Loading...
1#include <linux/mm.h>
2#include <linux/vmacache.h>
3#include <linux/hugetlb.h>
4#include <linux/huge_mm.h>
5#include <linux/mount.h>
6#include <linux/seq_file.h>
7#include <linux/highmem.h>
8#include <linux/ptrace.h>
9#include <linux/slab.h>
10#include <linux/pagemap.h>
11#include <linux/mempolicy.h>
12#include <linux/rmap.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mmu_notifier.h>
16#include <linux/page_idle.h>
17#include <linux/shmem_fs.h>
18
19#include <asm/elf.h>
20#include <linux/uaccess.h>
21#include <asm/tlbflush.h>
22#include "internal.h"
23
24void task_mem(struct seq_file *m, struct mm_struct *mm)
25{
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84}
85
86unsigned long task_vsize(struct mm_struct *mm)
87{
88 return PAGE_SIZE * mm->total_vm;
89}
90
91unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94{
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102}
103
104#ifdef CONFIG_NUMA
105/*
106 * Save get_task_policy() for show_numa_map().
107 */
108static void hold_task_mempolicy(struct proc_maps_private *priv)
109{
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116}
117static void release_task_mempolicy(struct proc_maps_private *priv)
118{
119 mpol_put(priv->task_mempolicy);
120}
121#else
122static void hold_task_mempolicy(struct proc_maps_private *priv)
123{
124}
125static void release_task_mempolicy(struct proc_maps_private *priv)
126{
127}
128#endif
129
130static void vma_stop(struct proc_maps_private *priv)
131{
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137}
138
139static struct vm_area_struct *
140m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141{
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145}
146
147static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148{
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
151}
152
153static void *m_start(struct seq_file *m, loff_t *ppos)
154{
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200}
201
202static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203{
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212}
213
214static void m_stop(struct seq_file *m, void *v)
215{
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224}
225
226static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228{
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244}
245
246static int proc_map_release(struct inode *inode, struct file *file)
247{
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255}
256
257static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259{
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262}
263
264/*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
268static int is_stack(struct proc_maps_private *priv,
269 struct vm_area_struct *vma)
270{
271 /*
272 * We make no effort to guess what a given thread considers to be
273 * its "stack". It's not even well-defined for programs written
274 * languages like Go.
275 */
276 return vma->vm_start <= vma->vm_mm->start_stack &&
277 vma->vm_end >= vma->vm_mm->start_stack;
278}
279
280static void
281show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
282{
283 struct mm_struct *mm = vma->vm_mm;
284 struct file *file = vma->vm_file;
285 struct proc_maps_private *priv = m->private;
286 vm_flags_t flags = vma->vm_flags;
287 unsigned long ino = 0;
288 unsigned long long pgoff = 0;
289 unsigned long start, end;
290 dev_t dev = 0;
291 const char *name = NULL;
292
293 if (file) {
294 struct inode *inode = file_inode(vma->vm_file);
295 dev = inode->i_sb->s_dev;
296 ino = inode->i_ino;
297 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
298 }
299
300 /* We don't show the stack guard page in /proc/maps */
301 start = vma->vm_start;
302 if (stack_guard_page_start(vma, start))
303 start += PAGE_SIZE;
304 end = vma->vm_end;
305 if (stack_guard_page_end(vma, end))
306 end -= PAGE_SIZE;
307
308 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
309 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
310 start,
311 end,
312 flags & VM_READ ? 'r' : '-',
313 flags & VM_WRITE ? 'w' : '-',
314 flags & VM_EXEC ? 'x' : '-',
315 flags & VM_MAYSHARE ? 's' : 'p',
316 pgoff,
317 MAJOR(dev), MINOR(dev), ino);
318
319 /*
320 * Print the dentry name for named mappings, and a
321 * special [heap] marker for the heap:
322 */
323 if (file) {
324 seq_pad(m, ' ');
325 seq_file_path(m, file, "\n");
326 goto done;
327 }
328
329 if (vma->vm_ops && vma->vm_ops->name) {
330 name = vma->vm_ops->name(vma);
331 if (name)
332 goto done;
333 }
334
335 name = arch_vma_name(vma);
336 if (!name) {
337 if (!mm) {
338 name = "[vdso]";
339 goto done;
340 }
341
342 if (vma->vm_start <= mm->brk &&
343 vma->vm_end >= mm->start_brk) {
344 name = "[heap]";
345 goto done;
346 }
347
348 if (is_stack(priv, vma))
349 name = "[stack]";
350 }
351
352done:
353 if (name) {
354 seq_pad(m, ' ');
355 seq_puts(m, name);
356 }
357 seq_putc(m, '\n');
358}
359
360static int show_map(struct seq_file *m, void *v, int is_pid)
361{
362 show_map_vma(m, v, is_pid);
363 m_cache_vma(m, v);
364 return 0;
365}
366
367static int show_pid_map(struct seq_file *m, void *v)
368{
369 return show_map(m, v, 1);
370}
371
372static int show_tid_map(struct seq_file *m, void *v)
373{
374 return show_map(m, v, 0);
375}
376
377static const struct seq_operations proc_pid_maps_op = {
378 .start = m_start,
379 .next = m_next,
380 .stop = m_stop,
381 .show = show_pid_map
382};
383
384static const struct seq_operations proc_tid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_tid_map
389};
390
391static int pid_maps_open(struct inode *inode, struct file *file)
392{
393 return do_maps_open(inode, file, &proc_pid_maps_op);
394}
395
396static int tid_maps_open(struct inode *inode, struct file *file)
397{
398 return do_maps_open(inode, file, &proc_tid_maps_op);
399}
400
401const struct file_operations proc_pid_maps_operations = {
402 .open = pid_maps_open,
403 .read = seq_read,
404 .llseek = seq_lseek,
405 .release = proc_map_release,
406};
407
408const struct file_operations proc_tid_maps_operations = {
409 .open = tid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413};
414
415/*
416 * Proportional Set Size(PSS): my share of RSS.
417 *
418 * PSS of a process is the count of pages it has in memory, where each
419 * page is divided by the number of processes sharing it. So if a
420 * process has 1000 pages all to itself, and 1000 shared with one other
421 * process, its PSS will be 1500.
422 *
423 * To keep (accumulated) division errors low, we adopt a 64bit
424 * fixed-point pss counter to minimize division errors. So (pss >>
425 * PSS_SHIFT) would be the real byte count.
426 *
427 * A shift of 12 before division means (assuming 4K page size):
428 * - 1M 3-user-pages add up to 8KB errors;
429 * - supports mapcount up to 2^24, or 16M;
430 * - supports PSS up to 2^52 bytes, or 4PB.
431 */
432#define PSS_SHIFT 12
433
434#ifdef CONFIG_PROC_PAGE_MONITOR
435struct mem_size_stats {
436 unsigned long resident;
437 unsigned long shared_clean;
438 unsigned long shared_dirty;
439 unsigned long private_clean;
440 unsigned long private_dirty;
441 unsigned long referenced;
442 unsigned long anonymous;
443 unsigned long anonymous_thp;
444 unsigned long shmem_thp;
445 unsigned long swap;
446 unsigned long shared_hugetlb;
447 unsigned long private_hugetlb;
448 u64 pss;
449 u64 swap_pss;
450 bool check_shmem_swap;
451};
452
453static void smaps_account(struct mem_size_stats *mss, struct page *page,
454 bool compound, bool young, bool dirty)
455{
456 int i, nr = compound ? 1 << compound_order(page) : 1;
457 unsigned long size = nr * PAGE_SIZE;
458
459 if (PageAnon(page))
460 mss->anonymous += size;
461
462 mss->resident += size;
463 /* Accumulate the size in pages that have been accessed. */
464 if (young || page_is_young(page) || PageReferenced(page))
465 mss->referenced += size;
466
467 /*
468 * page_count(page) == 1 guarantees the page is mapped exactly once.
469 * If any subpage of the compound page mapped with PTE it would elevate
470 * page_count().
471 */
472 if (page_count(page) == 1) {
473 if (dirty || PageDirty(page))
474 mss->private_dirty += size;
475 else
476 mss->private_clean += size;
477 mss->pss += (u64)size << PSS_SHIFT;
478 return;
479 }
480
481 for (i = 0; i < nr; i++, page++) {
482 int mapcount = page_mapcount(page);
483
484 if (mapcount >= 2) {
485 if (dirty || PageDirty(page))
486 mss->shared_dirty += PAGE_SIZE;
487 else
488 mss->shared_clean += PAGE_SIZE;
489 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
490 } else {
491 if (dirty || PageDirty(page))
492 mss->private_dirty += PAGE_SIZE;
493 else
494 mss->private_clean += PAGE_SIZE;
495 mss->pss += PAGE_SIZE << PSS_SHIFT;
496 }
497 }
498}
499
500#ifdef CONFIG_SHMEM
501static int smaps_pte_hole(unsigned long addr, unsigned long end,
502 struct mm_walk *walk)
503{
504 struct mem_size_stats *mss = walk->private;
505
506 mss->swap += shmem_partial_swap_usage(
507 walk->vma->vm_file->f_mapping, addr, end);
508
509 return 0;
510}
511#endif
512
513static void smaps_pte_entry(pte_t *pte, unsigned long addr,
514 struct mm_walk *walk)
515{
516 struct mem_size_stats *mss = walk->private;
517 struct vm_area_struct *vma = walk->vma;
518 struct page *page = NULL;
519
520 if (pte_present(*pte)) {
521 page = vm_normal_page(vma, addr, *pte);
522 } else if (is_swap_pte(*pte)) {
523 swp_entry_t swpent = pte_to_swp_entry(*pte);
524
525 if (!non_swap_entry(swpent)) {
526 int mapcount;
527
528 mss->swap += PAGE_SIZE;
529 mapcount = swp_swapcount(swpent);
530 if (mapcount >= 2) {
531 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
532
533 do_div(pss_delta, mapcount);
534 mss->swap_pss += pss_delta;
535 } else {
536 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
537 }
538 } else if (is_migration_entry(swpent))
539 page = migration_entry_to_page(swpent);
540 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
541 && pte_none(*pte))) {
542 page = find_get_entry(vma->vm_file->f_mapping,
543 linear_page_index(vma, addr));
544 if (!page)
545 return;
546
547 if (radix_tree_exceptional_entry(page))
548 mss->swap += PAGE_SIZE;
549 else
550 put_page(page);
551
552 return;
553 }
554
555 if (!page)
556 return;
557
558 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
559}
560
561#ifdef CONFIG_TRANSPARENT_HUGEPAGE
562static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
563 struct mm_walk *walk)
564{
565 struct mem_size_stats *mss = walk->private;
566 struct vm_area_struct *vma = walk->vma;
567 struct page *page;
568
569 /* FOLL_DUMP will return -EFAULT on huge zero page */
570 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
571 if (IS_ERR_OR_NULL(page))
572 return;
573 if (PageAnon(page))
574 mss->anonymous_thp += HPAGE_PMD_SIZE;
575 else if (PageSwapBacked(page))
576 mss->shmem_thp += HPAGE_PMD_SIZE;
577 else if (is_zone_device_page(page))
578 /* pass */;
579 else
580 VM_BUG_ON_PAGE(1, page);
581 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
582}
583#else
584static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
585 struct mm_walk *walk)
586{
587}
588#endif
589
590static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
591 struct mm_walk *walk)
592{
593 struct vm_area_struct *vma = walk->vma;
594 pte_t *pte;
595 spinlock_t *ptl;
596
597 ptl = pmd_trans_huge_lock(pmd, vma);
598 if (ptl) {
599 smaps_pmd_entry(pmd, addr, walk);
600 spin_unlock(ptl);
601 return 0;
602 }
603
604 if (pmd_trans_unstable(pmd))
605 return 0;
606 /*
607 * The mmap_sem held all the way back in m_start() is what
608 * keeps khugepaged out of here and from collapsing things
609 * in here.
610 */
611 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
612 for (; addr != end; pte++, addr += PAGE_SIZE)
613 smaps_pte_entry(pte, addr, walk);
614 pte_unmap_unlock(pte - 1, ptl);
615 cond_resched();
616 return 0;
617}
618
619static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
620{
621 /*
622 * Don't forget to update Documentation/ on changes.
623 */
624 static const char mnemonics[BITS_PER_LONG][2] = {
625 /*
626 * In case if we meet a flag we don't know about.
627 */
628 [0 ... (BITS_PER_LONG-1)] = "??",
629
630 [ilog2(VM_READ)] = "rd",
631 [ilog2(VM_WRITE)] = "wr",
632 [ilog2(VM_EXEC)] = "ex",
633 [ilog2(VM_SHARED)] = "sh",
634 [ilog2(VM_MAYREAD)] = "mr",
635 [ilog2(VM_MAYWRITE)] = "mw",
636 [ilog2(VM_MAYEXEC)] = "me",
637 [ilog2(VM_MAYSHARE)] = "ms",
638 [ilog2(VM_GROWSDOWN)] = "gd",
639 [ilog2(VM_PFNMAP)] = "pf",
640 [ilog2(VM_DENYWRITE)] = "dw",
641#ifdef CONFIG_X86_INTEL_MPX
642 [ilog2(VM_MPX)] = "mp",
643#endif
644 [ilog2(VM_LOCKED)] = "lo",
645 [ilog2(VM_IO)] = "io",
646 [ilog2(VM_SEQ_READ)] = "sr",
647 [ilog2(VM_RAND_READ)] = "rr",
648 [ilog2(VM_DONTCOPY)] = "dc",
649 [ilog2(VM_DONTEXPAND)] = "de",
650 [ilog2(VM_ACCOUNT)] = "ac",
651 [ilog2(VM_NORESERVE)] = "nr",
652 [ilog2(VM_HUGETLB)] = "ht",
653 [ilog2(VM_ARCH_1)] = "ar",
654 [ilog2(VM_DONTDUMP)] = "dd",
655#ifdef CONFIG_MEM_SOFT_DIRTY
656 [ilog2(VM_SOFTDIRTY)] = "sd",
657#endif
658 [ilog2(VM_MIXEDMAP)] = "mm",
659 [ilog2(VM_HUGEPAGE)] = "hg",
660 [ilog2(VM_NOHUGEPAGE)] = "nh",
661 [ilog2(VM_MERGEABLE)] = "mg",
662 [ilog2(VM_UFFD_MISSING)]= "um",
663 [ilog2(VM_UFFD_WP)] = "uw",
664#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
665 /* These come out via ProtectionKey: */
666 [ilog2(VM_PKEY_BIT0)] = "",
667 [ilog2(VM_PKEY_BIT1)] = "",
668 [ilog2(VM_PKEY_BIT2)] = "",
669 [ilog2(VM_PKEY_BIT3)] = "",
670#endif
671 };
672 size_t i;
673
674 seq_puts(m, "VmFlags: ");
675 for (i = 0; i < BITS_PER_LONG; i++) {
676 if (!mnemonics[i][0])
677 continue;
678 if (vma->vm_flags & (1UL << i)) {
679 seq_printf(m, "%c%c ",
680 mnemonics[i][0], mnemonics[i][1]);
681 }
682 }
683 seq_putc(m, '\n');
684}
685
686#ifdef CONFIG_HUGETLB_PAGE
687static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688 unsigned long addr, unsigned long end,
689 struct mm_walk *walk)
690{
691 struct mem_size_stats *mss = walk->private;
692 struct vm_area_struct *vma = walk->vma;
693 struct page *page = NULL;
694
695 if (pte_present(*pte)) {
696 page = vm_normal_page(vma, addr, *pte);
697 } else if (is_swap_pte(*pte)) {
698 swp_entry_t swpent = pte_to_swp_entry(*pte);
699
700 if (is_migration_entry(swpent))
701 page = migration_entry_to_page(swpent);
702 }
703 if (page) {
704 int mapcount = page_mapcount(page);
705
706 if (mapcount >= 2)
707 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
708 else
709 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
710 }
711 return 0;
712}
713#endif /* HUGETLB_PAGE */
714
715void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
716{
717}
718
719static int show_smap(struct seq_file *m, void *v, int is_pid)
720{
721 struct vm_area_struct *vma = v;
722 struct mem_size_stats mss;
723 struct mm_walk smaps_walk = {
724 .pmd_entry = smaps_pte_range,
725#ifdef CONFIG_HUGETLB_PAGE
726 .hugetlb_entry = smaps_hugetlb_range,
727#endif
728 .mm = vma->vm_mm,
729 .private = &mss,
730 };
731
732 memset(&mss, 0, sizeof mss);
733
734#ifdef CONFIG_SHMEM
735 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
736 /*
737 * For shared or readonly shmem mappings we know that all
738 * swapped out pages belong to the shmem object, and we can
739 * obtain the swap value much more efficiently. For private
740 * writable mappings, we might have COW pages that are
741 * not affected by the parent swapped out pages of the shmem
742 * object, so we have to distinguish them during the page walk.
743 * Unless we know that the shmem object (or the part mapped by
744 * our VMA) has no swapped out pages at all.
745 */
746 unsigned long shmem_swapped = shmem_swap_usage(vma);
747
748 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
749 !(vma->vm_flags & VM_WRITE)) {
750 mss.swap = shmem_swapped;
751 } else {
752 mss.check_shmem_swap = true;
753 smaps_walk.pte_hole = smaps_pte_hole;
754 }
755 }
756#endif
757
758 /* mmap_sem is held in m_start */
759 walk_page_vma(vma, &smaps_walk);
760
761 show_map_vma(m, vma, is_pid);
762
763 seq_printf(m,
764 "Size: %8lu kB\n"
765 "Rss: %8lu kB\n"
766 "Pss: %8lu kB\n"
767 "Shared_Clean: %8lu kB\n"
768 "Shared_Dirty: %8lu kB\n"
769 "Private_Clean: %8lu kB\n"
770 "Private_Dirty: %8lu kB\n"
771 "Referenced: %8lu kB\n"
772 "Anonymous: %8lu kB\n"
773 "AnonHugePages: %8lu kB\n"
774 "ShmemPmdMapped: %8lu kB\n"
775 "Shared_Hugetlb: %8lu kB\n"
776 "Private_Hugetlb: %7lu kB\n"
777 "Swap: %8lu kB\n"
778 "SwapPss: %8lu kB\n"
779 "KernelPageSize: %8lu kB\n"
780 "MMUPageSize: %8lu kB\n"
781 "Locked: %8lu kB\n",
782 (vma->vm_end - vma->vm_start) >> 10,
783 mss.resident >> 10,
784 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
785 mss.shared_clean >> 10,
786 mss.shared_dirty >> 10,
787 mss.private_clean >> 10,
788 mss.private_dirty >> 10,
789 mss.referenced >> 10,
790 mss.anonymous >> 10,
791 mss.anonymous_thp >> 10,
792 mss.shmem_thp >> 10,
793 mss.shared_hugetlb >> 10,
794 mss.private_hugetlb >> 10,
795 mss.swap >> 10,
796 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
797 vma_kernel_pagesize(vma) >> 10,
798 vma_mmu_pagesize(vma) >> 10,
799 (vma->vm_flags & VM_LOCKED) ?
800 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
801
802 arch_show_smap(m, vma);
803 show_smap_vma_flags(m, vma);
804 m_cache_vma(m, vma);
805 return 0;
806}
807
808static int show_pid_smap(struct seq_file *m, void *v)
809{
810 return show_smap(m, v, 1);
811}
812
813static int show_tid_smap(struct seq_file *m, void *v)
814{
815 return show_smap(m, v, 0);
816}
817
818static const struct seq_operations proc_pid_smaps_op = {
819 .start = m_start,
820 .next = m_next,
821 .stop = m_stop,
822 .show = show_pid_smap
823};
824
825static const struct seq_operations proc_tid_smaps_op = {
826 .start = m_start,
827 .next = m_next,
828 .stop = m_stop,
829 .show = show_tid_smap
830};
831
832static int pid_smaps_open(struct inode *inode, struct file *file)
833{
834 return do_maps_open(inode, file, &proc_pid_smaps_op);
835}
836
837static int tid_smaps_open(struct inode *inode, struct file *file)
838{
839 return do_maps_open(inode, file, &proc_tid_smaps_op);
840}
841
842const struct file_operations proc_pid_smaps_operations = {
843 .open = pid_smaps_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = proc_map_release,
847};
848
849const struct file_operations proc_tid_smaps_operations = {
850 .open = tid_smaps_open,
851 .read = seq_read,
852 .llseek = seq_lseek,
853 .release = proc_map_release,
854};
855
856enum clear_refs_types {
857 CLEAR_REFS_ALL = 1,
858 CLEAR_REFS_ANON,
859 CLEAR_REFS_MAPPED,
860 CLEAR_REFS_SOFT_DIRTY,
861 CLEAR_REFS_MM_HIWATER_RSS,
862 CLEAR_REFS_LAST,
863};
864
865struct clear_refs_private {
866 enum clear_refs_types type;
867};
868
869#ifdef CONFIG_MEM_SOFT_DIRTY
870static inline void clear_soft_dirty(struct vm_area_struct *vma,
871 unsigned long addr, pte_t *pte)
872{
873 /*
874 * The soft-dirty tracker uses #PF-s to catch writes
875 * to pages, so write-protect the pte as well. See the
876 * Documentation/vm/soft-dirty.txt for full description
877 * of how soft-dirty works.
878 */
879 pte_t ptent = *pte;
880
881 if (pte_present(ptent)) {
882 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
883 ptent = pte_wrprotect(ptent);
884 ptent = pte_clear_soft_dirty(ptent);
885 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
886 } else if (is_swap_pte(ptent)) {
887 ptent = pte_swp_clear_soft_dirty(ptent);
888 set_pte_at(vma->vm_mm, addr, pte, ptent);
889 }
890}
891#else
892static inline void clear_soft_dirty(struct vm_area_struct *vma,
893 unsigned long addr, pte_t *pte)
894{
895}
896#endif
897
898#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
899static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
900 unsigned long addr, pmd_t *pmdp)
901{
902 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
903
904 pmd = pmd_wrprotect(pmd);
905 pmd = pmd_clear_soft_dirty(pmd);
906
907 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
908}
909#else
910static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
911 unsigned long addr, pmd_t *pmdp)
912{
913}
914#endif
915
916static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
917 unsigned long end, struct mm_walk *walk)
918{
919 struct clear_refs_private *cp = walk->private;
920 struct vm_area_struct *vma = walk->vma;
921 pte_t *pte, ptent;
922 spinlock_t *ptl;
923 struct page *page;
924
925 ptl = pmd_trans_huge_lock(pmd, vma);
926 if (ptl) {
927 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
928 clear_soft_dirty_pmd(vma, addr, pmd);
929 goto out;
930 }
931
932 page = pmd_page(*pmd);
933
934 /* Clear accessed and referenced bits. */
935 pmdp_test_and_clear_young(vma, addr, pmd);
936 test_and_clear_page_young(page);
937 ClearPageReferenced(page);
938out:
939 spin_unlock(ptl);
940 return 0;
941 }
942
943 if (pmd_trans_unstable(pmd))
944 return 0;
945
946 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
947 for (; addr != end; pte++, addr += PAGE_SIZE) {
948 ptent = *pte;
949
950 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
951 clear_soft_dirty(vma, addr, pte);
952 continue;
953 }
954
955 if (!pte_present(ptent))
956 continue;
957
958 page = vm_normal_page(vma, addr, ptent);
959 if (!page)
960 continue;
961
962 /* Clear accessed and referenced bits. */
963 ptep_test_and_clear_young(vma, addr, pte);
964 test_and_clear_page_young(page);
965 ClearPageReferenced(page);
966 }
967 pte_unmap_unlock(pte - 1, ptl);
968 cond_resched();
969 return 0;
970}
971
972static int clear_refs_test_walk(unsigned long start, unsigned long end,
973 struct mm_walk *walk)
974{
975 struct clear_refs_private *cp = walk->private;
976 struct vm_area_struct *vma = walk->vma;
977
978 if (vma->vm_flags & VM_PFNMAP)
979 return 1;
980
981 /*
982 * Writing 1 to /proc/pid/clear_refs affects all pages.
983 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
984 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
985 * Writing 4 to /proc/pid/clear_refs affects all pages.
986 */
987 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
988 return 1;
989 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
990 return 1;
991 return 0;
992}
993
994static ssize_t clear_refs_write(struct file *file, const char __user *buf,
995 size_t count, loff_t *ppos)
996{
997 struct task_struct *task;
998 char buffer[PROC_NUMBUF];
999 struct mm_struct *mm;
1000 struct vm_area_struct *vma;
1001 enum clear_refs_types type;
1002 int itype;
1003 int rv;
1004
1005 memset(buffer, 0, sizeof(buffer));
1006 if (count > sizeof(buffer) - 1)
1007 count = sizeof(buffer) - 1;
1008 if (copy_from_user(buffer, buf, count))
1009 return -EFAULT;
1010 rv = kstrtoint(strstrip(buffer), 10, &itype);
1011 if (rv < 0)
1012 return rv;
1013 type = (enum clear_refs_types)itype;
1014 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1015 return -EINVAL;
1016
1017 task = get_proc_task(file_inode(file));
1018 if (!task)
1019 return -ESRCH;
1020 mm = get_task_mm(task);
1021 if (mm) {
1022 struct clear_refs_private cp = {
1023 .type = type,
1024 };
1025 struct mm_walk clear_refs_walk = {
1026 .pmd_entry = clear_refs_pte_range,
1027 .test_walk = clear_refs_test_walk,
1028 .mm = mm,
1029 .private = &cp,
1030 };
1031
1032 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1033 if (down_write_killable(&mm->mmap_sem)) {
1034 count = -EINTR;
1035 goto out_mm;
1036 }
1037
1038 /*
1039 * Writing 5 to /proc/pid/clear_refs resets the peak
1040 * resident set size to this mm's current rss value.
1041 */
1042 reset_mm_hiwater_rss(mm);
1043 up_write(&mm->mmap_sem);
1044 goto out_mm;
1045 }
1046
1047 down_read(&mm->mmap_sem);
1048 if (type == CLEAR_REFS_SOFT_DIRTY) {
1049 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1050 if (!(vma->vm_flags & VM_SOFTDIRTY))
1051 continue;
1052 up_read(&mm->mmap_sem);
1053 if (down_write_killable(&mm->mmap_sem)) {
1054 count = -EINTR;
1055 goto out_mm;
1056 }
1057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1058 vma->vm_flags &= ~VM_SOFTDIRTY;
1059 vma_set_page_prot(vma);
1060 }
1061 downgrade_write(&mm->mmap_sem);
1062 break;
1063 }
1064 mmu_notifier_invalidate_range_start(mm, 0, -1);
1065 }
1066 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1067 if (type == CLEAR_REFS_SOFT_DIRTY)
1068 mmu_notifier_invalidate_range_end(mm, 0, -1);
1069 flush_tlb_mm(mm);
1070 up_read(&mm->mmap_sem);
1071out_mm:
1072 mmput(mm);
1073 }
1074 put_task_struct(task);
1075
1076 return count;
1077}
1078
1079const struct file_operations proc_clear_refs_operations = {
1080 .write = clear_refs_write,
1081 .llseek = noop_llseek,
1082};
1083
1084typedef struct {
1085 u64 pme;
1086} pagemap_entry_t;
1087
1088struct pagemapread {
1089 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1090 pagemap_entry_t *buffer;
1091 bool show_pfn;
1092};
1093
1094#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1095#define PAGEMAP_WALK_MASK (PMD_MASK)
1096
1097#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1098#define PM_PFRAME_BITS 55
1099#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1100#define PM_SOFT_DIRTY BIT_ULL(55)
1101#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1102#define PM_FILE BIT_ULL(61)
1103#define PM_SWAP BIT_ULL(62)
1104#define PM_PRESENT BIT_ULL(63)
1105
1106#define PM_END_OF_BUFFER 1
1107
1108static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1109{
1110 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1111}
1112
1113static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1114 struct pagemapread *pm)
1115{
1116 pm->buffer[pm->pos++] = *pme;
1117 if (pm->pos >= pm->len)
1118 return PM_END_OF_BUFFER;
1119 return 0;
1120}
1121
1122static int pagemap_pte_hole(unsigned long start, unsigned long end,
1123 struct mm_walk *walk)
1124{
1125 struct pagemapread *pm = walk->private;
1126 unsigned long addr = start;
1127 int err = 0;
1128
1129 while (addr < end) {
1130 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1131 pagemap_entry_t pme = make_pme(0, 0);
1132 /* End of address space hole, which we mark as non-present. */
1133 unsigned long hole_end;
1134
1135 if (vma)
1136 hole_end = min(end, vma->vm_start);
1137 else
1138 hole_end = end;
1139
1140 for (; addr < hole_end; addr += PAGE_SIZE) {
1141 err = add_to_pagemap(addr, &pme, pm);
1142 if (err)
1143 goto out;
1144 }
1145
1146 if (!vma)
1147 break;
1148
1149 /* Addresses in the VMA. */
1150 if (vma->vm_flags & VM_SOFTDIRTY)
1151 pme = make_pme(0, PM_SOFT_DIRTY);
1152 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1153 err = add_to_pagemap(addr, &pme, pm);
1154 if (err)
1155 goto out;
1156 }
1157 }
1158out:
1159 return err;
1160}
1161
1162static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1163 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1164{
1165 u64 frame = 0, flags = 0;
1166 struct page *page = NULL;
1167
1168 if (pte_present(pte)) {
1169 if (pm->show_pfn)
1170 frame = pte_pfn(pte);
1171 flags |= PM_PRESENT;
1172 page = vm_normal_page(vma, addr, pte);
1173 if (pte_soft_dirty(pte))
1174 flags |= PM_SOFT_DIRTY;
1175 } else if (is_swap_pte(pte)) {
1176 swp_entry_t entry;
1177 if (pte_swp_soft_dirty(pte))
1178 flags |= PM_SOFT_DIRTY;
1179 entry = pte_to_swp_entry(pte);
1180 frame = swp_type(entry) |
1181 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1182 flags |= PM_SWAP;
1183 if (is_migration_entry(entry))
1184 page = migration_entry_to_page(entry);
1185 }
1186
1187 if (page && !PageAnon(page))
1188 flags |= PM_FILE;
1189 if (page && page_mapcount(page) == 1)
1190 flags |= PM_MMAP_EXCLUSIVE;
1191 if (vma->vm_flags & VM_SOFTDIRTY)
1192 flags |= PM_SOFT_DIRTY;
1193
1194 return make_pme(frame, flags);
1195}
1196
1197static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1198 struct mm_walk *walk)
1199{
1200 struct vm_area_struct *vma = walk->vma;
1201 struct pagemapread *pm = walk->private;
1202 spinlock_t *ptl;
1203 pte_t *pte, *orig_pte;
1204 int err = 0;
1205
1206#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 ptl = pmd_trans_huge_lock(pmdp, vma);
1208 if (ptl) {
1209 u64 flags = 0, frame = 0;
1210 pmd_t pmd = *pmdp;
1211
1212 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1213 flags |= PM_SOFT_DIRTY;
1214
1215 /*
1216 * Currently pmd for thp is always present because thp
1217 * can not be swapped-out, migrated, or HWPOISONed
1218 * (split in such cases instead.)
1219 * This if-check is just to prepare for future implementation.
1220 */
1221 if (pmd_present(pmd)) {
1222 struct page *page = pmd_page(pmd);
1223
1224 if (page_mapcount(page) == 1)
1225 flags |= PM_MMAP_EXCLUSIVE;
1226
1227 flags |= PM_PRESENT;
1228 if (pm->show_pfn)
1229 frame = pmd_pfn(pmd) +
1230 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1231 }
1232
1233 for (; addr != end; addr += PAGE_SIZE) {
1234 pagemap_entry_t pme = make_pme(frame, flags);
1235
1236 err = add_to_pagemap(addr, &pme, pm);
1237 if (err)
1238 break;
1239 if (pm->show_pfn && (flags & PM_PRESENT))
1240 frame++;
1241 }
1242 spin_unlock(ptl);
1243 return err;
1244 }
1245
1246 if (pmd_trans_unstable(pmdp))
1247 return 0;
1248#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1249
1250 /*
1251 * We can assume that @vma always points to a valid one and @end never
1252 * goes beyond vma->vm_end.
1253 */
1254 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1255 for (; addr < end; pte++, addr += PAGE_SIZE) {
1256 pagemap_entry_t pme;
1257
1258 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1259 err = add_to_pagemap(addr, &pme, pm);
1260 if (err)
1261 break;
1262 }
1263 pte_unmap_unlock(orig_pte, ptl);
1264
1265 cond_resched();
1266
1267 return err;
1268}
1269
1270#ifdef CONFIG_HUGETLB_PAGE
1271/* This function walks within one hugetlb entry in the single call */
1272static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1273 unsigned long addr, unsigned long end,
1274 struct mm_walk *walk)
1275{
1276 struct pagemapread *pm = walk->private;
1277 struct vm_area_struct *vma = walk->vma;
1278 u64 flags = 0, frame = 0;
1279 int err = 0;
1280 pte_t pte;
1281
1282 if (vma->vm_flags & VM_SOFTDIRTY)
1283 flags |= PM_SOFT_DIRTY;
1284
1285 pte = huge_ptep_get(ptep);
1286 if (pte_present(pte)) {
1287 struct page *page = pte_page(pte);
1288
1289 if (!PageAnon(page))
1290 flags |= PM_FILE;
1291
1292 if (page_mapcount(page) == 1)
1293 flags |= PM_MMAP_EXCLUSIVE;
1294
1295 flags |= PM_PRESENT;
1296 if (pm->show_pfn)
1297 frame = pte_pfn(pte) +
1298 ((addr & ~hmask) >> PAGE_SHIFT);
1299 }
1300
1301 for (; addr != end; addr += PAGE_SIZE) {
1302 pagemap_entry_t pme = make_pme(frame, flags);
1303
1304 err = add_to_pagemap(addr, &pme, pm);
1305 if (err)
1306 return err;
1307 if (pm->show_pfn && (flags & PM_PRESENT))
1308 frame++;
1309 }
1310
1311 cond_resched();
1312
1313 return err;
1314}
1315#endif /* HUGETLB_PAGE */
1316
1317/*
1318 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1319 *
1320 * For each page in the address space, this file contains one 64-bit entry
1321 * consisting of the following:
1322 *
1323 * Bits 0-54 page frame number (PFN) if present
1324 * Bits 0-4 swap type if swapped
1325 * Bits 5-54 swap offset if swapped
1326 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1327 * Bit 56 page exclusively mapped
1328 * Bits 57-60 zero
1329 * Bit 61 page is file-page or shared-anon
1330 * Bit 62 page swapped
1331 * Bit 63 page present
1332 *
1333 * If the page is not present but in swap, then the PFN contains an
1334 * encoding of the swap file number and the page's offset into the
1335 * swap. Unmapped pages return a null PFN. This allows determining
1336 * precisely which pages are mapped (or in swap) and comparing mapped
1337 * pages between processes.
1338 *
1339 * Efficient users of this interface will use /proc/pid/maps to
1340 * determine which areas of memory are actually mapped and llseek to
1341 * skip over unmapped regions.
1342 */
1343static ssize_t pagemap_read(struct file *file, char __user *buf,
1344 size_t count, loff_t *ppos)
1345{
1346 struct mm_struct *mm = file->private_data;
1347 struct pagemapread pm;
1348 struct mm_walk pagemap_walk = {};
1349 unsigned long src;
1350 unsigned long svpfn;
1351 unsigned long start_vaddr;
1352 unsigned long end_vaddr;
1353 int ret = 0, copied = 0;
1354
1355 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1356 goto out;
1357
1358 ret = -EINVAL;
1359 /* file position must be aligned */
1360 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1361 goto out_mm;
1362
1363 ret = 0;
1364 if (!count)
1365 goto out_mm;
1366
1367 /* do not disclose physical addresses: attack vector */
1368 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1369
1370 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1371 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1372 ret = -ENOMEM;
1373 if (!pm.buffer)
1374 goto out_mm;
1375
1376 pagemap_walk.pmd_entry = pagemap_pmd_range;
1377 pagemap_walk.pte_hole = pagemap_pte_hole;
1378#ifdef CONFIG_HUGETLB_PAGE
1379 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1380#endif
1381 pagemap_walk.mm = mm;
1382 pagemap_walk.private = ±
1383
1384 src = *ppos;
1385 svpfn = src / PM_ENTRY_BYTES;
1386 start_vaddr = svpfn << PAGE_SHIFT;
1387 end_vaddr = mm->task_size;
1388
1389 /* watch out for wraparound */
1390 if (svpfn > mm->task_size >> PAGE_SHIFT)
1391 start_vaddr = end_vaddr;
1392
1393 /*
1394 * The odds are that this will stop walking way
1395 * before end_vaddr, because the length of the
1396 * user buffer is tracked in "pm", and the walk
1397 * will stop when we hit the end of the buffer.
1398 */
1399 ret = 0;
1400 while (count && (start_vaddr < end_vaddr)) {
1401 int len;
1402 unsigned long end;
1403
1404 pm.pos = 0;
1405 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1406 /* overflow ? */
1407 if (end < start_vaddr || end > end_vaddr)
1408 end = end_vaddr;
1409 down_read(&mm->mmap_sem);
1410 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1411 up_read(&mm->mmap_sem);
1412 start_vaddr = end;
1413
1414 len = min(count, PM_ENTRY_BYTES * pm.pos);
1415 if (copy_to_user(buf, pm.buffer, len)) {
1416 ret = -EFAULT;
1417 goto out_free;
1418 }
1419 copied += len;
1420 buf += len;
1421 count -= len;
1422 }
1423 *ppos += copied;
1424 if (!ret || ret == PM_END_OF_BUFFER)
1425 ret = copied;
1426
1427out_free:
1428 kfree(pm.buffer);
1429out_mm:
1430 mmput(mm);
1431out:
1432 return ret;
1433}
1434
1435static int pagemap_open(struct inode *inode, struct file *file)
1436{
1437 struct mm_struct *mm;
1438
1439 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1440 if (IS_ERR(mm))
1441 return PTR_ERR(mm);
1442 file->private_data = mm;
1443 return 0;
1444}
1445
1446static int pagemap_release(struct inode *inode, struct file *file)
1447{
1448 struct mm_struct *mm = file->private_data;
1449
1450 if (mm)
1451 mmdrop(mm);
1452 return 0;
1453}
1454
1455const struct file_operations proc_pagemap_operations = {
1456 .llseek = mem_lseek, /* borrow this */
1457 .read = pagemap_read,
1458 .open = pagemap_open,
1459 .release = pagemap_release,
1460};
1461#endif /* CONFIG_PROC_PAGE_MONITOR */
1462
1463#ifdef CONFIG_NUMA
1464
1465struct numa_maps {
1466 unsigned long pages;
1467 unsigned long anon;
1468 unsigned long active;
1469 unsigned long writeback;
1470 unsigned long mapcount_max;
1471 unsigned long dirty;
1472 unsigned long swapcache;
1473 unsigned long node[MAX_NUMNODES];
1474};
1475
1476struct numa_maps_private {
1477 struct proc_maps_private proc_maps;
1478 struct numa_maps md;
1479};
1480
1481static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1482 unsigned long nr_pages)
1483{
1484 int count = page_mapcount(page);
1485
1486 md->pages += nr_pages;
1487 if (pte_dirty || PageDirty(page))
1488 md->dirty += nr_pages;
1489
1490 if (PageSwapCache(page))
1491 md->swapcache += nr_pages;
1492
1493 if (PageActive(page) || PageUnevictable(page))
1494 md->active += nr_pages;
1495
1496 if (PageWriteback(page))
1497 md->writeback += nr_pages;
1498
1499 if (PageAnon(page))
1500 md->anon += nr_pages;
1501
1502 if (count > md->mapcount_max)
1503 md->mapcount_max = count;
1504
1505 md->node[page_to_nid(page)] += nr_pages;
1506}
1507
1508static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1509 unsigned long addr)
1510{
1511 struct page *page;
1512 int nid;
1513
1514 if (!pte_present(pte))
1515 return NULL;
1516
1517 page = vm_normal_page(vma, addr, pte);
1518 if (!page)
1519 return NULL;
1520
1521 if (PageReserved(page))
1522 return NULL;
1523
1524 nid = page_to_nid(page);
1525 if (!node_isset(nid, node_states[N_MEMORY]))
1526 return NULL;
1527
1528 return page;
1529}
1530
1531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1533 struct vm_area_struct *vma,
1534 unsigned long addr)
1535{
1536 struct page *page;
1537 int nid;
1538
1539 if (!pmd_present(pmd))
1540 return NULL;
1541
1542 page = vm_normal_page_pmd(vma, addr, pmd);
1543 if (!page)
1544 return NULL;
1545
1546 if (PageReserved(page))
1547 return NULL;
1548
1549 nid = page_to_nid(page);
1550 if (!node_isset(nid, node_states[N_MEMORY]))
1551 return NULL;
1552
1553 return page;
1554}
1555#endif
1556
1557static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1558 unsigned long end, struct mm_walk *walk)
1559{
1560 struct numa_maps *md = walk->private;
1561 struct vm_area_struct *vma = walk->vma;
1562 spinlock_t *ptl;
1563 pte_t *orig_pte;
1564 pte_t *pte;
1565
1566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 ptl = pmd_trans_huge_lock(pmd, vma);
1568 if (ptl) {
1569 struct page *page;
1570
1571 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1572 if (page)
1573 gather_stats(page, md, pmd_dirty(*pmd),
1574 HPAGE_PMD_SIZE/PAGE_SIZE);
1575 spin_unlock(ptl);
1576 return 0;
1577 }
1578
1579 if (pmd_trans_unstable(pmd))
1580 return 0;
1581#endif
1582 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1583 do {
1584 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1585 if (!page)
1586 continue;
1587 gather_stats(page, md, pte_dirty(*pte), 1);
1588
1589 } while (pte++, addr += PAGE_SIZE, addr != end);
1590 pte_unmap_unlock(orig_pte, ptl);
1591 cond_resched();
1592 return 0;
1593}
1594#ifdef CONFIG_HUGETLB_PAGE
1595static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1596 unsigned long addr, unsigned long end, struct mm_walk *walk)
1597{
1598 pte_t huge_pte = huge_ptep_get(pte);
1599 struct numa_maps *md;
1600 struct page *page;
1601
1602 if (!pte_present(huge_pte))
1603 return 0;
1604
1605 page = pte_page(huge_pte);
1606 if (!page)
1607 return 0;
1608
1609 md = walk->private;
1610 gather_stats(page, md, pte_dirty(huge_pte), 1);
1611 return 0;
1612}
1613
1614#else
1615static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1616 unsigned long addr, unsigned long end, struct mm_walk *walk)
1617{
1618 return 0;
1619}
1620#endif
1621
1622/*
1623 * Display pages allocated per node and memory policy via /proc.
1624 */
1625static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1626{
1627 struct numa_maps_private *numa_priv = m->private;
1628 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1629 struct vm_area_struct *vma = v;
1630 struct numa_maps *md = &numa_priv->md;
1631 struct file *file = vma->vm_file;
1632 struct mm_struct *mm = vma->vm_mm;
1633 struct mm_walk walk = {
1634 .hugetlb_entry = gather_hugetlb_stats,
1635 .pmd_entry = gather_pte_stats,
1636 .private = md,
1637 .mm = mm,
1638 };
1639 struct mempolicy *pol;
1640 char buffer[64];
1641 int nid;
1642
1643 if (!mm)
1644 return 0;
1645
1646 /* Ensure we start with an empty set of numa_maps statistics. */
1647 memset(md, 0, sizeof(*md));
1648
1649 pol = __get_vma_policy(vma, vma->vm_start);
1650 if (pol) {
1651 mpol_to_str(buffer, sizeof(buffer), pol);
1652 mpol_cond_put(pol);
1653 } else {
1654 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1655 }
1656
1657 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1658
1659 if (file) {
1660 seq_puts(m, " file=");
1661 seq_file_path(m, file, "\n\t= ");
1662 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1663 seq_puts(m, " heap");
1664 } else if (is_stack(proc_priv, vma)) {
1665 seq_puts(m, " stack");
1666 }
1667
1668 if (is_vm_hugetlb_page(vma))
1669 seq_puts(m, " huge");
1670
1671 /* mmap_sem is held by m_start */
1672 walk_page_vma(vma, &walk);
1673
1674 if (!md->pages)
1675 goto out;
1676
1677 if (md->anon)
1678 seq_printf(m, " anon=%lu", md->anon);
1679
1680 if (md->dirty)
1681 seq_printf(m, " dirty=%lu", md->dirty);
1682
1683 if (md->pages != md->anon && md->pages != md->dirty)
1684 seq_printf(m, " mapped=%lu", md->pages);
1685
1686 if (md->mapcount_max > 1)
1687 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1688
1689 if (md->swapcache)
1690 seq_printf(m, " swapcache=%lu", md->swapcache);
1691
1692 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1693 seq_printf(m, " active=%lu", md->active);
1694
1695 if (md->writeback)
1696 seq_printf(m, " writeback=%lu", md->writeback);
1697
1698 for_each_node_state(nid, N_MEMORY)
1699 if (md->node[nid])
1700 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1701
1702 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1703out:
1704 seq_putc(m, '\n');
1705 m_cache_vma(m, vma);
1706 return 0;
1707}
1708
1709static int show_pid_numa_map(struct seq_file *m, void *v)
1710{
1711 return show_numa_map(m, v, 1);
1712}
1713
1714static int show_tid_numa_map(struct seq_file *m, void *v)
1715{
1716 return show_numa_map(m, v, 0);
1717}
1718
1719static const struct seq_operations proc_pid_numa_maps_op = {
1720 .start = m_start,
1721 .next = m_next,
1722 .stop = m_stop,
1723 .show = show_pid_numa_map,
1724};
1725
1726static const struct seq_operations proc_tid_numa_maps_op = {
1727 .start = m_start,
1728 .next = m_next,
1729 .stop = m_stop,
1730 .show = show_tid_numa_map,
1731};
1732
1733static int numa_maps_open(struct inode *inode, struct file *file,
1734 const struct seq_operations *ops)
1735{
1736 return proc_maps_open(inode, file, ops,
1737 sizeof(struct numa_maps_private));
1738}
1739
1740static int pid_numa_maps_open(struct inode *inode, struct file *file)
1741{
1742 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1743}
1744
1745static int tid_numa_maps_open(struct inode *inode, struct file *file)
1746{
1747 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1748}
1749
1750const struct file_operations proc_pid_numa_maps_operations = {
1751 .open = pid_numa_maps_open,
1752 .read = seq_read,
1753 .llseek = seq_lseek,
1754 .release = proc_map_release,
1755};
1756
1757const struct file_operations proc_tid_numa_maps_operations = {
1758 .open = tid_numa_maps_open,
1759 .read = seq_read,
1760 .llseek = seq_lseek,
1761 .release = proc_map_release,
1762};
1763#endif /* CONFIG_NUMA */
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/vmacache.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/seq_file.h>
8#include <linux/highmem.h>
9#include <linux/ptrace.h>
10#include <linux/slab.h>
11#include <linux/pagemap.h>
12#include <linux/mempolicy.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/sched/mm.h>
16#include <linux/swapops.h>
17#include <linux/mmu_notifier.h>
18#include <linux/page_idle.h>
19#include <linux/shmem_fs.h>
20#include <linux/uaccess.h>
21#include <linux/pkeys.h>
22
23#include <asm/elf.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include "internal.h"
27
28#define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30void task_mem(struct seq_file *m, struct mm_struct *mm)
31{
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79}
80#undef SEQ_PUT_DEC
81
82unsigned long task_vsize(struct mm_struct *mm)
83{
84 return PAGE_SIZE * mm->total_vm;
85}
86
87unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90{
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98}
99
100#ifdef CONFIG_NUMA
101/*
102 * Save get_task_policy() for show_numa_map().
103 */
104static void hold_task_mempolicy(struct proc_maps_private *priv)
105{
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112}
113static void release_task_mempolicy(struct proc_maps_private *priv)
114{
115 mpol_put(priv->task_mempolicy);
116}
117#else
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120}
121static void release_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124#endif
125
126static void vma_stop(struct proc_maps_private *priv)
127{
128 struct mm_struct *mm = priv->mm;
129
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
132 mmput(mm);
133}
134
135static struct vm_area_struct *
136m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137{
138 if (vma == priv->tail_vma)
139 return NULL;
140 return vma->vm_next ?: priv->tail_vma;
141}
142
143static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144{
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147}
148
149static void *m_start(struct seq_file *m, loff_t *ppos)
150{
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
156
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
159 return NULL;
160
161 priv->task = get_proc_task(priv->inode);
162 if (!priv->task)
163 return ERR_PTR(-ESRCH);
164
165 mm = priv->mm;
166 if (!mm || !mmget_not_zero(mm))
167 return NULL;
168
169 if (down_read_killable(&mm->mmap_sem)) {
170 mmput(mm);
171 return ERR_PTR(-EINTR);
172 }
173
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200}
201
202static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203{
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212}
213
214static void m_stop(struct seq_file *m, void *v)
215{
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224}
225
226static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228{
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244}
245
246static int proc_map_release(struct inode *inode, struct file *file)
247{
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255}
256
257static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259{
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262}
263
264/*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
268static int is_stack(struct vm_area_struct *vma)
269{
270 /*
271 * We make no effort to guess what a given thread considers to be
272 * its "stack". It's not even well-defined for programs written
273 * languages like Go.
274 */
275 return vma->vm_start <= vma->vm_mm->start_stack &&
276 vma->vm_end >= vma->vm_mm->start_stack;
277}
278
279static void show_vma_header_prefix(struct seq_file *m,
280 unsigned long start, unsigned long end,
281 vm_flags_t flags, unsigned long long pgoff,
282 dev_t dev, unsigned long ino)
283{
284 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 seq_put_hex_ll(m, NULL, start, 8);
286 seq_put_hex_ll(m, "-", end, 8);
287 seq_putc(m, ' ');
288 seq_putc(m, flags & VM_READ ? 'r' : '-');
289 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 seq_put_hex_ll(m, " ", pgoff, 8);
293 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 seq_put_decimal_ull(m, " ", ino);
296 seq_putc(m, ' ');
297}
298
299static void
300show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301{
302 struct mm_struct *mm = vma->vm_mm;
303 struct file *file = vma->vm_file;
304 vm_flags_t flags = vma->vm_flags;
305 unsigned long ino = 0;
306 unsigned long long pgoff = 0;
307 unsigned long start, end;
308 dev_t dev = 0;
309 const char *name = NULL;
310
311 if (file) {
312 struct inode *inode = file_inode(vma->vm_file);
313 dev = inode->i_sb->s_dev;
314 ino = inode->i_ino;
315 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 }
317
318 start = vma->vm_start;
319 end = vma->vm_end;
320 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321
322 /*
323 * Print the dentry name for named mappings, and a
324 * special [heap] marker for the heap:
325 */
326 if (file) {
327 seq_pad(m, ' ');
328 seq_file_path(m, file, "\n");
329 goto done;
330 }
331
332 if (vma->vm_ops && vma->vm_ops->name) {
333 name = vma->vm_ops->name(vma);
334 if (name)
335 goto done;
336 }
337
338 name = arch_vma_name(vma);
339 if (!name) {
340 if (!mm) {
341 name = "[vdso]";
342 goto done;
343 }
344
345 if (vma->vm_start <= mm->brk &&
346 vma->vm_end >= mm->start_brk) {
347 name = "[heap]";
348 goto done;
349 }
350
351 if (is_stack(vma))
352 name = "[stack]";
353 }
354
355done:
356 if (name) {
357 seq_pad(m, ' ');
358 seq_puts(m, name);
359 }
360 seq_putc(m, '\n');
361}
362
363static int show_map(struct seq_file *m, void *v)
364{
365 show_map_vma(m, v);
366 m_cache_vma(m, v);
367 return 0;
368}
369
370static const struct seq_operations proc_pid_maps_op = {
371 .start = m_start,
372 .next = m_next,
373 .stop = m_stop,
374 .show = show_map
375};
376
377static int pid_maps_open(struct inode *inode, struct file *file)
378{
379 return do_maps_open(inode, file, &proc_pid_maps_op);
380}
381
382const struct file_operations proc_pid_maps_operations = {
383 .open = pid_maps_open,
384 .read = seq_read,
385 .llseek = seq_lseek,
386 .release = proc_map_release,
387};
388
389/*
390 * Proportional Set Size(PSS): my share of RSS.
391 *
392 * PSS of a process is the count of pages it has in memory, where each
393 * page is divided by the number of processes sharing it. So if a
394 * process has 1000 pages all to itself, and 1000 shared with one other
395 * process, its PSS will be 1500.
396 *
397 * To keep (accumulated) division errors low, we adopt a 64bit
398 * fixed-point pss counter to minimize division errors. So (pss >>
399 * PSS_SHIFT) would be the real byte count.
400 *
401 * A shift of 12 before division means (assuming 4K page size):
402 * - 1M 3-user-pages add up to 8KB errors;
403 * - supports mapcount up to 2^24, or 16M;
404 * - supports PSS up to 2^52 bytes, or 4PB.
405 */
406#define PSS_SHIFT 12
407
408#ifdef CONFIG_PROC_PAGE_MONITOR
409struct mem_size_stats {
410 unsigned long resident;
411 unsigned long shared_clean;
412 unsigned long shared_dirty;
413 unsigned long private_clean;
414 unsigned long private_dirty;
415 unsigned long referenced;
416 unsigned long anonymous;
417 unsigned long lazyfree;
418 unsigned long anonymous_thp;
419 unsigned long shmem_thp;
420 unsigned long file_thp;
421 unsigned long swap;
422 unsigned long shared_hugetlb;
423 unsigned long private_hugetlb;
424 u64 pss;
425 u64 pss_anon;
426 u64 pss_file;
427 u64 pss_shmem;
428 u64 pss_locked;
429 u64 swap_pss;
430 bool check_shmem_swap;
431};
432
433static void smaps_page_accumulate(struct mem_size_stats *mss,
434 struct page *page, unsigned long size, unsigned long pss,
435 bool dirty, bool locked, bool private)
436{
437 mss->pss += pss;
438
439 if (PageAnon(page))
440 mss->pss_anon += pss;
441 else if (PageSwapBacked(page))
442 mss->pss_shmem += pss;
443 else
444 mss->pss_file += pss;
445
446 if (locked)
447 mss->pss_locked += pss;
448
449 if (dirty || PageDirty(page)) {
450 if (private)
451 mss->private_dirty += size;
452 else
453 mss->shared_dirty += size;
454 } else {
455 if (private)
456 mss->private_clean += size;
457 else
458 mss->shared_clean += size;
459 }
460}
461
462static void smaps_account(struct mem_size_stats *mss, struct page *page,
463 bool compound, bool young, bool dirty, bool locked)
464{
465 int i, nr = compound ? compound_nr(page) : 1;
466 unsigned long size = nr * PAGE_SIZE;
467
468 /*
469 * First accumulate quantities that depend only on |size| and the type
470 * of the compound page.
471 */
472 if (PageAnon(page)) {
473 mss->anonymous += size;
474 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
475 mss->lazyfree += size;
476 }
477
478 mss->resident += size;
479 /* Accumulate the size in pages that have been accessed. */
480 if (young || page_is_young(page) || PageReferenced(page))
481 mss->referenced += size;
482
483 /*
484 * Then accumulate quantities that may depend on sharing, or that may
485 * differ page-by-page.
486 *
487 * page_count(page) == 1 guarantees the page is mapped exactly once.
488 * If any subpage of the compound page mapped with PTE it would elevate
489 * page_count().
490 */
491 if (page_count(page) == 1) {
492 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
493 locked, true);
494 return;
495 }
496 for (i = 0; i < nr; i++, page++) {
497 int mapcount = page_mapcount(page);
498 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
499 if (mapcount >= 2)
500 pss /= mapcount;
501 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
502 mapcount < 2);
503 }
504}
505
506#ifdef CONFIG_SHMEM
507static int smaps_pte_hole(unsigned long addr, unsigned long end,
508 struct mm_walk *walk)
509{
510 struct mem_size_stats *mss = walk->private;
511
512 mss->swap += shmem_partial_swap_usage(
513 walk->vma->vm_file->f_mapping, addr, end);
514
515 return 0;
516}
517#else
518#define smaps_pte_hole NULL
519#endif /* CONFIG_SHMEM */
520
521static void smaps_pte_entry(pte_t *pte, unsigned long addr,
522 struct mm_walk *walk)
523{
524 struct mem_size_stats *mss = walk->private;
525 struct vm_area_struct *vma = walk->vma;
526 bool locked = !!(vma->vm_flags & VM_LOCKED);
527 struct page *page = NULL;
528
529 if (pte_present(*pte)) {
530 page = vm_normal_page(vma, addr, *pte);
531 } else if (is_swap_pte(*pte)) {
532 swp_entry_t swpent = pte_to_swp_entry(*pte);
533
534 if (!non_swap_entry(swpent)) {
535 int mapcount;
536
537 mss->swap += PAGE_SIZE;
538 mapcount = swp_swapcount(swpent);
539 if (mapcount >= 2) {
540 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
541
542 do_div(pss_delta, mapcount);
543 mss->swap_pss += pss_delta;
544 } else {
545 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
546 }
547 } else if (is_migration_entry(swpent))
548 page = migration_entry_to_page(swpent);
549 else if (is_device_private_entry(swpent))
550 page = device_private_entry_to_page(swpent);
551 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
552 && pte_none(*pte))) {
553 page = find_get_entry(vma->vm_file->f_mapping,
554 linear_page_index(vma, addr));
555 if (!page)
556 return;
557
558 if (xa_is_value(page))
559 mss->swap += PAGE_SIZE;
560 else
561 put_page(page);
562
563 return;
564 }
565
566 if (!page)
567 return;
568
569 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
570}
571
572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
573static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
574 struct mm_walk *walk)
575{
576 struct mem_size_stats *mss = walk->private;
577 struct vm_area_struct *vma = walk->vma;
578 bool locked = !!(vma->vm_flags & VM_LOCKED);
579 struct page *page;
580
581 /* FOLL_DUMP will return -EFAULT on huge zero page */
582 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
583 if (IS_ERR_OR_NULL(page))
584 return;
585 if (PageAnon(page))
586 mss->anonymous_thp += HPAGE_PMD_SIZE;
587 else if (PageSwapBacked(page))
588 mss->shmem_thp += HPAGE_PMD_SIZE;
589 else if (is_zone_device_page(page))
590 /* pass */;
591 else
592 mss->file_thp += HPAGE_PMD_SIZE;
593 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
594}
595#else
596static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
597 struct mm_walk *walk)
598{
599}
600#endif
601
602static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
603 struct mm_walk *walk)
604{
605 struct vm_area_struct *vma = walk->vma;
606 pte_t *pte;
607 spinlock_t *ptl;
608
609 ptl = pmd_trans_huge_lock(pmd, vma);
610 if (ptl) {
611 if (pmd_present(*pmd))
612 smaps_pmd_entry(pmd, addr, walk);
613 spin_unlock(ptl);
614 goto out;
615 }
616
617 if (pmd_trans_unstable(pmd))
618 goto out;
619 /*
620 * The mmap_sem held all the way back in m_start() is what
621 * keeps khugepaged out of here and from collapsing things
622 * in here.
623 */
624 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
625 for (; addr != end; pte++, addr += PAGE_SIZE)
626 smaps_pte_entry(pte, addr, walk);
627 pte_unmap_unlock(pte - 1, ptl);
628out:
629 cond_resched();
630 return 0;
631}
632
633static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
634{
635 /*
636 * Don't forget to update Documentation/ on changes.
637 */
638 static const char mnemonics[BITS_PER_LONG][2] = {
639 /*
640 * In case if we meet a flag we don't know about.
641 */
642 [0 ... (BITS_PER_LONG-1)] = "??",
643
644 [ilog2(VM_READ)] = "rd",
645 [ilog2(VM_WRITE)] = "wr",
646 [ilog2(VM_EXEC)] = "ex",
647 [ilog2(VM_SHARED)] = "sh",
648 [ilog2(VM_MAYREAD)] = "mr",
649 [ilog2(VM_MAYWRITE)] = "mw",
650 [ilog2(VM_MAYEXEC)] = "me",
651 [ilog2(VM_MAYSHARE)] = "ms",
652 [ilog2(VM_GROWSDOWN)] = "gd",
653 [ilog2(VM_PFNMAP)] = "pf",
654 [ilog2(VM_DENYWRITE)] = "dw",
655#ifdef CONFIG_X86_INTEL_MPX
656 [ilog2(VM_MPX)] = "mp",
657#endif
658 [ilog2(VM_LOCKED)] = "lo",
659 [ilog2(VM_IO)] = "io",
660 [ilog2(VM_SEQ_READ)] = "sr",
661 [ilog2(VM_RAND_READ)] = "rr",
662 [ilog2(VM_DONTCOPY)] = "dc",
663 [ilog2(VM_DONTEXPAND)] = "de",
664 [ilog2(VM_ACCOUNT)] = "ac",
665 [ilog2(VM_NORESERVE)] = "nr",
666 [ilog2(VM_HUGETLB)] = "ht",
667 [ilog2(VM_SYNC)] = "sf",
668 [ilog2(VM_ARCH_1)] = "ar",
669 [ilog2(VM_WIPEONFORK)] = "wf",
670 [ilog2(VM_DONTDUMP)] = "dd",
671#ifdef CONFIG_MEM_SOFT_DIRTY
672 [ilog2(VM_SOFTDIRTY)] = "sd",
673#endif
674 [ilog2(VM_MIXEDMAP)] = "mm",
675 [ilog2(VM_HUGEPAGE)] = "hg",
676 [ilog2(VM_NOHUGEPAGE)] = "nh",
677 [ilog2(VM_MERGEABLE)] = "mg",
678 [ilog2(VM_UFFD_MISSING)]= "um",
679 [ilog2(VM_UFFD_WP)] = "uw",
680#ifdef CONFIG_ARCH_HAS_PKEYS
681 /* These come out via ProtectionKey: */
682 [ilog2(VM_PKEY_BIT0)] = "",
683 [ilog2(VM_PKEY_BIT1)] = "",
684 [ilog2(VM_PKEY_BIT2)] = "",
685 [ilog2(VM_PKEY_BIT3)] = "",
686#if VM_PKEY_BIT4
687 [ilog2(VM_PKEY_BIT4)] = "",
688#endif
689#endif /* CONFIG_ARCH_HAS_PKEYS */
690 };
691 size_t i;
692
693 seq_puts(m, "VmFlags: ");
694 for (i = 0; i < BITS_PER_LONG; i++) {
695 if (!mnemonics[i][0])
696 continue;
697 if (vma->vm_flags & (1UL << i)) {
698 seq_putc(m, mnemonics[i][0]);
699 seq_putc(m, mnemonics[i][1]);
700 seq_putc(m, ' ');
701 }
702 }
703 seq_putc(m, '\n');
704}
705
706#ifdef CONFIG_HUGETLB_PAGE
707static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
708 unsigned long addr, unsigned long end,
709 struct mm_walk *walk)
710{
711 struct mem_size_stats *mss = walk->private;
712 struct vm_area_struct *vma = walk->vma;
713 struct page *page = NULL;
714
715 if (pte_present(*pte)) {
716 page = vm_normal_page(vma, addr, *pte);
717 } else if (is_swap_pte(*pte)) {
718 swp_entry_t swpent = pte_to_swp_entry(*pte);
719
720 if (is_migration_entry(swpent))
721 page = migration_entry_to_page(swpent);
722 else if (is_device_private_entry(swpent))
723 page = device_private_entry_to_page(swpent);
724 }
725 if (page) {
726 int mapcount = page_mapcount(page);
727
728 if (mapcount >= 2)
729 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
730 else
731 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
732 }
733 return 0;
734}
735#else
736#define smaps_hugetlb_range NULL
737#endif /* HUGETLB_PAGE */
738
739static const struct mm_walk_ops smaps_walk_ops = {
740 .pmd_entry = smaps_pte_range,
741 .hugetlb_entry = smaps_hugetlb_range,
742};
743
744static const struct mm_walk_ops smaps_shmem_walk_ops = {
745 .pmd_entry = smaps_pte_range,
746 .hugetlb_entry = smaps_hugetlb_range,
747 .pte_hole = smaps_pte_hole,
748};
749
750static void smap_gather_stats(struct vm_area_struct *vma,
751 struct mem_size_stats *mss)
752{
753#ifdef CONFIG_SHMEM
754 /* In case of smaps_rollup, reset the value from previous vma */
755 mss->check_shmem_swap = false;
756 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
757 /*
758 * For shared or readonly shmem mappings we know that all
759 * swapped out pages belong to the shmem object, and we can
760 * obtain the swap value much more efficiently. For private
761 * writable mappings, we might have COW pages that are
762 * not affected by the parent swapped out pages of the shmem
763 * object, so we have to distinguish them during the page walk.
764 * Unless we know that the shmem object (or the part mapped by
765 * our VMA) has no swapped out pages at all.
766 */
767 unsigned long shmem_swapped = shmem_swap_usage(vma);
768
769 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
770 !(vma->vm_flags & VM_WRITE)) {
771 mss->swap += shmem_swapped;
772 } else {
773 mss->check_shmem_swap = true;
774 walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
775 return;
776 }
777 }
778#endif
779 /* mmap_sem is held in m_start */
780 walk_page_vma(vma, &smaps_walk_ops, mss);
781}
782
783#define SEQ_PUT_DEC(str, val) \
784 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
785
786/* Show the contents common for smaps and smaps_rollup */
787static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
788 bool rollup_mode)
789{
790 SEQ_PUT_DEC("Rss: ", mss->resident);
791 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
792 if (rollup_mode) {
793 /*
794 * These are meaningful only for smaps_rollup, otherwise two of
795 * them are zero, and the other one is the same as Pss.
796 */
797 SEQ_PUT_DEC(" kB\nPss_Anon: ",
798 mss->pss_anon >> PSS_SHIFT);
799 SEQ_PUT_DEC(" kB\nPss_File: ",
800 mss->pss_file >> PSS_SHIFT);
801 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
802 mss->pss_shmem >> PSS_SHIFT);
803 }
804 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
805 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
806 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
807 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
808 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
809 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
810 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
811 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
812 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
813 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
814 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
815 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
816 mss->private_hugetlb >> 10, 7);
817 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
818 SEQ_PUT_DEC(" kB\nSwapPss: ",
819 mss->swap_pss >> PSS_SHIFT);
820 SEQ_PUT_DEC(" kB\nLocked: ",
821 mss->pss_locked >> PSS_SHIFT);
822 seq_puts(m, " kB\n");
823}
824
825static int show_smap(struct seq_file *m, void *v)
826{
827 struct vm_area_struct *vma = v;
828 struct mem_size_stats mss;
829
830 memset(&mss, 0, sizeof(mss));
831
832 smap_gather_stats(vma, &mss);
833
834 show_map_vma(m, vma);
835
836 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
837 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
838 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
839 seq_puts(m, " kB\n");
840
841 __show_smap(m, &mss, false);
842
843 seq_printf(m, "THPeligible: %d\n",
844 transparent_hugepage_enabled(vma));
845
846 if (arch_pkeys_enabled())
847 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
848 show_smap_vma_flags(m, vma);
849
850 m_cache_vma(m, vma);
851
852 return 0;
853}
854
855static int show_smaps_rollup(struct seq_file *m, void *v)
856{
857 struct proc_maps_private *priv = m->private;
858 struct mem_size_stats mss;
859 struct mm_struct *mm;
860 struct vm_area_struct *vma;
861 unsigned long last_vma_end = 0;
862 int ret = 0;
863
864 priv->task = get_proc_task(priv->inode);
865 if (!priv->task)
866 return -ESRCH;
867
868 mm = priv->mm;
869 if (!mm || !mmget_not_zero(mm)) {
870 ret = -ESRCH;
871 goto out_put_task;
872 }
873
874 memset(&mss, 0, sizeof(mss));
875
876 ret = down_read_killable(&mm->mmap_sem);
877 if (ret)
878 goto out_put_mm;
879
880 hold_task_mempolicy(priv);
881
882 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
883 smap_gather_stats(vma, &mss);
884 last_vma_end = vma->vm_end;
885 }
886
887 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
888 last_vma_end, 0, 0, 0, 0);
889 seq_pad(m, ' ');
890 seq_puts(m, "[rollup]\n");
891
892 __show_smap(m, &mss, true);
893
894 release_task_mempolicy(priv);
895 up_read(&mm->mmap_sem);
896
897out_put_mm:
898 mmput(mm);
899out_put_task:
900 put_task_struct(priv->task);
901 priv->task = NULL;
902
903 return ret;
904}
905#undef SEQ_PUT_DEC
906
907static const struct seq_operations proc_pid_smaps_op = {
908 .start = m_start,
909 .next = m_next,
910 .stop = m_stop,
911 .show = show_smap
912};
913
914static int pid_smaps_open(struct inode *inode, struct file *file)
915{
916 return do_maps_open(inode, file, &proc_pid_smaps_op);
917}
918
919static int smaps_rollup_open(struct inode *inode, struct file *file)
920{
921 int ret;
922 struct proc_maps_private *priv;
923
924 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
925 if (!priv)
926 return -ENOMEM;
927
928 ret = single_open(file, show_smaps_rollup, priv);
929 if (ret)
930 goto out_free;
931
932 priv->inode = inode;
933 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
934 if (IS_ERR(priv->mm)) {
935 ret = PTR_ERR(priv->mm);
936
937 single_release(inode, file);
938 goto out_free;
939 }
940
941 return 0;
942
943out_free:
944 kfree(priv);
945 return ret;
946}
947
948static int smaps_rollup_release(struct inode *inode, struct file *file)
949{
950 struct seq_file *seq = file->private_data;
951 struct proc_maps_private *priv = seq->private;
952
953 if (priv->mm)
954 mmdrop(priv->mm);
955
956 kfree(priv);
957 return single_release(inode, file);
958}
959
960const struct file_operations proc_pid_smaps_operations = {
961 .open = pid_smaps_open,
962 .read = seq_read,
963 .llseek = seq_lseek,
964 .release = proc_map_release,
965};
966
967const struct file_operations proc_pid_smaps_rollup_operations = {
968 .open = smaps_rollup_open,
969 .read = seq_read,
970 .llseek = seq_lseek,
971 .release = smaps_rollup_release,
972};
973
974enum clear_refs_types {
975 CLEAR_REFS_ALL = 1,
976 CLEAR_REFS_ANON,
977 CLEAR_REFS_MAPPED,
978 CLEAR_REFS_SOFT_DIRTY,
979 CLEAR_REFS_MM_HIWATER_RSS,
980 CLEAR_REFS_LAST,
981};
982
983struct clear_refs_private {
984 enum clear_refs_types type;
985};
986
987#ifdef CONFIG_MEM_SOFT_DIRTY
988static inline void clear_soft_dirty(struct vm_area_struct *vma,
989 unsigned long addr, pte_t *pte)
990{
991 /*
992 * The soft-dirty tracker uses #PF-s to catch writes
993 * to pages, so write-protect the pte as well. See the
994 * Documentation/admin-guide/mm/soft-dirty.rst for full description
995 * of how soft-dirty works.
996 */
997 pte_t ptent = *pte;
998
999 if (pte_present(ptent)) {
1000 pte_t old_pte;
1001
1002 old_pte = ptep_modify_prot_start(vma, addr, pte);
1003 ptent = pte_wrprotect(old_pte);
1004 ptent = pte_clear_soft_dirty(ptent);
1005 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1006 } else if (is_swap_pte(ptent)) {
1007 ptent = pte_swp_clear_soft_dirty(ptent);
1008 set_pte_at(vma->vm_mm, addr, pte, ptent);
1009 }
1010}
1011#else
1012static inline void clear_soft_dirty(struct vm_area_struct *vma,
1013 unsigned long addr, pte_t *pte)
1014{
1015}
1016#endif
1017
1018#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1019static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1020 unsigned long addr, pmd_t *pmdp)
1021{
1022 pmd_t old, pmd = *pmdp;
1023
1024 if (pmd_present(pmd)) {
1025 /* See comment in change_huge_pmd() */
1026 old = pmdp_invalidate(vma, addr, pmdp);
1027 if (pmd_dirty(old))
1028 pmd = pmd_mkdirty(pmd);
1029 if (pmd_young(old))
1030 pmd = pmd_mkyoung(pmd);
1031
1032 pmd = pmd_wrprotect(pmd);
1033 pmd = pmd_clear_soft_dirty(pmd);
1034
1035 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1036 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1037 pmd = pmd_swp_clear_soft_dirty(pmd);
1038 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1039 }
1040}
1041#else
1042static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1043 unsigned long addr, pmd_t *pmdp)
1044{
1045}
1046#endif
1047
1048static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1049 unsigned long end, struct mm_walk *walk)
1050{
1051 struct clear_refs_private *cp = walk->private;
1052 struct vm_area_struct *vma = walk->vma;
1053 pte_t *pte, ptent;
1054 spinlock_t *ptl;
1055 struct page *page;
1056
1057 ptl = pmd_trans_huge_lock(pmd, vma);
1058 if (ptl) {
1059 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1060 clear_soft_dirty_pmd(vma, addr, pmd);
1061 goto out;
1062 }
1063
1064 if (!pmd_present(*pmd))
1065 goto out;
1066
1067 page = pmd_page(*pmd);
1068
1069 /* Clear accessed and referenced bits. */
1070 pmdp_test_and_clear_young(vma, addr, pmd);
1071 test_and_clear_page_young(page);
1072 ClearPageReferenced(page);
1073out:
1074 spin_unlock(ptl);
1075 return 0;
1076 }
1077
1078 if (pmd_trans_unstable(pmd))
1079 return 0;
1080
1081 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1082 for (; addr != end; pte++, addr += PAGE_SIZE) {
1083 ptent = *pte;
1084
1085 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1086 clear_soft_dirty(vma, addr, pte);
1087 continue;
1088 }
1089
1090 if (!pte_present(ptent))
1091 continue;
1092
1093 page = vm_normal_page(vma, addr, ptent);
1094 if (!page)
1095 continue;
1096
1097 /* Clear accessed and referenced bits. */
1098 ptep_test_and_clear_young(vma, addr, pte);
1099 test_and_clear_page_young(page);
1100 ClearPageReferenced(page);
1101 }
1102 pte_unmap_unlock(pte - 1, ptl);
1103 cond_resched();
1104 return 0;
1105}
1106
1107static int clear_refs_test_walk(unsigned long start, unsigned long end,
1108 struct mm_walk *walk)
1109{
1110 struct clear_refs_private *cp = walk->private;
1111 struct vm_area_struct *vma = walk->vma;
1112
1113 if (vma->vm_flags & VM_PFNMAP)
1114 return 1;
1115
1116 /*
1117 * Writing 1 to /proc/pid/clear_refs affects all pages.
1118 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1119 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1120 * Writing 4 to /proc/pid/clear_refs affects all pages.
1121 */
1122 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1123 return 1;
1124 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1125 return 1;
1126 return 0;
1127}
1128
1129static const struct mm_walk_ops clear_refs_walk_ops = {
1130 .pmd_entry = clear_refs_pte_range,
1131 .test_walk = clear_refs_test_walk,
1132};
1133
1134static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1135 size_t count, loff_t *ppos)
1136{
1137 struct task_struct *task;
1138 char buffer[PROC_NUMBUF];
1139 struct mm_struct *mm;
1140 struct vm_area_struct *vma;
1141 enum clear_refs_types type;
1142 struct mmu_gather tlb;
1143 int itype;
1144 int rv;
1145
1146 memset(buffer, 0, sizeof(buffer));
1147 if (count > sizeof(buffer) - 1)
1148 count = sizeof(buffer) - 1;
1149 if (copy_from_user(buffer, buf, count))
1150 return -EFAULT;
1151 rv = kstrtoint(strstrip(buffer), 10, &itype);
1152 if (rv < 0)
1153 return rv;
1154 type = (enum clear_refs_types)itype;
1155 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1156 return -EINVAL;
1157
1158 task = get_proc_task(file_inode(file));
1159 if (!task)
1160 return -ESRCH;
1161 mm = get_task_mm(task);
1162 if (mm) {
1163 struct mmu_notifier_range range;
1164 struct clear_refs_private cp = {
1165 .type = type,
1166 };
1167
1168 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1169 if (down_write_killable(&mm->mmap_sem)) {
1170 count = -EINTR;
1171 goto out_mm;
1172 }
1173
1174 /*
1175 * Writing 5 to /proc/pid/clear_refs resets the peak
1176 * resident set size to this mm's current rss value.
1177 */
1178 reset_mm_hiwater_rss(mm);
1179 up_write(&mm->mmap_sem);
1180 goto out_mm;
1181 }
1182
1183 if (down_read_killable(&mm->mmap_sem)) {
1184 count = -EINTR;
1185 goto out_mm;
1186 }
1187 tlb_gather_mmu(&tlb, mm, 0, -1);
1188 if (type == CLEAR_REFS_SOFT_DIRTY) {
1189 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1190 if (!(vma->vm_flags & VM_SOFTDIRTY))
1191 continue;
1192 up_read(&mm->mmap_sem);
1193 if (down_write_killable(&mm->mmap_sem)) {
1194 count = -EINTR;
1195 goto out_mm;
1196 }
1197 /*
1198 * Avoid to modify vma->vm_flags
1199 * without locked ops while the
1200 * coredump reads the vm_flags.
1201 */
1202 if (!mmget_still_valid(mm)) {
1203 /*
1204 * Silently return "count"
1205 * like if get_task_mm()
1206 * failed. FIXME: should this
1207 * function have returned
1208 * -ESRCH if get_task_mm()
1209 * failed like if
1210 * get_proc_task() fails?
1211 */
1212 up_write(&mm->mmap_sem);
1213 goto out_mm;
1214 }
1215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1216 vma->vm_flags &= ~VM_SOFTDIRTY;
1217 vma_set_page_prot(vma);
1218 }
1219 downgrade_write(&mm->mmap_sem);
1220 break;
1221 }
1222
1223 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1224 0, NULL, mm, 0, -1UL);
1225 mmu_notifier_invalidate_range_start(&range);
1226 }
1227 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1228 &cp);
1229 if (type == CLEAR_REFS_SOFT_DIRTY)
1230 mmu_notifier_invalidate_range_end(&range);
1231 tlb_finish_mmu(&tlb, 0, -1);
1232 up_read(&mm->mmap_sem);
1233out_mm:
1234 mmput(mm);
1235 }
1236 put_task_struct(task);
1237
1238 return count;
1239}
1240
1241const struct file_operations proc_clear_refs_operations = {
1242 .write = clear_refs_write,
1243 .llseek = noop_llseek,
1244};
1245
1246typedef struct {
1247 u64 pme;
1248} pagemap_entry_t;
1249
1250struct pagemapread {
1251 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1252 pagemap_entry_t *buffer;
1253 bool show_pfn;
1254};
1255
1256#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1257#define PAGEMAP_WALK_MASK (PMD_MASK)
1258
1259#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1260#define PM_PFRAME_BITS 55
1261#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1262#define PM_SOFT_DIRTY BIT_ULL(55)
1263#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1264#define PM_FILE BIT_ULL(61)
1265#define PM_SWAP BIT_ULL(62)
1266#define PM_PRESENT BIT_ULL(63)
1267
1268#define PM_END_OF_BUFFER 1
1269
1270static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1271{
1272 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1273}
1274
1275static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1276 struct pagemapread *pm)
1277{
1278 pm->buffer[pm->pos++] = *pme;
1279 if (pm->pos >= pm->len)
1280 return PM_END_OF_BUFFER;
1281 return 0;
1282}
1283
1284static int pagemap_pte_hole(unsigned long start, unsigned long end,
1285 struct mm_walk *walk)
1286{
1287 struct pagemapread *pm = walk->private;
1288 unsigned long addr = start;
1289 int err = 0;
1290
1291 while (addr < end) {
1292 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1293 pagemap_entry_t pme = make_pme(0, 0);
1294 /* End of address space hole, which we mark as non-present. */
1295 unsigned long hole_end;
1296
1297 if (vma)
1298 hole_end = min(end, vma->vm_start);
1299 else
1300 hole_end = end;
1301
1302 for (; addr < hole_end; addr += PAGE_SIZE) {
1303 err = add_to_pagemap(addr, &pme, pm);
1304 if (err)
1305 goto out;
1306 }
1307
1308 if (!vma)
1309 break;
1310
1311 /* Addresses in the VMA. */
1312 if (vma->vm_flags & VM_SOFTDIRTY)
1313 pme = make_pme(0, PM_SOFT_DIRTY);
1314 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1315 err = add_to_pagemap(addr, &pme, pm);
1316 if (err)
1317 goto out;
1318 }
1319 }
1320out:
1321 return err;
1322}
1323
1324static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1325 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1326{
1327 u64 frame = 0, flags = 0;
1328 struct page *page = NULL;
1329
1330 if (pte_present(pte)) {
1331 if (pm->show_pfn)
1332 frame = pte_pfn(pte);
1333 flags |= PM_PRESENT;
1334 page = vm_normal_page(vma, addr, pte);
1335 if (pte_soft_dirty(pte))
1336 flags |= PM_SOFT_DIRTY;
1337 } else if (is_swap_pte(pte)) {
1338 swp_entry_t entry;
1339 if (pte_swp_soft_dirty(pte))
1340 flags |= PM_SOFT_DIRTY;
1341 entry = pte_to_swp_entry(pte);
1342 if (pm->show_pfn)
1343 frame = swp_type(entry) |
1344 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1345 flags |= PM_SWAP;
1346 if (is_migration_entry(entry))
1347 page = migration_entry_to_page(entry);
1348
1349 if (is_device_private_entry(entry))
1350 page = device_private_entry_to_page(entry);
1351 }
1352
1353 if (page && !PageAnon(page))
1354 flags |= PM_FILE;
1355 if (page && page_mapcount(page) == 1)
1356 flags |= PM_MMAP_EXCLUSIVE;
1357 if (vma->vm_flags & VM_SOFTDIRTY)
1358 flags |= PM_SOFT_DIRTY;
1359
1360 return make_pme(frame, flags);
1361}
1362
1363static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1364 struct mm_walk *walk)
1365{
1366 struct vm_area_struct *vma = walk->vma;
1367 struct pagemapread *pm = walk->private;
1368 spinlock_t *ptl;
1369 pte_t *pte, *orig_pte;
1370 int err = 0;
1371
1372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1373 ptl = pmd_trans_huge_lock(pmdp, vma);
1374 if (ptl) {
1375 u64 flags = 0, frame = 0;
1376 pmd_t pmd = *pmdp;
1377 struct page *page = NULL;
1378
1379 if (vma->vm_flags & VM_SOFTDIRTY)
1380 flags |= PM_SOFT_DIRTY;
1381
1382 if (pmd_present(pmd)) {
1383 page = pmd_page(pmd);
1384
1385 flags |= PM_PRESENT;
1386 if (pmd_soft_dirty(pmd))
1387 flags |= PM_SOFT_DIRTY;
1388 if (pm->show_pfn)
1389 frame = pmd_pfn(pmd) +
1390 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1391 }
1392#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1393 else if (is_swap_pmd(pmd)) {
1394 swp_entry_t entry = pmd_to_swp_entry(pmd);
1395 unsigned long offset;
1396
1397 if (pm->show_pfn) {
1398 offset = swp_offset(entry) +
1399 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1400 frame = swp_type(entry) |
1401 (offset << MAX_SWAPFILES_SHIFT);
1402 }
1403 flags |= PM_SWAP;
1404 if (pmd_swp_soft_dirty(pmd))
1405 flags |= PM_SOFT_DIRTY;
1406 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1407 page = migration_entry_to_page(entry);
1408 }
1409#endif
1410
1411 if (page && page_mapcount(page) == 1)
1412 flags |= PM_MMAP_EXCLUSIVE;
1413
1414 for (; addr != end; addr += PAGE_SIZE) {
1415 pagemap_entry_t pme = make_pme(frame, flags);
1416
1417 err = add_to_pagemap(addr, &pme, pm);
1418 if (err)
1419 break;
1420 if (pm->show_pfn) {
1421 if (flags & PM_PRESENT)
1422 frame++;
1423 else if (flags & PM_SWAP)
1424 frame += (1 << MAX_SWAPFILES_SHIFT);
1425 }
1426 }
1427 spin_unlock(ptl);
1428 return err;
1429 }
1430
1431 if (pmd_trans_unstable(pmdp))
1432 return 0;
1433#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1434
1435 /*
1436 * We can assume that @vma always points to a valid one and @end never
1437 * goes beyond vma->vm_end.
1438 */
1439 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1440 for (; addr < end; pte++, addr += PAGE_SIZE) {
1441 pagemap_entry_t pme;
1442
1443 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1444 err = add_to_pagemap(addr, &pme, pm);
1445 if (err)
1446 break;
1447 }
1448 pte_unmap_unlock(orig_pte, ptl);
1449
1450 cond_resched();
1451
1452 return err;
1453}
1454
1455#ifdef CONFIG_HUGETLB_PAGE
1456/* This function walks within one hugetlb entry in the single call */
1457static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1458 unsigned long addr, unsigned long end,
1459 struct mm_walk *walk)
1460{
1461 struct pagemapread *pm = walk->private;
1462 struct vm_area_struct *vma = walk->vma;
1463 u64 flags = 0, frame = 0;
1464 int err = 0;
1465 pte_t pte;
1466
1467 if (vma->vm_flags & VM_SOFTDIRTY)
1468 flags |= PM_SOFT_DIRTY;
1469
1470 pte = huge_ptep_get(ptep);
1471 if (pte_present(pte)) {
1472 struct page *page = pte_page(pte);
1473
1474 if (!PageAnon(page))
1475 flags |= PM_FILE;
1476
1477 if (page_mapcount(page) == 1)
1478 flags |= PM_MMAP_EXCLUSIVE;
1479
1480 flags |= PM_PRESENT;
1481 if (pm->show_pfn)
1482 frame = pte_pfn(pte) +
1483 ((addr & ~hmask) >> PAGE_SHIFT);
1484 }
1485
1486 for (; addr != end; addr += PAGE_SIZE) {
1487 pagemap_entry_t pme = make_pme(frame, flags);
1488
1489 err = add_to_pagemap(addr, &pme, pm);
1490 if (err)
1491 return err;
1492 if (pm->show_pfn && (flags & PM_PRESENT))
1493 frame++;
1494 }
1495
1496 cond_resched();
1497
1498 return err;
1499}
1500#else
1501#define pagemap_hugetlb_range NULL
1502#endif /* HUGETLB_PAGE */
1503
1504static const struct mm_walk_ops pagemap_ops = {
1505 .pmd_entry = pagemap_pmd_range,
1506 .pte_hole = pagemap_pte_hole,
1507 .hugetlb_entry = pagemap_hugetlb_range,
1508};
1509
1510/*
1511 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1512 *
1513 * For each page in the address space, this file contains one 64-bit entry
1514 * consisting of the following:
1515 *
1516 * Bits 0-54 page frame number (PFN) if present
1517 * Bits 0-4 swap type if swapped
1518 * Bits 5-54 swap offset if swapped
1519 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1520 * Bit 56 page exclusively mapped
1521 * Bits 57-60 zero
1522 * Bit 61 page is file-page or shared-anon
1523 * Bit 62 page swapped
1524 * Bit 63 page present
1525 *
1526 * If the page is not present but in swap, then the PFN contains an
1527 * encoding of the swap file number and the page's offset into the
1528 * swap. Unmapped pages return a null PFN. This allows determining
1529 * precisely which pages are mapped (or in swap) and comparing mapped
1530 * pages between processes.
1531 *
1532 * Efficient users of this interface will use /proc/pid/maps to
1533 * determine which areas of memory are actually mapped and llseek to
1534 * skip over unmapped regions.
1535 */
1536static ssize_t pagemap_read(struct file *file, char __user *buf,
1537 size_t count, loff_t *ppos)
1538{
1539 struct mm_struct *mm = file->private_data;
1540 struct pagemapread pm;
1541 unsigned long src;
1542 unsigned long svpfn;
1543 unsigned long start_vaddr;
1544 unsigned long end_vaddr;
1545 int ret = 0, copied = 0;
1546
1547 if (!mm || !mmget_not_zero(mm))
1548 goto out;
1549
1550 ret = -EINVAL;
1551 /* file position must be aligned */
1552 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1553 goto out_mm;
1554
1555 ret = 0;
1556 if (!count)
1557 goto out_mm;
1558
1559 /* do not disclose physical addresses: attack vector */
1560 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1561
1562 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1563 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1564 ret = -ENOMEM;
1565 if (!pm.buffer)
1566 goto out_mm;
1567
1568 src = *ppos;
1569 svpfn = src / PM_ENTRY_BYTES;
1570 start_vaddr = svpfn << PAGE_SHIFT;
1571 end_vaddr = mm->task_size;
1572
1573 /* watch out for wraparound */
1574 if (svpfn > mm->task_size >> PAGE_SHIFT)
1575 start_vaddr = end_vaddr;
1576
1577 /*
1578 * The odds are that this will stop walking way
1579 * before end_vaddr, because the length of the
1580 * user buffer is tracked in "pm", and the walk
1581 * will stop when we hit the end of the buffer.
1582 */
1583 ret = 0;
1584 while (count && (start_vaddr < end_vaddr)) {
1585 int len;
1586 unsigned long end;
1587
1588 pm.pos = 0;
1589 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1590 /* overflow ? */
1591 if (end < start_vaddr || end > end_vaddr)
1592 end = end_vaddr;
1593 ret = down_read_killable(&mm->mmap_sem);
1594 if (ret)
1595 goto out_free;
1596 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1597 up_read(&mm->mmap_sem);
1598 start_vaddr = end;
1599
1600 len = min(count, PM_ENTRY_BYTES * pm.pos);
1601 if (copy_to_user(buf, pm.buffer, len)) {
1602 ret = -EFAULT;
1603 goto out_free;
1604 }
1605 copied += len;
1606 buf += len;
1607 count -= len;
1608 }
1609 *ppos += copied;
1610 if (!ret || ret == PM_END_OF_BUFFER)
1611 ret = copied;
1612
1613out_free:
1614 kfree(pm.buffer);
1615out_mm:
1616 mmput(mm);
1617out:
1618 return ret;
1619}
1620
1621static int pagemap_open(struct inode *inode, struct file *file)
1622{
1623 struct mm_struct *mm;
1624
1625 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1626 if (IS_ERR(mm))
1627 return PTR_ERR(mm);
1628 file->private_data = mm;
1629 return 0;
1630}
1631
1632static int pagemap_release(struct inode *inode, struct file *file)
1633{
1634 struct mm_struct *mm = file->private_data;
1635
1636 if (mm)
1637 mmdrop(mm);
1638 return 0;
1639}
1640
1641const struct file_operations proc_pagemap_operations = {
1642 .llseek = mem_lseek, /* borrow this */
1643 .read = pagemap_read,
1644 .open = pagemap_open,
1645 .release = pagemap_release,
1646};
1647#endif /* CONFIG_PROC_PAGE_MONITOR */
1648
1649#ifdef CONFIG_NUMA
1650
1651struct numa_maps {
1652 unsigned long pages;
1653 unsigned long anon;
1654 unsigned long active;
1655 unsigned long writeback;
1656 unsigned long mapcount_max;
1657 unsigned long dirty;
1658 unsigned long swapcache;
1659 unsigned long node[MAX_NUMNODES];
1660};
1661
1662struct numa_maps_private {
1663 struct proc_maps_private proc_maps;
1664 struct numa_maps md;
1665};
1666
1667static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1668 unsigned long nr_pages)
1669{
1670 int count = page_mapcount(page);
1671
1672 md->pages += nr_pages;
1673 if (pte_dirty || PageDirty(page))
1674 md->dirty += nr_pages;
1675
1676 if (PageSwapCache(page))
1677 md->swapcache += nr_pages;
1678
1679 if (PageActive(page) || PageUnevictable(page))
1680 md->active += nr_pages;
1681
1682 if (PageWriteback(page))
1683 md->writeback += nr_pages;
1684
1685 if (PageAnon(page))
1686 md->anon += nr_pages;
1687
1688 if (count > md->mapcount_max)
1689 md->mapcount_max = count;
1690
1691 md->node[page_to_nid(page)] += nr_pages;
1692}
1693
1694static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1695 unsigned long addr)
1696{
1697 struct page *page;
1698 int nid;
1699
1700 if (!pte_present(pte))
1701 return NULL;
1702
1703 page = vm_normal_page(vma, addr, pte);
1704 if (!page)
1705 return NULL;
1706
1707 if (PageReserved(page))
1708 return NULL;
1709
1710 nid = page_to_nid(page);
1711 if (!node_isset(nid, node_states[N_MEMORY]))
1712 return NULL;
1713
1714 return page;
1715}
1716
1717#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1718static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1719 struct vm_area_struct *vma,
1720 unsigned long addr)
1721{
1722 struct page *page;
1723 int nid;
1724
1725 if (!pmd_present(pmd))
1726 return NULL;
1727
1728 page = vm_normal_page_pmd(vma, addr, pmd);
1729 if (!page)
1730 return NULL;
1731
1732 if (PageReserved(page))
1733 return NULL;
1734
1735 nid = page_to_nid(page);
1736 if (!node_isset(nid, node_states[N_MEMORY]))
1737 return NULL;
1738
1739 return page;
1740}
1741#endif
1742
1743static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1744 unsigned long end, struct mm_walk *walk)
1745{
1746 struct numa_maps *md = walk->private;
1747 struct vm_area_struct *vma = walk->vma;
1748 spinlock_t *ptl;
1749 pte_t *orig_pte;
1750 pte_t *pte;
1751
1752#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1753 ptl = pmd_trans_huge_lock(pmd, vma);
1754 if (ptl) {
1755 struct page *page;
1756
1757 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1758 if (page)
1759 gather_stats(page, md, pmd_dirty(*pmd),
1760 HPAGE_PMD_SIZE/PAGE_SIZE);
1761 spin_unlock(ptl);
1762 return 0;
1763 }
1764
1765 if (pmd_trans_unstable(pmd))
1766 return 0;
1767#endif
1768 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1769 do {
1770 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1771 if (!page)
1772 continue;
1773 gather_stats(page, md, pte_dirty(*pte), 1);
1774
1775 } while (pte++, addr += PAGE_SIZE, addr != end);
1776 pte_unmap_unlock(orig_pte, ptl);
1777 cond_resched();
1778 return 0;
1779}
1780#ifdef CONFIG_HUGETLB_PAGE
1781static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1782 unsigned long addr, unsigned long end, struct mm_walk *walk)
1783{
1784 pte_t huge_pte = huge_ptep_get(pte);
1785 struct numa_maps *md;
1786 struct page *page;
1787
1788 if (!pte_present(huge_pte))
1789 return 0;
1790
1791 page = pte_page(huge_pte);
1792 if (!page)
1793 return 0;
1794
1795 md = walk->private;
1796 gather_stats(page, md, pte_dirty(huge_pte), 1);
1797 return 0;
1798}
1799
1800#else
1801static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1802 unsigned long addr, unsigned long end, struct mm_walk *walk)
1803{
1804 return 0;
1805}
1806#endif
1807
1808static const struct mm_walk_ops show_numa_ops = {
1809 .hugetlb_entry = gather_hugetlb_stats,
1810 .pmd_entry = gather_pte_stats,
1811};
1812
1813/*
1814 * Display pages allocated per node and memory policy via /proc.
1815 */
1816static int show_numa_map(struct seq_file *m, void *v)
1817{
1818 struct numa_maps_private *numa_priv = m->private;
1819 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1820 struct vm_area_struct *vma = v;
1821 struct numa_maps *md = &numa_priv->md;
1822 struct file *file = vma->vm_file;
1823 struct mm_struct *mm = vma->vm_mm;
1824 struct mempolicy *pol;
1825 char buffer[64];
1826 int nid;
1827
1828 if (!mm)
1829 return 0;
1830
1831 /* Ensure we start with an empty set of numa_maps statistics. */
1832 memset(md, 0, sizeof(*md));
1833
1834 pol = __get_vma_policy(vma, vma->vm_start);
1835 if (pol) {
1836 mpol_to_str(buffer, sizeof(buffer), pol);
1837 mpol_cond_put(pol);
1838 } else {
1839 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1840 }
1841
1842 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1843
1844 if (file) {
1845 seq_puts(m, " file=");
1846 seq_file_path(m, file, "\n\t= ");
1847 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1848 seq_puts(m, " heap");
1849 } else if (is_stack(vma)) {
1850 seq_puts(m, " stack");
1851 }
1852
1853 if (is_vm_hugetlb_page(vma))
1854 seq_puts(m, " huge");
1855
1856 /* mmap_sem is held by m_start */
1857 walk_page_vma(vma, &show_numa_ops, md);
1858
1859 if (!md->pages)
1860 goto out;
1861
1862 if (md->anon)
1863 seq_printf(m, " anon=%lu", md->anon);
1864
1865 if (md->dirty)
1866 seq_printf(m, " dirty=%lu", md->dirty);
1867
1868 if (md->pages != md->anon && md->pages != md->dirty)
1869 seq_printf(m, " mapped=%lu", md->pages);
1870
1871 if (md->mapcount_max > 1)
1872 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1873
1874 if (md->swapcache)
1875 seq_printf(m, " swapcache=%lu", md->swapcache);
1876
1877 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1878 seq_printf(m, " active=%lu", md->active);
1879
1880 if (md->writeback)
1881 seq_printf(m, " writeback=%lu", md->writeback);
1882
1883 for_each_node_state(nid, N_MEMORY)
1884 if (md->node[nid])
1885 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1886
1887 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1888out:
1889 seq_putc(m, '\n');
1890 m_cache_vma(m, vma);
1891 return 0;
1892}
1893
1894static const struct seq_operations proc_pid_numa_maps_op = {
1895 .start = m_start,
1896 .next = m_next,
1897 .stop = m_stop,
1898 .show = show_numa_map,
1899};
1900
1901static int pid_numa_maps_open(struct inode *inode, struct file *file)
1902{
1903 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1904 sizeof(struct numa_maps_private));
1905}
1906
1907const struct file_operations proc_pid_numa_maps_operations = {
1908 .open = pid_numa_maps_open,
1909 .read = seq_read,
1910 .llseek = seq_lseek,
1911 .release = proc_map_release,
1912};
1913
1914#endif /* CONFIG_NUMA */