Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/smpboot.h>
  31#include "../time/tick-internal.h"
  32
  33#ifdef CONFIG_RCU_BOOST
  34
  35#include "../locking/rtmutex_common.h"
  36
  37/*
  38 * Control variables for per-CPU and per-rcu_node kthreads.  These
  39 * handle all flavors of RCU.
  40 */
  41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  44DEFINE_PER_CPU(char, rcu_cpu_has_work);
  45
  46#else /* #ifdef CONFIG_RCU_BOOST */
  47
  48/*
  49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  50 * all uses are in dead code.  Provide a definition to keep the compiler
  51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  52 * This probably needs to be excluded from -rt builds.
  53 */
  54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  55
  56#endif /* #else #ifdef CONFIG_RCU_BOOST */
  57
  58#ifdef CONFIG_RCU_NOCB_CPU
  59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  60static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
  61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  63
  64/*
  65 * Check the RCU kernel configuration parameters and print informative
  66 * messages about anything out of the ordinary.
  67 */
  68static void __init rcu_bootup_announce_oddness(void)
  69{
  70	if (IS_ENABLED(CONFIG_RCU_TRACE))
  71		pr_info("\tRCU debugfs-based tracing is enabled.\n");
  72	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  73	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  74		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  75		       RCU_FANOUT);
  76	if (rcu_fanout_exact)
  77		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  78	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  79		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  80	if (IS_ENABLED(CONFIG_PROVE_RCU))
  81		pr_info("\tRCU lockdep checking is enabled.\n");
  82	if (RCU_NUM_LVLS >= 4)
  83		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  84	if (RCU_FANOUT_LEAF != 16)
  85		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  86			RCU_FANOUT_LEAF);
  87	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  88		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
 
  89	if (nr_cpu_ids != NR_CPUS)
  90		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  91	if (IS_ENABLED(CONFIG_RCU_BOOST))
  92		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95#ifdef CONFIG_PREEMPT_RCU
  96
  97RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  98static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  99static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 100
 101static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 102			       bool wake);
 103
 104/*
 105 * Tell them what RCU they are running.
 106 */
 107static void __init rcu_bootup_announce(void)
 108{
 109	pr_info("Preemptible hierarchical RCU implementation.\n");
 110	rcu_bootup_announce_oddness();
 111}
 112
 113/* Flags for rcu_preempt_ctxt_queue() decision table. */
 114#define RCU_GP_TASKS	0x8
 115#define RCU_EXP_TASKS	0x4
 116#define RCU_GP_BLKD	0x2
 117#define RCU_EXP_BLKD	0x1
 118
 119/*
 120 * Queues a task preempted within an RCU-preempt read-side critical
 121 * section into the appropriate location within the ->blkd_tasks list,
 122 * depending on the states of any ongoing normal and expedited grace
 123 * periods.  The ->gp_tasks pointer indicates which element the normal
 124 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 125 * indicates which element the expedited grace period is waiting on (again,
 126 * NULL if none).  If a grace period is waiting on a given element in the
 127 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 128 * adding a task to the tail of the list blocks any grace period that is
 129 * already waiting on one of the elements.  In contrast, adding a task
 130 * to the head of the list won't block any grace period that is already
 131 * waiting on one of the elements.
 132 *
 133 * This queuing is imprecise, and can sometimes make an ongoing grace
 134 * period wait for a task that is not strictly speaking blocking it.
 135 * Given the choice, we needlessly block a normal grace period rather than
 136 * blocking an expedited grace period.
 137 *
 138 * Note that an endless sequence of expedited grace periods still cannot
 139 * indefinitely postpone a normal grace period.  Eventually, all of the
 140 * fixed number of preempted tasks blocking the normal grace period that are
 141 * not also blocking the expedited grace period will resume and complete
 142 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 143 * pointer will equal the ->exp_tasks pointer, at which point the end of
 144 * the corresponding expedited grace period will also be the end of the
 145 * normal grace period.
 146 */
 147static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 148	__releases(rnp->lock) /* But leaves rrupts disabled. */
 149{
 150	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 151			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 152			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 153			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 154	struct task_struct *t = current;
 155
 
 
 
 
 
 
 
 156	/*
 157	 * Decide where to queue the newly blocked task.  In theory,
 158	 * this could be an if-statement.  In practice, when I tried
 159	 * that, it was quite messy.
 160	 */
 161	switch (blkd_state) {
 162	case 0:
 163	case                RCU_EXP_TASKS:
 164	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 165	case RCU_GP_TASKS:
 166	case RCU_GP_TASKS + RCU_EXP_TASKS:
 167
 168		/*
 169		 * Blocking neither GP, or first task blocking the normal
 170		 * GP but not blocking the already-waiting expedited GP.
 171		 * Queue at the head of the list to avoid unnecessarily
 172		 * blocking the already-waiting GPs.
 173		 */
 174		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 175		break;
 176
 177	case                                              RCU_EXP_BLKD:
 178	case                                RCU_GP_BLKD:
 179	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 180	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 181	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 182	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 183
 184		/*
 185		 * First task arriving that blocks either GP, or first task
 186		 * arriving that blocks the expedited GP (with the normal
 187		 * GP already waiting), or a task arriving that blocks
 188		 * both GPs with both GPs already waiting.  Queue at the
 189		 * tail of the list to avoid any GP waiting on any of the
 190		 * already queued tasks that are not blocking it.
 191		 */
 192		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 193		break;
 194
 195	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 196	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 197	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 198
 199		/*
 200		 * Second or subsequent task blocking the expedited GP.
 201		 * The task either does not block the normal GP, or is the
 202		 * first task blocking the normal GP.  Queue just after
 203		 * the first task blocking the expedited GP.
 204		 */
 205		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 206		break;
 207
 208	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 209	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 210
 211		/*
 212		 * Second or subsequent task blocking the normal GP.
 213		 * The task does not block the expedited GP. Queue just
 214		 * after the first task blocking the normal GP.
 215		 */
 216		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 217		break;
 218
 219	default:
 220
 221		/* Yet another exercise in excessive paranoia. */
 222		WARN_ON_ONCE(1);
 223		break;
 224	}
 225
 226	/*
 227	 * We have now queued the task.  If it was the first one to
 228	 * block either grace period, update the ->gp_tasks and/or
 229	 * ->exp_tasks pointers, respectively, to reference the newly
 230	 * blocked tasks.
 231	 */
 232	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 233		rnp->gp_tasks = &t->rcu_node_entry;
 
 
 234	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 235		rnp->exp_tasks = &t->rcu_node_entry;
 
 
 
 
 236	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 237
 238	/*
 239	 * Report the quiescent state for the expedited GP.  This expedited
 240	 * GP should not be able to end until we report, so there should be
 241	 * no need to check for a subsequent expedited GP.  (Though we are
 242	 * still in a quiescent state in any case.)
 243	 */
 244	if (blkd_state & RCU_EXP_BLKD &&
 245	    t->rcu_read_unlock_special.b.exp_need_qs) {
 246		t->rcu_read_unlock_special.b.exp_need_qs = false;
 247		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 248	} else {
 249		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 250	}
 251}
 252
 253/*
 254 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 255 * that this just means that the task currently running on the CPU is
 256 * not in a quiescent state.  There might be any number of tasks blocked
 257 * while in an RCU read-side critical section.
 
 
 
 
 
 258 *
 259 * As with the other rcu_*_qs() functions, callers to this function
 260 * must disable preemption.
 261 */
 262static void rcu_preempt_qs(void)
 263{
 264	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 
 265		trace_rcu_grace_period(TPS("rcu_preempt"),
 266				       __this_cpu_read(rcu_data_p->gpnum),
 267				       TPS("cpuqs"));
 268		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 269		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 270		current->rcu_read_unlock_special.b.need_qs = false;
 271	}
 272}
 273
 274/*
 275 * We have entered the scheduler, and the current task might soon be
 276 * context-switched away from.  If this task is in an RCU read-side
 277 * critical section, we will no longer be able to rely on the CPU to
 278 * record that fact, so we enqueue the task on the blkd_tasks list.
 279 * The task will dequeue itself when it exits the outermost enclosing
 280 * RCU read-side critical section.  Therefore, the current grace period
 281 * cannot be permitted to complete until the blkd_tasks list entries
 282 * predating the current grace period drain, in other words, until
 283 * rnp->gp_tasks becomes NULL.
 284 *
 285 * Caller must disable interrupts.
 286 */
 287static void rcu_preempt_note_context_switch(void)
 288{
 289	struct task_struct *t = current;
 290	struct rcu_data *rdp;
 291	struct rcu_node *rnp;
 292
 293	if (t->rcu_read_lock_nesting > 0 &&
 
 
 
 294	    !t->rcu_read_unlock_special.b.blocked) {
 295
 296		/* Possibly blocking in an RCU read-side critical section. */
 297		rdp = this_cpu_ptr(rcu_state_p->rda);
 298		rnp = rdp->mynode;
 299		raw_spin_lock_rcu_node(rnp);
 300		t->rcu_read_unlock_special.b.blocked = true;
 301		t->rcu_blocked_node = rnp;
 302
 303		/*
 304		 * Verify the CPU's sanity, trace the preemption, and
 305		 * then queue the task as required based on the states
 306		 * of any ongoing and expedited grace periods.
 307		 */
 308		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 309		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 310		trace_rcu_preempt_task(rdp->rsp->name,
 311				       t->pid,
 312				       (rnp->qsmask & rdp->grpmask)
 313				       ? rnp->gpnum
 314				       : rnp->gpnum + 1);
 315		rcu_preempt_ctxt_queue(rnp, rdp);
 316	} else if (t->rcu_read_lock_nesting < 0 &&
 317		   t->rcu_read_unlock_special.s) {
 318
 319		/*
 320		 * Complete exit from RCU read-side critical section on
 321		 * behalf of preempted instance of __rcu_read_unlock().
 322		 */
 323		rcu_read_unlock_special(t);
 324	}
 325
 326	/*
 327	 * Either we were not in an RCU read-side critical section to
 328	 * begin with, or we have now recorded that critical section
 329	 * globally.  Either way, we can now note a quiescent state
 330	 * for this CPU.  Again, if we were in an RCU read-side critical
 331	 * section, and if that critical section was blocking the current
 332	 * grace period, then the fact that the task has been enqueued
 333	 * means that we continue to block the current grace period.
 334	 */
 335	rcu_preempt_qs();
 
 
 
 
 336}
 
 337
 338/*
 339 * Check for preempted RCU readers blocking the current grace period
 340 * for the specified rcu_node structure.  If the caller needs a reliable
 341 * answer, it must hold the rcu_node's ->lock.
 342 */
 343static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 344{
 345	return rnp->gp_tasks != NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346}
 347
 348/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 350 * returning NULL if at the end of the list.
 351 */
 352static struct list_head *rcu_next_node_entry(struct task_struct *t,
 353					     struct rcu_node *rnp)
 354{
 355	struct list_head *np;
 356
 357	np = t->rcu_node_entry.next;
 358	if (np == &rnp->blkd_tasks)
 359		np = NULL;
 360	return np;
 361}
 362
 363/*
 364 * Return true if the specified rcu_node structure has tasks that were
 365 * preempted within an RCU read-side critical section.
 366 */
 367static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 368{
 369	return !list_empty(&rnp->blkd_tasks);
 370}
 371
 372/*
 373 * Handle special cases during rcu_read_unlock(), such as needing to
 374 * notify RCU core processing or task having blocked during the RCU
 375 * read-side critical section.
 376 */
 377void rcu_read_unlock_special(struct task_struct *t)
 
 378{
 379	bool empty_exp;
 380	bool empty_norm;
 381	bool empty_exp_now;
 382	unsigned long flags;
 383	struct list_head *np;
 384	bool drop_boost_mutex = false;
 385	struct rcu_data *rdp;
 386	struct rcu_node *rnp;
 387	union rcu_special special;
 388
 389	/* NMI handlers cannot block and cannot safely manipulate state. */
 390	if (in_nmi())
 391		return;
 392
 393	local_irq_save(flags);
 394
 395	/*
 396	 * If RCU core is waiting for this CPU to exit its critical section,
 397	 * report the fact that it has exited.  Because irqs are disabled,
 398	 * t->rcu_read_unlock_special cannot change.
 399	 */
 400	special = t->rcu_read_unlock_special;
 401	if (special.b.need_qs) {
 402		rcu_preempt_qs();
 403		t->rcu_read_unlock_special.b.need_qs = false;
 404		if (!t->rcu_read_unlock_special.s) {
 405			local_irq_restore(flags);
 406			return;
 407		}
 408	}
 
 
 
 409
 410	/*
 411	 * Respond to a request for an expedited grace period, but only if
 412	 * we were not preempted, meaning that we were running on the same
 413	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 414	 * would have been cleared at the time of the first preemption,
 415	 * and the quiescent state would be reported when we were dequeued.
 416	 */
 417	if (special.b.exp_need_qs) {
 418		WARN_ON_ONCE(special.b.blocked);
 419		t->rcu_read_unlock_special.b.exp_need_qs = false;
 420		rdp = this_cpu_ptr(rcu_state_p->rda);
 421		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 422		if (!t->rcu_read_unlock_special.s) {
 423			local_irq_restore(flags);
 424			return;
 425		}
 426	}
 427
 428	/* Hardware IRQ handlers cannot block, complain if they get here. */
 429	if (in_irq() || in_serving_softirq()) {
 430		lockdep_rcu_suspicious(__FILE__, __LINE__,
 431				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 432		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 433			 t->rcu_read_unlock_special.s,
 434			 t->rcu_read_unlock_special.b.blocked,
 435			 t->rcu_read_unlock_special.b.exp_need_qs,
 436			 t->rcu_read_unlock_special.b.need_qs);
 437		local_irq_restore(flags);
 438		return;
 439	}
 440
 441	/* Clean up if blocked during RCU read-side critical section. */
 442	if (special.b.blocked) {
 443		t->rcu_read_unlock_special.b.blocked = false;
 444
 445		/*
 446		 * Remove this task from the list it blocked on.  The task
 447		 * now remains queued on the rcu_node corresponding to the
 448		 * CPU it first blocked on, so there is no longer any need
 449		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 450		 */
 451		rnp = t->rcu_blocked_node;
 452		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 453		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 
 454		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 455		empty_exp = sync_rcu_preempt_exp_done(rnp);
 
 
 456		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 457		np = rcu_next_node_entry(t, rnp);
 458		list_del_init(&t->rcu_node_entry);
 459		t->rcu_blocked_node = NULL;
 460		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 461						rnp->gpnum, t->pid);
 462		if (&t->rcu_node_entry == rnp->gp_tasks)
 463			rnp->gp_tasks = np;
 464		if (&t->rcu_node_entry == rnp->exp_tasks)
 465			rnp->exp_tasks = np;
 466		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 467			if (&t->rcu_node_entry == rnp->boost_tasks)
 468				rnp->boost_tasks = np;
 469			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 470			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 
 
 471		}
 472
 473		/*
 474		 * If this was the last task on the current list, and if
 475		 * we aren't waiting on any CPUs, report the quiescent state.
 476		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 477		 * so we must take a snapshot of the expedited state.
 478		 */
 479		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 480		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 481			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 482							 rnp->gpnum,
 483							 0, rnp->qsmask,
 484							 rnp->level,
 485							 rnp->grplo,
 486							 rnp->grphi,
 487							 !!rnp->gp_tasks);
 488			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 489		} else {
 490			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 491		}
 492
 493		/* Unboost if we were boosted. */
 494		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 495			rt_mutex_unlock(&rnp->boost_mtx);
 496
 497		/*
 498		 * If this was the last task on the expedited lists,
 499		 * then we need to report up the rcu_node hierarchy.
 500		 */
 501		if (!empty_exp && empty_exp_now)
 502			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 503	} else {
 504		local_irq_restore(flags);
 505	}
 506}
 507
 508/*
 509 * Dump detailed information for all tasks blocking the current RCU
 510 * grace period on the specified rcu_node structure.
 
 
 
 
 
 511 */
 512static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 513{
 514	unsigned long flags;
 515	struct task_struct *t;
 516
 517	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 518	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 519		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 520		return;
 521	}
 522	t = list_entry(rnp->gp_tasks->prev,
 523		       struct task_struct, rcu_node_entry);
 524	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 525		sched_show_task(t);
 526	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 527}
 528
 529/*
 530 * Dump detailed information for all tasks blocking the current RCU
 531 * grace period.
 
 
 
 532 */
 533static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 534{
 535	struct rcu_node *rnp = rcu_get_root(rsp);
 536
 537	rcu_print_detail_task_stall_rnp(rnp);
 538	rcu_for_each_leaf_node(rsp, rnp)
 539		rcu_print_detail_task_stall_rnp(rnp);
 540}
 541
 542static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 543{
 544	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 545	       rnp->level, rnp->grplo, rnp->grphi);
 546}
 547
 548static void rcu_print_task_stall_end(void)
 549{
 550	pr_cont("\n");
 
 551}
 552
 553/*
 554 * Scan the current list of tasks blocked within RCU read-side critical
 555 * sections, printing out the tid of each.
 556 */
 557static int rcu_print_task_stall(struct rcu_node *rnp)
 558{
 559	struct task_struct *t;
 560	int ndetected = 0;
 561
 562	if (!rcu_preempt_blocked_readers_cgp(rnp))
 563		return 0;
 564	rcu_print_task_stall_begin(rnp);
 565	t = list_entry(rnp->gp_tasks->prev,
 566		       struct task_struct, rcu_node_entry);
 567	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 568		pr_cont(" P%d", t->pid);
 569		ndetected++;
 570	}
 571	rcu_print_task_stall_end();
 572	return ndetected;
 573}
 574
 575/*
 576 * Scan the current list of tasks blocked within RCU read-side critical
 577 * sections, printing out the tid of each that is blocking the current
 578 * expedited grace period.
 579 */
 580static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 581{
 582	struct task_struct *t;
 583	int ndetected = 0;
 
 
 584
 585	if (!rnp->exp_tasks)
 586		return 0;
 587	t = list_entry(rnp->exp_tasks->prev,
 588		       struct task_struct, rcu_node_entry);
 589	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 590		pr_cont(" P%d", t->pid);
 591		ndetected++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	}
 593	return ndetected;
 594}
 595
 596/*
 597 * Check that the list of blocked tasks for the newly completed grace
 598 * period is in fact empty.  It is a serious bug to complete a grace
 599 * period that still has RCU readers blocked!  This function must be
 600 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 601 * must be held by the caller.
 602 *
 603 * Also, if there are blocked tasks on the list, they automatically
 604 * block the newly created grace period, so set up ->gp_tasks accordingly.
 605 */
 606static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 607{
 608	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 609	if (rcu_preempt_has_tasks(rnp))
 610		rnp->gp_tasks = rnp->blkd_tasks.next;
 
 
 
 
 
 
 
 
 
 
 
 611	WARN_ON_ONCE(rnp->qsmask);
 612}
 613
 614/*
 615 * Check for a quiescent state from the current CPU.  When a task blocks,
 616 * the task is recorded in the corresponding CPU's rcu_node structure,
 617 * which is checked elsewhere.
 618 *
 619 * Caller must disable hard irqs.
 620 */
 621static void rcu_preempt_check_callbacks(void)
 622{
 623	struct task_struct *t = current;
 624
 625	if (t->rcu_read_lock_nesting == 0) {
 626		rcu_preempt_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 627		return;
 628	}
 629	if (t->rcu_read_lock_nesting > 0 &&
 630	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 631	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 632		t->rcu_read_unlock_special.b.need_qs = true;
 633}
 634
 635#ifdef CONFIG_RCU_BOOST
 636
 637static void rcu_preempt_do_callbacks(void)
 638{
 639	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 
 
 640}
 641
 642#endif /* #ifdef CONFIG_RCU_BOOST */
 643
 644/*
 645 * Queue a preemptible-RCU callback for invocation after a grace period.
 
 
 
 
 
 646 */
 647void call_rcu(struct rcu_head *head, rcu_callback_t func)
 648{
 649	__call_rcu(head, func, rcu_state_p, -1, 0);
 650}
 651EXPORT_SYMBOL_GPL(call_rcu);
 652
 653/**
 654 * synchronize_rcu - wait until a grace period has elapsed.
 655 *
 656 * Control will return to the caller some time after a full grace
 657 * period has elapsed, in other words after all currently executing RCU
 658 * read-side critical sections have completed.  Note, however, that
 659 * upon return from synchronize_rcu(), the caller might well be executing
 660 * concurrently with new RCU read-side critical sections that began while
 661 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 662 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 663 *
 664 * See the description of synchronize_sched() for more detailed information
 665 * on memory ordering guarantees.
 666 */
 667void synchronize_rcu(void)
 668{
 669	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 670			 lock_is_held(&rcu_lock_map) ||
 671			 lock_is_held(&rcu_sched_lock_map),
 672			 "Illegal synchronize_rcu() in RCU read-side critical section");
 673	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 674		return;
 675	if (rcu_gp_is_expedited())
 676		synchronize_rcu_expedited();
 677	else
 678		wait_rcu_gp(call_rcu);
 679}
 680EXPORT_SYMBOL_GPL(synchronize_rcu);
 681
 682/**
 683 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 684 *
 685 * Note that this primitive does not necessarily wait for an RCU grace period
 686 * to complete.  For example, if there are no RCU callbacks queued anywhere
 687 * in the system, then rcu_barrier() is within its rights to return
 688 * immediately, without waiting for anything, much less an RCU grace period.
 689 */
 690void rcu_barrier(void)
 691{
 692	_rcu_barrier(rcu_state_p);
 693}
 694EXPORT_SYMBOL_GPL(rcu_barrier);
 695
 696/*
 697 * Initialize preemptible RCU's state structures.
 698 */
 699static void __init __rcu_init_preempt(void)
 700{
 701	rcu_init_one(rcu_state_p);
 702}
 703
 704/*
 705 * Check for a task exiting while in a preemptible-RCU read-side
 706 * critical section, clean up if so.  No need to issue warnings,
 707 * as debug_check_no_locks_held() already does this if lockdep
 708 * is enabled.
 709 */
 710void exit_rcu(void)
 
 711{
 712	struct task_struct *t = current;
 
 
 
 
 
 713
 714	if (likely(list_empty(&current->rcu_node_entry)))
 715		return;
 716	t->rcu_read_lock_nesting = 1;
 717	barrier();
 718	t->rcu_read_unlock_special.b.blocked = true;
 719	__rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720}
 721
 722#else /* #ifdef CONFIG_PREEMPT_RCU */
 723
 724static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 725
 726/*
 727 * Tell them what RCU they are running.
 728 */
 729static void __init rcu_bootup_announce(void)
 730{
 731	pr_info("Hierarchical RCU implementation.\n");
 732	rcu_bootup_announce_oddness();
 733}
 734
 735/*
 736 * Because preemptible RCU does not exist, we never have to check for
 737 * CPUs being in quiescent states.
 
 
 738 */
 739static void rcu_preempt_note_context_switch(void)
 740{
 
 
 
 
 
 
 
 
 
 
 741}
 742
 743/*
 744 * Because preemptible RCU does not exist, there are never any preempted
 745 * RCU readers.
 
 
 
 746 */
 747static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 748{
 749	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 
 751
 752/*
 753 * Because there is no preemptible RCU, there can be no readers blocked.
 754 */
 755static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 756{
 757	return false;
 
 
 
 
 
 
 
 
 
 
 758}
 
 759
 760/*
 761 * Because preemptible RCU does not exist, we never have to check for
 762 * tasks blocked within RCU read-side critical sections.
 763 */
 764static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 765{
 
 766}
 767
 768/*
 769 * Because preemptible RCU does not exist, we never have to check for
 770 * tasks blocked within RCU read-side critical sections.
 771 */
 772static int rcu_print_task_stall(struct rcu_node *rnp)
 773{
 774	return 0;
 775}
 776
 777/*
 778 * Because preemptible RCU does not exist, we never have to check for
 779 * tasks blocked within RCU read-side critical sections that are
 780 * blocking the current expedited grace period.
 781 */
 782static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 783{
 784	return 0;
 785}
 
 786
 787/*
 788 * Because there is no preemptible RCU, there can be no readers blocked,
 789 * so there is no need to check for blocked tasks.  So check only for
 790 * bogus qsmask values.
 791 */
 792static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 793{
 794	WARN_ON_ONCE(rnp->qsmask);
 795}
 796
 797/*
 798 * Because preemptible RCU does not exist, it never has any callbacks
 799 * to check.
 800 */
 801static void rcu_preempt_check_callbacks(void)
 802{
 803}
 804
 805/*
 806 * Because preemptible RCU does not exist, rcu_barrier() is just
 807 * another name for rcu_barrier_sched().
 808 */
 809void rcu_barrier(void)
 810{
 811	rcu_barrier_sched();
 812}
 813EXPORT_SYMBOL_GPL(rcu_barrier);
 
 
 814
 815/*
 816 * Because preemptible RCU does not exist, it need not be initialized.
 817 */
 818static void __init __rcu_init_preempt(void)
 819{
 820}
 821
 822/*
 823 * Because preemptible RCU does not exist, tasks cannot possibly exit
 824 * while in preemptible RCU read-side critical sections.
 825 */
 826void exit_rcu(void)
 827{
 828}
 829
 830#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 831
 832#ifdef CONFIG_RCU_BOOST
 833
 834#include "../locking/rtmutex_common.h"
 835
 836#ifdef CONFIG_RCU_TRACE
 837
 838static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 839{
 840	if (!rcu_preempt_has_tasks(rnp))
 841		rnp->n_balk_blkd_tasks++;
 842	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 843		rnp->n_balk_exp_gp_tasks++;
 844	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 845		rnp->n_balk_boost_tasks++;
 846	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 847		rnp->n_balk_notblocked++;
 848	else if (rnp->gp_tasks != NULL &&
 849		 ULONG_CMP_LT(jiffies, rnp->boost_time))
 850		rnp->n_balk_notyet++;
 851	else
 852		rnp->n_balk_nos++;
 853}
 854
 855#else /* #ifdef CONFIG_RCU_TRACE */
 856
 857static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 
 
 
 858{
 859}
 860
 861#endif /* #else #ifdef CONFIG_RCU_TRACE */
 862
 863static void rcu_wake_cond(struct task_struct *t, int status)
 864{
 865	/*
 866	 * If the thread is yielding, only wake it when this
 867	 * is invoked from idle
 868	 */
 869	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 870		wake_up_process(t);
 871}
 872
 
 
 873/*
 874 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 875 * or ->boost_tasks, advancing the pointer to the next task in the
 876 * ->blkd_tasks list.
 877 *
 878 * Note that irqs must be enabled: boosting the task can block.
 879 * Returns 1 if there are more tasks needing to be boosted.
 880 */
 881static int rcu_boost(struct rcu_node *rnp)
 882{
 883	unsigned long flags;
 884	struct task_struct *t;
 885	struct list_head *tb;
 886
 887	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 888	    READ_ONCE(rnp->boost_tasks) == NULL)
 889		return 0;  /* Nothing left to boost. */
 890
 891	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 892
 893	/*
 894	 * Recheck under the lock: all tasks in need of boosting
 895	 * might exit their RCU read-side critical sections on their own.
 896	 */
 897	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 898		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 899		return 0;
 900	}
 901
 902	/*
 903	 * Preferentially boost tasks blocking expedited grace periods.
 904	 * This cannot starve the normal grace periods because a second
 905	 * expedited grace period must boost all blocked tasks, including
 906	 * those blocking the pre-existing normal grace period.
 907	 */
 908	if (rnp->exp_tasks != NULL) {
 909		tb = rnp->exp_tasks;
 910		rnp->n_exp_boosts++;
 911	} else {
 912		tb = rnp->boost_tasks;
 913		rnp->n_normal_boosts++;
 914	}
 915	rnp->n_tasks_boosted++;
 916
 917	/*
 918	 * We boost task t by manufacturing an rt_mutex that appears to
 919	 * be held by task t.  We leave a pointer to that rt_mutex where
 920	 * task t can find it, and task t will release the mutex when it
 921	 * exits its outermost RCU read-side critical section.  Then
 922	 * simply acquiring this artificial rt_mutex will boost task
 923	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 924	 *
 925	 * Note that task t must acquire rnp->lock to remove itself from
 926	 * the ->blkd_tasks list, which it will do from exit() if from
 927	 * nowhere else.  We therefore are guaranteed that task t will
 928	 * stay around at least until we drop rnp->lock.  Note that
 929	 * rnp->lock also resolves races between our priority boosting
 930	 * and task t's exiting its outermost RCU read-side critical
 931	 * section.
 932	 */
 933	t = container_of(tb, struct task_struct, rcu_node_entry);
 934	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 935	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 936	/* Lock only for side effect: boosts task t's priority. */
 937	rt_mutex_lock(&rnp->boost_mtx);
 938	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 939
 940	return READ_ONCE(rnp->exp_tasks) != NULL ||
 941	       READ_ONCE(rnp->boost_tasks) != NULL;
 942}
 943
 944/*
 945 * Priority-boosting kthread, one per leaf rcu_node.
 946 */
 947static int rcu_boost_kthread(void *arg)
 948{
 949	struct rcu_node *rnp = (struct rcu_node *)arg;
 950	int spincnt = 0;
 951	int more2boost;
 952
 953	trace_rcu_utilization(TPS("Start boost kthread@init"));
 954	for (;;) {
 955		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
 956		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
 957		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
 
 958		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
 959		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
 960		more2boost = rcu_boost(rnp);
 961		if (more2boost)
 962			spincnt++;
 963		else
 964			spincnt = 0;
 965		if (spincnt > 10) {
 966			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
 967			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
 968			schedule_timeout_interruptible(2);
 969			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
 970			spincnt = 0;
 971		}
 972	}
 973	/* NOTREACHED */
 974	trace_rcu_utilization(TPS("End boost kthread@notreached"));
 975	return 0;
 976}
 977
 978/*
 979 * Check to see if it is time to start boosting RCU readers that are
 980 * blocking the current grace period, and, if so, tell the per-rcu_node
 981 * kthread to start boosting them.  If there is an expedited grace
 982 * period in progress, it is always time to boost.
 983 *
 984 * The caller must hold rnp->lock, which this function releases.
 985 * The ->boost_kthread_task is immortal, so we don't need to worry
 986 * about it going away.
 987 */
 988static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 989	__releases(rnp->lock)
 990{
 991	struct task_struct *t;
 992
 993	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 994		rnp->n_balk_exp_gp_tasks++;
 995		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 996		return;
 997	}
 998	if (rnp->exp_tasks != NULL ||
 999	    (rnp->gp_tasks != NULL &&
1000	     rnp->boost_tasks == NULL &&
1001	     rnp->qsmask == 0 &&
1002	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1003		if (rnp->exp_tasks == NULL)
1004			rnp->boost_tasks = rnp->gp_tasks;
1005		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1006		t = rnp->boost_kthread_task;
1007		if (t)
1008			rcu_wake_cond(t, rnp->boost_kthread_status);
1009	} else {
1010		rcu_initiate_boost_trace(rnp);
1011		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1012	}
1013}
1014
1015/*
1016 * Wake up the per-CPU kthread to invoke RCU callbacks.
1017 */
1018static void invoke_rcu_callbacks_kthread(void)
1019{
1020	unsigned long flags;
1021
1022	local_irq_save(flags);
1023	__this_cpu_write(rcu_cpu_has_work, 1);
1024	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1025	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1026		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1027			      __this_cpu_read(rcu_cpu_kthread_status));
1028	}
1029	local_irq_restore(flags);
1030}
1031
1032/*
1033 * Is the current CPU running the RCU-callbacks kthread?
1034 * Caller must have preemption disabled.
1035 */
1036static bool rcu_is_callbacks_kthread(void)
1037{
1038	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1039}
1040
1041#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1042
1043/*
1044 * Do priority-boost accounting for the start of a new grace period.
1045 */
1046static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1047{
1048	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1049}
1050
1051/*
1052 * Create an RCU-boost kthread for the specified node if one does not
1053 * already exist.  We only create this kthread for preemptible RCU.
1054 * Returns zero if all is well, a negated errno otherwise.
1055 */
1056static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1057				       struct rcu_node *rnp)
1058{
1059	int rnp_index = rnp - &rsp->node[0];
1060	unsigned long flags;
1061	struct sched_param sp;
1062	struct task_struct *t;
1063
1064	if (rcu_state_p != rsp)
1065		return 0;
1066
1067	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1068		return 0;
 
 
1069
1070	rsp->boost = 1;
1071	if (rnp->boost_kthread_task != NULL)
1072		return 0;
 
1073	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1074			   "rcub/%d", rnp_index);
1075	if (IS_ERR(t))
1076		return PTR_ERR(t);
 
1077	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1078	rnp->boost_kthread_task = t;
1079	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1080	sp.sched_priority = kthread_prio;
1081	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1082	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1083	return 0;
1084}
1085
1086static void rcu_kthread_do_work(void)
1087{
1088	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1089	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1090	rcu_preempt_do_callbacks();
1091}
1092
1093static void rcu_cpu_kthread_setup(unsigned int cpu)
1094{
1095	struct sched_param sp;
1096
1097	sp.sched_priority = kthread_prio;
1098	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1099}
1100
1101static void rcu_cpu_kthread_park(unsigned int cpu)
1102{
1103	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1104}
1105
1106static int rcu_cpu_kthread_should_run(unsigned int cpu)
1107{
1108	return __this_cpu_read(rcu_cpu_has_work);
1109}
1110
1111/*
1112 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1113 * RCU softirq used in flavors and configurations of RCU that do not
1114 * support RCU priority boosting.
1115 */
1116static void rcu_cpu_kthread(unsigned int cpu)
1117{
1118	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1119	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1120	int spincnt;
1121
1122	for (spincnt = 0; spincnt < 10; spincnt++) {
1123		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1124		local_bh_disable();
1125		*statusp = RCU_KTHREAD_RUNNING;
1126		this_cpu_inc(rcu_cpu_kthread_loops);
1127		local_irq_disable();
1128		work = *workp;
1129		*workp = 0;
1130		local_irq_enable();
1131		if (work)
1132			rcu_kthread_do_work();
1133		local_bh_enable();
1134		if (*workp == 0) {
1135			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1136			*statusp = RCU_KTHREAD_WAITING;
1137			return;
1138		}
1139	}
1140	*statusp = RCU_KTHREAD_YIELDING;
1141	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1142	schedule_timeout_interruptible(2);
1143	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1144	*statusp = RCU_KTHREAD_WAITING;
1145}
1146
1147/*
1148 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1149 * served by the rcu_node in question.  The CPU hotplug lock is still
1150 * held, so the value of rnp->qsmaskinit will be stable.
1151 *
1152 * We don't include outgoingcpu in the affinity set, use -1 if there is
1153 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1154 * this function allows the kthread to execute on any CPU.
1155 */
1156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1157{
1158	struct task_struct *t = rnp->boost_kthread_task;
1159	unsigned long mask = rcu_rnp_online_cpus(rnp);
1160	cpumask_var_t cm;
1161	int cpu;
1162
1163	if (!t)
1164		return;
1165	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1166		return;
1167	for_each_leaf_node_possible_cpu(rnp, cpu)
1168		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1169		    cpu != outgoingcpu)
1170			cpumask_set_cpu(cpu, cm);
1171	if (cpumask_weight(cm) == 0)
1172		cpumask_setall(cm);
1173	set_cpus_allowed_ptr(t, cm);
1174	free_cpumask_var(cm);
1175}
1176
1177static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1178	.store			= &rcu_cpu_kthread_task,
1179	.thread_should_run	= rcu_cpu_kthread_should_run,
1180	.thread_fn		= rcu_cpu_kthread,
1181	.thread_comm		= "rcuc/%u",
1182	.setup			= rcu_cpu_kthread_setup,
1183	.park			= rcu_cpu_kthread_park,
1184};
1185
1186/*
1187 * Spawn boost kthreads -- called as soon as the scheduler is running.
1188 */
1189static void __init rcu_spawn_boost_kthreads(void)
1190{
1191	struct rcu_node *rnp;
1192	int cpu;
1193
1194	for_each_possible_cpu(cpu)
1195		per_cpu(rcu_cpu_has_work, cpu) = 0;
1196	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1197	rcu_for_each_leaf_node(rcu_state_p, rnp)
1198		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1199}
1200
1201static void rcu_prepare_kthreads(int cpu)
1202{
1203	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1204	struct rcu_node *rnp = rdp->mynode;
1205
1206	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1207	if (rcu_scheduler_fully_active)
1208		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1209}
1210
1211#else /* #ifdef CONFIG_RCU_BOOST */
1212
1213static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1214	__releases(rnp->lock)
1215{
1216	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217}
1218
1219static void invoke_rcu_callbacks_kthread(void)
1220{
1221	WARN_ON_ONCE(1);
1222}
1223
1224static bool rcu_is_callbacks_kthread(void)
1225{
1226	return false;
1227}
1228
1229static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1230{
1231}
1232
1233static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1234{
1235}
1236
1237static void __init rcu_spawn_boost_kthreads(void)
1238{
1239}
1240
1241static void rcu_prepare_kthreads(int cpu)
1242{
1243}
1244
1245#endif /* #else #ifdef CONFIG_RCU_BOOST */
1246
1247#if !defined(CONFIG_RCU_FAST_NO_HZ)
1248
1249/*
1250 * Check to see if any future RCU-related work will need to be done
1251 * by the current CPU, even if none need be done immediately, returning
1252 * 1 if so.  This function is part of the RCU implementation; it is -not-
1253 * an exported member of the RCU API.
1254 *
1255 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1256 * any flavor of RCU.
1257 */
1258int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1259{
1260	*nextevt = KTIME_MAX;
1261	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1262	       ? 0 : rcu_cpu_has_callbacks(NULL);
1263}
1264
1265/*
1266 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1267 * after it.
1268 */
1269static void rcu_cleanup_after_idle(void)
1270{
1271}
1272
1273/*
1274 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1275 * is nothing.
1276 */
1277static void rcu_prepare_for_idle(void)
1278{
1279}
1280
1281/*
1282 * Don't bother keeping a running count of the number of RCU callbacks
1283 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1284 */
1285static void rcu_idle_count_callbacks_posted(void)
1286{
1287}
1288
1289#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1290
1291/*
1292 * This code is invoked when a CPU goes idle, at which point we want
1293 * to have the CPU do everything required for RCU so that it can enter
1294 * the energy-efficient dyntick-idle mode.  This is handled by a
1295 * state machine implemented by rcu_prepare_for_idle() below.
1296 *
1297 * The following three proprocessor symbols control this state machine:
1298 *
1299 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1300 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1301 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1302 *	benchmarkers who might otherwise be tempted to set this to a large
1303 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1304 *	system.  And if you are -that- concerned about energy efficiency,
1305 *	just power the system down and be done with it!
1306 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1307 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1308 *	callbacks pending.  Setting this too high can OOM your system.
1309 *
1310 * The values below work well in practice.  If future workloads require
1311 * adjustment, they can be converted into kernel config parameters, though
1312 * making the state machine smarter might be a better option.
1313 */
1314#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1315#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1316
1317static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1318module_param(rcu_idle_gp_delay, int, 0644);
1319static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1320module_param(rcu_idle_lazy_gp_delay, int, 0644);
1321
1322/*
1323 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1324 * only if it has been awhile since the last time we did so.  Afterwards,
1325 * if there are any callbacks ready for immediate invocation, return true.
1326 */
1327static bool __maybe_unused rcu_try_advance_all_cbs(void)
1328{
1329	bool cbs_ready = false;
1330	struct rcu_data *rdp;
1331	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1332	struct rcu_node *rnp;
1333	struct rcu_state *rsp;
1334
1335	/* Exit early if we advanced recently. */
1336	if (jiffies == rdtp->last_advance_all)
1337		return false;
1338	rdtp->last_advance_all = jiffies;
1339
1340	for_each_rcu_flavor(rsp) {
1341		rdp = this_cpu_ptr(rsp->rda);
1342		rnp = rdp->mynode;
1343
1344		/*
1345		 * Don't bother checking unless a grace period has
1346		 * completed since we last checked and there are
1347		 * callbacks not yet ready to invoke.
1348		 */
1349		if ((rdp->completed != rnp->completed ||
1350		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1351		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1352			note_gp_changes(rsp, rdp);
 
1353
1354		if (cpu_has_callbacks_ready_to_invoke(rdp))
1355			cbs_ready = true;
1356	}
1357	return cbs_ready;
1358}
1359
1360/*
1361 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1362 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1363 * caller to set the timeout based on whether or not there are non-lazy
1364 * callbacks.
1365 *
1366 * The caller must have disabled interrupts.
1367 */
1368int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1369{
1370	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1371	unsigned long dj;
1372
1373	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1374		*nextevt = KTIME_MAX;
1375		return 0;
1376	}
1377
1378	/* Snapshot to detect later posting of non-lazy callback. */
1379	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1380
1381	/* If no callbacks, RCU doesn't need the CPU. */
1382	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
 
1383		*nextevt = KTIME_MAX;
1384		return 0;
1385	}
1386
1387	/* Attempt to advance callbacks. */
1388	if (rcu_try_advance_all_cbs()) {
1389		/* Some ready to invoke, so initiate later invocation. */
1390		invoke_rcu_core();
1391		return 1;
1392	}
1393	rdtp->last_accelerate = jiffies;
 
 
 
1394
1395	/* Request timer delay depending on laziness, and round. */
1396	if (!rdtp->all_lazy) {
1397		dj = round_up(rcu_idle_gp_delay + jiffies,
1398			       rcu_idle_gp_delay) - jiffies;
1399	} else {
1400		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1401	}
1402	*nextevt = basemono + dj * TICK_NSEC;
1403	return 0;
1404}
1405
1406/*
1407 * Prepare a CPU for idle from an RCU perspective.  The first major task
1408 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1409 * The second major task is to check to see if a non-lazy callback has
1410 * arrived at a CPU that previously had only lazy callbacks.  The third
1411 * major task is to accelerate (that is, assign grace-period numbers to)
1412 * any recently arrived callbacks.
1413 *
1414 * The caller must have disabled interrupts.
1415 */
1416static void rcu_prepare_for_idle(void)
1417{
1418	bool needwake;
1419	struct rcu_data *rdp;
1420	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421	struct rcu_node *rnp;
1422	struct rcu_state *rsp;
1423	int tne;
1424
1425	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1426	    rcu_is_nocb_cpu(smp_processor_id()))
1427		return;
1428
1429	/* Handle nohz enablement switches conservatively. */
1430	tne = READ_ONCE(tick_nohz_active);
1431	if (tne != rdtp->tick_nohz_enabled_snap) {
1432		if (rcu_cpu_has_callbacks(NULL))
1433			invoke_rcu_core(); /* force nohz to see update. */
1434		rdtp->tick_nohz_enabled_snap = tne;
1435		return;
1436	}
1437	if (!tne)
1438		return;
1439
1440	/*
1441	 * If a non-lazy callback arrived at a CPU having only lazy
1442	 * callbacks, invoke RCU core for the side-effect of recalculating
1443	 * idle duration on re-entry to idle.
1444	 */
1445	if (rdtp->all_lazy &&
1446	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1447		rdtp->all_lazy = false;
1448		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1449		invoke_rcu_core();
1450		return;
1451	}
1452
1453	/*
1454	 * If we have not yet accelerated this jiffy, accelerate all
1455	 * callbacks on this CPU.
1456	 */
1457	if (rdtp->last_accelerate == jiffies)
1458		return;
1459	rdtp->last_accelerate = jiffies;
1460	for_each_rcu_flavor(rsp) {
1461		rdp = this_cpu_ptr(rsp->rda);
1462		if (!*rdp->nxttail[RCU_DONE_TAIL])
1463			continue;
1464		rnp = rdp->mynode;
1465		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1466		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1467		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1468		if (needwake)
1469			rcu_gp_kthread_wake(rsp);
1470	}
1471}
1472
1473/*
1474 * Clean up for exit from idle.  Attempt to advance callbacks based on
1475 * any grace periods that elapsed while the CPU was idle, and if any
1476 * callbacks are now ready to invoke, initiate invocation.
1477 */
1478static void rcu_cleanup_after_idle(void)
1479{
1480	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1481	    rcu_is_nocb_cpu(smp_processor_id()))
 
 
1482		return;
1483	if (rcu_try_advance_all_cbs())
1484		invoke_rcu_core();
1485}
1486
1487/*
1488 * Keep a running count of the number of non-lazy callbacks posted
1489 * on this CPU.  This running counter (which is never decremented) allows
1490 * rcu_prepare_for_idle() to detect when something out of the idle loop
1491 * posts a callback, even if an equal number of callbacks are invoked.
1492 * Of course, callbacks should only be posted from within a trace event
1493 * designed to be called from idle or from within RCU_NONIDLE().
1494 */
1495static void rcu_idle_count_callbacks_posted(void)
1496{
1497	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1498}
1499
1500/*
1501 * Data for flushing lazy RCU callbacks at OOM time.
1502 */
1503static atomic_t oom_callback_count;
1504static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1505
1506/*
1507 * RCU OOM callback -- decrement the outstanding count and deliver the
1508 * wake-up if we are the last one.
1509 */
1510static void rcu_oom_callback(struct rcu_head *rhp)
1511{
1512	if (atomic_dec_and_test(&oom_callback_count))
1513		wake_up(&oom_callback_wq);
1514}
1515
1516/*
1517 * Post an rcu_oom_notify callback on the current CPU if it has at
1518 * least one lazy callback.  This will unnecessarily post callbacks
1519 * to CPUs that already have a non-lazy callback at the end of their
1520 * callback list, but this is an infrequent operation, so accept some
1521 * extra overhead to keep things simple.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522 */
1523static void rcu_oom_notify_cpu(void *unused)
1524{
1525	struct rcu_state *rsp;
1526	struct rcu_data *rdp;
1527
1528	for_each_rcu_flavor(rsp) {
1529		rdp = raw_cpu_ptr(rsp->rda);
1530		if (rdp->qlen_lazy != 0) {
1531			atomic_inc(&oom_callback_count);
1532			rsp->call(&rdp->oom_head, rcu_oom_callback);
1533		}
1534	}
1535}
1536
1537/*
1538 * If low on memory, ensure that each CPU has a non-lazy callback.
1539 * This will wake up CPUs that have only lazy callbacks, in turn
1540 * ensuring that they free up the corresponding memory in a timely manner.
1541 * Because an uncertain amount of memory will be freed in some uncertain
1542 * timeframe, we do not claim to have freed anything.
1543 */
1544static int rcu_oom_notify(struct notifier_block *self,
1545			  unsigned long notused, void *nfreed)
1546{
1547	int cpu;
1548
1549	/* Wait for callbacks from earlier instance to complete. */
1550	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1551	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1552
1553	/*
1554	 * Prevent premature wakeup: ensure that all increments happen
1555	 * before there is a chance of the counter reaching zero.
1556	 */
1557	atomic_set(&oom_callback_count, 1);
1558
1559	for_each_online_cpu(cpu) {
1560		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1561		cond_resched_rcu_qs();
1562	}
1563
1564	/* Unconditionally decrement: no need to wake ourselves up. */
1565	atomic_dec(&oom_callback_count);
1566
1567	return NOTIFY_OK;
1568}
 
1569
1570static struct notifier_block rcu_oom_nb = {
1571	.notifier_call = rcu_oom_notify
1572};
1573
1574static int __init rcu_register_oom_notifier(void)
1575{
1576	register_oom_notifier(&rcu_oom_nb);
1577	return 0;
1578}
1579early_initcall(rcu_register_oom_notifier);
1580
1581#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1582
1583#ifdef CONFIG_RCU_FAST_NO_HZ
 
 
 
 
 
 
1584
1585static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
 
 
 
1586{
1587	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1588	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1589
1590	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1591		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1592		ulong2long(nlpd),
1593		rdtp->all_lazy ? 'L' : '.',
1594		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
 
1595}
1596
1597#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1598
1599static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
 
 
 
 
 
 
 
 
1600{
1601	*cp = '\0';
 
 
1602}
1603
1604#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1605
1606/* Initiate the stall-info list. */
1607static void print_cpu_stall_info_begin(void)
 
1608{
1609	pr_cont("\n");
 
1610}
1611
1612/*
1613 * Print out diagnostic information for the specified stalled CPU.
1614 *
1615 * If the specified CPU is aware of the current RCU grace period
1616 * (flavor specified by rsp), then print the number of scheduling
1617 * clock interrupts the CPU has taken during the time that it has
1618 * been aware.  Otherwise, print the number of RCU grace periods
1619 * that this CPU is ignorant of, for example, "1" if the CPU was
1620 * aware of the previous grace period.
1621 *
1622 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1623 */
1624static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1625{
1626	char fast_no_hz[72];
1627	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1628	struct rcu_dynticks *rdtp = rdp->dynticks;
1629	char *ticks_title;
1630	unsigned long ticks_value;
1631
1632	if (rsp->gpnum == rdp->gpnum) {
1633		ticks_title = "ticks this GP";
1634		ticks_value = rdp->ticks_this_gp;
1635	} else {
1636		ticks_title = "GPs behind";
1637		ticks_value = rsp->gpnum - rdp->gpnum;
1638	}
1639	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1640	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1641	       cpu,
1642	       "O."[!!cpu_online(cpu)],
1643	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1644	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1645	       ticks_value, ticks_title,
1646	       atomic_read(&rdtp->dynticks) & 0xfff,
1647	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1648	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1649	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1650	       fast_no_hz);
1651}
1652
1653/* Terminate the stall-info list. */
1654static void print_cpu_stall_info_end(void)
1655{
1656	pr_err("\t");
 
1657}
1658
1659/* Zero ->ticks_this_gp for all flavors of RCU. */
1660static void zero_cpu_stall_ticks(struct rcu_data *rdp)
 
 
 
1661{
1662	rdp->ticks_this_gp = 0;
1663	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
 
 
1664}
1665
1666/* Increment ->ticks_this_gp for all flavors of RCU. */
1667static void increment_cpu_stall_ticks(void)
 
 
 
1668{
1669	struct rcu_state *rsp;
1670
1671	for_each_rcu_flavor(rsp)
1672		raw_cpu_inc(rsp->rda->ticks_this_gp);
1673}
1674
1675#ifdef CONFIG_RCU_NOCB_CPU
1676
1677/*
1678 * Offload callback processing from the boot-time-specified set of CPUs
1679 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1680 * kthread created that pulls the callbacks from the corresponding CPU,
1681 * waits for a grace period to elapse, and invokes the callbacks.
1682 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1683 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1684 * has been specified, in which case each kthread actively polls its
1685 * CPU.  (Which isn't so great for energy efficiency, but which does
1686 * reduce RCU's overhead on that CPU.)
1687 *
1688 * This is intended to be used in conjunction with Frederic Weisbecker's
1689 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1690 * running CPU-bound user-mode computations.
1691 *
1692 * Offloading of callback processing could also in theory be used as
1693 * an energy-efficiency measure because CPUs with no RCU callbacks
1694 * queued are more aggressive about entering dyntick-idle mode.
1695 */
1696
1697
1698/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1699static int __init rcu_nocb_setup(char *str)
1700{
1701	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1702	have_rcu_nocb_mask = true;
1703	cpulist_parse(str, rcu_nocb_mask);
1704	return 1;
 
 
1705}
1706__setup("rcu_nocbs=", rcu_nocb_setup);
1707
1708static int __init parse_rcu_nocb_poll(char *arg)
 
1709{
1710	rcu_nocb_poll = 1;
1711	return 0;
 
1712}
1713early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1714
1715/*
1716 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1717 * grace period.
1718 */
1719static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1720{
1721	swake_up_all(sq);
1722}
1723
1724/*
1725 * Set the root rcu_node structure's ->need_future_gp field
1726 * based on the sum of those of all rcu_node structures.  This does
1727 * double-count the root rcu_node structure's requests, but this
1728 * is necessary to handle the possibility of a rcu_nocb_kthread()
1729 * having awakened during the time that the rcu_node structures
1730 * were being updated for the end of the previous grace period.
1731 */
1732static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1733{
1734	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1735}
1736
1737static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738{
1739	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1740}
1741
1742static void rcu_init_one_nocb(struct rcu_node *rnp)
1743{
1744	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1745	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1746}
1747
1748#ifndef CONFIG_RCU_NOCB_CPU_ALL
1749/* Is the specified CPU a no-CBs CPU? */
1750bool rcu_is_nocb_cpu(int cpu)
1751{
1752	if (have_rcu_nocb_mask)
1753		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1754	return false;
1755}
1756#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1757
1758/*
1759 * Kick the leader kthread for this NOCB group.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760 */
1761static void wake_nocb_leader(struct rcu_data *rdp, bool force)
 
1762{
1763	struct rcu_data *rdp_leader = rdp->nocb_leader;
 
 
 
 
 
1764
1765	if (!READ_ONCE(rdp_leader->nocb_kthread))
1766		return;
1767	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1768		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1769		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1770		swake_up(&rdp_leader->nocb_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
1771	}
 
 
 
 
 
 
 
 
1772}
1773
1774/*
1775 * Does the specified CPU need an RCU callback for the specified flavor
1776 * of rcu_barrier()?
 
 
 
 
1777 */
1778static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
 
1779{
1780	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1781	unsigned long ret;
1782#ifdef CONFIG_PROVE_RCU
1783	struct rcu_head *rhp;
1784#endif /* #ifdef CONFIG_PROVE_RCU */
 
1785
1786	/*
1787	 * Check count of all no-CBs callbacks awaiting invocation.
1788	 * There needs to be a barrier before this function is called,
1789	 * but associated with a prior determination that no more
1790	 * callbacks would be posted.  In the worst case, the first
1791	 * barrier in _rcu_barrier() suffices (but the caller cannot
1792	 * necessarily rely on this, not a substitute for the caller
1793	 * getting the concurrency design right!).  There must also be
1794	 * a barrier between the following load an posting of a callback
1795	 * (if a callback is in fact needed).  This is associated with an
1796	 * atomic_inc() in the caller.
1797	 */
1798	ret = atomic_long_read(&rdp->nocb_q_count);
1799
1800#ifdef CONFIG_PROVE_RCU
1801	rhp = READ_ONCE(rdp->nocb_head);
1802	if (!rhp)
1803		rhp = READ_ONCE(rdp->nocb_gp_head);
1804	if (!rhp)
1805		rhp = READ_ONCE(rdp->nocb_follower_head);
1806
1807	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1808	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1809	    rcu_scheduler_fully_active) {
1810		/* RCU callback enqueued before CPU first came online??? */
1811		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1812		       cpu, rhp->func);
1813		WARN_ON_ONCE(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	}
1815#endif /* #ifdef CONFIG_PROVE_RCU */
1816
1817	return !!ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818}
1819
1820/*
1821 * Enqueue the specified string of rcu_head structures onto the specified
1822 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1823 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1824 * counts are supplied by rhcount and rhcount_lazy.
1825 *
1826 * If warranted, also wake up the kthread servicing this CPUs queues.
1827 */
1828static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1829				    struct rcu_head *rhp,
1830				    struct rcu_head **rhtp,
1831				    int rhcount, int rhcount_lazy,
1832				    unsigned long flags)
1833{
1834	int len;
1835	struct rcu_head **old_rhpp;
 
1836	struct task_struct *t;
1837
1838	/* Enqueue the callback on the nocb list and update counts. */
1839	atomic_long_add(rhcount, &rdp->nocb_q_count);
1840	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1841	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1842	WRITE_ONCE(*old_rhpp, rhp);
1843	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1844	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1845
1846	/* If we are not being polled and there is a kthread, awaken it ... */
1847	t = READ_ONCE(rdp->nocb_kthread);
1848	if (rcu_nocb_poll || !t) {
1849		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1850				    TPS("WakeNotPoll"));
 
1851		return;
1852	}
1853	len = atomic_long_read(&rdp->nocb_q_count);
1854	if (old_rhpp == &rdp->nocb_head) {
 
 
1855		if (!irqs_disabled_flags(flags)) {
1856			/* ... if queue was empty ... */
1857			wake_nocb_leader(rdp, false);
1858			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1859					    TPS("WakeEmpty"));
1860		} else {
1861			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1862			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1863					    TPS("WakeEmptyIsDeferred"));
1864		}
1865		rdp->qlen_last_fqs_check = 0;
1866	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1867		/* ... or if many callbacks queued. */
1868		if (!irqs_disabled_flags(flags)) {
1869			wake_nocb_leader(rdp, true);
1870			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1871					    TPS("WakeOvf"));
1872		} else {
1873			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1874			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1875					    TPS("WakeOvfIsDeferred"));
1876		}
1877		rdp->qlen_last_fqs_check = LONG_MAX / 2;
 
 
 
 
 
 
1878	} else {
1879		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
 
1880	}
1881	return;
1882}
1883
1884/*
1885 * This is a helper for __call_rcu(), which invokes this when the normal
1886 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1887 * function returns failure back to __call_rcu(), which can complain
1888 * appropriately.
1889 *
1890 * Otherwise, this function queues the callback where the corresponding
1891 * "rcuo" kthread can find it.
1892 */
1893static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1894			    bool lazy, unsigned long flags)
1895{
 
 
1896
1897	if (!rcu_is_nocb_cpu(rdp->cpu))
1898		return false;
1899	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1900	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1901		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1902					 (unsigned long)rhp->func,
1903					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1904					 -atomic_long_read(&rdp->nocb_q_count));
1905	else
1906		trace_rcu_callback(rdp->rsp->name, rhp,
1907				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1908				   -atomic_long_read(&rdp->nocb_q_count));
1909
1910	/*
1911	 * If called from an extended quiescent state with interrupts
1912	 * disabled, invoke the RCU core in order to allow the idle-entry
1913	 * deferred-wakeup check to function.
1914	 */
1915	if (irqs_disabled_flags(flags) &&
1916	    !rcu_is_watching() &&
1917	    cpu_online(smp_processor_id()))
1918		invoke_rcu_core();
1919
1920	return true;
1921}
1922
1923/*
1924 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1925 * not a no-CBs CPU.
1926 */
1927static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1928						     struct rcu_data *rdp,
1929						     unsigned long flags)
1930{
1931	long ql = rsp->qlen;
1932	long qll = rsp->qlen_lazy;
 
 
 
 
 
 
 
 
 
 
 
 
1933
1934	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1935	if (!rcu_is_nocb_cpu(smp_processor_id()))
1936		return false;
1937	rsp->qlen = 0;
1938	rsp->qlen_lazy = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939
1940	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1941	if (rsp->orphan_donelist != NULL) {
1942		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1943					rsp->orphan_donetail, ql, qll, flags);
1944		ql = qll = 0;
1945		rsp->orphan_donelist = NULL;
1946		rsp->orphan_donetail = &rsp->orphan_donelist;
1947	}
1948	if (rsp->orphan_nxtlist != NULL) {
1949		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1950					rsp->orphan_nxttail, ql, qll, flags);
1951		ql = qll = 0;
1952		rsp->orphan_nxtlist = NULL;
1953		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954	}
1955	return true;
 
 
 
 
 
 
 
 
1956}
1957
1958/*
1959 * If necessary, kick off a new grace period, and either way wait
1960 * for a subsequent grace period to complete.
 
 
 
 
1961 */
1962static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1963{
1964	unsigned long c;
1965	bool d;
1966	unsigned long flags;
1967	bool needwake;
1968	struct rcu_node *rnp = rdp->mynode;
1969
1970	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1971	needwake = rcu_start_future_gp(rnp, rdp, &c);
1972	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1973	if (needwake)
1974		rcu_gp_kthread_wake(rdp->rsp);
1975
1976	/*
1977	 * Wait for the grace period.  Do so interruptibly to avoid messing
1978	 * up the load average.
1979	 */
1980	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1981	for (;;) {
1982		swait_event_interruptible(
1983			rnp->nocb_gp_wq[c & 0x1],
1984			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1985		if (likely(d))
1986			break;
1987		WARN_ON(signal_pending(current));
1988		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1989	}
1990	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1991	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1992}
1993
1994/*
1995 * Leaders come here to wait for additional callbacks to show up.
1996 * This function does not return until callbacks appear.
1997 */
1998static void nocb_leader_wait(struct rcu_data *my_rdp)
1999{
2000	bool firsttime = true;
2001	bool gotcbs;
2002	struct rcu_data *rdp;
2003	struct rcu_head **tail;
2004
2005wait_again:
2006
2007	/* Wait for callbacks to appear. */
2008	if (!rcu_nocb_poll) {
2009		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2010		swait_event_interruptible(my_rdp->nocb_wq,
2011				!READ_ONCE(my_rdp->nocb_leader_sleep));
2012		/* Memory barrier handled by smp_mb() calls below and repoll. */
2013	} else if (firsttime) {
2014		firsttime = false; /* Don't drown trace log with "Poll"! */
2015		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2016	}
2017
2018	/*
2019	 * Each pass through the following loop checks a follower for CBs.
2020	 * We are our own first follower.  Any CBs found are moved to
2021	 * nocb_gp_head, where they await a grace period.
2022	 */
2023	gotcbs = false;
2024	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2025		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2026		if (!rdp->nocb_gp_head)
2027			continue;  /* No CBs here, try next follower. */
2028
2029		/* Move callbacks to wait-for-GP list, which is empty. */
2030		WRITE_ONCE(rdp->nocb_head, NULL);
2031		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2032		gotcbs = true;
2033	}
2034
2035	/*
2036	 * If there were no callbacks, sleep a bit, rescan after a
2037	 * memory barrier, and go retry.
2038	 */
2039	if (unlikely(!gotcbs)) {
2040		if (!rcu_nocb_poll)
2041			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2042					    "WokeEmpty");
2043		WARN_ON(signal_pending(current));
2044		schedule_timeout_interruptible(1);
2045
2046		/* Rescan in case we were a victim of memory ordering. */
2047		my_rdp->nocb_leader_sleep = true;
2048		smp_mb();  /* Ensure _sleep true before scan. */
2049		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2050			if (READ_ONCE(rdp->nocb_head)) {
2051				/* Found CB, so short-circuit next wait. */
2052				my_rdp->nocb_leader_sleep = false;
2053				break;
2054			}
2055		goto wait_again;
2056	}
2057
2058	/* Wait for one grace period. */
2059	rcu_nocb_wait_gp(my_rdp);
2060
2061	/*
2062	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2063	 * We set it now, but recheck for new callbacks while
2064	 * traversing our follower list.
2065	 */
2066	my_rdp->nocb_leader_sleep = true;
2067	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2068
2069	/* Each pass through the following loop wakes a follower, if needed. */
2070	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2071		if (READ_ONCE(rdp->nocb_head))
2072			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2073		if (!rdp->nocb_gp_head)
2074			continue; /* No CBs, so no need to wake follower. */
2075
2076		/* Append callbacks to follower's "done" list. */
2077		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2078		*tail = rdp->nocb_gp_head;
2079		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2080		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2081			/*
2082			 * List was empty, wake up the follower.
2083			 * Memory barriers supplied by atomic_long_add().
2084			 */
2085			swake_up(&rdp->nocb_wq);
2086		}
2087	}
2088
2089	/* If we (the leader) don't have CBs, go wait some more. */
2090	if (!my_rdp->nocb_follower_head)
2091		goto wait_again;
2092}
2093
2094/*
2095 * Followers come here to wait for additional callbacks to show up.
2096 * This function does not return until callbacks appear.
2097 */
2098static void nocb_follower_wait(struct rcu_data *rdp)
2099{
2100	bool firsttime = true;
2101
2102	for (;;) {
2103		if (!rcu_nocb_poll) {
2104			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2105					    "FollowerSleep");
2106			swait_event_interruptible(rdp->nocb_wq,
2107						 READ_ONCE(rdp->nocb_follower_head));
2108		} else if (firsttime) {
2109			/* Don't drown trace log with "Poll"! */
2110			firsttime = false;
2111			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2112		}
2113		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2114			/* ^^^ Ensure CB invocation follows _head test. */
2115			return;
2116		}
2117		if (!rcu_nocb_poll)
2118			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119					    "WokeEmpty");
2120		WARN_ON(signal_pending(current));
2121		schedule_timeout_interruptible(1);
2122	}
 
 
2123}
2124
2125/*
2126 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2127 * callbacks queued by the corresponding no-CBs CPU, however, there is
2128 * an optional leader-follower relationship so that the grace-period
2129 * kthreads don't have to do quite so many wakeups.
2130 */
2131static int rcu_nocb_kthread(void *arg)
2132{
2133	int c, cl;
2134	struct rcu_head *list;
2135	struct rcu_head *next;
2136	struct rcu_head **tail;
2137	struct rcu_data *rdp = arg;
2138
2139	/* Each pass through this loop invokes one batch of callbacks */
 
2140	for (;;) {
2141		/* Wait for callbacks. */
2142		if (rdp->nocb_leader == rdp)
2143			nocb_leader_wait(rdp);
2144		else
2145			nocb_follower_wait(rdp);
2146
2147		/* Pull the ready-to-invoke callbacks onto local list. */
2148		list = READ_ONCE(rdp->nocb_follower_head);
2149		BUG_ON(!list);
2150		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2151		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2152		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2153
2154		/* Each pass through the following loop invokes a callback. */
2155		trace_rcu_batch_start(rdp->rsp->name,
2156				      atomic_long_read(&rdp->nocb_q_count_lazy),
2157				      atomic_long_read(&rdp->nocb_q_count), -1);
2158		c = cl = 0;
2159		while (list) {
2160			next = list->next;
2161			/* Wait for enqueuing to complete, if needed. */
2162			while (next == NULL && &list->next != tail) {
2163				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2164						    TPS("WaitQueue"));
2165				schedule_timeout_interruptible(1);
2166				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2167						    TPS("WokeQueue"));
2168				next = list->next;
2169			}
2170			debug_rcu_head_unqueue(list);
2171			local_bh_disable();
2172			if (__rcu_reclaim(rdp->rsp->name, list))
2173				cl++;
2174			c++;
2175			local_bh_enable();
2176			cond_resched_rcu_qs();
2177			list = next;
2178		}
2179		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2180		smp_mb__before_atomic();  /* _add after CB invocation. */
2181		atomic_long_add(-c, &rdp->nocb_q_count);
2182		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2183		rdp->n_nocbs_invoked += c;
2184	}
2185	return 0;
2186}
2187
2188/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2189static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2190{
2191	return READ_ONCE(rdp->nocb_defer_wakeup);
2192}
2193
2194/* Do a deferred wakeup of rcu_nocb_kthread(). */
2195static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2196{
 
2197	int ndw;
2198
2199	if (!rcu_nocb_need_deferred_wakeup(rdp))
 
 
2200		return;
 
2201	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2202	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2203	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2204	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205}
2206
2207void __init rcu_init_nohz(void)
2208{
2209	int cpu;
2210	bool need_rcu_nocb_mask = true;
2211	struct rcu_state *rsp;
2212
2213#ifdef CONFIG_RCU_NOCB_CPU_NONE
2214	need_rcu_nocb_mask = false;
2215#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2216
2217#if defined(CONFIG_NO_HZ_FULL)
2218	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2219		need_rcu_nocb_mask = true;
2220#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2221
2222	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2223		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2224			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2225			return;
2226		}
2227		have_rcu_nocb_mask = true;
2228	}
2229	if (!have_rcu_nocb_mask)
2230		return;
2231
2232#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2233	pr_info("\tOffload RCU callbacks from CPU 0\n");
2234	cpumask_set_cpu(0, rcu_nocb_mask);
2235#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2236#ifdef CONFIG_RCU_NOCB_CPU_ALL
2237	pr_info("\tOffload RCU callbacks from all CPUs\n");
2238	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2239#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2240#if defined(CONFIG_NO_HZ_FULL)
2241	if (tick_nohz_full_running)
2242		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2243#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2244
2245	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2246		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2247		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2248			    rcu_nocb_mask);
2249	}
2250	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2251		cpumask_pr_args(rcu_nocb_mask));
 
 
 
2252	if (rcu_nocb_poll)
2253		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2254
2255	for_each_rcu_flavor(rsp) {
2256		for_each_cpu(cpu, rcu_nocb_mask)
2257			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2258		rcu_organize_nocb_kthreads(rsp);
 
2259	}
 
2260}
2261
2262/* Initialize per-rcu_data variables for no-CBs CPUs. */
2263static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2264{
2265	rdp->nocb_tail = &rdp->nocb_head;
2266	init_swait_queue_head(&rdp->nocb_wq);
2267	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
 
 
 
 
 
2268}
2269
2270/*
2271 * If the specified CPU is a no-CBs CPU that does not already have its
2272 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2273 * brought online out of order, this can require re-organizing the
2274 * leader-follower relationships.
2275 */
2276static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2277{
2278	struct rcu_data *rdp;
2279	struct rcu_data *rdp_last;
2280	struct rcu_data *rdp_old_leader;
2281	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2282	struct task_struct *t;
2283
2284	/*
2285	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2286	 * then nothing to do.
2287	 */
2288	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2289		return;
2290
2291	/* If we didn't spawn the leader first, reorganize! */
2292	rdp_old_leader = rdp_spawn->nocb_leader;
2293	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2294		rdp_last = NULL;
2295		rdp = rdp_old_leader;
2296		do {
2297			rdp->nocb_leader = rdp_spawn;
2298			if (rdp_last && rdp != rdp_spawn)
2299				rdp_last->nocb_next_follower = rdp;
2300			if (rdp == rdp_spawn) {
2301				rdp = rdp->nocb_next_follower;
2302			} else {
2303				rdp_last = rdp;
2304				rdp = rdp->nocb_next_follower;
2305				rdp_last->nocb_next_follower = NULL;
2306			}
2307		} while (rdp);
2308		rdp_spawn->nocb_next_follower = rdp_old_leader;
2309	}
2310
2311	/* Spawn the kthread for this CPU and RCU flavor. */
2312	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2313			"rcuo%c/%d", rsp->abbr, cpu);
2314	BUG_ON(IS_ERR(t));
2315	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
 
 
2316}
2317
2318/*
2319 * If the specified CPU is a no-CBs CPU that does not already have its
2320 * rcuo kthreads, spawn them.
2321 */
2322static void rcu_spawn_all_nocb_kthreads(int cpu)
2323{
2324	struct rcu_state *rsp;
2325
2326	if (rcu_scheduler_fully_active)
2327		for_each_rcu_flavor(rsp)
2328			rcu_spawn_one_nocb_kthread(rsp, cpu);
2329}
2330
2331/*
2332 * Once the scheduler is running, spawn rcuo kthreads for all online
2333 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2334 * non-boot CPUs come online -- if this changes, we will need to add
2335 * some mutual exclusion.
2336 */
2337static void __init rcu_spawn_nocb_kthreads(void)
2338{
2339	int cpu;
2340
2341	for_each_online_cpu(cpu)
2342		rcu_spawn_all_nocb_kthreads(cpu);
2343}
2344
2345/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2346static int rcu_nocb_leader_stride = -1;
2347module_param(rcu_nocb_leader_stride, int, 0444);
2348
2349/*
2350 * Initialize leader-follower relationships for all no-CBs CPU.
2351 */
2352static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2353{
2354	int cpu;
2355	int ls = rcu_nocb_leader_stride;
2356	int nl = 0;  /* Next leader. */
 
 
 
2357	struct rcu_data *rdp;
2358	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2359	struct rcu_data *rdp_prev = NULL;
2360
2361	if (!have_rcu_nocb_mask)
2362		return;
2363	if (ls == -1) {
2364		ls = int_sqrt(nr_cpu_ids);
2365		rcu_nocb_leader_stride = ls;
2366	}
2367
2368	/*
2369	 * Each pass through this loop sets up one rcu_data structure and
2370	 * spawns one rcu_nocb_kthread().
 
2371	 */
2372	for_each_cpu(cpu, rcu_nocb_mask) {
2373		rdp = per_cpu_ptr(rsp->rda, cpu);
2374		if (rdp->cpu >= nl) {
2375			/* New leader, set up for followers & next leader. */
 
2376			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2377			rdp->nocb_leader = rdp;
2378			rdp_leader = rdp;
 
 
 
 
 
 
 
 
 
2379		} else {
2380			/* Another follower, link to previous leader. */
2381			rdp->nocb_leader = rdp_leader;
2382			rdp_prev->nocb_next_follower = rdp;
 
 
 
2383		}
2384		rdp_prev = rdp;
2385	}
 
 
2386}
2387
2388/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2389static bool init_nocb_callback_list(struct rcu_data *rdp)
2390{
2391	if (!rcu_is_nocb_cpu(rdp->cpu))
2392		return false;
2393
2394	/* If there are early-boot callbacks, move them to nocb lists. */
2395	if (rdp->nxtlist) {
2396		rdp->nocb_head = rdp->nxtlist;
2397		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2398		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2399		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2400		rdp->nxtlist = NULL;
2401		rdp->qlen = 0;
2402		rdp->qlen_lazy = 0;
2403	}
2404	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2405	return true;
2406}
2407
2408#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2409
2410static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2411{
2412	WARN_ON_ONCE(1); /* Should be dead code. */
2413	return false;
2414}
2415
2416static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2417{
2418}
2419
2420static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2421{
2422}
2423
2424static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2425{
2426	return NULL;
2427}
2428
2429static void rcu_init_one_nocb(struct rcu_node *rnp)
2430{
2431}
2432
2433static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2434			    bool lazy, unsigned long flags)
2435{
2436	return false;
2437}
2438
2439static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2440						     struct rcu_data *rdp,
2441						     unsigned long flags)
2442{
2443	return false;
2444}
2445
2446static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2447{
2448}
2449
2450static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2451{
2452	return false;
2453}
2454
2455static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2456{
2457}
2458
2459static void rcu_spawn_all_nocb_kthreads(int cpu)
2460{
2461}
2462
2463static void __init rcu_spawn_nocb_kthreads(void)
2464{
2465}
2466
2467static bool init_nocb_callback_list(struct rcu_data *rdp)
2468{
2469	return false;
2470}
2471
2472#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2473
2474/*
2475 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2476 * arbitrarily long period of time with the scheduling-clock tick turned
2477 * off.  RCU will be paying attention to this CPU because it is in the
2478 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2479 * machine because the scheduling-clock tick has been disabled.  Therefore,
2480 * if an adaptive-ticks CPU is failing to respond to the current grace
2481 * period and has not be idle from an RCU perspective, kick it.
2482 */
2483static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2484{
2485#ifdef CONFIG_NO_HZ_FULL
2486	if (tick_nohz_full_cpu(cpu))
2487		smp_send_reschedule(cpu);
2488#endif /* #ifdef CONFIG_NO_HZ_FULL */
2489}
2490
2491
2492#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2493
2494static int full_sysidle_state;		/* Current system-idle state. */
2495#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2496#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2497#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2498#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2499#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2500
2501/*
2502 * Invoked to note exit from irq or task transition to idle.  Note that
2503 * usermode execution does -not- count as idle here!  After all, we want
2504 * to detect full-system idle states, not RCU quiescent states and grace
2505 * periods.  The caller must have disabled interrupts.
2506 */
2507static void rcu_sysidle_enter(int irq)
2508{
2509	unsigned long j;
2510	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2511
2512	/* If there are no nohz_full= CPUs, no need to track this. */
2513	if (!tick_nohz_full_enabled())
2514		return;
2515
2516	/* Adjust nesting, check for fully idle. */
2517	if (irq) {
2518		rdtp->dynticks_idle_nesting--;
2519		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2520		if (rdtp->dynticks_idle_nesting != 0)
2521			return;  /* Still not fully idle. */
2522	} else {
2523		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2524		    DYNTICK_TASK_NEST_VALUE) {
2525			rdtp->dynticks_idle_nesting = 0;
2526		} else {
2527			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2528			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2529			return;  /* Still not fully idle. */
2530		}
2531	}
2532
2533	/* Record start of fully idle period. */
2534	j = jiffies;
2535	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2536	smp_mb__before_atomic();
2537	atomic_inc(&rdtp->dynticks_idle);
2538	smp_mb__after_atomic();
2539	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2540}
 
2541
2542/*
2543 * Unconditionally force exit from full system-idle state.  This is
2544 * invoked when a normal CPU exits idle, but must be called separately
2545 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2546 * is that the timekeeping CPU is permitted to take scheduling-clock
2547 * interrupts while the system is in system-idle state, and of course
2548 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2549 * interrupt from any other type of interrupt.
2550 */
2551void rcu_sysidle_force_exit(void)
2552{
2553	int oldstate = READ_ONCE(full_sysidle_state);
2554	int newoldstate;
2555
2556	/*
2557	 * Each pass through the following loop attempts to exit full
2558	 * system-idle state.  If contention proves to be a problem,
2559	 * a trylock-based contention tree could be used here.
2560	 */
2561	while (oldstate > RCU_SYSIDLE_SHORT) {
2562		newoldstate = cmpxchg(&full_sysidle_state,
2563				      oldstate, RCU_SYSIDLE_NOT);
2564		if (oldstate == newoldstate &&
2565		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2566			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2567			return; /* We cleared it, done! */
2568		}
2569		oldstate = newoldstate;
2570	}
2571	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2572}
2573
2574/*
2575 * Invoked to note entry to irq or task transition from idle.  Note that
2576 * usermode execution does -not- count as idle here!  The caller must
2577 * have disabled interrupts.
2578 */
2579static void rcu_sysidle_exit(int irq)
2580{
2581	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2582
2583	/* If there are no nohz_full= CPUs, no need to track this. */
2584	if (!tick_nohz_full_enabled())
2585		return;
2586
2587	/* Adjust nesting, check for already non-idle. */
2588	if (irq) {
2589		rdtp->dynticks_idle_nesting++;
2590		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2591		if (rdtp->dynticks_idle_nesting != 1)
2592			return; /* Already non-idle. */
2593	} else {
2594		/*
2595		 * Allow for irq misnesting.  Yes, it really is possible
2596		 * to enter an irq handler then never leave it, and maybe
2597		 * also vice versa.  Handle both possibilities.
2598		 */
2599		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2600			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2601			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2602			return; /* Already non-idle. */
2603		} else {
2604			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2605		}
2606	}
2607
2608	/* Record end of idle period. */
2609	smp_mb__before_atomic();
2610	atomic_inc(&rdtp->dynticks_idle);
2611	smp_mb__after_atomic();
2612	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2613
2614	/*
2615	 * If we are the timekeeping CPU, we are permitted to be non-idle
2616	 * during a system-idle state.  This must be the case, because
2617	 * the timekeeping CPU has to take scheduling-clock interrupts
2618	 * during the time that the system is transitioning to full
2619	 * system-idle state.  This means that the timekeeping CPU must
2620	 * invoke rcu_sysidle_force_exit() directly if it does anything
2621	 * more than take a scheduling-clock interrupt.
2622	 */
2623	if (smp_processor_id() == tick_do_timer_cpu)
2624		return;
2625
2626	/* Update system-idle state: We are clearly no longer fully idle! */
2627	rcu_sysidle_force_exit();
2628}
2629
2630/*
2631 * Check to see if the current CPU is idle.  Note that usermode execution
2632 * does not count as idle.  The caller must have disabled interrupts,
2633 * and must be running on tick_do_timer_cpu.
2634 */
2635static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2636				  unsigned long *maxj)
2637{
2638	int cur;
2639	unsigned long j;
2640	struct rcu_dynticks *rdtp = rdp->dynticks;
2641
2642	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2643	if (!tick_nohz_full_enabled())
2644		return;
2645
2646	/*
2647	 * If some other CPU has already reported non-idle, if this is
2648	 * not the flavor of RCU that tracks sysidle state, or if this
2649	 * is an offline or the timekeeping CPU, nothing to do.
2650	 */
2651	if (!*isidle || rdp->rsp != rcu_state_p ||
2652	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2653		return;
2654	/* Verify affinity of current kthread. */
2655	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2656
2657	/* Pick up current idle and NMI-nesting counter and check. */
2658	cur = atomic_read(&rdtp->dynticks_idle);
2659	if (cur & 0x1) {
2660		*isidle = false; /* We are not idle! */
2661		return;
2662	}
2663	smp_mb(); /* Read counters before timestamps. */
2664
2665	/* Pick up timestamps. */
2666	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2667	/* If this CPU entered idle more recently, update maxj timestamp. */
2668	if (ULONG_CMP_LT(*maxj, j))
2669		*maxj = j;
2670}
2671
2672/*
2673 * Is this the flavor of RCU that is handling full-system idle?
2674 */
2675static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2676{
2677	return rsp == rcu_state_p;
2678}
2679
2680/*
2681 * Return a delay in jiffies based on the number of CPUs, rcu_node
2682 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2683 * systems more time to transition to full-idle state in order to
2684 * avoid the cache thrashing that otherwise occur on the state variable.
2685 * Really small systems (less than a couple of tens of CPUs) should
2686 * instead use a single global atomically incremented counter, and later
2687 * versions of this will automatically reconfigure themselves accordingly.
2688 */
2689static unsigned long rcu_sysidle_delay(void)
2690{
2691	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2692		return 0;
2693	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2694}
2695
2696/*
2697 * Advance the full-system-idle state.  This is invoked when all of
2698 * the non-timekeeping CPUs are idle.
2699 */
2700static void rcu_sysidle(unsigned long j)
2701{
2702	/* Check the current state. */
2703	switch (READ_ONCE(full_sysidle_state)) {
2704	case RCU_SYSIDLE_NOT:
2705
2706		/* First time all are idle, so note a short idle period. */
2707		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2708		break;
2709
2710	case RCU_SYSIDLE_SHORT:
2711
2712		/*
2713		 * Idle for a bit, time to advance to next state?
2714		 * cmpxchg failure means race with non-idle, let them win.
2715		 */
2716		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2717			(void)cmpxchg(&full_sysidle_state,
2718				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2719		break;
2720
2721	case RCU_SYSIDLE_LONG:
2722
2723		/*
2724		 * Do an additional check pass before advancing to full.
2725		 * cmpxchg failure means race with non-idle, let them win.
2726		 */
2727		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2728			(void)cmpxchg(&full_sysidle_state,
2729				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2730		break;
2731
2732	default:
2733		break;
2734	}
2735}
2736
2737/*
2738 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2739 * back to the beginning.
2740 */
2741static void rcu_sysidle_cancel(void)
2742{
2743	smp_mb();
2744	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2745		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2746}
2747
2748/*
2749 * Update the sysidle state based on the results of a force-quiescent-state
2750 * scan of the CPUs' dyntick-idle state.
2751 */
2752static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2753			       unsigned long maxj, bool gpkt)
2754{
2755	if (rsp != rcu_state_p)
2756		return;  /* Wrong flavor, ignore. */
2757	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2758		return;  /* Running state machine from timekeeping CPU. */
2759	if (isidle)
2760		rcu_sysidle(maxj);    /* More idle! */
2761	else
2762		rcu_sysidle_cancel(); /* Idle is over. */
2763}
2764
2765/*
2766 * Wrapper for rcu_sysidle_report() when called from the grace-period
2767 * kthread's context.
2768 */
2769static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2770				  unsigned long maxj)
2771{
2772	/* If there are no nohz_full= CPUs, no need to track this. */
2773	if (!tick_nohz_full_enabled())
2774		return;
2775
2776	rcu_sysidle_report(rsp, isidle, maxj, true);
2777}
2778
2779/* Callback and function for forcing an RCU grace period. */
2780struct rcu_sysidle_head {
2781	struct rcu_head rh;
2782	int inuse;
2783};
2784
2785static void rcu_sysidle_cb(struct rcu_head *rhp)
2786{
2787	struct rcu_sysidle_head *rshp;
2788
2789	/*
2790	 * The following memory barrier is needed to replace the
2791	 * memory barriers that would normally be in the memory
2792	 * allocator.
2793	 */
2794	smp_mb();  /* grace period precedes setting inuse. */
2795
2796	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2797	WRITE_ONCE(rshp->inuse, 0);
2798}
2799
2800/*
2801 * Check to see if the system is fully idle, other than the timekeeping CPU.
2802 * The caller must have disabled interrupts.  This is not intended to be
2803 * called unless tick_nohz_full_enabled().
2804 */
2805bool rcu_sys_is_idle(void)
2806{
2807	static struct rcu_sysidle_head rsh;
2808	int rss = READ_ONCE(full_sysidle_state);
2809
2810	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2811		return false;
2812
2813	/* Handle small-system case by doing a full scan of CPUs. */
2814	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2815		int oldrss = rss - 1;
2816
2817		/*
2818		 * One pass to advance to each state up to _FULL.
2819		 * Give up if any pass fails to advance the state.
2820		 */
2821		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2822			int cpu;
2823			bool isidle = true;
2824			unsigned long maxj = jiffies - ULONG_MAX / 4;
2825			struct rcu_data *rdp;
2826
2827			/* Scan all the CPUs looking for nonidle CPUs. */
2828			for_each_possible_cpu(cpu) {
2829				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2830				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2831				if (!isidle)
2832					break;
2833			}
2834			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2835			oldrss = rss;
2836			rss = READ_ONCE(full_sysidle_state);
2837		}
2838	}
2839
2840	/* If this is the first observation of an idle period, record it. */
2841	if (rss == RCU_SYSIDLE_FULL) {
2842		rss = cmpxchg(&full_sysidle_state,
2843			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2844		return rss == RCU_SYSIDLE_FULL;
2845	}
2846
2847	smp_mb(); /* ensure rss load happens before later caller actions. */
2848
2849	/* If already fully idle, tell the caller (in case of races). */
2850	if (rss == RCU_SYSIDLE_FULL_NOTED)
2851		return true;
2852
2853	/*
2854	 * If we aren't there yet, and a grace period is not in flight,
2855	 * initiate a grace period.  Either way, tell the caller that
2856	 * we are not there yet.  We use an xchg() rather than an assignment
2857	 * to make up for the memory barriers that would otherwise be
2858	 * provided by the memory allocator.
2859	 */
2860	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2861	    !rcu_gp_in_progress(rcu_state_p) &&
2862	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2863		call_rcu(&rsh.rh, rcu_sysidle_cb);
2864	return false;
2865}
2866
2867/*
2868 * Initialize dynticks sysidle state for CPUs coming online.
2869 */
2870static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2871{
2872	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2873}
2874
2875#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2876
2877static void rcu_sysidle_enter(int irq)
2878{
2879}
2880
2881static void rcu_sysidle_exit(int irq)
2882{
 
2883}
2884
2885static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2886				  unsigned long *maxj)
2887{
2888}
2889
2890static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2891{
2892	return false;
2893}
2894
2895static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2896				  unsigned long maxj)
2897{
2898}
2899
2900static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2901{
2902}
2903
2904#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2905
2906/*
2907 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2908 * grace-period kthread will do force_quiescent_state() processing?
2909 * The idea is to avoid waking up RCU core processing on such a
2910 * CPU unless the grace period has extended for too long.
2911 *
2912 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2913 * CONFIG_RCU_NOCB_CPU CPUs.
2914 */
2915static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2916{
2917#ifdef CONFIG_NO_HZ_FULL
2918	if (tick_nohz_full_cpu(smp_processor_id()) &&
2919	    (!rcu_gp_in_progress(rsp) ||
2920	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2921		return true;
2922#endif /* #ifdef CONFIG_NO_HZ_FULL */
2923	return false;
2924}
2925
2926/*
2927 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2928 * timekeeping CPU.
2929 */
2930static void rcu_bind_gp_kthread(void)
2931{
2932	int __maybe_unused cpu;
2933
2934	if (!tick_nohz_full_enabled())
2935		return;
2936#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2937	cpu = tick_do_timer_cpu;
2938	if (cpu >= 0 && cpu < nr_cpu_ids)
2939		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2940#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2941	housekeeping_affine(current);
2942#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2943}
2944
2945/* Record the current task on dyntick-idle entry. */
2946static void rcu_dynticks_task_enter(void)
2947{
2948#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2949	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2950#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2951}
2952
2953/* Record no current task on dyntick-idle exit. */
2954static void rcu_dynticks_task_exit(void)
2955{
2956#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2957	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2958#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2959}
v5.9
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 * Internal non-public definitions that provide either classic
   5 * or preemptible semantics.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Copyright Red Hat, 2009
   8 * Copyright IBM Corporation, 2009
   9 *
  10 * Author: Ingo Molnar <mingo@elte.hu>
  11 *	   Paul E. McKenney <paulmck@linux.ibm.com>
  12 */
  13
 
 
 
 
 
 
 
 
  14#include "../locking/rtmutex_common.h"
  15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  16#ifdef CONFIG_RCU_NOCB_CPU
  17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 
  18static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  20
  21/*
  22 * Check the RCU kernel configuration parameters and print informative
  23 * messages about anything out of the ordinary.
  24 */
  25static void __init rcu_bootup_announce_oddness(void)
  26{
  27	if (IS_ENABLED(CONFIG_RCU_TRACE))
  28		pr_info("\tRCU event tracing is enabled.\n");
  29	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  30	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  31		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
  32			RCU_FANOUT);
  33	if (rcu_fanout_exact)
  34		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  35	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  36		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  37	if (IS_ENABLED(CONFIG_PROVE_RCU))
  38		pr_info("\tRCU lockdep checking is enabled.\n");
  39	if (RCU_NUM_LVLS >= 4)
  40		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  41	if (RCU_FANOUT_LEAF != 16)
  42		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  43			RCU_FANOUT_LEAF);
  44	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  45		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
  46			rcu_fanout_leaf);
  47	if (nr_cpu_ids != NR_CPUS)
  48		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  49#ifdef CONFIG_RCU_BOOST
  50	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
  51		kthread_prio, CONFIG_RCU_BOOST_DELAY);
  52#endif
  53	if (blimit != DEFAULT_RCU_BLIMIT)
  54		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  55	if (qhimark != DEFAULT_RCU_QHIMARK)
  56		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
  57	if (qlowmark != DEFAULT_RCU_QLOMARK)
  58		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
  59	if (qovld != DEFAULT_RCU_QOVLD)
  60		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
  61	if (jiffies_till_first_fqs != ULONG_MAX)
  62		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
  63	if (jiffies_till_next_fqs != ULONG_MAX)
  64		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
  65	if (jiffies_till_sched_qs != ULONG_MAX)
  66		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
  67	if (rcu_kick_kthreads)
  68		pr_info("\tKick kthreads if too-long grace period.\n");
  69	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
  70		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
  71	if (gp_preinit_delay)
  72		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
  73	if (gp_init_delay)
  74		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
  75	if (gp_cleanup_delay)
  76		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
  77	if (!use_softirq)
  78		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
  79	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
  80		pr_info("\tRCU debug extended QS entry/exit.\n");
  81	rcupdate_announce_bootup_oddness();
  82}
  83
  84#ifdef CONFIG_PREEMPT_RCU
  85
  86static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
  87static void rcu_read_unlock_special(struct task_struct *t);
 
 
 
 
  88
  89/*
  90 * Tell them what RCU they are running.
  91 */
  92static void __init rcu_bootup_announce(void)
  93{
  94	pr_info("Preemptible hierarchical RCU implementation.\n");
  95	rcu_bootup_announce_oddness();
  96}
  97
  98/* Flags for rcu_preempt_ctxt_queue() decision table. */
  99#define RCU_GP_TASKS	0x8
 100#define RCU_EXP_TASKS	0x4
 101#define RCU_GP_BLKD	0x2
 102#define RCU_EXP_BLKD	0x1
 103
 104/*
 105 * Queues a task preempted within an RCU-preempt read-side critical
 106 * section into the appropriate location within the ->blkd_tasks list,
 107 * depending on the states of any ongoing normal and expedited grace
 108 * periods.  The ->gp_tasks pointer indicates which element the normal
 109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 110 * indicates which element the expedited grace period is waiting on (again,
 111 * NULL if none).  If a grace period is waiting on a given element in the
 112 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 113 * adding a task to the tail of the list blocks any grace period that is
 114 * already waiting on one of the elements.  In contrast, adding a task
 115 * to the head of the list won't block any grace period that is already
 116 * waiting on one of the elements.
 117 *
 118 * This queuing is imprecise, and can sometimes make an ongoing grace
 119 * period wait for a task that is not strictly speaking blocking it.
 120 * Given the choice, we needlessly block a normal grace period rather than
 121 * blocking an expedited grace period.
 122 *
 123 * Note that an endless sequence of expedited grace periods still cannot
 124 * indefinitely postpone a normal grace period.  Eventually, all of the
 125 * fixed number of preempted tasks blocking the normal grace period that are
 126 * not also blocking the expedited grace period will resume and complete
 127 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 128 * pointer will equal the ->exp_tasks pointer, at which point the end of
 129 * the corresponding expedited grace period will also be the end of the
 130 * normal grace period.
 131 */
 132static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 133	__releases(rnp->lock) /* But leaves rrupts disabled. */
 134{
 135	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 136			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 137			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 138			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 139	struct task_struct *t = current;
 140
 141	raw_lockdep_assert_held_rcu_node(rnp);
 142	WARN_ON_ONCE(rdp->mynode != rnp);
 143	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 144	/* RCU better not be waiting on newly onlined CPUs! */
 145	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
 146		     rdp->grpmask);
 147
 148	/*
 149	 * Decide where to queue the newly blocked task.  In theory,
 150	 * this could be an if-statement.  In practice, when I tried
 151	 * that, it was quite messy.
 152	 */
 153	switch (blkd_state) {
 154	case 0:
 155	case                RCU_EXP_TASKS:
 156	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 157	case RCU_GP_TASKS:
 158	case RCU_GP_TASKS + RCU_EXP_TASKS:
 159
 160		/*
 161		 * Blocking neither GP, or first task blocking the normal
 162		 * GP but not blocking the already-waiting expedited GP.
 163		 * Queue at the head of the list to avoid unnecessarily
 164		 * blocking the already-waiting GPs.
 165		 */
 166		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 167		break;
 168
 169	case                                              RCU_EXP_BLKD:
 170	case                                RCU_GP_BLKD:
 171	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 172	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 173	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 174	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 175
 176		/*
 177		 * First task arriving that blocks either GP, or first task
 178		 * arriving that blocks the expedited GP (with the normal
 179		 * GP already waiting), or a task arriving that blocks
 180		 * both GPs with both GPs already waiting.  Queue at the
 181		 * tail of the list to avoid any GP waiting on any of the
 182		 * already queued tasks that are not blocking it.
 183		 */
 184		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 185		break;
 186
 187	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 188	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 189	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 190
 191		/*
 192		 * Second or subsequent task blocking the expedited GP.
 193		 * The task either does not block the normal GP, or is the
 194		 * first task blocking the normal GP.  Queue just after
 195		 * the first task blocking the expedited GP.
 196		 */
 197		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 198		break;
 199
 200	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 201	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 202
 203		/*
 204		 * Second or subsequent task blocking the normal GP.
 205		 * The task does not block the expedited GP. Queue just
 206		 * after the first task blocking the normal GP.
 207		 */
 208		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 209		break;
 210
 211	default:
 212
 213		/* Yet another exercise in excessive paranoia. */
 214		WARN_ON_ONCE(1);
 215		break;
 216	}
 217
 218	/*
 219	 * We have now queued the task.  If it was the first one to
 220	 * block either grace period, update the ->gp_tasks and/or
 221	 * ->exp_tasks pointers, respectively, to reference the newly
 222	 * blocked tasks.
 223	 */
 224	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
 225		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
 226		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
 227	}
 228	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 229		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
 230	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 231		     !(rnp->qsmask & rdp->grpmask));
 232	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 233		     !(rnp->expmask & rdp->grpmask));
 234	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 235
 236	/*
 237	 * Report the quiescent state for the expedited GP.  This expedited
 238	 * GP should not be able to end until we report, so there should be
 239	 * no need to check for a subsequent expedited GP.  (Though we are
 240	 * still in a quiescent state in any case.)
 241	 */
 242	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
 243		rcu_report_exp_rdp(rdp);
 244	else
 245		WARN_ON_ONCE(rdp->exp_deferred_qs);
 
 
 
 246}
 247
 248/*
 249 * Record a preemptible-RCU quiescent state for the specified CPU.
 250 * Note that this does not necessarily mean that the task currently running
 251 * on the CPU is in a quiescent state:  Instead, it means that the current
 252 * grace period need not wait on any RCU read-side critical section that
 253 * starts later on this CPU.  It also means that if the current task is
 254 * in an RCU read-side critical section, it has already added itself to
 255 * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
 256 * current task, there might be any number of other tasks blocked while
 257 * in an RCU read-side critical section.
 258 *
 259 * Callers to this function must disable preemption.
 
 260 */
 261static void rcu_qs(void)
 262{
 263	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
 264	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
 265		trace_rcu_grace_period(TPS("rcu_preempt"),
 266				       __this_cpu_read(rcu_data.gp_seq),
 267				       TPS("cpuqs"));
 268		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 269		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
 270		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
 271	}
 272}
 273
 274/*
 275 * We have entered the scheduler, and the current task might soon be
 276 * context-switched away from.  If this task is in an RCU read-side
 277 * critical section, we will no longer be able to rely on the CPU to
 278 * record that fact, so we enqueue the task on the blkd_tasks list.
 279 * The task will dequeue itself when it exits the outermost enclosing
 280 * RCU read-side critical section.  Therefore, the current grace period
 281 * cannot be permitted to complete until the blkd_tasks list entries
 282 * predating the current grace period drain, in other words, until
 283 * rnp->gp_tasks becomes NULL.
 284 *
 285 * Caller must disable interrupts.
 286 */
 287void rcu_note_context_switch(bool preempt)
 288{
 289	struct task_struct *t = current;
 290	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 291	struct rcu_node *rnp;
 292
 293	trace_rcu_utilization(TPS("Start context switch"));
 294	lockdep_assert_irqs_disabled();
 295	WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
 296	if (rcu_preempt_depth() > 0 &&
 297	    !t->rcu_read_unlock_special.b.blocked) {
 298
 299		/* Possibly blocking in an RCU read-side critical section. */
 
 300		rnp = rdp->mynode;
 301		raw_spin_lock_rcu_node(rnp);
 302		t->rcu_read_unlock_special.b.blocked = true;
 303		t->rcu_blocked_node = rnp;
 304
 305		/*
 306		 * Verify the CPU's sanity, trace the preemption, and
 307		 * then queue the task as required based on the states
 308		 * of any ongoing and expedited grace periods.
 309		 */
 310		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 311		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 312		trace_rcu_preempt_task(rcu_state.name,
 313				       t->pid,
 314				       (rnp->qsmask & rdp->grpmask)
 315				       ? rnp->gp_seq
 316				       : rcu_seq_snap(&rnp->gp_seq));
 317		rcu_preempt_ctxt_queue(rnp, rdp);
 318	} else {
 319		rcu_preempt_deferred_qs(t);
 
 
 
 
 
 
 320	}
 321
 322	/*
 323	 * Either we were not in an RCU read-side critical section to
 324	 * begin with, or we have now recorded that critical section
 325	 * globally.  Either way, we can now note a quiescent state
 326	 * for this CPU.  Again, if we were in an RCU read-side critical
 327	 * section, and if that critical section was blocking the current
 328	 * grace period, then the fact that the task has been enqueued
 329	 * means that we continue to block the current grace period.
 330	 */
 331	rcu_qs();
 332	if (rdp->exp_deferred_qs)
 333		rcu_report_exp_rdp(rdp);
 334	rcu_tasks_qs(current, preempt);
 335	trace_rcu_utilization(TPS("End context switch"));
 336}
 337EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 338
 339/*
 340 * Check for preempted RCU readers blocking the current grace period
 341 * for the specified rcu_node structure.  If the caller needs a reliable
 342 * answer, it must hold the rcu_node's ->lock.
 343 */
 344static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 345{
 346	return READ_ONCE(rnp->gp_tasks) != NULL;
 347}
 348
 349/* limit value for ->rcu_read_lock_nesting. */
 350#define RCU_NEST_PMAX (INT_MAX / 2)
 351
 352static void rcu_preempt_read_enter(void)
 353{
 354	current->rcu_read_lock_nesting++;
 355}
 356
 357static int rcu_preempt_read_exit(void)
 358{
 359	return --current->rcu_read_lock_nesting;
 360}
 361
 362static void rcu_preempt_depth_set(int val)
 363{
 364	current->rcu_read_lock_nesting = val;
 365}
 366
 367/*
 368 * Preemptible RCU implementation for rcu_read_lock().
 369 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 370 * if we block.
 371 */
 372void __rcu_read_lock(void)
 373{
 374	rcu_preempt_read_enter();
 375	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 376		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
 377	barrier();  /* critical section after entry code. */
 378}
 379EXPORT_SYMBOL_GPL(__rcu_read_lock);
 380
 381/*
 382 * Preemptible RCU implementation for rcu_read_unlock().
 383 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 385 * invoke rcu_read_unlock_special() to clean up after a context switch
 386 * in an RCU read-side critical section and other special cases.
 387 */
 388void __rcu_read_unlock(void)
 389{
 390	struct task_struct *t = current;
 391
 392	if (rcu_preempt_read_exit() == 0) {
 393		barrier();  /* critical section before exit code. */
 394		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
 395			rcu_read_unlock_special(t);
 396	}
 397	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
 398		int rrln = rcu_preempt_depth();
 399
 400		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
 401	}
 402}
 403EXPORT_SYMBOL_GPL(__rcu_read_unlock);
 404
 405/*
 406 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 407 * returning NULL if at the end of the list.
 408 */
 409static struct list_head *rcu_next_node_entry(struct task_struct *t,
 410					     struct rcu_node *rnp)
 411{
 412	struct list_head *np;
 413
 414	np = t->rcu_node_entry.next;
 415	if (np == &rnp->blkd_tasks)
 416		np = NULL;
 417	return np;
 418}
 419
 420/*
 421 * Return true if the specified rcu_node structure has tasks that were
 422 * preempted within an RCU read-side critical section.
 423 */
 424static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 425{
 426	return !list_empty(&rnp->blkd_tasks);
 427}
 428
 429/*
 430 * Report deferred quiescent states.  The deferral time can
 431 * be quite short, for example, in the case of the call from
 432 * rcu_read_unlock_special().
 433 */
 434static void
 435rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
 436{
 437	bool empty_exp;
 438	bool empty_norm;
 439	bool empty_exp_now;
 
 440	struct list_head *np;
 441	bool drop_boost_mutex = false;
 442	struct rcu_data *rdp;
 443	struct rcu_node *rnp;
 444	union rcu_special special;
 445
 
 
 
 
 
 
 446	/*
 447	 * If RCU core is waiting for this CPU to exit its critical section,
 448	 * report the fact that it has exited.  Because irqs are disabled,
 449	 * t->rcu_read_unlock_special cannot change.
 450	 */
 451	special = t->rcu_read_unlock_special;
 452	rdp = this_cpu_ptr(&rcu_data);
 453	if (!special.s && !rdp->exp_deferred_qs) {
 454		local_irq_restore(flags);
 455		return;
 
 
 
 456	}
 457	t->rcu_read_unlock_special.s = 0;
 458	if (special.b.need_qs)
 459		rcu_qs();
 460
 461	/*
 462	 * Respond to a request by an expedited grace period for a
 463	 * quiescent state from this CPU.  Note that requests from
 464	 * tasks are handled when removing the task from the
 465	 * blocked-tasks list below.
 
 466	 */
 467	if (rdp->exp_deferred_qs)
 468		rcu_report_exp_rdp(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469
 470	/* Clean up if blocked during RCU read-side critical section. */
 471	if (special.b.blocked) {
 
 472
 473		/*
 474		 * Remove this task from the list it blocked on.  The task
 475		 * now remains queued on the rcu_node corresponding to the
 476		 * CPU it first blocked on, so there is no longer any need
 477		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 478		 */
 479		rnp = t->rcu_blocked_node;
 480		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 481		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 482		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
 483		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 484		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
 485			     (!empty_norm || rnp->qsmask));
 486		empty_exp = sync_rcu_exp_done(rnp);
 487		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 488		np = rcu_next_node_entry(t, rnp);
 489		list_del_init(&t->rcu_node_entry);
 490		t->rcu_blocked_node = NULL;
 491		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 492						rnp->gp_seq, t->pid);
 493		if (&t->rcu_node_entry == rnp->gp_tasks)
 494			WRITE_ONCE(rnp->gp_tasks, np);
 495		if (&t->rcu_node_entry == rnp->exp_tasks)
 496			WRITE_ONCE(rnp->exp_tasks, np);
 497		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 
 
 498			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 499			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 500			if (&t->rcu_node_entry == rnp->boost_tasks)
 501				WRITE_ONCE(rnp->boost_tasks, np);
 502		}
 503
 504		/*
 505		 * If this was the last task on the current list, and if
 506		 * we aren't waiting on any CPUs, report the quiescent state.
 507		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 508		 * so we must take a snapshot of the expedited state.
 509		 */
 510		empty_exp_now = sync_rcu_exp_done(rnp);
 511		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 512			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 513							 rnp->gp_seq,
 514							 0, rnp->qsmask,
 515							 rnp->level,
 516							 rnp->grplo,
 517							 rnp->grphi,
 518							 !!rnp->gp_tasks);
 519			rcu_report_unblock_qs_rnp(rnp, flags);
 520		} else {
 521			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 522		}
 523
 524		/* Unboost if we were boosted. */
 525		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 526			rt_mutex_futex_unlock(&rnp->boost_mtx);
 527
 528		/*
 529		 * If this was the last task on the expedited lists,
 530		 * then we need to report up the rcu_node hierarchy.
 531		 */
 532		if (!empty_exp && empty_exp_now)
 533			rcu_report_exp_rnp(rnp, true);
 534	} else {
 535		local_irq_restore(flags);
 536	}
 537}
 538
 539/*
 540 * Is a deferred quiescent-state pending, and are we also not in
 541 * an RCU read-side critical section?  It is the caller's responsibility
 542 * to ensure it is otherwise safe to report any deferred quiescent
 543 * states.  The reason for this is that it is safe to report a
 544 * quiescent state during context switch even though preemption
 545 * is disabled.  This function cannot be expected to understand these
 546 * nuances, so the caller must handle them.
 547 */
 548static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 549{
 550	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
 551		READ_ONCE(t->rcu_read_unlock_special.s)) &&
 552	       rcu_preempt_depth() == 0;
 
 
 
 
 
 
 
 
 
 
 553}
 554
 555/*
 556 * Report a deferred quiescent state if needed and safe to do so.
 557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
 558 * not being in an RCU read-side critical section.  The caller must
 559 * evaluate safety in terms of interrupt, softirq, and preemption
 560 * disabling.
 561 */
 562static void rcu_preempt_deferred_qs(struct task_struct *t)
 563{
 564	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 565
 566	if (!rcu_preempt_need_deferred_qs(t))
 567		return;
 568	local_irq_save(flags);
 569	rcu_preempt_deferred_qs_irqrestore(t, flags);
 570}
 571
 572/*
 573 * Minimal handler to give the scheduler a chance to re-evaluate.
 
 574 */
 575static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
 576{
 577	struct rcu_data *rdp;
 
 578
 579	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
 580	rdp->defer_qs_iw_pending = false;
 
 
 
 
 
 
 
 
 
 581}
 582
 583/*
 584 * Handle special cases during rcu_read_unlock(), such as needing to
 585 * notify RCU core processing or task having blocked during the RCU
 586 * read-side critical section.
 587 */
 588static void rcu_read_unlock_special(struct task_struct *t)
 589{
 590	unsigned long flags;
 591	bool preempt_bh_were_disabled =
 592			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
 593	bool irqs_were_disabled;
 594
 595	/* NMI handlers cannot block and cannot safely manipulate state. */
 596	if (in_nmi())
 597		return;
 598
 599	local_irq_save(flags);
 600	irqs_were_disabled = irqs_disabled_flags(flags);
 601	if (preempt_bh_were_disabled || irqs_were_disabled) {
 602		bool exp;
 603		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 604		struct rcu_node *rnp = rdp->mynode;
 605
 606		exp = (t->rcu_blocked_node &&
 607		       READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
 608		      (rdp->grpmask & READ_ONCE(rnp->expmask));
 609		// Need to defer quiescent state until everything is enabled.
 610		if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
 611			// Using softirq, safe to awaken, and either the
 612			// wakeup is free or there is an expedited GP.
 613			raise_softirq_irqoff(RCU_SOFTIRQ);
 614		} else {
 615			// Enabling BH or preempt does reschedule, so...
 616			// Also if no expediting, slow is OK.
 617			// Plus nohz_full CPUs eventually get tick enabled.
 618			set_tsk_need_resched(current);
 619			set_preempt_need_resched();
 620			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
 621			    !rdp->defer_qs_iw_pending && exp) {
 622				// Get scheduler to re-evaluate and call hooks.
 623				// If !IRQ_WORK, FQS scan will eventually IPI.
 624				init_irq_work(&rdp->defer_qs_iw,
 625					      rcu_preempt_deferred_qs_handler);
 626				rdp->defer_qs_iw_pending = true;
 627				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
 628			}
 629		}
 630		local_irq_restore(flags);
 631		return;
 632	}
 633	rcu_preempt_deferred_qs_irqrestore(t, flags);
 634}
 635
 636/*
 637 * Check that the list of blocked tasks for the newly completed grace
 638 * period is in fact empty.  It is a serious bug to complete a grace
 639 * period that still has RCU readers blocked!  This function must be
 640 * invoked -before- updating this rnp's ->gp_seq.
 
 641 *
 642 * Also, if there are blocked tasks on the list, they automatically
 643 * block the newly created grace period, so set up ->gp_tasks accordingly.
 644 */
 645static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 646{
 647	struct task_struct *t;
 648
 649	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 650	raw_lockdep_assert_held_rcu_node(rnp);
 651	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
 652		dump_blkd_tasks(rnp, 10);
 653	if (rcu_preempt_has_tasks(rnp) &&
 654	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
 655		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
 656		t = container_of(rnp->gp_tasks, struct task_struct,
 657				 rcu_node_entry);
 658		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 659						rnp->gp_seq, t->pid);
 660	}
 661	WARN_ON_ONCE(rnp->qsmask);
 662}
 663
 664/*
 665 * Check for a quiescent state from the current CPU, including voluntary
 666 * context switches for Tasks RCU.  When a task blocks, the task is
 667 * recorded in the corresponding CPU's rcu_node structure, which is checked
 668 * elsewhere, hence this function need only check for quiescent states
 669 * related to the current CPU, not to those related to tasks.
 670 */
 671static void rcu_flavor_sched_clock_irq(int user)
 672{
 673	struct task_struct *t = current;
 674
 675	if (user || rcu_is_cpu_rrupt_from_idle()) {
 676		rcu_note_voluntary_context_switch(current);
 677	}
 678	if (rcu_preempt_depth() > 0 ||
 679	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
 680		/* No QS, force context switch if deferred. */
 681		if (rcu_preempt_need_deferred_qs(t)) {
 682			set_tsk_need_resched(t);
 683			set_preempt_need_resched();
 684		}
 685	} else if (rcu_preempt_need_deferred_qs(t)) {
 686		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
 687		return;
 688	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
 689		rcu_qs(); /* Report immediate QS. */
 690		return;
 691	}
 
 
 
 
 
 692
 693	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
 694	if (rcu_preempt_depth() > 0 &&
 695	    __this_cpu_read(rcu_data.core_needs_qs) &&
 696	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
 697	    !t->rcu_read_unlock_special.b.need_qs &&
 698	    time_after(jiffies, rcu_state.gp_start + HZ))
 699		t->rcu_read_unlock_special.b.need_qs = true;
 700}
 701
 
 
 702/*
 703 * Check for a task exiting while in a preemptible-RCU read-side
 704 * critical section, clean up if so.  No need to issue warnings, as
 705 * debug_check_no_locks_held() already does this if lockdep is enabled.
 706 * Besides, if this function does anything other than just immediately
 707 * return, there was a bug of some sort.  Spewing warnings from this
 708 * function is like as not to simply obscure important prior warnings.
 709 */
 710void exit_rcu(void)
 711{
 712	struct task_struct *t = current;
 
 
 713
 714	if (unlikely(!list_empty(&current->rcu_node_entry))) {
 715		rcu_preempt_depth_set(1);
 716		barrier();
 717		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
 718	} else if (unlikely(rcu_preempt_depth())) {
 719		rcu_preempt_depth_set(1);
 720	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721		return;
 722	}
 723	__rcu_read_unlock();
 724	rcu_preempt_deferred_qs(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727/*
 728 * Dump the blocked-tasks state, but limit the list dump to the
 729 * specified number of elements.
 
 
 730 */
 731static void
 732dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 733{
 734	int cpu;
 735	int i;
 736	struct list_head *lhp;
 737	bool onl;
 738	struct rcu_data *rdp;
 739	struct rcu_node *rnp1;
 740
 741	raw_lockdep_assert_held_rcu_node(rnp);
 742	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 743		__func__, rnp->grplo, rnp->grphi, rnp->level,
 744		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
 745	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 746		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
 747			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
 748	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
 749		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
 750		READ_ONCE(rnp->exp_tasks));
 751	pr_info("%s: ->blkd_tasks", __func__);
 752	i = 0;
 753	list_for_each(lhp, &rnp->blkd_tasks) {
 754		pr_cont(" %p", lhp);
 755		if (++i >= ncheck)
 756			break;
 757	}
 758	pr_cont("\n");
 759	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
 760		rdp = per_cpu_ptr(&rcu_data, cpu);
 761		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
 762		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
 763			cpu, ".o"[onl],
 764			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 765			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 766	}
 767}
 768
 769#else /* #ifdef CONFIG_PREEMPT_RCU */
 770
 
 
 771/*
 772 * Tell them what RCU they are running.
 773 */
 774static void __init rcu_bootup_announce(void)
 775{
 776	pr_info("Hierarchical RCU implementation.\n");
 777	rcu_bootup_announce_oddness();
 778}
 779
 780/*
 781 * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
 782 * how many quiescent states passed, just if there was at least one since
 783 * the start of the grace period, this just sets a flag.  The caller must
 784 * have disabled preemption.
 785 */
 786static void rcu_qs(void)
 787{
 788	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
 789	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
 790		return;
 791	trace_rcu_grace_period(TPS("rcu_sched"),
 792			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
 793	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
 794	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
 795		return;
 796	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
 797	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
 798}
 799
 800/*
 801 * Register an urgently needed quiescent state.  If there is an
 802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 803 * dyntick-idle quiescent state visible to other CPUs, which will in
 804 * some cases serve for expedited as well as normal grace periods.
 805 * Either way, register a lightweight quiescent state.
 806 */
 807void rcu_all_qs(void)
 808{
 809	unsigned long flags;
 810
 811	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
 812		return;
 813	preempt_disable();
 814	/* Load rcu_urgent_qs before other flags. */
 815	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
 816		preempt_enable();
 817		return;
 818	}
 819	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 820	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
 821		local_irq_save(flags);
 822		rcu_momentary_dyntick_idle();
 823		local_irq_restore(flags);
 824	}
 825	rcu_qs();
 826	preempt_enable();
 827}
 828EXPORT_SYMBOL_GPL(rcu_all_qs);
 829
 830/*
 831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
 832 */
 833void rcu_note_context_switch(bool preempt)
 834{
 835	trace_rcu_utilization(TPS("Start context switch"));
 836	rcu_qs();
 837	/* Load rcu_urgent_qs before other flags. */
 838	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
 839		goto out;
 840	this_cpu_write(rcu_data.rcu_urgent_qs, false);
 841	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
 842		rcu_momentary_dyntick_idle();
 843	rcu_tasks_qs(current, preempt);
 844out:
 845	trace_rcu_utilization(TPS("End context switch"));
 846}
 847EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 848
 849/*
 850 * Because preemptible RCU does not exist, there are never any preempted
 851 * RCU readers.
 852 */
 853static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 854{
 855	return 0;
 856}
 857
 858/*
 859 * Because there is no preemptible RCU, there can be no readers blocked.
 
 860 */
 861static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 862{
 863	return false;
 864}
 865
 866/*
 867 * Because there is no preemptible RCU, there can be no deferred quiescent
 868 * states.
 
 869 */
 870static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
 871{
 872	return false;
 873}
 874static void rcu_preempt_deferred_qs(struct task_struct *t) { }
 875
 876/*
 877 * Because there is no preemptible RCU, there can be no readers blocked,
 878 * so there is no need to check for blocked tasks.  So check only for
 879 * bogus qsmask values.
 880 */
 881static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 882{
 883	WARN_ON_ONCE(rnp->qsmask);
 884}
 885
 886/*
 887 * Check to see if this CPU is in a non-context-switch quiescent state,
 888 * namely user mode and idle loop.
 889 */
 890static void rcu_flavor_sched_clock_irq(int user)
 891{
 892	if (user || rcu_is_cpu_rrupt_from_idle()) {
 893
 894		/*
 895		 * Get here if this CPU took its interrupt from user
 896		 * mode or from the idle loop, and if this is not a
 897		 * nested interrupt.  In this case, the CPU is in
 898		 * a quiescent state, so note it.
 899		 *
 900		 * No memory barrier is required here because rcu_qs()
 901		 * references only CPU-local variables that other CPUs
 902		 * neither access nor modify, at least not while the
 903		 * corresponding CPU is online.
 904		 */
 905
 906		rcu_qs();
 907	}
 
 
 
 908}
 909
 910/*
 911 * Because preemptible RCU does not exist, tasks cannot possibly exit
 912 * while in preemptible RCU read-side critical sections.
 913 */
 914void exit_rcu(void)
 915{
 916}
 917
 918/*
 919 * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
 920 */
 921static void
 922dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
 
 
 
 
 923{
 924	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
 
 
 
 
 
 
 
 
 
 
 
 
 925}
 926
 927#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 928
 929/*
 930 * If boosting, set rcuc kthreads to realtime priority.
 931 */
 932static void rcu_cpu_kthread_setup(unsigned int cpu)
 933{
 934#ifdef CONFIG_RCU_BOOST
 935	struct sched_param sp;
 
 936
 937	sp.sched_priority = kthread_prio;
 938	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
 939#endif /* #ifdef CONFIG_RCU_BOOST */
 
 
 
 
 
 940}
 941
 942#ifdef CONFIG_RCU_BOOST
 943
 944/*
 945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 946 * or ->boost_tasks, advancing the pointer to the next task in the
 947 * ->blkd_tasks list.
 948 *
 949 * Note that irqs must be enabled: boosting the task can block.
 950 * Returns 1 if there are more tasks needing to be boosted.
 951 */
 952static int rcu_boost(struct rcu_node *rnp)
 953{
 954	unsigned long flags;
 955	struct task_struct *t;
 956	struct list_head *tb;
 957
 958	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 959	    READ_ONCE(rnp->boost_tasks) == NULL)
 960		return 0;  /* Nothing left to boost. */
 961
 962	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 963
 964	/*
 965	 * Recheck under the lock: all tasks in need of boosting
 966	 * might exit their RCU read-side critical sections on their own.
 967	 */
 968	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 969		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 970		return 0;
 971	}
 972
 973	/*
 974	 * Preferentially boost tasks blocking expedited grace periods.
 975	 * This cannot starve the normal grace periods because a second
 976	 * expedited grace period must boost all blocked tasks, including
 977	 * those blocking the pre-existing normal grace period.
 978	 */
 979	if (rnp->exp_tasks != NULL)
 980		tb = rnp->exp_tasks;
 981	else
 
 982		tb = rnp->boost_tasks;
 
 
 
 983
 984	/*
 985	 * We boost task t by manufacturing an rt_mutex that appears to
 986	 * be held by task t.  We leave a pointer to that rt_mutex where
 987	 * task t can find it, and task t will release the mutex when it
 988	 * exits its outermost RCU read-side critical section.  Then
 989	 * simply acquiring this artificial rt_mutex will boost task
 990	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 991	 *
 992	 * Note that task t must acquire rnp->lock to remove itself from
 993	 * the ->blkd_tasks list, which it will do from exit() if from
 994	 * nowhere else.  We therefore are guaranteed that task t will
 995	 * stay around at least until we drop rnp->lock.  Note that
 996	 * rnp->lock also resolves races between our priority boosting
 997	 * and task t's exiting its outermost RCU read-side critical
 998	 * section.
 999	 */
1000	t = container_of(tb, struct task_struct, rcu_node_entry);
1001	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1002	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1003	/* Lock only for side effect: boosts task t's priority. */
1004	rt_mutex_lock(&rnp->boost_mtx);
1005	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1006
1007	return READ_ONCE(rnp->exp_tasks) != NULL ||
1008	       READ_ONCE(rnp->boost_tasks) != NULL;
1009}
1010
1011/*
1012 * Priority-boosting kthread, one per leaf rcu_node.
1013 */
1014static int rcu_boost_kthread(void *arg)
1015{
1016	struct rcu_node *rnp = (struct rcu_node *)arg;
1017	int spincnt = 0;
1018	int more2boost;
1019
1020	trace_rcu_utilization(TPS("Start boost kthread@init"));
1021	for (;;) {
1022		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1023		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1025			 READ_ONCE(rnp->exp_tasks));
1026		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1028		more2boost = rcu_boost(rnp);
1029		if (more2boost)
1030			spincnt++;
1031		else
1032			spincnt = 0;
1033		if (spincnt > 10) {
1034			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1035			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036			schedule_timeout_idle(2);
1037			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1038			spincnt = 0;
1039		}
1040	}
1041	/* NOTREACHED */
1042	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1043	return 0;
1044}
1045
1046/*
1047 * Check to see if it is time to start boosting RCU readers that are
1048 * blocking the current grace period, and, if so, tell the per-rcu_node
1049 * kthread to start boosting them.  If there is an expedited grace
1050 * period in progress, it is always time to boost.
1051 *
1052 * The caller must hold rnp->lock, which this function releases.
1053 * The ->boost_kthread_task is immortal, so we don't need to worry
1054 * about it going away.
1055 */
1056static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1057	__releases(rnp->lock)
1058{
1059	raw_lockdep_assert_held_rcu_node(rnp);
 
1060	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 
1061		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1062		return;
1063	}
1064	if (rnp->exp_tasks != NULL ||
1065	    (rnp->gp_tasks != NULL &&
1066	     rnp->boost_tasks == NULL &&
1067	     rnp->qsmask == 0 &&
1068	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1069		if (rnp->exp_tasks == NULL)
1070			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1071		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072		rcu_wake_cond(rnp->boost_kthread_task,
1073			      READ_ONCE(rnp->boost_kthread_status));
 
1074	} else {
 
1075		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076	}
1077}
1078
1079/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080 * Is the current CPU running the RCU-callbacks kthread?
1081 * Caller must have preemption disabled.
1082 */
1083static bool rcu_is_callbacks_kthread(void)
1084{
1085	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1086}
1087
1088#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1089
1090/*
1091 * Do priority-boost accounting for the start of a new grace period.
1092 */
1093static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1094{
1095	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1096}
1097
1098/*
1099 * Create an RCU-boost kthread for the specified node if one does not
1100 * already exist.  We only create this kthread for preemptible RCU.
1101 * Returns zero if all is well, a negated errno otherwise.
1102 */
1103static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
 
1104{
1105	int rnp_index = rnp - rcu_get_root();
1106	unsigned long flags;
1107	struct sched_param sp;
1108	struct task_struct *t;
1109
1110	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1111		return;
1112
1113	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1114		return;
1115
1116	rcu_state.boost = 1;
1117
 
1118	if (rnp->boost_kthread_task != NULL)
1119		return;
1120
1121	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1122			   "rcub/%d", rnp_index);
1123	if (WARN_ON_ONCE(IS_ERR(t)))
1124		return;
1125
1126	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1127	rnp->boost_kthread_task = t;
1128	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129	sp.sched_priority = kthread_prio;
1130	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1131	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132}
1133
1134/*
1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136 * served by the rcu_node in question.  The CPU hotplug lock is still
1137 * held, so the value of rnp->qsmaskinit will be stable.
1138 *
1139 * We don't include outgoingcpu in the affinity set, use -1 if there is
1140 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1141 * this function allows the kthread to execute on any CPU.
1142 */
1143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1144{
1145	struct task_struct *t = rnp->boost_kthread_task;
1146	unsigned long mask = rcu_rnp_online_cpus(rnp);
1147	cpumask_var_t cm;
1148	int cpu;
1149
1150	if (!t)
1151		return;
1152	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1153		return;
1154	for_each_leaf_node_possible_cpu(rnp, cpu)
1155		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1156		    cpu != outgoingcpu)
1157			cpumask_set_cpu(cpu, cm);
1158	if (cpumask_weight(cm) == 0)
1159		cpumask_setall(cm);
1160	set_cpus_allowed_ptr(t, cm);
1161	free_cpumask_var(cm);
1162}
1163
 
 
 
 
 
 
 
 
 
1164/*
1165 * Spawn boost kthreads -- called as soon as the scheduler is running.
1166 */
1167static void __init rcu_spawn_boost_kthreads(void)
1168{
1169	struct rcu_node *rnp;
 
1170
1171	rcu_for_each_leaf_node(rnp)
1172		rcu_spawn_one_boost_kthread(rnp);
 
 
 
1173}
1174
1175static void rcu_prepare_kthreads(int cpu)
1176{
1177	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1178	struct rcu_node *rnp = rdp->mynode;
1179
1180	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181	if (rcu_scheduler_fully_active)
1182		rcu_spawn_one_boost_kthread(rnp);
1183}
1184
1185#else /* #ifdef CONFIG_RCU_BOOST */
1186
1187static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1188	__releases(rnp->lock)
1189{
1190	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1191}
1192
 
 
 
 
 
1193static bool rcu_is_callbacks_kthread(void)
1194{
1195	return false;
1196}
1197
1198static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1199{
1200}
1201
1202static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1203{
1204}
1205
1206static void __init rcu_spawn_boost_kthreads(void)
1207{
1208}
1209
1210static void rcu_prepare_kthreads(int cpu)
1211{
1212}
1213
1214#endif /* #else #ifdef CONFIG_RCU_BOOST */
1215
1216#if !defined(CONFIG_RCU_FAST_NO_HZ)
1217
1218/*
1219 * Check to see if any future non-offloaded RCU-related work will need
1220 * to be done by the current CPU, even if none need be done immediately,
1221 * returning 1 if so.  This function is part of the RCU implementation;
1222 * it is -not- an exported member of the RCU API.
1223 *
1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225 * CPU has RCU callbacks queued.
1226 */
1227int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1228{
1229	*nextevt = KTIME_MAX;
1230	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1231	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1232}
1233
1234/*
1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1236 * after it.
1237 */
1238static void rcu_cleanup_after_idle(void)
1239{
1240}
1241
1242/*
1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1244 * is nothing.
1245 */
1246static void rcu_prepare_for_idle(void)
1247{
1248}
1249
 
 
 
 
 
 
 
 
1250#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1251
1252/*
1253 * This code is invoked when a CPU goes idle, at which point we want
1254 * to have the CPU do everything required for RCU so that it can enter
1255 * the energy-efficient dyntick-idle mode.
 
1256 *
1257 * The following preprocessor symbol controls this:
1258 *
1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1261 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1262 *	benchmarkers who might otherwise be tempted to set this to a large
1263 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264 *	system.  And if you are -that- concerned about energy efficiency,
1265 *	just power the system down and be done with it!
 
 
 
1266 *
1267 * The value below works well in practice.  If future workloads require
1268 * adjustment, they can be converted into kernel config parameters, though
1269 * making the state machine smarter might be a better option.
1270 */
1271#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
 
1272
1273static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1274module_param(rcu_idle_gp_delay, int, 0644);
 
 
1275
1276/*
1277 * Try to advance callbacks on the current CPU, but only if it has been
1278 * awhile since the last time we did so.  Afterwards, if there are any
1279 * callbacks ready for immediate invocation, return true.
1280 */
1281static bool __maybe_unused rcu_try_advance_all_cbs(void)
1282{
1283	bool cbs_ready = false;
1284	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1285	struct rcu_node *rnp;
 
1286
1287	/* Exit early if we advanced recently. */
1288	if (jiffies == rdp->last_advance_all)
1289		return false;
1290	rdp->last_advance_all = jiffies;
1291
1292	rnp = rdp->mynode;
 
 
1293
1294	/*
1295	 * Don't bother checking unless a grace period has
1296	 * completed since we last checked and there are
1297	 * callbacks not yet ready to invoke.
1298	 */
1299	if ((rcu_seq_completed_gp(rdp->gp_seq,
1300				  rcu_seq_current(&rnp->gp_seq)) ||
1301	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1302	    rcu_segcblist_pend_cbs(&rdp->cblist))
1303		note_gp_changes(rdp);
1304
1305	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1306		cbs_ready = true;
 
1307	return cbs_ready;
1308}
1309
1310/*
1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1313 * caller about what to set the timeout.
 
1314 *
1315 * The caller must have disabled interrupts.
1316 */
1317int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1318{
1319	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1320	unsigned long dj;
1321
1322	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
1323
1324	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325	if (rcu_segcblist_empty(&rdp->cblist) ||
1326	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1327		*nextevt = KTIME_MAX;
1328		return 0;
1329	}
1330
1331	/* Attempt to advance callbacks. */
1332	if (rcu_try_advance_all_cbs()) {
1333		/* Some ready to invoke, so initiate later invocation. */
1334		invoke_rcu_core();
1335		return 1;
1336	}
1337	rdp->last_accelerate = jiffies;
1338
1339	/* Request timer and round. */
1340	dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1341
 
 
 
 
 
 
 
1342	*nextevt = basemono + dj * TICK_NSEC;
1343	return 0;
1344}
1345
1346/*
1347 * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1348 * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1349 * major task is to accelerate (that is, assign grace-period numbers to) any
1350 * recently arrived callbacks.
 
 
1351 *
1352 * The caller must have disabled interrupts.
1353 */
1354static void rcu_prepare_for_idle(void)
1355{
1356	bool needwake;
1357	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
1358	struct rcu_node *rnp;
 
1359	int tne;
1360
1361	lockdep_assert_irqs_disabled();
1362	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1363		return;
1364
1365	/* Handle nohz enablement switches conservatively. */
1366	tne = READ_ONCE(tick_nohz_active);
1367	if (tne != rdp->tick_nohz_enabled_snap) {
1368		if (!rcu_segcblist_empty(&rdp->cblist))
1369			invoke_rcu_core(); /* force nohz to see update. */
1370		rdp->tick_nohz_enabled_snap = tne;
1371		return;
1372	}
1373	if (!tne)
1374		return;
1375
1376	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1377	 * If we have not yet accelerated this jiffy, accelerate all
1378	 * callbacks on this CPU.
1379	 */
1380	if (rdp->last_accelerate == jiffies)
1381		return;
1382	rdp->last_accelerate = jiffies;
1383	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
 
 
 
1384		rnp = rdp->mynode;
1385		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1386		needwake = rcu_accelerate_cbs(rnp, rdp);
1387		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1388		if (needwake)
1389			rcu_gp_kthread_wake();
1390	}
1391}
1392
1393/*
1394 * Clean up for exit from idle.  Attempt to advance callbacks based on
1395 * any grace periods that elapsed while the CPU was idle, and if any
1396 * callbacks are now ready to invoke, initiate invocation.
1397 */
1398static void rcu_cleanup_after_idle(void)
1399{
1400	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1401
1402	lockdep_assert_irqs_disabled();
1403	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1404		return;
1405	if (rcu_try_advance_all_cbs())
1406		invoke_rcu_core();
1407}
1408
1409#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411#ifdef CONFIG_RCU_NOCB_CPU
 
 
 
 
 
 
 
 
1412
1413/*
1414 * Offload callback processing from the boot-time-specified set of CPUs
1415 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1416 * created that pull the callbacks from the corresponding CPU, wait for
1417 * a grace period to elapse, and invoke the callbacks.  These kthreads
1418 * are organized into GP kthreads, which manage incoming callbacks, wait for
1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1421 * do a wake_up() on their GP kthread when they insert a callback into any
1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423 * in which case each kthread actively polls its CPU.  (Which isn't so great
1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1425 *
1426 * This is intended to be used in conjunction with Frederic Weisbecker's
1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428 * running CPU-bound user-mode computations.
1429 *
1430 * Offloading of callbacks can also be used as an energy-efficiency
1431 * measure because CPUs with no RCU callbacks queued are more aggressive
1432 * about entering dyntick-idle mode.
1433 */
 
 
 
 
1434
 
 
 
 
 
 
 
 
1435
1436/*
1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439 * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1440 * given, a warning is emitted and all CPUs are offloaded.
 
1441 */
1442static int __init rcu_nocb_setup(char *str)
 
1443{
1444	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1445	if (!strcasecmp(str, "all"))
1446		cpumask_setall(rcu_nocb_mask);
1447	else
1448		if (cpulist_parse(str, rcu_nocb_mask)) {
1449			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450			cpumask_setall(rcu_nocb_mask);
1451		}
1452	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
1453}
1454__setup("rcu_nocbs=", rcu_nocb_setup);
1455
1456static int __init parse_rcu_nocb_poll(char *arg)
 
 
 
 
1457{
1458	rcu_nocb_poll = true;
1459	return 0;
1460}
1461early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
 
 
1462
1463/*
1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465 * After all, the main point of bypassing is to avoid lock contention
1466 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1467 */
1468int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1469module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1470
1471/*
1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1473 * lock isn't immediately available, increment ->nocb_lock_contended to
1474 * flag the contention.
1475 */
1476static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1477	__acquires(&rdp->nocb_bypass_lock)
1478{
1479	lockdep_assert_irqs_disabled();
1480	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1481		return;
1482	atomic_inc(&rdp->nocb_lock_contended);
1483	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1484	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485	raw_spin_lock(&rdp->nocb_bypass_lock);
1486	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487	atomic_dec(&rdp->nocb_lock_contended);
1488}
1489
1490/*
1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492 * not contended.  Please note that this is extremely special-purpose,
1493 * relying on the fact that at most two kthreads and one CPU contend for
1494 * this lock, and also that the two kthreads are guaranteed to have frequent
1495 * grace-period-duration time intervals between successive acquisitions
1496 * of the lock.  This allows us to use an extremely simple throttling
1497 * mechanism, and further to apply it only to the CPU doing floods of
1498 * call_rcu() invocations.  Don't try this at home!
1499 */
1500static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1501{
1502	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1503	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1504		cpu_relax();
1505}
1506
1507/*
1508 * Conditionally acquire the specified rcu_data structure's
1509 * ->nocb_bypass_lock.
1510 */
1511static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1512{
1513	lockdep_assert_irqs_disabled();
1514	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1515}
1516
1517/*
1518 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1519 */
1520static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1521	__releases(&rdp->nocb_bypass_lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522{
1523	lockdep_assert_irqs_disabled();
1524	raw_spin_unlock(&rdp->nocb_bypass_lock);
1525}
1526
1527/*
1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529 * if it corresponds to a no-CBs CPU.
1530 */
1531static void rcu_nocb_lock(struct rcu_data *rdp)
1532{
1533	lockdep_assert_irqs_disabled();
1534	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1535		return;
1536	raw_spin_lock(&rdp->nocb_lock);
1537}
1538
1539/*
1540 * Release the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1542 */
1543static void rcu_nocb_unlock(struct rcu_data *rdp)
1544{
1545	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1546		lockdep_assert_irqs_disabled();
1547		raw_spin_unlock(&rdp->nocb_lock);
1548	}
1549}
1550
 
 
1551/*
1552 * Release the specified rcu_data structure's ->nocb_lock and restore
1553 * interrupts, but only if it corresponds to a no-CBs CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554 */
1555static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1556				       unsigned long flags)
 
 
1557{
1558	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1559		lockdep_assert_irqs_disabled();
1560		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1561	} else {
1562		local_irq_restore(flags);
1563	}
1564}
 
1565
1566/* Lockdep check that ->cblist may be safely accessed. */
1567static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1568{
1569	lockdep_assert_irqs_disabled();
1570	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1571		lockdep_assert_held(&rdp->nocb_lock);
1572}
 
1573
1574/*
1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1576 * grace period.
1577 */
1578static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1579{
1580	swake_up_all(sq);
1581}
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
1583static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1584{
1585	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1586}
1587
1588static void rcu_init_one_nocb(struct rcu_node *rnp)
1589{
1590	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1591	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1592}
1593
 
1594/* Is the specified CPU a no-CBs CPU? */
1595bool rcu_is_nocb_cpu(int cpu)
1596{
1597	if (cpumask_available(rcu_nocb_mask))
1598		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1599	return false;
1600}
 
1601
1602/*
1603 * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1604 * and this function releases it.
1605 */
1606static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1607			   unsigned long flags)
1608	__releases(rdp->nocb_lock)
1609{
1610	bool needwake = false;
1611	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1612
1613	lockdep_assert_held(&rdp->nocb_lock);
1614	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1615		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1616				    TPS("AlreadyAwake"));
1617		rcu_nocb_unlock_irqrestore(rdp, flags);
1618		return;
1619	}
1620	del_timer(&rdp->nocb_timer);
1621	rcu_nocb_unlock_irqrestore(rdp, flags);
1622	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1623	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1624		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1625		needwake = true;
1626		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1627	}
1628	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1629	if (needwake)
1630		wake_up_process(rdp_gp->nocb_gp_kthread);
1631}
1632
1633/*
1634 * Arrange to wake the GP kthread for this NOCB group at some future
1635 * time when it is safe to do so.
1636 */
1637static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1638			       const char *reason)
1639{
1640	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1641		mod_timer(&rdp->nocb_timer, jiffies + 1);
1642	if (rdp->nocb_defer_wakeup < waketype)
1643		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1644	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1645}
1646
1647/*
1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649 * However, if there is a callback to be enqueued and if ->nocb_bypass
1650 * proves to be initially empty, just return false because the no-CB GP
1651 * kthread may need to be awakened in this case.
1652 *
1653 * Note that this function always returns true if rhp is NULL.
1654 */
1655static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1656				     unsigned long j)
1657{
1658	struct rcu_cblist rcl;
1659
1660	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1661	rcu_lockdep_assert_cblist_protected(rdp);
1662	lockdep_assert_held(&rdp->nocb_bypass_lock);
1663	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1664		raw_spin_unlock(&rdp->nocb_bypass_lock);
1665		return false;
1666	}
1667	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1668	if (rhp)
1669		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1670	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1671	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1672	WRITE_ONCE(rdp->nocb_bypass_first, j);
1673	rcu_nocb_bypass_unlock(rdp);
1674	return true;
1675}
1676
1677/*
1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679 * However, if there is a callback to be enqueued and if ->nocb_bypass
1680 * proves to be initially empty, just return false because the no-CB GP
1681 * kthread may need to be awakened in this case.
1682 *
1683 * Note that this function always returns true if rhp is NULL.
1684 */
1685static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1686				  unsigned long j)
1687{
1688	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1689		return true;
1690	rcu_lockdep_assert_cblist_protected(rdp);
1691	rcu_nocb_bypass_lock(rdp);
1692	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1693}
1694
1695/*
1696 * If the ->nocb_bypass_lock is immediately available, flush the
1697 * ->nocb_bypass queue into ->cblist.
1698 */
1699static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1700{
1701	rcu_lockdep_assert_cblist_protected(rdp);
1702	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1703	    !rcu_nocb_bypass_trylock(rdp))
1704		return;
1705	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1706}
 
1707
1708/*
1709 * See whether it is appropriate to use the ->nocb_bypass list in order
1710 * to control contention on ->nocb_lock.  A limited number of direct
1711 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1712 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1714 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1715 * used if ->cblist is empty, because otherwise callbacks can be stranded
1716 * on ->nocb_bypass because we cannot count on the current CPU ever again
1717 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1718 * non-empty, the corresponding no-CBs grace-period kthread must not be
1719 * in an indefinite sleep state.
1720 *
1721 * Finally, it is not permitted to use the bypass during early boot,
1722 * as doing so would confuse the auto-initialization code.  Besides
1723 * which, there is no point in worrying about lock contention while
1724 * there is only one CPU in operation.
1725 */
1726static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1727				bool *was_alldone, unsigned long flags)
1728{
1729	unsigned long c;
1730	unsigned long cur_gp_seq;
1731	unsigned long j = jiffies;
1732	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1733
1734	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1735		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1736		return false; /* Not offloaded, no bypassing. */
1737	}
1738	lockdep_assert_irqs_disabled();
1739
1740	// Don't use ->nocb_bypass during early boot.
1741	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1742		rcu_nocb_lock(rdp);
1743		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1744		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1745		return false;
1746	}
1747
1748	// If we have advanced to a new jiffy, reset counts to allow
1749	// moving back from ->nocb_bypass to ->cblist.
1750	if (j == rdp->nocb_nobypass_last) {
1751		c = rdp->nocb_nobypass_count + 1;
1752	} else {
1753		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1754		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1755		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1756				 nocb_nobypass_lim_per_jiffy))
1757			c = 0;
1758		else if (c > nocb_nobypass_lim_per_jiffy)
1759			c = nocb_nobypass_lim_per_jiffy;
1760	}
1761	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1762
1763	// If there hasn't yet been all that many ->cblist enqueues
1764	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1765	// ->nocb_bypass first.
1766	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1767		rcu_nocb_lock(rdp);
1768		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1769		if (*was_alldone)
1770			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1771					    TPS("FirstQ"));
1772		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1773		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1774		return false; // Caller must enqueue the callback.
1775	}
1776
1777	// If ->nocb_bypass has been used too long or is too full,
1778	// flush ->nocb_bypass to ->cblist.
1779	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1780	    ncbs >= qhimark) {
1781		rcu_nocb_lock(rdp);
1782		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1783			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1784			if (*was_alldone)
1785				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1786						    TPS("FirstQ"));
1787			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788			return false; // Caller must enqueue the callback.
1789		}
1790		if (j != rdp->nocb_gp_adv_time &&
1791		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1792		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1793			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1794			rdp->nocb_gp_adv_time = j;
1795		}
1796		rcu_nocb_unlock_irqrestore(rdp, flags);
1797		return true; // Callback already enqueued.
1798	}
 
1799
1800	// We need to use the bypass.
1801	rcu_nocb_wait_contended(rdp);
1802	rcu_nocb_bypass_lock(rdp);
1803	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1804	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1805	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1806	if (!ncbs) {
1807		WRITE_ONCE(rdp->nocb_bypass_first, j);
1808		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1809	}
1810	rcu_nocb_bypass_unlock(rdp);
1811	smp_mb(); /* Order enqueue before wake. */
1812	if (ncbs) {
1813		local_irq_restore(flags);
1814	} else {
1815		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1817		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1818			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1819					    TPS("FirstBQwake"));
1820			__call_rcu_nocb_wake(rdp, true, flags);
1821		} else {
1822			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823					    TPS("FirstBQnoWake"));
1824			rcu_nocb_unlock_irqrestore(rdp, flags);
1825		}
1826	}
1827	return true; // Callback already enqueued.
1828}
1829
1830/*
1831 * Awaken the no-CBs grace-period kthead if needed, either due to it
1832 * legitimately being asleep or due to overload conditions.
 
 
1833 *
1834 * If warranted, also wake up the kthread servicing this CPUs queues.
1835 */
1836static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1837				 unsigned long flags)
1838				 __releases(rdp->nocb_lock)
 
 
1839{
1840	unsigned long cur_gp_seq;
1841	unsigned long j;
1842	long len;
1843	struct task_struct *t;
1844
1845	// If we are being polled or there is no kthread, just leave.
1846	t = READ_ONCE(rdp->nocb_gp_kthread);
 
 
 
 
 
 
 
 
1847	if (rcu_nocb_poll || !t) {
1848		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1849				    TPS("WakeNotPoll"));
1850		rcu_nocb_unlock_irqrestore(rdp, flags);
1851		return;
1852	}
1853	// Need to actually to a wakeup.
1854	len = rcu_segcblist_n_cbs(&rdp->cblist);
1855	if (was_alldone) {
1856		rdp->qlen_last_fqs_check = len;
1857		if (!irqs_disabled_flags(flags)) {
1858			/* ... if queue was empty ... */
1859			wake_nocb_gp(rdp, false, flags);
1860			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1861					    TPS("WakeEmpty"));
1862		} else {
1863			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1864					   TPS("WakeEmptyIsDeferred"));
1865			rcu_nocb_unlock_irqrestore(rdp, flags);
1866		}
 
1867	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868		/* ... or if many callbacks queued. */
1869		rdp->qlen_last_fqs_check = len;
1870		j = jiffies;
1871		if (j != rdp->nocb_gp_adv_time &&
1872		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1873		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1874			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1875			rdp->nocb_gp_adv_time = j;
 
1876		}
1877		smp_mb(); /* Enqueue before timer_pending(). */
1878		if ((rdp->nocb_cb_sleep ||
1879		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1880		    !timer_pending(&rdp->nocb_bypass_timer))
1881			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1882					   TPS("WakeOvfIsDeferred"));
1883		rcu_nocb_unlock_irqrestore(rdp, flags);
1884	} else {
1885		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1886		rcu_nocb_unlock_irqrestore(rdp, flags);
1887	}
1888	return;
1889}
1890
1891/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
 
 
 
 
 
 
 
 
 
1893{
1894	unsigned long flags;
1895	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1896
1897	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1898	rcu_nocb_lock_irqsave(rdp, flags);
1899	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900	__call_rcu_nocb_wake(rdp, true, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901}
1902
1903/*
1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905 * or for grace periods to end.
1906 */
1907static void nocb_gp_wait(struct rcu_data *my_rdp)
 
 
1908{
1909	bool bypass = false;
1910	long bypass_ncbs;
1911	int __maybe_unused cpu = my_rdp->cpu;
1912	unsigned long cur_gp_seq;
1913	unsigned long flags;
1914	bool gotcbs = false;
1915	unsigned long j = jiffies;
1916	bool needwait_gp = false; // This prevents actual uninitialized use.
1917	bool needwake;
1918	bool needwake_gp;
1919	struct rcu_data *rdp;
1920	struct rcu_node *rnp;
1921	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1922	bool wasempty = false;
1923
1924	/*
1925	 * Each pass through the following loop checks for CBs and for the
1926	 * nearest grace period (if any) to wait for next.  The CB kthreads
1927	 * and the global grace-period kthread are awakened if needed.
1928	 */
1929	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1930		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1931		rcu_nocb_lock_irqsave(rdp, flags);
1932		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1933		if (bypass_ncbs &&
1934		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1935		     bypass_ncbs > 2 * qhimark)) {
1936			// Bypass full or old, so flush it.
1937			(void)rcu_nocb_try_flush_bypass(rdp, j);
1938			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1939		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1940			rcu_nocb_unlock_irqrestore(rdp, flags);
1941			continue; /* No callbacks here, try next. */
1942		}
1943		if (bypass_ncbs) {
1944			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1945					    TPS("Bypass"));
1946			bypass = true;
1947		}
1948		rnp = rdp->mynode;
1949		if (bypass) {  // Avoid race with first bypass CB.
1950			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1951				   RCU_NOCB_WAKE_NOT);
1952			del_timer(&my_rdp->nocb_timer);
1953		}
1954		// Advance callbacks if helpful and low contention.
1955		needwake_gp = false;
1956		if (!rcu_segcblist_restempty(&rdp->cblist,
1957					     RCU_NEXT_READY_TAIL) ||
1958		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1959		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1960			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1961			needwake_gp = rcu_advance_cbs(rnp, rdp);
1962			wasempty = rcu_segcblist_restempty(&rdp->cblist,
1963							   RCU_NEXT_READY_TAIL);
1964			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1965		}
1966		// Need to wait on some grace period?
1967		WARN_ON_ONCE(wasempty &&
1968			     !rcu_segcblist_restempty(&rdp->cblist,
1969						      RCU_NEXT_READY_TAIL));
1970		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1971			if (!needwait_gp ||
1972			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1973				wait_gp_seq = cur_gp_seq;
1974			needwait_gp = true;
1975			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1976					    TPS("NeedWaitGP"));
1977		}
1978		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1979			needwake = rdp->nocb_cb_sleep;
1980			WRITE_ONCE(rdp->nocb_cb_sleep, false);
1981			smp_mb(); /* CB invocation -after- GP end. */
1982		} else {
1983			needwake = false;
1984		}
1985		rcu_nocb_unlock_irqrestore(rdp, flags);
1986		if (needwake) {
1987			swake_up_one(&rdp->nocb_cb_wq);
1988			gotcbs = true;
1989		}
1990		if (needwake_gp)
1991			rcu_gp_kthread_wake();
1992	}
1993
1994	my_rdp->nocb_gp_bypass = bypass;
1995	my_rdp->nocb_gp_gp = needwait_gp;
1996	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
1997	if (bypass && !rcu_nocb_poll) {
1998		// At least one child with non-empty ->nocb_bypass, so set
1999		// timer in order to avoid stranding its callbacks.
2000		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2001		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2002		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2003	}
2004	if (rcu_nocb_poll) {
2005		/* Polling, so trace if first poll in the series. */
2006		if (gotcbs)
2007			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2008		schedule_timeout_idle(1);
2009	} else if (!needwait_gp) {
2010		/* Wait for callbacks to appear. */
2011		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2012		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2013				!READ_ONCE(my_rdp->nocb_gp_sleep));
2014		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2015	} else {
2016		rnp = my_rdp->mynode;
2017		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2018		swait_event_interruptible_exclusive(
2019			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2020			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2021			!READ_ONCE(my_rdp->nocb_gp_sleep));
2022		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2023	}
2024	if (!rcu_nocb_poll) {
2025		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2026		if (bypass)
2027			del_timer(&my_rdp->nocb_bypass_timer);
2028		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2029		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2030	}
2031	my_rdp->nocb_gp_seq = -1;
2032	WARN_ON(signal_pending(current));
2033}
2034
2035/*
2036 * No-CBs grace-period-wait kthread.  There is one of these per group
2037 * of CPUs, but only once at least one CPU in that group has come online
2038 * at least once since boot.  This kthread checks for newly posted
2039 * callbacks from any of the CPUs it is responsible for, waits for a
2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041 * that then have callback-invocation work to do.
2042 */
2043static int rcu_nocb_gp_kthread(void *arg)
2044{
2045	struct rcu_data *rdp = arg;
 
 
 
 
 
 
 
 
 
 
2046
 
 
 
 
 
2047	for (;;) {
2048		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2049		nocb_gp_wait(rdp);
2050		cond_resched_tasks_rcu_qs();
 
 
 
 
2051	}
2052	return 0;
 
2053}
2054
2055/*
2056 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057 * then, if there are no more, wait for more to appear.
2058 */
2059static void nocb_cb_wait(struct rcu_data *rdp)
2060{
2061	unsigned long cur_gp_seq;
2062	unsigned long flags;
2063	bool needwake_gp = false;
2064	struct rcu_node *rnp = rdp->mynode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065
2066	local_irq_save(flags);
2067	rcu_momentary_dyntick_idle();
2068	local_irq_restore(flags);
2069	local_bh_disable();
2070	rcu_do_batch(rdp);
2071	local_bh_enable();
2072	lockdep_assert_irqs_enabled();
2073	rcu_nocb_lock_irqsave(rdp, flags);
2074	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2075	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2076	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2077		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2078		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 
 
 
 
 
 
 
 
2079	}
2080	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2081		rcu_nocb_unlock_irqrestore(rdp, flags);
2082		if (needwake_gp)
2083			rcu_gp_kthread_wake();
2084		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085	}
2086
2087	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2088	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2089	rcu_nocb_unlock_irqrestore(rdp, flags);
2090	if (needwake_gp)
2091		rcu_gp_kthread_wake();
2092	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2093				 !READ_ONCE(rdp->nocb_cb_sleep));
2094	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2095		/* ^^^ Ensure CB invocation follows _sleep test. */
2096		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2097	}
2098	WARN_ON(signal_pending(current));
2099	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2100}
2101
2102/*
2103 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2104 * nocb_cb_wait() to do the dirty work.
 
 
2105 */
2106static int rcu_nocb_cb_kthread(void *arg)
2107{
 
 
 
 
2108	struct rcu_data *rdp = arg;
2109
2110	// Each pass through this loop does one callback batch, and,
2111	// if there are no more ready callbacks, waits for them.
2112	for (;;) {
2113		nocb_cb_wait(rdp);
2114		cond_resched_tasks_rcu_qs();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115	}
2116	return 0;
2117}
2118
2119/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2121{
2122	return READ_ONCE(rdp->nocb_defer_wakeup);
2123}
2124
2125/* Do a deferred wakeup of rcu_nocb_kthread(). */
2126static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2127{
2128	unsigned long flags;
2129	int ndw;
2130
2131	rcu_nocb_lock_irqsave(rdp, flags);
2132	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2133		rcu_nocb_unlock_irqrestore(rdp, flags);
2134		return;
2135	}
2136	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2137	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2138	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2139	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2140}
2141
2142/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2144{
2145	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2146
2147	do_nocb_deferred_wakeup_common(rdp);
2148}
2149
2150/*
2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152 * This means we do an inexact common-case check.  Note that if
2153 * we miss, ->nocb_timer will eventually clean things up.
2154 */
2155static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2156{
2157	if (rcu_nocb_need_deferred_wakeup(rdp))
2158		do_nocb_deferred_wakeup_common(rdp);
2159}
2160
2161void __init rcu_init_nohz(void)
2162{
2163	int cpu;
2164	bool need_rcu_nocb_mask = false;
2165	struct rcu_data *rdp;
 
 
 
 
2166
2167#if defined(CONFIG_NO_HZ_FULL)
2168	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2169		need_rcu_nocb_mask = true;
2170#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2171
2172	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2173		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2174			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2175			return;
2176		}
 
2177	}
2178	if (!cpumask_available(rcu_nocb_mask))
2179		return;
2180
 
 
 
 
 
 
 
 
2181#if defined(CONFIG_NO_HZ_FULL)
2182	if (tick_nohz_full_running)
2183		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2184#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185
2186	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2187		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2189			    rcu_nocb_mask);
2190	}
2191	if (cpumask_empty(rcu_nocb_mask))
2192		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2193	else
2194		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195			cpumask_pr_args(rcu_nocb_mask));
2196	if (rcu_nocb_poll)
2197		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2198
2199	for_each_cpu(cpu, rcu_nocb_mask) {
2200		rdp = per_cpu_ptr(&rcu_data, cpu);
2201		if (rcu_segcblist_empty(&rdp->cblist))
2202			rcu_segcblist_init(&rdp->cblist);
2203		rcu_segcblist_offload(&rdp->cblist);
2204	}
2205	rcu_organize_nocb_kthreads();
2206}
2207
2208/* Initialize per-rcu_data variables for no-CBs CPUs. */
2209static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2210{
2211	init_swait_queue_head(&rdp->nocb_cb_wq);
2212	init_swait_queue_head(&rdp->nocb_gp_wq);
2213	raw_spin_lock_init(&rdp->nocb_lock);
2214	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2215	raw_spin_lock_init(&rdp->nocb_gp_lock);
2216	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2217	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2218	rcu_cblist_init(&rdp->nocb_bypass);
2219}
2220
2221/*
2222 * If the specified CPU is a no-CBs CPU that does not already have its
2223 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2224 * for this CPU's group has not yet been created, spawn it as well.
 
2225 */
2226static void rcu_spawn_one_nocb_kthread(int cpu)
2227{
2228	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2229	struct rcu_data *rdp_gp;
 
 
2230	struct task_struct *t;
2231
2232	/*
2233	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234	 * then nothing to do.
2235	 */
2236	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2237		return;
2238
2239	/* If we didn't spawn the GP kthread first, reorganize! */
2240	rdp_gp = rdp->nocb_gp_rdp;
2241	if (!rdp_gp->nocb_gp_kthread) {
2242		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2243				"rcuog/%d", rdp_gp->cpu);
2244		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2245			return;
2246		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
 
 
 
 
 
 
 
 
 
 
2247	}
2248
2249	/* Spawn the kthread for this CPU. */
2250	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2251			"rcuo%c/%d", rcu_state.abbr, cpu);
2252	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2253		return;
2254	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2255	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2256}
2257
2258/*
2259 * If the specified CPU is a no-CBs CPU that does not already have its
2260 * rcuo kthread, spawn it.
2261 */
2262static void rcu_spawn_cpu_nocb_kthread(int cpu)
2263{
 
 
2264	if (rcu_scheduler_fully_active)
2265		rcu_spawn_one_nocb_kthread(cpu);
 
2266}
2267
2268/*
2269 * Once the scheduler is running, spawn rcuo kthreads for all online
2270 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2271 * non-boot CPUs come online -- if this changes, we will need to add
2272 * some mutual exclusion.
2273 */
2274static void __init rcu_spawn_nocb_kthreads(void)
2275{
2276	int cpu;
2277
2278	for_each_online_cpu(cpu)
2279		rcu_spawn_cpu_nocb_kthread(cpu);
2280}
2281
2282/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2283static int rcu_nocb_gp_stride = -1;
2284module_param(rcu_nocb_gp_stride, int, 0444);
2285
2286/*
2287 * Initialize GP-CB relationships for all no-CBs CPU.
2288 */
2289static void __init rcu_organize_nocb_kthreads(void)
2290{
2291	int cpu;
2292	bool firsttime = true;
2293	bool gotnocbs = false;
2294	bool gotnocbscbs = true;
2295	int ls = rcu_nocb_gp_stride;
2296	int nl = 0;  /* Next GP kthread. */
2297	struct rcu_data *rdp;
2298	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2299	struct rcu_data *rdp_prev = NULL;
2300
2301	if (!cpumask_available(rcu_nocb_mask))
2302		return;
2303	if (ls == -1) {
2304		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2305		rcu_nocb_gp_stride = ls;
2306	}
2307
2308	/*
2309	 * Each pass through this loop sets up one rcu_data structure.
2310	 * Should the corresponding CPU come online in the future, then
2311	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2312	 */
2313	for_each_cpu(cpu, rcu_nocb_mask) {
2314		rdp = per_cpu_ptr(&rcu_data, cpu);
2315		if (rdp->cpu >= nl) {
2316			/* New GP kthread, set up for CBs & next GP. */
2317			gotnocbs = true;
2318			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2319			rdp->nocb_gp_rdp = rdp;
2320			rdp_gp = rdp;
2321			if (dump_tree) {
2322				if (!firsttime)
2323					pr_cont("%s\n", gotnocbscbs
2324							? "" : " (self only)");
2325				gotnocbscbs = false;
2326				firsttime = false;
2327				pr_alert("%s: No-CB GP kthread CPU %d:",
2328					 __func__, cpu);
2329			}
2330		} else {
2331			/* Another CB kthread, link to previous GP kthread. */
2332			gotnocbscbs = true;
2333			rdp->nocb_gp_rdp = rdp_gp;
2334			rdp_prev->nocb_next_cb_rdp = rdp;
2335			if (dump_tree)
2336				pr_cont(" %d", cpu);
2337		}
2338		rdp_prev = rdp;
2339	}
2340	if (gotnocbs && dump_tree)
2341		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2342}
2343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344/*
2345 * Bind the current task to the offloaded CPUs.  If there are no offloaded
2346 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347 */
2348void rcu_bind_current_to_nocb(void)
2349{
2350	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2351		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2352}
2353EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2354
2355/*
2356 * Dump out nocb grace-period kthread state for the specified rcu_data
2357 * structure.
 
 
 
 
 
2358 */
2359static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2360{
2361	struct rcu_node *rnp = rdp->mynode;
 
2362
2363	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2364		rdp->cpu,
2365		"kK"[!!rdp->nocb_gp_kthread],
2366		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2367		"dD"[!!rdp->nocb_defer_wakeup],
2368		"tT"[timer_pending(&rdp->nocb_timer)],
2369		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2370		"sS"[!!rdp->nocb_gp_sleep],
2371		".W"[swait_active(&rdp->nocb_gp_wq)],
2372		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2373		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2374		".B"[!!rdp->nocb_gp_bypass],
2375		".G"[!!rdp->nocb_gp_gp],
2376		(long)rdp->nocb_gp_seq,
2377		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2378}
2379
2380/* Dump out nocb kthread state for the specified rcu_data structure. */
2381static void show_rcu_nocb_state(struct rcu_data *rdp)
2382{
2383	struct rcu_segcblist *rsclp = &rdp->cblist;
2384	bool waslocked;
2385	bool wastimer;
2386	bool wassleep;
2387
2388	if (rdp->nocb_gp_rdp == rdp)
2389		show_rcu_nocb_gp_state(rdp);
2390
2391	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2392		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2393		"kK"[!!rdp->nocb_cb_kthread],
2394		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2395		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2396		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2397		"sS"[!!rdp->nocb_cb_sleep],
2398		".W"[swait_active(&rdp->nocb_cb_wq)],
2399		jiffies - rdp->nocb_bypass_first,
2400		jiffies - rdp->nocb_nobypass_last,
2401		rdp->nocb_nobypass_count,
2402		".D"[rcu_segcblist_ready_cbs(rsclp)],
2403		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2404		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2405		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2406		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2407		rcu_segcblist_n_cbs(&rdp->cblist));
2408
2409	/* It is OK for GP kthreads to have GP state. */
2410	if (rdp->nocb_gp_rdp == rdp)
2411		return;
2412
2413	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2414	wastimer = timer_pending(&rdp->nocb_timer);
2415	wassleep = swait_active(&rdp->nocb_gp_wq);
2416	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2417	    !waslocked && !wastimer && !wassleep)
2418		return;  /* Nothing untowards. */
2419
2420	pr_info("   !!! %c%c%c%c %c\n",
2421		"lL"[waslocked],
2422		"dD"[!!rdp->nocb_defer_wakeup],
2423		"tT"[wastimer],
2424		"sS"[!!rdp->nocb_gp_sleep],
2425		".W"[wassleep]);
2426}
2427
2428#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429
2430/* No ->nocb_lock to acquire.  */
2431static void rcu_nocb_lock(struct rcu_data *rdp)
 
 
 
 
 
2432{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433}
2434
2435/* No ->nocb_lock to release.  */
2436static void rcu_nocb_unlock(struct rcu_data *rdp)
 
 
2437{
 
2438}
2439
2440/* No ->nocb_lock to release.  */
2441static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2442				       unsigned long flags)
 
 
 
 
 
 
 
2443{
2444	local_irq_restore(flags);
 
 
2445}
2446
2447/* Lockdep check that ->cblist may be safely accessed. */
2448static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
 
 
 
2449{
2450	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451}
2452
2453static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
 
 
 
 
2454{
 
 
 
2455}
2456
2457static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
 
 
 
 
 
2458{
2459	return NULL;
 
 
 
 
 
 
 
2460}
2461
2462static void rcu_init_one_nocb(struct rcu_node *rnp)
 
 
 
 
 
2463{
 
 
 
 
 
2464}
2465
2466static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2467				  unsigned long j)
 
 
 
 
 
2468{
2469	return true;
 
 
 
 
 
 
 
 
 
 
2470}
2471
2472static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2473				bool *was_alldone, unsigned long flags)
 
 
 
 
2474{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475	return false;
2476}
2477
2478static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2479				 unsigned long flags)
 
 
2480{
2481	WARN_ON_ONCE(1);  /* Should be dead code! */
2482}
2483
2484static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
 
 
2485{
2486}
2487
2488static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2489{
2490	return false;
2491}
2492
2493static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
 
2494{
2495}
2496
2497static void rcu_spawn_cpu_nocb_kthread(int cpu)
2498{
 
2499}
2500
2501static void __init rcu_spawn_nocb_kthreads(void)
 
2502{
2503}
2504
2505static void show_rcu_nocb_state(struct rcu_data *rdp)
2506{
2507}
2508
2509#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2510
2511/*
2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513 * grace-period kthread will do force_quiescent_state() processing?
2514 * The idea is to avoid waking up RCU core processing on such a
2515 * CPU unless the grace period has extended for too long.
2516 *
2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518 * CONFIG_RCU_NOCB_CPU CPUs.
2519 */
2520static bool rcu_nohz_full_cpu(void)
2521{
2522#ifdef CONFIG_NO_HZ_FULL
2523	if (tick_nohz_full_cpu(smp_processor_id()) &&
2524	    (!rcu_gp_in_progress() ||
2525	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2526		return true;
2527#endif /* #ifdef CONFIG_NO_HZ_FULL */
2528	return false;
2529}
2530
2531/*
2532 * Bind the RCU grace-period kthreads to the housekeeping CPU.
 
2533 */
2534static void rcu_bind_gp_kthread(void)
2535{
 
 
2536	if (!tick_nohz_full_enabled())
2537		return;
2538	housekeeping_affine(current, HK_FLAG_RCU);
 
 
 
 
 
 
2539}
2540
2541/* Record the current task on dyntick-idle entry. */
2542static void noinstr rcu_dynticks_task_enter(void)
2543{
2544#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2546#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2547}
2548
2549/* Record no current task on dyntick-idle exit. */
2550static void noinstr rcu_dynticks_task_exit(void)
2551{
2552#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2554#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2555}
2556
2557/* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558static void rcu_dynticks_task_trace_enter(void)
2559{
2560#ifdef CONFIG_TASKS_RCU_TRACE
2561	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2562		current->trc_reader_special.b.need_mb = true;
2563#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2564}
2565
2566/* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567static void rcu_dynticks_task_trace_exit(void)
2568{
2569#ifdef CONFIG_TASKS_RCU_TRACE
2570	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2571		current->trc_reader_special.b.need_mb = false;
2572#endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2573}