Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/highmem.h>
14#include <linux/kernel.h>
15#include <linux/linkage.h>
16#include <linux/preempt.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/mm.h>
20#include <linux/export.h>
21#include <linux/bitops.h>
22
23#include <asm/bcache.h>
24#include <asm/bootinfo.h>
25#include <asm/cache.h>
26#include <asm/cacheops.h>
27#include <asm/cpu.h>
28#include <asm/cpu-features.h>
29#include <asm/cpu-type.h>
30#include <asm/io.h>
31#include <asm/page.h>
32#include <asm/pgtable.h>
33#include <asm/r4kcache.h>
34#include <asm/sections.h>
35#include <asm/mmu_context.h>
36#include <asm/war.h>
37#include <asm/cacheflush.h> /* for run_uncached() */
38#include <asm/traps.h>
39#include <asm/dma-coherence.h>
40#include <asm/mips-cm.h>
41
42/*
43 * Bits describing what cache ops an SMP callback function may perform.
44 *
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
47 * back to kmap.
48 * R4K_INDEX - Index based cache operations.
49 */
50
51#define R4K_HIT BIT(0)
52#define R4K_INDEX BIT(1)
53
54/**
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
57 *
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
62 *
63 * Returns: 1 if the cache operation @type should be done on every core in
64 * the system.
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
67 */
68static inline bool r4k_op_needs_ipi(unsigned int type)
69{
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (type == R4K_HIT && mips_cm_present())
72 return false;
73
74 /*
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
77 * separate caches).
78 */
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80#ifdef CONFIG_SMP
81 return !cpumask_empty(&cpu_foreign_map[0]);
82#else
83 return false;
84#endif
85}
86
87/*
88 * Special Variant of smp_call_function for use by cache functions:
89 *
90 * o No return value
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
93 * primary cache.
94 * o doesn't disable interrupts on the local CPU
95 */
96static inline void r4k_on_each_cpu(unsigned int type,
97 void (*func)(void *info), void *info)
98{
99 preempt_disable();
100 if (r4k_op_needs_ipi(type))
101 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 func, info, 1);
103 func(info);
104 preempt_enable();
105}
106
107/*
108 * Must die.
109 */
110static unsigned long icache_size __read_mostly;
111static unsigned long dcache_size __read_mostly;
112static unsigned long vcache_size __read_mostly;
113static unsigned long scache_size __read_mostly;
114
115/*
116 * Dummy cache handling routines for machines without boardcaches
117 */
118static void cache_noop(void) {}
119
120static struct bcache_ops no_sc_ops = {
121 .bc_enable = (void *)cache_noop,
122 .bc_disable = (void *)cache_noop,
123 .bc_wback_inv = (void *)cache_noop,
124 .bc_inv = (void *)cache_noop
125};
126
127struct bcache_ops *bcops = &no_sc_ops;
128
129#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
131
132#define R4600_HIT_CACHEOP_WAR_IMPL \
133do { \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138} while (0)
139
140static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143{
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146}
147
148static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149{
150 blast_dcache64_page(addr);
151}
152
153static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154{
155 blast_dcache128_page(addr);
156}
157
158static void r4k_blast_dcache_page_setup(void)
159{
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181}
182
183#ifndef CONFIG_EVA
184#define r4k_blast_dcache_user_page r4k_blast_dcache_page
185#else
186
187static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189static void r4k_blast_dcache_user_page_setup(void)
190{
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201}
202
203#endif
204
205static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207static void r4k_blast_dcache_page_indexed_setup(void)
208{
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221}
222
223void (* r4k_blast_dcache)(void);
224EXPORT_SYMBOL(r4k_blast_dcache);
225
226static void r4k_blast_dcache_setup(void)
227{
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240}
241
242/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243#define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252static inline void blast_r4600_v1_icache32(void)
253{
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259}
260
261static inline void tx49_blast_icache32(void)
262{
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache32_unroll32(addr|ws, Index_Invalidate_I);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache32_unroll32(addr|ws, Index_Invalidate_I);
280}
281
282static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283{
284 unsigned long flags;
285
286 local_irq_save(flags);
287 blast_icache32_page_indexed(page);
288 local_irq_restore(flags);
289}
290
291static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292{
293 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 unsigned long start = INDEX_BASE + (page & indexmask);
295 unsigned long end = start + PAGE_SIZE;
296 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 unsigned long ws_end = current_cpu_data.icache.ways <<
298 current_cpu_data.icache.waybit;
299 unsigned long ws, addr;
300
301 CACHE32_UNROLL32_ALIGN2;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws = 0; ws < ws_end; ws += ws_inc)
304 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 cache32_unroll32(addr|ws, Index_Invalidate_I);
306 CACHE32_UNROLL32_ALIGN;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws = 0; ws < ws_end; ws += ws_inc)
309 for (addr = start; addr < end; addr += 0x400 * 2)
310 cache32_unroll32(addr|ws, Index_Invalidate_I);
311}
312
313static void (* r4k_blast_icache_page)(unsigned long addr);
314
315static void r4k_blast_icache_page_setup(void)
316{
317 unsigned long ic_lsize = cpu_icache_line_size();
318
319 if (ic_lsize == 0)
320 r4k_blast_icache_page = (void *)cache_noop;
321 else if (ic_lsize == 16)
322 r4k_blast_icache_page = blast_icache16_page;
323 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 r4k_blast_icache_page = loongson2_blast_icache32_page;
325 else if (ic_lsize == 32)
326 r4k_blast_icache_page = blast_icache32_page;
327 else if (ic_lsize == 64)
328 r4k_blast_icache_page = blast_icache64_page;
329 else if (ic_lsize == 128)
330 r4k_blast_icache_page = blast_icache128_page;
331}
332
333#ifndef CONFIG_EVA
334#define r4k_blast_icache_user_page r4k_blast_icache_page
335#else
336
337static void (*r4k_blast_icache_user_page)(unsigned long addr);
338
339static void r4k_blast_icache_user_page_setup(void)
340{
341 unsigned long ic_lsize = cpu_icache_line_size();
342
343 if (ic_lsize == 0)
344 r4k_blast_icache_user_page = (void *)cache_noop;
345 else if (ic_lsize == 16)
346 r4k_blast_icache_user_page = blast_icache16_user_page;
347 else if (ic_lsize == 32)
348 r4k_blast_icache_user_page = blast_icache32_user_page;
349 else if (ic_lsize == 64)
350 r4k_blast_icache_user_page = blast_icache64_user_page;
351}
352
353#endif
354
355static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356
357static void r4k_blast_icache_page_indexed_setup(void)
358{
359 unsigned long ic_lsize = cpu_icache_line_size();
360
361 if (ic_lsize == 0)
362 r4k_blast_icache_page_indexed = (void *)cache_noop;
363 else if (ic_lsize == 16)
364 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 else if (ic_lsize == 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed =
368 blast_icache32_r4600_v1_page_indexed;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 r4k_blast_icache_page_indexed =
371 tx49_blast_icache32_page_indexed;
372 else if (current_cpu_type() == CPU_LOONGSON2)
373 r4k_blast_icache_page_indexed =
374 loongson2_blast_icache32_page_indexed;
375 else
376 r4k_blast_icache_page_indexed =
377 blast_icache32_page_indexed;
378 } else if (ic_lsize == 64)
379 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380}
381
382void (* r4k_blast_icache)(void);
383EXPORT_SYMBOL(r4k_blast_icache);
384
385static void r4k_blast_icache_setup(void)
386{
387 unsigned long ic_lsize = cpu_icache_line_size();
388
389 if (ic_lsize == 0)
390 r4k_blast_icache = (void *)cache_noop;
391 else if (ic_lsize == 16)
392 r4k_blast_icache = blast_icache16;
393 else if (ic_lsize == 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 r4k_blast_icache = blast_r4600_v1_icache32;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 r4k_blast_icache = tx49_blast_icache32;
398 else if (current_cpu_type() == CPU_LOONGSON2)
399 r4k_blast_icache = loongson2_blast_icache32;
400 else
401 r4k_blast_icache = blast_icache32;
402 } else if (ic_lsize == 64)
403 r4k_blast_icache = blast_icache64;
404 else if (ic_lsize == 128)
405 r4k_blast_icache = blast_icache128;
406}
407
408static void (* r4k_blast_scache_page)(unsigned long addr);
409
410static void r4k_blast_scache_page_setup(void)
411{
412 unsigned long sc_lsize = cpu_scache_line_size();
413
414 if (scache_size == 0)
415 r4k_blast_scache_page = (void *)cache_noop;
416 else if (sc_lsize == 16)
417 r4k_blast_scache_page = blast_scache16_page;
418 else if (sc_lsize == 32)
419 r4k_blast_scache_page = blast_scache32_page;
420 else if (sc_lsize == 64)
421 r4k_blast_scache_page = blast_scache64_page;
422 else if (sc_lsize == 128)
423 r4k_blast_scache_page = blast_scache128_page;
424}
425
426static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427
428static void r4k_blast_scache_page_indexed_setup(void)
429{
430 unsigned long sc_lsize = cpu_scache_line_size();
431
432 if (scache_size == 0)
433 r4k_blast_scache_page_indexed = (void *)cache_noop;
434 else if (sc_lsize == 16)
435 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 else if (sc_lsize == 32)
437 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 else if (sc_lsize == 64)
439 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 else if (sc_lsize == 128)
441 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442}
443
444static void (* r4k_blast_scache)(void);
445
446static void r4k_blast_scache_setup(void)
447{
448 unsigned long sc_lsize = cpu_scache_line_size();
449
450 if (scache_size == 0)
451 r4k_blast_scache = (void *)cache_noop;
452 else if (sc_lsize == 16)
453 r4k_blast_scache = blast_scache16;
454 else if (sc_lsize == 32)
455 r4k_blast_scache = blast_scache32;
456 else if (sc_lsize == 64)
457 r4k_blast_scache = blast_scache64;
458 else if (sc_lsize == 128)
459 r4k_blast_scache = blast_scache128;
460}
461
462static inline void local_r4k___flush_cache_all(void * args)
463{
464 switch (current_cpu_type()) {
465 case CPU_LOONGSON2:
466 case CPU_LOONGSON3:
467 case CPU_R4000SC:
468 case CPU_R4000MC:
469 case CPU_R4400SC:
470 case CPU_R4400MC:
471 case CPU_R10000:
472 case CPU_R12000:
473 case CPU_R14000:
474 case CPU_R16000:
475 /*
476 * These caches are inclusive caches, that is, if something
477 * is not cached in the S-cache, we know it also won't be
478 * in one of the primary caches.
479 */
480 r4k_blast_scache();
481 break;
482
483 case CPU_BMIPS5000:
484 r4k_blast_scache();
485 __sync();
486 break;
487
488 default:
489 r4k_blast_dcache();
490 r4k_blast_icache();
491 break;
492 }
493}
494
495static void r4k___flush_cache_all(void)
496{
497 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
498}
499
500/**
501 * has_valid_asid() - Determine if an mm already has an ASID.
502 * @mm: Memory map.
503 * @type: R4K_HIT or R4K_INDEX, type of cache op.
504 *
505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506 * of type @type within an r4k_on_each_cpu() call will affect. If
507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509 * will need to be checked.
510 *
511 * Must be called in non-preemptive context.
512 *
513 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
514 * 0 otherwise.
515 */
516static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
517{
518 unsigned int i;
519 const cpumask_t *mask = cpu_present_mask;
520
521 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
522#ifdef CONFIG_SMP
523 /*
524 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525 * each foreign core, so we only need to worry about siblings.
526 * Otherwise we need to worry about all present CPUs.
527 */
528 if (r4k_op_needs_ipi(type))
529 mask = &cpu_sibling_map[smp_processor_id()];
530#endif
531 for_each_cpu(i, mask)
532 if (cpu_context(i, mm))
533 return 1;
534 return 0;
535}
536
537static void r4k__flush_cache_vmap(void)
538{
539 r4k_blast_dcache();
540}
541
542static void r4k__flush_cache_vunmap(void)
543{
544 r4k_blast_dcache();
545}
546
547/*
548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549 * whole caches when vma is executable.
550 */
551static inline void local_r4k_flush_cache_range(void * args)
552{
553 struct vm_area_struct *vma = args;
554 int exec = vma->vm_flags & VM_EXEC;
555
556 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
557 return;
558
559 /*
560 * If dcache can alias, we must blast it since mapping is changing.
561 * If executable, we must ensure any dirty lines are written back far
562 * enough to be visible to icache.
563 */
564 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
565 r4k_blast_dcache();
566 /* If executable, blast stale lines from icache */
567 if (exec)
568 r4k_blast_icache();
569}
570
571static void r4k_flush_cache_range(struct vm_area_struct *vma,
572 unsigned long start, unsigned long end)
573{
574 int exec = vma->vm_flags & VM_EXEC;
575
576 if (cpu_has_dc_aliases || exec)
577 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
578}
579
580static inline void local_r4k_flush_cache_mm(void * args)
581{
582 struct mm_struct *mm = args;
583
584 if (!has_valid_asid(mm, R4K_INDEX))
585 return;
586
587 /*
588 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
589 * only flush the primary caches but R1x000 behave sane ...
590 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591 * caches, so we can bail out early.
592 */
593 if (current_cpu_type() == CPU_R4000SC ||
594 current_cpu_type() == CPU_R4000MC ||
595 current_cpu_type() == CPU_R4400SC ||
596 current_cpu_type() == CPU_R4400MC) {
597 r4k_blast_scache();
598 return;
599 }
600
601 r4k_blast_dcache();
602}
603
604static void r4k_flush_cache_mm(struct mm_struct *mm)
605{
606 if (!cpu_has_dc_aliases)
607 return;
608
609 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
610}
611
612struct flush_cache_page_args {
613 struct vm_area_struct *vma;
614 unsigned long addr;
615 unsigned long pfn;
616};
617
618static inline void local_r4k_flush_cache_page(void *args)
619{
620 struct flush_cache_page_args *fcp_args = args;
621 struct vm_area_struct *vma = fcp_args->vma;
622 unsigned long addr = fcp_args->addr;
623 struct page *page = pfn_to_page(fcp_args->pfn);
624 int exec = vma->vm_flags & VM_EXEC;
625 struct mm_struct *mm = vma->vm_mm;
626 int map_coherent = 0;
627 pgd_t *pgdp;
628 pud_t *pudp;
629 pmd_t *pmdp;
630 pte_t *ptep;
631 void *vaddr;
632
633 /*
634 * If owns no valid ASID yet, cannot possibly have gotten
635 * this page into the cache.
636 */
637 if (!has_valid_asid(mm, R4K_HIT))
638 return;
639
640 addr &= PAGE_MASK;
641 pgdp = pgd_offset(mm, addr);
642 pudp = pud_offset(pgdp, addr);
643 pmdp = pmd_offset(pudp, addr);
644 ptep = pte_offset(pmdp, addr);
645
646 /*
647 * If the page isn't marked valid, the page cannot possibly be
648 * in the cache.
649 */
650 if (!(pte_present(*ptep)))
651 return;
652
653 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
654 vaddr = NULL;
655 else {
656 /*
657 * Use kmap_coherent or kmap_atomic to do flushes for
658 * another ASID than the current one.
659 */
660 map_coherent = (cpu_has_dc_aliases &&
661 page_mapcount(page) &&
662 !Page_dcache_dirty(page));
663 if (map_coherent)
664 vaddr = kmap_coherent(page, addr);
665 else
666 vaddr = kmap_atomic(page);
667 addr = (unsigned long)vaddr;
668 }
669
670 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
671 vaddr ? r4k_blast_dcache_page(addr) :
672 r4k_blast_dcache_user_page(addr);
673 if (exec && !cpu_icache_snoops_remote_store)
674 r4k_blast_scache_page(addr);
675 }
676 if (exec) {
677 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
678 int cpu = smp_processor_id();
679
680 if (cpu_context(cpu, mm) != 0)
681 drop_mmu_context(mm, cpu);
682 } else
683 vaddr ? r4k_blast_icache_page(addr) :
684 r4k_blast_icache_user_page(addr);
685 }
686
687 if (vaddr) {
688 if (map_coherent)
689 kunmap_coherent();
690 else
691 kunmap_atomic(vaddr);
692 }
693}
694
695static void r4k_flush_cache_page(struct vm_area_struct *vma,
696 unsigned long addr, unsigned long pfn)
697{
698 struct flush_cache_page_args args;
699
700 args.vma = vma;
701 args.addr = addr;
702 args.pfn = pfn;
703
704 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
705}
706
707static inline void local_r4k_flush_data_cache_page(void * addr)
708{
709 r4k_blast_dcache_page((unsigned long) addr);
710}
711
712static void r4k_flush_data_cache_page(unsigned long addr)
713{
714 if (in_atomic())
715 local_r4k_flush_data_cache_page((void *)addr);
716 else
717 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
718 (void *) addr);
719}
720
721struct flush_icache_range_args {
722 unsigned long start;
723 unsigned long end;
724 unsigned int type;
725 bool user;
726};
727
728static inline void __local_r4k_flush_icache_range(unsigned long start,
729 unsigned long end,
730 unsigned int type,
731 bool user)
732{
733 if (!cpu_has_ic_fills_f_dc) {
734 if (type == R4K_INDEX ||
735 (type & R4K_INDEX && end - start >= dcache_size)) {
736 r4k_blast_dcache();
737 } else {
738 R4600_HIT_CACHEOP_WAR_IMPL;
739 if (user)
740 protected_blast_dcache_range(start, end);
741 else
742 blast_dcache_range(start, end);
743 }
744 }
745
746 if (type == R4K_INDEX ||
747 (type & R4K_INDEX && end - start > icache_size))
748 r4k_blast_icache();
749 else {
750 switch (boot_cpu_type()) {
751 case CPU_LOONGSON2:
752 protected_loongson2_blast_icache_range(start, end);
753 break;
754
755 default:
756 if (user)
757 protected_blast_icache_range(start, end);
758 else
759 blast_icache_range(start, end);
760 break;
761 }
762 }
763}
764
765static inline void local_r4k_flush_icache_range(unsigned long start,
766 unsigned long end)
767{
768 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
769}
770
771static inline void local_r4k_flush_icache_user_range(unsigned long start,
772 unsigned long end)
773{
774 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
775}
776
777static inline void local_r4k_flush_icache_range_ipi(void *args)
778{
779 struct flush_icache_range_args *fir_args = args;
780 unsigned long start = fir_args->start;
781 unsigned long end = fir_args->end;
782 unsigned int type = fir_args->type;
783 bool user = fir_args->user;
784
785 __local_r4k_flush_icache_range(start, end, type, user);
786}
787
788static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
789 bool user)
790{
791 struct flush_icache_range_args args;
792 unsigned long size, cache_size;
793
794 args.start = start;
795 args.end = end;
796 args.type = R4K_HIT | R4K_INDEX;
797 args.user = user;
798
799 /*
800 * Indexed cache ops require an SMP call.
801 * Consider if that can or should be avoided.
802 */
803 preempt_disable();
804 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
805 /*
806 * If address-based cache ops don't require an SMP call, then
807 * use them exclusively for small flushes.
808 */
809 size = end - start;
810 cache_size = icache_size;
811 if (!cpu_has_ic_fills_f_dc) {
812 size *= 2;
813 cache_size += dcache_size;
814 }
815 if (size <= cache_size)
816 args.type &= ~R4K_INDEX;
817 }
818 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
819 preempt_enable();
820 instruction_hazard();
821}
822
823static void r4k_flush_icache_range(unsigned long start, unsigned long end)
824{
825 return __r4k_flush_icache_range(start, end, false);
826}
827
828static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
829{
830 return __r4k_flush_icache_range(start, end, true);
831}
832
833#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
834
835static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
836{
837 /* Catch bad driver code */
838 BUG_ON(size == 0);
839
840 preempt_disable();
841 if (cpu_has_inclusive_pcaches) {
842 if (size >= scache_size)
843 r4k_blast_scache();
844 else
845 blast_scache_range(addr, addr + size);
846 preempt_enable();
847 __sync();
848 return;
849 }
850
851 /*
852 * Either no secondary cache or the available caches don't have the
853 * subset property so we have to flush the primary caches
854 * explicitly
855 */
856 if (size >= dcache_size) {
857 r4k_blast_dcache();
858 } else {
859 R4600_HIT_CACHEOP_WAR_IMPL;
860 blast_dcache_range(addr, addr + size);
861 }
862 preempt_enable();
863
864 bc_wback_inv(addr, size);
865 __sync();
866}
867
868static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
869{
870 /* Catch bad driver code */
871 BUG_ON(size == 0);
872
873 preempt_disable();
874 if (cpu_has_inclusive_pcaches) {
875 if (size >= scache_size)
876 r4k_blast_scache();
877 else {
878 /*
879 * There is no clearly documented alignment requirement
880 * for the cache instruction on MIPS processors and
881 * some processors, among them the RM5200 and RM7000
882 * QED processors will throw an address error for cache
883 * hit ops with insufficient alignment. Solved by
884 * aligning the address to cache line size.
885 */
886 blast_inv_scache_range(addr, addr + size);
887 }
888 preempt_enable();
889 __sync();
890 return;
891 }
892
893 if (size >= dcache_size) {
894 r4k_blast_dcache();
895 } else {
896 R4600_HIT_CACHEOP_WAR_IMPL;
897 blast_inv_dcache_range(addr, addr + size);
898 }
899 preempt_enable();
900
901 bc_inv(addr, size);
902 __sync();
903}
904#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
905
906struct flush_cache_sigtramp_args {
907 struct mm_struct *mm;
908 struct page *page;
909 unsigned long addr;
910};
911
912/*
913 * While we're protected against bad userland addresses we don't care
914 * very much about what happens in that case. Usually a segmentation
915 * fault will dump the process later on anyway ...
916 */
917static void local_r4k_flush_cache_sigtramp(void *args)
918{
919 struct flush_cache_sigtramp_args *fcs_args = args;
920 unsigned long addr = fcs_args->addr;
921 struct page *page = fcs_args->page;
922 struct mm_struct *mm = fcs_args->mm;
923 int map_coherent = 0;
924 void *vaddr;
925
926 unsigned long ic_lsize = cpu_icache_line_size();
927 unsigned long dc_lsize = cpu_dcache_line_size();
928 unsigned long sc_lsize = cpu_scache_line_size();
929
930 /*
931 * If owns no valid ASID yet, cannot possibly have gotten
932 * this page into the cache.
933 */
934 if (!has_valid_asid(mm, R4K_HIT))
935 return;
936
937 if (mm == current->active_mm) {
938 vaddr = NULL;
939 } else {
940 /*
941 * Use kmap_coherent or kmap_atomic to do flushes for
942 * another ASID than the current one.
943 */
944 map_coherent = (cpu_has_dc_aliases &&
945 page_mapcount(page) &&
946 !Page_dcache_dirty(page));
947 if (map_coherent)
948 vaddr = kmap_coherent(page, addr);
949 else
950 vaddr = kmap_atomic(page);
951 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
952 }
953
954 R4600_HIT_CACHEOP_WAR_IMPL;
955 if (!cpu_has_ic_fills_f_dc) {
956 if (dc_lsize)
957 vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
958 : protected_writeback_dcache_line(
959 addr & ~(dc_lsize - 1));
960 if (!cpu_icache_snoops_remote_store && scache_size)
961 vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
962 : protected_writeback_scache_line(
963 addr & ~(sc_lsize - 1));
964 }
965 if (ic_lsize)
966 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
967 : protected_flush_icache_line(addr & ~(ic_lsize - 1));
968
969 if (vaddr) {
970 if (map_coherent)
971 kunmap_coherent();
972 else
973 kunmap_atomic(vaddr);
974 }
975
976 if (MIPS4K_ICACHE_REFILL_WAR) {
977 __asm__ __volatile__ (
978 ".set push\n\t"
979 ".set noat\n\t"
980 ".set "MIPS_ISA_LEVEL"\n\t"
981#ifdef CONFIG_32BIT
982 "la $at,1f\n\t"
983#endif
984#ifdef CONFIG_64BIT
985 "dla $at,1f\n\t"
986#endif
987 "cache %0,($at)\n\t"
988 "nop; nop; nop\n"
989 "1:\n\t"
990 ".set pop"
991 :
992 : "i" (Hit_Invalidate_I));
993 }
994 if (MIPS_CACHE_SYNC_WAR)
995 __asm__ __volatile__ ("sync");
996}
997
998static void r4k_flush_cache_sigtramp(unsigned long addr)
999{
1000 struct flush_cache_sigtramp_args args;
1001 int npages;
1002
1003 down_read(¤t->mm->mmap_sem);
1004
1005 npages = get_user_pages_fast(addr, 1, 0, &args.page);
1006 if (npages < 1)
1007 goto out;
1008
1009 args.mm = current->mm;
1010 args.addr = addr;
1011
1012 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1013
1014 put_page(args.page);
1015out:
1016 up_read(¤t->mm->mmap_sem);
1017}
1018
1019static void r4k_flush_icache_all(void)
1020{
1021 if (cpu_has_vtag_icache)
1022 r4k_blast_icache();
1023}
1024
1025struct flush_kernel_vmap_range_args {
1026 unsigned long vaddr;
1027 int size;
1028};
1029
1030static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1031{
1032 /*
1033 * Aliases only affect the primary caches so don't bother with
1034 * S-caches or T-caches.
1035 */
1036 r4k_blast_dcache();
1037}
1038
1039static inline void local_r4k_flush_kernel_vmap_range(void *args)
1040{
1041 struct flush_kernel_vmap_range_args *vmra = args;
1042 unsigned long vaddr = vmra->vaddr;
1043 int size = vmra->size;
1044
1045 /*
1046 * Aliases only affect the primary caches so don't bother with
1047 * S-caches or T-caches.
1048 */
1049 R4600_HIT_CACHEOP_WAR_IMPL;
1050 blast_dcache_range(vaddr, vaddr + size);
1051}
1052
1053static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1054{
1055 struct flush_kernel_vmap_range_args args;
1056
1057 args.vaddr = (unsigned long) vaddr;
1058 args.size = size;
1059
1060 if (size >= dcache_size)
1061 r4k_on_each_cpu(R4K_INDEX,
1062 local_r4k_flush_kernel_vmap_range_index, NULL);
1063 else
1064 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1065 &args);
1066}
1067
1068static inline void rm7k_erratum31(void)
1069{
1070 const unsigned long ic_lsize = 32;
1071 unsigned long addr;
1072
1073 /* RM7000 erratum #31. The icache is screwed at startup. */
1074 write_c0_taglo(0);
1075 write_c0_taghi(0);
1076
1077 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1078 __asm__ __volatile__ (
1079 ".set push\n\t"
1080 ".set noreorder\n\t"
1081 ".set mips3\n\t"
1082 "cache\t%1, 0(%0)\n\t"
1083 "cache\t%1, 0x1000(%0)\n\t"
1084 "cache\t%1, 0x2000(%0)\n\t"
1085 "cache\t%1, 0x3000(%0)\n\t"
1086 "cache\t%2, 0(%0)\n\t"
1087 "cache\t%2, 0x1000(%0)\n\t"
1088 "cache\t%2, 0x2000(%0)\n\t"
1089 "cache\t%2, 0x3000(%0)\n\t"
1090 "cache\t%1, 0(%0)\n\t"
1091 "cache\t%1, 0x1000(%0)\n\t"
1092 "cache\t%1, 0x2000(%0)\n\t"
1093 "cache\t%1, 0x3000(%0)\n\t"
1094 ".set pop\n"
1095 :
1096 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1097 }
1098}
1099
1100static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1101{
1102 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1103 unsigned int rev = c->processor_id & PRID_REV_MASK;
1104 int present = 0;
1105
1106 /*
1107 * Early versions of the 74K do not update the cache tags on a
1108 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1109 * aliases. In this case it is better to treat the cache as always
1110 * having aliases. Also disable the synonym tag update feature
1111 * where available. In this case no opportunistic tag update will
1112 * happen where a load causes a virtual address miss but a physical
1113 * address hit during a D-cache look-up.
1114 */
1115 switch (imp) {
1116 case PRID_IMP_74K:
1117 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1118 present = 1;
1119 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1120 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1121 break;
1122 case PRID_IMP_1074K:
1123 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1124 present = 1;
1125 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1126 }
1127 break;
1128 default:
1129 BUG();
1130 }
1131
1132 return present;
1133}
1134
1135static void b5k_instruction_hazard(void)
1136{
1137 __sync();
1138 __sync();
1139 __asm__ __volatile__(
1140 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1141 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1142 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1143 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1144 : : : "memory");
1145}
1146
1147static char *way_string[] = { NULL, "direct mapped", "2-way",
1148 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1149 "9-way", "10-way", "11-way", "12-way",
1150 "13-way", "14-way", "15-way", "16-way",
1151};
1152
1153static void probe_pcache(void)
1154{
1155 struct cpuinfo_mips *c = ¤t_cpu_data;
1156 unsigned int config = read_c0_config();
1157 unsigned int prid = read_c0_prid();
1158 int has_74k_erratum = 0;
1159 unsigned long config1;
1160 unsigned int lsize;
1161
1162 switch (current_cpu_type()) {
1163 case CPU_R4600: /* QED style two way caches? */
1164 case CPU_R4700:
1165 case CPU_R5000:
1166 case CPU_NEVADA:
1167 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169 c->icache.ways = 2;
1170 c->icache.waybit = __ffs(icache_size/2);
1171
1172 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174 c->dcache.ways = 2;
1175 c->dcache.waybit= __ffs(dcache_size/2);
1176
1177 c->options |= MIPS_CPU_CACHE_CDEX_P;
1178 break;
1179
1180 case CPU_R5432:
1181 case CPU_R5500:
1182 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1183 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1184 c->icache.ways = 2;
1185 c->icache.waybit= 0;
1186
1187 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1188 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1189 c->dcache.ways = 2;
1190 c->dcache.waybit = 0;
1191
1192 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1193 break;
1194
1195 case CPU_TX49XX:
1196 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1197 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1198 c->icache.ways = 4;
1199 c->icache.waybit= 0;
1200
1201 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1202 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1203 c->dcache.ways = 4;
1204 c->dcache.waybit = 0;
1205
1206 c->options |= MIPS_CPU_CACHE_CDEX_P;
1207 c->options |= MIPS_CPU_PREFETCH;
1208 break;
1209
1210 case CPU_R4000PC:
1211 case CPU_R4000SC:
1212 case CPU_R4000MC:
1213 case CPU_R4400PC:
1214 case CPU_R4400SC:
1215 case CPU_R4400MC:
1216 case CPU_R4300:
1217 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1218 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1219 c->icache.ways = 1;
1220 c->icache.waybit = 0; /* doesn't matter */
1221
1222 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1223 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1224 c->dcache.ways = 1;
1225 c->dcache.waybit = 0; /* does not matter */
1226
1227 c->options |= MIPS_CPU_CACHE_CDEX_P;
1228 break;
1229
1230 case CPU_R10000:
1231 case CPU_R12000:
1232 case CPU_R14000:
1233 case CPU_R16000:
1234 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1235 c->icache.linesz = 64;
1236 c->icache.ways = 2;
1237 c->icache.waybit = 0;
1238
1239 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1240 c->dcache.linesz = 32;
1241 c->dcache.ways = 2;
1242 c->dcache.waybit = 0;
1243
1244 c->options |= MIPS_CPU_PREFETCH;
1245 break;
1246
1247 case CPU_VR4133:
1248 write_c0_config(config & ~VR41_CONF_P4K);
1249 case CPU_VR4131:
1250 /* Workaround for cache instruction bug of VR4131 */
1251 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1252 c->processor_id == 0x0c82U) {
1253 config |= 0x00400000U;
1254 if (c->processor_id == 0x0c80U)
1255 config |= VR41_CONF_BP;
1256 write_c0_config(config);
1257 } else
1258 c->options |= MIPS_CPU_CACHE_CDEX_P;
1259
1260 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1261 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1262 c->icache.ways = 2;
1263 c->icache.waybit = __ffs(icache_size/2);
1264
1265 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1266 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1267 c->dcache.ways = 2;
1268 c->dcache.waybit = __ffs(dcache_size/2);
1269 break;
1270
1271 case CPU_VR41XX:
1272 case CPU_VR4111:
1273 case CPU_VR4121:
1274 case CPU_VR4122:
1275 case CPU_VR4181:
1276 case CPU_VR4181A:
1277 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1278 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1279 c->icache.ways = 1;
1280 c->icache.waybit = 0; /* doesn't matter */
1281
1282 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1283 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1284 c->dcache.ways = 1;
1285 c->dcache.waybit = 0; /* does not matter */
1286
1287 c->options |= MIPS_CPU_CACHE_CDEX_P;
1288 break;
1289
1290 case CPU_RM7000:
1291 rm7k_erratum31();
1292
1293 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1294 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1295 c->icache.ways = 4;
1296 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1297
1298 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1299 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1300 c->dcache.ways = 4;
1301 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1302
1303 c->options |= MIPS_CPU_CACHE_CDEX_P;
1304 c->options |= MIPS_CPU_PREFETCH;
1305 break;
1306
1307 case CPU_LOONGSON2:
1308 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1309 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1310 if (prid & 0x3)
1311 c->icache.ways = 4;
1312 else
1313 c->icache.ways = 2;
1314 c->icache.waybit = 0;
1315
1316 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1317 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1318 if (prid & 0x3)
1319 c->dcache.ways = 4;
1320 else
1321 c->dcache.ways = 2;
1322 c->dcache.waybit = 0;
1323 break;
1324
1325 case CPU_LOONGSON3:
1326 config1 = read_c0_config1();
1327 lsize = (config1 >> 19) & 7;
1328 if (lsize)
1329 c->icache.linesz = 2 << lsize;
1330 else
1331 c->icache.linesz = 0;
1332 c->icache.sets = 64 << ((config1 >> 22) & 7);
1333 c->icache.ways = 1 + ((config1 >> 16) & 7);
1334 icache_size = c->icache.sets *
1335 c->icache.ways *
1336 c->icache.linesz;
1337 c->icache.waybit = 0;
1338
1339 lsize = (config1 >> 10) & 7;
1340 if (lsize)
1341 c->dcache.linesz = 2 << lsize;
1342 else
1343 c->dcache.linesz = 0;
1344 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1345 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1346 dcache_size = c->dcache.sets *
1347 c->dcache.ways *
1348 c->dcache.linesz;
1349 c->dcache.waybit = 0;
1350 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
1351 c->options |= MIPS_CPU_PREFETCH;
1352 break;
1353
1354 case CPU_CAVIUM_OCTEON3:
1355 /* For now lie about the number of ways. */
1356 c->icache.linesz = 128;
1357 c->icache.sets = 16;
1358 c->icache.ways = 8;
1359 c->icache.flags |= MIPS_CACHE_VTAG;
1360 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1361
1362 c->dcache.linesz = 128;
1363 c->dcache.ways = 8;
1364 c->dcache.sets = 8;
1365 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1366 c->options |= MIPS_CPU_PREFETCH;
1367 break;
1368
1369 default:
1370 if (!(config & MIPS_CONF_M))
1371 panic("Don't know how to probe P-caches on this cpu.");
1372
1373 /*
1374 * So we seem to be a MIPS32 or MIPS64 CPU
1375 * So let's probe the I-cache ...
1376 */
1377 config1 = read_c0_config1();
1378
1379 lsize = (config1 >> 19) & 7;
1380
1381 /* IL == 7 is reserved */
1382 if (lsize == 7)
1383 panic("Invalid icache line size");
1384
1385 c->icache.linesz = lsize ? 2 << lsize : 0;
1386
1387 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1388 c->icache.ways = 1 + ((config1 >> 16) & 7);
1389
1390 icache_size = c->icache.sets *
1391 c->icache.ways *
1392 c->icache.linesz;
1393 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1394
1395 if (config & MIPS_CONF_VI)
1396 c->icache.flags |= MIPS_CACHE_VTAG;
1397
1398 /*
1399 * Now probe the MIPS32 / MIPS64 data cache.
1400 */
1401 c->dcache.flags = 0;
1402
1403 lsize = (config1 >> 10) & 7;
1404
1405 /* DL == 7 is reserved */
1406 if (lsize == 7)
1407 panic("Invalid dcache line size");
1408
1409 c->dcache.linesz = lsize ? 2 << lsize : 0;
1410
1411 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1412 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1413
1414 dcache_size = c->dcache.sets *
1415 c->dcache.ways *
1416 c->dcache.linesz;
1417 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1418
1419 c->options |= MIPS_CPU_PREFETCH;
1420 break;
1421 }
1422
1423 /*
1424 * Processor configuration sanity check for the R4000SC erratum
1425 * #5. With page sizes larger than 32kB there is no possibility
1426 * to get a VCE exception anymore so we don't care about this
1427 * misconfiguration. The case is rather theoretical anyway;
1428 * presumably no vendor is shipping his hardware in the "bad"
1429 * configuration.
1430 */
1431 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1432 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1433 !(config & CONF_SC) && c->icache.linesz != 16 &&
1434 PAGE_SIZE <= 0x8000)
1435 panic("Improper R4000SC processor configuration detected");
1436
1437 /* compute a couple of other cache variables */
1438 c->icache.waysize = icache_size / c->icache.ways;
1439 c->dcache.waysize = dcache_size / c->dcache.ways;
1440
1441 c->icache.sets = c->icache.linesz ?
1442 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1443 c->dcache.sets = c->dcache.linesz ?
1444 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1445
1446 /*
1447 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1448 * virtually indexed so normally would suffer from aliases. So
1449 * normally they'd suffer from aliases but magic in the hardware deals
1450 * with that for us so we don't need to take care ourselves.
1451 */
1452 switch (current_cpu_type()) {
1453 case CPU_20KC:
1454 case CPU_25KF:
1455 case CPU_SB1:
1456 case CPU_SB1A:
1457 case CPU_XLR:
1458 c->dcache.flags |= MIPS_CACHE_PINDEX;
1459 break;
1460
1461 case CPU_R10000:
1462 case CPU_R12000:
1463 case CPU_R14000:
1464 case CPU_R16000:
1465 break;
1466
1467 case CPU_74K:
1468 case CPU_1074K:
1469 has_74k_erratum = alias_74k_erratum(c);
1470 /* Fall through. */
1471 case CPU_M14KC:
1472 case CPU_M14KEC:
1473 case CPU_24K:
1474 case CPU_34K:
1475 case CPU_1004K:
1476 case CPU_INTERAPTIV:
1477 case CPU_P5600:
1478 case CPU_PROAPTIV:
1479 case CPU_M5150:
1480 case CPU_QEMU_GENERIC:
1481 case CPU_I6400:
1482 case CPU_P6600:
1483 case CPU_M6250:
1484 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1485 (c->icache.waysize > PAGE_SIZE))
1486 c->icache.flags |= MIPS_CACHE_ALIASES;
1487 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1488 /*
1489 * Effectively physically indexed dcache,
1490 * thus no virtual aliases.
1491 */
1492 c->dcache.flags |= MIPS_CACHE_PINDEX;
1493 break;
1494 }
1495 default:
1496 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1497 c->dcache.flags |= MIPS_CACHE_ALIASES;
1498 }
1499
1500 switch (current_cpu_type()) {
1501 case CPU_20KC:
1502 /*
1503 * Some older 20Kc chips doesn't have the 'VI' bit in
1504 * the config register.
1505 */
1506 c->icache.flags |= MIPS_CACHE_VTAG;
1507 break;
1508
1509 case CPU_ALCHEMY:
1510 case CPU_I6400:
1511 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1512 break;
1513
1514 case CPU_BMIPS5000:
1515 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1516 /* Cache aliases are handled in hardware; allow HIGHMEM */
1517 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1518 break;
1519
1520 case CPU_LOONGSON2:
1521 /*
1522 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1523 * one op will act on all 4 ways
1524 */
1525 c->icache.ways = 1;
1526 }
1527
1528 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1529 icache_size >> 10,
1530 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1531 way_string[c->icache.ways], c->icache.linesz);
1532
1533 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1534 dcache_size >> 10, way_string[c->dcache.ways],
1535 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1536 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1537 "cache aliases" : "no aliases",
1538 c->dcache.linesz);
1539}
1540
1541static void probe_vcache(void)
1542{
1543 struct cpuinfo_mips *c = ¤t_cpu_data;
1544 unsigned int config2, lsize;
1545
1546 if (current_cpu_type() != CPU_LOONGSON3)
1547 return;
1548
1549 config2 = read_c0_config2();
1550 if ((lsize = ((config2 >> 20) & 15)))
1551 c->vcache.linesz = 2 << lsize;
1552 else
1553 c->vcache.linesz = lsize;
1554
1555 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1556 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1557
1558 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1559
1560 c->vcache.waybit = 0;
1561 c->vcache.waysize = vcache_size / c->vcache.ways;
1562
1563 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1564 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1565}
1566
1567/*
1568 * If you even _breathe_ on this function, look at the gcc output and make sure
1569 * it does not pop things on and off the stack for the cache sizing loop that
1570 * executes in KSEG1 space or else you will crash and burn badly. You have
1571 * been warned.
1572 */
1573static int probe_scache(void)
1574{
1575 unsigned long flags, addr, begin, end, pow2;
1576 unsigned int config = read_c0_config();
1577 struct cpuinfo_mips *c = ¤t_cpu_data;
1578
1579 if (config & CONF_SC)
1580 return 0;
1581
1582 begin = (unsigned long) &_stext;
1583 begin &= ~((4 * 1024 * 1024) - 1);
1584 end = begin + (4 * 1024 * 1024);
1585
1586 /*
1587 * This is such a bitch, you'd think they would make it easy to do
1588 * this. Away you daemons of stupidity!
1589 */
1590 local_irq_save(flags);
1591
1592 /* Fill each size-multiple cache line with a valid tag. */
1593 pow2 = (64 * 1024);
1594 for (addr = begin; addr < end; addr = (begin + pow2)) {
1595 unsigned long *p = (unsigned long *) addr;
1596 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1597 pow2 <<= 1;
1598 }
1599
1600 /* Load first line with zero (therefore invalid) tag. */
1601 write_c0_taglo(0);
1602 write_c0_taghi(0);
1603 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1604 cache_op(Index_Store_Tag_I, begin);
1605 cache_op(Index_Store_Tag_D, begin);
1606 cache_op(Index_Store_Tag_SD, begin);
1607
1608 /* Now search for the wrap around point. */
1609 pow2 = (128 * 1024);
1610 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1611 cache_op(Index_Load_Tag_SD, addr);
1612 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1613 if (!read_c0_taglo())
1614 break;
1615 pow2 <<= 1;
1616 }
1617 local_irq_restore(flags);
1618 addr -= begin;
1619
1620 scache_size = addr;
1621 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1622 c->scache.ways = 1;
1623 c->scache.waybit = 0; /* does not matter */
1624
1625 return 1;
1626}
1627
1628static void __init loongson2_sc_init(void)
1629{
1630 struct cpuinfo_mips *c = ¤t_cpu_data;
1631
1632 scache_size = 512*1024;
1633 c->scache.linesz = 32;
1634 c->scache.ways = 4;
1635 c->scache.waybit = 0;
1636 c->scache.waysize = scache_size / (c->scache.ways);
1637 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1638 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1639 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1640
1641 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1642}
1643
1644static void __init loongson3_sc_init(void)
1645{
1646 struct cpuinfo_mips *c = ¤t_cpu_data;
1647 unsigned int config2, lsize;
1648
1649 config2 = read_c0_config2();
1650 lsize = (config2 >> 4) & 15;
1651 if (lsize)
1652 c->scache.linesz = 2 << lsize;
1653 else
1654 c->scache.linesz = 0;
1655 c->scache.sets = 64 << ((config2 >> 8) & 15);
1656 c->scache.ways = 1 + (config2 & 15);
1657
1658 scache_size = c->scache.sets *
1659 c->scache.ways *
1660 c->scache.linesz;
1661 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1662 scache_size *= 4;
1663 c->scache.waybit = 0;
1664 c->scache.waysize = scache_size / c->scache.ways;
1665 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1666 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1667 if (scache_size)
1668 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1669 return;
1670}
1671
1672extern int r5k_sc_init(void);
1673extern int rm7k_sc_init(void);
1674extern int mips_sc_init(void);
1675
1676static void setup_scache(void)
1677{
1678 struct cpuinfo_mips *c = ¤t_cpu_data;
1679 unsigned int config = read_c0_config();
1680 int sc_present = 0;
1681
1682 /*
1683 * Do the probing thing on R4000SC and R4400SC processors. Other
1684 * processors don't have a S-cache that would be relevant to the
1685 * Linux memory management.
1686 */
1687 switch (current_cpu_type()) {
1688 case CPU_R4000SC:
1689 case CPU_R4000MC:
1690 case CPU_R4400SC:
1691 case CPU_R4400MC:
1692 sc_present = run_uncached(probe_scache);
1693 if (sc_present)
1694 c->options |= MIPS_CPU_CACHE_CDEX_S;
1695 break;
1696
1697 case CPU_R10000:
1698 case CPU_R12000:
1699 case CPU_R14000:
1700 case CPU_R16000:
1701 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1702 c->scache.linesz = 64 << ((config >> 13) & 1);
1703 c->scache.ways = 2;
1704 c->scache.waybit= 0;
1705 sc_present = 1;
1706 break;
1707
1708 case CPU_R5000:
1709 case CPU_NEVADA:
1710#ifdef CONFIG_R5000_CPU_SCACHE
1711 r5k_sc_init();
1712#endif
1713 return;
1714
1715 case CPU_RM7000:
1716#ifdef CONFIG_RM7000_CPU_SCACHE
1717 rm7k_sc_init();
1718#endif
1719 return;
1720
1721 case CPU_LOONGSON2:
1722 loongson2_sc_init();
1723 return;
1724
1725 case CPU_LOONGSON3:
1726 loongson3_sc_init();
1727 return;
1728
1729 case CPU_CAVIUM_OCTEON3:
1730 case CPU_XLP:
1731 /* don't need to worry about L2, fully coherent */
1732 return;
1733
1734 default:
1735 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1736 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1737 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1738#ifdef CONFIG_MIPS_CPU_SCACHE
1739 if (mips_sc_init ()) {
1740 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1741 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1742 scache_size >> 10,
1743 way_string[c->scache.ways], c->scache.linesz);
1744 }
1745#else
1746 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1747 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1748#endif
1749 return;
1750 }
1751 sc_present = 0;
1752 }
1753
1754 if (!sc_present)
1755 return;
1756
1757 /* compute a couple of other cache variables */
1758 c->scache.waysize = scache_size / c->scache.ways;
1759
1760 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1761
1762 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1763 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1764
1765 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1766}
1767
1768void au1x00_fixup_config_od(void)
1769{
1770 /*
1771 * c0_config.od (bit 19) was write only (and read as 0)
1772 * on the early revisions of Alchemy SOCs. It disables the bus
1773 * transaction overlapping and needs to be set to fix various errata.
1774 */
1775 switch (read_c0_prid()) {
1776 case 0x00030100: /* Au1000 DA */
1777 case 0x00030201: /* Au1000 HA */
1778 case 0x00030202: /* Au1000 HB */
1779 case 0x01030200: /* Au1500 AB */
1780 /*
1781 * Au1100 errata actually keeps silence about this bit, so we set it
1782 * just in case for those revisions that require it to be set according
1783 * to the (now gone) cpu table.
1784 */
1785 case 0x02030200: /* Au1100 AB */
1786 case 0x02030201: /* Au1100 BA */
1787 case 0x02030202: /* Au1100 BC */
1788 set_c0_config(1 << 19);
1789 break;
1790 }
1791}
1792
1793/* CP0 hazard avoidance. */
1794#define NXP_BARRIER() \
1795 __asm__ __volatile__( \
1796 ".set noreorder\n\t" \
1797 "nop; nop; nop; nop; nop; nop;\n\t" \
1798 ".set reorder\n\t")
1799
1800static void nxp_pr4450_fixup_config(void)
1801{
1802 unsigned long config0;
1803
1804 config0 = read_c0_config();
1805
1806 /* clear all three cache coherency fields */
1807 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1808 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1809 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1810 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1811 write_c0_config(config0);
1812 NXP_BARRIER();
1813}
1814
1815static int cca = -1;
1816
1817static int __init cca_setup(char *str)
1818{
1819 get_option(&str, &cca);
1820
1821 return 0;
1822}
1823
1824early_param("cca", cca_setup);
1825
1826static void coherency_setup(void)
1827{
1828 if (cca < 0 || cca > 7)
1829 cca = read_c0_config() & CONF_CM_CMASK;
1830 _page_cachable_default = cca << _CACHE_SHIFT;
1831
1832 pr_debug("Using cache attribute %d\n", cca);
1833 change_c0_config(CONF_CM_CMASK, cca);
1834
1835 /*
1836 * c0_status.cu=0 specifies that updates by the sc instruction use
1837 * the coherency mode specified by the TLB; 1 means cachable
1838 * coherent update on write will be used. Not all processors have
1839 * this bit and; some wire it to zero, others like Toshiba had the
1840 * silly idea of putting something else there ...
1841 */
1842 switch (current_cpu_type()) {
1843 case CPU_R4000PC:
1844 case CPU_R4000SC:
1845 case CPU_R4000MC:
1846 case CPU_R4400PC:
1847 case CPU_R4400SC:
1848 case CPU_R4400MC:
1849 clear_c0_config(CONF_CU);
1850 break;
1851 /*
1852 * We need to catch the early Alchemy SOCs with
1853 * the write-only co_config.od bit and set it back to one on:
1854 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1855 */
1856 case CPU_ALCHEMY:
1857 au1x00_fixup_config_od();
1858 break;
1859
1860 case PRID_IMP_PR4450:
1861 nxp_pr4450_fixup_config();
1862 break;
1863 }
1864}
1865
1866static void r4k_cache_error_setup(void)
1867{
1868 extern char __weak except_vec2_generic;
1869 extern char __weak except_vec2_sb1;
1870
1871 switch (current_cpu_type()) {
1872 case CPU_SB1:
1873 case CPU_SB1A:
1874 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1875 break;
1876
1877 default:
1878 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1879 break;
1880 }
1881}
1882
1883void r4k_cache_init(void)
1884{
1885 extern void build_clear_page(void);
1886 extern void build_copy_page(void);
1887 struct cpuinfo_mips *c = ¤t_cpu_data;
1888
1889 probe_pcache();
1890 probe_vcache();
1891 setup_scache();
1892
1893 r4k_blast_dcache_page_setup();
1894 r4k_blast_dcache_page_indexed_setup();
1895 r4k_blast_dcache_setup();
1896 r4k_blast_icache_page_setup();
1897 r4k_blast_icache_page_indexed_setup();
1898 r4k_blast_icache_setup();
1899 r4k_blast_scache_page_setup();
1900 r4k_blast_scache_page_indexed_setup();
1901 r4k_blast_scache_setup();
1902#ifdef CONFIG_EVA
1903 r4k_blast_dcache_user_page_setup();
1904 r4k_blast_icache_user_page_setup();
1905#endif
1906
1907 /*
1908 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1909 * This code supports virtually indexed processors and will be
1910 * unnecessarily inefficient on physically indexed processors.
1911 */
1912 if (c->dcache.linesz && cpu_has_dc_aliases)
1913 shm_align_mask = max_t( unsigned long,
1914 c->dcache.sets * c->dcache.linesz - 1,
1915 PAGE_SIZE - 1);
1916 else
1917 shm_align_mask = PAGE_SIZE-1;
1918
1919 __flush_cache_vmap = r4k__flush_cache_vmap;
1920 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1921
1922 flush_cache_all = cache_noop;
1923 __flush_cache_all = r4k___flush_cache_all;
1924 flush_cache_mm = r4k_flush_cache_mm;
1925 flush_cache_page = r4k_flush_cache_page;
1926 flush_cache_range = r4k_flush_cache_range;
1927
1928 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1929
1930 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1931 flush_icache_all = r4k_flush_icache_all;
1932 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1933 flush_data_cache_page = r4k_flush_data_cache_page;
1934 flush_icache_range = r4k_flush_icache_range;
1935 local_flush_icache_range = local_r4k_flush_icache_range;
1936 __flush_icache_user_range = r4k_flush_icache_user_range;
1937 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1938
1939#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1940# if defined(CONFIG_DMA_PERDEV_COHERENT)
1941 if (0) {
1942# else
1943 if ((coherentio == IO_COHERENCE_ENABLED) ||
1944 ((coherentio == IO_COHERENCE_DEFAULT) && hw_coherentio)) {
1945# endif
1946 _dma_cache_wback_inv = (void *)cache_noop;
1947 _dma_cache_wback = (void *)cache_noop;
1948 _dma_cache_inv = (void *)cache_noop;
1949 } else {
1950 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1951 _dma_cache_wback = r4k_dma_cache_wback_inv;
1952 _dma_cache_inv = r4k_dma_cache_inv;
1953 }
1954#endif
1955
1956 build_clear_page();
1957 build_copy_page();
1958
1959 /*
1960 * We want to run CMP kernels on core with and without coherent
1961 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1962 * or not to flush caches.
1963 */
1964 local_r4k___flush_cache_all(NULL);
1965
1966 coherency_setup();
1967 board_cache_error_setup = r4k_cache_error_setup;
1968
1969 /*
1970 * Per-CPU overrides
1971 */
1972 switch (current_cpu_type()) {
1973 case CPU_BMIPS4350:
1974 case CPU_BMIPS4380:
1975 /* No IPI is needed because all CPUs share the same D$ */
1976 flush_data_cache_page = r4k_blast_dcache_page;
1977 break;
1978 case CPU_BMIPS5000:
1979 /* We lose our superpowers if L2 is disabled */
1980 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1981 break;
1982
1983 /* I$ fills from D$ just by emptying the write buffers */
1984 flush_cache_page = (void *)b5k_instruction_hazard;
1985 flush_cache_range = (void *)b5k_instruction_hazard;
1986 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1987 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1988 flush_data_cache_page = (void *)b5k_instruction_hazard;
1989 flush_icache_range = (void *)b5k_instruction_hazard;
1990 local_flush_icache_range = (void *)b5k_instruction_hazard;
1991
1992
1993 /* Optimization: an L2 flush implicitly flushes the L1 */
1994 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1995 break;
1996 case CPU_LOONGSON3:
1997 /* Loongson-3 maintains cache coherency by hardware */
1998 __flush_cache_all = cache_noop;
1999 __flush_cache_vmap = cache_noop;
2000 __flush_cache_vunmap = cache_noop;
2001 __flush_kernel_vmap_range = (void *)cache_noop;
2002 flush_cache_mm = (void *)cache_noop;
2003 flush_cache_page = (void *)cache_noop;
2004 flush_cache_range = (void *)cache_noop;
2005 flush_cache_sigtramp = (void *)cache_noop;
2006 flush_icache_all = (void *)cache_noop;
2007 flush_data_cache_page = (void *)cache_noop;
2008 local_flush_data_cache_page = (void *)cache_noop;
2009 break;
2010 }
2011}
2012
2013static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2014 void *v)
2015{
2016 switch (cmd) {
2017 case CPU_PM_ENTER_FAILED:
2018 case CPU_PM_EXIT:
2019 coherency_setup();
2020 break;
2021 }
2022
2023 return NOTIFY_OK;
2024}
2025
2026static struct notifier_block r4k_cache_pm_notifier_block = {
2027 .notifier_call = r4k_cache_pm_notifier,
2028};
2029
2030int __init r4k_cache_init_pm(void)
2031{
2032 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2033}
2034arch_initcall(r4k_cache_init_pm);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/highmem.h>
14#include <linux/kernel.h>
15#include <linux/linkage.h>
16#include <linux/preempt.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/mm.h>
20#include <linux/export.h>
21#include <linux/bitops.h>
22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
23
24#include <asm/bcache.h>
25#include <asm/bootinfo.h>
26#include <asm/cache.h>
27#include <asm/cacheops.h>
28#include <asm/cpu.h>
29#include <asm/cpu-features.h>
30#include <asm/cpu-type.h>
31#include <asm/io.h>
32#include <asm/page.h>
33#include <asm/r4kcache.h>
34#include <asm/sections.h>
35#include <asm/mmu_context.h>
36#include <asm/war.h>
37#include <asm/cacheflush.h> /* for run_uncached() */
38#include <asm/traps.h>
39#include <asm/mips-cps.h>
40
41/*
42 * Bits describing what cache ops an SMP callback function may perform.
43 *
44 * R4K_HIT - Virtual user or kernel address based cache operations. The
45 * active_mm must be checked before using user addresses, falling
46 * back to kmap.
47 * R4K_INDEX - Index based cache operations.
48 */
49
50#define R4K_HIT BIT(0)
51#define R4K_INDEX BIT(1)
52
53/**
54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
56 *
57 * Decides whether a cache op needs to be performed on every core in the system.
58 * This may change depending on the @type of cache operation, as well as the set
59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60 * hotplug from changing the result.
61 *
62 * Returns: 1 if the cache operation @type should be done on every core in
63 * the system.
64 * 0 if the cache operation @type is globalized and only needs to
65 * be performed on a simple CPU.
66 */
67static inline bool r4k_op_needs_ipi(unsigned int type)
68{
69 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70 if (type == R4K_HIT && mips_cm_present())
71 return false;
72
73 /*
74 * Hardware doesn't globalize the required cache ops, so SMP calls may
75 * be needed, but only if there are foreign CPUs (non-siblings with
76 * separate caches).
77 */
78 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79#ifdef CONFIG_SMP
80 return !cpumask_empty(&cpu_foreign_map[0]);
81#else
82 return false;
83#endif
84}
85
86/*
87 * Special Variant of smp_call_function for use by cache functions:
88 *
89 * o No return value
90 * o collapses to normal function call on UP kernels
91 * o collapses to normal function call on systems with a single shared
92 * primary cache.
93 * o doesn't disable interrupts on the local CPU
94 */
95static inline void r4k_on_each_cpu(unsigned int type,
96 void (*func)(void *info), void *info)
97{
98 preempt_disable();
99 if (r4k_op_needs_ipi(type))
100 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101 func, info, 1);
102 func(info);
103 preempt_enable();
104}
105
106/*
107 * Must die.
108 */
109static unsigned long icache_size __read_mostly;
110static unsigned long dcache_size __read_mostly;
111static unsigned long vcache_size __read_mostly;
112static unsigned long scache_size __read_mostly;
113
114/*
115 * Dummy cache handling routines for machines without boardcaches
116 */
117static void cache_noop(void) {}
118
119static struct bcache_ops no_sc_ops = {
120 .bc_enable = (void *)cache_noop,
121 .bc_disable = (void *)cache_noop,
122 .bc_wback_inv = (void *)cache_noop,
123 .bc_inv = (void *)cache_noop
124};
125
126struct bcache_ops *bcops = &no_sc_ops;
127
128#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
129#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
130
131#define R4600_HIT_CACHEOP_WAR_IMPL \
132do { \
133 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \
134 cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138} while (0)
139
140static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143{
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146}
147
148static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149{
150 blast_dcache64_page(addr);
151}
152
153static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154{
155 blast_dcache128_page(addr);
156}
157
158static void r4k_blast_dcache_page_setup(void)
159{
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181}
182
183#ifndef CONFIG_EVA
184#define r4k_blast_dcache_user_page r4k_blast_dcache_page
185#else
186
187static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189static void r4k_blast_dcache_user_page_setup(void)
190{
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201}
202
203#endif
204
205static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207static void r4k_blast_dcache_page_indexed_setup(void)
208{
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221}
222
223void (* r4k_blast_dcache)(void);
224EXPORT_SYMBOL(r4k_blast_dcache);
225
226static void r4k_blast_dcache_setup(void)
227{
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240}
241
242/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
243#define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252static inline void blast_r4600_v1_icache32(void)
253{
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259}
260
261static inline void tx49_blast_icache32(void)
262{
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache_unroll(32, kernel_cache, Index_Invalidate_I,
275 addr | ws, 32);
276 CACHE32_UNROLL32_ALIGN;
277 /* I'm in odd chunk. blast even chunks */
278 for (ws = 0; ws < ws_end; ws += ws_inc)
279 for (addr = start; addr < end; addr += 0x400 * 2)
280 cache_unroll(32, kernel_cache, Index_Invalidate_I,
281 addr | ws, 32);
282}
283
284static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285{
286 unsigned long flags;
287
288 local_irq_save(flags);
289 blast_icache32_page_indexed(page);
290 local_irq_restore(flags);
291}
292
293static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294{
295 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296 unsigned long start = INDEX_BASE + (page & indexmask);
297 unsigned long end = start + PAGE_SIZE;
298 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299 unsigned long ws_end = current_cpu_data.icache.ways <<
300 current_cpu_data.icache.waybit;
301 unsigned long ws, addr;
302
303 CACHE32_UNROLL32_ALIGN2;
304 /* I'm in even chunk. blast odd chunks */
305 for (ws = 0; ws < ws_end; ws += ws_inc)
306 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307 cache_unroll(32, kernel_cache, Index_Invalidate_I,
308 addr | ws, 32);
309 CACHE32_UNROLL32_ALIGN;
310 /* I'm in odd chunk. blast even chunks */
311 for (ws = 0; ws < ws_end; ws += ws_inc)
312 for (addr = start; addr < end; addr += 0x400 * 2)
313 cache_unroll(32, kernel_cache, Index_Invalidate_I,
314 addr | ws, 32);
315}
316
317static void (* r4k_blast_icache_page)(unsigned long addr);
318
319static void r4k_blast_icache_page_setup(void)
320{
321 unsigned long ic_lsize = cpu_icache_line_size();
322
323 if (ic_lsize == 0)
324 r4k_blast_icache_page = (void *)cache_noop;
325 else if (ic_lsize == 16)
326 r4k_blast_icache_page = blast_icache16_page;
327 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328 r4k_blast_icache_page = loongson2_blast_icache32_page;
329 else if (ic_lsize == 32)
330 r4k_blast_icache_page = blast_icache32_page;
331 else if (ic_lsize == 64)
332 r4k_blast_icache_page = blast_icache64_page;
333 else if (ic_lsize == 128)
334 r4k_blast_icache_page = blast_icache128_page;
335}
336
337#ifndef CONFIG_EVA
338#define r4k_blast_icache_user_page r4k_blast_icache_page
339#else
340
341static void (*r4k_blast_icache_user_page)(unsigned long addr);
342
343static void r4k_blast_icache_user_page_setup(void)
344{
345 unsigned long ic_lsize = cpu_icache_line_size();
346
347 if (ic_lsize == 0)
348 r4k_blast_icache_user_page = (void *)cache_noop;
349 else if (ic_lsize == 16)
350 r4k_blast_icache_user_page = blast_icache16_user_page;
351 else if (ic_lsize == 32)
352 r4k_blast_icache_user_page = blast_icache32_user_page;
353 else if (ic_lsize == 64)
354 r4k_blast_icache_user_page = blast_icache64_user_page;
355}
356
357#endif
358
359static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360
361static void r4k_blast_icache_page_indexed_setup(void)
362{
363 unsigned long ic_lsize = cpu_icache_line_size();
364
365 if (ic_lsize == 0)
366 r4k_blast_icache_page_indexed = (void *)cache_noop;
367 else if (ic_lsize == 16)
368 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369 else if (ic_lsize == 32) {
370 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
371 cpu_is_r4600_v1_x())
372 r4k_blast_icache_page_indexed =
373 blast_icache32_r4600_v1_page_indexed;
374 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
375 r4k_blast_icache_page_indexed =
376 tx49_blast_icache32_page_indexed;
377 else if (current_cpu_type() == CPU_LOONGSON2EF)
378 r4k_blast_icache_page_indexed =
379 loongson2_blast_icache32_page_indexed;
380 else
381 r4k_blast_icache_page_indexed =
382 blast_icache32_page_indexed;
383 } else if (ic_lsize == 64)
384 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
385}
386
387void (* r4k_blast_icache)(void);
388EXPORT_SYMBOL(r4k_blast_icache);
389
390static void r4k_blast_icache_setup(void)
391{
392 unsigned long ic_lsize = cpu_icache_line_size();
393
394 if (ic_lsize == 0)
395 r4k_blast_icache = (void *)cache_noop;
396 else if (ic_lsize == 16)
397 r4k_blast_icache = blast_icache16;
398 else if (ic_lsize == 32) {
399 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
400 cpu_is_r4600_v1_x())
401 r4k_blast_icache = blast_r4600_v1_icache32;
402 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
403 r4k_blast_icache = tx49_blast_icache32;
404 else if (current_cpu_type() == CPU_LOONGSON2EF)
405 r4k_blast_icache = loongson2_blast_icache32;
406 else
407 r4k_blast_icache = blast_icache32;
408 } else if (ic_lsize == 64)
409 r4k_blast_icache = blast_icache64;
410 else if (ic_lsize == 128)
411 r4k_blast_icache = blast_icache128;
412}
413
414static void (* r4k_blast_scache_page)(unsigned long addr);
415
416static void r4k_blast_scache_page_setup(void)
417{
418 unsigned long sc_lsize = cpu_scache_line_size();
419
420 if (scache_size == 0)
421 r4k_blast_scache_page = (void *)cache_noop;
422 else if (sc_lsize == 16)
423 r4k_blast_scache_page = blast_scache16_page;
424 else if (sc_lsize == 32)
425 r4k_blast_scache_page = blast_scache32_page;
426 else if (sc_lsize == 64)
427 r4k_blast_scache_page = blast_scache64_page;
428 else if (sc_lsize == 128)
429 r4k_blast_scache_page = blast_scache128_page;
430}
431
432static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
433
434static void r4k_blast_scache_page_indexed_setup(void)
435{
436 unsigned long sc_lsize = cpu_scache_line_size();
437
438 if (scache_size == 0)
439 r4k_blast_scache_page_indexed = (void *)cache_noop;
440 else if (sc_lsize == 16)
441 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
442 else if (sc_lsize == 32)
443 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
444 else if (sc_lsize == 64)
445 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
446 else if (sc_lsize == 128)
447 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
448}
449
450static void (* r4k_blast_scache)(void);
451
452static void r4k_blast_scache_setup(void)
453{
454 unsigned long sc_lsize = cpu_scache_line_size();
455
456 if (scache_size == 0)
457 r4k_blast_scache = (void *)cache_noop;
458 else if (sc_lsize == 16)
459 r4k_blast_scache = blast_scache16;
460 else if (sc_lsize == 32)
461 r4k_blast_scache = blast_scache32;
462 else if (sc_lsize == 64)
463 r4k_blast_scache = blast_scache64;
464 else if (sc_lsize == 128)
465 r4k_blast_scache = blast_scache128;
466}
467
468static void (*r4k_blast_scache_node)(long node);
469
470static void r4k_blast_scache_node_setup(void)
471{
472 unsigned long sc_lsize = cpu_scache_line_size();
473
474 if (current_cpu_type() != CPU_LOONGSON64)
475 r4k_blast_scache_node = (void *)cache_noop;
476 else if (sc_lsize == 16)
477 r4k_blast_scache_node = blast_scache16_node;
478 else if (sc_lsize == 32)
479 r4k_blast_scache_node = blast_scache32_node;
480 else if (sc_lsize == 64)
481 r4k_blast_scache_node = blast_scache64_node;
482 else if (sc_lsize == 128)
483 r4k_blast_scache_node = blast_scache128_node;
484}
485
486static inline void local_r4k___flush_cache_all(void * args)
487{
488 switch (current_cpu_type()) {
489 case CPU_LOONGSON2EF:
490 case CPU_R4000SC:
491 case CPU_R4000MC:
492 case CPU_R4400SC:
493 case CPU_R4400MC:
494 case CPU_R10000:
495 case CPU_R12000:
496 case CPU_R14000:
497 case CPU_R16000:
498 /*
499 * These caches are inclusive caches, that is, if something
500 * is not cached in the S-cache, we know it also won't be
501 * in one of the primary caches.
502 */
503 r4k_blast_scache();
504 break;
505
506 case CPU_LOONGSON64:
507 /* Use get_ebase_cpunum() for both NUMA=y/n */
508 r4k_blast_scache_node(get_ebase_cpunum() >> 2);
509 break;
510
511 case CPU_BMIPS5000:
512 r4k_blast_scache();
513 __sync();
514 break;
515
516 default:
517 r4k_blast_dcache();
518 r4k_blast_icache();
519 break;
520 }
521}
522
523static void r4k___flush_cache_all(void)
524{
525 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
526}
527
528/**
529 * has_valid_asid() - Determine if an mm already has an ASID.
530 * @mm: Memory map.
531 * @type: R4K_HIT or R4K_INDEX, type of cache op.
532 *
533 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
534 * of type @type within an r4k_on_each_cpu() call will affect. If
535 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
536 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
537 * will need to be checked.
538 *
539 * Must be called in non-preemptive context.
540 *
541 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
542 * 0 otherwise.
543 */
544static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
545{
546 unsigned int i;
547 const cpumask_t *mask = cpu_present_mask;
548
549 if (cpu_has_mmid)
550 return cpu_context(0, mm) != 0;
551
552 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
553#ifdef CONFIG_SMP
554 /*
555 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
556 * each foreign core, so we only need to worry about siblings.
557 * Otherwise we need to worry about all present CPUs.
558 */
559 if (r4k_op_needs_ipi(type))
560 mask = &cpu_sibling_map[smp_processor_id()];
561#endif
562 for_each_cpu(i, mask)
563 if (cpu_context(i, mm))
564 return 1;
565 return 0;
566}
567
568static void r4k__flush_cache_vmap(void)
569{
570 r4k_blast_dcache();
571}
572
573static void r4k__flush_cache_vunmap(void)
574{
575 r4k_blast_dcache();
576}
577
578/*
579 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
580 * whole caches when vma is executable.
581 */
582static inline void local_r4k_flush_cache_range(void * args)
583{
584 struct vm_area_struct *vma = args;
585 int exec = vma->vm_flags & VM_EXEC;
586
587 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
588 return;
589
590 /*
591 * If dcache can alias, we must blast it since mapping is changing.
592 * If executable, we must ensure any dirty lines are written back far
593 * enough to be visible to icache.
594 */
595 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
596 r4k_blast_dcache();
597 /* If executable, blast stale lines from icache */
598 if (exec)
599 r4k_blast_icache();
600}
601
602static void r4k_flush_cache_range(struct vm_area_struct *vma,
603 unsigned long start, unsigned long end)
604{
605 int exec = vma->vm_flags & VM_EXEC;
606
607 if (cpu_has_dc_aliases || exec)
608 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
609}
610
611static inline void local_r4k_flush_cache_mm(void * args)
612{
613 struct mm_struct *mm = args;
614
615 if (!has_valid_asid(mm, R4K_INDEX))
616 return;
617
618 /*
619 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
620 * only flush the primary caches but R1x000 behave sane ...
621 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
622 * caches, so we can bail out early.
623 */
624 if (current_cpu_type() == CPU_R4000SC ||
625 current_cpu_type() == CPU_R4000MC ||
626 current_cpu_type() == CPU_R4400SC ||
627 current_cpu_type() == CPU_R4400MC) {
628 r4k_blast_scache();
629 return;
630 }
631
632 r4k_blast_dcache();
633}
634
635static void r4k_flush_cache_mm(struct mm_struct *mm)
636{
637 if (!cpu_has_dc_aliases)
638 return;
639
640 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
641}
642
643struct flush_cache_page_args {
644 struct vm_area_struct *vma;
645 unsigned long addr;
646 unsigned long pfn;
647};
648
649static inline void local_r4k_flush_cache_page(void *args)
650{
651 struct flush_cache_page_args *fcp_args = args;
652 struct vm_area_struct *vma = fcp_args->vma;
653 unsigned long addr = fcp_args->addr;
654 struct page *page = pfn_to_page(fcp_args->pfn);
655 int exec = vma->vm_flags & VM_EXEC;
656 struct mm_struct *mm = vma->vm_mm;
657 int map_coherent = 0;
658 pmd_t *pmdp;
659 pte_t *ptep;
660 void *vaddr;
661
662 /*
663 * If owns no valid ASID yet, cannot possibly have gotten
664 * this page into the cache.
665 */
666 if (!has_valid_asid(mm, R4K_HIT))
667 return;
668
669 addr &= PAGE_MASK;
670 pmdp = pmd_off(mm, addr);
671 ptep = pte_offset_kernel(pmdp, addr);
672
673 /*
674 * If the page isn't marked valid, the page cannot possibly be
675 * in the cache.
676 */
677 if (!(pte_present(*ptep)))
678 return;
679
680 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
681 vaddr = NULL;
682 else {
683 /*
684 * Use kmap_coherent or kmap_atomic to do flushes for
685 * another ASID than the current one.
686 */
687 map_coherent = (cpu_has_dc_aliases &&
688 page_mapcount(page) &&
689 !Page_dcache_dirty(page));
690 if (map_coherent)
691 vaddr = kmap_coherent(page, addr);
692 else
693 vaddr = kmap_atomic(page);
694 addr = (unsigned long)vaddr;
695 }
696
697 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
698 vaddr ? r4k_blast_dcache_page(addr) :
699 r4k_blast_dcache_user_page(addr);
700 if (exec && !cpu_icache_snoops_remote_store)
701 r4k_blast_scache_page(addr);
702 }
703 if (exec) {
704 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
705 drop_mmu_context(mm);
706 } else
707 vaddr ? r4k_blast_icache_page(addr) :
708 r4k_blast_icache_user_page(addr);
709 }
710
711 if (vaddr) {
712 if (map_coherent)
713 kunmap_coherent();
714 else
715 kunmap_atomic(vaddr);
716 }
717}
718
719static void r4k_flush_cache_page(struct vm_area_struct *vma,
720 unsigned long addr, unsigned long pfn)
721{
722 struct flush_cache_page_args args;
723
724 args.vma = vma;
725 args.addr = addr;
726 args.pfn = pfn;
727
728 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729}
730
731static inline void local_r4k_flush_data_cache_page(void * addr)
732{
733 r4k_blast_dcache_page((unsigned long) addr);
734}
735
736static void r4k_flush_data_cache_page(unsigned long addr)
737{
738 if (in_atomic())
739 local_r4k_flush_data_cache_page((void *)addr);
740 else
741 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
742 (void *) addr);
743}
744
745struct flush_icache_range_args {
746 unsigned long start;
747 unsigned long end;
748 unsigned int type;
749 bool user;
750};
751
752static inline void __local_r4k_flush_icache_range(unsigned long start,
753 unsigned long end,
754 unsigned int type,
755 bool user)
756{
757 if (!cpu_has_ic_fills_f_dc) {
758 if (type == R4K_INDEX ||
759 (type & R4K_INDEX && end - start >= dcache_size)) {
760 r4k_blast_dcache();
761 } else {
762 R4600_HIT_CACHEOP_WAR_IMPL;
763 if (user)
764 protected_blast_dcache_range(start, end);
765 else
766 blast_dcache_range(start, end);
767 }
768 }
769
770 if (type == R4K_INDEX ||
771 (type & R4K_INDEX && end - start > icache_size))
772 r4k_blast_icache();
773 else {
774 switch (boot_cpu_type()) {
775 case CPU_LOONGSON2EF:
776 protected_loongson2_blast_icache_range(start, end);
777 break;
778
779 default:
780 if (user)
781 protected_blast_icache_range(start, end);
782 else
783 blast_icache_range(start, end);
784 break;
785 }
786 }
787}
788
789static inline void local_r4k_flush_icache_range(unsigned long start,
790 unsigned long end)
791{
792 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793}
794
795static inline void local_r4k_flush_icache_user_range(unsigned long start,
796 unsigned long end)
797{
798 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799}
800
801static inline void local_r4k_flush_icache_range_ipi(void *args)
802{
803 struct flush_icache_range_args *fir_args = args;
804 unsigned long start = fir_args->start;
805 unsigned long end = fir_args->end;
806 unsigned int type = fir_args->type;
807 bool user = fir_args->user;
808
809 __local_r4k_flush_icache_range(start, end, type, user);
810}
811
812static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
813 bool user)
814{
815 struct flush_icache_range_args args;
816 unsigned long size, cache_size;
817
818 args.start = start;
819 args.end = end;
820 args.type = R4K_HIT | R4K_INDEX;
821 args.user = user;
822
823 /*
824 * Indexed cache ops require an SMP call.
825 * Consider if that can or should be avoided.
826 */
827 preempt_disable();
828 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
829 /*
830 * If address-based cache ops don't require an SMP call, then
831 * use them exclusively for small flushes.
832 */
833 size = end - start;
834 cache_size = icache_size;
835 if (!cpu_has_ic_fills_f_dc) {
836 size *= 2;
837 cache_size += dcache_size;
838 }
839 if (size <= cache_size)
840 args.type &= ~R4K_INDEX;
841 }
842 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
843 preempt_enable();
844 instruction_hazard();
845}
846
847static void r4k_flush_icache_range(unsigned long start, unsigned long end)
848{
849 return __r4k_flush_icache_range(start, end, false);
850}
851
852static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
853{
854 return __r4k_flush_icache_range(start, end, true);
855}
856
857#ifdef CONFIG_DMA_NONCOHERENT
858
859static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
860{
861 /* Catch bad driver code */
862 if (WARN_ON(size == 0))
863 return;
864
865 preempt_disable();
866 if (cpu_has_inclusive_pcaches) {
867 if (size >= scache_size) {
868 if (current_cpu_type() != CPU_LOONGSON64)
869 r4k_blast_scache();
870 else
871 r4k_blast_scache_node(pa_to_nid(addr));
872 } else {
873 blast_scache_range(addr, addr + size);
874 }
875 preempt_enable();
876 __sync();
877 return;
878 }
879
880 /*
881 * Either no secondary cache or the available caches don't have the
882 * subset property so we have to flush the primary caches
883 * explicitly.
884 * If we would need IPI to perform an INDEX-type operation, then
885 * we have to use the HIT-type alternative as IPI cannot be used
886 * here due to interrupts possibly being disabled.
887 */
888 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
889 r4k_blast_dcache();
890 } else {
891 R4600_HIT_CACHEOP_WAR_IMPL;
892 blast_dcache_range(addr, addr + size);
893 }
894 preempt_enable();
895
896 bc_wback_inv(addr, size);
897 __sync();
898}
899
900static void prefetch_cache_inv(unsigned long addr, unsigned long size)
901{
902 unsigned int linesz = cpu_scache_line_size();
903 unsigned long addr0 = addr, addr1;
904
905 addr0 &= ~(linesz - 1);
906 addr1 = (addr0 + size - 1) & ~(linesz - 1);
907
908 protected_writeback_scache_line(addr0);
909 if (likely(addr1 != addr0))
910 protected_writeback_scache_line(addr1);
911 else
912 return;
913
914 addr0 += linesz;
915 if (likely(addr1 != addr0))
916 protected_writeback_scache_line(addr0);
917 else
918 return;
919
920 addr1 -= linesz;
921 if (likely(addr1 > addr0))
922 protected_writeback_scache_line(addr0);
923}
924
925static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
926{
927 /* Catch bad driver code */
928 if (WARN_ON(size == 0))
929 return;
930
931 preempt_disable();
932
933 if (current_cpu_type() == CPU_BMIPS5000)
934 prefetch_cache_inv(addr, size);
935
936 if (cpu_has_inclusive_pcaches) {
937 if (size >= scache_size) {
938 if (current_cpu_type() != CPU_LOONGSON64)
939 r4k_blast_scache();
940 else
941 r4k_blast_scache_node(pa_to_nid(addr));
942 } else {
943 /*
944 * There is no clearly documented alignment requirement
945 * for the cache instruction on MIPS processors and
946 * some processors, among them the RM5200 and RM7000
947 * QED processors will throw an address error for cache
948 * hit ops with insufficient alignment. Solved by
949 * aligning the address to cache line size.
950 */
951 blast_inv_scache_range(addr, addr + size);
952 }
953 preempt_enable();
954 __sync();
955 return;
956 }
957
958 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
959 r4k_blast_dcache();
960 } else {
961 R4600_HIT_CACHEOP_WAR_IMPL;
962 blast_inv_dcache_range(addr, addr + size);
963 }
964 preempt_enable();
965
966 bc_inv(addr, size);
967 __sync();
968}
969#endif /* CONFIG_DMA_NONCOHERENT */
970
971static void r4k_flush_icache_all(void)
972{
973 if (cpu_has_vtag_icache)
974 r4k_blast_icache();
975}
976
977struct flush_kernel_vmap_range_args {
978 unsigned long vaddr;
979 int size;
980};
981
982static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
983{
984 /*
985 * Aliases only affect the primary caches so don't bother with
986 * S-caches or T-caches.
987 */
988 r4k_blast_dcache();
989}
990
991static inline void local_r4k_flush_kernel_vmap_range(void *args)
992{
993 struct flush_kernel_vmap_range_args *vmra = args;
994 unsigned long vaddr = vmra->vaddr;
995 int size = vmra->size;
996
997 /*
998 * Aliases only affect the primary caches so don't bother with
999 * S-caches or T-caches.
1000 */
1001 R4600_HIT_CACHEOP_WAR_IMPL;
1002 blast_dcache_range(vaddr, vaddr + size);
1003}
1004
1005static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1006{
1007 struct flush_kernel_vmap_range_args args;
1008
1009 args.vaddr = (unsigned long) vaddr;
1010 args.size = size;
1011
1012 if (size >= dcache_size)
1013 r4k_on_each_cpu(R4K_INDEX,
1014 local_r4k_flush_kernel_vmap_range_index, NULL);
1015 else
1016 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1017 &args);
1018}
1019
1020static inline void rm7k_erratum31(void)
1021{
1022 const unsigned long ic_lsize = 32;
1023 unsigned long addr;
1024
1025 /* RM7000 erratum #31. The icache is screwed at startup. */
1026 write_c0_taglo(0);
1027 write_c0_taghi(0);
1028
1029 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1030 __asm__ __volatile__ (
1031 ".set push\n\t"
1032 ".set noreorder\n\t"
1033 ".set mips3\n\t"
1034 "cache\t%1, 0(%0)\n\t"
1035 "cache\t%1, 0x1000(%0)\n\t"
1036 "cache\t%1, 0x2000(%0)\n\t"
1037 "cache\t%1, 0x3000(%0)\n\t"
1038 "cache\t%2, 0(%0)\n\t"
1039 "cache\t%2, 0x1000(%0)\n\t"
1040 "cache\t%2, 0x2000(%0)\n\t"
1041 "cache\t%2, 0x3000(%0)\n\t"
1042 "cache\t%1, 0(%0)\n\t"
1043 "cache\t%1, 0x1000(%0)\n\t"
1044 "cache\t%1, 0x2000(%0)\n\t"
1045 "cache\t%1, 0x3000(%0)\n\t"
1046 ".set pop\n"
1047 :
1048 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1049 }
1050}
1051
1052static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1053{
1054 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1055 unsigned int rev = c->processor_id & PRID_REV_MASK;
1056 int present = 0;
1057
1058 /*
1059 * Early versions of the 74K do not update the cache tags on a
1060 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1061 * aliases. In this case it is better to treat the cache as always
1062 * having aliases. Also disable the synonym tag update feature
1063 * where available. In this case no opportunistic tag update will
1064 * happen where a load causes a virtual address miss but a physical
1065 * address hit during a D-cache look-up.
1066 */
1067 switch (imp) {
1068 case PRID_IMP_74K:
1069 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1070 present = 1;
1071 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1072 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1073 break;
1074 case PRID_IMP_1074K:
1075 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1076 present = 1;
1077 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1078 }
1079 break;
1080 default:
1081 BUG();
1082 }
1083
1084 return present;
1085}
1086
1087static void b5k_instruction_hazard(void)
1088{
1089 __sync();
1090 __sync();
1091 __asm__ __volatile__(
1092 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1096 : : : "memory");
1097}
1098
1099static char *way_string[] = { NULL, "direct mapped", "2-way",
1100 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1101 "9-way", "10-way", "11-way", "12-way",
1102 "13-way", "14-way", "15-way", "16-way",
1103};
1104
1105static void probe_pcache(void)
1106{
1107 struct cpuinfo_mips *c = ¤t_cpu_data;
1108 unsigned int config = read_c0_config();
1109 unsigned int prid = read_c0_prid();
1110 int has_74k_erratum = 0;
1111 unsigned long config1;
1112 unsigned int lsize;
1113
1114 switch (current_cpu_type()) {
1115 case CPU_R4600: /* QED style two way caches? */
1116 case CPU_R4700:
1117 case CPU_R5000:
1118 case CPU_NEVADA:
1119 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1120 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1121 c->icache.ways = 2;
1122 c->icache.waybit = __ffs(icache_size/2);
1123
1124 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1125 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1126 c->dcache.ways = 2;
1127 c->dcache.waybit= __ffs(dcache_size/2);
1128
1129 c->options |= MIPS_CPU_CACHE_CDEX_P;
1130 break;
1131
1132 case CPU_R5500:
1133 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135 c->icache.ways = 2;
1136 c->icache.waybit= 0;
1137
1138 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140 c->dcache.ways = 2;
1141 c->dcache.waybit = 0;
1142
1143 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144 break;
1145
1146 case CPU_TX49XX:
1147 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149 c->icache.ways = 4;
1150 c->icache.waybit= 0;
1151
1152 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154 c->dcache.ways = 4;
1155 c->dcache.waybit = 0;
1156
1157 c->options |= MIPS_CPU_CACHE_CDEX_P;
1158 c->options |= MIPS_CPU_PREFETCH;
1159 break;
1160
1161 case CPU_R4000PC:
1162 case CPU_R4000SC:
1163 case CPU_R4000MC:
1164 case CPU_R4400PC:
1165 case CPU_R4400SC:
1166 case CPU_R4400MC:
1167 case CPU_R4300:
1168 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1169 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1170 c->icache.ways = 1;
1171 c->icache.waybit = 0; /* doesn't matter */
1172
1173 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1174 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1175 c->dcache.ways = 1;
1176 c->dcache.waybit = 0; /* does not matter */
1177
1178 c->options |= MIPS_CPU_CACHE_CDEX_P;
1179 break;
1180
1181 case CPU_R10000:
1182 case CPU_R12000:
1183 case CPU_R14000:
1184 case CPU_R16000:
1185 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1186 c->icache.linesz = 64;
1187 c->icache.ways = 2;
1188 c->icache.waybit = 0;
1189
1190 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1191 c->dcache.linesz = 32;
1192 c->dcache.ways = 2;
1193 c->dcache.waybit = 0;
1194
1195 c->options |= MIPS_CPU_PREFETCH;
1196 break;
1197
1198 case CPU_VR4133:
1199 write_c0_config(config & ~VR41_CONF_P4K);
1200 fallthrough;
1201 case CPU_VR4131:
1202 /* Workaround for cache instruction bug of VR4131 */
1203 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1204 c->processor_id == 0x0c82U) {
1205 config |= 0x00400000U;
1206 if (c->processor_id == 0x0c80U)
1207 config |= VR41_CONF_BP;
1208 write_c0_config(config);
1209 } else
1210 c->options |= MIPS_CPU_CACHE_CDEX_P;
1211
1212 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1213 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1214 c->icache.ways = 2;
1215 c->icache.waybit = __ffs(icache_size/2);
1216
1217 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1218 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1219 c->dcache.ways = 2;
1220 c->dcache.waybit = __ffs(dcache_size/2);
1221 break;
1222
1223 case CPU_VR41XX:
1224 case CPU_VR4111:
1225 case CPU_VR4121:
1226 case CPU_VR4122:
1227 case CPU_VR4181:
1228 case CPU_VR4181A:
1229 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1230 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1231 c->icache.ways = 1;
1232 c->icache.waybit = 0; /* doesn't matter */
1233
1234 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1235 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1236 c->dcache.ways = 1;
1237 c->dcache.waybit = 0; /* does not matter */
1238
1239 c->options |= MIPS_CPU_CACHE_CDEX_P;
1240 break;
1241
1242 case CPU_RM7000:
1243 rm7k_erratum31();
1244
1245 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1246 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1247 c->icache.ways = 4;
1248 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1249
1250 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1251 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1252 c->dcache.ways = 4;
1253 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1254
1255 c->options |= MIPS_CPU_CACHE_CDEX_P;
1256 c->options |= MIPS_CPU_PREFETCH;
1257 break;
1258
1259 case CPU_LOONGSON2EF:
1260 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1261 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1262 if (prid & 0x3)
1263 c->icache.ways = 4;
1264 else
1265 c->icache.ways = 2;
1266 c->icache.waybit = 0;
1267
1268 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1269 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1270 if (prid & 0x3)
1271 c->dcache.ways = 4;
1272 else
1273 c->dcache.ways = 2;
1274 c->dcache.waybit = 0;
1275 break;
1276
1277 case CPU_LOONGSON64:
1278 config1 = read_c0_config1();
1279 lsize = (config1 >> 19) & 7;
1280 if (lsize)
1281 c->icache.linesz = 2 << lsize;
1282 else
1283 c->icache.linesz = 0;
1284 c->icache.sets = 64 << ((config1 >> 22) & 7);
1285 c->icache.ways = 1 + ((config1 >> 16) & 7);
1286 icache_size = c->icache.sets *
1287 c->icache.ways *
1288 c->icache.linesz;
1289 c->icache.waybit = 0;
1290
1291 lsize = (config1 >> 10) & 7;
1292 if (lsize)
1293 c->dcache.linesz = 2 << lsize;
1294 else
1295 c->dcache.linesz = 0;
1296 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1297 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1298 dcache_size = c->dcache.sets *
1299 c->dcache.ways *
1300 c->dcache.linesz;
1301 c->dcache.waybit = 0;
1302 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1303 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1304 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1305 c->options |= MIPS_CPU_PREFETCH;
1306 break;
1307
1308 case CPU_CAVIUM_OCTEON3:
1309 /* For now lie about the number of ways. */
1310 c->icache.linesz = 128;
1311 c->icache.sets = 16;
1312 c->icache.ways = 8;
1313 c->icache.flags |= MIPS_CACHE_VTAG;
1314 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1315
1316 c->dcache.linesz = 128;
1317 c->dcache.ways = 8;
1318 c->dcache.sets = 8;
1319 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1320 c->options |= MIPS_CPU_PREFETCH;
1321 break;
1322
1323 default:
1324 if (!(config & MIPS_CONF_M))
1325 panic("Don't know how to probe P-caches on this cpu.");
1326
1327 /*
1328 * So we seem to be a MIPS32 or MIPS64 CPU
1329 * So let's probe the I-cache ...
1330 */
1331 config1 = read_c0_config1();
1332
1333 lsize = (config1 >> 19) & 7;
1334
1335 /* IL == 7 is reserved */
1336 if (lsize == 7)
1337 panic("Invalid icache line size");
1338
1339 c->icache.linesz = lsize ? 2 << lsize : 0;
1340
1341 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1342 c->icache.ways = 1 + ((config1 >> 16) & 7);
1343
1344 icache_size = c->icache.sets *
1345 c->icache.ways *
1346 c->icache.linesz;
1347 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1348
1349 if (config & MIPS_CONF_VI)
1350 c->icache.flags |= MIPS_CACHE_VTAG;
1351
1352 /*
1353 * Now probe the MIPS32 / MIPS64 data cache.
1354 */
1355 c->dcache.flags = 0;
1356
1357 lsize = (config1 >> 10) & 7;
1358
1359 /* DL == 7 is reserved */
1360 if (lsize == 7)
1361 panic("Invalid dcache line size");
1362
1363 c->dcache.linesz = lsize ? 2 << lsize : 0;
1364
1365 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1366 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1367
1368 dcache_size = c->dcache.sets *
1369 c->dcache.ways *
1370 c->dcache.linesz;
1371 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1372
1373 c->options |= MIPS_CPU_PREFETCH;
1374 break;
1375 }
1376
1377 /*
1378 * Processor configuration sanity check for the R4000SC erratum
1379 * #5. With page sizes larger than 32kB there is no possibility
1380 * to get a VCE exception anymore so we don't care about this
1381 * misconfiguration. The case is rather theoretical anyway;
1382 * presumably no vendor is shipping his hardware in the "bad"
1383 * configuration.
1384 */
1385 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1386 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1387 !(config & CONF_SC) && c->icache.linesz != 16 &&
1388 PAGE_SIZE <= 0x8000)
1389 panic("Improper R4000SC processor configuration detected");
1390
1391 /* compute a couple of other cache variables */
1392 c->icache.waysize = icache_size / c->icache.ways;
1393 c->dcache.waysize = dcache_size / c->dcache.ways;
1394
1395 c->icache.sets = c->icache.linesz ?
1396 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1397 c->dcache.sets = c->dcache.linesz ?
1398 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1399
1400 /*
1401 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1402 * virtually indexed so normally would suffer from aliases. So
1403 * normally they'd suffer from aliases but magic in the hardware deals
1404 * with that for us so we don't need to take care ourselves.
1405 */
1406 switch (current_cpu_type()) {
1407 case CPU_20KC:
1408 case CPU_25KF:
1409 case CPU_I6400:
1410 case CPU_I6500:
1411 case CPU_SB1:
1412 case CPU_SB1A:
1413 case CPU_XLR:
1414 c->dcache.flags |= MIPS_CACHE_PINDEX;
1415 break;
1416
1417 case CPU_R10000:
1418 case CPU_R12000:
1419 case CPU_R14000:
1420 case CPU_R16000:
1421 break;
1422
1423 case CPU_74K:
1424 case CPU_1074K:
1425 has_74k_erratum = alias_74k_erratum(c);
1426 fallthrough;
1427 case CPU_M14KC:
1428 case CPU_M14KEC:
1429 case CPU_24K:
1430 case CPU_34K:
1431 case CPU_1004K:
1432 case CPU_INTERAPTIV:
1433 case CPU_P5600:
1434 case CPU_PROAPTIV:
1435 case CPU_M5150:
1436 case CPU_QEMU_GENERIC:
1437 case CPU_P6600:
1438 case CPU_M6250:
1439 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1440 (c->icache.waysize > PAGE_SIZE))
1441 c->icache.flags |= MIPS_CACHE_ALIASES;
1442 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1443 /*
1444 * Effectively physically indexed dcache,
1445 * thus no virtual aliases.
1446 */
1447 c->dcache.flags |= MIPS_CACHE_PINDEX;
1448 break;
1449 }
1450 fallthrough;
1451 default:
1452 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1453 c->dcache.flags |= MIPS_CACHE_ALIASES;
1454 }
1455
1456 /* Physically indexed caches don't suffer from virtual aliasing */
1457 if (c->dcache.flags & MIPS_CACHE_PINDEX)
1458 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1459
1460 /*
1461 * In systems with CM the icache fills from L2 or closer caches, and
1462 * thus sees remote stores without needing to write them back any
1463 * further than that.
1464 */
1465 if (mips_cm_present())
1466 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1467
1468 switch (current_cpu_type()) {
1469 case CPU_20KC:
1470 /*
1471 * Some older 20Kc chips doesn't have the 'VI' bit in
1472 * the config register.
1473 */
1474 c->icache.flags |= MIPS_CACHE_VTAG;
1475 break;
1476
1477 case CPU_ALCHEMY:
1478 case CPU_I6400:
1479 case CPU_I6500:
1480 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1481 break;
1482
1483 case CPU_BMIPS5000:
1484 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1485 /* Cache aliases are handled in hardware; allow HIGHMEM */
1486 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1487 break;
1488
1489 case CPU_LOONGSON2EF:
1490 /*
1491 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1492 * one op will act on all 4 ways
1493 */
1494 c->icache.ways = 1;
1495 }
1496
1497 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1498 icache_size >> 10,
1499 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1500 way_string[c->icache.ways], c->icache.linesz);
1501
1502 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1503 dcache_size >> 10, way_string[c->dcache.ways],
1504 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1505 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1506 "cache aliases" : "no aliases",
1507 c->dcache.linesz);
1508}
1509
1510static void probe_vcache(void)
1511{
1512 struct cpuinfo_mips *c = ¤t_cpu_data;
1513 unsigned int config2, lsize;
1514
1515 if (current_cpu_type() != CPU_LOONGSON64)
1516 return;
1517
1518 config2 = read_c0_config2();
1519 if ((lsize = ((config2 >> 20) & 15)))
1520 c->vcache.linesz = 2 << lsize;
1521 else
1522 c->vcache.linesz = lsize;
1523
1524 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1525 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1526
1527 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1528
1529 c->vcache.waybit = 0;
1530 c->vcache.waysize = vcache_size / c->vcache.ways;
1531
1532 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1533 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1534}
1535
1536/*
1537 * If you even _breathe_ on this function, look at the gcc output and make sure
1538 * it does not pop things on and off the stack for the cache sizing loop that
1539 * executes in KSEG1 space or else you will crash and burn badly. You have
1540 * been warned.
1541 */
1542static int probe_scache(void)
1543{
1544 unsigned long flags, addr, begin, end, pow2;
1545 unsigned int config = read_c0_config();
1546 struct cpuinfo_mips *c = ¤t_cpu_data;
1547
1548 if (config & CONF_SC)
1549 return 0;
1550
1551 begin = (unsigned long) &_stext;
1552 begin &= ~((4 * 1024 * 1024) - 1);
1553 end = begin + (4 * 1024 * 1024);
1554
1555 /*
1556 * This is such a bitch, you'd think they would make it easy to do
1557 * this. Away you daemons of stupidity!
1558 */
1559 local_irq_save(flags);
1560
1561 /* Fill each size-multiple cache line with a valid tag. */
1562 pow2 = (64 * 1024);
1563 for (addr = begin; addr < end; addr = (begin + pow2)) {
1564 unsigned long *p = (unsigned long *) addr;
1565 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1566 pow2 <<= 1;
1567 }
1568
1569 /* Load first line with zero (therefore invalid) tag. */
1570 write_c0_taglo(0);
1571 write_c0_taghi(0);
1572 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1573 cache_op(Index_Store_Tag_I, begin);
1574 cache_op(Index_Store_Tag_D, begin);
1575 cache_op(Index_Store_Tag_SD, begin);
1576
1577 /* Now search for the wrap around point. */
1578 pow2 = (128 * 1024);
1579 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1580 cache_op(Index_Load_Tag_SD, addr);
1581 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1582 if (!read_c0_taglo())
1583 break;
1584 pow2 <<= 1;
1585 }
1586 local_irq_restore(flags);
1587 addr -= begin;
1588
1589 scache_size = addr;
1590 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1591 c->scache.ways = 1;
1592 c->scache.waybit = 0; /* does not matter */
1593
1594 return 1;
1595}
1596
1597static void loongson2_sc_init(void)
1598{
1599 struct cpuinfo_mips *c = ¤t_cpu_data;
1600
1601 scache_size = 512*1024;
1602 c->scache.linesz = 32;
1603 c->scache.ways = 4;
1604 c->scache.waybit = 0;
1605 c->scache.waysize = scache_size / (c->scache.ways);
1606 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1607 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1608 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1609
1610 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1611}
1612
1613static void loongson3_sc_init(void)
1614{
1615 struct cpuinfo_mips *c = ¤t_cpu_data;
1616 unsigned int config2, lsize;
1617
1618 config2 = read_c0_config2();
1619 lsize = (config2 >> 4) & 15;
1620 if (lsize)
1621 c->scache.linesz = 2 << lsize;
1622 else
1623 c->scache.linesz = 0;
1624 c->scache.sets = 64 << ((config2 >> 8) & 15);
1625 c->scache.ways = 1 + (config2 & 15);
1626
1627 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1628 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1629 c->scache.sets *= 2;
1630 else
1631 c->scache.sets *= 4;
1632
1633 scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1634
1635 c->scache.waybit = 0;
1636 c->scache.waysize = scache_size / c->scache.ways;
1637 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1638 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1639 if (scache_size)
1640 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1641 return;
1642}
1643
1644extern int r5k_sc_init(void);
1645extern int rm7k_sc_init(void);
1646extern int mips_sc_init(void);
1647
1648static void setup_scache(void)
1649{
1650 struct cpuinfo_mips *c = ¤t_cpu_data;
1651 unsigned int config = read_c0_config();
1652 int sc_present = 0;
1653
1654 /*
1655 * Do the probing thing on R4000SC and R4400SC processors. Other
1656 * processors don't have a S-cache that would be relevant to the
1657 * Linux memory management.
1658 */
1659 switch (current_cpu_type()) {
1660 case CPU_R4000SC:
1661 case CPU_R4000MC:
1662 case CPU_R4400SC:
1663 case CPU_R4400MC:
1664 sc_present = run_uncached(probe_scache);
1665 if (sc_present)
1666 c->options |= MIPS_CPU_CACHE_CDEX_S;
1667 break;
1668
1669 case CPU_R10000:
1670 case CPU_R12000:
1671 case CPU_R14000:
1672 case CPU_R16000:
1673 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1674 c->scache.linesz = 64 << ((config >> 13) & 1);
1675 c->scache.ways = 2;
1676 c->scache.waybit= 0;
1677 sc_present = 1;
1678 break;
1679
1680 case CPU_R5000:
1681 case CPU_NEVADA:
1682#ifdef CONFIG_R5000_CPU_SCACHE
1683 r5k_sc_init();
1684#endif
1685 return;
1686
1687 case CPU_RM7000:
1688#ifdef CONFIG_RM7000_CPU_SCACHE
1689 rm7k_sc_init();
1690#endif
1691 return;
1692
1693 case CPU_LOONGSON2EF:
1694 loongson2_sc_init();
1695 return;
1696
1697 case CPU_LOONGSON64:
1698 loongson3_sc_init();
1699 return;
1700
1701 case CPU_CAVIUM_OCTEON3:
1702 case CPU_XLP:
1703 /* don't need to worry about L2, fully coherent */
1704 return;
1705
1706 default:
1707 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1708 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1709 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1710 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1711#ifdef CONFIG_MIPS_CPU_SCACHE
1712 if (mips_sc_init ()) {
1713 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1714 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1715 scache_size >> 10,
1716 way_string[c->scache.ways], c->scache.linesz);
1717
1718 if (current_cpu_type() == CPU_BMIPS5000)
1719 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1720 }
1721
1722#else
1723 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1724 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1725#endif
1726 return;
1727 }
1728 sc_present = 0;
1729 }
1730
1731 if (!sc_present)
1732 return;
1733
1734 /* compute a couple of other cache variables */
1735 c->scache.waysize = scache_size / c->scache.ways;
1736
1737 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1738
1739 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1740 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1741
1742 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1743}
1744
1745void au1x00_fixup_config_od(void)
1746{
1747 /*
1748 * c0_config.od (bit 19) was write only (and read as 0)
1749 * on the early revisions of Alchemy SOCs. It disables the bus
1750 * transaction overlapping and needs to be set to fix various errata.
1751 */
1752 switch (read_c0_prid()) {
1753 case 0x00030100: /* Au1000 DA */
1754 case 0x00030201: /* Au1000 HA */
1755 case 0x00030202: /* Au1000 HB */
1756 case 0x01030200: /* Au1500 AB */
1757 /*
1758 * Au1100 errata actually keeps silence about this bit, so we set it
1759 * just in case for those revisions that require it to be set according
1760 * to the (now gone) cpu table.
1761 */
1762 case 0x02030200: /* Au1100 AB */
1763 case 0x02030201: /* Au1100 BA */
1764 case 0x02030202: /* Au1100 BC */
1765 set_c0_config(1 << 19);
1766 break;
1767 }
1768}
1769
1770/* CP0 hazard avoidance. */
1771#define NXP_BARRIER() \
1772 __asm__ __volatile__( \
1773 ".set noreorder\n\t" \
1774 "nop; nop; nop; nop; nop; nop;\n\t" \
1775 ".set reorder\n\t")
1776
1777static void nxp_pr4450_fixup_config(void)
1778{
1779 unsigned long config0;
1780
1781 config0 = read_c0_config();
1782
1783 /* clear all three cache coherency fields */
1784 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1785 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1786 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1787 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1788 write_c0_config(config0);
1789 NXP_BARRIER();
1790}
1791
1792static int cca = -1;
1793
1794static int __init cca_setup(char *str)
1795{
1796 get_option(&str, &cca);
1797
1798 return 0;
1799}
1800
1801early_param("cca", cca_setup);
1802
1803static void coherency_setup(void)
1804{
1805 if (cca < 0 || cca > 7)
1806 cca = read_c0_config() & CONF_CM_CMASK;
1807 _page_cachable_default = cca << _CACHE_SHIFT;
1808
1809 pr_debug("Using cache attribute %d\n", cca);
1810 change_c0_config(CONF_CM_CMASK, cca);
1811
1812 /*
1813 * c0_status.cu=0 specifies that updates by the sc instruction use
1814 * the coherency mode specified by the TLB; 1 means cachable
1815 * coherent update on write will be used. Not all processors have
1816 * this bit and; some wire it to zero, others like Toshiba had the
1817 * silly idea of putting something else there ...
1818 */
1819 switch (current_cpu_type()) {
1820 case CPU_R4000PC:
1821 case CPU_R4000SC:
1822 case CPU_R4000MC:
1823 case CPU_R4400PC:
1824 case CPU_R4400SC:
1825 case CPU_R4400MC:
1826 clear_c0_config(CONF_CU);
1827 break;
1828 /*
1829 * We need to catch the early Alchemy SOCs with
1830 * the write-only co_config.od bit and set it back to one on:
1831 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1832 */
1833 case CPU_ALCHEMY:
1834 au1x00_fixup_config_od();
1835 break;
1836
1837 case PRID_IMP_PR4450:
1838 nxp_pr4450_fixup_config();
1839 break;
1840 }
1841}
1842
1843static void r4k_cache_error_setup(void)
1844{
1845 extern char __weak except_vec2_generic;
1846 extern char __weak except_vec2_sb1;
1847
1848 switch (current_cpu_type()) {
1849 case CPU_SB1:
1850 case CPU_SB1A:
1851 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1852 break;
1853
1854 default:
1855 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1856 break;
1857 }
1858}
1859
1860void r4k_cache_init(void)
1861{
1862 extern void build_clear_page(void);
1863 extern void build_copy_page(void);
1864 struct cpuinfo_mips *c = ¤t_cpu_data;
1865
1866 probe_pcache();
1867 probe_vcache();
1868 setup_scache();
1869
1870 r4k_blast_dcache_page_setup();
1871 r4k_blast_dcache_page_indexed_setup();
1872 r4k_blast_dcache_setup();
1873 r4k_blast_icache_page_setup();
1874 r4k_blast_icache_page_indexed_setup();
1875 r4k_blast_icache_setup();
1876 r4k_blast_scache_page_setup();
1877 r4k_blast_scache_page_indexed_setup();
1878 r4k_blast_scache_setup();
1879 r4k_blast_scache_node_setup();
1880#ifdef CONFIG_EVA
1881 r4k_blast_dcache_user_page_setup();
1882 r4k_blast_icache_user_page_setup();
1883#endif
1884
1885 /*
1886 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1887 * This code supports virtually indexed processors and will be
1888 * unnecessarily inefficient on physically indexed processors.
1889 */
1890 if (c->dcache.linesz && cpu_has_dc_aliases)
1891 shm_align_mask = max_t( unsigned long,
1892 c->dcache.sets * c->dcache.linesz - 1,
1893 PAGE_SIZE - 1);
1894 else
1895 shm_align_mask = PAGE_SIZE-1;
1896
1897 __flush_cache_vmap = r4k__flush_cache_vmap;
1898 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1899
1900 flush_cache_all = cache_noop;
1901 __flush_cache_all = r4k___flush_cache_all;
1902 flush_cache_mm = r4k_flush_cache_mm;
1903 flush_cache_page = r4k_flush_cache_page;
1904 flush_cache_range = r4k_flush_cache_range;
1905
1906 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1907
1908 flush_icache_all = r4k_flush_icache_all;
1909 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1910 flush_data_cache_page = r4k_flush_data_cache_page;
1911 flush_icache_range = r4k_flush_icache_range;
1912 local_flush_icache_range = local_r4k_flush_icache_range;
1913 __flush_icache_user_range = r4k_flush_icache_user_range;
1914 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1915
1916#ifdef CONFIG_DMA_NONCOHERENT
1917 if (dma_default_coherent) {
1918 _dma_cache_wback_inv = (void *)cache_noop;
1919 _dma_cache_wback = (void *)cache_noop;
1920 _dma_cache_inv = (void *)cache_noop;
1921 } else {
1922 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1923 _dma_cache_wback = r4k_dma_cache_wback_inv;
1924 _dma_cache_inv = r4k_dma_cache_inv;
1925 }
1926#endif /* CONFIG_DMA_NONCOHERENT */
1927
1928 build_clear_page();
1929 build_copy_page();
1930
1931 /*
1932 * We want to run CMP kernels on core with and without coherent
1933 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1934 * or not to flush caches.
1935 */
1936 local_r4k___flush_cache_all(NULL);
1937
1938 coherency_setup();
1939 board_cache_error_setup = r4k_cache_error_setup;
1940
1941 /*
1942 * Per-CPU overrides
1943 */
1944 switch (current_cpu_type()) {
1945 case CPU_BMIPS4350:
1946 case CPU_BMIPS4380:
1947 /* No IPI is needed because all CPUs share the same D$ */
1948 flush_data_cache_page = r4k_blast_dcache_page;
1949 break;
1950 case CPU_BMIPS5000:
1951 /* We lose our superpowers if L2 is disabled */
1952 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1953 break;
1954
1955 /* I$ fills from D$ just by emptying the write buffers */
1956 flush_cache_page = (void *)b5k_instruction_hazard;
1957 flush_cache_range = (void *)b5k_instruction_hazard;
1958 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1959 flush_data_cache_page = (void *)b5k_instruction_hazard;
1960 flush_icache_range = (void *)b5k_instruction_hazard;
1961 local_flush_icache_range = (void *)b5k_instruction_hazard;
1962
1963
1964 /* Optimization: an L2 flush implicitly flushes the L1 */
1965 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1966 break;
1967 case CPU_LOONGSON64:
1968 /* Loongson-3 maintains cache coherency by hardware */
1969 __flush_cache_all = cache_noop;
1970 __flush_cache_vmap = cache_noop;
1971 __flush_cache_vunmap = cache_noop;
1972 __flush_kernel_vmap_range = (void *)cache_noop;
1973 flush_cache_mm = (void *)cache_noop;
1974 flush_cache_page = (void *)cache_noop;
1975 flush_cache_range = (void *)cache_noop;
1976 flush_icache_all = (void *)cache_noop;
1977 flush_data_cache_page = (void *)cache_noop;
1978 local_flush_data_cache_page = (void *)cache_noop;
1979 break;
1980 }
1981}
1982
1983static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1984 void *v)
1985{
1986 switch (cmd) {
1987 case CPU_PM_ENTER_FAILED:
1988 case CPU_PM_EXIT:
1989 coherency_setup();
1990 break;
1991 }
1992
1993 return NOTIFY_OK;
1994}
1995
1996static struct notifier_block r4k_cache_pm_notifier_block = {
1997 .notifier_call = r4k_cache_pm_notifier,
1998};
1999
2000int __init r4k_cache_init_pm(void)
2001{
2002 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2003}
2004arch_initcall(r4k_cache_init_pm);