Loading...
1/*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/export.h>
31#include <linux/rmap.h> /* anon_vma_prepare */
32#include <linux/mmu_notifier.h> /* set_pte_at_notify */
33#include <linux/swap.h> /* try_to_free_swap */
34#include <linux/ptrace.h> /* user_enable_single_step */
35#include <linux/kdebug.h> /* notifier mechanism */
36#include "../../mm/internal.h" /* munlock_vma_page */
37#include <linux/percpu-rwsem.h>
38#include <linux/task_work.h>
39#include <linux/shmem_fs.h>
40
41#include <linux/uprobes.h>
42
43#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46static struct rb_root uprobes_tree = RB_ROOT;
47/*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55#define UPROBES_HASH_SZ 13
56/* serialize uprobe->pending_list */
57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60static struct percpu_rw_semaphore dup_mmap_sem;
61
62/* Have a copy of original instruction */
63#define UPROBE_COPY_INSN 0
64
65struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87};
88
89/*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111};
112
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129}
130
131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132{
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134}
135
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
152static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *old_page, struct page *new_page)
154{
155 struct mm_struct *mm = vma->vm_mm;
156 spinlock_t *ptl;
157 pte_t *ptep;
158 int err;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
162 struct mem_cgroup *memcg;
163
164 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
165 false);
166 if (err)
167 return err;
168
169 /* For try_to_free_swap() and munlock_vma_page() below */
170 lock_page(old_page);
171
172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 err = -EAGAIN;
174 ptep = page_check_address(old_page, mm, addr, &ptl, 0);
175 if (!ptep) {
176 mem_cgroup_cancel_charge(new_page, memcg, false);
177 goto unlock;
178 }
179
180 get_page(new_page);
181 page_add_new_anon_rmap(new_page, vma, addr, false);
182 mem_cgroup_commit_charge(new_page, memcg, false, false);
183 lru_cache_add_active_or_unevictable(new_page, vma);
184
185 if (!PageAnon(old_page)) {
186 dec_mm_counter(mm, mm_counter_file(old_page));
187 inc_mm_counter(mm, MM_ANONPAGES);
188 }
189
190 flush_cache_page(vma, addr, pte_pfn(*ptep));
191 ptep_clear_flush_notify(vma, addr, ptep);
192 set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
193
194 page_remove_rmap(old_page, false);
195 if (!page_mapped(old_page))
196 try_to_free_swap(old_page);
197 pte_unmap_unlock(ptep, ptl);
198
199 if (vma->vm_flags & VM_LOCKED)
200 munlock_vma_page(old_page);
201 put_page(old_page);
202
203 err = 0;
204 unlock:
205 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206 unlock_page(old_page);
207 return err;
208}
209
210/**
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
215 */
216bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217{
218 return *insn == UPROBE_SWBP_INSN;
219}
220
221/**
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
226 *
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
229 */
230bool __weak is_trap_insn(uprobe_opcode_t *insn)
231{
232 return is_swbp_insn(insn);
233}
234
235static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236{
237 void *kaddr = kmap_atomic(page);
238 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239 kunmap_atomic(kaddr);
240}
241
242static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243{
244 void *kaddr = kmap_atomic(page);
245 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246 kunmap_atomic(kaddr);
247}
248
249static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250{
251 uprobe_opcode_t old_opcode;
252 bool is_swbp;
253
254 /*
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
258 *
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
261 * breakpoint.
262 */
263 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264 is_swbp = is_swbp_insn(&old_opcode);
265
266 if (is_swbp_insn(new_opcode)) {
267 if (is_swbp) /* register: already installed? */
268 return 0;
269 } else {
270 if (!is_swbp) /* unregister: was it changed by us? */
271 return 0;
272 }
273
274 return 1;
275}
276
277/*
278 * NOTE:
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
285 *
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
290 *
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
293 */
294int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295 uprobe_opcode_t opcode)
296{
297 struct page *old_page, *new_page;
298 struct vm_area_struct *vma;
299 int ret;
300
301retry:
302 /* Read the page with vaddr into memory */
303 ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
304 &vma, NULL);
305 if (ret <= 0)
306 return ret;
307
308 ret = verify_opcode(old_page, vaddr, &opcode);
309 if (ret <= 0)
310 goto put_old;
311
312 ret = anon_vma_prepare(vma);
313 if (ret)
314 goto put_old;
315
316 ret = -ENOMEM;
317 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
318 if (!new_page)
319 goto put_old;
320
321 __SetPageUptodate(new_page);
322 copy_highpage(new_page, old_page);
323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325 ret = __replace_page(vma, vaddr, old_page, new_page);
326 put_page(new_page);
327put_old:
328 put_page(old_page);
329
330 if (unlikely(ret == -EAGAIN))
331 goto retry;
332 return ret;
333}
334
335/**
336 * set_swbp - store breakpoint at a given address.
337 * @auprobe: arch specific probepoint information.
338 * @mm: the probed process address space.
339 * @vaddr: the virtual address to insert the opcode.
340 *
341 * For mm @mm, store the breakpoint instruction at @vaddr.
342 * Return 0 (success) or a negative errno.
343 */
344int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
345{
346 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
347}
348
349/**
350 * set_orig_insn - Restore the original instruction.
351 * @mm: the probed process address space.
352 * @auprobe: arch specific probepoint information.
353 * @vaddr: the virtual address to insert the opcode.
354 *
355 * For mm @mm, restore the original opcode (opcode) at @vaddr.
356 * Return 0 (success) or a negative errno.
357 */
358int __weak
359set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
360{
361 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
362}
363
364static struct uprobe *get_uprobe(struct uprobe *uprobe)
365{
366 atomic_inc(&uprobe->ref);
367 return uprobe;
368}
369
370static void put_uprobe(struct uprobe *uprobe)
371{
372 if (atomic_dec_and_test(&uprobe->ref))
373 kfree(uprobe);
374}
375
376static int match_uprobe(struct uprobe *l, struct uprobe *r)
377{
378 if (l->inode < r->inode)
379 return -1;
380
381 if (l->inode > r->inode)
382 return 1;
383
384 if (l->offset < r->offset)
385 return -1;
386
387 if (l->offset > r->offset)
388 return 1;
389
390 return 0;
391}
392
393static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
394{
395 struct uprobe u = { .inode = inode, .offset = offset };
396 struct rb_node *n = uprobes_tree.rb_node;
397 struct uprobe *uprobe;
398 int match;
399
400 while (n) {
401 uprobe = rb_entry(n, struct uprobe, rb_node);
402 match = match_uprobe(&u, uprobe);
403 if (!match)
404 return get_uprobe(uprobe);
405
406 if (match < 0)
407 n = n->rb_left;
408 else
409 n = n->rb_right;
410 }
411 return NULL;
412}
413
414/*
415 * Find a uprobe corresponding to a given inode:offset
416 * Acquires uprobes_treelock
417 */
418static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
419{
420 struct uprobe *uprobe;
421
422 spin_lock(&uprobes_treelock);
423 uprobe = __find_uprobe(inode, offset);
424 spin_unlock(&uprobes_treelock);
425
426 return uprobe;
427}
428
429static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
430{
431 struct rb_node **p = &uprobes_tree.rb_node;
432 struct rb_node *parent = NULL;
433 struct uprobe *u;
434 int match;
435
436 while (*p) {
437 parent = *p;
438 u = rb_entry(parent, struct uprobe, rb_node);
439 match = match_uprobe(uprobe, u);
440 if (!match)
441 return get_uprobe(u);
442
443 if (match < 0)
444 p = &parent->rb_left;
445 else
446 p = &parent->rb_right;
447
448 }
449
450 u = NULL;
451 rb_link_node(&uprobe->rb_node, parent, p);
452 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453 /* get access + creation ref */
454 atomic_set(&uprobe->ref, 2);
455
456 return u;
457}
458
459/*
460 * Acquire uprobes_treelock.
461 * Matching uprobe already exists in rbtree;
462 * increment (access refcount) and return the matching uprobe.
463 *
464 * No matching uprobe; insert the uprobe in rb_tree;
465 * get a double refcount (access + creation) and return NULL.
466 */
467static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468{
469 struct uprobe *u;
470
471 spin_lock(&uprobes_treelock);
472 u = __insert_uprobe(uprobe);
473 spin_unlock(&uprobes_treelock);
474
475 return u;
476}
477
478static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
479{
480 struct uprobe *uprobe, *cur_uprobe;
481
482 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
483 if (!uprobe)
484 return NULL;
485
486 uprobe->inode = igrab(inode);
487 uprobe->offset = offset;
488 init_rwsem(&uprobe->register_rwsem);
489 init_rwsem(&uprobe->consumer_rwsem);
490
491 /* add to uprobes_tree, sorted on inode:offset */
492 cur_uprobe = insert_uprobe(uprobe);
493 /* a uprobe exists for this inode:offset combination */
494 if (cur_uprobe) {
495 kfree(uprobe);
496 uprobe = cur_uprobe;
497 iput(inode);
498 }
499
500 return uprobe;
501}
502
503static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
504{
505 down_write(&uprobe->consumer_rwsem);
506 uc->next = uprobe->consumers;
507 uprobe->consumers = uc;
508 up_write(&uprobe->consumer_rwsem);
509}
510
511/*
512 * For uprobe @uprobe, delete the consumer @uc.
513 * Return true if the @uc is deleted successfully
514 * or return false.
515 */
516static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
517{
518 struct uprobe_consumer **con;
519 bool ret = false;
520
521 down_write(&uprobe->consumer_rwsem);
522 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
523 if (*con == uc) {
524 *con = uc->next;
525 ret = true;
526 break;
527 }
528 }
529 up_write(&uprobe->consumer_rwsem);
530
531 return ret;
532}
533
534static int __copy_insn(struct address_space *mapping, struct file *filp,
535 void *insn, int nbytes, loff_t offset)
536{
537 struct page *page;
538 /*
539 * Ensure that the page that has the original instruction is populated
540 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
541 * see uprobe_register().
542 */
543 if (mapping->a_ops->readpage)
544 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
545 else
546 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
547 if (IS_ERR(page))
548 return PTR_ERR(page);
549
550 copy_from_page(page, offset, insn, nbytes);
551 put_page(page);
552
553 return 0;
554}
555
556static int copy_insn(struct uprobe *uprobe, struct file *filp)
557{
558 struct address_space *mapping = uprobe->inode->i_mapping;
559 loff_t offs = uprobe->offset;
560 void *insn = &uprobe->arch.insn;
561 int size = sizeof(uprobe->arch.insn);
562 int len, err = -EIO;
563
564 /* Copy only available bytes, -EIO if nothing was read */
565 do {
566 if (offs >= i_size_read(uprobe->inode))
567 break;
568
569 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
570 err = __copy_insn(mapping, filp, insn, len, offs);
571 if (err)
572 break;
573
574 insn += len;
575 offs += len;
576 size -= len;
577 } while (size);
578
579 return err;
580}
581
582static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
583 struct mm_struct *mm, unsigned long vaddr)
584{
585 int ret = 0;
586
587 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588 return ret;
589
590 /* TODO: move this into _register, until then we abuse this sem. */
591 down_write(&uprobe->consumer_rwsem);
592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593 goto out;
594
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
598
599 ret = -ENOTSUPP;
600 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
601 goto out;
602
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
606
607 /* uprobe_write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
613
614 out:
615 up_write(&uprobe->consumer_rwsem);
616
617 return ret;
618}
619
620static inline bool consumer_filter(struct uprobe_consumer *uc,
621 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622{
623 return !uc->filter || uc->filter(uc, ctx, mm);
624}
625
626static bool filter_chain(struct uprobe *uprobe,
627 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628{
629 struct uprobe_consumer *uc;
630 bool ret = false;
631
632 down_read(&uprobe->consumer_rwsem);
633 for (uc = uprobe->consumers; uc; uc = uc->next) {
634 ret = consumer_filter(uc, ctx, mm);
635 if (ret)
636 break;
637 }
638 up_read(&uprobe->consumer_rwsem);
639
640 return ret;
641}
642
643static int
644install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
645 struct vm_area_struct *vma, unsigned long vaddr)
646{
647 bool first_uprobe;
648 int ret;
649
650 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
651 if (ret)
652 return ret;
653
654 /*
655 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656 * the task can hit this breakpoint right after __replace_page().
657 */
658 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
659 if (first_uprobe)
660 set_bit(MMF_HAS_UPROBES, &mm->flags);
661
662 ret = set_swbp(&uprobe->arch, mm, vaddr);
663 if (!ret)
664 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
665 else if (first_uprobe)
666 clear_bit(MMF_HAS_UPROBES, &mm->flags);
667
668 return ret;
669}
670
671static int
672remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
673{
674 set_bit(MMF_RECALC_UPROBES, &mm->flags);
675 return set_orig_insn(&uprobe->arch, mm, vaddr);
676}
677
678static inline bool uprobe_is_active(struct uprobe *uprobe)
679{
680 return !RB_EMPTY_NODE(&uprobe->rb_node);
681}
682/*
683 * There could be threads that have already hit the breakpoint. They
684 * will recheck the current insn and restart if find_uprobe() fails.
685 * See find_active_uprobe().
686 */
687static void delete_uprobe(struct uprobe *uprobe)
688{
689 if (WARN_ON(!uprobe_is_active(uprobe)))
690 return;
691
692 spin_lock(&uprobes_treelock);
693 rb_erase(&uprobe->rb_node, &uprobes_tree);
694 spin_unlock(&uprobes_treelock);
695 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
696 iput(uprobe->inode);
697 put_uprobe(uprobe);
698}
699
700struct map_info {
701 struct map_info *next;
702 struct mm_struct *mm;
703 unsigned long vaddr;
704};
705
706static inline struct map_info *free_map_info(struct map_info *info)
707{
708 struct map_info *next = info->next;
709 kfree(info);
710 return next;
711}
712
713static struct map_info *
714build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
715{
716 unsigned long pgoff = offset >> PAGE_SHIFT;
717 struct vm_area_struct *vma;
718 struct map_info *curr = NULL;
719 struct map_info *prev = NULL;
720 struct map_info *info;
721 int more = 0;
722
723 again:
724 i_mmap_lock_read(mapping);
725 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
726 if (!valid_vma(vma, is_register))
727 continue;
728
729 if (!prev && !more) {
730 /*
731 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
732 * reclaim. This is optimistic, no harm done if it fails.
733 */
734 prev = kmalloc(sizeof(struct map_info),
735 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
736 if (prev)
737 prev->next = NULL;
738 }
739 if (!prev) {
740 more++;
741 continue;
742 }
743
744 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
745 continue;
746
747 info = prev;
748 prev = prev->next;
749 info->next = curr;
750 curr = info;
751
752 info->mm = vma->vm_mm;
753 info->vaddr = offset_to_vaddr(vma, offset);
754 }
755 i_mmap_unlock_read(mapping);
756
757 if (!more)
758 goto out;
759
760 prev = curr;
761 while (curr) {
762 mmput(curr->mm);
763 curr = curr->next;
764 }
765
766 do {
767 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
768 if (!info) {
769 curr = ERR_PTR(-ENOMEM);
770 goto out;
771 }
772 info->next = prev;
773 prev = info;
774 } while (--more);
775
776 goto again;
777 out:
778 while (prev)
779 prev = free_map_info(prev);
780 return curr;
781}
782
783static int
784register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
785{
786 bool is_register = !!new;
787 struct map_info *info;
788 int err = 0;
789
790 percpu_down_write(&dup_mmap_sem);
791 info = build_map_info(uprobe->inode->i_mapping,
792 uprobe->offset, is_register);
793 if (IS_ERR(info)) {
794 err = PTR_ERR(info);
795 goto out;
796 }
797
798 while (info) {
799 struct mm_struct *mm = info->mm;
800 struct vm_area_struct *vma;
801
802 if (err && is_register)
803 goto free;
804
805 down_write(&mm->mmap_sem);
806 vma = find_vma(mm, info->vaddr);
807 if (!vma || !valid_vma(vma, is_register) ||
808 file_inode(vma->vm_file) != uprobe->inode)
809 goto unlock;
810
811 if (vma->vm_start > info->vaddr ||
812 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
813 goto unlock;
814
815 if (is_register) {
816 /* consult only the "caller", new consumer. */
817 if (consumer_filter(new,
818 UPROBE_FILTER_REGISTER, mm))
819 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
820 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
821 if (!filter_chain(uprobe,
822 UPROBE_FILTER_UNREGISTER, mm))
823 err |= remove_breakpoint(uprobe, mm, info->vaddr);
824 }
825
826 unlock:
827 up_write(&mm->mmap_sem);
828 free:
829 mmput(mm);
830 info = free_map_info(info);
831 }
832 out:
833 percpu_up_write(&dup_mmap_sem);
834 return err;
835}
836
837static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
838{
839 consumer_add(uprobe, uc);
840 return register_for_each_vma(uprobe, uc);
841}
842
843static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
844{
845 int err;
846
847 if (WARN_ON(!consumer_del(uprobe, uc)))
848 return;
849
850 err = register_for_each_vma(uprobe, NULL);
851 /* TODO : cant unregister? schedule a worker thread */
852 if (!uprobe->consumers && !err)
853 delete_uprobe(uprobe);
854}
855
856/*
857 * uprobe_register - register a probe
858 * @inode: the file in which the probe has to be placed.
859 * @offset: offset from the start of the file.
860 * @uc: information on howto handle the probe..
861 *
862 * Apart from the access refcount, uprobe_register() takes a creation
863 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864 * inserted into the rbtree (i.e first consumer for a @inode:@offset
865 * tuple). Creation refcount stops uprobe_unregister from freeing the
866 * @uprobe even before the register operation is complete. Creation
867 * refcount is released when the last @uc for the @uprobe
868 * unregisters.
869 *
870 * Return errno if it cannot successully install probes
871 * else return 0 (success)
872 */
873int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
874{
875 struct uprobe *uprobe;
876 int ret;
877
878 /* Uprobe must have at least one set consumer */
879 if (!uc->handler && !uc->ret_handler)
880 return -EINVAL;
881
882 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
883 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
884 return -EIO;
885 /* Racy, just to catch the obvious mistakes */
886 if (offset > i_size_read(inode))
887 return -EINVAL;
888
889 retry:
890 uprobe = alloc_uprobe(inode, offset);
891 if (!uprobe)
892 return -ENOMEM;
893 /*
894 * We can race with uprobe_unregister()->delete_uprobe().
895 * Check uprobe_is_active() and retry if it is false.
896 */
897 down_write(&uprobe->register_rwsem);
898 ret = -EAGAIN;
899 if (likely(uprobe_is_active(uprobe))) {
900 ret = __uprobe_register(uprobe, uc);
901 if (ret)
902 __uprobe_unregister(uprobe, uc);
903 }
904 up_write(&uprobe->register_rwsem);
905 put_uprobe(uprobe);
906
907 if (unlikely(ret == -EAGAIN))
908 goto retry;
909 return ret;
910}
911EXPORT_SYMBOL_GPL(uprobe_register);
912
913/*
914 * uprobe_apply - unregister a already registered probe.
915 * @inode: the file in which the probe has to be removed.
916 * @offset: offset from the start of the file.
917 * @uc: consumer which wants to add more or remove some breakpoints
918 * @add: add or remove the breakpoints
919 */
920int uprobe_apply(struct inode *inode, loff_t offset,
921 struct uprobe_consumer *uc, bool add)
922{
923 struct uprobe *uprobe;
924 struct uprobe_consumer *con;
925 int ret = -ENOENT;
926
927 uprobe = find_uprobe(inode, offset);
928 if (WARN_ON(!uprobe))
929 return ret;
930
931 down_write(&uprobe->register_rwsem);
932 for (con = uprobe->consumers; con && con != uc ; con = con->next)
933 ;
934 if (con)
935 ret = register_for_each_vma(uprobe, add ? uc : NULL);
936 up_write(&uprobe->register_rwsem);
937 put_uprobe(uprobe);
938
939 return ret;
940}
941
942/*
943 * uprobe_unregister - unregister a already registered probe.
944 * @inode: the file in which the probe has to be removed.
945 * @offset: offset from the start of the file.
946 * @uc: identify which probe if multiple probes are colocated.
947 */
948void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
949{
950 struct uprobe *uprobe;
951
952 uprobe = find_uprobe(inode, offset);
953 if (WARN_ON(!uprobe))
954 return;
955
956 down_write(&uprobe->register_rwsem);
957 __uprobe_unregister(uprobe, uc);
958 up_write(&uprobe->register_rwsem);
959 put_uprobe(uprobe);
960}
961EXPORT_SYMBOL_GPL(uprobe_unregister);
962
963static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
964{
965 struct vm_area_struct *vma;
966 int err = 0;
967
968 down_read(&mm->mmap_sem);
969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
970 unsigned long vaddr;
971 loff_t offset;
972
973 if (!valid_vma(vma, false) ||
974 file_inode(vma->vm_file) != uprobe->inode)
975 continue;
976
977 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
978 if (uprobe->offset < offset ||
979 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
980 continue;
981
982 vaddr = offset_to_vaddr(vma, uprobe->offset);
983 err |= remove_breakpoint(uprobe, mm, vaddr);
984 }
985 up_read(&mm->mmap_sem);
986
987 return err;
988}
989
990static struct rb_node *
991find_node_in_range(struct inode *inode, loff_t min, loff_t max)
992{
993 struct rb_node *n = uprobes_tree.rb_node;
994
995 while (n) {
996 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
997
998 if (inode < u->inode) {
999 n = n->rb_left;
1000 } else if (inode > u->inode) {
1001 n = n->rb_right;
1002 } else {
1003 if (max < u->offset)
1004 n = n->rb_left;
1005 else if (min > u->offset)
1006 n = n->rb_right;
1007 else
1008 break;
1009 }
1010 }
1011
1012 return n;
1013}
1014
1015/*
1016 * For a given range in vma, build a list of probes that need to be inserted.
1017 */
1018static void build_probe_list(struct inode *inode,
1019 struct vm_area_struct *vma,
1020 unsigned long start, unsigned long end,
1021 struct list_head *head)
1022{
1023 loff_t min, max;
1024 struct rb_node *n, *t;
1025 struct uprobe *u;
1026
1027 INIT_LIST_HEAD(head);
1028 min = vaddr_to_offset(vma, start);
1029 max = min + (end - start) - 1;
1030
1031 spin_lock(&uprobes_treelock);
1032 n = find_node_in_range(inode, min, max);
1033 if (n) {
1034 for (t = n; t; t = rb_prev(t)) {
1035 u = rb_entry(t, struct uprobe, rb_node);
1036 if (u->inode != inode || u->offset < min)
1037 break;
1038 list_add(&u->pending_list, head);
1039 get_uprobe(u);
1040 }
1041 for (t = n; (t = rb_next(t)); ) {
1042 u = rb_entry(t, struct uprobe, rb_node);
1043 if (u->inode != inode || u->offset > max)
1044 break;
1045 list_add(&u->pending_list, head);
1046 get_uprobe(u);
1047 }
1048 }
1049 spin_unlock(&uprobes_treelock);
1050}
1051
1052/*
1053 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054 *
1055 * Currently we ignore all errors and always return 0, the callers
1056 * can't handle the failure anyway.
1057 */
1058int uprobe_mmap(struct vm_area_struct *vma)
1059{
1060 struct list_head tmp_list;
1061 struct uprobe *uprobe, *u;
1062 struct inode *inode;
1063
1064 if (no_uprobe_events() || !valid_vma(vma, true))
1065 return 0;
1066
1067 inode = file_inode(vma->vm_file);
1068 if (!inode)
1069 return 0;
1070
1071 mutex_lock(uprobes_mmap_hash(inode));
1072 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1073 /*
1074 * We can race with uprobe_unregister(), this uprobe can be already
1075 * removed. But in this case filter_chain() must return false, all
1076 * consumers have gone away.
1077 */
1078 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1079 if (!fatal_signal_pending(current) &&
1080 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1081 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1082 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1083 }
1084 put_uprobe(uprobe);
1085 }
1086 mutex_unlock(uprobes_mmap_hash(inode));
1087
1088 return 0;
1089}
1090
1091static bool
1092vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1093{
1094 loff_t min, max;
1095 struct inode *inode;
1096 struct rb_node *n;
1097
1098 inode = file_inode(vma->vm_file);
1099
1100 min = vaddr_to_offset(vma, start);
1101 max = min + (end - start) - 1;
1102
1103 spin_lock(&uprobes_treelock);
1104 n = find_node_in_range(inode, min, max);
1105 spin_unlock(&uprobes_treelock);
1106
1107 return !!n;
1108}
1109
1110/*
1111 * Called in context of a munmap of a vma.
1112 */
1113void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114{
1115 if (no_uprobe_events() || !valid_vma(vma, false))
1116 return;
1117
1118 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1119 return;
1120
1121 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1122 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1123 return;
1124
1125 if (vma_has_uprobes(vma, start, end))
1126 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1127}
1128
1129/* Slot allocation for XOL */
1130static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1131{
1132 struct vm_area_struct *vma;
1133 int ret;
1134
1135 if (down_write_killable(&mm->mmap_sem))
1136 return -EINTR;
1137
1138 if (mm->uprobes_state.xol_area) {
1139 ret = -EALREADY;
1140 goto fail;
1141 }
1142
1143 if (!area->vaddr) {
1144 /* Try to map as high as possible, this is only a hint. */
1145 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146 PAGE_SIZE, 0, 0);
1147 if (area->vaddr & ~PAGE_MASK) {
1148 ret = area->vaddr;
1149 goto fail;
1150 }
1151 }
1152
1153 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1155 &area->xol_mapping);
1156 if (IS_ERR(vma)) {
1157 ret = PTR_ERR(vma);
1158 goto fail;
1159 }
1160
1161 ret = 0;
1162 smp_wmb(); /* pairs with get_xol_area() */
1163 mm->uprobes_state.xol_area = area;
1164 fail:
1165 up_write(&mm->mmap_sem);
1166
1167 return ret;
1168}
1169
1170static struct xol_area *__create_xol_area(unsigned long vaddr)
1171{
1172 struct mm_struct *mm = current->mm;
1173 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1174 struct xol_area *area;
1175
1176 area = kmalloc(sizeof(*area), GFP_KERNEL);
1177 if (unlikely(!area))
1178 goto out;
1179
1180 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1181 if (!area->bitmap)
1182 goto free_area;
1183
1184 area->xol_mapping.name = "[uprobes]";
1185 area->xol_mapping.fault = NULL;
1186 area->xol_mapping.pages = area->pages;
1187 area->pages[0] = alloc_page(GFP_HIGHUSER);
1188 if (!area->pages[0])
1189 goto free_bitmap;
1190 area->pages[1] = NULL;
1191
1192 area->vaddr = vaddr;
1193 init_waitqueue_head(&area->wq);
1194 /* Reserve the 1st slot for get_trampoline_vaddr() */
1195 set_bit(0, area->bitmap);
1196 atomic_set(&area->slot_count, 1);
1197 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1198
1199 if (!xol_add_vma(mm, area))
1200 return area;
1201
1202 __free_page(area->pages[0]);
1203 free_bitmap:
1204 kfree(area->bitmap);
1205 free_area:
1206 kfree(area);
1207 out:
1208 return NULL;
1209}
1210
1211/*
1212 * get_xol_area - Allocate process's xol_area if necessary.
1213 * This area will be used for storing instructions for execution out of line.
1214 *
1215 * Returns the allocated area or NULL.
1216 */
1217static struct xol_area *get_xol_area(void)
1218{
1219 struct mm_struct *mm = current->mm;
1220 struct xol_area *area;
1221
1222 if (!mm->uprobes_state.xol_area)
1223 __create_xol_area(0);
1224
1225 area = mm->uprobes_state.xol_area;
1226 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1227 return area;
1228}
1229
1230/*
1231 * uprobe_clear_state - Free the area allocated for slots.
1232 */
1233void uprobe_clear_state(struct mm_struct *mm)
1234{
1235 struct xol_area *area = mm->uprobes_state.xol_area;
1236
1237 if (!area)
1238 return;
1239
1240 put_page(area->pages[0]);
1241 kfree(area->bitmap);
1242 kfree(area);
1243}
1244
1245void uprobe_start_dup_mmap(void)
1246{
1247 percpu_down_read(&dup_mmap_sem);
1248}
1249
1250void uprobe_end_dup_mmap(void)
1251{
1252 percpu_up_read(&dup_mmap_sem);
1253}
1254
1255void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1256{
1257 newmm->uprobes_state.xol_area = NULL;
1258
1259 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1260 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1261 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1262 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1263 }
1264}
1265
1266/*
1267 * - search for a free slot.
1268 */
1269static unsigned long xol_take_insn_slot(struct xol_area *area)
1270{
1271 unsigned long slot_addr;
1272 int slot_nr;
1273
1274 do {
1275 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1276 if (slot_nr < UINSNS_PER_PAGE) {
1277 if (!test_and_set_bit(slot_nr, area->bitmap))
1278 break;
1279
1280 slot_nr = UINSNS_PER_PAGE;
1281 continue;
1282 }
1283 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1284 } while (slot_nr >= UINSNS_PER_PAGE);
1285
1286 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1287 atomic_inc(&area->slot_count);
1288
1289 return slot_addr;
1290}
1291
1292/*
1293 * xol_get_insn_slot - allocate a slot for xol.
1294 * Returns the allocated slot address or 0.
1295 */
1296static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1297{
1298 struct xol_area *area;
1299 unsigned long xol_vaddr;
1300
1301 area = get_xol_area();
1302 if (!area)
1303 return 0;
1304
1305 xol_vaddr = xol_take_insn_slot(area);
1306 if (unlikely(!xol_vaddr))
1307 return 0;
1308
1309 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1310 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1311
1312 return xol_vaddr;
1313}
1314
1315/*
1316 * xol_free_insn_slot - If slot was earlier allocated by
1317 * @xol_get_insn_slot(), make the slot available for
1318 * subsequent requests.
1319 */
1320static void xol_free_insn_slot(struct task_struct *tsk)
1321{
1322 struct xol_area *area;
1323 unsigned long vma_end;
1324 unsigned long slot_addr;
1325
1326 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1327 return;
1328
1329 slot_addr = tsk->utask->xol_vaddr;
1330 if (unlikely(!slot_addr))
1331 return;
1332
1333 area = tsk->mm->uprobes_state.xol_area;
1334 vma_end = area->vaddr + PAGE_SIZE;
1335 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1336 unsigned long offset;
1337 int slot_nr;
1338
1339 offset = slot_addr - area->vaddr;
1340 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1341 if (slot_nr >= UINSNS_PER_PAGE)
1342 return;
1343
1344 clear_bit(slot_nr, area->bitmap);
1345 atomic_dec(&area->slot_count);
1346 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1347 if (waitqueue_active(&area->wq))
1348 wake_up(&area->wq);
1349
1350 tsk->utask->xol_vaddr = 0;
1351 }
1352}
1353
1354void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1355 void *src, unsigned long len)
1356{
1357 /* Initialize the slot */
1358 copy_to_page(page, vaddr, src, len);
1359
1360 /*
1361 * We probably need flush_icache_user_range() but it needs vma.
1362 * This should work on most of architectures by default. If
1363 * architecture needs to do something different it can define
1364 * its own version of the function.
1365 */
1366 flush_dcache_page(page);
1367}
1368
1369/**
1370 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1371 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372 * instruction.
1373 * Return the address of the breakpoint instruction.
1374 */
1375unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1376{
1377 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1378}
1379
1380unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1381{
1382 struct uprobe_task *utask = current->utask;
1383
1384 if (unlikely(utask && utask->active_uprobe))
1385 return utask->vaddr;
1386
1387 return instruction_pointer(regs);
1388}
1389
1390static struct return_instance *free_ret_instance(struct return_instance *ri)
1391{
1392 struct return_instance *next = ri->next;
1393 put_uprobe(ri->uprobe);
1394 kfree(ri);
1395 return next;
1396}
1397
1398/*
1399 * Called with no locks held.
1400 * Called in context of a exiting or a exec-ing thread.
1401 */
1402void uprobe_free_utask(struct task_struct *t)
1403{
1404 struct uprobe_task *utask = t->utask;
1405 struct return_instance *ri;
1406
1407 if (!utask)
1408 return;
1409
1410 if (utask->active_uprobe)
1411 put_uprobe(utask->active_uprobe);
1412
1413 ri = utask->return_instances;
1414 while (ri)
1415 ri = free_ret_instance(ri);
1416
1417 xol_free_insn_slot(t);
1418 kfree(utask);
1419 t->utask = NULL;
1420}
1421
1422/*
1423 * Allocate a uprobe_task object for the task if if necessary.
1424 * Called when the thread hits a breakpoint.
1425 *
1426 * Returns:
1427 * - pointer to new uprobe_task on success
1428 * - NULL otherwise
1429 */
1430static struct uprobe_task *get_utask(void)
1431{
1432 if (!current->utask)
1433 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1434 return current->utask;
1435}
1436
1437static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1438{
1439 struct uprobe_task *n_utask;
1440 struct return_instance **p, *o, *n;
1441
1442 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1443 if (!n_utask)
1444 return -ENOMEM;
1445 t->utask = n_utask;
1446
1447 p = &n_utask->return_instances;
1448 for (o = o_utask->return_instances; o; o = o->next) {
1449 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1450 if (!n)
1451 return -ENOMEM;
1452
1453 *n = *o;
1454 get_uprobe(n->uprobe);
1455 n->next = NULL;
1456
1457 *p = n;
1458 p = &n->next;
1459 n_utask->depth++;
1460 }
1461
1462 return 0;
1463}
1464
1465static void uprobe_warn(struct task_struct *t, const char *msg)
1466{
1467 pr_warn("uprobe: %s:%d failed to %s\n",
1468 current->comm, current->pid, msg);
1469}
1470
1471static void dup_xol_work(struct callback_head *work)
1472{
1473 if (current->flags & PF_EXITING)
1474 return;
1475
1476 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1477 !fatal_signal_pending(current))
1478 uprobe_warn(current, "dup xol area");
1479}
1480
1481/*
1482 * Called in context of a new clone/fork from copy_process.
1483 */
1484void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1485{
1486 struct uprobe_task *utask = current->utask;
1487 struct mm_struct *mm = current->mm;
1488 struct xol_area *area;
1489
1490 t->utask = NULL;
1491
1492 if (!utask || !utask->return_instances)
1493 return;
1494
1495 if (mm == t->mm && !(flags & CLONE_VFORK))
1496 return;
1497
1498 if (dup_utask(t, utask))
1499 return uprobe_warn(t, "dup ret instances");
1500
1501 /* The task can fork() after dup_xol_work() fails */
1502 area = mm->uprobes_state.xol_area;
1503 if (!area)
1504 return uprobe_warn(t, "dup xol area");
1505
1506 if (mm == t->mm)
1507 return;
1508
1509 t->utask->dup_xol_addr = area->vaddr;
1510 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1511 task_work_add(t, &t->utask->dup_xol_work, true);
1512}
1513
1514/*
1515 * Current area->vaddr notion assume the trampoline address is always
1516 * equal area->vaddr.
1517 *
1518 * Returns -1 in case the xol_area is not allocated.
1519 */
1520static unsigned long get_trampoline_vaddr(void)
1521{
1522 struct xol_area *area;
1523 unsigned long trampoline_vaddr = -1;
1524
1525 area = current->mm->uprobes_state.xol_area;
1526 smp_read_barrier_depends();
1527 if (area)
1528 trampoline_vaddr = area->vaddr;
1529
1530 return trampoline_vaddr;
1531}
1532
1533static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1534 struct pt_regs *regs)
1535{
1536 struct return_instance *ri = utask->return_instances;
1537 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1538
1539 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1540 ri = free_ret_instance(ri);
1541 utask->depth--;
1542 }
1543 utask->return_instances = ri;
1544}
1545
1546static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1547{
1548 struct return_instance *ri;
1549 struct uprobe_task *utask;
1550 unsigned long orig_ret_vaddr, trampoline_vaddr;
1551 bool chained;
1552
1553 if (!get_xol_area())
1554 return;
1555
1556 utask = get_utask();
1557 if (!utask)
1558 return;
1559
1560 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1561 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1562 " nestedness limit pid/tgid=%d/%d\n",
1563 current->pid, current->tgid);
1564 return;
1565 }
1566
1567 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1568 if (!ri)
1569 return;
1570
1571 trampoline_vaddr = get_trampoline_vaddr();
1572 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1573 if (orig_ret_vaddr == -1)
1574 goto fail;
1575
1576 /* drop the entries invalidated by longjmp() */
1577 chained = (orig_ret_vaddr == trampoline_vaddr);
1578 cleanup_return_instances(utask, chained, regs);
1579
1580 /*
1581 * We don't want to keep trampoline address in stack, rather keep the
1582 * original return address of first caller thru all the consequent
1583 * instances. This also makes breakpoint unwrapping easier.
1584 */
1585 if (chained) {
1586 if (!utask->return_instances) {
1587 /*
1588 * This situation is not possible. Likely we have an
1589 * attack from user-space.
1590 */
1591 uprobe_warn(current, "handle tail call");
1592 goto fail;
1593 }
1594 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1595 }
1596
1597 ri->uprobe = get_uprobe(uprobe);
1598 ri->func = instruction_pointer(regs);
1599 ri->stack = user_stack_pointer(regs);
1600 ri->orig_ret_vaddr = orig_ret_vaddr;
1601 ri->chained = chained;
1602
1603 utask->depth++;
1604 ri->next = utask->return_instances;
1605 utask->return_instances = ri;
1606
1607 return;
1608 fail:
1609 kfree(ri);
1610}
1611
1612/* Prepare to single-step probed instruction out of line. */
1613static int
1614pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1615{
1616 struct uprobe_task *utask;
1617 unsigned long xol_vaddr;
1618 int err;
1619
1620 utask = get_utask();
1621 if (!utask)
1622 return -ENOMEM;
1623
1624 xol_vaddr = xol_get_insn_slot(uprobe);
1625 if (!xol_vaddr)
1626 return -ENOMEM;
1627
1628 utask->xol_vaddr = xol_vaddr;
1629 utask->vaddr = bp_vaddr;
1630
1631 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1632 if (unlikely(err)) {
1633 xol_free_insn_slot(current);
1634 return err;
1635 }
1636
1637 utask->active_uprobe = uprobe;
1638 utask->state = UTASK_SSTEP;
1639 return 0;
1640}
1641
1642/*
1643 * If we are singlestepping, then ensure this thread is not connected to
1644 * non-fatal signals until completion of singlestep. When xol insn itself
1645 * triggers the signal, restart the original insn even if the task is
1646 * already SIGKILL'ed (since coredump should report the correct ip). This
1647 * is even more important if the task has a handler for SIGSEGV/etc, The
1648 * _same_ instruction should be repeated again after return from the signal
1649 * handler, and SSTEP can never finish in this case.
1650 */
1651bool uprobe_deny_signal(void)
1652{
1653 struct task_struct *t = current;
1654 struct uprobe_task *utask = t->utask;
1655
1656 if (likely(!utask || !utask->active_uprobe))
1657 return false;
1658
1659 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1660
1661 if (signal_pending(t)) {
1662 spin_lock_irq(&t->sighand->siglock);
1663 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1664 spin_unlock_irq(&t->sighand->siglock);
1665
1666 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1667 utask->state = UTASK_SSTEP_TRAPPED;
1668 set_tsk_thread_flag(t, TIF_UPROBE);
1669 }
1670 }
1671
1672 return true;
1673}
1674
1675static void mmf_recalc_uprobes(struct mm_struct *mm)
1676{
1677 struct vm_area_struct *vma;
1678
1679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1680 if (!valid_vma(vma, false))
1681 continue;
1682 /*
1683 * This is not strictly accurate, we can race with
1684 * uprobe_unregister() and see the already removed
1685 * uprobe if delete_uprobe() was not yet called.
1686 * Or this uprobe can be filtered out.
1687 */
1688 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1689 return;
1690 }
1691
1692 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1693}
1694
1695static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1696{
1697 struct page *page;
1698 uprobe_opcode_t opcode;
1699 int result;
1700
1701 pagefault_disable();
1702 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1703 pagefault_enable();
1704
1705 if (likely(result == 0))
1706 goto out;
1707
1708 /*
1709 * The NULL 'tsk' here ensures that any faults that occur here
1710 * will not be accounted to the task. 'mm' *is* current->mm,
1711 * but we treat this as a 'remote' access since it is
1712 * essentially a kernel access to the memory.
1713 */
1714 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1715 NULL, NULL);
1716 if (result < 0)
1717 return result;
1718
1719 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1720 put_page(page);
1721 out:
1722 /* This needs to return true for any variant of the trap insn */
1723 return is_trap_insn(&opcode);
1724}
1725
1726static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1727{
1728 struct mm_struct *mm = current->mm;
1729 struct uprobe *uprobe = NULL;
1730 struct vm_area_struct *vma;
1731
1732 down_read(&mm->mmap_sem);
1733 vma = find_vma(mm, bp_vaddr);
1734 if (vma && vma->vm_start <= bp_vaddr) {
1735 if (valid_vma(vma, false)) {
1736 struct inode *inode = file_inode(vma->vm_file);
1737 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1738
1739 uprobe = find_uprobe(inode, offset);
1740 }
1741
1742 if (!uprobe)
1743 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1744 } else {
1745 *is_swbp = -EFAULT;
1746 }
1747
1748 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1749 mmf_recalc_uprobes(mm);
1750 up_read(&mm->mmap_sem);
1751
1752 return uprobe;
1753}
1754
1755static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1756{
1757 struct uprobe_consumer *uc;
1758 int remove = UPROBE_HANDLER_REMOVE;
1759 bool need_prep = false; /* prepare return uprobe, when needed */
1760
1761 down_read(&uprobe->register_rwsem);
1762 for (uc = uprobe->consumers; uc; uc = uc->next) {
1763 int rc = 0;
1764
1765 if (uc->handler) {
1766 rc = uc->handler(uc, regs);
1767 WARN(rc & ~UPROBE_HANDLER_MASK,
1768 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1769 }
1770
1771 if (uc->ret_handler)
1772 need_prep = true;
1773
1774 remove &= rc;
1775 }
1776
1777 if (need_prep && !remove)
1778 prepare_uretprobe(uprobe, regs); /* put bp at return */
1779
1780 if (remove && uprobe->consumers) {
1781 WARN_ON(!uprobe_is_active(uprobe));
1782 unapply_uprobe(uprobe, current->mm);
1783 }
1784 up_read(&uprobe->register_rwsem);
1785}
1786
1787static void
1788handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1789{
1790 struct uprobe *uprobe = ri->uprobe;
1791 struct uprobe_consumer *uc;
1792
1793 down_read(&uprobe->register_rwsem);
1794 for (uc = uprobe->consumers; uc; uc = uc->next) {
1795 if (uc->ret_handler)
1796 uc->ret_handler(uc, ri->func, regs);
1797 }
1798 up_read(&uprobe->register_rwsem);
1799}
1800
1801static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1802{
1803 bool chained;
1804
1805 do {
1806 chained = ri->chained;
1807 ri = ri->next; /* can't be NULL if chained */
1808 } while (chained);
1809
1810 return ri;
1811}
1812
1813static void handle_trampoline(struct pt_regs *regs)
1814{
1815 struct uprobe_task *utask;
1816 struct return_instance *ri, *next;
1817 bool valid;
1818
1819 utask = current->utask;
1820 if (!utask)
1821 goto sigill;
1822
1823 ri = utask->return_instances;
1824 if (!ri)
1825 goto sigill;
1826
1827 do {
1828 /*
1829 * We should throw out the frames invalidated by longjmp().
1830 * If this chain is valid, then the next one should be alive
1831 * or NULL; the latter case means that nobody but ri->func
1832 * could hit this trampoline on return. TODO: sigaltstack().
1833 */
1834 next = find_next_ret_chain(ri);
1835 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1836
1837 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1838 do {
1839 if (valid)
1840 handle_uretprobe_chain(ri, regs);
1841 ri = free_ret_instance(ri);
1842 utask->depth--;
1843 } while (ri != next);
1844 } while (!valid);
1845
1846 utask->return_instances = ri;
1847 return;
1848
1849 sigill:
1850 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1851 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1852
1853}
1854
1855bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1856{
1857 return false;
1858}
1859
1860bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1861 struct pt_regs *regs)
1862{
1863 return true;
1864}
1865
1866/*
1867 * Run handler and ask thread to singlestep.
1868 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1869 */
1870static void handle_swbp(struct pt_regs *regs)
1871{
1872 struct uprobe *uprobe;
1873 unsigned long bp_vaddr;
1874 int uninitialized_var(is_swbp);
1875
1876 bp_vaddr = uprobe_get_swbp_addr(regs);
1877 if (bp_vaddr == get_trampoline_vaddr())
1878 return handle_trampoline(regs);
1879
1880 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1881 if (!uprobe) {
1882 if (is_swbp > 0) {
1883 /* No matching uprobe; signal SIGTRAP. */
1884 send_sig(SIGTRAP, current, 0);
1885 } else {
1886 /*
1887 * Either we raced with uprobe_unregister() or we can't
1888 * access this memory. The latter is only possible if
1889 * another thread plays with our ->mm. In both cases
1890 * we can simply restart. If this vma was unmapped we
1891 * can pretend this insn was not executed yet and get
1892 * the (correct) SIGSEGV after restart.
1893 */
1894 instruction_pointer_set(regs, bp_vaddr);
1895 }
1896 return;
1897 }
1898
1899 /* change it in advance for ->handler() and restart */
1900 instruction_pointer_set(regs, bp_vaddr);
1901
1902 /*
1903 * TODO: move copy_insn/etc into _register and remove this hack.
1904 * After we hit the bp, _unregister + _register can install the
1905 * new and not-yet-analyzed uprobe at the same address, restart.
1906 */
1907 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1908 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1909 goto out;
1910
1911 /* Tracing handlers use ->utask to communicate with fetch methods */
1912 if (!get_utask())
1913 goto out;
1914
1915 if (arch_uprobe_ignore(&uprobe->arch, regs))
1916 goto out;
1917
1918 handler_chain(uprobe, regs);
1919
1920 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1921 goto out;
1922
1923 if (!pre_ssout(uprobe, regs, bp_vaddr))
1924 return;
1925
1926 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1927out:
1928 put_uprobe(uprobe);
1929}
1930
1931/*
1932 * Perform required fix-ups and disable singlestep.
1933 * Allow pending signals to take effect.
1934 */
1935static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1936{
1937 struct uprobe *uprobe;
1938 int err = 0;
1939
1940 uprobe = utask->active_uprobe;
1941 if (utask->state == UTASK_SSTEP_ACK)
1942 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1943 else if (utask->state == UTASK_SSTEP_TRAPPED)
1944 arch_uprobe_abort_xol(&uprobe->arch, regs);
1945 else
1946 WARN_ON_ONCE(1);
1947
1948 put_uprobe(uprobe);
1949 utask->active_uprobe = NULL;
1950 utask->state = UTASK_RUNNING;
1951 xol_free_insn_slot(current);
1952
1953 spin_lock_irq(¤t->sighand->siglock);
1954 recalc_sigpending(); /* see uprobe_deny_signal() */
1955 spin_unlock_irq(¤t->sighand->siglock);
1956
1957 if (unlikely(err)) {
1958 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1959 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1960 }
1961}
1962
1963/*
1964 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1965 * allows the thread to return from interrupt. After that handle_swbp()
1966 * sets utask->active_uprobe.
1967 *
1968 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1969 * and allows the thread to return from interrupt.
1970 *
1971 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1972 * uprobe_notify_resume().
1973 */
1974void uprobe_notify_resume(struct pt_regs *regs)
1975{
1976 struct uprobe_task *utask;
1977
1978 clear_thread_flag(TIF_UPROBE);
1979
1980 utask = current->utask;
1981 if (utask && utask->active_uprobe)
1982 handle_singlestep(utask, regs);
1983 else
1984 handle_swbp(regs);
1985}
1986
1987/*
1988 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1989 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1990 */
1991int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1992{
1993 if (!current->mm)
1994 return 0;
1995
1996 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
1997 (!current->utask || !current->utask->return_instances))
1998 return 0;
1999
2000 set_thread_flag(TIF_UPROBE);
2001 return 1;
2002}
2003
2004/*
2005 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2006 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2007 */
2008int uprobe_post_sstep_notifier(struct pt_regs *regs)
2009{
2010 struct uprobe_task *utask = current->utask;
2011
2012 if (!current->mm || !utask || !utask->active_uprobe)
2013 /* task is currently not uprobed */
2014 return 0;
2015
2016 utask->state = UTASK_SSTEP_ACK;
2017 set_thread_flag(TIF_UPROBE);
2018 return 1;
2019}
2020
2021static struct notifier_block uprobe_exception_nb = {
2022 .notifier_call = arch_uprobe_exception_notify,
2023 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2024};
2025
2026static int __init init_uprobes(void)
2027{
2028 int i;
2029
2030 for (i = 0; i < UPROBES_HASH_SZ; i++)
2031 mutex_init(&uprobes_mmap_mutex[i]);
2032
2033 if (percpu_init_rwsem(&dup_mmap_sem))
2034 return -ENOMEM;
2035
2036 return register_die_notifier(&uprobe_exception_nb);
2037}
2038__initcall(init_uprobes);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12#include <linux/kernel.h>
13#include <linux/highmem.h>
14#include <linux/pagemap.h> /* read_mapping_page */
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/coredump.h>
19#include <linux/export.h>
20#include <linux/rmap.h> /* anon_vma_prepare */
21#include <linux/mmu_notifier.h> /* set_pte_at_notify */
22#include <linux/swap.h> /* try_to_free_swap */
23#include <linux/ptrace.h> /* user_enable_single_step */
24#include <linux/kdebug.h> /* notifier mechanism */
25#include "../../mm/internal.h" /* munlock_vma_page */
26#include <linux/percpu-rwsem.h>
27#include <linux/task_work.h>
28#include <linux/shmem_fs.h>
29#include <linux/khugepaged.h>
30
31#include <linux/uprobes.h>
32
33#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
35
36static struct rb_root uprobes_tree = RB_ROOT;
37/*
38 * allows us to skip the uprobe_mmap if there are no uprobe events active
39 * at this time. Probably a fine grained per inode count is better?
40 */
41#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
42
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
46/* serialize uprobe->pending_list */
47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52/* Have a copy of original instruction */
53#define UPROBE_COPY_INSN 0
54
55struct uprobe {
56 struct rb_node rb_node; /* node in the rb tree */
57 refcount_t ref;
58 struct rw_semaphore register_rwsem;
59 struct rw_semaphore consumer_rwsem;
60 struct list_head pending_list;
61 struct uprobe_consumer *consumers;
62 struct inode *inode; /* Also hold a ref to inode */
63 loff_t offset;
64 loff_t ref_ctr_offset;
65 unsigned long flags;
66
67 /*
68 * The generic code assumes that it has two members of unknown type
69 * owned by the arch-specific code:
70 *
71 * insn - copy_insn() saves the original instruction here for
72 * arch_uprobe_analyze_insn().
73 *
74 * ixol - potentially modified instruction to execute out of
75 * line, copied to xol_area by xol_get_insn_slot().
76 */
77 struct arch_uprobe arch;
78};
79
80struct delayed_uprobe {
81 struct list_head list;
82 struct uprobe *uprobe;
83 struct mm_struct *mm;
84};
85
86static DEFINE_MUTEX(delayed_uprobe_lock);
87static LIST_HEAD(delayed_uprobe_list);
88
89/*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111};
112
113/*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122{
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129}
130
131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132{
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134}
135
136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137{
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139}
140
141/**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @old_page: the page we are replacing by new_page
148 * @new_page: the modified page we replace page by
149 *
150 * If @new_page is NULL, only unmap @old_page.
151 *
152 * Returns 0 on success, negative error code otherwise.
153 */
154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156{
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = compound_head(old_page),
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 struct mmu_notifier_range range;
165
166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167 addr + PAGE_SIZE);
168
169 if (new_page) {
170 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171 if (err)
172 return err;
173 }
174
175 /* For try_to_free_swap() and munlock_vma_page() below */
176 lock_page(old_page);
177
178 mmu_notifier_invalidate_range_start(&range);
179 err = -EAGAIN;
180 if (!page_vma_mapped_walk(&pvmw))
181 goto unlock;
182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184 if (new_page) {
185 get_page(new_page);
186 page_add_new_anon_rmap(new_page, vma, addr, false);
187 lru_cache_add_inactive_or_unevictable(new_page, vma);
188 } else
189 /* no new page, just dec_mm_counter for old_page */
190 dec_mm_counter(mm, MM_ANONPAGES);
191
192 if (!PageAnon(old_page)) {
193 dec_mm_counter(mm, mm_counter_file(old_page));
194 inc_mm_counter(mm, MM_ANONPAGES);
195 }
196
197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 if (new_page)
200 set_pte_at_notify(mm, addr, pvmw.pte,
201 mk_pte(new_page, vma->vm_page_prot));
202
203 page_remove_rmap(old_page, false);
204 if (!page_mapped(old_page))
205 try_to_free_swap(old_page);
206 page_vma_mapped_walk_done(&pvmw);
207
208 if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
209 munlock_vma_page(old_page);
210 put_page(old_page);
211
212 err = 0;
213 unlock:
214 mmu_notifier_invalidate_range_end(&range);
215 unlock_page(old_page);
216 return err;
217}
218
219/**
220 * is_swbp_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_swbp_insn
223 * Returns true if @insn is a breakpoint instruction.
224 */
225bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226{
227 return *insn == UPROBE_SWBP_INSN;
228}
229
230/**
231 * is_trap_insn - check if instruction is breakpoint instruction.
232 * @insn: instruction to be checked.
233 * Default implementation of is_trap_insn
234 * Returns true if @insn is a breakpoint instruction.
235 *
236 * This function is needed for the case where an architecture has multiple
237 * trap instructions (like powerpc).
238 */
239bool __weak is_trap_insn(uprobe_opcode_t *insn)
240{
241 return is_swbp_insn(insn);
242}
243
244static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245{
246 void *kaddr = kmap_atomic(page);
247 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248 kunmap_atomic(kaddr);
249}
250
251static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252{
253 void *kaddr = kmap_atomic(page);
254 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255 kunmap_atomic(kaddr);
256}
257
258static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259{
260 uprobe_opcode_t old_opcode;
261 bool is_swbp;
262
263 /*
264 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265 * We do not check if it is any other 'trap variant' which could
266 * be conditional trap instruction such as the one powerpc supports.
267 *
268 * The logic is that we do not care if the underlying instruction
269 * is a trap variant; uprobes always wins over any other (gdb)
270 * breakpoint.
271 */
272 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273 is_swbp = is_swbp_insn(&old_opcode);
274
275 if (is_swbp_insn(new_opcode)) {
276 if (is_swbp) /* register: already installed? */
277 return 0;
278 } else {
279 if (!is_swbp) /* unregister: was it changed by us? */
280 return 0;
281 }
282
283 return 1;
284}
285
286static struct delayed_uprobe *
287delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288{
289 struct delayed_uprobe *du;
290
291 list_for_each_entry(du, &delayed_uprobe_list, list)
292 if (du->uprobe == uprobe && du->mm == mm)
293 return du;
294 return NULL;
295}
296
297static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298{
299 struct delayed_uprobe *du;
300
301 if (delayed_uprobe_check(uprobe, mm))
302 return 0;
303
304 du = kzalloc(sizeof(*du), GFP_KERNEL);
305 if (!du)
306 return -ENOMEM;
307
308 du->uprobe = uprobe;
309 du->mm = mm;
310 list_add(&du->list, &delayed_uprobe_list);
311 return 0;
312}
313
314static void delayed_uprobe_delete(struct delayed_uprobe *du)
315{
316 if (WARN_ON(!du))
317 return;
318 list_del(&du->list);
319 kfree(du);
320}
321
322static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323{
324 struct list_head *pos, *q;
325 struct delayed_uprobe *du;
326
327 if (!uprobe && !mm)
328 return;
329
330 list_for_each_safe(pos, q, &delayed_uprobe_list) {
331 du = list_entry(pos, struct delayed_uprobe, list);
332
333 if (uprobe && du->uprobe != uprobe)
334 continue;
335 if (mm && du->mm != mm)
336 continue;
337
338 delayed_uprobe_delete(du);
339 }
340}
341
342static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343 struct vm_area_struct *vma)
344{
345 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346
347 return uprobe->ref_ctr_offset &&
348 vma->vm_file &&
349 file_inode(vma->vm_file) == uprobe->inode &&
350 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351 vma->vm_start <= vaddr &&
352 vma->vm_end > vaddr;
353}
354
355static struct vm_area_struct *
356find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357{
358 struct vm_area_struct *tmp;
359
360 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361 if (valid_ref_ctr_vma(uprobe, tmp))
362 return tmp;
363
364 return NULL;
365}
366
367static int
368__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369{
370 void *kaddr;
371 struct page *page;
372 struct vm_area_struct *vma;
373 int ret;
374 short *ptr;
375
376 if (!vaddr || !d)
377 return -EINVAL;
378
379 ret = get_user_pages_remote(mm, vaddr, 1,
380 FOLL_WRITE, &page, &vma, NULL);
381 if (unlikely(ret <= 0)) {
382 /*
383 * We are asking for 1 page. If get_user_pages_remote() fails,
384 * it may return 0, in that case we have to return error.
385 */
386 return ret == 0 ? -EBUSY : ret;
387 }
388
389 kaddr = kmap_atomic(page);
390 ptr = kaddr + (vaddr & ~PAGE_MASK);
391
392 if (unlikely(*ptr + d < 0)) {
393 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
395 ret = -EINVAL;
396 goto out;
397 }
398
399 *ptr += d;
400 ret = 0;
401out:
402 kunmap_atomic(kaddr);
403 put_page(page);
404 return ret;
405}
406
407static void update_ref_ctr_warn(struct uprobe *uprobe,
408 struct mm_struct *mm, short d)
409{
410 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413 (unsigned long long) uprobe->offset,
414 (unsigned long long) uprobe->ref_ctr_offset, mm);
415}
416
417static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418 short d)
419{
420 struct vm_area_struct *rc_vma;
421 unsigned long rc_vaddr;
422 int ret = 0;
423
424 rc_vma = find_ref_ctr_vma(uprobe, mm);
425
426 if (rc_vma) {
427 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428 ret = __update_ref_ctr(mm, rc_vaddr, d);
429 if (ret)
430 update_ref_ctr_warn(uprobe, mm, d);
431
432 if (d > 0)
433 return ret;
434 }
435
436 mutex_lock(&delayed_uprobe_lock);
437 if (d > 0)
438 ret = delayed_uprobe_add(uprobe, mm);
439 else
440 delayed_uprobe_remove(uprobe, mm);
441 mutex_unlock(&delayed_uprobe_lock);
442
443 return ret;
444}
445
446/*
447 * NOTE:
448 * Expect the breakpoint instruction to be the smallest size instruction for
449 * the architecture. If an arch has variable length instruction and the
450 * breakpoint instruction is not of the smallest length instruction
451 * supported by that architecture then we need to modify is_trap_at_addr and
452 * uprobe_write_opcode accordingly. This would never be a problem for archs
453 * that have fixed length instructions.
454 *
455 * uprobe_write_opcode - write the opcode at a given virtual address.
456 * @mm: the probed process address space.
457 * @vaddr: the virtual address to store the opcode.
458 * @opcode: opcode to be written at @vaddr.
459 *
460 * Called with mm->mmap_lock held for write.
461 * Return 0 (success) or a negative errno.
462 */
463int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464 unsigned long vaddr, uprobe_opcode_t opcode)
465{
466 struct uprobe *uprobe;
467 struct page *old_page, *new_page;
468 struct vm_area_struct *vma;
469 int ret, is_register, ref_ctr_updated = 0;
470 bool orig_page_huge = false;
471 unsigned int gup_flags = FOLL_FORCE;
472
473 is_register = is_swbp_insn(&opcode);
474 uprobe = container_of(auprobe, struct uprobe, arch);
475
476retry:
477 if (is_register)
478 gup_flags |= FOLL_SPLIT_PMD;
479 /* Read the page with vaddr into memory */
480 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
481 &old_page, &vma, NULL);
482 if (ret <= 0)
483 return ret;
484
485 ret = verify_opcode(old_page, vaddr, &opcode);
486 if (ret <= 0)
487 goto put_old;
488
489 if (WARN(!is_register && PageCompound(old_page),
490 "uprobe unregister should never work on compound page\n")) {
491 ret = -EINVAL;
492 goto put_old;
493 }
494
495 /* We are going to replace instruction, update ref_ctr. */
496 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498 if (ret)
499 goto put_old;
500
501 ref_ctr_updated = 1;
502 }
503
504 ret = 0;
505 if (!is_register && !PageAnon(old_page))
506 goto put_old;
507
508 ret = anon_vma_prepare(vma);
509 if (ret)
510 goto put_old;
511
512 ret = -ENOMEM;
513 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514 if (!new_page)
515 goto put_old;
516
517 __SetPageUptodate(new_page);
518 copy_highpage(new_page, old_page);
519 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520
521 if (!is_register) {
522 struct page *orig_page;
523 pgoff_t index;
524
525 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526
527 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529 index);
530
531 if (orig_page) {
532 if (PageUptodate(orig_page) &&
533 pages_identical(new_page, orig_page)) {
534 /* let go new_page */
535 put_page(new_page);
536 new_page = NULL;
537
538 if (PageCompound(orig_page))
539 orig_page_huge = true;
540 }
541 put_page(orig_page);
542 }
543 }
544
545 ret = __replace_page(vma, vaddr, old_page, new_page);
546 if (new_page)
547 put_page(new_page);
548put_old:
549 put_page(old_page);
550
551 if (unlikely(ret == -EAGAIN))
552 goto retry;
553
554 /* Revert back reference counter if instruction update failed. */
555 if (ret && is_register && ref_ctr_updated)
556 update_ref_ctr(uprobe, mm, -1);
557
558 /* try collapse pmd for compound page */
559 if (!ret && orig_page_huge)
560 collapse_pte_mapped_thp(mm, vaddr);
561
562 return ret;
563}
564
565/**
566 * set_swbp - store breakpoint at a given address.
567 * @auprobe: arch specific probepoint information.
568 * @mm: the probed process address space.
569 * @vaddr: the virtual address to insert the opcode.
570 *
571 * For mm @mm, store the breakpoint instruction at @vaddr.
572 * Return 0 (success) or a negative errno.
573 */
574int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575{
576 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577}
578
579/**
580 * set_orig_insn - Restore the original instruction.
581 * @mm: the probed process address space.
582 * @auprobe: arch specific probepoint information.
583 * @vaddr: the virtual address to insert the opcode.
584 *
585 * For mm @mm, restore the original opcode (opcode) at @vaddr.
586 * Return 0 (success) or a negative errno.
587 */
588int __weak
589set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590{
591 return uprobe_write_opcode(auprobe, mm, vaddr,
592 *(uprobe_opcode_t *)&auprobe->insn);
593}
594
595static struct uprobe *get_uprobe(struct uprobe *uprobe)
596{
597 refcount_inc(&uprobe->ref);
598 return uprobe;
599}
600
601static void put_uprobe(struct uprobe *uprobe)
602{
603 if (refcount_dec_and_test(&uprobe->ref)) {
604 /*
605 * If application munmap(exec_vma) before uprobe_unregister()
606 * gets called, we don't get a chance to remove uprobe from
607 * delayed_uprobe_list from remove_breakpoint(). Do it here.
608 */
609 mutex_lock(&delayed_uprobe_lock);
610 delayed_uprobe_remove(uprobe, NULL);
611 mutex_unlock(&delayed_uprobe_lock);
612 kfree(uprobe);
613 }
614}
615
616static int match_uprobe(struct uprobe *l, struct uprobe *r)
617{
618 if (l->inode < r->inode)
619 return -1;
620
621 if (l->inode > r->inode)
622 return 1;
623
624 if (l->offset < r->offset)
625 return -1;
626
627 if (l->offset > r->offset)
628 return 1;
629
630 return 0;
631}
632
633static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
634{
635 struct uprobe u = { .inode = inode, .offset = offset };
636 struct rb_node *n = uprobes_tree.rb_node;
637 struct uprobe *uprobe;
638 int match;
639
640 while (n) {
641 uprobe = rb_entry(n, struct uprobe, rb_node);
642 match = match_uprobe(&u, uprobe);
643 if (!match)
644 return get_uprobe(uprobe);
645
646 if (match < 0)
647 n = n->rb_left;
648 else
649 n = n->rb_right;
650 }
651 return NULL;
652}
653
654/*
655 * Find a uprobe corresponding to a given inode:offset
656 * Acquires uprobes_treelock
657 */
658static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
659{
660 struct uprobe *uprobe;
661
662 spin_lock(&uprobes_treelock);
663 uprobe = __find_uprobe(inode, offset);
664 spin_unlock(&uprobes_treelock);
665
666 return uprobe;
667}
668
669static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
670{
671 struct rb_node **p = &uprobes_tree.rb_node;
672 struct rb_node *parent = NULL;
673 struct uprobe *u;
674 int match;
675
676 while (*p) {
677 parent = *p;
678 u = rb_entry(parent, struct uprobe, rb_node);
679 match = match_uprobe(uprobe, u);
680 if (!match)
681 return get_uprobe(u);
682
683 if (match < 0)
684 p = &parent->rb_left;
685 else
686 p = &parent->rb_right;
687
688 }
689
690 u = NULL;
691 rb_link_node(&uprobe->rb_node, parent, p);
692 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
693 /* get access + creation ref */
694 refcount_set(&uprobe->ref, 2);
695
696 return u;
697}
698
699/*
700 * Acquire uprobes_treelock.
701 * Matching uprobe already exists in rbtree;
702 * increment (access refcount) and return the matching uprobe.
703 *
704 * No matching uprobe; insert the uprobe in rb_tree;
705 * get a double refcount (access + creation) and return NULL.
706 */
707static struct uprobe *insert_uprobe(struct uprobe *uprobe)
708{
709 struct uprobe *u;
710
711 spin_lock(&uprobes_treelock);
712 u = __insert_uprobe(uprobe);
713 spin_unlock(&uprobes_treelock);
714
715 return u;
716}
717
718static void
719ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
720{
721 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
722 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
723 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
724 (unsigned long long) cur_uprobe->ref_ctr_offset,
725 (unsigned long long) uprobe->ref_ctr_offset);
726}
727
728static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
729 loff_t ref_ctr_offset)
730{
731 struct uprobe *uprobe, *cur_uprobe;
732
733 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
734 if (!uprobe)
735 return NULL;
736
737 uprobe->inode = inode;
738 uprobe->offset = offset;
739 uprobe->ref_ctr_offset = ref_ctr_offset;
740 init_rwsem(&uprobe->register_rwsem);
741 init_rwsem(&uprobe->consumer_rwsem);
742
743 /* add to uprobes_tree, sorted on inode:offset */
744 cur_uprobe = insert_uprobe(uprobe);
745 /* a uprobe exists for this inode:offset combination */
746 if (cur_uprobe) {
747 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
748 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
749 put_uprobe(cur_uprobe);
750 kfree(uprobe);
751 return ERR_PTR(-EINVAL);
752 }
753 kfree(uprobe);
754 uprobe = cur_uprobe;
755 }
756
757 return uprobe;
758}
759
760static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
761{
762 down_write(&uprobe->consumer_rwsem);
763 uc->next = uprobe->consumers;
764 uprobe->consumers = uc;
765 up_write(&uprobe->consumer_rwsem);
766}
767
768/*
769 * For uprobe @uprobe, delete the consumer @uc.
770 * Return true if the @uc is deleted successfully
771 * or return false.
772 */
773static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
774{
775 struct uprobe_consumer **con;
776 bool ret = false;
777
778 down_write(&uprobe->consumer_rwsem);
779 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
780 if (*con == uc) {
781 *con = uc->next;
782 ret = true;
783 break;
784 }
785 }
786 up_write(&uprobe->consumer_rwsem);
787
788 return ret;
789}
790
791static int __copy_insn(struct address_space *mapping, struct file *filp,
792 void *insn, int nbytes, loff_t offset)
793{
794 struct page *page;
795 /*
796 * Ensure that the page that has the original instruction is populated
797 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
798 * see uprobe_register().
799 */
800 if (mapping->a_ops->readpage)
801 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
802 else
803 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
804 if (IS_ERR(page))
805 return PTR_ERR(page);
806
807 copy_from_page(page, offset, insn, nbytes);
808 put_page(page);
809
810 return 0;
811}
812
813static int copy_insn(struct uprobe *uprobe, struct file *filp)
814{
815 struct address_space *mapping = uprobe->inode->i_mapping;
816 loff_t offs = uprobe->offset;
817 void *insn = &uprobe->arch.insn;
818 int size = sizeof(uprobe->arch.insn);
819 int len, err = -EIO;
820
821 /* Copy only available bytes, -EIO if nothing was read */
822 do {
823 if (offs >= i_size_read(uprobe->inode))
824 break;
825
826 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
827 err = __copy_insn(mapping, filp, insn, len, offs);
828 if (err)
829 break;
830
831 insn += len;
832 offs += len;
833 size -= len;
834 } while (size);
835
836 return err;
837}
838
839static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
840 struct mm_struct *mm, unsigned long vaddr)
841{
842 int ret = 0;
843
844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
845 return ret;
846
847 /* TODO: move this into _register, until then we abuse this sem. */
848 down_write(&uprobe->consumer_rwsem);
849 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
850 goto out;
851
852 ret = copy_insn(uprobe, file);
853 if (ret)
854 goto out;
855
856 ret = -ENOTSUPP;
857 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
858 goto out;
859
860 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
861 if (ret)
862 goto out;
863
864 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
865 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
866
867 out:
868 up_write(&uprobe->consumer_rwsem);
869
870 return ret;
871}
872
873static inline bool consumer_filter(struct uprobe_consumer *uc,
874 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
875{
876 return !uc->filter || uc->filter(uc, ctx, mm);
877}
878
879static bool filter_chain(struct uprobe *uprobe,
880 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
881{
882 struct uprobe_consumer *uc;
883 bool ret = false;
884
885 down_read(&uprobe->consumer_rwsem);
886 for (uc = uprobe->consumers; uc; uc = uc->next) {
887 ret = consumer_filter(uc, ctx, mm);
888 if (ret)
889 break;
890 }
891 up_read(&uprobe->consumer_rwsem);
892
893 return ret;
894}
895
896static int
897install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
898 struct vm_area_struct *vma, unsigned long vaddr)
899{
900 bool first_uprobe;
901 int ret;
902
903 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
904 if (ret)
905 return ret;
906
907 /*
908 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
909 * the task can hit this breakpoint right after __replace_page().
910 */
911 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
912 if (first_uprobe)
913 set_bit(MMF_HAS_UPROBES, &mm->flags);
914
915 ret = set_swbp(&uprobe->arch, mm, vaddr);
916 if (!ret)
917 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
918 else if (first_uprobe)
919 clear_bit(MMF_HAS_UPROBES, &mm->flags);
920
921 return ret;
922}
923
924static int
925remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
926{
927 set_bit(MMF_RECALC_UPROBES, &mm->flags);
928 return set_orig_insn(&uprobe->arch, mm, vaddr);
929}
930
931static inline bool uprobe_is_active(struct uprobe *uprobe)
932{
933 return !RB_EMPTY_NODE(&uprobe->rb_node);
934}
935/*
936 * There could be threads that have already hit the breakpoint. They
937 * will recheck the current insn and restart if find_uprobe() fails.
938 * See find_active_uprobe().
939 */
940static void delete_uprobe(struct uprobe *uprobe)
941{
942 if (WARN_ON(!uprobe_is_active(uprobe)))
943 return;
944
945 spin_lock(&uprobes_treelock);
946 rb_erase(&uprobe->rb_node, &uprobes_tree);
947 spin_unlock(&uprobes_treelock);
948 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
949 put_uprobe(uprobe);
950}
951
952struct map_info {
953 struct map_info *next;
954 struct mm_struct *mm;
955 unsigned long vaddr;
956};
957
958static inline struct map_info *free_map_info(struct map_info *info)
959{
960 struct map_info *next = info->next;
961 kfree(info);
962 return next;
963}
964
965static struct map_info *
966build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
967{
968 unsigned long pgoff = offset >> PAGE_SHIFT;
969 struct vm_area_struct *vma;
970 struct map_info *curr = NULL;
971 struct map_info *prev = NULL;
972 struct map_info *info;
973 int more = 0;
974
975 again:
976 i_mmap_lock_read(mapping);
977 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
978 if (!valid_vma(vma, is_register))
979 continue;
980
981 if (!prev && !more) {
982 /*
983 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
984 * reclaim. This is optimistic, no harm done if it fails.
985 */
986 prev = kmalloc(sizeof(struct map_info),
987 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
988 if (prev)
989 prev->next = NULL;
990 }
991 if (!prev) {
992 more++;
993 continue;
994 }
995
996 if (!mmget_not_zero(vma->vm_mm))
997 continue;
998
999 info = prev;
1000 prev = prev->next;
1001 info->next = curr;
1002 curr = info;
1003
1004 info->mm = vma->vm_mm;
1005 info->vaddr = offset_to_vaddr(vma, offset);
1006 }
1007 i_mmap_unlock_read(mapping);
1008
1009 if (!more)
1010 goto out;
1011
1012 prev = curr;
1013 while (curr) {
1014 mmput(curr->mm);
1015 curr = curr->next;
1016 }
1017
1018 do {
1019 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1020 if (!info) {
1021 curr = ERR_PTR(-ENOMEM);
1022 goto out;
1023 }
1024 info->next = prev;
1025 prev = info;
1026 } while (--more);
1027
1028 goto again;
1029 out:
1030 while (prev)
1031 prev = free_map_info(prev);
1032 return curr;
1033}
1034
1035static int
1036register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1037{
1038 bool is_register = !!new;
1039 struct map_info *info;
1040 int err = 0;
1041
1042 percpu_down_write(&dup_mmap_sem);
1043 info = build_map_info(uprobe->inode->i_mapping,
1044 uprobe->offset, is_register);
1045 if (IS_ERR(info)) {
1046 err = PTR_ERR(info);
1047 goto out;
1048 }
1049
1050 while (info) {
1051 struct mm_struct *mm = info->mm;
1052 struct vm_area_struct *vma;
1053
1054 if (err && is_register)
1055 goto free;
1056
1057 mmap_write_lock(mm);
1058 vma = find_vma(mm, info->vaddr);
1059 if (!vma || !valid_vma(vma, is_register) ||
1060 file_inode(vma->vm_file) != uprobe->inode)
1061 goto unlock;
1062
1063 if (vma->vm_start > info->vaddr ||
1064 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1065 goto unlock;
1066
1067 if (is_register) {
1068 /* consult only the "caller", new consumer. */
1069 if (consumer_filter(new,
1070 UPROBE_FILTER_REGISTER, mm))
1071 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1072 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1073 if (!filter_chain(uprobe,
1074 UPROBE_FILTER_UNREGISTER, mm))
1075 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1076 }
1077
1078 unlock:
1079 mmap_write_unlock(mm);
1080 free:
1081 mmput(mm);
1082 info = free_map_info(info);
1083 }
1084 out:
1085 percpu_up_write(&dup_mmap_sem);
1086 return err;
1087}
1088
1089static void
1090__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1091{
1092 int err;
1093
1094 if (WARN_ON(!consumer_del(uprobe, uc)))
1095 return;
1096
1097 err = register_for_each_vma(uprobe, NULL);
1098 /* TODO : cant unregister? schedule a worker thread */
1099 if (!uprobe->consumers && !err)
1100 delete_uprobe(uprobe);
1101}
1102
1103/*
1104 * uprobe_unregister - unregister an already registered probe.
1105 * @inode: the file in which the probe has to be removed.
1106 * @offset: offset from the start of the file.
1107 * @uc: identify which probe if multiple probes are colocated.
1108 */
1109void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1110{
1111 struct uprobe *uprobe;
1112
1113 uprobe = find_uprobe(inode, offset);
1114 if (WARN_ON(!uprobe))
1115 return;
1116
1117 down_write(&uprobe->register_rwsem);
1118 __uprobe_unregister(uprobe, uc);
1119 up_write(&uprobe->register_rwsem);
1120 put_uprobe(uprobe);
1121}
1122EXPORT_SYMBOL_GPL(uprobe_unregister);
1123
1124/*
1125 * __uprobe_register - register a probe
1126 * @inode: the file in which the probe has to be placed.
1127 * @offset: offset from the start of the file.
1128 * @uc: information on howto handle the probe..
1129 *
1130 * Apart from the access refcount, __uprobe_register() takes a creation
1131 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1132 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1133 * tuple). Creation refcount stops uprobe_unregister from freeing the
1134 * @uprobe even before the register operation is complete. Creation
1135 * refcount is released when the last @uc for the @uprobe
1136 * unregisters. Caller of __uprobe_register() is required to keep @inode
1137 * (and the containing mount) referenced.
1138 *
1139 * Return errno if it cannot successully install probes
1140 * else return 0 (success)
1141 */
1142static int __uprobe_register(struct inode *inode, loff_t offset,
1143 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1144{
1145 struct uprobe *uprobe;
1146 int ret;
1147
1148 /* Uprobe must have at least one set consumer */
1149 if (!uc->handler && !uc->ret_handler)
1150 return -EINVAL;
1151
1152 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1153 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1154 return -EIO;
1155 /* Racy, just to catch the obvious mistakes */
1156 if (offset > i_size_read(inode))
1157 return -EINVAL;
1158
1159 /*
1160 * This ensures that copy_from_page(), copy_to_page() and
1161 * __update_ref_ctr() can't cross page boundary.
1162 */
1163 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1164 return -EINVAL;
1165 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1166 return -EINVAL;
1167
1168 retry:
1169 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1170 if (!uprobe)
1171 return -ENOMEM;
1172 if (IS_ERR(uprobe))
1173 return PTR_ERR(uprobe);
1174
1175 /*
1176 * We can race with uprobe_unregister()->delete_uprobe().
1177 * Check uprobe_is_active() and retry if it is false.
1178 */
1179 down_write(&uprobe->register_rwsem);
1180 ret = -EAGAIN;
1181 if (likely(uprobe_is_active(uprobe))) {
1182 consumer_add(uprobe, uc);
1183 ret = register_for_each_vma(uprobe, uc);
1184 if (ret)
1185 __uprobe_unregister(uprobe, uc);
1186 }
1187 up_write(&uprobe->register_rwsem);
1188 put_uprobe(uprobe);
1189
1190 if (unlikely(ret == -EAGAIN))
1191 goto retry;
1192 return ret;
1193}
1194
1195int uprobe_register(struct inode *inode, loff_t offset,
1196 struct uprobe_consumer *uc)
1197{
1198 return __uprobe_register(inode, offset, 0, uc);
1199}
1200EXPORT_SYMBOL_GPL(uprobe_register);
1201
1202int uprobe_register_refctr(struct inode *inode, loff_t offset,
1203 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1204{
1205 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1206}
1207EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1208
1209/*
1210 * uprobe_apply - unregister an already registered probe.
1211 * @inode: the file in which the probe has to be removed.
1212 * @offset: offset from the start of the file.
1213 * @uc: consumer which wants to add more or remove some breakpoints
1214 * @add: add or remove the breakpoints
1215 */
1216int uprobe_apply(struct inode *inode, loff_t offset,
1217 struct uprobe_consumer *uc, bool add)
1218{
1219 struct uprobe *uprobe;
1220 struct uprobe_consumer *con;
1221 int ret = -ENOENT;
1222
1223 uprobe = find_uprobe(inode, offset);
1224 if (WARN_ON(!uprobe))
1225 return ret;
1226
1227 down_write(&uprobe->register_rwsem);
1228 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1229 ;
1230 if (con)
1231 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1232 up_write(&uprobe->register_rwsem);
1233 put_uprobe(uprobe);
1234
1235 return ret;
1236}
1237
1238static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1239{
1240 struct vm_area_struct *vma;
1241 int err = 0;
1242
1243 mmap_read_lock(mm);
1244 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1245 unsigned long vaddr;
1246 loff_t offset;
1247
1248 if (!valid_vma(vma, false) ||
1249 file_inode(vma->vm_file) != uprobe->inode)
1250 continue;
1251
1252 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1253 if (uprobe->offset < offset ||
1254 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1255 continue;
1256
1257 vaddr = offset_to_vaddr(vma, uprobe->offset);
1258 err |= remove_breakpoint(uprobe, mm, vaddr);
1259 }
1260 mmap_read_unlock(mm);
1261
1262 return err;
1263}
1264
1265static struct rb_node *
1266find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1267{
1268 struct rb_node *n = uprobes_tree.rb_node;
1269
1270 while (n) {
1271 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1272
1273 if (inode < u->inode) {
1274 n = n->rb_left;
1275 } else if (inode > u->inode) {
1276 n = n->rb_right;
1277 } else {
1278 if (max < u->offset)
1279 n = n->rb_left;
1280 else if (min > u->offset)
1281 n = n->rb_right;
1282 else
1283 break;
1284 }
1285 }
1286
1287 return n;
1288}
1289
1290/*
1291 * For a given range in vma, build a list of probes that need to be inserted.
1292 */
1293static void build_probe_list(struct inode *inode,
1294 struct vm_area_struct *vma,
1295 unsigned long start, unsigned long end,
1296 struct list_head *head)
1297{
1298 loff_t min, max;
1299 struct rb_node *n, *t;
1300 struct uprobe *u;
1301
1302 INIT_LIST_HEAD(head);
1303 min = vaddr_to_offset(vma, start);
1304 max = min + (end - start) - 1;
1305
1306 spin_lock(&uprobes_treelock);
1307 n = find_node_in_range(inode, min, max);
1308 if (n) {
1309 for (t = n; t; t = rb_prev(t)) {
1310 u = rb_entry(t, struct uprobe, rb_node);
1311 if (u->inode != inode || u->offset < min)
1312 break;
1313 list_add(&u->pending_list, head);
1314 get_uprobe(u);
1315 }
1316 for (t = n; (t = rb_next(t)); ) {
1317 u = rb_entry(t, struct uprobe, rb_node);
1318 if (u->inode != inode || u->offset > max)
1319 break;
1320 list_add(&u->pending_list, head);
1321 get_uprobe(u);
1322 }
1323 }
1324 spin_unlock(&uprobes_treelock);
1325}
1326
1327/* @vma contains reference counter, not the probed instruction. */
1328static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1329{
1330 struct list_head *pos, *q;
1331 struct delayed_uprobe *du;
1332 unsigned long vaddr;
1333 int ret = 0, err = 0;
1334
1335 mutex_lock(&delayed_uprobe_lock);
1336 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1337 du = list_entry(pos, struct delayed_uprobe, list);
1338
1339 if (du->mm != vma->vm_mm ||
1340 !valid_ref_ctr_vma(du->uprobe, vma))
1341 continue;
1342
1343 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1344 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1345 if (ret) {
1346 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1347 if (!err)
1348 err = ret;
1349 }
1350 delayed_uprobe_delete(du);
1351 }
1352 mutex_unlock(&delayed_uprobe_lock);
1353 return err;
1354}
1355
1356/*
1357 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1358 *
1359 * Currently we ignore all errors and always return 0, the callers
1360 * can't handle the failure anyway.
1361 */
1362int uprobe_mmap(struct vm_area_struct *vma)
1363{
1364 struct list_head tmp_list;
1365 struct uprobe *uprobe, *u;
1366 struct inode *inode;
1367
1368 if (no_uprobe_events())
1369 return 0;
1370
1371 if (vma->vm_file &&
1372 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1373 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1374 delayed_ref_ctr_inc(vma);
1375
1376 if (!valid_vma(vma, true))
1377 return 0;
1378
1379 inode = file_inode(vma->vm_file);
1380 if (!inode)
1381 return 0;
1382
1383 mutex_lock(uprobes_mmap_hash(inode));
1384 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1385 /*
1386 * We can race with uprobe_unregister(), this uprobe can be already
1387 * removed. But in this case filter_chain() must return false, all
1388 * consumers have gone away.
1389 */
1390 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1391 if (!fatal_signal_pending(current) &&
1392 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1393 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1394 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1395 }
1396 put_uprobe(uprobe);
1397 }
1398 mutex_unlock(uprobes_mmap_hash(inode));
1399
1400 return 0;
1401}
1402
1403static bool
1404vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1405{
1406 loff_t min, max;
1407 struct inode *inode;
1408 struct rb_node *n;
1409
1410 inode = file_inode(vma->vm_file);
1411
1412 min = vaddr_to_offset(vma, start);
1413 max = min + (end - start) - 1;
1414
1415 spin_lock(&uprobes_treelock);
1416 n = find_node_in_range(inode, min, max);
1417 spin_unlock(&uprobes_treelock);
1418
1419 return !!n;
1420}
1421
1422/*
1423 * Called in context of a munmap of a vma.
1424 */
1425void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1426{
1427 if (no_uprobe_events() || !valid_vma(vma, false))
1428 return;
1429
1430 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1431 return;
1432
1433 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1434 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1435 return;
1436
1437 if (vma_has_uprobes(vma, start, end))
1438 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1439}
1440
1441/* Slot allocation for XOL */
1442static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1443{
1444 struct vm_area_struct *vma;
1445 int ret;
1446
1447 if (mmap_write_lock_killable(mm))
1448 return -EINTR;
1449
1450 if (mm->uprobes_state.xol_area) {
1451 ret = -EALREADY;
1452 goto fail;
1453 }
1454
1455 if (!area->vaddr) {
1456 /* Try to map as high as possible, this is only a hint. */
1457 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1458 PAGE_SIZE, 0, 0);
1459 if (IS_ERR_VALUE(area->vaddr)) {
1460 ret = area->vaddr;
1461 goto fail;
1462 }
1463 }
1464
1465 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1466 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1467 &area->xol_mapping);
1468 if (IS_ERR(vma)) {
1469 ret = PTR_ERR(vma);
1470 goto fail;
1471 }
1472
1473 ret = 0;
1474 /* pairs with get_xol_area() */
1475 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1476 fail:
1477 mmap_write_unlock(mm);
1478
1479 return ret;
1480}
1481
1482static struct xol_area *__create_xol_area(unsigned long vaddr)
1483{
1484 struct mm_struct *mm = current->mm;
1485 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1486 struct xol_area *area;
1487
1488 area = kmalloc(sizeof(*area), GFP_KERNEL);
1489 if (unlikely(!area))
1490 goto out;
1491
1492 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1493 GFP_KERNEL);
1494 if (!area->bitmap)
1495 goto free_area;
1496
1497 area->xol_mapping.name = "[uprobes]";
1498 area->xol_mapping.fault = NULL;
1499 area->xol_mapping.pages = area->pages;
1500 area->pages[0] = alloc_page(GFP_HIGHUSER);
1501 if (!area->pages[0])
1502 goto free_bitmap;
1503 area->pages[1] = NULL;
1504
1505 area->vaddr = vaddr;
1506 init_waitqueue_head(&area->wq);
1507 /* Reserve the 1st slot for get_trampoline_vaddr() */
1508 set_bit(0, area->bitmap);
1509 atomic_set(&area->slot_count, 1);
1510 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1511
1512 if (!xol_add_vma(mm, area))
1513 return area;
1514
1515 __free_page(area->pages[0]);
1516 free_bitmap:
1517 kfree(area->bitmap);
1518 free_area:
1519 kfree(area);
1520 out:
1521 return NULL;
1522}
1523
1524/*
1525 * get_xol_area - Allocate process's xol_area if necessary.
1526 * This area will be used for storing instructions for execution out of line.
1527 *
1528 * Returns the allocated area or NULL.
1529 */
1530static struct xol_area *get_xol_area(void)
1531{
1532 struct mm_struct *mm = current->mm;
1533 struct xol_area *area;
1534
1535 if (!mm->uprobes_state.xol_area)
1536 __create_xol_area(0);
1537
1538 /* Pairs with xol_add_vma() smp_store_release() */
1539 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1540 return area;
1541}
1542
1543/*
1544 * uprobe_clear_state - Free the area allocated for slots.
1545 */
1546void uprobe_clear_state(struct mm_struct *mm)
1547{
1548 struct xol_area *area = mm->uprobes_state.xol_area;
1549
1550 mutex_lock(&delayed_uprobe_lock);
1551 delayed_uprobe_remove(NULL, mm);
1552 mutex_unlock(&delayed_uprobe_lock);
1553
1554 if (!area)
1555 return;
1556
1557 put_page(area->pages[0]);
1558 kfree(area->bitmap);
1559 kfree(area);
1560}
1561
1562void uprobe_start_dup_mmap(void)
1563{
1564 percpu_down_read(&dup_mmap_sem);
1565}
1566
1567void uprobe_end_dup_mmap(void)
1568{
1569 percpu_up_read(&dup_mmap_sem);
1570}
1571
1572void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1573{
1574 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1575 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1576 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1577 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1578 }
1579}
1580
1581/*
1582 * - search for a free slot.
1583 */
1584static unsigned long xol_take_insn_slot(struct xol_area *area)
1585{
1586 unsigned long slot_addr;
1587 int slot_nr;
1588
1589 do {
1590 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1591 if (slot_nr < UINSNS_PER_PAGE) {
1592 if (!test_and_set_bit(slot_nr, area->bitmap))
1593 break;
1594
1595 slot_nr = UINSNS_PER_PAGE;
1596 continue;
1597 }
1598 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1599 } while (slot_nr >= UINSNS_PER_PAGE);
1600
1601 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1602 atomic_inc(&area->slot_count);
1603
1604 return slot_addr;
1605}
1606
1607/*
1608 * xol_get_insn_slot - allocate a slot for xol.
1609 * Returns the allocated slot address or 0.
1610 */
1611static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1612{
1613 struct xol_area *area;
1614 unsigned long xol_vaddr;
1615
1616 area = get_xol_area();
1617 if (!area)
1618 return 0;
1619
1620 xol_vaddr = xol_take_insn_slot(area);
1621 if (unlikely(!xol_vaddr))
1622 return 0;
1623
1624 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1625 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1626
1627 return xol_vaddr;
1628}
1629
1630/*
1631 * xol_free_insn_slot - If slot was earlier allocated by
1632 * @xol_get_insn_slot(), make the slot available for
1633 * subsequent requests.
1634 */
1635static void xol_free_insn_slot(struct task_struct *tsk)
1636{
1637 struct xol_area *area;
1638 unsigned long vma_end;
1639 unsigned long slot_addr;
1640
1641 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1642 return;
1643
1644 slot_addr = tsk->utask->xol_vaddr;
1645 if (unlikely(!slot_addr))
1646 return;
1647
1648 area = tsk->mm->uprobes_state.xol_area;
1649 vma_end = area->vaddr + PAGE_SIZE;
1650 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1651 unsigned long offset;
1652 int slot_nr;
1653
1654 offset = slot_addr - area->vaddr;
1655 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1656 if (slot_nr >= UINSNS_PER_PAGE)
1657 return;
1658
1659 clear_bit(slot_nr, area->bitmap);
1660 atomic_dec(&area->slot_count);
1661 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1662 if (waitqueue_active(&area->wq))
1663 wake_up(&area->wq);
1664
1665 tsk->utask->xol_vaddr = 0;
1666 }
1667}
1668
1669void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1670 void *src, unsigned long len)
1671{
1672 /* Initialize the slot */
1673 copy_to_page(page, vaddr, src, len);
1674
1675 /*
1676 * We probably need flush_icache_user_page() but it needs vma.
1677 * This should work on most of architectures by default. If
1678 * architecture needs to do something different it can define
1679 * its own version of the function.
1680 */
1681 flush_dcache_page(page);
1682}
1683
1684/**
1685 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1686 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1687 * instruction.
1688 * Return the address of the breakpoint instruction.
1689 */
1690unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1691{
1692 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1693}
1694
1695unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1696{
1697 struct uprobe_task *utask = current->utask;
1698
1699 if (unlikely(utask && utask->active_uprobe))
1700 return utask->vaddr;
1701
1702 return instruction_pointer(regs);
1703}
1704
1705static struct return_instance *free_ret_instance(struct return_instance *ri)
1706{
1707 struct return_instance *next = ri->next;
1708 put_uprobe(ri->uprobe);
1709 kfree(ri);
1710 return next;
1711}
1712
1713/*
1714 * Called with no locks held.
1715 * Called in context of an exiting or an exec-ing thread.
1716 */
1717void uprobe_free_utask(struct task_struct *t)
1718{
1719 struct uprobe_task *utask = t->utask;
1720 struct return_instance *ri;
1721
1722 if (!utask)
1723 return;
1724
1725 if (utask->active_uprobe)
1726 put_uprobe(utask->active_uprobe);
1727
1728 ri = utask->return_instances;
1729 while (ri)
1730 ri = free_ret_instance(ri);
1731
1732 xol_free_insn_slot(t);
1733 kfree(utask);
1734 t->utask = NULL;
1735}
1736
1737/*
1738 * Allocate a uprobe_task object for the task if if necessary.
1739 * Called when the thread hits a breakpoint.
1740 *
1741 * Returns:
1742 * - pointer to new uprobe_task on success
1743 * - NULL otherwise
1744 */
1745static struct uprobe_task *get_utask(void)
1746{
1747 if (!current->utask)
1748 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1749 return current->utask;
1750}
1751
1752static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1753{
1754 struct uprobe_task *n_utask;
1755 struct return_instance **p, *o, *n;
1756
1757 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1758 if (!n_utask)
1759 return -ENOMEM;
1760 t->utask = n_utask;
1761
1762 p = &n_utask->return_instances;
1763 for (o = o_utask->return_instances; o; o = o->next) {
1764 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1765 if (!n)
1766 return -ENOMEM;
1767
1768 *n = *o;
1769 get_uprobe(n->uprobe);
1770 n->next = NULL;
1771
1772 *p = n;
1773 p = &n->next;
1774 n_utask->depth++;
1775 }
1776
1777 return 0;
1778}
1779
1780static void uprobe_warn(struct task_struct *t, const char *msg)
1781{
1782 pr_warn("uprobe: %s:%d failed to %s\n",
1783 current->comm, current->pid, msg);
1784}
1785
1786static void dup_xol_work(struct callback_head *work)
1787{
1788 if (current->flags & PF_EXITING)
1789 return;
1790
1791 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1792 !fatal_signal_pending(current))
1793 uprobe_warn(current, "dup xol area");
1794}
1795
1796/*
1797 * Called in context of a new clone/fork from copy_process.
1798 */
1799void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1800{
1801 struct uprobe_task *utask = current->utask;
1802 struct mm_struct *mm = current->mm;
1803 struct xol_area *area;
1804
1805 t->utask = NULL;
1806
1807 if (!utask || !utask->return_instances)
1808 return;
1809
1810 if (mm == t->mm && !(flags & CLONE_VFORK))
1811 return;
1812
1813 if (dup_utask(t, utask))
1814 return uprobe_warn(t, "dup ret instances");
1815
1816 /* The task can fork() after dup_xol_work() fails */
1817 area = mm->uprobes_state.xol_area;
1818 if (!area)
1819 return uprobe_warn(t, "dup xol area");
1820
1821 if (mm == t->mm)
1822 return;
1823
1824 t->utask->dup_xol_addr = area->vaddr;
1825 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1826 task_work_add(t, &t->utask->dup_xol_work, true);
1827}
1828
1829/*
1830 * Current area->vaddr notion assume the trampoline address is always
1831 * equal area->vaddr.
1832 *
1833 * Returns -1 in case the xol_area is not allocated.
1834 */
1835static unsigned long get_trampoline_vaddr(void)
1836{
1837 struct xol_area *area;
1838 unsigned long trampoline_vaddr = -1;
1839
1840 /* Pairs with xol_add_vma() smp_store_release() */
1841 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1842 if (area)
1843 trampoline_vaddr = area->vaddr;
1844
1845 return trampoline_vaddr;
1846}
1847
1848static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1849 struct pt_regs *regs)
1850{
1851 struct return_instance *ri = utask->return_instances;
1852 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1853
1854 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1855 ri = free_ret_instance(ri);
1856 utask->depth--;
1857 }
1858 utask->return_instances = ri;
1859}
1860
1861static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1862{
1863 struct return_instance *ri;
1864 struct uprobe_task *utask;
1865 unsigned long orig_ret_vaddr, trampoline_vaddr;
1866 bool chained;
1867
1868 if (!get_xol_area())
1869 return;
1870
1871 utask = get_utask();
1872 if (!utask)
1873 return;
1874
1875 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1876 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1877 " nestedness limit pid/tgid=%d/%d\n",
1878 current->pid, current->tgid);
1879 return;
1880 }
1881
1882 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1883 if (!ri)
1884 return;
1885
1886 trampoline_vaddr = get_trampoline_vaddr();
1887 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1888 if (orig_ret_vaddr == -1)
1889 goto fail;
1890
1891 /* drop the entries invalidated by longjmp() */
1892 chained = (orig_ret_vaddr == trampoline_vaddr);
1893 cleanup_return_instances(utask, chained, regs);
1894
1895 /*
1896 * We don't want to keep trampoline address in stack, rather keep the
1897 * original return address of first caller thru all the consequent
1898 * instances. This also makes breakpoint unwrapping easier.
1899 */
1900 if (chained) {
1901 if (!utask->return_instances) {
1902 /*
1903 * This situation is not possible. Likely we have an
1904 * attack from user-space.
1905 */
1906 uprobe_warn(current, "handle tail call");
1907 goto fail;
1908 }
1909 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1910 }
1911
1912 ri->uprobe = get_uprobe(uprobe);
1913 ri->func = instruction_pointer(regs);
1914 ri->stack = user_stack_pointer(regs);
1915 ri->orig_ret_vaddr = orig_ret_vaddr;
1916 ri->chained = chained;
1917
1918 utask->depth++;
1919 ri->next = utask->return_instances;
1920 utask->return_instances = ri;
1921
1922 return;
1923 fail:
1924 kfree(ri);
1925}
1926
1927/* Prepare to single-step probed instruction out of line. */
1928static int
1929pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1930{
1931 struct uprobe_task *utask;
1932 unsigned long xol_vaddr;
1933 int err;
1934
1935 utask = get_utask();
1936 if (!utask)
1937 return -ENOMEM;
1938
1939 xol_vaddr = xol_get_insn_slot(uprobe);
1940 if (!xol_vaddr)
1941 return -ENOMEM;
1942
1943 utask->xol_vaddr = xol_vaddr;
1944 utask->vaddr = bp_vaddr;
1945
1946 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1947 if (unlikely(err)) {
1948 xol_free_insn_slot(current);
1949 return err;
1950 }
1951
1952 utask->active_uprobe = uprobe;
1953 utask->state = UTASK_SSTEP;
1954 return 0;
1955}
1956
1957/*
1958 * If we are singlestepping, then ensure this thread is not connected to
1959 * non-fatal signals until completion of singlestep. When xol insn itself
1960 * triggers the signal, restart the original insn even if the task is
1961 * already SIGKILL'ed (since coredump should report the correct ip). This
1962 * is even more important if the task has a handler for SIGSEGV/etc, The
1963 * _same_ instruction should be repeated again after return from the signal
1964 * handler, and SSTEP can never finish in this case.
1965 */
1966bool uprobe_deny_signal(void)
1967{
1968 struct task_struct *t = current;
1969 struct uprobe_task *utask = t->utask;
1970
1971 if (likely(!utask || !utask->active_uprobe))
1972 return false;
1973
1974 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1975
1976 if (signal_pending(t)) {
1977 spin_lock_irq(&t->sighand->siglock);
1978 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1979 spin_unlock_irq(&t->sighand->siglock);
1980
1981 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1982 utask->state = UTASK_SSTEP_TRAPPED;
1983 set_tsk_thread_flag(t, TIF_UPROBE);
1984 }
1985 }
1986
1987 return true;
1988}
1989
1990static void mmf_recalc_uprobes(struct mm_struct *mm)
1991{
1992 struct vm_area_struct *vma;
1993
1994 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1995 if (!valid_vma(vma, false))
1996 continue;
1997 /*
1998 * This is not strictly accurate, we can race with
1999 * uprobe_unregister() and see the already removed
2000 * uprobe if delete_uprobe() was not yet called.
2001 * Or this uprobe can be filtered out.
2002 */
2003 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004 return;
2005 }
2006
2007 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008}
2009
2010static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011{
2012 struct page *page;
2013 uprobe_opcode_t opcode;
2014 int result;
2015
2016 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017 return -EINVAL;
2018
2019 pagefault_disable();
2020 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021 pagefault_enable();
2022
2023 if (likely(result == 0))
2024 goto out;
2025
2026 /*
2027 * The NULL 'tsk' here ensures that any faults that occur here
2028 * will not be accounted to the task. 'mm' *is* current->mm,
2029 * but we treat this as a 'remote' access since it is
2030 * essentially a kernel access to the memory.
2031 */
2032 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2033 NULL, NULL);
2034 if (result < 0)
2035 return result;
2036
2037 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2038 put_page(page);
2039 out:
2040 /* This needs to return true for any variant of the trap insn */
2041 return is_trap_insn(&opcode);
2042}
2043
2044static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2045{
2046 struct mm_struct *mm = current->mm;
2047 struct uprobe *uprobe = NULL;
2048 struct vm_area_struct *vma;
2049
2050 mmap_read_lock(mm);
2051 vma = find_vma(mm, bp_vaddr);
2052 if (vma && vma->vm_start <= bp_vaddr) {
2053 if (valid_vma(vma, false)) {
2054 struct inode *inode = file_inode(vma->vm_file);
2055 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2056
2057 uprobe = find_uprobe(inode, offset);
2058 }
2059
2060 if (!uprobe)
2061 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2062 } else {
2063 *is_swbp = -EFAULT;
2064 }
2065
2066 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2067 mmf_recalc_uprobes(mm);
2068 mmap_read_unlock(mm);
2069
2070 return uprobe;
2071}
2072
2073static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2074{
2075 struct uprobe_consumer *uc;
2076 int remove = UPROBE_HANDLER_REMOVE;
2077 bool need_prep = false; /* prepare return uprobe, when needed */
2078
2079 down_read(&uprobe->register_rwsem);
2080 for (uc = uprobe->consumers; uc; uc = uc->next) {
2081 int rc = 0;
2082
2083 if (uc->handler) {
2084 rc = uc->handler(uc, regs);
2085 WARN(rc & ~UPROBE_HANDLER_MASK,
2086 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2087 }
2088
2089 if (uc->ret_handler)
2090 need_prep = true;
2091
2092 remove &= rc;
2093 }
2094
2095 if (need_prep && !remove)
2096 prepare_uretprobe(uprobe, regs); /* put bp at return */
2097
2098 if (remove && uprobe->consumers) {
2099 WARN_ON(!uprobe_is_active(uprobe));
2100 unapply_uprobe(uprobe, current->mm);
2101 }
2102 up_read(&uprobe->register_rwsem);
2103}
2104
2105static void
2106handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2107{
2108 struct uprobe *uprobe = ri->uprobe;
2109 struct uprobe_consumer *uc;
2110
2111 down_read(&uprobe->register_rwsem);
2112 for (uc = uprobe->consumers; uc; uc = uc->next) {
2113 if (uc->ret_handler)
2114 uc->ret_handler(uc, ri->func, regs);
2115 }
2116 up_read(&uprobe->register_rwsem);
2117}
2118
2119static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2120{
2121 bool chained;
2122
2123 do {
2124 chained = ri->chained;
2125 ri = ri->next; /* can't be NULL if chained */
2126 } while (chained);
2127
2128 return ri;
2129}
2130
2131static void handle_trampoline(struct pt_regs *regs)
2132{
2133 struct uprobe_task *utask;
2134 struct return_instance *ri, *next;
2135 bool valid;
2136
2137 utask = current->utask;
2138 if (!utask)
2139 goto sigill;
2140
2141 ri = utask->return_instances;
2142 if (!ri)
2143 goto sigill;
2144
2145 do {
2146 /*
2147 * We should throw out the frames invalidated by longjmp().
2148 * If this chain is valid, then the next one should be alive
2149 * or NULL; the latter case means that nobody but ri->func
2150 * could hit this trampoline on return. TODO: sigaltstack().
2151 */
2152 next = find_next_ret_chain(ri);
2153 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2154
2155 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2156 do {
2157 if (valid)
2158 handle_uretprobe_chain(ri, regs);
2159 ri = free_ret_instance(ri);
2160 utask->depth--;
2161 } while (ri != next);
2162 } while (!valid);
2163
2164 utask->return_instances = ri;
2165 return;
2166
2167 sigill:
2168 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2169 force_sig(SIGILL);
2170
2171}
2172
2173bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2174{
2175 return false;
2176}
2177
2178bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2179 struct pt_regs *regs)
2180{
2181 return true;
2182}
2183
2184/*
2185 * Run handler and ask thread to singlestep.
2186 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2187 */
2188static void handle_swbp(struct pt_regs *regs)
2189{
2190 struct uprobe *uprobe;
2191 unsigned long bp_vaddr;
2192 int is_swbp;
2193
2194 bp_vaddr = uprobe_get_swbp_addr(regs);
2195 if (bp_vaddr == get_trampoline_vaddr())
2196 return handle_trampoline(regs);
2197
2198 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2199 if (!uprobe) {
2200 if (is_swbp > 0) {
2201 /* No matching uprobe; signal SIGTRAP. */
2202 force_sig(SIGTRAP);
2203 } else {
2204 /*
2205 * Either we raced with uprobe_unregister() or we can't
2206 * access this memory. The latter is only possible if
2207 * another thread plays with our ->mm. In both cases
2208 * we can simply restart. If this vma was unmapped we
2209 * can pretend this insn was not executed yet and get
2210 * the (correct) SIGSEGV after restart.
2211 */
2212 instruction_pointer_set(regs, bp_vaddr);
2213 }
2214 return;
2215 }
2216
2217 /* change it in advance for ->handler() and restart */
2218 instruction_pointer_set(regs, bp_vaddr);
2219
2220 /*
2221 * TODO: move copy_insn/etc into _register and remove this hack.
2222 * After we hit the bp, _unregister + _register can install the
2223 * new and not-yet-analyzed uprobe at the same address, restart.
2224 */
2225 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2226 goto out;
2227
2228 /*
2229 * Pairs with the smp_wmb() in prepare_uprobe().
2230 *
2231 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2232 * we must also see the stores to &uprobe->arch performed by the
2233 * prepare_uprobe() call.
2234 */
2235 smp_rmb();
2236
2237 /* Tracing handlers use ->utask to communicate with fetch methods */
2238 if (!get_utask())
2239 goto out;
2240
2241 if (arch_uprobe_ignore(&uprobe->arch, regs))
2242 goto out;
2243
2244 handler_chain(uprobe, regs);
2245
2246 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2247 goto out;
2248
2249 if (!pre_ssout(uprobe, regs, bp_vaddr))
2250 return;
2251
2252 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2253out:
2254 put_uprobe(uprobe);
2255}
2256
2257/*
2258 * Perform required fix-ups and disable singlestep.
2259 * Allow pending signals to take effect.
2260 */
2261static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2262{
2263 struct uprobe *uprobe;
2264 int err = 0;
2265
2266 uprobe = utask->active_uprobe;
2267 if (utask->state == UTASK_SSTEP_ACK)
2268 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2269 else if (utask->state == UTASK_SSTEP_TRAPPED)
2270 arch_uprobe_abort_xol(&uprobe->arch, regs);
2271 else
2272 WARN_ON_ONCE(1);
2273
2274 put_uprobe(uprobe);
2275 utask->active_uprobe = NULL;
2276 utask->state = UTASK_RUNNING;
2277 xol_free_insn_slot(current);
2278
2279 spin_lock_irq(¤t->sighand->siglock);
2280 recalc_sigpending(); /* see uprobe_deny_signal() */
2281 spin_unlock_irq(¤t->sighand->siglock);
2282
2283 if (unlikely(err)) {
2284 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2285 force_sig(SIGILL);
2286 }
2287}
2288
2289/*
2290 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2291 * allows the thread to return from interrupt. After that handle_swbp()
2292 * sets utask->active_uprobe.
2293 *
2294 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2295 * and allows the thread to return from interrupt.
2296 *
2297 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2298 * uprobe_notify_resume().
2299 */
2300void uprobe_notify_resume(struct pt_regs *regs)
2301{
2302 struct uprobe_task *utask;
2303
2304 clear_thread_flag(TIF_UPROBE);
2305
2306 utask = current->utask;
2307 if (utask && utask->active_uprobe)
2308 handle_singlestep(utask, regs);
2309 else
2310 handle_swbp(regs);
2311}
2312
2313/*
2314 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2315 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2316 */
2317int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2318{
2319 if (!current->mm)
2320 return 0;
2321
2322 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2323 (!current->utask || !current->utask->return_instances))
2324 return 0;
2325
2326 set_thread_flag(TIF_UPROBE);
2327 return 1;
2328}
2329
2330/*
2331 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2332 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2333 */
2334int uprobe_post_sstep_notifier(struct pt_regs *regs)
2335{
2336 struct uprobe_task *utask = current->utask;
2337
2338 if (!current->mm || !utask || !utask->active_uprobe)
2339 /* task is currently not uprobed */
2340 return 0;
2341
2342 utask->state = UTASK_SSTEP_ACK;
2343 set_thread_flag(TIF_UPROBE);
2344 return 1;
2345}
2346
2347static struct notifier_block uprobe_exception_nb = {
2348 .notifier_call = arch_uprobe_exception_notify,
2349 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2350};
2351
2352void __init uprobes_init(void)
2353{
2354 int i;
2355
2356 for (i = 0; i < UPROBES_HASH_SZ; i++)
2357 mutex_init(&uprobes_mmap_mutex[i]);
2358
2359 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2360}