Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * linux/kernel/time/clockevents.c
  3 *
  4 * This file contains functions which manage clock event devices.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 *
 10 * This code is licenced under the GPL version 2. For details see
 11 * kernel-base/COPYING.
 12 */
 13
 14#include <linux/clockchips.h>
 15#include <linux/hrtimer.h>
 16#include <linux/init.h>
 17#include <linux/module.h>
 18#include <linux/smp.h>
 19#include <linux/device.h>
 20
 21#include "tick-internal.h"
 22
 23/* The registered clock event devices */
 24static LIST_HEAD(clockevent_devices);
 25static LIST_HEAD(clockevents_released);
 26/* Protection for the above */
 27static DEFINE_RAW_SPINLOCK(clockevents_lock);
 28/* Protection for unbind operations */
 29static DEFINE_MUTEX(clockevents_mutex);
 30
 31struct ce_unbind {
 32	struct clock_event_device *ce;
 33	int res;
 34};
 35
 36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 37			bool ismax)
 38{
 39	u64 clc = (u64) latch << evt->shift;
 40	u64 rnd;
 41
 42	if (unlikely(!evt->mult)) {
 43		evt->mult = 1;
 44		WARN_ON(1);
 45	}
 46	rnd = (u64) evt->mult - 1;
 47
 48	/*
 49	 * Upper bound sanity check. If the backwards conversion is
 50	 * not equal latch, we know that the above shift overflowed.
 51	 */
 52	if ((clc >> evt->shift) != (u64)latch)
 53		clc = ~0ULL;
 54
 55	/*
 56	 * Scaled math oddities:
 57	 *
 58	 * For mult <= (1 << shift) we can safely add mult - 1 to
 59	 * prevent integer rounding loss. So the backwards conversion
 60	 * from nsec to device ticks will be correct.
 61	 *
 62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 63	 * need to be careful. Adding mult - 1 will result in a value
 64	 * which when converted back to device ticks can be larger
 65	 * than latch by up to (mult - 1) >> shift. For the min_delta
 66	 * calculation we still want to apply this in order to stay
 67	 * above the minimum device ticks limit. For the upper limit
 68	 * we would end up with a latch value larger than the upper
 69	 * limit of the device, so we omit the add to stay below the
 70	 * device upper boundary.
 71	 *
 72	 * Also omit the add if it would overflow the u64 boundary.
 73	 */
 74	if ((~0ULL - clc > rnd) &&
 75	    (!ismax || evt->mult <= (1ULL << evt->shift)))
 76		clc += rnd;
 77
 78	do_div(clc, evt->mult);
 79
 80	/* Deltas less than 1usec are pointless noise */
 81	return clc > 1000 ? clc : 1000;
 82}
 83
 84/**
 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 86 * @latch:	value to convert
 87 * @evt:	pointer to clock event device descriptor
 88 *
 89 * Math helper, returns latch value converted to nanoseconds (bound checked)
 90 */
 91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 92{
 93	return cev_delta2ns(latch, evt, false);
 94}
 95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 96
 97static int __clockevents_switch_state(struct clock_event_device *dev,
 98				      enum clock_event_state state)
 99{
100	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101		return 0;
102
103	/* Transition with new state-specific callbacks */
104	switch (state) {
105	case CLOCK_EVT_STATE_DETACHED:
106		/* The clockevent device is getting replaced. Shut it down. */
107
108	case CLOCK_EVT_STATE_SHUTDOWN:
109		if (dev->set_state_shutdown)
110			return dev->set_state_shutdown(dev);
111		return 0;
112
113	case CLOCK_EVT_STATE_PERIODIC:
114		/* Core internal bug */
115		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116			return -ENOSYS;
117		if (dev->set_state_periodic)
118			return dev->set_state_periodic(dev);
119		return 0;
120
121	case CLOCK_EVT_STATE_ONESHOT:
122		/* Core internal bug */
123		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124			return -ENOSYS;
125		if (dev->set_state_oneshot)
126			return dev->set_state_oneshot(dev);
127		return 0;
128
129	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130		/* Core internal bug */
131		if (WARN_ONCE(!clockevent_state_oneshot(dev),
132			      "Current state: %d\n",
133			      clockevent_get_state(dev)))
134			return -EINVAL;
135
136		if (dev->set_state_oneshot_stopped)
137			return dev->set_state_oneshot_stopped(dev);
138		else
139			return -ENOSYS;
140
141	default:
142		return -ENOSYS;
143	}
144}
145
146/**
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev:	device to modify
149 * @state:	new state
150 *
151 * Must be called with interrupts disabled !
152 */
153void clockevents_switch_state(struct clock_event_device *dev,
154			      enum clock_event_state state)
155{
156	if (clockevent_get_state(dev) != state) {
157		if (__clockevents_switch_state(dev, state))
158			return;
159
160		clockevent_set_state(dev, state);
161
162		/*
163		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164		 * on it, so fix it up and emit a warning:
165		 */
166		if (clockevent_state_oneshot(dev)) {
167			if (unlikely(!dev->mult)) {
168				dev->mult = 1;
169				WARN_ON(1);
170			}
171		}
172	}
173}
174
175/**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev:	device to shutdown
178 */
179void clockevents_shutdown(struct clock_event_device *dev)
180{
181	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182	dev->next_event = KTIME_MAX;
183}
184
185/**
186 * clockevents_tick_resume -	Resume the tick device before using it again
187 * @dev:			device to resume
188 */
189int clockevents_tick_resume(struct clock_event_device *dev)
190{
191	int ret = 0;
192
193	if (dev->tick_resume)
194		ret = dev->tick_resume(dev);
195
196	return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev:       device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212	/* Nothing to do if we already reached the limit */
213	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214		printk_deferred(KERN_WARNING
215				"CE: Reprogramming failure. Giving up\n");
216		dev->next_event = KTIME_MAX;
217		return -ETIME;
218	}
219
220	if (dev->min_delta_ns < 5000)
221		dev->min_delta_ns = 5000;
222	else
223		dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226		dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228	printk_deferred(KERN_WARNING
229			"CE: %s increased min_delta_ns to %llu nsec\n",
230			dev->name ? dev->name : "?",
231			(unsigned long long) dev->min_delta_ns);
232	return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev:	device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243	unsigned long long clc;
244	int64_t delta;
245	int i;
246
247	for (i = 0;;) {
248		delta = dev->min_delta_ns;
249		dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251		if (clockevent_state_shutdown(dev))
252			return 0;
253
254		dev->retries++;
255		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257			return 0;
258
259		if (++i > 2) {
260			/*
261			 * We tried 3 times to program the device with the
262			 * given min_delta_ns. Try to increase the minimum
263			 * delta, if that fails as well get out of here.
264			 */
265			if (clockevents_increase_min_delta(dev))
266				return -ETIME;
267			i = 0;
268		}
269	}
270}
271
272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev:	device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282	unsigned long long clc;
283	int64_t delta;
284
285	delta = dev->min_delta_ns;
286	dev->next_event = ktime_add_ns(ktime_get(), delta);
287
288	if (clockevent_state_shutdown(dev))
289		return 0;
290
291	dev->retries++;
292	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293	return dev->set_next_event((unsigned long) clc, dev);
 
 
 
 
 
 
 
294}
295
296#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
297
298/**
299 * clockevents_program_event - Reprogram the clock event device.
300 * @dev:	device to program
301 * @expires:	absolute expiry time (monotonic clock)
302 * @force:	program minimum delay if expires can not be set
303 *
304 * Returns 0 on success, -ETIME when the event is in the past.
305 */
306int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307			      bool force)
308{
309	unsigned long long clc;
310	int64_t delta;
311	int rc;
312
313	if (unlikely(expires < 0)) {
314		WARN_ON_ONCE(1);
315		return -ETIME;
316	}
317
318	dev->next_event = expires;
319
320	if (clockevent_state_shutdown(dev))
321		return 0;
322
323	/* We must be in ONESHOT state here */
324	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
325		  clockevent_get_state(dev));
326
327	/* Shortcut for clockevent devices that can deal with ktime. */
328	if (dev->features & CLOCK_EVT_FEAT_KTIME)
329		return dev->set_next_ktime(expires, dev);
330
331	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332	if (delta <= 0)
333		return force ? clockevents_program_min_delta(dev) : -ETIME;
334
335	delta = min(delta, (int64_t) dev->max_delta_ns);
336	delta = max(delta, (int64_t) dev->min_delta_ns);
337
338	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339	rc = dev->set_next_event((unsigned long) clc, dev);
340
341	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
342}
343
344/*
345 * Called after a notify add to make devices available which were
346 * released from the notifier call.
347 */
348static void clockevents_notify_released(void)
349{
350	struct clock_event_device *dev;
351
352	while (!list_empty(&clockevents_released)) {
353		dev = list_entry(clockevents_released.next,
354				 struct clock_event_device, list);
355		list_del(&dev->list);
356		list_add(&dev->list, &clockevent_devices);
357		tick_check_new_device(dev);
358	}
359}
360
361/*
362 * Try to install a replacement clock event device
363 */
364static int clockevents_replace(struct clock_event_device *ced)
365{
366	struct clock_event_device *dev, *newdev = NULL;
367
368	list_for_each_entry(dev, &clockevent_devices, list) {
369		if (dev == ced || !clockevent_state_detached(dev))
370			continue;
371
372		if (!tick_check_replacement(newdev, dev))
373			continue;
374
375		if (!try_module_get(dev->owner))
376			continue;
377
378		if (newdev)
379			module_put(newdev->owner);
380		newdev = dev;
381	}
382	if (newdev) {
383		tick_install_replacement(newdev);
384		list_del_init(&ced->list);
385	}
386	return newdev ? 0 : -EBUSY;
387}
388
389/*
390 * Called with clockevents_mutex and clockevents_lock held
391 */
392static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
393{
394	/* Fast track. Device is unused */
395	if (clockevent_state_detached(ced)) {
396		list_del_init(&ced->list);
397		return 0;
398	}
399
400	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
401}
402
403/*
404 * SMP function call to unbind a device
405 */
406static void __clockevents_unbind(void *arg)
407{
408	struct ce_unbind *cu = arg;
409	int res;
410
411	raw_spin_lock(&clockevents_lock);
412	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413	if (res == -EAGAIN)
414		res = clockevents_replace(cu->ce);
415	cu->res = res;
416	raw_spin_unlock(&clockevents_lock);
417}
418
419/*
420 * Issues smp function call to unbind a per cpu device. Called with
421 * clockevents_mutex held.
422 */
423static int clockevents_unbind(struct clock_event_device *ced, int cpu)
424{
425	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
426
427	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428	return cu.res;
429}
430
431/*
432 * Unbind a clockevents device.
433 */
434int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
435{
436	int ret;
437
438	mutex_lock(&clockevents_mutex);
439	ret = clockevents_unbind(ced, cpu);
440	mutex_unlock(&clockevents_mutex);
441	return ret;
442}
443EXPORT_SYMBOL_GPL(clockevents_unbind_device);
444
445/**
446 * clockevents_register_device - register a clock event device
447 * @dev:	device to register
448 */
449void clockevents_register_device(struct clock_event_device *dev)
450{
451	unsigned long flags;
452
453	/* Initialize state to DETACHED */
454	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
455
456	if (!dev->cpumask) {
457		WARN_ON(num_possible_cpus() > 1);
458		dev->cpumask = cpumask_of(smp_processor_id());
459	}
460
461	raw_spin_lock_irqsave(&clockevents_lock, flags);
462
463	list_add(&dev->list, &clockevent_devices);
464	tick_check_new_device(dev);
465	clockevents_notify_released();
466
467	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
468}
469EXPORT_SYMBOL_GPL(clockevents_register_device);
470
471void clockevents_config(struct clock_event_device *dev, u32 freq)
472{
473	u64 sec;
474
475	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476		return;
477
478	/*
479	 * Calculate the maximum number of seconds we can sleep. Limit
480	 * to 10 minutes for hardware which can program more than
481	 * 32bit ticks so we still get reasonable conversion values.
482	 */
483	sec = dev->max_delta_ticks;
484	do_div(sec, freq);
485	if (!sec)
486		sec = 1;
487	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488		sec = 600;
489
490	clockevents_calc_mult_shift(dev, freq, sec);
491	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
493}
494
495/**
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev:	device to register
498 * @freq:	The clock frequency
499 * @min_delta:	The minimum clock ticks to program in oneshot mode
500 * @max_delta:	The maximum clock ticks to program in oneshot mode
501 *
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
503 */
504void clockevents_config_and_register(struct clock_event_device *dev,
505				     u32 freq, unsigned long min_delta,
506				     unsigned long max_delta)
507{
508	dev->min_delta_ticks = min_delta;
509	dev->max_delta_ticks = max_delta;
510	clockevents_config(dev, freq);
511	clockevents_register_device(dev);
512}
513EXPORT_SYMBOL_GPL(clockevents_config_and_register);
514
515int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
516{
517	clockevents_config(dev, freq);
518
519	if (clockevent_state_oneshot(dev))
520		return clockevents_program_event(dev, dev->next_event, false);
521
522	if (clockevent_state_periodic(dev))
523		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
524
525	return 0;
526}
527
528/**
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev:	device to modify
531 * @freq:	new device frequency
532 *
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
537 *
538 * Returns 0 on success, -ETIME when the event is in the past.
539 */
540int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
541{
542	unsigned long flags;
543	int ret;
544
545	local_irq_save(flags);
546	ret = tick_broadcast_update_freq(dev, freq);
547	if (ret == -ENODEV)
548		ret = __clockevents_update_freq(dev, freq);
549	local_irq_restore(flags);
550	return ret;
551}
552
553/*
554 * Noop handler when we shut down an event device
555 */
556void clockevents_handle_noop(struct clock_event_device *dev)
557{
558}
559
560/**
561 * clockevents_exchange_device - release and request clock devices
562 * @old:	device to release (can be NULL)
563 * @new:	device to request (can be NULL)
564 *
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
567 */
568void clockevents_exchange_device(struct clock_event_device *old,
569				 struct clock_event_device *new)
570{
571	/*
572	 * Caller releases a clock event device. We queue it into the
573	 * released list and do a notify add later.
574	 */
575	if (old) {
576		module_put(old->owner);
577		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578		list_del(&old->list);
579		list_add(&old->list, &clockevents_released);
580	}
581
582	if (new) {
583		BUG_ON(!clockevent_state_detached(new));
584		clockevents_shutdown(new);
585	}
586}
587
588/**
589 * clockevents_suspend - suspend clock devices
590 */
591void clockevents_suspend(void)
592{
593	struct clock_event_device *dev;
594
595	list_for_each_entry_reverse(dev, &clockevent_devices, list)
596		if (dev->suspend && !clockevent_state_detached(dev))
597			dev->suspend(dev);
598}
599
600/**
601 * clockevents_resume - resume clock devices
602 */
603void clockevents_resume(void)
604{
605	struct clock_event_device *dev;
606
607	list_for_each_entry(dev, &clockevent_devices, list)
608		if (dev->resume && !clockevent_state_detached(dev))
609			dev->resume(dev);
610}
611
612#ifdef CONFIG_HOTPLUG_CPU
613/**
614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
615 */
616void tick_cleanup_dead_cpu(int cpu)
617{
618	struct clock_event_device *dev, *tmp;
619	unsigned long flags;
620
621	raw_spin_lock_irqsave(&clockevents_lock, flags);
622
623	tick_shutdown_broadcast_oneshot(cpu);
624	tick_shutdown_broadcast(cpu);
625	tick_shutdown(cpu);
626	/*
627	 * Unregister the clock event devices which were
628	 * released from the users in the notify chain.
629	 */
630	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
631		list_del(&dev->list);
632	/*
633	 * Now check whether the CPU has left unused per cpu devices
634	 */
635	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
636		if (cpumask_test_cpu(cpu, dev->cpumask) &&
637		    cpumask_weight(dev->cpumask) == 1 &&
638		    !tick_is_broadcast_device(dev)) {
639			BUG_ON(!clockevent_state_detached(dev));
640			list_del(&dev->list);
641		}
642	}
643	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
644}
645#endif
646
647#ifdef CONFIG_SYSFS
648static struct bus_type clockevents_subsys = {
649	.name		= "clockevents",
650	.dev_name       = "clockevent",
651};
652
653static DEFINE_PER_CPU(struct device, tick_percpu_dev);
654static struct tick_device *tick_get_tick_dev(struct device *dev);
655
656static ssize_t sysfs_show_current_tick_dev(struct device *dev,
657					   struct device_attribute *attr,
658					   char *buf)
659{
660	struct tick_device *td;
661	ssize_t count = 0;
662
663	raw_spin_lock_irq(&clockevents_lock);
664	td = tick_get_tick_dev(dev);
665	if (td && td->evtdev)
666		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
667	raw_spin_unlock_irq(&clockevents_lock);
668	return count;
669}
670static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
671
672/* We don't support the abomination of removable broadcast devices */
673static ssize_t sysfs_unbind_tick_dev(struct device *dev,
674				     struct device_attribute *attr,
675				     const char *buf, size_t count)
676{
677	char name[CS_NAME_LEN];
678	ssize_t ret = sysfs_get_uname(buf, name, count);
679	struct clock_event_device *ce;
680
681	if (ret < 0)
682		return ret;
683
684	ret = -ENODEV;
685	mutex_lock(&clockevents_mutex);
686	raw_spin_lock_irq(&clockevents_lock);
687	list_for_each_entry(ce, &clockevent_devices, list) {
688		if (!strcmp(ce->name, name)) {
689			ret = __clockevents_try_unbind(ce, dev->id);
690			break;
691		}
692	}
693	raw_spin_unlock_irq(&clockevents_lock);
694	/*
695	 * We hold clockevents_mutex, so ce can't go away
696	 */
697	if (ret == -EAGAIN)
698		ret = clockevents_unbind(ce, dev->id);
699	mutex_unlock(&clockevents_mutex);
700	return ret ? ret : count;
701}
702static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
703
704#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
705static struct device tick_bc_dev = {
706	.init_name	= "broadcast",
707	.id		= 0,
708	.bus		= &clockevents_subsys,
709};
710
711static struct tick_device *tick_get_tick_dev(struct device *dev)
712{
713	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
714		&per_cpu(tick_cpu_device, dev->id);
715}
716
717static __init int tick_broadcast_init_sysfs(void)
718{
719	int err = device_register(&tick_bc_dev);
720
721	if (!err)
722		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
723	return err;
724}
725#else
726static struct tick_device *tick_get_tick_dev(struct device *dev)
727{
728	return &per_cpu(tick_cpu_device, dev->id);
729}
730static inline int tick_broadcast_init_sysfs(void) { return 0; }
731#endif
732
733static int __init tick_init_sysfs(void)
734{
735	int cpu;
736
737	for_each_possible_cpu(cpu) {
738		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
739		int err;
740
741		dev->id = cpu;
742		dev->bus = &clockevents_subsys;
743		err = device_register(dev);
744		if (!err)
745			err = device_create_file(dev, &dev_attr_current_device);
746		if (!err)
747			err = device_create_file(dev, &dev_attr_unbind_device);
748		if (err)
749			return err;
750	}
751	return tick_broadcast_init_sysfs();
752}
753
754static int __init clockevents_init_sysfs(void)
755{
756	int err = subsys_system_register(&clockevents_subsys, NULL);
757
758	if (!err)
759		err = tick_init_sysfs();
760	return err;
761}
762device_initcall(clockevents_init_sysfs);
763#endif /* SYSFS */
v4.17
  1/*
  2 * linux/kernel/time/clockevents.c
  3 *
  4 * This file contains functions which manage clock event devices.
  5 *
  6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  9 *
 10 * This code is licenced under the GPL version 2. For details see
 11 * kernel-base/COPYING.
 12 */
 13
 14#include <linux/clockchips.h>
 15#include <linux/hrtimer.h>
 16#include <linux/init.h>
 17#include <linux/module.h>
 18#include <linux/smp.h>
 19#include <linux/device.h>
 20
 21#include "tick-internal.h"
 22
 23/* The registered clock event devices */
 24static LIST_HEAD(clockevent_devices);
 25static LIST_HEAD(clockevents_released);
 26/* Protection for the above */
 27static DEFINE_RAW_SPINLOCK(clockevents_lock);
 28/* Protection for unbind operations */
 29static DEFINE_MUTEX(clockevents_mutex);
 30
 31struct ce_unbind {
 32	struct clock_event_device *ce;
 33	int res;
 34};
 35
 36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
 37			bool ismax)
 38{
 39	u64 clc = (u64) latch << evt->shift;
 40	u64 rnd;
 41
 42	if (unlikely(!evt->mult)) {
 43		evt->mult = 1;
 44		WARN_ON(1);
 45	}
 46	rnd = (u64) evt->mult - 1;
 47
 48	/*
 49	 * Upper bound sanity check. If the backwards conversion is
 50	 * not equal latch, we know that the above shift overflowed.
 51	 */
 52	if ((clc >> evt->shift) != (u64)latch)
 53		clc = ~0ULL;
 54
 55	/*
 56	 * Scaled math oddities:
 57	 *
 58	 * For mult <= (1 << shift) we can safely add mult - 1 to
 59	 * prevent integer rounding loss. So the backwards conversion
 60	 * from nsec to device ticks will be correct.
 61	 *
 62	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
 63	 * need to be careful. Adding mult - 1 will result in a value
 64	 * which when converted back to device ticks can be larger
 65	 * than latch by up to (mult - 1) >> shift. For the min_delta
 66	 * calculation we still want to apply this in order to stay
 67	 * above the minimum device ticks limit. For the upper limit
 68	 * we would end up with a latch value larger than the upper
 69	 * limit of the device, so we omit the add to stay below the
 70	 * device upper boundary.
 71	 *
 72	 * Also omit the add if it would overflow the u64 boundary.
 73	 */
 74	if ((~0ULL - clc > rnd) &&
 75	    (!ismax || evt->mult <= (1ULL << evt->shift)))
 76		clc += rnd;
 77
 78	do_div(clc, evt->mult);
 79
 80	/* Deltas less than 1usec are pointless noise */
 81	return clc > 1000 ? clc : 1000;
 82}
 83
 84/**
 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
 86 * @latch:	value to convert
 87 * @evt:	pointer to clock event device descriptor
 88 *
 89 * Math helper, returns latch value converted to nanoseconds (bound checked)
 90 */
 91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
 92{
 93	return cev_delta2ns(latch, evt, false);
 94}
 95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
 96
 97static int __clockevents_switch_state(struct clock_event_device *dev,
 98				      enum clock_event_state state)
 99{
100	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101		return 0;
102
103	/* Transition with new state-specific callbacks */
104	switch (state) {
105	case CLOCK_EVT_STATE_DETACHED:
106		/* The clockevent device is getting replaced. Shut it down. */
107
108	case CLOCK_EVT_STATE_SHUTDOWN:
109		if (dev->set_state_shutdown)
110			return dev->set_state_shutdown(dev);
111		return 0;
112
113	case CLOCK_EVT_STATE_PERIODIC:
114		/* Core internal bug */
115		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116			return -ENOSYS;
117		if (dev->set_state_periodic)
118			return dev->set_state_periodic(dev);
119		return 0;
120
121	case CLOCK_EVT_STATE_ONESHOT:
122		/* Core internal bug */
123		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124			return -ENOSYS;
125		if (dev->set_state_oneshot)
126			return dev->set_state_oneshot(dev);
127		return 0;
128
129	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130		/* Core internal bug */
131		if (WARN_ONCE(!clockevent_state_oneshot(dev),
132			      "Current state: %d\n",
133			      clockevent_get_state(dev)))
134			return -EINVAL;
135
136		if (dev->set_state_oneshot_stopped)
137			return dev->set_state_oneshot_stopped(dev);
138		else
139			return -ENOSYS;
140
141	default:
142		return -ENOSYS;
143	}
144}
145
146/**
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev:	device to modify
149 * @state:	new state
150 *
151 * Must be called with interrupts disabled !
152 */
153void clockevents_switch_state(struct clock_event_device *dev,
154			      enum clock_event_state state)
155{
156	if (clockevent_get_state(dev) != state) {
157		if (__clockevents_switch_state(dev, state))
158			return;
159
160		clockevent_set_state(dev, state);
161
162		/*
163		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164		 * on it, so fix it up and emit a warning:
165		 */
166		if (clockevent_state_oneshot(dev)) {
167			if (unlikely(!dev->mult)) {
168				dev->mult = 1;
169				WARN_ON(1);
170			}
171		}
172	}
173}
174
175/**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev:	device to shutdown
178 */
179void clockevents_shutdown(struct clock_event_device *dev)
180{
181	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182	dev->next_event = KTIME_MAX;
183}
184
185/**
186 * clockevents_tick_resume -	Resume the tick device before using it again
187 * @dev:			device to resume
188 */
189int clockevents_tick_resume(struct clock_event_device *dev)
190{
191	int ret = 0;
192
193	if (dev->tick_resume)
194		ret = dev->tick_resume(dev);
195
196	return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev:       device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212	/* Nothing to do if we already reached the limit */
213	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214		printk_deferred(KERN_WARNING
215				"CE: Reprogramming failure. Giving up\n");
216		dev->next_event = KTIME_MAX;
217		return -ETIME;
218	}
219
220	if (dev->min_delta_ns < 5000)
221		dev->min_delta_ns = 5000;
222	else
223		dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226		dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228	printk_deferred(KERN_WARNING
229			"CE: %s increased min_delta_ns to %llu nsec\n",
230			dev->name ? dev->name : "?",
231			(unsigned long long) dev->min_delta_ns);
232	return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev:	device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243	unsigned long long clc;
244	int64_t delta;
245	int i;
246
247	for (i = 0;;) {
248		delta = dev->min_delta_ns;
249		dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251		if (clockevent_state_shutdown(dev))
252			return 0;
253
254		dev->retries++;
255		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257			return 0;
258
259		if (++i > 2) {
260			/*
261			 * We tried 3 times to program the device with the
262			 * given min_delta_ns. Try to increase the minimum
263			 * delta, if that fails as well get out of here.
264			 */
265			if (clockevents_increase_min_delta(dev))
266				return -ETIME;
267			i = 0;
268		}
269	}
270}
271
272#else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev:	device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282	unsigned long long clc;
283	int64_t delta = 0;
284	int i;
 
 
285
286	for (i = 0; i < 10; i++) {
287		delta += dev->min_delta_ns;
288		dev->next_event = ktime_add_ns(ktime_get(), delta);
289
290		if (clockevent_state_shutdown(dev))
291			return 0;
292
293		dev->retries++;
294		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
295		if (dev->set_next_event((unsigned long) clc, dev) == 0)
296			return 0;
297	}
298	return -ETIME;
299}
300
301#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
302
303/**
304 * clockevents_program_event - Reprogram the clock event device.
305 * @dev:	device to program
306 * @expires:	absolute expiry time (monotonic clock)
307 * @force:	program minimum delay if expires can not be set
308 *
309 * Returns 0 on success, -ETIME when the event is in the past.
310 */
311int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
312			      bool force)
313{
314	unsigned long long clc;
315	int64_t delta;
316	int rc;
317
318	if (unlikely(expires < 0)) {
319		WARN_ON_ONCE(1);
320		return -ETIME;
321	}
322
323	dev->next_event = expires;
324
325	if (clockevent_state_shutdown(dev))
326		return 0;
327
328	/* We must be in ONESHOT state here */
329	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
330		  clockevent_get_state(dev));
331
332	/* Shortcut for clockevent devices that can deal with ktime. */
333	if (dev->features & CLOCK_EVT_FEAT_KTIME)
334		return dev->set_next_ktime(expires, dev);
335
336	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
337	if (delta <= 0)
338		return force ? clockevents_program_min_delta(dev) : -ETIME;
339
340	delta = min(delta, (int64_t) dev->max_delta_ns);
341	delta = max(delta, (int64_t) dev->min_delta_ns);
342
343	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
344	rc = dev->set_next_event((unsigned long) clc, dev);
345
346	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
347}
348
349/*
350 * Called after a notify add to make devices available which were
351 * released from the notifier call.
352 */
353static void clockevents_notify_released(void)
354{
355	struct clock_event_device *dev;
356
357	while (!list_empty(&clockevents_released)) {
358		dev = list_entry(clockevents_released.next,
359				 struct clock_event_device, list);
360		list_del(&dev->list);
361		list_add(&dev->list, &clockevent_devices);
362		tick_check_new_device(dev);
363	}
364}
365
366/*
367 * Try to install a replacement clock event device
368 */
369static int clockevents_replace(struct clock_event_device *ced)
370{
371	struct clock_event_device *dev, *newdev = NULL;
372
373	list_for_each_entry(dev, &clockevent_devices, list) {
374		if (dev == ced || !clockevent_state_detached(dev))
375			continue;
376
377		if (!tick_check_replacement(newdev, dev))
378			continue;
379
380		if (!try_module_get(dev->owner))
381			continue;
382
383		if (newdev)
384			module_put(newdev->owner);
385		newdev = dev;
386	}
387	if (newdev) {
388		tick_install_replacement(newdev);
389		list_del_init(&ced->list);
390	}
391	return newdev ? 0 : -EBUSY;
392}
393
394/*
395 * Called with clockevents_mutex and clockevents_lock held
396 */
397static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
398{
399	/* Fast track. Device is unused */
400	if (clockevent_state_detached(ced)) {
401		list_del_init(&ced->list);
402		return 0;
403	}
404
405	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
406}
407
408/*
409 * SMP function call to unbind a device
410 */
411static void __clockevents_unbind(void *arg)
412{
413	struct ce_unbind *cu = arg;
414	int res;
415
416	raw_spin_lock(&clockevents_lock);
417	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
418	if (res == -EAGAIN)
419		res = clockevents_replace(cu->ce);
420	cu->res = res;
421	raw_spin_unlock(&clockevents_lock);
422}
423
424/*
425 * Issues smp function call to unbind a per cpu device. Called with
426 * clockevents_mutex held.
427 */
428static int clockevents_unbind(struct clock_event_device *ced, int cpu)
429{
430	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
431
432	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
433	return cu.res;
434}
435
436/*
437 * Unbind a clockevents device.
438 */
439int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
440{
441	int ret;
442
443	mutex_lock(&clockevents_mutex);
444	ret = clockevents_unbind(ced, cpu);
445	mutex_unlock(&clockevents_mutex);
446	return ret;
447}
448EXPORT_SYMBOL_GPL(clockevents_unbind_device);
449
450/**
451 * clockevents_register_device - register a clock event device
452 * @dev:	device to register
453 */
454void clockevents_register_device(struct clock_event_device *dev)
455{
456	unsigned long flags;
457
458	/* Initialize state to DETACHED */
459	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
460
461	if (!dev->cpumask) {
462		WARN_ON(num_possible_cpus() > 1);
463		dev->cpumask = cpumask_of(smp_processor_id());
464	}
465
466	raw_spin_lock_irqsave(&clockevents_lock, flags);
467
468	list_add(&dev->list, &clockevent_devices);
469	tick_check_new_device(dev);
470	clockevents_notify_released();
471
472	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
473}
474EXPORT_SYMBOL_GPL(clockevents_register_device);
475
476static void clockevents_config(struct clock_event_device *dev, u32 freq)
477{
478	u64 sec;
479
480	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
481		return;
482
483	/*
484	 * Calculate the maximum number of seconds we can sleep. Limit
485	 * to 10 minutes for hardware which can program more than
486	 * 32bit ticks so we still get reasonable conversion values.
487	 */
488	sec = dev->max_delta_ticks;
489	do_div(sec, freq);
490	if (!sec)
491		sec = 1;
492	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
493		sec = 600;
494
495	clockevents_calc_mult_shift(dev, freq, sec);
496	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
497	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
498}
499
500/**
501 * clockevents_config_and_register - Configure and register a clock event device
502 * @dev:	device to register
503 * @freq:	The clock frequency
504 * @min_delta:	The minimum clock ticks to program in oneshot mode
505 * @max_delta:	The maximum clock ticks to program in oneshot mode
506 *
507 * min/max_delta can be 0 for devices which do not support oneshot mode.
508 */
509void clockevents_config_and_register(struct clock_event_device *dev,
510				     u32 freq, unsigned long min_delta,
511				     unsigned long max_delta)
512{
513	dev->min_delta_ticks = min_delta;
514	dev->max_delta_ticks = max_delta;
515	clockevents_config(dev, freq);
516	clockevents_register_device(dev);
517}
518EXPORT_SYMBOL_GPL(clockevents_config_and_register);
519
520int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
521{
522	clockevents_config(dev, freq);
523
524	if (clockevent_state_oneshot(dev))
525		return clockevents_program_event(dev, dev->next_event, false);
526
527	if (clockevent_state_periodic(dev))
528		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
529
530	return 0;
531}
532
533/**
534 * clockevents_update_freq - Update frequency and reprogram a clock event device.
535 * @dev:	device to modify
536 * @freq:	new device frequency
537 *
538 * Reconfigure and reprogram a clock event device in oneshot
539 * mode. Must be called on the cpu for which the device delivers per
540 * cpu timer events. If called for the broadcast device the core takes
541 * care of serialization.
542 *
543 * Returns 0 on success, -ETIME when the event is in the past.
544 */
545int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
546{
547	unsigned long flags;
548	int ret;
549
550	local_irq_save(flags);
551	ret = tick_broadcast_update_freq(dev, freq);
552	if (ret == -ENODEV)
553		ret = __clockevents_update_freq(dev, freq);
554	local_irq_restore(flags);
555	return ret;
556}
557
558/*
559 * Noop handler when we shut down an event device
560 */
561void clockevents_handle_noop(struct clock_event_device *dev)
562{
563}
564
565/**
566 * clockevents_exchange_device - release and request clock devices
567 * @old:	device to release (can be NULL)
568 * @new:	device to request (can be NULL)
569 *
570 * Called from various tick functions with clockevents_lock held and
571 * interrupts disabled.
572 */
573void clockevents_exchange_device(struct clock_event_device *old,
574				 struct clock_event_device *new)
575{
576	/*
577	 * Caller releases a clock event device. We queue it into the
578	 * released list and do a notify add later.
579	 */
580	if (old) {
581		module_put(old->owner);
582		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
583		list_del(&old->list);
584		list_add(&old->list, &clockevents_released);
585	}
586
587	if (new) {
588		BUG_ON(!clockevent_state_detached(new));
589		clockevents_shutdown(new);
590	}
591}
592
593/**
594 * clockevents_suspend - suspend clock devices
595 */
596void clockevents_suspend(void)
597{
598	struct clock_event_device *dev;
599
600	list_for_each_entry_reverse(dev, &clockevent_devices, list)
601		if (dev->suspend && !clockevent_state_detached(dev))
602			dev->suspend(dev);
603}
604
605/**
606 * clockevents_resume - resume clock devices
607 */
608void clockevents_resume(void)
609{
610	struct clock_event_device *dev;
611
612	list_for_each_entry(dev, &clockevent_devices, list)
613		if (dev->resume && !clockevent_state_detached(dev))
614			dev->resume(dev);
615}
616
617#ifdef CONFIG_HOTPLUG_CPU
618/**
619 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
620 */
621void tick_cleanup_dead_cpu(int cpu)
622{
623	struct clock_event_device *dev, *tmp;
624	unsigned long flags;
625
626	raw_spin_lock_irqsave(&clockevents_lock, flags);
627
628	tick_shutdown_broadcast_oneshot(cpu);
629	tick_shutdown_broadcast(cpu);
630	tick_shutdown(cpu);
631	/*
632	 * Unregister the clock event devices which were
633	 * released from the users in the notify chain.
634	 */
635	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
636		list_del(&dev->list);
637	/*
638	 * Now check whether the CPU has left unused per cpu devices
639	 */
640	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
641		if (cpumask_test_cpu(cpu, dev->cpumask) &&
642		    cpumask_weight(dev->cpumask) == 1 &&
643		    !tick_is_broadcast_device(dev)) {
644			BUG_ON(!clockevent_state_detached(dev));
645			list_del(&dev->list);
646		}
647	}
648	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
649}
650#endif
651
652#ifdef CONFIG_SYSFS
653static struct bus_type clockevents_subsys = {
654	.name		= "clockevents",
655	.dev_name       = "clockevent",
656};
657
658static DEFINE_PER_CPU(struct device, tick_percpu_dev);
659static struct tick_device *tick_get_tick_dev(struct device *dev);
660
661static ssize_t sysfs_show_current_tick_dev(struct device *dev,
662					   struct device_attribute *attr,
663					   char *buf)
664{
665	struct tick_device *td;
666	ssize_t count = 0;
667
668	raw_spin_lock_irq(&clockevents_lock);
669	td = tick_get_tick_dev(dev);
670	if (td && td->evtdev)
671		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
672	raw_spin_unlock_irq(&clockevents_lock);
673	return count;
674}
675static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
676
677/* We don't support the abomination of removable broadcast devices */
678static ssize_t sysfs_unbind_tick_dev(struct device *dev,
679				     struct device_attribute *attr,
680				     const char *buf, size_t count)
681{
682	char name[CS_NAME_LEN];
683	ssize_t ret = sysfs_get_uname(buf, name, count);
684	struct clock_event_device *ce;
685
686	if (ret < 0)
687		return ret;
688
689	ret = -ENODEV;
690	mutex_lock(&clockevents_mutex);
691	raw_spin_lock_irq(&clockevents_lock);
692	list_for_each_entry(ce, &clockevent_devices, list) {
693		if (!strcmp(ce->name, name)) {
694			ret = __clockevents_try_unbind(ce, dev->id);
695			break;
696		}
697	}
698	raw_spin_unlock_irq(&clockevents_lock);
699	/*
700	 * We hold clockevents_mutex, so ce can't go away
701	 */
702	if (ret == -EAGAIN)
703		ret = clockevents_unbind(ce, dev->id);
704	mutex_unlock(&clockevents_mutex);
705	return ret ? ret : count;
706}
707static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
708
709#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
710static struct device tick_bc_dev = {
711	.init_name	= "broadcast",
712	.id		= 0,
713	.bus		= &clockevents_subsys,
714};
715
716static struct tick_device *tick_get_tick_dev(struct device *dev)
717{
718	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
719		&per_cpu(tick_cpu_device, dev->id);
720}
721
722static __init int tick_broadcast_init_sysfs(void)
723{
724	int err = device_register(&tick_bc_dev);
725
726	if (!err)
727		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
728	return err;
729}
730#else
731static struct tick_device *tick_get_tick_dev(struct device *dev)
732{
733	return &per_cpu(tick_cpu_device, dev->id);
734}
735static inline int tick_broadcast_init_sysfs(void) { return 0; }
736#endif
737
738static int __init tick_init_sysfs(void)
739{
740	int cpu;
741
742	for_each_possible_cpu(cpu) {
743		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
744		int err;
745
746		dev->id = cpu;
747		dev->bus = &clockevents_subsys;
748		err = device_register(dev);
749		if (!err)
750			err = device_create_file(dev, &dev_attr_current_device);
751		if (!err)
752			err = device_create_file(dev, &dev_attr_unbind_device);
753		if (err)
754			return err;
755	}
756	return tick_broadcast_init_sysfs();
757}
758
759static int __init clockevents_init_sysfs(void)
760{
761	int err = subsys_system_register(&clockevents_subsys, NULL);
762
763	if (!err)
764		err = tick_init_sysfs();
765	return err;
766}
767device_initcall(clockevents_init_sysfs);
768#endif /* SYSFS */