Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
  22
  23#include <asm/bcache.h>
  24#include <asm/bootinfo.h>
  25#include <asm/cache.h>
  26#include <asm/cacheops.h>
  27#include <asm/cpu.h>
  28#include <asm/cpu-features.h>
  29#include <asm/cpu-type.h>
  30#include <asm/io.h>
  31#include <asm/page.h>
  32#include <asm/pgtable.h>
  33#include <asm/r4kcache.h>
  34#include <asm/sections.h>
  35#include <asm/mmu_context.h>
  36#include <asm/war.h>
  37#include <asm/cacheflush.h> /* for run_uncached() */
  38#include <asm/traps.h>
  39#include <asm/dma-coherence.h>
  40#include <asm/mips-cm.h>
  41
  42/*
  43 * Bits describing what cache ops an SMP callback function may perform.
  44 *
  45 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  46 *		active_mm must be checked before using user addresses, falling
  47 *		back to kmap.
  48 * R4K_INDEX -	Index based cache operations.
  49 */
  50
  51#define R4K_HIT		BIT(0)
  52#define R4K_INDEX	BIT(1)
  53
  54/**
  55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  56 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  57 *
  58 * Decides whether a cache op needs to be performed on every core in the system.
  59 * This may change depending on the @type of cache operation, as well as the set
  60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  61 * hotplug from changing the result.
  62 *
  63 * Returns:	1 if the cache operation @type should be done on every core in
  64 *		the system.
  65 *		0 if the cache operation @type is globalized and only needs to
  66 *		be performed on a simple CPU.
  67 */
  68static inline bool r4k_op_needs_ipi(unsigned int type)
  69{
  70	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  71	if (type == R4K_HIT && mips_cm_present())
  72		return false;
  73
  74	/*
  75	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  76	 * be needed, but only if there are foreign CPUs (non-siblings with
  77	 * separate caches).
  78	 */
  79	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  80#ifdef CONFIG_SMP
  81	return !cpumask_empty(&cpu_foreign_map[0]);
  82#else
  83	return false;
  84#endif
  85}
  86
  87/*
  88 * Special Variant of smp_call_function for use by cache functions:
  89 *
  90 *  o No return value
  91 *  o collapses to normal function call on UP kernels
  92 *  o collapses to normal function call on systems with a single shared
  93 *    primary cache.
  94 *  o doesn't disable interrupts on the local CPU
  95 */
  96static inline void r4k_on_each_cpu(unsigned int type,
  97				   void (*func)(void *info), void *info)
  98{
  99	preempt_disable();
 100	if (r4k_op_needs_ipi(type))
 101		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 102				       func, info, 1);
 103	func(info);
 104	preempt_enable();
 105}
 106
 107/*
 108 * Must die.
 109 */
 110static unsigned long icache_size __read_mostly;
 111static unsigned long dcache_size __read_mostly;
 112static unsigned long vcache_size __read_mostly;
 113static unsigned long scache_size __read_mostly;
 114
 115/*
 116 * Dummy cache handling routines for machines without boardcaches
 117 */
 118static void cache_noop(void) {}
 119
 120static struct bcache_ops no_sc_ops = {
 121	.bc_enable = (void *)cache_noop,
 122	.bc_disable = (void *)cache_noop,
 123	.bc_wback_inv = (void *)cache_noop,
 124	.bc_inv = (void *)cache_noop
 125};
 126
 127struct bcache_ops *bcops = &no_sc_ops;
 128
 129#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 130#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 131
 132#define R4600_HIT_CACHEOP_WAR_IMPL					\
 133do {									\
 134	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
 135		*(volatile unsigned long *)CKSEG1;			\
 136	if (R4600_V1_HIT_CACHEOP_WAR)					\
 137		__asm__ __volatile__("nop;nop;nop;nop");		\
 138} while (0)
 139
 140static void (*r4k_blast_dcache_page)(unsigned long addr);
 141
 142static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 143{
 144	R4600_HIT_CACHEOP_WAR_IMPL;
 145	blast_dcache32_page(addr);
 146}
 147
 148static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 149{
 150	blast_dcache64_page(addr);
 151}
 152
 153static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 154{
 155	blast_dcache128_page(addr);
 156}
 157
 158static void r4k_blast_dcache_page_setup(void)
 159{
 160	unsigned long  dc_lsize = cpu_dcache_line_size();
 161
 162	switch (dc_lsize) {
 163	case 0:
 164		r4k_blast_dcache_page = (void *)cache_noop;
 165		break;
 166	case 16:
 167		r4k_blast_dcache_page = blast_dcache16_page;
 168		break;
 169	case 32:
 170		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 171		break;
 172	case 64:
 173		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 174		break;
 175	case 128:
 176		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 177		break;
 178	default:
 179		break;
 180	}
 181}
 182
 183#ifndef CONFIG_EVA
 184#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 185#else
 186
 187static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 188
 189static void r4k_blast_dcache_user_page_setup(void)
 190{
 191	unsigned long  dc_lsize = cpu_dcache_line_size();
 192
 193	if (dc_lsize == 0)
 194		r4k_blast_dcache_user_page = (void *)cache_noop;
 195	else if (dc_lsize == 16)
 196		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 197	else if (dc_lsize == 32)
 198		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 199	else if (dc_lsize == 64)
 200		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 201}
 202
 203#endif
 204
 205static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 206
 207static void r4k_blast_dcache_page_indexed_setup(void)
 208{
 209	unsigned long dc_lsize = cpu_dcache_line_size();
 210
 211	if (dc_lsize == 0)
 212		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 213	else if (dc_lsize == 16)
 214		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 215	else if (dc_lsize == 32)
 216		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 217	else if (dc_lsize == 64)
 218		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 219	else if (dc_lsize == 128)
 220		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
 221}
 222
 223void (* r4k_blast_dcache)(void);
 224EXPORT_SYMBOL(r4k_blast_dcache);
 225
 226static void r4k_blast_dcache_setup(void)
 227{
 228	unsigned long dc_lsize = cpu_dcache_line_size();
 229
 230	if (dc_lsize == 0)
 231		r4k_blast_dcache = (void *)cache_noop;
 232	else if (dc_lsize == 16)
 233		r4k_blast_dcache = blast_dcache16;
 234	else if (dc_lsize == 32)
 235		r4k_blast_dcache = blast_dcache32;
 236	else if (dc_lsize == 64)
 237		r4k_blast_dcache = blast_dcache64;
 238	else if (dc_lsize == 128)
 239		r4k_blast_dcache = blast_dcache128;
 240}
 241
 242/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
 243#define JUMP_TO_ALIGN(order) \
 244	__asm__ __volatile__( \
 245		"b\t1f\n\t" \
 246		".align\t" #order "\n\t" \
 247		"1:\n\t" \
 248		)
 249#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 250#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 251
 252static inline void blast_r4600_v1_icache32(void)
 253{
 254	unsigned long flags;
 255
 256	local_irq_save(flags);
 257	blast_icache32();
 258	local_irq_restore(flags);
 259}
 260
 261static inline void tx49_blast_icache32(void)
 262{
 263	unsigned long start = INDEX_BASE;
 264	unsigned long end = start + current_cpu_data.icache.waysize;
 265	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 266	unsigned long ws_end = current_cpu_data.icache.ways <<
 267			       current_cpu_data.icache.waybit;
 268	unsigned long ws, addr;
 269
 270	CACHE32_UNROLL32_ALIGN2;
 271	/* I'm in even chunk.  blast odd chunks */
 272	for (ws = 0; ws < ws_end; ws += ws_inc)
 273		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 274			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 275	CACHE32_UNROLL32_ALIGN;
 276	/* I'm in odd chunk.  blast even chunks */
 277	for (ws = 0; ws < ws_end; ws += ws_inc)
 278		for (addr = start; addr < end; addr += 0x400 * 2)
 279			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 280}
 281
 282static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 283{
 284	unsigned long flags;
 285
 286	local_irq_save(flags);
 287	blast_icache32_page_indexed(page);
 288	local_irq_restore(flags);
 289}
 290
 291static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 292{
 293	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 294	unsigned long start = INDEX_BASE + (page & indexmask);
 295	unsigned long end = start + PAGE_SIZE;
 296	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 297	unsigned long ws_end = current_cpu_data.icache.ways <<
 298			       current_cpu_data.icache.waybit;
 299	unsigned long ws, addr;
 300
 301	CACHE32_UNROLL32_ALIGN2;
 302	/* I'm in even chunk.  blast odd chunks */
 303	for (ws = 0; ws < ws_end; ws += ws_inc)
 304		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 305			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 306	CACHE32_UNROLL32_ALIGN;
 307	/* I'm in odd chunk.  blast even chunks */
 308	for (ws = 0; ws < ws_end; ws += ws_inc)
 309		for (addr = start; addr < end; addr += 0x400 * 2)
 310			cache32_unroll32(addr|ws, Index_Invalidate_I);
 
 311}
 312
 313static void (* r4k_blast_icache_page)(unsigned long addr);
 314
 315static void r4k_blast_icache_page_setup(void)
 316{
 317	unsigned long ic_lsize = cpu_icache_line_size();
 318
 319	if (ic_lsize == 0)
 320		r4k_blast_icache_page = (void *)cache_noop;
 321	else if (ic_lsize == 16)
 322		r4k_blast_icache_page = blast_icache16_page;
 323	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
 324		r4k_blast_icache_page = loongson2_blast_icache32_page;
 325	else if (ic_lsize == 32)
 326		r4k_blast_icache_page = blast_icache32_page;
 327	else if (ic_lsize == 64)
 328		r4k_blast_icache_page = blast_icache64_page;
 329	else if (ic_lsize == 128)
 330		r4k_blast_icache_page = blast_icache128_page;
 331}
 332
 333#ifndef CONFIG_EVA
 334#define r4k_blast_icache_user_page  r4k_blast_icache_page
 335#else
 336
 337static void (*r4k_blast_icache_user_page)(unsigned long addr);
 338
 339static void r4k_blast_icache_user_page_setup(void)
 340{
 341	unsigned long ic_lsize = cpu_icache_line_size();
 342
 343	if (ic_lsize == 0)
 344		r4k_blast_icache_user_page = (void *)cache_noop;
 345	else if (ic_lsize == 16)
 346		r4k_blast_icache_user_page = blast_icache16_user_page;
 347	else if (ic_lsize == 32)
 348		r4k_blast_icache_user_page = blast_icache32_user_page;
 349	else if (ic_lsize == 64)
 350		r4k_blast_icache_user_page = blast_icache64_user_page;
 351}
 352
 353#endif
 354
 355static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 356
 357static void r4k_blast_icache_page_indexed_setup(void)
 358{
 359	unsigned long ic_lsize = cpu_icache_line_size();
 360
 361	if (ic_lsize == 0)
 362		r4k_blast_icache_page_indexed = (void *)cache_noop;
 363	else if (ic_lsize == 16)
 364		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 365	else if (ic_lsize == 32) {
 366		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 367			r4k_blast_icache_page_indexed =
 368				blast_icache32_r4600_v1_page_indexed;
 369		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 370			r4k_blast_icache_page_indexed =
 371				tx49_blast_icache32_page_indexed;
 372		else if (current_cpu_type() == CPU_LOONGSON2)
 373			r4k_blast_icache_page_indexed =
 374				loongson2_blast_icache32_page_indexed;
 375		else
 376			r4k_blast_icache_page_indexed =
 377				blast_icache32_page_indexed;
 378	} else if (ic_lsize == 64)
 379		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 380}
 381
 382void (* r4k_blast_icache)(void);
 383EXPORT_SYMBOL(r4k_blast_icache);
 384
 385static void r4k_blast_icache_setup(void)
 386{
 387	unsigned long ic_lsize = cpu_icache_line_size();
 388
 389	if (ic_lsize == 0)
 390		r4k_blast_icache = (void *)cache_noop;
 391	else if (ic_lsize == 16)
 392		r4k_blast_icache = blast_icache16;
 393	else if (ic_lsize == 32) {
 394		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 395			r4k_blast_icache = blast_r4600_v1_icache32;
 396		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 397			r4k_blast_icache = tx49_blast_icache32;
 398		else if (current_cpu_type() == CPU_LOONGSON2)
 399			r4k_blast_icache = loongson2_blast_icache32;
 400		else
 401			r4k_blast_icache = blast_icache32;
 402	} else if (ic_lsize == 64)
 403		r4k_blast_icache = blast_icache64;
 404	else if (ic_lsize == 128)
 405		r4k_blast_icache = blast_icache128;
 406}
 407
 408static void (* r4k_blast_scache_page)(unsigned long addr);
 409
 410static void r4k_blast_scache_page_setup(void)
 411{
 412	unsigned long sc_lsize = cpu_scache_line_size();
 413
 414	if (scache_size == 0)
 415		r4k_blast_scache_page = (void *)cache_noop;
 416	else if (sc_lsize == 16)
 417		r4k_blast_scache_page = blast_scache16_page;
 418	else if (sc_lsize == 32)
 419		r4k_blast_scache_page = blast_scache32_page;
 420	else if (sc_lsize == 64)
 421		r4k_blast_scache_page = blast_scache64_page;
 422	else if (sc_lsize == 128)
 423		r4k_blast_scache_page = blast_scache128_page;
 424}
 425
 426static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 427
 428static void r4k_blast_scache_page_indexed_setup(void)
 429{
 430	unsigned long sc_lsize = cpu_scache_line_size();
 431
 432	if (scache_size == 0)
 433		r4k_blast_scache_page_indexed = (void *)cache_noop;
 434	else if (sc_lsize == 16)
 435		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 436	else if (sc_lsize == 32)
 437		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 438	else if (sc_lsize == 64)
 439		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 440	else if (sc_lsize == 128)
 441		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 442}
 443
 444static void (* r4k_blast_scache)(void);
 445
 446static void r4k_blast_scache_setup(void)
 447{
 448	unsigned long sc_lsize = cpu_scache_line_size();
 449
 450	if (scache_size == 0)
 451		r4k_blast_scache = (void *)cache_noop;
 452	else if (sc_lsize == 16)
 453		r4k_blast_scache = blast_scache16;
 454	else if (sc_lsize == 32)
 455		r4k_blast_scache = blast_scache32;
 456	else if (sc_lsize == 64)
 457		r4k_blast_scache = blast_scache64;
 458	else if (sc_lsize == 128)
 459		r4k_blast_scache = blast_scache128;
 460}
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462static inline void local_r4k___flush_cache_all(void * args)
 463{
 464	switch (current_cpu_type()) {
 465	case CPU_LOONGSON2:
 466	case CPU_LOONGSON3:
 467	case CPU_R4000SC:
 468	case CPU_R4000MC:
 469	case CPU_R4400SC:
 470	case CPU_R4400MC:
 471	case CPU_R10000:
 472	case CPU_R12000:
 473	case CPU_R14000:
 474	case CPU_R16000:
 475		/*
 476		 * These caches are inclusive caches, that is, if something
 477		 * is not cached in the S-cache, we know it also won't be
 478		 * in one of the primary caches.
 479		 */
 480		r4k_blast_scache();
 481		break;
 482
 
 
 
 
 
 483	case CPU_BMIPS5000:
 484		r4k_blast_scache();
 485		__sync();
 486		break;
 487
 488	default:
 489		r4k_blast_dcache();
 490		r4k_blast_icache();
 491		break;
 492	}
 493}
 494
 495static void r4k___flush_cache_all(void)
 496{
 497	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 498}
 499
 500/**
 501 * has_valid_asid() - Determine if an mm already has an ASID.
 502 * @mm:		Memory map.
 503 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 504 *
 505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 506 * of type @type within an r4k_on_each_cpu() call will affect. If
 507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 509 * will need to be checked.
 510 *
 511 * Must be called in non-preemptive context.
 512 *
 513 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 514 *		0 otherwise.
 515 */
 516static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 517{
 518	unsigned int i;
 519	const cpumask_t *mask = cpu_present_mask;
 520
 
 
 
 521	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 522#ifdef CONFIG_SMP
 523	/*
 524	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 525	 * each foreign core, so we only need to worry about siblings.
 526	 * Otherwise we need to worry about all present CPUs.
 527	 */
 528	if (r4k_op_needs_ipi(type))
 529		mask = &cpu_sibling_map[smp_processor_id()];
 530#endif
 531	for_each_cpu(i, mask)
 532		if (cpu_context(i, mm))
 533			return 1;
 534	return 0;
 535}
 536
 537static void r4k__flush_cache_vmap(void)
 538{
 539	r4k_blast_dcache();
 540}
 541
 542static void r4k__flush_cache_vunmap(void)
 543{
 544	r4k_blast_dcache();
 545}
 546
 547/*
 548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 549 * whole caches when vma is executable.
 550 */
 551static inline void local_r4k_flush_cache_range(void * args)
 552{
 553	struct vm_area_struct *vma = args;
 554	int exec = vma->vm_flags & VM_EXEC;
 555
 556	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 557		return;
 558
 559	/*
 560	 * If dcache can alias, we must blast it since mapping is changing.
 561	 * If executable, we must ensure any dirty lines are written back far
 562	 * enough to be visible to icache.
 563	 */
 564	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 565		r4k_blast_dcache();
 566	/* If executable, blast stale lines from icache */
 567	if (exec)
 568		r4k_blast_icache();
 569}
 570
 571static void r4k_flush_cache_range(struct vm_area_struct *vma,
 572	unsigned long start, unsigned long end)
 573{
 574	int exec = vma->vm_flags & VM_EXEC;
 575
 576	if (cpu_has_dc_aliases || exec)
 577		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 578}
 579
 580static inline void local_r4k_flush_cache_mm(void * args)
 581{
 582	struct mm_struct *mm = args;
 583
 584	if (!has_valid_asid(mm, R4K_INDEX))
 585		return;
 586
 587	/*
 588	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 589	 * only flush the primary caches but R1x000 behave sane ...
 590	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 591	 * caches, so we can bail out early.
 592	 */
 593	if (current_cpu_type() == CPU_R4000SC ||
 594	    current_cpu_type() == CPU_R4000MC ||
 595	    current_cpu_type() == CPU_R4400SC ||
 596	    current_cpu_type() == CPU_R4400MC) {
 597		r4k_blast_scache();
 598		return;
 599	}
 600
 601	r4k_blast_dcache();
 602}
 603
 604static void r4k_flush_cache_mm(struct mm_struct *mm)
 605{
 606	if (!cpu_has_dc_aliases)
 607		return;
 608
 609	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 610}
 611
 612struct flush_cache_page_args {
 613	struct vm_area_struct *vma;
 614	unsigned long addr;
 615	unsigned long pfn;
 616};
 617
 618static inline void local_r4k_flush_cache_page(void *args)
 619{
 620	struct flush_cache_page_args *fcp_args = args;
 621	struct vm_area_struct *vma = fcp_args->vma;
 622	unsigned long addr = fcp_args->addr;
 623	struct page *page = pfn_to_page(fcp_args->pfn);
 624	int exec = vma->vm_flags & VM_EXEC;
 625	struct mm_struct *mm = vma->vm_mm;
 626	int map_coherent = 0;
 627	pgd_t *pgdp;
 628	pud_t *pudp;
 629	pmd_t *pmdp;
 630	pte_t *ptep;
 631	void *vaddr;
 632
 633	/*
 634	 * If owns no valid ASID yet, cannot possibly have gotten
 635	 * this page into the cache.
 636	 */
 637	if (!has_valid_asid(mm, R4K_HIT))
 638		return;
 639
 640	addr &= PAGE_MASK;
 641	pgdp = pgd_offset(mm, addr);
 642	pudp = pud_offset(pgdp, addr);
 643	pmdp = pmd_offset(pudp, addr);
 644	ptep = pte_offset(pmdp, addr);
 645
 646	/*
 647	 * If the page isn't marked valid, the page cannot possibly be
 648	 * in the cache.
 649	 */
 650	if (!(pte_present(*ptep)))
 651		return;
 652
 653	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 654		vaddr = NULL;
 655	else {
 656		/*
 657		 * Use kmap_coherent or kmap_atomic to do flushes for
 658		 * another ASID than the current one.
 659		 */
 660		map_coherent = (cpu_has_dc_aliases &&
 661				page_mapcount(page) &&
 662				!Page_dcache_dirty(page));
 663		if (map_coherent)
 664			vaddr = kmap_coherent(page, addr);
 665		else
 666			vaddr = kmap_atomic(page);
 667		addr = (unsigned long)vaddr;
 668	}
 669
 670	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 671		vaddr ? r4k_blast_dcache_page(addr) :
 672			r4k_blast_dcache_user_page(addr);
 673		if (exec && !cpu_icache_snoops_remote_store)
 674			r4k_blast_scache_page(addr);
 675	}
 676	if (exec) {
 677		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 678			int cpu = smp_processor_id();
 679
 680			if (cpu_context(cpu, mm) != 0)
 681				drop_mmu_context(mm, cpu);
 682		} else
 683			vaddr ? r4k_blast_icache_page(addr) :
 684				r4k_blast_icache_user_page(addr);
 685	}
 686
 687	if (vaddr) {
 688		if (map_coherent)
 689			kunmap_coherent();
 690		else
 691			kunmap_atomic(vaddr);
 692	}
 693}
 694
 695static void r4k_flush_cache_page(struct vm_area_struct *vma,
 696	unsigned long addr, unsigned long pfn)
 697{
 698	struct flush_cache_page_args args;
 699
 700	args.vma = vma;
 701	args.addr = addr;
 702	args.pfn = pfn;
 703
 704	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 705}
 706
 707static inline void local_r4k_flush_data_cache_page(void * addr)
 708{
 709	r4k_blast_dcache_page((unsigned long) addr);
 710}
 711
 712static void r4k_flush_data_cache_page(unsigned long addr)
 713{
 714	if (in_atomic())
 715		local_r4k_flush_data_cache_page((void *)addr);
 716	else
 717		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 718				(void *) addr);
 719}
 720
 721struct flush_icache_range_args {
 722	unsigned long start;
 723	unsigned long end;
 724	unsigned int type;
 725	bool user;
 726};
 727
 728static inline void __local_r4k_flush_icache_range(unsigned long start,
 729						  unsigned long end,
 730						  unsigned int type,
 731						  bool user)
 732{
 733	if (!cpu_has_ic_fills_f_dc) {
 734		if (type == R4K_INDEX ||
 735		    (type & R4K_INDEX && end - start >= dcache_size)) {
 736			r4k_blast_dcache();
 737		} else {
 738			R4600_HIT_CACHEOP_WAR_IMPL;
 739			if (user)
 740				protected_blast_dcache_range(start, end);
 741			else
 742				blast_dcache_range(start, end);
 743		}
 744	}
 745
 746	if (type == R4K_INDEX ||
 747	    (type & R4K_INDEX && end - start > icache_size))
 748		r4k_blast_icache();
 749	else {
 750		switch (boot_cpu_type()) {
 751		case CPU_LOONGSON2:
 752			protected_loongson2_blast_icache_range(start, end);
 753			break;
 754
 755		default:
 756			if (user)
 757				protected_blast_icache_range(start, end);
 758			else
 759				blast_icache_range(start, end);
 760			break;
 761		}
 762	}
 763}
 764
 765static inline void local_r4k_flush_icache_range(unsigned long start,
 766						unsigned long end)
 767{
 768	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 769}
 770
 771static inline void local_r4k_flush_icache_user_range(unsigned long start,
 772						     unsigned long end)
 773{
 774	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 775}
 776
 777static inline void local_r4k_flush_icache_range_ipi(void *args)
 778{
 779	struct flush_icache_range_args *fir_args = args;
 780	unsigned long start = fir_args->start;
 781	unsigned long end = fir_args->end;
 782	unsigned int type = fir_args->type;
 783	bool user = fir_args->user;
 784
 785	__local_r4k_flush_icache_range(start, end, type, user);
 786}
 787
 788static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 789				     bool user)
 790{
 791	struct flush_icache_range_args args;
 792	unsigned long size, cache_size;
 793
 794	args.start = start;
 795	args.end = end;
 796	args.type = R4K_HIT | R4K_INDEX;
 797	args.user = user;
 798
 799	/*
 800	 * Indexed cache ops require an SMP call.
 801	 * Consider if that can or should be avoided.
 802	 */
 803	preempt_disable();
 804	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 805		/*
 806		 * If address-based cache ops don't require an SMP call, then
 807		 * use them exclusively for small flushes.
 808		 */
 809		size = end - start;
 810		cache_size = icache_size;
 811		if (!cpu_has_ic_fills_f_dc) {
 812			size *= 2;
 813			cache_size += dcache_size;
 814		}
 815		if (size <= cache_size)
 816			args.type &= ~R4K_INDEX;
 817	}
 818	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 819	preempt_enable();
 820	instruction_hazard();
 821}
 822
 823static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 824{
 825	return __r4k_flush_icache_range(start, end, false);
 826}
 827
 828static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 829{
 830	return __r4k_flush_icache_range(start, end, true);
 831}
 832
 833#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
 834
 835static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 836{
 837	/* Catch bad driver code */
 838	BUG_ON(size == 0);
 
 839
 840	preempt_disable();
 841	if (cpu_has_inclusive_pcaches) {
 842		if (size >= scache_size)
 843			r4k_blast_scache();
 844		else
 
 
 
 845			blast_scache_range(addr, addr + size);
 
 846		preempt_enable();
 847		__sync();
 848		return;
 849	}
 850
 851	/*
 852	 * Either no secondary cache or the available caches don't have the
 853	 * subset property so we have to flush the primary caches
 854	 * explicitly
 
 
 
 855	 */
 856	if (size >= dcache_size) {
 857		r4k_blast_dcache();
 858	} else {
 859		R4600_HIT_CACHEOP_WAR_IMPL;
 860		blast_dcache_range(addr, addr + size);
 861	}
 862	preempt_enable();
 863
 864	bc_wback_inv(addr, size);
 865	__sync();
 866}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 869{
 870	/* Catch bad driver code */
 871	BUG_ON(size == 0);
 
 872
 873	preempt_disable();
 
 
 
 
 874	if (cpu_has_inclusive_pcaches) {
 875		if (size >= scache_size)
 876			r4k_blast_scache();
 877		else {
 
 
 
 878			/*
 879			 * There is no clearly documented alignment requirement
 880			 * for the cache instruction on MIPS processors and
 881			 * some processors, among them the RM5200 and RM7000
 882			 * QED processors will throw an address error for cache
 883			 * hit ops with insufficient alignment.	 Solved by
 884			 * aligning the address to cache line size.
 885			 */
 886			blast_inv_scache_range(addr, addr + size);
 887		}
 888		preempt_enable();
 889		__sync();
 890		return;
 891	}
 892
 893	if (size >= dcache_size) {
 894		r4k_blast_dcache();
 895	} else {
 896		R4600_HIT_CACHEOP_WAR_IMPL;
 897		blast_inv_dcache_range(addr, addr + size);
 898	}
 899	preempt_enable();
 900
 901	bc_inv(addr, size);
 902	__sync();
 903}
 904#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
 905
 906struct flush_cache_sigtramp_args {
 907	struct mm_struct *mm;
 908	struct page *page;
 909	unsigned long addr;
 910};
 911
 912/*
 913 * While we're protected against bad userland addresses we don't care
 914 * very much about what happens in that case.  Usually a segmentation
 915 * fault will dump the process later on anyway ...
 916 */
 917static void local_r4k_flush_cache_sigtramp(void *args)
 918{
 919	struct flush_cache_sigtramp_args *fcs_args = args;
 920	unsigned long addr = fcs_args->addr;
 921	struct page *page = fcs_args->page;
 922	struct mm_struct *mm = fcs_args->mm;
 923	int map_coherent = 0;
 924	void *vaddr;
 925
 926	unsigned long ic_lsize = cpu_icache_line_size();
 927	unsigned long dc_lsize = cpu_dcache_line_size();
 928	unsigned long sc_lsize = cpu_scache_line_size();
 929
 930	/*
 931	 * If owns no valid ASID yet, cannot possibly have gotten
 932	 * this page into the cache.
 933	 */
 934	if (!has_valid_asid(mm, R4K_HIT))
 935		return;
 936
 937	if (mm == current->active_mm) {
 938		vaddr = NULL;
 939	} else {
 940		/*
 941		 * Use kmap_coherent or kmap_atomic to do flushes for
 942		 * another ASID than the current one.
 943		 */
 944		map_coherent = (cpu_has_dc_aliases &&
 945				page_mapcount(page) &&
 946				!Page_dcache_dirty(page));
 947		if (map_coherent)
 948			vaddr = kmap_coherent(page, addr);
 949		else
 950			vaddr = kmap_atomic(page);
 951		addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
 952	}
 953
 954	R4600_HIT_CACHEOP_WAR_IMPL;
 955	if (!cpu_has_ic_fills_f_dc) {
 956		if (dc_lsize)
 957			vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
 958			      : protected_writeback_dcache_line(
 959							addr & ~(dc_lsize - 1));
 960		if (!cpu_icache_snoops_remote_store && scache_size)
 961			vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
 962			      : protected_writeback_scache_line(
 963							addr & ~(sc_lsize - 1));
 964	}
 965	if (ic_lsize)
 966		vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
 967		      : protected_flush_icache_line(addr & ~(ic_lsize - 1));
 968
 969	if (vaddr) {
 970		if (map_coherent)
 971			kunmap_coherent();
 972		else
 973			kunmap_atomic(vaddr);
 974	}
 975
 976	if (MIPS4K_ICACHE_REFILL_WAR) {
 977		__asm__ __volatile__ (
 978			".set push\n\t"
 979			".set noat\n\t"
 980			".set "MIPS_ISA_LEVEL"\n\t"
 981#ifdef CONFIG_32BIT
 982			"la	$at,1f\n\t"
 983#endif
 984#ifdef CONFIG_64BIT
 985			"dla	$at,1f\n\t"
 986#endif
 987			"cache	%0,($at)\n\t"
 988			"nop; nop; nop\n"
 989			"1:\n\t"
 990			".set pop"
 991			:
 992			: "i" (Hit_Invalidate_I));
 993	}
 994	if (MIPS_CACHE_SYNC_WAR)
 995		__asm__ __volatile__ ("sync");
 996}
 997
 998static void r4k_flush_cache_sigtramp(unsigned long addr)
 999{
1000	struct flush_cache_sigtramp_args args;
1001	int npages;
1002
1003	down_read(&current->mm->mmap_sem);
1004
1005	npages = get_user_pages_fast(addr, 1, 0, &args.page);
1006	if (npages < 1)
1007		goto out;
1008
1009	args.mm = current->mm;
1010	args.addr = addr;
1011
1012	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1013
1014	put_page(args.page);
1015out:
1016	up_read(&current->mm->mmap_sem);
1017}
1018
1019static void r4k_flush_icache_all(void)
1020{
1021	if (cpu_has_vtag_icache)
1022		r4k_blast_icache();
1023}
1024
1025struct flush_kernel_vmap_range_args {
1026	unsigned long	vaddr;
1027	int		size;
1028};
1029
1030static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1031{
1032	/*
1033	 * Aliases only affect the primary caches so don't bother with
1034	 * S-caches or T-caches.
1035	 */
1036	r4k_blast_dcache();
1037}
1038
1039static inline void local_r4k_flush_kernel_vmap_range(void *args)
1040{
1041	struct flush_kernel_vmap_range_args *vmra = args;
1042	unsigned long vaddr = vmra->vaddr;
1043	int size = vmra->size;
1044
1045	/*
1046	 * Aliases only affect the primary caches so don't bother with
1047	 * S-caches or T-caches.
1048	 */
1049	R4600_HIT_CACHEOP_WAR_IMPL;
1050	blast_dcache_range(vaddr, vaddr + size);
1051}
1052
1053static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1054{
1055	struct flush_kernel_vmap_range_args args;
1056
1057	args.vaddr = (unsigned long) vaddr;
1058	args.size = size;
1059
1060	if (size >= dcache_size)
1061		r4k_on_each_cpu(R4K_INDEX,
1062				local_r4k_flush_kernel_vmap_range_index, NULL);
1063	else
1064		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1065				&args);
1066}
1067
1068static inline void rm7k_erratum31(void)
1069{
1070	const unsigned long ic_lsize = 32;
1071	unsigned long addr;
1072
1073	/* RM7000 erratum #31. The icache is screwed at startup. */
1074	write_c0_taglo(0);
1075	write_c0_taghi(0);
1076
1077	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1078		__asm__ __volatile__ (
1079			".set push\n\t"
1080			".set noreorder\n\t"
1081			".set mips3\n\t"
1082			"cache\t%1, 0(%0)\n\t"
1083			"cache\t%1, 0x1000(%0)\n\t"
1084			"cache\t%1, 0x2000(%0)\n\t"
1085			"cache\t%1, 0x3000(%0)\n\t"
1086			"cache\t%2, 0(%0)\n\t"
1087			"cache\t%2, 0x1000(%0)\n\t"
1088			"cache\t%2, 0x2000(%0)\n\t"
1089			"cache\t%2, 0x3000(%0)\n\t"
1090			"cache\t%1, 0(%0)\n\t"
1091			"cache\t%1, 0x1000(%0)\n\t"
1092			"cache\t%1, 0x2000(%0)\n\t"
1093			"cache\t%1, 0x3000(%0)\n\t"
1094			".set pop\n"
1095			:
1096			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1097	}
1098}
1099
1100static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1101{
1102	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1103	unsigned int rev = c->processor_id & PRID_REV_MASK;
1104	int present = 0;
1105
1106	/*
1107	 * Early versions of the 74K do not update the cache tags on a
1108	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1109	 * aliases.  In this case it is better to treat the cache as always
1110	 * having aliases.  Also disable the synonym tag update feature
1111	 * where available.  In this case no opportunistic tag update will
1112	 * happen where a load causes a virtual address miss but a physical
1113	 * address hit during a D-cache look-up.
1114	 */
1115	switch (imp) {
1116	case PRID_IMP_74K:
1117		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1118			present = 1;
1119		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1120			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1121		break;
1122	case PRID_IMP_1074K:
1123		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1124			present = 1;
1125			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1126		}
1127		break;
1128	default:
1129		BUG();
1130	}
1131
1132	return present;
1133}
1134
1135static void b5k_instruction_hazard(void)
1136{
1137	__sync();
1138	__sync();
1139	__asm__ __volatile__(
1140	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1141	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1142	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1143	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1144	: : : "memory");
1145}
1146
1147static char *way_string[] = { NULL, "direct mapped", "2-way",
1148	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1149	"9-way", "10-way", "11-way", "12-way",
1150	"13-way", "14-way", "15-way", "16-way",
1151};
1152
1153static void probe_pcache(void)
1154{
1155	struct cpuinfo_mips *c = &current_cpu_data;
1156	unsigned int config = read_c0_config();
1157	unsigned int prid = read_c0_prid();
1158	int has_74k_erratum = 0;
1159	unsigned long config1;
1160	unsigned int lsize;
1161
1162	switch (current_cpu_type()) {
1163	case CPU_R4600:			/* QED style two way caches? */
1164	case CPU_R4700:
1165	case CPU_R5000:
1166	case CPU_NEVADA:
1167		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169		c->icache.ways = 2;
1170		c->icache.waybit = __ffs(icache_size/2);
1171
1172		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174		c->dcache.ways = 2;
1175		c->dcache.waybit= __ffs(dcache_size/2);
1176
1177		c->options |= MIPS_CPU_CACHE_CDEX_P;
1178		break;
1179
1180	case CPU_R5432:
1181	case CPU_R5500:
1182		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1183		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1184		c->icache.ways = 2;
1185		c->icache.waybit= 0;
1186
1187		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1188		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1189		c->dcache.ways = 2;
1190		c->dcache.waybit = 0;
1191
1192		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1193		break;
1194
1195	case CPU_TX49XX:
1196		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1197		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1198		c->icache.ways = 4;
1199		c->icache.waybit= 0;
1200
1201		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1202		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1203		c->dcache.ways = 4;
1204		c->dcache.waybit = 0;
1205
1206		c->options |= MIPS_CPU_CACHE_CDEX_P;
1207		c->options |= MIPS_CPU_PREFETCH;
1208		break;
1209
1210	case CPU_R4000PC:
1211	case CPU_R4000SC:
1212	case CPU_R4000MC:
1213	case CPU_R4400PC:
1214	case CPU_R4400SC:
1215	case CPU_R4400MC:
1216	case CPU_R4300:
1217		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1218		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1219		c->icache.ways = 1;
1220		c->icache.waybit = 0;	/* doesn't matter */
1221
1222		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1223		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1224		c->dcache.ways = 1;
1225		c->dcache.waybit = 0;	/* does not matter */
1226
1227		c->options |= MIPS_CPU_CACHE_CDEX_P;
1228		break;
1229
1230	case CPU_R10000:
1231	case CPU_R12000:
1232	case CPU_R14000:
1233	case CPU_R16000:
1234		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1235		c->icache.linesz = 64;
1236		c->icache.ways = 2;
1237		c->icache.waybit = 0;
1238
1239		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1240		c->dcache.linesz = 32;
1241		c->dcache.ways = 2;
1242		c->dcache.waybit = 0;
1243
1244		c->options |= MIPS_CPU_PREFETCH;
1245		break;
1246
1247	case CPU_VR4133:
1248		write_c0_config(config & ~VR41_CONF_P4K);
 
1249	case CPU_VR4131:
1250		/* Workaround for cache instruction bug of VR4131 */
1251		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1252		    c->processor_id == 0x0c82U) {
1253			config |= 0x00400000U;
1254			if (c->processor_id == 0x0c80U)
1255				config |= VR41_CONF_BP;
1256			write_c0_config(config);
1257		} else
1258			c->options |= MIPS_CPU_CACHE_CDEX_P;
1259
1260		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1261		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1262		c->icache.ways = 2;
1263		c->icache.waybit = __ffs(icache_size/2);
1264
1265		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1266		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1267		c->dcache.ways = 2;
1268		c->dcache.waybit = __ffs(dcache_size/2);
1269		break;
1270
1271	case CPU_VR41XX:
1272	case CPU_VR4111:
1273	case CPU_VR4121:
1274	case CPU_VR4122:
1275	case CPU_VR4181:
1276	case CPU_VR4181A:
1277		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1278		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1279		c->icache.ways = 1;
1280		c->icache.waybit = 0;	/* doesn't matter */
1281
1282		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1283		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1284		c->dcache.ways = 1;
1285		c->dcache.waybit = 0;	/* does not matter */
1286
1287		c->options |= MIPS_CPU_CACHE_CDEX_P;
1288		break;
1289
1290	case CPU_RM7000:
1291		rm7k_erratum31();
1292
1293		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1294		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1295		c->icache.ways = 4;
1296		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1297
1298		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1299		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1300		c->dcache.ways = 4;
1301		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1302
1303		c->options |= MIPS_CPU_CACHE_CDEX_P;
1304		c->options |= MIPS_CPU_PREFETCH;
1305		break;
1306
1307	case CPU_LOONGSON2:
1308		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1309		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1310		if (prid & 0x3)
1311			c->icache.ways = 4;
1312		else
1313			c->icache.ways = 2;
1314		c->icache.waybit = 0;
1315
1316		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1317		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1318		if (prid & 0x3)
1319			c->dcache.ways = 4;
1320		else
1321			c->dcache.ways = 2;
1322		c->dcache.waybit = 0;
1323		break;
1324
1325	case CPU_LOONGSON3:
1326		config1 = read_c0_config1();
1327		lsize = (config1 >> 19) & 7;
1328		if (lsize)
1329			c->icache.linesz = 2 << lsize;
1330		else
1331			c->icache.linesz = 0;
1332		c->icache.sets = 64 << ((config1 >> 22) & 7);
1333		c->icache.ways = 1 + ((config1 >> 16) & 7);
1334		icache_size = c->icache.sets *
1335					  c->icache.ways *
1336					  c->icache.linesz;
1337		c->icache.waybit = 0;
1338
1339		lsize = (config1 >> 10) & 7;
1340		if (lsize)
1341			c->dcache.linesz = 2 << lsize;
1342		else
1343			c->dcache.linesz = 0;
1344		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1345		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1346		dcache_size = c->dcache.sets *
1347					  c->dcache.ways *
1348					  c->dcache.linesz;
1349		c->dcache.waybit = 0;
1350		if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
 
 
1351			c->options |= MIPS_CPU_PREFETCH;
1352		break;
1353
1354	case CPU_CAVIUM_OCTEON3:
1355		/* For now lie about the number of ways. */
1356		c->icache.linesz = 128;
1357		c->icache.sets = 16;
1358		c->icache.ways = 8;
1359		c->icache.flags |= MIPS_CACHE_VTAG;
1360		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1361
1362		c->dcache.linesz = 128;
1363		c->dcache.ways = 8;
1364		c->dcache.sets = 8;
1365		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1366		c->options |= MIPS_CPU_PREFETCH;
1367		break;
1368
1369	default:
1370		if (!(config & MIPS_CONF_M))
1371			panic("Don't know how to probe P-caches on this cpu.");
1372
1373		/*
1374		 * So we seem to be a MIPS32 or MIPS64 CPU
1375		 * So let's probe the I-cache ...
1376		 */
1377		config1 = read_c0_config1();
1378
1379		lsize = (config1 >> 19) & 7;
1380
1381		/* IL == 7 is reserved */
1382		if (lsize == 7)
1383			panic("Invalid icache line size");
1384
1385		c->icache.linesz = lsize ? 2 << lsize : 0;
1386
1387		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1388		c->icache.ways = 1 + ((config1 >> 16) & 7);
1389
1390		icache_size = c->icache.sets *
1391			      c->icache.ways *
1392			      c->icache.linesz;
1393		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1394
1395		if (config & MIPS_CONF_VI)
1396			c->icache.flags |= MIPS_CACHE_VTAG;
1397
1398		/*
1399		 * Now probe the MIPS32 / MIPS64 data cache.
1400		 */
1401		c->dcache.flags = 0;
1402
1403		lsize = (config1 >> 10) & 7;
1404
1405		/* DL == 7 is reserved */
1406		if (lsize == 7)
1407			panic("Invalid dcache line size");
1408
1409		c->dcache.linesz = lsize ? 2 << lsize : 0;
1410
1411		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1412		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1413
1414		dcache_size = c->dcache.sets *
1415			      c->dcache.ways *
1416			      c->dcache.linesz;
1417		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1418
1419		c->options |= MIPS_CPU_PREFETCH;
1420		break;
1421	}
1422
1423	/*
1424	 * Processor configuration sanity check for the R4000SC erratum
1425	 * #5.	With page sizes larger than 32kB there is no possibility
1426	 * to get a VCE exception anymore so we don't care about this
1427	 * misconfiguration.  The case is rather theoretical anyway;
1428	 * presumably no vendor is shipping his hardware in the "bad"
1429	 * configuration.
1430	 */
1431	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1432	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1433	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1434	    PAGE_SIZE <= 0x8000)
1435		panic("Improper R4000SC processor configuration detected");
1436
1437	/* compute a couple of other cache variables */
1438	c->icache.waysize = icache_size / c->icache.ways;
1439	c->dcache.waysize = dcache_size / c->dcache.ways;
1440
1441	c->icache.sets = c->icache.linesz ?
1442		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1443	c->dcache.sets = c->dcache.linesz ?
1444		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1445
1446	/*
1447	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1448	 * virtually indexed so normally would suffer from aliases.  So
1449	 * normally they'd suffer from aliases but magic in the hardware deals
1450	 * with that for us so we don't need to take care ourselves.
1451	 */
1452	switch (current_cpu_type()) {
1453	case CPU_20KC:
1454	case CPU_25KF:
 
 
1455	case CPU_SB1:
1456	case CPU_SB1A:
1457	case CPU_XLR:
1458		c->dcache.flags |= MIPS_CACHE_PINDEX;
1459		break;
1460
1461	case CPU_R10000:
1462	case CPU_R12000:
1463	case CPU_R14000:
1464	case CPU_R16000:
1465		break;
1466
1467	case CPU_74K:
1468	case CPU_1074K:
1469		has_74k_erratum = alias_74k_erratum(c);
1470		/* Fall through. */
1471	case CPU_M14KC:
1472	case CPU_M14KEC:
1473	case CPU_24K:
1474	case CPU_34K:
1475	case CPU_1004K:
1476	case CPU_INTERAPTIV:
1477	case CPU_P5600:
1478	case CPU_PROAPTIV:
1479	case CPU_M5150:
1480	case CPU_QEMU_GENERIC:
1481	case CPU_I6400:
1482	case CPU_P6600:
1483	case CPU_M6250:
1484		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1485		    (c->icache.waysize > PAGE_SIZE))
1486			c->icache.flags |= MIPS_CACHE_ALIASES;
1487		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1488			/*
1489			 * Effectively physically indexed dcache,
1490			 * thus no virtual aliases.
1491			*/
1492			c->dcache.flags |= MIPS_CACHE_PINDEX;
1493			break;
1494		}
 
1495	default:
1496		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1497			c->dcache.flags |= MIPS_CACHE_ALIASES;
1498	}
1499
 
 
 
 
 
 
 
 
 
 
 
 
1500	switch (current_cpu_type()) {
1501	case CPU_20KC:
1502		/*
1503		 * Some older 20Kc chips doesn't have the 'VI' bit in
1504		 * the config register.
1505		 */
1506		c->icache.flags |= MIPS_CACHE_VTAG;
1507		break;
1508
1509	case CPU_ALCHEMY:
1510	case CPU_I6400:
 
1511		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1512		break;
1513
1514	case CPU_BMIPS5000:
1515		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1516		/* Cache aliases are handled in hardware; allow HIGHMEM */
1517		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1518		break;
1519
1520	case CPU_LOONGSON2:
1521		/*
1522		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1523		 * one op will act on all 4 ways
1524		 */
1525		c->icache.ways = 1;
1526	}
1527
1528	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1529	       icache_size >> 10,
1530	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1531	       way_string[c->icache.ways], c->icache.linesz);
1532
1533	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1534	       dcache_size >> 10, way_string[c->dcache.ways],
1535	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1536	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1537			"cache aliases" : "no aliases",
1538	       c->dcache.linesz);
1539}
1540
1541static void probe_vcache(void)
1542{
1543	struct cpuinfo_mips *c = &current_cpu_data;
1544	unsigned int config2, lsize;
1545
1546	if (current_cpu_type() != CPU_LOONGSON3)
1547		return;
1548
1549	config2 = read_c0_config2();
1550	if ((lsize = ((config2 >> 20) & 15)))
1551		c->vcache.linesz = 2 << lsize;
1552	else
1553		c->vcache.linesz = lsize;
1554
1555	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1556	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1557
1558	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1559
1560	c->vcache.waybit = 0;
1561	c->vcache.waysize = vcache_size / c->vcache.ways;
1562
1563	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1564		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1565}
1566
1567/*
1568 * If you even _breathe_ on this function, look at the gcc output and make sure
1569 * it does not pop things on and off the stack for the cache sizing loop that
1570 * executes in KSEG1 space or else you will crash and burn badly.  You have
1571 * been warned.
1572 */
1573static int probe_scache(void)
1574{
1575	unsigned long flags, addr, begin, end, pow2;
1576	unsigned int config = read_c0_config();
1577	struct cpuinfo_mips *c = &current_cpu_data;
1578
1579	if (config & CONF_SC)
1580		return 0;
1581
1582	begin = (unsigned long) &_stext;
1583	begin &= ~((4 * 1024 * 1024) - 1);
1584	end = begin + (4 * 1024 * 1024);
1585
1586	/*
1587	 * This is such a bitch, you'd think they would make it easy to do
1588	 * this.  Away you daemons of stupidity!
1589	 */
1590	local_irq_save(flags);
1591
1592	/* Fill each size-multiple cache line with a valid tag. */
1593	pow2 = (64 * 1024);
1594	for (addr = begin; addr < end; addr = (begin + pow2)) {
1595		unsigned long *p = (unsigned long *) addr;
1596		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1597		pow2 <<= 1;
1598	}
1599
1600	/* Load first line with zero (therefore invalid) tag. */
1601	write_c0_taglo(0);
1602	write_c0_taghi(0);
1603	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1604	cache_op(Index_Store_Tag_I, begin);
1605	cache_op(Index_Store_Tag_D, begin);
1606	cache_op(Index_Store_Tag_SD, begin);
1607
1608	/* Now search for the wrap around point. */
1609	pow2 = (128 * 1024);
1610	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1611		cache_op(Index_Load_Tag_SD, addr);
1612		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1613		if (!read_c0_taglo())
1614			break;
1615		pow2 <<= 1;
1616	}
1617	local_irq_restore(flags);
1618	addr -= begin;
1619
1620	scache_size = addr;
1621	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1622	c->scache.ways = 1;
1623	c->scache.waybit = 0;		/* does not matter */
1624
1625	return 1;
1626}
1627
1628static void __init loongson2_sc_init(void)
1629{
1630	struct cpuinfo_mips *c = &current_cpu_data;
1631
1632	scache_size = 512*1024;
1633	c->scache.linesz = 32;
1634	c->scache.ways = 4;
1635	c->scache.waybit = 0;
1636	c->scache.waysize = scache_size / (c->scache.ways);
1637	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1638	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1639	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1640
1641	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1642}
1643
1644static void __init loongson3_sc_init(void)
1645{
1646	struct cpuinfo_mips *c = &current_cpu_data;
1647	unsigned int config2, lsize;
1648
1649	config2 = read_c0_config2();
1650	lsize = (config2 >> 4) & 15;
1651	if (lsize)
1652		c->scache.linesz = 2 << lsize;
1653	else
1654		c->scache.linesz = 0;
1655	c->scache.sets = 64 << ((config2 >> 8) & 15);
1656	c->scache.ways = 1 + (config2 & 15);
1657
1658	scache_size = c->scache.sets *
1659				  c->scache.ways *
1660				  c->scache.linesz;
1661	/* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1662	scache_size *= 4;
 
 
 
 
 
1663	c->scache.waybit = 0;
1664	c->scache.waysize = scache_size / c->scache.ways;
1665	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1666	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1667	if (scache_size)
1668		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1669	return;
1670}
1671
1672extern int r5k_sc_init(void);
1673extern int rm7k_sc_init(void);
1674extern int mips_sc_init(void);
1675
1676static void setup_scache(void)
1677{
1678	struct cpuinfo_mips *c = &current_cpu_data;
1679	unsigned int config = read_c0_config();
1680	int sc_present = 0;
1681
1682	/*
1683	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1684	 * processors don't have a S-cache that would be relevant to the
1685	 * Linux memory management.
1686	 */
1687	switch (current_cpu_type()) {
1688	case CPU_R4000SC:
1689	case CPU_R4000MC:
1690	case CPU_R4400SC:
1691	case CPU_R4400MC:
1692		sc_present = run_uncached(probe_scache);
1693		if (sc_present)
1694			c->options |= MIPS_CPU_CACHE_CDEX_S;
1695		break;
1696
1697	case CPU_R10000:
1698	case CPU_R12000:
1699	case CPU_R14000:
1700	case CPU_R16000:
1701		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1702		c->scache.linesz = 64 << ((config >> 13) & 1);
1703		c->scache.ways = 2;
1704		c->scache.waybit= 0;
1705		sc_present = 1;
1706		break;
1707
1708	case CPU_R5000:
1709	case CPU_NEVADA:
1710#ifdef CONFIG_R5000_CPU_SCACHE
1711		r5k_sc_init();
1712#endif
1713		return;
1714
1715	case CPU_RM7000:
1716#ifdef CONFIG_RM7000_CPU_SCACHE
1717		rm7k_sc_init();
1718#endif
1719		return;
1720
1721	case CPU_LOONGSON2:
1722		loongson2_sc_init();
1723		return;
1724
1725	case CPU_LOONGSON3:
1726		loongson3_sc_init();
1727		return;
1728
1729	case CPU_CAVIUM_OCTEON3:
1730	case CPU_XLP:
1731		/* don't need to worry about L2, fully coherent */
1732		return;
1733
1734	default:
1735		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1736				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1737				    MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
 
1738#ifdef CONFIG_MIPS_CPU_SCACHE
1739			if (mips_sc_init ()) {
1740				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1741				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1742				       scache_size >> 10,
1743				       way_string[c->scache.ways], c->scache.linesz);
 
 
 
1744			}
 
1745#else
1746			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1747				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1748#endif
1749			return;
1750		}
1751		sc_present = 0;
1752	}
1753
1754	if (!sc_present)
1755		return;
1756
1757	/* compute a couple of other cache variables */
1758	c->scache.waysize = scache_size / c->scache.ways;
1759
1760	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1761
1762	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1763	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1764
1765	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1766}
1767
1768void au1x00_fixup_config_od(void)
1769{
1770	/*
1771	 * c0_config.od (bit 19) was write only (and read as 0)
1772	 * on the early revisions of Alchemy SOCs.  It disables the bus
1773	 * transaction overlapping and needs to be set to fix various errata.
1774	 */
1775	switch (read_c0_prid()) {
1776	case 0x00030100: /* Au1000 DA */
1777	case 0x00030201: /* Au1000 HA */
1778	case 0x00030202: /* Au1000 HB */
1779	case 0x01030200: /* Au1500 AB */
1780	/*
1781	 * Au1100 errata actually keeps silence about this bit, so we set it
1782	 * just in case for those revisions that require it to be set according
1783	 * to the (now gone) cpu table.
1784	 */
1785	case 0x02030200: /* Au1100 AB */
1786	case 0x02030201: /* Au1100 BA */
1787	case 0x02030202: /* Au1100 BC */
1788		set_c0_config(1 << 19);
1789		break;
1790	}
1791}
1792
1793/* CP0 hazard avoidance. */
1794#define NXP_BARRIER()							\
1795	 __asm__ __volatile__(						\
1796	".set noreorder\n\t"						\
1797	"nop; nop; nop; nop; nop; nop;\n\t"				\
1798	".set reorder\n\t")
1799
1800static void nxp_pr4450_fixup_config(void)
1801{
1802	unsigned long config0;
1803
1804	config0 = read_c0_config();
1805
1806	/* clear all three cache coherency fields */
1807	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1808	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1809		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1810		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1811	write_c0_config(config0);
1812	NXP_BARRIER();
1813}
1814
1815static int cca = -1;
1816
1817static int __init cca_setup(char *str)
1818{
1819	get_option(&str, &cca);
1820
1821	return 0;
1822}
1823
1824early_param("cca", cca_setup);
1825
1826static void coherency_setup(void)
1827{
1828	if (cca < 0 || cca > 7)
1829		cca = read_c0_config() & CONF_CM_CMASK;
1830	_page_cachable_default = cca << _CACHE_SHIFT;
1831
1832	pr_debug("Using cache attribute %d\n", cca);
1833	change_c0_config(CONF_CM_CMASK, cca);
1834
1835	/*
1836	 * c0_status.cu=0 specifies that updates by the sc instruction use
1837	 * the coherency mode specified by the TLB; 1 means cachable
1838	 * coherent update on write will be used.  Not all processors have
1839	 * this bit and; some wire it to zero, others like Toshiba had the
1840	 * silly idea of putting something else there ...
1841	 */
1842	switch (current_cpu_type()) {
1843	case CPU_R4000PC:
1844	case CPU_R4000SC:
1845	case CPU_R4000MC:
1846	case CPU_R4400PC:
1847	case CPU_R4400SC:
1848	case CPU_R4400MC:
1849		clear_c0_config(CONF_CU);
1850		break;
1851	/*
1852	 * We need to catch the early Alchemy SOCs with
1853	 * the write-only co_config.od bit and set it back to one on:
1854	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1855	 */
1856	case CPU_ALCHEMY:
1857		au1x00_fixup_config_od();
1858		break;
1859
1860	case PRID_IMP_PR4450:
1861		nxp_pr4450_fixup_config();
1862		break;
1863	}
1864}
1865
1866static void r4k_cache_error_setup(void)
1867{
1868	extern char __weak except_vec2_generic;
1869	extern char __weak except_vec2_sb1;
1870
1871	switch (current_cpu_type()) {
1872	case CPU_SB1:
1873	case CPU_SB1A:
1874		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1875		break;
1876
1877	default:
1878		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1879		break;
1880	}
1881}
1882
1883void r4k_cache_init(void)
1884{
1885	extern void build_clear_page(void);
1886	extern void build_copy_page(void);
1887	struct cpuinfo_mips *c = &current_cpu_data;
1888
1889	probe_pcache();
1890	probe_vcache();
1891	setup_scache();
1892
1893	r4k_blast_dcache_page_setup();
1894	r4k_blast_dcache_page_indexed_setup();
1895	r4k_blast_dcache_setup();
1896	r4k_blast_icache_page_setup();
1897	r4k_blast_icache_page_indexed_setup();
1898	r4k_blast_icache_setup();
1899	r4k_blast_scache_page_setup();
1900	r4k_blast_scache_page_indexed_setup();
1901	r4k_blast_scache_setup();
 
1902#ifdef CONFIG_EVA
1903	r4k_blast_dcache_user_page_setup();
1904	r4k_blast_icache_user_page_setup();
1905#endif
1906
1907	/*
1908	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1909	 * This code supports virtually indexed processors and will be
1910	 * unnecessarily inefficient on physically indexed processors.
1911	 */
1912	if (c->dcache.linesz && cpu_has_dc_aliases)
1913		shm_align_mask = max_t( unsigned long,
1914					c->dcache.sets * c->dcache.linesz - 1,
1915					PAGE_SIZE - 1);
1916	else
1917		shm_align_mask = PAGE_SIZE-1;
1918
1919	__flush_cache_vmap	= r4k__flush_cache_vmap;
1920	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1921
1922	flush_cache_all		= cache_noop;
1923	__flush_cache_all	= r4k___flush_cache_all;
1924	flush_cache_mm		= r4k_flush_cache_mm;
1925	flush_cache_page	= r4k_flush_cache_page;
1926	flush_cache_range	= r4k_flush_cache_range;
1927
1928	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1929
1930	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1931	flush_icache_all	= r4k_flush_icache_all;
1932	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1933	flush_data_cache_page	= r4k_flush_data_cache_page;
1934	flush_icache_range	= r4k_flush_icache_range;
1935	local_flush_icache_range	= local_r4k_flush_icache_range;
1936	__flush_icache_user_range	= r4k_flush_icache_user_range;
1937	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1938
1939#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1940# if defined(CONFIG_DMA_PERDEV_COHERENT)
1941	if (0) {
1942# else
1943	if ((coherentio == IO_COHERENCE_ENABLED) ||
1944	    ((coherentio == IO_COHERENCE_DEFAULT) && hw_coherentio)) {
1945# endif
1946		_dma_cache_wback_inv	= (void *)cache_noop;
1947		_dma_cache_wback	= (void *)cache_noop;
1948		_dma_cache_inv		= (void *)cache_noop;
1949	} else {
 
 
1950		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1951		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1952		_dma_cache_inv		= r4k_dma_cache_inv;
1953	}
1954#endif
1955
1956	build_clear_page();
1957	build_copy_page();
1958
1959	/*
1960	 * We want to run CMP kernels on core with and without coherent
1961	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1962	 * or not to flush caches.
1963	 */
1964	local_r4k___flush_cache_all(NULL);
1965
1966	coherency_setup();
1967	board_cache_error_setup = r4k_cache_error_setup;
1968
1969	/*
1970	 * Per-CPU overrides
1971	 */
1972	switch (current_cpu_type()) {
1973	case CPU_BMIPS4350:
1974	case CPU_BMIPS4380:
1975		/* No IPI is needed because all CPUs share the same D$ */
1976		flush_data_cache_page = r4k_blast_dcache_page;
1977		break;
1978	case CPU_BMIPS5000:
1979		/* We lose our superpowers if L2 is disabled */
1980		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1981			break;
1982
1983		/* I$ fills from D$ just by emptying the write buffers */
1984		flush_cache_page = (void *)b5k_instruction_hazard;
1985		flush_cache_range = (void *)b5k_instruction_hazard;
1986		flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1987		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1988		flush_data_cache_page = (void *)b5k_instruction_hazard;
1989		flush_icache_range = (void *)b5k_instruction_hazard;
1990		local_flush_icache_range = (void *)b5k_instruction_hazard;
1991
1992
1993		/* Optimization: an L2 flush implicitly flushes the L1 */
1994		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1995		break;
1996	case CPU_LOONGSON3:
1997		/* Loongson-3 maintains cache coherency by hardware */
1998		__flush_cache_all	= cache_noop;
1999		__flush_cache_vmap	= cache_noop;
2000		__flush_cache_vunmap	= cache_noop;
2001		__flush_kernel_vmap_range = (void *)cache_noop;
2002		flush_cache_mm		= (void *)cache_noop;
2003		flush_cache_page	= (void *)cache_noop;
2004		flush_cache_range	= (void *)cache_noop;
2005		flush_cache_sigtramp	= (void *)cache_noop;
2006		flush_icache_all	= (void *)cache_noop;
2007		flush_data_cache_page	= (void *)cache_noop;
2008		local_flush_data_cache_page	= (void *)cache_noop;
2009		break;
2010	}
2011}
2012
2013static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2014			       void *v)
2015{
2016	switch (cmd) {
2017	case CPU_PM_ENTER_FAILED:
2018	case CPU_PM_EXIT:
2019		coherency_setup();
2020		break;
2021	}
2022
2023	return NOTIFY_OK;
2024}
2025
2026static struct notifier_block r4k_cache_pm_notifier_block = {
2027	.notifier_call = r4k_cache_pm_notifier,
2028};
2029
2030int __init r4k_cache_init_pm(void)
2031{
2032	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2033}
2034arch_initcall(r4k_cache_init_pm);
v5.9
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
   7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
   8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   9 */
  10#include <linux/cpu_pm.h>
  11#include <linux/hardirq.h>
  12#include <linux/init.h>
  13#include <linux/highmem.h>
  14#include <linux/kernel.h>
  15#include <linux/linkage.h>
  16#include <linux/preempt.h>
  17#include <linux/sched.h>
  18#include <linux/smp.h>
  19#include <linux/mm.h>
  20#include <linux/export.h>
  21#include <linux/bitops.h>
  22
  23#include <asm/bcache.h>
  24#include <asm/bootinfo.h>
  25#include <asm/cache.h>
  26#include <asm/cacheops.h>
  27#include <asm/cpu.h>
  28#include <asm/cpu-features.h>
  29#include <asm/cpu-type.h>
  30#include <asm/io.h>
  31#include <asm/page.h>
 
  32#include <asm/r4kcache.h>
  33#include <asm/sections.h>
  34#include <asm/mmu_context.h>
  35#include <asm/war.h>
  36#include <asm/cacheflush.h> /* for run_uncached() */
  37#include <asm/traps.h>
  38#include <asm/dma-coherence.h>
  39#include <asm/mips-cps.h>
  40
  41/*
  42 * Bits describing what cache ops an SMP callback function may perform.
  43 *
  44 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
  45 *		active_mm must be checked before using user addresses, falling
  46 *		back to kmap.
  47 * R4K_INDEX -	Index based cache operations.
  48 */
  49
  50#define R4K_HIT		BIT(0)
  51#define R4K_INDEX	BIT(1)
  52
  53/**
  54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
  55 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
  56 *
  57 * Decides whether a cache op needs to be performed on every core in the system.
  58 * This may change depending on the @type of cache operation, as well as the set
  59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
  60 * hotplug from changing the result.
  61 *
  62 * Returns:	1 if the cache operation @type should be done on every core in
  63 *		the system.
  64 *		0 if the cache operation @type is globalized and only needs to
  65 *		be performed on a simple CPU.
  66 */
  67static inline bool r4k_op_needs_ipi(unsigned int type)
  68{
  69	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
  70	if (type == R4K_HIT && mips_cm_present())
  71		return false;
  72
  73	/*
  74	 * Hardware doesn't globalize the required cache ops, so SMP calls may
  75	 * be needed, but only if there are foreign CPUs (non-siblings with
  76	 * separate caches).
  77	 */
  78	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
  79#ifdef CONFIG_SMP
  80	return !cpumask_empty(&cpu_foreign_map[0]);
  81#else
  82	return false;
  83#endif
  84}
  85
  86/*
  87 * Special Variant of smp_call_function for use by cache functions:
  88 *
  89 *  o No return value
  90 *  o collapses to normal function call on UP kernels
  91 *  o collapses to normal function call on systems with a single shared
  92 *    primary cache.
  93 *  o doesn't disable interrupts on the local CPU
  94 */
  95static inline void r4k_on_each_cpu(unsigned int type,
  96				   void (*func)(void *info), void *info)
  97{
  98	preempt_disable();
  99	if (r4k_op_needs_ipi(type))
 100		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
 101				       func, info, 1);
 102	func(info);
 103	preempt_enable();
 104}
 105
 106/*
 107 * Must die.
 108 */
 109static unsigned long icache_size __read_mostly;
 110static unsigned long dcache_size __read_mostly;
 111static unsigned long vcache_size __read_mostly;
 112static unsigned long scache_size __read_mostly;
 113
 114/*
 115 * Dummy cache handling routines for machines without boardcaches
 116 */
 117static void cache_noop(void) {}
 118
 119static struct bcache_ops no_sc_ops = {
 120	.bc_enable = (void *)cache_noop,
 121	.bc_disable = (void *)cache_noop,
 122	.bc_wback_inv = (void *)cache_noop,
 123	.bc_inv = (void *)cache_noop
 124};
 125
 126struct bcache_ops *bcops = &no_sc_ops;
 127
 128#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
 129#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
 130
 131#define R4600_HIT_CACHEOP_WAR_IMPL					\
 132do {									\
 133	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
 134		*(volatile unsigned long *)CKSEG1;			\
 135	if (R4600_V1_HIT_CACHEOP_WAR)					\
 136		__asm__ __volatile__("nop;nop;nop;nop");		\
 137} while (0)
 138
 139static void (*r4k_blast_dcache_page)(unsigned long addr);
 140
 141static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
 142{
 143	R4600_HIT_CACHEOP_WAR_IMPL;
 144	blast_dcache32_page(addr);
 145}
 146
 147static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
 148{
 149	blast_dcache64_page(addr);
 150}
 151
 152static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
 153{
 154	blast_dcache128_page(addr);
 155}
 156
 157static void r4k_blast_dcache_page_setup(void)
 158{
 159	unsigned long  dc_lsize = cpu_dcache_line_size();
 160
 161	switch (dc_lsize) {
 162	case 0:
 163		r4k_blast_dcache_page = (void *)cache_noop;
 164		break;
 165	case 16:
 166		r4k_blast_dcache_page = blast_dcache16_page;
 167		break;
 168	case 32:
 169		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
 170		break;
 171	case 64:
 172		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
 173		break;
 174	case 128:
 175		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
 176		break;
 177	default:
 178		break;
 179	}
 180}
 181
 182#ifndef CONFIG_EVA
 183#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
 184#else
 185
 186static void (*r4k_blast_dcache_user_page)(unsigned long addr);
 187
 188static void r4k_blast_dcache_user_page_setup(void)
 189{
 190	unsigned long  dc_lsize = cpu_dcache_line_size();
 191
 192	if (dc_lsize == 0)
 193		r4k_blast_dcache_user_page = (void *)cache_noop;
 194	else if (dc_lsize == 16)
 195		r4k_blast_dcache_user_page = blast_dcache16_user_page;
 196	else if (dc_lsize == 32)
 197		r4k_blast_dcache_user_page = blast_dcache32_user_page;
 198	else if (dc_lsize == 64)
 199		r4k_blast_dcache_user_page = blast_dcache64_user_page;
 200}
 201
 202#endif
 203
 204static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
 205
 206static void r4k_blast_dcache_page_indexed_setup(void)
 207{
 208	unsigned long dc_lsize = cpu_dcache_line_size();
 209
 210	if (dc_lsize == 0)
 211		r4k_blast_dcache_page_indexed = (void *)cache_noop;
 212	else if (dc_lsize == 16)
 213		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
 214	else if (dc_lsize == 32)
 215		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
 216	else if (dc_lsize == 64)
 217		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
 218	else if (dc_lsize == 128)
 219		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
 220}
 221
 222void (* r4k_blast_dcache)(void);
 223EXPORT_SYMBOL(r4k_blast_dcache);
 224
 225static void r4k_blast_dcache_setup(void)
 226{
 227	unsigned long dc_lsize = cpu_dcache_line_size();
 228
 229	if (dc_lsize == 0)
 230		r4k_blast_dcache = (void *)cache_noop;
 231	else if (dc_lsize == 16)
 232		r4k_blast_dcache = blast_dcache16;
 233	else if (dc_lsize == 32)
 234		r4k_blast_dcache = blast_dcache32;
 235	else if (dc_lsize == 64)
 236		r4k_blast_dcache = blast_dcache64;
 237	else if (dc_lsize == 128)
 238		r4k_blast_dcache = blast_dcache128;
 239}
 240
 241/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
 242#define JUMP_TO_ALIGN(order) \
 243	__asm__ __volatile__( \
 244		"b\t1f\n\t" \
 245		".align\t" #order "\n\t" \
 246		"1:\n\t" \
 247		)
 248#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
 249#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
 250
 251static inline void blast_r4600_v1_icache32(void)
 252{
 253	unsigned long flags;
 254
 255	local_irq_save(flags);
 256	blast_icache32();
 257	local_irq_restore(flags);
 258}
 259
 260static inline void tx49_blast_icache32(void)
 261{
 262	unsigned long start = INDEX_BASE;
 263	unsigned long end = start + current_cpu_data.icache.waysize;
 264	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 265	unsigned long ws_end = current_cpu_data.icache.ways <<
 266			       current_cpu_data.icache.waybit;
 267	unsigned long ws, addr;
 268
 269	CACHE32_UNROLL32_ALIGN2;
 270	/* I'm in even chunk.  blast odd chunks */
 271	for (ws = 0; ws < ws_end; ws += ws_inc)
 272		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 273			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 274				     addr | ws, 32);
 275	CACHE32_UNROLL32_ALIGN;
 276	/* I'm in odd chunk.  blast even chunks */
 277	for (ws = 0; ws < ws_end; ws += ws_inc)
 278		for (addr = start; addr < end; addr += 0x400 * 2)
 279			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 280				     addr | ws, 32);
 281}
 282
 283static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
 284{
 285	unsigned long flags;
 286
 287	local_irq_save(flags);
 288	blast_icache32_page_indexed(page);
 289	local_irq_restore(flags);
 290}
 291
 292static inline void tx49_blast_icache32_page_indexed(unsigned long page)
 293{
 294	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
 295	unsigned long start = INDEX_BASE + (page & indexmask);
 296	unsigned long end = start + PAGE_SIZE;
 297	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
 298	unsigned long ws_end = current_cpu_data.icache.ways <<
 299			       current_cpu_data.icache.waybit;
 300	unsigned long ws, addr;
 301
 302	CACHE32_UNROLL32_ALIGN2;
 303	/* I'm in even chunk.  blast odd chunks */
 304	for (ws = 0; ws < ws_end; ws += ws_inc)
 305		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
 306			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 307				     addr | ws, 32);
 308	CACHE32_UNROLL32_ALIGN;
 309	/* I'm in odd chunk.  blast even chunks */
 310	for (ws = 0; ws < ws_end; ws += ws_inc)
 311		for (addr = start; addr < end; addr += 0x400 * 2)
 312			cache_unroll(32, kernel_cache, Index_Invalidate_I,
 313				     addr | ws, 32);
 314}
 315
 316static void (* r4k_blast_icache_page)(unsigned long addr);
 317
 318static void r4k_blast_icache_page_setup(void)
 319{
 320	unsigned long ic_lsize = cpu_icache_line_size();
 321
 322	if (ic_lsize == 0)
 323		r4k_blast_icache_page = (void *)cache_noop;
 324	else if (ic_lsize == 16)
 325		r4k_blast_icache_page = blast_icache16_page;
 326	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
 327		r4k_blast_icache_page = loongson2_blast_icache32_page;
 328	else if (ic_lsize == 32)
 329		r4k_blast_icache_page = blast_icache32_page;
 330	else if (ic_lsize == 64)
 331		r4k_blast_icache_page = blast_icache64_page;
 332	else if (ic_lsize == 128)
 333		r4k_blast_icache_page = blast_icache128_page;
 334}
 335
 336#ifndef CONFIG_EVA
 337#define r4k_blast_icache_user_page  r4k_blast_icache_page
 338#else
 339
 340static void (*r4k_blast_icache_user_page)(unsigned long addr);
 341
 342static void r4k_blast_icache_user_page_setup(void)
 343{
 344	unsigned long ic_lsize = cpu_icache_line_size();
 345
 346	if (ic_lsize == 0)
 347		r4k_blast_icache_user_page = (void *)cache_noop;
 348	else if (ic_lsize == 16)
 349		r4k_blast_icache_user_page = blast_icache16_user_page;
 350	else if (ic_lsize == 32)
 351		r4k_blast_icache_user_page = blast_icache32_user_page;
 352	else if (ic_lsize == 64)
 353		r4k_blast_icache_user_page = blast_icache64_user_page;
 354}
 355
 356#endif
 357
 358static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
 359
 360static void r4k_blast_icache_page_indexed_setup(void)
 361{
 362	unsigned long ic_lsize = cpu_icache_line_size();
 363
 364	if (ic_lsize == 0)
 365		r4k_blast_icache_page_indexed = (void *)cache_noop;
 366	else if (ic_lsize == 16)
 367		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
 368	else if (ic_lsize == 32) {
 369		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 370			r4k_blast_icache_page_indexed =
 371				blast_icache32_r4600_v1_page_indexed;
 372		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 373			r4k_blast_icache_page_indexed =
 374				tx49_blast_icache32_page_indexed;
 375		else if (current_cpu_type() == CPU_LOONGSON2EF)
 376			r4k_blast_icache_page_indexed =
 377				loongson2_blast_icache32_page_indexed;
 378		else
 379			r4k_blast_icache_page_indexed =
 380				blast_icache32_page_indexed;
 381	} else if (ic_lsize == 64)
 382		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
 383}
 384
 385void (* r4k_blast_icache)(void);
 386EXPORT_SYMBOL(r4k_blast_icache);
 387
 388static void r4k_blast_icache_setup(void)
 389{
 390	unsigned long ic_lsize = cpu_icache_line_size();
 391
 392	if (ic_lsize == 0)
 393		r4k_blast_icache = (void *)cache_noop;
 394	else if (ic_lsize == 16)
 395		r4k_blast_icache = blast_icache16;
 396	else if (ic_lsize == 32) {
 397		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
 398			r4k_blast_icache = blast_r4600_v1_icache32;
 399		else if (TX49XX_ICACHE_INDEX_INV_WAR)
 400			r4k_blast_icache = tx49_blast_icache32;
 401		else if (current_cpu_type() == CPU_LOONGSON2EF)
 402			r4k_blast_icache = loongson2_blast_icache32;
 403		else
 404			r4k_blast_icache = blast_icache32;
 405	} else if (ic_lsize == 64)
 406		r4k_blast_icache = blast_icache64;
 407	else if (ic_lsize == 128)
 408		r4k_blast_icache = blast_icache128;
 409}
 410
 411static void (* r4k_blast_scache_page)(unsigned long addr);
 412
 413static void r4k_blast_scache_page_setup(void)
 414{
 415	unsigned long sc_lsize = cpu_scache_line_size();
 416
 417	if (scache_size == 0)
 418		r4k_blast_scache_page = (void *)cache_noop;
 419	else if (sc_lsize == 16)
 420		r4k_blast_scache_page = blast_scache16_page;
 421	else if (sc_lsize == 32)
 422		r4k_blast_scache_page = blast_scache32_page;
 423	else if (sc_lsize == 64)
 424		r4k_blast_scache_page = blast_scache64_page;
 425	else if (sc_lsize == 128)
 426		r4k_blast_scache_page = blast_scache128_page;
 427}
 428
 429static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
 430
 431static void r4k_blast_scache_page_indexed_setup(void)
 432{
 433	unsigned long sc_lsize = cpu_scache_line_size();
 434
 435	if (scache_size == 0)
 436		r4k_blast_scache_page_indexed = (void *)cache_noop;
 437	else if (sc_lsize == 16)
 438		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
 439	else if (sc_lsize == 32)
 440		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
 441	else if (sc_lsize == 64)
 442		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
 443	else if (sc_lsize == 128)
 444		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
 445}
 446
 447static void (* r4k_blast_scache)(void);
 448
 449static void r4k_blast_scache_setup(void)
 450{
 451	unsigned long sc_lsize = cpu_scache_line_size();
 452
 453	if (scache_size == 0)
 454		r4k_blast_scache = (void *)cache_noop;
 455	else if (sc_lsize == 16)
 456		r4k_blast_scache = blast_scache16;
 457	else if (sc_lsize == 32)
 458		r4k_blast_scache = blast_scache32;
 459	else if (sc_lsize == 64)
 460		r4k_blast_scache = blast_scache64;
 461	else if (sc_lsize == 128)
 462		r4k_blast_scache = blast_scache128;
 463}
 464
 465static void (*r4k_blast_scache_node)(long node);
 466
 467static void r4k_blast_scache_node_setup(void)
 468{
 469	unsigned long sc_lsize = cpu_scache_line_size();
 470
 471	if (current_cpu_type() != CPU_LOONGSON64)
 472		r4k_blast_scache_node = (void *)cache_noop;
 473	else if (sc_lsize == 16)
 474		r4k_blast_scache_node = blast_scache16_node;
 475	else if (sc_lsize == 32)
 476		r4k_blast_scache_node = blast_scache32_node;
 477	else if (sc_lsize == 64)
 478		r4k_blast_scache_node = blast_scache64_node;
 479	else if (sc_lsize == 128)
 480		r4k_blast_scache_node = blast_scache128_node;
 481}
 482
 483static inline void local_r4k___flush_cache_all(void * args)
 484{
 485	switch (current_cpu_type()) {
 486	case CPU_LOONGSON2EF:
 
 487	case CPU_R4000SC:
 488	case CPU_R4000MC:
 489	case CPU_R4400SC:
 490	case CPU_R4400MC:
 491	case CPU_R10000:
 492	case CPU_R12000:
 493	case CPU_R14000:
 494	case CPU_R16000:
 495		/*
 496		 * These caches are inclusive caches, that is, if something
 497		 * is not cached in the S-cache, we know it also won't be
 498		 * in one of the primary caches.
 499		 */
 500		r4k_blast_scache();
 501		break;
 502
 503	case CPU_LOONGSON64:
 504		/* Use get_ebase_cpunum() for both NUMA=y/n */
 505		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
 506		break;
 507
 508	case CPU_BMIPS5000:
 509		r4k_blast_scache();
 510		__sync();
 511		break;
 512
 513	default:
 514		r4k_blast_dcache();
 515		r4k_blast_icache();
 516		break;
 517	}
 518}
 519
 520static void r4k___flush_cache_all(void)
 521{
 522	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
 523}
 524
 525/**
 526 * has_valid_asid() - Determine if an mm already has an ASID.
 527 * @mm:		Memory map.
 528 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
 529 *
 530 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
 531 * of type @type within an r4k_on_each_cpu() call will affect. If
 532 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
 533 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
 534 * will need to be checked.
 535 *
 536 * Must be called in non-preemptive context.
 537 *
 538 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
 539 *		0 otherwise.
 540 */
 541static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
 542{
 543	unsigned int i;
 544	const cpumask_t *mask = cpu_present_mask;
 545
 546	if (cpu_has_mmid)
 547		return cpu_context(0, mm) != 0;
 548
 549	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
 550#ifdef CONFIG_SMP
 551	/*
 552	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
 553	 * each foreign core, so we only need to worry about siblings.
 554	 * Otherwise we need to worry about all present CPUs.
 555	 */
 556	if (r4k_op_needs_ipi(type))
 557		mask = &cpu_sibling_map[smp_processor_id()];
 558#endif
 559	for_each_cpu(i, mask)
 560		if (cpu_context(i, mm))
 561			return 1;
 562	return 0;
 563}
 564
 565static void r4k__flush_cache_vmap(void)
 566{
 567	r4k_blast_dcache();
 568}
 569
 570static void r4k__flush_cache_vunmap(void)
 571{
 572	r4k_blast_dcache();
 573}
 574
 575/*
 576 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
 577 * whole caches when vma is executable.
 578 */
 579static inline void local_r4k_flush_cache_range(void * args)
 580{
 581	struct vm_area_struct *vma = args;
 582	int exec = vma->vm_flags & VM_EXEC;
 583
 584	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
 585		return;
 586
 587	/*
 588	 * If dcache can alias, we must blast it since mapping is changing.
 589	 * If executable, we must ensure any dirty lines are written back far
 590	 * enough to be visible to icache.
 591	 */
 592	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
 593		r4k_blast_dcache();
 594	/* If executable, blast stale lines from icache */
 595	if (exec)
 596		r4k_blast_icache();
 597}
 598
 599static void r4k_flush_cache_range(struct vm_area_struct *vma,
 600	unsigned long start, unsigned long end)
 601{
 602	int exec = vma->vm_flags & VM_EXEC;
 603
 604	if (cpu_has_dc_aliases || exec)
 605		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
 606}
 607
 608static inline void local_r4k_flush_cache_mm(void * args)
 609{
 610	struct mm_struct *mm = args;
 611
 612	if (!has_valid_asid(mm, R4K_INDEX))
 613		return;
 614
 615	/*
 616	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
 617	 * only flush the primary caches but R1x000 behave sane ...
 618	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
 619	 * caches, so we can bail out early.
 620	 */
 621	if (current_cpu_type() == CPU_R4000SC ||
 622	    current_cpu_type() == CPU_R4000MC ||
 623	    current_cpu_type() == CPU_R4400SC ||
 624	    current_cpu_type() == CPU_R4400MC) {
 625		r4k_blast_scache();
 626		return;
 627	}
 628
 629	r4k_blast_dcache();
 630}
 631
 632static void r4k_flush_cache_mm(struct mm_struct *mm)
 633{
 634	if (!cpu_has_dc_aliases)
 635		return;
 636
 637	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
 638}
 639
 640struct flush_cache_page_args {
 641	struct vm_area_struct *vma;
 642	unsigned long addr;
 643	unsigned long pfn;
 644};
 645
 646static inline void local_r4k_flush_cache_page(void *args)
 647{
 648	struct flush_cache_page_args *fcp_args = args;
 649	struct vm_area_struct *vma = fcp_args->vma;
 650	unsigned long addr = fcp_args->addr;
 651	struct page *page = pfn_to_page(fcp_args->pfn);
 652	int exec = vma->vm_flags & VM_EXEC;
 653	struct mm_struct *mm = vma->vm_mm;
 654	int map_coherent = 0;
 
 
 655	pmd_t *pmdp;
 656	pte_t *ptep;
 657	void *vaddr;
 658
 659	/*
 660	 * If owns no valid ASID yet, cannot possibly have gotten
 661	 * this page into the cache.
 662	 */
 663	if (!has_valid_asid(mm, R4K_HIT))
 664		return;
 665
 666	addr &= PAGE_MASK;
 667	pmdp = pmd_off(mm, addr);
 668	ptep = pte_offset_kernel(pmdp, addr);
 
 
 669
 670	/*
 671	 * If the page isn't marked valid, the page cannot possibly be
 672	 * in the cache.
 673	 */
 674	if (!(pte_present(*ptep)))
 675		return;
 676
 677	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
 678		vaddr = NULL;
 679	else {
 680		/*
 681		 * Use kmap_coherent or kmap_atomic to do flushes for
 682		 * another ASID than the current one.
 683		 */
 684		map_coherent = (cpu_has_dc_aliases &&
 685				page_mapcount(page) &&
 686				!Page_dcache_dirty(page));
 687		if (map_coherent)
 688			vaddr = kmap_coherent(page, addr);
 689		else
 690			vaddr = kmap_atomic(page);
 691		addr = (unsigned long)vaddr;
 692	}
 693
 694	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
 695		vaddr ? r4k_blast_dcache_page(addr) :
 696			r4k_blast_dcache_user_page(addr);
 697		if (exec && !cpu_icache_snoops_remote_store)
 698			r4k_blast_scache_page(addr);
 699	}
 700	if (exec) {
 701		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
 702			drop_mmu_context(mm);
 
 
 
 703		} else
 704			vaddr ? r4k_blast_icache_page(addr) :
 705				r4k_blast_icache_user_page(addr);
 706	}
 707
 708	if (vaddr) {
 709		if (map_coherent)
 710			kunmap_coherent();
 711		else
 712			kunmap_atomic(vaddr);
 713	}
 714}
 715
 716static void r4k_flush_cache_page(struct vm_area_struct *vma,
 717	unsigned long addr, unsigned long pfn)
 718{
 719	struct flush_cache_page_args args;
 720
 721	args.vma = vma;
 722	args.addr = addr;
 723	args.pfn = pfn;
 724
 725	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
 726}
 727
 728static inline void local_r4k_flush_data_cache_page(void * addr)
 729{
 730	r4k_blast_dcache_page((unsigned long) addr);
 731}
 732
 733static void r4k_flush_data_cache_page(unsigned long addr)
 734{
 735	if (in_atomic())
 736		local_r4k_flush_data_cache_page((void *)addr);
 737	else
 738		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
 739				(void *) addr);
 740}
 741
 742struct flush_icache_range_args {
 743	unsigned long start;
 744	unsigned long end;
 745	unsigned int type;
 746	bool user;
 747};
 748
 749static inline void __local_r4k_flush_icache_range(unsigned long start,
 750						  unsigned long end,
 751						  unsigned int type,
 752						  bool user)
 753{
 754	if (!cpu_has_ic_fills_f_dc) {
 755		if (type == R4K_INDEX ||
 756		    (type & R4K_INDEX && end - start >= dcache_size)) {
 757			r4k_blast_dcache();
 758		} else {
 759			R4600_HIT_CACHEOP_WAR_IMPL;
 760			if (user)
 761				protected_blast_dcache_range(start, end);
 762			else
 763				blast_dcache_range(start, end);
 764		}
 765	}
 766
 767	if (type == R4K_INDEX ||
 768	    (type & R4K_INDEX && end - start > icache_size))
 769		r4k_blast_icache();
 770	else {
 771		switch (boot_cpu_type()) {
 772		case CPU_LOONGSON2EF:
 773			protected_loongson2_blast_icache_range(start, end);
 774			break;
 775
 776		default:
 777			if (user)
 778				protected_blast_icache_range(start, end);
 779			else
 780				blast_icache_range(start, end);
 781			break;
 782		}
 783	}
 784}
 785
 786static inline void local_r4k_flush_icache_range(unsigned long start,
 787						unsigned long end)
 788{
 789	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
 790}
 791
 792static inline void local_r4k_flush_icache_user_range(unsigned long start,
 793						     unsigned long end)
 794{
 795	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
 796}
 797
 798static inline void local_r4k_flush_icache_range_ipi(void *args)
 799{
 800	struct flush_icache_range_args *fir_args = args;
 801	unsigned long start = fir_args->start;
 802	unsigned long end = fir_args->end;
 803	unsigned int type = fir_args->type;
 804	bool user = fir_args->user;
 805
 806	__local_r4k_flush_icache_range(start, end, type, user);
 807}
 808
 809static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
 810				     bool user)
 811{
 812	struct flush_icache_range_args args;
 813	unsigned long size, cache_size;
 814
 815	args.start = start;
 816	args.end = end;
 817	args.type = R4K_HIT | R4K_INDEX;
 818	args.user = user;
 819
 820	/*
 821	 * Indexed cache ops require an SMP call.
 822	 * Consider if that can or should be avoided.
 823	 */
 824	preempt_disable();
 825	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
 826		/*
 827		 * If address-based cache ops don't require an SMP call, then
 828		 * use them exclusively for small flushes.
 829		 */
 830		size = end - start;
 831		cache_size = icache_size;
 832		if (!cpu_has_ic_fills_f_dc) {
 833			size *= 2;
 834			cache_size += dcache_size;
 835		}
 836		if (size <= cache_size)
 837			args.type &= ~R4K_INDEX;
 838	}
 839	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
 840	preempt_enable();
 841	instruction_hazard();
 842}
 843
 844static void r4k_flush_icache_range(unsigned long start, unsigned long end)
 845{
 846	return __r4k_flush_icache_range(start, end, false);
 847}
 848
 849static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
 850{
 851	return __r4k_flush_icache_range(start, end, true);
 852}
 853
 854#ifdef CONFIG_DMA_NONCOHERENT
 855
 856static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
 857{
 858	/* Catch bad driver code */
 859	if (WARN_ON(size == 0))
 860		return;
 861
 862	preempt_disable();
 863	if (cpu_has_inclusive_pcaches) {
 864		if (size >= scache_size) {
 865			if (current_cpu_type() != CPU_LOONGSON64)
 866				r4k_blast_scache();
 867			else
 868				r4k_blast_scache_node(pa_to_nid(addr));
 869		} else {
 870			blast_scache_range(addr, addr + size);
 871		}
 872		preempt_enable();
 873		__sync();
 874		return;
 875	}
 876
 877	/*
 878	 * Either no secondary cache or the available caches don't have the
 879	 * subset property so we have to flush the primary caches
 880	 * explicitly.
 881	 * If we would need IPI to perform an INDEX-type operation, then
 882	 * we have to use the HIT-type alternative as IPI cannot be used
 883	 * here due to interrupts possibly being disabled.
 884	 */
 885	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 886		r4k_blast_dcache();
 887	} else {
 888		R4600_HIT_CACHEOP_WAR_IMPL;
 889		blast_dcache_range(addr, addr + size);
 890	}
 891	preempt_enable();
 892
 893	bc_wback_inv(addr, size);
 894	__sync();
 895}
 896
 897static void prefetch_cache_inv(unsigned long addr, unsigned long size)
 898{
 899	unsigned int linesz = cpu_scache_line_size();
 900	unsigned long addr0 = addr, addr1;
 901
 902	addr0 &= ~(linesz - 1);
 903	addr1 = (addr0 + size - 1) & ~(linesz - 1);
 904
 905	protected_writeback_scache_line(addr0);
 906	if (likely(addr1 != addr0))
 907		protected_writeback_scache_line(addr1);
 908	else
 909		return;
 910
 911	addr0 += linesz;
 912	if (likely(addr1 != addr0))
 913		protected_writeback_scache_line(addr0);
 914	else
 915		return;
 916
 917	addr1 -= linesz;
 918	if (likely(addr1 > addr0))
 919		protected_writeback_scache_line(addr0);
 920}
 921
 922static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
 923{
 924	/* Catch bad driver code */
 925	if (WARN_ON(size == 0))
 926		return;
 927
 928	preempt_disable();
 929
 930	if (current_cpu_type() == CPU_BMIPS5000)
 931		prefetch_cache_inv(addr, size);
 932
 933	if (cpu_has_inclusive_pcaches) {
 934		if (size >= scache_size) {
 935			if (current_cpu_type() != CPU_LOONGSON64)
 936				r4k_blast_scache();
 937			else
 938				r4k_blast_scache_node(pa_to_nid(addr));
 939		} else {
 940			/*
 941			 * There is no clearly documented alignment requirement
 942			 * for the cache instruction on MIPS processors and
 943			 * some processors, among them the RM5200 and RM7000
 944			 * QED processors will throw an address error for cache
 945			 * hit ops with insufficient alignment.	 Solved by
 946			 * aligning the address to cache line size.
 947			 */
 948			blast_inv_scache_range(addr, addr + size);
 949		}
 950		preempt_enable();
 951		__sync();
 952		return;
 953	}
 954
 955	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
 956		r4k_blast_dcache();
 957	} else {
 958		R4600_HIT_CACHEOP_WAR_IMPL;
 959		blast_inv_dcache_range(addr, addr + size);
 960	}
 961	preempt_enable();
 962
 963	bc_inv(addr, size);
 964	__sync();
 965}
 966#endif /* CONFIG_DMA_NONCOHERENT */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967
 968static void r4k_flush_icache_all(void)
 969{
 970	if (cpu_has_vtag_icache)
 971		r4k_blast_icache();
 972}
 973
 974struct flush_kernel_vmap_range_args {
 975	unsigned long	vaddr;
 976	int		size;
 977};
 978
 979static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
 980{
 981	/*
 982	 * Aliases only affect the primary caches so don't bother with
 983	 * S-caches or T-caches.
 984	 */
 985	r4k_blast_dcache();
 986}
 987
 988static inline void local_r4k_flush_kernel_vmap_range(void *args)
 989{
 990	struct flush_kernel_vmap_range_args *vmra = args;
 991	unsigned long vaddr = vmra->vaddr;
 992	int size = vmra->size;
 993
 994	/*
 995	 * Aliases only affect the primary caches so don't bother with
 996	 * S-caches or T-caches.
 997	 */
 998	R4600_HIT_CACHEOP_WAR_IMPL;
 999	blast_dcache_range(vaddr, vaddr + size);
1000}
1001
1002static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1003{
1004	struct flush_kernel_vmap_range_args args;
1005
1006	args.vaddr = (unsigned long) vaddr;
1007	args.size = size;
1008
1009	if (size >= dcache_size)
1010		r4k_on_each_cpu(R4K_INDEX,
1011				local_r4k_flush_kernel_vmap_range_index, NULL);
1012	else
1013		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1014				&args);
1015}
1016
1017static inline void rm7k_erratum31(void)
1018{
1019	const unsigned long ic_lsize = 32;
1020	unsigned long addr;
1021
1022	/* RM7000 erratum #31. The icache is screwed at startup. */
1023	write_c0_taglo(0);
1024	write_c0_taghi(0);
1025
1026	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1027		__asm__ __volatile__ (
1028			".set push\n\t"
1029			".set noreorder\n\t"
1030			".set mips3\n\t"
1031			"cache\t%1, 0(%0)\n\t"
1032			"cache\t%1, 0x1000(%0)\n\t"
1033			"cache\t%1, 0x2000(%0)\n\t"
1034			"cache\t%1, 0x3000(%0)\n\t"
1035			"cache\t%2, 0(%0)\n\t"
1036			"cache\t%2, 0x1000(%0)\n\t"
1037			"cache\t%2, 0x2000(%0)\n\t"
1038			"cache\t%2, 0x3000(%0)\n\t"
1039			"cache\t%1, 0(%0)\n\t"
1040			"cache\t%1, 0x1000(%0)\n\t"
1041			"cache\t%1, 0x2000(%0)\n\t"
1042			"cache\t%1, 0x3000(%0)\n\t"
1043			".set pop\n"
1044			:
1045			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1046	}
1047}
1048
1049static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1050{
1051	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1052	unsigned int rev = c->processor_id & PRID_REV_MASK;
1053	int present = 0;
1054
1055	/*
1056	 * Early versions of the 74K do not update the cache tags on a
1057	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1058	 * aliases.  In this case it is better to treat the cache as always
1059	 * having aliases.  Also disable the synonym tag update feature
1060	 * where available.  In this case no opportunistic tag update will
1061	 * happen where a load causes a virtual address miss but a physical
1062	 * address hit during a D-cache look-up.
1063	 */
1064	switch (imp) {
1065	case PRID_IMP_74K:
1066		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1067			present = 1;
1068		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1069			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1070		break;
1071	case PRID_IMP_1074K:
1072		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1073			present = 1;
1074			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1075		}
1076		break;
1077	default:
1078		BUG();
1079	}
1080
1081	return present;
1082}
1083
1084static void b5k_instruction_hazard(void)
1085{
1086	__sync();
1087	__sync();
1088	__asm__ __volatile__(
1089	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1090	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1091	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1092	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093	: : : "memory");
1094}
1095
1096static char *way_string[] = { NULL, "direct mapped", "2-way",
1097	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1098	"9-way", "10-way", "11-way", "12-way",
1099	"13-way", "14-way", "15-way", "16-way",
1100};
1101
1102static void probe_pcache(void)
1103{
1104	struct cpuinfo_mips *c = &current_cpu_data;
1105	unsigned int config = read_c0_config();
1106	unsigned int prid = read_c0_prid();
1107	int has_74k_erratum = 0;
1108	unsigned long config1;
1109	unsigned int lsize;
1110
1111	switch (current_cpu_type()) {
1112	case CPU_R4600:			/* QED style two way caches? */
1113	case CPU_R4700:
1114	case CPU_R5000:
1115	case CPU_NEVADA:
1116		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1117		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1118		c->icache.ways = 2;
1119		c->icache.waybit = __ffs(icache_size/2);
1120
1121		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1122		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1123		c->dcache.ways = 2;
1124		c->dcache.waybit= __ffs(dcache_size/2);
1125
1126		c->options |= MIPS_CPU_CACHE_CDEX_P;
1127		break;
1128
 
1129	case CPU_R5500:
1130		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1131		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1132		c->icache.ways = 2;
1133		c->icache.waybit= 0;
1134
1135		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1136		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1137		c->dcache.ways = 2;
1138		c->dcache.waybit = 0;
1139
1140		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1141		break;
1142
1143	case CPU_TX49XX:
1144		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1145		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1146		c->icache.ways = 4;
1147		c->icache.waybit= 0;
1148
1149		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1150		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1151		c->dcache.ways = 4;
1152		c->dcache.waybit = 0;
1153
1154		c->options |= MIPS_CPU_CACHE_CDEX_P;
1155		c->options |= MIPS_CPU_PREFETCH;
1156		break;
1157
1158	case CPU_R4000PC:
1159	case CPU_R4000SC:
1160	case CPU_R4000MC:
1161	case CPU_R4400PC:
1162	case CPU_R4400SC:
1163	case CPU_R4400MC:
 
1164		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1165		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1166		c->icache.ways = 1;
1167		c->icache.waybit = 0;	/* doesn't matter */
1168
1169		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1170		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1171		c->dcache.ways = 1;
1172		c->dcache.waybit = 0;	/* does not matter */
1173
1174		c->options |= MIPS_CPU_CACHE_CDEX_P;
1175		break;
1176
1177	case CPU_R10000:
1178	case CPU_R12000:
1179	case CPU_R14000:
1180	case CPU_R16000:
1181		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1182		c->icache.linesz = 64;
1183		c->icache.ways = 2;
1184		c->icache.waybit = 0;
1185
1186		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1187		c->dcache.linesz = 32;
1188		c->dcache.ways = 2;
1189		c->dcache.waybit = 0;
1190
1191		c->options |= MIPS_CPU_PREFETCH;
1192		break;
1193
1194	case CPU_VR4133:
1195		write_c0_config(config & ~VR41_CONF_P4K);
1196		fallthrough;
1197	case CPU_VR4131:
1198		/* Workaround for cache instruction bug of VR4131 */
1199		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1200		    c->processor_id == 0x0c82U) {
1201			config |= 0x00400000U;
1202			if (c->processor_id == 0x0c80U)
1203				config |= VR41_CONF_BP;
1204			write_c0_config(config);
1205		} else
1206			c->options |= MIPS_CPU_CACHE_CDEX_P;
1207
1208		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1209		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1210		c->icache.ways = 2;
1211		c->icache.waybit = __ffs(icache_size/2);
1212
1213		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1214		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1215		c->dcache.ways = 2;
1216		c->dcache.waybit = __ffs(dcache_size/2);
1217		break;
1218
1219	case CPU_VR41XX:
1220	case CPU_VR4111:
1221	case CPU_VR4121:
1222	case CPU_VR4122:
1223	case CPU_VR4181:
1224	case CPU_VR4181A:
1225		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1226		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1227		c->icache.ways = 1;
1228		c->icache.waybit = 0;	/* doesn't matter */
1229
1230		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1231		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1232		c->dcache.ways = 1;
1233		c->dcache.waybit = 0;	/* does not matter */
1234
1235		c->options |= MIPS_CPU_CACHE_CDEX_P;
1236		break;
1237
1238	case CPU_RM7000:
1239		rm7k_erratum31();
1240
1241		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1242		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1243		c->icache.ways = 4;
1244		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1245
1246		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1247		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1248		c->dcache.ways = 4;
1249		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1250
1251		c->options |= MIPS_CPU_CACHE_CDEX_P;
1252		c->options |= MIPS_CPU_PREFETCH;
1253		break;
1254
1255	case CPU_LOONGSON2EF:
1256		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1257		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1258		if (prid & 0x3)
1259			c->icache.ways = 4;
1260		else
1261			c->icache.ways = 2;
1262		c->icache.waybit = 0;
1263
1264		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1265		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1266		if (prid & 0x3)
1267			c->dcache.ways = 4;
1268		else
1269			c->dcache.ways = 2;
1270		c->dcache.waybit = 0;
1271		break;
1272
1273	case CPU_LOONGSON64:
1274		config1 = read_c0_config1();
1275		lsize = (config1 >> 19) & 7;
1276		if (lsize)
1277			c->icache.linesz = 2 << lsize;
1278		else
1279			c->icache.linesz = 0;
1280		c->icache.sets = 64 << ((config1 >> 22) & 7);
1281		c->icache.ways = 1 + ((config1 >> 16) & 7);
1282		icache_size = c->icache.sets *
1283					  c->icache.ways *
1284					  c->icache.linesz;
1285		c->icache.waybit = 0;
1286
1287		lsize = (config1 >> 10) & 7;
1288		if (lsize)
1289			c->dcache.linesz = 2 << lsize;
1290		else
1291			c->dcache.linesz = 0;
1292		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1293		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1294		dcache_size = c->dcache.sets *
1295					  c->dcache.ways *
1296					  c->dcache.linesz;
1297		c->dcache.waybit = 0;
1298		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1299				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1300				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1301			c->options |= MIPS_CPU_PREFETCH;
1302		break;
1303
1304	case CPU_CAVIUM_OCTEON3:
1305		/* For now lie about the number of ways. */
1306		c->icache.linesz = 128;
1307		c->icache.sets = 16;
1308		c->icache.ways = 8;
1309		c->icache.flags |= MIPS_CACHE_VTAG;
1310		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1311
1312		c->dcache.linesz = 128;
1313		c->dcache.ways = 8;
1314		c->dcache.sets = 8;
1315		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1316		c->options |= MIPS_CPU_PREFETCH;
1317		break;
1318
1319	default:
1320		if (!(config & MIPS_CONF_M))
1321			panic("Don't know how to probe P-caches on this cpu.");
1322
1323		/*
1324		 * So we seem to be a MIPS32 or MIPS64 CPU
1325		 * So let's probe the I-cache ...
1326		 */
1327		config1 = read_c0_config1();
1328
1329		lsize = (config1 >> 19) & 7;
1330
1331		/* IL == 7 is reserved */
1332		if (lsize == 7)
1333			panic("Invalid icache line size");
1334
1335		c->icache.linesz = lsize ? 2 << lsize : 0;
1336
1337		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1338		c->icache.ways = 1 + ((config1 >> 16) & 7);
1339
1340		icache_size = c->icache.sets *
1341			      c->icache.ways *
1342			      c->icache.linesz;
1343		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1344
1345		if (config & MIPS_CONF_VI)
1346			c->icache.flags |= MIPS_CACHE_VTAG;
1347
1348		/*
1349		 * Now probe the MIPS32 / MIPS64 data cache.
1350		 */
1351		c->dcache.flags = 0;
1352
1353		lsize = (config1 >> 10) & 7;
1354
1355		/* DL == 7 is reserved */
1356		if (lsize == 7)
1357			panic("Invalid dcache line size");
1358
1359		c->dcache.linesz = lsize ? 2 << lsize : 0;
1360
1361		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1362		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1363
1364		dcache_size = c->dcache.sets *
1365			      c->dcache.ways *
1366			      c->dcache.linesz;
1367		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1368
1369		c->options |= MIPS_CPU_PREFETCH;
1370		break;
1371	}
1372
1373	/*
1374	 * Processor configuration sanity check for the R4000SC erratum
1375	 * #5.	With page sizes larger than 32kB there is no possibility
1376	 * to get a VCE exception anymore so we don't care about this
1377	 * misconfiguration.  The case is rather theoretical anyway;
1378	 * presumably no vendor is shipping his hardware in the "bad"
1379	 * configuration.
1380	 */
1381	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1382	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1383	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1384	    PAGE_SIZE <= 0x8000)
1385		panic("Improper R4000SC processor configuration detected");
1386
1387	/* compute a couple of other cache variables */
1388	c->icache.waysize = icache_size / c->icache.ways;
1389	c->dcache.waysize = dcache_size / c->dcache.ways;
1390
1391	c->icache.sets = c->icache.linesz ?
1392		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1393	c->dcache.sets = c->dcache.linesz ?
1394		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1395
1396	/*
1397	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1398	 * virtually indexed so normally would suffer from aliases.  So
1399	 * normally they'd suffer from aliases but magic in the hardware deals
1400	 * with that for us so we don't need to take care ourselves.
1401	 */
1402	switch (current_cpu_type()) {
1403	case CPU_20KC:
1404	case CPU_25KF:
1405	case CPU_I6400:
1406	case CPU_I6500:
1407	case CPU_SB1:
1408	case CPU_SB1A:
1409	case CPU_XLR:
1410		c->dcache.flags |= MIPS_CACHE_PINDEX;
1411		break;
1412
1413	case CPU_R10000:
1414	case CPU_R12000:
1415	case CPU_R14000:
1416	case CPU_R16000:
1417		break;
1418
1419	case CPU_74K:
1420	case CPU_1074K:
1421		has_74k_erratum = alias_74k_erratum(c);
1422		fallthrough;
1423	case CPU_M14KC:
1424	case CPU_M14KEC:
1425	case CPU_24K:
1426	case CPU_34K:
1427	case CPU_1004K:
1428	case CPU_INTERAPTIV:
1429	case CPU_P5600:
1430	case CPU_PROAPTIV:
1431	case CPU_M5150:
1432	case CPU_QEMU_GENERIC:
 
1433	case CPU_P6600:
1434	case CPU_M6250:
1435		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1436		    (c->icache.waysize > PAGE_SIZE))
1437			c->icache.flags |= MIPS_CACHE_ALIASES;
1438		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1439			/*
1440			 * Effectively physically indexed dcache,
1441			 * thus no virtual aliases.
1442			*/
1443			c->dcache.flags |= MIPS_CACHE_PINDEX;
1444			break;
1445		}
1446		fallthrough;
1447	default:
1448		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1449			c->dcache.flags |= MIPS_CACHE_ALIASES;
1450	}
1451
1452	/* Physically indexed caches don't suffer from virtual aliasing */
1453	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1454		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1455
1456	/*
1457	 * In systems with CM the icache fills from L2 or closer caches, and
1458	 * thus sees remote stores without needing to write them back any
1459	 * further than that.
1460	 */
1461	if (mips_cm_present())
1462		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1463
1464	switch (current_cpu_type()) {
1465	case CPU_20KC:
1466		/*
1467		 * Some older 20Kc chips doesn't have the 'VI' bit in
1468		 * the config register.
1469		 */
1470		c->icache.flags |= MIPS_CACHE_VTAG;
1471		break;
1472
1473	case CPU_ALCHEMY:
1474	case CPU_I6400:
1475	case CPU_I6500:
1476		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1477		break;
1478
1479	case CPU_BMIPS5000:
1480		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1481		/* Cache aliases are handled in hardware; allow HIGHMEM */
1482		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1483		break;
1484
1485	case CPU_LOONGSON2EF:
1486		/*
1487		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1488		 * one op will act on all 4 ways
1489		 */
1490		c->icache.ways = 1;
1491	}
1492
1493	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1494		icache_size >> 10,
1495		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1496		way_string[c->icache.ways], c->icache.linesz);
1497
1498	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1499		dcache_size >> 10, way_string[c->dcache.ways],
1500		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1501		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1502			"cache aliases" : "no aliases",
1503		c->dcache.linesz);
1504}
1505
1506static void probe_vcache(void)
1507{
1508	struct cpuinfo_mips *c = &current_cpu_data;
1509	unsigned int config2, lsize;
1510
1511	if (current_cpu_type() != CPU_LOONGSON64)
1512		return;
1513
1514	config2 = read_c0_config2();
1515	if ((lsize = ((config2 >> 20) & 15)))
1516		c->vcache.linesz = 2 << lsize;
1517	else
1518		c->vcache.linesz = lsize;
1519
1520	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1521	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1522
1523	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1524
1525	c->vcache.waybit = 0;
1526	c->vcache.waysize = vcache_size / c->vcache.ways;
1527
1528	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1529		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1530}
1531
1532/*
1533 * If you even _breathe_ on this function, look at the gcc output and make sure
1534 * it does not pop things on and off the stack for the cache sizing loop that
1535 * executes in KSEG1 space or else you will crash and burn badly.  You have
1536 * been warned.
1537 */
1538static int probe_scache(void)
1539{
1540	unsigned long flags, addr, begin, end, pow2;
1541	unsigned int config = read_c0_config();
1542	struct cpuinfo_mips *c = &current_cpu_data;
1543
1544	if (config & CONF_SC)
1545		return 0;
1546
1547	begin = (unsigned long) &_stext;
1548	begin &= ~((4 * 1024 * 1024) - 1);
1549	end = begin + (4 * 1024 * 1024);
1550
1551	/*
1552	 * This is such a bitch, you'd think they would make it easy to do
1553	 * this.  Away you daemons of stupidity!
1554	 */
1555	local_irq_save(flags);
1556
1557	/* Fill each size-multiple cache line with a valid tag. */
1558	pow2 = (64 * 1024);
1559	for (addr = begin; addr < end; addr = (begin + pow2)) {
1560		unsigned long *p = (unsigned long *) addr;
1561		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1562		pow2 <<= 1;
1563	}
1564
1565	/* Load first line with zero (therefore invalid) tag. */
1566	write_c0_taglo(0);
1567	write_c0_taghi(0);
1568	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1569	cache_op(Index_Store_Tag_I, begin);
1570	cache_op(Index_Store_Tag_D, begin);
1571	cache_op(Index_Store_Tag_SD, begin);
1572
1573	/* Now search for the wrap around point. */
1574	pow2 = (128 * 1024);
1575	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1576		cache_op(Index_Load_Tag_SD, addr);
1577		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1578		if (!read_c0_taglo())
1579			break;
1580		pow2 <<= 1;
1581	}
1582	local_irq_restore(flags);
1583	addr -= begin;
1584
1585	scache_size = addr;
1586	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1587	c->scache.ways = 1;
1588	c->scache.waybit = 0;		/* does not matter */
1589
1590	return 1;
1591}
1592
1593static void __init loongson2_sc_init(void)
1594{
1595	struct cpuinfo_mips *c = &current_cpu_data;
1596
1597	scache_size = 512*1024;
1598	c->scache.linesz = 32;
1599	c->scache.ways = 4;
1600	c->scache.waybit = 0;
1601	c->scache.waysize = scache_size / (c->scache.ways);
1602	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1603	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1604	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1605
1606	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1607}
1608
1609static void __init loongson3_sc_init(void)
1610{
1611	struct cpuinfo_mips *c = &current_cpu_data;
1612	unsigned int config2, lsize;
1613
1614	config2 = read_c0_config2();
1615	lsize = (config2 >> 4) & 15;
1616	if (lsize)
1617		c->scache.linesz = 2 << lsize;
1618	else
1619		c->scache.linesz = 0;
1620	c->scache.sets = 64 << ((config2 >> 8) & 15);
1621	c->scache.ways = 1 + (config2 & 15);
1622
1623	scache_size = c->scache.sets *
1624				  c->scache.ways *
1625				  c->scache.linesz;
1626
1627	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1628	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1629		scache_size *= 2;
1630	else
1631		scache_size *= 4;
1632
1633	c->scache.waybit = 0;
1634	c->scache.waysize = scache_size / c->scache.ways;
1635	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1636	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1637	if (scache_size)
1638		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1639	return;
1640}
1641
1642extern int r5k_sc_init(void);
1643extern int rm7k_sc_init(void);
1644extern int mips_sc_init(void);
1645
1646static void setup_scache(void)
1647{
1648	struct cpuinfo_mips *c = &current_cpu_data;
1649	unsigned int config = read_c0_config();
1650	int sc_present = 0;
1651
1652	/*
1653	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1654	 * processors don't have a S-cache that would be relevant to the
1655	 * Linux memory management.
1656	 */
1657	switch (current_cpu_type()) {
1658	case CPU_R4000SC:
1659	case CPU_R4000MC:
1660	case CPU_R4400SC:
1661	case CPU_R4400MC:
1662		sc_present = run_uncached(probe_scache);
1663		if (sc_present)
1664			c->options |= MIPS_CPU_CACHE_CDEX_S;
1665		break;
1666
1667	case CPU_R10000:
1668	case CPU_R12000:
1669	case CPU_R14000:
1670	case CPU_R16000:
1671		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1672		c->scache.linesz = 64 << ((config >> 13) & 1);
1673		c->scache.ways = 2;
1674		c->scache.waybit= 0;
1675		sc_present = 1;
1676		break;
1677
1678	case CPU_R5000:
1679	case CPU_NEVADA:
1680#ifdef CONFIG_R5000_CPU_SCACHE
1681		r5k_sc_init();
1682#endif
1683		return;
1684
1685	case CPU_RM7000:
1686#ifdef CONFIG_RM7000_CPU_SCACHE
1687		rm7k_sc_init();
1688#endif
1689		return;
1690
1691	case CPU_LOONGSON2EF:
1692		loongson2_sc_init();
1693		return;
1694
1695	case CPU_LOONGSON64:
1696		loongson3_sc_init();
1697		return;
1698
1699	case CPU_CAVIUM_OCTEON3:
1700	case CPU_XLP:
1701		/* don't need to worry about L2, fully coherent */
1702		return;
1703
1704	default:
1705		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1706				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1707				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1708				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1709#ifdef CONFIG_MIPS_CPU_SCACHE
1710			if (mips_sc_init ()) {
1711				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1712				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1713				       scache_size >> 10,
1714				       way_string[c->scache.ways], c->scache.linesz);
1715
1716				if (current_cpu_type() == CPU_BMIPS5000)
1717					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1718			}
1719
1720#else
1721			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1722				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1723#endif
1724			return;
1725		}
1726		sc_present = 0;
1727	}
1728
1729	if (!sc_present)
1730		return;
1731
1732	/* compute a couple of other cache variables */
1733	c->scache.waysize = scache_size / c->scache.ways;
1734
1735	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1736
1737	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1738	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1739
1740	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1741}
1742
1743void au1x00_fixup_config_od(void)
1744{
1745	/*
1746	 * c0_config.od (bit 19) was write only (and read as 0)
1747	 * on the early revisions of Alchemy SOCs.  It disables the bus
1748	 * transaction overlapping and needs to be set to fix various errata.
1749	 */
1750	switch (read_c0_prid()) {
1751	case 0x00030100: /* Au1000 DA */
1752	case 0x00030201: /* Au1000 HA */
1753	case 0x00030202: /* Au1000 HB */
1754	case 0x01030200: /* Au1500 AB */
1755	/*
1756	 * Au1100 errata actually keeps silence about this bit, so we set it
1757	 * just in case for those revisions that require it to be set according
1758	 * to the (now gone) cpu table.
1759	 */
1760	case 0x02030200: /* Au1100 AB */
1761	case 0x02030201: /* Au1100 BA */
1762	case 0x02030202: /* Au1100 BC */
1763		set_c0_config(1 << 19);
1764		break;
1765	}
1766}
1767
1768/* CP0 hazard avoidance. */
1769#define NXP_BARRIER()							\
1770	 __asm__ __volatile__(						\
1771	".set noreorder\n\t"						\
1772	"nop; nop; nop; nop; nop; nop;\n\t"				\
1773	".set reorder\n\t")
1774
1775static void nxp_pr4450_fixup_config(void)
1776{
1777	unsigned long config0;
1778
1779	config0 = read_c0_config();
1780
1781	/* clear all three cache coherency fields */
1782	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1783	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1784		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1785		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1786	write_c0_config(config0);
1787	NXP_BARRIER();
1788}
1789
1790static int cca = -1;
1791
1792static int __init cca_setup(char *str)
1793{
1794	get_option(&str, &cca);
1795
1796	return 0;
1797}
1798
1799early_param("cca", cca_setup);
1800
1801static void coherency_setup(void)
1802{
1803	if (cca < 0 || cca > 7)
1804		cca = read_c0_config() & CONF_CM_CMASK;
1805	_page_cachable_default = cca << _CACHE_SHIFT;
1806
1807	pr_debug("Using cache attribute %d\n", cca);
1808	change_c0_config(CONF_CM_CMASK, cca);
1809
1810	/*
1811	 * c0_status.cu=0 specifies that updates by the sc instruction use
1812	 * the coherency mode specified by the TLB; 1 means cachable
1813	 * coherent update on write will be used.  Not all processors have
1814	 * this bit and; some wire it to zero, others like Toshiba had the
1815	 * silly idea of putting something else there ...
1816	 */
1817	switch (current_cpu_type()) {
1818	case CPU_R4000PC:
1819	case CPU_R4000SC:
1820	case CPU_R4000MC:
1821	case CPU_R4400PC:
1822	case CPU_R4400SC:
1823	case CPU_R4400MC:
1824		clear_c0_config(CONF_CU);
1825		break;
1826	/*
1827	 * We need to catch the early Alchemy SOCs with
1828	 * the write-only co_config.od bit and set it back to one on:
1829	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1830	 */
1831	case CPU_ALCHEMY:
1832		au1x00_fixup_config_od();
1833		break;
1834
1835	case PRID_IMP_PR4450:
1836		nxp_pr4450_fixup_config();
1837		break;
1838	}
1839}
1840
1841static void r4k_cache_error_setup(void)
1842{
1843	extern char __weak except_vec2_generic;
1844	extern char __weak except_vec2_sb1;
1845
1846	switch (current_cpu_type()) {
1847	case CPU_SB1:
1848	case CPU_SB1A:
1849		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1850		break;
1851
1852	default:
1853		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1854		break;
1855	}
1856}
1857
1858void r4k_cache_init(void)
1859{
1860	extern void build_clear_page(void);
1861	extern void build_copy_page(void);
1862	struct cpuinfo_mips *c = &current_cpu_data;
1863
1864	probe_pcache();
1865	probe_vcache();
1866	setup_scache();
1867
1868	r4k_blast_dcache_page_setup();
1869	r4k_blast_dcache_page_indexed_setup();
1870	r4k_blast_dcache_setup();
1871	r4k_blast_icache_page_setup();
1872	r4k_blast_icache_page_indexed_setup();
1873	r4k_blast_icache_setup();
1874	r4k_blast_scache_page_setup();
1875	r4k_blast_scache_page_indexed_setup();
1876	r4k_blast_scache_setup();
1877	r4k_blast_scache_node_setup();
1878#ifdef CONFIG_EVA
1879	r4k_blast_dcache_user_page_setup();
1880	r4k_blast_icache_user_page_setup();
1881#endif
1882
1883	/*
1884	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1885	 * This code supports virtually indexed processors and will be
1886	 * unnecessarily inefficient on physically indexed processors.
1887	 */
1888	if (c->dcache.linesz && cpu_has_dc_aliases)
1889		shm_align_mask = max_t( unsigned long,
1890					c->dcache.sets * c->dcache.linesz - 1,
1891					PAGE_SIZE - 1);
1892	else
1893		shm_align_mask = PAGE_SIZE-1;
1894
1895	__flush_cache_vmap	= r4k__flush_cache_vmap;
1896	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1897
1898	flush_cache_all		= cache_noop;
1899	__flush_cache_all	= r4k___flush_cache_all;
1900	flush_cache_mm		= r4k_flush_cache_mm;
1901	flush_cache_page	= r4k_flush_cache_page;
1902	flush_cache_range	= r4k_flush_cache_range;
1903
1904	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1905
 
1906	flush_icache_all	= r4k_flush_icache_all;
1907	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1908	flush_data_cache_page	= r4k_flush_data_cache_page;
1909	flush_icache_range	= r4k_flush_icache_range;
1910	local_flush_icache_range	= local_r4k_flush_icache_range;
1911	__flush_icache_user_range	= r4k_flush_icache_user_range;
1912	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1913
1914#ifdef CONFIG_DMA_NONCOHERENT
1915#ifdef CONFIG_DMA_MAYBE_COHERENT
1916	if (coherentio == IO_COHERENCE_ENABLED ||
1917	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
 
 
 
1918		_dma_cache_wback_inv	= (void *)cache_noop;
1919		_dma_cache_wback	= (void *)cache_noop;
1920		_dma_cache_inv		= (void *)cache_noop;
1921	} else
1922#endif /* CONFIG_DMA_MAYBE_COHERENT */
1923	{
1924		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1925		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1926		_dma_cache_inv		= r4k_dma_cache_inv;
1927	}
1928#endif /* CONFIG_DMA_NONCOHERENT */
1929
1930	build_clear_page();
1931	build_copy_page();
1932
1933	/*
1934	 * We want to run CMP kernels on core with and without coherent
1935	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1936	 * or not to flush caches.
1937	 */
1938	local_r4k___flush_cache_all(NULL);
1939
1940	coherency_setup();
1941	board_cache_error_setup = r4k_cache_error_setup;
1942
1943	/*
1944	 * Per-CPU overrides
1945	 */
1946	switch (current_cpu_type()) {
1947	case CPU_BMIPS4350:
1948	case CPU_BMIPS4380:
1949		/* No IPI is needed because all CPUs share the same D$ */
1950		flush_data_cache_page = r4k_blast_dcache_page;
1951		break;
1952	case CPU_BMIPS5000:
1953		/* We lose our superpowers if L2 is disabled */
1954		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1955			break;
1956
1957		/* I$ fills from D$ just by emptying the write buffers */
1958		flush_cache_page = (void *)b5k_instruction_hazard;
1959		flush_cache_range = (void *)b5k_instruction_hazard;
 
1960		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1961		flush_data_cache_page = (void *)b5k_instruction_hazard;
1962		flush_icache_range = (void *)b5k_instruction_hazard;
1963		local_flush_icache_range = (void *)b5k_instruction_hazard;
1964
1965
1966		/* Optimization: an L2 flush implicitly flushes the L1 */
1967		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1968		break;
1969	case CPU_LOONGSON64:
1970		/* Loongson-3 maintains cache coherency by hardware */
1971		__flush_cache_all	= cache_noop;
1972		__flush_cache_vmap	= cache_noop;
1973		__flush_cache_vunmap	= cache_noop;
1974		__flush_kernel_vmap_range = (void *)cache_noop;
1975		flush_cache_mm		= (void *)cache_noop;
1976		flush_cache_page	= (void *)cache_noop;
1977		flush_cache_range	= (void *)cache_noop;
 
1978		flush_icache_all	= (void *)cache_noop;
1979		flush_data_cache_page	= (void *)cache_noop;
1980		local_flush_data_cache_page	= (void *)cache_noop;
1981		break;
1982	}
1983}
1984
1985static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1986			       void *v)
1987{
1988	switch (cmd) {
1989	case CPU_PM_ENTER_FAILED:
1990	case CPU_PM_EXIT:
1991		coherency_setup();
1992		break;
1993	}
1994
1995	return NOTIFY_OK;
1996}
1997
1998static struct notifier_block r4k_cache_pm_notifier_block = {
1999	.notifier_call = r4k_cache_pm_notifier,
2000};
2001
2002int __init r4k_cache_init_pm(void)
2003{
2004	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2005}
2006arch_initcall(r4k_cache_init_pm);