 * always manipulated with the lock held, so the list is private and
2979 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2980 * field, to allow the kernel to clean up if the thread dies after
2981 * acquiring the lock, but just before it could have added itself to
2982 * the list. There can only be one such pending lock.
2983 */
2984
2985/**
2986 * sys_set_robust_list() - Set the robust-futex list head of a task
2987 * @head:	pointer to the list-head
2988 * @len:	length of the list-head, as userspace expects
2989 */
2990SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2991		size_t, len)
2992{
2993	if (!futex_cmpxchg_enabled)
2994		return -ENOSYS;
2995	/*
2996	 * The kernel knows only one size for now:
2997	 */
2998	if (unlikely(len != sizeof(*head)))
2999		return -EINVAL;
3000
3001	current->robust_list = head;
3002
3003	return 0;
3004}
3005
3006/**
3007 * sys_get_robust_list() - Get the robust-futex list head of a task
3008 * @pid:	pid of the process [zero for current task]
3009 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3010 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3011 */
3012SYSCALL_DEFINE3(get_robust_list, int, pid,
3013		struct robust_list_head __user * __user *, head_ptr,
3014		size_t __user *, len_ptr)
3015{
3016	struct robust_list_head __user *head;
3017	unsigned long ret;
3018	struct task_struct *p;
3019
3020	if (!futex_cmpxchg_enabled)
3021		return -ENOSYS;
3022
3023	rcu_read_lock();
3024
3025	ret = -ESRCH;
3026	if (!pid)
3027		p = current;
3028	else {
3029		p = find_task_by_vpid(pid);
3030		if (!p)
3031			goto err_unlock;
3032	}
3033
3034	ret = -EPERM;
3035	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3036		goto err_unlock;
3037
3038	head = p->robust_list;
3039	rcu_read_unlock();
3040
3041	if (put_user(sizeof(*head), len_ptr))
3042		return -EFAULT;
3043	return put_user(head, head_ptr);
3044
3045err_unlock:
3046	rcu_read_unlock();
3047
3048	return ret;
3049}
3050
 
 
 
 
3051/*
3052 * Process a futex-list entry, check whether it's owned by the
3053 * dying task, and do notification if so:
3054 */
3055int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
 
3056{
3057	u32 uval, uninitialized_var(nval), mval;
 
 
 
 
 
3058
3059retry:
3060	if (get_user(uval, uaddr))
3061		return -1;
3062
3063	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3064		/*
3065		 * Ok, this dying thread is truly holding a futex
3066		 * of interest. Set the OWNER_DIED bit atomically
3067		 * via cmpxchg, and if the value had FUTEX_WAITERS
3068		 * set, wake up a waiter (if any). (We have to do a
3069		 * futex_wake() even if OWNER_DIED is already set -
3070		 * to handle the rare but possible case of recursive
3071		 * thread-death.) The rest of the cleanup is done in
3072		 * userspace.
3073		 */
3074		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3075		/*
3076		 * We are not holding a lock here, but we want to have
3077		 * the pagefault_disable/enable() protection because
3078		 * we want to handle the fault gracefully. If the
3079		 * access fails we try to fault in the futex with R/W
3080		 * verification via get_user_pages. get_user() above
3081		 * does not guarantee R/W access. If that fails we
3082		 * give up and leave the futex locked.
3083		 */
3084		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085			if (fault_in_user_writeable(uaddr))
3086				return -1;
3087			goto retry;
3088		}
3089		if (nval != uval)
 
3090			goto retry;
3091
3092		/*
3093		 * Wake robust non-PI futexes here. The wakeup of
3094		 * PI futexes happens in exit_pi_state():
3095		 */
3096		if (!pi && (uval & FUTEX_WAITERS))
3097			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3098	}
 
 
 
 
 
 
 
 
 
 
 
3099	return 0;
3100}
3101
3102/*
3103 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3104 */
3105static inline int fetch_robust_entry(struct robust_list __user **entry,
3106				     struct robust_list __user * __user *head,
3107				     unsigned int *pi)
3108{
3109	unsigned long uentry;
3110
3111	if (get_user(uentry, (unsigned long __user *)head))
3112		return -EFAULT;
3113
3114	*entry = (void __user *)(uentry & ~1UL);
3115	*pi = uentry & 1;
3116
3117	return 0;
3118}
3119
3120/*
3121 * Walk curr->robust_list (very carefully, it's a userspace list!)
3122 * and mark any locks found there dead, and notify any waiters.
3123 *
3124 * We silently return on any sign of list-walking problem.
3125 */
3126void exit_robust_list(struct task_struct *curr)
3127{
3128	struct robust_list_head __user *head = curr->robust_list;
3129	struct robust_list __user *entry, *next_entry, *pending;
3130	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3131	unsigned int uninitialized_var(next_pi);
3132	unsigned long futex_offset;
3133	int rc;
3134
3135	if (!futex_cmpxchg_enabled)
3136		return;
3137
3138	/*
3139	 * Fetch the list head (which was registered earlier, via
3140	 * sys_set_robust_list()):
3141	 */
3142	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3143		return;
3144	/*
3145	 * Fetch the relative futex offset:
3146	 */
3147	if (get_user(futex_offset, &head->futex_offset))
3148		return;
3149	/*
3150	 * Fetch any possibly pending lock-add first, and handle it
3151	 * if it exists:
3152	 */
3153	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3154		return;
3155
3156	next_entry = NULL;	/* avoid warning with gcc */
3157	while (entry != &head->list) {
3158		/*
3159		 * Fetch the next entry in the list before calling
3160		 * handle_futex_death:
3161		 */
3162		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3163		/*
3164		 * A pending lock might already be on the list, so
3165		 * don't process it twice:
3166		 */
3167		if (entry != pending)
3168			if (handle_futex_death((void __user *)entry + futex_offset,
3169						curr, pi))
3170				return;
 
3171		if (rc)
3172			return;
3173		entry = next_entry;
3174		pi = next_pi;
3175		/*
3176		 * Avoid excessively long or circular lists:
3177		 */
3178		if (!--limit)
3179			break;
3180
3181		cond_resched();
3182	}
3183
3184	if (pending)
3185		handle_futex_death((void __user *)pending + futex_offset,
3186				   curr, pip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187}
3188
3189long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3190		u32 __user *uaddr2, u32 val2, u32 val3)
3191{
3192	int cmd = op & FUTEX_CMD_MASK;
3193	unsigned int flags = 0;
3194
3195	if (!(op & FUTEX_PRIVATE_FLAG))
3196		flags |= FLAGS_SHARED;
3197
3198	if (op & FUTEX_CLOCK_REALTIME) {
3199		flags |= FLAGS_CLOCKRT;
3200		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3201		    cmd != FUTEX_WAIT_REQUEUE_PI)
3202			return -ENOSYS;
3203	}
3204
3205	switch (cmd) {
3206	case FUTEX_LOCK_PI:
3207	case FUTEX_UNLOCK_PI:
3208	case FUTEX_TRYLOCK_PI:
3209	case FUTEX_WAIT_REQUEUE_PI:
3210	case FUTEX_CMP_REQUEUE_PI:
3211		if (!futex_cmpxchg_enabled)
3212			return -ENOSYS;
3213	}
3214
3215	switch (cmd) {
3216	case FUTEX_WAIT:
3217		val3 = FUTEX_BITSET_MATCH_ANY;
 
3218	case FUTEX_WAIT_BITSET:
3219		return futex_wait(uaddr, flags, val, timeout, val3);
3220	case FUTEX_WAKE:
3221		val3 = FUTEX_BITSET_MATCH_ANY;
 
3222	case FUTEX_WAKE_BITSET:
3223		return futex_wake(uaddr, flags, val, val3);
3224	case FUTEX_REQUEUE:
3225		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3226	case FUTEX_CMP_REQUEUE:
3227		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3228	case FUTEX_WAKE_OP:
3229		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3230	case FUTEX_LOCK_PI:
3231		return futex_lock_pi(uaddr, flags, timeout, 0);
3232	case FUTEX_UNLOCK_PI:
3233		return futex_unlock_pi(uaddr, flags);
3234	case FUTEX_TRYLOCK_PI:
3235		return futex_lock_pi(uaddr, flags, NULL, 1);
3236	case FUTEX_WAIT_REQUEUE_PI:
3237		val3 = FUTEX_BITSET_MATCH_ANY;
3238		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3239					     uaddr2);
3240	case FUTEX_CMP_REQUEUE_PI:
3241		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3242	}
3243	return -ENOSYS;
3244}
3245
3246
3247SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3248		struct timespec __user *, utime, u32 __user *, uaddr2,
3249		u32, val3)
3250{
3251	struct timespec ts;
3252	ktime_t t, *tp = NULL;
3253	u32 val2 = 0;
3254	int cmd = op & FUTEX_CMD_MASK;
3255
3256	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3257		      cmd == FUTEX_WAIT_BITSET ||
3258		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3259		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3260			return -EFAULT;
3261		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3262			return -EFAULT;
3263		if (!timespec_valid(&ts))
3264			return -EINVAL;
3265
3266		t = timespec_to_ktime(ts);
3267		if (cmd == FUTEX_WAIT)
3268			t = ktime_add_safe(ktime_get(), t);
3269		tp = &t;
3270	}
3271	/*
3272	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3273	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3274	 */
3275	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3276	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3277		val2 = (u32) (unsigned long) utime;
3278
3279	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3280}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281
3282static void __init futex_detect_cmpxchg(void)
3283{
3284#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3285	u32 curval;
3286
3287	/*
3288	 * This will fail and we want it. Some arch implementations do
3289	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3290	 * functionality. We want to know that before we call in any
3291	 * of the complex code paths. Also we want to prevent
3292	 * registration of robust lists in that case. NULL is
3293	 * guaranteed to fault and we get -EFAULT on functional
3294	 * implementation, the non-functional ones will return
3295	 * -ENOSYS.
3296	 */
3297	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3298		futex_cmpxchg_enabled = 1;
3299#endif
3300}
3301
3302static int __init futex_init(void)
3303{
3304	unsigned int futex_shift;
3305	unsigned long i;
3306
3307#if CONFIG_BASE_SMALL
3308	futex_hashsize = 16;
3309#else
3310	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3311#endif
3312
3313	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3314					       futex_hashsize, 0,
3315					       futex_hashsize < 256 ? HASH_SMALL : 0,
3316					       &futex_shift, NULL,
3317					       futex_hashsize, futex_hashsize);
3318	futex_hashsize = 1UL << futex_shift;
3319
3320	futex_detect_cmpxchg();
3321
3322	for (i = 0; i < futex_hashsize; i++) {
3323		atomic_set(&futex_queues[i].waiters, 0);
3324		plist_head_init(&futex_queues[i].chain);
3325		spin_lock_init(&futex_queues[i].lock);
3326	}
3327
3328	return 0;
3329}
3330core_initcall(futex_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Fast Userspace Mutexes (which I call "Futexes!").
   4 *  (C) Rusty Russell, IBM 2002
   5 *
   6 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   7 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   8 *
   9 *  Removed page pinning, fix privately mapped COW pages and other cleanups
  10 *  (C) Copyright 2003, 2004 Jamie Lokier
  11 *
  12 *  Robust futex support started by Ingo Molnar
  13 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  14 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  15 *
  16 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  17 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  18 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  19 *
  20 *  PRIVATE futexes by Eric Dumazet
  21 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  22 *
  23 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  24 *  Copyright (C) IBM Corporation, 2009
  25 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  26 *
  27 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  28 *  enough at me, Linus for the original (flawed) idea, Matthew
  29 *  Kirkwood for proof-of-concept implementation.
  30 *
  31 *  "The futexes are also cursed."
  32 *  "But they come in a choice of three flavours!"
  33 */
  34#include <linux/compat.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35#include <linux/jhash.h>
 
 
 
  36#include <linux/pagemap.h>
  37#include <linux/syscalls.h>
 
 
 
 
 
 
 
  38#include <linux/hugetlb.h>
  39#include <linux/freezer.h>
  40#include <linux/memblock.h>
  41#include <linux/fault-inject.h>
  42
  43#include <asm/futex.h>
  44
  45#include "locking/rtmutex_common.h"
  46
  47/*
  48 * READ this before attempting to hack on futexes!
  49 *
  50 * Basic futex operation and ordering guarantees
  51 * =============================================
  52 *
  53 * The waiter reads the futex value in user space and calls
  54 * futex_wait(). This function computes the hash bucket and acquires
  55 * the hash bucket lock. After that it reads the futex user space value
  56 * again and verifies that the data has not changed. If it has not changed
  57 * it enqueues itself into the hash bucket, releases the hash bucket lock
  58 * and schedules.
  59 *
  60 * The waker side modifies the user space value of the futex and calls
  61 * futex_wake(). This function computes the hash bucket and acquires the
  62 * hash bucket lock. Then it looks for waiters on that futex in the hash
  63 * bucket and wakes them.
  64 *
  65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  66 * the hb spinlock can be avoided and simply return. In order for this
  67 * optimization to work, ordering guarantees must exist so that the waiter
  68 * being added to the list is acknowledged when the list is concurrently being
  69 * checked by the waker, avoiding scenarios like the following:
  70 *
  71 * CPU 0                               CPU 1
  72 * val = *futex;
  73 * sys_futex(WAIT, futex, val);
  74 *   futex_wait(futex, val);
  75 *   uval = *futex;
  76 *                                     *futex = newval;
  77 *                                     sys_futex(WAKE, futex);
  78 *                                       futex_wake(futex);
  79 *                                       if (queue_empty())
  80 *                                         return;
  81 *   if (uval == val)
  82 *      lock(hash_bucket(futex));
  83 *      queue();
  84 *     unlock(hash_bucket(futex));
  85 *     schedule();
  86 *
  87 * This would cause the waiter on CPU 0 to wait forever because it
  88 * missed the transition of the user space value from val to newval
  89 * and the waker did not find the waiter in the hash bucket queue.
  90 *
  91 * The correct serialization ensures that a waiter either observes
  92 * the changed user space value before blocking or is woken by a
  93 * concurrent waker:
  94 *
  95 * CPU 0                                 CPU 1
  96 * val = *futex;
  97 * sys_futex(WAIT, futex, val);
  98 *   futex_wait(futex, val);
  99 *
 100 *   waiters++; (a)
 101 *   smp_mb(); (A) <-- paired with -.
 102 *                                  |
 103 *   lock(hash_bucket(futex));      |
 104 *                                  |
 105 *   uval = *futex;                 |
 106 *                                  |        *futex = newval;
 107 *                                  |        sys_futex(WAKE, futex);
 108 *                                  |          futex_wake(futex);
 109 *                                  |
 110 *                                  `--------> smp_mb(); (B)
 111 *   if (uval == val)
 112 *     queue();
 113 *     unlock(hash_bucket(futex));
 114 *     schedule();                         if (waiters)
 115 *                                           lock(hash_bucket(futex));
 116 *   else                                    wake_waiters(futex);
 117 *     waiters--; (b)                        unlock(hash_bucket(futex));
 118 *
 119 * Where (A) orders the waiters increment and the futex value read through
 120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 121 * to futex and the waiters read (see hb_waiters_pending()).
 
 122 *
 123 * This yields the following case (where X:=waiters, Y:=futex):
 124 *
 125 *	X = Y = 0
 126 *
 127 *	w[X]=1		w[Y]=1
 128 *	MB		MB
 129 *	r[Y]=y		r[X]=x
 130 *
 131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 132 * the guarantee that we cannot both miss the futex variable change and the
 133 * enqueue.
 134 *
 135 * Note that a new waiter is accounted for in (a) even when it is possible that
 136 * the wait call can return error, in which case we backtrack from it in (b).
 137 * Refer to the comment in queue_lock().
 138 *
 139 * Similarly, in order to account for waiters being requeued on another
 140 * address we always increment the waiters for the destination bucket before
 141 * acquiring the lock. It then decrements them again  after releasing it -
 142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 143 * will do the additional required waiter count housekeeping. This is done for
 144 * double_lock_hb() and double_unlock_hb(), respectively.
 145 */
 146
 147#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
 148#define futex_cmpxchg_enabled 1
 149#else
 150static int  __read_mostly futex_cmpxchg_enabled;
 151#endif
 152
 153/*
 154 * Futex flags used to encode options to functions and preserve them across
 155 * restarts.
 156 */
 157#ifdef CONFIG_MMU
 158# define FLAGS_SHARED		0x01
 159#else
 160/*
 161 * NOMMU does not have per process address space. Let the compiler optimize
 162 * code away.
 163 */
 164# define FLAGS_SHARED		0x00
 165#endif
 166#define FLAGS_CLOCKRT		0x02
 167#define FLAGS_HAS_TIMEOUT	0x04
 168
 169/*
 170 * Priority Inheritance state:
 171 */
 172struct futex_pi_state {
 173	/*
 174	 * list of 'owned' pi_state instances - these have to be
 175	 * cleaned up in do_exit() if the task exits prematurely:
 176	 */
 177	struct list_head list;
 178
 179	/*
 180	 * The PI object:
 181	 */
 182	struct rt_mutex pi_mutex;
 183
 184	struct task_struct *owner;
 185	refcount_t refcount;
 186
 187	union futex_key key;
 188} __randomize_layout;
 189
 190/**
 191 * struct futex_q - The hashed futex queue entry, one per waiting task
 192 * @list:		priority-sorted list of tasks waiting on this futex
 193 * @task:		the task waiting on the futex
 194 * @lock_ptr:		the hash bucket lock
 195 * @key:		the key the futex is hashed on
 196 * @pi_state:		optional priority inheritance state
 197 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 198 * @requeue_pi_key:	the requeue_pi target futex key
 199 * @bitset:		bitset for the optional bitmasked wakeup
 200 *
 201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 202 * we can wake only the relevant ones (hashed queues may be shared).
 203 *
 204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 206 * The order of wakeup is always to make the first condition true, then
 207 * the second.
 208 *
 209 * PI futexes are typically woken before they are removed from the hash list via
 210 * the rt_mutex code. See unqueue_me_pi().
 211 */
 212struct futex_q {
 213	struct plist_node list;
 214
 215	struct task_struct *task;
 216	spinlock_t *lock_ptr;
 217	union futex_key key;
 218	struct futex_pi_state *pi_state;
 219	struct rt_mutex_waiter *rt_waiter;
 220	union futex_key *requeue_pi_key;
 221	u32 bitset;
 222} __randomize_layout;
 223
 224static const struct futex_q futex_q_init = {
 225	/* list gets initialized in queue_me()*/
 226	.key = FUTEX_KEY_INIT,
 227	.bitset = FUTEX_BITSET_MATCH_ANY
 228};
 229
 230/*
 231 * Hash buckets are shared by all the futex_keys that hash to the same
 232 * location.  Each key may have multiple futex_q structures, one for each task
 233 * waiting on a futex.
 234 */
 235struct futex_hash_bucket {
 236	atomic_t waiters;
 237	spinlock_t lock;
 238	struct plist_head chain;
 239} ____cacheline_aligned_in_smp;
 240
 241/*
 242 * The base of the bucket array and its size are always used together
 243 * (after initialization only in hash_futex()), so ensure that they
 244 * reside in the same cacheline.
 245 */
 246static struct {
 247	struct futex_hash_bucket *queues;
 248	unsigned long            hashsize;
 249} __futex_data __read_mostly __aligned(2*sizeof(long));
 250#define futex_queues   (__futex_data.queues)
 251#define futex_hashsize (__futex_data.hashsize)
 252
 253
 254/*
 255 * Fault injections for futexes.
 256 */
 257#ifdef CONFIG_FAIL_FUTEX
 258
 259static struct {
 260	struct fault_attr attr;
 261
 262	bool ignore_private;
 263} fail_futex = {
 264	.attr = FAULT_ATTR_INITIALIZER,
 265	.ignore_private = false,
 266};
 267
 268static int __init setup_fail_futex(char *str)
 269{
 270	return setup_fault_attr(&fail_futex.attr, str);
 271}
 272__setup("fail_futex=", setup_fail_futex);
 273
 274static bool should_fail_futex(bool fshared)
 275{
 276	if (fail_futex.ignore_private && !fshared)
 277		return false;
 278
 279	return should_fail(&fail_futex.attr, 1);
 280}
 281
 282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 283
 284static int __init fail_futex_debugfs(void)
 285{
 286	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 287	struct dentry *dir;
 288
 289	dir = fault_create_debugfs_attr("fail_futex", NULL,
 290					&fail_futex.attr);
 291	if (IS_ERR(dir))
 292		return PTR_ERR(dir);
 293
 294	debugfs_create_bool("ignore-private", mode, dir,
 295			    &fail_futex.ignore_private);
 
 
 
 
 296	return 0;
 297}
 298
 299late_initcall(fail_futex_debugfs);
 300
 301#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 302
 303#else
 304static inline bool should_fail_futex(bool fshared)
 305{
 306	return false;
 307}
 308#endif /* CONFIG_FAIL_FUTEX */
 309
 310#ifdef CONFIG_COMPAT
 311static void compat_exit_robust_list(struct task_struct *curr);
 312#else
 313static inline void compat_exit_robust_list(struct task_struct *curr) { }
 314#endif
 
 
 
 
 
 315
 316/*
 317 * Reflects a new waiter being added to the waitqueue.
 318 */
 319static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 320{
 321#ifdef CONFIG_SMP
 322	atomic_inc(&hb->waiters);
 323	/*
 324	 * Full barrier (A), see the ordering comment above.
 325	 */
 326	smp_mb__after_atomic();
 327#endif
 328}
 329
 330/*
 331 * Reflects a waiter being removed from the waitqueue by wakeup
 332 * paths.
 333 */
 334static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 335{
 336#ifdef CONFIG_SMP
 337	atomic_dec(&hb->waiters);
 338#endif
 339}
 340
 341static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 342{
 343#ifdef CONFIG_SMP
 344	/*
 345	 * Full barrier (B), see the ordering comment above.
 346	 */
 347	smp_mb();
 348	return atomic_read(&hb->waiters);
 349#else
 350	return 1;
 351#endif
 352}
 353
 354/**
 355 * hash_futex - Return the hash bucket in the global hash
 356 * @key:	Pointer to the futex key for which the hash is calculated
 357 *
 358 * We hash on the keys returned from get_futex_key (see below) and return the
 359 * corresponding hash bucket in the global hash.
 360 */
 361static struct futex_hash_bucket *hash_futex(union futex_key *key)
 362{
 363	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
 
 364			  key->both.offset);
 365
 366	return &futex_queues[hash & (futex_hashsize - 1)];
 367}
 368
 369
 370/**
 371 * match_futex - Check whether two futex keys are equal
 372 * @key1:	Pointer to key1
 373 * @key2:	Pointer to key2
 374 *
 375 * Return 1 if two futex_keys are equal, 0 otherwise.
 376 */
 377static inline int match_futex(union futex_key *key1, union futex_key *key2)
 378{
 379	return (key1 && key2
 380		&& key1->both.word == key2->both.word
 381		&& key1->both.ptr == key2->both.ptr
 382		&& key1->both.offset == key2->both.offset);
 383}
 384
 385enum futex_access {
 386	FUTEX_READ,
 387	FUTEX_WRITE
 388};
 389
 390/**
 391 * futex_setup_timer - set up the sleeping hrtimer.
 392 * @time:	ptr to the given timeout value
 393 * @timeout:	the hrtimer_sleeper structure to be set up
 394 * @flags:	futex flags
 395 * @range_ns:	optional range in ns
 396 *
 397 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 398 *	   value given
 399 */
 400static inline struct hrtimer_sleeper *
 401futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
 402		  int flags, u64 range_ns)
 403{
 404	if (!time)
 405		return NULL;
 406
 407	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
 408				      CLOCK_REALTIME : CLOCK_MONOTONIC,
 409				      HRTIMER_MODE_ABS);
 410	/*
 411	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
 412	 * effectively the same as calling hrtimer_set_expires().
 
 413	 */
 414	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
 
 
 
 415
 416	return timeout;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417}
 418
 419/*
 420 * Generate a machine wide unique identifier for this inode.
 421 *
 422 * This relies on u64 not wrapping in the life-time of the machine; which with
 423 * 1ns resolution means almost 585 years.
 424 *
 425 * This further relies on the fact that a well formed program will not unmap
 426 * the file while it has a (shared) futex waiting on it. This mapping will have
 427 * a file reference which pins the mount and inode.
 428 *
 429 * If for some reason an inode gets evicted and read back in again, it will get
 430 * a new sequence number and will _NOT_ match, even though it is the exact same
 431 * file.
 432 *
 433 * It is important that match_futex() will never have a false-positive, esp.
 434 * for PI futexes that can mess up the state. The above argues that false-negatives
 435 * are only possible for malformed programs.
 436 */
 437static u64 get_inode_sequence_number(struct inode *inode)
 438{
 439	static atomic64_t i_seq;
 440	u64 old;
 
 
 
 441
 442	/* Does the inode already have a sequence number? */
 443	old = atomic64_read(&inode->i_sequence);
 444	if (likely(old))
 445		return old;
 446
 447	for (;;) {
 448		u64 new = atomic64_add_return(1, &i_seq);
 449		if (WARN_ON_ONCE(!new))
 450			continue;
 451
 452		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
 453		if (old)
 454			return old;
 455		return new;
 456	}
 457}
 458
 459/**
 460 * get_futex_key() - Get parameters which are the keys for a futex
 461 * @uaddr:	virtual address of the futex
 462 * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
 463 * @key:	address where result is stored.
 464 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 465 *              FUTEX_WRITE)
 466 *
 467 * Return: a negative error code or 0
 468 *
 469 * The key words are stored in @key on success.
 470 *
 471 * For shared mappings (when @fshared), the key is:
 472 *
 473 *   ( inode->i_sequence, page->index, offset_within_page )
 474 *
 475 * [ also see get_inode_sequence_number() ]
 476 *
 477 * For private mappings (or when !@fshared), the key is:
 478 *
 479 *   ( current->mm, address, 0 )
 480 *
 481 * This allows (cross process, where applicable) identification of the futex
 482 * without keeping the page pinned for the duration of the FUTEX_WAIT.
 
 483 *
 484 * lock_page() might sleep, the caller should not hold a spinlock.
 485 */
 486static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
 487			 enum futex_access rw)
 488{
 489	unsigned long address = (unsigned long)uaddr;
 490	struct mm_struct *mm = current->mm;
 491	struct page *page, *tail;
 492	struct address_space *mapping;
 493	int err, ro = 0;
 494
 495	/*
 496	 * The futex address must be "naturally" aligned.
 497	 */
 498	key->both.offset = address % PAGE_SIZE;
 499	if (unlikely((address % sizeof(u32)) != 0))
 500		return -EINVAL;
 501	address -= key->both.offset;
 502
 503	if (unlikely(!access_ok(uaddr, sizeof(u32))))
 504		return -EFAULT;
 505
 506	if (unlikely(should_fail_futex(fshared)))
 507		return -EFAULT;
 508
 509	/*
 510	 * PROCESS_PRIVATE futexes are fast.
 511	 * As the mm cannot disappear under us and the 'key' only needs
 512	 * virtual address, we dont even have to find the underlying vma.
 513	 * Note : We do have to check 'uaddr' is a valid user address,
 514	 *        but access_ok() should be faster than find_vma()
 515	 */
 516	if (!fshared) {
 517		key->private.mm = mm;
 518		key->private.address = address;
 
 519		return 0;
 520	}
 521
 522again:
 523	/* Ignore any VERIFY_READ mapping (futex common case) */
 524	if (unlikely(should_fail_futex(true)))
 525		return -EFAULT;
 526
 527	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
 528	/*
 529	 * If write access is not required (eg. FUTEX_WAIT), try
 530	 * and get read-only access.
 531	 */
 532	if (err == -EFAULT && rw == FUTEX_READ) {
 533		err = get_user_pages_fast(address, 1, 0, &page);
 534		ro = 1;
 535	}
 536	if (err < 0)
 537		return err;
 538	else
 539		err = 0;
 540
 541	/*
 542	 * The treatment of mapping from this point on is critical. The page
 543	 * lock protects many things but in this context the page lock
 544	 * stabilizes mapping, prevents inode freeing in the shared
 545	 * file-backed region case and guards against movement to swap cache.
 546	 *
 547	 * Strictly speaking the page lock is not needed in all cases being
 548	 * considered here and page lock forces unnecessarily serialization
 549	 * From this point on, mapping will be re-verified if necessary and
 550	 * page lock will be acquired only if it is unavoidable
 551	 *
 552	 * Mapping checks require the head page for any compound page so the
 553	 * head page and mapping is looked up now. For anonymous pages, it
 554	 * does not matter if the page splits in the future as the key is
 555	 * based on the address. For filesystem-backed pages, the tail is
 556	 * required as the index of the page determines the key. For
 557	 * base pages, there is no tail page and tail == page.
 558	 */
 559	tail = page;
 560	page = compound_head(page);
 561	mapping = READ_ONCE(page->mapping);
 562
 563	/*
 564	 * If page->mapping is NULL, then it cannot be a PageAnon
 565	 * page; but it might be the ZERO_PAGE or in the gate area or
 566	 * in a special mapping (all cases which we are happy to fail);
 567	 * or it may have been a good file page when get_user_pages_fast
 568	 * found it, but truncated or holepunched or subjected to
 569	 * invalidate_complete_page2 before we got the page lock (also
 570	 * cases which we are happy to fail).  And we hold a reference,
 571	 * so refcount care in invalidate_complete_page's remove_mapping
 572	 * prevents drop_caches from setting mapping to NULL beneath us.
 573	 *
 574	 * The case we do have to guard against is when memory pressure made
 575	 * shmem_writepage move it from filecache to swapcache beneath us:
 576	 * an unlikely race, but we do need to retry for page->mapping.
 577	 */
 578	if (unlikely(!mapping)) {
 579		int shmem_swizzled;
 580
 581		/*
 582		 * Page lock is required to identify which special case above
 583		 * applies. If this is really a shmem page then the page lock
 584		 * will prevent unexpected transitions.
 585		 */
 586		lock_page(page);
 587		shmem_swizzled = PageSwapCache(page) || page->mapping;
 588		unlock_page(page);
 589		put_page(page);
 590
 591		if (shmem_swizzled)
 592			goto again;
 593
 594		return -EFAULT;
 595	}
 596
 597	/*
 598	 * Private mappings are handled in a simple way.
 599	 *
 600	 * If the futex key is stored on an anonymous page, then the associated
 601	 * object is the mm which is implicitly pinned by the calling process.
 602	 *
 603	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 604	 * it's a read-only handle, it's expected that futexes attach to
 605	 * the object not the particular process.
 606	 */
 607	if (PageAnon(page)) {
 608		/*
 609		 * A RO anonymous page will never change and thus doesn't make
 610		 * sense for futex operations.
 611		 */
 612		if (unlikely(should_fail_futex(true)) || ro) {
 613			err = -EFAULT;
 614			goto out;
 615		}
 616
 617		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 618		key->private.mm = mm;
 619		key->private.address = address;
 620
 
 
 621	} else {
 622		struct inode *inode;
 623
 624		/*
 625		 * The associated futex object in this case is the inode and
 626		 * the page->mapping must be traversed. Ordinarily this should
 627		 * be stabilised under page lock but it's not strictly
 628		 * necessary in this case as we just want to pin the inode, not
 629		 * update the radix tree or anything like that.
 630		 *
 631		 * The RCU read lock is taken as the inode is finally freed
 632		 * under RCU. If the mapping still matches expectations then the
 633		 * mapping->host can be safely accessed as being a valid inode.
 634		 */
 635		rcu_read_lock();
 636
 637		if (READ_ONCE(page->mapping) != mapping) {
 638			rcu_read_unlock();
 639			put_page(page);
 640
 641			goto again;
 642		}
 643
 644		inode = READ_ONCE(mapping->host);
 645		if (!inode) {
 646			rcu_read_unlock();
 647			put_page(page);
 648
 649			goto again;
 650		}
 651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 653		key->shared.i_seq = get_inode_sequence_number(inode);
 654		key->shared.pgoff = basepage_index(tail);
 655		rcu_read_unlock();
 656	}
 657
 658out:
 659	put_page(page);
 660	return err;
 661}
 662
 
 
 
 
 
 663/**
 664 * fault_in_user_writeable() - Fault in user address and verify RW access
 665 * @uaddr:	pointer to faulting user space address
 666 *
 667 * Slow path to fixup the fault we just took in the atomic write
 668 * access to @uaddr.
 669 *
 670 * We have no generic implementation of a non-destructive write to the
 671 * user address. We know that we faulted in the atomic pagefault
 672 * disabled section so we can as well avoid the #PF overhead by
 673 * calling get_user_pages() right away.
 674 */
 675static int fault_in_user_writeable(u32 __user *uaddr)
 676{
 677	struct mm_struct *mm = current->mm;
 678	int ret;
 679
 680	mmap_read_lock(mm);
 681	ret = fixup_user_fault(mm, (unsigned long)uaddr,
 682			       FAULT_FLAG_WRITE, NULL);
 683	mmap_read_unlock(mm);
 684
 685	return ret < 0 ? ret : 0;
 686}
 687
 688/**
 689 * futex_top_waiter() - Return the highest priority waiter on a futex
 690 * @hb:		the hash bucket the futex_q's reside in
 691 * @key:	the futex key (to distinguish it from other futex futex_q's)
 692 *
 693 * Must be called with the hb lock held.
 694 */
 695static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 696					union futex_key *key)
 697{
 698	struct futex_q *this;
 699
 700	plist_for_each_entry(this, &hb->chain, list) {
 701		if (match_futex(&this->key, key))
 702			return this;
 703	}
 704	return NULL;
 705}
 706
 707static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 708				      u32 uval, u32 newval)
 709{
 710	int ret;
 711
 712	pagefault_disable();
 713	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 714	pagefault_enable();
 715
 716	return ret;
 717}
 718
 719static int get_futex_value_locked(u32 *dest, u32 __user *from)
 720{
 721	int ret;
 722
 723	pagefault_disable();
 724	ret = __get_user(*dest, from);
 725	pagefault_enable();
 726
 727	return ret ? -EFAULT : 0;
 728}
 729
 730
 731/*
 732 * PI code:
 733 */
 734static int refill_pi_state_cache(void)
 735{
 736	struct futex_pi_state *pi_state;
 737
 738	if (likely(current->pi_state_cache))
 739		return 0;
 740
 741	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 742
 743	if (!pi_state)
 744		return -ENOMEM;
 745
 746	INIT_LIST_HEAD(&pi_state->list);
 747	/* pi_mutex gets initialized later */
 748	pi_state->owner = NULL;
 749	refcount_set(&pi_state->refcount, 1);
 750	pi_state->key = FUTEX_KEY_INIT;
 751
 752	current->pi_state_cache = pi_state;
 753
 754	return 0;
 755}
 756
 757static struct futex_pi_state *alloc_pi_state(void)
 758{
 759	struct futex_pi_state *pi_state = current->pi_state_cache;
 760
 761	WARN_ON(!pi_state);
 762	current->pi_state_cache = NULL;
 763
 764	return pi_state;
 765}
 766
 767static void get_pi_state(struct futex_pi_state *pi_state)
 768{
 769	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
 770}
 771
 772/*
 773 * Drops a reference to the pi_state object and frees or caches it
 774 * when the last reference is gone.
 
 
 775 */
 776static void put_pi_state(struct futex_pi_state *pi_state)
 777{
 778	if (!pi_state)
 779		return;
 780
 781	if (!refcount_dec_and_test(&pi_state->refcount))
 782		return;
 783
 784	/*
 785	 * If pi_state->owner is NULL, the owner is most probably dying
 786	 * and has cleaned up the pi_state already
 787	 */
 788	if (pi_state->owner) {
 789		struct task_struct *owner;
 
 
 790
 791		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 792		owner = pi_state->owner;
 793		if (owner) {
 794			raw_spin_lock(&owner->pi_lock);
 795			list_del_init(&pi_state->list);
 796			raw_spin_unlock(&owner->pi_lock);
 797		}
 798		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 799		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 800	}
 801
 802	if (current->pi_state_cache) {
 803		kfree(pi_state);
 804	} else {
 805		/*
 806		 * pi_state->list is already empty.
 807		 * clear pi_state->owner.
 808		 * refcount is at 0 - put it back to 1.
 809		 */
 810		pi_state->owner = NULL;
 811		refcount_set(&pi_state->refcount, 1);
 812		current->pi_state_cache = pi_state;
 813	}
 814}
 815
 816#ifdef CONFIG_FUTEX_PI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 818/*
 819 * This task is holding PI mutexes at exit time => bad.
 820 * Kernel cleans up PI-state, but userspace is likely hosed.
 821 * (Robust-futex cleanup is separate and might save the day for userspace.)
 822 */
 823static void exit_pi_state_list(struct task_struct *curr)
 824{
 825	struct list_head *next, *head = &curr->pi_state_list;
 826	struct futex_pi_state *pi_state;
 827	struct futex_hash_bucket *hb;
 828	union futex_key key = FUTEX_KEY_INIT;
 829
 830	if (!futex_cmpxchg_enabled)
 831		return;
 832	/*
 833	 * We are a ZOMBIE and nobody can enqueue itself on
 834	 * pi_state_list anymore, but we have to be careful
 835	 * versus waiters unqueueing themselves:
 836	 */
 837	raw_spin_lock_irq(&curr->pi_lock);
 838	while (!list_empty(head)) {
 
 839		next = head->next;
 840		pi_state = list_entry(next, struct futex_pi_state, list);
 841		key = pi_state->key;
 842		hb = hash_futex(&key);
 843
 844		/*
 845		 * We can race against put_pi_state() removing itself from the
 846		 * list (a waiter going away). put_pi_state() will first
 847		 * decrement the reference count and then modify the list, so
 848		 * its possible to see the list entry but fail this reference
 849		 * acquire.
 850		 *
 851		 * In that case; drop the locks to let put_pi_state() make
 852		 * progress and retry the loop.
 853		 */
 854		if (!refcount_inc_not_zero(&pi_state->refcount)) {
 855			raw_spin_unlock_irq(&curr->pi_lock);
 856			cpu_relax();
 857			raw_spin_lock_irq(&curr->pi_lock);
 858			continue;
 859		}
 860		raw_spin_unlock_irq(&curr->pi_lock);
 861
 862		spin_lock(&hb->lock);
 863		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 864		raw_spin_lock(&curr->pi_lock);
 865		/*
 866		 * We dropped the pi-lock, so re-check whether this
 867		 * task still owns the PI-state:
 868		 */
 869		if (head->next != next) {
 870			/* retain curr->pi_lock for the loop invariant */
 871			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 872			spin_unlock(&hb->lock);
 873			put_pi_state(pi_state);
 874			continue;
 875		}
 876
 877		WARN_ON(pi_state->owner != curr);
 878		WARN_ON(list_empty(&pi_state->list));
 879		list_del_init(&pi_state->list);
 880		pi_state->owner = NULL;
 
 
 
 881
 882		raw_spin_unlock(&curr->pi_lock);
 883		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 884		spin_unlock(&hb->lock);
 885
 886		rt_mutex_futex_unlock(&pi_state->pi_mutex);
 887		put_pi_state(pi_state);
 888
 889		raw_spin_lock_irq(&curr->pi_lock);
 890	}
 891	raw_spin_unlock_irq(&curr->pi_lock);
 892}
 893#else
 894static inline void exit_pi_state_list(struct task_struct *curr) { }
 895#endif
 896
 897/*
 898 * We need to check the following states:
 899 *
 900 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 901 *
 902 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 903 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 904 *
 905 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 906 *
 907 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 908 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 909 *
 910 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 911 *
 912 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 913 *
 914 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 915 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 916 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 917 *
 918 * [1]	Indicates that the kernel can acquire the futex atomically. We
 919 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 920 *
 921 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 922 *      thread is found then it indicates that the owner TID has died.
 923 *
 924 * [3]	Invalid. The waiter is queued on a non PI futex
 925 *
 926 * [4]	Valid state after exit_robust_list(), which sets the user space
 927 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 928 *
 929 * [5]	The user space value got manipulated between exit_robust_list()
 930 *	and exit_pi_state_list()
 931 *
 932 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 933 *	the pi_state but cannot access the user space value.
 934 *
 935 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 936 *
 937 * [8]	Owner and user space value match
 938 *
 939 * [9]	There is no transient state which sets the user space TID to 0
 940 *	except exit_robust_list(), but this is indicated by the
 941 *	FUTEX_OWNER_DIED bit. See [4]
 942 *
 943 * [10] There is no transient state which leaves owner and user space
 944 *	TID out of sync.
 945 *
 946 *
 947 * Serialization and lifetime rules:
 948 *
 949 * hb->lock:
 950 *
 951 *	hb -> futex_q, relation
 952 *	futex_q -> pi_state, relation
 953 *
 954 *	(cannot be raw because hb can contain arbitrary amount
 955 *	 of futex_q's)
 956 *
 957 * pi_mutex->wait_lock:
 958 *
 959 *	{uval, pi_state}
 960 *
 961 *	(and pi_mutex 'obviously')
 962 *
 963 * p->pi_lock:
 964 *
 965 *	p->pi_state_list -> pi_state->list, relation
 966 *
 967 * pi_state->refcount:
 968 *
 969 *	pi_state lifetime
 970 *
 971 *
 972 * Lock order:
 973 *
 974 *   hb->lock
 975 *     pi_mutex->wait_lock
 976 *       p->pi_lock
 977 *
 978 */
 979
 980/*
 981 * Validate that the existing waiter has a pi_state and sanity check
 982 * the pi_state against the user space value. If correct, attach to
 983 * it.
 984 */
 985static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
 986			      struct futex_pi_state *pi_state,
 987			      struct futex_pi_state **ps)
 988{
 989	pid_t pid = uval & FUTEX_TID_MASK;
 990	u32 uval2;
 991	int ret;
 992
 993	/*
 994	 * Userspace might have messed up non-PI and PI futexes [3]
 995	 */
 996	if (unlikely(!pi_state))
 997		return -EINVAL;
 998
 999	/*
1000	 * We get here with hb->lock held, and having found a
1001	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1002	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1003	 * which in turn means that futex_lock_pi() still has a reference on
1004	 * our pi_state.
1005	 *
1006	 * The waiter holding a reference on @pi_state also protects against
1007	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1008	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1009	 * free pi_state before we can take a reference ourselves.
1010	 */
1011	WARN_ON(!refcount_read(&pi_state->refcount));
1012
1013	/*
1014	 * Now that we have a pi_state, we can acquire wait_lock
1015	 * and do the state validation.
1016	 */
1017	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1018
1019	/*
1020	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1021	 * uval was read without holding it, it can have changed. Verify it
1022	 * still is what we expect it to be, otherwise retry the entire
1023	 * operation.
1024	 */
1025	if (get_futex_value_locked(&uval2, uaddr))
1026		goto out_efault;
1027
1028	if (uval != uval2)
1029		goto out_eagain;
1030
1031	/*
1032	 * Handle the owner died case:
1033	 */
1034	if (uval & FUTEX_OWNER_DIED) {
1035		/*
1036		 * exit_pi_state_list sets owner to NULL and wakes the
1037		 * topmost waiter. The task which acquires the
1038		 * pi_state->rt_mutex will fixup owner.
1039		 */
1040		if (!pi_state->owner) {
1041			/*
1042			 * No pi state owner, but the user space TID
1043			 * is not 0. Inconsistent state. [5]
1044			 */
1045			if (pid)
1046				goto out_einval;
1047			/*
1048			 * Take a ref on the state and return success. [4]
1049			 */
1050			goto out_attach;
1051		}
1052
1053		/*
1054		 * If TID is 0, then either the dying owner has not
1055		 * yet executed exit_pi_state_list() or some waiter
1056		 * acquired the rtmutex in the pi state, but did not
1057		 * yet fixup the TID in user space.
1058		 *
1059		 * Take a ref on the state and return success. [6]
1060		 */
1061		if (!pid)
1062			goto out_attach;
1063	} else {
1064		/*
1065		 * If the owner died bit is not set, then the pi_state
1066		 * must have an owner. [7]
1067		 */
1068		if (!pi_state->owner)
1069			goto out_einval;
1070	}
1071
1072	/*
1073	 * Bail out if user space manipulated the futex value. If pi
1074	 * state exists then the owner TID must be the same as the
1075	 * user space TID. [9/10]
1076	 */
1077	if (pid != task_pid_vnr(pi_state->owner))
1078		goto out_einval;
1079
1080out_attach:
1081	get_pi_state(pi_state);
1082	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1083	*ps = pi_state;
1084	return 0;
1085
1086out_einval:
1087	ret = -EINVAL;
1088	goto out_error;
1089
1090out_eagain:
1091	ret = -EAGAIN;
1092	goto out_error;
1093
1094out_efault:
1095	ret = -EFAULT;
1096	goto out_error;
1097
1098out_error:
1099	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1100	return ret;
1101}
1102
1103/**
1104 * wait_for_owner_exiting - Block until the owner has exited
1105 * @ret: owner's current futex lock status
1106 * @exiting:	Pointer to the exiting task
1107 *
1108 * Caller must hold a refcount on @exiting.
1109 */
1110static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1111{
1112	if (ret != -EBUSY) {
1113		WARN_ON_ONCE(exiting);
1114		return;
1115	}
1116
1117	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1118		return;
1119
1120	mutex_lock(&exiting->futex_exit_mutex);
1121	/*
1122	 * No point in doing state checking here. If the waiter got here
1123	 * while the task was in exec()->exec_futex_release() then it can
1124	 * have any FUTEX_STATE_* value when the waiter has acquired the
1125	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1126	 * already. Highly unlikely and not a problem. Just one more round
1127	 * through the futex maze.
1128	 */
1129	mutex_unlock(&exiting->futex_exit_mutex);
1130
1131	put_task_struct(exiting);
1132}
1133
1134static int handle_exit_race(u32 __user *uaddr, u32 uval,
1135			    struct task_struct *tsk)
1136{
1137	u32 uval2;
1138
1139	/*
1140	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1141	 * caller that the alleged owner is busy.
1142	 */
1143	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1144		return -EBUSY;
1145
1146	/*
1147	 * Reread the user space value to handle the following situation:
1148	 *
1149	 * CPU0				CPU1
1150	 *
1151	 * sys_exit()			sys_futex()
1152	 *  do_exit()			 futex_lock_pi()
1153	 *                                futex_lock_pi_atomic()
1154	 *   exit_signals(tsk)		    No waiters:
1155	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1156	 *  mm_release(tsk)		    Set waiter bit
1157	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1158	 *      Set owner died		    attach_to_pi_owner() {
1159	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1160	 *   }				     if (!tsk->flags & PF_EXITING) {
1161	 *  ...				       attach();
1162	 *  tsk->futex_state =               } else {
1163	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1164	 *					  FUTEX_STATE_DEAD)
1165	 *				         return -EAGAIN;
1166	 *				       return -ESRCH; <--- FAIL
1167	 *				     }
1168	 *
1169	 * Returning ESRCH unconditionally is wrong here because the
1170	 * user space value has been changed by the exiting task.
1171	 *
1172	 * The same logic applies to the case where the exiting task is
1173	 * already gone.
1174	 */
1175	if (get_futex_value_locked(&uval2, uaddr))
1176		return -EFAULT;
1177
1178	/* If the user space value has changed, try again. */
1179	if (uval2 != uval)
1180		return -EAGAIN;
1181
1182	/*
1183	 * The exiting task did not have a robust list, the robust list was
1184	 * corrupted or the user space value in *uaddr is simply bogus.
1185	 * Give up and tell user space.
1186	 */
1187	return -ESRCH;
1188}
1189
1190/*
1191 * Lookup the task for the TID provided from user space and attach to
1192 * it after doing proper sanity checks.
1193 */
1194static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1195			      struct futex_pi_state **ps,
1196			      struct task_struct **exiting)
1197{
1198	pid_t pid = uval & FUTEX_TID_MASK;
1199	struct futex_pi_state *pi_state;
1200	struct task_struct *p;
1201
1202	/*
1203	 * We are the first waiter - try to look up the real owner and attach
1204	 * the new pi_state to it, but bail out when TID = 0 [1]
1205	 *
1206	 * The !pid check is paranoid. None of the call sites should end up
1207	 * with pid == 0, but better safe than sorry. Let the caller retry
1208	 */
1209	if (!pid)
1210		return -EAGAIN;
1211	p = find_get_task_by_vpid(pid);
1212	if (!p)
1213		return handle_exit_race(uaddr, uval, NULL);
1214
1215	if (unlikely(p->flags & PF_KTHREAD)) {
1216		put_task_struct(p);
1217		return -EPERM;
1218	}
1219
1220	/*
1221	 * We need to look at the task state to figure out, whether the
1222	 * task is exiting. To protect against the change of the task state
1223	 * in futex_exit_release(), we do this protected by p->pi_lock:
 
1224	 */
1225	raw_spin_lock_irq(&p->pi_lock);
1226	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1227		/*
1228		 * The task is on the way out. When the futex state is
1229		 * FUTEX_STATE_DEAD, we know that the task has finished
1230		 * the cleanup:
1231		 */
1232		int ret = handle_exit_race(uaddr, uval, p);
1233
1234		raw_spin_unlock_irq(&p->pi_lock);
1235		/*
1236		 * If the owner task is between FUTEX_STATE_EXITING and
1237		 * FUTEX_STATE_DEAD then store the task pointer and keep
1238		 * the reference on the task struct. The calling code will
1239		 * drop all locks, wait for the task to reach
1240		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1241		 * required to prevent a live lock when the current task
1242		 * preempted the exiting task between the two states.
1243		 */
1244		if (ret == -EBUSY)
1245			*exiting = p;
1246		else
1247			put_task_struct(p);
1248		return ret;
1249	}
1250
1251	/*
1252	 * No existing pi state. First waiter. [2]
1253	 *
1254	 * This creates pi_state, we have hb->lock held, this means nothing can
1255	 * observe this state, wait_lock is irrelevant.
1256	 */
1257	pi_state = alloc_pi_state();
1258
1259	/*
1260	 * Initialize the pi_mutex in locked state and make @p
1261	 * the owner of it:
1262	 */
1263	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1264
1265	/* Store the key for possible exit cleanups: */
1266	pi_state->key = *key;
1267
1268	WARN_ON(!list_empty(&pi_state->list));
1269	list_add(&pi_state->list, &p->pi_state_list);
1270	/*
1271	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1272	 * because there is no concurrency as the object is not published yet.
1273	 */
1274	pi_state->owner = p;
1275	raw_spin_unlock_irq(&p->pi_lock);
1276
1277	put_task_struct(p);
1278
1279	*ps = pi_state;
1280
1281	return 0;
1282}
1283
1284static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1285			   struct futex_hash_bucket *hb,
1286			   union futex_key *key, struct futex_pi_state **ps,
1287			   struct task_struct **exiting)
1288{
1289	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1290
1291	/*
1292	 * If there is a waiter on that futex, validate it and
1293	 * attach to the pi_state when the validation succeeds.
1294	 */
1295	if (top_waiter)
1296		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1297
1298	/*
1299	 * We are the first waiter - try to look up the owner based on
1300	 * @uval and attach to it.
1301	 */
1302	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1303}
1304
1305static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1306{
1307	int err;
1308	u32 curval;
1309
1310	if (unlikely(should_fail_futex(true)))
1311		return -EFAULT;
1312
1313	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1314	if (unlikely(err))
1315		return err;
1316
1317	/* If user space value changed, let the caller retry */
1318	return curval != uval ? -EAGAIN : 0;
1319}
1320
1321/**
1322 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323 * @uaddr:		the pi futex user address
1324 * @hb:			the pi futex hash bucket
1325 * @key:		the futex key associated with uaddr and hb
1326 * @ps:			the pi_state pointer where we store the result of the
1327 *			lookup
1328 * @task:		the task to perform the atomic lock work for.  This will
1329 *			be "current" except in the case of requeue pi.
1330 * @exiting:		Pointer to store the task pointer of the owner task
1331 *			which is in the middle of exiting
1332 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1333 *
1334 * Return:
1335 *  -  0 - ready to wait;
1336 *  -  1 - acquired the lock;
1337 *  - <0 - error
1338 *
1339 * The hb->lock and futex_key refs shall be held by the caller.
1340 *
1341 * @exiting is only set when the return value is -EBUSY. If so, this holds
1342 * a refcount on the exiting task on return and the caller needs to drop it
1343 * after waiting for the exit to complete.
1344 */
1345static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1346				union futex_key *key,
1347				struct futex_pi_state **ps,
1348				struct task_struct *task,
1349				struct task_struct **exiting,
1350				int set_waiters)
1351{
1352	u32 uval, newval, vpid = task_pid_vnr(task);
1353	struct futex_q *top_waiter;
1354	int ret;
1355
1356	/*
1357	 * Read the user space value first so we can validate a few
1358	 * things before proceeding further.
1359	 */
1360	if (get_futex_value_locked(&uval, uaddr))
1361		return -EFAULT;
1362
1363	if (unlikely(should_fail_futex(true)))
1364		return -EFAULT;
1365
1366	/*
1367	 * Detect deadlocks.
1368	 */
1369	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1370		return -EDEADLK;
1371
1372	if ((unlikely(should_fail_futex(true))))
1373		return -EDEADLK;
1374
1375	/*
1376	 * Lookup existing state first. If it exists, try to attach to
1377	 * its pi_state.
1378	 */
1379	top_waiter = futex_top_waiter(hb, key);
1380	if (top_waiter)
1381		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1382
1383	/*
1384	 * No waiter and user TID is 0. We are here because the
1385	 * waiters or the owner died bit is set or called from
1386	 * requeue_cmp_pi or for whatever reason something took the
1387	 * syscall.
1388	 */
1389	if (!(uval & FUTEX_TID_MASK)) {
1390		/*
1391		 * We take over the futex. No other waiters and the user space
1392		 * TID is 0. We preserve the owner died bit.
1393		 */
1394		newval = uval & FUTEX_OWNER_DIED;
1395		newval |= vpid;
1396
1397		/* The futex requeue_pi code can enforce the waiters bit */
1398		if (set_waiters)
1399			newval |= FUTEX_WAITERS;
1400
1401		ret = lock_pi_update_atomic(uaddr, uval, newval);
1402		/* If the take over worked, return 1 */
1403		return ret < 0 ? ret : 1;
1404	}
1405
1406	/*
1407	 * First waiter. Set the waiters bit before attaching ourself to
1408	 * the owner. If owner tries to unlock, it will be forced into
1409	 * the kernel and blocked on hb->lock.
1410	 */
1411	newval = uval | FUTEX_WAITERS;
1412	ret = lock_pi_update_atomic(uaddr, uval, newval);
1413	if (ret)
1414		return ret;
1415	/*
1416	 * If the update of the user space value succeeded, we try to
1417	 * attach to the owner. If that fails, no harm done, we only
1418	 * set the FUTEX_WAITERS bit in the user space variable.
1419	 */
1420	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1421}
1422
1423/**
1424 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425 * @q:	The futex_q to unqueue
1426 *
1427 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 */
1429static void __unqueue_futex(struct futex_q *q)
1430{
1431	struct futex_hash_bucket *hb;
1432
1433	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
 
1434		return;
1435	lockdep_assert_held(q->lock_ptr);
1436
1437	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438	plist_del(&q->list, &hb->chain);
1439	hb_waiters_dec(hb);
1440}
1441
1442/*
1443 * The hash bucket lock must be held when this is called.
1444 * Afterwards, the futex_q must not be accessed. Callers
1445 * must ensure to later call wake_up_q() for the actual
1446 * wakeups to occur.
1447 */
1448static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1449{
1450	struct task_struct *p = q->task;
1451
1452	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453		return;
1454
1455	get_task_struct(p);
1456	__unqueue_futex(q);
1457	/*
1458	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1459	 * is written, without taking any locks. This is possible in the event
1460	 * of a spurious wakeup, for example. A memory barrier is required here
1461	 * to prevent the following store to lock_ptr from getting ahead of the
1462	 * plist_del in __unqueue_futex().
1463	 */
1464	smp_store_release(&q->lock_ptr, NULL);
1465
1466	/*
1467	 * Queue the task for later wakeup for after we've released
1468	 * the hb->lock.
 
 
1469	 */
1470	wake_q_add_safe(wake_q, p);
 
1471}
1472
1473/*
1474 * Caller must hold a reference on @pi_state.
1475 */
1476static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1477{
1478	u32 curval, newval;
1479	struct task_struct *new_owner;
1480	bool postunlock = false;
 
1481	DEFINE_WAKE_Q(wake_q);
 
1482	int ret = 0;
1483
 
 
 
 
 
 
 
 
 
 
 
1484	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1485	if (WARN_ON_ONCE(!new_owner)) {
1486		/*
1487		 * As per the comment in futex_unlock_pi() this should not happen.
1488		 *
1489		 * When this happens, give up our locks and try again, giving
1490		 * the futex_lock_pi() instance time to complete, either by
1491		 * waiting on the rtmutex or removing itself from the futex
1492		 * queue.
1493		 */
1494		ret = -EAGAIN;
1495		goto out_unlock;
1496	}
1497
1498	/*
1499	 * We pass it to the next owner. The WAITERS bit is always kept
1500	 * enabled while there is PI state around. We cleanup the owner
1501	 * died bit, because we are the owner.
 
 
 
 
 
 
 
 
1502	 */
1503	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1504
1505	if (unlikely(should_fail_futex(true)))
1506		ret = -EFAULT;
1507
1508	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1509	if (!ret && (curval != uval)) {
 
1510		/*
1511		 * If a unconditional UNLOCK_PI operation (user space did not
1512		 * try the TID->0 transition) raced with a waiter setting the
1513		 * FUTEX_WAITERS flag between get_user() and locking the hash
1514		 * bucket lock, retry the operation.
1515		 */
1516		if ((FUTEX_TID_MASK & curval) == uval)
1517			ret = -EAGAIN;
1518		else
1519			ret = -EINVAL;
1520	}
1521
1522	if (ret)
1523		goto out_unlock;
1524
1525	/*
1526	 * This is a point of no return; once we modify the uval there is no
1527	 * going back and subsequent operations must not fail.
1528	 */
1529
1530	raw_spin_lock(&pi_state->owner->pi_lock);
1531	WARN_ON(list_empty(&pi_state->list));
1532	list_del_init(&pi_state->list);
1533	raw_spin_unlock(&pi_state->owner->pi_lock);
1534
1535	raw_spin_lock(&new_owner->pi_lock);
1536	WARN_ON(!list_empty(&pi_state->list));
1537	list_add(&pi_state->list, &new_owner->pi_state_list);
1538	pi_state->owner = new_owner;
1539	raw_spin_unlock(&new_owner->pi_lock);
1540
1541	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1542
1543out_unlock:
1544	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1545
1546	if (postunlock)
1547		rt_mutex_postunlock(&wake_q);
 
 
 
 
 
 
 
 
1548
1549	return ret;
1550}
1551
1552/*
1553 * Express the locking dependencies for lockdep:
1554 */
1555static inline void
1556double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557{
1558	if (hb1 <= hb2) {
1559		spin_lock(&hb1->lock);
1560		if (hb1 < hb2)
1561			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562	} else { /* hb1 > hb2 */
1563		spin_lock(&hb2->lock);
1564		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565	}
1566}
1567
1568static inline void
1569double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570{
1571	spin_unlock(&hb1->lock);
1572	if (hb1 != hb2)
1573		spin_unlock(&hb2->lock);
1574}
1575
1576/*
1577 * Wake up waiters matching bitset queued on this futex (uaddr).
1578 */
1579static int
1580futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1581{
1582	struct futex_hash_bucket *hb;
1583	struct futex_q *this, *next;
1584	union futex_key key = FUTEX_KEY_INIT;
1585	int ret;
1586	DEFINE_WAKE_Q(wake_q);
1587
1588	if (!bitset)
1589		return -EINVAL;
1590
1591	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1592	if (unlikely(ret != 0))
1593		return ret;
1594
1595	hb = hash_futex(&key);
1596
1597	/* Make sure we really have tasks to wakeup */
1598	if (!hb_waiters_pending(hb))
1599		return ret;
1600
1601	spin_lock(&hb->lock);
1602
1603	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1604		if (match_futex (&this->key, &key)) {
1605			if (this->pi_state || this->rt_waiter) {
1606				ret = -EINVAL;
1607				break;
1608			}
1609
1610			/* Check if one of the bits is set in both bitsets */
1611			if (!(this->bitset & bitset))
1612				continue;
1613
1614			mark_wake_futex(&wake_q, this);
1615			if (++ret >= nr_wake)
1616				break;
1617		}
1618	}
1619
1620	spin_unlock(&hb->lock);
1621	wake_up_q(&wake_q);
 
 
 
1622	return ret;
1623}
1624
1625static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1626{
1627	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1628	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1629	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1630	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1631	int oldval, ret;
1632
1633	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1634		if (oparg < 0 || oparg > 31) {
1635			char comm[sizeof(current->comm)];
1636			/*
1637			 * kill this print and return -EINVAL when userspace
1638			 * is sane again
1639			 */
1640			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1641					get_task_comm(comm, current), oparg);
1642			oparg &= 31;
1643		}
1644		oparg = 1 << oparg;
1645	}
1646
1647	pagefault_disable();
1648	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1649	pagefault_enable();
1650	if (ret)
1651		return ret;
1652
1653	switch (cmp) {
1654	case FUTEX_OP_CMP_EQ:
1655		return oldval == cmparg;
1656	case FUTEX_OP_CMP_NE:
1657		return oldval != cmparg;
1658	case FUTEX_OP_CMP_LT:
1659		return oldval < cmparg;
1660	case FUTEX_OP_CMP_GE:
1661		return oldval >= cmparg;
1662	case FUTEX_OP_CMP_LE:
1663		return oldval <= cmparg;
1664	case FUTEX_OP_CMP_GT:
1665		return oldval > cmparg;
1666	default:
1667		return -ENOSYS;
1668	}
1669}
1670
1671/*
1672 * Wake up all waiters hashed on the physical page that is mapped
1673 * to this virtual address:
1674 */
1675static int
1676futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1677	      int nr_wake, int nr_wake2, int op)
1678{
1679	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1680	struct futex_hash_bucket *hb1, *hb2;
1681	struct futex_q *this, *next;
1682	int ret, op_ret;
1683	DEFINE_WAKE_Q(wake_q);
1684
1685retry:
1686	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1687	if (unlikely(ret != 0))
1688		return ret;
1689	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1690	if (unlikely(ret != 0))
1691		return ret;
1692
1693	hb1 = hash_futex(&key1);
1694	hb2 = hash_futex(&key2);
1695
1696retry_private:
1697	double_lock_hb(hb1, hb2);
1698	op_ret = futex_atomic_op_inuser(op, uaddr2);
1699	if (unlikely(op_ret < 0)) {
 
1700		double_unlock_hb(hb1, hb2);
1701
1702		if (!IS_ENABLED(CONFIG_MMU) ||
1703		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1704			/*
1705			 * we don't get EFAULT from MMU faults if we don't have
1706			 * an MMU, but we might get them from range checking
1707			 */
 
 
 
 
1708			ret = op_ret;
1709			return ret;
1710		}
1711
1712		if (op_ret == -EFAULT) {
1713			ret = fault_in_user_writeable(uaddr2);
1714			if (ret)
1715				return ret;
1716		}
1717
1718		if (!(flags & FLAGS_SHARED)) {
1719			cond_resched();
1720			goto retry_private;
1721		}
1722
1723		cond_resched();
 
1724		goto retry;
1725	}
1726
1727	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1728		if (match_futex (&this->key, &key1)) {
1729			if (this->pi_state || this->rt_waiter) {
1730				ret = -EINVAL;
1731				goto out_unlock;
1732			}
1733			mark_wake_futex(&wake_q, this);
1734			if (++ret >= nr_wake)
1735				break;
1736		}
1737	}
1738
1739	if (op_ret > 0) {
1740		op_ret = 0;
1741		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1742			if (match_futex (&this->key, &key2)) {
1743				if (this->pi_state || this->rt_waiter) {
1744					ret = -EINVAL;
1745					goto out_unlock;
1746				}
1747				mark_wake_futex(&wake_q, this);
1748				if (++op_ret >= nr_wake2)
1749					break;
1750			}
1751		}
1752		ret += op_ret;
1753	}
1754
1755out_unlock:
1756	double_unlock_hb(hb1, hb2);
1757	wake_up_q(&wake_q);
 
 
 
 
 
1758	return ret;
1759}
1760
1761/**
1762 * requeue_futex() - Requeue a futex_q from one hb to another
1763 * @q:		the futex_q to requeue
1764 * @hb1:	the source hash_bucket
1765 * @hb2:	the target hash_bucket
1766 * @key2:	the new key for the requeued futex_q
1767 */
1768static inline
1769void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1770		   struct futex_hash_bucket *hb2, union futex_key *key2)
1771{
1772
1773	/*
1774	 * If key1 and key2 hash to the same bucket, no need to
1775	 * requeue.
1776	 */
1777	if (likely(&hb1->chain != &hb2->chain)) {
1778		plist_del(&q->list, &hb1->chain);
1779		hb_waiters_dec(hb1);
1780		hb_waiters_inc(hb2);
1781		plist_add(&q->list, &hb2->chain);
1782		q->lock_ptr = &hb2->lock;
1783	}
 
1784	q->key = *key2;
1785}
1786
1787/**
1788 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1789 * @q:		the futex_q
1790 * @key:	the key of the requeue target futex
1791 * @hb:		the hash_bucket of the requeue target futex
1792 *
1793 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1794 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1795 * to the requeue target futex so the waiter can detect the wakeup on the right
1796 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1797 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1798 * to protect access to the pi_state to fixup the owner later.  Must be called
1799 * with both q->lock_ptr and hb->lock held.
1800 */
1801static inline
1802void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1803			   struct futex_hash_bucket *hb)
1804{
 
1805	q->key = *key;
1806
1807	__unqueue_futex(q);
1808
1809	WARN_ON(!q->rt_waiter);
1810	q->rt_waiter = NULL;
1811
1812	q->lock_ptr = &hb->lock;
1813
1814	wake_up_state(q->task, TASK_NORMAL);
1815}
1816
1817/**
1818 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1819 * @pifutex:		the user address of the to futex
1820 * @hb1:		the from futex hash bucket, must be locked by the caller
1821 * @hb2:		the to futex hash bucket, must be locked by the caller
1822 * @key1:		the from futex key
1823 * @key2:		the to futex key
1824 * @ps:			address to store the pi_state pointer
1825 * @exiting:		Pointer to store the task pointer of the owner task
1826 *			which is in the middle of exiting
1827 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1828 *
1829 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1830 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1831 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1832 * hb1 and hb2 must be held by the caller.
1833 *
1834 * @exiting is only set when the return value is -EBUSY. If so, this holds
1835 * a refcount on the exiting task on return and the caller needs to drop it
1836 * after waiting for the exit to complete.
1837 *
1838 * Return:
1839 *  -  0 - failed to acquire the lock atomically;
1840 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1841 *  - <0 - error
1842 */
1843static int
1844futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1845			   struct futex_hash_bucket *hb2, union futex_key *key1,
1846			   union futex_key *key2, struct futex_pi_state **ps,
1847			   struct task_struct **exiting, int set_waiters)
1848{
1849	struct futex_q *top_waiter = NULL;
1850	u32 curval;
1851	int ret, vpid;
1852
1853	if (get_futex_value_locked(&curval, pifutex))
1854		return -EFAULT;
1855
1856	if (unlikely(should_fail_futex(true)))
1857		return -EFAULT;
1858
1859	/*
1860	 * Find the top_waiter and determine if there are additional waiters.
1861	 * If the caller intends to requeue more than 1 waiter to pifutex,
1862	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1863	 * as we have means to handle the possible fault.  If not, don't set
1864	 * the bit unecessarily as it will force the subsequent unlock to enter
1865	 * the kernel.
1866	 */
1867	top_waiter = futex_top_waiter(hb1, key1);
1868
1869	/* There are no waiters, nothing for us to do. */
1870	if (!top_waiter)
1871		return 0;
1872
1873	/* Ensure we requeue to the expected futex. */
1874	if (!match_futex(top_waiter->requeue_pi_key, key2))
1875		return -EINVAL;
1876
1877	/*
1878	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1879	 * the contended case or if set_waiters is 1.  The pi_state is returned
1880	 * in ps in contended cases.
1881	 */
1882	vpid = task_pid_vnr(top_waiter->task);
1883	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1884				   exiting, set_waiters);
1885	if (ret == 1) {
1886		requeue_pi_wake_futex(top_waiter, key2, hb2);
1887		return vpid;
1888	}
1889	return ret;
1890}
1891
1892/**
1893 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1894 * @uaddr1:	source futex user address
1895 * @flags:	futex flags (FLAGS_SHARED, etc.)
1896 * @uaddr2:	target futex user address
1897 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1898 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1899 * @cmpval:	@uaddr1 expected value (or %NULL)
1900 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1901 *		pi futex (pi to pi requeue is not supported)
1902 *
1903 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1904 * uaddr2 atomically on behalf of the top waiter.
1905 *
1906 * Return:
1907 *  - >=0 - on success, the number of tasks requeued or woken;
1908 *  -  <0 - on error
1909 */
1910static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1911			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1912			 u32 *cmpval, int requeue_pi)
1913{
1914	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1915	int task_count = 0, ret;
1916	struct futex_pi_state *pi_state = NULL;
1917	struct futex_hash_bucket *hb1, *hb2;
1918	struct futex_q *this, *next;
1919	DEFINE_WAKE_Q(wake_q);
1920
1921	if (nr_wake < 0 || nr_requeue < 0)
1922		return -EINVAL;
1923
1924	/*
1925	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1926	 * consequently the compiler knows requeue_pi is always false past
1927	 * this point which will optimize away all the conditional code
1928	 * further down.
1929	 */
1930	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1931		return -ENOSYS;
1932
1933	if (requeue_pi) {
1934		/*
1935		 * Requeue PI only works on two distinct uaddrs. This
1936		 * check is only valid for private futexes. See below.
1937		 */
1938		if (uaddr1 == uaddr2)
1939			return -EINVAL;
1940
1941		/*
1942		 * requeue_pi requires a pi_state, try to allocate it now
1943		 * without any locks in case it fails.
1944		 */
1945		if (refill_pi_state_cache())
1946			return -ENOMEM;
1947		/*
1948		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1949		 * + nr_requeue, since it acquires the rt_mutex prior to
1950		 * returning to userspace, so as to not leave the rt_mutex with
1951		 * waiters and no owner.  However, second and third wake-ups
1952		 * cannot be predicted as they involve race conditions with the
1953		 * first wake and a fault while looking up the pi_state.  Both
1954		 * pthread_cond_signal() and pthread_cond_broadcast() should
1955		 * use nr_wake=1.
1956		 */
1957		if (nr_wake != 1)
1958			return -EINVAL;
1959	}
1960
1961retry:
1962	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1963	if (unlikely(ret != 0))
1964		return ret;
1965	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1966			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1967	if (unlikely(ret != 0))
1968		return ret;
1969
1970	/*
1971	 * The check above which compares uaddrs is not sufficient for
1972	 * shared futexes. We need to compare the keys:
1973	 */
1974	if (requeue_pi && match_futex(&key1, &key2))
1975		return -EINVAL;
 
 
1976
1977	hb1 = hash_futex(&key1);
1978	hb2 = hash_futex(&key2);
1979
1980retry_private:
1981	hb_waiters_inc(hb2);
1982	double_lock_hb(hb1, hb2);
1983
1984	if (likely(cmpval != NULL)) {
1985		u32 curval;
1986
1987		ret = get_futex_value_locked(&curval, uaddr1);
1988
1989		if (unlikely(ret)) {
1990			double_unlock_hb(hb1, hb2);
1991			hb_waiters_dec(hb2);
1992
1993			ret = get_user(curval, uaddr1);
1994			if (ret)
1995				return ret;
1996
1997			if (!(flags & FLAGS_SHARED))
1998				goto retry_private;
1999
 
 
2000			goto retry;
2001		}
2002		if (curval != *cmpval) {
2003			ret = -EAGAIN;
2004			goto out_unlock;
2005		}
2006	}
2007
2008	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2009		struct task_struct *exiting = NULL;
2010
2011		/*
2012		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2013		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2014		 * bit.  We force this here where we are able to easily handle
2015		 * faults rather in the requeue loop below.
2016		 */
2017		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2018						 &key2, &pi_state,
2019						 &exiting, nr_requeue);
2020
2021		/*
2022		 * At this point the top_waiter has either taken uaddr2 or is
2023		 * waiting on it.  If the former, then the pi_state will not
2024		 * exist yet, look it up one more time to ensure we have a
2025		 * reference to it. If the lock was taken, ret contains the
2026		 * vpid of the top waiter task.
2027		 * If the lock was not taken, we have pi_state and an initial
2028		 * refcount on it. In case of an error we have nothing.
2029		 */
2030		if (ret > 0) {
2031			WARN_ON(pi_state);
 
2032			task_count++;
2033			/*
2034			 * If we acquired the lock, then the user space value
2035			 * of uaddr2 should be vpid. It cannot be changed by
2036			 * the top waiter as it is blocked on hb2 lock if it
2037			 * tries to do so. If something fiddled with it behind
2038			 * our back the pi state lookup might unearth it. So
2039			 * we rather use the known value than rereading and
2040			 * handing potential crap to lookup_pi_state.
2041			 *
2042			 * If that call succeeds then we have pi_state and an
2043			 * initial refcount on it.
2044			 */
2045			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2046					      &pi_state, &exiting);
2047		}
2048
2049		switch (ret) {
2050		case 0:
2051			/* We hold a reference on the pi state. */
2052			break;
2053
2054			/* If the above failed, then pi_state is NULL */
2055		case -EFAULT:
2056			double_unlock_hb(hb1, hb2);
2057			hb_waiters_dec(hb2);
 
 
2058			ret = fault_in_user_writeable(uaddr2);
2059			if (!ret)
2060				goto retry;
2061			return ret;
2062		case -EBUSY:
2063		case -EAGAIN:
2064			/*
2065			 * Two reasons for this:
2066			 * - EBUSY: Owner is exiting and we just wait for the
2067			 *   exit to complete.
2068			 * - EAGAIN: The user space value changed.
2069			 */
2070			double_unlock_hb(hb1, hb2);
2071			hb_waiters_dec(hb2);
2072			/*
2073			 * Handle the case where the owner is in the middle of
2074			 * exiting. Wait for the exit to complete otherwise
2075			 * this task might loop forever, aka. live lock.
2076			 */
2077			wait_for_owner_exiting(ret, exiting);
2078			cond_resched();
2079			goto retry;
2080		default:
2081			goto out_unlock;
2082		}
2083	}
2084
2085	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2086		if (task_count - nr_wake >= nr_requeue)
2087			break;
2088
2089		if (!match_futex(&this->key, &key1))
2090			continue;
2091
2092		/*
2093		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2094		 * be paired with each other and no other futex ops.
2095		 *
2096		 * We should never be requeueing a futex_q with a pi_state,
2097		 * which is awaiting a futex_unlock_pi().
2098		 */
2099		if ((requeue_pi && !this->rt_waiter) ||
2100		    (!requeue_pi && this->rt_waiter) ||
2101		    this->pi_state) {
2102			ret = -EINVAL;
2103			break;
2104		}
2105
2106		/*
2107		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2108		 * lock, we already woke the top_waiter.  If not, it will be
2109		 * woken by futex_unlock_pi().
2110		 */
2111		if (++task_count <= nr_wake && !requeue_pi) {
2112			mark_wake_futex(&wake_q, this);
2113			continue;
2114		}
2115
2116		/* Ensure we requeue to the expected futex for requeue_pi. */
2117		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2118			ret = -EINVAL;
2119			break;
2120		}
2121
2122		/*
2123		 * Requeue nr_requeue waiters and possibly one more in the case
2124		 * of requeue_pi if we couldn't acquire the lock atomically.
2125		 */
2126		if (requeue_pi) {
2127			/*
2128			 * Prepare the waiter to take the rt_mutex. Take a
2129			 * refcount on the pi_state and store the pointer in
2130			 * the futex_q object of the waiter.
2131			 */
2132			get_pi_state(pi_state);
2133			this->pi_state = pi_state;
2134			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2135							this->rt_waiter,
2136							this->task);
2137			if (ret == 1) {
2138				/*
2139				 * We got the lock. We do neither drop the
2140				 * refcount on pi_state nor clear
2141				 * this->pi_state because the waiter needs the
2142				 * pi_state for cleaning up the user space
2143				 * value. It will drop the refcount after
2144				 * doing so.
2145				 */
2146				requeue_pi_wake_futex(this, &key2, hb2);
 
2147				continue;
2148			} else if (ret) {
2149				/*
2150				 * rt_mutex_start_proxy_lock() detected a
2151				 * potential deadlock when we tried to queue
2152				 * that waiter. Drop the pi_state reference
2153				 * which we took above and remove the pointer
2154				 * to the state from the waiters futex_q
2155				 * object.
2156				 */
2157				this->pi_state = NULL;
2158				put_pi_state(pi_state);
2159				/*
2160				 * We stop queueing more waiters and let user
2161				 * space deal with the mess.
2162				 */
2163				break;
2164			}
2165		}
2166		requeue_futex(this, hb1, hb2, &key2);
 
2167	}
2168
2169	/*
2170	 * We took an extra initial reference to the pi_state either
2171	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2172	 * need to drop it here again.
2173	 */
2174	put_pi_state(pi_state);
2175
2176out_unlock:
2177	double_unlock_hb(hb1, hb2);
2178	wake_up_q(&wake_q);
2179	hb_waiters_dec(hb2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180	return ret ? ret : task_count;
2181}
2182
2183/* The key must be already stored in q->key. */
2184static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2185	__acquires(&hb->lock)
2186{
2187	struct futex_hash_bucket *hb;
2188
2189	hb = hash_futex(&q->key);
2190
2191	/*
2192	 * Increment the counter before taking the lock so that
2193	 * a potential waker won't miss a to-be-slept task that is
2194	 * waiting for the spinlock. This is safe as all queue_lock()
2195	 * users end up calling queue_me(). Similarly, for housekeeping,
2196	 * decrement the counter at queue_unlock() when some error has
2197	 * occurred and we don't end up adding the task to the list.
2198	 */
2199	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2200
2201	q->lock_ptr = &hb->lock;
2202
2203	spin_lock(&hb->lock);
2204	return hb;
2205}
2206
2207static inline void
2208queue_unlock(struct futex_hash_bucket *hb)
2209	__releases(&hb->lock)
2210{
2211	spin_unlock(&hb->lock);
2212	hb_waiters_dec(hb);
2213}
2214
2215static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
 
 
 
 
 
 
 
 
 
 
 
 
 
2216{
2217	int prio;
2218
2219	/*
2220	 * The priority used to register this element is
2221	 * - either the real thread-priority for the real-time threads
2222	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2223	 * - or MAX_RT_PRIO for non-RT threads.
2224	 * Thus, all RT-threads are woken first in priority order, and
2225	 * the others are woken last, in FIFO order.
2226	 */
2227	prio = min(current->normal_prio, MAX_RT_PRIO);
2228
2229	plist_node_init(&q->list, prio);
2230	plist_add(&q->list, &hb->chain);
2231	q->task = current;
2232}
2233
2234/**
2235 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2236 * @q:	The futex_q to enqueue
2237 * @hb:	The destination hash bucket
2238 *
2239 * The hb->lock must be held by the caller, and is released here. A call to
2240 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2241 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2242 * or nothing if the unqueue is done as part of the wake process and the unqueue
2243 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2244 * an example).
2245 */
2246static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2247	__releases(&hb->lock)
2248{
2249	__queue_me(q, hb);
2250	spin_unlock(&hb->lock);
2251}
2252
2253/**
2254 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2255 * @q:	The futex_q to unqueue
2256 *
2257 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2258 * be paired with exactly one earlier call to queue_me().
2259 *
2260 * Return:
2261 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2262 *  - 0 - if the futex_q was already removed by the waking thread
2263 */
2264static int unqueue_me(struct futex_q *q)
2265{
2266	spinlock_t *lock_ptr;
2267	int ret = 0;
2268
2269	/* In the common case we don't take the spinlock, which is nice. */
2270retry:
2271	/*
2272	 * q->lock_ptr can change between this read and the following spin_lock.
2273	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2274	 * optimizing lock_ptr out of the logic below.
2275	 */
2276	lock_ptr = READ_ONCE(q->lock_ptr);
2277	if (lock_ptr != NULL) {
2278		spin_lock(lock_ptr);
2279		/*
2280		 * q->lock_ptr can change between reading it and
2281		 * spin_lock(), causing us to take the wrong lock.  This
2282		 * corrects the race condition.
2283		 *
2284		 * Reasoning goes like this: if we have the wrong lock,
2285		 * q->lock_ptr must have changed (maybe several times)
2286		 * between reading it and the spin_lock().  It can
2287		 * change again after the spin_lock() but only if it was
2288		 * already changed before the spin_lock().  It cannot,
2289		 * however, change back to the original value.  Therefore
2290		 * we can detect whether we acquired the correct lock.
2291		 */
2292		if (unlikely(lock_ptr != q->lock_ptr)) {
2293			spin_unlock(lock_ptr);
2294			goto retry;
2295		}
2296		__unqueue_futex(q);
2297
2298		BUG_ON(q->pi_state);
2299
2300		spin_unlock(lock_ptr);
2301		ret = 1;
2302	}
2303
 
2304	return ret;
2305}
2306
2307/*
2308 * PI futexes can not be requeued and must remove themself from the
2309 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2310 * and dropped here.
2311 */
2312static void unqueue_me_pi(struct futex_q *q)
2313	__releases(q->lock_ptr)
2314{
2315	__unqueue_futex(q);
2316
2317	BUG_ON(!q->pi_state);
2318	put_pi_state(q->pi_state);
2319	q->pi_state = NULL;
2320
2321	spin_unlock(q->lock_ptr);
2322}
2323
 
 
 
 
 
 
2324static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2325				struct task_struct *argowner)
2326{
 
2327	struct futex_pi_state *pi_state = q->pi_state;
2328	u32 uval, curval, newval;
2329	struct task_struct *oldowner, *newowner;
2330	u32 newtid;
2331	int ret, err = 0;
2332
2333	lockdep_assert_held(q->lock_ptr);
2334
2335	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2336
2337	oldowner = pi_state->owner;
2338
2339	/*
2340	 * We are here because either:
2341	 *
2342	 *  - we stole the lock and pi_state->owner needs updating to reflect
2343	 *    that (@argowner == current),
2344	 *
2345	 * or:
2346	 *
2347	 *  - someone stole our lock and we need to fix things to point to the
2348	 *    new owner (@argowner == NULL).
2349	 *
2350	 * Either way, we have to replace the TID in the user space variable.
2351	 * This must be atomic as we have to preserve the owner died bit here.
2352	 *
2353	 * Note: We write the user space value _before_ changing the pi_state
2354	 * because we can fault here. Imagine swapped out pages or a fork
2355	 * that marked all the anonymous memory readonly for cow.
2356	 *
2357	 * Modifying pi_state _before_ the user space value would leave the
2358	 * pi_state in an inconsistent state when we fault here, because we
2359	 * need to drop the locks to handle the fault. This might be observed
2360	 * in the PID check in lookup_pi_state.
 
2361	 */
2362retry:
2363	if (!argowner) {
2364		if (oldowner != current) {
2365			/*
2366			 * We raced against a concurrent self; things are
2367			 * already fixed up. Nothing to do.
2368			 */
2369			ret = 0;
2370			goto out_unlock;
2371		}
2372
2373		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2374			/* We got the lock after all, nothing to fix. */
2375			ret = 0;
2376			goto out_unlock;
2377		}
2378
2379		/*
2380		 * Since we just failed the trylock; there must be an owner.
2381		 */
2382		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2383		BUG_ON(!newowner);
2384	} else {
2385		WARN_ON_ONCE(argowner != current);
2386		if (oldowner == current) {
2387			/*
2388			 * We raced against a concurrent self; things are
2389			 * already fixed up. Nothing to do.
2390			 */
2391			ret = 0;
2392			goto out_unlock;
2393		}
2394		newowner = argowner;
2395	}
2396
2397	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2398	/* Owner died? */
2399	if (!pi_state->owner)
2400		newtid |= FUTEX_OWNER_DIED;
2401
2402	err = get_futex_value_locked(&uval, uaddr);
2403	if (err)
2404		goto handle_err;
2405
2406	for (;;) {
2407		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2408
2409		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2410		if (err)
2411			goto handle_err;
2412
2413		if (curval == uval)
2414			break;
2415		uval = curval;
2416	}
2417
2418	/*
2419	 * We fixed up user space. Now we need to fix the pi_state
2420	 * itself.
2421	 */
2422	if (pi_state->owner != NULL) {
2423		raw_spin_lock(&pi_state->owner->pi_lock);
2424		WARN_ON(list_empty(&pi_state->list));
2425		list_del_init(&pi_state->list);
2426		raw_spin_unlock(&pi_state->owner->pi_lock);
2427	}
2428
2429	pi_state->owner = newowner;
2430
2431	raw_spin_lock(&newowner->pi_lock);
2432	WARN_ON(!list_empty(&pi_state->list));
2433	list_add(&pi_state->list, &newowner->pi_state_list);
2434	raw_spin_unlock(&newowner->pi_lock);
2435	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2436
2437	return 0;
2438
2439	/*
2440	 * In order to reschedule or handle a page fault, we need to drop the
2441	 * locks here. In the case of a fault, this gives the other task
2442	 * (either the highest priority waiter itself or the task which stole
2443	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2444	 * are back from handling the fault we need to check the pi_state after
2445	 * reacquiring the locks and before trying to do another fixup. When
2446	 * the fixup has been done already we simply return.
2447	 *
2448	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2449	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2450	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2451	 */
2452handle_err:
2453	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2454	spin_unlock(q->lock_ptr);
2455
2456	switch (err) {
2457	case -EFAULT:
2458		ret = fault_in_user_writeable(uaddr);
2459		break;
2460
2461	case -EAGAIN:
2462		cond_resched();
2463		ret = 0;
2464		break;
2465
2466	default:
2467		WARN_ON_ONCE(1);
2468		ret = err;
2469		break;
2470	}
2471
2472	spin_lock(q->lock_ptr);
2473	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2474
2475	/*
2476	 * Check if someone else fixed it for us:
2477	 */
2478	if (pi_state->owner != oldowner) {
2479		ret = 0;
2480		goto out_unlock;
2481	}
2482
2483	if (ret)
2484		goto out_unlock;
2485
2486	goto retry;
2487
2488out_unlock:
2489	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2490	return ret;
2491}
2492
2493static long futex_wait_restart(struct restart_block *restart);
2494
2495/**
2496 * fixup_owner() - Post lock pi_state and corner case management
2497 * @uaddr:	user address of the futex
2498 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2499 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2500 *
2501 * After attempting to lock an rt_mutex, this function is called to cleanup
2502 * the pi_state owner as well as handle race conditions that may allow us to
2503 * acquire the lock. Must be called with the hb lock held.
2504 *
2505 * Return:
2506 *  -  1 - success, lock taken;
2507 *  -  0 - success, lock not taken;
2508 *  - <0 - on error (-EFAULT)
2509 */
2510static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2511{
 
2512	int ret = 0;
2513
2514	if (locked) {
2515		/*
2516		 * Got the lock. We might not be the anticipated owner if we
2517		 * did a lock-steal - fix up the PI-state in that case:
2518		 *
2519		 * Speculative pi_state->owner read (we don't hold wait_lock);
2520		 * since we own the lock pi_state->owner == current is the
2521		 * stable state, anything else needs more attention.
2522		 */
2523		if (q->pi_state->owner != current)
2524			ret = fixup_pi_state_owner(uaddr, q, current);
2525		return ret ? ret : locked;
2526	}
2527
2528	/*
2529	 * If we didn't get the lock; check if anybody stole it from us. In
2530	 * that case, we need to fix up the uval to point to them instead of
2531	 * us, otherwise bad things happen. [10]
2532	 *
2533	 * Another speculative read; pi_state->owner == current is unstable
2534	 * but needs our attention.
2535	 */
2536	if (q->pi_state->owner == current) {
2537		ret = fixup_pi_state_owner(uaddr, q, NULL);
2538		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539	}
2540
2541	/*
2542	 * Paranoia check. If we did not take the lock, then we should not be
2543	 * the owner of the rt_mutex.
2544	 */
2545	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2546		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2547				"pi-state %p\n", ret,
2548				q->pi_state->pi_mutex.owner,
2549				q->pi_state->owner);
2550	}
2551
2552	return ret;
 
2553}
2554
2555/**
2556 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2557 * @hb:		the futex hash bucket, must be locked by the caller
2558 * @q:		the futex_q to queue up on
2559 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2560 */
2561static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2562				struct hrtimer_sleeper *timeout)
2563{
2564	/*
2565	 * The task state is guaranteed to be set before another task can
2566	 * wake it. set_current_state() is implemented using smp_store_mb() and
2567	 * queue_me() calls spin_unlock() upon completion, both serializing
2568	 * access to the hash list and forcing another memory barrier.
2569	 */
2570	set_current_state(TASK_INTERRUPTIBLE);
2571	queue_me(q, hb);
2572
2573	/* Arm the timer */
2574	if (timeout)
2575		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2576
2577	/*
2578	 * If we have been removed from the hash list, then another task
2579	 * has tried to wake us, and we can skip the call to schedule().
2580	 */
2581	if (likely(!plist_node_empty(&q->list))) {
2582		/*
2583		 * If the timer has already expired, current will already be
2584		 * flagged for rescheduling. Only call schedule if there
2585		 * is no timeout, or if it has yet to expire.
2586		 */
2587		if (!timeout || timeout->task)
2588			freezable_schedule();
2589	}
2590	__set_current_state(TASK_RUNNING);
2591}
2592
2593/**
2594 * futex_wait_setup() - Prepare to wait on a futex
2595 * @uaddr:	the futex userspace address
2596 * @val:	the expected value
2597 * @flags:	futex flags (FLAGS_SHARED, etc.)
2598 * @q:		the associated futex_q
2599 * @hb:		storage for hash_bucket pointer to be returned to caller
2600 *
2601 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2602 * compare it with the expected value.  Handle atomic faults internally.
2603 * Return with the hb lock held and a q.key reference on success, and unlocked
2604 * with no q.key reference on failure.
2605 *
2606 * Return:
2607 *  -  0 - uaddr contains val and hb has been locked;
2608 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2609 */
2610static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2611			   struct futex_q *q, struct futex_hash_bucket **hb)
2612{
2613	u32 uval;
2614	int ret;
2615
2616	/*
2617	 * Access the page AFTER the hash-bucket is locked.
2618	 * Order is important:
2619	 *
2620	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2621	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2622	 *
2623	 * The basic logical guarantee of a futex is that it blocks ONLY
2624	 * if cond(var) is known to be true at the time of blocking, for
2625	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2626	 * would open a race condition where we could block indefinitely with
2627	 * cond(var) false, which would violate the guarantee.
2628	 *
2629	 * On the other hand, we insert q and release the hash-bucket only
2630	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2631	 * absorb a wakeup if *uaddr does not match the desired values
2632	 * while the syscall executes.
2633	 */
2634retry:
2635	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2636	if (unlikely(ret != 0))
2637		return ret;
2638
2639retry_private:
2640	*hb = queue_lock(q);
2641
2642	ret = get_futex_value_locked(&uval, uaddr);
2643
2644	if (ret) {
2645		queue_unlock(*hb);
2646
2647		ret = get_user(uval, uaddr);
2648		if (ret)
2649			return ret;
2650
2651		if (!(flags & FLAGS_SHARED))
2652			goto retry_private;
2653
 
2654		goto retry;
2655	}
2656
2657	if (uval != val) {
2658		queue_unlock(*hb);
2659		ret = -EWOULDBLOCK;
2660	}
2661
 
 
 
2662	return ret;
2663}
2664
2665static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2666		      ktime_t *abs_time, u32 bitset)
2667{
2668	struct hrtimer_sleeper timeout, *to;
2669	struct restart_block *restart;
2670	struct futex_hash_bucket *hb;
2671	struct futex_q q = futex_q_init;
2672	int ret;
2673
2674	if (!bitset)
2675		return -EINVAL;
2676	q.bitset = bitset;
2677
2678	to = futex_setup_timer(abs_time, &timeout, flags,
2679			       current->timer_slack_ns);
 
 
 
 
 
 
 
 
 
2680retry:
2681	/*
2682	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2683	 * q.key refs.
2684	 */
2685	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2686	if (ret)
2687		goto out;
2688
2689	/* queue_me and wait for wakeup, timeout, or a signal. */
2690	futex_wait_queue_me(hb, &q, to);
2691
2692	/* If we were woken (and unqueued), we succeeded, whatever. */
2693	ret = 0;
2694	/* unqueue_me() drops q.key ref */
2695	if (!unqueue_me(&q))
2696		goto out;
2697	ret = -ETIMEDOUT;
2698	if (to && !to->task)
2699		goto out;
2700
2701	/*
2702	 * We expect signal_pending(current), but we might be the
2703	 * victim of a spurious wakeup as well.
2704	 */
2705	if (!signal_pending(current))
2706		goto retry;
2707
2708	ret = -ERESTARTSYS;
2709	if (!abs_time)
2710		goto out;
2711
2712	restart = &current->restart_block;
2713	restart->fn = futex_wait_restart;
2714	restart->futex.uaddr = uaddr;
2715	restart->futex.val = val;
2716	restart->futex.time = *abs_time;
2717	restart->futex.bitset = bitset;
2718	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2719
2720	ret = -ERESTART_RESTARTBLOCK;
2721
2722out:
2723	if (to) {
2724		hrtimer_cancel(&to->timer);
2725		destroy_hrtimer_on_stack(&to->timer);
2726	}
2727	return ret;
2728}
2729
2730
2731static long futex_wait_restart(struct restart_block *restart)
2732{
2733	u32 __user *uaddr = restart->futex.uaddr;
2734	ktime_t t, *tp = NULL;
2735
2736	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2737		t = restart->futex.time;
2738		tp = &t;
2739	}
2740	restart->fn = do_no_restart_syscall;
2741
2742	return (long)futex_wait(uaddr, restart->futex.flags,
2743				restart->futex.val, tp, restart->futex.bitset);
2744}
2745
2746
2747/*
2748 * Userspace tried a 0 -> TID atomic transition of the futex value
2749 * and failed. The kernel side here does the whole locking operation:
2750 * if there are waiters then it will block as a consequence of relying
2751 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2752 * a 0 value of the futex too.).
2753 *
2754 * Also serves as futex trylock_pi()'ing, and due semantics.
2755 */
2756static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2757			 ktime_t *time, int trylock)
2758{
2759	struct hrtimer_sleeper timeout, *to;
2760	struct futex_pi_state *pi_state = NULL;
2761	struct task_struct *exiting = NULL;
2762	struct rt_mutex_waiter rt_waiter;
2763	struct futex_hash_bucket *hb;
2764	struct futex_q q = futex_q_init;
2765	int res, ret;
2766
2767	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2768		return -ENOSYS;
2769
2770	if (refill_pi_state_cache())
2771		return -ENOMEM;
2772
2773	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
 
 
 
 
 
 
2774
2775retry:
2776	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2777	if (unlikely(ret != 0))
2778		goto out;
2779
2780retry_private:
2781	hb = queue_lock(&q);
2782
2783	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2784				   &exiting, 0);
2785	if (unlikely(ret)) {
2786		/*
2787		 * Atomic work succeeded and we got the lock,
2788		 * or failed. Either way, we do _not_ block.
2789		 */
2790		switch (ret) {
2791		case 1:
2792			/* We got the lock. */
2793			ret = 0;
2794			goto out_unlock_put_key;
2795		case -EFAULT:
2796			goto uaddr_faulted;
2797		case -EBUSY:
2798		case -EAGAIN:
2799			/*
2800			 * Two reasons for this:
2801			 * - EBUSY: Task is exiting and we just wait for the
2802			 *   exit to complete.
2803			 * - EAGAIN: The user space value changed.
2804			 */
2805			queue_unlock(hb);
2806			/*
2807			 * Handle the case where the owner is in the middle of
2808			 * exiting. Wait for the exit to complete otherwise
2809			 * this task might loop forever, aka. live lock.
2810			 */
2811			wait_for_owner_exiting(ret, exiting);
2812			cond_resched();
2813			goto retry;
2814		default:
2815			goto out_unlock_put_key;
2816		}
2817	}
2818
2819	WARN_ON(!q.pi_state);
2820
2821	/*
2822	 * Only actually queue now that the atomic ops are done:
2823	 */
2824	__queue_me(&q, hb);
2825
2826	if (trylock) {
2827		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
 
 
 
 
 
 
2828		/* Fixup the trylock return value: */
2829		ret = ret ? 0 : -EWOULDBLOCK;
2830		goto no_block;
2831	}
2832
2833	rt_mutex_init_waiter(&rt_waiter);
2834
2835	/*
2836	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2837	 * hold it while doing rt_mutex_start_proxy(), because then it will
2838	 * include hb->lock in the blocking chain, even through we'll not in
2839	 * fact hold it while blocking. This will lead it to report -EDEADLK
2840	 * and BUG when futex_unlock_pi() interleaves with this.
2841	 *
2842	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2843	 * latter before calling __rt_mutex_start_proxy_lock(). This
2844	 * interleaves with futex_unlock_pi() -- which does a similar lock
2845	 * handoff -- such that the latter can observe the futex_q::pi_state
2846	 * before __rt_mutex_start_proxy_lock() is done.
2847	 */
2848	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2849	spin_unlock(q.lock_ptr);
2850	/*
2851	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2852	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2853	 * it sees the futex_q::pi_state.
2854	 */
2855	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2856	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2857
2858	if (ret) {
2859		if (ret == 1)
2860			ret = 0;
2861		goto cleanup;
2862	}
2863
2864	if (unlikely(to))
2865		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2866
2867	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2868
2869cleanup:
2870	spin_lock(q.lock_ptr);
2871	/*
2872	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2873	 * first acquire the hb->lock before removing the lock from the
2874	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2875	 * lists consistent.
2876	 *
2877	 * In particular; it is important that futex_unlock_pi() can not
2878	 * observe this inconsistency.
2879	 */
2880	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2881		ret = 0;
2882
2883no_block:
2884	/*
2885	 * Fixup the pi_state owner and possibly acquire the lock if we
2886	 * haven't already.
2887	 */
2888	res = fixup_owner(uaddr, &q, !ret);
2889	/*
2890	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2891	 * the lock, clear our -ETIMEDOUT or -EINTR.
2892	 */
2893	if (res)
2894		ret = (res < 0) ? res : 0;
2895
2896	/*
2897	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2898	 * it and return the fault to userspace.
2899	 */
2900	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2901		pi_state = q.pi_state;
2902		get_pi_state(pi_state);
2903	}
2904
2905	/* Unqueue and drop the lock */
2906	unqueue_me_pi(&q);
2907
2908	if (pi_state) {
2909		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2910		put_pi_state(pi_state);
2911	}
2912
2913	goto out;
2914
2915out_unlock_put_key:
2916	queue_unlock(hb);
2917
 
 
2918out:
2919	if (to) {
2920		hrtimer_cancel(&to->timer);
2921		destroy_hrtimer_on_stack(&to->timer);
2922	}
2923	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2924
2925uaddr_faulted:
2926	queue_unlock(hb);
2927
2928	ret = fault_in_user_writeable(uaddr);
2929	if (ret)
2930		goto out;
2931
2932	if (!(flags & FLAGS_SHARED))
2933		goto retry_private;
2934
 
2935	goto retry;
2936}
2937
2938/*
2939 * Userspace attempted a TID -> 0 atomic transition, and failed.
2940 * This is the in-kernel slowpath: we look up the PI state (if any),
2941 * and do the rt-mutex unlock.
2942 */
2943static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2944{
2945	u32 curval, uval, vpid = task_pid_vnr(current);
2946	union futex_key key = FUTEX_KEY_INIT;
2947	struct futex_hash_bucket *hb;
2948	struct futex_q *top_waiter;
2949	int ret;
2950
2951	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952		return -ENOSYS;
2953
2954retry:
2955	if (get_user(uval, uaddr))
2956		return -EFAULT;
2957	/*
2958	 * We release only a lock we actually own:
2959	 */
2960	if ((uval & FUTEX_TID_MASK) != vpid)
2961		return -EPERM;
2962
2963	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2964	if (ret)
2965		return ret;
2966
2967	hb = hash_futex(&key);
2968	spin_lock(&hb->lock);
2969
2970	/*
2971	 * Check waiters first. We do not trust user space values at
2972	 * all and we at least want to know if user space fiddled
2973	 * with the futex value instead of blindly unlocking.
2974	 */
2975	top_waiter = futex_top_waiter(hb, &key);
2976	if (top_waiter) {
2977		struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979		ret = -EINVAL;
2980		if (!pi_state)
2981			goto out_unlock;
2982
2983		/*
2984		 * If current does not own the pi_state then the futex is
2985		 * inconsistent and user space fiddled with the futex value.
2986		 */
2987		if (pi_state->owner != current)
2988			goto out_unlock;
2989
2990		get_pi_state(pi_state);
2991		/*
2992		 * By taking wait_lock while still holding hb->lock, we ensure
2993		 * there is no point where we hold neither; and therefore
2994		 * wake_futex_pi() must observe a state consistent with what we
2995		 * observed.
2996		 *
2997		 * In particular; this forces __rt_mutex_start_proxy() to
2998		 * complete such that we're guaranteed to observe the
2999		 * rt_waiter. Also see the WARN in wake_futex_pi().
3000		 */
3001		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3002		spin_unlock(&hb->lock);
3003
3004		/* drops pi_state->pi_mutex.wait_lock */
3005		ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007		put_pi_state(pi_state);
3008
3009		/*
3010		 * Success, we're done! No tricky corner cases.
3011		 */
3012		if (!ret)
3013			goto out_putkey;
3014		/*
3015		 * The atomic access to the futex value generated a
3016		 * pagefault, so retry the user-access and the wakeup:
3017		 */
3018		if (ret == -EFAULT)
3019			goto pi_faulted;
3020		/*
3021		 * A unconditional UNLOCK_PI op raced against a waiter
3022		 * setting the FUTEX_WAITERS bit. Try again.
3023		 */
3024		if (ret == -EAGAIN)
3025			goto pi_retry;
 
 
 
3026		/*
3027		 * wake_futex_pi has detected invalid state. Tell user
3028		 * space.
3029		 */
3030		goto out_putkey;
3031	}
3032
3033	/*
3034	 * We have no kernel internal state, i.e. no waiters in the
3035	 * kernel. Waiters which are about to queue themselves are stuck
3036	 * on hb->lock. So we can safely ignore them. We do neither
3037	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038	 * owner.
3039	 */
3040	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3041		spin_unlock(&hb->lock);
3042		switch (ret) {
3043		case -EFAULT:
3044			goto pi_faulted;
3045
3046		case -EAGAIN:
3047			goto pi_retry;
3048
3049		default:
3050			WARN_ON_ONCE(1);
3051			goto out_putkey;
3052		}
3053	}
3054
3055	/*
3056	 * If uval has changed, let user space handle it.
3057	 */
3058	ret = (curval == uval) ? 0 : -EAGAIN;
3059
3060out_unlock:
3061	spin_unlock(&hb->lock);
3062out_putkey:
 
3063	return ret;
3064
3065pi_retry:
3066	cond_resched();
3067	goto retry;
3068
3069pi_faulted:
 
 
3070
3071	ret = fault_in_user_writeable(uaddr);
3072	if (!ret)
3073		goto retry;
3074
3075	return ret;
3076}
3077
3078/**
3079 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3080 * @hb:		the hash_bucket futex_q was original enqueued on
3081 * @q:		the futex_q woken while waiting to be requeued
3082 * @key2:	the futex_key of the requeue target futex
3083 * @timeout:	the timeout associated with the wait (NULL if none)
3084 *
3085 * Detect if the task was woken on the initial futex as opposed to the requeue
3086 * target futex.  If so, determine if it was a timeout or a signal that caused
3087 * the wakeup and return the appropriate error code to the caller.  Must be
3088 * called with the hb lock held.
3089 *
3090 * Return:
3091 *  -  0 = no early wakeup detected;
3092 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3093 */
3094static inline
3095int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3096				   struct futex_q *q, union futex_key *key2,
3097				   struct hrtimer_sleeper *timeout)
3098{
3099	int ret = 0;
3100
3101	/*
3102	 * With the hb lock held, we avoid races while we process the wakeup.
3103	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3104	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3105	 * It can't be requeued from uaddr2 to something else since we don't
3106	 * support a PI aware source futex for requeue.
3107	 */
3108	if (!match_futex(&q->key, key2)) {
3109		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3110		/*
3111		 * We were woken prior to requeue by a timeout or a signal.
3112		 * Unqueue the futex_q and determine which it was.
3113		 */
3114		plist_del(&q->list, &hb->chain);
3115		hb_waiters_dec(hb);
3116
3117		/* Handle spurious wakeups gracefully */
3118		ret = -EWOULDBLOCK;
3119		if (timeout && !timeout->task)
3120			ret = -ETIMEDOUT;
3121		else if (signal_pending(current))
3122			ret = -ERESTARTNOINTR;
3123	}
3124	return ret;
3125}
3126
3127/**
3128 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3129 * @uaddr:	the futex we initially wait on (non-pi)
3130 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3131 *		the same type, no requeueing from private to shared, etc.
3132 * @val:	the expected value of uaddr
3133 * @abs_time:	absolute timeout
3134 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3135 * @uaddr2:	the pi futex we will take prior to returning to user-space
3136 *
3137 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3138 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3139 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3140 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3141 * without one, the pi logic would not know which task to boost/deboost, if
3142 * there was a need to.
3143 *
3144 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3145 * via the following--
3146 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3147 * 2) wakeup on uaddr2 after a requeue
3148 * 3) signal
3149 * 4) timeout
3150 *
3151 * If 3, cleanup and return -ERESTARTNOINTR.
3152 *
3153 * If 2, we may then block on trying to take the rt_mutex and return via:
3154 * 5) successful lock
3155 * 6) signal
3156 * 7) timeout
3157 * 8) other lock acquisition failure
3158 *
3159 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3160 *
3161 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3162 *
3163 * Return:
3164 *  -  0 - On success;
3165 *  - <0 - On error
3166 */
3167static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3168				 u32 val, ktime_t *abs_time, u32 bitset,
3169				 u32 __user *uaddr2)
3170{
3171	struct hrtimer_sleeper timeout, *to;
3172	struct futex_pi_state *pi_state = NULL;
3173	struct rt_mutex_waiter rt_waiter;
3174	struct futex_hash_bucket *hb;
3175	union futex_key key2 = FUTEX_KEY_INIT;
3176	struct futex_q q = futex_q_init;
3177	int res, ret;
3178
3179	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3180		return -ENOSYS;
3181
3182	if (uaddr == uaddr2)
3183		return -EINVAL;
3184
3185	if (!bitset)
3186		return -EINVAL;
3187
3188	to = futex_setup_timer(abs_time, &timeout, flags,
3189			       current->timer_slack_ns);
 
 
 
 
 
 
 
3190
3191	/*
3192	 * The waiter is allocated on our stack, manipulated by the requeue
3193	 * code while we sleep on uaddr.
3194	 */
3195	rt_mutex_init_waiter(&rt_waiter);
 
 
 
3196
3197	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3198	if (unlikely(ret != 0))
3199		goto out;
3200
3201	q.bitset = bitset;
3202	q.rt_waiter = &rt_waiter;
3203	q.requeue_pi_key = &key2;
3204
3205	/*
3206	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3207	 * count.
3208	 */
3209	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3210	if (ret)
3211		goto out;
3212
3213	/*
3214	 * The check above which compares uaddrs is not sufficient for
3215	 * shared futexes. We need to compare the keys:
3216	 */
3217	if (match_futex(&q.key, &key2)) {
3218		queue_unlock(hb);
3219		ret = -EINVAL;
3220		goto out;
3221	}
3222
3223	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3224	futex_wait_queue_me(hb, &q, to);
3225
3226	spin_lock(&hb->lock);
3227	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3228	spin_unlock(&hb->lock);
3229	if (ret)
3230		goto out;
3231
3232	/*
3233	 * In order for us to be here, we know our q.key == key2, and since
3234	 * we took the hb->lock above, we also know that futex_requeue() has
3235	 * completed and we no longer have to concern ourselves with a wakeup
3236	 * race with the atomic proxy lock acquisition by the requeue code. The
3237	 * futex_requeue dropped our key1 reference and incremented our key2
3238	 * reference count.
3239	 */
3240
3241	/* Check if the requeue code acquired the second futex for us. */
3242	if (!q.rt_waiter) {
3243		/*
3244		 * Got the lock. We might not be the anticipated owner if we
3245		 * did a lock-steal - fix up the PI-state in that case.
3246		 */
3247		if (q.pi_state && (q.pi_state->owner != current)) {
3248			spin_lock(q.lock_ptr);
3249			ret = fixup_pi_state_owner(uaddr2, &q, current);
3250			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3251				pi_state = q.pi_state;
3252				get_pi_state(pi_state);
3253			}
3254			/*
3255			 * Drop the reference to the pi state which
3256			 * the requeue_pi() code acquired for us.
3257			 */
3258			put_pi_state(q.pi_state);
3259			spin_unlock(q.lock_ptr);
3260		}
3261	} else {
3262		struct rt_mutex *pi_mutex;
3263
3264		/*
3265		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3266		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3267		 * the pi_state.
3268		 */
3269		WARN_ON(!q.pi_state);
3270		pi_mutex = &q.pi_state->pi_mutex;
3271		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
 
3272
3273		spin_lock(q.lock_ptr);
3274		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3275			ret = 0;
3276
3277		debug_rt_mutex_free_waiter(&rt_waiter);
3278		/*
3279		 * Fixup the pi_state owner and possibly acquire the lock if we
3280		 * haven't already.
3281		 */
3282		res = fixup_owner(uaddr2, &q, !ret);
3283		/*
3284		 * If fixup_owner() returned an error, proprogate that.  If it
3285		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3286		 */
3287		if (res)
3288			ret = (res < 0) ? res : 0;
3289
3290		/*
3291		 * If fixup_pi_state_owner() faulted and was unable to handle
3292		 * the fault, unlock the rt_mutex and return the fault to
3293		 * userspace.
3294		 */
3295		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3296			pi_state = q.pi_state;
3297			get_pi_state(pi_state);
3298		}
3299
3300		/* Unqueue and drop the lock. */
3301		unqueue_me_pi(&q);
3302	}
3303
3304	if (pi_state) {
3305		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3306		put_pi_state(pi_state);
3307	}
3308
3309	if (ret == -EINTR) {
3310		/*
3311		 * We've already been requeued, but cannot restart by calling
3312		 * futex_lock_pi() directly. We could restart this syscall, but
3313		 * it would detect that the user space "val" changed and return
3314		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3315		 * -EWOULDBLOCK directly.
3316		 */
3317		ret = -EWOULDBLOCK;
3318	}
3319
 
 
 
 
 
3320out:
3321	if (to) {
3322		hrtimer_cancel(&to->timer);
3323		destroy_hrtimer_on_stack(&to->timer);
3324	}
3325	return ret;
3326}
3327
3328/*
3329 * Support for robust futexes: the kernel cleans up held futexes at
3330 * thread exit time.
3331 *
3332 * Implementation: user-space maintains a per-thread list of locks it
3333 * is holding. Upon do_exit(), the kernel carefully walks this list,
3334 * and marks all locks that are owned by this thread with the
3335 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3336 * always manipulated with the lock held, so the list is private and
3337 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3338 * field, to allow the kernel to clean up if the thread dies after
3339 * acquiring the lock, but just before it could have added itself to
3340 * the list. There can only be one such pending lock.
3341 */
3342
3343/**
3344 * sys_set_robust_list() - Set the robust-futex list head of a task
3345 * @head:	pointer to the list-head
3346 * @len:	length of the list-head, as userspace expects
3347 */
3348SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3349		size_t, len)
3350{
3351	if (!futex_cmpxchg_enabled)
3352		return -ENOSYS;
3353	/*
3354	 * The kernel knows only one size for now:
3355	 */
3356	if (unlikely(len != sizeof(*head)))
3357		return -EINVAL;
3358
3359	current->robust_list = head;
3360
3361	return 0;
3362}
3363
3364/**
3365 * sys_get_robust_list() - Get the robust-futex list head of a task
3366 * @pid:	pid of the process [zero for current task]
3367 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3368 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3369 */
3370SYSCALL_DEFINE3(get_robust_list, int, pid,
3371		struct robust_list_head __user * __user *, head_ptr,
3372		size_t __user *, len_ptr)
3373{
3374	struct robust_list_head __user *head;
3375	unsigned long ret;
3376	struct task_struct *p;
3377
3378	if (!futex_cmpxchg_enabled)
3379		return -ENOSYS;
3380
3381	rcu_read_lock();
3382
3383	ret = -ESRCH;
3384	if (!pid)
3385		p = current;
3386	else {
3387		p = find_task_by_vpid(pid);
3388		if (!p)
3389			goto err_unlock;
3390	}
3391
3392	ret = -EPERM;
3393	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3394		goto err_unlock;
3395
3396	head = p->robust_list;
3397	rcu_read_unlock();
3398
3399	if (put_user(sizeof(*head), len_ptr))
3400		return -EFAULT;
3401	return put_user(head, head_ptr);
3402
3403err_unlock:
3404	rcu_read_unlock();
3405
3406	return ret;
3407}
3408
3409/* Constants for the pending_op argument of handle_futex_death */
3410#define HANDLE_DEATH_PENDING	true
3411#define HANDLE_DEATH_LIST	false
3412
3413/*
3414 * Process a futex-list entry, check whether it's owned by the
3415 * dying task, and do notification if so:
3416 */
3417static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3418			      bool pi, bool pending_op)
3419{
3420	u32 uval, nval, mval;
3421	int err;
3422
3423	/* Futex address must be 32bit aligned */
3424	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3425		return -1;
3426
3427retry:
3428	if (get_user(uval, uaddr))
3429		return -1;
3430
3431	/*
3432	 * Special case for regular (non PI) futexes. The unlock path in
3433	 * user space has two race scenarios:
3434	 *
3435	 * 1. The unlock path releases the user space futex value and
3436	 *    before it can execute the futex() syscall to wake up
3437	 *    waiters it is killed.
3438	 *
3439	 * 2. A woken up waiter is killed before it can acquire the
3440	 *    futex in user space.
3441	 *
3442	 * In both cases the TID validation below prevents a wakeup of
3443	 * potential waiters which can cause these waiters to block
3444	 * forever.
3445	 *
3446	 * In both cases the following conditions are met:
3447	 *
3448	 *	1) task->robust_list->list_op_pending != NULL
3449	 *	   @pending_op == true
3450	 *	2) User space futex value == 0
3451	 *	3) Regular futex: @pi == false
3452	 *
3453	 * If these conditions are met, it is safe to attempt waking up a
3454	 * potential waiter without touching the user space futex value and
3455	 * trying to set the OWNER_DIED bit. The user space futex value is
3456	 * uncontended and the rest of the user space mutex state is
3457	 * consistent, so a woken waiter will just take over the
3458	 * uncontended futex. Setting the OWNER_DIED bit would create
3459	 * inconsistent state and malfunction of the user space owner died
3460	 * handling.
3461	 */
3462	if (pending_op && !pi && !uval) {
3463		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3464		return 0;
3465	}
3466
3467	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3468		return 0;
3469
3470	/*
3471	 * Ok, this dying thread is truly holding a futex
3472	 * of interest. Set the OWNER_DIED bit atomically
3473	 * via cmpxchg, and if the value had FUTEX_WAITERS
3474	 * set, wake up a waiter (if any). (We have to do a
3475	 * futex_wake() even if OWNER_DIED is already set -
3476	 * to handle the rare but possible case of recursive
3477	 * thread-death.) The rest of the cleanup is done in
3478	 * userspace.
3479	 */
3480	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3481
3482	/*
3483	 * We are not holding a lock here, but we want to have
3484	 * the pagefault_disable/enable() protection because
3485	 * we want to handle the fault gracefully. If the
3486	 * access fails we try to fault in the futex with R/W
3487	 * verification via get_user_pages. get_user() above
3488	 * does not guarantee R/W access. If that fails we
3489	 * give up and leave the futex locked.
3490	 */
3491	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3492		switch (err) {
3493		case -EFAULT:
3494			if (fault_in_user_writeable(uaddr))
3495				return -1;
3496			goto retry;
3497
3498		case -EAGAIN:
3499			cond_resched();
3500			goto retry;
3501
3502		default:
3503			WARN_ON_ONCE(1);
3504			return err;
3505		}
 
 
3506	}
3507
3508	if (nval != uval)
3509		goto retry;
3510
3511	/*
3512	 * Wake robust non-PI futexes here. The wakeup of
3513	 * PI futexes happens in exit_pi_state():
3514	 */
3515	if (!pi && (uval & FUTEX_WAITERS))
3516		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3517
3518	return 0;
3519}
3520
3521/*
3522 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3523 */
3524static inline int fetch_robust_entry(struct robust_list __user **entry,
3525				     struct robust_list __user * __user *head,
3526				     unsigned int *pi)
3527{
3528	unsigned long uentry;
3529
3530	if (get_user(uentry, (unsigned long __user *)head))
3531		return -EFAULT;
3532
3533	*entry = (void __user *)(uentry & ~1UL);
3534	*pi = uentry & 1;
3535
3536	return 0;
3537}
3538
3539/*
3540 * Walk curr->robust_list (very carefully, it's a userspace list!)
3541 * and mark any locks found there dead, and notify any waiters.
3542 *
3543 * We silently return on any sign of list-walking problem.
3544 */
3545static void exit_robust_list(struct task_struct *curr)
3546{
3547	struct robust_list_head __user *head = curr->robust_list;
3548	struct robust_list __user *entry, *next_entry, *pending;
3549	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3550	unsigned int next_pi;
3551	unsigned long futex_offset;
3552	int rc;
3553
3554	if (!futex_cmpxchg_enabled)
3555		return;
3556
3557	/*
3558	 * Fetch the list head (which was registered earlier, via
3559	 * sys_set_robust_list()):
3560	 */
3561	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3562		return;
3563	/*
3564	 * Fetch the relative futex offset:
3565	 */
3566	if (get_user(futex_offset, &head->futex_offset))
3567		return;
3568	/*
3569	 * Fetch any possibly pending lock-add first, and handle it
3570	 * if it exists:
3571	 */
3572	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3573		return;
3574
3575	next_entry = NULL;	/* avoid warning with gcc */
3576	while (entry != &head->list) {
3577		/*
3578		 * Fetch the next entry in the list before calling
3579		 * handle_futex_death:
3580		 */
3581		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3582		/*
3583		 * A pending lock might already be on the list, so
3584		 * don't process it twice:
3585		 */
3586		if (entry != pending) {
3587			if (handle_futex_death((void __user *)entry + futex_offset,
3588						curr, pi, HANDLE_DEATH_LIST))
3589				return;
3590		}
3591		if (rc)
3592			return;
3593		entry = next_entry;
3594		pi = next_pi;
3595		/*
3596		 * Avoid excessively long or circular lists:
3597		 */
3598		if (!--limit)
3599			break;
3600
3601		cond_resched();
3602	}
3603
3604	if (pending) {
3605		handle_futex_death((void __user *)pending + futex_offset,
3606				   curr, pip, HANDLE_DEATH_PENDING);
3607	}
3608}
3609
3610static void futex_cleanup(struct task_struct *tsk)
3611{
3612	if (unlikely(tsk->robust_list)) {
3613		exit_robust_list(tsk);
3614		tsk->robust_list = NULL;
3615	}
3616
3617#ifdef CONFIG_COMPAT
3618	if (unlikely(tsk->compat_robust_list)) {
3619		compat_exit_robust_list(tsk);
3620		tsk->compat_robust_list = NULL;
3621	}
3622#endif
3623
3624	if (unlikely(!list_empty(&tsk->pi_state_list)))
3625		exit_pi_state_list(tsk);
3626}
3627
3628/**
3629 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3630 * @tsk:	task to set the state on
3631 *
3632 * Set the futex exit state of the task lockless. The futex waiter code
3633 * observes that state when a task is exiting and loops until the task has
3634 * actually finished the futex cleanup. The worst case for this is that the
3635 * waiter runs through the wait loop until the state becomes visible.
3636 *
3637 * This is called from the recursive fault handling path in do_exit().
3638 *
3639 * This is best effort. Either the futex exit code has run already or
3640 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3641 * take it over. If not, the problem is pushed back to user space. If the
3642 * futex exit code did not run yet, then an already queued waiter might
3643 * block forever, but there is nothing which can be done about that.
3644 */
3645void futex_exit_recursive(struct task_struct *tsk)
3646{
3647	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3648	if (tsk->futex_state == FUTEX_STATE_EXITING)
3649		mutex_unlock(&tsk->futex_exit_mutex);
3650	tsk->futex_state = FUTEX_STATE_DEAD;
3651}
3652
3653static void futex_cleanup_begin(struct task_struct *tsk)
3654{
3655	/*
3656	 * Prevent various race issues against a concurrent incoming waiter
3657	 * including live locks by forcing the waiter to block on
3658	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3659	 * attach_to_pi_owner().
3660	 */
3661	mutex_lock(&tsk->futex_exit_mutex);
3662
3663	/*
3664	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3665	 *
3666	 * This ensures that all subsequent checks of tsk->futex_state in
3667	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3668	 * tsk->pi_lock held.
3669	 *
3670	 * It guarantees also that a pi_state which was queued right before
3671	 * the state change under tsk->pi_lock by a concurrent waiter must
3672	 * be observed in exit_pi_state_list().
3673	 */
3674	raw_spin_lock_irq(&tsk->pi_lock);
3675	tsk->futex_state = FUTEX_STATE_EXITING;
3676	raw_spin_unlock_irq(&tsk->pi_lock);
3677}
3678
3679static void futex_cleanup_end(struct task_struct *tsk, int state)
3680{
3681	/*
3682	 * Lockless store. The only side effect is that an observer might
3683	 * take another loop until it becomes visible.
3684	 */
3685	tsk->futex_state = state;
3686	/*
3687	 * Drop the exit protection. This unblocks waiters which observed
3688	 * FUTEX_STATE_EXITING to reevaluate the state.
3689	 */
3690	mutex_unlock(&tsk->futex_exit_mutex);
3691}
3692
3693void futex_exec_release(struct task_struct *tsk)
3694{
3695	/*
3696	 * The state handling is done for consistency, but in the case of
3697	 * exec() there is no way to prevent futher damage as the PID stays
3698	 * the same. But for the unlikely and arguably buggy case that a
3699	 * futex is held on exec(), this provides at least as much state
3700	 * consistency protection which is possible.
3701	 */
3702	futex_cleanup_begin(tsk);
3703	futex_cleanup(tsk);
3704	/*
3705	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3706	 * exec a new binary.
3707	 */
3708	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3709}
3710
3711void futex_exit_release(struct task_struct *tsk)
3712{
3713	futex_cleanup_begin(tsk);
3714	futex_cleanup(tsk);
3715	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3716}
3717
3718long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3719		u32 __user *uaddr2, u32 val2, u32 val3)
3720{
3721	int cmd = op & FUTEX_CMD_MASK;
3722	unsigned int flags = 0;
3723
3724	if (!(op & FUTEX_PRIVATE_FLAG))
3725		flags |= FLAGS_SHARED;
3726
3727	if (op & FUTEX_CLOCK_REALTIME) {
3728		flags |= FLAGS_CLOCKRT;
3729		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3730		    cmd != FUTEX_WAIT_REQUEUE_PI)
3731			return -ENOSYS;
3732	}
3733
3734	switch (cmd) {
3735	case FUTEX_LOCK_PI:
3736	case FUTEX_UNLOCK_PI:
3737	case FUTEX_TRYLOCK_PI:
3738	case FUTEX_WAIT_REQUEUE_PI:
3739	case FUTEX_CMP_REQUEUE_PI:
3740		if (!futex_cmpxchg_enabled)
3741			return -ENOSYS;
3742	}
3743
3744	switch (cmd) {
3745	case FUTEX_WAIT:
3746		val3 = FUTEX_BITSET_MATCH_ANY;
3747		fallthrough;
3748	case FUTEX_WAIT_BITSET:
3749		return futex_wait(uaddr, flags, val, timeout, val3);
3750	case FUTEX_WAKE:
3751		val3 = FUTEX_BITSET_MATCH_ANY;
3752		fallthrough;
3753	case FUTEX_WAKE_BITSET:
3754		return futex_wake(uaddr, flags, val, val3);
3755	case FUTEX_REQUEUE:
3756		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3757	case FUTEX_CMP_REQUEUE:
3758		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3759	case FUTEX_WAKE_OP:
3760		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3761	case FUTEX_LOCK_PI:
3762		return futex_lock_pi(uaddr, flags, timeout, 0);
3763	case FUTEX_UNLOCK_PI:
3764		return futex_unlock_pi(uaddr, flags);
3765	case FUTEX_TRYLOCK_PI:
3766		return futex_lock_pi(uaddr, flags, NULL, 1);
3767	case FUTEX_WAIT_REQUEUE_PI:
3768		val3 = FUTEX_BITSET_MATCH_ANY;
3769		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3770					     uaddr2);
3771	case FUTEX_CMP_REQUEUE_PI:
3772		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3773	}
3774	return -ENOSYS;
3775}
3776
3777
3778SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3779		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3780		u32, val3)
3781{
3782	struct timespec64 ts;
3783	ktime_t t, *tp = NULL;
3784	u32 val2 = 0;
3785	int cmd = op & FUTEX_CMD_MASK;
3786
3787	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3788		      cmd == FUTEX_WAIT_BITSET ||
3789		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3790		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3791			return -EFAULT;
3792		if (get_timespec64(&ts, utime))
3793			return -EFAULT;
3794		if (!timespec64_valid(&ts))
3795			return -EINVAL;
3796
3797		t = timespec64_to_ktime(ts);
3798		if (cmd == FUTEX_WAIT)
3799			t = ktime_add_safe(ktime_get(), t);
3800		tp = &t;
3801	}
3802	/*
3803	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3804	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3805	 */
3806	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3807	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3808		val2 = (u32) (unsigned long) utime;
3809
3810	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3811}
3812
3813#ifdef CONFIG_COMPAT
3814/*
3815 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3816 */
3817static inline int
3818compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3819		   compat_uptr_t __user *head, unsigned int *pi)
3820{
3821	if (get_user(*uentry, head))
3822		return -EFAULT;
3823
3824	*entry = compat_ptr((*uentry) & ~1);
3825	*pi = (unsigned int)(*uentry) & 1;
3826
3827	return 0;
3828}
3829
3830static void __user *futex_uaddr(struct robust_list __user *entry,
3831				compat_long_t futex_offset)
3832{
3833	compat_uptr_t base = ptr_to_compat(entry);
3834	void __user *uaddr = compat_ptr(base + futex_offset);
3835
3836	return uaddr;
3837}
3838
3839/*
3840 * Walk curr->robust_list (very carefully, it's a userspace list!)
3841 * and mark any locks found there dead, and notify any waiters.
3842 *
3843 * We silently return on any sign of list-walking problem.
3844 */
3845static void compat_exit_robust_list(struct task_struct *curr)
3846{
3847	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3848	struct robust_list __user *entry, *next_entry, *pending;
3849	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3850	unsigned int next_pi;
3851	compat_uptr_t uentry, next_uentry, upending;
3852	compat_long_t futex_offset;
3853	int rc;
3854
3855	if (!futex_cmpxchg_enabled)
3856		return;
3857
3858	/*
3859	 * Fetch the list head (which was registered earlier, via
3860	 * sys_set_robust_list()):
3861	 */
3862	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3863		return;
3864	/*
3865	 * Fetch the relative futex offset:
3866	 */
3867	if (get_user(futex_offset, &head->futex_offset))
3868		return;
3869	/*
3870	 * Fetch any possibly pending lock-add first, and handle it
3871	 * if it exists:
3872	 */
3873	if (compat_fetch_robust_entry(&upending, &pending,
3874			       &head->list_op_pending, &pip))
3875		return;
3876
3877	next_entry = NULL;	/* avoid warning with gcc */
3878	while (entry != (struct robust_list __user *) &head->list) {
3879		/*
3880		 * Fetch the next entry in the list before calling
3881		 * handle_futex_death:
3882		 */
3883		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3884			(compat_uptr_t __user *)&entry->next, &next_pi);
3885		/*
3886		 * A pending lock might already be on the list, so
3887		 * dont process it twice:
3888		 */
3889		if (entry != pending) {
3890			void __user *uaddr = futex_uaddr(entry, futex_offset);
3891
3892			if (handle_futex_death(uaddr, curr, pi,
3893					       HANDLE_DEATH_LIST))
3894				return;
3895		}
3896		if (rc)
3897			return;
3898		uentry = next_uentry;
3899		entry = next_entry;
3900		pi = next_pi;
3901		/*
3902		 * Avoid excessively long or circular lists:
3903		 */
3904		if (!--limit)
3905			break;
3906
3907		cond_resched();
3908	}
3909	if (pending) {
3910		void __user *uaddr = futex_uaddr(pending, futex_offset);
3911
3912		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3913	}
3914}
3915
3916COMPAT_SYSCALL_DEFINE2(set_robust_list,
3917		struct compat_robust_list_head __user *, head,
3918		compat_size_t, len)
3919{
3920	if (!futex_cmpxchg_enabled)
3921		return -ENOSYS;
3922
3923	if (unlikely(len != sizeof(*head)))
3924		return -EINVAL;
3925
3926	current->compat_robust_list = head;
3927
3928	return 0;
3929}
3930
3931COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3932			compat_uptr_t __user *, head_ptr,
3933			compat_size_t __user *, len_ptr)
3934{
3935	struct compat_robust_list_head __user *head;
3936	unsigned long ret;
3937	struct task_struct *p;
3938
3939	if (!futex_cmpxchg_enabled)
3940		return -ENOSYS;
3941
3942	rcu_read_lock();
3943
3944	ret = -ESRCH;
3945	if (!pid)
3946		p = current;
3947	else {
3948		p = find_task_by_vpid(pid);
3949		if (!p)
3950			goto err_unlock;
3951	}
3952
3953	ret = -EPERM;
3954	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3955		goto err_unlock;
3956
3957	head = p->compat_robust_list;
3958	rcu_read_unlock();
3959
3960	if (put_user(sizeof(*head), len_ptr))
3961		return -EFAULT;
3962	return put_user(ptr_to_compat(head), head_ptr);
3963
3964err_unlock:
3965	rcu_read_unlock();
3966
3967	return ret;
3968}
3969#endif /* CONFIG_COMPAT */
3970
3971#ifdef CONFIG_COMPAT_32BIT_TIME
3972SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3973		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3974		u32, val3)
3975{
3976	struct timespec64 ts;
3977	ktime_t t, *tp = NULL;
3978	int val2 = 0;
3979	int cmd = op & FUTEX_CMD_MASK;
3980
3981	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3982		      cmd == FUTEX_WAIT_BITSET ||
3983		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3984		if (get_old_timespec32(&ts, utime))
3985			return -EFAULT;
3986		if (!timespec64_valid(&ts))
3987			return -EINVAL;
3988
3989		t = timespec64_to_ktime(ts);
3990		if (cmd == FUTEX_WAIT)
3991			t = ktime_add_safe(ktime_get(), t);
3992		tp = &t;
3993	}
3994	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3995	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3996		val2 = (int) (unsigned long) utime;
3997
3998	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3999}
4000#endif /* CONFIG_COMPAT_32BIT_TIME */
4001
4002static void __init futex_detect_cmpxchg(void)
4003{
4004#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4005	u32 curval;
4006
4007	/*
4008	 * This will fail and we want it. Some arch implementations do
4009	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4010	 * functionality. We want to know that before we call in any
4011	 * of the complex code paths. Also we want to prevent
4012	 * registration of robust lists in that case. NULL is
4013	 * guaranteed to fault and we get -EFAULT on functional
4014	 * implementation, the non-functional ones will return
4015	 * -ENOSYS.
4016	 */
4017	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4018		futex_cmpxchg_enabled = 1;
4019#endif
4020}
4021
4022static int __init futex_init(void)
4023{
4024	unsigned int futex_shift;
4025	unsigned long i;
4026
4027#if CONFIG_BASE_SMALL
4028	futex_hashsize = 16;
4029#else
4030	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4031#endif
4032
4033	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4034					       futex_hashsize, 0,
4035					       futex_hashsize < 256 ? HASH_SMALL : 0,
4036					       &futex_shift, NULL,
4037					       futex_hashsize, futex_hashsize);
4038	futex_hashsize = 1UL << futex_shift;
4039
4040	futex_detect_cmpxchg();
4041
4042	for (i = 0; i < futex_hashsize; i++) {
4043		atomic_set(&futex_queues[i].waiters, 0);
4044		plist_head_init(&futex_queues[i].chain);
4045		spin_lock_init(&futex_queues[i].lock);
4046	}
4047
4048	return 0;
4049}
4050core_initcall(futex_init);