Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * linux/kernel/time/clockevents.c
  3 *
  4 * This file contains functions which manage clock event devices.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 *
 10 * This code is licenced under the GPL version 2. For details see
 11 * kernel-base/COPYING.
 12 */
 13
 14#include <linux/clockchips.h>
 15#include <linux/hrtimer.h>
 16#include <linux/init.h>
 17#include <linux/module.h>
 18#include <linux/smp.h>
 19#include <linux/device.h>
 20
 21#include "tick-internal.h"
 22
 23/* The registered clock event devices */
 24static LIST_HEAD(clockevent_devices);
 25static LIST_HEAD(clockevents_released);
 26/* Protection for the above */
 27static DEFINE_RAW_SPINLOCK(clockevents_lock);
 28/* Protection for unbind operations */
 29static DEFINE_MUTEX(clockevents_mutex);
 30
 31struct ce_unbind {
 32	struct clock_event_device *ce;
 33	int res;
 34};
 35
 36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 37			bool ismax)
 38{
 39	u64 clc = (u64) latch << evt->shift;
 40	u64 rnd;
 41
 42	if (unlikely(!evt->mult)) {
 43		evt->mult = 1;
 44		WARN_ON(1);
 45	}
 46	rnd = (u64) evt->mult - 1;
 47
 48	/*
 49	 * Upper bound sanity check. If the backwards conversion is
 50	 * not equal latch, we know that the above shift overflowed.
 51	 */
 52	if ((clc >> evt->shift) != (u64)latch)
 53		clc = ~0ULL;
 54
 55	/*
 56	 * Scaled math oddities:
 57	 *
 58	 * For mult <= (1 << shift) we can safely add mult - 1 to
 59	 * prevent integer rounding loss. So the backwards conversion
 60	 * from nsec to device ticks will be correct.
 61	 *
 62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 63	 * need to be careful. Adding mult - 1 will result in a value
 64	 * which when converted back to device ticks can be larger
 65	 * than latch by up to (mult - 1) >> shift. For the min_delta
 66	 * calculation we still want to apply this in order to stay
 67	 * above the minimum device ticks limit. For the upper limit
 68	 * we would end up with a latch value larger than the upper
 69	 * limit of the device, so we omit the add to stay below the
 70	 * device upper boundary.
 71	 *
 72	 * Also omit the add if it would overflow the u64 boundary.
 73	 */
 74	if ((~0ULL - clc > rnd) &&
 75	    (!ismax || evt->mult <= (1ULL << evt->shift)))
 76		clc += rnd;
 77
 78	do_div(clc, evt->mult);
 79
 80	/* Deltas less than 1usec are pointless noise */
 81	return clc > 1000 ? clc : 1000;
 82}
 83
 84/**
 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 86 * @latch:	value to convert
 87 * @evt:	pointer to clock event device descriptor
 88 *
 89 * Math helper, returns latch value converted to nanoseconds (bound checked)
 90 */
 91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 92{
 93	return cev_delta2ns(latch, evt, false);
 94}
 95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 96
 97static int __clockevents_switch_state(struct clock_event_device *dev,
 98				      enum clock_event_state state)
 99{
100	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101		return 0;
102
103	/* Transition with new state-specific callbacks */
104	switch (state) {
105	case CLOCK_EVT_STATE_DETACHED:
106		/* The clockevent device is getting replaced. Shut it down. */
107
108	case CLOCK_EVT_STATE_SHUTDOWN:
109		if (dev->set_state_shutdown)
110			return dev->set_state_shutdown(dev);
111		return 0;
112
113	case CLOCK_EVT_STATE_PERIODIC:
114		/* Core internal bug */
115		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116			return -ENOSYS;
117		if (dev->set_state_periodic)
118			return dev->set_state_periodic(dev);
119		return 0;
120
121	case CLOCK_EVT_STATE_ONESHOT:
122		/* Core internal bug */
123		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124			return -ENOSYS;
125		if (dev->set_state_oneshot)
126			return dev->set_state_oneshot(dev);
127		return 0;
128
129	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130		/* Core internal bug */
131		if (WARN_ONCE(!clockevent_state_oneshot(dev),
132			      "Current state: %d\n",
133			      clockevent_get_state(dev)))
134			return -EINVAL;
135
136		if (dev->set_state_oneshot_stopped)
137			return dev->set_state_oneshot_stopped(dev);
138		else
139			return -ENOSYS;
140
141	default:
142		return -ENOSYS;
143	}
144}
145
146/**
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev:	device to modify
149 * @state:	new state
150 *
151 * Must be called with interrupts disabled !
152 */
153void clockevents_switch_state(struct clock_event_device *dev,
154			      enum clock_event_state state)
155{
156	if (clockevent_get_state(dev) != state) {
157		if (__clockevents_switch_state(dev, state))
158			return;
159
160		clockevent_set_state(dev, state);
161
162		/*
163		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164		 * on it, so fix it up and emit a warning:
165		 */
166		if (clockevent_state_oneshot(dev)) {
167			if (unlikely(!dev->mult)) {
168				dev->mult = 1;
169				WARN_ON(1);
170			}
171		}
172	}
173}
174
175/**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev:	device to shutdown
178 */
179void clockevents_shutdown(struct clock_event_device *dev)
180{
181	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182	dev->next_event = KTIME_MAX;
183}
184
185/**
186 * clockevents_tick_resume -	Resume the tick device before using it again
187 * @dev:			device to resume
188 */
189int clockevents_tick_resume(struct clock_event_device *dev)
190{
191	int ret = 0;
192
193	if (dev->tick_resume)
194		ret = dev->tick_resume(dev);
195
196	return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev:       device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212	/* Nothing to do if we already reached the limit */
213	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214		printk_deferred(KERN_WARNING
215				"CE: Reprogramming failure. Giving up\n");
216		dev->next_event = KTIME_MAX;
217		return -ETIME;
218	}
219
220	if (dev->min_delta_ns < 5000)
221		dev->min_delta_ns = 5000;
222	else
223		dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226		dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228	printk_deferred(KERN_WARNING
229			"CE: %s increased min_delta_ns to %llu nsec\n",
230			dev->name ? dev->name : "?",
231			(unsigned long long) dev->min_delta_ns);
232	return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev:	device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243	unsigned long long clc;
244	int64_t delta;
245	int i;
246
247	for (i = 0;;) {
248		delta = dev->min_delta_ns;
249		dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251		if (clockevent_state_shutdown(dev))
252			return 0;
253
254		dev->retries++;
255		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257			return 0;
258
259		if (++i > 2) {
260			/*
261			 * We tried 3 times to program the device with the
262			 * given min_delta_ns. Try to increase the minimum
263			 * delta, if that fails as well get out of here.
264			 */
265			if (clockevents_increase_min_delta(dev))
266				return -ETIME;
267			i = 0;
268		}
269	}
270}
271
272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev:	device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282	unsigned long long clc;
283	int64_t delta;
 
284
285	delta = dev->min_delta_ns;
286	dev->next_event = ktime_add_ns(ktime_get(), delta);
 
287
288	if (clockevent_state_shutdown(dev))
289		return 0;
290
291	dev->retries++;
292	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293	return dev->set_next_event((unsigned long) clc, dev);
 
 
 
294}
295
296#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
297
298/**
299 * clockevents_program_event - Reprogram the clock event device.
300 * @dev:	device to program
301 * @expires:	absolute expiry time (monotonic clock)
302 * @force:	program minimum delay if expires can not be set
303 *
304 * Returns 0 on success, -ETIME when the event is in the past.
305 */
306int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307			      bool force)
308{
309	unsigned long long clc;
310	int64_t delta;
311	int rc;
312
313	if (unlikely(expires < 0)) {
314		WARN_ON_ONCE(1);
315		return -ETIME;
316	}
317
318	dev->next_event = expires;
319
320	if (clockevent_state_shutdown(dev))
321		return 0;
322
323	/* We must be in ONESHOT state here */
324	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
325		  clockevent_get_state(dev));
326
327	/* Shortcut for clockevent devices that can deal with ktime. */
328	if (dev->features & CLOCK_EVT_FEAT_KTIME)
329		return dev->set_next_ktime(expires, dev);
330
331	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332	if (delta <= 0)
333		return force ? clockevents_program_min_delta(dev) : -ETIME;
334
335	delta = min(delta, (int64_t) dev->max_delta_ns);
336	delta = max(delta, (int64_t) dev->min_delta_ns);
337
338	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339	rc = dev->set_next_event((unsigned long) clc, dev);
340
341	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
342}
343
344/*
345 * Called after a notify add to make devices available which were
346 * released from the notifier call.
347 */
348static void clockevents_notify_released(void)
349{
350	struct clock_event_device *dev;
351
352	while (!list_empty(&clockevents_released)) {
353		dev = list_entry(clockevents_released.next,
354				 struct clock_event_device, list);
355		list_del(&dev->list);
356		list_add(&dev->list, &clockevent_devices);
357		tick_check_new_device(dev);
358	}
359}
360
361/*
362 * Try to install a replacement clock event device
363 */
364static int clockevents_replace(struct clock_event_device *ced)
365{
366	struct clock_event_device *dev, *newdev = NULL;
367
368	list_for_each_entry(dev, &clockevent_devices, list) {
369		if (dev == ced || !clockevent_state_detached(dev))
370			continue;
371
372		if (!tick_check_replacement(newdev, dev))
373			continue;
374
375		if (!try_module_get(dev->owner))
376			continue;
377
378		if (newdev)
379			module_put(newdev->owner);
380		newdev = dev;
381	}
382	if (newdev) {
383		tick_install_replacement(newdev);
384		list_del_init(&ced->list);
385	}
386	return newdev ? 0 : -EBUSY;
387}
388
389/*
390 * Called with clockevents_mutex and clockevents_lock held
391 */
392static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
393{
394	/* Fast track. Device is unused */
395	if (clockevent_state_detached(ced)) {
396		list_del_init(&ced->list);
397		return 0;
398	}
399
400	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
401}
402
403/*
404 * SMP function call to unbind a device
405 */
406static void __clockevents_unbind(void *arg)
407{
408	struct ce_unbind *cu = arg;
409	int res;
410
411	raw_spin_lock(&clockevents_lock);
412	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413	if (res == -EAGAIN)
414		res = clockevents_replace(cu->ce);
415	cu->res = res;
416	raw_spin_unlock(&clockevents_lock);
417}
418
419/*
420 * Issues smp function call to unbind a per cpu device. Called with
421 * clockevents_mutex held.
422 */
423static int clockevents_unbind(struct clock_event_device *ced, int cpu)
424{
425	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
426
427	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428	return cu.res;
429}
430
431/*
432 * Unbind a clockevents device.
433 */
434int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
435{
436	int ret;
437
438	mutex_lock(&clockevents_mutex);
439	ret = clockevents_unbind(ced, cpu);
440	mutex_unlock(&clockevents_mutex);
441	return ret;
442}
443EXPORT_SYMBOL_GPL(clockevents_unbind_device);
444
445/**
446 * clockevents_register_device - register a clock event device
447 * @dev:	device to register
448 */
449void clockevents_register_device(struct clock_event_device *dev)
450{
451	unsigned long flags;
452
453	/* Initialize state to DETACHED */
454	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
455
456	if (!dev->cpumask) {
457		WARN_ON(num_possible_cpus() > 1);
458		dev->cpumask = cpumask_of(smp_processor_id());
459	}
460
 
 
 
 
 
 
461	raw_spin_lock_irqsave(&clockevents_lock, flags);
462
463	list_add(&dev->list, &clockevent_devices);
464	tick_check_new_device(dev);
465	clockevents_notify_released();
466
467	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
468}
469EXPORT_SYMBOL_GPL(clockevents_register_device);
470
471void clockevents_config(struct clock_event_device *dev, u32 freq)
472{
473	u64 sec;
474
475	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476		return;
477
478	/*
479	 * Calculate the maximum number of seconds we can sleep. Limit
480	 * to 10 minutes for hardware which can program more than
481	 * 32bit ticks so we still get reasonable conversion values.
482	 */
483	sec = dev->max_delta_ticks;
484	do_div(sec, freq);
485	if (!sec)
486		sec = 1;
487	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488		sec = 600;
489
490	clockevents_calc_mult_shift(dev, freq, sec);
491	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
493}
494
495/**
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev:	device to register
498 * @freq:	The clock frequency
499 * @min_delta:	The minimum clock ticks to program in oneshot mode
500 * @max_delta:	The maximum clock ticks to program in oneshot mode
501 *
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
503 */
504void clockevents_config_and_register(struct clock_event_device *dev,
505				     u32 freq, unsigned long min_delta,
506				     unsigned long max_delta)
507{
508	dev->min_delta_ticks = min_delta;
509	dev->max_delta_ticks = max_delta;
510	clockevents_config(dev, freq);
511	clockevents_register_device(dev);
512}
513EXPORT_SYMBOL_GPL(clockevents_config_and_register);
514
515int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
516{
517	clockevents_config(dev, freq);
518
519	if (clockevent_state_oneshot(dev))
520		return clockevents_program_event(dev, dev->next_event, false);
521
522	if (clockevent_state_periodic(dev))
523		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
524
525	return 0;
526}
527
528/**
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev:	device to modify
531 * @freq:	new device frequency
532 *
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
537 *
538 * Returns 0 on success, -ETIME when the event is in the past.
539 */
540int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
541{
542	unsigned long flags;
543	int ret;
544
545	local_irq_save(flags);
546	ret = tick_broadcast_update_freq(dev, freq);
547	if (ret == -ENODEV)
548		ret = __clockevents_update_freq(dev, freq);
549	local_irq_restore(flags);
550	return ret;
551}
552
553/*
554 * Noop handler when we shut down an event device
555 */
556void clockevents_handle_noop(struct clock_event_device *dev)
557{
558}
559
560/**
561 * clockevents_exchange_device - release and request clock devices
562 * @old:	device to release (can be NULL)
563 * @new:	device to request (can be NULL)
564 *
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
567 */
568void clockevents_exchange_device(struct clock_event_device *old,
569				 struct clock_event_device *new)
570{
571	/*
572	 * Caller releases a clock event device. We queue it into the
573	 * released list and do a notify add later.
574	 */
575	if (old) {
576		module_put(old->owner);
577		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578		list_del(&old->list);
579		list_add(&old->list, &clockevents_released);
580	}
581
582	if (new) {
583		BUG_ON(!clockevent_state_detached(new));
584		clockevents_shutdown(new);
585	}
586}
587
588/**
589 * clockevents_suspend - suspend clock devices
590 */
591void clockevents_suspend(void)
592{
593	struct clock_event_device *dev;
594
595	list_for_each_entry_reverse(dev, &clockevent_devices, list)
596		if (dev->suspend && !clockevent_state_detached(dev))
597			dev->suspend(dev);
598}
599
600/**
601 * clockevents_resume - resume clock devices
602 */
603void clockevents_resume(void)
604{
605	struct clock_event_device *dev;
606
607	list_for_each_entry(dev, &clockevent_devices, list)
608		if (dev->resume && !clockevent_state_detached(dev))
609			dev->resume(dev);
610}
611
612#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613/**
614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
615 */
616void tick_cleanup_dead_cpu(int cpu)
617{
618	struct clock_event_device *dev, *tmp;
619	unsigned long flags;
620
621	raw_spin_lock_irqsave(&clockevents_lock, flags);
622
623	tick_shutdown_broadcast_oneshot(cpu);
624	tick_shutdown_broadcast(cpu);
625	tick_shutdown(cpu);
626	/*
627	 * Unregister the clock event devices which were
628	 * released from the users in the notify chain.
629	 */
630	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
631		list_del(&dev->list);
632	/*
633	 * Now check whether the CPU has left unused per cpu devices
634	 */
635	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
636		if (cpumask_test_cpu(cpu, dev->cpumask) &&
637		    cpumask_weight(dev->cpumask) == 1 &&
638		    !tick_is_broadcast_device(dev)) {
639			BUG_ON(!clockevent_state_detached(dev));
640			list_del(&dev->list);
641		}
642	}
643	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
644}
645#endif
646
647#ifdef CONFIG_SYSFS
648static struct bus_type clockevents_subsys = {
649	.name		= "clockevents",
650	.dev_name       = "clockevent",
651};
652
653static DEFINE_PER_CPU(struct device, tick_percpu_dev);
654static struct tick_device *tick_get_tick_dev(struct device *dev);
655
656static ssize_t sysfs_show_current_tick_dev(struct device *dev,
657					   struct device_attribute *attr,
658					   char *buf)
659{
660	struct tick_device *td;
661	ssize_t count = 0;
662
663	raw_spin_lock_irq(&clockevents_lock);
664	td = tick_get_tick_dev(dev);
665	if (td && td->evtdev)
666		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
667	raw_spin_unlock_irq(&clockevents_lock);
668	return count;
669}
670static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
671
672/* We don't support the abomination of removable broadcast devices */
673static ssize_t sysfs_unbind_tick_dev(struct device *dev,
674				     struct device_attribute *attr,
675				     const char *buf, size_t count)
676{
677	char name[CS_NAME_LEN];
678	ssize_t ret = sysfs_get_uname(buf, name, count);
679	struct clock_event_device *ce;
680
681	if (ret < 0)
682		return ret;
683
684	ret = -ENODEV;
685	mutex_lock(&clockevents_mutex);
686	raw_spin_lock_irq(&clockevents_lock);
687	list_for_each_entry(ce, &clockevent_devices, list) {
688		if (!strcmp(ce->name, name)) {
689			ret = __clockevents_try_unbind(ce, dev->id);
690			break;
691		}
692	}
693	raw_spin_unlock_irq(&clockevents_lock);
694	/*
695	 * We hold clockevents_mutex, so ce can't go away
696	 */
697	if (ret == -EAGAIN)
698		ret = clockevents_unbind(ce, dev->id);
699	mutex_unlock(&clockevents_mutex);
700	return ret ? ret : count;
701}
702static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
703
704#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
705static struct device tick_bc_dev = {
706	.init_name	= "broadcast",
707	.id		= 0,
708	.bus		= &clockevents_subsys,
709};
710
711static struct tick_device *tick_get_tick_dev(struct device *dev)
712{
713	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
714		&per_cpu(tick_cpu_device, dev->id);
715}
716
717static __init int tick_broadcast_init_sysfs(void)
718{
719	int err = device_register(&tick_bc_dev);
720
721	if (!err)
722		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
723	return err;
724}
725#else
726static struct tick_device *tick_get_tick_dev(struct device *dev)
727{
728	return &per_cpu(tick_cpu_device, dev->id);
729}
730static inline int tick_broadcast_init_sysfs(void) { return 0; }
731#endif
732
733static int __init tick_init_sysfs(void)
734{
735	int cpu;
736
737	for_each_possible_cpu(cpu) {
738		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
739		int err;
740
741		dev->id = cpu;
742		dev->bus = &clockevents_subsys;
743		err = device_register(dev);
744		if (!err)
745			err = device_create_file(dev, &dev_attr_current_device);
746		if (!err)
747			err = device_create_file(dev, &dev_attr_unbind_device);
748		if (err)
749			return err;
750	}
751	return tick_broadcast_init_sysfs();
752}
753
754static int __init clockevents_init_sysfs(void)
755{
756	int err = subsys_system_register(&clockevents_subsys, NULL);
757
758	if (!err)
759		err = tick_init_sysfs();
760	return err;
761}
762device_initcall(clockevents_init_sysfs);
763#endif /* SYSFS */
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 * This file contains functions which manage clock event devices.
  4 *
  5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 
 
 
  8 */
  9
 10#include <linux/clockchips.h>
 11#include <linux/hrtimer.h>
 12#include <linux/init.h>
 13#include <linux/module.h>
 14#include <linux/smp.h>
 15#include <linux/device.h>
 16
 17#include "tick-internal.h"
 18
 19/* The registered clock event devices */
 20static LIST_HEAD(clockevent_devices);
 21static LIST_HEAD(clockevents_released);
 22/* Protection for the above */
 23static DEFINE_RAW_SPINLOCK(clockevents_lock);
 24/* Protection for unbind operations */
 25static DEFINE_MUTEX(clockevents_mutex);
 26
 27struct ce_unbind {
 28	struct clock_event_device *ce;
 29	int res;
 30};
 31
 32static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 33			bool ismax)
 34{
 35	u64 clc = (u64) latch << evt->shift;
 36	u64 rnd;
 37
 38	if (WARN_ON(!evt->mult))
 39		evt->mult = 1;
 
 
 40	rnd = (u64) evt->mult - 1;
 41
 42	/*
 43	 * Upper bound sanity check. If the backwards conversion is
 44	 * not equal latch, we know that the above shift overflowed.
 45	 */
 46	if ((clc >> evt->shift) != (u64)latch)
 47		clc = ~0ULL;
 48
 49	/*
 50	 * Scaled math oddities:
 51	 *
 52	 * For mult <= (1 << shift) we can safely add mult - 1 to
 53	 * prevent integer rounding loss. So the backwards conversion
 54	 * from nsec to device ticks will be correct.
 55	 *
 56	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 57	 * need to be careful. Adding mult - 1 will result in a value
 58	 * which when converted back to device ticks can be larger
 59	 * than latch by up to (mult - 1) >> shift. For the min_delta
 60	 * calculation we still want to apply this in order to stay
 61	 * above the minimum device ticks limit. For the upper limit
 62	 * we would end up with a latch value larger than the upper
 63	 * limit of the device, so we omit the add to stay below the
 64	 * device upper boundary.
 65	 *
 66	 * Also omit the add if it would overflow the u64 boundary.
 67	 */
 68	if ((~0ULL - clc > rnd) &&
 69	    (!ismax || evt->mult <= (1ULL << evt->shift)))
 70		clc += rnd;
 71
 72	do_div(clc, evt->mult);
 73
 74	/* Deltas less than 1usec are pointless noise */
 75	return clc > 1000 ? clc : 1000;
 76}
 77
 78/**
 79 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 80 * @latch:	value to convert
 81 * @evt:	pointer to clock event device descriptor
 82 *
 83 * Math helper, returns latch value converted to nanoseconds (bound checked)
 84 */
 85u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 86{
 87	return cev_delta2ns(latch, evt, false);
 88}
 89EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 90
 91static int __clockevents_switch_state(struct clock_event_device *dev,
 92				      enum clock_event_state state)
 93{
 94	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
 95		return 0;
 96
 97	/* Transition with new state-specific callbacks */
 98	switch (state) {
 99	case CLOCK_EVT_STATE_DETACHED:
100		/* The clockevent device is getting replaced. Shut it down. */
101
102	case CLOCK_EVT_STATE_SHUTDOWN:
103		if (dev->set_state_shutdown)
104			return dev->set_state_shutdown(dev);
105		return 0;
106
107	case CLOCK_EVT_STATE_PERIODIC:
108		/* Core internal bug */
109		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
110			return -ENOSYS;
111		if (dev->set_state_periodic)
112			return dev->set_state_periodic(dev);
113		return 0;
114
115	case CLOCK_EVT_STATE_ONESHOT:
116		/* Core internal bug */
117		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
118			return -ENOSYS;
119		if (dev->set_state_oneshot)
120			return dev->set_state_oneshot(dev);
121		return 0;
122
123	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
124		/* Core internal bug */
125		if (WARN_ONCE(!clockevent_state_oneshot(dev),
126			      "Current state: %d\n",
127			      clockevent_get_state(dev)))
128			return -EINVAL;
129
130		if (dev->set_state_oneshot_stopped)
131			return dev->set_state_oneshot_stopped(dev);
132		else
133			return -ENOSYS;
134
135	default:
136		return -ENOSYS;
137	}
138}
139
140/**
141 * clockevents_switch_state - set the operating state of a clock event device
142 * @dev:	device to modify
143 * @state:	new state
144 *
145 * Must be called with interrupts disabled !
146 */
147void clockevents_switch_state(struct clock_event_device *dev,
148			      enum clock_event_state state)
149{
150	if (clockevent_get_state(dev) != state) {
151		if (__clockevents_switch_state(dev, state))
152			return;
153
154		clockevent_set_state(dev, state);
155
156		/*
157		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
158		 * on it, so fix it up and emit a warning:
159		 */
160		if (clockevent_state_oneshot(dev)) {
161			if (WARN_ON(!dev->mult))
162				dev->mult = 1;
 
 
163		}
164	}
165}
166
167/**
168 * clockevents_shutdown - shutdown the device and clear next_event
169 * @dev:	device to shutdown
170 */
171void clockevents_shutdown(struct clock_event_device *dev)
172{
173	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
174	dev->next_event = KTIME_MAX;
175}
176
177/**
178 * clockevents_tick_resume -	Resume the tick device before using it again
179 * @dev:			device to resume
180 */
181int clockevents_tick_resume(struct clock_event_device *dev)
182{
183	int ret = 0;
184
185	if (dev->tick_resume)
186		ret = dev->tick_resume(dev);
187
188	return ret;
189}
190
191#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
192
193/* Limit min_delta to a jiffie */
194#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
195
196/**
197 * clockevents_increase_min_delta - raise minimum delta of a clock event device
198 * @dev:       device to increase the minimum delta
199 *
200 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
201 */
202static int clockevents_increase_min_delta(struct clock_event_device *dev)
203{
204	/* Nothing to do if we already reached the limit */
205	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
206		printk_deferred(KERN_WARNING
207				"CE: Reprogramming failure. Giving up\n");
208		dev->next_event = KTIME_MAX;
209		return -ETIME;
210	}
211
212	if (dev->min_delta_ns < 5000)
213		dev->min_delta_ns = 5000;
214	else
215		dev->min_delta_ns += dev->min_delta_ns >> 1;
216
217	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
218		dev->min_delta_ns = MIN_DELTA_LIMIT;
219
220	printk_deferred(KERN_WARNING
221			"CE: %s increased min_delta_ns to %llu nsec\n",
222			dev->name ? dev->name : "?",
223			(unsigned long long) dev->min_delta_ns);
224	return 0;
225}
226
227/**
228 * clockevents_program_min_delta - Set clock event device to the minimum delay.
229 * @dev:	device to program
230 *
231 * Returns 0 on success, -ETIME when the retry loop failed.
232 */
233static int clockevents_program_min_delta(struct clock_event_device *dev)
234{
235	unsigned long long clc;
236	int64_t delta;
237	int i;
238
239	for (i = 0;;) {
240		delta = dev->min_delta_ns;
241		dev->next_event = ktime_add_ns(ktime_get(), delta);
242
243		if (clockevent_state_shutdown(dev))
244			return 0;
245
246		dev->retries++;
247		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
248		if (dev->set_next_event((unsigned long) clc, dev) == 0)
249			return 0;
250
251		if (++i > 2) {
252			/*
253			 * We tried 3 times to program the device with the
254			 * given min_delta_ns. Try to increase the minimum
255			 * delta, if that fails as well get out of here.
256			 */
257			if (clockevents_increase_min_delta(dev))
258				return -ETIME;
259			i = 0;
260		}
261	}
262}
263
264#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
265
266/**
267 * clockevents_program_min_delta - Set clock event device to the minimum delay.
268 * @dev:	device to program
269 *
270 * Returns 0 on success, -ETIME when the retry loop failed.
271 */
272static int clockevents_program_min_delta(struct clock_event_device *dev)
273{
274	unsigned long long clc;
275	int64_t delta = 0;
276	int i;
277
278	for (i = 0; i < 10; i++) {
279		delta += dev->min_delta_ns;
280		dev->next_event = ktime_add_ns(ktime_get(), delta);
281
282		if (clockevent_state_shutdown(dev))
283			return 0;
284
285		dev->retries++;
286		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
287		if (dev->set_next_event((unsigned long) clc, dev) == 0)
288			return 0;
289	}
290	return -ETIME;
291}
292
293#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
294
295/**
296 * clockevents_program_event - Reprogram the clock event device.
297 * @dev:	device to program
298 * @expires:	absolute expiry time (monotonic clock)
299 * @force:	program minimum delay if expires can not be set
300 *
301 * Returns 0 on success, -ETIME when the event is in the past.
302 */
303int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
304			      bool force)
305{
306	unsigned long long clc;
307	int64_t delta;
308	int rc;
309
310	if (WARN_ON_ONCE(expires < 0))
 
311		return -ETIME;
 
312
313	dev->next_event = expires;
314
315	if (clockevent_state_shutdown(dev))
316		return 0;
317
318	/* We must be in ONESHOT state here */
319	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
320		  clockevent_get_state(dev));
321
322	/* Shortcut for clockevent devices that can deal with ktime. */
323	if (dev->features & CLOCK_EVT_FEAT_KTIME)
324		return dev->set_next_ktime(expires, dev);
325
326	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
327	if (delta <= 0)
328		return force ? clockevents_program_min_delta(dev) : -ETIME;
329
330	delta = min(delta, (int64_t) dev->max_delta_ns);
331	delta = max(delta, (int64_t) dev->min_delta_ns);
332
333	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
334	rc = dev->set_next_event((unsigned long) clc, dev);
335
336	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
337}
338
339/*
340 * Called after a notify add to make devices available which were
341 * released from the notifier call.
342 */
343static void clockevents_notify_released(void)
344{
345	struct clock_event_device *dev;
346
347	while (!list_empty(&clockevents_released)) {
348		dev = list_entry(clockevents_released.next,
349				 struct clock_event_device, list);
350		list_del(&dev->list);
351		list_add(&dev->list, &clockevent_devices);
352		tick_check_new_device(dev);
353	}
354}
355
356/*
357 * Try to install a replacement clock event device
358 */
359static int clockevents_replace(struct clock_event_device *ced)
360{
361	struct clock_event_device *dev, *newdev = NULL;
362
363	list_for_each_entry(dev, &clockevent_devices, list) {
364		if (dev == ced || !clockevent_state_detached(dev))
365			continue;
366
367		if (!tick_check_replacement(newdev, dev))
368			continue;
369
370		if (!try_module_get(dev->owner))
371			continue;
372
373		if (newdev)
374			module_put(newdev->owner);
375		newdev = dev;
376	}
377	if (newdev) {
378		tick_install_replacement(newdev);
379		list_del_init(&ced->list);
380	}
381	return newdev ? 0 : -EBUSY;
382}
383
384/*
385 * Called with clockevents_mutex and clockevents_lock held
386 */
387static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
388{
389	/* Fast track. Device is unused */
390	if (clockevent_state_detached(ced)) {
391		list_del_init(&ced->list);
392		return 0;
393	}
394
395	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
396}
397
398/*
399 * SMP function call to unbind a device
400 */
401static void __clockevents_unbind(void *arg)
402{
403	struct ce_unbind *cu = arg;
404	int res;
405
406	raw_spin_lock(&clockevents_lock);
407	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
408	if (res == -EAGAIN)
409		res = clockevents_replace(cu->ce);
410	cu->res = res;
411	raw_spin_unlock(&clockevents_lock);
412}
413
414/*
415 * Issues smp function call to unbind a per cpu device. Called with
416 * clockevents_mutex held.
417 */
418static int clockevents_unbind(struct clock_event_device *ced, int cpu)
419{
420	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
421
422	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
423	return cu.res;
424}
425
426/*
427 * Unbind a clockevents device.
428 */
429int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
430{
431	int ret;
432
433	mutex_lock(&clockevents_mutex);
434	ret = clockevents_unbind(ced, cpu);
435	mutex_unlock(&clockevents_mutex);
436	return ret;
437}
438EXPORT_SYMBOL_GPL(clockevents_unbind_device);
439
440/**
441 * clockevents_register_device - register a clock event device
442 * @dev:	device to register
443 */
444void clockevents_register_device(struct clock_event_device *dev)
445{
446	unsigned long flags;
447
448	/* Initialize state to DETACHED */
449	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
450
451	if (!dev->cpumask) {
452		WARN_ON(num_possible_cpus() > 1);
453		dev->cpumask = cpumask_of(smp_processor_id());
454	}
455
456	if (dev->cpumask == cpu_all_mask) {
457		WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n",
458		     dev->name);
459		dev->cpumask = cpu_possible_mask;
460	}
461
462	raw_spin_lock_irqsave(&clockevents_lock, flags);
463
464	list_add(&dev->list, &clockevent_devices);
465	tick_check_new_device(dev);
466	clockevents_notify_released();
467
468	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
469}
470EXPORT_SYMBOL_GPL(clockevents_register_device);
471
472static void clockevents_config(struct clock_event_device *dev, u32 freq)
473{
474	u64 sec;
475
476	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
477		return;
478
479	/*
480	 * Calculate the maximum number of seconds we can sleep. Limit
481	 * to 10 minutes for hardware which can program more than
482	 * 32bit ticks so we still get reasonable conversion values.
483	 */
484	sec = dev->max_delta_ticks;
485	do_div(sec, freq);
486	if (!sec)
487		sec = 1;
488	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
489		sec = 600;
490
491	clockevents_calc_mult_shift(dev, freq, sec);
492	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
493	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
494}
495
496/**
497 * clockevents_config_and_register - Configure and register a clock event device
498 * @dev:	device to register
499 * @freq:	The clock frequency
500 * @min_delta:	The minimum clock ticks to program in oneshot mode
501 * @max_delta:	The maximum clock ticks to program in oneshot mode
502 *
503 * min/max_delta can be 0 for devices which do not support oneshot mode.
504 */
505void clockevents_config_and_register(struct clock_event_device *dev,
506				     u32 freq, unsigned long min_delta,
507				     unsigned long max_delta)
508{
509	dev->min_delta_ticks = min_delta;
510	dev->max_delta_ticks = max_delta;
511	clockevents_config(dev, freq);
512	clockevents_register_device(dev);
513}
514EXPORT_SYMBOL_GPL(clockevents_config_and_register);
515
516int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
517{
518	clockevents_config(dev, freq);
519
520	if (clockevent_state_oneshot(dev))
521		return clockevents_program_event(dev, dev->next_event, false);
522
523	if (clockevent_state_periodic(dev))
524		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
525
526	return 0;
527}
528
529/**
530 * clockevents_update_freq - Update frequency and reprogram a clock event device.
531 * @dev:	device to modify
532 * @freq:	new device frequency
533 *
534 * Reconfigure and reprogram a clock event device in oneshot
535 * mode. Must be called on the cpu for which the device delivers per
536 * cpu timer events. If called for the broadcast device the core takes
537 * care of serialization.
538 *
539 * Returns 0 on success, -ETIME when the event is in the past.
540 */
541int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
542{
543	unsigned long flags;
544	int ret;
545
546	local_irq_save(flags);
547	ret = tick_broadcast_update_freq(dev, freq);
548	if (ret == -ENODEV)
549		ret = __clockevents_update_freq(dev, freq);
550	local_irq_restore(flags);
551	return ret;
552}
553
554/*
555 * Noop handler when we shut down an event device
556 */
557void clockevents_handle_noop(struct clock_event_device *dev)
558{
559}
560
561/**
562 * clockevents_exchange_device - release and request clock devices
563 * @old:	device to release (can be NULL)
564 * @new:	device to request (can be NULL)
565 *
566 * Called from various tick functions with clockevents_lock held and
567 * interrupts disabled.
568 */
569void clockevents_exchange_device(struct clock_event_device *old,
570				 struct clock_event_device *new)
571{
572	/*
573	 * Caller releases a clock event device. We queue it into the
574	 * released list and do a notify add later.
575	 */
576	if (old) {
577		module_put(old->owner);
578		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
579		list_del(&old->list);
580		list_add(&old->list, &clockevents_released);
581	}
582
583	if (new) {
584		BUG_ON(!clockevent_state_detached(new));
585		clockevents_shutdown(new);
586	}
587}
588
589/**
590 * clockevents_suspend - suspend clock devices
591 */
592void clockevents_suspend(void)
593{
594	struct clock_event_device *dev;
595
596	list_for_each_entry_reverse(dev, &clockevent_devices, list)
597		if (dev->suspend && !clockevent_state_detached(dev))
598			dev->suspend(dev);
599}
600
601/**
602 * clockevents_resume - resume clock devices
603 */
604void clockevents_resume(void)
605{
606	struct clock_event_device *dev;
607
608	list_for_each_entry(dev, &clockevent_devices, list)
609		if (dev->resume && !clockevent_state_detached(dev))
610			dev->resume(dev);
611}
612
613#ifdef CONFIG_HOTPLUG_CPU
614
615# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
616/**
617 * tick_offline_cpu - Take CPU out of the broadcast mechanism
618 * @cpu:	The outgoing CPU
619 *
620 * Called on the outgoing CPU after it took itself offline.
621 */
622void tick_offline_cpu(unsigned int cpu)
623{
624	raw_spin_lock(&clockevents_lock);
625	tick_broadcast_offline(cpu);
626	raw_spin_unlock(&clockevents_lock);
627}
628# endif
629
630/**
631 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
632 */
633void tick_cleanup_dead_cpu(int cpu)
634{
635	struct clock_event_device *dev, *tmp;
636	unsigned long flags;
637
638	raw_spin_lock_irqsave(&clockevents_lock, flags);
639
 
 
640	tick_shutdown(cpu);
641	/*
642	 * Unregister the clock event devices which were
643	 * released from the users in the notify chain.
644	 */
645	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
646		list_del(&dev->list);
647	/*
648	 * Now check whether the CPU has left unused per cpu devices
649	 */
650	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
651		if (cpumask_test_cpu(cpu, dev->cpumask) &&
652		    cpumask_weight(dev->cpumask) == 1 &&
653		    !tick_is_broadcast_device(dev)) {
654			BUG_ON(!clockevent_state_detached(dev));
655			list_del(&dev->list);
656		}
657	}
658	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
659}
660#endif
661
662#ifdef CONFIG_SYSFS
663static struct bus_type clockevents_subsys = {
664	.name		= "clockevents",
665	.dev_name       = "clockevent",
666};
667
668static DEFINE_PER_CPU(struct device, tick_percpu_dev);
669static struct tick_device *tick_get_tick_dev(struct device *dev);
670
671static ssize_t sysfs_show_current_tick_dev(struct device *dev,
672					   struct device_attribute *attr,
673					   char *buf)
674{
675	struct tick_device *td;
676	ssize_t count = 0;
677
678	raw_spin_lock_irq(&clockevents_lock);
679	td = tick_get_tick_dev(dev);
680	if (td && td->evtdev)
681		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
682	raw_spin_unlock_irq(&clockevents_lock);
683	return count;
684}
685static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
686
687/* We don't support the abomination of removable broadcast devices */
688static ssize_t sysfs_unbind_tick_dev(struct device *dev,
689				     struct device_attribute *attr,
690				     const char *buf, size_t count)
691{
692	char name[CS_NAME_LEN];
693	ssize_t ret = sysfs_get_uname(buf, name, count);
694	struct clock_event_device *ce;
695
696	if (ret < 0)
697		return ret;
698
699	ret = -ENODEV;
700	mutex_lock(&clockevents_mutex);
701	raw_spin_lock_irq(&clockevents_lock);
702	list_for_each_entry(ce, &clockevent_devices, list) {
703		if (!strcmp(ce->name, name)) {
704			ret = __clockevents_try_unbind(ce, dev->id);
705			break;
706		}
707	}
708	raw_spin_unlock_irq(&clockevents_lock);
709	/*
710	 * We hold clockevents_mutex, so ce can't go away
711	 */
712	if (ret == -EAGAIN)
713		ret = clockevents_unbind(ce, dev->id);
714	mutex_unlock(&clockevents_mutex);
715	return ret ? ret : count;
716}
717static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
718
719#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720static struct device tick_bc_dev = {
721	.init_name	= "broadcast",
722	.id		= 0,
723	.bus		= &clockevents_subsys,
724};
725
726static struct tick_device *tick_get_tick_dev(struct device *dev)
727{
728	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
729		&per_cpu(tick_cpu_device, dev->id);
730}
731
732static __init int tick_broadcast_init_sysfs(void)
733{
734	int err = device_register(&tick_bc_dev);
735
736	if (!err)
737		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
738	return err;
739}
740#else
741static struct tick_device *tick_get_tick_dev(struct device *dev)
742{
743	return &per_cpu(tick_cpu_device, dev->id);
744}
745static inline int tick_broadcast_init_sysfs(void) { return 0; }
746#endif
747
748static int __init tick_init_sysfs(void)
749{
750	int cpu;
751
752	for_each_possible_cpu(cpu) {
753		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
754		int err;
755
756		dev->id = cpu;
757		dev->bus = &clockevents_subsys;
758		err = device_register(dev);
759		if (!err)
760			err = device_create_file(dev, &dev_attr_current_device);
761		if (!err)
762			err = device_create_file(dev, &dev_attr_unbind_device);
763		if (err)
764			return err;
765	}
766	return tick_broadcast_init_sysfs();
767}
768
769static int __init clockevents_init_sysfs(void)
770{
771	int err = subsys_system_register(&clockevents_subsys, NULL);
772
773	if (!err)
774		err = tick_init_sysfs();
775	return err;
776}
777device_initcall(clockevents_init_sysfs);
778#endif /* SYSFS */