Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/fs.h>
20#include <linux/bootmem.h>
21#include <asm/fpu.h>
22#include <asm/page.h>
23#include <asm/cacheflush.h>
24#include <asm/mmu_context.h>
25#include <asm/pgtable.h>
26
27#include <linux/kvm_host.h>
28
29#include "interrupt.h"
30#include "commpage.h"
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35#ifndef VECTORSPACING
36#define VECTORSPACING 0x100 /* for EI/VI mode */
37#endif
38
39#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
40struct kvm_stats_debugfs_item debugfs_entries[] = {
41 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
42 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
43 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
44 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
45 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
46 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
47 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
48 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
49 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
50 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
51 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
52 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
53 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
54 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
55 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
56 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
57 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
58 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
59 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
60 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
61 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
63 {NULL}
64};
65
66static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67{
68 int i;
69
70 for_each_possible_cpu(i) {
71 vcpu->arch.guest_kernel_asid[i] = 0;
72 vcpu->arch.guest_user_asid[i] = 0;
73 }
74
75 return 0;
76}
77
78/*
79 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
80 * Config7, so we are "runnable" if interrupts are pending
81 */
82int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
83{
84 return !!(vcpu->arch.pending_exceptions);
85}
86
87int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88{
89 return 1;
90}
91
92int kvm_arch_hardware_enable(void)
93{
94 return 0;
95}
96
97int kvm_arch_hardware_setup(void)
98{
99 return 0;
100}
101
102void kvm_arch_check_processor_compat(void *rtn)
103{
104 *(int *)rtn = 0;
105}
106
107static void kvm_mips_init_tlbs(struct kvm *kvm)
108{
109 unsigned long wired;
110
111 /*
112 * Add a wired entry to the TLB, it is used to map the commpage to
113 * the Guest kernel
114 */
115 wired = read_c0_wired();
116 write_c0_wired(wired + 1);
117 mtc0_tlbw_hazard();
118 kvm->arch.commpage_tlb = wired;
119
120 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
121 kvm->arch.commpage_tlb);
122}
123
124static void kvm_mips_init_vm_percpu(void *arg)
125{
126 struct kvm *kvm = (struct kvm *)arg;
127
128 kvm_mips_init_tlbs(kvm);
129 kvm_mips_callbacks->vm_init(kvm);
130
131}
132
133int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134{
135 if (atomic_inc_return(&kvm_mips_instance) == 1) {
136 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
137 __func__);
138 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
139 }
140
141 return 0;
142}
143
144bool kvm_arch_has_vcpu_debugfs(void)
145{
146 return false;
147}
148
149int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
150{
151 return 0;
152}
153
154void kvm_mips_free_vcpus(struct kvm *kvm)
155{
156 unsigned int i;
157 struct kvm_vcpu *vcpu;
158
159 /* Put the pages we reserved for the guest pmap */
160 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
161 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
162 kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
163 }
164 kfree(kvm->arch.guest_pmap);
165
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_arch_vcpu_free(vcpu);
168 }
169
170 mutex_lock(&kvm->lock);
171
172 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173 kvm->vcpus[i] = NULL;
174
175 atomic_set(&kvm->online_vcpus, 0);
176
177 mutex_unlock(&kvm->lock);
178}
179
180static void kvm_mips_uninit_tlbs(void *arg)
181{
182 /* Restore wired count */
183 write_c0_wired(0);
184 mtc0_tlbw_hazard();
185 /* Clear out all the TLBs */
186 kvm_local_flush_tlb_all();
187}
188
189void kvm_arch_destroy_vm(struct kvm *kvm)
190{
191 kvm_mips_free_vcpus(kvm);
192
193 /* If this is the last instance, restore wired count */
194 if (atomic_dec_return(&kvm_mips_instance) == 0) {
195 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
196 __func__);
197 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
198 }
199}
200
201long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
202 unsigned long arg)
203{
204 return -ENOIOCTLCMD;
205}
206
207int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
208 unsigned long npages)
209{
210 return 0;
211}
212
213int kvm_arch_prepare_memory_region(struct kvm *kvm,
214 struct kvm_memory_slot *memslot,
215 const struct kvm_userspace_memory_region *mem,
216 enum kvm_mr_change change)
217{
218 return 0;
219}
220
221void kvm_arch_commit_memory_region(struct kvm *kvm,
222 const struct kvm_userspace_memory_region *mem,
223 const struct kvm_memory_slot *old,
224 const struct kvm_memory_slot *new,
225 enum kvm_mr_change change)
226{
227 unsigned long npages = 0;
228 int i;
229
230 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
231 __func__, kvm, mem->slot, mem->guest_phys_addr,
232 mem->memory_size, mem->userspace_addr);
233
234 /* Setup Guest PMAP table */
235 if (!kvm->arch.guest_pmap) {
236 if (mem->slot == 0)
237 npages = mem->memory_size >> PAGE_SHIFT;
238
239 if (npages) {
240 kvm->arch.guest_pmap_npages = npages;
241 kvm->arch.guest_pmap =
242 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
243
244 if (!kvm->arch.guest_pmap) {
245 kvm_err("Failed to allocate guest PMAP\n");
246 return;
247 }
248
249 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
250 npages, kvm->arch.guest_pmap);
251
252 /* Now setup the page table */
253 for (i = 0; i < npages; i++)
254 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
255 }
256 }
257}
258
259static inline void dump_handler(const char *symbol, void *start, void *end)
260{
261 u32 *p;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (p = start; p < (u32 *)end; ++p)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
277{
278 int err, size;
279 void *gebase, *p, *handler;
280 int i;
281
282 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
283
284 if (!vcpu) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = kvm_vcpu_init(vcpu, kvm, id);
290
291 if (err)
292 goto out_free_cpu;
293
294 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
295
296 /*
297 * Allocate space for host mode exception handlers that handle
298 * guest mode exits
299 */
300 if (cpu_has_veic || cpu_has_vint)
301 size = 0x200 + VECTORSPACING * 64;
302 else
303 size = 0x4000;
304
305 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
306
307 if (!gebase) {
308 err = -ENOMEM;
309 goto out_uninit_cpu;
310 }
311 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
312 ALIGN(size, PAGE_SIZE), gebase);
313
314 /*
315 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
316 * limits us to the low 512MB of physical address space. If the memory
317 * we allocate is out of range, just give up now.
318 */
319 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
320 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
321 gebase);
322 err = -ENOMEM;
323 goto out_free_gebase;
324 }
325
326 /* Save new ebase */
327 vcpu->arch.guest_ebase = gebase;
328
329 /* Build guest exception vectors dynamically in unmapped memory */
330 handler = gebase + 0x2000;
331
332 /* TLB Refill, EXL = 0 */
333 kvm_mips_build_exception(gebase, handler);
334
335 /* General Exception Entry point */
336 kvm_mips_build_exception(gebase + 0x180, handler);
337
338 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
339 for (i = 0; i < 8; i++) {
340 kvm_debug("L1 Vectored handler @ %p\n",
341 gebase + 0x200 + (i * VECTORSPACING));
342 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
343 handler);
344 }
345
346 /* General exit handler */
347 p = handler;
348 p = kvm_mips_build_exit(p);
349
350 /* Guest entry routine */
351 vcpu->arch.vcpu_run = p;
352 p = kvm_mips_build_vcpu_run(p);
353
354 /* Dump the generated code */
355 pr_debug("#include <asm/asm.h>\n");
356 pr_debug("#include <asm/regdef.h>\n");
357 pr_debug("\n");
358 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
359 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
360 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
361
362 /* Invalidate the icache for these ranges */
363 flush_icache_range((unsigned long)gebase,
364 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
365
366 /*
367 * Allocate comm page for guest kernel, a TLB will be reserved for
368 * mapping GVA @ 0xFFFF8000 to this page
369 */
370 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
371
372 if (!vcpu->arch.kseg0_commpage) {
373 err = -ENOMEM;
374 goto out_free_gebase;
375 }
376
377 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
378 kvm_mips_commpage_init(vcpu);
379
380 /* Init */
381 vcpu->arch.last_sched_cpu = -1;
382
383 /* Start off the timer */
384 kvm_mips_init_count(vcpu);
385
386 return vcpu;
387
388out_free_gebase:
389 kfree(gebase);
390
391out_uninit_cpu:
392 kvm_vcpu_uninit(vcpu);
393
394out_free_cpu:
395 kfree(vcpu);
396
397out:
398 return ERR_PTR(err);
399}
400
401void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
402{
403 hrtimer_cancel(&vcpu->arch.comparecount_timer);
404
405 kvm_vcpu_uninit(vcpu);
406
407 kvm_mips_dump_stats(vcpu);
408
409 kfree(vcpu->arch.guest_ebase);
410 kfree(vcpu->arch.kseg0_commpage);
411 kfree(vcpu);
412}
413
414void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
415{
416 kvm_arch_vcpu_free(vcpu);
417}
418
419int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
420 struct kvm_guest_debug *dbg)
421{
422 return -ENOIOCTLCMD;
423}
424
425/* Must be called with preemption disabled, just before entering guest */
426static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
427{
428 struct mips_coproc *cop0 = vcpu->arch.cop0;
429 int i, cpu = smp_processor_id();
430 unsigned int gasid;
431
432 /*
433 * Lazy host ASID regeneration for guest user mode.
434 * If the guest ASID has changed since the last guest usermode
435 * execution, regenerate the host ASID so as to invalidate stale TLB
436 * entries.
437 */
438 if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
439 gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
440 if (gasid != vcpu->arch.last_user_gasid) {
441 kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
442 vcpu);
443 vcpu->arch.guest_user_asid[cpu] =
444 vcpu->arch.guest_user_mm.context.asid[cpu];
445 for_each_possible_cpu(i)
446 if (i != cpu)
447 vcpu->arch.guest_user_asid[cpu] = 0;
448 vcpu->arch.last_user_gasid = gasid;
449 }
450 }
451}
452
453int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
454{
455 int r = 0;
456 sigset_t sigsaved;
457
458 if (vcpu->sigset_active)
459 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
460
461 if (vcpu->mmio_needed) {
462 if (!vcpu->mmio_is_write)
463 kvm_mips_complete_mmio_load(vcpu, run);
464 vcpu->mmio_needed = 0;
465 }
466
467 lose_fpu(1);
468
469 local_irq_disable();
470 /* Check if we have any exceptions/interrupts pending */
471 kvm_mips_deliver_interrupts(vcpu,
472 kvm_read_c0_guest_cause(vcpu->arch.cop0));
473
474 guest_enter_irqoff();
475
476 /* Disable hardware page table walking while in guest */
477 htw_stop();
478
479 trace_kvm_enter(vcpu);
480
481 kvm_mips_check_asids(vcpu);
482
483 r = vcpu->arch.vcpu_run(run, vcpu);
484 trace_kvm_out(vcpu);
485
486 /* Re-enable HTW before enabling interrupts */
487 htw_start();
488
489 guest_exit_irqoff();
490 local_irq_enable();
491
492 if (vcpu->sigset_active)
493 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
494
495 return r;
496}
497
498int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
499 struct kvm_mips_interrupt *irq)
500{
501 int intr = (int)irq->irq;
502 struct kvm_vcpu *dvcpu = NULL;
503
504 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
505 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
506 (int)intr);
507
508 if (irq->cpu == -1)
509 dvcpu = vcpu;
510 else
511 dvcpu = vcpu->kvm->vcpus[irq->cpu];
512
513 if (intr == 2 || intr == 3 || intr == 4) {
514 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
515
516 } else if (intr == -2 || intr == -3 || intr == -4) {
517 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
518 } else {
519 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
520 irq->cpu, irq->irq);
521 return -EINVAL;
522 }
523
524 dvcpu->arch.wait = 0;
525
526 if (swait_active(&dvcpu->wq))
527 swake_up(&dvcpu->wq);
528
529 return 0;
530}
531
532int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
533 struct kvm_mp_state *mp_state)
534{
535 return -ENOIOCTLCMD;
536}
537
538int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
539 struct kvm_mp_state *mp_state)
540{
541 return -ENOIOCTLCMD;
542}
543
544static u64 kvm_mips_get_one_regs[] = {
545 KVM_REG_MIPS_R0,
546 KVM_REG_MIPS_R1,
547 KVM_REG_MIPS_R2,
548 KVM_REG_MIPS_R3,
549 KVM_REG_MIPS_R4,
550 KVM_REG_MIPS_R5,
551 KVM_REG_MIPS_R6,
552 KVM_REG_MIPS_R7,
553 KVM_REG_MIPS_R8,
554 KVM_REG_MIPS_R9,
555 KVM_REG_MIPS_R10,
556 KVM_REG_MIPS_R11,
557 KVM_REG_MIPS_R12,
558 KVM_REG_MIPS_R13,
559 KVM_REG_MIPS_R14,
560 KVM_REG_MIPS_R15,
561 KVM_REG_MIPS_R16,
562 KVM_REG_MIPS_R17,
563 KVM_REG_MIPS_R18,
564 KVM_REG_MIPS_R19,
565 KVM_REG_MIPS_R20,
566 KVM_REG_MIPS_R21,
567 KVM_REG_MIPS_R22,
568 KVM_REG_MIPS_R23,
569 KVM_REG_MIPS_R24,
570 KVM_REG_MIPS_R25,
571 KVM_REG_MIPS_R26,
572 KVM_REG_MIPS_R27,
573 KVM_REG_MIPS_R28,
574 KVM_REG_MIPS_R29,
575 KVM_REG_MIPS_R30,
576 KVM_REG_MIPS_R31,
577
578#ifndef CONFIG_CPU_MIPSR6
579 KVM_REG_MIPS_HI,
580 KVM_REG_MIPS_LO,
581#endif
582 KVM_REG_MIPS_PC,
583
584 KVM_REG_MIPS_CP0_INDEX,
585 KVM_REG_MIPS_CP0_CONTEXT,
586 KVM_REG_MIPS_CP0_USERLOCAL,
587 KVM_REG_MIPS_CP0_PAGEMASK,
588 KVM_REG_MIPS_CP0_WIRED,
589 KVM_REG_MIPS_CP0_HWRENA,
590 KVM_REG_MIPS_CP0_BADVADDR,
591 KVM_REG_MIPS_CP0_COUNT,
592 KVM_REG_MIPS_CP0_ENTRYHI,
593 KVM_REG_MIPS_CP0_COMPARE,
594 KVM_REG_MIPS_CP0_STATUS,
595 KVM_REG_MIPS_CP0_CAUSE,
596 KVM_REG_MIPS_CP0_EPC,
597 KVM_REG_MIPS_CP0_PRID,
598 KVM_REG_MIPS_CP0_CONFIG,
599 KVM_REG_MIPS_CP0_CONFIG1,
600 KVM_REG_MIPS_CP0_CONFIG2,
601 KVM_REG_MIPS_CP0_CONFIG3,
602 KVM_REG_MIPS_CP0_CONFIG4,
603 KVM_REG_MIPS_CP0_CONFIG5,
604 KVM_REG_MIPS_CP0_CONFIG7,
605 KVM_REG_MIPS_CP0_ERROREPC,
606
607 KVM_REG_MIPS_COUNT_CTL,
608 KVM_REG_MIPS_COUNT_RESUME,
609 KVM_REG_MIPS_COUNT_HZ,
610};
611
612static u64 kvm_mips_get_one_regs_fpu[] = {
613 KVM_REG_MIPS_FCR_IR,
614 KVM_REG_MIPS_FCR_CSR,
615};
616
617static u64 kvm_mips_get_one_regs_msa[] = {
618 KVM_REG_MIPS_MSA_IR,
619 KVM_REG_MIPS_MSA_CSR,
620};
621
622static u64 kvm_mips_get_one_regs_kscratch[] = {
623 KVM_REG_MIPS_CP0_KSCRATCH1,
624 KVM_REG_MIPS_CP0_KSCRATCH2,
625 KVM_REG_MIPS_CP0_KSCRATCH3,
626 KVM_REG_MIPS_CP0_KSCRATCH4,
627 KVM_REG_MIPS_CP0_KSCRATCH5,
628 KVM_REG_MIPS_CP0_KSCRATCH6,
629};
630
631static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
632{
633 unsigned long ret;
634
635 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
636 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
637 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
638 /* odd doubles */
639 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
640 ret += 16;
641 }
642 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
643 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
644 ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
645 ret += kvm_mips_callbacks->num_regs(vcpu);
646
647 return ret;
648}
649
650static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
651{
652 u64 index;
653 unsigned int i;
654
655 if (copy_to_user(indices, kvm_mips_get_one_regs,
656 sizeof(kvm_mips_get_one_regs)))
657 return -EFAULT;
658 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
659
660 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
661 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
662 sizeof(kvm_mips_get_one_regs_fpu)))
663 return -EFAULT;
664 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
665
666 for (i = 0; i < 32; ++i) {
667 index = KVM_REG_MIPS_FPR_32(i);
668 if (copy_to_user(indices, &index, sizeof(index)))
669 return -EFAULT;
670 ++indices;
671
672 /* skip odd doubles if no F64 */
673 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
674 continue;
675
676 index = KVM_REG_MIPS_FPR_64(i);
677 if (copy_to_user(indices, &index, sizeof(index)))
678 return -EFAULT;
679 ++indices;
680 }
681 }
682
683 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
684 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
685 sizeof(kvm_mips_get_one_regs_msa)))
686 return -EFAULT;
687 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
688
689 for (i = 0; i < 32; ++i) {
690 index = KVM_REG_MIPS_VEC_128(i);
691 if (copy_to_user(indices, &index, sizeof(index)))
692 return -EFAULT;
693 ++indices;
694 }
695 }
696
697 for (i = 0; i < 6; ++i) {
698 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
699 continue;
700
701 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
702 sizeof(kvm_mips_get_one_regs_kscratch[i])))
703 return -EFAULT;
704 ++indices;
705 }
706
707 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
708}
709
710static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
711 const struct kvm_one_reg *reg)
712{
713 struct mips_coproc *cop0 = vcpu->arch.cop0;
714 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
715 int ret;
716 s64 v;
717 s64 vs[2];
718 unsigned int idx;
719
720 switch (reg->id) {
721 /* General purpose registers */
722 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
723 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
724 break;
725#ifndef CONFIG_CPU_MIPSR6
726 case KVM_REG_MIPS_HI:
727 v = (long)vcpu->arch.hi;
728 break;
729 case KVM_REG_MIPS_LO:
730 v = (long)vcpu->arch.lo;
731 break;
732#endif
733 case KVM_REG_MIPS_PC:
734 v = (long)vcpu->arch.pc;
735 break;
736
737 /* Floating point registers */
738 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
739 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
740 return -EINVAL;
741 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
742 /* Odd singles in top of even double when FR=0 */
743 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
744 v = get_fpr32(&fpu->fpr[idx], 0);
745 else
746 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
747 break;
748 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
749 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
750 return -EINVAL;
751 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
752 /* Can't access odd doubles in FR=0 mode */
753 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
754 return -EINVAL;
755 v = get_fpr64(&fpu->fpr[idx], 0);
756 break;
757 case KVM_REG_MIPS_FCR_IR:
758 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
759 return -EINVAL;
760 v = boot_cpu_data.fpu_id;
761 break;
762 case KVM_REG_MIPS_FCR_CSR:
763 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
764 return -EINVAL;
765 v = fpu->fcr31;
766 break;
767
768 /* MIPS SIMD Architecture (MSA) registers */
769 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
770 if (!kvm_mips_guest_has_msa(&vcpu->arch))
771 return -EINVAL;
772 /* Can't access MSA registers in FR=0 mode */
773 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
774 return -EINVAL;
775 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
776#ifdef CONFIG_CPU_LITTLE_ENDIAN
777 /* least significant byte first */
778 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
779 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
780#else
781 /* most significant byte first */
782 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
783 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
784#endif
785 break;
786 case KVM_REG_MIPS_MSA_IR:
787 if (!kvm_mips_guest_has_msa(&vcpu->arch))
788 return -EINVAL;
789 v = boot_cpu_data.msa_id;
790 break;
791 case KVM_REG_MIPS_MSA_CSR:
792 if (!kvm_mips_guest_has_msa(&vcpu->arch))
793 return -EINVAL;
794 v = fpu->msacsr;
795 break;
796
797 /* Co-processor 0 registers */
798 case KVM_REG_MIPS_CP0_INDEX:
799 v = (long)kvm_read_c0_guest_index(cop0);
800 break;
801 case KVM_REG_MIPS_CP0_CONTEXT:
802 v = (long)kvm_read_c0_guest_context(cop0);
803 break;
804 case KVM_REG_MIPS_CP0_USERLOCAL:
805 v = (long)kvm_read_c0_guest_userlocal(cop0);
806 break;
807 case KVM_REG_MIPS_CP0_PAGEMASK:
808 v = (long)kvm_read_c0_guest_pagemask(cop0);
809 break;
810 case KVM_REG_MIPS_CP0_WIRED:
811 v = (long)kvm_read_c0_guest_wired(cop0);
812 break;
813 case KVM_REG_MIPS_CP0_HWRENA:
814 v = (long)kvm_read_c0_guest_hwrena(cop0);
815 break;
816 case KVM_REG_MIPS_CP0_BADVADDR:
817 v = (long)kvm_read_c0_guest_badvaddr(cop0);
818 break;
819 case KVM_REG_MIPS_CP0_ENTRYHI:
820 v = (long)kvm_read_c0_guest_entryhi(cop0);
821 break;
822 case KVM_REG_MIPS_CP0_COMPARE:
823 v = (long)kvm_read_c0_guest_compare(cop0);
824 break;
825 case KVM_REG_MIPS_CP0_STATUS:
826 v = (long)kvm_read_c0_guest_status(cop0);
827 break;
828 case KVM_REG_MIPS_CP0_CAUSE:
829 v = (long)kvm_read_c0_guest_cause(cop0);
830 break;
831 case KVM_REG_MIPS_CP0_EPC:
832 v = (long)kvm_read_c0_guest_epc(cop0);
833 break;
834 case KVM_REG_MIPS_CP0_PRID:
835 v = (long)kvm_read_c0_guest_prid(cop0);
836 break;
837 case KVM_REG_MIPS_CP0_CONFIG:
838 v = (long)kvm_read_c0_guest_config(cop0);
839 break;
840 case KVM_REG_MIPS_CP0_CONFIG1:
841 v = (long)kvm_read_c0_guest_config1(cop0);
842 break;
843 case KVM_REG_MIPS_CP0_CONFIG2:
844 v = (long)kvm_read_c0_guest_config2(cop0);
845 break;
846 case KVM_REG_MIPS_CP0_CONFIG3:
847 v = (long)kvm_read_c0_guest_config3(cop0);
848 break;
849 case KVM_REG_MIPS_CP0_CONFIG4:
850 v = (long)kvm_read_c0_guest_config4(cop0);
851 break;
852 case KVM_REG_MIPS_CP0_CONFIG5:
853 v = (long)kvm_read_c0_guest_config5(cop0);
854 break;
855 case KVM_REG_MIPS_CP0_CONFIG7:
856 v = (long)kvm_read_c0_guest_config7(cop0);
857 break;
858 case KVM_REG_MIPS_CP0_ERROREPC:
859 v = (long)kvm_read_c0_guest_errorepc(cop0);
860 break;
861 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
862 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
863 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
864 return -EINVAL;
865 switch (idx) {
866 case 2:
867 v = (long)kvm_read_c0_guest_kscratch1(cop0);
868 break;
869 case 3:
870 v = (long)kvm_read_c0_guest_kscratch2(cop0);
871 break;
872 case 4:
873 v = (long)kvm_read_c0_guest_kscratch3(cop0);
874 break;
875 case 5:
876 v = (long)kvm_read_c0_guest_kscratch4(cop0);
877 break;
878 case 6:
879 v = (long)kvm_read_c0_guest_kscratch5(cop0);
880 break;
881 case 7:
882 v = (long)kvm_read_c0_guest_kscratch6(cop0);
883 break;
884 }
885 break;
886 /* registers to be handled specially */
887 default:
888 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
889 if (ret)
890 return ret;
891 break;
892 }
893 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
894 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
895
896 return put_user(v, uaddr64);
897 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
898 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
899 u32 v32 = (u32)v;
900
901 return put_user(v32, uaddr32);
902 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
903 void __user *uaddr = (void __user *)(long)reg->addr;
904
905 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
906 } else {
907 return -EINVAL;
908 }
909}
910
911static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
912 const struct kvm_one_reg *reg)
913{
914 struct mips_coproc *cop0 = vcpu->arch.cop0;
915 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
916 s64 v;
917 s64 vs[2];
918 unsigned int idx;
919
920 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
921 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
922
923 if (get_user(v, uaddr64) != 0)
924 return -EFAULT;
925 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
926 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
927 s32 v32;
928
929 if (get_user(v32, uaddr32) != 0)
930 return -EFAULT;
931 v = (s64)v32;
932 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
933 void __user *uaddr = (void __user *)(long)reg->addr;
934
935 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
936 } else {
937 return -EINVAL;
938 }
939
940 switch (reg->id) {
941 /* General purpose registers */
942 case KVM_REG_MIPS_R0:
943 /* Silently ignore requests to set $0 */
944 break;
945 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
946 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
947 break;
948#ifndef CONFIG_CPU_MIPSR6
949 case KVM_REG_MIPS_HI:
950 vcpu->arch.hi = v;
951 break;
952 case KVM_REG_MIPS_LO:
953 vcpu->arch.lo = v;
954 break;
955#endif
956 case KVM_REG_MIPS_PC:
957 vcpu->arch.pc = v;
958 break;
959
960 /* Floating point registers */
961 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
962 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
963 return -EINVAL;
964 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
965 /* Odd singles in top of even double when FR=0 */
966 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
967 set_fpr32(&fpu->fpr[idx], 0, v);
968 else
969 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
970 break;
971 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
972 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
973 return -EINVAL;
974 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
975 /* Can't access odd doubles in FR=0 mode */
976 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
977 return -EINVAL;
978 set_fpr64(&fpu->fpr[idx], 0, v);
979 break;
980 case KVM_REG_MIPS_FCR_IR:
981 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
982 return -EINVAL;
983 /* Read-only */
984 break;
985 case KVM_REG_MIPS_FCR_CSR:
986 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
987 return -EINVAL;
988 fpu->fcr31 = v;
989 break;
990
991 /* MIPS SIMD Architecture (MSA) registers */
992 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
993 if (!kvm_mips_guest_has_msa(&vcpu->arch))
994 return -EINVAL;
995 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
996#ifdef CONFIG_CPU_LITTLE_ENDIAN
997 /* least significant byte first */
998 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
999 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
1000#else
1001 /* most significant byte first */
1002 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1003 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1004#endif
1005 break;
1006 case KVM_REG_MIPS_MSA_IR:
1007 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1008 return -EINVAL;
1009 /* Read-only */
1010 break;
1011 case KVM_REG_MIPS_MSA_CSR:
1012 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1013 return -EINVAL;
1014 fpu->msacsr = v;
1015 break;
1016
1017 /* Co-processor 0 registers */
1018 case KVM_REG_MIPS_CP0_INDEX:
1019 kvm_write_c0_guest_index(cop0, v);
1020 break;
1021 case KVM_REG_MIPS_CP0_CONTEXT:
1022 kvm_write_c0_guest_context(cop0, v);
1023 break;
1024 case KVM_REG_MIPS_CP0_USERLOCAL:
1025 kvm_write_c0_guest_userlocal(cop0, v);
1026 break;
1027 case KVM_REG_MIPS_CP0_PAGEMASK:
1028 kvm_write_c0_guest_pagemask(cop0, v);
1029 break;
1030 case KVM_REG_MIPS_CP0_WIRED:
1031 kvm_write_c0_guest_wired(cop0, v);
1032 break;
1033 case KVM_REG_MIPS_CP0_HWRENA:
1034 kvm_write_c0_guest_hwrena(cop0, v);
1035 break;
1036 case KVM_REG_MIPS_CP0_BADVADDR:
1037 kvm_write_c0_guest_badvaddr(cop0, v);
1038 break;
1039 case KVM_REG_MIPS_CP0_ENTRYHI:
1040 kvm_write_c0_guest_entryhi(cop0, v);
1041 break;
1042 case KVM_REG_MIPS_CP0_STATUS:
1043 kvm_write_c0_guest_status(cop0, v);
1044 break;
1045 case KVM_REG_MIPS_CP0_EPC:
1046 kvm_write_c0_guest_epc(cop0, v);
1047 break;
1048 case KVM_REG_MIPS_CP0_PRID:
1049 kvm_write_c0_guest_prid(cop0, v);
1050 break;
1051 case KVM_REG_MIPS_CP0_ERROREPC:
1052 kvm_write_c0_guest_errorepc(cop0, v);
1053 break;
1054 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1055 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1056 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1057 return -EINVAL;
1058 switch (idx) {
1059 case 2:
1060 kvm_write_c0_guest_kscratch1(cop0, v);
1061 break;
1062 case 3:
1063 kvm_write_c0_guest_kscratch2(cop0, v);
1064 break;
1065 case 4:
1066 kvm_write_c0_guest_kscratch3(cop0, v);
1067 break;
1068 case 5:
1069 kvm_write_c0_guest_kscratch4(cop0, v);
1070 break;
1071 case 6:
1072 kvm_write_c0_guest_kscratch5(cop0, v);
1073 break;
1074 case 7:
1075 kvm_write_c0_guest_kscratch6(cop0, v);
1076 break;
1077 }
1078 break;
1079 /* registers to be handled specially */
1080 default:
1081 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1082 }
1083 return 0;
1084}
1085
1086static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1087 struct kvm_enable_cap *cap)
1088{
1089 int r = 0;
1090
1091 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1092 return -EINVAL;
1093 if (cap->flags)
1094 return -EINVAL;
1095 if (cap->args[0])
1096 return -EINVAL;
1097
1098 switch (cap->cap) {
1099 case KVM_CAP_MIPS_FPU:
1100 vcpu->arch.fpu_enabled = true;
1101 break;
1102 case KVM_CAP_MIPS_MSA:
1103 vcpu->arch.msa_enabled = true;
1104 break;
1105 default:
1106 r = -EINVAL;
1107 break;
1108 }
1109
1110 return r;
1111}
1112
1113long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1114 unsigned long arg)
1115{
1116 struct kvm_vcpu *vcpu = filp->private_data;
1117 void __user *argp = (void __user *)arg;
1118 long r;
1119
1120 switch (ioctl) {
1121 case KVM_SET_ONE_REG:
1122 case KVM_GET_ONE_REG: {
1123 struct kvm_one_reg reg;
1124
1125 if (copy_from_user(®, argp, sizeof(reg)))
1126 return -EFAULT;
1127 if (ioctl == KVM_SET_ONE_REG)
1128 return kvm_mips_set_reg(vcpu, ®);
1129 else
1130 return kvm_mips_get_reg(vcpu, ®);
1131 }
1132 case KVM_GET_REG_LIST: {
1133 struct kvm_reg_list __user *user_list = argp;
1134 struct kvm_reg_list reg_list;
1135 unsigned n;
1136
1137 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1138 return -EFAULT;
1139 n = reg_list.n;
1140 reg_list.n = kvm_mips_num_regs(vcpu);
1141 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1142 return -EFAULT;
1143 if (n < reg_list.n)
1144 return -E2BIG;
1145 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1146 }
1147 case KVM_NMI:
1148 /* Treat the NMI as a CPU reset */
1149 r = kvm_mips_reset_vcpu(vcpu);
1150 break;
1151 case KVM_INTERRUPT:
1152 {
1153 struct kvm_mips_interrupt irq;
1154
1155 r = -EFAULT;
1156 if (copy_from_user(&irq, argp, sizeof(irq)))
1157 goto out;
1158
1159 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1160 irq.irq);
1161
1162 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1163 break;
1164 }
1165 case KVM_ENABLE_CAP: {
1166 struct kvm_enable_cap cap;
1167
1168 r = -EFAULT;
1169 if (copy_from_user(&cap, argp, sizeof(cap)))
1170 goto out;
1171 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1172 break;
1173 }
1174 default:
1175 r = -ENOIOCTLCMD;
1176 }
1177
1178out:
1179 return r;
1180}
1181
1182/* Get (and clear) the dirty memory log for a memory slot. */
1183int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1184{
1185 struct kvm_memslots *slots;
1186 struct kvm_memory_slot *memslot;
1187 unsigned long ga, ga_end;
1188 int is_dirty = 0;
1189 int r;
1190 unsigned long n;
1191
1192 mutex_lock(&kvm->slots_lock);
1193
1194 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1195 if (r)
1196 goto out;
1197
1198 /* If nothing is dirty, don't bother messing with page tables. */
1199 if (is_dirty) {
1200 slots = kvm_memslots(kvm);
1201 memslot = id_to_memslot(slots, log->slot);
1202
1203 ga = memslot->base_gfn << PAGE_SHIFT;
1204 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1205
1206 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1207 ga_end);
1208
1209 n = kvm_dirty_bitmap_bytes(memslot);
1210 memset(memslot->dirty_bitmap, 0, n);
1211 }
1212
1213 r = 0;
1214out:
1215 mutex_unlock(&kvm->slots_lock);
1216 return r;
1217
1218}
1219
1220long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1221{
1222 long r;
1223
1224 switch (ioctl) {
1225 default:
1226 r = -ENOIOCTLCMD;
1227 }
1228
1229 return r;
1230}
1231
1232int kvm_arch_init(void *opaque)
1233{
1234 if (kvm_mips_callbacks) {
1235 kvm_err("kvm: module already exists\n");
1236 return -EEXIST;
1237 }
1238
1239 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1240}
1241
1242void kvm_arch_exit(void)
1243{
1244 kvm_mips_callbacks = NULL;
1245}
1246
1247int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1248 struct kvm_sregs *sregs)
1249{
1250 return -ENOIOCTLCMD;
1251}
1252
1253int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1254 struct kvm_sregs *sregs)
1255{
1256 return -ENOIOCTLCMD;
1257}
1258
1259void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1260{
1261}
1262
1263int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1264{
1265 return -ENOIOCTLCMD;
1266}
1267
1268int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1269{
1270 return -ENOIOCTLCMD;
1271}
1272
1273int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1274{
1275 return VM_FAULT_SIGBUS;
1276}
1277
1278int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1279{
1280 int r;
1281
1282 switch (ext) {
1283 case KVM_CAP_ONE_REG:
1284 case KVM_CAP_ENABLE_CAP:
1285 r = 1;
1286 break;
1287 case KVM_CAP_COALESCED_MMIO:
1288 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1289 break;
1290 case KVM_CAP_MIPS_FPU:
1291 /* We don't handle systems with inconsistent cpu_has_fpu */
1292 r = !!raw_cpu_has_fpu;
1293 break;
1294 case KVM_CAP_MIPS_MSA:
1295 /*
1296 * We don't support MSA vector partitioning yet:
1297 * 1) It would require explicit support which can't be tested
1298 * yet due to lack of support in current hardware.
1299 * 2) It extends the state that would need to be saved/restored
1300 * by e.g. QEMU for migration.
1301 *
1302 * When vector partitioning hardware becomes available, support
1303 * could be added by requiring a flag when enabling
1304 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1305 * to save/restore the appropriate extra state.
1306 */
1307 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1308 break;
1309 default:
1310 r = 0;
1311 break;
1312 }
1313 return r;
1314}
1315
1316int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1317{
1318 return kvm_mips_pending_timer(vcpu);
1319}
1320
1321int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1322{
1323 int i;
1324 struct mips_coproc *cop0;
1325
1326 if (!vcpu)
1327 return -1;
1328
1329 kvm_debug("VCPU Register Dump:\n");
1330 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1331 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1332
1333 for (i = 0; i < 32; i += 4) {
1334 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1335 vcpu->arch.gprs[i],
1336 vcpu->arch.gprs[i + 1],
1337 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1338 }
1339 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1340 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1341
1342 cop0 = vcpu->arch.cop0;
1343 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1344 kvm_read_c0_guest_status(cop0),
1345 kvm_read_c0_guest_cause(cop0));
1346
1347 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1348
1349 return 0;
1350}
1351
1352int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1353{
1354 int i;
1355
1356 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1357 vcpu->arch.gprs[i] = regs->gpr[i];
1358 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1359 vcpu->arch.hi = regs->hi;
1360 vcpu->arch.lo = regs->lo;
1361 vcpu->arch.pc = regs->pc;
1362
1363 return 0;
1364}
1365
1366int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1367{
1368 int i;
1369
1370 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1371 regs->gpr[i] = vcpu->arch.gprs[i];
1372
1373 regs->hi = vcpu->arch.hi;
1374 regs->lo = vcpu->arch.lo;
1375 regs->pc = vcpu->arch.pc;
1376
1377 return 0;
1378}
1379
1380static void kvm_mips_comparecount_func(unsigned long data)
1381{
1382 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1383
1384 kvm_mips_callbacks->queue_timer_int(vcpu);
1385
1386 vcpu->arch.wait = 0;
1387 if (swait_active(&vcpu->wq))
1388 swake_up(&vcpu->wq);
1389}
1390
1391/* low level hrtimer wake routine */
1392static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1393{
1394 struct kvm_vcpu *vcpu;
1395
1396 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1397 kvm_mips_comparecount_func((unsigned long) vcpu);
1398 return kvm_mips_count_timeout(vcpu);
1399}
1400
1401int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1402{
1403 kvm_mips_callbacks->vcpu_init(vcpu);
1404 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1405 HRTIMER_MODE_REL);
1406 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1407 return 0;
1408}
1409
1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411 struct kvm_translation *tr)
1412{
1413 return 0;
1414}
1415
1416/* Initial guest state */
1417int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1418{
1419 return kvm_mips_callbacks->vcpu_setup(vcpu);
1420}
1421
1422static void kvm_mips_set_c0_status(void)
1423{
1424 u32 status = read_c0_status();
1425
1426 if (cpu_has_dsp)
1427 status |= (ST0_MX);
1428
1429 write_c0_status(status);
1430 ehb();
1431}
1432
1433/*
1434 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1435 */
1436int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437{
1438 u32 cause = vcpu->arch.host_cp0_cause;
1439 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1440 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1441 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1442 enum emulation_result er = EMULATE_DONE;
1443 int ret = RESUME_GUEST;
1444
1445 /* re-enable HTW before enabling interrupts */
1446 htw_start();
1447
1448 /* Set a default exit reason */
1449 run->exit_reason = KVM_EXIT_UNKNOWN;
1450 run->ready_for_interrupt_injection = 1;
1451
1452 /*
1453 * Set the appropriate status bits based on host CPU features,
1454 * before we hit the scheduler
1455 */
1456 kvm_mips_set_c0_status();
1457
1458 local_irq_enable();
1459
1460 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1461 cause, opc, run, vcpu);
1462 trace_kvm_exit(vcpu, exccode);
1463
1464 /*
1465 * Do a privilege check, if in UM most of these exit conditions end up
1466 * causing an exception to be delivered to the Guest Kernel
1467 */
1468 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1469 if (er == EMULATE_PRIV_FAIL) {
1470 goto skip_emul;
1471 } else if (er == EMULATE_FAIL) {
1472 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1473 ret = RESUME_HOST;
1474 goto skip_emul;
1475 }
1476
1477 switch (exccode) {
1478 case EXCCODE_INT:
1479 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1480
1481 ++vcpu->stat.int_exits;
1482
1483 if (need_resched())
1484 cond_resched();
1485
1486 ret = RESUME_GUEST;
1487 break;
1488
1489 case EXCCODE_CPU:
1490 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1491
1492 ++vcpu->stat.cop_unusable_exits;
1493 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1494 /* XXXKYMA: Might need to return to user space */
1495 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1496 ret = RESUME_HOST;
1497 break;
1498
1499 case EXCCODE_MOD:
1500 ++vcpu->stat.tlbmod_exits;
1501 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1502 break;
1503
1504 case EXCCODE_TLBS:
1505 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1506 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1507 badvaddr);
1508
1509 ++vcpu->stat.tlbmiss_st_exits;
1510 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1511 break;
1512
1513 case EXCCODE_TLBL:
1514 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1515 cause, opc, badvaddr);
1516
1517 ++vcpu->stat.tlbmiss_ld_exits;
1518 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1519 break;
1520
1521 case EXCCODE_ADES:
1522 ++vcpu->stat.addrerr_st_exits;
1523 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1524 break;
1525
1526 case EXCCODE_ADEL:
1527 ++vcpu->stat.addrerr_ld_exits;
1528 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1529 break;
1530
1531 case EXCCODE_SYS:
1532 ++vcpu->stat.syscall_exits;
1533 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1534 break;
1535
1536 case EXCCODE_RI:
1537 ++vcpu->stat.resvd_inst_exits;
1538 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1539 break;
1540
1541 case EXCCODE_BP:
1542 ++vcpu->stat.break_inst_exits;
1543 ret = kvm_mips_callbacks->handle_break(vcpu);
1544 break;
1545
1546 case EXCCODE_TR:
1547 ++vcpu->stat.trap_inst_exits;
1548 ret = kvm_mips_callbacks->handle_trap(vcpu);
1549 break;
1550
1551 case EXCCODE_MSAFPE:
1552 ++vcpu->stat.msa_fpe_exits;
1553 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1554 break;
1555
1556 case EXCCODE_FPE:
1557 ++vcpu->stat.fpe_exits;
1558 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1559 break;
1560
1561 case EXCCODE_MSADIS:
1562 ++vcpu->stat.msa_disabled_exits;
1563 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1564 break;
1565
1566 default:
1567 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1568 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1569 kvm_read_c0_guest_status(vcpu->arch.cop0));
1570 kvm_arch_vcpu_dump_regs(vcpu);
1571 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1572 ret = RESUME_HOST;
1573 break;
1574
1575 }
1576
1577skip_emul:
1578 local_irq_disable();
1579
1580 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1581 kvm_mips_deliver_interrupts(vcpu, cause);
1582
1583 if (!(ret & RESUME_HOST)) {
1584 /* Only check for signals if not already exiting to userspace */
1585 if (signal_pending(current)) {
1586 run->exit_reason = KVM_EXIT_INTR;
1587 ret = (-EINTR << 2) | RESUME_HOST;
1588 ++vcpu->stat.signal_exits;
1589 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1590 }
1591 }
1592
1593 if (ret == RESUME_GUEST) {
1594 trace_kvm_reenter(vcpu);
1595
1596 kvm_mips_check_asids(vcpu);
1597
1598 /*
1599 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1600 * is live), restore FCR31 / MSACSR.
1601 *
1602 * This should be before returning to the guest exception
1603 * vector, as it may well cause an [MSA] FP exception if there
1604 * are pending exception bits unmasked. (see
1605 * kvm_mips_csr_die_notifier() for how that is handled).
1606 */
1607 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1608 read_c0_status() & ST0_CU1)
1609 __kvm_restore_fcsr(&vcpu->arch);
1610
1611 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1612 read_c0_config5() & MIPS_CONF5_MSAEN)
1613 __kvm_restore_msacsr(&vcpu->arch);
1614 }
1615
1616 /* Disable HTW before returning to guest or host */
1617 htw_stop();
1618
1619 return ret;
1620}
1621
1622/* Enable FPU for guest and restore context */
1623void kvm_own_fpu(struct kvm_vcpu *vcpu)
1624{
1625 struct mips_coproc *cop0 = vcpu->arch.cop0;
1626 unsigned int sr, cfg5;
1627
1628 preempt_disable();
1629
1630 sr = kvm_read_c0_guest_status(cop0);
1631
1632 /*
1633 * If MSA state is already live, it is undefined how it interacts with
1634 * FR=0 FPU state, and we don't want to hit reserved instruction
1635 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1636 * play it safe and save it first.
1637 *
1638 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1639 * get called when guest CU1 is set, however we can't trust the guest
1640 * not to clobber the status register directly via the commpage.
1641 */
1642 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1643 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1644 kvm_lose_fpu(vcpu);
1645
1646 /*
1647 * Enable FPU for guest
1648 * We set FR and FRE according to guest context
1649 */
1650 change_c0_status(ST0_CU1 | ST0_FR, sr);
1651 if (cpu_has_fre) {
1652 cfg5 = kvm_read_c0_guest_config5(cop0);
1653 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654 }
1655 enable_fpu_hazard();
1656
1657 /* If guest FPU state not active, restore it now */
1658 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1659 __kvm_restore_fpu(&vcpu->arch);
1660 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1661 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1662 } else {
1663 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1664 }
1665
1666 preempt_enable();
1667}
1668
1669#ifdef CONFIG_CPU_HAS_MSA
1670/* Enable MSA for guest and restore context */
1671void kvm_own_msa(struct kvm_vcpu *vcpu)
1672{
1673 struct mips_coproc *cop0 = vcpu->arch.cop0;
1674 unsigned int sr, cfg5;
1675
1676 preempt_disable();
1677
1678 /*
1679 * Enable FPU if enabled in guest, since we're restoring FPU context
1680 * anyway. We set FR and FRE according to guest context.
1681 */
1682 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1683 sr = kvm_read_c0_guest_status(cop0);
1684
1685 /*
1686 * If FR=0 FPU state is already live, it is undefined how it
1687 * interacts with MSA state, so play it safe and save it first.
1688 */
1689 if (!(sr & ST0_FR) &&
1690 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1691 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1692 kvm_lose_fpu(vcpu);
1693
1694 change_c0_status(ST0_CU1 | ST0_FR, sr);
1695 if (sr & ST0_CU1 && cpu_has_fre) {
1696 cfg5 = kvm_read_c0_guest_config5(cop0);
1697 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1698 }
1699 }
1700
1701 /* Enable MSA for guest */
1702 set_c0_config5(MIPS_CONF5_MSAEN);
1703 enable_fpu_hazard();
1704
1705 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1706 case KVM_MIPS_AUX_FPU:
1707 /*
1708 * Guest FPU state already loaded, only restore upper MSA state
1709 */
1710 __kvm_restore_msa_upper(&vcpu->arch);
1711 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1712 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1713 break;
1714 case 0:
1715 /* Neither FPU or MSA already active, restore full MSA state */
1716 __kvm_restore_msa(&vcpu->arch);
1717 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1718 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1719 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1720 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1721 KVM_TRACE_AUX_FPU_MSA);
1722 break;
1723 default:
1724 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1725 break;
1726 }
1727
1728 preempt_enable();
1729}
1730#endif
1731
1732/* Drop FPU & MSA without saving it */
1733void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1734{
1735 preempt_disable();
1736 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1737 disable_msa();
1738 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1739 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1740 }
1741 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1742 clear_c0_status(ST0_CU1 | ST0_FR);
1743 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1744 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1745 }
1746 preempt_enable();
1747}
1748
1749/* Save and disable FPU & MSA */
1750void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1751{
1752 /*
1753 * FPU & MSA get disabled in root context (hardware) when it is disabled
1754 * in guest context (software), but the register state in the hardware
1755 * may still be in use. This is why we explicitly re-enable the hardware
1756 * before saving.
1757 */
1758
1759 preempt_disable();
1760 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1761 set_c0_config5(MIPS_CONF5_MSAEN);
1762 enable_fpu_hazard();
1763
1764 __kvm_save_msa(&vcpu->arch);
1765 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1766
1767 /* Disable MSA & FPU */
1768 disable_msa();
1769 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1770 clear_c0_status(ST0_CU1 | ST0_FR);
1771 disable_fpu_hazard();
1772 }
1773 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1774 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1775 set_c0_status(ST0_CU1);
1776 enable_fpu_hazard();
1777
1778 __kvm_save_fpu(&vcpu->arch);
1779 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1780 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1781
1782 /* Disable FPU */
1783 clear_c0_status(ST0_CU1 | ST0_FR);
1784 disable_fpu_hazard();
1785 }
1786 preempt_enable();
1787}
1788
1789/*
1790 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1791 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1792 * exception if cause bits are set in the value being written.
1793 */
1794static int kvm_mips_csr_die_notify(struct notifier_block *self,
1795 unsigned long cmd, void *ptr)
1796{
1797 struct die_args *args = (struct die_args *)ptr;
1798 struct pt_regs *regs = args->regs;
1799 unsigned long pc;
1800
1801 /* Only interested in FPE and MSAFPE */
1802 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1803 return NOTIFY_DONE;
1804
1805 /* Return immediately if guest context isn't active */
1806 if (!(current->flags & PF_VCPU))
1807 return NOTIFY_DONE;
1808
1809 /* Should never get here from user mode */
1810 BUG_ON(user_mode(regs));
1811
1812 pc = instruction_pointer(regs);
1813 switch (cmd) {
1814 case DIE_FP:
1815 /* match 2nd instruction in __kvm_restore_fcsr */
1816 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1817 return NOTIFY_DONE;
1818 break;
1819 case DIE_MSAFP:
1820 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1821 if (!cpu_has_msa ||
1822 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1823 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1824 return NOTIFY_DONE;
1825 break;
1826 }
1827
1828 /* Move PC forward a little and continue executing */
1829 instruction_pointer(regs) += 4;
1830
1831 return NOTIFY_STOP;
1832}
1833
1834static struct notifier_block kvm_mips_csr_die_notifier = {
1835 .notifier_call = kvm_mips_csr_die_notify,
1836};
1837
1838static int __init kvm_mips_init(void)
1839{
1840 int ret;
1841
1842 ret = kvm_mips_entry_setup();
1843 if (ret)
1844 return ret;
1845
1846 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1847
1848 if (ret)
1849 return ret;
1850
1851 register_die_notifier(&kvm_mips_csr_die_notifier);
1852
1853 return 0;
1854}
1855
1856static void __exit kvm_mips_exit(void)
1857{
1858 kvm_exit();
1859
1860 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1861}
1862
1863module_init(kvm_mips_init);
1864module_exit(kvm_mips_exit);
1865
1866EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22
23#include <asm/fpu.h>
24#include <asm/page.h>
25#include <asm/cacheflush.h>
26#include <asm/mmu_context.h>
27#include <asm/pgalloc.h>
28#include <asm/pgtable.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#define CREATE_TRACE_POINTS
36#include "trace.h"
37
38#ifndef VECTORSPACING
39#define VECTORSPACING 0x100 /* for EI/VI mode */
40#endif
41
42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43struct kvm_stats_debugfs_item debugfs_entries[] = {
44 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
45 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
46 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
47 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
48 { "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
50 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
51 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
52 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
53 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
54 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
55 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
56 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
57 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
58 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
59 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
60 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62#ifdef CONFIG_KVM_MIPS_VZ
63 { "vz_gpsi", VCPU_STAT(vz_gpsi_exits), KVM_STAT_VCPU },
64 { "vz_gsfc", VCPU_STAT(vz_gsfc_exits), KVM_STAT_VCPU },
65 { "vz_hc", VCPU_STAT(vz_hc_exits), KVM_STAT_VCPU },
66 { "vz_grr", VCPU_STAT(vz_grr_exits), KVM_STAT_VCPU },
67 { "vz_gva", VCPU_STAT(vz_gva_exits), KVM_STAT_VCPU },
68 { "vz_ghfc", VCPU_STAT(vz_ghfc_exits), KVM_STAT_VCPU },
69 { "vz_gpa", VCPU_STAT(vz_gpa_exits), KVM_STAT_VCPU },
70 { "vz_resvd", VCPU_STAT(vz_resvd_exits), KVM_STAT_VCPU },
71#endif
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
76 {NULL}
77};
78
79bool kvm_trace_guest_mode_change;
80
81int kvm_guest_mode_change_trace_reg(void)
82{
83 kvm_trace_guest_mode_change = 1;
84 return 0;
85}
86
87void kvm_guest_mode_change_trace_unreg(void)
88{
89 kvm_trace_guest_mode_change = 0;
90}
91
92/*
93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94 * Config7, so we are "runnable" if interrupts are pending
95 */
96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97{
98 return !!(vcpu->arch.pending_exceptions);
99}
100
101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102{
103 return false;
104}
105
106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107{
108 return 1;
109}
110
111int kvm_arch_hardware_enable(void)
112{
113 return kvm_mips_callbacks->hardware_enable();
114}
115
116void kvm_arch_hardware_disable(void)
117{
118 kvm_mips_callbacks->hardware_disable();
119}
120
121int kvm_arch_hardware_setup(void)
122{
123 return 0;
124}
125
126int kvm_arch_check_processor_compat(void)
127{
128 return 0;
129}
130
131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132{
133 switch (type) {
134#ifdef CONFIG_KVM_MIPS_VZ
135 case KVM_VM_MIPS_VZ:
136#else
137 case KVM_VM_MIPS_TE:
138#endif
139 break;
140 default:
141 /* Unsupported KVM type */
142 return -EINVAL;
143 };
144
145 /* Allocate page table to map GPA -> RPA */
146 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147 if (!kvm->arch.gpa_mm.pgd)
148 return -ENOMEM;
149
150 return 0;
151}
152
153void kvm_mips_free_vcpus(struct kvm *kvm)
154{
155 unsigned int i;
156 struct kvm_vcpu *vcpu;
157
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_arch_vcpu_free(vcpu);
160 }
161
162 mutex_lock(&kvm->lock);
163
164 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
165 kvm->vcpus[i] = NULL;
166
167 atomic_set(&kvm->online_vcpus, 0);
168
169 mutex_unlock(&kvm->lock);
170}
171
172static void kvm_mips_free_gpa_pt(struct kvm *kvm)
173{
174 /* It should always be safe to remove after flushing the whole range */
175 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
176 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
177}
178
179void kvm_arch_destroy_vm(struct kvm *kvm)
180{
181 kvm_mips_free_vcpus(kvm);
182 kvm_mips_free_gpa_pt(kvm);
183}
184
185long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
186 unsigned long arg)
187{
188 return -ENOIOCTLCMD;
189}
190
191int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
192 unsigned long npages)
193{
194 return 0;
195}
196
197void kvm_arch_flush_shadow_all(struct kvm *kvm)
198{
199 /* Flush whole GPA */
200 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
201
202 /* Let implementation do the rest */
203 kvm_mips_callbacks->flush_shadow_all(kvm);
204}
205
206void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
207 struct kvm_memory_slot *slot)
208{
209 /*
210 * The slot has been made invalid (ready for moving or deletion), so we
211 * need to ensure that it can no longer be accessed by any guest VCPUs.
212 */
213
214 spin_lock(&kvm->mmu_lock);
215 /* Flush slot from GPA */
216 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
217 slot->base_gfn + slot->npages - 1);
218 /* Let implementation do the rest */
219 kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
220 spin_unlock(&kvm->mmu_lock);
221}
222
223int kvm_arch_prepare_memory_region(struct kvm *kvm,
224 struct kvm_memory_slot *memslot,
225 const struct kvm_userspace_memory_region *mem,
226 enum kvm_mr_change change)
227{
228 return 0;
229}
230
231void kvm_arch_commit_memory_region(struct kvm *kvm,
232 const struct kvm_userspace_memory_region *mem,
233 const struct kvm_memory_slot *old,
234 const struct kvm_memory_slot *new,
235 enum kvm_mr_change change)
236{
237 int needs_flush;
238
239 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
240 __func__, kvm, mem->slot, mem->guest_phys_addr,
241 mem->memory_size, mem->userspace_addr);
242
243 /*
244 * If dirty page logging is enabled, write protect all pages in the slot
245 * ready for dirty logging.
246 *
247 * There is no need to do this in any of the following cases:
248 * CREATE: No dirty mappings will already exist.
249 * MOVE/DELETE: The old mappings will already have been cleaned up by
250 * kvm_arch_flush_shadow_memslot()
251 */
252 if (change == KVM_MR_FLAGS_ONLY &&
253 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
254 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
255 spin_lock(&kvm->mmu_lock);
256 /* Write protect GPA page table entries */
257 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
258 new->base_gfn + new->npages - 1);
259 /* Let implementation do the rest */
260 if (needs_flush)
261 kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
262 spin_unlock(&kvm->mmu_lock);
263 }
264}
265
266static inline void dump_handler(const char *symbol, void *start, void *end)
267{
268 u32 *p;
269
270 pr_debug("LEAF(%s)\n", symbol);
271
272 pr_debug("\t.set push\n");
273 pr_debug("\t.set noreorder\n");
274
275 for (p = start; p < (u32 *)end; ++p)
276 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
277
278 pr_debug("\t.set\tpop\n");
279
280 pr_debug("\tEND(%s)\n", symbol);
281}
282
283struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
284{
285 int err, size;
286 void *gebase, *p, *handler, *refill_start, *refill_end;
287 int i;
288
289 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
290
291 if (!vcpu) {
292 err = -ENOMEM;
293 goto out;
294 }
295
296 err = kvm_vcpu_init(vcpu, kvm, id);
297
298 if (err)
299 goto out_free_cpu;
300
301 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
302
303 /*
304 * Allocate space for host mode exception handlers that handle
305 * guest mode exits
306 */
307 if (cpu_has_veic || cpu_has_vint)
308 size = 0x200 + VECTORSPACING * 64;
309 else
310 size = 0x4000;
311
312 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
313
314 if (!gebase) {
315 err = -ENOMEM;
316 goto out_uninit_cpu;
317 }
318 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
319 ALIGN(size, PAGE_SIZE), gebase);
320
321 /*
322 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
323 * limits us to the low 512MB of physical address space. If the memory
324 * we allocate is out of range, just give up now.
325 */
326 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
327 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
328 gebase);
329 err = -ENOMEM;
330 goto out_free_gebase;
331 }
332
333 /* Save new ebase */
334 vcpu->arch.guest_ebase = gebase;
335
336 /* Build guest exception vectors dynamically in unmapped memory */
337 handler = gebase + 0x2000;
338
339 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
340 refill_start = gebase;
341 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
342 refill_start += 0x080;
343 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
344
345 /* General Exception Entry point */
346 kvm_mips_build_exception(gebase + 0x180, handler);
347
348 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
349 for (i = 0; i < 8; i++) {
350 kvm_debug("L1 Vectored handler @ %p\n",
351 gebase + 0x200 + (i * VECTORSPACING));
352 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
353 handler);
354 }
355
356 /* General exit handler */
357 p = handler;
358 p = kvm_mips_build_exit(p);
359
360 /* Guest entry routine */
361 vcpu->arch.vcpu_run = p;
362 p = kvm_mips_build_vcpu_run(p);
363
364 /* Dump the generated code */
365 pr_debug("#include <asm/asm.h>\n");
366 pr_debug("#include <asm/regdef.h>\n");
367 pr_debug("\n");
368 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
369 dump_handler("kvm_tlb_refill", refill_start, refill_end);
370 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
371 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
372
373 /* Invalidate the icache for these ranges */
374 flush_icache_range((unsigned long)gebase,
375 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
376
377 /*
378 * Allocate comm page for guest kernel, a TLB will be reserved for
379 * mapping GVA @ 0xFFFF8000 to this page
380 */
381 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
382
383 if (!vcpu->arch.kseg0_commpage) {
384 err = -ENOMEM;
385 goto out_free_gebase;
386 }
387
388 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
389 kvm_mips_commpage_init(vcpu);
390
391 /* Init */
392 vcpu->arch.last_sched_cpu = -1;
393 vcpu->arch.last_exec_cpu = -1;
394
395 return vcpu;
396
397out_free_gebase:
398 kfree(gebase);
399
400out_uninit_cpu:
401 kvm_vcpu_uninit(vcpu);
402
403out_free_cpu:
404 kfree(vcpu);
405
406out:
407 return ERR_PTR(err);
408}
409
410void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
411{
412 hrtimer_cancel(&vcpu->arch.comparecount_timer);
413
414 kvm_vcpu_uninit(vcpu);
415
416 kvm_mips_dump_stats(vcpu);
417
418 kvm_mmu_free_memory_caches(vcpu);
419 kfree(vcpu->arch.guest_ebase);
420 kfree(vcpu->arch.kseg0_commpage);
421 kfree(vcpu);
422}
423
424void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
425{
426 kvm_arch_vcpu_free(vcpu);
427}
428
429int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
430 struct kvm_guest_debug *dbg)
431{
432 return -ENOIOCTLCMD;
433}
434
435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
436{
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu, run);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_callbacks->vcpu_run(run, vcpu);
467
468 trace_kvm_out(vcpu);
469 guest_exit_irqoff();
470 local_irq_enable();
471
472out:
473 kvm_sigset_deactivate(vcpu);
474
475 vcpu_put(vcpu);
476 return r;
477}
478
479int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
480 struct kvm_mips_interrupt *irq)
481{
482 int intr = (int)irq->irq;
483 struct kvm_vcpu *dvcpu = NULL;
484
485 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
486 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
487 (int)intr);
488
489 if (irq->cpu == -1)
490 dvcpu = vcpu;
491 else
492 dvcpu = vcpu->kvm->vcpus[irq->cpu];
493
494 if (intr == 2 || intr == 3 || intr == 4) {
495 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
496
497 } else if (intr == -2 || intr == -3 || intr == -4) {
498 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
499 } else {
500 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
501 irq->cpu, irq->irq);
502 return -EINVAL;
503 }
504
505 dvcpu->arch.wait = 0;
506
507 if (swq_has_sleeper(&dvcpu->wq))
508 swake_up_one(&dvcpu->wq);
509
510 return 0;
511}
512
513int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
514 struct kvm_mp_state *mp_state)
515{
516 return -ENOIOCTLCMD;
517}
518
519int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
520 struct kvm_mp_state *mp_state)
521{
522 return -ENOIOCTLCMD;
523}
524
525static u64 kvm_mips_get_one_regs[] = {
526 KVM_REG_MIPS_R0,
527 KVM_REG_MIPS_R1,
528 KVM_REG_MIPS_R2,
529 KVM_REG_MIPS_R3,
530 KVM_REG_MIPS_R4,
531 KVM_REG_MIPS_R5,
532 KVM_REG_MIPS_R6,
533 KVM_REG_MIPS_R7,
534 KVM_REG_MIPS_R8,
535 KVM_REG_MIPS_R9,
536 KVM_REG_MIPS_R10,
537 KVM_REG_MIPS_R11,
538 KVM_REG_MIPS_R12,
539 KVM_REG_MIPS_R13,
540 KVM_REG_MIPS_R14,
541 KVM_REG_MIPS_R15,
542 KVM_REG_MIPS_R16,
543 KVM_REG_MIPS_R17,
544 KVM_REG_MIPS_R18,
545 KVM_REG_MIPS_R19,
546 KVM_REG_MIPS_R20,
547 KVM_REG_MIPS_R21,
548 KVM_REG_MIPS_R22,
549 KVM_REG_MIPS_R23,
550 KVM_REG_MIPS_R24,
551 KVM_REG_MIPS_R25,
552 KVM_REG_MIPS_R26,
553 KVM_REG_MIPS_R27,
554 KVM_REG_MIPS_R28,
555 KVM_REG_MIPS_R29,
556 KVM_REG_MIPS_R30,
557 KVM_REG_MIPS_R31,
558
559#ifndef CONFIG_CPU_MIPSR6
560 KVM_REG_MIPS_HI,
561 KVM_REG_MIPS_LO,
562#endif
563 KVM_REG_MIPS_PC,
564};
565
566static u64 kvm_mips_get_one_regs_fpu[] = {
567 KVM_REG_MIPS_FCR_IR,
568 KVM_REG_MIPS_FCR_CSR,
569};
570
571static u64 kvm_mips_get_one_regs_msa[] = {
572 KVM_REG_MIPS_MSA_IR,
573 KVM_REG_MIPS_MSA_CSR,
574};
575
576static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
577{
578 unsigned long ret;
579
580 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
581 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
582 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
583 /* odd doubles */
584 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
585 ret += 16;
586 }
587 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
588 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
589 ret += kvm_mips_callbacks->num_regs(vcpu);
590
591 return ret;
592}
593
594static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
595{
596 u64 index;
597 unsigned int i;
598
599 if (copy_to_user(indices, kvm_mips_get_one_regs,
600 sizeof(kvm_mips_get_one_regs)))
601 return -EFAULT;
602 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
603
604 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
605 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
606 sizeof(kvm_mips_get_one_regs_fpu)))
607 return -EFAULT;
608 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
609
610 for (i = 0; i < 32; ++i) {
611 index = KVM_REG_MIPS_FPR_32(i);
612 if (copy_to_user(indices, &index, sizeof(index)))
613 return -EFAULT;
614 ++indices;
615
616 /* skip odd doubles if no F64 */
617 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
618 continue;
619
620 index = KVM_REG_MIPS_FPR_64(i);
621 if (copy_to_user(indices, &index, sizeof(index)))
622 return -EFAULT;
623 ++indices;
624 }
625 }
626
627 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
628 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
629 sizeof(kvm_mips_get_one_regs_msa)))
630 return -EFAULT;
631 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
632
633 for (i = 0; i < 32; ++i) {
634 index = KVM_REG_MIPS_VEC_128(i);
635 if (copy_to_user(indices, &index, sizeof(index)))
636 return -EFAULT;
637 ++indices;
638 }
639 }
640
641 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
642}
643
644static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
645 const struct kvm_one_reg *reg)
646{
647 struct mips_coproc *cop0 = vcpu->arch.cop0;
648 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
649 int ret;
650 s64 v;
651 s64 vs[2];
652 unsigned int idx;
653
654 switch (reg->id) {
655 /* General purpose registers */
656 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
657 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
658 break;
659#ifndef CONFIG_CPU_MIPSR6
660 case KVM_REG_MIPS_HI:
661 v = (long)vcpu->arch.hi;
662 break;
663 case KVM_REG_MIPS_LO:
664 v = (long)vcpu->arch.lo;
665 break;
666#endif
667 case KVM_REG_MIPS_PC:
668 v = (long)vcpu->arch.pc;
669 break;
670
671 /* Floating point registers */
672 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
673 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
674 return -EINVAL;
675 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
676 /* Odd singles in top of even double when FR=0 */
677 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
678 v = get_fpr32(&fpu->fpr[idx], 0);
679 else
680 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
681 break;
682 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
683 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
684 return -EINVAL;
685 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
686 /* Can't access odd doubles in FR=0 mode */
687 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
688 return -EINVAL;
689 v = get_fpr64(&fpu->fpr[idx], 0);
690 break;
691 case KVM_REG_MIPS_FCR_IR:
692 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
693 return -EINVAL;
694 v = boot_cpu_data.fpu_id;
695 break;
696 case KVM_REG_MIPS_FCR_CSR:
697 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698 return -EINVAL;
699 v = fpu->fcr31;
700 break;
701
702 /* MIPS SIMD Architecture (MSA) registers */
703 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
704 if (!kvm_mips_guest_has_msa(&vcpu->arch))
705 return -EINVAL;
706 /* Can't access MSA registers in FR=0 mode */
707 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
708 return -EINVAL;
709 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
710#ifdef CONFIG_CPU_LITTLE_ENDIAN
711 /* least significant byte first */
712 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
713 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
714#else
715 /* most significant byte first */
716 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
717 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
718#endif
719 break;
720 case KVM_REG_MIPS_MSA_IR:
721 if (!kvm_mips_guest_has_msa(&vcpu->arch))
722 return -EINVAL;
723 v = boot_cpu_data.msa_id;
724 break;
725 case KVM_REG_MIPS_MSA_CSR:
726 if (!kvm_mips_guest_has_msa(&vcpu->arch))
727 return -EINVAL;
728 v = fpu->msacsr;
729 break;
730
731 /* registers to be handled specially */
732 default:
733 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
734 if (ret)
735 return ret;
736 break;
737 }
738 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
739 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
740
741 return put_user(v, uaddr64);
742 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
743 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
744 u32 v32 = (u32)v;
745
746 return put_user(v32, uaddr32);
747 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
748 void __user *uaddr = (void __user *)(long)reg->addr;
749
750 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
751 } else {
752 return -EINVAL;
753 }
754}
755
756static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
757 const struct kvm_one_reg *reg)
758{
759 struct mips_coproc *cop0 = vcpu->arch.cop0;
760 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
761 s64 v;
762 s64 vs[2];
763 unsigned int idx;
764
765 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
766 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
767
768 if (get_user(v, uaddr64) != 0)
769 return -EFAULT;
770 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
771 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
772 s32 v32;
773
774 if (get_user(v32, uaddr32) != 0)
775 return -EFAULT;
776 v = (s64)v32;
777 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
778 void __user *uaddr = (void __user *)(long)reg->addr;
779
780 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
781 } else {
782 return -EINVAL;
783 }
784
785 switch (reg->id) {
786 /* General purpose registers */
787 case KVM_REG_MIPS_R0:
788 /* Silently ignore requests to set $0 */
789 break;
790 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
791 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
792 break;
793#ifndef CONFIG_CPU_MIPSR6
794 case KVM_REG_MIPS_HI:
795 vcpu->arch.hi = v;
796 break;
797 case KVM_REG_MIPS_LO:
798 vcpu->arch.lo = v;
799 break;
800#endif
801 case KVM_REG_MIPS_PC:
802 vcpu->arch.pc = v;
803 break;
804
805 /* Floating point registers */
806 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
807 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
808 return -EINVAL;
809 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
810 /* Odd singles in top of even double when FR=0 */
811 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
812 set_fpr32(&fpu->fpr[idx], 0, v);
813 else
814 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
815 break;
816 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
817 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
818 return -EINVAL;
819 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
820 /* Can't access odd doubles in FR=0 mode */
821 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
822 return -EINVAL;
823 set_fpr64(&fpu->fpr[idx], 0, v);
824 break;
825 case KVM_REG_MIPS_FCR_IR:
826 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
827 return -EINVAL;
828 /* Read-only */
829 break;
830 case KVM_REG_MIPS_FCR_CSR:
831 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
832 return -EINVAL;
833 fpu->fcr31 = v;
834 break;
835
836 /* MIPS SIMD Architecture (MSA) registers */
837 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
838 if (!kvm_mips_guest_has_msa(&vcpu->arch))
839 return -EINVAL;
840 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
841#ifdef CONFIG_CPU_LITTLE_ENDIAN
842 /* least significant byte first */
843 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
844 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
845#else
846 /* most significant byte first */
847 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
848 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
849#endif
850 break;
851 case KVM_REG_MIPS_MSA_IR:
852 if (!kvm_mips_guest_has_msa(&vcpu->arch))
853 return -EINVAL;
854 /* Read-only */
855 break;
856 case KVM_REG_MIPS_MSA_CSR:
857 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858 return -EINVAL;
859 fpu->msacsr = v;
860 break;
861
862 /* registers to be handled specially */
863 default:
864 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
865 }
866 return 0;
867}
868
869static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
870 struct kvm_enable_cap *cap)
871{
872 int r = 0;
873
874 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
875 return -EINVAL;
876 if (cap->flags)
877 return -EINVAL;
878 if (cap->args[0])
879 return -EINVAL;
880
881 switch (cap->cap) {
882 case KVM_CAP_MIPS_FPU:
883 vcpu->arch.fpu_enabled = true;
884 break;
885 case KVM_CAP_MIPS_MSA:
886 vcpu->arch.msa_enabled = true;
887 break;
888 default:
889 r = -EINVAL;
890 break;
891 }
892
893 return r;
894}
895
896long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
897 unsigned long arg)
898{
899 struct kvm_vcpu *vcpu = filp->private_data;
900 void __user *argp = (void __user *)arg;
901
902 if (ioctl == KVM_INTERRUPT) {
903 struct kvm_mips_interrupt irq;
904
905 if (copy_from_user(&irq, argp, sizeof(irq)))
906 return -EFAULT;
907 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
908 irq.irq);
909
910 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
911 }
912
913 return -ENOIOCTLCMD;
914}
915
916long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
917 unsigned long arg)
918{
919 struct kvm_vcpu *vcpu = filp->private_data;
920 void __user *argp = (void __user *)arg;
921 long r;
922
923 vcpu_load(vcpu);
924
925 switch (ioctl) {
926 case KVM_SET_ONE_REG:
927 case KVM_GET_ONE_REG: {
928 struct kvm_one_reg reg;
929
930 r = -EFAULT;
931 if (copy_from_user(®, argp, sizeof(reg)))
932 break;
933 if (ioctl == KVM_SET_ONE_REG)
934 r = kvm_mips_set_reg(vcpu, ®);
935 else
936 r = kvm_mips_get_reg(vcpu, ®);
937 break;
938 }
939 case KVM_GET_REG_LIST: {
940 struct kvm_reg_list __user *user_list = argp;
941 struct kvm_reg_list reg_list;
942 unsigned n;
943
944 r = -EFAULT;
945 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
946 break;
947 n = reg_list.n;
948 reg_list.n = kvm_mips_num_regs(vcpu);
949 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
950 break;
951 r = -E2BIG;
952 if (n < reg_list.n)
953 break;
954 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
955 break;
956 }
957 case KVM_ENABLE_CAP: {
958 struct kvm_enable_cap cap;
959
960 r = -EFAULT;
961 if (copy_from_user(&cap, argp, sizeof(cap)))
962 break;
963 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
964 break;
965 }
966 default:
967 r = -ENOIOCTLCMD;
968 }
969
970 vcpu_put(vcpu);
971 return r;
972}
973
974/**
975 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
976 * @kvm: kvm instance
977 * @log: slot id and address to which we copy the log
978 *
979 * Steps 1-4 below provide general overview of dirty page logging. See
980 * kvm_get_dirty_log_protect() function description for additional details.
981 *
982 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
983 * always flush the TLB (step 4) even if previous step failed and the dirty
984 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
985 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
986 * writes will be marked dirty for next log read.
987 *
988 * 1. Take a snapshot of the bit and clear it if needed.
989 * 2. Write protect the corresponding page.
990 * 3. Copy the snapshot to the userspace.
991 * 4. Flush TLB's if needed.
992 */
993int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
994{
995 struct kvm_memslots *slots;
996 struct kvm_memory_slot *memslot;
997 bool flush = false;
998 int r;
999
1000 mutex_lock(&kvm->slots_lock);
1001
1002 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1003
1004 if (flush) {
1005 slots = kvm_memslots(kvm);
1006 memslot = id_to_memslot(slots, log->slot);
1007
1008 /* Let implementation handle TLB/GVA invalidation */
1009 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1010 }
1011
1012 mutex_unlock(&kvm->slots_lock);
1013 return r;
1014}
1015
1016int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1017{
1018 struct kvm_memslots *slots;
1019 struct kvm_memory_slot *memslot;
1020 bool flush = false;
1021 int r;
1022
1023 mutex_lock(&kvm->slots_lock);
1024
1025 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1026
1027 if (flush) {
1028 slots = kvm_memslots(kvm);
1029 memslot = id_to_memslot(slots, log->slot);
1030
1031 /* Let implementation handle TLB/GVA invalidation */
1032 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1033 }
1034
1035 mutex_unlock(&kvm->slots_lock);
1036 return r;
1037}
1038
1039long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1040{
1041 long r;
1042
1043 switch (ioctl) {
1044 default:
1045 r = -ENOIOCTLCMD;
1046 }
1047
1048 return r;
1049}
1050
1051int kvm_arch_init(void *opaque)
1052{
1053 if (kvm_mips_callbacks) {
1054 kvm_err("kvm: module already exists\n");
1055 return -EEXIST;
1056 }
1057
1058 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1059}
1060
1061void kvm_arch_exit(void)
1062{
1063 kvm_mips_callbacks = NULL;
1064}
1065
1066int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1067 struct kvm_sregs *sregs)
1068{
1069 return -ENOIOCTLCMD;
1070}
1071
1072int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1073 struct kvm_sregs *sregs)
1074{
1075 return -ENOIOCTLCMD;
1076}
1077
1078void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1079{
1080}
1081
1082int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1083{
1084 return -ENOIOCTLCMD;
1085}
1086
1087int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1088{
1089 return -ENOIOCTLCMD;
1090}
1091
1092vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1093{
1094 return VM_FAULT_SIGBUS;
1095}
1096
1097int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1098{
1099 int r;
1100
1101 switch (ext) {
1102 case KVM_CAP_ONE_REG:
1103 case KVM_CAP_ENABLE_CAP:
1104 case KVM_CAP_READONLY_MEM:
1105 case KVM_CAP_SYNC_MMU:
1106 case KVM_CAP_IMMEDIATE_EXIT:
1107 r = 1;
1108 break;
1109 case KVM_CAP_NR_VCPUS:
1110 r = num_online_cpus();
1111 break;
1112 case KVM_CAP_MAX_VCPUS:
1113 r = KVM_MAX_VCPUS;
1114 break;
1115 case KVM_CAP_MAX_VCPU_ID:
1116 r = KVM_MAX_VCPU_ID;
1117 break;
1118 case KVM_CAP_MIPS_FPU:
1119 /* We don't handle systems with inconsistent cpu_has_fpu */
1120 r = !!raw_cpu_has_fpu;
1121 break;
1122 case KVM_CAP_MIPS_MSA:
1123 /*
1124 * We don't support MSA vector partitioning yet:
1125 * 1) It would require explicit support which can't be tested
1126 * yet due to lack of support in current hardware.
1127 * 2) It extends the state that would need to be saved/restored
1128 * by e.g. QEMU for migration.
1129 *
1130 * When vector partitioning hardware becomes available, support
1131 * could be added by requiring a flag when enabling
1132 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1133 * to save/restore the appropriate extra state.
1134 */
1135 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1136 break;
1137 default:
1138 r = kvm_mips_callbacks->check_extension(kvm, ext);
1139 break;
1140 }
1141 return r;
1142}
1143
1144int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1145{
1146 return kvm_mips_pending_timer(vcpu) ||
1147 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1148}
1149
1150int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1151{
1152 int i;
1153 struct mips_coproc *cop0;
1154
1155 if (!vcpu)
1156 return -1;
1157
1158 kvm_debug("VCPU Register Dump:\n");
1159 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1160 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1161
1162 for (i = 0; i < 32; i += 4) {
1163 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1164 vcpu->arch.gprs[i],
1165 vcpu->arch.gprs[i + 1],
1166 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1167 }
1168 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1169 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1170
1171 cop0 = vcpu->arch.cop0;
1172 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1173 kvm_read_c0_guest_status(cop0),
1174 kvm_read_c0_guest_cause(cop0));
1175
1176 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1177
1178 return 0;
1179}
1180
1181int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1182{
1183 int i;
1184
1185 vcpu_load(vcpu);
1186
1187 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1188 vcpu->arch.gprs[i] = regs->gpr[i];
1189 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1190 vcpu->arch.hi = regs->hi;
1191 vcpu->arch.lo = regs->lo;
1192 vcpu->arch.pc = regs->pc;
1193
1194 vcpu_put(vcpu);
1195 return 0;
1196}
1197
1198int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1199{
1200 int i;
1201
1202 vcpu_load(vcpu);
1203
1204 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1205 regs->gpr[i] = vcpu->arch.gprs[i];
1206
1207 regs->hi = vcpu->arch.hi;
1208 regs->lo = vcpu->arch.lo;
1209 regs->pc = vcpu->arch.pc;
1210
1211 vcpu_put(vcpu);
1212 return 0;
1213}
1214
1215static void kvm_mips_comparecount_func(unsigned long data)
1216{
1217 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1218
1219 kvm_mips_callbacks->queue_timer_int(vcpu);
1220
1221 vcpu->arch.wait = 0;
1222 if (swq_has_sleeper(&vcpu->wq))
1223 swake_up_one(&vcpu->wq);
1224}
1225
1226/* low level hrtimer wake routine */
1227static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1228{
1229 struct kvm_vcpu *vcpu;
1230
1231 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1232 kvm_mips_comparecount_func((unsigned long) vcpu);
1233 return kvm_mips_count_timeout(vcpu);
1234}
1235
1236int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1237{
1238 int err;
1239
1240 err = kvm_mips_callbacks->vcpu_init(vcpu);
1241 if (err)
1242 return err;
1243
1244 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1245 HRTIMER_MODE_REL);
1246 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1247 return 0;
1248}
1249
1250void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1251{
1252 kvm_mips_callbacks->vcpu_uninit(vcpu);
1253}
1254
1255int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1256 struct kvm_translation *tr)
1257{
1258 return 0;
1259}
1260
1261/* Initial guest state */
1262int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1263{
1264 return kvm_mips_callbacks->vcpu_setup(vcpu);
1265}
1266
1267static void kvm_mips_set_c0_status(void)
1268{
1269 u32 status = read_c0_status();
1270
1271 if (cpu_has_dsp)
1272 status |= (ST0_MX);
1273
1274 write_c0_status(status);
1275 ehb();
1276}
1277
1278/*
1279 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1280 */
1281int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1282{
1283 u32 cause = vcpu->arch.host_cp0_cause;
1284 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1285 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1286 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1287 enum emulation_result er = EMULATE_DONE;
1288 u32 inst;
1289 int ret = RESUME_GUEST;
1290
1291 vcpu->mode = OUTSIDE_GUEST_MODE;
1292
1293 /* re-enable HTW before enabling interrupts */
1294 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1295 htw_start();
1296
1297 /* Set a default exit reason */
1298 run->exit_reason = KVM_EXIT_UNKNOWN;
1299 run->ready_for_interrupt_injection = 1;
1300
1301 /*
1302 * Set the appropriate status bits based on host CPU features,
1303 * before we hit the scheduler
1304 */
1305 kvm_mips_set_c0_status();
1306
1307 local_irq_enable();
1308
1309 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1310 cause, opc, run, vcpu);
1311 trace_kvm_exit(vcpu, exccode);
1312
1313 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1314 /*
1315 * Do a privilege check, if in UM most of these exit conditions
1316 * end up causing an exception to be delivered to the Guest
1317 * Kernel
1318 */
1319 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1320 if (er == EMULATE_PRIV_FAIL) {
1321 goto skip_emul;
1322 } else if (er == EMULATE_FAIL) {
1323 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324 ret = RESUME_HOST;
1325 goto skip_emul;
1326 }
1327 }
1328
1329 switch (exccode) {
1330 case EXCCODE_INT:
1331 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1332
1333 ++vcpu->stat.int_exits;
1334
1335 if (need_resched())
1336 cond_resched();
1337
1338 ret = RESUME_GUEST;
1339 break;
1340
1341 case EXCCODE_CPU:
1342 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1343
1344 ++vcpu->stat.cop_unusable_exits;
1345 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1346 /* XXXKYMA: Might need to return to user space */
1347 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1348 ret = RESUME_HOST;
1349 break;
1350
1351 case EXCCODE_MOD:
1352 ++vcpu->stat.tlbmod_exits;
1353 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1354 break;
1355
1356 case EXCCODE_TLBS:
1357 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1358 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1359 badvaddr);
1360
1361 ++vcpu->stat.tlbmiss_st_exits;
1362 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1363 break;
1364
1365 case EXCCODE_TLBL:
1366 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1367 cause, opc, badvaddr);
1368
1369 ++vcpu->stat.tlbmiss_ld_exits;
1370 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1371 break;
1372
1373 case EXCCODE_ADES:
1374 ++vcpu->stat.addrerr_st_exits;
1375 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1376 break;
1377
1378 case EXCCODE_ADEL:
1379 ++vcpu->stat.addrerr_ld_exits;
1380 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1381 break;
1382
1383 case EXCCODE_SYS:
1384 ++vcpu->stat.syscall_exits;
1385 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1386 break;
1387
1388 case EXCCODE_RI:
1389 ++vcpu->stat.resvd_inst_exits;
1390 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1391 break;
1392
1393 case EXCCODE_BP:
1394 ++vcpu->stat.break_inst_exits;
1395 ret = kvm_mips_callbacks->handle_break(vcpu);
1396 break;
1397
1398 case EXCCODE_TR:
1399 ++vcpu->stat.trap_inst_exits;
1400 ret = kvm_mips_callbacks->handle_trap(vcpu);
1401 break;
1402
1403 case EXCCODE_MSAFPE:
1404 ++vcpu->stat.msa_fpe_exits;
1405 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1406 break;
1407
1408 case EXCCODE_FPE:
1409 ++vcpu->stat.fpe_exits;
1410 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1411 break;
1412
1413 case EXCCODE_MSADIS:
1414 ++vcpu->stat.msa_disabled_exits;
1415 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1416 break;
1417
1418 case EXCCODE_GE:
1419 /* defer exit accounting to handler */
1420 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1421 break;
1422
1423 default:
1424 if (cause & CAUSEF_BD)
1425 opc += 1;
1426 inst = 0;
1427 kvm_get_badinstr(opc, vcpu, &inst);
1428 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1429 exccode, opc, inst, badvaddr,
1430 kvm_read_c0_guest_status(vcpu->arch.cop0));
1431 kvm_arch_vcpu_dump_regs(vcpu);
1432 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433 ret = RESUME_HOST;
1434 break;
1435
1436 }
1437
1438skip_emul:
1439 local_irq_disable();
1440
1441 if (ret == RESUME_GUEST)
1442 kvm_vz_acquire_htimer(vcpu);
1443
1444 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1445 kvm_mips_deliver_interrupts(vcpu, cause);
1446
1447 if (!(ret & RESUME_HOST)) {
1448 /* Only check for signals if not already exiting to userspace */
1449 if (signal_pending(current)) {
1450 run->exit_reason = KVM_EXIT_INTR;
1451 ret = (-EINTR << 2) | RESUME_HOST;
1452 ++vcpu->stat.signal_exits;
1453 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1454 }
1455 }
1456
1457 if (ret == RESUME_GUEST) {
1458 trace_kvm_reenter(vcpu);
1459
1460 /*
1461 * Make sure the read of VCPU requests in vcpu_reenter()
1462 * callback is not reordered ahead of the write to vcpu->mode,
1463 * or we could miss a TLB flush request while the requester sees
1464 * the VCPU as outside of guest mode and not needing an IPI.
1465 */
1466 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1467
1468 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1469
1470 /*
1471 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1472 * is live), restore FCR31 / MSACSR.
1473 *
1474 * This should be before returning to the guest exception
1475 * vector, as it may well cause an [MSA] FP exception if there
1476 * are pending exception bits unmasked. (see
1477 * kvm_mips_csr_die_notifier() for how that is handled).
1478 */
1479 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1480 read_c0_status() & ST0_CU1)
1481 __kvm_restore_fcsr(&vcpu->arch);
1482
1483 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1484 read_c0_config5() & MIPS_CONF5_MSAEN)
1485 __kvm_restore_msacsr(&vcpu->arch);
1486 }
1487
1488 /* Disable HTW before returning to guest or host */
1489 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1490 htw_stop();
1491
1492 return ret;
1493}
1494
1495/* Enable FPU for guest and restore context */
1496void kvm_own_fpu(struct kvm_vcpu *vcpu)
1497{
1498 struct mips_coproc *cop0 = vcpu->arch.cop0;
1499 unsigned int sr, cfg5;
1500
1501 preempt_disable();
1502
1503 sr = kvm_read_c0_guest_status(cop0);
1504
1505 /*
1506 * If MSA state is already live, it is undefined how it interacts with
1507 * FR=0 FPU state, and we don't want to hit reserved instruction
1508 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1509 * play it safe and save it first.
1510 *
1511 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1512 * get called when guest CU1 is set, however we can't trust the guest
1513 * not to clobber the status register directly via the commpage.
1514 */
1515 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1516 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1517 kvm_lose_fpu(vcpu);
1518
1519 /*
1520 * Enable FPU for guest
1521 * We set FR and FRE according to guest context
1522 */
1523 change_c0_status(ST0_CU1 | ST0_FR, sr);
1524 if (cpu_has_fre) {
1525 cfg5 = kvm_read_c0_guest_config5(cop0);
1526 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1527 }
1528 enable_fpu_hazard();
1529
1530 /* If guest FPU state not active, restore it now */
1531 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1532 __kvm_restore_fpu(&vcpu->arch);
1533 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1534 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1535 } else {
1536 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1537 }
1538
1539 preempt_enable();
1540}
1541
1542#ifdef CONFIG_CPU_HAS_MSA
1543/* Enable MSA for guest and restore context */
1544void kvm_own_msa(struct kvm_vcpu *vcpu)
1545{
1546 struct mips_coproc *cop0 = vcpu->arch.cop0;
1547 unsigned int sr, cfg5;
1548
1549 preempt_disable();
1550
1551 /*
1552 * Enable FPU if enabled in guest, since we're restoring FPU context
1553 * anyway. We set FR and FRE according to guest context.
1554 */
1555 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1556 sr = kvm_read_c0_guest_status(cop0);
1557
1558 /*
1559 * If FR=0 FPU state is already live, it is undefined how it
1560 * interacts with MSA state, so play it safe and save it first.
1561 */
1562 if (!(sr & ST0_FR) &&
1563 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1564 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1565 kvm_lose_fpu(vcpu);
1566
1567 change_c0_status(ST0_CU1 | ST0_FR, sr);
1568 if (sr & ST0_CU1 && cpu_has_fre) {
1569 cfg5 = kvm_read_c0_guest_config5(cop0);
1570 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1571 }
1572 }
1573
1574 /* Enable MSA for guest */
1575 set_c0_config5(MIPS_CONF5_MSAEN);
1576 enable_fpu_hazard();
1577
1578 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1579 case KVM_MIPS_AUX_FPU:
1580 /*
1581 * Guest FPU state already loaded, only restore upper MSA state
1582 */
1583 __kvm_restore_msa_upper(&vcpu->arch);
1584 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1585 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1586 break;
1587 case 0:
1588 /* Neither FPU or MSA already active, restore full MSA state */
1589 __kvm_restore_msa(&vcpu->arch);
1590 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1591 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1592 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1593 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1594 KVM_TRACE_AUX_FPU_MSA);
1595 break;
1596 default:
1597 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1598 break;
1599 }
1600
1601 preempt_enable();
1602}
1603#endif
1604
1605/* Drop FPU & MSA without saving it */
1606void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1607{
1608 preempt_disable();
1609 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610 disable_msa();
1611 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1612 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1613 }
1614 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1615 clear_c0_status(ST0_CU1 | ST0_FR);
1616 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1617 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1618 }
1619 preempt_enable();
1620}
1621
1622/* Save and disable FPU & MSA */
1623void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1624{
1625 /*
1626 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1627 * is disabled in guest context (software), but the register state in
1628 * the hardware may still be in use.
1629 * This is why we explicitly re-enable the hardware before saving.
1630 */
1631
1632 preempt_disable();
1633 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1634 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635 set_c0_config5(MIPS_CONF5_MSAEN);
1636 enable_fpu_hazard();
1637 }
1638
1639 __kvm_save_msa(&vcpu->arch);
1640 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1641
1642 /* Disable MSA & FPU */
1643 disable_msa();
1644 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1645 clear_c0_status(ST0_CU1 | ST0_FR);
1646 disable_fpu_hazard();
1647 }
1648 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1649 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1650 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1651 set_c0_status(ST0_CU1);
1652 enable_fpu_hazard();
1653 }
1654
1655 __kvm_save_fpu(&vcpu->arch);
1656 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1657 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1658
1659 /* Disable FPU */
1660 clear_c0_status(ST0_CU1 | ST0_FR);
1661 disable_fpu_hazard();
1662 }
1663 preempt_enable();
1664}
1665
1666/*
1667 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1668 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1669 * exception if cause bits are set in the value being written.
1670 */
1671static int kvm_mips_csr_die_notify(struct notifier_block *self,
1672 unsigned long cmd, void *ptr)
1673{
1674 struct die_args *args = (struct die_args *)ptr;
1675 struct pt_regs *regs = args->regs;
1676 unsigned long pc;
1677
1678 /* Only interested in FPE and MSAFPE */
1679 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1680 return NOTIFY_DONE;
1681
1682 /* Return immediately if guest context isn't active */
1683 if (!(current->flags & PF_VCPU))
1684 return NOTIFY_DONE;
1685
1686 /* Should never get here from user mode */
1687 BUG_ON(user_mode(regs));
1688
1689 pc = instruction_pointer(regs);
1690 switch (cmd) {
1691 case DIE_FP:
1692 /* match 2nd instruction in __kvm_restore_fcsr */
1693 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1694 return NOTIFY_DONE;
1695 break;
1696 case DIE_MSAFP:
1697 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1698 if (!cpu_has_msa ||
1699 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1700 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1701 return NOTIFY_DONE;
1702 break;
1703 }
1704
1705 /* Move PC forward a little and continue executing */
1706 instruction_pointer(regs) += 4;
1707
1708 return NOTIFY_STOP;
1709}
1710
1711static struct notifier_block kvm_mips_csr_die_notifier = {
1712 .notifier_call = kvm_mips_csr_die_notify,
1713};
1714
1715static int __init kvm_mips_init(void)
1716{
1717 int ret;
1718
1719 if (cpu_has_mmid) {
1720 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1721 return -EOPNOTSUPP;
1722 }
1723
1724 ret = kvm_mips_entry_setup();
1725 if (ret)
1726 return ret;
1727
1728 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1729
1730 if (ret)
1731 return ret;
1732
1733 register_die_notifier(&kvm_mips_csr_die_notifier);
1734
1735 return 0;
1736}
1737
1738static void __exit kvm_mips_exit(void)
1739{
1740 kvm_exit();
1741
1742 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1743}
1744
1745module_init(kvm_mips_init);
1746module_exit(kvm_mips_exit);
1747
1748EXPORT_TRACEPOINT_SYMBOL(kvm_exit);