Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161}
162
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
196struct xfs_buf *
197_xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202{
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255}
256
257/*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261STATIC int
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265{
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280}
281
282/*
283 * Frees b_pages if it was allocated.
284 */
285STATIC void
286_xfs_buf_free_pages(
287 xfs_buf_t *bp)
288{
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302void
303xfs_buf_free(
304 xfs_buf_t *bp)
305{
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327}
328
329/*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332STATIC int
333xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336{
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 bp->b_flags &= ~_XBF_PAGES;
426 return error;
427}
428
429/*
430 * Map buffer into kernel address-space if necessary.
431 */
432STATIC int
433_xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436{
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
532
533/*
534 * Look up, and creates if absent, a lockable buffer for
535 * a given range of an inode. The buffer is returned
536 * locked. No I/O is implied by this call.
537 */
538xfs_buf_t *
539_xfs_buf_find(
540 struct xfs_buftarg *btp,
541 struct xfs_buf_map *map,
542 int nmaps,
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
545{
546 struct xfs_perag *pag;
547 xfs_buf_t *bp;
548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
549 xfs_daddr_t eofs;
550 int i;
551
552 for (i = 0; i < nmaps; i++)
553 cmap.bm_len += map[i].bm_len;
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 /*
566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 __func__, cmap.bm_bn, eofs);
573 WARN_ON(1);
574 return NULL;
575 }
576
577 pag = xfs_perag_get(btp->bt_mount,
578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579
580 spin_lock(&pag->pag_buf_lock);
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
586 }
587
588 /* No match found */
589 if (new_bp) {
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
595 spin_unlock(&pag->pag_buf_lock);
596 } else {
597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
600 }
601 return new_bp;
602
603found:
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
606
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
609 xfs_buf_rele(bp);
610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 return NULL;
612 }
613 xfs_buf_lock(bp);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 }
616
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 ASSERT(bp->b_iodone == NULL);
625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 bp->b_ops = NULL;
627 }
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 return bp;
632}
633
634/*
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
638 */
639struct xfs_buf *
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags)
645{
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
648 int error = 0;
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 if (likely(bp))
652 goto found;
653
654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 if (unlikely(!new_bp))
656 return NULL;
657
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
660 xfs_buf_free(new_bp);
661 return NULL;
662 }
663
664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 if (!bp) {
666 xfs_buf_free(new_bp);
667 return NULL;
668 }
669
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
672
673found:
674 if (!bp->b_addr) {
675 error = _xfs_buf_map_pages(bp, flags);
676 if (unlikely(error)) {
677 xfs_warn(target->bt_mount,
678 "%s: failed to map pagesn", __func__);
679 xfs_buf_relse(bp);
680 return NULL;
681 }
682 }
683
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
691 XFS_STATS_INC(target->bt_mount, xb_get);
692 trace_xfs_buf_get(bp, flags, _RET_IP_);
693 return bp;
694}
695
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
701 ASSERT(!(flags & XBF_WRITE));
702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703
704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
709 return 0;
710 }
711 return xfs_buf_submit_wait(bp);
712}
713
714xfs_buf_t *
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
719 xfs_buf_flags_t flags,
720 const struct xfs_buf_ops *ops)
721{
722 struct xfs_buf *bp;
723
724 flags |= XBF_READ;
725
726 bp = xfs_buf_get_map(target, map, nmaps, flags);
727 if (bp) {
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
730 if (!(bp->b_flags & XBF_DONE)) {
731 XFS_STATS_INC(target->bt_mount, xb_get_read);
732 bp->b_ops = ops;
733 _xfs_buf_read(bp, flags);
734 } else if (flags & XBF_ASYNC) {
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
739 xfs_buf_relse(bp);
740 return NULL;
741 } else {
742 /* We do not want read in the flags */
743 bp->b_flags &= ~XBF_READ;
744 }
745 }
746
747 return bp;
748}
749
750/*
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
753 */
754void
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
758 int nmaps,
759 const struct xfs_buf_ops *ops)
760{
761 if (bdi_read_congested(target->bt_bdi))
762 return;
763
764 xfs_buf_read_map(target, map, nmaps,
765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766}
767
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
772int
773xfs_buf_read_uncached(
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
776 size_t numblks,
777 int flags,
778 struct xfs_buf **bpp,
779 const struct xfs_buf_ops *ops)
780{
781 struct xfs_buf *bp;
782
783 *bpp = NULL;
784
785 bp = xfs_buf_get_uncached(target, numblks, flags);
786 if (!bp)
787 return -ENOMEM;
788
789 /* set up the buffer for a read IO */
790 ASSERT(bp->b_map_count == 1);
791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
792 bp->b_maps[0].bm_bn = daddr;
793 bp->b_flags |= XBF_READ;
794 bp->b_ops = ops;
795
796 xfs_buf_submit_wait(bp);
797 if (bp->b_error) {
798 int error = bp->b_error;
799 xfs_buf_relse(bp);
800 return error;
801 }
802
803 *bpp = bp;
804 return 0;
805}
806
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
814 size_t numblks)
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
822 bp->b_length = numblks;
823 bp->b_io_length = numblks;
824
825 ASSERT(bp->b_map_count == 1);
826 bp->b_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
829}
830
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
835 if ((!is_vmalloc_addr(addr))) {
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
853 int page_count;
854
855 pageaddr = (unsigned long)mem & PAGE_MASK;
856 offset = (unsigned long)mem - pageaddr;
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
859
860 /* Free any previous set of page pointers */
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
863
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
866
867 rval = _xfs_buf_get_pages(bp, page_count);
868 if (rval)
869 return rval;
870
871 bp->b_offset = offset;
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 pageaddr += PAGE_SIZE;
876 }
877
878 bp->b_io_length = BTOBB(len);
879 bp->b_length = BTOBB(buflen);
880
881 return 0;
882}
883
884xfs_buf_t *
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
887 size_t numblks,
888 int flags)
889{
890 unsigned long page_count;
891 int error, i;
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 if (unlikely(bp == NULL))
898 goto fail;
899
900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 error = _xfs_buf_get_pages(bp, page_count);
902 if (error)
903 goto fail_free_buf;
904
905 for (i = 0; i < page_count; i++) {
906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
909 }
910 bp->b_flags |= _XBF_PAGES;
911
912 error = _xfs_buf_map_pages(bp, 0);
913 if (unlikely(error)) {
914 xfs_warn(target->bt_mount,
915 "%s: failed to map pages", __func__);
916 goto fail_free_mem;
917 }
918
919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 return bp;
921
922 fail_free_mem:
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
925 _xfs_buf_free_pages(bp);
926 fail_free_buf:
927 xfs_buf_free_maps(bp);
928 kmem_zone_free(xfs_buf_zone, bp);
929 fail:
930 return NULL;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 xfs_buf_t *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 xfs_buf_t *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
996 }
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1009 }
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1017 }
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1024}
1025
1026
1027/*
1028 * Lock a buffer object, if it is not already locked.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1037 */
1038int
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1041{
1042 int locked;
1043
1044 locked = down_trylock(&bp->b_sema) == 0;
1045 if (locked) {
1046 XB_SET_OWNER(bp);
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
1051 return locked;
1052}
1053
1054/*
1055 * Lock a buffer object.
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1062 */
1063void
1064xfs_buf_lock(
1065 struct xfs_buf *bp)
1066{
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 xfs_log_force(bp->b_target->bt_mount, 0);
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1075}
1076
1077void
1078xfs_buf_unlock(
1079 struct xfs_buf *bp)
1080{
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1085}
1086
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
1093 if (atomic_read(&bp->b_pin_count) == 0)
1094 return;
1095
1096 add_wait_queue(&bp->b_waiters, &wait);
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
1099 if (atomic_read(&bp->b_pin_count) == 0)
1100 break;
1101 io_schedule();
1102 }
1103 remove_wait_queue(&bp->b_waiters, &wait);
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1114{
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1131 bp->b_ops->verify_read(bp);
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1136
1137 if (bp->b_iodone)
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1140 xfs_buf_relse(bp);
1141 else
1142 complete(&bp->b_iowait);
1143}
1144
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1148{
1149 struct xfs_buf *bp =
1150 container_of(work, xfs_buf_t, b_ioend_work);
1151
1152 xfs_buf_ioend(bp);
1153}
1154
1155static void
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161}
1162
1163void
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1167{
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171}
1172
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181}
1182
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
1194
1195 error = xfs_buf_submit_wait(bp);
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
1203static void
1204xfs_buf_bio_end_io(
1205 struct bio *bio)
1206{
1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1208
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215
1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1221 bio_put(bio);
1222}
1223
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
1230 int op,
1231 int op_flags)
1232{
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1240
1241 total_nr_pages = bp->b_page_count;
1242
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
1249 }
1250
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
1258
1259next_chunk:
1260 atomic_inc(&bp->b_io_remaining);
1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
1264 bio->bi_bdev = bp->b_target->bt_bdev;
1265 bio->bi_iter.bi_sector = sector;
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
1268 bio_set_op_attrs(bio, op, op_flags);
1269
1270 for (; size && nr_pages; nr_pages--, page_index++) {
1271 int rbytes, nbytes = PAGE_SIZE - offset;
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
1278 if (rbytes < nbytes)
1279 break;
1280
1281 offset = 0;
1282 sector += BTOBB(nbytes);
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
1287 if (likely(bio->bi_iter.bi_size)) {
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
1292 submit_bio(bio);
1293 if (size)
1294 goto next_chunk;
1295 } else {
1296 /*
1297 * This is guaranteed not to be the last io reference count
1298 * because the caller (xfs_buf_submit) holds a count itself.
1299 */
1300 atomic_dec(&bp->b_io_remaining);
1301 xfs_buf_ioerror(bp, -EIO);
1302 bio_put(bio);
1303 }
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
1312 int op;
1313 int op_flags = 0;
1314 int offset;
1315 int size;
1316 int i;
1317
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 op = REQ_OP_WRITE;
1333 if (bp->b_flags & XBF_SYNCIO)
1334 op_flags = REQ_SYNC;
1335 if (bp->b_flags & XBF_FUA)
1336 op_flags |= REQ_FUA;
1337 if (bp->b_flags & XBF_FLUSH)
1338 op_flags |= REQ_PREFLUSH;
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1366 }
1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
1370 } else {
1371 op = REQ_OP_READ;
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
1375 op_flags |= REQ_META;
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1394}
1395
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
1402void
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1405{
1406 trace_xfs_buf_submit(bp, _RET_IP_);
1407
1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1419
1420 if (bp->b_flags & XBF_WRITE)
1421 xfs_buf_wait_unpin(bp);
1422
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
1426 /*
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
1433 */
1434 xfs_buf_hold(bp);
1435
1436 /*
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1440 */
1441 atomic_set(&bp->b_io_remaining, 1);
1442 xfs_buf_ioacct_inc(bp);
1443 _xfs_buf_ioapply(bp);
1444
1445 /*
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
1449 */
1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 if (bp->b_error)
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1456
1457 xfs_buf_rele(bp);
1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1459}
1460
1461/*
1462 * Synchronous buffer IO submission path, read or write.
1463 */
1464int
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1467{
1468 int error;
1469
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
1509
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1522}
1523
1524void *
1525xfs_buf_offset(
1526 struct xfs_buf *bp,
1527 size_t offset)
1528{
1529 struct page *page;
1530
1531 if (bp->b_addr)
1532 return bp->b_addr + offset;
1533
1534 offset += bp->b_offset;
1535 page = bp->b_pages[offset >> PAGE_SHIFT];
1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1537}
1538
1539/*
1540 * Move data into or out of a buffer.
1541 */
1542void
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
1547 void *data, /* data address */
1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1549{
1550 size_t bend;
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1562
1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1564
1565 switch (mode) {
1566 case XBRW_ZERO:
1567 memset(page_address(page) + page_offset, 0, csize);
1568 break;
1569 case XBRW_READ:
1570 memcpy(data, page_address(page) + page_offset, csize);
1571 break;
1572 case XBRW_WRITE:
1573 memcpy(page_address(page) + page_offset, data, csize);
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
1582 * Handling of buffer targets (buftargs).
1583 */
1584
1585/*
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1589 */
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
1593 struct list_lru_one *lru,
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1597{
1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1599 struct list_head *dispose = arg;
1600
1601 if (atomic_read(&bp->b_hold) > 1) {
1602 /* need to wait, so skip it this pass */
1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 return LRU_SKIP;
1605 }
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
1608
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
1615 list_lru_isolate_move(lru, item, dispose);
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1618}
1619
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
1627 /*
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
1638 */
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 (long long)bp->b_bn);
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
1658 }
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
1669 struct list_lru_one *lru,
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
1689 return LRU_ROTATE;
1690 }
1691
1692 bp->b_state |= XFS_BSTATE_DISPOSE;
1693 list_lru_isolate_move(lru, item, dispose);
1694 spin_unlock(&bp->b_lock);
1695 return LRU_REMOVED;
1696}
1697
1698static unsigned long
1699xfs_buftarg_shrink_scan(
1700 struct shrinker *shrink,
1701 struct shrink_control *sc)
1702{
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
1705 LIST_HEAD(dispose);
1706 unsigned long freed;
1707
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
1710
1711 while (!list_empty(&dispose)) {
1712 struct xfs_buf *bp;
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
1718 return freed;
1719}
1720
1721static unsigned long
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
1728 return list_lru_shrink_count(&btp->bt_lru, sc);
1729}
1730
1731void
1732xfs_free_buftarg(
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1735{
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744}
1745
1746int
1747xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750{
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767}
1768
1769/*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780}
1781
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev)
1786{
1787 xfs_buftarg_t *btp;
1788
1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790
1791 btp->bt_mount = mp;
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1811
1812error:
1813 kmem_free(btp);
1814 return NULL;
1815}
1816
1817/*
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1827 */
1828bool
1829xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1832{
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1835
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1844 }
1845
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847
1848 /*
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1855 */
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1860 }
1861
1862 return true;
1863}
1864
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
1900static int
1901xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1904{
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1909
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1911
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
1924
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
1936
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938
1939 /*
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1945 */
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1953
1954 xfs_buf_submit(bp);
1955 }
1956 blk_finish_plug(&plug);
1957
1958 return pinned;
1959}
1960
1961/*
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1969 */
1970int
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1973{
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975}
1976
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1992
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2007 }
2008
2009 return error;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2019
2020 return 0;
2021
2022 out:
2023 return -ENOMEM;
2024}
2025
2026void
2027xfs_buf_terminate(void)
2028{
2029 kmem_zone_destroy(xfs_buf_zone);
2030}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19
20static kmem_zone_t *xfs_buf_zone;
21
22#define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
62 */
63 return bp->b_addr && bp->b_page_count > 1;
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
107__xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
109{
110 lockdep_assert_held(&bp->b_lock);
111
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
125}
126
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
139 ASSERT(xfs_buf_islocked(bp));
140
141 bp->b_flags |= XBF_STALE;
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
158
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
166}
167
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
201static struct xfs_buf *
202_xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags)
207{
208 struct xfs_buf *bp;
209 int error;
210 int i;
211
212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 if (unlikely(!bp))
214 return NULL;
215
216 /*
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
219 */
220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221
222 atomic_set(&bp->b_hold, 1);
223 atomic_set(&bp->b_lru_ref, 1);
224 init_completion(&bp->b_iowait);
225 INIT_LIST_HEAD(&bp->b_lru);
226 INIT_LIST_HEAD(&bp->b_list);
227 INIT_LIST_HEAD(&bp->b_li_list);
228 sema_init(&bp->b_sema, 0); /* held, no waiters */
229 spin_lock_init(&bp->b_lock);
230 bp->b_target = target;
231 bp->b_mount = target->bt_mount;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
256 XFS_STATS_INC(bp->b_mount, xb_create);
257 trace_xfs_buf_init(bp, _RET_IP_);
258
259 return bp;
260}
261
262/*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266STATIC int
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count)
270{
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, KM_NOFS);
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
281 }
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 }
284 return 0;
285}
286
287/*
288 * Frees b_pages if it was allocated.
289 */
290STATIC void
291_xfs_buf_free_pages(
292 xfs_buf_t *bp)
293{
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages);
296 bp->b_pages = NULL;
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
304 * The buffer must not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
306 */
307void
308xfs_buf_free(
309 xfs_buf_t *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES) {
316 uint i;
317
318 if (xfs_buf_is_vmapped(bp))
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
321
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
325 __free_page(page);
326 }
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
329 _xfs_buf_free_pages(bp);
330 xfs_buf_free_maps(bp);
331 kmem_zone_free(xfs_buf_zone, bp);
332}
333
334/*
335 * Allocates all the pages for buffer in question and builds it's page list.
336 */
337STATIC int
338xfs_buf_allocate_memory(
339 xfs_buf_t *bp,
340 uint flags)
341{
342 size_t size;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 xfs_off_t start, end;
347 int error;
348 xfs_km_flags_t kmflag_mask = 0;
349
350 /*
351 * assure zeroed buffer for non-read cases.
352 */
353 if (!(flags & XBF_READ)) {
354 kmflag_mask |= KM_ZERO;
355 gfp_mask |= __GFP_ZERO;
356 }
357
358 /*
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
362 */
363 size = BBTOB(bp->b_length);
364 if (size < PAGE_SIZE) {
365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
366 bp->b_addr = kmem_alloc_io(size, align_mask,
367 KM_NOFS | kmflag_mask);
368 if (!bp->b_addr) {
369 /* low memory - use alloc_page loop instead */
370 goto use_alloc_page;
371 }
372
373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
374 ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp->b_addr);
377 bp->b_addr = NULL;
378 goto use_alloc_page;
379 }
380 bp->b_offset = offset_in_page(bp->b_addr);
381 bp->b_pages = bp->b_page_array;
382 bp->b_pages[0] = kmem_to_page(bp->b_addr);
383 bp->b_page_count = 1;
384 bp->b_flags |= _XBF_KMEM;
385 return 0;
386 }
387
388use_alloc_page:
389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 >> PAGE_SHIFT;
392 page_count = end - start;
393 error = _xfs_buf_get_pages(bp, page_count);
394 if (unlikely(error))
395 return error;
396
397 offset = bp->b_offset;
398 bp->b_flags |= _XBF_PAGES;
399
400 for (i = 0; i < bp->b_page_count; i++) {
401 struct page *page;
402 uint retries = 0;
403retry:
404 page = alloc_page(gfp_mask);
405 if (unlikely(page == NULL)) {
406 if (flags & XBF_READ_AHEAD) {
407 bp->b_page_count = i;
408 error = -ENOMEM;
409 goto out_free_pages;
410 }
411
412 /*
413 * This could deadlock.
414 *
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
417 */
418 if (!(++retries % 100))
419 xfs_err(NULL,
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current->comm, current->pid,
422 __func__, gfp_mask);
423
424 XFS_STATS_INC(bp->b_mount, xb_page_retries);
425 congestion_wait(BLK_RW_ASYNC, HZ/50);
426 goto retry;
427 }
428
429 XFS_STATS_INC(bp->b_mount, xb_page_found);
430
431 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 size -= nbytes;
433 bp->b_pages[i] = page;
434 offset = 0;
435 }
436 return 0;
437
438out_free_pages:
439 for (i = 0; i < bp->b_page_count; i++)
440 __free_page(bp->b_pages[i]);
441 bp->b_flags &= ~_XBF_PAGES;
442 return error;
443}
444
445/*
446 * Map buffer into kernel address-space if necessary.
447 */
448STATIC int
449_xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452{
453 ASSERT(bp->b_flags & _XBF_PAGES);
454 if (bp->b_page_count == 1) {
455 /* A single page buffer is always mappable */
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 } else if (flags & XBF_UNMAPPED) {
458 bp->b_addr = NULL;
459 } else {
460 int retried = 0;
461 unsigned nofs_flag;
462
463 /*
464 * vm_map_ram() will allocate auxillary structures (e.g.
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
470 */
471 nofs_flag = memalloc_nofs_save();
472 do {
473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 -1, PAGE_KERNEL);
475 if (bp->b_addr)
476 break;
477 vm_unmap_aliases();
478 } while (retried++ <= 1);
479 memalloc_nofs_restore(nofs_flag);
480
481 if (!bp->b_addr)
482 return -ENOMEM;
483 bp->b_addr += bp->b_offset;
484 }
485
486 return 0;
487}
488
489/*
490 * Finding and Reading Buffers
491 */
492static int
493_xfs_buf_obj_cmp(
494 struct rhashtable_compare_arg *arg,
495 const void *obj)
496{
497 const struct xfs_buf_map *map = arg->key;
498 const struct xfs_buf *bp = obj;
499
500 /*
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
503 */
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505
506 if (bp->b_bn != map->bm_bn)
507 return 1;
508
509 if (unlikely(bp->b_length != map->bm_len)) {
510 /*
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
517 */
518 ASSERT(bp->b_flags & XBF_STALE);
519 return 1;
520 }
521 return 0;
522}
523
524static const struct rhashtable_params xfs_buf_hash_params = {
525 .min_size = 32, /* empty AGs have minimal footprint */
526 .nelem_hint = 16,
527 .key_len = sizeof(xfs_daddr_t),
528 .key_offset = offsetof(struct xfs_buf, b_bn),
529 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
530 .automatic_shrinking = true,
531 .obj_cmpfn = _xfs_buf_obj_cmp,
532};
533
534int
535xfs_buf_hash_init(
536 struct xfs_perag *pag)
537{
538 spin_lock_init(&pag->pag_buf_lock);
539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540}
541
542void
543xfs_buf_hash_destroy(
544 struct xfs_perag *pag)
545{
546 rhashtable_destroy(&pag->pag_buf_hash);
547}
548
549/*
550 * Look up a buffer in the buffer cache and return it referenced and locked
551 * in @found_bp.
552 *
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554 * cache.
555 *
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
558 *
559 * Return values are:
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
563 * 0, with @found_bp:
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
566 */
567static int
568xfs_buf_find(
569 struct xfs_buftarg *btp,
570 struct xfs_buf_map *map,
571 int nmaps,
572 xfs_buf_flags_t flags,
573 struct xfs_buf *new_bp,
574 struct xfs_buf **found_bp)
575{
576 struct xfs_perag *pag;
577 xfs_buf_t *bp;
578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
579 xfs_daddr_t eofs;
580 int i;
581
582 *found_bp = NULL;
583
584 for (i = 0; i < nmaps; i++)
585 cmap.bm_len += map[i].bm_len;
586
587 /* Check for IOs smaller than the sector size / not sector aligned */
588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
590
591 /*
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
594 */
595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
597 xfs_alert(btp->bt_mount,
598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 __func__, cmap.bm_bn, eofs);
600 WARN_ON(1);
601 return -EFSCORRUPTED;
602 }
603
604 pag = xfs_perag_get(btp->bt_mount,
605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
606
607 spin_lock(&pag->pag_buf_lock);
608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 xfs_buf_hash_params);
610 if (bp) {
611 atomic_inc(&bp->b_hold);
612 goto found;
613 }
614
615 /* No match found */
616 if (!new_bp) {
617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
618 spin_unlock(&pag->pag_buf_lock);
619 xfs_perag_put(pag);
620 return -ENOENT;
621 }
622
623 /* the buffer keeps the perag reference until it is freed */
624 new_bp->b_pag = pag;
625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 xfs_buf_hash_params);
627 spin_unlock(&pag->pag_buf_lock);
628 *found_bp = new_bp;
629 return 0;
630
631found:
632 spin_unlock(&pag->pag_buf_lock);
633 xfs_perag_put(pag);
634
635 if (!xfs_buf_trylock(bp)) {
636 if (flags & XBF_TRYLOCK) {
637 xfs_buf_rele(bp);
638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
639 return -EAGAIN;
640 }
641 xfs_buf_lock(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
643 }
644
645 /*
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
648 * intact here.
649 */
650 if (bp->b_flags & XBF_STALE) {
651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
652 ASSERT(bp->b_iodone == NULL);
653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
654 bp->b_ops = NULL;
655 }
656
657 trace_xfs_buf_find(bp, flags, _RET_IP_);
658 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
659 *found_bp = bp;
660 return 0;
661}
662
663struct xfs_buf *
664xfs_buf_incore(
665 struct xfs_buftarg *target,
666 xfs_daddr_t blkno,
667 size_t numblks,
668 xfs_buf_flags_t flags)
669{
670 struct xfs_buf *bp;
671 int error;
672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
673
674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 if (error)
676 return NULL;
677 return bp;
678}
679
680/*
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
684 */
685struct xfs_buf *
686xfs_buf_get_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
690 xfs_buf_flags_t flags)
691{
692 struct xfs_buf *bp;
693 struct xfs_buf *new_bp;
694 int error = 0;
695
696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697
698 switch (error) {
699 case 0:
700 /* cache hit */
701 goto found;
702 case -EAGAIN:
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags & XBF_TRYLOCK);
705 return NULL;
706 case -ENOENT:
707 /* cache miss, go for insert */
708 break;
709 case -EFSCORRUPTED:
710 default:
711 /*
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
714 */
715 return NULL;
716 }
717
718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
719 if (unlikely(!new_bp))
720 return NULL;
721
722 error = xfs_buf_allocate_memory(new_bp, flags);
723 if (error) {
724 xfs_buf_free(new_bp);
725 return NULL;
726 }
727
728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 if (error) {
730 xfs_buf_free(new_bp);
731 return NULL;
732 }
733
734 if (bp != new_bp)
735 xfs_buf_free(new_bp);
736
737found:
738 if (!bp->b_addr) {
739 error = _xfs_buf_map_pages(bp, flags);
740 if (unlikely(error)) {
741 xfs_warn(target->bt_mount,
742 "%s: failed to map pagesn", __func__);
743 xfs_buf_relse(bp);
744 return NULL;
745 }
746 }
747
748 /*
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
751 */
752 if (!(flags & XBF_READ))
753 xfs_buf_ioerror(bp, 0);
754
755 XFS_STATS_INC(target->bt_mount, xb_get);
756 trace_xfs_buf_get(bp, flags, _RET_IP_);
757 return bp;
758}
759
760STATIC int
761_xfs_buf_read(
762 xfs_buf_t *bp,
763 xfs_buf_flags_t flags)
764{
765 ASSERT(!(flags & XBF_WRITE));
766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
767
768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
770
771 return xfs_buf_submit(bp);
772}
773
774/*
775 * Reverify a buffer found in cache without an attached ->b_ops.
776 *
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
781 *
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
790 */
791int
792xfs_buf_reverify(
793 struct xfs_buf *bp,
794 const struct xfs_buf_ops *ops)
795{
796 ASSERT(bp->b_flags & XBF_DONE);
797 ASSERT(bp->b_error == 0);
798
799 if (!ops || bp->b_ops)
800 return 0;
801
802 bp->b_ops = ops;
803 bp->b_ops->verify_read(bp);
804 if (bp->b_error)
805 bp->b_flags &= ~XBF_DONE;
806 return bp->b_error;
807}
808
809xfs_buf_t *
810xfs_buf_read_map(
811 struct xfs_buftarg *target,
812 struct xfs_buf_map *map,
813 int nmaps,
814 xfs_buf_flags_t flags,
815 const struct xfs_buf_ops *ops)
816{
817 struct xfs_buf *bp;
818
819 flags |= XBF_READ;
820
821 bp = xfs_buf_get_map(target, map, nmaps, flags);
822 if (!bp)
823 return NULL;
824
825 trace_xfs_buf_read(bp, flags, _RET_IP_);
826
827 if (!(bp->b_flags & XBF_DONE)) {
828 XFS_STATS_INC(target->bt_mount, xb_get_read);
829 bp->b_ops = ops;
830 _xfs_buf_read(bp, flags);
831 return bp;
832 }
833
834 xfs_buf_reverify(bp, ops);
835
836 if (flags & XBF_ASYNC) {
837 /*
838 * Read ahead call which is already satisfied,
839 * drop the buffer
840 */
841 xfs_buf_relse(bp);
842 return NULL;
843 }
844
845 /* We do not want read in the flags */
846 bp->b_flags &= ~XBF_READ;
847 ASSERT(bp->b_ops != NULL || ops == NULL);
848 return bp;
849}
850
851/*
852 * If we are not low on memory then do the readahead in a deadlock
853 * safe manner.
854 */
855void
856xfs_buf_readahead_map(
857 struct xfs_buftarg *target,
858 struct xfs_buf_map *map,
859 int nmaps,
860 const struct xfs_buf_ops *ops)
861{
862 if (bdi_read_congested(target->bt_bdev->bd_bdi))
863 return;
864
865 xfs_buf_read_map(target, map, nmaps,
866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
867}
868
869/*
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
872 */
873int
874xfs_buf_read_uncached(
875 struct xfs_buftarg *target,
876 xfs_daddr_t daddr,
877 size_t numblks,
878 int flags,
879 struct xfs_buf **bpp,
880 const struct xfs_buf_ops *ops)
881{
882 struct xfs_buf *bp;
883
884 *bpp = NULL;
885
886 bp = xfs_buf_get_uncached(target, numblks, flags);
887 if (!bp)
888 return -ENOMEM;
889
890 /* set up the buffer for a read IO */
891 ASSERT(bp->b_map_count == 1);
892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
893 bp->b_maps[0].bm_bn = daddr;
894 bp->b_flags |= XBF_READ;
895 bp->b_ops = ops;
896
897 xfs_buf_submit(bp);
898 if (bp->b_error) {
899 int error = bp->b_error;
900 xfs_buf_relse(bp);
901 return error;
902 }
903
904 *bpp = bp;
905 return 0;
906}
907
908xfs_buf_t *
909xfs_buf_get_uncached(
910 struct xfs_buftarg *target,
911 size_t numblks,
912 int flags)
913{
914 unsigned long page_count;
915 int error, i;
916 struct xfs_buf *bp;
917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
918
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
921 if (unlikely(bp == NULL))
922 goto fail;
923
924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
925 error = _xfs_buf_get_pages(bp, page_count);
926 if (error)
927 goto fail_free_buf;
928
929 for (i = 0; i < page_count; i++) {
930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
931 if (!bp->b_pages[i])
932 goto fail_free_mem;
933 }
934 bp->b_flags |= _XBF_PAGES;
935
936 error = _xfs_buf_map_pages(bp, 0);
937 if (unlikely(error)) {
938 xfs_warn(target->bt_mount,
939 "%s: failed to map pages", __func__);
940 goto fail_free_mem;
941 }
942
943 trace_xfs_buf_get_uncached(bp, _RET_IP_);
944 return bp;
945
946 fail_free_mem:
947 while (--i >= 0)
948 __free_page(bp->b_pages[i]);
949 _xfs_buf_free_pages(bp);
950 fail_free_buf:
951 xfs_buf_free_maps(bp);
952 kmem_zone_free(xfs_buf_zone, bp);
953 fail:
954 return NULL;
955}
956
957/*
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
960 * Must hold the buffer already to call this function.
961 */
962void
963xfs_buf_hold(
964 xfs_buf_t *bp)
965{
966 trace_xfs_buf_hold(bp, _RET_IP_);
967 atomic_inc(&bp->b_hold);
968}
969
970/*
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
973 */
974void
975xfs_buf_rele(
976 xfs_buf_t *bp)
977{
978 struct xfs_perag *pag = bp->b_pag;
979 bool release;
980 bool freebuf = false;
981
982 trace_xfs_buf_rele(bp, _RET_IP_);
983
984 if (!pag) {
985 ASSERT(list_empty(&bp->b_lru));
986 if (atomic_dec_and_test(&bp->b_hold)) {
987 xfs_buf_ioacct_dec(bp);
988 xfs_buf_free(bp);
989 }
990 return;
991 }
992
993 ASSERT(atomic_read(&bp->b_hold) > 0);
994
995 /*
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1004 */
1005 spin_lock(&bp->b_lock);
1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007 if (!release) {
1008 /*
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1013 */
1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015 __xfs_buf_ioacct_dec(bp);
1016 goto out_unlock;
1017 }
1018
1019 /* the last reference has been dropped ... */
1020 __xfs_buf_ioacct_dec(bp);
1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 /*
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1025 * state flag
1026 */
1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 atomic_inc(&bp->b_hold);
1030 }
1031 spin_unlock(&pag->pag_buf_lock);
1032 } else {
1033 /*
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1038 */
1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 } else {
1042 ASSERT(list_empty(&bp->b_lru));
1043 }
1044
1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 xfs_buf_hash_params);
1048 spin_unlock(&pag->pag_buf_lock);
1049 xfs_perag_put(pag);
1050 freebuf = true;
1051 }
1052
1053out_unlock:
1054 spin_unlock(&bp->b_lock);
1055
1056 if (freebuf)
1057 xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 * Lock a buffer object, if it is not already locked.
1063 *
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074 struct xfs_buf *bp)
1075{
1076 int locked;
1077
1078 locked = down_trylock(&bp->b_sema) == 0;
1079 if (locked)
1080 trace_xfs_buf_trylock(bp, _RET_IP_);
1081 else
1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083 return locked;
1084}
1085
1086/*
1087 * Lock a buffer object.
1088 *
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097 struct xfs_buf *bp)
1098{
1099 trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102 xfs_log_force(bp->b_mount, 0);
1103 down(&bp->b_sema);
1104
1105 trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
1108void
1109xfs_buf_unlock(
1110 struct xfs_buf *bp)
1111{
1112 ASSERT(xfs_buf_islocked(bp));
1113
1114 up(&bp->b_sema);
1115 trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120 xfs_buf_t *bp)
1121{
1122 DECLARE_WAITQUEUE (wait, current);
1123
1124 if (atomic_read(&bp->b_pin_count) == 0)
1125 return;
1126
1127 add_wait_queue(&bp->b_waiters, &wait);
1128 for (;;) {
1129 set_current_state(TASK_UNINTERRUPTIBLE);
1130 if (atomic_read(&bp->b_pin_count) == 0)
1131 break;
1132 io_schedule();
1133 }
1134 remove_wait_queue(&bp->b_waiters, &wait);
1135 set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 * Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144 struct xfs_buf *bp)
1145{
1146 bool read = bp->b_flags & XBF_READ;
1147
1148 trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152 /*
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1155 */
1156 if (!bp->b_error && bp->b_io_error)
1157 xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159 /* Only validate buffers that were read without errors */
1160 if (read && !bp->b_error && bp->b_ops) {
1161 ASSERT(!bp->b_iodone);
1162 bp->b_ops->verify_read(bp);
1163 }
1164
1165 if (!bp->b_error)
1166 bp->b_flags |= XBF_DONE;
1167
1168 if (bp->b_iodone)
1169 (*(bp->b_iodone))(bp);
1170 else if (bp->b_flags & XBF_ASYNC)
1171 xfs_buf_relse(bp);
1172 else
1173 complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178 struct work_struct *work)
1179{
1180 struct xfs_buf *bp =
1181 container_of(work, xfs_buf_t, b_ioend_work);
1182
1183 xfs_buf_ioend(bp);
1184}
1185
1186static void
1187xfs_buf_ioend_async(
1188 struct xfs_buf *bp)
1189{
1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196 xfs_buf_t *bp,
1197 int error,
1198 xfs_failaddr_t failaddr)
1199{
1200 ASSERT(error <= 0 && error >= -1000);
1201 bp->b_error = error;
1202 trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207 struct xfs_buf *bp,
1208 const char *func)
1209{
1210 xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 -bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
1218 struct xfs_buf *bp)
1219{
1220 int error;
1221
1222 ASSERT(xfs_buf_islocked(bp));
1223
1224 bp->b_flags |= XBF_WRITE;
1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 XBF_WRITE_FAIL | XBF_DONE);
1227
1228 error = xfs_buf_submit(bp);
1229 if (error)
1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231 return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236 struct bio *bio)
1237{
1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1239
1240 /*
1241 * don't overwrite existing errors - otherwise we can lose errors on
1242 * buffers that require multiple bios to complete.
1243 */
1244 if (bio->bi_status) {
1245 int error = blk_status_to_errno(bio->bi_status);
1246
1247 cmpxchg(&bp->b_io_error, 0, error);
1248 }
1249
1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 xfs_buf_ioend_async(bp);
1255 bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260 struct xfs_buf *bp,
1261 int map,
1262 int *buf_offset,
1263 int *count,
1264 int op,
1265 int op_flags)
1266{
1267 int page_index;
1268 int total_nr_pages = bp->b_page_count;
1269 int nr_pages;
1270 struct bio *bio;
1271 sector_t sector = bp->b_maps[map].bm_bn;
1272 int size;
1273 int offset;
1274
1275 /* skip the pages in the buffer before the start offset */
1276 page_index = 0;
1277 offset = *buf_offset;
1278 while (offset >= PAGE_SIZE) {
1279 page_index++;
1280 offset -= PAGE_SIZE;
1281 }
1282
1283 /*
1284 * Limit the IO size to the length of the current vector, and update the
1285 * remaining IO count for the next time around.
1286 */
1287 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288 *count -= size;
1289 *buf_offset += size;
1290
1291next_chunk:
1292 atomic_inc(&bp->b_io_remaining);
1293 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294
1295 bio = bio_alloc(GFP_NOIO, nr_pages);
1296 bio_set_dev(bio, bp->b_target->bt_bdev);
1297 bio->bi_iter.bi_sector = sector;
1298 bio->bi_end_io = xfs_buf_bio_end_io;
1299 bio->bi_private = bp;
1300 bio_set_op_attrs(bio, op, op_flags);
1301
1302 for (; size && nr_pages; nr_pages--, page_index++) {
1303 int rbytes, nbytes = PAGE_SIZE - offset;
1304
1305 if (nbytes > size)
1306 nbytes = size;
1307
1308 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309 offset);
1310 if (rbytes < nbytes)
1311 break;
1312
1313 offset = 0;
1314 sector += BTOBB(nbytes);
1315 size -= nbytes;
1316 total_nr_pages--;
1317 }
1318
1319 if (likely(bio->bi_iter.bi_size)) {
1320 if (xfs_buf_is_vmapped(bp)) {
1321 flush_kernel_vmap_range(bp->b_addr,
1322 xfs_buf_vmap_len(bp));
1323 }
1324 submit_bio(bio);
1325 if (size)
1326 goto next_chunk;
1327 } else {
1328 /*
1329 * This is guaranteed not to be the last io reference count
1330 * because the caller (xfs_buf_submit) holds a count itself.
1331 */
1332 atomic_dec(&bp->b_io_remaining);
1333 xfs_buf_ioerror(bp, -EIO);
1334 bio_put(bio);
1335 }
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341 struct xfs_buf *bp)
1342{
1343 struct blk_plug plug;
1344 int op;
1345 int op_flags = 0;
1346 int offset;
1347 int size;
1348 int i;
1349
1350 /*
1351 * Make sure we capture only current IO errors rather than stale errors
1352 * left over from previous use of the buffer (e.g. failed readahead).
1353 */
1354 bp->b_error = 0;
1355
1356 if (bp->b_flags & XBF_WRITE) {
1357 op = REQ_OP_WRITE;
1358
1359 /*
1360 * Run the write verifier callback function if it exists. If
1361 * this function fails it will mark the buffer with an error and
1362 * the IO should not be dispatched.
1363 */
1364 if (bp->b_ops) {
1365 bp->b_ops->verify_write(bp);
1366 if (bp->b_error) {
1367 xfs_force_shutdown(bp->b_mount,
1368 SHUTDOWN_CORRUPT_INCORE);
1369 return;
1370 }
1371 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372 struct xfs_mount *mp = bp->b_mount;
1373
1374 /*
1375 * non-crc filesystems don't attach verifiers during
1376 * log recovery, so don't warn for such filesystems.
1377 */
1378 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379 xfs_warn(mp,
1380 "%s: no buf ops on daddr 0x%llx len %d",
1381 __func__, bp->b_bn, bp->b_length);
1382 xfs_hex_dump(bp->b_addr,
1383 XFS_CORRUPTION_DUMP_LEN);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
1418 */
1419static int
1420xfs_buf_iowait(
1421 struct xfs_buf *bp)
1422{
1423 ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425 trace_xfs_buf_iowait(bp, _RET_IP_);
1426 wait_for_completion(&bp->b_iowait);
1427 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429 return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440 struct xfs_buf *bp,
1441 bool wait)
1442{
1443 int error = 0;
1444
1445 trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449 /* on shutdown we stale and complete the buffer immediately */
1450 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451 xfs_buf_ioerror(bp, -EIO);
1452 bp->b_flags &= ~XBF_DONE;
1453 xfs_buf_stale(bp);
1454 xfs_buf_ioend(bp);
1455 return -EIO;
1456 }
1457
1458 /*
1459 * Grab a reference so the buffer does not go away underneath us. For
1460 * async buffers, I/O completion drops the callers reference, which
1461 * could occur before submission returns.
1462 */
1463 xfs_buf_hold(bp);
1464
1465 if (bp->b_flags & XBF_WRITE)
1466 xfs_buf_wait_unpin(bp);
1467
1468 /* clear the internal error state to avoid spurious errors */
1469 bp->b_io_error = 0;
1470
1471 /*
1472 * Set the count to 1 initially, this will stop an I/O completion
1473 * callout which happens before we have started all the I/O from calling
1474 * xfs_buf_ioend too early.
1475 */
1476 atomic_set(&bp->b_io_remaining, 1);
1477 if (bp->b_flags & XBF_ASYNC)
1478 xfs_buf_ioacct_inc(bp);
1479 _xfs_buf_ioapply(bp);
1480
1481 /*
1482 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483 * reference we took above. If we drop it to zero, run completion so
1484 * that we don't return to the caller with completion still pending.
1485 */
1486 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488 xfs_buf_ioend(bp);
1489 else
1490 xfs_buf_ioend_async(bp);
1491 }
1492
1493 if (wait)
1494 error = xfs_buf_iowait(bp);
1495
1496 /*
1497 * Release the hold that keeps the buffer referenced for the entire
1498 * I/O. Note that if the buffer is async, it is not safe to reference
1499 * after this release.
1500 */
1501 xfs_buf_rele(bp);
1502 return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507 struct xfs_buf *bp,
1508 size_t offset)
1509{
1510 struct page *page;
1511
1512 if (bp->b_addr)
1513 return bp->b_addr + offset;
1514
1515 offset += bp->b_offset;
1516 page = bp->b_pages[offset >> PAGE_SHIFT];
1517 return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
1520void
1521xfs_buf_zero(
1522 struct xfs_buf *bp,
1523 size_t boff,
1524 size_t bsize)
1525{
1526 size_t bend;
1527
1528 bend = boff + bsize;
1529 while (boff < bend) {
1530 struct page *page;
1531 int page_index, page_offset, csize;
1532
1533 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535 page = bp->b_pages[page_index];
1536 csize = min_t(size_t, PAGE_SIZE - page_offset,
1537 BBTOB(bp->b_length) - boff);
1538
1539 ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541 memset(page_address(page) + page_offset, 0, csize);
1542
1543 boff += csize;
1544 }
1545}
1546
1547/*
1548 * Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558 struct list_head *item,
1559 struct list_lru_one *lru,
1560 spinlock_t *lru_lock,
1561 void *arg)
1562
1563{
1564 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1565 struct list_head *dispose = arg;
1566
1567 if (atomic_read(&bp->b_hold) > 1) {
1568 /* need to wait, so skip it this pass */
1569 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570 return LRU_SKIP;
1571 }
1572 if (!spin_trylock(&bp->b_lock))
1573 return LRU_SKIP;
1574
1575 /*
1576 * clear the LRU reference count so the buffer doesn't get
1577 * ignored in xfs_buf_rele().
1578 */
1579 atomic_set(&bp->b_lru_ref, 0);
1580 bp->b_state |= XFS_BSTATE_DISPOSE;
1581 list_lru_isolate_move(lru, item, dispose);
1582 spin_unlock(&bp->b_lock);
1583 return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588 struct xfs_buftarg *btp)
1589{
1590 LIST_HEAD(dispose);
1591 int loop = 0;
1592
1593 /*
1594 * First wait on the buftarg I/O count for all in-flight buffers to be
1595 * released. This is critical as new buffers do not make the LRU until
1596 * they are released.
1597 *
1598 * Next, flush the buffer workqueue to ensure all completion processing
1599 * has finished. Just waiting on buffer locks is not sufficient for
1600 * async IO as the reference count held over IO is not released until
1601 * after the buffer lock is dropped. Hence we need to ensure here that
1602 * all reference counts have been dropped before we start walking the
1603 * LRU list.
1604 */
1605 while (percpu_counter_sum(&btp->bt_io_count))
1606 delay(100);
1607 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609 /* loop until there is nothing left on the lru list. */
1610 while (list_lru_count(&btp->bt_lru)) {
1611 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612 &dispose, LONG_MAX);
1613
1614 while (!list_empty(&dispose)) {
1615 struct xfs_buf *bp;
1616 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617 list_del_init(&bp->b_lru);
1618 if (bp->b_flags & XBF_WRITE_FAIL) {
1619 xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621 (long long)bp->b_bn);
1622 xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624 }
1625 xfs_buf_rele(bp);
1626 }
1627 if (loop++ != 0)
1628 delay(100);
1629 }
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634 struct list_head *item,
1635 struct list_lru_one *lru,
1636 spinlock_t *lru_lock,
1637 void *arg)
1638{
1639 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1640 struct list_head *dispose = arg;
1641
1642 /*
1643 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644 * If we fail to get the lock, just skip it.
1645 */
1646 if (!spin_trylock(&bp->b_lock))
1647 return LRU_SKIP;
1648 /*
1649 * Decrement the b_lru_ref count unless the value is already
1650 * zero. If the value is already zero, we need to reclaim the
1651 * buffer, otherwise it gets another trip through the LRU.
1652 */
1653 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654 spin_unlock(&bp->b_lock);
1655 return LRU_ROTATE;
1656 }
1657
1658 bp->b_state |= XFS_BSTATE_DISPOSE;
1659 list_lru_isolate_move(lru, item, dispose);
1660 spin_unlock(&bp->b_lock);
1661 return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666 struct shrinker *shrink,
1667 struct shrink_control *sc)
1668{
1669 struct xfs_buftarg *btp = container_of(shrink,
1670 struct xfs_buftarg, bt_shrinker);
1671 LIST_HEAD(dispose);
1672 unsigned long freed;
1673
1674 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675 xfs_buftarg_isolate, &dispose);
1676
1677 while (!list_empty(&dispose)) {
1678 struct xfs_buf *bp;
1679 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680 list_del_init(&bp->b_lru);
1681 xfs_buf_rele(bp);
1682 }
1683
1684 return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689 struct shrinker *shrink,
1690 struct shrink_control *sc)
1691{
1692 struct xfs_buftarg *btp = container_of(shrink,
1693 struct xfs_buftarg, bt_shrinker);
1694 return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
1699 struct xfs_buftarg *btp)
1700{
1701 unregister_shrinker(&btp->bt_shrinker);
1702 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703 percpu_counter_destroy(&btp->bt_io_count);
1704 list_lru_destroy(&btp->bt_lru);
1705
1706 xfs_blkdev_issue_flush(btp);
1707
1708 kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713 xfs_buftarg_t *btp,
1714 unsigned int sectorsize)
1715{
1716 /* Set up metadata sector size info */
1717 btp->bt_meta_sectorsize = sectorsize;
1718 btp->bt_meta_sectormask = sectorsize - 1;
1719
1720 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721 xfs_warn(btp->bt_mount,
1722 "Cannot set_blocksize to %u on device %pg",
1723 sectorsize, btp->bt_bdev);
1724 return -EINVAL;
1725 }
1726
1727 /* Set up device logical sector size mask */
1728 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731 return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage. Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741 xfs_buftarg_t *btp,
1742 struct block_device *bdev)
1743{
1744 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749 struct xfs_mount *mp,
1750 struct block_device *bdev,
1751 struct dax_device *dax_dev)
1752{
1753 xfs_buftarg_t *btp;
1754
1755 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757 btp->bt_mount = mp;
1758 btp->bt_dev = bdev->bd_dev;
1759 btp->bt_bdev = bdev;
1760 btp->bt_daxdev = dax_dev;
1761
1762 if (xfs_setsize_buftarg_early(btp, bdev))
1763 goto error_free;
1764
1765 if (list_lru_init(&btp->bt_lru))
1766 goto error_free;
1767
1768 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769 goto error_lru;
1770
1771 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775 if (register_shrinker(&btp->bt_shrinker))
1776 goto error_pcpu;
1777 return btp;
1778
1779error_pcpu:
1780 percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782 list_lru_destroy(&btp->bt_lru);
1783error_free:
1784 kmem_free(btp);
1785 return NULL;
1786}
1787
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
1794void
1795xfs_buf_delwri_cancel(
1796 struct list_head *list)
1797{
1798 struct xfs_buf *bp;
1799
1800 while (!list_empty(list)) {
1801 bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803 xfs_buf_lock(bp);
1804 bp->b_flags &= ~_XBF_DELWRI_Q;
1805 list_del_init(&bp->b_list);
1806 xfs_buf_relse(bp);
1807 }
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been. Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization. It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823 struct xfs_buf *bp,
1824 struct list_head *list)
1825{
1826 ASSERT(xfs_buf_islocked(bp));
1827 ASSERT(!(bp->b_flags & XBF_READ));
1828
1829 /*
1830 * If the buffer is already marked delwri it already is queued up
1831 * by someone else for imediate writeout. Just ignore it in that
1832 * case.
1833 */
1834 if (bp->b_flags & _XBF_DELWRI_Q) {
1835 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836 return false;
1837 }
1838
1839 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840
1841 /*
1842 * If a buffer gets written out synchronously or marked stale while it
1843 * is on a delwri list we lazily remove it. To do this, the other party
1844 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845 * It remains referenced and on the list. In a rare corner case it
1846 * might get readded to a delwri list after the synchronous writeout, in
1847 * which case we need just need to re-add the flag here.
1848 */
1849 bp->b_flags |= _XBF_DELWRI_Q;
1850 if (list_empty(&bp->b_list)) {
1851 atomic_inc(&bp->b_hold);
1852 list_add_tail(&bp->b_list, list);
1853 }
1854
1855 return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865 void *priv,
1866 struct list_head *a,
1867 struct list_head *b)
1868{
1869 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1870 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1871 xfs_daddr_t diff;
1872
1873 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874 if (diff < 0)
1875 return -1;
1876 if (diff > 0)
1877 return 1;
1878 return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890 struct list_head *buffer_list,
1891 struct list_head *wait_list)
1892{
1893 struct xfs_buf *bp, *n;
1894 int pinned = 0;
1895 struct blk_plug plug;
1896
1897 list_sort(NULL, buffer_list, xfs_buf_cmp);
1898
1899 blk_start_plug(&plug);
1900 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901 if (!wait_list) {
1902 if (xfs_buf_ispinned(bp)) {
1903 pinned++;
1904 continue;
1905 }
1906 if (!xfs_buf_trylock(bp))
1907 continue;
1908 } else {
1909 xfs_buf_lock(bp);
1910 }
1911
1912 /*
1913 * Someone else might have written the buffer synchronously or
1914 * marked it stale in the meantime. In that case only the
1915 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916 * reference and remove it from the list here.
1917 */
1918 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919 list_del_init(&bp->b_list);
1920 xfs_buf_relse(bp);
1921 continue;
1922 }
1923
1924 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925
1926 /*
1927 * If we have a wait list, each buffer (and associated delwri
1928 * queue reference) transfers to it and is submitted
1929 * synchronously. Otherwise, drop the buffer from the delwri
1930 * queue and submit async.
1931 */
1932 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933 bp->b_flags |= XBF_WRITE;
1934 if (wait_list) {
1935 bp->b_flags &= ~XBF_ASYNC;
1936 list_move_tail(&bp->b_list, wait_list);
1937 } else {
1938 bp->b_flags |= XBF_ASYNC;
1939 list_del_init(&bp->b_list);
1940 }
1941 __xfs_buf_submit(bp, false);
1942 }
1943 blk_finish_plug(&plug);
1944
1945 return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers. This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966 struct list_head *buffer_list)
1967{
1968 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981 struct list_head *buffer_list)
1982{
1983 LIST_HEAD (wait_list);
1984 int error = 0, error2;
1985 struct xfs_buf *bp;
1986
1987 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988
1989 /* Wait for IO to complete. */
1990 while (!list_empty(&wait_list)) {
1991 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992
1993 list_del_init(&bp->b_list);
1994
1995 /*
1996 * Wait on the locked buffer, check for errors and unlock and
1997 * release the delwri queue reference.
1998 */
1999 error2 = xfs_buf_iowait(bp);
2000 xfs_buf_relse(bp);
2001 if (!error)
2002 error = error2;
2003 }
2004
2005 return error;
2006}
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025 struct xfs_buf *bp,
2026 struct list_head *buffer_list)
2027{
2028 LIST_HEAD (submit_list);
2029 int error;
2030
2031 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035 /*
2036 * Isolate the buffer to a new local list so we can submit it for I/O
2037 * independently from the rest of the original list.
2038 */
2039 xfs_buf_lock(bp);
2040 list_move(&bp->b_list, &submit_list);
2041 xfs_buf_unlock(bp);
2042
2043 /*
2044 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045 * the buffer on the wait list with the original reference. Rather than
2046 * bounce the buffer from a local wait list back to the original list
2047 * after I/O completion, reuse the original list as the wait list.
2048 */
2049 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051 /*
2052 * The buffer is now locked, under I/O and wait listed on the original
2053 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054 * return with the buffer unlocked and on the original queue.
2055 */
2056 error = xfs_buf_iowait(bp);
2057 bp->b_flags |= _XBF_DELWRI_Q;
2058 xfs_buf_unlock(bp);
2059
2060 return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067 KM_ZONE_HWALIGN, NULL);
2068 if (!xfs_buf_zone)
2069 goto out;
2070
2071 return 0;
2072
2073 out:
2074 return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
2080 kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085 /*
2086 * Set the lru reference count to 0 based on the error injection tag.
2087 * This allows userspace to disrupt buffer caching for debug/testing
2088 * purposes.
2089 */
2090 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091 lru_ref = 0;
2092
2093 atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103 struct xfs_buf *bp,
2104 __be32 dmagic)
2105{
2106 struct xfs_mount *mp = bp->b_mount;
2107 int idx;
2108
2109 idx = xfs_sb_version_hascrc(&mp->m_sb);
2110 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111 return false;
2112 return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121 struct xfs_buf *bp,
2122 __be16 dmagic)
2123{
2124 struct xfs_mount *mp = bp->b_mount;
2125 int idx;
2126
2127 idx = xfs_sb_version_hascrc(&mp->m_sb);
2128 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129 return false;
2130 return dmagic == bp->b_ops->magic16[idx];
2131}