Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34#ifdef CONFIG_FS_DAX
 35static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 36{
 37	struct inode *inode = file_inode(iocb->ki_filp);
 38	ssize_t ret;
 39
 40	inode_lock_shared(inode);
 
 
 
 
 
 41	/*
 42	 * Recheck under inode lock - at this point we are sure it cannot
 43	 * change anymore
 44	 */
 45	if (!IS_DAX(inode)) {
 46		inode_unlock_shared(inode);
 47		/* Fallback to buffered IO in case we cannot support DAX */
 48		return generic_file_read_iter(iocb, to);
 49	}
 50	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 51	inode_unlock_shared(inode);
 52
 53	file_accessed(iocb->ki_filp);
 54	return ret;
 55}
 56#endif
 57
 58static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 59{
 
 
 
 
 
 60	if (!iov_iter_count(to))
 61		return 0; /* skip atime */
 62
 63#ifdef CONFIG_FS_DAX
 64	if (IS_DAX(file_inode(iocb->ki_filp)))
 65		return ext4_dax_read_iter(iocb, to);
 66#endif
 
 
 
 67	return generic_file_read_iter(iocb, to);
 68}
 69
 70/*
 71 * Called when an inode is released. Note that this is different
 72 * from ext4_file_open: open gets called at every open, but release
 73 * gets called only when /all/ the files are closed.
 74 */
 75static int ext4_release_file(struct inode *inode, struct file *filp)
 76{
 77	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 78		ext4_alloc_da_blocks(inode);
 79		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 80	}
 81	/* if we are the last writer on the inode, drop the block reservation */
 82	if ((filp->f_mode & FMODE_WRITE) &&
 83			(atomic_read(&inode->i_writecount) == 1) &&
 84		        !EXT4_I(inode)->i_reserved_data_blocks)
 85	{
 86		down_write(&EXT4_I(inode)->i_data_sem);
 87		ext4_discard_preallocations(inode);
 88		up_write(&EXT4_I(inode)->i_data_sem);
 89	}
 90	if (is_dx(inode) && filp->private_data)
 91		ext4_htree_free_dir_info(filp->private_data);
 92
 93	return 0;
 94}
 95
 96static void ext4_unwritten_wait(struct inode *inode)
 97{
 98	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 99
100	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101}
102
103/*
104 * This tests whether the IO in question is block-aligned or not.
105 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106 * are converted to written only after the IO is complete.  Until they are
107 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108 * it needs to zero out portions of the start and/or end block.  If 2 AIO
109 * threads are at work on the same unwritten block, they must be synchronized
110 * or one thread will zero the other's data, causing corruption.
111 */
112static int
113ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114{
115	struct super_block *sb = inode->i_sb;
116	int blockmask = sb->s_blocksize - 1;
117
118	if (pos >= i_size_read(inode))
119		return 0;
120
121	if ((pos | iov_iter_alignment(from)) & blockmask)
122		return 1;
123
124	return 0;
 
 
 
 
 
 
 
 
 
125}
126
127/* Is IO overwriting allocated and initialized blocks? */
128static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129{
130	struct ext4_map_blocks map;
131	unsigned int blkbits = inode->i_blkbits;
132	int err, blklen;
133
134	if (pos + len > i_size_read(inode))
135		return false;
136
137	map.m_lblk = pos >> blkbits;
138	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139	blklen = map.m_len;
140
141	err = ext4_map_blocks(NULL, inode, &map, 0);
142	/*
143	 * 'err==len' means that all of the blocks have been preallocated,
144	 * regardless of whether they have been initialized or not. To exclude
145	 * unwritten extents, we need to check m_flags.
146	 */
147	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148}
149
150static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
 
151{
152	struct inode *inode = file_inode(iocb->ki_filp);
153	ssize_t ret;
154
 
 
 
155	ret = generic_write_checks(iocb, from);
156	if (ret <= 0)
157		return ret;
 
158	/*
159	 * If we have encountered a bitmap-format file, the size limit
160	 * is smaller than s_maxbytes, which is for extent-mapped files.
161	 */
162	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164
165		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166			return -EFBIG;
167		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168	}
 
169	return iov_iter_count(from);
170}
171
172#ifdef CONFIG_FS_DAX
173static ssize_t
174ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
175{
176	struct inode *inode = file_inode(iocb->ki_filp);
177	ssize_t ret;
178	bool overwrite = false;
 
 
 
179
180	inode_lock(inode);
181	ret = ext4_write_checks(iocb, from);
182	if (ret <= 0)
183		goto out;
184	ret = file_remove_privs(iocb->ki_filp);
185	if (ret)
186		goto out;
187	ret = file_update_time(iocb->ki_filp);
188	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189		goto out;
190
191	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192		overwrite = true;
193		downgrade_write(&inode->i_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194	}
195	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
 
 
 
 
 
196out:
197	if (!overwrite)
198		inode_unlock(inode);
199	else
200		inode_unlock_shared(inode);
201	if (ret > 0)
202		ret = generic_write_sync(iocb, ret);
203	return ret;
204}
205#endif
206
207static ssize_t
208ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209{
210	struct inode *inode = file_inode(iocb->ki_filp);
211	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212	int unaligned_aio = 0;
213	int overwrite = 0;
214	ssize_t ret;
 
 
 
 
 
 
 
215
216#ifdef CONFIG_FS_DAX
217	if (IS_DAX(inode))
218		return ext4_dax_write_iter(iocb, from);
219#endif
 
 
 
 
 
 
 
 
 
 
 
220
221	inode_lock(inode);
222	ret = ext4_write_checks(iocb, from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223	if (ret <= 0)
 
 
 
 
 
224		goto out;
 
 
 
 
225
226	/*
227	 * Unaligned direct AIO must be serialized among each other as zeroing
228	 * of partial blocks of two competing unaligned AIOs can result in data
229	 * corruption.
 
 
 
 
 
230	 */
231	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232	    !is_sync_kiocb(iocb) &&
233	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234		unaligned_aio = 1;
235		ext4_unwritten_wait(inode);
 
 
 
 
 
 
 
 
 
 
 
 
236	}
237
238	iocb->private = &overwrite;
239	/* Check whether we do a DIO overwrite or not */
240	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242		overwrite = 1;
 
243
244	ret = __generic_file_write_iter(iocb, from);
245	inode_unlock(inode);
246
247	if (ret > 0)
248		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
250	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
 
 
 
 
252out:
253	inode_unlock(inode);
 
 
254	return ret;
255}
 
256
257#ifdef CONFIG_FS_DAX
258static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259{
260	int result;
261	struct inode *inode = file_inode(vma->vm_file);
262	struct super_block *sb = inode->i_sb;
263	bool write = vmf->flags & FAULT_FLAG_WRITE;
264
265	if (write) {
266		sb_start_pagefault(sb);
267		file_update_time(vma->vm_file);
268	}
269	down_read(&EXT4_I(inode)->i_mmap_sem);
270	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271	up_read(&EXT4_I(inode)->i_mmap_sem);
272	if (write)
273		sb_end_pagefault(sb);
274
275	return result;
 
 
 
 
 
 
 
276}
277
278static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279						pmd_t *pmd, unsigned int flags)
 
280{
281	int result;
282	struct inode *inode = file_inode(vma->vm_file);
 
 
 
283	struct super_block *sb = inode->i_sb;
284	bool write = flags & FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	if (write) {
287		sb_start_pagefault(sb);
288		file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
 
 
 
289	}
290	down_read(&EXT4_I(inode)->i_mmap_sem);
291	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292				     &ext4_iomap_ops);
293	up_read(&EXT4_I(inode)->i_mmap_sem);
294	if (write)
 
 
 
 
 
 
295		sb_end_pagefault(sb);
 
 
 
296
297	return result;
298}
299
300/*
301 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302 * handler we check for races agaist truncate. Note that since we cycle through
303 * i_mmap_sem, we are sure that also any hole punching that began before we
304 * were called is finished by now and so if it included part of the file we
305 * are working on, our pte will get unmapped and the check for pte_same() in
306 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307 * desired.
308 */
309static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310				struct vm_fault *vmf)
311{
312	struct inode *inode = file_inode(vma->vm_file);
313	struct super_block *sb = inode->i_sb;
314	loff_t size;
315	int ret;
316
317	sb_start_pagefault(sb);
318	file_update_time(vma->vm_file);
319	down_read(&EXT4_I(inode)->i_mmap_sem);
320	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321	if (vmf->pgoff >= size)
322		ret = VM_FAULT_SIGBUS;
323	else
324		ret = dax_pfn_mkwrite(vma, vmf);
325	up_read(&EXT4_I(inode)->i_mmap_sem);
326	sb_end_pagefault(sb);
327
328	return ret;
329}
330
331static const struct vm_operations_struct ext4_dax_vm_ops = {
332	.fault		= ext4_dax_fault,
333	.pmd_fault	= ext4_dax_pmd_fault,
334	.page_mkwrite	= ext4_dax_fault,
335	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336};
337#else
338#define ext4_dax_vm_ops	ext4_file_vm_ops
339#endif
340
341static const struct vm_operations_struct ext4_file_vm_ops = {
342	.fault		= ext4_filemap_fault,
343	.map_pages	= filemap_map_pages,
344	.page_mkwrite   = ext4_page_mkwrite,
345};
346
347static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348{
349	struct inode *inode = file->f_mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
350
351	if (ext4_encrypted_inode(inode)) {
352		int err = fscrypt_get_encryption_info(inode);
353		if (err)
354			return 0;
355		if (!fscrypt_has_encryption_key(inode))
356			return -ENOKEY;
357	}
358	file_accessed(file);
359	if (IS_DAX(file_inode(file))) {
360		vma->vm_ops = &ext4_dax_vm_ops;
361		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362	} else {
363		vma->vm_ops = &ext4_file_vm_ops;
364	}
365	return 0;
366}
367
368static int ext4_file_open(struct inode * inode, struct file * filp)
 
369{
370	struct super_block *sb = inode->i_sb;
371	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
372	struct vfsmount *mnt = filp->f_path.mnt;
373	struct dentry *dir;
374	struct path path;
375	char buf[64], *cp;
376	int ret;
 
377
378	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379		     !(sb->s_flags & MS_RDONLY))) {
380		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381		/*
382		 * Sample where the filesystem has been mounted and
383		 * store it in the superblock for sysadmin convenience
384		 * when trying to sort through large numbers of block
385		 * devices or filesystem images.
386		 */
387		memset(buf, 0, sizeof(buf));
388		path.mnt = mnt;
389		path.dentry = mnt->mnt_root;
390		cp = d_path(&path, buf, sizeof(buf));
391		if (!IS_ERR(cp)) {
392			handle_t *handle;
393			int err;
394
395			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396			if (IS_ERR(handle))
397				return PTR_ERR(handle);
398			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400			if (err) {
401				ext4_journal_stop(handle);
402				return err;
403			}
404			strlcpy(sbi->s_es->s_last_mounted, cp,
405				sizeof(sbi->s_es->s_last_mounted));
406			ext4_handle_dirty_super(handle, sb);
407			ext4_journal_stop(handle);
408		}
409	}
410	if (ext4_encrypted_inode(inode)) {
411		ret = fscrypt_get_encryption_info(inode);
412		if (ret)
413			return -EACCES;
414		if (!fscrypt_has_encryption_key(inode))
415			return -ENOKEY;
416	}
417
418	dir = dget_parent(file_dentry(filp));
419	if (ext4_encrypted_inode(d_inode(dir)) &&
420			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421		ext4_warning(inode->i_sb,
422			     "Inconsistent encryption contexts: %lu/%lu",
423			     (unsigned long) d_inode(dir)->i_ino,
424			     (unsigned long) inode->i_ino);
425		dput(dir);
426		return -EPERM;
427	}
428	dput(dir);
429	/*
430	 * Set up the jbd2_inode if we are opening the inode for
431	 * writing and the journal is present
 
 
432	 */
433	if (filp->f_mode & FMODE_WRITE) {
434		ret = ext4_inode_attach_jinode(inode);
435		if (ret < 0)
436			return ret;
437	}
438	return dquot_file_open(inode, filp);
439}
440
441/*
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function.  When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448 */
449
450/*
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
456 */
457static int ext4_find_unwritten_pgoff(struct inode *inode,
458				     int whence,
459				     ext4_lblk_t end_blk,
460				     loff_t *offset)
461{
462	struct pagevec pvec;
463	unsigned int blkbits;
464	pgoff_t index;
465	pgoff_t end;
466	loff_t endoff;
467	loff_t startoff;
468	loff_t lastoff;
469	int found = 0;
470
471	blkbits = inode->i_sb->s_blocksize_bits;
472	startoff = *offset;
473	lastoff = startoff;
474	endoff = (loff_t)end_blk << blkbits;
475
476	index = startoff >> PAGE_SHIFT;
477	end = endoff >> PAGE_SHIFT;
478
479	pagevec_init(&pvec, 0);
480	do {
481		int i, num;
482		unsigned long nr_pages;
483
484		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486					  (pgoff_t)num);
487		if (nr_pages == 0) {
488			if (whence == SEEK_DATA)
489				break;
490
491			BUG_ON(whence != SEEK_HOLE);
492			/*
493			 * If this is the first time to go into the loop and
494			 * offset is not beyond the end offset, it will be a
495			 * hole at this offset
496			 */
497			if (lastoff == startoff || lastoff < endoff)
498				found = 1;
499			break;
500		}
501
502		/*
503		 * If this is the first time to go into the loop and
504		 * offset is smaller than the first page offset, it will be a
505		 * hole at this offset.
506		 */
507		if (lastoff == startoff && whence == SEEK_HOLE &&
508		    lastoff < page_offset(pvec.pages[0])) {
509			found = 1;
510			break;
511		}
512
513		for (i = 0; i < nr_pages; i++) {
514			struct page *page = pvec.pages[i];
515			struct buffer_head *bh, *head;
516
517			/*
518			 * If the current offset is not beyond the end of given
519			 * range, it will be a hole.
520			 */
521			if (lastoff < endoff && whence == SEEK_HOLE &&
522			    page->index > end) {
523				found = 1;
524				*offset = lastoff;
525				goto out;
526			}
527
528			lock_page(page);
529
530			if (unlikely(page->mapping != inode->i_mapping)) {
531				unlock_page(page);
532				continue;
533			}
534
535			if (!page_has_buffers(page)) {
536				unlock_page(page);
537				continue;
538			}
539
540			if (page_has_buffers(page)) {
541				lastoff = page_offset(page);
542				bh = head = page_buffers(page);
543				do {
544					if (buffer_uptodate(bh) ||
545					    buffer_unwritten(bh)) {
546						if (whence == SEEK_DATA)
547							found = 1;
548					} else {
549						if (whence == SEEK_HOLE)
550							found = 1;
551					}
552					if (found) {
553						*offset = max_t(loff_t,
554							startoff, lastoff);
555						unlock_page(page);
556						goto out;
557					}
558					lastoff += bh->b_size;
559					bh = bh->b_this_page;
560				} while (bh != head);
561			}
562
563			lastoff = page_offset(page) + PAGE_SIZE;
564			unlock_page(page);
565		}
566
567		/*
568		 * The no. of pages is less than our desired, that would be a
569		 * hole in there.
570		 */
571		if (nr_pages < num && whence == SEEK_HOLE) {
572			found = 1;
573			*offset = lastoff;
574			break;
575		}
576
577		index = pvec.pages[i - 1]->index + 1;
578		pagevec_release(&pvec);
579	} while (index <= end);
580
 
 
 
 
 
 
 
 
 
 
 
 
 
581out:
582	pagevec_release(&pvec);
583	return found;
584}
585
586/*
587 * ext4_seek_data() retrieves the offset for SEEK_DATA.
588 */
589static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590{
591	struct inode *inode = file->f_mapping->host;
592	struct extent_status es;
593	ext4_lblk_t start, last, end;
594	loff_t dataoff, isize;
595	int blkbits;
596	int ret;
597
598	inode_lock(inode);
599
600	isize = i_size_read(inode);
601	if (offset >= isize) {
602		inode_unlock(inode);
603		return -ENXIO;
604	}
605
606	blkbits = inode->i_sb->s_blocksize_bits;
607	start = offset >> blkbits;
608	last = start;
609	end = isize >> blkbits;
610	dataoff = offset;
611
612	do {
613		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614		if (ret <= 0) {
615			/* No extent found -> no data */
616			if (ret == 0)
617				ret = -ENXIO;
618			inode_unlock(inode);
619			return ret;
620		}
621
622		last = es.es_lblk;
623		if (last != start)
624			dataoff = (loff_t)last << blkbits;
625		if (!ext4_es_is_unwritten(&es))
626			break;
627
628		/*
629		 * If there is a unwritten extent at this offset,
630		 * it will be as a data or a hole according to page
631		 * cache that has data or not.
632		 */
633		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634					      es.es_lblk + es.es_len, &dataoff))
635			break;
636		last += es.es_len;
637		dataoff = (loff_t)last << blkbits;
638		cond_resched();
639	} while (last <= end);
640
641	inode_unlock(inode);
642
643	if (dataoff > isize)
644		return -ENXIO;
645
646	return vfs_setpos(file, dataoff, maxsize);
647}
648
649/*
650 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651 */
652static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653{
654	struct inode *inode = file->f_mapping->host;
655	struct extent_status es;
656	ext4_lblk_t start, last, end;
657	loff_t holeoff, isize;
658	int blkbits;
659	int ret;
660
661	inode_lock(inode);
 
 
662
663	isize = i_size_read(inode);
664	if (offset >= isize) {
665		inode_unlock(inode);
666		return -ENXIO;
667	}
668
669	blkbits = inode->i_sb->s_blocksize_bits;
670	start = offset >> blkbits;
671	last = start;
672	end = isize >> blkbits;
673	holeoff = offset;
674
675	do {
676		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677		if (ret < 0) {
678			inode_unlock(inode);
679			return ret;
680		}
681		/* Found a hole? */
682		if (ret == 0 || es.es_lblk > last) {
683			if (last != start)
684				holeoff = (loff_t)last << blkbits;
685			break;
686		}
687		/*
688		 * If there is a unwritten extent at this offset,
689		 * it will be as a data or a hole according to page
690		 * cache that has data or not.
691		 */
692		if (ext4_es_is_unwritten(&es) &&
693		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694					      last + es.es_len, &holeoff))
695			break;
696
697		last += es.es_len;
698		holeoff = (loff_t)last << blkbits;
699		cond_resched();
700	} while (last <= end);
701
702	inode_unlock(inode);
703
704	if (holeoff > isize)
705		holeoff = isize;
706
707	return vfs_setpos(file, holeoff, maxsize);
 
708}
709
710/*
711 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712 * by calling generic_file_llseek_size() with the appropriate maxbytes
713 * value for each.
714 */
715loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716{
717	struct inode *inode = file->f_mapping->host;
718	loff_t maxbytes;
719
720	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722	else
723		maxbytes = inode->i_sb->s_maxbytes;
724
725	switch (whence) {
726	case SEEK_SET:
727	case SEEK_CUR:
728	case SEEK_END:
729		return generic_file_llseek_size(file, offset, whence,
730						maxbytes, i_size_read(inode));
731	case SEEK_DATA:
732		return ext4_seek_data(file, offset, maxbytes);
733	case SEEK_HOLE:
734		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
 
 
735	}
736
737	return -EINVAL;
 
 
738}
739
740const struct file_operations ext4_file_operations = {
741	.llseek		= ext4_llseek,
742	.read_iter	= ext4_file_read_iter,
743	.write_iter	= ext4_file_write_iter,
 
744	.unlocked_ioctl = ext4_ioctl,
745#ifdef CONFIG_COMPAT
746	.compat_ioctl	= ext4_compat_ioctl,
747#endif
748	.mmap		= ext4_file_mmap,
 
749	.open		= ext4_file_open,
750	.release	= ext4_release_file,
751	.fsync		= ext4_sync_file,
752	.get_unmapped_area = thp_get_unmapped_area,
753	.splice_read	= generic_file_splice_read,
754	.splice_write	= iter_file_splice_write,
755	.fallocate	= ext4_fallocate,
756};
757
758const struct inode_operations ext4_file_inode_operations = {
759	.setattr	= ext4_setattr,
760	.getattr	= ext4_getattr,
761	.listxattr	= ext4_listxattr,
762	.get_acl	= ext4_get_acl,
763	.set_acl	= ext4_set_acl,
764	.fiemap		= ext4_fiemap,
765};
766
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include <linux/backing-dev.h>
 33#include "ext4.h"
 34#include "ext4_jbd2.h"
 35#include "xattr.h"
 36#include "acl.h"
 37#include "truncate.h"
 38
 39static bool ext4_dio_supported(struct inode *inode)
 40{
 41	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
 42		return false;
 43	if (fsverity_active(inode))
 44		return false;
 45	if (ext4_should_journal_data(inode))
 46		return false;
 47	if (ext4_has_inline_data(inode))
 48		return false;
 49	return true;
 50}
 51
 52static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
 53{
 54	ssize_t ret;
 55	struct inode *inode = file_inode(iocb->ki_filp);
 56
 57	if (iocb->ki_flags & IOCB_NOWAIT) {
 58		if (!inode_trylock_shared(inode))
 59			return -EAGAIN;
 60	} else {
 61		inode_lock_shared(inode);
 62	}
 63
 64	if (!ext4_dio_supported(inode)) {
 65		inode_unlock_shared(inode);
 66		/*
 67		 * Fallback to buffered I/O if the operation being performed on
 68		 * the inode is not supported by direct I/O. The IOCB_DIRECT
 69		 * flag needs to be cleared here in order to ensure that the
 70		 * direct I/O path within generic_file_read_iter() is not
 71		 * taken.
 72		 */
 73		iocb->ki_flags &= ~IOCB_DIRECT;
 74		return generic_file_read_iter(iocb, to);
 75	}
 76
 77	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
 78			   is_sync_kiocb(iocb));
 79	inode_unlock_shared(inode);
 80
 81	file_accessed(iocb->ki_filp);
 82	return ret;
 83}
 84
 85#ifdef CONFIG_FS_DAX
 86static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 87{
 88	struct inode *inode = file_inode(iocb->ki_filp);
 89	ssize_t ret;
 90
 91	if (iocb->ki_flags & IOCB_NOWAIT) {
 92		if (!inode_trylock_shared(inode))
 93			return -EAGAIN;
 94	} else {
 95		inode_lock_shared(inode);
 96	}
 97	/*
 98	 * Recheck under inode lock - at this point we are sure it cannot
 99	 * change anymore
100	 */
101	if (!IS_DAX(inode)) {
102		inode_unlock_shared(inode);
103		/* Fallback to buffered IO in case we cannot support DAX */
104		return generic_file_read_iter(iocb, to);
105	}
106	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107	inode_unlock_shared(inode);
108
109	file_accessed(iocb->ki_filp);
110	return ret;
111}
112#endif
113
114static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115{
116	struct inode *inode = file_inode(iocb->ki_filp);
117
118	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119		return -EIO;
120
121	if (!iov_iter_count(to))
122		return 0; /* skip atime */
123
124#ifdef CONFIG_FS_DAX
125	if (IS_DAX(inode))
126		return ext4_dax_read_iter(iocb, to);
127#endif
128	if (iocb->ki_flags & IOCB_DIRECT)
129		return ext4_dio_read_iter(iocb, to);
130
131	return generic_file_read_iter(iocb, to);
132}
133
134/*
135 * Called when an inode is released. Note that this is different
136 * from ext4_file_open: open gets called at every open, but release
137 * gets called only when /all/ the files are closed.
138 */
139static int ext4_release_file(struct inode *inode, struct file *filp)
140{
141	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142		ext4_alloc_da_blocks(inode);
143		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144	}
145	/* if we are the last writer on the inode, drop the block reservation */
146	if ((filp->f_mode & FMODE_WRITE) &&
147			(atomic_read(&inode->i_writecount) == 1) &&
148			!EXT4_I(inode)->i_reserved_data_blocks) {
 
149		down_write(&EXT4_I(inode)->i_data_sem);
150		ext4_discard_preallocations(inode, 0);
151		up_write(&EXT4_I(inode)->i_data_sem);
152	}
153	if (is_dx(inode) && filp->private_data)
154		ext4_htree_free_dir_info(filp->private_data);
155
156	return 0;
157}
158
 
 
 
 
 
 
 
159/*
160 * This tests whether the IO in question is block-aligned or not.
161 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162 * are converted to written only after the IO is complete.  Until they are
163 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164 * it needs to zero out portions of the start and/or end block.  If 2 AIO
165 * threads are at work on the same unwritten block, they must be synchronized
166 * or one thread will zero the other's data, causing corruption.
167 */
168static bool
169ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170{
171	struct super_block *sb = inode->i_sb;
172	unsigned long blockmask = sb->s_blocksize - 1;
 
 
 
173
174	if ((pos | iov_iter_alignment(from)) & blockmask)
175		return true;
176
177	return false;
178}
179
180static bool
181ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182{
183	if (offset + len > i_size_read(inode) ||
184	    offset + len > EXT4_I(inode)->i_disksize)
185		return true;
186	return false;
187}
188
189/* Is IO overwriting allocated and initialized blocks? */
190static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191{
192	struct ext4_map_blocks map;
193	unsigned int blkbits = inode->i_blkbits;
194	int err, blklen;
195
196	if (pos + len > i_size_read(inode))
197		return false;
198
199	map.m_lblk = pos >> blkbits;
200	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201	blklen = map.m_len;
202
203	err = ext4_map_blocks(NULL, inode, &map, 0);
204	/*
205	 * 'err==len' means that all of the blocks have been preallocated,
206	 * regardless of whether they have been initialized or not. To exclude
207	 * unwritten extents, we need to check m_flags.
208	 */
209	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210}
211
212static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213					 struct iov_iter *from)
214{
215	struct inode *inode = file_inode(iocb->ki_filp);
216	ssize_t ret;
217
218	if (unlikely(IS_IMMUTABLE(inode)))
219		return -EPERM;
220
221	ret = generic_write_checks(iocb, from);
222	if (ret <= 0)
223		return ret;
224
225	/*
226	 * If we have encountered a bitmap-format file, the size limit
227	 * is smaller than s_maxbytes, which is for extent-mapped files.
228	 */
229	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231
232		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233			return -EFBIG;
234		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235	}
236
237	return iov_iter_count(from);
238}
239
240static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241{
242	ssize_t ret, count;
243
244	count = ext4_generic_write_checks(iocb, from);
245	if (count <= 0)
246		return count;
247
248	ret = file_modified(iocb->ki_filp);
249	if (ret)
250		return ret;
251	return count;
252}
253
254static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255					struct iov_iter *from)
256{
 
257	ssize_t ret;
258	struct inode *inode = file_inode(iocb->ki_filp);
259
260	if (iocb->ki_flags & IOCB_NOWAIT)
261		return -EOPNOTSUPP;
262
263	inode_lock(inode);
264	ret = ext4_write_checks(iocb, from);
265	if (ret <= 0)
266		goto out;
267
268	current->backing_dev_info = inode_to_bdi(inode);
269	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270	current->backing_dev_info = NULL;
271
272out:
273	inode_unlock(inode);
274	if (likely(ret > 0)) {
275		iocb->ki_pos += ret;
276		ret = generic_write_sync(iocb, ret);
277	}
278
279	return ret;
280}
281
282static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283					   ssize_t written, size_t count)
284{
285	handle_t *handle;
286	bool truncate = false;
287	u8 blkbits = inode->i_blkbits;
288	ext4_lblk_t written_blk, end_blk;
289	int ret;
290
291	/*
292	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293	 * inode->i_size while the I/O was running due to writeback of delalloc
294	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295	 * zeroed/unwritten extents if this is possible; thus we won't leave
296	 * uninitialized blocks in a file even if we didn't succeed in writing
297	 * as much as we intended.
298	 */
299	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300	if (offset + count <= EXT4_I(inode)->i_disksize) {
301		/*
302		 * We need to ensure that the inode is removed from the orphan
303		 * list if it has been added prematurely, due to writeback of
304		 * delalloc blocks.
305		 */
306		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308
309			if (IS_ERR(handle)) {
310				ext4_orphan_del(NULL, inode);
311				return PTR_ERR(handle);
312			}
313
314			ext4_orphan_del(handle, inode);
315			ext4_journal_stop(handle);
316		}
317
318		return written;
319	}
320
321	if (written < 0)
322		goto truncate;
323
324	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325	if (IS_ERR(handle)) {
326		written = PTR_ERR(handle);
327		goto truncate;
328	}
329
330	if (ext4_update_inode_size(inode, offset + written)) {
331		ret = ext4_mark_inode_dirty(handle, inode);
332		if (unlikely(ret)) {
333			written = ret;
334			ext4_journal_stop(handle);
335			goto truncate;
336		}
337	}
338
339	/*
340	 * We may need to truncate allocated but not written blocks beyond EOF.
341	 */
342	written_blk = ALIGN(offset + written, 1 << blkbits);
343	end_blk = ALIGN(offset + count, 1 << blkbits);
344	if (written_blk < end_blk && ext4_can_truncate(inode))
345		truncate = true;
346
347	/*
348	 * Remove the inode from the orphan list if it has been extended and
349	 * everything went OK.
350	 */
351	if (!truncate && inode->i_nlink)
352		ext4_orphan_del(handle, inode);
353	ext4_journal_stop(handle);
354
355	if (truncate) {
356truncate:
357		ext4_truncate_failed_write(inode);
358		/*
359		 * If the truncate operation failed early, then the inode may
360		 * still be on the orphan list. In that case, we need to try
361		 * remove the inode from the in-memory linked list.
362		 */
363		if (inode->i_nlink)
364			ext4_orphan_del(NULL, inode);
365	}
366
367	return written;
368}
369
370static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
371				 int error, unsigned int flags)
372{
373	loff_t offset = iocb->ki_pos;
374	struct inode *inode = file_inode(iocb->ki_filp);
375
376	if (error)
377		return error;
378
379	if (size && flags & IOMAP_DIO_UNWRITTEN)
380		return ext4_convert_unwritten_extents(NULL, inode,
381						      offset, size);
382
383	return 0;
384}
385
386static const struct iomap_dio_ops ext4_dio_write_ops = {
387	.end_io = ext4_dio_write_end_io,
388};
389
390/*
391 * The intention here is to start with shared lock acquired then see if any
392 * condition requires an exclusive inode lock. If yes, then we restart the
393 * whole operation by releasing the shared lock and acquiring exclusive lock.
394 *
395 * - For unaligned_io we never take shared lock as it may cause data corruption
396 *   when two unaligned IO tries to modify the same block e.g. while zeroing.
397 *
398 * - For extending writes case we don't take the shared lock, since it requires
399 *   updating inode i_disksize and/or orphan handling with exclusive lock.
400 *
401 * - shared locking will only be true mostly with overwrites. Otherwise we will
402 *   switch to exclusive i_rwsem lock.
403 */
404static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
405				     bool *ilock_shared, bool *extend)
406{
407	struct file *file = iocb->ki_filp;
408	struct inode *inode = file_inode(file);
409	loff_t offset;
410	size_t count;
411	ssize_t ret;
412
413restart:
414	ret = ext4_generic_write_checks(iocb, from);
415	if (ret <= 0)
416		goto out;
417
418	offset = iocb->ki_pos;
419	count = ret;
420	if (ext4_extending_io(inode, offset, count))
421		*extend = true;
422	/*
423	 * Determine whether the IO operation will overwrite allocated
424	 * and initialized blocks.
425	 * We need exclusive i_rwsem for changing security info
426	 * in file_modified().
427	 */
428	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
429	     !ext4_overwrite_io(inode, offset, count))) {
430		if (iocb->ki_flags & IOCB_NOWAIT) {
431			ret = -EAGAIN;
432			goto out;
433		}
434		inode_unlock_shared(inode);
435		*ilock_shared = false;
436		inode_lock(inode);
437		goto restart;
438	}
439
440	ret = file_modified(file);
441	if (ret < 0)
442		goto out;
443
444	return count;
445out:
446	if (*ilock_shared)
 
 
447		inode_unlock_shared(inode);
448	else
449		inode_unlock(inode);
450	return ret;
451}
 
452
453static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
454{
 
 
 
 
455	ssize_t ret;
456	handle_t *handle;
457	struct inode *inode = file_inode(iocb->ki_filp);
458	loff_t offset = iocb->ki_pos;
459	size_t count = iov_iter_count(from);
460	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
461	bool extend = false, unaligned_io = false;
462	bool ilock_shared = true;
463
464	/*
465	 * We initially start with shared inode lock unless it is
466	 * unaligned IO which needs exclusive lock anyways.
467	 */
468	if (ext4_unaligned_io(inode, from, offset)) {
469		unaligned_io = true;
470		ilock_shared = false;
471	}
472	/*
473	 * Quick check here without any i_rwsem lock to see if it is extending
474	 * IO. A more reliable check is done in ext4_dio_write_checks() with
475	 * proper locking in place.
476	 */
477	if (offset + count > i_size_read(inode))
478		ilock_shared = false;
479
480	if (iocb->ki_flags & IOCB_NOWAIT) {
481		if (ilock_shared) {
482			if (!inode_trylock_shared(inode))
483				return -EAGAIN;
484		} else {
485			if (!inode_trylock(inode))
486				return -EAGAIN;
487		}
488	} else {
489		if (ilock_shared)
490			inode_lock_shared(inode);
491		else
492			inode_lock(inode);
493	}
494
495	/* Fallback to buffered I/O if the inode does not support direct I/O. */
496	if (!ext4_dio_supported(inode)) {
497		if (ilock_shared)
498			inode_unlock_shared(inode);
499		else
500			inode_unlock(inode);
501		return ext4_buffered_write_iter(iocb, from);
502	}
503
504	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
505	if (ret <= 0)
506		return ret;
507
508	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
509	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
510		ret = -EAGAIN;
511		goto out;
512	}
513
514	offset = iocb->ki_pos;
515	count = ret;
516
517	/*
518	 * Unaligned direct IO must be serialized among each other as zeroing
519	 * of partial blocks of two competing unaligned IOs can result in data
520	 * corruption.
521	 *
522	 * So we make sure we don't allow any unaligned IO in flight.
523	 * For IOs where we need not wait (like unaligned non-AIO DIO),
524	 * below inode_dio_wait() may anyway become a no-op, since we start
525	 * with exclusive lock.
526	 */
527	if (unaligned_io)
528		inode_dio_wait(inode);
529
530	if (extend) {
531		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
532		if (IS_ERR(handle)) {
533			ret = PTR_ERR(handle);
534			goto out;
535		}
536
537		ret = ext4_orphan_add(handle, inode);
538		if (ret) {
539			ext4_journal_stop(handle);
540			goto out;
541		}
542
543		ext4_journal_stop(handle);
544	}
545
546	if (ilock_shared)
547		iomap_ops = &ext4_iomap_overwrite_ops;
548	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
549			   is_sync_kiocb(iocb) || unaligned_io || extend);
550	if (ret == -ENOTBLK)
551		ret = 0;
552
553	if (extend)
554		ret = ext4_handle_inode_extension(inode, offset, ret, count);
555
556out:
557	if (ilock_shared)
558		inode_unlock_shared(inode);
559	else
560		inode_unlock(inode);
561
562	if (ret >= 0 && iov_iter_count(from)) {
563		ssize_t err;
564		loff_t endbyte;
565
566		offset = iocb->ki_pos;
567		err = ext4_buffered_write_iter(iocb, from);
568		if (err < 0)
569			return err;
570
571		/*
572		 * We need to ensure that the pages within the page cache for
573		 * the range covered by this I/O are written to disk and
574		 * invalidated. This is in attempt to preserve the expected
575		 * direct I/O semantics in the case we fallback to buffered I/O
576		 * to complete off the I/O request.
577		 */
578		ret += err;
579		endbyte = offset + err - 1;
580		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
581						   offset, endbyte);
582		if (!err)
583			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
584						 offset >> PAGE_SHIFT,
585						 endbyte >> PAGE_SHIFT);
586	}
587
588	return ret;
589}
590
591#ifdef CONFIG_FS_DAX
592static ssize_t
593ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
594{
595	ssize_t ret;
596	size_t count;
597	loff_t offset;
598	handle_t *handle;
599	bool extend = false;
600	struct inode *inode = file_inode(iocb->ki_filp);
601
602	if (iocb->ki_flags & IOCB_NOWAIT) {
603		if (!inode_trylock(inode))
604			return -EAGAIN;
605	} else {
606		inode_lock(inode);
607	}
608
609	ret = ext4_write_checks(iocb, from);
610	if (ret <= 0)
611		goto out;
612
613	offset = iocb->ki_pos;
614	count = iov_iter_count(from);
615
616	if (offset + count > EXT4_I(inode)->i_disksize) {
617		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
618		if (IS_ERR(handle)) {
619			ret = PTR_ERR(handle);
620			goto out;
621		}
622
623		ret = ext4_orphan_add(handle, inode);
624		if (ret) {
625			ext4_journal_stop(handle);
626			goto out;
627		}
628
629		extend = true;
630		ext4_journal_stop(handle);
631	}
632
633	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
634
635	if (extend)
636		ret = ext4_handle_inode_extension(inode, offset, ret, count);
637out:
638	inode_unlock(inode);
639	if (ret > 0)
640		ret = generic_write_sync(iocb, ret);
641	return ret;
642}
643#endif
644
645static ssize_t
646ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
647{
648	struct inode *inode = file_inode(iocb->ki_filp);
 
 
 
649
650	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
651		return -EIO;
 
 
 
 
 
 
 
652
653#ifdef CONFIG_FS_DAX
654	if (IS_DAX(inode))
655		return ext4_dax_write_iter(iocb, from);
656#endif
657	if (iocb->ki_flags & IOCB_DIRECT)
658		return ext4_dio_write_iter(iocb, from);
659
660	return ext4_buffered_write_iter(iocb, from);
661}
662
663#ifdef CONFIG_FS_DAX
664static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
665		enum page_entry_size pe_size)
666{
667	int error = 0;
668	vm_fault_t result;
669	int retries = 0;
670	handle_t *handle = NULL;
671	struct inode *inode = file_inode(vmf->vma->vm_file);
672	struct super_block *sb = inode->i_sb;
673
674	/*
675	 * We have to distinguish real writes from writes which will result in a
676	 * COW page; COW writes should *not* poke the journal (the file will not
677	 * be changed). Doing so would cause unintended failures when mounted
678	 * read-only.
679	 *
680	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
681	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
682	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
683	 * we eventually come back with a COW page.
684	 */
685	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
686		(vmf->vma->vm_flags & VM_SHARED);
687	pfn_t pfn;
688
689	if (write) {
690		sb_start_pagefault(sb);
691		file_update_time(vmf->vma->vm_file);
692		down_read(&EXT4_I(inode)->i_mmap_sem);
693retry:
694		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
695					       EXT4_DATA_TRANS_BLOCKS(sb));
696		if (IS_ERR(handle)) {
697			up_read(&EXT4_I(inode)->i_mmap_sem);
698			sb_end_pagefault(sb);
699			return VM_FAULT_SIGBUS;
700		}
701	} else {
702		down_read(&EXT4_I(inode)->i_mmap_sem);
703	}
704	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
705	if (write) {
706		ext4_journal_stop(handle);
707
708		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
709		    ext4_should_retry_alloc(sb, &retries))
710			goto retry;
711		/* Handling synchronous page fault? */
712		if (result & VM_FAULT_NEEDDSYNC)
713			result = dax_finish_sync_fault(vmf, pe_size, pfn);
714		up_read(&EXT4_I(inode)->i_mmap_sem);
715		sb_end_pagefault(sb);
716	} else {
717		up_read(&EXT4_I(inode)->i_mmap_sem);
718	}
719
720	return result;
721}
722
723static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
724{
725	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
726}
727
728static const struct vm_operations_struct ext4_dax_vm_ops = {
729	.fault		= ext4_dax_fault,
730	.huge_fault	= ext4_dax_huge_fault,
731	.page_mkwrite	= ext4_dax_fault,
732	.pfn_mkwrite	= ext4_dax_fault,
733};
734#else
735#define ext4_dax_vm_ops	ext4_file_vm_ops
736#endif
737
738static const struct vm_operations_struct ext4_file_vm_ops = {
739	.fault		= ext4_filemap_fault,
740	.map_pages	= filemap_map_pages,
741	.page_mkwrite   = ext4_page_mkwrite,
742};
743
744static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
745{
746	struct inode *inode = file->f_mapping->host;
747	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
748	struct dax_device *dax_dev = sbi->s_daxdev;
749
750	if (unlikely(ext4_forced_shutdown(sbi)))
751		return -EIO;
752
753	/*
754	 * We don't support synchronous mappings for non-DAX files and
755	 * for DAX files if underneath dax_device is not synchronous.
756	 */
757	if (!daxdev_mapping_supported(vma, dax_dev))
758		return -EOPNOTSUPP;
759
 
 
 
 
 
 
 
760	file_accessed(file);
761	if (IS_DAX(file_inode(file))) {
762		vma->vm_ops = &ext4_dax_vm_ops;
763		vma->vm_flags |= VM_HUGEPAGE;
764	} else {
765		vma->vm_ops = &ext4_file_vm_ops;
766	}
767	return 0;
768}
769
770static int ext4_sample_last_mounted(struct super_block *sb,
771				    struct vfsmount *mnt)
772{
773	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
774	struct path path;
775	char buf[64], *cp;
776	handle_t *handle;
777	int err;
778
779	if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
780		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781
782	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
783		return 0;
784
785	sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786	/*
787	 * Sample where the filesystem has been mounted and
788	 * store it in the superblock for sysadmin convenience
789	 * when trying to sort through large numbers of block
790	 * devices or filesystem images.
791	 */
792	memset(buf, 0, sizeof(buf));
793	path.mnt = mnt;
794	path.dentry = mnt->mnt_root;
795	cp = d_path(&path, buf, sizeof(buf));
796	err = 0;
797	if (IS_ERR(cp))
798		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799
800	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
801	err = PTR_ERR(handle);
802	if (IS_ERR(handle))
803		goto out;
804	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
805	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
806	if (err)
807		goto out_journal;
808	strlcpy(sbi->s_es->s_last_mounted, cp,
809		sizeof(sbi->s_es->s_last_mounted));
810	ext4_handle_dirty_super(handle, sb);
811out_journal:
812	ext4_journal_stop(handle);
813out:
814	sb_end_intwrite(sb);
815	return err;
816}
817
818static int ext4_file_open(struct inode *inode, struct file *filp)
 
 
 
819{
 
 
 
 
 
820	int ret;
821
822	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
824
825	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
826	if (ret)
827		return ret;
 
 
 
 
 
 
 
 
828
829	ret = fscrypt_file_open(inode, filp);
830	if (ret)
831		return ret;
832
833	ret = fsverity_file_open(inode, filp);
834	if (ret)
835		return ret;
 
 
836
837	/*
838	 * Set up the jbd2_inode if we are opening the inode for
839	 * writing and the journal is present
840	 */
841	if (filp->f_mode & FMODE_WRITE) {
842		ret = ext4_inode_attach_jinode(inode);
843		if (ret < 0)
 
 
 
844			return ret;
845	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846
847	filp->f_mode |= FMODE_NOWAIT;
848	return dquot_file_open(inode, filp);
849}
850
851/*
852 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
853 * by calling generic_file_llseek_size() with the appropriate maxbytes
854 * value for each.
855 */
856loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
857{
858	struct inode *inode = file->f_mapping->host;
859	loff_t maxbytes;
860
861	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
862		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
863	else
864		maxbytes = inode->i_sb->s_maxbytes;
865
866	switch (whence) {
867	default:
 
 
868		return generic_file_llseek_size(file, offset, whence,
869						maxbytes, i_size_read(inode));
 
 
870	case SEEK_HOLE:
871		inode_lock_shared(inode);
872		offset = iomap_seek_hole(inode, offset,
873					 &ext4_iomap_report_ops);
874		inode_unlock_shared(inode);
875		break;
876	case SEEK_DATA:
877		inode_lock_shared(inode);
878		offset = iomap_seek_data(inode, offset,
879					 &ext4_iomap_report_ops);
880		inode_unlock_shared(inode);
881		break;
882	}
883
884	if (offset < 0)
885		return offset;
886	return vfs_setpos(file, offset, maxbytes);
887}
888
889const struct file_operations ext4_file_operations = {
890	.llseek		= ext4_llseek,
891	.read_iter	= ext4_file_read_iter,
892	.write_iter	= ext4_file_write_iter,
893	.iopoll		= iomap_dio_iopoll,
894	.unlocked_ioctl = ext4_ioctl,
895#ifdef CONFIG_COMPAT
896	.compat_ioctl	= ext4_compat_ioctl,
897#endif
898	.mmap		= ext4_file_mmap,
899	.mmap_supported_flags = MAP_SYNC,
900	.open		= ext4_file_open,
901	.release	= ext4_release_file,
902	.fsync		= ext4_sync_file,
903	.get_unmapped_area = thp_get_unmapped_area,
904	.splice_read	= generic_file_splice_read,
905	.splice_write	= iter_file_splice_write,
906	.fallocate	= ext4_fallocate,
907};
908
909const struct inode_operations ext4_file_inode_operations = {
910	.setattr	= ext4_setattr,
911	.getattr	= ext4_file_getattr,
912	.listxattr	= ext4_listxattr,
913	.get_acl	= ext4_get_acl,
914	.set_acl	= ext4_set_acl,
915	.fiemap		= ext4_fiemap,
916};
917