Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
 
  30#include <linux/smpboot.h>
 
 
  31#include "../time/tick-internal.h"
  32
  33#ifdef CONFIG_RCU_BOOST
  34
  35#include "../locking/rtmutex_common.h"
  36
  37/*
  38 * Control variables for per-CPU and per-rcu_node kthreads.  These
  39 * handle all flavors of RCU.
  40 */
  41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  44DEFINE_PER_CPU(char, rcu_cpu_has_work);
  45
  46#else /* #ifdef CONFIG_RCU_BOOST */
  47
  48/*
  49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  50 * all uses are in dead code.  Provide a definition to keep the compiler
  51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  52 * This probably needs to be excluded from -rt builds.
  53 */
  54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
 
  55
  56#endif /* #else #ifdef CONFIG_RCU_BOOST */
  57
  58#ifdef CONFIG_RCU_NOCB_CPU
  59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  60static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
  61static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  63
  64/*
  65 * Check the RCU kernel configuration parameters and print informative
  66 * messages about anything out of the ordinary.
  67 */
  68static void __init rcu_bootup_announce_oddness(void)
  69{
  70	if (IS_ENABLED(CONFIG_RCU_TRACE))
  71		pr_info("\tRCU debugfs-based tracing is enabled.\n");
  72	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  73	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  74		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  75		       RCU_FANOUT);
  76	if (rcu_fanout_exact)
  77		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  78	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  79		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  80	if (IS_ENABLED(CONFIG_PROVE_RCU))
  81		pr_info("\tRCU lockdep checking is enabled.\n");
  82	if (RCU_NUM_LVLS >= 4)
  83		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  84	if (RCU_FANOUT_LEAF != 16)
  85		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  86			RCU_FANOUT_LEAF);
  87	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  88		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  89	if (nr_cpu_ids != NR_CPUS)
  90		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  91	if (IS_ENABLED(CONFIG_RCU_BOOST))
  92		pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95#ifdef CONFIG_PREEMPT_RCU
  96
  97RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  98static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  99static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 100
 101static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 102			       bool wake);
 103
 104/*
 105 * Tell them what RCU they are running.
 106 */
 107static void __init rcu_bootup_announce(void)
 108{
 109	pr_info("Preemptible hierarchical RCU implementation.\n");
 110	rcu_bootup_announce_oddness();
 111}
 112
 113/* Flags for rcu_preempt_ctxt_queue() decision table. */
 114#define RCU_GP_TASKS	0x8
 115#define RCU_EXP_TASKS	0x4
 116#define RCU_GP_BLKD	0x2
 117#define RCU_EXP_BLKD	0x1
 118
 119/*
 120 * Queues a task preempted within an RCU-preempt read-side critical
 121 * section into the appropriate location within the ->blkd_tasks list,
 122 * depending on the states of any ongoing normal and expedited grace
 123 * periods.  The ->gp_tasks pointer indicates which element the normal
 124 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 125 * indicates which element the expedited grace period is waiting on (again,
 126 * NULL if none).  If a grace period is waiting on a given element in the
 127 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 128 * adding a task to the tail of the list blocks any grace period that is
 129 * already waiting on one of the elements.  In contrast, adding a task
 130 * to the head of the list won't block any grace period that is already
 131 * waiting on one of the elements.
 132 *
 133 * This queuing is imprecise, and can sometimes make an ongoing grace
 134 * period wait for a task that is not strictly speaking blocking it.
 135 * Given the choice, we needlessly block a normal grace period rather than
 136 * blocking an expedited grace period.
 137 *
 138 * Note that an endless sequence of expedited grace periods still cannot
 139 * indefinitely postpone a normal grace period.  Eventually, all of the
 140 * fixed number of preempted tasks blocking the normal grace period that are
 141 * not also blocking the expedited grace period will resume and complete
 142 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 143 * pointer will equal the ->exp_tasks pointer, at which point the end of
 144 * the corresponding expedited grace period will also be the end of the
 145 * normal grace period.
 146 */
 147static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 148	__releases(rnp->lock) /* But leaves rrupts disabled. */
 149{
 150	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 151			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 152			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 153			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 154	struct task_struct *t = current;
 155
 
 
 
 
 156	/*
 157	 * Decide where to queue the newly blocked task.  In theory,
 158	 * this could be an if-statement.  In practice, when I tried
 159	 * that, it was quite messy.
 160	 */
 161	switch (blkd_state) {
 162	case 0:
 163	case                RCU_EXP_TASKS:
 164	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 165	case RCU_GP_TASKS:
 166	case RCU_GP_TASKS + RCU_EXP_TASKS:
 167
 168		/*
 169		 * Blocking neither GP, or first task blocking the normal
 170		 * GP but not blocking the already-waiting expedited GP.
 171		 * Queue at the head of the list to avoid unnecessarily
 172		 * blocking the already-waiting GPs.
 173		 */
 174		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 175		break;
 176
 177	case                                              RCU_EXP_BLKD:
 178	case                                RCU_GP_BLKD:
 179	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 180	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 181	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 182	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 183
 184		/*
 185		 * First task arriving that blocks either GP, or first task
 186		 * arriving that blocks the expedited GP (with the normal
 187		 * GP already waiting), or a task arriving that blocks
 188		 * both GPs with both GPs already waiting.  Queue at the
 189		 * tail of the list to avoid any GP waiting on any of the
 190		 * already queued tasks that are not blocking it.
 191		 */
 192		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 193		break;
 194
 195	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 196	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 197	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 198
 199		/*
 200		 * Second or subsequent task blocking the expedited GP.
 201		 * The task either does not block the normal GP, or is the
 202		 * first task blocking the normal GP.  Queue just after
 203		 * the first task blocking the expedited GP.
 204		 */
 205		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 206		break;
 207
 208	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 209	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 210
 211		/*
 212		 * Second or subsequent task blocking the normal GP.
 213		 * The task does not block the expedited GP. Queue just
 214		 * after the first task blocking the normal GP.
 215		 */
 216		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 217		break;
 218
 219	default:
 220
 221		/* Yet another exercise in excessive paranoia. */
 222		WARN_ON_ONCE(1);
 223		break;
 224	}
 225
 226	/*
 227	 * We have now queued the task.  If it was the first one to
 228	 * block either grace period, update the ->gp_tasks and/or
 229	 * ->exp_tasks pointers, respectively, to reference the newly
 230	 * blocked tasks.
 231	 */
 232	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 233		rnp->gp_tasks = &t->rcu_node_entry;
 234	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 235		rnp->exp_tasks = &t->rcu_node_entry;
 
 
 
 
 236	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 237
 238	/*
 239	 * Report the quiescent state for the expedited GP.  This expedited
 240	 * GP should not be able to end until we report, so there should be
 241	 * no need to check for a subsequent expedited GP.  (Though we are
 242	 * still in a quiescent state in any case.)
 243	 */
 244	if (blkd_state & RCU_EXP_BLKD &&
 245	    t->rcu_read_unlock_special.b.exp_need_qs) {
 246		t->rcu_read_unlock_special.b.exp_need_qs = false;
 247		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 248	} else {
 249		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 250	}
 251}
 252
 253/*
 254 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 255 * that this just means that the task currently running on the CPU is
 256 * not in a quiescent state.  There might be any number of tasks blocked
 257 * while in an RCU read-side critical section.
 258 *
 259 * As with the other rcu_*_qs() functions, callers to this function
 260 * must disable preemption.
 261 */
 262static void rcu_preempt_qs(void)
 263{
 
 264	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 265		trace_rcu_grace_period(TPS("rcu_preempt"),
 266				       __this_cpu_read(rcu_data_p->gpnum),
 267				       TPS("cpuqs"));
 268		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 269		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 270		current->rcu_read_unlock_special.b.need_qs = false;
 271	}
 272}
 273
 274/*
 275 * We have entered the scheduler, and the current task might soon be
 276 * context-switched away from.  If this task is in an RCU read-side
 277 * critical section, we will no longer be able to rely on the CPU to
 278 * record that fact, so we enqueue the task on the blkd_tasks list.
 279 * The task will dequeue itself when it exits the outermost enclosing
 280 * RCU read-side critical section.  Therefore, the current grace period
 281 * cannot be permitted to complete until the blkd_tasks list entries
 282 * predating the current grace period drain, in other words, until
 283 * rnp->gp_tasks becomes NULL.
 284 *
 285 * Caller must disable interrupts.
 286 */
 287static void rcu_preempt_note_context_switch(void)
 288{
 289	struct task_struct *t = current;
 290	struct rcu_data *rdp;
 291	struct rcu_node *rnp;
 292
 
 
 293	if (t->rcu_read_lock_nesting > 0 &&
 294	    !t->rcu_read_unlock_special.b.blocked) {
 295
 296		/* Possibly blocking in an RCU read-side critical section. */
 297		rdp = this_cpu_ptr(rcu_state_p->rda);
 298		rnp = rdp->mynode;
 299		raw_spin_lock_rcu_node(rnp);
 300		t->rcu_read_unlock_special.b.blocked = true;
 301		t->rcu_blocked_node = rnp;
 302
 303		/*
 304		 * Verify the CPU's sanity, trace the preemption, and
 305		 * then queue the task as required based on the states
 306		 * of any ongoing and expedited grace periods.
 307		 */
 308		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 309		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 310		trace_rcu_preempt_task(rdp->rsp->name,
 311				       t->pid,
 312				       (rnp->qsmask & rdp->grpmask)
 313				       ? rnp->gpnum
 314				       : rnp->gpnum + 1);
 315		rcu_preempt_ctxt_queue(rnp, rdp);
 316	} else if (t->rcu_read_lock_nesting < 0 &&
 317		   t->rcu_read_unlock_special.s) {
 318
 319		/*
 320		 * Complete exit from RCU read-side critical section on
 321		 * behalf of preempted instance of __rcu_read_unlock().
 322		 */
 323		rcu_read_unlock_special(t);
 324	}
 325
 326	/*
 327	 * Either we were not in an RCU read-side critical section to
 328	 * begin with, or we have now recorded that critical section
 329	 * globally.  Either way, we can now note a quiescent state
 330	 * for this CPU.  Again, if we were in an RCU read-side critical
 331	 * section, and if that critical section was blocking the current
 332	 * grace period, then the fact that the task has been enqueued
 333	 * means that we continue to block the current grace period.
 334	 */
 335	rcu_preempt_qs();
 336}
 337
 338/*
 339 * Check for preempted RCU readers blocking the current grace period
 340 * for the specified rcu_node structure.  If the caller needs a reliable
 341 * answer, it must hold the rcu_node's ->lock.
 342 */
 343static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 344{
 345	return rnp->gp_tasks != NULL;
 346}
 347
 348/*
 349 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 350 * returning NULL if at the end of the list.
 351 */
 352static struct list_head *rcu_next_node_entry(struct task_struct *t,
 353					     struct rcu_node *rnp)
 354{
 355	struct list_head *np;
 356
 357	np = t->rcu_node_entry.next;
 358	if (np == &rnp->blkd_tasks)
 359		np = NULL;
 360	return np;
 361}
 362
 363/*
 364 * Return true if the specified rcu_node structure has tasks that were
 365 * preempted within an RCU read-side critical section.
 366 */
 367static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 368{
 369	return !list_empty(&rnp->blkd_tasks);
 370}
 371
 372/*
 373 * Handle special cases during rcu_read_unlock(), such as needing to
 374 * notify RCU core processing or task having blocked during the RCU
 375 * read-side critical section.
 376 */
 377void rcu_read_unlock_special(struct task_struct *t)
 378{
 379	bool empty_exp;
 380	bool empty_norm;
 381	bool empty_exp_now;
 382	unsigned long flags;
 383	struct list_head *np;
 384	bool drop_boost_mutex = false;
 385	struct rcu_data *rdp;
 386	struct rcu_node *rnp;
 387	union rcu_special special;
 388
 389	/* NMI handlers cannot block and cannot safely manipulate state. */
 390	if (in_nmi())
 391		return;
 392
 393	local_irq_save(flags);
 394
 395	/*
 396	 * If RCU core is waiting for this CPU to exit its critical section,
 397	 * report the fact that it has exited.  Because irqs are disabled,
 398	 * t->rcu_read_unlock_special cannot change.
 399	 */
 400	special = t->rcu_read_unlock_special;
 401	if (special.b.need_qs) {
 402		rcu_preempt_qs();
 403		t->rcu_read_unlock_special.b.need_qs = false;
 404		if (!t->rcu_read_unlock_special.s) {
 405			local_irq_restore(flags);
 406			return;
 407		}
 408	}
 409
 410	/*
 411	 * Respond to a request for an expedited grace period, but only if
 412	 * we were not preempted, meaning that we were running on the same
 413	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 414	 * would have been cleared at the time of the first preemption,
 415	 * and the quiescent state would be reported when we were dequeued.
 416	 */
 417	if (special.b.exp_need_qs) {
 418		WARN_ON_ONCE(special.b.blocked);
 419		t->rcu_read_unlock_special.b.exp_need_qs = false;
 420		rdp = this_cpu_ptr(rcu_state_p->rda);
 421		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 422		if (!t->rcu_read_unlock_special.s) {
 423			local_irq_restore(flags);
 424			return;
 425		}
 426	}
 427
 428	/* Hardware IRQ handlers cannot block, complain if they get here. */
 429	if (in_irq() || in_serving_softirq()) {
 430		lockdep_rcu_suspicious(__FILE__, __LINE__,
 431				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 432		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 433			 t->rcu_read_unlock_special.s,
 434			 t->rcu_read_unlock_special.b.blocked,
 435			 t->rcu_read_unlock_special.b.exp_need_qs,
 436			 t->rcu_read_unlock_special.b.need_qs);
 437		local_irq_restore(flags);
 438		return;
 439	}
 440
 441	/* Clean up if blocked during RCU read-side critical section. */
 442	if (special.b.blocked) {
 443		t->rcu_read_unlock_special.b.blocked = false;
 444
 445		/*
 446		 * Remove this task from the list it blocked on.  The task
 447		 * now remains queued on the rcu_node corresponding to the
 448		 * CPU it first blocked on, so there is no longer any need
 449		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 450		 */
 451		rnp = t->rcu_blocked_node;
 452		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 453		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 
 454		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 455		empty_exp = sync_rcu_preempt_exp_done(rnp);
 456		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 457		np = rcu_next_node_entry(t, rnp);
 458		list_del_init(&t->rcu_node_entry);
 459		t->rcu_blocked_node = NULL;
 460		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 461						rnp->gpnum, t->pid);
 462		if (&t->rcu_node_entry == rnp->gp_tasks)
 463			rnp->gp_tasks = np;
 464		if (&t->rcu_node_entry == rnp->exp_tasks)
 465			rnp->exp_tasks = np;
 466		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 467			if (&t->rcu_node_entry == rnp->boost_tasks)
 468				rnp->boost_tasks = np;
 469			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 470			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 
 
 471		}
 472
 473		/*
 474		 * If this was the last task on the current list, and if
 475		 * we aren't waiting on any CPUs, report the quiescent state.
 476		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 477		 * so we must take a snapshot of the expedited state.
 478		 */
 479		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 480		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 481			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 482							 rnp->gpnum,
 483							 0, rnp->qsmask,
 484							 rnp->level,
 485							 rnp->grplo,
 486							 rnp->grphi,
 487							 !!rnp->gp_tasks);
 488			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 489		} else {
 490			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 491		}
 492
 493		/* Unboost if we were boosted. */
 494		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 495			rt_mutex_unlock(&rnp->boost_mtx);
 496
 497		/*
 498		 * If this was the last task on the expedited lists,
 499		 * then we need to report up the rcu_node hierarchy.
 500		 */
 501		if (!empty_exp && empty_exp_now)
 502			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 503	} else {
 504		local_irq_restore(flags);
 505	}
 506}
 507
 508/*
 509 * Dump detailed information for all tasks blocking the current RCU
 510 * grace period on the specified rcu_node structure.
 511 */
 512static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 513{
 514	unsigned long flags;
 515	struct task_struct *t;
 516
 517	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 518	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 519		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 520		return;
 521	}
 522	t = list_entry(rnp->gp_tasks->prev,
 523		       struct task_struct, rcu_node_entry);
 524	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
 
 
 
 
 
 525		sched_show_task(t);
 
 526	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 527}
 528
 529/*
 530 * Dump detailed information for all tasks blocking the current RCU
 531 * grace period.
 532 */
 533static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 534{
 535	struct rcu_node *rnp = rcu_get_root(rsp);
 536
 537	rcu_print_detail_task_stall_rnp(rnp);
 538	rcu_for_each_leaf_node(rsp, rnp)
 539		rcu_print_detail_task_stall_rnp(rnp);
 540}
 541
 542static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 543{
 544	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 545	       rnp->level, rnp->grplo, rnp->grphi);
 546}
 547
 548static void rcu_print_task_stall_end(void)
 549{
 550	pr_cont("\n");
 551}
 552
 553/*
 554 * Scan the current list of tasks blocked within RCU read-side critical
 555 * sections, printing out the tid of each.
 556 */
 557static int rcu_print_task_stall(struct rcu_node *rnp)
 558{
 559	struct task_struct *t;
 560	int ndetected = 0;
 561
 562	if (!rcu_preempt_blocked_readers_cgp(rnp))
 563		return 0;
 564	rcu_print_task_stall_begin(rnp);
 565	t = list_entry(rnp->gp_tasks->prev,
 566		       struct task_struct, rcu_node_entry);
 567	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 568		pr_cont(" P%d", t->pid);
 569		ndetected++;
 570	}
 571	rcu_print_task_stall_end();
 572	return ndetected;
 573}
 574
 575/*
 576 * Scan the current list of tasks blocked within RCU read-side critical
 577 * sections, printing out the tid of each that is blocking the current
 578 * expedited grace period.
 579 */
 580static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 581{
 582	struct task_struct *t;
 583	int ndetected = 0;
 584
 585	if (!rnp->exp_tasks)
 586		return 0;
 587	t = list_entry(rnp->exp_tasks->prev,
 588		       struct task_struct, rcu_node_entry);
 589	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 590		pr_cont(" P%d", t->pid);
 591		ndetected++;
 592	}
 593	return ndetected;
 594}
 595
 596/*
 597 * Check that the list of blocked tasks for the newly completed grace
 598 * period is in fact empty.  It is a serious bug to complete a grace
 599 * period that still has RCU readers blocked!  This function must be
 600 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 601 * must be held by the caller.
 602 *
 603 * Also, if there are blocked tasks on the list, they automatically
 604 * block the newly created grace period, so set up ->gp_tasks accordingly.
 605 */
 606static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 607{
 
 
 
 608	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 609	if (rcu_preempt_has_tasks(rnp))
 610		rnp->gp_tasks = rnp->blkd_tasks.next;
 
 
 
 
 
 611	WARN_ON_ONCE(rnp->qsmask);
 612}
 613
 614/*
 615 * Check for a quiescent state from the current CPU.  When a task blocks,
 616 * the task is recorded in the corresponding CPU's rcu_node structure,
 617 * which is checked elsewhere.
 618 *
 619 * Caller must disable hard irqs.
 620 */
 621static void rcu_preempt_check_callbacks(void)
 622{
 623	struct task_struct *t = current;
 624
 625	if (t->rcu_read_lock_nesting == 0) {
 626		rcu_preempt_qs();
 627		return;
 628	}
 629	if (t->rcu_read_lock_nesting > 0 &&
 630	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 631	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 632		t->rcu_read_unlock_special.b.need_qs = true;
 633}
 634
 635#ifdef CONFIG_RCU_BOOST
 636
 637static void rcu_preempt_do_callbacks(void)
 638{
 639	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 640}
 641
 642#endif /* #ifdef CONFIG_RCU_BOOST */
 643
 644/*
 645 * Queue a preemptible-RCU callback for invocation after a grace period.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646 */
 647void call_rcu(struct rcu_head *head, rcu_callback_t func)
 648{
 649	__call_rcu(head, func, rcu_state_p, -1, 0);
 650}
 651EXPORT_SYMBOL_GPL(call_rcu);
 652
 653/**
 654 * synchronize_rcu - wait until a grace period has elapsed.
 655 *
 656 * Control will return to the caller some time after a full grace
 657 * period has elapsed, in other words after all currently executing RCU
 658 * read-side critical sections have completed.  Note, however, that
 659 * upon return from synchronize_rcu(), the caller might well be executing
 660 * concurrently with new RCU read-side critical sections that began while
 661 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 662 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 663 *
 664 * See the description of synchronize_sched() for more detailed information
 665 * on memory ordering guarantees.
 
 
 
 
 
 666 */
 667void synchronize_rcu(void)
 668{
 669	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 670			 lock_is_held(&rcu_lock_map) ||
 671			 lock_is_held(&rcu_sched_lock_map),
 672			 "Illegal synchronize_rcu() in RCU read-side critical section");
 673	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 674		return;
 675	if (rcu_gp_is_expedited())
 676		synchronize_rcu_expedited();
 677	else
 678		wait_rcu_gp(call_rcu);
 679}
 680EXPORT_SYMBOL_GPL(synchronize_rcu);
 681
 682/**
 683 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 684 *
 685 * Note that this primitive does not necessarily wait for an RCU grace period
 686 * to complete.  For example, if there are no RCU callbacks queued anywhere
 687 * in the system, then rcu_barrier() is within its rights to return
 688 * immediately, without waiting for anything, much less an RCU grace period.
 689 */
 690void rcu_barrier(void)
 691{
 692	_rcu_barrier(rcu_state_p);
 693}
 694EXPORT_SYMBOL_GPL(rcu_barrier);
 695
 696/*
 697 * Initialize preemptible RCU's state structures.
 698 */
 699static void __init __rcu_init_preempt(void)
 700{
 701	rcu_init_one(rcu_state_p);
 702}
 703
 704/*
 705 * Check for a task exiting while in a preemptible-RCU read-side
 706 * critical section, clean up if so.  No need to issue warnings,
 707 * as debug_check_no_locks_held() already does this if lockdep
 708 * is enabled.
 709 */
 710void exit_rcu(void)
 711{
 712	struct task_struct *t = current;
 713
 714	if (likely(list_empty(&current->rcu_node_entry)))
 715		return;
 716	t->rcu_read_lock_nesting = 1;
 717	barrier();
 718	t->rcu_read_unlock_special.b.blocked = true;
 719	__rcu_read_unlock();
 720}
 721
 722#else /* #ifdef CONFIG_PREEMPT_RCU */
 723
 724static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 725
 726/*
 727 * Tell them what RCU they are running.
 728 */
 729static void __init rcu_bootup_announce(void)
 730{
 731	pr_info("Hierarchical RCU implementation.\n");
 732	rcu_bootup_announce_oddness();
 733}
 734
 735/*
 736 * Because preemptible RCU does not exist, we never have to check for
 737 * CPUs being in quiescent states.
 738 */
 739static void rcu_preempt_note_context_switch(void)
 740{
 741}
 742
 743/*
 744 * Because preemptible RCU does not exist, there are never any preempted
 745 * RCU readers.
 746 */
 747static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 748{
 749	return 0;
 750}
 751
 752/*
 753 * Because there is no preemptible RCU, there can be no readers blocked.
 754 */
 755static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 756{
 757	return false;
 758}
 759
 760/*
 761 * Because preemptible RCU does not exist, we never have to check for
 762 * tasks blocked within RCU read-side critical sections.
 763 */
 764static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 765{
 766}
 767
 768/*
 769 * Because preemptible RCU does not exist, we never have to check for
 770 * tasks blocked within RCU read-side critical sections.
 771 */
 772static int rcu_print_task_stall(struct rcu_node *rnp)
 773{
 774	return 0;
 775}
 776
 777/*
 778 * Because preemptible RCU does not exist, we never have to check for
 779 * tasks blocked within RCU read-side critical sections that are
 780 * blocking the current expedited grace period.
 781 */
 782static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 783{
 784	return 0;
 785}
 786
 787/*
 788 * Because there is no preemptible RCU, there can be no readers blocked,
 789 * so there is no need to check for blocked tasks.  So check only for
 790 * bogus qsmask values.
 791 */
 792static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 793{
 794	WARN_ON_ONCE(rnp->qsmask);
 795}
 796
 797/*
 798 * Because preemptible RCU does not exist, it never has any callbacks
 799 * to check.
 800 */
 801static void rcu_preempt_check_callbacks(void)
 802{
 803}
 804
 805/*
 806 * Because preemptible RCU does not exist, rcu_barrier() is just
 807 * another name for rcu_barrier_sched().
 808 */
 809void rcu_barrier(void)
 810{
 811	rcu_barrier_sched();
 812}
 813EXPORT_SYMBOL_GPL(rcu_barrier);
 814
 815/*
 816 * Because preemptible RCU does not exist, it need not be initialized.
 817 */
 818static void __init __rcu_init_preempt(void)
 819{
 820}
 821
 822/*
 823 * Because preemptible RCU does not exist, tasks cannot possibly exit
 824 * while in preemptible RCU read-side critical sections.
 825 */
 826void exit_rcu(void)
 827{
 828}
 829
 830#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 831
 832#ifdef CONFIG_RCU_BOOST
 833
 834#include "../locking/rtmutex_common.h"
 835
 836#ifdef CONFIG_RCU_TRACE
 837
 838static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 839{
 840	if (!rcu_preempt_has_tasks(rnp))
 841		rnp->n_balk_blkd_tasks++;
 842	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
 843		rnp->n_balk_exp_gp_tasks++;
 844	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
 845		rnp->n_balk_boost_tasks++;
 846	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
 847		rnp->n_balk_notblocked++;
 848	else if (rnp->gp_tasks != NULL &&
 849		 ULONG_CMP_LT(jiffies, rnp->boost_time))
 850		rnp->n_balk_notyet++;
 851	else
 852		rnp->n_balk_nos++;
 853}
 854
 855#else /* #ifdef CONFIG_RCU_TRACE */
 856
 857static void rcu_initiate_boost_trace(struct rcu_node *rnp)
 858{
 859}
 860
 861#endif /* #else #ifdef CONFIG_RCU_TRACE */
 862
 863static void rcu_wake_cond(struct task_struct *t, int status)
 864{
 865	/*
 866	 * If the thread is yielding, only wake it when this
 867	 * is invoked from idle
 868	 */
 869	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 870		wake_up_process(t);
 871}
 872
 873/*
 874 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 875 * or ->boost_tasks, advancing the pointer to the next task in the
 876 * ->blkd_tasks list.
 877 *
 878 * Note that irqs must be enabled: boosting the task can block.
 879 * Returns 1 if there are more tasks needing to be boosted.
 880 */
 881static int rcu_boost(struct rcu_node *rnp)
 882{
 883	unsigned long flags;
 884	struct task_struct *t;
 885	struct list_head *tb;
 886
 887	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 888	    READ_ONCE(rnp->boost_tasks) == NULL)
 889		return 0;  /* Nothing left to boost. */
 890
 891	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 892
 893	/*
 894	 * Recheck under the lock: all tasks in need of boosting
 895	 * might exit their RCU read-side critical sections on their own.
 896	 */
 897	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 898		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 899		return 0;
 900	}
 901
 902	/*
 903	 * Preferentially boost tasks blocking expedited grace periods.
 904	 * This cannot starve the normal grace periods because a second
 905	 * expedited grace period must boost all blocked tasks, including
 906	 * those blocking the pre-existing normal grace period.
 907	 */
 908	if (rnp->exp_tasks != NULL) {
 909		tb = rnp->exp_tasks;
 910		rnp->n_exp_boosts++;
 911	} else {
 912		tb = rnp->boost_tasks;
 913		rnp->n_normal_boosts++;
 914	}
 915	rnp->n_tasks_boosted++;
 916
 917	/*
 918	 * We boost task t by manufacturing an rt_mutex that appears to
 919	 * be held by task t.  We leave a pointer to that rt_mutex where
 920	 * task t can find it, and task t will release the mutex when it
 921	 * exits its outermost RCU read-side critical section.  Then
 922	 * simply acquiring this artificial rt_mutex will boost task
 923	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 924	 *
 925	 * Note that task t must acquire rnp->lock to remove itself from
 926	 * the ->blkd_tasks list, which it will do from exit() if from
 927	 * nowhere else.  We therefore are guaranteed that task t will
 928	 * stay around at least until we drop rnp->lock.  Note that
 929	 * rnp->lock also resolves races between our priority boosting
 930	 * and task t's exiting its outermost RCU read-side critical
 931	 * section.
 932	 */
 933	t = container_of(tb, struct task_struct, rcu_node_entry);
 934	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 935	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 936	/* Lock only for side effect: boosts task t's priority. */
 937	rt_mutex_lock(&rnp->boost_mtx);
 938	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 939
 940	return READ_ONCE(rnp->exp_tasks) != NULL ||
 941	       READ_ONCE(rnp->boost_tasks) != NULL;
 942}
 943
 944/*
 945 * Priority-boosting kthread, one per leaf rcu_node.
 946 */
 947static int rcu_boost_kthread(void *arg)
 948{
 949	struct rcu_node *rnp = (struct rcu_node *)arg;
 950	int spincnt = 0;
 951	int more2boost;
 952
 953	trace_rcu_utilization(TPS("Start boost kthread@init"));
 954	for (;;) {
 955		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
 956		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
 957		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
 958		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
 959		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
 960		more2boost = rcu_boost(rnp);
 961		if (more2boost)
 962			spincnt++;
 963		else
 964			spincnt = 0;
 965		if (spincnt > 10) {
 966			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
 967			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
 968			schedule_timeout_interruptible(2);
 969			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
 970			spincnt = 0;
 971		}
 972	}
 973	/* NOTREACHED */
 974	trace_rcu_utilization(TPS("End boost kthread@notreached"));
 975	return 0;
 976}
 977
 978/*
 979 * Check to see if it is time to start boosting RCU readers that are
 980 * blocking the current grace period, and, if so, tell the per-rcu_node
 981 * kthread to start boosting them.  If there is an expedited grace
 982 * period in progress, it is always time to boost.
 983 *
 984 * The caller must hold rnp->lock, which this function releases.
 985 * The ->boost_kthread_task is immortal, so we don't need to worry
 986 * about it going away.
 987 */
 988static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
 989	__releases(rnp->lock)
 990{
 991	struct task_struct *t;
 992
 
 993	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 994		rnp->n_balk_exp_gp_tasks++;
 995		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 996		return;
 997	}
 998	if (rnp->exp_tasks != NULL ||
 999	    (rnp->gp_tasks != NULL &&
1000	     rnp->boost_tasks == NULL &&
1001	     rnp->qsmask == 0 &&
1002	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1003		if (rnp->exp_tasks == NULL)
1004			rnp->boost_tasks = rnp->gp_tasks;
1005		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1006		t = rnp->boost_kthread_task;
1007		if (t)
1008			rcu_wake_cond(t, rnp->boost_kthread_status);
1009	} else {
1010		rcu_initiate_boost_trace(rnp);
1011		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1012	}
1013}
1014
1015/*
1016 * Wake up the per-CPU kthread to invoke RCU callbacks.
1017 */
1018static void invoke_rcu_callbacks_kthread(void)
1019{
1020	unsigned long flags;
1021
1022	local_irq_save(flags);
1023	__this_cpu_write(rcu_cpu_has_work, 1);
1024	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1025	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1026		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1027			      __this_cpu_read(rcu_cpu_kthread_status));
1028	}
1029	local_irq_restore(flags);
1030}
1031
1032/*
1033 * Is the current CPU running the RCU-callbacks kthread?
1034 * Caller must have preemption disabled.
1035 */
1036static bool rcu_is_callbacks_kthread(void)
1037{
1038	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1039}
1040
1041#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1042
1043/*
1044 * Do priority-boost accounting for the start of a new grace period.
1045 */
1046static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1047{
1048	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1049}
1050
1051/*
1052 * Create an RCU-boost kthread for the specified node if one does not
1053 * already exist.  We only create this kthread for preemptible RCU.
1054 * Returns zero if all is well, a negated errno otherwise.
1055 */
1056static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1057				       struct rcu_node *rnp)
1058{
1059	int rnp_index = rnp - &rsp->node[0];
1060	unsigned long flags;
1061	struct sched_param sp;
1062	struct task_struct *t;
1063
1064	if (rcu_state_p != rsp)
1065		return 0;
1066
1067	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1068		return 0;
1069
1070	rsp->boost = 1;
1071	if (rnp->boost_kthread_task != NULL)
1072		return 0;
1073	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1074			   "rcub/%d", rnp_index);
1075	if (IS_ERR(t))
1076		return PTR_ERR(t);
1077	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1078	rnp->boost_kthread_task = t;
1079	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1080	sp.sched_priority = kthread_prio;
1081	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1082	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1083	return 0;
1084}
1085
1086static void rcu_kthread_do_work(void)
1087{
1088	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1089	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1090	rcu_preempt_do_callbacks();
1091}
1092
1093static void rcu_cpu_kthread_setup(unsigned int cpu)
1094{
1095	struct sched_param sp;
1096
1097	sp.sched_priority = kthread_prio;
1098	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1099}
1100
1101static void rcu_cpu_kthread_park(unsigned int cpu)
1102{
1103	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1104}
1105
1106static int rcu_cpu_kthread_should_run(unsigned int cpu)
1107{
1108	return __this_cpu_read(rcu_cpu_has_work);
1109}
1110
1111/*
1112 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1113 * RCU softirq used in flavors and configurations of RCU that do not
1114 * support RCU priority boosting.
1115 */
1116static void rcu_cpu_kthread(unsigned int cpu)
1117{
1118	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1119	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1120	int spincnt;
1121
1122	for (spincnt = 0; spincnt < 10; spincnt++) {
1123		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1124		local_bh_disable();
1125		*statusp = RCU_KTHREAD_RUNNING;
1126		this_cpu_inc(rcu_cpu_kthread_loops);
1127		local_irq_disable();
1128		work = *workp;
1129		*workp = 0;
1130		local_irq_enable();
1131		if (work)
1132			rcu_kthread_do_work();
1133		local_bh_enable();
1134		if (*workp == 0) {
1135			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1136			*statusp = RCU_KTHREAD_WAITING;
1137			return;
1138		}
1139	}
1140	*statusp = RCU_KTHREAD_YIELDING;
1141	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1142	schedule_timeout_interruptible(2);
1143	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1144	*statusp = RCU_KTHREAD_WAITING;
1145}
1146
1147/*
1148 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1149 * served by the rcu_node in question.  The CPU hotplug lock is still
1150 * held, so the value of rnp->qsmaskinit will be stable.
1151 *
1152 * We don't include outgoingcpu in the affinity set, use -1 if there is
1153 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1154 * this function allows the kthread to execute on any CPU.
1155 */
1156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1157{
1158	struct task_struct *t = rnp->boost_kthread_task;
1159	unsigned long mask = rcu_rnp_online_cpus(rnp);
1160	cpumask_var_t cm;
1161	int cpu;
1162
1163	if (!t)
1164		return;
1165	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1166		return;
1167	for_each_leaf_node_possible_cpu(rnp, cpu)
1168		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1169		    cpu != outgoingcpu)
1170			cpumask_set_cpu(cpu, cm);
1171	if (cpumask_weight(cm) == 0)
1172		cpumask_setall(cm);
1173	set_cpus_allowed_ptr(t, cm);
1174	free_cpumask_var(cm);
1175}
1176
1177static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1178	.store			= &rcu_cpu_kthread_task,
1179	.thread_should_run	= rcu_cpu_kthread_should_run,
1180	.thread_fn		= rcu_cpu_kthread,
1181	.thread_comm		= "rcuc/%u",
1182	.setup			= rcu_cpu_kthread_setup,
1183	.park			= rcu_cpu_kthread_park,
1184};
1185
1186/*
1187 * Spawn boost kthreads -- called as soon as the scheduler is running.
1188 */
1189static void __init rcu_spawn_boost_kthreads(void)
1190{
1191	struct rcu_node *rnp;
1192	int cpu;
1193
1194	for_each_possible_cpu(cpu)
1195		per_cpu(rcu_cpu_has_work, cpu) = 0;
1196	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1197	rcu_for_each_leaf_node(rcu_state_p, rnp)
1198		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1199}
1200
1201static void rcu_prepare_kthreads(int cpu)
1202{
1203	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1204	struct rcu_node *rnp = rdp->mynode;
1205
1206	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1207	if (rcu_scheduler_fully_active)
1208		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1209}
1210
1211#else /* #ifdef CONFIG_RCU_BOOST */
1212
1213static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1214	__releases(rnp->lock)
1215{
1216	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217}
1218
1219static void invoke_rcu_callbacks_kthread(void)
1220{
1221	WARN_ON_ONCE(1);
1222}
1223
1224static bool rcu_is_callbacks_kthread(void)
1225{
1226	return false;
1227}
1228
1229static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1230{
1231}
1232
1233static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1234{
1235}
1236
1237static void __init rcu_spawn_boost_kthreads(void)
1238{
1239}
1240
1241static void rcu_prepare_kthreads(int cpu)
1242{
1243}
1244
1245#endif /* #else #ifdef CONFIG_RCU_BOOST */
1246
1247#if !defined(CONFIG_RCU_FAST_NO_HZ)
1248
1249/*
1250 * Check to see if any future RCU-related work will need to be done
1251 * by the current CPU, even if none need be done immediately, returning
1252 * 1 if so.  This function is part of the RCU implementation; it is -not-
1253 * an exported member of the RCU API.
1254 *
1255 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1256 * any flavor of RCU.
1257 */
1258int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1259{
1260	*nextevt = KTIME_MAX;
1261	return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1262	       ? 0 : rcu_cpu_has_callbacks(NULL);
1263}
1264
1265/*
1266 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1267 * after it.
1268 */
1269static void rcu_cleanup_after_idle(void)
1270{
1271}
1272
1273/*
1274 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1275 * is nothing.
1276 */
1277static void rcu_prepare_for_idle(void)
1278{
1279}
1280
1281/*
1282 * Don't bother keeping a running count of the number of RCU callbacks
1283 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1284 */
1285static void rcu_idle_count_callbacks_posted(void)
1286{
1287}
1288
1289#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1290
1291/*
1292 * This code is invoked when a CPU goes idle, at which point we want
1293 * to have the CPU do everything required for RCU so that it can enter
1294 * the energy-efficient dyntick-idle mode.  This is handled by a
1295 * state machine implemented by rcu_prepare_for_idle() below.
1296 *
1297 * The following three proprocessor symbols control this state machine:
1298 *
1299 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1300 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1301 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1302 *	benchmarkers who might otherwise be tempted to set this to a large
1303 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1304 *	system.  And if you are -that- concerned about energy efficiency,
1305 *	just power the system down and be done with it!
1306 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1307 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1308 *	callbacks pending.  Setting this too high can OOM your system.
1309 *
1310 * The values below work well in practice.  If future workloads require
1311 * adjustment, they can be converted into kernel config parameters, though
1312 * making the state machine smarter might be a better option.
1313 */
1314#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1315#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1316
1317static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1318module_param(rcu_idle_gp_delay, int, 0644);
1319static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1320module_param(rcu_idle_lazy_gp_delay, int, 0644);
1321
1322/*
1323 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1324 * only if it has been awhile since the last time we did so.  Afterwards,
1325 * if there are any callbacks ready for immediate invocation, return true.
1326 */
1327static bool __maybe_unused rcu_try_advance_all_cbs(void)
1328{
1329	bool cbs_ready = false;
1330	struct rcu_data *rdp;
1331	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1332	struct rcu_node *rnp;
1333	struct rcu_state *rsp;
1334
1335	/* Exit early if we advanced recently. */
1336	if (jiffies == rdtp->last_advance_all)
1337		return false;
1338	rdtp->last_advance_all = jiffies;
1339
1340	for_each_rcu_flavor(rsp) {
1341		rdp = this_cpu_ptr(rsp->rda);
1342		rnp = rdp->mynode;
1343
1344		/*
1345		 * Don't bother checking unless a grace period has
1346		 * completed since we last checked and there are
1347		 * callbacks not yet ready to invoke.
1348		 */
1349		if ((rdp->completed != rnp->completed ||
1350		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1351		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1352			note_gp_changes(rsp, rdp);
1353
1354		if (cpu_has_callbacks_ready_to_invoke(rdp))
1355			cbs_ready = true;
1356	}
1357	return cbs_ready;
1358}
1359
1360/*
1361 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1362 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1363 * caller to set the timeout based on whether or not there are non-lazy
1364 * callbacks.
1365 *
1366 * The caller must have disabled interrupts.
1367 */
1368int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1369{
1370	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1371	unsigned long dj;
1372
1373	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1374		*nextevt = KTIME_MAX;
1375		return 0;
1376	}
1377
1378	/* Snapshot to detect later posting of non-lazy callback. */
1379	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1380
1381	/* If no callbacks, RCU doesn't need the CPU. */
1382	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1383		*nextevt = KTIME_MAX;
1384		return 0;
1385	}
1386
1387	/* Attempt to advance callbacks. */
1388	if (rcu_try_advance_all_cbs()) {
1389		/* Some ready to invoke, so initiate later invocation. */
1390		invoke_rcu_core();
1391		return 1;
1392	}
1393	rdtp->last_accelerate = jiffies;
1394
1395	/* Request timer delay depending on laziness, and round. */
1396	if (!rdtp->all_lazy) {
1397		dj = round_up(rcu_idle_gp_delay + jiffies,
1398			       rcu_idle_gp_delay) - jiffies;
1399	} else {
1400		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1401	}
1402	*nextevt = basemono + dj * TICK_NSEC;
1403	return 0;
1404}
1405
1406/*
1407 * Prepare a CPU for idle from an RCU perspective.  The first major task
1408 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1409 * The second major task is to check to see if a non-lazy callback has
1410 * arrived at a CPU that previously had only lazy callbacks.  The third
1411 * major task is to accelerate (that is, assign grace-period numbers to)
1412 * any recently arrived callbacks.
1413 *
1414 * The caller must have disabled interrupts.
1415 */
1416static void rcu_prepare_for_idle(void)
1417{
1418	bool needwake;
1419	struct rcu_data *rdp;
1420	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1421	struct rcu_node *rnp;
1422	struct rcu_state *rsp;
1423	int tne;
1424
1425	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1426	    rcu_is_nocb_cpu(smp_processor_id()))
1427		return;
1428
1429	/* Handle nohz enablement switches conservatively. */
1430	tne = READ_ONCE(tick_nohz_active);
1431	if (tne != rdtp->tick_nohz_enabled_snap) {
1432		if (rcu_cpu_has_callbacks(NULL))
1433			invoke_rcu_core(); /* force nohz to see update. */
1434		rdtp->tick_nohz_enabled_snap = tne;
1435		return;
1436	}
1437	if (!tne)
1438		return;
1439
1440	/*
1441	 * If a non-lazy callback arrived at a CPU having only lazy
1442	 * callbacks, invoke RCU core for the side-effect of recalculating
1443	 * idle duration on re-entry to idle.
1444	 */
1445	if (rdtp->all_lazy &&
1446	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1447		rdtp->all_lazy = false;
1448		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1449		invoke_rcu_core();
1450		return;
1451	}
1452
1453	/*
1454	 * If we have not yet accelerated this jiffy, accelerate all
1455	 * callbacks on this CPU.
1456	 */
1457	if (rdtp->last_accelerate == jiffies)
1458		return;
1459	rdtp->last_accelerate = jiffies;
1460	for_each_rcu_flavor(rsp) {
1461		rdp = this_cpu_ptr(rsp->rda);
1462		if (!*rdp->nxttail[RCU_DONE_TAIL])
1463			continue;
1464		rnp = rdp->mynode;
1465		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1466		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1467		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1468		if (needwake)
1469			rcu_gp_kthread_wake(rsp);
1470	}
1471}
1472
1473/*
1474 * Clean up for exit from idle.  Attempt to advance callbacks based on
1475 * any grace periods that elapsed while the CPU was idle, and if any
1476 * callbacks are now ready to invoke, initiate invocation.
1477 */
1478static void rcu_cleanup_after_idle(void)
1479{
1480	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1481	    rcu_is_nocb_cpu(smp_processor_id()))
1482		return;
1483	if (rcu_try_advance_all_cbs())
1484		invoke_rcu_core();
1485}
1486
1487/*
1488 * Keep a running count of the number of non-lazy callbacks posted
1489 * on this CPU.  This running counter (which is never decremented) allows
1490 * rcu_prepare_for_idle() to detect when something out of the idle loop
1491 * posts a callback, even if an equal number of callbacks are invoked.
1492 * Of course, callbacks should only be posted from within a trace event
1493 * designed to be called from idle or from within RCU_NONIDLE().
1494 */
1495static void rcu_idle_count_callbacks_posted(void)
1496{
1497	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1498}
1499
1500/*
1501 * Data for flushing lazy RCU callbacks at OOM time.
1502 */
1503static atomic_t oom_callback_count;
1504static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1505
1506/*
1507 * RCU OOM callback -- decrement the outstanding count and deliver the
1508 * wake-up if we are the last one.
1509 */
1510static void rcu_oom_callback(struct rcu_head *rhp)
1511{
1512	if (atomic_dec_and_test(&oom_callback_count))
1513		wake_up(&oom_callback_wq);
1514}
1515
1516/*
1517 * Post an rcu_oom_notify callback on the current CPU if it has at
1518 * least one lazy callback.  This will unnecessarily post callbacks
1519 * to CPUs that already have a non-lazy callback at the end of their
1520 * callback list, but this is an infrequent operation, so accept some
1521 * extra overhead to keep things simple.
1522 */
1523static void rcu_oom_notify_cpu(void *unused)
1524{
1525	struct rcu_state *rsp;
1526	struct rcu_data *rdp;
1527
1528	for_each_rcu_flavor(rsp) {
1529		rdp = raw_cpu_ptr(rsp->rda);
1530		if (rdp->qlen_lazy != 0) {
1531			atomic_inc(&oom_callback_count);
1532			rsp->call(&rdp->oom_head, rcu_oom_callback);
1533		}
1534	}
1535}
1536
1537/*
1538 * If low on memory, ensure that each CPU has a non-lazy callback.
1539 * This will wake up CPUs that have only lazy callbacks, in turn
1540 * ensuring that they free up the corresponding memory in a timely manner.
1541 * Because an uncertain amount of memory will be freed in some uncertain
1542 * timeframe, we do not claim to have freed anything.
1543 */
1544static int rcu_oom_notify(struct notifier_block *self,
1545			  unsigned long notused, void *nfreed)
1546{
1547	int cpu;
1548
1549	/* Wait for callbacks from earlier instance to complete. */
1550	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1551	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1552
1553	/*
1554	 * Prevent premature wakeup: ensure that all increments happen
1555	 * before there is a chance of the counter reaching zero.
1556	 */
1557	atomic_set(&oom_callback_count, 1);
1558
1559	for_each_online_cpu(cpu) {
1560		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1561		cond_resched_rcu_qs();
1562	}
1563
1564	/* Unconditionally decrement: no need to wake ourselves up. */
1565	atomic_dec(&oom_callback_count);
1566
1567	return NOTIFY_OK;
1568}
1569
1570static struct notifier_block rcu_oom_nb = {
1571	.notifier_call = rcu_oom_notify
1572};
1573
1574static int __init rcu_register_oom_notifier(void)
1575{
1576	register_oom_notifier(&rcu_oom_nb);
1577	return 0;
1578}
1579early_initcall(rcu_register_oom_notifier);
1580
1581#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1582
1583#ifdef CONFIG_RCU_FAST_NO_HZ
1584
1585static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1586{
1587	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1588	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1589
1590	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1591		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1592		ulong2long(nlpd),
1593		rdtp->all_lazy ? 'L' : '.',
1594		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1595}
1596
1597#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1598
1599static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1600{
1601	*cp = '\0';
1602}
1603
1604#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1605
1606/* Initiate the stall-info list. */
1607static void print_cpu_stall_info_begin(void)
1608{
1609	pr_cont("\n");
1610}
1611
1612/*
1613 * Print out diagnostic information for the specified stalled CPU.
1614 *
1615 * If the specified CPU is aware of the current RCU grace period
1616 * (flavor specified by rsp), then print the number of scheduling
1617 * clock interrupts the CPU has taken during the time that it has
1618 * been aware.  Otherwise, print the number of RCU grace periods
1619 * that this CPU is ignorant of, for example, "1" if the CPU was
1620 * aware of the previous grace period.
1621 *
1622 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1623 */
1624static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1625{
 
1626	char fast_no_hz[72];
1627	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1628	struct rcu_dynticks *rdtp = rdp->dynticks;
1629	char *ticks_title;
1630	unsigned long ticks_value;
1631
 
 
 
 
 
 
1632	if (rsp->gpnum == rdp->gpnum) {
1633		ticks_title = "ticks this GP";
1634		ticks_value = rdp->ticks_this_gp;
1635	} else {
1636		ticks_title = "GPs behind";
1637		ticks_value = rsp->gpnum - rdp->gpnum;
1638	}
1639	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1640	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
 
1641	       cpu,
1642	       "O."[!!cpu_online(cpu)],
1643	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1644	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
 
 
 
1645	       ticks_value, ticks_title,
1646	       atomic_read(&rdtp->dynticks) & 0xfff,
1647	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1648	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1649	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1650	       fast_no_hz);
1651}
1652
1653/* Terminate the stall-info list. */
1654static void print_cpu_stall_info_end(void)
1655{
1656	pr_err("\t");
1657}
1658
1659/* Zero ->ticks_this_gp for all flavors of RCU. */
1660static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1661{
1662	rdp->ticks_this_gp = 0;
1663	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1664}
1665
1666/* Increment ->ticks_this_gp for all flavors of RCU. */
1667static void increment_cpu_stall_ticks(void)
1668{
1669	struct rcu_state *rsp;
1670
1671	for_each_rcu_flavor(rsp)
1672		raw_cpu_inc(rsp->rda->ticks_this_gp);
1673}
1674
1675#ifdef CONFIG_RCU_NOCB_CPU
1676
1677/*
1678 * Offload callback processing from the boot-time-specified set of CPUs
1679 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1680 * kthread created that pulls the callbacks from the corresponding CPU,
1681 * waits for a grace period to elapse, and invokes the callbacks.
1682 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1683 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1684 * has been specified, in which case each kthread actively polls its
1685 * CPU.  (Which isn't so great for energy efficiency, but which does
1686 * reduce RCU's overhead on that CPU.)
1687 *
1688 * This is intended to be used in conjunction with Frederic Weisbecker's
1689 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1690 * running CPU-bound user-mode computations.
1691 *
1692 * Offloading of callback processing could also in theory be used as
1693 * an energy-efficiency measure because CPUs with no RCU callbacks
1694 * queued are more aggressive about entering dyntick-idle mode.
1695 */
1696
1697
1698/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1699static int __init rcu_nocb_setup(char *str)
1700{
1701	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1702	have_rcu_nocb_mask = true;
1703	cpulist_parse(str, rcu_nocb_mask);
1704	return 1;
1705}
1706__setup("rcu_nocbs=", rcu_nocb_setup);
1707
1708static int __init parse_rcu_nocb_poll(char *arg)
1709{
1710	rcu_nocb_poll = 1;
1711	return 0;
1712}
1713early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1714
1715/*
1716 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1717 * grace period.
1718 */
1719static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1720{
1721	swake_up_all(sq);
1722}
1723
1724/*
1725 * Set the root rcu_node structure's ->need_future_gp field
1726 * based on the sum of those of all rcu_node structures.  This does
1727 * double-count the root rcu_node structure's requests, but this
1728 * is necessary to handle the possibility of a rcu_nocb_kthread()
1729 * having awakened during the time that the rcu_node structures
1730 * were being updated for the end of the previous grace period.
1731 */
1732static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1733{
1734	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1735}
1736
1737static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1738{
1739	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1740}
1741
1742static void rcu_init_one_nocb(struct rcu_node *rnp)
1743{
1744	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1745	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1746}
1747
1748#ifndef CONFIG_RCU_NOCB_CPU_ALL
1749/* Is the specified CPU a no-CBs CPU? */
1750bool rcu_is_nocb_cpu(int cpu)
1751{
1752	if (have_rcu_nocb_mask)
1753		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1754	return false;
1755}
1756#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1757
1758/*
1759 * Kick the leader kthread for this NOCB group.
 
1760 */
1761static void wake_nocb_leader(struct rcu_data *rdp, bool force)
 
 
1762{
1763	struct rcu_data *rdp_leader = rdp->nocb_leader;
1764
1765	if (!READ_ONCE(rdp_leader->nocb_kthread))
 
 
1766		return;
1767	if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
 
1768		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1769		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
 
 
 
1770		swake_up(&rdp_leader->nocb_wq);
 
 
1771	}
1772}
1773
1774/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775 * Does the specified CPU need an RCU callback for the specified flavor
1776 * of rcu_barrier()?
1777 */
1778static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1779{
1780	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1781	unsigned long ret;
1782#ifdef CONFIG_PROVE_RCU
1783	struct rcu_head *rhp;
1784#endif /* #ifdef CONFIG_PROVE_RCU */
1785
1786	/*
1787	 * Check count of all no-CBs callbacks awaiting invocation.
1788	 * There needs to be a barrier before this function is called,
1789	 * but associated with a prior determination that no more
1790	 * callbacks would be posted.  In the worst case, the first
1791	 * barrier in _rcu_barrier() suffices (but the caller cannot
1792	 * necessarily rely on this, not a substitute for the caller
1793	 * getting the concurrency design right!).  There must also be
1794	 * a barrier between the following load an posting of a callback
1795	 * (if a callback is in fact needed).  This is associated with an
1796	 * atomic_inc() in the caller.
1797	 */
1798	ret = atomic_long_read(&rdp->nocb_q_count);
1799
1800#ifdef CONFIG_PROVE_RCU
1801	rhp = READ_ONCE(rdp->nocb_head);
1802	if (!rhp)
1803		rhp = READ_ONCE(rdp->nocb_gp_head);
1804	if (!rhp)
1805		rhp = READ_ONCE(rdp->nocb_follower_head);
1806
1807	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1808	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1809	    rcu_scheduler_fully_active) {
1810		/* RCU callback enqueued before CPU first came online??? */
1811		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1812		       cpu, rhp->func);
1813		WARN_ON_ONCE(1);
1814	}
1815#endif /* #ifdef CONFIG_PROVE_RCU */
1816
1817	return !!ret;
1818}
1819
1820/*
1821 * Enqueue the specified string of rcu_head structures onto the specified
1822 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1823 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1824 * counts are supplied by rhcount and rhcount_lazy.
1825 *
1826 * If warranted, also wake up the kthread servicing this CPUs queues.
1827 */
1828static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1829				    struct rcu_head *rhp,
1830				    struct rcu_head **rhtp,
1831				    int rhcount, int rhcount_lazy,
1832				    unsigned long flags)
1833{
1834	int len;
1835	struct rcu_head **old_rhpp;
1836	struct task_struct *t;
1837
1838	/* Enqueue the callback on the nocb list and update counts. */
1839	atomic_long_add(rhcount, &rdp->nocb_q_count);
1840	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1841	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1842	WRITE_ONCE(*old_rhpp, rhp);
1843	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1844	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1845
1846	/* If we are not being polled and there is a kthread, awaken it ... */
1847	t = READ_ONCE(rdp->nocb_kthread);
1848	if (rcu_nocb_poll || !t) {
1849		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1850				    TPS("WakeNotPoll"));
1851		return;
1852	}
1853	len = atomic_long_read(&rdp->nocb_q_count);
1854	if (old_rhpp == &rdp->nocb_head) {
1855		if (!irqs_disabled_flags(flags)) {
1856			/* ... if queue was empty ... */
1857			wake_nocb_leader(rdp, false);
1858			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1859					    TPS("WakeEmpty"));
1860		} else {
1861			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1862			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1863					    TPS("WakeEmptyIsDeferred"));
1864		}
1865		rdp->qlen_last_fqs_check = 0;
1866	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1867		/* ... or if many callbacks queued. */
1868		if (!irqs_disabled_flags(flags)) {
1869			wake_nocb_leader(rdp, true);
1870			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1871					    TPS("WakeOvf"));
1872		} else {
1873			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1874			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1875					    TPS("WakeOvfIsDeferred"));
1876		}
1877		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1878	} else {
1879		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1880	}
1881	return;
1882}
1883
1884/*
1885 * This is a helper for __call_rcu(), which invokes this when the normal
1886 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1887 * function returns failure back to __call_rcu(), which can complain
1888 * appropriately.
1889 *
1890 * Otherwise, this function queues the callback where the corresponding
1891 * "rcuo" kthread can find it.
1892 */
1893static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1894			    bool lazy, unsigned long flags)
1895{
1896
1897	if (!rcu_is_nocb_cpu(rdp->cpu))
1898		return false;
1899	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1900	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1901		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1902					 (unsigned long)rhp->func,
1903					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1904					 -atomic_long_read(&rdp->nocb_q_count));
1905	else
1906		trace_rcu_callback(rdp->rsp->name, rhp,
1907				   -atomic_long_read(&rdp->nocb_q_count_lazy),
1908				   -atomic_long_read(&rdp->nocb_q_count));
1909
1910	/*
1911	 * If called from an extended quiescent state with interrupts
1912	 * disabled, invoke the RCU core in order to allow the idle-entry
1913	 * deferred-wakeup check to function.
1914	 */
1915	if (irqs_disabled_flags(flags) &&
1916	    !rcu_is_watching() &&
1917	    cpu_online(smp_processor_id()))
1918		invoke_rcu_core();
1919
1920	return true;
1921}
1922
1923/*
1924 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1925 * not a no-CBs CPU.
1926 */
1927static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1928						     struct rcu_data *rdp,
1929						     unsigned long flags)
1930{
1931	long ql = rsp->qlen;
1932	long qll = rsp->qlen_lazy;
1933
1934	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1935	if (!rcu_is_nocb_cpu(smp_processor_id()))
1936		return false;
1937	rsp->qlen = 0;
1938	rsp->qlen_lazy = 0;
1939
1940	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
1941	if (rsp->orphan_donelist != NULL) {
1942		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1943					rsp->orphan_donetail, ql, qll, flags);
1944		ql = qll = 0;
1945		rsp->orphan_donelist = NULL;
1946		rsp->orphan_donetail = &rsp->orphan_donelist;
1947	}
1948	if (rsp->orphan_nxtlist != NULL) {
1949		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1950					rsp->orphan_nxttail, ql, qll, flags);
1951		ql = qll = 0;
1952		rsp->orphan_nxtlist = NULL;
1953		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1954	}
1955	return true;
1956}
1957
1958/*
1959 * If necessary, kick off a new grace period, and either way wait
1960 * for a subsequent grace period to complete.
1961 */
1962static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1963{
1964	unsigned long c;
1965	bool d;
1966	unsigned long flags;
1967	bool needwake;
1968	struct rcu_node *rnp = rdp->mynode;
1969
1970	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1971	needwake = rcu_start_future_gp(rnp, rdp, &c);
1972	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1973	if (needwake)
1974		rcu_gp_kthread_wake(rdp->rsp);
1975
1976	/*
1977	 * Wait for the grace period.  Do so interruptibly to avoid messing
1978	 * up the load average.
1979	 */
1980	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1981	for (;;) {
1982		swait_event_interruptible(
1983			rnp->nocb_gp_wq[c & 0x1],
1984			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1985		if (likely(d))
1986			break;
1987		WARN_ON(signal_pending(current));
1988		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1989	}
1990	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1991	smp_mb(); /* Ensure that CB invocation happens after GP end. */
1992}
1993
1994/*
1995 * Leaders come here to wait for additional callbacks to show up.
1996 * This function does not return until callbacks appear.
1997 */
1998static void nocb_leader_wait(struct rcu_data *my_rdp)
1999{
2000	bool firsttime = true;
 
2001	bool gotcbs;
2002	struct rcu_data *rdp;
2003	struct rcu_head **tail;
2004
2005wait_again:
2006
2007	/* Wait for callbacks to appear. */
2008	if (!rcu_nocb_poll) {
2009		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2010		swait_event_interruptible(my_rdp->nocb_wq,
2011				!READ_ONCE(my_rdp->nocb_leader_sleep));
2012		/* Memory barrier handled by smp_mb() calls below and repoll. */
 
 
 
 
2013	} else if (firsttime) {
2014		firsttime = false; /* Don't drown trace log with "Poll"! */
2015		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2016	}
2017
2018	/*
2019	 * Each pass through the following loop checks a follower for CBs.
2020	 * We are our own first follower.  Any CBs found are moved to
2021	 * nocb_gp_head, where they await a grace period.
2022	 */
2023	gotcbs = false;
 
2024	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2025		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2026		if (!rdp->nocb_gp_head)
2027			continue;  /* No CBs here, try next follower. */
2028
2029		/* Move callbacks to wait-for-GP list, which is empty. */
2030		WRITE_ONCE(rdp->nocb_head, NULL);
2031		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2032		gotcbs = true;
2033	}
2034
2035	/*
2036	 * If there were no callbacks, sleep a bit, rescan after a
2037	 * memory barrier, and go retry.
2038	 */
2039	if (unlikely(!gotcbs)) {
2040		if (!rcu_nocb_poll)
2041			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2042					    "WokeEmpty");
2043		WARN_ON(signal_pending(current));
2044		schedule_timeout_interruptible(1);
2045
2046		/* Rescan in case we were a victim of memory ordering. */
2047		my_rdp->nocb_leader_sleep = true;
2048		smp_mb();  /* Ensure _sleep true before scan. */
2049		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2050			if (READ_ONCE(rdp->nocb_head)) {
2051				/* Found CB, so short-circuit next wait. */
2052				my_rdp->nocb_leader_sleep = false;
2053				break;
2054			}
2055		goto wait_again;
2056	}
2057
2058	/* Wait for one grace period. */
2059	rcu_nocb_wait_gp(my_rdp);
2060
2061	/*
2062	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2063	 * We set it now, but recheck for new callbacks while
2064	 * traversing our follower list.
2065	 */
2066	my_rdp->nocb_leader_sleep = true;
2067	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2068
2069	/* Each pass through the following loop wakes a follower, if needed. */
2070	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2071		if (READ_ONCE(rdp->nocb_head))
 
 
 
2072			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
 
 
2073		if (!rdp->nocb_gp_head)
2074			continue; /* No CBs, so no need to wake follower. */
2075
2076		/* Append callbacks to follower's "done" list. */
2077		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
 
 
2078		*tail = rdp->nocb_gp_head;
2079		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2080		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2081			/*
2082			 * List was empty, wake up the follower.
2083			 * Memory barriers supplied by atomic_long_add().
2084			 */
2085			swake_up(&rdp->nocb_wq);
2086		}
2087	}
2088
2089	/* If we (the leader) don't have CBs, go wait some more. */
2090	if (!my_rdp->nocb_follower_head)
2091		goto wait_again;
2092}
2093
2094/*
2095 * Followers come here to wait for additional callbacks to show up.
2096 * This function does not return until callbacks appear.
2097 */
2098static void nocb_follower_wait(struct rcu_data *rdp)
2099{
2100	bool firsttime = true;
2101
2102	for (;;) {
2103		if (!rcu_nocb_poll) {
2104			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2105					    "FollowerSleep");
2106			swait_event_interruptible(rdp->nocb_wq,
2107						 READ_ONCE(rdp->nocb_follower_head));
2108		} else if (firsttime) {
2109			/* Don't drown trace log with "Poll"! */
2110			firsttime = false;
2111			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2112		}
2113		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2114			/* ^^^ Ensure CB invocation follows _head test. */
2115			return;
2116		}
2117		if (!rcu_nocb_poll)
2118			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119					    "WokeEmpty");
2120		WARN_ON(signal_pending(current));
2121		schedule_timeout_interruptible(1);
2122	}
2123}
2124
2125/*
2126 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2127 * callbacks queued by the corresponding no-CBs CPU, however, there is
2128 * an optional leader-follower relationship so that the grace-period
2129 * kthreads don't have to do quite so many wakeups.
2130 */
2131static int rcu_nocb_kthread(void *arg)
2132{
2133	int c, cl;
 
2134	struct rcu_head *list;
2135	struct rcu_head *next;
2136	struct rcu_head **tail;
2137	struct rcu_data *rdp = arg;
2138
2139	/* Each pass through this loop invokes one batch of callbacks */
2140	for (;;) {
2141		/* Wait for callbacks. */
2142		if (rdp->nocb_leader == rdp)
2143			nocb_leader_wait(rdp);
2144		else
2145			nocb_follower_wait(rdp);
2146
2147		/* Pull the ready-to-invoke callbacks onto local list. */
2148		list = READ_ONCE(rdp->nocb_follower_head);
 
 
 
 
 
2149		BUG_ON(!list);
2150		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2151		WRITE_ONCE(rdp->nocb_follower_head, NULL);
2152		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2153
2154		/* Each pass through the following loop invokes a callback. */
2155		trace_rcu_batch_start(rdp->rsp->name,
2156				      atomic_long_read(&rdp->nocb_q_count_lazy),
2157				      atomic_long_read(&rdp->nocb_q_count), -1);
2158		c = cl = 0;
2159		while (list) {
2160			next = list->next;
2161			/* Wait for enqueuing to complete, if needed. */
2162			while (next == NULL && &list->next != tail) {
2163				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2164						    TPS("WaitQueue"));
2165				schedule_timeout_interruptible(1);
2166				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2167						    TPS("WokeQueue"));
2168				next = list->next;
2169			}
2170			debug_rcu_head_unqueue(list);
2171			local_bh_disable();
2172			if (__rcu_reclaim(rdp->rsp->name, list))
2173				cl++;
2174			c++;
2175			local_bh_enable();
2176			cond_resched_rcu_qs();
2177			list = next;
2178		}
2179		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2180		smp_mb__before_atomic();  /* _add after CB invocation. */
2181		atomic_long_add(-c, &rdp->nocb_q_count);
2182		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2183		rdp->n_nocbs_invoked += c;
2184	}
2185	return 0;
2186}
2187
2188/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2189static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2190{
2191	return READ_ONCE(rdp->nocb_defer_wakeup);
2192}
2193
2194/* Do a deferred wakeup of rcu_nocb_kthread(). */
2195static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2196{
 
2197	int ndw;
2198
2199	if (!rcu_nocb_need_deferred_wakeup(rdp))
 
 
2200		return;
 
2201	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2202	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2203	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2204	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2205}
2206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207void __init rcu_init_nohz(void)
2208{
2209	int cpu;
2210	bool need_rcu_nocb_mask = true;
2211	struct rcu_state *rsp;
2212
2213#ifdef CONFIG_RCU_NOCB_CPU_NONE
2214	need_rcu_nocb_mask = false;
2215#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2216
2217#if defined(CONFIG_NO_HZ_FULL)
2218	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2219		need_rcu_nocb_mask = true;
2220#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2221
2222	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2223		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2224			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2225			return;
2226		}
2227		have_rcu_nocb_mask = true;
2228	}
2229	if (!have_rcu_nocb_mask)
2230		return;
2231
2232#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2233	pr_info("\tOffload RCU callbacks from CPU 0\n");
2234	cpumask_set_cpu(0, rcu_nocb_mask);
2235#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2236#ifdef CONFIG_RCU_NOCB_CPU_ALL
2237	pr_info("\tOffload RCU callbacks from all CPUs\n");
2238	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2239#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2240#if defined(CONFIG_NO_HZ_FULL)
2241	if (tick_nohz_full_running)
2242		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2243#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2244
2245	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2246		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2247		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2248			    rcu_nocb_mask);
2249	}
2250	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2251		cpumask_pr_args(rcu_nocb_mask));
 
 
 
2252	if (rcu_nocb_poll)
2253		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2254
2255	for_each_rcu_flavor(rsp) {
2256		for_each_cpu(cpu, rcu_nocb_mask)
2257			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2258		rcu_organize_nocb_kthreads(rsp);
2259	}
2260}
2261
2262/* Initialize per-rcu_data variables for no-CBs CPUs. */
2263static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2264{
2265	rdp->nocb_tail = &rdp->nocb_head;
2266	init_swait_queue_head(&rdp->nocb_wq);
2267	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
 
 
2268}
2269
2270/*
2271 * If the specified CPU is a no-CBs CPU that does not already have its
2272 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2273 * brought online out of order, this can require re-organizing the
2274 * leader-follower relationships.
2275 */
2276static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2277{
2278	struct rcu_data *rdp;
2279	struct rcu_data *rdp_last;
2280	struct rcu_data *rdp_old_leader;
2281	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2282	struct task_struct *t;
2283
2284	/*
2285	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2286	 * then nothing to do.
2287	 */
2288	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2289		return;
2290
2291	/* If we didn't spawn the leader first, reorganize! */
2292	rdp_old_leader = rdp_spawn->nocb_leader;
2293	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2294		rdp_last = NULL;
2295		rdp = rdp_old_leader;
2296		do {
2297			rdp->nocb_leader = rdp_spawn;
2298			if (rdp_last && rdp != rdp_spawn)
2299				rdp_last->nocb_next_follower = rdp;
2300			if (rdp == rdp_spawn) {
2301				rdp = rdp->nocb_next_follower;
2302			} else {
2303				rdp_last = rdp;
2304				rdp = rdp->nocb_next_follower;
2305				rdp_last->nocb_next_follower = NULL;
2306			}
2307		} while (rdp);
2308		rdp_spawn->nocb_next_follower = rdp_old_leader;
2309	}
2310
2311	/* Spawn the kthread for this CPU and RCU flavor. */
2312	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2313			"rcuo%c/%d", rsp->abbr, cpu);
2314	BUG_ON(IS_ERR(t));
2315	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2316}
2317
2318/*
2319 * If the specified CPU is a no-CBs CPU that does not already have its
2320 * rcuo kthreads, spawn them.
2321 */
2322static void rcu_spawn_all_nocb_kthreads(int cpu)
2323{
2324	struct rcu_state *rsp;
2325
2326	if (rcu_scheduler_fully_active)
2327		for_each_rcu_flavor(rsp)
2328			rcu_spawn_one_nocb_kthread(rsp, cpu);
2329}
2330
2331/*
2332 * Once the scheduler is running, spawn rcuo kthreads for all online
2333 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2334 * non-boot CPUs come online -- if this changes, we will need to add
2335 * some mutual exclusion.
2336 */
2337static void __init rcu_spawn_nocb_kthreads(void)
2338{
2339	int cpu;
2340
2341	for_each_online_cpu(cpu)
2342		rcu_spawn_all_nocb_kthreads(cpu);
2343}
2344
2345/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2346static int rcu_nocb_leader_stride = -1;
2347module_param(rcu_nocb_leader_stride, int, 0444);
2348
2349/*
2350 * Initialize leader-follower relationships for all no-CBs CPU.
2351 */
2352static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2353{
2354	int cpu;
2355	int ls = rcu_nocb_leader_stride;
2356	int nl = 0;  /* Next leader. */
2357	struct rcu_data *rdp;
2358	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2359	struct rcu_data *rdp_prev = NULL;
2360
2361	if (!have_rcu_nocb_mask)
2362		return;
2363	if (ls == -1) {
2364		ls = int_sqrt(nr_cpu_ids);
2365		rcu_nocb_leader_stride = ls;
2366	}
2367
2368	/*
2369	 * Each pass through this loop sets up one rcu_data structure and
2370	 * spawns one rcu_nocb_kthread().
 
2371	 */
2372	for_each_cpu(cpu, rcu_nocb_mask) {
2373		rdp = per_cpu_ptr(rsp->rda, cpu);
2374		if (rdp->cpu >= nl) {
2375			/* New leader, set up for followers & next leader. */
2376			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2377			rdp->nocb_leader = rdp;
2378			rdp_leader = rdp;
2379		} else {
2380			/* Another follower, link to previous leader. */
2381			rdp->nocb_leader = rdp_leader;
2382			rdp_prev->nocb_next_follower = rdp;
2383		}
2384		rdp_prev = rdp;
2385	}
2386}
2387
2388/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2389static bool init_nocb_callback_list(struct rcu_data *rdp)
2390{
2391	if (!rcu_is_nocb_cpu(rdp->cpu))
2392		return false;
2393
2394	/* If there are early-boot callbacks, move them to nocb lists. */
2395	if (rdp->nxtlist) {
2396		rdp->nocb_head = rdp->nxtlist;
2397		rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2398		atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2399		atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2400		rdp->nxtlist = NULL;
2401		rdp->qlen = 0;
2402		rdp->qlen_lazy = 0;
2403	}
2404	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2405	return true;
2406}
2407
2408#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2409
2410static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2411{
2412	WARN_ON_ONCE(1); /* Should be dead code. */
2413	return false;
2414}
2415
2416static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2417{
2418}
2419
2420static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2421{
2422}
2423
2424static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2425{
2426	return NULL;
2427}
2428
2429static void rcu_init_one_nocb(struct rcu_node *rnp)
2430{
2431}
2432
2433static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2434			    bool lazy, unsigned long flags)
2435{
2436	return false;
2437}
2438
2439static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2440						     struct rcu_data *rdp,
2441						     unsigned long flags)
2442{
2443	return false;
2444}
2445
2446static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2447{
2448}
2449
2450static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2451{
2452	return false;
2453}
2454
2455static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2456{
2457}
2458
2459static void rcu_spawn_all_nocb_kthreads(int cpu)
2460{
2461}
2462
2463static void __init rcu_spawn_nocb_kthreads(void)
2464{
2465}
2466
2467static bool init_nocb_callback_list(struct rcu_data *rdp)
2468{
2469	return false;
2470}
2471
2472#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2473
2474/*
2475 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2476 * arbitrarily long period of time with the scheduling-clock tick turned
2477 * off.  RCU will be paying attention to this CPU because it is in the
2478 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2479 * machine because the scheduling-clock tick has been disabled.  Therefore,
2480 * if an adaptive-ticks CPU is failing to respond to the current grace
2481 * period and has not be idle from an RCU perspective, kick it.
2482 */
2483static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2484{
2485#ifdef CONFIG_NO_HZ_FULL
2486	if (tick_nohz_full_cpu(cpu))
2487		smp_send_reschedule(cpu);
2488#endif /* #ifdef CONFIG_NO_HZ_FULL */
2489}
2490
2491
2492#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2493
2494static int full_sysidle_state;		/* Current system-idle state. */
2495#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2496#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2497#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2498#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2499#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2500
2501/*
2502 * Invoked to note exit from irq or task transition to idle.  Note that
2503 * usermode execution does -not- count as idle here!  After all, we want
2504 * to detect full-system idle states, not RCU quiescent states and grace
2505 * periods.  The caller must have disabled interrupts.
2506 */
2507static void rcu_sysidle_enter(int irq)
2508{
2509	unsigned long j;
2510	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2511
2512	/* If there are no nohz_full= CPUs, no need to track this. */
2513	if (!tick_nohz_full_enabled())
2514		return;
2515
2516	/* Adjust nesting, check for fully idle. */
2517	if (irq) {
2518		rdtp->dynticks_idle_nesting--;
2519		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2520		if (rdtp->dynticks_idle_nesting != 0)
2521			return;  /* Still not fully idle. */
2522	} else {
2523		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2524		    DYNTICK_TASK_NEST_VALUE) {
2525			rdtp->dynticks_idle_nesting = 0;
2526		} else {
2527			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2528			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2529			return;  /* Still not fully idle. */
2530		}
2531	}
2532
2533	/* Record start of fully idle period. */
2534	j = jiffies;
2535	WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2536	smp_mb__before_atomic();
2537	atomic_inc(&rdtp->dynticks_idle);
2538	smp_mb__after_atomic();
2539	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2540}
2541
2542/*
2543 * Unconditionally force exit from full system-idle state.  This is
2544 * invoked when a normal CPU exits idle, but must be called separately
2545 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2546 * is that the timekeeping CPU is permitted to take scheduling-clock
2547 * interrupts while the system is in system-idle state, and of course
2548 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2549 * interrupt from any other type of interrupt.
2550 */
2551void rcu_sysidle_force_exit(void)
2552{
2553	int oldstate = READ_ONCE(full_sysidle_state);
2554	int newoldstate;
2555
2556	/*
2557	 * Each pass through the following loop attempts to exit full
2558	 * system-idle state.  If contention proves to be a problem,
2559	 * a trylock-based contention tree could be used here.
2560	 */
2561	while (oldstate > RCU_SYSIDLE_SHORT) {
2562		newoldstate = cmpxchg(&full_sysidle_state,
2563				      oldstate, RCU_SYSIDLE_NOT);
2564		if (oldstate == newoldstate &&
2565		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2566			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2567			return; /* We cleared it, done! */
2568		}
2569		oldstate = newoldstate;
2570	}
2571	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2572}
2573
2574/*
2575 * Invoked to note entry to irq or task transition from idle.  Note that
2576 * usermode execution does -not- count as idle here!  The caller must
2577 * have disabled interrupts.
2578 */
2579static void rcu_sysidle_exit(int irq)
2580{
2581	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2582
2583	/* If there are no nohz_full= CPUs, no need to track this. */
2584	if (!tick_nohz_full_enabled())
2585		return;
2586
2587	/* Adjust nesting, check for already non-idle. */
2588	if (irq) {
2589		rdtp->dynticks_idle_nesting++;
2590		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2591		if (rdtp->dynticks_idle_nesting != 1)
2592			return; /* Already non-idle. */
2593	} else {
2594		/*
2595		 * Allow for irq misnesting.  Yes, it really is possible
2596		 * to enter an irq handler then never leave it, and maybe
2597		 * also vice versa.  Handle both possibilities.
2598		 */
2599		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2600			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2601			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2602			return; /* Already non-idle. */
2603		} else {
2604			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2605		}
2606	}
2607
2608	/* Record end of idle period. */
2609	smp_mb__before_atomic();
2610	atomic_inc(&rdtp->dynticks_idle);
2611	smp_mb__after_atomic();
2612	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2613
2614	/*
2615	 * If we are the timekeeping CPU, we are permitted to be non-idle
2616	 * during a system-idle state.  This must be the case, because
2617	 * the timekeeping CPU has to take scheduling-clock interrupts
2618	 * during the time that the system is transitioning to full
2619	 * system-idle state.  This means that the timekeeping CPU must
2620	 * invoke rcu_sysidle_force_exit() directly if it does anything
2621	 * more than take a scheduling-clock interrupt.
2622	 */
2623	if (smp_processor_id() == tick_do_timer_cpu)
2624		return;
2625
2626	/* Update system-idle state: We are clearly no longer fully idle! */
2627	rcu_sysidle_force_exit();
2628}
2629
2630/*
2631 * Check to see if the current CPU is idle.  Note that usermode execution
2632 * does not count as idle.  The caller must have disabled interrupts,
2633 * and must be running on tick_do_timer_cpu.
2634 */
2635static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2636				  unsigned long *maxj)
2637{
2638	int cur;
2639	unsigned long j;
2640	struct rcu_dynticks *rdtp = rdp->dynticks;
2641
2642	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2643	if (!tick_nohz_full_enabled())
2644		return;
2645
2646	/*
2647	 * If some other CPU has already reported non-idle, if this is
2648	 * not the flavor of RCU that tracks sysidle state, or if this
2649	 * is an offline or the timekeeping CPU, nothing to do.
2650	 */
2651	if (!*isidle || rdp->rsp != rcu_state_p ||
2652	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2653		return;
2654	/* Verify affinity of current kthread. */
2655	WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2656
2657	/* Pick up current idle and NMI-nesting counter and check. */
2658	cur = atomic_read(&rdtp->dynticks_idle);
2659	if (cur & 0x1) {
2660		*isidle = false; /* We are not idle! */
2661		return;
2662	}
2663	smp_mb(); /* Read counters before timestamps. */
2664
2665	/* Pick up timestamps. */
2666	j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2667	/* If this CPU entered idle more recently, update maxj timestamp. */
2668	if (ULONG_CMP_LT(*maxj, j))
2669		*maxj = j;
2670}
2671
2672/*
2673 * Is this the flavor of RCU that is handling full-system idle?
2674 */
2675static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2676{
2677	return rsp == rcu_state_p;
2678}
2679
2680/*
2681 * Return a delay in jiffies based on the number of CPUs, rcu_node
2682 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2683 * systems more time to transition to full-idle state in order to
2684 * avoid the cache thrashing that otherwise occur on the state variable.
2685 * Really small systems (less than a couple of tens of CPUs) should
2686 * instead use a single global atomically incremented counter, and later
2687 * versions of this will automatically reconfigure themselves accordingly.
2688 */
2689static unsigned long rcu_sysidle_delay(void)
2690{
2691	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2692		return 0;
2693	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2694}
2695
2696/*
2697 * Advance the full-system-idle state.  This is invoked when all of
2698 * the non-timekeeping CPUs are idle.
2699 */
2700static void rcu_sysidle(unsigned long j)
2701{
2702	/* Check the current state. */
2703	switch (READ_ONCE(full_sysidle_state)) {
2704	case RCU_SYSIDLE_NOT:
2705
2706		/* First time all are idle, so note a short idle period. */
2707		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2708		break;
2709
2710	case RCU_SYSIDLE_SHORT:
2711
2712		/*
2713		 * Idle for a bit, time to advance to next state?
2714		 * cmpxchg failure means race with non-idle, let them win.
2715		 */
2716		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2717			(void)cmpxchg(&full_sysidle_state,
2718				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2719		break;
2720
2721	case RCU_SYSIDLE_LONG:
2722
2723		/*
2724		 * Do an additional check pass before advancing to full.
2725		 * cmpxchg failure means race with non-idle, let them win.
2726		 */
2727		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2728			(void)cmpxchg(&full_sysidle_state,
2729				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2730		break;
2731
2732	default:
2733		break;
2734	}
2735}
2736
2737/*
2738 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2739 * back to the beginning.
2740 */
2741static void rcu_sysidle_cancel(void)
2742{
2743	smp_mb();
2744	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2745		WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2746}
2747
2748/*
2749 * Update the sysidle state based on the results of a force-quiescent-state
2750 * scan of the CPUs' dyntick-idle state.
2751 */
2752static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2753			       unsigned long maxj, bool gpkt)
2754{
2755	if (rsp != rcu_state_p)
2756		return;  /* Wrong flavor, ignore. */
2757	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2758		return;  /* Running state machine from timekeeping CPU. */
2759	if (isidle)
2760		rcu_sysidle(maxj);    /* More idle! */
2761	else
2762		rcu_sysidle_cancel(); /* Idle is over. */
2763}
2764
2765/*
2766 * Wrapper for rcu_sysidle_report() when called from the grace-period
2767 * kthread's context.
2768 */
2769static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2770				  unsigned long maxj)
2771{
2772	/* If there are no nohz_full= CPUs, no need to track this. */
2773	if (!tick_nohz_full_enabled())
2774		return;
2775
2776	rcu_sysidle_report(rsp, isidle, maxj, true);
2777}
2778
2779/* Callback and function for forcing an RCU grace period. */
2780struct rcu_sysidle_head {
2781	struct rcu_head rh;
2782	int inuse;
2783};
2784
2785static void rcu_sysidle_cb(struct rcu_head *rhp)
2786{
2787	struct rcu_sysidle_head *rshp;
2788
2789	/*
2790	 * The following memory barrier is needed to replace the
2791	 * memory barriers that would normally be in the memory
2792	 * allocator.
2793	 */
2794	smp_mb();  /* grace period precedes setting inuse. */
2795
2796	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2797	WRITE_ONCE(rshp->inuse, 0);
2798}
2799
2800/*
2801 * Check to see if the system is fully idle, other than the timekeeping CPU.
2802 * The caller must have disabled interrupts.  This is not intended to be
2803 * called unless tick_nohz_full_enabled().
2804 */
2805bool rcu_sys_is_idle(void)
2806{
2807	static struct rcu_sysidle_head rsh;
2808	int rss = READ_ONCE(full_sysidle_state);
2809
2810	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2811		return false;
2812
2813	/* Handle small-system case by doing a full scan of CPUs. */
2814	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2815		int oldrss = rss - 1;
2816
2817		/*
2818		 * One pass to advance to each state up to _FULL.
2819		 * Give up if any pass fails to advance the state.
2820		 */
2821		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2822			int cpu;
2823			bool isidle = true;
2824			unsigned long maxj = jiffies - ULONG_MAX / 4;
2825			struct rcu_data *rdp;
2826
2827			/* Scan all the CPUs looking for nonidle CPUs. */
2828			for_each_possible_cpu(cpu) {
2829				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2830				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2831				if (!isidle)
2832					break;
2833			}
2834			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2835			oldrss = rss;
2836			rss = READ_ONCE(full_sysidle_state);
2837		}
2838	}
2839
2840	/* If this is the first observation of an idle period, record it. */
2841	if (rss == RCU_SYSIDLE_FULL) {
2842		rss = cmpxchg(&full_sysidle_state,
2843			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2844		return rss == RCU_SYSIDLE_FULL;
2845	}
2846
2847	smp_mb(); /* ensure rss load happens before later caller actions. */
2848
2849	/* If already fully idle, tell the caller (in case of races). */
2850	if (rss == RCU_SYSIDLE_FULL_NOTED)
2851		return true;
2852
2853	/*
2854	 * If we aren't there yet, and a grace period is not in flight,
2855	 * initiate a grace period.  Either way, tell the caller that
2856	 * we are not there yet.  We use an xchg() rather than an assignment
2857	 * to make up for the memory barriers that would otherwise be
2858	 * provided by the memory allocator.
2859	 */
2860	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2861	    !rcu_gp_in_progress(rcu_state_p) &&
2862	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2863		call_rcu(&rsh.rh, rcu_sysidle_cb);
2864	return false;
2865}
2866
2867/*
2868 * Initialize dynticks sysidle state for CPUs coming online.
2869 */
2870static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2871{
2872	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2873}
2874
2875#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2876
2877static void rcu_sysidle_enter(int irq)
2878{
2879}
2880
2881static void rcu_sysidle_exit(int irq)
2882{
2883}
2884
2885static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2886				  unsigned long *maxj)
2887{
2888}
2889
2890static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2891{
2892	return false;
2893}
2894
2895static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2896				  unsigned long maxj)
2897{
2898}
2899
2900static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2901{
2902}
2903
2904#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2905
2906/*
2907 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2908 * grace-period kthread will do force_quiescent_state() processing?
2909 * The idea is to avoid waking up RCU core processing on such a
2910 * CPU unless the grace period has extended for too long.
2911 *
2912 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2913 * CONFIG_RCU_NOCB_CPU CPUs.
2914 */
2915static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2916{
2917#ifdef CONFIG_NO_HZ_FULL
2918	if (tick_nohz_full_cpu(smp_processor_id()) &&
2919	    (!rcu_gp_in_progress(rsp) ||
2920	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2921		return true;
2922#endif /* #ifdef CONFIG_NO_HZ_FULL */
2923	return false;
2924}
2925
2926/*
2927 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2928 * timekeeping CPU.
2929 */
2930static void rcu_bind_gp_kthread(void)
2931{
2932	int __maybe_unused cpu;
2933
2934	if (!tick_nohz_full_enabled())
2935		return;
2936#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2937	cpu = tick_do_timer_cpu;
2938	if (cpu >= 0 && cpu < nr_cpu_ids)
2939		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2940#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2941	housekeeping_affine(current);
2942#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2943}
2944
2945/* Record the current task on dyntick-idle entry. */
2946static void rcu_dynticks_task_enter(void)
2947{
2948#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2949	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2950#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2951}
2952
2953/* Record no current task on dyntick-idle exit. */
2954static void rcu_dynticks_task_exit(void)
2955{
2956#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2957	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2958#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2959}
v4.17
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   3 * Internal non-public definitions that provide either classic
   4 * or preemptible semantics.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, you can access it online at
  18 * http://www.gnu.org/licenses/gpl-2.0.html.
  19 *
  20 * Copyright Red Hat, 2009
  21 * Copyright IBM Corporation, 2009
  22 *
  23 * Author: Ingo Molnar <mingo@elte.hu>
  24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/gfp.h>
  29#include <linux/oom.h>
  30#include <linux/sched/debug.h>
  31#include <linux/smpboot.h>
  32#include <linux/sched/isolation.h>
  33#include <uapi/linux/sched/types.h>
  34#include "../time/tick-internal.h"
  35
  36#ifdef CONFIG_RCU_BOOST
  37
  38#include "../locking/rtmutex_common.h"
  39
  40/*
  41 * Control variables for per-CPU and per-rcu_node kthreads.  These
  42 * handle all flavors of RCU.
  43 */
  44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  47DEFINE_PER_CPU(char, rcu_cpu_has_work);
  48
  49#else /* #ifdef CONFIG_RCU_BOOST */
  50
  51/*
  52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  53 * all uses are in dead code.  Provide a definition to keep the compiler
  54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  55 * This probably needs to be excluded from -rt builds.
  56 */
  57#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  58#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
  59
  60#endif /* #else #ifdef CONFIG_RCU_BOOST */
  61
  62#ifdef CONFIG_RCU_NOCB_CPU
  63static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
 
  64static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
  65#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  66
  67/*
  68 * Check the RCU kernel configuration parameters and print informative
  69 * messages about anything out of the ordinary.
  70 */
  71static void __init rcu_bootup_announce_oddness(void)
  72{
  73	if (IS_ENABLED(CONFIG_RCU_TRACE))
  74		pr_info("\tRCU event tracing is enabled.\n");
  75	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  76	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  77		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  78		       RCU_FANOUT);
  79	if (rcu_fanout_exact)
  80		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  81	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  82		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  83	if (IS_ENABLED(CONFIG_PROVE_RCU))
  84		pr_info("\tRCU lockdep checking is enabled.\n");
  85	if (RCU_NUM_LVLS >= 4)
  86		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  87	if (RCU_FANOUT_LEAF != 16)
  88		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  89			RCU_FANOUT_LEAF);
  90	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  91		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  92	if (nr_cpu_ids != NR_CPUS)
  93		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
  94#ifdef CONFIG_RCU_BOOST
  95	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
  96#endif
  97	if (blimit != DEFAULT_RCU_BLIMIT)
  98		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
  99	if (qhimark != DEFAULT_RCU_QHIMARK)
 100		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
 101	if (qlowmark != DEFAULT_RCU_QLOMARK)
 102		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
 103	if (jiffies_till_first_fqs != ULONG_MAX)
 104		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
 105	if (jiffies_till_next_fqs != ULONG_MAX)
 106		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
 107	if (rcu_kick_kthreads)
 108		pr_info("\tKick kthreads if too-long grace period.\n");
 109	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
 110		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
 111	if (gp_preinit_delay)
 112		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
 113	if (gp_init_delay)
 114		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
 115	if (gp_cleanup_delay)
 116		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
 117	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
 118		pr_info("\tRCU debug extended QS entry/exit.\n");
 119	rcupdate_announce_bootup_oddness();
 120}
 121
 122#ifdef CONFIG_PREEMPT_RCU
 123
 124RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
 125static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
 126static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
 127
 128static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
 129			       bool wake);
 130
 131/*
 132 * Tell them what RCU they are running.
 133 */
 134static void __init rcu_bootup_announce(void)
 135{
 136	pr_info("Preemptible hierarchical RCU implementation.\n");
 137	rcu_bootup_announce_oddness();
 138}
 139
 140/* Flags for rcu_preempt_ctxt_queue() decision table. */
 141#define RCU_GP_TASKS	0x8
 142#define RCU_EXP_TASKS	0x4
 143#define RCU_GP_BLKD	0x2
 144#define RCU_EXP_BLKD	0x1
 145
 146/*
 147 * Queues a task preempted within an RCU-preempt read-side critical
 148 * section into the appropriate location within the ->blkd_tasks list,
 149 * depending on the states of any ongoing normal and expedited grace
 150 * periods.  The ->gp_tasks pointer indicates which element the normal
 151 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
 152 * indicates which element the expedited grace period is waiting on (again,
 153 * NULL if none).  If a grace period is waiting on a given element in the
 154 * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
 155 * adding a task to the tail of the list blocks any grace period that is
 156 * already waiting on one of the elements.  In contrast, adding a task
 157 * to the head of the list won't block any grace period that is already
 158 * waiting on one of the elements.
 159 *
 160 * This queuing is imprecise, and can sometimes make an ongoing grace
 161 * period wait for a task that is not strictly speaking blocking it.
 162 * Given the choice, we needlessly block a normal grace period rather than
 163 * blocking an expedited grace period.
 164 *
 165 * Note that an endless sequence of expedited grace periods still cannot
 166 * indefinitely postpone a normal grace period.  Eventually, all of the
 167 * fixed number of preempted tasks blocking the normal grace period that are
 168 * not also blocking the expedited grace period will resume and complete
 169 * their RCU read-side critical sections.  At that point, the ->gp_tasks
 170 * pointer will equal the ->exp_tasks pointer, at which point the end of
 171 * the corresponding expedited grace period will also be the end of the
 172 * normal grace period.
 173 */
 174static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
 175	__releases(rnp->lock) /* But leaves rrupts disabled. */
 176{
 177	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
 178			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
 179			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
 180			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
 181	struct task_struct *t = current;
 182
 183	raw_lockdep_assert_held_rcu_node(rnp);
 184	WARN_ON_ONCE(rdp->mynode != rnp);
 185	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
 186
 187	/*
 188	 * Decide where to queue the newly blocked task.  In theory,
 189	 * this could be an if-statement.  In practice, when I tried
 190	 * that, it was quite messy.
 191	 */
 192	switch (blkd_state) {
 193	case 0:
 194	case                RCU_EXP_TASKS:
 195	case                RCU_EXP_TASKS + RCU_GP_BLKD:
 196	case RCU_GP_TASKS:
 197	case RCU_GP_TASKS + RCU_EXP_TASKS:
 198
 199		/*
 200		 * Blocking neither GP, or first task blocking the normal
 201		 * GP but not blocking the already-waiting expedited GP.
 202		 * Queue at the head of the list to avoid unnecessarily
 203		 * blocking the already-waiting GPs.
 204		 */
 205		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
 206		break;
 207
 208	case                                              RCU_EXP_BLKD:
 209	case                                RCU_GP_BLKD:
 210	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
 211	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
 212	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
 213	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 214
 215		/*
 216		 * First task arriving that blocks either GP, or first task
 217		 * arriving that blocks the expedited GP (with the normal
 218		 * GP already waiting), or a task arriving that blocks
 219		 * both GPs with both GPs already waiting.  Queue at the
 220		 * tail of the list to avoid any GP waiting on any of the
 221		 * already queued tasks that are not blocking it.
 222		 */
 223		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
 224		break;
 225
 226	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
 227	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
 228	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
 229
 230		/*
 231		 * Second or subsequent task blocking the expedited GP.
 232		 * The task either does not block the normal GP, or is the
 233		 * first task blocking the normal GP.  Queue just after
 234		 * the first task blocking the expedited GP.
 235		 */
 236		list_add(&t->rcu_node_entry, rnp->exp_tasks);
 237		break;
 238
 239	case RCU_GP_TASKS +                 RCU_GP_BLKD:
 240	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
 241
 242		/*
 243		 * Second or subsequent task blocking the normal GP.
 244		 * The task does not block the expedited GP. Queue just
 245		 * after the first task blocking the normal GP.
 246		 */
 247		list_add(&t->rcu_node_entry, rnp->gp_tasks);
 248		break;
 249
 250	default:
 251
 252		/* Yet another exercise in excessive paranoia. */
 253		WARN_ON_ONCE(1);
 254		break;
 255	}
 256
 257	/*
 258	 * We have now queued the task.  If it was the first one to
 259	 * block either grace period, update the ->gp_tasks and/or
 260	 * ->exp_tasks pointers, respectively, to reference the newly
 261	 * blocked tasks.
 262	 */
 263	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
 264		rnp->gp_tasks = &t->rcu_node_entry;
 265	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
 266		rnp->exp_tasks = &t->rcu_node_entry;
 267	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
 268		     !(rnp->qsmask & rdp->grpmask));
 269	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
 270		     !(rnp->expmask & rdp->grpmask));
 271	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
 272
 273	/*
 274	 * Report the quiescent state for the expedited GP.  This expedited
 275	 * GP should not be able to end until we report, so there should be
 276	 * no need to check for a subsequent expedited GP.  (Though we are
 277	 * still in a quiescent state in any case.)
 278	 */
 279	if (blkd_state & RCU_EXP_BLKD &&
 280	    t->rcu_read_unlock_special.b.exp_need_qs) {
 281		t->rcu_read_unlock_special.b.exp_need_qs = false;
 282		rcu_report_exp_rdp(rdp->rsp, rdp, true);
 283	} else {
 284		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
 285	}
 286}
 287
 288/*
 289 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 290 * that this just means that the task currently running on the CPU is
 291 * not in a quiescent state.  There might be any number of tasks blocked
 292 * while in an RCU read-side critical section.
 293 *
 294 * As with the other rcu_*_qs() functions, callers to this function
 295 * must disable preemption.
 296 */
 297static void rcu_preempt_qs(void)
 298{
 299	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
 300	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
 301		trace_rcu_grace_period(TPS("rcu_preempt"),
 302				       __this_cpu_read(rcu_data_p->gpnum),
 303				       TPS("cpuqs"));
 304		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
 305		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
 306		current->rcu_read_unlock_special.b.need_qs = false;
 307	}
 308}
 309
 310/*
 311 * We have entered the scheduler, and the current task might soon be
 312 * context-switched away from.  If this task is in an RCU read-side
 313 * critical section, we will no longer be able to rely on the CPU to
 314 * record that fact, so we enqueue the task on the blkd_tasks list.
 315 * The task will dequeue itself when it exits the outermost enclosing
 316 * RCU read-side critical section.  Therefore, the current grace period
 317 * cannot be permitted to complete until the blkd_tasks list entries
 318 * predating the current grace period drain, in other words, until
 319 * rnp->gp_tasks becomes NULL.
 320 *
 321 * Caller must disable interrupts.
 322 */
 323static void rcu_preempt_note_context_switch(bool preempt)
 324{
 325	struct task_struct *t = current;
 326	struct rcu_data *rdp;
 327	struct rcu_node *rnp;
 328
 329	lockdep_assert_irqs_disabled();
 330	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
 331	if (t->rcu_read_lock_nesting > 0 &&
 332	    !t->rcu_read_unlock_special.b.blocked) {
 333
 334		/* Possibly blocking in an RCU read-side critical section. */
 335		rdp = this_cpu_ptr(rcu_state_p->rda);
 336		rnp = rdp->mynode;
 337		raw_spin_lock_rcu_node(rnp);
 338		t->rcu_read_unlock_special.b.blocked = true;
 339		t->rcu_blocked_node = rnp;
 340
 341		/*
 342		 * Verify the CPU's sanity, trace the preemption, and
 343		 * then queue the task as required based on the states
 344		 * of any ongoing and expedited grace periods.
 345		 */
 346		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
 347		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
 348		trace_rcu_preempt_task(rdp->rsp->name,
 349				       t->pid,
 350				       (rnp->qsmask & rdp->grpmask)
 351				       ? rnp->gpnum
 352				       : rnp->gpnum + 1);
 353		rcu_preempt_ctxt_queue(rnp, rdp);
 354	} else if (t->rcu_read_lock_nesting < 0 &&
 355		   t->rcu_read_unlock_special.s) {
 356
 357		/*
 358		 * Complete exit from RCU read-side critical section on
 359		 * behalf of preempted instance of __rcu_read_unlock().
 360		 */
 361		rcu_read_unlock_special(t);
 362	}
 363
 364	/*
 365	 * Either we were not in an RCU read-side critical section to
 366	 * begin with, or we have now recorded that critical section
 367	 * globally.  Either way, we can now note a quiescent state
 368	 * for this CPU.  Again, if we were in an RCU read-side critical
 369	 * section, and if that critical section was blocking the current
 370	 * grace period, then the fact that the task has been enqueued
 371	 * means that we continue to block the current grace period.
 372	 */
 373	rcu_preempt_qs();
 374}
 375
 376/*
 377 * Check for preempted RCU readers blocking the current grace period
 378 * for the specified rcu_node structure.  If the caller needs a reliable
 379 * answer, it must hold the rcu_node's ->lock.
 380 */
 381static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 382{
 383	return rnp->gp_tasks != NULL;
 384}
 385
 386/*
 387 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 388 * returning NULL if at the end of the list.
 389 */
 390static struct list_head *rcu_next_node_entry(struct task_struct *t,
 391					     struct rcu_node *rnp)
 392{
 393	struct list_head *np;
 394
 395	np = t->rcu_node_entry.next;
 396	if (np == &rnp->blkd_tasks)
 397		np = NULL;
 398	return np;
 399}
 400
 401/*
 402 * Return true if the specified rcu_node structure has tasks that were
 403 * preempted within an RCU read-side critical section.
 404 */
 405static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 406{
 407	return !list_empty(&rnp->blkd_tasks);
 408}
 409
 410/*
 411 * Handle special cases during rcu_read_unlock(), such as needing to
 412 * notify RCU core processing or task having blocked during the RCU
 413 * read-side critical section.
 414 */
 415void rcu_read_unlock_special(struct task_struct *t)
 416{
 417	bool empty_exp;
 418	bool empty_norm;
 419	bool empty_exp_now;
 420	unsigned long flags;
 421	struct list_head *np;
 422	bool drop_boost_mutex = false;
 423	struct rcu_data *rdp;
 424	struct rcu_node *rnp;
 425	union rcu_special special;
 426
 427	/* NMI handlers cannot block and cannot safely manipulate state. */
 428	if (in_nmi())
 429		return;
 430
 431	local_irq_save(flags);
 432
 433	/*
 434	 * If RCU core is waiting for this CPU to exit its critical section,
 435	 * report the fact that it has exited.  Because irqs are disabled,
 436	 * t->rcu_read_unlock_special cannot change.
 437	 */
 438	special = t->rcu_read_unlock_special;
 439	if (special.b.need_qs) {
 440		rcu_preempt_qs();
 441		t->rcu_read_unlock_special.b.need_qs = false;
 442		if (!t->rcu_read_unlock_special.s) {
 443			local_irq_restore(flags);
 444			return;
 445		}
 446	}
 447
 448	/*
 449	 * Respond to a request for an expedited grace period, but only if
 450	 * we were not preempted, meaning that we were running on the same
 451	 * CPU throughout.  If we were preempted, the exp_need_qs flag
 452	 * would have been cleared at the time of the first preemption,
 453	 * and the quiescent state would be reported when we were dequeued.
 454	 */
 455	if (special.b.exp_need_qs) {
 456		WARN_ON_ONCE(special.b.blocked);
 457		t->rcu_read_unlock_special.b.exp_need_qs = false;
 458		rdp = this_cpu_ptr(rcu_state_p->rda);
 459		rcu_report_exp_rdp(rcu_state_p, rdp, true);
 460		if (!t->rcu_read_unlock_special.s) {
 461			local_irq_restore(flags);
 462			return;
 463		}
 464	}
 465
 466	/* Hardware IRQ handlers cannot block, complain if they get here. */
 467	if (in_irq() || in_serving_softirq()) {
 468		lockdep_rcu_suspicious(__FILE__, __LINE__,
 469				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
 470		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
 471			 t->rcu_read_unlock_special.s,
 472			 t->rcu_read_unlock_special.b.blocked,
 473			 t->rcu_read_unlock_special.b.exp_need_qs,
 474			 t->rcu_read_unlock_special.b.need_qs);
 475		local_irq_restore(flags);
 476		return;
 477	}
 478
 479	/* Clean up if blocked during RCU read-side critical section. */
 480	if (special.b.blocked) {
 481		t->rcu_read_unlock_special.b.blocked = false;
 482
 483		/*
 484		 * Remove this task from the list it blocked on.  The task
 485		 * now remains queued on the rcu_node corresponding to the
 486		 * CPU it first blocked on, so there is no longer any need
 487		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
 488		 */
 489		rnp = t->rcu_blocked_node;
 490		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
 491		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
 492		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
 493		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
 494		empty_exp = sync_rcu_preempt_exp_done(rnp);
 495		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
 496		np = rcu_next_node_entry(t, rnp);
 497		list_del_init(&t->rcu_node_entry);
 498		t->rcu_blocked_node = NULL;
 499		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
 500						rnp->gpnum, t->pid);
 501		if (&t->rcu_node_entry == rnp->gp_tasks)
 502			rnp->gp_tasks = np;
 503		if (&t->rcu_node_entry == rnp->exp_tasks)
 504			rnp->exp_tasks = np;
 505		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
 
 
 506			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
 507			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
 508			if (&t->rcu_node_entry == rnp->boost_tasks)
 509				rnp->boost_tasks = np;
 510		}
 511
 512		/*
 513		 * If this was the last task on the current list, and if
 514		 * we aren't waiting on any CPUs, report the quiescent state.
 515		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
 516		 * so we must take a snapshot of the expedited state.
 517		 */
 518		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
 519		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
 520			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
 521							 rnp->gpnum,
 522							 0, rnp->qsmask,
 523							 rnp->level,
 524							 rnp->grplo,
 525							 rnp->grphi,
 526							 !!rnp->gp_tasks);
 527			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
 528		} else {
 529			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 530		}
 531
 532		/* Unboost if we were boosted. */
 533		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
 534			rt_mutex_futex_unlock(&rnp->boost_mtx);
 535
 536		/*
 537		 * If this was the last task on the expedited lists,
 538		 * then we need to report up the rcu_node hierarchy.
 539		 */
 540		if (!empty_exp && empty_exp_now)
 541			rcu_report_exp_rnp(rcu_state_p, rnp, true);
 542	} else {
 543		local_irq_restore(flags);
 544	}
 545}
 546
 547/*
 548 * Dump detailed information for all tasks blocking the current RCU
 549 * grace period on the specified rcu_node structure.
 550 */
 551static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
 552{
 553	unsigned long flags;
 554	struct task_struct *t;
 555
 556	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 557	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
 558		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 559		return;
 560	}
 561	t = list_entry(rnp->gp_tasks->prev,
 562		       struct task_struct, rcu_node_entry);
 563	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 564		/*
 565		 * We could be printing a lot while holding a spinlock.
 566		 * Avoid triggering hard lockup.
 567		 */
 568		touch_nmi_watchdog();
 569		sched_show_task(t);
 570	}
 571	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 572}
 573
 574/*
 575 * Dump detailed information for all tasks blocking the current RCU
 576 * grace period.
 577 */
 578static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 579{
 580	struct rcu_node *rnp = rcu_get_root(rsp);
 581
 582	rcu_print_detail_task_stall_rnp(rnp);
 583	rcu_for_each_leaf_node(rsp, rnp)
 584		rcu_print_detail_task_stall_rnp(rnp);
 585}
 586
 587static void rcu_print_task_stall_begin(struct rcu_node *rnp)
 588{
 589	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
 590	       rnp->level, rnp->grplo, rnp->grphi);
 591}
 592
 593static void rcu_print_task_stall_end(void)
 594{
 595	pr_cont("\n");
 596}
 597
 598/*
 599 * Scan the current list of tasks blocked within RCU read-side critical
 600 * sections, printing out the tid of each.
 601 */
 602static int rcu_print_task_stall(struct rcu_node *rnp)
 603{
 604	struct task_struct *t;
 605	int ndetected = 0;
 606
 607	if (!rcu_preempt_blocked_readers_cgp(rnp))
 608		return 0;
 609	rcu_print_task_stall_begin(rnp);
 610	t = list_entry(rnp->gp_tasks->prev,
 611		       struct task_struct, rcu_node_entry);
 612	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 613		pr_cont(" P%d", t->pid);
 614		ndetected++;
 615	}
 616	rcu_print_task_stall_end();
 617	return ndetected;
 618}
 619
 620/*
 621 * Scan the current list of tasks blocked within RCU read-side critical
 622 * sections, printing out the tid of each that is blocking the current
 623 * expedited grace period.
 624 */
 625static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 626{
 627	struct task_struct *t;
 628	int ndetected = 0;
 629
 630	if (!rnp->exp_tasks)
 631		return 0;
 632	t = list_entry(rnp->exp_tasks->prev,
 633		       struct task_struct, rcu_node_entry);
 634	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
 635		pr_cont(" P%d", t->pid);
 636		ndetected++;
 637	}
 638	return ndetected;
 639}
 640
 641/*
 642 * Check that the list of blocked tasks for the newly completed grace
 643 * period is in fact empty.  It is a serious bug to complete a grace
 644 * period that still has RCU readers blocked!  This function must be
 645 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 646 * must be held by the caller.
 647 *
 648 * Also, if there are blocked tasks on the list, they automatically
 649 * block the newly created grace period, so set up ->gp_tasks accordingly.
 650 */
 651static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 652{
 653	struct task_struct *t;
 654
 655	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
 656	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 657	if (rcu_preempt_has_tasks(rnp)) {
 658		rnp->gp_tasks = rnp->blkd_tasks.next;
 659		t = container_of(rnp->gp_tasks, struct task_struct,
 660				 rcu_node_entry);
 661		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
 662						rnp->gpnum, t->pid);
 663	}
 664	WARN_ON_ONCE(rnp->qsmask);
 665}
 666
 667/*
 668 * Check for a quiescent state from the current CPU.  When a task blocks,
 669 * the task is recorded in the corresponding CPU's rcu_node structure,
 670 * which is checked elsewhere.
 671 *
 672 * Caller must disable hard irqs.
 673 */
 674static void rcu_preempt_check_callbacks(void)
 675{
 676	struct task_struct *t = current;
 677
 678	if (t->rcu_read_lock_nesting == 0) {
 679		rcu_preempt_qs();
 680		return;
 681	}
 682	if (t->rcu_read_lock_nesting > 0 &&
 683	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
 684	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
 685		t->rcu_read_unlock_special.b.need_qs = true;
 686}
 687
 688#ifdef CONFIG_RCU_BOOST
 689
 690static void rcu_preempt_do_callbacks(void)
 691{
 692	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
 693}
 694
 695#endif /* #ifdef CONFIG_RCU_BOOST */
 696
 697/**
 698 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 699 * @head: structure to be used for queueing the RCU updates.
 700 * @func: actual callback function to be invoked after the grace period
 701 *
 702 * The callback function will be invoked some time after a full grace
 703 * period elapses, in other words after all pre-existing RCU read-side
 704 * critical sections have completed.  However, the callback function
 705 * might well execute concurrently with RCU read-side critical sections
 706 * that started after call_rcu() was invoked.  RCU read-side critical
 707 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 708 * and may be nested.
 709 *
 710 * Note that all CPUs must agree that the grace period extended beyond
 711 * all pre-existing RCU read-side critical section.  On systems with more
 712 * than one CPU, this means that when "func()" is invoked, each CPU is
 713 * guaranteed to have executed a full memory barrier since the end of its
 714 * last RCU read-side critical section whose beginning preceded the call
 715 * to call_rcu().  It also means that each CPU executing an RCU read-side
 716 * critical section that continues beyond the start of "func()" must have
 717 * executed a memory barrier after the call_rcu() but before the beginning
 718 * of that RCU read-side critical section.  Note that these guarantees
 719 * include CPUs that are offline, idle, or executing in user mode, as
 720 * well as CPUs that are executing in the kernel.
 721 *
 722 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 723 * resulting RCU callback function "func()", then both CPU A and CPU B are
 724 * guaranteed to execute a full memory barrier during the time interval
 725 * between the call to call_rcu() and the invocation of "func()" -- even
 726 * if CPU A and CPU B are the same CPU (but again only if the system has
 727 * more than one CPU).
 728 */
 729void call_rcu(struct rcu_head *head, rcu_callback_t func)
 730{
 731	__call_rcu(head, func, rcu_state_p, -1, 0);
 732}
 733EXPORT_SYMBOL_GPL(call_rcu);
 734
 735/**
 736 * synchronize_rcu - wait until a grace period has elapsed.
 737 *
 738 * Control will return to the caller some time after a full grace
 739 * period has elapsed, in other words after all currently executing RCU
 740 * read-side critical sections have completed.  Note, however, that
 741 * upon return from synchronize_rcu(), the caller might well be executing
 742 * concurrently with new RCU read-side critical sections that began while
 743 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 744 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 745 *
 746 * See the description of synchronize_sched() for more detailed
 747 * information on memory-ordering guarantees.  However, please note
 748 * that -only- the memory-ordering guarantees apply.  For example,
 749 * synchronize_rcu() is -not- guaranteed to wait on things like code
 750 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
 751 * guaranteed to wait on RCU read-side critical sections, that is, sections
 752 * of code protected by rcu_read_lock().
 753 */
 754void synchronize_rcu(void)
 755{
 756	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 757			 lock_is_held(&rcu_lock_map) ||
 758			 lock_is_held(&rcu_sched_lock_map),
 759			 "Illegal synchronize_rcu() in RCU read-side critical section");
 760	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
 761		return;
 762	if (rcu_gp_is_expedited())
 763		synchronize_rcu_expedited();
 764	else
 765		wait_rcu_gp(call_rcu);
 766}
 767EXPORT_SYMBOL_GPL(synchronize_rcu);
 768
 769/**
 770 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 771 *
 772 * Note that this primitive does not necessarily wait for an RCU grace period
 773 * to complete.  For example, if there are no RCU callbacks queued anywhere
 774 * in the system, then rcu_barrier() is within its rights to return
 775 * immediately, without waiting for anything, much less an RCU grace period.
 776 */
 777void rcu_barrier(void)
 778{
 779	_rcu_barrier(rcu_state_p);
 780}
 781EXPORT_SYMBOL_GPL(rcu_barrier);
 782
 783/*
 784 * Initialize preemptible RCU's state structures.
 785 */
 786static void __init __rcu_init_preempt(void)
 787{
 788	rcu_init_one(rcu_state_p);
 789}
 790
 791/*
 792 * Check for a task exiting while in a preemptible-RCU read-side
 793 * critical section, clean up if so.  No need to issue warnings,
 794 * as debug_check_no_locks_held() already does this if lockdep
 795 * is enabled.
 796 */
 797void exit_rcu(void)
 798{
 799	struct task_struct *t = current;
 800
 801	if (likely(list_empty(&current->rcu_node_entry)))
 802		return;
 803	t->rcu_read_lock_nesting = 1;
 804	barrier();
 805	t->rcu_read_unlock_special.b.blocked = true;
 806	__rcu_read_unlock();
 807}
 808
 809#else /* #ifdef CONFIG_PREEMPT_RCU */
 810
 811static struct rcu_state *const rcu_state_p = &rcu_sched_state;
 812
 813/*
 814 * Tell them what RCU they are running.
 815 */
 816static void __init rcu_bootup_announce(void)
 817{
 818	pr_info("Hierarchical RCU implementation.\n");
 819	rcu_bootup_announce_oddness();
 820}
 821
 822/*
 823 * Because preemptible RCU does not exist, we never have to check for
 824 * CPUs being in quiescent states.
 825 */
 826static void rcu_preempt_note_context_switch(bool preempt)
 827{
 828}
 829
 830/*
 831 * Because preemptible RCU does not exist, there are never any preempted
 832 * RCU readers.
 833 */
 834static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
 835{
 836	return 0;
 837}
 838
 839/*
 840 * Because there is no preemptible RCU, there can be no readers blocked.
 841 */
 842static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
 843{
 844	return false;
 845}
 846
 847/*
 848 * Because preemptible RCU does not exist, we never have to check for
 849 * tasks blocked within RCU read-side critical sections.
 850 */
 851static void rcu_print_detail_task_stall(struct rcu_state *rsp)
 852{
 853}
 854
 855/*
 856 * Because preemptible RCU does not exist, we never have to check for
 857 * tasks blocked within RCU read-side critical sections.
 858 */
 859static int rcu_print_task_stall(struct rcu_node *rnp)
 860{
 861	return 0;
 862}
 863
 864/*
 865 * Because preemptible RCU does not exist, we never have to check for
 866 * tasks blocked within RCU read-side critical sections that are
 867 * blocking the current expedited grace period.
 868 */
 869static int rcu_print_task_exp_stall(struct rcu_node *rnp)
 870{
 871	return 0;
 872}
 873
 874/*
 875 * Because there is no preemptible RCU, there can be no readers blocked,
 876 * so there is no need to check for blocked tasks.  So check only for
 877 * bogus qsmask values.
 878 */
 879static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
 880{
 881	WARN_ON_ONCE(rnp->qsmask);
 882}
 883
 884/*
 885 * Because preemptible RCU does not exist, it never has any callbacks
 886 * to check.
 887 */
 888static void rcu_preempt_check_callbacks(void)
 889{
 890}
 891
 892/*
 893 * Because preemptible RCU does not exist, rcu_barrier() is just
 894 * another name for rcu_barrier_sched().
 895 */
 896void rcu_barrier(void)
 897{
 898	rcu_barrier_sched();
 899}
 900EXPORT_SYMBOL_GPL(rcu_barrier);
 901
 902/*
 903 * Because preemptible RCU does not exist, it need not be initialized.
 904 */
 905static void __init __rcu_init_preempt(void)
 906{
 907}
 908
 909/*
 910 * Because preemptible RCU does not exist, tasks cannot possibly exit
 911 * while in preemptible RCU read-side critical sections.
 912 */
 913void exit_rcu(void)
 914{
 915}
 916
 917#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
 918
 919#ifdef CONFIG_RCU_BOOST
 920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921static void rcu_wake_cond(struct task_struct *t, int status)
 922{
 923	/*
 924	 * If the thread is yielding, only wake it when this
 925	 * is invoked from idle
 926	 */
 927	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
 928		wake_up_process(t);
 929}
 930
 931/*
 932 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 933 * or ->boost_tasks, advancing the pointer to the next task in the
 934 * ->blkd_tasks list.
 935 *
 936 * Note that irqs must be enabled: boosting the task can block.
 937 * Returns 1 if there are more tasks needing to be boosted.
 938 */
 939static int rcu_boost(struct rcu_node *rnp)
 940{
 941	unsigned long flags;
 942	struct task_struct *t;
 943	struct list_head *tb;
 944
 945	if (READ_ONCE(rnp->exp_tasks) == NULL &&
 946	    READ_ONCE(rnp->boost_tasks) == NULL)
 947		return 0;  /* Nothing left to boost. */
 948
 949	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 950
 951	/*
 952	 * Recheck under the lock: all tasks in need of boosting
 953	 * might exit their RCU read-side critical sections on their own.
 954	 */
 955	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
 956		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 957		return 0;
 958	}
 959
 960	/*
 961	 * Preferentially boost tasks blocking expedited grace periods.
 962	 * This cannot starve the normal grace periods because a second
 963	 * expedited grace period must boost all blocked tasks, including
 964	 * those blocking the pre-existing normal grace period.
 965	 */
 966	if (rnp->exp_tasks != NULL)
 967		tb = rnp->exp_tasks;
 968	else
 
 969		tb = rnp->boost_tasks;
 
 
 
 970
 971	/*
 972	 * We boost task t by manufacturing an rt_mutex that appears to
 973	 * be held by task t.  We leave a pointer to that rt_mutex where
 974	 * task t can find it, and task t will release the mutex when it
 975	 * exits its outermost RCU read-side critical section.  Then
 976	 * simply acquiring this artificial rt_mutex will boost task
 977	 * t's priority.  (Thanks to tglx for suggesting this approach!)
 978	 *
 979	 * Note that task t must acquire rnp->lock to remove itself from
 980	 * the ->blkd_tasks list, which it will do from exit() if from
 981	 * nowhere else.  We therefore are guaranteed that task t will
 982	 * stay around at least until we drop rnp->lock.  Note that
 983	 * rnp->lock also resolves races between our priority boosting
 984	 * and task t's exiting its outermost RCU read-side critical
 985	 * section.
 986	 */
 987	t = container_of(tb, struct task_struct, rcu_node_entry);
 988	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
 989	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 990	/* Lock only for side effect: boosts task t's priority. */
 991	rt_mutex_lock(&rnp->boost_mtx);
 992	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
 993
 994	return READ_ONCE(rnp->exp_tasks) != NULL ||
 995	       READ_ONCE(rnp->boost_tasks) != NULL;
 996}
 997
 998/*
 999 * Priority-boosting kthread, one per leaf rcu_node.
1000 */
1001static int rcu_boost_kthread(void *arg)
1002{
1003	struct rcu_node *rnp = (struct rcu_node *)arg;
1004	int spincnt = 0;
1005	int more2boost;
1006
1007	trace_rcu_utilization(TPS("Start boost kthread@init"));
1008	for (;;) {
1009		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1010		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1011		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1012		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1013		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1014		more2boost = rcu_boost(rnp);
1015		if (more2boost)
1016			spincnt++;
1017		else
1018			spincnt = 0;
1019		if (spincnt > 10) {
1020			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1021			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1022			schedule_timeout_interruptible(2);
1023			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1024			spincnt = 0;
1025		}
1026	}
1027	/* NOTREACHED */
1028	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1029	return 0;
1030}
1031
1032/*
1033 * Check to see if it is time to start boosting RCU readers that are
1034 * blocking the current grace period, and, if so, tell the per-rcu_node
1035 * kthread to start boosting them.  If there is an expedited grace
1036 * period in progress, it is always time to boost.
1037 *
1038 * The caller must hold rnp->lock, which this function releases.
1039 * The ->boost_kthread_task is immortal, so we don't need to worry
1040 * about it going away.
1041 */
1042static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1043	__releases(rnp->lock)
1044{
1045	struct task_struct *t;
1046
1047	raw_lockdep_assert_held_rcu_node(rnp);
1048	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
 
1049		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1050		return;
1051	}
1052	if (rnp->exp_tasks != NULL ||
1053	    (rnp->gp_tasks != NULL &&
1054	     rnp->boost_tasks == NULL &&
1055	     rnp->qsmask == 0 &&
1056	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1057		if (rnp->exp_tasks == NULL)
1058			rnp->boost_tasks = rnp->gp_tasks;
1059		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1060		t = rnp->boost_kthread_task;
1061		if (t)
1062			rcu_wake_cond(t, rnp->boost_kthread_status);
1063	} else {
 
1064		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065	}
1066}
1067
1068/*
1069 * Wake up the per-CPU kthread to invoke RCU callbacks.
1070 */
1071static void invoke_rcu_callbacks_kthread(void)
1072{
1073	unsigned long flags;
1074
1075	local_irq_save(flags);
1076	__this_cpu_write(rcu_cpu_has_work, 1);
1077	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1078	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1079		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1080			      __this_cpu_read(rcu_cpu_kthread_status));
1081	}
1082	local_irq_restore(flags);
1083}
1084
1085/*
1086 * Is the current CPU running the RCU-callbacks kthread?
1087 * Caller must have preemption disabled.
1088 */
1089static bool rcu_is_callbacks_kthread(void)
1090{
1091	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1092}
1093
1094#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1095
1096/*
1097 * Do priority-boost accounting for the start of a new grace period.
1098 */
1099static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1100{
1101	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1102}
1103
1104/*
1105 * Create an RCU-boost kthread for the specified node if one does not
1106 * already exist.  We only create this kthread for preemptible RCU.
1107 * Returns zero if all is well, a negated errno otherwise.
1108 */
1109static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1110				       struct rcu_node *rnp)
1111{
1112	int rnp_index = rnp - &rsp->node[0];
1113	unsigned long flags;
1114	struct sched_param sp;
1115	struct task_struct *t;
1116
1117	if (rcu_state_p != rsp)
1118		return 0;
1119
1120	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121		return 0;
1122
1123	rsp->boost = 1;
1124	if (rnp->boost_kthread_task != NULL)
1125		return 0;
1126	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1127			   "rcub/%d", rnp_index);
1128	if (IS_ERR(t))
1129		return PTR_ERR(t);
1130	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1131	rnp->boost_kthread_task = t;
1132	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1133	sp.sched_priority = kthread_prio;
1134	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1135	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1136	return 0;
1137}
1138
1139static void rcu_kthread_do_work(void)
1140{
1141	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1142	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1143	rcu_preempt_do_callbacks();
1144}
1145
1146static void rcu_cpu_kthread_setup(unsigned int cpu)
1147{
1148	struct sched_param sp;
1149
1150	sp.sched_priority = kthread_prio;
1151	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1152}
1153
1154static void rcu_cpu_kthread_park(unsigned int cpu)
1155{
1156	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1157}
1158
1159static int rcu_cpu_kthread_should_run(unsigned int cpu)
1160{
1161	return __this_cpu_read(rcu_cpu_has_work);
1162}
1163
1164/*
1165 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1166 * RCU softirq used in flavors and configurations of RCU that do not
1167 * support RCU priority boosting.
1168 */
1169static void rcu_cpu_kthread(unsigned int cpu)
1170{
1171	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1172	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1173	int spincnt;
1174
1175	for (spincnt = 0; spincnt < 10; spincnt++) {
1176		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1177		local_bh_disable();
1178		*statusp = RCU_KTHREAD_RUNNING;
1179		this_cpu_inc(rcu_cpu_kthread_loops);
1180		local_irq_disable();
1181		work = *workp;
1182		*workp = 0;
1183		local_irq_enable();
1184		if (work)
1185			rcu_kthread_do_work();
1186		local_bh_enable();
1187		if (*workp == 0) {
1188			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1189			*statusp = RCU_KTHREAD_WAITING;
1190			return;
1191		}
1192	}
1193	*statusp = RCU_KTHREAD_YIELDING;
1194	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1195	schedule_timeout_interruptible(2);
1196	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1197	*statusp = RCU_KTHREAD_WAITING;
1198}
1199
1200/*
1201 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1202 * served by the rcu_node in question.  The CPU hotplug lock is still
1203 * held, so the value of rnp->qsmaskinit will be stable.
1204 *
1205 * We don't include outgoingcpu in the affinity set, use -1 if there is
1206 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1207 * this function allows the kthread to execute on any CPU.
1208 */
1209static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210{
1211	struct task_struct *t = rnp->boost_kthread_task;
1212	unsigned long mask = rcu_rnp_online_cpus(rnp);
1213	cpumask_var_t cm;
1214	int cpu;
1215
1216	if (!t)
1217		return;
1218	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1219		return;
1220	for_each_leaf_node_possible_cpu(rnp, cpu)
1221		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1222		    cpu != outgoingcpu)
1223			cpumask_set_cpu(cpu, cm);
1224	if (cpumask_weight(cm) == 0)
1225		cpumask_setall(cm);
1226	set_cpus_allowed_ptr(t, cm);
1227	free_cpumask_var(cm);
1228}
1229
1230static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1231	.store			= &rcu_cpu_kthread_task,
1232	.thread_should_run	= rcu_cpu_kthread_should_run,
1233	.thread_fn		= rcu_cpu_kthread,
1234	.thread_comm		= "rcuc/%u",
1235	.setup			= rcu_cpu_kthread_setup,
1236	.park			= rcu_cpu_kthread_park,
1237};
1238
1239/*
1240 * Spawn boost kthreads -- called as soon as the scheduler is running.
1241 */
1242static void __init rcu_spawn_boost_kthreads(void)
1243{
1244	struct rcu_node *rnp;
1245	int cpu;
1246
1247	for_each_possible_cpu(cpu)
1248		per_cpu(rcu_cpu_has_work, cpu) = 0;
1249	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1250	rcu_for_each_leaf_node(rcu_state_p, rnp)
1251		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1252}
1253
1254static void rcu_prepare_kthreads(int cpu)
1255{
1256	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1257	struct rcu_node *rnp = rdp->mynode;
1258
1259	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1260	if (rcu_scheduler_fully_active)
1261		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1262}
1263
1264#else /* #ifdef CONFIG_RCU_BOOST */
1265
1266static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1267	__releases(rnp->lock)
1268{
1269	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1270}
1271
1272static void invoke_rcu_callbacks_kthread(void)
1273{
1274	WARN_ON_ONCE(1);
1275}
1276
1277static bool rcu_is_callbacks_kthread(void)
1278{
1279	return false;
1280}
1281
1282static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1283{
1284}
1285
1286static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1287{
1288}
1289
1290static void __init rcu_spawn_boost_kthreads(void)
1291{
1292}
1293
1294static void rcu_prepare_kthreads(int cpu)
1295{
1296}
1297
1298#endif /* #else #ifdef CONFIG_RCU_BOOST */
1299
1300#if !defined(CONFIG_RCU_FAST_NO_HZ)
1301
1302/*
1303 * Check to see if any future RCU-related work will need to be done
1304 * by the current CPU, even if none need be done immediately, returning
1305 * 1 if so.  This function is part of the RCU implementation; it is -not-
1306 * an exported member of the RCU API.
1307 *
1308 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1309 * any flavor of RCU.
1310 */
1311int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1312{
1313	*nextevt = KTIME_MAX;
1314	return rcu_cpu_has_callbacks(NULL);
 
1315}
1316
1317/*
1318 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1319 * after it.
1320 */
1321static void rcu_cleanup_after_idle(void)
1322{
1323}
1324
1325/*
1326 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1327 * is nothing.
1328 */
1329static void rcu_prepare_for_idle(void)
1330{
1331}
1332
1333/*
1334 * Don't bother keeping a running count of the number of RCU callbacks
1335 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1336 */
1337static void rcu_idle_count_callbacks_posted(void)
1338{
1339}
1340
1341#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1342
1343/*
1344 * This code is invoked when a CPU goes idle, at which point we want
1345 * to have the CPU do everything required for RCU so that it can enter
1346 * the energy-efficient dyntick-idle mode.  This is handled by a
1347 * state machine implemented by rcu_prepare_for_idle() below.
1348 *
1349 * The following three proprocessor symbols control this state machine:
1350 *
1351 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1352 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1353 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1354 *	benchmarkers who might otherwise be tempted to set this to a large
1355 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1356 *	system.  And if you are -that- concerned about energy efficiency,
1357 *	just power the system down and be done with it!
1358 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1359 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1360 *	callbacks pending.  Setting this too high can OOM your system.
1361 *
1362 * The values below work well in practice.  If future workloads require
1363 * adjustment, they can be converted into kernel config parameters, though
1364 * making the state machine smarter might be a better option.
1365 */
1366#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1367#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1368
1369static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1370module_param(rcu_idle_gp_delay, int, 0644);
1371static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1372module_param(rcu_idle_lazy_gp_delay, int, 0644);
1373
1374/*
1375 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1376 * only if it has been awhile since the last time we did so.  Afterwards,
1377 * if there are any callbacks ready for immediate invocation, return true.
1378 */
1379static bool __maybe_unused rcu_try_advance_all_cbs(void)
1380{
1381	bool cbs_ready = false;
1382	struct rcu_data *rdp;
1383	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1384	struct rcu_node *rnp;
1385	struct rcu_state *rsp;
1386
1387	/* Exit early if we advanced recently. */
1388	if (jiffies == rdtp->last_advance_all)
1389		return false;
1390	rdtp->last_advance_all = jiffies;
1391
1392	for_each_rcu_flavor(rsp) {
1393		rdp = this_cpu_ptr(rsp->rda);
1394		rnp = rdp->mynode;
1395
1396		/*
1397		 * Don't bother checking unless a grace period has
1398		 * completed since we last checked and there are
1399		 * callbacks not yet ready to invoke.
1400		 */
1401		if ((rdp->completed != rnp->completed ||
1402		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1403		    rcu_segcblist_pend_cbs(&rdp->cblist))
1404			note_gp_changes(rsp, rdp);
1405
1406		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1407			cbs_ready = true;
1408	}
1409	return cbs_ready;
1410}
1411
1412/*
1413 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1414 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1415 * caller to set the timeout based on whether or not there are non-lazy
1416 * callbacks.
1417 *
1418 * The caller must have disabled interrupts.
1419 */
1420int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1421{
1422	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1423	unsigned long dj;
1424
1425	lockdep_assert_irqs_disabled();
 
 
 
1426
1427	/* Snapshot to detect later posting of non-lazy callback. */
1428	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1429
1430	/* If no callbacks, RCU doesn't need the CPU. */
1431	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1432		*nextevt = KTIME_MAX;
1433		return 0;
1434	}
1435
1436	/* Attempt to advance callbacks. */
1437	if (rcu_try_advance_all_cbs()) {
1438		/* Some ready to invoke, so initiate later invocation. */
1439		invoke_rcu_core();
1440		return 1;
1441	}
1442	rdtp->last_accelerate = jiffies;
1443
1444	/* Request timer delay depending on laziness, and round. */
1445	if (!rdtp->all_lazy) {
1446		dj = round_up(rcu_idle_gp_delay + jiffies,
1447			       rcu_idle_gp_delay) - jiffies;
1448	} else {
1449		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1450	}
1451	*nextevt = basemono + dj * TICK_NSEC;
1452	return 0;
1453}
1454
1455/*
1456 * Prepare a CPU for idle from an RCU perspective.  The first major task
1457 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1458 * The second major task is to check to see if a non-lazy callback has
1459 * arrived at a CPU that previously had only lazy callbacks.  The third
1460 * major task is to accelerate (that is, assign grace-period numbers to)
1461 * any recently arrived callbacks.
1462 *
1463 * The caller must have disabled interrupts.
1464 */
1465static void rcu_prepare_for_idle(void)
1466{
1467	bool needwake;
1468	struct rcu_data *rdp;
1469	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1470	struct rcu_node *rnp;
1471	struct rcu_state *rsp;
1472	int tne;
1473
1474	lockdep_assert_irqs_disabled();
1475	if (rcu_is_nocb_cpu(smp_processor_id()))
1476		return;
1477
1478	/* Handle nohz enablement switches conservatively. */
1479	tne = READ_ONCE(tick_nohz_active);
1480	if (tne != rdtp->tick_nohz_enabled_snap) {
1481		if (rcu_cpu_has_callbacks(NULL))
1482			invoke_rcu_core(); /* force nohz to see update. */
1483		rdtp->tick_nohz_enabled_snap = tne;
1484		return;
1485	}
1486	if (!tne)
1487		return;
1488
1489	/*
1490	 * If a non-lazy callback arrived at a CPU having only lazy
1491	 * callbacks, invoke RCU core for the side-effect of recalculating
1492	 * idle duration on re-entry to idle.
1493	 */
1494	if (rdtp->all_lazy &&
1495	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1496		rdtp->all_lazy = false;
1497		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1498		invoke_rcu_core();
1499		return;
1500	}
1501
1502	/*
1503	 * If we have not yet accelerated this jiffy, accelerate all
1504	 * callbacks on this CPU.
1505	 */
1506	if (rdtp->last_accelerate == jiffies)
1507		return;
1508	rdtp->last_accelerate = jiffies;
1509	for_each_rcu_flavor(rsp) {
1510		rdp = this_cpu_ptr(rsp->rda);
1511		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1512			continue;
1513		rnp = rdp->mynode;
1514		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1515		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1516		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1517		if (needwake)
1518			rcu_gp_kthread_wake(rsp);
1519	}
1520}
1521
1522/*
1523 * Clean up for exit from idle.  Attempt to advance callbacks based on
1524 * any grace periods that elapsed while the CPU was idle, and if any
1525 * callbacks are now ready to invoke, initiate invocation.
1526 */
1527static void rcu_cleanup_after_idle(void)
1528{
1529	lockdep_assert_irqs_disabled();
1530	if (rcu_is_nocb_cpu(smp_processor_id()))
1531		return;
1532	if (rcu_try_advance_all_cbs())
1533		invoke_rcu_core();
1534}
1535
1536/*
1537 * Keep a running count of the number of non-lazy callbacks posted
1538 * on this CPU.  This running counter (which is never decremented) allows
1539 * rcu_prepare_for_idle() to detect when something out of the idle loop
1540 * posts a callback, even if an equal number of callbacks are invoked.
1541 * Of course, callbacks should only be posted from within a trace event
1542 * designed to be called from idle or from within RCU_NONIDLE().
1543 */
1544static void rcu_idle_count_callbacks_posted(void)
1545{
1546	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1547}
1548
1549/*
1550 * Data for flushing lazy RCU callbacks at OOM time.
1551 */
1552static atomic_t oom_callback_count;
1553static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1554
1555/*
1556 * RCU OOM callback -- decrement the outstanding count and deliver the
1557 * wake-up if we are the last one.
1558 */
1559static void rcu_oom_callback(struct rcu_head *rhp)
1560{
1561	if (atomic_dec_and_test(&oom_callback_count))
1562		wake_up(&oom_callback_wq);
1563}
1564
1565/*
1566 * Post an rcu_oom_notify callback on the current CPU if it has at
1567 * least one lazy callback.  This will unnecessarily post callbacks
1568 * to CPUs that already have a non-lazy callback at the end of their
1569 * callback list, but this is an infrequent operation, so accept some
1570 * extra overhead to keep things simple.
1571 */
1572static void rcu_oom_notify_cpu(void *unused)
1573{
1574	struct rcu_state *rsp;
1575	struct rcu_data *rdp;
1576
1577	for_each_rcu_flavor(rsp) {
1578		rdp = raw_cpu_ptr(rsp->rda);
1579		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1580			atomic_inc(&oom_callback_count);
1581			rsp->call(&rdp->oom_head, rcu_oom_callback);
1582		}
1583	}
1584}
1585
1586/*
1587 * If low on memory, ensure that each CPU has a non-lazy callback.
1588 * This will wake up CPUs that have only lazy callbacks, in turn
1589 * ensuring that they free up the corresponding memory in a timely manner.
1590 * Because an uncertain amount of memory will be freed in some uncertain
1591 * timeframe, we do not claim to have freed anything.
1592 */
1593static int rcu_oom_notify(struct notifier_block *self,
1594			  unsigned long notused, void *nfreed)
1595{
1596	int cpu;
1597
1598	/* Wait for callbacks from earlier instance to complete. */
1599	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1600	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1601
1602	/*
1603	 * Prevent premature wakeup: ensure that all increments happen
1604	 * before there is a chance of the counter reaching zero.
1605	 */
1606	atomic_set(&oom_callback_count, 1);
1607
1608	for_each_online_cpu(cpu) {
1609		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1610		cond_resched_rcu_qs();
1611	}
1612
1613	/* Unconditionally decrement: no need to wake ourselves up. */
1614	atomic_dec(&oom_callback_count);
1615
1616	return NOTIFY_OK;
1617}
1618
1619static struct notifier_block rcu_oom_nb = {
1620	.notifier_call = rcu_oom_notify
1621};
1622
1623static int __init rcu_register_oom_notifier(void)
1624{
1625	register_oom_notifier(&rcu_oom_nb);
1626	return 0;
1627}
1628early_initcall(rcu_register_oom_notifier);
1629
1630#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1631
1632#ifdef CONFIG_RCU_FAST_NO_HZ
1633
1634static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1635{
1636	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1637	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1638
1639	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1640		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1641		ulong2long(nlpd),
1642		rdtp->all_lazy ? 'L' : '.',
1643		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1644}
1645
1646#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1647
1648static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1649{
1650	*cp = '\0';
1651}
1652
1653#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1654
1655/* Initiate the stall-info list. */
1656static void print_cpu_stall_info_begin(void)
1657{
1658	pr_cont("\n");
1659}
1660
1661/*
1662 * Print out diagnostic information for the specified stalled CPU.
1663 *
1664 * If the specified CPU is aware of the current RCU grace period
1665 * (flavor specified by rsp), then print the number of scheduling
1666 * clock interrupts the CPU has taken during the time that it has
1667 * been aware.  Otherwise, print the number of RCU grace periods
1668 * that this CPU is ignorant of, for example, "1" if the CPU was
1669 * aware of the previous grace period.
1670 *
1671 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1672 */
1673static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1674{
1675	unsigned long delta;
1676	char fast_no_hz[72];
1677	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1678	struct rcu_dynticks *rdtp = rdp->dynticks;
1679	char *ticks_title;
1680	unsigned long ticks_value;
1681
1682	/*
1683	 * We could be printing a lot while holding a spinlock.  Avoid
1684	 * triggering hard lockup.
1685	 */
1686	touch_nmi_watchdog();
1687
1688	if (rsp->gpnum == rdp->gpnum) {
1689		ticks_title = "ticks this GP";
1690		ticks_value = rdp->ticks_this_gp;
1691	} else {
1692		ticks_title = "GPs behind";
1693		ticks_value = rsp->gpnum - rdp->gpnum;
1694	}
1695	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1696	delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1697	pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%ld softirq=%u/%u fqs=%ld %s\n",
1698	       cpu,
1699	       "O."[!!cpu_online(cpu)],
1700	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1701	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1702	       !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1703			rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1704				"!."[!delta],
1705	       ticks_value, ticks_title,
1706	       rcu_dynticks_snap(rdtp) & 0xfff,
1707	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1708	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1709	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1710	       fast_no_hz);
1711}
1712
1713/* Terminate the stall-info list. */
1714static void print_cpu_stall_info_end(void)
1715{
1716	pr_err("\t");
1717}
1718
1719/* Zero ->ticks_this_gp for all flavors of RCU. */
1720static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1721{
1722	rdp->ticks_this_gp = 0;
1723	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1724}
1725
1726/* Increment ->ticks_this_gp for all flavors of RCU. */
1727static void increment_cpu_stall_ticks(void)
1728{
1729	struct rcu_state *rsp;
1730
1731	for_each_rcu_flavor(rsp)
1732		raw_cpu_inc(rsp->rda->ticks_this_gp);
1733}
1734
1735#ifdef CONFIG_RCU_NOCB_CPU
1736
1737/*
1738 * Offload callback processing from the boot-time-specified set of CPUs
1739 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1740 * kthread created that pulls the callbacks from the corresponding CPU,
1741 * waits for a grace period to elapse, and invokes the callbacks.
1742 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744 * has been specified, in which case each kthread actively polls its
1745 * CPU.  (Which isn't so great for energy efficiency, but which does
1746 * reduce RCU's overhead on that CPU.)
1747 *
1748 * This is intended to be used in conjunction with Frederic Weisbecker's
1749 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750 * running CPU-bound user-mode computations.
1751 *
1752 * Offloading of callback processing could also in theory be used as
1753 * an energy-efficiency measure because CPUs with no RCU callbacks
1754 * queued are more aggressive about entering dyntick-idle mode.
1755 */
1756
1757
1758/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1759static int __init rcu_nocb_setup(char *str)
1760{
1761	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
 
1762	cpulist_parse(str, rcu_nocb_mask);
1763	return 1;
1764}
1765__setup("rcu_nocbs=", rcu_nocb_setup);
1766
1767static int __init parse_rcu_nocb_poll(char *arg)
1768{
1769	rcu_nocb_poll = true;
1770	return 0;
1771}
1772early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1773
1774/*
1775 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1776 * grace period.
1777 */
1778static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1779{
1780	swake_up_all(sq);
1781}
1782
1783/*
1784 * Set the root rcu_node structure's ->need_future_gp field
1785 * based on the sum of those of all rcu_node structures.  This does
1786 * double-count the root rcu_node structure's requests, but this
1787 * is necessary to handle the possibility of a rcu_nocb_kthread()
1788 * having awakened during the time that the rcu_node structures
1789 * were being updated for the end of the previous grace period.
1790 */
1791static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1792{
1793	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1794}
1795
1796static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1797{
1798	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1799}
1800
1801static void rcu_init_one_nocb(struct rcu_node *rnp)
1802{
1803	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1804	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1805}
1806
 
1807/* Is the specified CPU a no-CBs CPU? */
1808bool rcu_is_nocb_cpu(int cpu)
1809{
1810	if (cpumask_available(rcu_nocb_mask))
1811		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1812	return false;
1813}
 
1814
1815/*
1816 * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1817 * and this function releases it.
1818 */
1819static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1820			       unsigned long flags)
1821	__releases(rdp->nocb_lock)
1822{
1823	struct rcu_data *rdp_leader = rdp->nocb_leader;
1824
1825	lockdep_assert_held(&rdp->nocb_lock);
1826	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1827		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1828		return;
1829	}
1830	if (rdp_leader->nocb_leader_sleep || force) {
1831		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1832		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1833		del_timer(&rdp->nocb_timer);
1834		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1835		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1836		swake_up(&rdp_leader->nocb_wq);
1837	} else {
1838		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1839	}
1840}
1841
1842/*
1843 * Kick the leader kthread for this NOCB group, but caller has not
1844 * acquired locks.
1845 */
1846static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1847{
1848	unsigned long flags;
1849
1850	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1851	__wake_nocb_leader(rdp, force, flags);
1852}
1853
1854/*
1855 * Arrange to wake the leader kthread for this NOCB group at some
1856 * future time when it is safe to do so.
1857 */
1858static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1859				   const char *reason)
1860{
1861	unsigned long flags;
1862
1863	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1864	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1865		mod_timer(&rdp->nocb_timer, jiffies + 1);
1866	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1867	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1868	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1869}
1870
1871/*
1872 * Does the specified CPU need an RCU callback for the specified flavor
1873 * of rcu_barrier()?
1874 */
1875static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1876{
1877	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1878	unsigned long ret;
1879#ifdef CONFIG_PROVE_RCU
1880	struct rcu_head *rhp;
1881#endif /* #ifdef CONFIG_PROVE_RCU */
1882
1883	/*
1884	 * Check count of all no-CBs callbacks awaiting invocation.
1885	 * There needs to be a barrier before this function is called,
1886	 * but associated with a prior determination that no more
1887	 * callbacks would be posted.  In the worst case, the first
1888	 * barrier in _rcu_barrier() suffices (but the caller cannot
1889	 * necessarily rely on this, not a substitute for the caller
1890	 * getting the concurrency design right!).  There must also be
1891	 * a barrier between the following load an posting of a callback
1892	 * (if a callback is in fact needed).  This is associated with an
1893	 * atomic_inc() in the caller.
1894	 */
1895	ret = atomic_long_read(&rdp->nocb_q_count);
1896
1897#ifdef CONFIG_PROVE_RCU
1898	rhp = READ_ONCE(rdp->nocb_head);
1899	if (!rhp)
1900		rhp = READ_ONCE(rdp->nocb_gp_head);
1901	if (!rhp)
1902		rhp = READ_ONCE(rdp->nocb_follower_head);
1903
1904	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1905	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1906	    rcu_scheduler_fully_active) {
1907		/* RCU callback enqueued before CPU first came online??? */
1908		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1909		       cpu, rhp->func);
1910		WARN_ON_ONCE(1);
1911	}
1912#endif /* #ifdef CONFIG_PROVE_RCU */
1913
1914	return !!ret;
1915}
1916
1917/*
1918 * Enqueue the specified string of rcu_head structures onto the specified
1919 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1920 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1921 * counts are supplied by rhcount and rhcount_lazy.
1922 *
1923 * If warranted, also wake up the kthread servicing this CPUs queues.
1924 */
1925static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1926				    struct rcu_head *rhp,
1927				    struct rcu_head **rhtp,
1928				    int rhcount, int rhcount_lazy,
1929				    unsigned long flags)
1930{
1931	int len;
1932	struct rcu_head **old_rhpp;
1933	struct task_struct *t;
1934
1935	/* Enqueue the callback on the nocb list and update counts. */
1936	atomic_long_add(rhcount, &rdp->nocb_q_count);
1937	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1938	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1939	WRITE_ONCE(*old_rhpp, rhp);
1940	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1941	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1942
1943	/* If we are not being polled and there is a kthread, awaken it ... */
1944	t = READ_ONCE(rdp->nocb_kthread);
1945	if (rcu_nocb_poll || !t) {
1946		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1947				    TPS("WakeNotPoll"));
1948		return;
1949	}
1950	len = atomic_long_read(&rdp->nocb_q_count);
1951	if (old_rhpp == &rdp->nocb_head) {
1952		if (!irqs_disabled_flags(flags)) {
1953			/* ... if queue was empty ... */
1954			wake_nocb_leader(rdp, false);
1955			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1956					    TPS("WakeEmpty"));
1957		} else {
1958			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1959					       TPS("WakeEmptyIsDeferred"));
 
1960		}
1961		rdp->qlen_last_fqs_check = 0;
1962	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1963		/* ... or if many callbacks queued. */
1964		if (!irqs_disabled_flags(flags)) {
1965			wake_nocb_leader(rdp, true);
1966			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1967					    TPS("WakeOvf"));
1968		} else {
1969			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1970					       TPS("WakeOvfIsDeferred"));
 
1971		}
1972		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1973	} else {
1974		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1975	}
1976	return;
1977}
1978
1979/*
1980 * This is a helper for __call_rcu(), which invokes this when the normal
1981 * callback queue is inoperable.  If this is not a no-CBs CPU, this
1982 * function returns failure back to __call_rcu(), which can complain
1983 * appropriately.
1984 *
1985 * Otherwise, this function queues the callback where the corresponding
1986 * "rcuo" kthread can find it.
1987 */
1988static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1989			    bool lazy, unsigned long flags)
1990{
1991
1992	if (!rcu_is_nocb_cpu(rdp->cpu))
1993		return false;
1994	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1995	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1996		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1997					 (unsigned long)rhp->func,
1998					 -atomic_long_read(&rdp->nocb_q_count_lazy),
1999					 -atomic_long_read(&rdp->nocb_q_count));
2000	else
2001		trace_rcu_callback(rdp->rsp->name, rhp,
2002				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2003				   -atomic_long_read(&rdp->nocb_q_count));
2004
2005	/*
2006	 * If called from an extended quiescent state with interrupts
2007	 * disabled, invoke the RCU core in order to allow the idle-entry
2008	 * deferred-wakeup check to function.
2009	 */
2010	if (irqs_disabled_flags(flags) &&
2011	    !rcu_is_watching() &&
2012	    cpu_online(smp_processor_id()))
2013		invoke_rcu_core();
2014
2015	return true;
2016}
2017
2018/*
2019 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2020 * not a no-CBs CPU.
2021 */
2022static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2023						     struct rcu_data *rdp,
2024						     unsigned long flags)
2025{
2026	lockdep_assert_irqs_disabled();
 
 
 
2027	if (!rcu_is_nocb_cpu(smp_processor_id()))
2028		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2029	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2030				rcu_segcblist_tail(&rdp->cblist),
2031				rcu_segcblist_n_cbs(&rdp->cblist),
2032				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2033	rcu_segcblist_init(&rdp->cblist);
2034	rcu_segcblist_disable(&rdp->cblist);
 
 
 
 
 
 
 
 
 
 
 
 
2035	return true;
2036}
2037
2038/*
2039 * If necessary, kick off a new grace period, and either way wait
2040 * for a subsequent grace period to complete.
2041 */
2042static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2043{
2044	unsigned long c;
2045	bool d;
2046	unsigned long flags;
2047	bool needwake;
2048	struct rcu_node *rnp = rdp->mynode;
2049
2050	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2051	needwake = rcu_start_future_gp(rnp, rdp, &c);
2052	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2053	if (needwake)
2054		rcu_gp_kthread_wake(rdp->rsp);
2055
2056	/*
2057	 * Wait for the grace period.  Do so interruptibly to avoid messing
2058	 * up the load average.
2059	 */
2060	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2061	for (;;) {
2062		swait_event_interruptible(
2063			rnp->nocb_gp_wq[c & 0x1],
2064			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2065		if (likely(d))
2066			break;
2067		WARN_ON(signal_pending(current));
2068		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2069	}
2070	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2071	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2072}
2073
2074/*
2075 * Leaders come here to wait for additional callbacks to show up.
2076 * This function does not return until callbacks appear.
2077 */
2078static void nocb_leader_wait(struct rcu_data *my_rdp)
2079{
2080	bool firsttime = true;
2081	unsigned long flags;
2082	bool gotcbs;
2083	struct rcu_data *rdp;
2084	struct rcu_head **tail;
2085
2086wait_again:
2087
2088	/* Wait for callbacks to appear. */
2089	if (!rcu_nocb_poll) {
2090		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2091		swait_event_interruptible(my_rdp->nocb_wq,
2092				!READ_ONCE(my_rdp->nocb_leader_sleep));
2093		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2094		my_rdp->nocb_leader_sleep = true;
2095		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2096		del_timer(&my_rdp->nocb_timer);
2097		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2098	} else if (firsttime) {
2099		firsttime = false; /* Don't drown trace log with "Poll"! */
2100		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2101	}
2102
2103	/*
2104	 * Each pass through the following loop checks a follower for CBs.
2105	 * We are our own first follower.  Any CBs found are moved to
2106	 * nocb_gp_head, where they await a grace period.
2107	 */
2108	gotcbs = false;
2109	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2110	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2111		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2112		if (!rdp->nocb_gp_head)
2113			continue;  /* No CBs here, try next follower. */
2114
2115		/* Move callbacks to wait-for-GP list, which is empty. */
2116		WRITE_ONCE(rdp->nocb_head, NULL);
2117		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2118		gotcbs = true;
2119	}
2120
2121	/* No callbacks?  Sleep a bit if polling, and go retry.  */
 
 
 
2122	if (unlikely(!gotcbs)) {
 
 
 
2123		WARN_ON(signal_pending(current));
2124		if (rcu_nocb_poll) {
2125			schedule_timeout_interruptible(1);
2126		} else {
2127			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2128					    TPS("WokeEmpty"));
2129		}
 
 
 
 
 
2130		goto wait_again;
2131	}
2132
2133	/* Wait for one grace period. */
2134	rcu_nocb_wait_gp(my_rdp);
2135
 
 
 
 
 
 
 
 
2136	/* Each pass through the following loop wakes a follower, if needed. */
2137	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2138		if (!rcu_nocb_poll &&
2139		    READ_ONCE(rdp->nocb_head) &&
2140		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2141			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2142			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2143			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2144		}
2145		if (!rdp->nocb_gp_head)
2146			continue; /* No CBs, so no need to wake follower. */
2147
2148		/* Append callbacks to follower's "done" list. */
2149		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2150		tail = rdp->nocb_follower_tail;
2151		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2152		*tail = rdp->nocb_gp_head;
2153		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2154		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2155			/* List was empty, so wake up the follower.  */
 
 
 
2156			swake_up(&rdp->nocb_wq);
2157		}
2158	}
2159
2160	/* If we (the leader) don't have CBs, go wait some more. */
2161	if (!my_rdp->nocb_follower_head)
2162		goto wait_again;
2163}
2164
2165/*
2166 * Followers come here to wait for additional callbacks to show up.
2167 * This function does not return until callbacks appear.
2168 */
2169static void nocb_follower_wait(struct rcu_data *rdp)
2170{
 
 
2171	for (;;) {
2172		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2173		swait_event_interruptible(rdp->nocb_wq,
2174					 READ_ONCE(rdp->nocb_follower_head));
 
 
 
 
 
 
 
2175		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2176			/* ^^^ Ensure CB invocation follows _head test. */
2177			return;
2178		}
 
 
 
2179		WARN_ON(signal_pending(current));
2180		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2181	}
2182}
2183
2184/*
2185 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2186 * callbacks queued by the corresponding no-CBs CPU, however, there is
2187 * an optional leader-follower relationship so that the grace-period
2188 * kthreads don't have to do quite so many wakeups.
2189 */
2190static int rcu_nocb_kthread(void *arg)
2191{
2192	int c, cl;
2193	unsigned long flags;
2194	struct rcu_head *list;
2195	struct rcu_head *next;
2196	struct rcu_head **tail;
2197	struct rcu_data *rdp = arg;
2198
2199	/* Each pass through this loop invokes one batch of callbacks */
2200	for (;;) {
2201		/* Wait for callbacks. */
2202		if (rdp->nocb_leader == rdp)
2203			nocb_leader_wait(rdp);
2204		else
2205			nocb_follower_wait(rdp);
2206
2207		/* Pull the ready-to-invoke callbacks onto local list. */
2208		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2209		list = rdp->nocb_follower_head;
2210		rdp->nocb_follower_head = NULL;
2211		tail = rdp->nocb_follower_tail;
2212		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2213		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2214		BUG_ON(!list);
2215		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
 
 
2216
2217		/* Each pass through the following loop invokes a callback. */
2218		trace_rcu_batch_start(rdp->rsp->name,
2219				      atomic_long_read(&rdp->nocb_q_count_lazy),
2220				      atomic_long_read(&rdp->nocb_q_count), -1);
2221		c = cl = 0;
2222		while (list) {
2223			next = list->next;
2224			/* Wait for enqueuing to complete, if needed. */
2225			while (next == NULL && &list->next != tail) {
2226				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2227						    TPS("WaitQueue"));
2228				schedule_timeout_interruptible(1);
2229				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2230						    TPS("WokeQueue"));
2231				next = list->next;
2232			}
2233			debug_rcu_head_unqueue(list);
2234			local_bh_disable();
2235			if (__rcu_reclaim(rdp->rsp->name, list))
2236				cl++;
2237			c++;
2238			local_bh_enable();
2239			cond_resched_rcu_qs();
2240			list = next;
2241		}
2242		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2243		smp_mb__before_atomic();  /* _add after CB invocation. */
2244		atomic_long_add(-c, &rdp->nocb_q_count);
2245		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
 
2246	}
2247	return 0;
2248}
2249
2250/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2251static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2252{
2253	return READ_ONCE(rdp->nocb_defer_wakeup);
2254}
2255
2256/* Do a deferred wakeup of rcu_nocb_kthread(). */
2257static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2258{
2259	unsigned long flags;
2260	int ndw;
2261
2262	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2263	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2264		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2265		return;
2266	}
2267	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2268	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2269	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2270	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2271}
2272
2273/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2274static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2275{
2276	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2277
2278	do_nocb_deferred_wakeup_common(rdp);
2279}
2280
2281/*
2282 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283 * This means we do an inexact common-case check.  Note that if
2284 * we miss, ->nocb_timer will eventually clean things up.
2285 */
2286static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2287{
2288	if (rcu_nocb_need_deferred_wakeup(rdp))
2289		do_nocb_deferred_wakeup_common(rdp);
2290}
2291
2292void __init rcu_init_nohz(void)
2293{
2294	int cpu;
2295	bool need_rcu_nocb_mask = true;
2296	struct rcu_state *rsp;
2297
 
 
 
 
2298#if defined(CONFIG_NO_HZ_FULL)
2299	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2300		need_rcu_nocb_mask = true;
2301#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2302
2303	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2304		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2305			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2306			return;
2307		}
 
2308	}
2309	if (!cpumask_available(rcu_nocb_mask))
2310		return;
2311
 
 
 
 
 
 
 
 
2312#if defined(CONFIG_NO_HZ_FULL)
2313	if (tick_nohz_full_running)
2314		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2315#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2316
2317	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2318		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2319		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2320			    rcu_nocb_mask);
2321	}
2322	if (cpumask_empty(rcu_nocb_mask))
2323		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2324	else
2325		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2326			cpumask_pr_args(rcu_nocb_mask));
2327	if (rcu_nocb_poll)
2328		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2329
2330	for_each_rcu_flavor(rsp) {
2331		for_each_cpu(cpu, rcu_nocb_mask)
2332			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2333		rcu_organize_nocb_kthreads(rsp);
2334	}
2335}
2336
2337/* Initialize per-rcu_data variables for no-CBs CPUs. */
2338static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2339{
2340	rdp->nocb_tail = &rdp->nocb_head;
2341	init_swait_queue_head(&rdp->nocb_wq);
2342	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2343	raw_spin_lock_init(&rdp->nocb_lock);
2344	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2345}
2346
2347/*
2348 * If the specified CPU is a no-CBs CPU that does not already have its
2349 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2350 * brought online out of order, this can require re-organizing the
2351 * leader-follower relationships.
2352 */
2353static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2354{
2355	struct rcu_data *rdp;
2356	struct rcu_data *rdp_last;
2357	struct rcu_data *rdp_old_leader;
2358	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2359	struct task_struct *t;
2360
2361	/*
2362	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2363	 * then nothing to do.
2364	 */
2365	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2366		return;
2367
2368	/* If we didn't spawn the leader first, reorganize! */
2369	rdp_old_leader = rdp_spawn->nocb_leader;
2370	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2371		rdp_last = NULL;
2372		rdp = rdp_old_leader;
2373		do {
2374			rdp->nocb_leader = rdp_spawn;
2375			if (rdp_last && rdp != rdp_spawn)
2376				rdp_last->nocb_next_follower = rdp;
2377			if (rdp == rdp_spawn) {
2378				rdp = rdp->nocb_next_follower;
2379			} else {
2380				rdp_last = rdp;
2381				rdp = rdp->nocb_next_follower;
2382				rdp_last->nocb_next_follower = NULL;
2383			}
2384		} while (rdp);
2385		rdp_spawn->nocb_next_follower = rdp_old_leader;
2386	}
2387
2388	/* Spawn the kthread for this CPU and RCU flavor. */
2389	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2390			"rcuo%c/%d", rsp->abbr, cpu);
2391	BUG_ON(IS_ERR(t));
2392	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2393}
2394
2395/*
2396 * If the specified CPU is a no-CBs CPU that does not already have its
2397 * rcuo kthreads, spawn them.
2398 */
2399static void rcu_spawn_all_nocb_kthreads(int cpu)
2400{
2401	struct rcu_state *rsp;
2402
2403	if (rcu_scheduler_fully_active)
2404		for_each_rcu_flavor(rsp)
2405			rcu_spawn_one_nocb_kthread(rsp, cpu);
2406}
2407
2408/*
2409 * Once the scheduler is running, spawn rcuo kthreads for all online
2410 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2411 * non-boot CPUs come online -- if this changes, we will need to add
2412 * some mutual exclusion.
2413 */
2414static void __init rcu_spawn_nocb_kthreads(void)
2415{
2416	int cpu;
2417
2418	for_each_online_cpu(cpu)
2419		rcu_spawn_all_nocb_kthreads(cpu);
2420}
2421
2422/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2423static int rcu_nocb_leader_stride = -1;
2424module_param(rcu_nocb_leader_stride, int, 0444);
2425
2426/*
2427 * Initialize leader-follower relationships for all no-CBs CPU.
2428 */
2429static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2430{
2431	int cpu;
2432	int ls = rcu_nocb_leader_stride;
2433	int nl = 0;  /* Next leader. */
2434	struct rcu_data *rdp;
2435	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2436	struct rcu_data *rdp_prev = NULL;
2437
2438	if (!cpumask_available(rcu_nocb_mask))
2439		return;
2440	if (ls == -1) {
2441		ls = int_sqrt(nr_cpu_ids);
2442		rcu_nocb_leader_stride = ls;
2443	}
2444
2445	/*
2446	 * Each pass through this loop sets up one rcu_data structure.
2447	 * Should the corresponding CPU come online in the future, then
2448	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2449	 */
2450	for_each_cpu(cpu, rcu_nocb_mask) {
2451		rdp = per_cpu_ptr(rsp->rda, cpu);
2452		if (rdp->cpu >= nl) {
2453			/* New leader, set up for followers & next leader. */
2454			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2455			rdp->nocb_leader = rdp;
2456			rdp_leader = rdp;
2457		} else {
2458			/* Another follower, link to previous leader. */
2459			rdp->nocb_leader = rdp_leader;
2460			rdp_prev->nocb_next_follower = rdp;
2461		}
2462		rdp_prev = rdp;
2463	}
2464}
2465
2466/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2467static bool init_nocb_callback_list(struct rcu_data *rdp)
2468{
2469	if (!rcu_is_nocb_cpu(rdp->cpu))
2470		return false;
2471
2472	/* If there are early-boot callbacks, move them to nocb lists. */
2473	if (!rcu_segcblist_empty(&rdp->cblist)) {
2474		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2475		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2476		atomic_long_set(&rdp->nocb_q_count,
2477				rcu_segcblist_n_cbs(&rdp->cblist));
2478		atomic_long_set(&rdp->nocb_q_count_lazy,
2479				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2480		rcu_segcblist_init(&rdp->cblist);
2481	}
2482	rcu_segcblist_disable(&rdp->cblist);
2483	return true;
2484}
2485
2486#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2487
2488static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2489{
2490	WARN_ON_ONCE(1); /* Should be dead code. */
2491	return false;
2492}
2493
2494static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2495{
2496}
2497
2498static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2499{
2500}
2501
2502static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2503{
2504	return NULL;
2505}
2506
2507static void rcu_init_one_nocb(struct rcu_node *rnp)
2508{
2509}
2510
2511static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2512			    bool lazy, unsigned long flags)
2513{
2514	return false;
2515}
2516
2517static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2518						     struct rcu_data *rdp,
2519						     unsigned long flags)
2520{
2521	return false;
2522}
2523
2524static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2525{
2526}
2527
2528static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2529{
2530	return false;
2531}
2532
2533static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2534{
2535}
2536
2537static void rcu_spawn_all_nocb_kthreads(int cpu)
2538{
2539}
2540
2541static void __init rcu_spawn_nocb_kthreads(void)
2542{
2543}
2544
2545static bool init_nocb_callback_list(struct rcu_data *rdp)
2546{
2547	return false;
2548}
2549
2550#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2551
2552/*
2553 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2554 * arbitrarily long period of time with the scheduling-clock tick turned
2555 * off.  RCU will be paying attention to this CPU because it is in the
2556 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2557 * machine because the scheduling-clock tick has been disabled.  Therefore,
2558 * if an adaptive-ticks CPU is failing to respond to the current grace
2559 * period and has not be idle from an RCU perspective, kick it.
2560 */
2561static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2562{
2563#ifdef CONFIG_NO_HZ_FULL
2564	if (tick_nohz_full_cpu(cpu))
2565		smp_send_reschedule(cpu);
2566#endif /* #ifdef CONFIG_NO_HZ_FULL */
2567}
2568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569/*
2570 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2571 * grace-period kthread will do force_quiescent_state() processing?
2572 * The idea is to avoid waking up RCU core processing on such a
2573 * CPU unless the grace period has extended for too long.
2574 *
2575 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2576 * CONFIG_RCU_NOCB_CPU CPUs.
2577 */
2578static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2579{
2580#ifdef CONFIG_NO_HZ_FULL
2581	if (tick_nohz_full_cpu(smp_processor_id()) &&
2582	    (!rcu_gp_in_progress(rsp) ||
2583	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2584		return true;
2585#endif /* #ifdef CONFIG_NO_HZ_FULL */
2586	return false;
2587}
2588
2589/*
2590 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2591 * timekeeping CPU.
2592 */
2593static void rcu_bind_gp_kthread(void)
2594{
2595	int __maybe_unused cpu;
2596
2597	if (!tick_nohz_full_enabled())
2598		return;
2599	housekeeping_affine(current, HK_FLAG_RCU);
 
 
 
 
 
 
2600}
2601
2602/* Record the current task on dyntick-idle entry. */
2603static void rcu_dynticks_task_enter(void)
2604{
2605#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2606	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2607#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2608}
2609
2610/* Record no current task on dyntick-idle exit. */
2611static void rcu_dynticks_task_exit(void)
2612{
2613#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2614	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2615#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2616}