Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 33
 34#ifdef CONFIG_FS_DAX
 35static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 36{
 37	struct inode *inode = file_inode(iocb->ki_filp);
 38	ssize_t ret;
 39
 40	inode_lock_shared(inode);
 
 
 
 
 41	/*
 42	 * Recheck under inode lock - at this point we are sure it cannot
 43	 * change anymore
 44	 */
 45	if (!IS_DAX(inode)) {
 46		inode_unlock_shared(inode);
 47		/* Fallback to buffered IO in case we cannot support DAX */
 48		return generic_file_read_iter(iocb, to);
 49	}
 50	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 51	inode_unlock_shared(inode);
 52
 53	file_accessed(iocb->ki_filp);
 54	return ret;
 55}
 56#endif
 57
 58static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 59{
 
 
 
 60	if (!iov_iter_count(to))
 61		return 0; /* skip atime */
 62
 63#ifdef CONFIG_FS_DAX
 64	if (IS_DAX(file_inode(iocb->ki_filp)))
 65		return ext4_dax_read_iter(iocb, to);
 66#endif
 67	return generic_file_read_iter(iocb, to);
 68}
 69
 70/*
 71 * Called when an inode is released. Note that this is different
 72 * from ext4_file_open: open gets called at every open, but release
 73 * gets called only when /all/ the files are closed.
 74 */
 75static int ext4_release_file(struct inode *inode, struct file *filp)
 76{
 77	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 78		ext4_alloc_da_blocks(inode);
 79		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 80	}
 81	/* if we are the last writer on the inode, drop the block reservation */
 82	if ((filp->f_mode & FMODE_WRITE) &&
 83			(atomic_read(&inode->i_writecount) == 1) &&
 84		        !EXT4_I(inode)->i_reserved_data_blocks)
 85	{
 86		down_write(&EXT4_I(inode)->i_data_sem);
 87		ext4_discard_preallocations(inode);
 88		up_write(&EXT4_I(inode)->i_data_sem);
 89	}
 90	if (is_dx(inode) && filp->private_data)
 91		ext4_htree_free_dir_info(filp->private_data);
 92
 93	return 0;
 94}
 95
 96static void ext4_unwritten_wait(struct inode *inode)
 97{
 98	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 99
100	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101}
102
103/*
104 * This tests whether the IO in question is block-aligned or not.
105 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106 * are converted to written only after the IO is complete.  Until they are
107 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108 * it needs to zero out portions of the start and/or end block.  If 2 AIO
109 * threads are at work on the same unwritten block, they must be synchronized
110 * or one thread will zero the other's data, causing corruption.
111 */
112static int
113ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
114{
115	struct super_block *sb = inode->i_sb;
116	int blockmask = sb->s_blocksize - 1;
117
118	if (pos >= i_size_read(inode))
119		return 0;
120
121	if ((pos | iov_iter_alignment(from)) & blockmask)
122		return 1;
123
124	return 0;
125}
126
127/* Is IO overwriting allocated and initialized blocks? */
128static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
129{
130	struct ext4_map_blocks map;
131	unsigned int blkbits = inode->i_blkbits;
132	int err, blklen;
133
134	if (pos + len > i_size_read(inode))
135		return false;
136
137	map.m_lblk = pos >> blkbits;
138	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139	blklen = map.m_len;
140
141	err = ext4_map_blocks(NULL, inode, &map, 0);
142	/*
143	 * 'err==len' means that all of the blocks have been preallocated,
144	 * regardless of whether they have been initialized or not. To exclude
145	 * unwritten extents, we need to check m_flags.
146	 */
147	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148}
149
150static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
151{
152	struct inode *inode = file_inode(iocb->ki_filp);
153	ssize_t ret;
154
155	ret = generic_write_checks(iocb, from);
156	if (ret <= 0)
157		return ret;
158	/*
159	 * If we have encountered a bitmap-format file, the size limit
160	 * is smaller than s_maxbytes, which is for extent-mapped files.
161	 */
162	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
164
165		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
166			return -EFBIG;
167		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168	}
169	return iov_iter_count(from);
170}
171
172#ifdef CONFIG_FS_DAX
173static ssize_t
174ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
175{
176	struct inode *inode = file_inode(iocb->ki_filp);
177	ssize_t ret;
178	bool overwrite = false;
179
180	inode_lock(inode);
 
 
 
 
181	ret = ext4_write_checks(iocb, from);
182	if (ret <= 0)
183		goto out;
184	ret = file_remove_privs(iocb->ki_filp);
185	if (ret)
186		goto out;
187	ret = file_update_time(iocb->ki_filp);
188	if (ret)
189		goto out;
190
191	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192		overwrite = true;
193		downgrade_write(&inode->i_rwsem);
194	}
195	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196out:
197	if (!overwrite)
198		inode_unlock(inode);
199	else
200		inode_unlock_shared(inode);
201	if (ret > 0)
202		ret = generic_write_sync(iocb, ret);
203	return ret;
204}
205#endif
206
207static ssize_t
208ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209{
210	struct inode *inode = file_inode(iocb->ki_filp);
211	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212	int unaligned_aio = 0;
213	int overwrite = 0;
214	ssize_t ret;
215
 
 
 
216#ifdef CONFIG_FS_DAX
217	if (IS_DAX(inode))
218		return ext4_dax_write_iter(iocb, from);
219#endif
 
 
 
 
 
 
 
 
220
221	inode_lock(inode);
222	ret = ext4_write_checks(iocb, from);
223	if (ret <= 0)
224		goto out;
225
226	/*
227	 * Unaligned direct AIO must be serialized among each other as zeroing
228	 * of partial blocks of two competing unaligned AIOs can result in data
229	 * corruption.
230	 */
231	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232	    !is_sync_kiocb(iocb) &&
233	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234		unaligned_aio = 1;
235		ext4_unwritten_wait(inode);
236	}
237
238	iocb->private = &overwrite;
239	/* Check whether we do a DIO overwrite or not */
240	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242		overwrite = 1;
 
 
 
 
 
 
243
244	ret = __generic_file_write_iter(iocb, from);
245	inode_unlock(inode);
246
247	if (ret > 0)
248		ret = generic_write_sync(iocb, ret);
249
250	return ret;
251
252out:
253	inode_unlock(inode);
254	return ret;
255}
256
257#ifdef CONFIG_FS_DAX
258static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
259{
260	int result;
261	struct inode *inode = file_inode(vma->vm_file);
 
 
262	struct super_block *sb = inode->i_sb;
263	bool write = vmf->flags & FAULT_FLAG_WRITE;
264
265	if (write) {
266		sb_start_pagefault(sb);
267		file_update_time(vma->vm_file);
268	}
269	down_read(&EXT4_I(inode)->i_mmap_sem);
270	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271	up_read(&EXT4_I(inode)->i_mmap_sem);
272	if (write)
273		sb_end_pagefault(sb);
274
275	return result;
276}
277
278static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279						pmd_t *pmd, unsigned int flags)
280{
281	int result;
282	struct inode *inode = file_inode(vma->vm_file);
283	struct super_block *sb = inode->i_sb;
284	bool write = flags & FAULT_FLAG_WRITE;
285
286	if (write) {
287		sb_start_pagefault(sb);
288		file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
 
 
 
289	}
290	down_read(&EXT4_I(inode)->i_mmap_sem);
291	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292				     &ext4_iomap_ops);
293	up_read(&EXT4_I(inode)->i_mmap_sem);
294	if (write)
 
 
 
 
 
 
295		sb_end_pagefault(sb);
 
 
 
296
297	return result;
298}
299
300/*
301 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302 * handler we check for races agaist truncate. Note that since we cycle through
303 * i_mmap_sem, we are sure that also any hole punching that began before we
304 * were called is finished by now and so if it included part of the file we
305 * are working on, our pte will get unmapped and the check for pte_same() in
306 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307 * desired.
308 */
309static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310				struct vm_fault *vmf)
311{
312	struct inode *inode = file_inode(vma->vm_file);
313	struct super_block *sb = inode->i_sb;
314	loff_t size;
315	int ret;
316
317	sb_start_pagefault(sb);
318	file_update_time(vma->vm_file);
319	down_read(&EXT4_I(inode)->i_mmap_sem);
320	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321	if (vmf->pgoff >= size)
322		ret = VM_FAULT_SIGBUS;
323	else
324		ret = dax_pfn_mkwrite(vma, vmf);
325	up_read(&EXT4_I(inode)->i_mmap_sem);
326	sb_end_pagefault(sb);
327
328	return ret;
329}
330
331static const struct vm_operations_struct ext4_dax_vm_ops = {
332	.fault		= ext4_dax_fault,
333	.pmd_fault	= ext4_dax_pmd_fault,
334	.page_mkwrite	= ext4_dax_fault,
335	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336};
337#else
338#define ext4_dax_vm_ops	ext4_file_vm_ops
339#endif
340
341static const struct vm_operations_struct ext4_file_vm_ops = {
342	.fault		= ext4_filemap_fault,
343	.map_pages	= filemap_map_pages,
344	.page_mkwrite   = ext4_page_mkwrite,
345};
346
347static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348{
349	struct inode *inode = file->f_mapping->host;
350
351	if (ext4_encrypted_inode(inode)) {
352		int err = fscrypt_get_encryption_info(inode);
353		if (err)
354			return 0;
355		if (!fscrypt_has_encryption_key(inode))
356			return -ENOKEY;
357	}
 
 
 
358	file_accessed(file);
359	if (IS_DAX(file_inode(file))) {
360		vma->vm_ops = &ext4_dax_vm_ops;
361		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362	} else {
363		vma->vm_ops = &ext4_file_vm_ops;
364	}
365	return 0;
366}
367
368static int ext4_file_open(struct inode * inode, struct file * filp)
369{
370	struct super_block *sb = inode->i_sb;
371	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
372	struct vfsmount *mnt = filp->f_path.mnt;
373	struct dentry *dir;
374	struct path path;
375	char buf[64], *cp;
376	int ret;
377
 
 
 
378	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379		     !(sb->s_flags & MS_RDONLY))) {
380		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381		/*
382		 * Sample where the filesystem has been mounted and
383		 * store it in the superblock for sysadmin convenience
384		 * when trying to sort through large numbers of block
385		 * devices or filesystem images.
386		 */
387		memset(buf, 0, sizeof(buf));
388		path.mnt = mnt;
389		path.dentry = mnt->mnt_root;
390		cp = d_path(&path, buf, sizeof(buf));
391		if (!IS_ERR(cp)) {
392			handle_t *handle;
393			int err;
394
395			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396			if (IS_ERR(handle))
397				return PTR_ERR(handle);
398			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400			if (err) {
401				ext4_journal_stop(handle);
402				return err;
403			}
404			strlcpy(sbi->s_es->s_last_mounted, cp,
405				sizeof(sbi->s_es->s_last_mounted));
406			ext4_handle_dirty_super(handle, sb);
407			ext4_journal_stop(handle);
408		}
409	}
410	if (ext4_encrypted_inode(inode)) {
411		ret = fscrypt_get_encryption_info(inode);
412		if (ret)
413			return -EACCES;
414		if (!fscrypt_has_encryption_key(inode))
415			return -ENOKEY;
416	}
417
418	dir = dget_parent(file_dentry(filp));
419	if (ext4_encrypted_inode(d_inode(dir)) &&
420			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421		ext4_warning(inode->i_sb,
422			     "Inconsistent encryption contexts: %lu/%lu",
423			     (unsigned long) d_inode(dir)->i_ino,
424			     (unsigned long) inode->i_ino);
425		dput(dir);
426		return -EPERM;
427	}
428	dput(dir);
429	/*
430	 * Set up the jbd2_inode if we are opening the inode for
431	 * writing and the journal is present
432	 */
433	if (filp->f_mode & FMODE_WRITE) {
434		ret = ext4_inode_attach_jinode(inode);
435		if (ret < 0)
436			return ret;
437	}
438	return dquot_file_open(inode, filp);
439}
440
441/*
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function.  When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448 */
449
450/*
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
456 */
457static int ext4_find_unwritten_pgoff(struct inode *inode,
458				     int whence,
459				     ext4_lblk_t end_blk,
460				     loff_t *offset)
461{
462	struct pagevec pvec;
463	unsigned int blkbits;
464	pgoff_t index;
465	pgoff_t end;
466	loff_t endoff;
467	loff_t startoff;
468	loff_t lastoff;
469	int found = 0;
470
471	blkbits = inode->i_sb->s_blocksize_bits;
472	startoff = *offset;
473	lastoff = startoff;
474	endoff = (loff_t)end_blk << blkbits;
475
476	index = startoff >> PAGE_SHIFT;
477	end = endoff >> PAGE_SHIFT;
478
479	pagevec_init(&pvec, 0);
480	do {
481		int i, num;
482		unsigned long nr_pages;
483
484		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486					  (pgoff_t)num);
487		if (nr_pages == 0) {
488			if (whence == SEEK_DATA)
489				break;
490
491			BUG_ON(whence != SEEK_HOLE);
492			/*
493			 * If this is the first time to go into the loop and
494			 * offset is not beyond the end offset, it will be a
495			 * hole at this offset
496			 */
497			if (lastoff == startoff || lastoff < endoff)
498				found = 1;
499			break;
500		}
501
502		/*
503		 * If this is the first time to go into the loop and
504		 * offset is smaller than the first page offset, it will be a
505		 * hole at this offset.
506		 */
507		if (lastoff == startoff && whence == SEEK_HOLE &&
508		    lastoff < page_offset(pvec.pages[0])) {
509			found = 1;
510			break;
511		}
512
513		for (i = 0; i < nr_pages; i++) {
514			struct page *page = pvec.pages[i];
515			struct buffer_head *bh, *head;
516
517			/*
518			 * If the current offset is not beyond the end of given
519			 * range, it will be a hole.
520			 */
521			if (lastoff < endoff && whence == SEEK_HOLE &&
522			    page->index > end) {
523				found = 1;
524				*offset = lastoff;
525				goto out;
526			}
527
528			lock_page(page);
529
530			if (unlikely(page->mapping != inode->i_mapping)) {
531				unlock_page(page);
532				continue;
533			}
534
535			if (!page_has_buffers(page)) {
536				unlock_page(page);
537				continue;
538			}
539
540			if (page_has_buffers(page)) {
541				lastoff = page_offset(page);
542				bh = head = page_buffers(page);
543				do {
544					if (buffer_uptodate(bh) ||
545					    buffer_unwritten(bh)) {
546						if (whence == SEEK_DATA)
547							found = 1;
548					} else {
549						if (whence == SEEK_HOLE)
550							found = 1;
551					}
552					if (found) {
553						*offset = max_t(loff_t,
554							startoff, lastoff);
555						unlock_page(page);
556						goto out;
557					}
558					lastoff += bh->b_size;
559					bh = bh->b_this_page;
560				} while (bh != head);
561			}
562
563			lastoff = page_offset(page) + PAGE_SIZE;
564			unlock_page(page);
565		}
566
567		/*
568		 * The no. of pages is less than our desired, that would be a
569		 * hole in there.
570		 */
571		if (nr_pages < num && whence == SEEK_HOLE) {
572			found = 1;
573			*offset = lastoff;
574			break;
575		}
576
577		index = pvec.pages[i - 1]->index + 1;
578		pagevec_release(&pvec);
579	} while (index <= end);
580
581out:
582	pagevec_release(&pvec);
583	return found;
584}
585
586/*
587 * ext4_seek_data() retrieves the offset for SEEK_DATA.
588 */
589static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590{
591	struct inode *inode = file->f_mapping->host;
592	struct extent_status es;
593	ext4_lblk_t start, last, end;
594	loff_t dataoff, isize;
595	int blkbits;
596	int ret;
597
598	inode_lock(inode);
599
600	isize = i_size_read(inode);
601	if (offset >= isize) {
602		inode_unlock(inode);
603		return -ENXIO;
604	}
605
606	blkbits = inode->i_sb->s_blocksize_bits;
607	start = offset >> blkbits;
608	last = start;
609	end = isize >> blkbits;
610	dataoff = offset;
611
612	do {
613		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614		if (ret <= 0) {
615			/* No extent found -> no data */
616			if (ret == 0)
617				ret = -ENXIO;
618			inode_unlock(inode);
619			return ret;
620		}
621
622		last = es.es_lblk;
623		if (last != start)
624			dataoff = (loff_t)last << blkbits;
625		if (!ext4_es_is_unwritten(&es))
626			break;
627
628		/*
629		 * If there is a unwritten extent at this offset,
630		 * it will be as a data or a hole according to page
631		 * cache that has data or not.
632		 */
633		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634					      es.es_lblk + es.es_len, &dataoff))
635			break;
636		last += es.es_len;
637		dataoff = (loff_t)last << blkbits;
638		cond_resched();
639	} while (last <= end);
640
641	inode_unlock(inode);
642
643	if (dataoff > isize)
644		return -ENXIO;
645
646	return vfs_setpos(file, dataoff, maxsize);
647}
648
649/*
650 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651 */
652static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653{
654	struct inode *inode = file->f_mapping->host;
655	struct extent_status es;
656	ext4_lblk_t start, last, end;
657	loff_t holeoff, isize;
658	int blkbits;
659	int ret;
660
661	inode_lock(inode);
662
663	isize = i_size_read(inode);
664	if (offset >= isize) {
665		inode_unlock(inode);
666		return -ENXIO;
667	}
668
669	blkbits = inode->i_sb->s_blocksize_bits;
670	start = offset >> blkbits;
671	last = start;
672	end = isize >> blkbits;
673	holeoff = offset;
674
675	do {
676		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677		if (ret < 0) {
678			inode_unlock(inode);
679			return ret;
680		}
681		/* Found a hole? */
682		if (ret == 0 || es.es_lblk > last) {
683			if (last != start)
684				holeoff = (loff_t)last << blkbits;
685			break;
686		}
687		/*
688		 * If there is a unwritten extent at this offset,
689		 * it will be as a data or a hole according to page
690		 * cache that has data or not.
691		 */
692		if (ext4_es_is_unwritten(&es) &&
693		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694					      last + es.es_len, &holeoff))
695			break;
696
697		last += es.es_len;
698		holeoff = (loff_t)last << blkbits;
699		cond_resched();
700	} while (last <= end);
701
702	inode_unlock(inode);
703
704	if (holeoff > isize)
705		holeoff = isize;
706
707	return vfs_setpos(file, holeoff, maxsize);
708}
709
710/*
711 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712 * by calling generic_file_llseek_size() with the appropriate maxbytes
713 * value for each.
714 */
715loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716{
717	struct inode *inode = file->f_mapping->host;
718	loff_t maxbytes;
719
720	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722	else
723		maxbytes = inode->i_sb->s_maxbytes;
724
725	switch (whence) {
726	case SEEK_SET:
727	case SEEK_CUR:
728	case SEEK_END:
729		return generic_file_llseek_size(file, offset, whence,
730						maxbytes, i_size_read(inode));
731	case SEEK_DATA:
732		return ext4_seek_data(file, offset, maxbytes);
733	case SEEK_HOLE:
734		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
735	}
736
737	return -EINVAL;
 
 
738}
739
740const struct file_operations ext4_file_operations = {
741	.llseek		= ext4_llseek,
742	.read_iter	= ext4_file_read_iter,
743	.write_iter	= ext4_file_write_iter,
744	.unlocked_ioctl = ext4_ioctl,
745#ifdef CONFIG_COMPAT
746	.compat_ioctl	= ext4_compat_ioctl,
747#endif
748	.mmap		= ext4_file_mmap,
 
749	.open		= ext4_file_open,
750	.release	= ext4_release_file,
751	.fsync		= ext4_sync_file,
752	.get_unmapped_area = thp_get_unmapped_area,
753	.splice_read	= generic_file_splice_read,
754	.splice_write	= iter_file_splice_write,
755	.fallocate	= ext4_fallocate,
756};
757
758const struct inode_operations ext4_file_inode_operations = {
759	.setattr	= ext4_setattr,
760	.getattr	= ext4_getattr,
761	.listxattr	= ext4_listxattr,
762	.get_acl	= ext4_get_acl,
763	.set_acl	= ext4_set_acl,
764	.fiemap		= ext4_fiemap,
765};
766
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/ext4/file.c
  4 *
  5 * Copyright (C) 1992, 1993, 1994, 1995
  6 * Remy Card (card@masi.ibp.fr)
  7 * Laboratoire MASI - Institut Blaise Pascal
  8 * Universite Pierre et Marie Curie (Paris VI)
  9 *
 10 *  from
 11 *
 12 *  linux/fs/minix/file.c
 13 *
 14 *  Copyright (C) 1991, 1992  Linus Torvalds
 15 *
 16 *  ext4 fs regular file handling primitives
 17 *
 18 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 19 *	(jj@sunsite.ms.mff.cuni.cz)
 20 */
 21
 22#include <linux/time.h>
 23#include <linux/fs.h>
 24#include <linux/iomap.h>
 25#include <linux/mount.h>
 26#include <linux/path.h>
 27#include <linux/dax.h>
 28#include <linux/quotaops.h>
 29#include <linux/pagevec.h>
 30#include <linux/uio.h>
 31#include <linux/mman.h>
 32#include "ext4.h"
 33#include "ext4_jbd2.h"
 34#include "xattr.h"
 35#include "acl.h"
 36
 37#ifdef CONFIG_FS_DAX
 38static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 39{
 40	struct inode *inode = file_inode(iocb->ki_filp);
 41	ssize_t ret;
 42
 43	if (!inode_trylock_shared(inode)) {
 44		if (iocb->ki_flags & IOCB_NOWAIT)
 45			return -EAGAIN;
 46		inode_lock_shared(inode);
 47	}
 48	/*
 49	 * Recheck under inode lock - at this point we are sure it cannot
 50	 * change anymore
 51	 */
 52	if (!IS_DAX(inode)) {
 53		inode_unlock_shared(inode);
 54		/* Fallback to buffered IO in case we cannot support DAX */
 55		return generic_file_read_iter(iocb, to);
 56	}
 57	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 58	inode_unlock_shared(inode);
 59
 60	file_accessed(iocb->ki_filp);
 61	return ret;
 62}
 63#endif
 64
 65static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 66{
 67	if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
 68		return -EIO;
 69
 70	if (!iov_iter_count(to))
 71		return 0; /* skip atime */
 72
 73#ifdef CONFIG_FS_DAX
 74	if (IS_DAX(file_inode(iocb->ki_filp)))
 75		return ext4_dax_read_iter(iocb, to);
 76#endif
 77	return generic_file_read_iter(iocb, to);
 78}
 79
 80/*
 81 * Called when an inode is released. Note that this is different
 82 * from ext4_file_open: open gets called at every open, but release
 83 * gets called only when /all/ the files are closed.
 84 */
 85static int ext4_release_file(struct inode *inode, struct file *filp)
 86{
 87	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 88		ext4_alloc_da_blocks(inode);
 89		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 90	}
 91	/* if we are the last writer on the inode, drop the block reservation */
 92	if ((filp->f_mode & FMODE_WRITE) &&
 93			(atomic_read(&inode->i_writecount) == 1) &&
 94		        !EXT4_I(inode)->i_reserved_data_blocks)
 95	{
 96		down_write(&EXT4_I(inode)->i_data_sem);
 97		ext4_discard_preallocations(inode);
 98		up_write(&EXT4_I(inode)->i_data_sem);
 99	}
100	if (is_dx(inode) && filp->private_data)
101		ext4_htree_free_dir_info(filp->private_data);
102
103	return 0;
104}
105
106static void ext4_unwritten_wait(struct inode *inode)
107{
108	wait_queue_head_t *wq = ext4_ioend_wq(inode);
109
110	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
111}
112
113/*
114 * This tests whether the IO in question is block-aligned or not.
115 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
116 * are converted to written only after the IO is complete.  Until they are
117 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
118 * it needs to zero out portions of the start and/or end block.  If 2 AIO
119 * threads are at work on the same unwritten block, they must be synchronized
120 * or one thread will zero the other's data, causing corruption.
121 */
122static int
123ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
124{
125	struct super_block *sb = inode->i_sb;
126	int blockmask = sb->s_blocksize - 1;
127
128	if (pos >= i_size_read(inode))
129		return 0;
130
131	if ((pos | iov_iter_alignment(from)) & blockmask)
132		return 1;
133
134	return 0;
135}
136
137/* Is IO overwriting allocated and initialized blocks? */
138static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
139{
140	struct ext4_map_blocks map;
141	unsigned int blkbits = inode->i_blkbits;
142	int err, blklen;
143
144	if (pos + len > i_size_read(inode))
145		return false;
146
147	map.m_lblk = pos >> blkbits;
148	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
149	blklen = map.m_len;
150
151	err = ext4_map_blocks(NULL, inode, &map, 0);
152	/*
153	 * 'err==len' means that all of the blocks have been preallocated,
154	 * regardless of whether they have been initialized or not. To exclude
155	 * unwritten extents, we need to check m_flags.
156	 */
157	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
158}
159
160static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
161{
162	struct inode *inode = file_inode(iocb->ki_filp);
163	ssize_t ret;
164
165	ret = generic_write_checks(iocb, from);
166	if (ret <= 0)
167		return ret;
168	/*
169	 * If we have encountered a bitmap-format file, the size limit
170	 * is smaller than s_maxbytes, which is for extent-mapped files.
171	 */
172	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
173		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
174
175		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
176			return -EFBIG;
177		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
178	}
179	return iov_iter_count(from);
180}
181
182#ifdef CONFIG_FS_DAX
183static ssize_t
184ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
185{
186	struct inode *inode = file_inode(iocb->ki_filp);
187	ssize_t ret;
 
188
189	if (!inode_trylock(inode)) {
190		if (iocb->ki_flags & IOCB_NOWAIT)
191			return -EAGAIN;
192		inode_lock(inode);
193	}
194	ret = ext4_write_checks(iocb, from);
195	if (ret <= 0)
196		goto out;
197	ret = file_remove_privs(iocb->ki_filp);
198	if (ret)
199		goto out;
200	ret = file_update_time(iocb->ki_filp);
201	if (ret)
202		goto out;
203
 
 
 
 
204	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
205out:
206	inode_unlock(inode);
 
 
 
207	if (ret > 0)
208		ret = generic_write_sync(iocb, ret);
209	return ret;
210}
211#endif
212
213static ssize_t
214ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
215{
216	struct inode *inode = file_inode(iocb->ki_filp);
217	int o_direct = iocb->ki_flags & IOCB_DIRECT;
218	int unaligned_aio = 0;
219	int overwrite = 0;
220	ssize_t ret;
221
222	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
223		return -EIO;
224
225#ifdef CONFIG_FS_DAX
226	if (IS_DAX(inode))
227		return ext4_dax_write_iter(iocb, from);
228#endif
229	if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
230		return -EOPNOTSUPP;
231
232	if (!inode_trylock(inode)) {
233		if (iocb->ki_flags & IOCB_NOWAIT)
234			return -EAGAIN;
235		inode_lock(inode);
236	}
237
 
238	ret = ext4_write_checks(iocb, from);
239	if (ret <= 0)
240		goto out;
241
242	/*
243	 * Unaligned direct AIO must be serialized among each other as zeroing
244	 * of partial blocks of two competing unaligned AIOs can result in data
245	 * corruption.
246	 */
247	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
248	    !is_sync_kiocb(iocb) &&
249	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
250		unaligned_aio = 1;
251		ext4_unwritten_wait(inode);
252	}
253
254	iocb->private = &overwrite;
255	/* Check whether we do a DIO overwrite or not */
256	if (o_direct && !unaligned_aio) {
257		if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
258			if (ext4_should_dioread_nolock(inode))
259				overwrite = 1;
260		} else if (iocb->ki_flags & IOCB_NOWAIT) {
261			ret = -EAGAIN;
262			goto out;
263		}
264	}
265
266	ret = __generic_file_write_iter(iocb, from);
267	inode_unlock(inode);
268
269	if (ret > 0)
270		ret = generic_write_sync(iocb, ret);
271
272	return ret;
273
274out:
275	inode_unlock(inode);
276	return ret;
277}
278
279#ifdef CONFIG_FS_DAX
280static int ext4_dax_huge_fault(struct vm_fault *vmf,
281		enum page_entry_size pe_size)
282{
283	int result, error = 0;
284	int retries = 0;
285	handle_t *handle = NULL;
286	struct inode *inode = file_inode(vmf->vma->vm_file);
287	struct super_block *sb = inode->i_sb;
 
288
289	/*
290	 * We have to distinguish real writes from writes which will result in a
291	 * COW page; COW writes should *not* poke the journal (the file will not
292	 * be changed). Doing so would cause unintended failures when mounted
293	 * read-only.
294	 *
295	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
296	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
297	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
298	 * we eventually come back with a COW page.
299	 */
300	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
301		(vmf->vma->vm_flags & VM_SHARED);
302	pfn_t pfn;
 
 
 
 
 
 
303
304	if (write) {
305		sb_start_pagefault(sb);
306		file_update_time(vmf->vma->vm_file);
307		down_read(&EXT4_I(inode)->i_mmap_sem);
308retry:
309		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
310					       EXT4_DATA_TRANS_BLOCKS(sb));
311		if (IS_ERR(handle)) {
312			up_read(&EXT4_I(inode)->i_mmap_sem);
313			sb_end_pagefault(sb);
314			return VM_FAULT_SIGBUS;
315		}
316	} else {
317		down_read(&EXT4_I(inode)->i_mmap_sem);
318	}
319	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
320	if (write) {
321		ext4_journal_stop(handle);
322
323		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
324		    ext4_should_retry_alloc(sb, &retries))
325			goto retry;
326		/* Handling synchronous page fault? */
327		if (result & VM_FAULT_NEEDDSYNC)
328			result = dax_finish_sync_fault(vmf, pe_size, pfn);
329		up_read(&EXT4_I(inode)->i_mmap_sem);
330		sb_end_pagefault(sb);
331	} else {
332		up_read(&EXT4_I(inode)->i_mmap_sem);
333	}
334
335	return result;
336}
337
338static int ext4_dax_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
339{
340	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341}
342
343static const struct vm_operations_struct ext4_dax_vm_ops = {
344	.fault		= ext4_dax_fault,
345	.huge_fault	= ext4_dax_huge_fault,
346	.page_mkwrite	= ext4_dax_fault,
347	.pfn_mkwrite	= ext4_dax_fault,
348};
349#else
350#define ext4_dax_vm_ops	ext4_file_vm_ops
351#endif
352
353static const struct vm_operations_struct ext4_file_vm_ops = {
354	.fault		= ext4_filemap_fault,
355	.map_pages	= filemap_map_pages,
356	.page_mkwrite   = ext4_page_mkwrite,
357};
358
359static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
360{
361	struct inode *inode = file->f_mapping->host;
362
363	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
364		return -EIO;
365
366	/*
367	 * We don't support synchronous mappings for non-DAX files. At least
368	 * until someone comes with a sensible use case.
369	 */
370	if (!IS_DAX(file_inode(file)) && (vma->vm_flags & VM_SYNC))
371		return -EOPNOTSUPP;
372
373	file_accessed(file);
374	if (IS_DAX(file_inode(file))) {
375		vma->vm_ops = &ext4_dax_vm_ops;
376		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
377	} else {
378		vma->vm_ops = &ext4_file_vm_ops;
379	}
380	return 0;
381}
382
383static int ext4_file_open(struct inode * inode, struct file * filp)
384{
385	struct super_block *sb = inode->i_sb;
386	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387	struct vfsmount *mnt = filp->f_path.mnt;
 
388	struct path path;
389	char buf[64], *cp;
390	int ret;
391
392	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
393		return -EIO;
394
395	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
396		     !sb_rdonly(sb))) {
397		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
398		/*
399		 * Sample where the filesystem has been mounted and
400		 * store it in the superblock for sysadmin convenience
401		 * when trying to sort through large numbers of block
402		 * devices or filesystem images.
403		 */
404		memset(buf, 0, sizeof(buf));
405		path.mnt = mnt;
406		path.dentry = mnt->mnt_root;
407		cp = d_path(&path, buf, sizeof(buf));
408		if (!IS_ERR(cp)) {
409			handle_t *handle;
410			int err;
411
412			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
413			if (IS_ERR(handle))
414				return PTR_ERR(handle);
415			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
416			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
417			if (err) {
418				ext4_journal_stop(handle);
419				return err;
420			}
421			strlcpy(sbi->s_es->s_last_mounted, cp,
422				sizeof(sbi->s_es->s_last_mounted));
423			ext4_handle_dirty_super(handle, sb);
424			ext4_journal_stop(handle);
425		}
426	}
427
428	ret = fscrypt_file_open(inode, filp);
429	if (ret)
430		return ret;
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432	/*
433	 * Set up the jbd2_inode if we are opening the inode for
434	 * writing and the journal is present
435	 */
436	if (filp->f_mode & FMODE_WRITE) {
437		ret = ext4_inode_attach_jinode(inode);
438		if (ret < 0)
439			return ret;
440	}
 
 
 
 
 
 
 
 
 
 
 
441
442	filp->f_mode |= FMODE_NOWAIT;
443	return dquot_file_open(inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444}
445
446/*
447 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
448 * by calling generic_file_llseek_size() with the appropriate maxbytes
449 * value for each.
450 */
451loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
452{
453	struct inode *inode = file->f_mapping->host;
454	loff_t maxbytes;
455
456	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
457		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
458	else
459		maxbytes = inode->i_sb->s_maxbytes;
460
461	switch (whence) {
462	default:
 
 
463		return generic_file_llseek_size(file, offset, whence,
464						maxbytes, i_size_read(inode));
 
 
465	case SEEK_HOLE:
466		inode_lock_shared(inode);
467		offset = iomap_seek_hole(inode, offset, &ext4_iomap_ops);
468		inode_unlock_shared(inode);
469		break;
470	case SEEK_DATA:
471		inode_lock_shared(inode);
472		offset = iomap_seek_data(inode, offset, &ext4_iomap_ops);
473		inode_unlock_shared(inode);
474		break;
475	}
476
477	if (offset < 0)
478		return offset;
479	return vfs_setpos(file, offset, maxbytes);
480}
481
482const struct file_operations ext4_file_operations = {
483	.llseek		= ext4_llseek,
484	.read_iter	= ext4_file_read_iter,
485	.write_iter	= ext4_file_write_iter,
486	.unlocked_ioctl = ext4_ioctl,
487#ifdef CONFIG_COMPAT
488	.compat_ioctl	= ext4_compat_ioctl,
489#endif
490	.mmap		= ext4_file_mmap,
491	.mmap_supported_flags = MAP_SYNC,
492	.open		= ext4_file_open,
493	.release	= ext4_release_file,
494	.fsync		= ext4_sync_file,
495	.get_unmapped_area = thp_get_unmapped_area,
496	.splice_read	= generic_file_splice_read,
497	.splice_write	= iter_file_splice_write,
498	.fallocate	= ext4_fallocate,
499};
500
501const struct inode_operations ext4_file_inode_operations = {
502	.setattr	= ext4_setattr,
503	.getattr	= ext4_file_getattr,
504	.listxattr	= ext4_listxattr,
505	.get_acl	= ext4_get_acl,
506	.set_acl	= ext4_set_acl,
507	.fiemap		= ext4_fiemap,
508};
509