Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>	/* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
 
 
  30#include <linux/export.h>
  31#include <linux/rmap.h>		/* anon_vma_prepare */
  32#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  33#include <linux/swap.h>		/* try_to_free_swap */
  34#include <linux/ptrace.h>	/* user_enable_single_step */
  35#include <linux/kdebug.h>	/* notifier mechanism */
  36#include "../../mm/internal.h"	/* munlock_vma_page */
  37#include <linux/percpu-rwsem.h>
  38#include <linux/task_work.h>
  39#include <linux/shmem_fs.h>
 
  40
  41#include <linux/uprobes.h>
  42
  43#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  44#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  45
  46static struct rb_root uprobes_tree = RB_ROOT;
  47/*
  48 * allows us to skip the uprobe_mmap if there are no uprobe events active
  49 * at this time.  Probably a fine grained per inode count is better?
  50 */
  51#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  52
  53static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  54
  55#define UPROBES_HASH_SZ	13
  56/* serialize uprobe->pending_list */
  57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  58#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  59
  60static struct percpu_rw_semaphore dup_mmap_sem;
  61
  62/* Have a copy of original instruction */
  63#define UPROBE_COPY_INSN	0
  64
  65struct uprobe {
  66	struct rb_node		rb_node;	/* node in the rb tree */
  67	atomic_t		ref;
  68	struct rw_semaphore	register_rwsem;
  69	struct rw_semaphore	consumer_rwsem;
  70	struct list_head	pending_list;
  71	struct uprobe_consumer	*consumers;
  72	struct inode		*inode;		/* Also hold a ref to inode */
  73	loff_t			offset;
 
  74	unsigned long		flags;
  75
  76	/*
  77	 * The generic code assumes that it has two members of unknown type
  78	 * owned by the arch-specific code:
  79	 *
  80	 * 	insn -	copy_insn() saves the original instruction here for
  81	 *		arch_uprobe_analyze_insn().
  82	 *
  83	 *	ixol -	potentially modified instruction to execute out of
  84	 *		line, copied to xol_area by xol_get_insn_slot().
  85	 */
  86	struct arch_uprobe	arch;
  87};
  88
 
 
 
 
 
 
 
 
 
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @page:     the cowed page we are replacing by kpage
 148 * @kpage:    the modified page we replace page by
 
 
 149 *
 150 * Returns 0 on success, -EFAULT on failure.
 151 */
 152static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 153				struct page *old_page, struct page *new_page)
 154{
 155	struct mm_struct *mm = vma->vm_mm;
 156	spinlock_t *ptl;
 157	pte_t *ptep;
 
 
 
 158	int err;
 159	/* For mmu_notifiers */
 160	const unsigned long mmun_start = addr;
 161	const unsigned long mmun_end   = addr + PAGE_SIZE;
 162	struct mem_cgroup *memcg;
 163
 164	err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
 165			false);
 166	if (err)
 167		return err;
 
 168
 169	/* For try_to_free_swap() and munlock_vma_page() below */
 170	lock_page(old_page);
 171
 172	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 173	err = -EAGAIN;
 174	ptep = page_check_address(old_page, mm, addr, &ptl, 0);
 175	if (!ptep) {
 176		mem_cgroup_cancel_charge(new_page, memcg, false);
 177		goto unlock;
 178	}
 179
 180	get_page(new_page);
 181	page_add_new_anon_rmap(new_page, vma, addr, false);
 182	mem_cgroup_commit_charge(new_page, memcg, false, false);
 183	lru_cache_add_active_or_unevictable(new_page, vma);
 
 
 
 184
 185	if (!PageAnon(old_page)) {
 186		dec_mm_counter(mm, mm_counter_file(old_page));
 187		inc_mm_counter(mm, MM_ANONPAGES);
 188	}
 189
 190	flush_cache_page(vma, addr, pte_pfn(*ptep));
 191	ptep_clear_flush_notify(vma, addr, ptep);
 192	set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
 
 
 193
 194	page_remove_rmap(old_page, false);
 195	if (!page_mapped(old_page))
 196		try_to_free_swap(old_page);
 197	pte_unmap_unlock(ptep, ptl);
 198
 199	if (vma->vm_flags & VM_LOCKED)
 200		munlock_vma_page(old_page);
 201	put_page(old_page);
 202
 203	err = 0;
 204 unlock:
 205	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 206	unlock_page(old_page);
 207	return err;
 208}
 209
 210/**
 211 * is_swbp_insn - check if instruction is breakpoint instruction.
 212 * @insn: instruction to be checked.
 213 * Default implementation of is_swbp_insn
 214 * Returns true if @insn is a breakpoint instruction.
 215 */
 216bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 217{
 218	return *insn == UPROBE_SWBP_INSN;
 219}
 220
 221/**
 222 * is_trap_insn - check if instruction is breakpoint instruction.
 223 * @insn: instruction to be checked.
 224 * Default implementation of is_trap_insn
 225 * Returns true if @insn is a breakpoint instruction.
 226 *
 227 * This function is needed for the case where an architecture has multiple
 228 * trap instructions (like powerpc).
 229 */
 230bool __weak is_trap_insn(uprobe_opcode_t *insn)
 231{
 232	return is_swbp_insn(insn);
 233}
 234
 235static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 236{
 237	void *kaddr = kmap_atomic(page);
 238	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 239	kunmap_atomic(kaddr);
 240}
 241
 242static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 243{
 244	void *kaddr = kmap_atomic(page);
 245	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 246	kunmap_atomic(kaddr);
 247}
 248
 249static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 250{
 251	uprobe_opcode_t old_opcode;
 252	bool is_swbp;
 253
 254	/*
 255	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 256	 * We do not check if it is any other 'trap variant' which could
 257	 * be conditional trap instruction such as the one powerpc supports.
 258	 *
 259	 * The logic is that we do not care if the underlying instruction
 260	 * is a trap variant; uprobes always wins over any other (gdb)
 261	 * breakpoint.
 262	 */
 263	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 264	is_swbp = is_swbp_insn(&old_opcode);
 265
 266	if (is_swbp_insn(new_opcode)) {
 267		if (is_swbp)		/* register: already installed? */
 268			return 0;
 269	} else {
 270		if (!is_swbp)		/* unregister: was it changed by us? */
 271			return 0;
 272	}
 273
 274	return 1;
 275}
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277/*
 278 * NOTE:
 279 * Expect the breakpoint instruction to be the smallest size instruction for
 280 * the architecture. If an arch has variable length instruction and the
 281 * breakpoint instruction is not of the smallest length instruction
 282 * supported by that architecture then we need to modify is_trap_at_addr and
 283 * uprobe_write_opcode accordingly. This would never be a problem for archs
 284 * that have fixed length instructions.
 285 *
 286 * uprobe_write_opcode - write the opcode at a given virtual address.
 287 * @mm: the probed process address space.
 288 * @vaddr: the virtual address to store the opcode.
 289 * @opcode: opcode to be written at @vaddr.
 290 *
 291 * Called with mm->mmap_sem held for write.
 292 * Return 0 (success) or a negative errno.
 293 */
 294int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
 295			uprobe_opcode_t opcode)
 296{
 
 297	struct page *old_page, *new_page;
 298	struct vm_area_struct *vma;
 299	int ret;
 
 
 
 
 
 300
 301retry:
 
 
 302	/* Read the page with vaddr into memory */
 303	ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
 304			&vma, NULL);
 305	if (ret <= 0)
 306		return ret;
 307
 308	ret = verify_opcode(old_page, vaddr, &opcode);
 309	if (ret <= 0)
 310		goto put_old;
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312	ret = anon_vma_prepare(vma);
 313	if (ret)
 314		goto put_old;
 315
 316	ret = -ENOMEM;
 317	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 318	if (!new_page)
 319		goto put_old;
 320
 321	__SetPageUptodate(new_page);
 322	copy_highpage(new_page, old_page);
 323	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325	ret = __replace_page(vma, vaddr, old_page, new_page);
 326	put_page(new_page);
 
 327put_old:
 328	put_page(old_page);
 329
 330	if (unlikely(ret == -EAGAIN))
 331		goto retry;
 
 
 
 
 
 
 
 
 
 332	return ret;
 333}
 334
 335/**
 336 * set_swbp - store breakpoint at a given address.
 337 * @auprobe: arch specific probepoint information.
 338 * @mm: the probed process address space.
 339 * @vaddr: the virtual address to insert the opcode.
 340 *
 341 * For mm @mm, store the breakpoint instruction at @vaddr.
 342 * Return 0 (success) or a negative errno.
 343 */
 344int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 345{
 346	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 347}
 348
 349/**
 350 * set_orig_insn - Restore the original instruction.
 351 * @mm: the probed process address space.
 352 * @auprobe: arch specific probepoint information.
 353 * @vaddr: the virtual address to insert the opcode.
 354 *
 355 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 356 * Return 0 (success) or a negative errno.
 357 */
 358int __weak
 359set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 360{
 361	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
 
 362}
 363
 364static struct uprobe *get_uprobe(struct uprobe *uprobe)
 365{
 366	atomic_inc(&uprobe->ref);
 367	return uprobe;
 368}
 369
 370static void put_uprobe(struct uprobe *uprobe)
 371{
 372	if (atomic_dec_and_test(&uprobe->ref))
 
 
 
 
 
 
 
 
 373		kfree(uprobe);
 
 374}
 375
 376static int match_uprobe(struct uprobe *l, struct uprobe *r)
 377{
 378	if (l->inode < r->inode)
 379		return -1;
 380
 381	if (l->inode > r->inode)
 382		return 1;
 383
 384	if (l->offset < r->offset)
 385		return -1;
 386
 387	if (l->offset > r->offset)
 388		return 1;
 389
 390	return 0;
 391}
 392
 393static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 394{
 395	struct uprobe u = { .inode = inode, .offset = offset };
 396	struct rb_node *n = uprobes_tree.rb_node;
 397	struct uprobe *uprobe;
 398	int match;
 399
 400	while (n) {
 401		uprobe = rb_entry(n, struct uprobe, rb_node);
 402		match = match_uprobe(&u, uprobe);
 403		if (!match)
 404			return get_uprobe(uprobe);
 405
 406		if (match < 0)
 407			n = n->rb_left;
 408		else
 409			n = n->rb_right;
 410	}
 411	return NULL;
 412}
 413
 414/*
 415 * Find a uprobe corresponding to a given inode:offset
 416 * Acquires uprobes_treelock
 417 */
 418static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 419{
 420	struct uprobe *uprobe;
 421
 422	spin_lock(&uprobes_treelock);
 423	uprobe = __find_uprobe(inode, offset);
 424	spin_unlock(&uprobes_treelock);
 425
 426	return uprobe;
 427}
 428
 429static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 430{
 431	struct rb_node **p = &uprobes_tree.rb_node;
 432	struct rb_node *parent = NULL;
 433	struct uprobe *u;
 434	int match;
 435
 436	while (*p) {
 437		parent = *p;
 438		u = rb_entry(parent, struct uprobe, rb_node);
 439		match = match_uprobe(uprobe, u);
 440		if (!match)
 441			return get_uprobe(u);
 442
 443		if (match < 0)
 444			p = &parent->rb_left;
 445		else
 446			p = &parent->rb_right;
 447
 448	}
 449
 450	u = NULL;
 451	rb_link_node(&uprobe->rb_node, parent, p);
 452	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 453	/* get access + creation ref */
 454	atomic_set(&uprobe->ref, 2);
 455
 456	return u;
 457}
 458
 459/*
 460 * Acquire uprobes_treelock.
 461 * Matching uprobe already exists in rbtree;
 462 *	increment (access refcount) and return the matching uprobe.
 463 *
 464 * No matching uprobe; insert the uprobe in rb_tree;
 465 *	get a double refcount (access + creation) and return NULL.
 466 */
 467static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 468{
 469	struct uprobe *u;
 470
 471	spin_lock(&uprobes_treelock);
 472	u = __insert_uprobe(uprobe);
 473	spin_unlock(&uprobes_treelock);
 474
 475	return u;
 476}
 477
 478static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 
 
 
 
 
 
 
 
 
 
 
 479{
 480	struct uprobe *uprobe, *cur_uprobe;
 481
 482	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 483	if (!uprobe)
 484		return NULL;
 485
 486	uprobe->inode = igrab(inode);
 487	uprobe->offset = offset;
 
 488	init_rwsem(&uprobe->register_rwsem);
 489	init_rwsem(&uprobe->consumer_rwsem);
 490
 491	/* add to uprobes_tree, sorted on inode:offset */
 492	cur_uprobe = insert_uprobe(uprobe);
 493	/* a uprobe exists for this inode:offset combination */
 494	if (cur_uprobe) {
 
 
 
 
 
 
 495		kfree(uprobe);
 496		uprobe = cur_uprobe;
 497		iput(inode);
 498	}
 499
 500	return uprobe;
 501}
 502
 503static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 504{
 505	down_write(&uprobe->consumer_rwsem);
 506	uc->next = uprobe->consumers;
 507	uprobe->consumers = uc;
 508	up_write(&uprobe->consumer_rwsem);
 509}
 510
 511/*
 512 * For uprobe @uprobe, delete the consumer @uc.
 513 * Return true if the @uc is deleted successfully
 514 * or return false.
 515 */
 516static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 517{
 518	struct uprobe_consumer **con;
 519	bool ret = false;
 520
 521	down_write(&uprobe->consumer_rwsem);
 522	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 523		if (*con == uc) {
 524			*con = uc->next;
 525			ret = true;
 526			break;
 527		}
 528	}
 529	up_write(&uprobe->consumer_rwsem);
 530
 531	return ret;
 532}
 533
 534static int __copy_insn(struct address_space *mapping, struct file *filp,
 535			void *insn, int nbytes, loff_t offset)
 536{
 537	struct page *page;
 538	/*
 539	 * Ensure that the page that has the original instruction is populated
 540	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 541	 * see uprobe_register().
 542	 */
 543	if (mapping->a_ops->readpage)
 544		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 545	else
 546		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 547	if (IS_ERR(page))
 548		return PTR_ERR(page);
 549
 550	copy_from_page(page, offset, insn, nbytes);
 551	put_page(page);
 552
 553	return 0;
 554}
 555
 556static int copy_insn(struct uprobe *uprobe, struct file *filp)
 557{
 558	struct address_space *mapping = uprobe->inode->i_mapping;
 559	loff_t offs = uprobe->offset;
 560	void *insn = &uprobe->arch.insn;
 561	int size = sizeof(uprobe->arch.insn);
 562	int len, err = -EIO;
 563
 564	/* Copy only available bytes, -EIO if nothing was read */
 565	do {
 566		if (offs >= i_size_read(uprobe->inode))
 567			break;
 568
 569		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 570		err = __copy_insn(mapping, filp, insn, len, offs);
 571		if (err)
 572			break;
 573
 574		insn += len;
 575		offs += len;
 576		size -= len;
 577	} while (size);
 578
 579	return err;
 580}
 581
 582static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 583				struct mm_struct *mm, unsigned long vaddr)
 584{
 585	int ret = 0;
 586
 587	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 588		return ret;
 589
 590	/* TODO: move this into _register, until then we abuse this sem. */
 591	down_write(&uprobe->consumer_rwsem);
 592	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 593		goto out;
 594
 595	ret = copy_insn(uprobe, file);
 596	if (ret)
 597		goto out;
 598
 599	ret = -ENOTSUPP;
 600	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 601		goto out;
 602
 603	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 604	if (ret)
 605		goto out;
 606
 607	/* uprobe_write_opcode() assumes we don't cross page boundary */
 608	BUG_ON((uprobe->offset & ~PAGE_MASK) +
 609			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 610
 611	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 612	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 613
 614 out:
 615	up_write(&uprobe->consumer_rwsem);
 616
 617	return ret;
 618}
 619
 620static inline bool consumer_filter(struct uprobe_consumer *uc,
 621				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 622{
 623	return !uc->filter || uc->filter(uc, ctx, mm);
 624}
 625
 626static bool filter_chain(struct uprobe *uprobe,
 627			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 628{
 629	struct uprobe_consumer *uc;
 630	bool ret = false;
 631
 632	down_read(&uprobe->consumer_rwsem);
 633	for (uc = uprobe->consumers; uc; uc = uc->next) {
 634		ret = consumer_filter(uc, ctx, mm);
 635		if (ret)
 636			break;
 637	}
 638	up_read(&uprobe->consumer_rwsem);
 639
 640	return ret;
 641}
 642
 643static int
 644install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 645			struct vm_area_struct *vma, unsigned long vaddr)
 646{
 647	bool first_uprobe;
 648	int ret;
 649
 650	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 651	if (ret)
 652		return ret;
 653
 654	/*
 655	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 656	 * the task can hit this breakpoint right after __replace_page().
 657	 */
 658	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 659	if (first_uprobe)
 660		set_bit(MMF_HAS_UPROBES, &mm->flags);
 661
 662	ret = set_swbp(&uprobe->arch, mm, vaddr);
 663	if (!ret)
 664		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 665	else if (first_uprobe)
 666		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 667
 668	return ret;
 669}
 670
 671static int
 672remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 673{
 674	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 675	return set_orig_insn(&uprobe->arch, mm, vaddr);
 676}
 677
 678static inline bool uprobe_is_active(struct uprobe *uprobe)
 679{
 680	return !RB_EMPTY_NODE(&uprobe->rb_node);
 681}
 682/*
 683 * There could be threads that have already hit the breakpoint. They
 684 * will recheck the current insn and restart if find_uprobe() fails.
 685 * See find_active_uprobe().
 686 */
 687static void delete_uprobe(struct uprobe *uprobe)
 688{
 689	if (WARN_ON(!uprobe_is_active(uprobe)))
 690		return;
 691
 692	spin_lock(&uprobes_treelock);
 693	rb_erase(&uprobe->rb_node, &uprobes_tree);
 694	spin_unlock(&uprobes_treelock);
 695	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 696	iput(uprobe->inode);
 697	put_uprobe(uprobe);
 698}
 699
 700struct map_info {
 701	struct map_info *next;
 702	struct mm_struct *mm;
 703	unsigned long vaddr;
 704};
 705
 706static inline struct map_info *free_map_info(struct map_info *info)
 707{
 708	struct map_info *next = info->next;
 709	kfree(info);
 710	return next;
 711}
 712
 713static struct map_info *
 714build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 715{
 716	unsigned long pgoff = offset >> PAGE_SHIFT;
 717	struct vm_area_struct *vma;
 718	struct map_info *curr = NULL;
 719	struct map_info *prev = NULL;
 720	struct map_info *info;
 721	int more = 0;
 722
 723 again:
 724	i_mmap_lock_read(mapping);
 725	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 726		if (!valid_vma(vma, is_register))
 727			continue;
 728
 729		if (!prev && !more) {
 730			/*
 731			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 732			 * reclaim. This is optimistic, no harm done if it fails.
 733			 */
 734			prev = kmalloc(sizeof(struct map_info),
 735					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 736			if (prev)
 737				prev->next = NULL;
 738		}
 739		if (!prev) {
 740			more++;
 741			continue;
 742		}
 743
 744		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
 745			continue;
 746
 747		info = prev;
 748		prev = prev->next;
 749		info->next = curr;
 750		curr = info;
 751
 752		info->mm = vma->vm_mm;
 753		info->vaddr = offset_to_vaddr(vma, offset);
 754	}
 755	i_mmap_unlock_read(mapping);
 756
 757	if (!more)
 758		goto out;
 759
 760	prev = curr;
 761	while (curr) {
 762		mmput(curr->mm);
 763		curr = curr->next;
 764	}
 765
 766	do {
 767		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 768		if (!info) {
 769			curr = ERR_PTR(-ENOMEM);
 770			goto out;
 771		}
 772		info->next = prev;
 773		prev = info;
 774	} while (--more);
 775
 776	goto again;
 777 out:
 778	while (prev)
 779		prev = free_map_info(prev);
 780	return curr;
 781}
 782
 783static int
 784register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
 785{
 786	bool is_register = !!new;
 787	struct map_info *info;
 788	int err = 0;
 789
 790	percpu_down_write(&dup_mmap_sem);
 791	info = build_map_info(uprobe->inode->i_mapping,
 792					uprobe->offset, is_register);
 793	if (IS_ERR(info)) {
 794		err = PTR_ERR(info);
 795		goto out;
 796	}
 797
 798	while (info) {
 799		struct mm_struct *mm = info->mm;
 800		struct vm_area_struct *vma;
 801
 802		if (err && is_register)
 803			goto free;
 804
 805		down_write(&mm->mmap_sem);
 806		vma = find_vma(mm, info->vaddr);
 807		if (!vma || !valid_vma(vma, is_register) ||
 808		    file_inode(vma->vm_file) != uprobe->inode)
 809			goto unlock;
 810
 811		if (vma->vm_start > info->vaddr ||
 812		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 813			goto unlock;
 814
 815		if (is_register) {
 816			/* consult only the "caller", new consumer. */
 817			if (consumer_filter(new,
 818					UPROBE_FILTER_REGISTER, mm))
 819				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 820		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
 821			if (!filter_chain(uprobe,
 822					UPROBE_FILTER_UNREGISTER, mm))
 823				err |= remove_breakpoint(uprobe, mm, info->vaddr);
 824		}
 825
 826 unlock:
 827		up_write(&mm->mmap_sem);
 828 free:
 829		mmput(mm);
 830		info = free_map_info(info);
 831	}
 832 out:
 833	percpu_up_write(&dup_mmap_sem);
 834	return err;
 835}
 836
 837static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
 838{
 839	consumer_add(uprobe, uc);
 840	return register_for_each_vma(uprobe, uc);
 841}
 842
 843static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 844{
 845	int err;
 846
 847	if (WARN_ON(!consumer_del(uprobe, uc)))
 848		return;
 849
 850	err = register_for_each_vma(uprobe, NULL);
 851	/* TODO : cant unregister? schedule a worker thread */
 852	if (!uprobe->consumers && !err)
 853		delete_uprobe(uprobe);
 854}
 855
 856/*
 857 * uprobe_register - register a probe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 * @inode: the file in which the probe has to be placed.
 859 * @offset: offset from the start of the file.
 860 * @uc: information on howto handle the probe..
 861 *
 862 * Apart from the access refcount, uprobe_register() takes a creation
 863 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 864 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 865 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 866 * @uprobe even before the register operation is complete. Creation
 867 * refcount is released when the last @uc for the @uprobe
 868 * unregisters.
 
 869 *
 870 * Return errno if it cannot successully install probes
 871 * else return 0 (success)
 872 */
 873int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 
 874{
 875	struct uprobe *uprobe;
 876	int ret;
 877
 878	/* Uprobe must have at least one set consumer */
 879	if (!uc->handler && !uc->ret_handler)
 880		return -EINVAL;
 881
 882	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
 883	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
 884		return -EIO;
 885	/* Racy, just to catch the obvious mistakes */
 886	if (offset > i_size_read(inode))
 887		return -EINVAL;
 888
 
 
 
 
 
 
 
 
 
 889 retry:
 890	uprobe = alloc_uprobe(inode, offset);
 891	if (!uprobe)
 892		return -ENOMEM;
 
 
 
 893	/*
 894	 * We can race with uprobe_unregister()->delete_uprobe().
 895	 * Check uprobe_is_active() and retry if it is false.
 896	 */
 897	down_write(&uprobe->register_rwsem);
 898	ret = -EAGAIN;
 899	if (likely(uprobe_is_active(uprobe))) {
 900		ret = __uprobe_register(uprobe, uc);
 
 901		if (ret)
 902			__uprobe_unregister(uprobe, uc);
 903	}
 904	up_write(&uprobe->register_rwsem);
 905	put_uprobe(uprobe);
 906
 907	if (unlikely(ret == -EAGAIN))
 908		goto retry;
 909	return ret;
 910}
 
 
 
 
 
 
 911EXPORT_SYMBOL_GPL(uprobe_register);
 912
 
 
 
 
 
 
 
 913/*
 914 * uprobe_apply - unregister a already registered probe.
 915 * @inode: the file in which the probe has to be removed.
 916 * @offset: offset from the start of the file.
 917 * @uc: consumer which wants to add more or remove some breakpoints
 918 * @add: add or remove the breakpoints
 919 */
 920int uprobe_apply(struct inode *inode, loff_t offset,
 921			struct uprobe_consumer *uc, bool add)
 922{
 923	struct uprobe *uprobe;
 924	struct uprobe_consumer *con;
 925	int ret = -ENOENT;
 926
 927	uprobe = find_uprobe(inode, offset);
 928	if (WARN_ON(!uprobe))
 929		return ret;
 930
 931	down_write(&uprobe->register_rwsem);
 932	for (con = uprobe->consumers; con && con != uc ; con = con->next)
 933		;
 934	if (con)
 935		ret = register_for_each_vma(uprobe, add ? uc : NULL);
 936	up_write(&uprobe->register_rwsem);
 937	put_uprobe(uprobe);
 938
 939	return ret;
 940}
 941
 942/*
 943 * uprobe_unregister - unregister a already registered probe.
 944 * @inode: the file in which the probe has to be removed.
 945 * @offset: offset from the start of the file.
 946 * @uc: identify which probe if multiple probes are colocated.
 947 */
 948void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 949{
 950	struct uprobe *uprobe;
 951
 952	uprobe = find_uprobe(inode, offset);
 953	if (WARN_ON(!uprobe))
 954		return;
 955
 956	down_write(&uprobe->register_rwsem);
 957	__uprobe_unregister(uprobe, uc);
 958	up_write(&uprobe->register_rwsem);
 959	put_uprobe(uprobe);
 960}
 961EXPORT_SYMBOL_GPL(uprobe_unregister);
 962
 963static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
 964{
 965	struct vm_area_struct *vma;
 966	int err = 0;
 967
 968	down_read(&mm->mmap_sem);
 969	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 970		unsigned long vaddr;
 971		loff_t offset;
 972
 973		if (!valid_vma(vma, false) ||
 974		    file_inode(vma->vm_file) != uprobe->inode)
 975			continue;
 976
 977		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
 978		if (uprobe->offset <  offset ||
 979		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
 980			continue;
 981
 982		vaddr = offset_to_vaddr(vma, uprobe->offset);
 983		err |= remove_breakpoint(uprobe, mm, vaddr);
 984	}
 985	up_read(&mm->mmap_sem);
 986
 987	return err;
 988}
 989
 990static struct rb_node *
 991find_node_in_range(struct inode *inode, loff_t min, loff_t max)
 992{
 993	struct rb_node *n = uprobes_tree.rb_node;
 994
 995	while (n) {
 996		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
 997
 998		if (inode < u->inode) {
 999			n = n->rb_left;
1000		} else if (inode > u->inode) {
1001			n = n->rb_right;
1002		} else {
1003			if (max < u->offset)
1004				n = n->rb_left;
1005			else if (min > u->offset)
1006				n = n->rb_right;
1007			else
1008				break;
1009		}
1010	}
1011
1012	return n;
1013}
1014
1015/*
1016 * For a given range in vma, build a list of probes that need to be inserted.
1017 */
1018static void build_probe_list(struct inode *inode,
1019				struct vm_area_struct *vma,
1020				unsigned long start, unsigned long end,
1021				struct list_head *head)
1022{
1023	loff_t min, max;
1024	struct rb_node *n, *t;
1025	struct uprobe *u;
1026
1027	INIT_LIST_HEAD(head);
1028	min = vaddr_to_offset(vma, start);
1029	max = min + (end - start) - 1;
1030
1031	spin_lock(&uprobes_treelock);
1032	n = find_node_in_range(inode, min, max);
1033	if (n) {
1034		for (t = n; t; t = rb_prev(t)) {
1035			u = rb_entry(t, struct uprobe, rb_node);
1036			if (u->inode != inode || u->offset < min)
1037				break;
1038			list_add(&u->pending_list, head);
1039			get_uprobe(u);
1040		}
1041		for (t = n; (t = rb_next(t)); ) {
1042			u = rb_entry(t, struct uprobe, rb_node);
1043			if (u->inode != inode || u->offset > max)
1044				break;
1045			list_add(&u->pending_list, head);
1046			get_uprobe(u);
1047		}
1048	}
1049	spin_unlock(&uprobes_treelock);
1050}
1051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052/*
1053 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054 *
1055 * Currently we ignore all errors and always return 0, the callers
1056 * can't handle the failure anyway.
1057 */
1058int uprobe_mmap(struct vm_area_struct *vma)
1059{
1060	struct list_head tmp_list;
1061	struct uprobe *uprobe, *u;
1062	struct inode *inode;
1063
1064	if (no_uprobe_events() || !valid_vma(vma, true))
 
 
 
 
 
 
 
 
1065		return 0;
1066
1067	inode = file_inode(vma->vm_file);
1068	if (!inode)
1069		return 0;
1070
1071	mutex_lock(uprobes_mmap_hash(inode));
1072	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1073	/*
1074	 * We can race with uprobe_unregister(), this uprobe can be already
1075	 * removed. But in this case filter_chain() must return false, all
1076	 * consumers have gone away.
1077	 */
1078	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1079		if (!fatal_signal_pending(current) &&
1080		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1081			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1082			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1083		}
1084		put_uprobe(uprobe);
1085	}
1086	mutex_unlock(uprobes_mmap_hash(inode));
1087
1088	return 0;
1089}
1090
1091static bool
1092vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1093{
1094	loff_t min, max;
1095	struct inode *inode;
1096	struct rb_node *n;
1097
1098	inode = file_inode(vma->vm_file);
1099
1100	min = vaddr_to_offset(vma, start);
1101	max = min + (end - start) - 1;
1102
1103	spin_lock(&uprobes_treelock);
1104	n = find_node_in_range(inode, min, max);
1105	spin_unlock(&uprobes_treelock);
1106
1107	return !!n;
1108}
1109
1110/*
1111 * Called in context of a munmap of a vma.
1112 */
1113void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114{
1115	if (no_uprobe_events() || !valid_vma(vma, false))
1116		return;
1117
1118	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1119		return;
1120
1121	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1122	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1123		return;
1124
1125	if (vma_has_uprobes(vma, start, end))
1126		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1127}
1128
1129/* Slot allocation for XOL */
1130static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1131{
1132	struct vm_area_struct *vma;
1133	int ret;
1134
1135	if (down_write_killable(&mm->mmap_sem))
1136		return -EINTR;
1137
1138	if (mm->uprobes_state.xol_area) {
1139		ret = -EALREADY;
1140		goto fail;
1141	}
1142
1143	if (!area->vaddr) {
1144		/* Try to map as high as possible, this is only a hint. */
1145		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146						PAGE_SIZE, 0, 0);
1147		if (area->vaddr & ~PAGE_MASK) {
1148			ret = area->vaddr;
1149			goto fail;
1150		}
1151	}
1152
1153	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1155				&area->xol_mapping);
1156	if (IS_ERR(vma)) {
1157		ret = PTR_ERR(vma);
1158		goto fail;
1159	}
1160
1161	ret = 0;
1162	smp_wmb();	/* pairs with get_xol_area() */
1163	mm->uprobes_state.xol_area = area;
1164 fail:
1165	up_write(&mm->mmap_sem);
1166
1167	return ret;
1168}
1169
1170static struct xol_area *__create_xol_area(unsigned long vaddr)
1171{
1172	struct mm_struct *mm = current->mm;
1173	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1174	struct xol_area *area;
1175
1176	area = kmalloc(sizeof(*area), GFP_KERNEL);
1177	if (unlikely(!area))
1178		goto out;
1179
1180	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
 
1181	if (!area->bitmap)
1182		goto free_area;
1183
1184	area->xol_mapping.name = "[uprobes]";
1185	area->xol_mapping.fault = NULL;
1186	area->xol_mapping.pages = area->pages;
1187	area->pages[0] = alloc_page(GFP_HIGHUSER);
1188	if (!area->pages[0])
1189		goto free_bitmap;
1190	area->pages[1] = NULL;
1191
1192	area->vaddr = vaddr;
1193	init_waitqueue_head(&area->wq);
1194	/* Reserve the 1st slot for get_trampoline_vaddr() */
1195	set_bit(0, area->bitmap);
1196	atomic_set(&area->slot_count, 1);
1197	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1198
1199	if (!xol_add_vma(mm, area))
1200		return area;
1201
1202	__free_page(area->pages[0]);
1203 free_bitmap:
1204	kfree(area->bitmap);
1205 free_area:
1206	kfree(area);
1207 out:
1208	return NULL;
1209}
1210
1211/*
1212 * get_xol_area - Allocate process's xol_area if necessary.
1213 * This area will be used for storing instructions for execution out of line.
1214 *
1215 * Returns the allocated area or NULL.
1216 */
1217static struct xol_area *get_xol_area(void)
1218{
1219	struct mm_struct *mm = current->mm;
1220	struct xol_area *area;
1221
1222	if (!mm->uprobes_state.xol_area)
1223		__create_xol_area(0);
1224
1225	area = mm->uprobes_state.xol_area;
1226	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1227	return area;
1228}
1229
1230/*
1231 * uprobe_clear_state - Free the area allocated for slots.
1232 */
1233void uprobe_clear_state(struct mm_struct *mm)
1234{
1235	struct xol_area *area = mm->uprobes_state.xol_area;
1236
 
 
 
 
1237	if (!area)
1238		return;
1239
1240	put_page(area->pages[0]);
1241	kfree(area->bitmap);
1242	kfree(area);
1243}
1244
1245void uprobe_start_dup_mmap(void)
1246{
1247	percpu_down_read(&dup_mmap_sem);
1248}
1249
1250void uprobe_end_dup_mmap(void)
1251{
1252	percpu_up_read(&dup_mmap_sem);
1253}
1254
1255void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1256{
1257	newmm->uprobes_state.xol_area = NULL;
1258
1259	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1260		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1261		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1262		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1263	}
1264}
1265
1266/*
1267 *  - search for a free slot.
1268 */
1269static unsigned long xol_take_insn_slot(struct xol_area *area)
1270{
1271	unsigned long slot_addr;
1272	int slot_nr;
1273
1274	do {
1275		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1276		if (slot_nr < UINSNS_PER_PAGE) {
1277			if (!test_and_set_bit(slot_nr, area->bitmap))
1278				break;
1279
1280			slot_nr = UINSNS_PER_PAGE;
1281			continue;
1282		}
1283		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1284	} while (slot_nr >= UINSNS_PER_PAGE);
1285
1286	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1287	atomic_inc(&area->slot_count);
1288
1289	return slot_addr;
1290}
1291
1292/*
1293 * xol_get_insn_slot - allocate a slot for xol.
1294 * Returns the allocated slot address or 0.
1295 */
1296static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1297{
1298	struct xol_area *area;
1299	unsigned long xol_vaddr;
1300
1301	area = get_xol_area();
1302	if (!area)
1303		return 0;
1304
1305	xol_vaddr = xol_take_insn_slot(area);
1306	if (unlikely(!xol_vaddr))
1307		return 0;
1308
1309	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1310			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1311
1312	return xol_vaddr;
1313}
1314
1315/*
1316 * xol_free_insn_slot - If slot was earlier allocated by
1317 * @xol_get_insn_slot(), make the slot available for
1318 * subsequent requests.
1319 */
1320static void xol_free_insn_slot(struct task_struct *tsk)
1321{
1322	struct xol_area *area;
1323	unsigned long vma_end;
1324	unsigned long slot_addr;
1325
1326	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1327		return;
1328
1329	slot_addr = tsk->utask->xol_vaddr;
1330	if (unlikely(!slot_addr))
1331		return;
1332
1333	area = tsk->mm->uprobes_state.xol_area;
1334	vma_end = area->vaddr + PAGE_SIZE;
1335	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1336		unsigned long offset;
1337		int slot_nr;
1338
1339		offset = slot_addr - area->vaddr;
1340		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1341		if (slot_nr >= UINSNS_PER_PAGE)
1342			return;
1343
1344		clear_bit(slot_nr, area->bitmap);
1345		atomic_dec(&area->slot_count);
1346		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1347		if (waitqueue_active(&area->wq))
1348			wake_up(&area->wq);
1349
1350		tsk->utask->xol_vaddr = 0;
1351	}
1352}
1353
1354void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1355				  void *src, unsigned long len)
1356{
1357	/* Initialize the slot */
1358	copy_to_page(page, vaddr, src, len);
1359
1360	/*
1361	 * We probably need flush_icache_user_range() but it needs vma.
1362	 * This should work on most of architectures by default. If
1363	 * architecture needs to do something different it can define
1364	 * its own version of the function.
1365	 */
1366	flush_dcache_page(page);
1367}
1368
1369/**
1370 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1371 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372 * instruction.
1373 * Return the address of the breakpoint instruction.
1374 */
1375unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1376{
1377	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1378}
1379
1380unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1381{
1382	struct uprobe_task *utask = current->utask;
1383
1384	if (unlikely(utask && utask->active_uprobe))
1385		return utask->vaddr;
1386
1387	return instruction_pointer(regs);
1388}
1389
1390static struct return_instance *free_ret_instance(struct return_instance *ri)
1391{
1392	struct return_instance *next = ri->next;
1393	put_uprobe(ri->uprobe);
1394	kfree(ri);
1395	return next;
1396}
1397
1398/*
1399 * Called with no locks held.
1400 * Called in context of a exiting or a exec-ing thread.
1401 */
1402void uprobe_free_utask(struct task_struct *t)
1403{
1404	struct uprobe_task *utask = t->utask;
1405	struct return_instance *ri;
1406
1407	if (!utask)
1408		return;
1409
1410	if (utask->active_uprobe)
1411		put_uprobe(utask->active_uprobe);
1412
1413	ri = utask->return_instances;
1414	while (ri)
1415		ri = free_ret_instance(ri);
1416
1417	xol_free_insn_slot(t);
1418	kfree(utask);
1419	t->utask = NULL;
1420}
1421
1422/*
1423 * Allocate a uprobe_task object for the task if if necessary.
1424 * Called when the thread hits a breakpoint.
1425 *
1426 * Returns:
1427 * - pointer to new uprobe_task on success
1428 * - NULL otherwise
1429 */
1430static struct uprobe_task *get_utask(void)
1431{
1432	if (!current->utask)
1433		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1434	return current->utask;
1435}
1436
1437static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1438{
1439	struct uprobe_task *n_utask;
1440	struct return_instance **p, *o, *n;
1441
1442	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1443	if (!n_utask)
1444		return -ENOMEM;
1445	t->utask = n_utask;
1446
1447	p = &n_utask->return_instances;
1448	for (o = o_utask->return_instances; o; o = o->next) {
1449		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1450		if (!n)
1451			return -ENOMEM;
1452
1453		*n = *o;
1454		get_uprobe(n->uprobe);
1455		n->next = NULL;
1456
1457		*p = n;
1458		p = &n->next;
1459		n_utask->depth++;
1460	}
1461
1462	return 0;
1463}
1464
1465static void uprobe_warn(struct task_struct *t, const char *msg)
1466{
1467	pr_warn("uprobe: %s:%d failed to %s\n",
1468			current->comm, current->pid, msg);
1469}
1470
1471static void dup_xol_work(struct callback_head *work)
1472{
1473	if (current->flags & PF_EXITING)
1474		return;
1475
1476	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1477			!fatal_signal_pending(current))
1478		uprobe_warn(current, "dup xol area");
1479}
1480
1481/*
1482 * Called in context of a new clone/fork from copy_process.
1483 */
1484void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1485{
1486	struct uprobe_task *utask = current->utask;
1487	struct mm_struct *mm = current->mm;
1488	struct xol_area *area;
1489
1490	t->utask = NULL;
1491
1492	if (!utask || !utask->return_instances)
1493		return;
1494
1495	if (mm == t->mm && !(flags & CLONE_VFORK))
1496		return;
1497
1498	if (dup_utask(t, utask))
1499		return uprobe_warn(t, "dup ret instances");
1500
1501	/* The task can fork() after dup_xol_work() fails */
1502	area = mm->uprobes_state.xol_area;
1503	if (!area)
1504		return uprobe_warn(t, "dup xol area");
1505
1506	if (mm == t->mm)
1507		return;
1508
1509	t->utask->dup_xol_addr = area->vaddr;
1510	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1511	task_work_add(t, &t->utask->dup_xol_work, true);
1512}
1513
1514/*
1515 * Current area->vaddr notion assume the trampoline address is always
1516 * equal area->vaddr.
1517 *
1518 * Returns -1 in case the xol_area is not allocated.
1519 */
1520static unsigned long get_trampoline_vaddr(void)
1521{
1522	struct xol_area *area;
1523	unsigned long trampoline_vaddr = -1;
1524
1525	area = current->mm->uprobes_state.xol_area;
1526	smp_read_barrier_depends();
1527	if (area)
1528		trampoline_vaddr = area->vaddr;
1529
1530	return trampoline_vaddr;
1531}
1532
1533static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1534					struct pt_regs *regs)
1535{
1536	struct return_instance *ri = utask->return_instances;
1537	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1538
1539	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1540		ri = free_ret_instance(ri);
1541		utask->depth--;
1542	}
1543	utask->return_instances = ri;
1544}
1545
1546static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1547{
1548	struct return_instance *ri;
1549	struct uprobe_task *utask;
1550	unsigned long orig_ret_vaddr, trampoline_vaddr;
1551	bool chained;
1552
1553	if (!get_xol_area())
1554		return;
1555
1556	utask = get_utask();
1557	if (!utask)
1558		return;
1559
1560	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1561		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1562				" nestedness limit pid/tgid=%d/%d\n",
1563				current->pid, current->tgid);
1564		return;
1565	}
1566
1567	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1568	if (!ri)
1569		return;
1570
1571	trampoline_vaddr = get_trampoline_vaddr();
1572	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1573	if (orig_ret_vaddr == -1)
1574		goto fail;
1575
1576	/* drop the entries invalidated by longjmp() */
1577	chained = (orig_ret_vaddr == trampoline_vaddr);
1578	cleanup_return_instances(utask, chained, regs);
1579
1580	/*
1581	 * We don't want to keep trampoline address in stack, rather keep the
1582	 * original return address of first caller thru all the consequent
1583	 * instances. This also makes breakpoint unwrapping easier.
1584	 */
1585	if (chained) {
1586		if (!utask->return_instances) {
1587			/*
1588			 * This situation is not possible. Likely we have an
1589			 * attack from user-space.
1590			 */
1591			uprobe_warn(current, "handle tail call");
1592			goto fail;
1593		}
1594		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1595	}
1596
1597	ri->uprobe = get_uprobe(uprobe);
1598	ri->func = instruction_pointer(regs);
1599	ri->stack = user_stack_pointer(regs);
1600	ri->orig_ret_vaddr = orig_ret_vaddr;
1601	ri->chained = chained;
1602
1603	utask->depth++;
1604	ri->next = utask->return_instances;
1605	utask->return_instances = ri;
1606
1607	return;
1608 fail:
1609	kfree(ri);
1610}
1611
1612/* Prepare to single-step probed instruction out of line. */
1613static int
1614pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1615{
1616	struct uprobe_task *utask;
1617	unsigned long xol_vaddr;
1618	int err;
1619
1620	utask = get_utask();
1621	if (!utask)
1622		return -ENOMEM;
1623
1624	xol_vaddr = xol_get_insn_slot(uprobe);
1625	if (!xol_vaddr)
1626		return -ENOMEM;
1627
1628	utask->xol_vaddr = xol_vaddr;
1629	utask->vaddr = bp_vaddr;
1630
1631	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1632	if (unlikely(err)) {
1633		xol_free_insn_slot(current);
1634		return err;
1635	}
1636
1637	utask->active_uprobe = uprobe;
1638	utask->state = UTASK_SSTEP;
1639	return 0;
1640}
1641
1642/*
1643 * If we are singlestepping, then ensure this thread is not connected to
1644 * non-fatal signals until completion of singlestep.  When xol insn itself
1645 * triggers the signal,  restart the original insn even if the task is
1646 * already SIGKILL'ed (since coredump should report the correct ip).  This
1647 * is even more important if the task has a handler for SIGSEGV/etc, The
1648 * _same_ instruction should be repeated again after return from the signal
1649 * handler, and SSTEP can never finish in this case.
1650 */
1651bool uprobe_deny_signal(void)
1652{
1653	struct task_struct *t = current;
1654	struct uprobe_task *utask = t->utask;
1655
1656	if (likely(!utask || !utask->active_uprobe))
1657		return false;
1658
1659	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1660
1661	if (signal_pending(t)) {
1662		spin_lock_irq(&t->sighand->siglock);
1663		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1664		spin_unlock_irq(&t->sighand->siglock);
1665
1666		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1667			utask->state = UTASK_SSTEP_TRAPPED;
1668			set_tsk_thread_flag(t, TIF_UPROBE);
1669		}
1670	}
1671
1672	return true;
1673}
1674
1675static void mmf_recalc_uprobes(struct mm_struct *mm)
1676{
1677	struct vm_area_struct *vma;
1678
1679	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1680		if (!valid_vma(vma, false))
1681			continue;
1682		/*
1683		 * This is not strictly accurate, we can race with
1684		 * uprobe_unregister() and see the already removed
1685		 * uprobe if delete_uprobe() was not yet called.
1686		 * Or this uprobe can be filtered out.
1687		 */
1688		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1689			return;
1690	}
1691
1692	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1693}
1694
1695static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1696{
1697	struct page *page;
1698	uprobe_opcode_t opcode;
1699	int result;
1700
 
 
 
1701	pagefault_disable();
1702	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1703	pagefault_enable();
1704
1705	if (likely(result == 0))
1706		goto out;
1707
1708	/*
1709	 * The NULL 'tsk' here ensures that any faults that occur here
1710	 * will not be accounted to the task.  'mm' *is* current->mm,
1711	 * but we treat this as a 'remote' access since it is
1712	 * essentially a kernel access to the memory.
1713	 */
1714	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1715			NULL, NULL);
1716	if (result < 0)
1717		return result;
1718
1719	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1720	put_page(page);
1721 out:
1722	/* This needs to return true for any variant of the trap insn */
1723	return is_trap_insn(&opcode);
1724}
1725
1726static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1727{
1728	struct mm_struct *mm = current->mm;
1729	struct uprobe *uprobe = NULL;
1730	struct vm_area_struct *vma;
1731
1732	down_read(&mm->mmap_sem);
1733	vma = find_vma(mm, bp_vaddr);
1734	if (vma && vma->vm_start <= bp_vaddr) {
1735		if (valid_vma(vma, false)) {
1736			struct inode *inode = file_inode(vma->vm_file);
1737			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1738
1739			uprobe = find_uprobe(inode, offset);
1740		}
1741
1742		if (!uprobe)
1743			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1744	} else {
1745		*is_swbp = -EFAULT;
1746	}
1747
1748	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1749		mmf_recalc_uprobes(mm);
1750	up_read(&mm->mmap_sem);
1751
1752	return uprobe;
1753}
1754
1755static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1756{
1757	struct uprobe_consumer *uc;
1758	int remove = UPROBE_HANDLER_REMOVE;
1759	bool need_prep = false; /* prepare return uprobe, when needed */
1760
1761	down_read(&uprobe->register_rwsem);
1762	for (uc = uprobe->consumers; uc; uc = uc->next) {
1763		int rc = 0;
1764
1765		if (uc->handler) {
1766			rc = uc->handler(uc, regs);
1767			WARN(rc & ~UPROBE_HANDLER_MASK,
1768				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1769		}
1770
1771		if (uc->ret_handler)
1772			need_prep = true;
1773
1774		remove &= rc;
1775	}
1776
1777	if (need_prep && !remove)
1778		prepare_uretprobe(uprobe, regs); /* put bp at return */
1779
1780	if (remove && uprobe->consumers) {
1781		WARN_ON(!uprobe_is_active(uprobe));
1782		unapply_uprobe(uprobe, current->mm);
1783	}
1784	up_read(&uprobe->register_rwsem);
1785}
1786
1787static void
1788handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1789{
1790	struct uprobe *uprobe = ri->uprobe;
1791	struct uprobe_consumer *uc;
1792
1793	down_read(&uprobe->register_rwsem);
1794	for (uc = uprobe->consumers; uc; uc = uc->next) {
1795		if (uc->ret_handler)
1796			uc->ret_handler(uc, ri->func, regs);
1797	}
1798	up_read(&uprobe->register_rwsem);
1799}
1800
1801static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1802{
1803	bool chained;
1804
1805	do {
1806		chained = ri->chained;
1807		ri = ri->next;	/* can't be NULL if chained */
1808	} while (chained);
1809
1810	return ri;
1811}
1812
1813static void handle_trampoline(struct pt_regs *regs)
1814{
1815	struct uprobe_task *utask;
1816	struct return_instance *ri, *next;
1817	bool valid;
1818
1819	utask = current->utask;
1820	if (!utask)
1821		goto sigill;
1822
1823	ri = utask->return_instances;
1824	if (!ri)
1825		goto sigill;
1826
1827	do {
1828		/*
1829		 * We should throw out the frames invalidated by longjmp().
1830		 * If this chain is valid, then the next one should be alive
1831		 * or NULL; the latter case means that nobody but ri->func
1832		 * could hit this trampoline on return. TODO: sigaltstack().
1833		 */
1834		next = find_next_ret_chain(ri);
1835		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1836
1837		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1838		do {
1839			if (valid)
1840				handle_uretprobe_chain(ri, regs);
1841			ri = free_ret_instance(ri);
1842			utask->depth--;
1843		} while (ri != next);
1844	} while (!valid);
1845
1846	utask->return_instances = ri;
1847	return;
1848
1849 sigill:
1850	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1851	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1852
1853}
1854
1855bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1856{
1857	return false;
1858}
1859
1860bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1861					struct pt_regs *regs)
1862{
1863	return true;
1864}
1865
1866/*
1867 * Run handler and ask thread to singlestep.
1868 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1869 */
1870static void handle_swbp(struct pt_regs *regs)
1871{
1872	struct uprobe *uprobe;
1873	unsigned long bp_vaddr;
1874	int uninitialized_var(is_swbp);
1875
1876	bp_vaddr = uprobe_get_swbp_addr(regs);
1877	if (bp_vaddr == get_trampoline_vaddr())
1878		return handle_trampoline(regs);
1879
1880	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1881	if (!uprobe) {
1882		if (is_swbp > 0) {
1883			/* No matching uprobe; signal SIGTRAP. */
1884			send_sig(SIGTRAP, current, 0);
1885		} else {
1886			/*
1887			 * Either we raced with uprobe_unregister() or we can't
1888			 * access this memory. The latter is only possible if
1889			 * another thread plays with our ->mm. In both cases
1890			 * we can simply restart. If this vma was unmapped we
1891			 * can pretend this insn was not executed yet and get
1892			 * the (correct) SIGSEGV after restart.
1893			 */
1894			instruction_pointer_set(regs, bp_vaddr);
1895		}
1896		return;
1897	}
1898
1899	/* change it in advance for ->handler() and restart */
1900	instruction_pointer_set(regs, bp_vaddr);
1901
1902	/*
1903	 * TODO: move copy_insn/etc into _register and remove this hack.
1904	 * After we hit the bp, _unregister + _register can install the
1905	 * new and not-yet-analyzed uprobe at the same address, restart.
1906	 */
1907	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1908	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1909		goto out;
1910
 
 
 
 
 
 
 
 
 
1911	/* Tracing handlers use ->utask to communicate with fetch methods */
1912	if (!get_utask())
1913		goto out;
1914
1915	if (arch_uprobe_ignore(&uprobe->arch, regs))
1916		goto out;
1917
1918	handler_chain(uprobe, regs);
1919
1920	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1921		goto out;
1922
1923	if (!pre_ssout(uprobe, regs, bp_vaddr))
1924		return;
1925
1926	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1927out:
1928	put_uprobe(uprobe);
1929}
1930
1931/*
1932 * Perform required fix-ups and disable singlestep.
1933 * Allow pending signals to take effect.
1934 */
1935static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1936{
1937	struct uprobe *uprobe;
1938	int err = 0;
1939
1940	uprobe = utask->active_uprobe;
1941	if (utask->state == UTASK_SSTEP_ACK)
1942		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1943	else if (utask->state == UTASK_SSTEP_TRAPPED)
1944		arch_uprobe_abort_xol(&uprobe->arch, regs);
1945	else
1946		WARN_ON_ONCE(1);
1947
1948	put_uprobe(uprobe);
1949	utask->active_uprobe = NULL;
1950	utask->state = UTASK_RUNNING;
1951	xol_free_insn_slot(current);
1952
1953	spin_lock_irq(&current->sighand->siglock);
1954	recalc_sigpending(); /* see uprobe_deny_signal() */
1955	spin_unlock_irq(&current->sighand->siglock);
1956
1957	if (unlikely(err)) {
1958		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1959		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1960	}
1961}
1962
1963/*
1964 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1965 * allows the thread to return from interrupt. After that handle_swbp()
1966 * sets utask->active_uprobe.
1967 *
1968 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1969 * and allows the thread to return from interrupt.
1970 *
1971 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1972 * uprobe_notify_resume().
1973 */
1974void uprobe_notify_resume(struct pt_regs *regs)
1975{
1976	struct uprobe_task *utask;
1977
1978	clear_thread_flag(TIF_UPROBE);
1979
1980	utask = current->utask;
1981	if (utask && utask->active_uprobe)
1982		handle_singlestep(utask, regs);
1983	else
1984		handle_swbp(regs);
1985}
1986
1987/*
1988 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1989 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1990 */
1991int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1992{
1993	if (!current->mm)
1994		return 0;
1995
1996	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1997	    (!current->utask || !current->utask->return_instances))
1998		return 0;
1999
2000	set_thread_flag(TIF_UPROBE);
2001	return 1;
2002}
2003
2004/*
2005 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2006 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2007 */
2008int uprobe_post_sstep_notifier(struct pt_regs *regs)
2009{
2010	struct uprobe_task *utask = current->utask;
2011
2012	if (!current->mm || !utask || !utask->active_uprobe)
2013		/* task is currently not uprobed */
2014		return 0;
2015
2016	utask->state = UTASK_SSTEP_ACK;
2017	set_thread_flag(TIF_UPROBE);
2018	return 1;
2019}
2020
2021static struct notifier_block uprobe_exception_nb = {
2022	.notifier_call		= arch_uprobe_exception_notify,
2023	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2024};
2025
2026static int __init init_uprobes(void)
2027{
2028	int i;
2029
2030	for (i = 0; i < UPROBES_HASH_SZ; i++)
2031		mutex_init(&uprobes_mmap_mutex[i]);
2032
2033	if (percpu_init_rwsem(&dup_mmap_sem))
2034		return -ENOMEM;
2035
2036	return register_die_notifier(&uprobe_exception_nb);
2037}
2038__initcall(init_uprobes);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>	/* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>		/* anon_vma_prepare */
  21#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  22#include <linux/swap.h>		/* try_to_free_swap */
  23#include <linux/ptrace.h>	/* user_enable_single_step */
  24#include <linux/kdebug.h>	/* notifier mechanism */
  25#include "../../mm/internal.h"	/* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  44
  45#define UPROBES_HASH_SZ	13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN	0
  54
  55struct uprobe {
  56	struct rb_node		rb_node;	/* node in the rb tree */
  57	refcount_t		ref;
  58	struct rw_semaphore	register_rwsem;
  59	struct rw_semaphore	consumer_rwsem;
  60	struct list_head	pending_list;
  61	struct uprobe_consumer	*consumers;
  62	struct inode		*inode;		/* Also hold a ref to inode */
  63	loff_t			offset;
  64	loff_t			ref_ctr_offset;
  65	unsigned long		flags;
  66
  67	/*
  68	 * The generic code assumes that it has two members of unknown type
  69	 * owned by the arch-specific code:
  70	 *
  71	 * 	insn -	copy_insn() saves the original instruction here for
  72	 *		arch_uprobe_analyze_insn().
  73	 *
  74	 *	ixol -	potentially modified instruction to execute out of
  75	 *		line, copied to xol_area by xol_get_insn_slot().
  76	 */
  77	struct arch_uprobe	arch;
  78};
  79
  80struct delayed_uprobe {
  81	struct list_head list;
  82	struct uprobe *uprobe;
  83	struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155				struct page *old_page, struct page *new_page)
 156{
 157	struct mm_struct *mm = vma->vm_mm;
 158	struct page_vma_mapped_walk pvmw = {
 159		.page = compound_head(old_page),
 160		.vma = vma,
 161		.address = addr,
 162	};
 163	int err;
 164	struct mmu_notifier_range range;
 165
 166	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 167				addr + PAGE_SIZE);
 168
 169	if (new_page) {
 170		err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
 171		if (err)
 172			return err;
 173	}
 174
 175	/* For try_to_free_swap() and munlock_vma_page() below */
 176	lock_page(old_page);
 177
 178	mmu_notifier_invalidate_range_start(&range);
 179	err = -EAGAIN;
 180	if (!page_vma_mapped_walk(&pvmw))
 
 
 181		goto unlock;
 182	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 183
 184	if (new_page) {
 185		get_page(new_page);
 186		page_add_new_anon_rmap(new_page, vma, addr, false);
 187		lru_cache_add_inactive_or_unevictable(new_page, vma);
 188	} else
 189		/* no new page, just dec_mm_counter for old_page */
 190		dec_mm_counter(mm, MM_ANONPAGES);
 191
 192	if (!PageAnon(old_page)) {
 193		dec_mm_counter(mm, mm_counter_file(old_page));
 194		inc_mm_counter(mm, MM_ANONPAGES);
 195	}
 196
 197	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198	ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199	if (new_page)
 200		set_pte_at_notify(mm, addr, pvmw.pte,
 201				  mk_pte(new_page, vma->vm_page_prot));
 202
 203	page_remove_rmap(old_page, false);
 204	if (!page_mapped(old_page))
 205		try_to_free_swap(old_page);
 206	page_vma_mapped_walk_done(&pvmw);
 207
 208	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
 209		munlock_vma_page(old_page);
 210	put_page(old_page);
 211
 212	err = 0;
 213 unlock:
 214	mmu_notifier_invalidate_range_end(&range);
 215	unlock_page(old_page);
 216	return err;
 217}
 218
 219/**
 220 * is_swbp_insn - check if instruction is breakpoint instruction.
 221 * @insn: instruction to be checked.
 222 * Default implementation of is_swbp_insn
 223 * Returns true if @insn is a breakpoint instruction.
 224 */
 225bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 226{
 227	return *insn == UPROBE_SWBP_INSN;
 228}
 229
 230/**
 231 * is_trap_insn - check if instruction is breakpoint instruction.
 232 * @insn: instruction to be checked.
 233 * Default implementation of is_trap_insn
 234 * Returns true if @insn is a breakpoint instruction.
 235 *
 236 * This function is needed for the case where an architecture has multiple
 237 * trap instructions (like powerpc).
 238 */
 239bool __weak is_trap_insn(uprobe_opcode_t *insn)
 240{
 241	return is_swbp_insn(insn);
 242}
 243
 244static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 245{
 246	void *kaddr = kmap_atomic(page);
 247	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 248	kunmap_atomic(kaddr);
 249}
 250
 251static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 252{
 253	void *kaddr = kmap_atomic(page);
 254	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 255	kunmap_atomic(kaddr);
 256}
 257
 258static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 259{
 260	uprobe_opcode_t old_opcode;
 261	bool is_swbp;
 262
 263	/*
 264	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 265	 * We do not check if it is any other 'trap variant' which could
 266	 * be conditional trap instruction such as the one powerpc supports.
 267	 *
 268	 * The logic is that we do not care if the underlying instruction
 269	 * is a trap variant; uprobes always wins over any other (gdb)
 270	 * breakpoint.
 271	 */
 272	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 273	is_swbp = is_swbp_insn(&old_opcode);
 274
 275	if (is_swbp_insn(new_opcode)) {
 276		if (is_swbp)		/* register: already installed? */
 277			return 0;
 278	} else {
 279		if (!is_swbp)		/* unregister: was it changed by us? */
 280			return 0;
 281	}
 282
 283	return 1;
 284}
 285
 286static struct delayed_uprobe *
 287delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 288{
 289	struct delayed_uprobe *du;
 290
 291	list_for_each_entry(du, &delayed_uprobe_list, list)
 292		if (du->uprobe == uprobe && du->mm == mm)
 293			return du;
 294	return NULL;
 295}
 296
 297static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 298{
 299	struct delayed_uprobe *du;
 300
 301	if (delayed_uprobe_check(uprobe, mm))
 302		return 0;
 303
 304	du  = kzalloc(sizeof(*du), GFP_KERNEL);
 305	if (!du)
 306		return -ENOMEM;
 307
 308	du->uprobe = uprobe;
 309	du->mm = mm;
 310	list_add(&du->list, &delayed_uprobe_list);
 311	return 0;
 312}
 313
 314static void delayed_uprobe_delete(struct delayed_uprobe *du)
 315{
 316	if (WARN_ON(!du))
 317		return;
 318	list_del(&du->list);
 319	kfree(du);
 320}
 321
 322static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 323{
 324	struct list_head *pos, *q;
 325	struct delayed_uprobe *du;
 326
 327	if (!uprobe && !mm)
 328		return;
 329
 330	list_for_each_safe(pos, q, &delayed_uprobe_list) {
 331		du = list_entry(pos, struct delayed_uprobe, list);
 332
 333		if (uprobe && du->uprobe != uprobe)
 334			continue;
 335		if (mm && du->mm != mm)
 336			continue;
 337
 338		delayed_uprobe_delete(du);
 339	}
 340}
 341
 342static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 343			      struct vm_area_struct *vma)
 344{
 345	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 346
 347	return uprobe->ref_ctr_offset &&
 348		vma->vm_file &&
 349		file_inode(vma->vm_file) == uprobe->inode &&
 350		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 351		vma->vm_start <= vaddr &&
 352		vma->vm_end > vaddr;
 353}
 354
 355static struct vm_area_struct *
 356find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 357{
 358	struct vm_area_struct *tmp;
 359
 360	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 361		if (valid_ref_ctr_vma(uprobe, tmp))
 362			return tmp;
 363
 364	return NULL;
 365}
 366
 367static int
 368__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 369{
 370	void *kaddr;
 371	struct page *page;
 372	struct vm_area_struct *vma;
 373	int ret;
 374	short *ptr;
 375
 376	if (!vaddr || !d)
 377		return -EINVAL;
 378
 379	ret = get_user_pages_remote(mm, vaddr, 1,
 380			FOLL_WRITE, &page, &vma, NULL);
 381	if (unlikely(ret <= 0)) {
 382		/*
 383		 * We are asking for 1 page. If get_user_pages_remote() fails,
 384		 * it may return 0, in that case we have to return error.
 385		 */
 386		return ret == 0 ? -EBUSY : ret;
 387	}
 388
 389	kaddr = kmap_atomic(page);
 390	ptr = kaddr + (vaddr & ~PAGE_MASK);
 391
 392	if (unlikely(*ptr + d < 0)) {
 393		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 394			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
 395		ret = -EINVAL;
 396		goto out;
 397	}
 398
 399	*ptr += d;
 400	ret = 0;
 401out:
 402	kunmap_atomic(kaddr);
 403	put_page(page);
 404	return ret;
 405}
 406
 407static void update_ref_ctr_warn(struct uprobe *uprobe,
 408				struct mm_struct *mm, short d)
 409{
 410	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 411		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 412		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 413		(unsigned long long) uprobe->offset,
 414		(unsigned long long) uprobe->ref_ctr_offset, mm);
 415}
 416
 417static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 418			  short d)
 419{
 420	struct vm_area_struct *rc_vma;
 421	unsigned long rc_vaddr;
 422	int ret = 0;
 423
 424	rc_vma = find_ref_ctr_vma(uprobe, mm);
 425
 426	if (rc_vma) {
 427		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 428		ret = __update_ref_ctr(mm, rc_vaddr, d);
 429		if (ret)
 430			update_ref_ctr_warn(uprobe, mm, d);
 431
 432		if (d > 0)
 433			return ret;
 434	}
 435
 436	mutex_lock(&delayed_uprobe_lock);
 437	if (d > 0)
 438		ret = delayed_uprobe_add(uprobe, mm);
 439	else
 440		delayed_uprobe_remove(uprobe, mm);
 441	mutex_unlock(&delayed_uprobe_lock);
 442
 443	return ret;
 444}
 445
 446/*
 447 * NOTE:
 448 * Expect the breakpoint instruction to be the smallest size instruction for
 449 * the architecture. If an arch has variable length instruction and the
 450 * breakpoint instruction is not of the smallest length instruction
 451 * supported by that architecture then we need to modify is_trap_at_addr and
 452 * uprobe_write_opcode accordingly. This would never be a problem for archs
 453 * that have fixed length instructions.
 454 *
 455 * uprobe_write_opcode - write the opcode at a given virtual address.
 456 * @mm: the probed process address space.
 457 * @vaddr: the virtual address to store the opcode.
 458 * @opcode: opcode to be written at @vaddr.
 459 *
 460 * Called with mm->mmap_lock held for write.
 461 * Return 0 (success) or a negative errno.
 462 */
 463int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 464			unsigned long vaddr, uprobe_opcode_t opcode)
 465{
 466	struct uprobe *uprobe;
 467	struct page *old_page, *new_page;
 468	struct vm_area_struct *vma;
 469	int ret, is_register, ref_ctr_updated = 0;
 470	bool orig_page_huge = false;
 471	unsigned int gup_flags = FOLL_FORCE;
 472
 473	is_register = is_swbp_insn(&opcode);
 474	uprobe = container_of(auprobe, struct uprobe, arch);
 475
 476retry:
 477	if (is_register)
 478		gup_flags |= FOLL_SPLIT_PMD;
 479	/* Read the page with vaddr into memory */
 480	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
 481				    &old_page, &vma, NULL);
 482	if (ret <= 0)
 483		return ret;
 484
 485	ret = verify_opcode(old_page, vaddr, &opcode);
 486	if (ret <= 0)
 487		goto put_old;
 488
 489	if (WARN(!is_register && PageCompound(old_page),
 490		 "uprobe unregister should never work on compound page\n")) {
 491		ret = -EINVAL;
 492		goto put_old;
 493	}
 494
 495	/* We are going to replace instruction, update ref_ctr. */
 496	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 497		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 498		if (ret)
 499			goto put_old;
 500
 501		ref_ctr_updated = 1;
 502	}
 503
 504	ret = 0;
 505	if (!is_register && !PageAnon(old_page))
 506		goto put_old;
 507
 508	ret = anon_vma_prepare(vma);
 509	if (ret)
 510		goto put_old;
 511
 512	ret = -ENOMEM;
 513	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 514	if (!new_page)
 515		goto put_old;
 516
 517	__SetPageUptodate(new_page);
 518	copy_highpage(new_page, old_page);
 519	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 520
 521	if (!is_register) {
 522		struct page *orig_page;
 523		pgoff_t index;
 524
 525		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 526
 527		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 528		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 529					  index);
 530
 531		if (orig_page) {
 532			if (PageUptodate(orig_page) &&
 533			    pages_identical(new_page, orig_page)) {
 534				/* let go new_page */
 535				put_page(new_page);
 536				new_page = NULL;
 537
 538				if (PageCompound(orig_page))
 539					orig_page_huge = true;
 540			}
 541			put_page(orig_page);
 542		}
 543	}
 544
 545	ret = __replace_page(vma, vaddr, old_page, new_page);
 546	if (new_page)
 547		put_page(new_page);
 548put_old:
 549	put_page(old_page);
 550
 551	if (unlikely(ret == -EAGAIN))
 552		goto retry;
 553
 554	/* Revert back reference counter if instruction update failed. */
 555	if (ret && is_register && ref_ctr_updated)
 556		update_ref_ctr(uprobe, mm, -1);
 557
 558	/* try collapse pmd for compound page */
 559	if (!ret && orig_page_huge)
 560		collapse_pte_mapped_thp(mm, vaddr);
 561
 562	return ret;
 563}
 564
 565/**
 566 * set_swbp - store breakpoint at a given address.
 567 * @auprobe: arch specific probepoint information.
 568 * @mm: the probed process address space.
 569 * @vaddr: the virtual address to insert the opcode.
 570 *
 571 * For mm @mm, store the breakpoint instruction at @vaddr.
 572 * Return 0 (success) or a negative errno.
 573 */
 574int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 575{
 576	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 577}
 578
 579/**
 580 * set_orig_insn - Restore the original instruction.
 581 * @mm: the probed process address space.
 582 * @auprobe: arch specific probepoint information.
 583 * @vaddr: the virtual address to insert the opcode.
 584 *
 585 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 586 * Return 0 (success) or a negative errno.
 587 */
 588int __weak
 589set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 590{
 591	return uprobe_write_opcode(auprobe, mm, vaddr,
 592			*(uprobe_opcode_t *)&auprobe->insn);
 593}
 594
 595static struct uprobe *get_uprobe(struct uprobe *uprobe)
 596{
 597	refcount_inc(&uprobe->ref);
 598	return uprobe;
 599}
 600
 601static void put_uprobe(struct uprobe *uprobe)
 602{
 603	if (refcount_dec_and_test(&uprobe->ref)) {
 604		/*
 605		 * If application munmap(exec_vma) before uprobe_unregister()
 606		 * gets called, we don't get a chance to remove uprobe from
 607		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 608		 */
 609		mutex_lock(&delayed_uprobe_lock);
 610		delayed_uprobe_remove(uprobe, NULL);
 611		mutex_unlock(&delayed_uprobe_lock);
 612		kfree(uprobe);
 613	}
 614}
 615
 616static int match_uprobe(struct uprobe *l, struct uprobe *r)
 617{
 618	if (l->inode < r->inode)
 619		return -1;
 620
 621	if (l->inode > r->inode)
 622		return 1;
 623
 624	if (l->offset < r->offset)
 625		return -1;
 626
 627	if (l->offset > r->offset)
 628		return 1;
 629
 630	return 0;
 631}
 632
 633static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 634{
 635	struct uprobe u = { .inode = inode, .offset = offset };
 636	struct rb_node *n = uprobes_tree.rb_node;
 637	struct uprobe *uprobe;
 638	int match;
 639
 640	while (n) {
 641		uprobe = rb_entry(n, struct uprobe, rb_node);
 642		match = match_uprobe(&u, uprobe);
 643		if (!match)
 644			return get_uprobe(uprobe);
 645
 646		if (match < 0)
 647			n = n->rb_left;
 648		else
 649			n = n->rb_right;
 650	}
 651	return NULL;
 652}
 653
 654/*
 655 * Find a uprobe corresponding to a given inode:offset
 656 * Acquires uprobes_treelock
 657 */
 658static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 659{
 660	struct uprobe *uprobe;
 661
 662	spin_lock(&uprobes_treelock);
 663	uprobe = __find_uprobe(inode, offset);
 664	spin_unlock(&uprobes_treelock);
 665
 666	return uprobe;
 667}
 668
 669static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 670{
 671	struct rb_node **p = &uprobes_tree.rb_node;
 672	struct rb_node *parent = NULL;
 673	struct uprobe *u;
 674	int match;
 675
 676	while (*p) {
 677		parent = *p;
 678		u = rb_entry(parent, struct uprobe, rb_node);
 679		match = match_uprobe(uprobe, u);
 680		if (!match)
 681			return get_uprobe(u);
 682
 683		if (match < 0)
 684			p = &parent->rb_left;
 685		else
 686			p = &parent->rb_right;
 687
 688	}
 689
 690	u = NULL;
 691	rb_link_node(&uprobe->rb_node, parent, p);
 692	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 693	/* get access + creation ref */
 694	refcount_set(&uprobe->ref, 2);
 695
 696	return u;
 697}
 698
 699/*
 700 * Acquire uprobes_treelock.
 701 * Matching uprobe already exists in rbtree;
 702 *	increment (access refcount) and return the matching uprobe.
 703 *
 704 * No matching uprobe; insert the uprobe in rb_tree;
 705 *	get a double refcount (access + creation) and return NULL.
 706 */
 707static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 708{
 709	struct uprobe *u;
 710
 711	spin_lock(&uprobes_treelock);
 712	u = __insert_uprobe(uprobe);
 713	spin_unlock(&uprobes_treelock);
 714
 715	return u;
 716}
 717
 718static void
 719ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 720{
 721	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 722		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 723		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 724		(unsigned long long) cur_uprobe->ref_ctr_offset,
 725		(unsigned long long) uprobe->ref_ctr_offset);
 726}
 727
 728static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 729				   loff_t ref_ctr_offset)
 730{
 731	struct uprobe *uprobe, *cur_uprobe;
 732
 733	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 734	if (!uprobe)
 735		return NULL;
 736
 737	uprobe->inode = inode;
 738	uprobe->offset = offset;
 739	uprobe->ref_ctr_offset = ref_ctr_offset;
 740	init_rwsem(&uprobe->register_rwsem);
 741	init_rwsem(&uprobe->consumer_rwsem);
 742
 743	/* add to uprobes_tree, sorted on inode:offset */
 744	cur_uprobe = insert_uprobe(uprobe);
 745	/* a uprobe exists for this inode:offset combination */
 746	if (cur_uprobe) {
 747		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 748			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 749			put_uprobe(cur_uprobe);
 750			kfree(uprobe);
 751			return ERR_PTR(-EINVAL);
 752		}
 753		kfree(uprobe);
 754		uprobe = cur_uprobe;
 
 755	}
 756
 757	return uprobe;
 758}
 759
 760static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 761{
 762	down_write(&uprobe->consumer_rwsem);
 763	uc->next = uprobe->consumers;
 764	uprobe->consumers = uc;
 765	up_write(&uprobe->consumer_rwsem);
 766}
 767
 768/*
 769 * For uprobe @uprobe, delete the consumer @uc.
 770 * Return true if the @uc is deleted successfully
 771 * or return false.
 772 */
 773static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 774{
 775	struct uprobe_consumer **con;
 776	bool ret = false;
 777
 778	down_write(&uprobe->consumer_rwsem);
 779	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 780		if (*con == uc) {
 781			*con = uc->next;
 782			ret = true;
 783			break;
 784		}
 785	}
 786	up_write(&uprobe->consumer_rwsem);
 787
 788	return ret;
 789}
 790
 791static int __copy_insn(struct address_space *mapping, struct file *filp,
 792			void *insn, int nbytes, loff_t offset)
 793{
 794	struct page *page;
 795	/*
 796	 * Ensure that the page that has the original instruction is populated
 797	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 798	 * see uprobe_register().
 799	 */
 800	if (mapping->a_ops->readpage)
 801		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 802	else
 803		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 804	if (IS_ERR(page))
 805		return PTR_ERR(page);
 806
 807	copy_from_page(page, offset, insn, nbytes);
 808	put_page(page);
 809
 810	return 0;
 811}
 812
 813static int copy_insn(struct uprobe *uprobe, struct file *filp)
 814{
 815	struct address_space *mapping = uprobe->inode->i_mapping;
 816	loff_t offs = uprobe->offset;
 817	void *insn = &uprobe->arch.insn;
 818	int size = sizeof(uprobe->arch.insn);
 819	int len, err = -EIO;
 820
 821	/* Copy only available bytes, -EIO if nothing was read */
 822	do {
 823		if (offs >= i_size_read(uprobe->inode))
 824			break;
 825
 826		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 827		err = __copy_insn(mapping, filp, insn, len, offs);
 828		if (err)
 829			break;
 830
 831		insn += len;
 832		offs += len;
 833		size -= len;
 834	} while (size);
 835
 836	return err;
 837}
 838
 839static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 840				struct mm_struct *mm, unsigned long vaddr)
 841{
 842	int ret = 0;
 843
 844	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 845		return ret;
 846
 847	/* TODO: move this into _register, until then we abuse this sem. */
 848	down_write(&uprobe->consumer_rwsem);
 849	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 850		goto out;
 851
 852	ret = copy_insn(uprobe, file);
 853	if (ret)
 854		goto out;
 855
 856	ret = -ENOTSUPP;
 857	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 858		goto out;
 859
 860	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 861	if (ret)
 862		goto out;
 863
 864	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 
 
 
 
 865	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 866
 867 out:
 868	up_write(&uprobe->consumer_rwsem);
 869
 870	return ret;
 871}
 872
 873static inline bool consumer_filter(struct uprobe_consumer *uc,
 874				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 875{
 876	return !uc->filter || uc->filter(uc, ctx, mm);
 877}
 878
 879static bool filter_chain(struct uprobe *uprobe,
 880			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 881{
 882	struct uprobe_consumer *uc;
 883	bool ret = false;
 884
 885	down_read(&uprobe->consumer_rwsem);
 886	for (uc = uprobe->consumers; uc; uc = uc->next) {
 887		ret = consumer_filter(uc, ctx, mm);
 888		if (ret)
 889			break;
 890	}
 891	up_read(&uprobe->consumer_rwsem);
 892
 893	return ret;
 894}
 895
 896static int
 897install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 898			struct vm_area_struct *vma, unsigned long vaddr)
 899{
 900	bool first_uprobe;
 901	int ret;
 902
 903	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 904	if (ret)
 905		return ret;
 906
 907	/*
 908	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 909	 * the task can hit this breakpoint right after __replace_page().
 910	 */
 911	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 912	if (first_uprobe)
 913		set_bit(MMF_HAS_UPROBES, &mm->flags);
 914
 915	ret = set_swbp(&uprobe->arch, mm, vaddr);
 916	if (!ret)
 917		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 918	else if (first_uprobe)
 919		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 920
 921	return ret;
 922}
 923
 924static int
 925remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 926{
 927	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 928	return set_orig_insn(&uprobe->arch, mm, vaddr);
 929}
 930
 931static inline bool uprobe_is_active(struct uprobe *uprobe)
 932{
 933	return !RB_EMPTY_NODE(&uprobe->rb_node);
 934}
 935/*
 936 * There could be threads that have already hit the breakpoint. They
 937 * will recheck the current insn and restart if find_uprobe() fails.
 938 * See find_active_uprobe().
 939 */
 940static void delete_uprobe(struct uprobe *uprobe)
 941{
 942	if (WARN_ON(!uprobe_is_active(uprobe)))
 943		return;
 944
 945	spin_lock(&uprobes_treelock);
 946	rb_erase(&uprobe->rb_node, &uprobes_tree);
 947	spin_unlock(&uprobes_treelock);
 948	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 
 949	put_uprobe(uprobe);
 950}
 951
 952struct map_info {
 953	struct map_info *next;
 954	struct mm_struct *mm;
 955	unsigned long vaddr;
 956};
 957
 958static inline struct map_info *free_map_info(struct map_info *info)
 959{
 960	struct map_info *next = info->next;
 961	kfree(info);
 962	return next;
 963}
 964
 965static struct map_info *
 966build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 967{
 968	unsigned long pgoff = offset >> PAGE_SHIFT;
 969	struct vm_area_struct *vma;
 970	struct map_info *curr = NULL;
 971	struct map_info *prev = NULL;
 972	struct map_info *info;
 973	int more = 0;
 974
 975 again:
 976	i_mmap_lock_read(mapping);
 977	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 978		if (!valid_vma(vma, is_register))
 979			continue;
 980
 981		if (!prev && !more) {
 982			/*
 983			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 984			 * reclaim. This is optimistic, no harm done if it fails.
 985			 */
 986			prev = kmalloc(sizeof(struct map_info),
 987					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 988			if (prev)
 989				prev->next = NULL;
 990		}
 991		if (!prev) {
 992			more++;
 993			continue;
 994		}
 995
 996		if (!mmget_not_zero(vma->vm_mm))
 997			continue;
 998
 999		info = prev;
1000		prev = prev->next;
1001		info->next = curr;
1002		curr = info;
1003
1004		info->mm = vma->vm_mm;
1005		info->vaddr = offset_to_vaddr(vma, offset);
1006	}
1007	i_mmap_unlock_read(mapping);
1008
1009	if (!more)
1010		goto out;
1011
1012	prev = curr;
1013	while (curr) {
1014		mmput(curr->mm);
1015		curr = curr->next;
1016	}
1017
1018	do {
1019		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1020		if (!info) {
1021			curr = ERR_PTR(-ENOMEM);
1022			goto out;
1023		}
1024		info->next = prev;
1025		prev = info;
1026	} while (--more);
1027
1028	goto again;
1029 out:
1030	while (prev)
1031		prev = free_map_info(prev);
1032	return curr;
1033}
1034
1035static int
1036register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1037{
1038	bool is_register = !!new;
1039	struct map_info *info;
1040	int err = 0;
1041
1042	percpu_down_write(&dup_mmap_sem);
1043	info = build_map_info(uprobe->inode->i_mapping,
1044					uprobe->offset, is_register);
1045	if (IS_ERR(info)) {
1046		err = PTR_ERR(info);
1047		goto out;
1048	}
1049
1050	while (info) {
1051		struct mm_struct *mm = info->mm;
1052		struct vm_area_struct *vma;
1053
1054		if (err && is_register)
1055			goto free;
1056
1057		mmap_write_lock(mm);
1058		vma = find_vma(mm, info->vaddr);
1059		if (!vma || !valid_vma(vma, is_register) ||
1060		    file_inode(vma->vm_file) != uprobe->inode)
1061			goto unlock;
1062
1063		if (vma->vm_start > info->vaddr ||
1064		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1065			goto unlock;
1066
1067		if (is_register) {
1068			/* consult only the "caller", new consumer. */
1069			if (consumer_filter(new,
1070					UPROBE_FILTER_REGISTER, mm))
1071				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1072		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1073			if (!filter_chain(uprobe,
1074					UPROBE_FILTER_UNREGISTER, mm))
1075				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1076		}
1077
1078 unlock:
1079		mmap_write_unlock(mm);
1080 free:
1081		mmput(mm);
1082		info = free_map_info(info);
1083	}
1084 out:
1085	percpu_up_write(&dup_mmap_sem);
1086	return err;
1087}
1088
1089static void
1090__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 
 
 
 
 
1091{
1092	int err;
1093
1094	if (WARN_ON(!consumer_del(uprobe, uc)))
1095		return;
1096
1097	err = register_for_each_vma(uprobe, NULL);
1098	/* TODO : cant unregister? schedule a worker thread */
1099	if (!uprobe->consumers && !err)
1100		delete_uprobe(uprobe);
1101}
1102
1103/*
1104 * uprobe_unregister - unregister an already registered probe.
1105 * @inode: the file in which the probe has to be removed.
1106 * @offset: offset from the start of the file.
1107 * @uc: identify which probe if multiple probes are colocated.
1108 */
1109void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1110{
1111	struct uprobe *uprobe;
1112
1113	uprobe = find_uprobe(inode, offset);
1114	if (WARN_ON(!uprobe))
1115		return;
1116
1117	down_write(&uprobe->register_rwsem);
1118	__uprobe_unregister(uprobe, uc);
1119	up_write(&uprobe->register_rwsem);
1120	put_uprobe(uprobe);
1121}
1122EXPORT_SYMBOL_GPL(uprobe_unregister);
1123
1124/*
1125 * __uprobe_register - register a probe
1126 * @inode: the file in which the probe has to be placed.
1127 * @offset: offset from the start of the file.
1128 * @uc: information on howto handle the probe..
1129 *
1130 * Apart from the access refcount, __uprobe_register() takes a creation
1131 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1132 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1133 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1134 * @uprobe even before the register operation is complete. Creation
1135 * refcount is released when the last @uc for the @uprobe
1136 * unregisters. Caller of __uprobe_register() is required to keep @inode
1137 * (and the containing mount) referenced.
1138 *
1139 * Return errno if it cannot successully install probes
1140 * else return 0 (success)
1141 */
1142static int __uprobe_register(struct inode *inode, loff_t offset,
1143			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1144{
1145	struct uprobe *uprobe;
1146	int ret;
1147
1148	/* Uprobe must have at least one set consumer */
1149	if (!uc->handler && !uc->ret_handler)
1150		return -EINVAL;
1151
1152	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1153	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1154		return -EIO;
1155	/* Racy, just to catch the obvious mistakes */
1156	if (offset > i_size_read(inode))
1157		return -EINVAL;
1158
1159	/*
1160	 * This ensures that copy_from_page(), copy_to_page() and
1161	 * __update_ref_ctr() can't cross page boundary.
1162	 */
1163	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1164		return -EINVAL;
1165	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1166		return -EINVAL;
1167
1168 retry:
1169	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1170	if (!uprobe)
1171		return -ENOMEM;
1172	if (IS_ERR(uprobe))
1173		return PTR_ERR(uprobe);
1174
1175	/*
1176	 * We can race with uprobe_unregister()->delete_uprobe().
1177	 * Check uprobe_is_active() and retry if it is false.
1178	 */
1179	down_write(&uprobe->register_rwsem);
1180	ret = -EAGAIN;
1181	if (likely(uprobe_is_active(uprobe))) {
1182		consumer_add(uprobe, uc);
1183		ret = register_for_each_vma(uprobe, uc);
1184		if (ret)
1185			__uprobe_unregister(uprobe, uc);
1186	}
1187	up_write(&uprobe->register_rwsem);
1188	put_uprobe(uprobe);
1189
1190	if (unlikely(ret == -EAGAIN))
1191		goto retry;
1192	return ret;
1193}
1194
1195int uprobe_register(struct inode *inode, loff_t offset,
1196		    struct uprobe_consumer *uc)
1197{
1198	return __uprobe_register(inode, offset, 0, uc);
1199}
1200EXPORT_SYMBOL_GPL(uprobe_register);
1201
1202int uprobe_register_refctr(struct inode *inode, loff_t offset,
1203			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1204{
1205	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1206}
1207EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1208
1209/*
1210 * uprobe_apply - unregister an already registered probe.
1211 * @inode: the file in which the probe has to be removed.
1212 * @offset: offset from the start of the file.
1213 * @uc: consumer which wants to add more or remove some breakpoints
1214 * @add: add or remove the breakpoints
1215 */
1216int uprobe_apply(struct inode *inode, loff_t offset,
1217			struct uprobe_consumer *uc, bool add)
1218{
1219	struct uprobe *uprobe;
1220	struct uprobe_consumer *con;
1221	int ret = -ENOENT;
1222
1223	uprobe = find_uprobe(inode, offset);
1224	if (WARN_ON(!uprobe))
1225		return ret;
1226
1227	down_write(&uprobe->register_rwsem);
1228	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1229		;
1230	if (con)
1231		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1232	up_write(&uprobe->register_rwsem);
1233	put_uprobe(uprobe);
1234
1235	return ret;
1236}
1237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1239{
1240	struct vm_area_struct *vma;
1241	int err = 0;
1242
1243	mmap_read_lock(mm);
1244	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1245		unsigned long vaddr;
1246		loff_t offset;
1247
1248		if (!valid_vma(vma, false) ||
1249		    file_inode(vma->vm_file) != uprobe->inode)
1250			continue;
1251
1252		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253		if (uprobe->offset <  offset ||
1254		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255			continue;
1256
1257		vaddr = offset_to_vaddr(vma, uprobe->offset);
1258		err |= remove_breakpoint(uprobe, mm, vaddr);
1259	}
1260	mmap_read_unlock(mm);
1261
1262	return err;
1263}
1264
1265static struct rb_node *
1266find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267{
1268	struct rb_node *n = uprobes_tree.rb_node;
1269
1270	while (n) {
1271		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272
1273		if (inode < u->inode) {
1274			n = n->rb_left;
1275		} else if (inode > u->inode) {
1276			n = n->rb_right;
1277		} else {
1278			if (max < u->offset)
1279				n = n->rb_left;
1280			else if (min > u->offset)
1281				n = n->rb_right;
1282			else
1283				break;
1284		}
1285	}
1286
1287	return n;
1288}
1289
1290/*
1291 * For a given range in vma, build a list of probes that need to be inserted.
1292 */
1293static void build_probe_list(struct inode *inode,
1294				struct vm_area_struct *vma,
1295				unsigned long start, unsigned long end,
1296				struct list_head *head)
1297{
1298	loff_t min, max;
1299	struct rb_node *n, *t;
1300	struct uprobe *u;
1301
1302	INIT_LIST_HEAD(head);
1303	min = vaddr_to_offset(vma, start);
1304	max = min + (end - start) - 1;
1305
1306	spin_lock(&uprobes_treelock);
1307	n = find_node_in_range(inode, min, max);
1308	if (n) {
1309		for (t = n; t; t = rb_prev(t)) {
1310			u = rb_entry(t, struct uprobe, rb_node);
1311			if (u->inode != inode || u->offset < min)
1312				break;
1313			list_add(&u->pending_list, head);
1314			get_uprobe(u);
1315		}
1316		for (t = n; (t = rb_next(t)); ) {
1317			u = rb_entry(t, struct uprobe, rb_node);
1318			if (u->inode != inode || u->offset > max)
1319				break;
1320			list_add(&u->pending_list, head);
1321			get_uprobe(u);
1322		}
1323	}
1324	spin_unlock(&uprobes_treelock);
1325}
1326
1327/* @vma contains reference counter, not the probed instruction. */
1328static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329{
1330	struct list_head *pos, *q;
1331	struct delayed_uprobe *du;
1332	unsigned long vaddr;
1333	int ret = 0, err = 0;
1334
1335	mutex_lock(&delayed_uprobe_lock);
1336	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337		du = list_entry(pos, struct delayed_uprobe, list);
1338
1339		if (du->mm != vma->vm_mm ||
1340		    !valid_ref_ctr_vma(du->uprobe, vma))
1341			continue;
1342
1343		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345		if (ret) {
1346			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347			if (!err)
1348				err = ret;
1349		}
1350		delayed_uprobe_delete(du);
1351	}
1352	mutex_unlock(&delayed_uprobe_lock);
1353	return err;
1354}
1355
1356/*
1357 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1358 *
1359 * Currently we ignore all errors and always return 0, the callers
1360 * can't handle the failure anyway.
1361 */
1362int uprobe_mmap(struct vm_area_struct *vma)
1363{
1364	struct list_head tmp_list;
1365	struct uprobe *uprobe, *u;
1366	struct inode *inode;
1367
1368	if (no_uprobe_events())
1369		return 0;
1370
1371	if (vma->vm_file &&
1372	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374		delayed_ref_ctr_inc(vma);
1375
1376	if (!valid_vma(vma, true))
1377		return 0;
1378
1379	inode = file_inode(vma->vm_file);
1380	if (!inode)
1381		return 0;
1382
1383	mutex_lock(uprobes_mmap_hash(inode));
1384	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385	/*
1386	 * We can race with uprobe_unregister(), this uprobe can be already
1387	 * removed. But in this case filter_chain() must return false, all
1388	 * consumers have gone away.
1389	 */
1390	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391		if (!fatal_signal_pending(current) &&
1392		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395		}
1396		put_uprobe(uprobe);
1397	}
1398	mutex_unlock(uprobes_mmap_hash(inode));
1399
1400	return 0;
1401}
1402
1403static bool
1404vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405{
1406	loff_t min, max;
1407	struct inode *inode;
1408	struct rb_node *n;
1409
1410	inode = file_inode(vma->vm_file);
1411
1412	min = vaddr_to_offset(vma, start);
1413	max = min + (end - start) - 1;
1414
1415	spin_lock(&uprobes_treelock);
1416	n = find_node_in_range(inode, min, max);
1417	spin_unlock(&uprobes_treelock);
1418
1419	return !!n;
1420}
1421
1422/*
1423 * Called in context of a munmap of a vma.
1424 */
1425void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426{
1427	if (no_uprobe_events() || !valid_vma(vma, false))
1428		return;
1429
1430	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431		return;
1432
1433	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435		return;
1436
1437	if (vma_has_uprobes(vma, start, end))
1438		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439}
1440
1441/* Slot allocation for XOL */
1442static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443{
1444	struct vm_area_struct *vma;
1445	int ret;
1446
1447	if (mmap_write_lock_killable(mm))
1448		return -EINTR;
1449
1450	if (mm->uprobes_state.xol_area) {
1451		ret = -EALREADY;
1452		goto fail;
1453	}
1454
1455	if (!area->vaddr) {
1456		/* Try to map as high as possible, this is only a hint. */
1457		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458						PAGE_SIZE, 0, 0);
1459		if (IS_ERR_VALUE(area->vaddr)) {
1460			ret = area->vaddr;
1461			goto fail;
1462		}
1463	}
1464
1465	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467				&area->xol_mapping);
1468	if (IS_ERR(vma)) {
1469		ret = PTR_ERR(vma);
1470		goto fail;
1471	}
1472
1473	ret = 0;
1474	/* pairs with get_xol_area() */
1475	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476 fail:
1477	mmap_write_unlock(mm);
1478
1479	return ret;
1480}
1481
1482static struct xol_area *__create_xol_area(unsigned long vaddr)
1483{
1484	struct mm_struct *mm = current->mm;
1485	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486	struct xol_area *area;
1487
1488	area = kmalloc(sizeof(*area), GFP_KERNEL);
1489	if (unlikely(!area))
1490		goto out;
1491
1492	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493			       GFP_KERNEL);
1494	if (!area->bitmap)
1495		goto free_area;
1496
1497	area->xol_mapping.name = "[uprobes]";
1498	area->xol_mapping.fault = NULL;
1499	area->xol_mapping.pages = area->pages;
1500	area->pages[0] = alloc_page(GFP_HIGHUSER);
1501	if (!area->pages[0])
1502		goto free_bitmap;
1503	area->pages[1] = NULL;
1504
1505	area->vaddr = vaddr;
1506	init_waitqueue_head(&area->wq);
1507	/* Reserve the 1st slot for get_trampoline_vaddr() */
1508	set_bit(0, area->bitmap);
1509	atomic_set(&area->slot_count, 1);
1510	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1511
1512	if (!xol_add_vma(mm, area))
1513		return area;
1514
1515	__free_page(area->pages[0]);
1516 free_bitmap:
1517	kfree(area->bitmap);
1518 free_area:
1519	kfree(area);
1520 out:
1521	return NULL;
1522}
1523
1524/*
1525 * get_xol_area - Allocate process's xol_area if necessary.
1526 * This area will be used for storing instructions for execution out of line.
1527 *
1528 * Returns the allocated area or NULL.
1529 */
1530static struct xol_area *get_xol_area(void)
1531{
1532	struct mm_struct *mm = current->mm;
1533	struct xol_area *area;
1534
1535	if (!mm->uprobes_state.xol_area)
1536		__create_xol_area(0);
1537
1538	/* Pairs with xol_add_vma() smp_store_release() */
1539	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1540	return area;
1541}
1542
1543/*
1544 * uprobe_clear_state - Free the area allocated for slots.
1545 */
1546void uprobe_clear_state(struct mm_struct *mm)
1547{
1548	struct xol_area *area = mm->uprobes_state.xol_area;
1549
1550	mutex_lock(&delayed_uprobe_lock);
1551	delayed_uprobe_remove(NULL, mm);
1552	mutex_unlock(&delayed_uprobe_lock);
1553
1554	if (!area)
1555		return;
1556
1557	put_page(area->pages[0]);
1558	kfree(area->bitmap);
1559	kfree(area);
1560}
1561
1562void uprobe_start_dup_mmap(void)
1563{
1564	percpu_down_read(&dup_mmap_sem);
1565}
1566
1567void uprobe_end_dup_mmap(void)
1568{
1569	percpu_up_read(&dup_mmap_sem);
1570}
1571
1572void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1573{
 
 
1574	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1575		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1576		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1577		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1578	}
1579}
1580
1581/*
1582 *  - search for a free slot.
1583 */
1584static unsigned long xol_take_insn_slot(struct xol_area *area)
1585{
1586	unsigned long slot_addr;
1587	int slot_nr;
1588
1589	do {
1590		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1591		if (slot_nr < UINSNS_PER_PAGE) {
1592			if (!test_and_set_bit(slot_nr, area->bitmap))
1593				break;
1594
1595			slot_nr = UINSNS_PER_PAGE;
1596			continue;
1597		}
1598		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1599	} while (slot_nr >= UINSNS_PER_PAGE);
1600
1601	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1602	atomic_inc(&area->slot_count);
1603
1604	return slot_addr;
1605}
1606
1607/*
1608 * xol_get_insn_slot - allocate a slot for xol.
1609 * Returns the allocated slot address or 0.
1610 */
1611static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1612{
1613	struct xol_area *area;
1614	unsigned long xol_vaddr;
1615
1616	area = get_xol_area();
1617	if (!area)
1618		return 0;
1619
1620	xol_vaddr = xol_take_insn_slot(area);
1621	if (unlikely(!xol_vaddr))
1622		return 0;
1623
1624	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1625			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1626
1627	return xol_vaddr;
1628}
1629
1630/*
1631 * xol_free_insn_slot - If slot was earlier allocated by
1632 * @xol_get_insn_slot(), make the slot available for
1633 * subsequent requests.
1634 */
1635static void xol_free_insn_slot(struct task_struct *tsk)
1636{
1637	struct xol_area *area;
1638	unsigned long vma_end;
1639	unsigned long slot_addr;
1640
1641	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1642		return;
1643
1644	slot_addr = tsk->utask->xol_vaddr;
1645	if (unlikely(!slot_addr))
1646		return;
1647
1648	area = tsk->mm->uprobes_state.xol_area;
1649	vma_end = area->vaddr + PAGE_SIZE;
1650	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1651		unsigned long offset;
1652		int slot_nr;
1653
1654		offset = slot_addr - area->vaddr;
1655		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1656		if (slot_nr >= UINSNS_PER_PAGE)
1657			return;
1658
1659		clear_bit(slot_nr, area->bitmap);
1660		atomic_dec(&area->slot_count);
1661		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1662		if (waitqueue_active(&area->wq))
1663			wake_up(&area->wq);
1664
1665		tsk->utask->xol_vaddr = 0;
1666	}
1667}
1668
1669void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1670				  void *src, unsigned long len)
1671{
1672	/* Initialize the slot */
1673	copy_to_page(page, vaddr, src, len);
1674
1675	/*
1676	 * We probably need flush_icache_user_page() but it needs vma.
1677	 * This should work on most of architectures by default. If
1678	 * architecture needs to do something different it can define
1679	 * its own version of the function.
1680	 */
1681	flush_dcache_page(page);
1682}
1683
1684/**
1685 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1686 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1687 * instruction.
1688 * Return the address of the breakpoint instruction.
1689 */
1690unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1691{
1692	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1693}
1694
1695unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1696{
1697	struct uprobe_task *utask = current->utask;
1698
1699	if (unlikely(utask && utask->active_uprobe))
1700		return utask->vaddr;
1701
1702	return instruction_pointer(regs);
1703}
1704
1705static struct return_instance *free_ret_instance(struct return_instance *ri)
1706{
1707	struct return_instance *next = ri->next;
1708	put_uprobe(ri->uprobe);
1709	kfree(ri);
1710	return next;
1711}
1712
1713/*
1714 * Called with no locks held.
1715 * Called in context of an exiting or an exec-ing thread.
1716 */
1717void uprobe_free_utask(struct task_struct *t)
1718{
1719	struct uprobe_task *utask = t->utask;
1720	struct return_instance *ri;
1721
1722	if (!utask)
1723		return;
1724
1725	if (utask->active_uprobe)
1726		put_uprobe(utask->active_uprobe);
1727
1728	ri = utask->return_instances;
1729	while (ri)
1730		ri = free_ret_instance(ri);
1731
1732	xol_free_insn_slot(t);
1733	kfree(utask);
1734	t->utask = NULL;
1735}
1736
1737/*
1738 * Allocate a uprobe_task object for the task if if necessary.
1739 * Called when the thread hits a breakpoint.
1740 *
1741 * Returns:
1742 * - pointer to new uprobe_task on success
1743 * - NULL otherwise
1744 */
1745static struct uprobe_task *get_utask(void)
1746{
1747	if (!current->utask)
1748		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1749	return current->utask;
1750}
1751
1752static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1753{
1754	struct uprobe_task *n_utask;
1755	struct return_instance **p, *o, *n;
1756
1757	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1758	if (!n_utask)
1759		return -ENOMEM;
1760	t->utask = n_utask;
1761
1762	p = &n_utask->return_instances;
1763	for (o = o_utask->return_instances; o; o = o->next) {
1764		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1765		if (!n)
1766			return -ENOMEM;
1767
1768		*n = *o;
1769		get_uprobe(n->uprobe);
1770		n->next = NULL;
1771
1772		*p = n;
1773		p = &n->next;
1774		n_utask->depth++;
1775	}
1776
1777	return 0;
1778}
1779
1780static void uprobe_warn(struct task_struct *t, const char *msg)
1781{
1782	pr_warn("uprobe: %s:%d failed to %s\n",
1783			current->comm, current->pid, msg);
1784}
1785
1786static void dup_xol_work(struct callback_head *work)
1787{
1788	if (current->flags & PF_EXITING)
1789		return;
1790
1791	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1792			!fatal_signal_pending(current))
1793		uprobe_warn(current, "dup xol area");
1794}
1795
1796/*
1797 * Called in context of a new clone/fork from copy_process.
1798 */
1799void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1800{
1801	struct uprobe_task *utask = current->utask;
1802	struct mm_struct *mm = current->mm;
1803	struct xol_area *area;
1804
1805	t->utask = NULL;
1806
1807	if (!utask || !utask->return_instances)
1808		return;
1809
1810	if (mm == t->mm && !(flags & CLONE_VFORK))
1811		return;
1812
1813	if (dup_utask(t, utask))
1814		return uprobe_warn(t, "dup ret instances");
1815
1816	/* The task can fork() after dup_xol_work() fails */
1817	area = mm->uprobes_state.xol_area;
1818	if (!area)
1819		return uprobe_warn(t, "dup xol area");
1820
1821	if (mm == t->mm)
1822		return;
1823
1824	t->utask->dup_xol_addr = area->vaddr;
1825	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1826	task_work_add(t, &t->utask->dup_xol_work, true);
1827}
1828
1829/*
1830 * Current area->vaddr notion assume the trampoline address is always
1831 * equal area->vaddr.
1832 *
1833 * Returns -1 in case the xol_area is not allocated.
1834 */
1835static unsigned long get_trampoline_vaddr(void)
1836{
1837	struct xol_area *area;
1838	unsigned long trampoline_vaddr = -1;
1839
1840	/* Pairs with xol_add_vma() smp_store_release() */
1841	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1842	if (area)
1843		trampoline_vaddr = area->vaddr;
1844
1845	return trampoline_vaddr;
1846}
1847
1848static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1849					struct pt_regs *regs)
1850{
1851	struct return_instance *ri = utask->return_instances;
1852	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1853
1854	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1855		ri = free_ret_instance(ri);
1856		utask->depth--;
1857	}
1858	utask->return_instances = ri;
1859}
1860
1861static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1862{
1863	struct return_instance *ri;
1864	struct uprobe_task *utask;
1865	unsigned long orig_ret_vaddr, trampoline_vaddr;
1866	bool chained;
1867
1868	if (!get_xol_area())
1869		return;
1870
1871	utask = get_utask();
1872	if (!utask)
1873		return;
1874
1875	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1876		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1877				" nestedness limit pid/tgid=%d/%d\n",
1878				current->pid, current->tgid);
1879		return;
1880	}
1881
1882	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1883	if (!ri)
1884		return;
1885
1886	trampoline_vaddr = get_trampoline_vaddr();
1887	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1888	if (orig_ret_vaddr == -1)
1889		goto fail;
1890
1891	/* drop the entries invalidated by longjmp() */
1892	chained = (orig_ret_vaddr == trampoline_vaddr);
1893	cleanup_return_instances(utask, chained, regs);
1894
1895	/*
1896	 * We don't want to keep trampoline address in stack, rather keep the
1897	 * original return address of first caller thru all the consequent
1898	 * instances. This also makes breakpoint unwrapping easier.
1899	 */
1900	if (chained) {
1901		if (!utask->return_instances) {
1902			/*
1903			 * This situation is not possible. Likely we have an
1904			 * attack from user-space.
1905			 */
1906			uprobe_warn(current, "handle tail call");
1907			goto fail;
1908		}
1909		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1910	}
1911
1912	ri->uprobe = get_uprobe(uprobe);
1913	ri->func = instruction_pointer(regs);
1914	ri->stack = user_stack_pointer(regs);
1915	ri->orig_ret_vaddr = orig_ret_vaddr;
1916	ri->chained = chained;
1917
1918	utask->depth++;
1919	ri->next = utask->return_instances;
1920	utask->return_instances = ri;
1921
1922	return;
1923 fail:
1924	kfree(ri);
1925}
1926
1927/* Prepare to single-step probed instruction out of line. */
1928static int
1929pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1930{
1931	struct uprobe_task *utask;
1932	unsigned long xol_vaddr;
1933	int err;
1934
1935	utask = get_utask();
1936	if (!utask)
1937		return -ENOMEM;
1938
1939	xol_vaddr = xol_get_insn_slot(uprobe);
1940	if (!xol_vaddr)
1941		return -ENOMEM;
1942
1943	utask->xol_vaddr = xol_vaddr;
1944	utask->vaddr = bp_vaddr;
1945
1946	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1947	if (unlikely(err)) {
1948		xol_free_insn_slot(current);
1949		return err;
1950	}
1951
1952	utask->active_uprobe = uprobe;
1953	utask->state = UTASK_SSTEP;
1954	return 0;
1955}
1956
1957/*
1958 * If we are singlestepping, then ensure this thread is not connected to
1959 * non-fatal signals until completion of singlestep.  When xol insn itself
1960 * triggers the signal,  restart the original insn even if the task is
1961 * already SIGKILL'ed (since coredump should report the correct ip).  This
1962 * is even more important if the task has a handler for SIGSEGV/etc, The
1963 * _same_ instruction should be repeated again after return from the signal
1964 * handler, and SSTEP can never finish in this case.
1965 */
1966bool uprobe_deny_signal(void)
1967{
1968	struct task_struct *t = current;
1969	struct uprobe_task *utask = t->utask;
1970
1971	if (likely(!utask || !utask->active_uprobe))
1972		return false;
1973
1974	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1975
1976	if (signal_pending(t)) {
1977		spin_lock_irq(&t->sighand->siglock);
1978		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1979		spin_unlock_irq(&t->sighand->siglock);
1980
1981		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1982			utask->state = UTASK_SSTEP_TRAPPED;
1983			set_tsk_thread_flag(t, TIF_UPROBE);
1984		}
1985	}
1986
1987	return true;
1988}
1989
1990static void mmf_recalc_uprobes(struct mm_struct *mm)
1991{
1992	struct vm_area_struct *vma;
1993
1994	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1995		if (!valid_vma(vma, false))
1996			continue;
1997		/*
1998		 * This is not strictly accurate, we can race with
1999		 * uprobe_unregister() and see the already removed
2000		 * uprobe if delete_uprobe() was not yet called.
2001		 * Or this uprobe can be filtered out.
2002		 */
2003		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004			return;
2005	}
2006
2007	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008}
2009
2010static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011{
2012	struct page *page;
2013	uprobe_opcode_t opcode;
2014	int result;
2015
2016	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017		return -EINVAL;
2018
2019	pagefault_disable();
2020	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021	pagefault_enable();
2022
2023	if (likely(result == 0))
2024		goto out;
2025
2026	/*
2027	 * The NULL 'tsk' here ensures that any faults that occur here
2028	 * will not be accounted to the task.  'mm' *is* current->mm,
2029	 * but we treat this as a 'remote' access since it is
2030	 * essentially a kernel access to the memory.
2031	 */
2032	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2033			NULL, NULL);
2034	if (result < 0)
2035		return result;
2036
2037	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2038	put_page(page);
2039 out:
2040	/* This needs to return true for any variant of the trap insn */
2041	return is_trap_insn(&opcode);
2042}
2043
2044static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2045{
2046	struct mm_struct *mm = current->mm;
2047	struct uprobe *uprobe = NULL;
2048	struct vm_area_struct *vma;
2049
2050	mmap_read_lock(mm);
2051	vma = find_vma(mm, bp_vaddr);
2052	if (vma && vma->vm_start <= bp_vaddr) {
2053		if (valid_vma(vma, false)) {
2054			struct inode *inode = file_inode(vma->vm_file);
2055			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2056
2057			uprobe = find_uprobe(inode, offset);
2058		}
2059
2060		if (!uprobe)
2061			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2062	} else {
2063		*is_swbp = -EFAULT;
2064	}
2065
2066	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2067		mmf_recalc_uprobes(mm);
2068	mmap_read_unlock(mm);
2069
2070	return uprobe;
2071}
2072
2073static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2074{
2075	struct uprobe_consumer *uc;
2076	int remove = UPROBE_HANDLER_REMOVE;
2077	bool need_prep = false; /* prepare return uprobe, when needed */
2078
2079	down_read(&uprobe->register_rwsem);
2080	for (uc = uprobe->consumers; uc; uc = uc->next) {
2081		int rc = 0;
2082
2083		if (uc->handler) {
2084			rc = uc->handler(uc, regs);
2085			WARN(rc & ~UPROBE_HANDLER_MASK,
2086				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2087		}
2088
2089		if (uc->ret_handler)
2090			need_prep = true;
2091
2092		remove &= rc;
2093	}
2094
2095	if (need_prep && !remove)
2096		prepare_uretprobe(uprobe, regs); /* put bp at return */
2097
2098	if (remove && uprobe->consumers) {
2099		WARN_ON(!uprobe_is_active(uprobe));
2100		unapply_uprobe(uprobe, current->mm);
2101	}
2102	up_read(&uprobe->register_rwsem);
2103}
2104
2105static void
2106handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2107{
2108	struct uprobe *uprobe = ri->uprobe;
2109	struct uprobe_consumer *uc;
2110
2111	down_read(&uprobe->register_rwsem);
2112	for (uc = uprobe->consumers; uc; uc = uc->next) {
2113		if (uc->ret_handler)
2114			uc->ret_handler(uc, ri->func, regs);
2115	}
2116	up_read(&uprobe->register_rwsem);
2117}
2118
2119static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2120{
2121	bool chained;
2122
2123	do {
2124		chained = ri->chained;
2125		ri = ri->next;	/* can't be NULL if chained */
2126	} while (chained);
2127
2128	return ri;
2129}
2130
2131static void handle_trampoline(struct pt_regs *regs)
2132{
2133	struct uprobe_task *utask;
2134	struct return_instance *ri, *next;
2135	bool valid;
2136
2137	utask = current->utask;
2138	if (!utask)
2139		goto sigill;
2140
2141	ri = utask->return_instances;
2142	if (!ri)
2143		goto sigill;
2144
2145	do {
2146		/*
2147		 * We should throw out the frames invalidated by longjmp().
2148		 * If this chain is valid, then the next one should be alive
2149		 * or NULL; the latter case means that nobody but ri->func
2150		 * could hit this trampoline on return. TODO: sigaltstack().
2151		 */
2152		next = find_next_ret_chain(ri);
2153		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2154
2155		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2156		do {
2157			if (valid)
2158				handle_uretprobe_chain(ri, regs);
2159			ri = free_ret_instance(ri);
2160			utask->depth--;
2161		} while (ri != next);
2162	} while (!valid);
2163
2164	utask->return_instances = ri;
2165	return;
2166
2167 sigill:
2168	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2169	force_sig(SIGILL);
2170
2171}
2172
2173bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2174{
2175	return false;
2176}
2177
2178bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2179					struct pt_regs *regs)
2180{
2181	return true;
2182}
2183
2184/*
2185 * Run handler and ask thread to singlestep.
2186 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2187 */
2188static void handle_swbp(struct pt_regs *regs)
2189{
2190	struct uprobe *uprobe;
2191	unsigned long bp_vaddr;
2192	int is_swbp;
2193
2194	bp_vaddr = uprobe_get_swbp_addr(regs);
2195	if (bp_vaddr == get_trampoline_vaddr())
2196		return handle_trampoline(regs);
2197
2198	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2199	if (!uprobe) {
2200		if (is_swbp > 0) {
2201			/* No matching uprobe; signal SIGTRAP. */
2202			force_sig(SIGTRAP);
2203		} else {
2204			/*
2205			 * Either we raced with uprobe_unregister() or we can't
2206			 * access this memory. The latter is only possible if
2207			 * another thread plays with our ->mm. In both cases
2208			 * we can simply restart. If this vma was unmapped we
2209			 * can pretend this insn was not executed yet and get
2210			 * the (correct) SIGSEGV after restart.
2211			 */
2212			instruction_pointer_set(regs, bp_vaddr);
2213		}
2214		return;
2215	}
2216
2217	/* change it in advance for ->handler() and restart */
2218	instruction_pointer_set(regs, bp_vaddr);
2219
2220	/*
2221	 * TODO: move copy_insn/etc into _register and remove this hack.
2222	 * After we hit the bp, _unregister + _register can install the
2223	 * new and not-yet-analyzed uprobe at the same address, restart.
2224	 */
 
2225	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2226		goto out;
2227
2228	/*
2229	 * Pairs with the smp_wmb() in prepare_uprobe().
2230	 *
2231	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2232	 * we must also see the stores to &uprobe->arch performed by the
2233	 * prepare_uprobe() call.
2234	 */
2235	smp_rmb();
2236
2237	/* Tracing handlers use ->utask to communicate with fetch methods */
2238	if (!get_utask())
2239		goto out;
2240
2241	if (arch_uprobe_ignore(&uprobe->arch, regs))
2242		goto out;
2243
2244	handler_chain(uprobe, regs);
2245
2246	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2247		goto out;
2248
2249	if (!pre_ssout(uprobe, regs, bp_vaddr))
2250		return;
2251
2252	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2253out:
2254	put_uprobe(uprobe);
2255}
2256
2257/*
2258 * Perform required fix-ups and disable singlestep.
2259 * Allow pending signals to take effect.
2260 */
2261static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2262{
2263	struct uprobe *uprobe;
2264	int err = 0;
2265
2266	uprobe = utask->active_uprobe;
2267	if (utask->state == UTASK_SSTEP_ACK)
2268		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2269	else if (utask->state == UTASK_SSTEP_TRAPPED)
2270		arch_uprobe_abort_xol(&uprobe->arch, regs);
2271	else
2272		WARN_ON_ONCE(1);
2273
2274	put_uprobe(uprobe);
2275	utask->active_uprobe = NULL;
2276	utask->state = UTASK_RUNNING;
2277	xol_free_insn_slot(current);
2278
2279	spin_lock_irq(&current->sighand->siglock);
2280	recalc_sigpending(); /* see uprobe_deny_signal() */
2281	spin_unlock_irq(&current->sighand->siglock);
2282
2283	if (unlikely(err)) {
2284		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2285		force_sig(SIGILL);
2286	}
2287}
2288
2289/*
2290 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2291 * allows the thread to return from interrupt. After that handle_swbp()
2292 * sets utask->active_uprobe.
2293 *
2294 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2295 * and allows the thread to return from interrupt.
2296 *
2297 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2298 * uprobe_notify_resume().
2299 */
2300void uprobe_notify_resume(struct pt_regs *regs)
2301{
2302	struct uprobe_task *utask;
2303
2304	clear_thread_flag(TIF_UPROBE);
2305
2306	utask = current->utask;
2307	if (utask && utask->active_uprobe)
2308		handle_singlestep(utask, regs);
2309	else
2310		handle_swbp(regs);
2311}
2312
2313/*
2314 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2315 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2316 */
2317int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2318{
2319	if (!current->mm)
2320		return 0;
2321
2322	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2323	    (!current->utask || !current->utask->return_instances))
2324		return 0;
2325
2326	set_thread_flag(TIF_UPROBE);
2327	return 1;
2328}
2329
2330/*
2331 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2332 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2333 */
2334int uprobe_post_sstep_notifier(struct pt_regs *regs)
2335{
2336	struct uprobe_task *utask = current->utask;
2337
2338	if (!current->mm || !utask || !utask->active_uprobe)
2339		/* task is currently not uprobed */
2340		return 0;
2341
2342	utask->state = UTASK_SSTEP_ACK;
2343	set_thread_flag(TIF_UPROBE);
2344	return 1;
2345}
2346
2347static struct notifier_block uprobe_exception_nb = {
2348	.notifier_call		= arch_uprobe_exception_notify,
2349	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2350};
2351
2352void __init uprobes_init(void)
2353{
2354	int i;
2355
2356	for (i = 0; i < UPROBES_HASH_SZ; i++)
2357		mutex_init(&uprobes_mmap_mutex[i]);
2358
2359	BUG_ON(register_die_notifier(&uprobe_exception_nb));
 
 
 
2360}