Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
 
  19#include <linux/fs.h>
  20#include <linux/bootmem.h>
 
  21#include <asm/fpu.h>
  22#include <asm/page.h>
  23#include <asm/cacheflush.h>
  24#include <asm/mmu_context.h>
 
  25#include <asm/pgtable.h>
  26
  27#include <linux/kvm_host.h>
  28
  29#include "interrupt.h"
  30#include "commpage.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include "trace.h"
  34
  35#ifndef VECTORSPACING
  36#define VECTORSPACING 0x100	/* for EI/VI mode */
  37#endif
  38
  39#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  40struct kvm_stats_debugfs_item debugfs_entries[] = {
  41	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
  42	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
  43	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
  44	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
  45	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  46	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
  47	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
  48	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
  49	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
  50	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
  51	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
  52	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
  53	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
  54	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
  55	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
  56	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
  57	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  58	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
 
 
 
 
 
 
 
 
 
 
  59	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  60	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  61	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  62	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
  63	{NULL}
  64};
  65
  66static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  67{
  68	int i;
  69
  70	for_each_possible_cpu(i) {
  71		vcpu->arch.guest_kernel_asid[i] = 0;
  72		vcpu->arch.guest_user_asid[i] = 0;
  73	}
  74
 
 
 
  75	return 0;
  76}
  77
 
 
 
 
 
  78/*
  79 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  80 * Config7, so we are "runnable" if interrupts are pending
  81 */
  82int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  83{
  84	return !!(vcpu->arch.pending_exceptions);
  85}
  86
  87int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  88{
  89	return 1;
  90}
  91
  92int kvm_arch_hardware_enable(void)
  93{
  94	return 0;
  95}
  96
  97int kvm_arch_hardware_setup(void)
  98{
  99	return 0;
 100}
 101
 102void kvm_arch_check_processor_compat(void *rtn)
 103{
 104	*(int *)rtn = 0;
 105}
 106
 107static void kvm_mips_init_tlbs(struct kvm *kvm)
 108{
 109	unsigned long wired;
 110
 111	/*
 112	 * Add a wired entry to the TLB, it is used to map the commpage to
 113	 * the Guest kernel
 114	 */
 115	wired = read_c0_wired();
 116	write_c0_wired(wired + 1);
 117	mtc0_tlbw_hazard();
 118	kvm->arch.commpage_tlb = wired;
 119
 120	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
 121		  kvm->arch.commpage_tlb);
 122}
 123
 124static void kvm_mips_init_vm_percpu(void *arg)
 125{
 126	struct kvm *kvm = (struct kvm *)arg;
 127
 128	kvm_mips_init_tlbs(kvm);
 129	kvm_mips_callbacks->vm_init(kvm);
 130
 131}
 132
 133int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 134{
 135	if (atomic_inc_return(&kvm_mips_instance) == 1) {
 136		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
 137			  __func__);
 138		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
 139	}
 140
 141	return 0;
 142}
 
 
 
 143
 144bool kvm_arch_has_vcpu_debugfs(void)
 145{
 146	return false;
 147}
 148
 149int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 150{
 151	return 0;
 152}
 153
 154void kvm_mips_free_vcpus(struct kvm *kvm)
 155{
 156	unsigned int i;
 157	struct kvm_vcpu *vcpu;
 158
 159	/* Put the pages we reserved for the guest pmap */
 160	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
 161		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
 162			kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
 163	}
 164	kfree(kvm->arch.guest_pmap);
 165
 166	kvm_for_each_vcpu(i, vcpu, kvm) {
 167		kvm_arch_vcpu_free(vcpu);
 168	}
 169
 170	mutex_lock(&kvm->lock);
 171
 172	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 173		kvm->vcpus[i] = NULL;
 174
 175	atomic_set(&kvm->online_vcpus, 0);
 176
 177	mutex_unlock(&kvm->lock);
 178}
 179
 180static void kvm_mips_uninit_tlbs(void *arg)
 181{
 182	/* Restore wired count */
 183	write_c0_wired(0);
 184	mtc0_tlbw_hazard();
 185	/* Clear out all the TLBs */
 186	kvm_local_flush_tlb_all();
 187}
 188
 189void kvm_arch_destroy_vm(struct kvm *kvm)
 190{
 191	kvm_mips_free_vcpus(kvm);
 192
 193	/* If this is the last instance, restore wired count */
 194	if (atomic_dec_return(&kvm_mips_instance) == 0) {
 195		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
 196			  __func__);
 197		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
 198	}
 199}
 200
 201long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 202			unsigned long arg)
 203{
 204	return -ENOIOCTLCMD;
 205}
 206
 207int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 208			    unsigned long npages)
 209{
 210	return 0;
 211}
 212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213int kvm_arch_prepare_memory_region(struct kvm *kvm,
 214				   struct kvm_memory_slot *memslot,
 215				   const struct kvm_userspace_memory_region *mem,
 216				   enum kvm_mr_change change)
 217{
 218	return 0;
 219}
 220
 221void kvm_arch_commit_memory_region(struct kvm *kvm,
 222				   const struct kvm_userspace_memory_region *mem,
 223				   const struct kvm_memory_slot *old,
 224				   const struct kvm_memory_slot *new,
 225				   enum kvm_mr_change change)
 226{
 227	unsigned long npages = 0;
 228	int i;
 229
 230	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 231		  __func__, kvm, mem->slot, mem->guest_phys_addr,
 232		  mem->memory_size, mem->userspace_addr);
 233
 234	/* Setup Guest PMAP table */
 235	if (!kvm->arch.guest_pmap) {
 236		if (mem->slot == 0)
 237			npages = mem->memory_size >> PAGE_SHIFT;
 238
 239		if (npages) {
 240			kvm->arch.guest_pmap_npages = npages;
 241			kvm->arch.guest_pmap =
 242			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
 243
 244			if (!kvm->arch.guest_pmap) {
 245				kvm_err("Failed to allocate guest PMAP\n");
 246				return;
 247			}
 248
 249			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
 250				  npages, kvm->arch.guest_pmap);
 251
 252			/* Now setup the page table */
 253			for (i = 0; i < npages; i++)
 254				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
 255		}
 256	}
 257}
 258
 259static inline void dump_handler(const char *symbol, void *start, void *end)
 260{
 261	u32 *p;
 262
 263	pr_debug("LEAF(%s)\n", symbol);
 264
 265	pr_debug("\t.set push\n");
 266	pr_debug("\t.set noreorder\n");
 267
 268	for (p = start; p < (u32 *)end; ++p)
 269		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 270
 271	pr_debug("\t.set\tpop\n");
 272
 273	pr_debug("\tEND(%s)\n", symbol);
 274}
 275
 276struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 277{
 278	int err, size;
 279	void *gebase, *p, *handler;
 280	int i;
 281
 282	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 283
 284	if (!vcpu) {
 285		err = -ENOMEM;
 286		goto out;
 287	}
 288
 289	err = kvm_vcpu_init(vcpu, kvm, id);
 290
 291	if (err)
 292		goto out_free_cpu;
 293
 294	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 295
 296	/*
 297	 * Allocate space for host mode exception handlers that handle
 298	 * guest mode exits
 299	 */
 300	if (cpu_has_veic || cpu_has_vint)
 301		size = 0x200 + VECTORSPACING * 64;
 302	else
 303		size = 0x4000;
 304
 305	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 306
 307	if (!gebase) {
 308		err = -ENOMEM;
 309		goto out_uninit_cpu;
 310	}
 311	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 312		  ALIGN(size, PAGE_SIZE), gebase);
 313
 314	/*
 315	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 316	 * limits us to the low 512MB of physical address space. If the memory
 317	 * we allocate is out of range, just give up now.
 318	 */
 319	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 320		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 321			gebase);
 322		err = -ENOMEM;
 323		goto out_free_gebase;
 324	}
 325
 326	/* Save new ebase */
 327	vcpu->arch.guest_ebase = gebase;
 328
 329	/* Build guest exception vectors dynamically in unmapped memory */
 330	handler = gebase + 0x2000;
 331
 332	/* TLB Refill, EXL = 0 */
 333	kvm_mips_build_exception(gebase, handler);
 
 
 
 334
 335	/* General Exception Entry point */
 336	kvm_mips_build_exception(gebase + 0x180, handler);
 337
 338	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 339	for (i = 0; i < 8; i++) {
 340		kvm_debug("L1 Vectored handler @ %p\n",
 341			  gebase + 0x200 + (i * VECTORSPACING));
 342		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 343					 handler);
 344	}
 345
 346	/* General exit handler */
 347	p = handler;
 348	p = kvm_mips_build_exit(p);
 349
 350	/* Guest entry routine */
 351	vcpu->arch.vcpu_run = p;
 352	p = kvm_mips_build_vcpu_run(p);
 353
 354	/* Dump the generated code */
 355	pr_debug("#include <asm/asm.h>\n");
 356	pr_debug("#include <asm/regdef.h>\n");
 357	pr_debug("\n");
 358	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 
 359	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 360	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 361
 362	/* Invalidate the icache for these ranges */
 363	flush_icache_range((unsigned long)gebase,
 364			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 365
 366	/*
 367	 * Allocate comm page for guest kernel, a TLB will be reserved for
 368	 * mapping GVA @ 0xFFFF8000 to this page
 369	 */
 370	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 371
 372	if (!vcpu->arch.kseg0_commpage) {
 373		err = -ENOMEM;
 374		goto out_free_gebase;
 375	}
 376
 377	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 378	kvm_mips_commpage_init(vcpu);
 379
 380	/* Init */
 381	vcpu->arch.last_sched_cpu = -1;
 382
 383	/* Start off the timer */
 384	kvm_mips_init_count(vcpu);
 385
 386	return vcpu;
 387
 388out_free_gebase:
 389	kfree(gebase);
 390
 391out_uninit_cpu:
 392	kvm_vcpu_uninit(vcpu);
 393
 394out_free_cpu:
 395	kfree(vcpu);
 396
 397out:
 398	return ERR_PTR(err);
 399}
 400
 401void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 402{
 403	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 404
 405	kvm_vcpu_uninit(vcpu);
 406
 407	kvm_mips_dump_stats(vcpu);
 408
 
 409	kfree(vcpu->arch.guest_ebase);
 410	kfree(vcpu->arch.kseg0_commpage);
 411	kfree(vcpu);
 412}
 413
 414void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 415{
 416	kvm_arch_vcpu_free(vcpu);
 417}
 418
 419int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 420					struct kvm_guest_debug *dbg)
 421{
 422	return -ENOIOCTLCMD;
 423}
 424
 425/* Must be called with preemption disabled, just before entering guest */
 426static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
 427{
 428	struct mips_coproc *cop0 = vcpu->arch.cop0;
 429	int i, cpu = smp_processor_id();
 430	unsigned int gasid;
 431
 432	/*
 433	 * Lazy host ASID regeneration for guest user mode.
 434	 * If the guest ASID has changed since the last guest usermode
 435	 * execution, regenerate the host ASID so as to invalidate stale TLB
 436	 * entries.
 437	 */
 438	if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
 439		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
 440		if (gasid != vcpu->arch.last_user_gasid) {
 441			kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
 442						vcpu);
 443			vcpu->arch.guest_user_asid[cpu] =
 444				vcpu->arch.guest_user_mm.context.asid[cpu];
 445			for_each_possible_cpu(i)
 446				if (i != cpu)
 447					vcpu->arch.guest_user_asid[cpu] = 0;
 448			vcpu->arch.last_user_gasid = gasid;
 449		}
 450	}
 451}
 452
 453int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 454{
 455	int r = 0;
 456	sigset_t sigsaved;
 457
 458	if (vcpu->sigset_active)
 459		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 
 460
 461	if (vcpu->mmio_needed) {
 462		if (!vcpu->mmio_is_write)
 463			kvm_mips_complete_mmio_load(vcpu, run);
 464		vcpu->mmio_needed = 0;
 465	}
 466
 
 
 
 467	lose_fpu(1);
 468
 469	local_irq_disable();
 470	/* Check if we have any exceptions/interrupts pending */
 471	kvm_mips_deliver_interrupts(vcpu,
 472				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
 473
 474	guest_enter_irqoff();
 475
 476	/* Disable hardware page table walking while in guest */
 477	htw_stop();
 478
 479	trace_kvm_enter(vcpu);
 480
 481	kvm_mips_check_asids(vcpu);
 482
 483	r = vcpu->arch.vcpu_run(run, vcpu);
 484	trace_kvm_out(vcpu);
 
 
 
 485
 486	/* Re-enable HTW before enabling interrupts */
 487	htw_start();
 488
 
 489	guest_exit_irqoff();
 490	local_irq_enable();
 491
 492	if (vcpu->sigset_active)
 493		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 494
 
 495	return r;
 496}
 497
 498int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 499			     struct kvm_mips_interrupt *irq)
 500{
 501	int intr = (int)irq->irq;
 502	struct kvm_vcpu *dvcpu = NULL;
 503
 504	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 505		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 506			  (int)intr);
 507
 508	if (irq->cpu == -1)
 509		dvcpu = vcpu;
 510	else
 511		dvcpu = vcpu->kvm->vcpus[irq->cpu];
 512
 513	if (intr == 2 || intr == 3 || intr == 4) {
 514		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 515
 516	} else if (intr == -2 || intr == -3 || intr == -4) {
 517		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 518	} else {
 519		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 520			irq->cpu, irq->irq);
 521		return -EINVAL;
 522	}
 523
 524	dvcpu->arch.wait = 0;
 525
 526	if (swait_active(&dvcpu->wq))
 527		swake_up(&dvcpu->wq);
 528
 529	return 0;
 530}
 531
 532int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 533				    struct kvm_mp_state *mp_state)
 534{
 535	return -ENOIOCTLCMD;
 536}
 537
 538int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 539				    struct kvm_mp_state *mp_state)
 540{
 541	return -ENOIOCTLCMD;
 542}
 543
 544static u64 kvm_mips_get_one_regs[] = {
 545	KVM_REG_MIPS_R0,
 546	KVM_REG_MIPS_R1,
 547	KVM_REG_MIPS_R2,
 548	KVM_REG_MIPS_R3,
 549	KVM_REG_MIPS_R4,
 550	KVM_REG_MIPS_R5,
 551	KVM_REG_MIPS_R6,
 552	KVM_REG_MIPS_R7,
 553	KVM_REG_MIPS_R8,
 554	KVM_REG_MIPS_R9,
 555	KVM_REG_MIPS_R10,
 556	KVM_REG_MIPS_R11,
 557	KVM_REG_MIPS_R12,
 558	KVM_REG_MIPS_R13,
 559	KVM_REG_MIPS_R14,
 560	KVM_REG_MIPS_R15,
 561	KVM_REG_MIPS_R16,
 562	KVM_REG_MIPS_R17,
 563	KVM_REG_MIPS_R18,
 564	KVM_REG_MIPS_R19,
 565	KVM_REG_MIPS_R20,
 566	KVM_REG_MIPS_R21,
 567	KVM_REG_MIPS_R22,
 568	KVM_REG_MIPS_R23,
 569	KVM_REG_MIPS_R24,
 570	KVM_REG_MIPS_R25,
 571	KVM_REG_MIPS_R26,
 572	KVM_REG_MIPS_R27,
 573	KVM_REG_MIPS_R28,
 574	KVM_REG_MIPS_R29,
 575	KVM_REG_MIPS_R30,
 576	KVM_REG_MIPS_R31,
 577
 578#ifndef CONFIG_CPU_MIPSR6
 579	KVM_REG_MIPS_HI,
 580	KVM_REG_MIPS_LO,
 581#endif
 582	KVM_REG_MIPS_PC,
 583
 584	KVM_REG_MIPS_CP0_INDEX,
 585	KVM_REG_MIPS_CP0_CONTEXT,
 586	KVM_REG_MIPS_CP0_USERLOCAL,
 587	KVM_REG_MIPS_CP0_PAGEMASK,
 588	KVM_REG_MIPS_CP0_WIRED,
 589	KVM_REG_MIPS_CP0_HWRENA,
 590	KVM_REG_MIPS_CP0_BADVADDR,
 591	KVM_REG_MIPS_CP0_COUNT,
 592	KVM_REG_MIPS_CP0_ENTRYHI,
 593	KVM_REG_MIPS_CP0_COMPARE,
 594	KVM_REG_MIPS_CP0_STATUS,
 595	KVM_REG_MIPS_CP0_CAUSE,
 596	KVM_REG_MIPS_CP0_EPC,
 597	KVM_REG_MIPS_CP0_PRID,
 598	KVM_REG_MIPS_CP0_CONFIG,
 599	KVM_REG_MIPS_CP0_CONFIG1,
 600	KVM_REG_MIPS_CP0_CONFIG2,
 601	KVM_REG_MIPS_CP0_CONFIG3,
 602	KVM_REG_MIPS_CP0_CONFIG4,
 603	KVM_REG_MIPS_CP0_CONFIG5,
 604	KVM_REG_MIPS_CP0_CONFIG7,
 605	KVM_REG_MIPS_CP0_ERROREPC,
 606
 607	KVM_REG_MIPS_COUNT_CTL,
 608	KVM_REG_MIPS_COUNT_RESUME,
 609	KVM_REG_MIPS_COUNT_HZ,
 610};
 611
 612static u64 kvm_mips_get_one_regs_fpu[] = {
 613	KVM_REG_MIPS_FCR_IR,
 614	KVM_REG_MIPS_FCR_CSR,
 615};
 616
 617static u64 kvm_mips_get_one_regs_msa[] = {
 618	KVM_REG_MIPS_MSA_IR,
 619	KVM_REG_MIPS_MSA_CSR,
 620};
 621
 622static u64 kvm_mips_get_one_regs_kscratch[] = {
 623	KVM_REG_MIPS_CP0_KSCRATCH1,
 624	KVM_REG_MIPS_CP0_KSCRATCH2,
 625	KVM_REG_MIPS_CP0_KSCRATCH3,
 626	KVM_REG_MIPS_CP0_KSCRATCH4,
 627	KVM_REG_MIPS_CP0_KSCRATCH5,
 628	KVM_REG_MIPS_CP0_KSCRATCH6,
 629};
 630
 631static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 632{
 633	unsigned long ret;
 634
 635	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 636	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 637		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 638		/* odd doubles */
 639		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 640			ret += 16;
 641	}
 642	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 643		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 644	ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
 645	ret += kvm_mips_callbacks->num_regs(vcpu);
 646
 647	return ret;
 648}
 649
 650static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 651{
 652	u64 index;
 653	unsigned int i;
 654
 655	if (copy_to_user(indices, kvm_mips_get_one_regs,
 656			 sizeof(kvm_mips_get_one_regs)))
 657		return -EFAULT;
 658	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 659
 660	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 661		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 662				 sizeof(kvm_mips_get_one_regs_fpu)))
 663			return -EFAULT;
 664		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 665
 666		for (i = 0; i < 32; ++i) {
 667			index = KVM_REG_MIPS_FPR_32(i);
 668			if (copy_to_user(indices, &index, sizeof(index)))
 669				return -EFAULT;
 670			++indices;
 671
 672			/* skip odd doubles if no F64 */
 673			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 674				continue;
 675
 676			index = KVM_REG_MIPS_FPR_64(i);
 677			if (copy_to_user(indices, &index, sizeof(index)))
 678				return -EFAULT;
 679			++indices;
 680		}
 681	}
 682
 683	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 684		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 685				 sizeof(kvm_mips_get_one_regs_msa)))
 686			return -EFAULT;
 687		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 688
 689		for (i = 0; i < 32; ++i) {
 690			index = KVM_REG_MIPS_VEC_128(i);
 691			if (copy_to_user(indices, &index, sizeof(index)))
 692				return -EFAULT;
 693			++indices;
 694		}
 695	}
 696
 697	for (i = 0; i < 6; ++i) {
 698		if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
 699			continue;
 700
 701		if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
 702				 sizeof(kvm_mips_get_one_regs_kscratch[i])))
 703			return -EFAULT;
 704		++indices;
 705	}
 706
 707	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 708}
 709
 710static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 711			    const struct kvm_one_reg *reg)
 712{
 713	struct mips_coproc *cop0 = vcpu->arch.cop0;
 714	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 715	int ret;
 716	s64 v;
 717	s64 vs[2];
 718	unsigned int idx;
 719
 720	switch (reg->id) {
 721	/* General purpose registers */
 722	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 723		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 724		break;
 725#ifndef CONFIG_CPU_MIPSR6
 726	case KVM_REG_MIPS_HI:
 727		v = (long)vcpu->arch.hi;
 728		break;
 729	case KVM_REG_MIPS_LO:
 730		v = (long)vcpu->arch.lo;
 731		break;
 732#endif
 733	case KVM_REG_MIPS_PC:
 734		v = (long)vcpu->arch.pc;
 735		break;
 736
 737	/* Floating point registers */
 738	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 739		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 740			return -EINVAL;
 741		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 742		/* Odd singles in top of even double when FR=0 */
 743		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 744			v = get_fpr32(&fpu->fpr[idx], 0);
 745		else
 746			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 747		break;
 748	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 749		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 750			return -EINVAL;
 751		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 752		/* Can't access odd doubles in FR=0 mode */
 753		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 754			return -EINVAL;
 755		v = get_fpr64(&fpu->fpr[idx], 0);
 756		break;
 757	case KVM_REG_MIPS_FCR_IR:
 758		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 759			return -EINVAL;
 760		v = boot_cpu_data.fpu_id;
 761		break;
 762	case KVM_REG_MIPS_FCR_CSR:
 763		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 764			return -EINVAL;
 765		v = fpu->fcr31;
 766		break;
 767
 768	/* MIPS SIMD Architecture (MSA) registers */
 769	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 770		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 771			return -EINVAL;
 772		/* Can't access MSA registers in FR=0 mode */
 773		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 774			return -EINVAL;
 775		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 776#ifdef CONFIG_CPU_LITTLE_ENDIAN
 777		/* least significant byte first */
 778		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 779		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 780#else
 781		/* most significant byte first */
 782		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 783		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 784#endif
 785		break;
 786	case KVM_REG_MIPS_MSA_IR:
 787		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 788			return -EINVAL;
 789		v = boot_cpu_data.msa_id;
 790		break;
 791	case KVM_REG_MIPS_MSA_CSR:
 792		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 793			return -EINVAL;
 794		v = fpu->msacsr;
 795		break;
 796
 797	/* Co-processor 0 registers */
 798	case KVM_REG_MIPS_CP0_INDEX:
 799		v = (long)kvm_read_c0_guest_index(cop0);
 800		break;
 801	case KVM_REG_MIPS_CP0_CONTEXT:
 802		v = (long)kvm_read_c0_guest_context(cop0);
 803		break;
 804	case KVM_REG_MIPS_CP0_USERLOCAL:
 805		v = (long)kvm_read_c0_guest_userlocal(cop0);
 806		break;
 807	case KVM_REG_MIPS_CP0_PAGEMASK:
 808		v = (long)kvm_read_c0_guest_pagemask(cop0);
 809		break;
 810	case KVM_REG_MIPS_CP0_WIRED:
 811		v = (long)kvm_read_c0_guest_wired(cop0);
 812		break;
 813	case KVM_REG_MIPS_CP0_HWRENA:
 814		v = (long)kvm_read_c0_guest_hwrena(cop0);
 815		break;
 816	case KVM_REG_MIPS_CP0_BADVADDR:
 817		v = (long)kvm_read_c0_guest_badvaddr(cop0);
 818		break;
 819	case KVM_REG_MIPS_CP0_ENTRYHI:
 820		v = (long)kvm_read_c0_guest_entryhi(cop0);
 821		break;
 822	case KVM_REG_MIPS_CP0_COMPARE:
 823		v = (long)kvm_read_c0_guest_compare(cop0);
 824		break;
 825	case KVM_REG_MIPS_CP0_STATUS:
 826		v = (long)kvm_read_c0_guest_status(cop0);
 827		break;
 828	case KVM_REG_MIPS_CP0_CAUSE:
 829		v = (long)kvm_read_c0_guest_cause(cop0);
 830		break;
 831	case KVM_REG_MIPS_CP0_EPC:
 832		v = (long)kvm_read_c0_guest_epc(cop0);
 833		break;
 834	case KVM_REG_MIPS_CP0_PRID:
 835		v = (long)kvm_read_c0_guest_prid(cop0);
 836		break;
 837	case KVM_REG_MIPS_CP0_CONFIG:
 838		v = (long)kvm_read_c0_guest_config(cop0);
 839		break;
 840	case KVM_REG_MIPS_CP0_CONFIG1:
 841		v = (long)kvm_read_c0_guest_config1(cop0);
 842		break;
 843	case KVM_REG_MIPS_CP0_CONFIG2:
 844		v = (long)kvm_read_c0_guest_config2(cop0);
 845		break;
 846	case KVM_REG_MIPS_CP0_CONFIG3:
 847		v = (long)kvm_read_c0_guest_config3(cop0);
 848		break;
 849	case KVM_REG_MIPS_CP0_CONFIG4:
 850		v = (long)kvm_read_c0_guest_config4(cop0);
 851		break;
 852	case KVM_REG_MIPS_CP0_CONFIG5:
 853		v = (long)kvm_read_c0_guest_config5(cop0);
 854		break;
 855	case KVM_REG_MIPS_CP0_CONFIG7:
 856		v = (long)kvm_read_c0_guest_config7(cop0);
 857		break;
 858	case KVM_REG_MIPS_CP0_ERROREPC:
 859		v = (long)kvm_read_c0_guest_errorepc(cop0);
 860		break;
 861	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
 862		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
 863		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
 864			return -EINVAL;
 865		switch (idx) {
 866		case 2:
 867			v = (long)kvm_read_c0_guest_kscratch1(cop0);
 868			break;
 869		case 3:
 870			v = (long)kvm_read_c0_guest_kscratch2(cop0);
 871			break;
 872		case 4:
 873			v = (long)kvm_read_c0_guest_kscratch3(cop0);
 874			break;
 875		case 5:
 876			v = (long)kvm_read_c0_guest_kscratch4(cop0);
 877			break;
 878		case 6:
 879			v = (long)kvm_read_c0_guest_kscratch5(cop0);
 880			break;
 881		case 7:
 882			v = (long)kvm_read_c0_guest_kscratch6(cop0);
 883			break;
 884		}
 885		break;
 886	/* registers to be handled specially */
 887	default:
 888		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 889		if (ret)
 890			return ret;
 891		break;
 892	}
 893	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 894		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 895
 896		return put_user(v, uaddr64);
 897	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 898		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 899		u32 v32 = (u32)v;
 900
 901		return put_user(v32, uaddr32);
 902	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 903		void __user *uaddr = (void __user *)(long)reg->addr;
 904
 905		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 906	} else {
 907		return -EINVAL;
 908	}
 909}
 910
 911static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 912			    const struct kvm_one_reg *reg)
 913{
 914	struct mips_coproc *cop0 = vcpu->arch.cop0;
 915	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 916	s64 v;
 917	s64 vs[2];
 918	unsigned int idx;
 919
 920	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 921		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 922
 923		if (get_user(v, uaddr64) != 0)
 924			return -EFAULT;
 925	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 926		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 927		s32 v32;
 928
 929		if (get_user(v32, uaddr32) != 0)
 930			return -EFAULT;
 931		v = (s64)v32;
 932	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 933		void __user *uaddr = (void __user *)(long)reg->addr;
 934
 935		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 936	} else {
 937		return -EINVAL;
 938	}
 939
 940	switch (reg->id) {
 941	/* General purpose registers */
 942	case KVM_REG_MIPS_R0:
 943		/* Silently ignore requests to set $0 */
 944		break;
 945	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 946		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 947		break;
 948#ifndef CONFIG_CPU_MIPSR6
 949	case KVM_REG_MIPS_HI:
 950		vcpu->arch.hi = v;
 951		break;
 952	case KVM_REG_MIPS_LO:
 953		vcpu->arch.lo = v;
 954		break;
 955#endif
 956	case KVM_REG_MIPS_PC:
 957		vcpu->arch.pc = v;
 958		break;
 959
 960	/* Floating point registers */
 961	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 962		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 963			return -EINVAL;
 964		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 965		/* Odd singles in top of even double when FR=0 */
 966		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 967			set_fpr32(&fpu->fpr[idx], 0, v);
 968		else
 969			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 970		break;
 971	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 972		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 973			return -EINVAL;
 974		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 975		/* Can't access odd doubles in FR=0 mode */
 976		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 977			return -EINVAL;
 978		set_fpr64(&fpu->fpr[idx], 0, v);
 979		break;
 980	case KVM_REG_MIPS_FCR_IR:
 981		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 982			return -EINVAL;
 983		/* Read-only */
 984		break;
 985	case KVM_REG_MIPS_FCR_CSR:
 986		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 987			return -EINVAL;
 988		fpu->fcr31 = v;
 989		break;
 990
 991	/* MIPS SIMD Architecture (MSA) registers */
 992	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 993		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 994			return -EINVAL;
 995		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 996#ifdef CONFIG_CPU_LITTLE_ENDIAN
 997		/* least significant byte first */
 998		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 999		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
1000#else
1001		/* most significant byte first */
1002		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1003		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1004#endif
1005		break;
1006	case KVM_REG_MIPS_MSA_IR:
1007		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1008			return -EINVAL;
1009		/* Read-only */
1010		break;
1011	case KVM_REG_MIPS_MSA_CSR:
1012		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1013			return -EINVAL;
1014		fpu->msacsr = v;
1015		break;
1016
1017	/* Co-processor 0 registers */
1018	case KVM_REG_MIPS_CP0_INDEX:
1019		kvm_write_c0_guest_index(cop0, v);
1020		break;
1021	case KVM_REG_MIPS_CP0_CONTEXT:
1022		kvm_write_c0_guest_context(cop0, v);
1023		break;
1024	case KVM_REG_MIPS_CP0_USERLOCAL:
1025		kvm_write_c0_guest_userlocal(cop0, v);
1026		break;
1027	case KVM_REG_MIPS_CP0_PAGEMASK:
1028		kvm_write_c0_guest_pagemask(cop0, v);
1029		break;
1030	case KVM_REG_MIPS_CP0_WIRED:
1031		kvm_write_c0_guest_wired(cop0, v);
1032		break;
1033	case KVM_REG_MIPS_CP0_HWRENA:
1034		kvm_write_c0_guest_hwrena(cop0, v);
1035		break;
1036	case KVM_REG_MIPS_CP0_BADVADDR:
1037		kvm_write_c0_guest_badvaddr(cop0, v);
1038		break;
1039	case KVM_REG_MIPS_CP0_ENTRYHI:
1040		kvm_write_c0_guest_entryhi(cop0, v);
1041		break;
1042	case KVM_REG_MIPS_CP0_STATUS:
1043		kvm_write_c0_guest_status(cop0, v);
1044		break;
1045	case KVM_REG_MIPS_CP0_EPC:
1046		kvm_write_c0_guest_epc(cop0, v);
1047		break;
1048	case KVM_REG_MIPS_CP0_PRID:
1049		kvm_write_c0_guest_prid(cop0, v);
1050		break;
1051	case KVM_REG_MIPS_CP0_ERROREPC:
1052		kvm_write_c0_guest_errorepc(cop0, v);
1053		break;
1054	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1055		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1056		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1057			return -EINVAL;
1058		switch (idx) {
1059		case 2:
1060			kvm_write_c0_guest_kscratch1(cop0, v);
1061			break;
1062		case 3:
1063			kvm_write_c0_guest_kscratch2(cop0, v);
1064			break;
1065		case 4:
1066			kvm_write_c0_guest_kscratch3(cop0, v);
1067			break;
1068		case 5:
1069			kvm_write_c0_guest_kscratch4(cop0, v);
1070			break;
1071		case 6:
1072			kvm_write_c0_guest_kscratch5(cop0, v);
1073			break;
1074		case 7:
1075			kvm_write_c0_guest_kscratch6(cop0, v);
1076			break;
1077		}
1078		break;
1079	/* registers to be handled specially */
1080	default:
1081		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1082	}
1083	return 0;
1084}
1085
1086static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1087				     struct kvm_enable_cap *cap)
1088{
1089	int r = 0;
1090
1091	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1092		return -EINVAL;
1093	if (cap->flags)
1094		return -EINVAL;
1095	if (cap->args[0])
1096		return -EINVAL;
1097
1098	switch (cap->cap) {
1099	case KVM_CAP_MIPS_FPU:
1100		vcpu->arch.fpu_enabled = true;
1101		break;
1102	case KVM_CAP_MIPS_MSA:
1103		vcpu->arch.msa_enabled = true;
1104		break;
1105	default:
1106		r = -EINVAL;
1107		break;
1108	}
1109
1110	return r;
1111}
1112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1114			 unsigned long arg)
1115{
1116	struct kvm_vcpu *vcpu = filp->private_data;
1117	void __user *argp = (void __user *)arg;
1118	long r;
1119
 
 
1120	switch (ioctl) {
1121	case KVM_SET_ONE_REG:
1122	case KVM_GET_ONE_REG: {
1123		struct kvm_one_reg reg;
1124
 
1125		if (copy_from_user(&reg, argp, sizeof(reg)))
1126			return -EFAULT;
1127		if (ioctl == KVM_SET_ONE_REG)
1128			return kvm_mips_set_reg(vcpu, &reg);
1129		else
1130			return kvm_mips_get_reg(vcpu, &reg);
 
1131	}
1132	case KVM_GET_REG_LIST: {
1133		struct kvm_reg_list __user *user_list = argp;
1134		struct kvm_reg_list reg_list;
1135		unsigned n;
1136
 
1137		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1138			return -EFAULT;
1139		n = reg_list.n;
1140		reg_list.n = kvm_mips_num_regs(vcpu);
1141		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1142			return -EFAULT;
 
1143		if (n < reg_list.n)
1144			return -E2BIG;
1145		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1146	}
1147	case KVM_NMI:
1148		/* Treat the NMI as a CPU reset */
1149		r = kvm_mips_reset_vcpu(vcpu);
1150		break;
1151	case KVM_INTERRUPT:
1152		{
1153			struct kvm_mips_interrupt irq;
1154
1155			r = -EFAULT;
1156			if (copy_from_user(&irq, argp, sizeof(irq)))
1157				goto out;
1158
1159			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1160				  irq.irq);
1161
1162			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1163			break;
1164		}
 
 
1165	case KVM_ENABLE_CAP: {
1166		struct kvm_enable_cap cap;
1167
1168		r = -EFAULT;
1169		if (copy_from_user(&cap, argp, sizeof(cap)))
1170			goto out;
1171		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1172		break;
1173	}
1174	default:
1175		r = -ENOIOCTLCMD;
1176	}
1177
1178out:
1179	return r;
1180}
1181
1182/* Get (and clear) the dirty memory log for a memory slot. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1184{
1185	struct kvm_memslots *slots;
1186	struct kvm_memory_slot *memslot;
1187	unsigned long ga, ga_end;
1188	int is_dirty = 0;
1189	int r;
1190	unsigned long n;
1191
1192	mutex_lock(&kvm->slots_lock);
1193
1194	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1195	if (r)
1196		goto out;
1197
1198	/* If nothing is dirty, don't bother messing with page tables. */
1199	if (is_dirty) {
1200		slots = kvm_memslots(kvm);
1201		memslot = id_to_memslot(slots, log->slot);
1202
1203		ga = memslot->base_gfn << PAGE_SHIFT;
1204		ga_end = ga + (memslot->npages << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205
1206		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1207			 ga_end);
 
1208
1209		n = kvm_dirty_bitmap_bytes(memslot);
1210		memset(memslot->dirty_bitmap, 0, n);
1211	}
1212
1213	r = 0;
1214out:
1215	mutex_unlock(&kvm->slots_lock);
1216	return r;
1217
1218}
1219
1220long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1221{
1222	long r;
1223
1224	switch (ioctl) {
1225	default:
1226		r = -ENOIOCTLCMD;
1227	}
1228
1229	return r;
1230}
1231
1232int kvm_arch_init(void *opaque)
1233{
1234	if (kvm_mips_callbacks) {
1235		kvm_err("kvm: module already exists\n");
1236		return -EEXIST;
1237	}
1238
1239	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1240}
1241
1242void kvm_arch_exit(void)
1243{
1244	kvm_mips_callbacks = NULL;
1245}
1246
1247int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1248				  struct kvm_sregs *sregs)
1249{
1250	return -ENOIOCTLCMD;
1251}
1252
1253int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1254				  struct kvm_sregs *sregs)
1255{
1256	return -ENOIOCTLCMD;
1257}
1258
1259void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1260{
1261}
1262
1263int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1264{
1265	return -ENOIOCTLCMD;
1266}
1267
1268int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1269{
1270	return -ENOIOCTLCMD;
1271}
1272
1273int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1274{
1275	return VM_FAULT_SIGBUS;
1276}
1277
1278int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1279{
1280	int r;
1281
1282	switch (ext) {
1283	case KVM_CAP_ONE_REG:
1284	case KVM_CAP_ENABLE_CAP:
 
 
 
1285		r = 1;
1286		break;
1287	case KVM_CAP_COALESCED_MMIO:
1288		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 
 
 
 
 
 
1289		break;
1290	case KVM_CAP_MIPS_FPU:
1291		/* We don't handle systems with inconsistent cpu_has_fpu */
1292		r = !!raw_cpu_has_fpu;
1293		break;
1294	case KVM_CAP_MIPS_MSA:
1295		/*
1296		 * We don't support MSA vector partitioning yet:
1297		 * 1) It would require explicit support which can't be tested
1298		 *    yet due to lack of support in current hardware.
1299		 * 2) It extends the state that would need to be saved/restored
1300		 *    by e.g. QEMU for migration.
1301		 *
1302		 * When vector partitioning hardware becomes available, support
1303		 * could be added by requiring a flag when enabling
1304		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1305		 * to save/restore the appropriate extra state.
1306		 */
1307		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1308		break;
1309	default:
1310		r = 0;
1311		break;
1312	}
1313	return r;
1314}
1315
1316int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1317{
1318	return kvm_mips_pending_timer(vcpu);
 
1319}
1320
1321int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1322{
1323	int i;
1324	struct mips_coproc *cop0;
1325
1326	if (!vcpu)
1327		return -1;
1328
1329	kvm_debug("VCPU Register Dump:\n");
1330	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1331	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1332
1333	for (i = 0; i < 32; i += 4) {
1334		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1335		       vcpu->arch.gprs[i],
1336		       vcpu->arch.gprs[i + 1],
1337		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1338	}
1339	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1340	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1341
1342	cop0 = vcpu->arch.cop0;
1343	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1344		  kvm_read_c0_guest_status(cop0),
1345		  kvm_read_c0_guest_cause(cop0));
1346
1347	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1348
1349	return 0;
1350}
1351
1352int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1353{
1354	int i;
1355
 
 
1356	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1357		vcpu->arch.gprs[i] = regs->gpr[i];
1358	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1359	vcpu->arch.hi = regs->hi;
1360	vcpu->arch.lo = regs->lo;
1361	vcpu->arch.pc = regs->pc;
1362
 
1363	return 0;
1364}
1365
1366int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1367{
1368	int i;
1369
 
 
1370	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1371		regs->gpr[i] = vcpu->arch.gprs[i];
1372
1373	regs->hi = vcpu->arch.hi;
1374	regs->lo = vcpu->arch.lo;
1375	regs->pc = vcpu->arch.pc;
1376
 
1377	return 0;
1378}
1379
1380static void kvm_mips_comparecount_func(unsigned long data)
1381{
1382	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1383
1384	kvm_mips_callbacks->queue_timer_int(vcpu);
1385
1386	vcpu->arch.wait = 0;
1387	if (swait_active(&vcpu->wq))
1388		swake_up(&vcpu->wq);
1389}
1390
1391/* low level hrtimer wake routine */
1392static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1393{
1394	struct kvm_vcpu *vcpu;
1395
1396	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1397	kvm_mips_comparecount_func((unsigned long) vcpu);
1398	return kvm_mips_count_timeout(vcpu);
1399}
1400
1401int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1402{
1403	kvm_mips_callbacks->vcpu_init(vcpu);
 
 
 
 
 
1404	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1405		     HRTIMER_MODE_REL);
1406	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1407	return 0;
1408}
1409
 
 
 
 
 
1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411				  struct kvm_translation *tr)
1412{
1413	return 0;
1414}
1415
1416/* Initial guest state */
1417int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1418{
1419	return kvm_mips_callbacks->vcpu_setup(vcpu);
1420}
1421
1422static void kvm_mips_set_c0_status(void)
1423{
1424	u32 status = read_c0_status();
1425
1426	if (cpu_has_dsp)
1427		status |= (ST0_MX);
1428
1429	write_c0_status(status);
1430	ehb();
1431}
1432
1433/*
1434 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1435 */
1436int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437{
1438	u32 cause = vcpu->arch.host_cp0_cause;
1439	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1440	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1441	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1442	enum emulation_result er = EMULATE_DONE;
 
1443	int ret = RESUME_GUEST;
1444
 
 
1445	/* re-enable HTW before enabling interrupts */
1446	htw_start();
 
1447
1448	/* Set a default exit reason */
1449	run->exit_reason = KVM_EXIT_UNKNOWN;
1450	run->ready_for_interrupt_injection = 1;
1451
1452	/*
1453	 * Set the appropriate status bits based on host CPU features,
1454	 * before we hit the scheduler
1455	 */
1456	kvm_mips_set_c0_status();
1457
1458	local_irq_enable();
1459
1460	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1461			cause, opc, run, vcpu);
1462	trace_kvm_exit(vcpu, exccode);
1463
1464	/*
1465	 * Do a privilege check, if in UM most of these exit conditions end up
1466	 * causing an exception to be delivered to the Guest Kernel
1467	 */
1468	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1469	if (er == EMULATE_PRIV_FAIL) {
1470		goto skip_emul;
1471	} else if (er == EMULATE_FAIL) {
1472		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1473		ret = RESUME_HOST;
1474		goto skip_emul;
 
 
 
1475	}
1476
1477	switch (exccode) {
1478	case EXCCODE_INT:
1479		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1480
1481		++vcpu->stat.int_exits;
1482
1483		if (need_resched())
1484			cond_resched();
1485
1486		ret = RESUME_GUEST;
1487		break;
1488
1489	case EXCCODE_CPU:
1490		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1491
1492		++vcpu->stat.cop_unusable_exits;
1493		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1494		/* XXXKYMA: Might need to return to user space */
1495		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1496			ret = RESUME_HOST;
1497		break;
1498
1499	case EXCCODE_MOD:
1500		++vcpu->stat.tlbmod_exits;
1501		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1502		break;
1503
1504	case EXCCODE_TLBS:
1505		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1506			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1507			  badvaddr);
1508
1509		++vcpu->stat.tlbmiss_st_exits;
1510		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1511		break;
1512
1513	case EXCCODE_TLBL:
1514		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1515			  cause, opc, badvaddr);
1516
1517		++vcpu->stat.tlbmiss_ld_exits;
1518		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1519		break;
1520
1521	case EXCCODE_ADES:
1522		++vcpu->stat.addrerr_st_exits;
1523		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1524		break;
1525
1526	case EXCCODE_ADEL:
1527		++vcpu->stat.addrerr_ld_exits;
1528		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1529		break;
1530
1531	case EXCCODE_SYS:
1532		++vcpu->stat.syscall_exits;
1533		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1534		break;
1535
1536	case EXCCODE_RI:
1537		++vcpu->stat.resvd_inst_exits;
1538		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1539		break;
1540
1541	case EXCCODE_BP:
1542		++vcpu->stat.break_inst_exits;
1543		ret = kvm_mips_callbacks->handle_break(vcpu);
1544		break;
1545
1546	case EXCCODE_TR:
1547		++vcpu->stat.trap_inst_exits;
1548		ret = kvm_mips_callbacks->handle_trap(vcpu);
1549		break;
1550
1551	case EXCCODE_MSAFPE:
1552		++vcpu->stat.msa_fpe_exits;
1553		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1554		break;
1555
1556	case EXCCODE_FPE:
1557		++vcpu->stat.fpe_exits;
1558		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1559		break;
1560
1561	case EXCCODE_MSADIS:
1562		++vcpu->stat.msa_disabled_exits;
1563		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1564		break;
1565
 
 
 
 
 
1566	default:
1567		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1568			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
 
 
 
 
1569			kvm_read_c0_guest_status(vcpu->arch.cop0));
1570		kvm_arch_vcpu_dump_regs(vcpu);
1571		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1572		ret = RESUME_HOST;
1573		break;
1574
1575	}
1576
1577skip_emul:
1578	local_irq_disable();
1579
 
 
 
1580	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1581		kvm_mips_deliver_interrupts(vcpu, cause);
1582
1583	if (!(ret & RESUME_HOST)) {
1584		/* Only check for signals if not already exiting to userspace */
1585		if (signal_pending(current)) {
1586			run->exit_reason = KVM_EXIT_INTR;
1587			ret = (-EINTR << 2) | RESUME_HOST;
1588			++vcpu->stat.signal_exits;
1589			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1590		}
1591	}
1592
1593	if (ret == RESUME_GUEST) {
1594		trace_kvm_reenter(vcpu);
1595
1596		kvm_mips_check_asids(vcpu);
 
 
 
 
 
 
 
 
1597
1598		/*
1599		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1600		 * is live), restore FCR31 / MSACSR.
1601		 *
1602		 * This should be before returning to the guest exception
1603		 * vector, as it may well cause an [MSA] FP exception if there
1604		 * are pending exception bits unmasked. (see
1605		 * kvm_mips_csr_die_notifier() for how that is handled).
1606		 */
1607		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1608		    read_c0_status() & ST0_CU1)
1609			__kvm_restore_fcsr(&vcpu->arch);
1610
1611		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1612		    read_c0_config5() & MIPS_CONF5_MSAEN)
1613			__kvm_restore_msacsr(&vcpu->arch);
1614	}
1615
1616	/* Disable HTW before returning to guest or host */
1617	htw_stop();
 
1618
1619	return ret;
1620}
1621
1622/* Enable FPU for guest and restore context */
1623void kvm_own_fpu(struct kvm_vcpu *vcpu)
1624{
1625	struct mips_coproc *cop0 = vcpu->arch.cop0;
1626	unsigned int sr, cfg5;
1627
1628	preempt_disable();
1629
1630	sr = kvm_read_c0_guest_status(cop0);
1631
1632	/*
1633	 * If MSA state is already live, it is undefined how it interacts with
1634	 * FR=0 FPU state, and we don't want to hit reserved instruction
1635	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1636	 * play it safe and save it first.
1637	 *
1638	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1639	 * get called when guest CU1 is set, however we can't trust the guest
1640	 * not to clobber the status register directly via the commpage.
1641	 */
1642	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1643	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1644		kvm_lose_fpu(vcpu);
1645
1646	/*
1647	 * Enable FPU for guest
1648	 * We set FR and FRE according to guest context
1649	 */
1650	change_c0_status(ST0_CU1 | ST0_FR, sr);
1651	if (cpu_has_fre) {
1652		cfg5 = kvm_read_c0_guest_config5(cop0);
1653		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654	}
1655	enable_fpu_hazard();
1656
1657	/* If guest FPU state not active, restore it now */
1658	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1659		__kvm_restore_fpu(&vcpu->arch);
1660		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1661		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1662	} else {
1663		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1664	}
1665
1666	preempt_enable();
1667}
1668
1669#ifdef CONFIG_CPU_HAS_MSA
1670/* Enable MSA for guest and restore context */
1671void kvm_own_msa(struct kvm_vcpu *vcpu)
1672{
1673	struct mips_coproc *cop0 = vcpu->arch.cop0;
1674	unsigned int sr, cfg5;
1675
1676	preempt_disable();
1677
1678	/*
1679	 * Enable FPU if enabled in guest, since we're restoring FPU context
1680	 * anyway. We set FR and FRE according to guest context.
1681	 */
1682	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1683		sr = kvm_read_c0_guest_status(cop0);
1684
1685		/*
1686		 * If FR=0 FPU state is already live, it is undefined how it
1687		 * interacts with MSA state, so play it safe and save it first.
1688		 */
1689		if (!(sr & ST0_FR) &&
1690		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1691				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1692			kvm_lose_fpu(vcpu);
1693
1694		change_c0_status(ST0_CU1 | ST0_FR, sr);
1695		if (sr & ST0_CU1 && cpu_has_fre) {
1696			cfg5 = kvm_read_c0_guest_config5(cop0);
1697			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1698		}
1699	}
1700
1701	/* Enable MSA for guest */
1702	set_c0_config5(MIPS_CONF5_MSAEN);
1703	enable_fpu_hazard();
1704
1705	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1706	case KVM_MIPS_AUX_FPU:
1707		/*
1708		 * Guest FPU state already loaded, only restore upper MSA state
1709		 */
1710		__kvm_restore_msa_upper(&vcpu->arch);
1711		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1712		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1713		break;
1714	case 0:
1715		/* Neither FPU or MSA already active, restore full MSA state */
1716		__kvm_restore_msa(&vcpu->arch);
1717		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1718		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1719			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1720		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1721			      KVM_TRACE_AUX_FPU_MSA);
1722		break;
1723	default:
1724		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1725		break;
1726	}
1727
1728	preempt_enable();
1729}
1730#endif
1731
1732/* Drop FPU & MSA without saving it */
1733void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1734{
1735	preempt_disable();
1736	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1737		disable_msa();
1738		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1739		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1740	}
1741	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1742		clear_c0_status(ST0_CU1 | ST0_FR);
1743		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1744		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1745	}
1746	preempt_enable();
1747}
1748
1749/* Save and disable FPU & MSA */
1750void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1751{
1752	/*
1753	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1754	 * in guest context (software), but the register state in the hardware
1755	 * may still be in use. This is why we explicitly re-enable the hardware
1756	 * before saving.
1757	 */
1758
1759	preempt_disable();
1760	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1761		set_c0_config5(MIPS_CONF5_MSAEN);
1762		enable_fpu_hazard();
 
 
1763
1764		__kvm_save_msa(&vcpu->arch);
1765		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1766
1767		/* Disable MSA & FPU */
1768		disable_msa();
1769		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1770			clear_c0_status(ST0_CU1 | ST0_FR);
1771			disable_fpu_hazard();
1772		}
1773		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1774	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1775		set_c0_status(ST0_CU1);
1776		enable_fpu_hazard();
 
 
1777
1778		__kvm_save_fpu(&vcpu->arch);
1779		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1780		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1781
1782		/* Disable FPU */
1783		clear_c0_status(ST0_CU1 | ST0_FR);
1784		disable_fpu_hazard();
1785	}
1786	preempt_enable();
1787}
1788
1789/*
1790 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1791 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1792 * exception if cause bits are set in the value being written.
1793 */
1794static int kvm_mips_csr_die_notify(struct notifier_block *self,
1795				   unsigned long cmd, void *ptr)
1796{
1797	struct die_args *args = (struct die_args *)ptr;
1798	struct pt_regs *regs = args->regs;
1799	unsigned long pc;
1800
1801	/* Only interested in FPE and MSAFPE */
1802	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1803		return NOTIFY_DONE;
1804
1805	/* Return immediately if guest context isn't active */
1806	if (!(current->flags & PF_VCPU))
1807		return NOTIFY_DONE;
1808
1809	/* Should never get here from user mode */
1810	BUG_ON(user_mode(regs));
1811
1812	pc = instruction_pointer(regs);
1813	switch (cmd) {
1814	case DIE_FP:
1815		/* match 2nd instruction in __kvm_restore_fcsr */
1816		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1817			return NOTIFY_DONE;
1818		break;
1819	case DIE_MSAFP:
1820		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1821		if (!cpu_has_msa ||
1822		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1823		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1824			return NOTIFY_DONE;
1825		break;
1826	}
1827
1828	/* Move PC forward a little and continue executing */
1829	instruction_pointer(regs) += 4;
1830
1831	return NOTIFY_STOP;
1832}
1833
1834static struct notifier_block kvm_mips_csr_die_notifier = {
1835	.notifier_call = kvm_mips_csr_die_notify,
1836};
1837
1838static int __init kvm_mips_init(void)
1839{
1840	int ret;
 
 
 
 
 
1841
1842	ret = kvm_mips_entry_setup();
1843	if (ret)
1844		return ret;
1845
1846	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1847
1848	if (ret)
1849		return ret;
1850
1851	register_die_notifier(&kvm_mips_csr_die_notifier);
1852
1853	return 0;
1854}
1855
1856static void __exit kvm_mips_exit(void)
1857{
1858	kvm_exit();
1859
1860	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1861}
1862
1863module_init(kvm_mips_init);
1864module_exit(kvm_mips_exit);
1865
1866EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
v5.4
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22
  23#include <asm/fpu.h>
  24#include <asm/page.h>
  25#include <asm/cacheflush.h>
  26#include <asm/mmu_context.h>
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include "trace.h"
  37
  38#ifndef VECTORSPACING
  39#define VECTORSPACING 0x100	/* for EI/VI mode */
  40#endif
  41
  42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  43struct kvm_stats_debugfs_item debugfs_entries[] = {
  44	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
  45	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
  46	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
  47	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
  48	{ "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  49	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
  50	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
  51	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
  52	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
  53	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
  54	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
  55	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
  56	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
  57	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
  58	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
  59	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
  60	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  61	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  62#ifdef CONFIG_KVM_MIPS_VZ
  63	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
  64	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
  65	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
  66	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
  67	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
  68	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
  69	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
  70	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
  71#endif
  72	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  73	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  74	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  75	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
  76	{NULL}
  77};
  78
  79bool kvm_trace_guest_mode_change;
 
 
 
 
 
 
 
  80
  81int kvm_guest_mode_change_trace_reg(void)
  82{
  83	kvm_trace_guest_mode_change = 1;
  84	return 0;
  85}
  86
  87void kvm_guest_mode_change_trace_unreg(void)
  88{
  89	kvm_trace_guest_mode_change = 0;
  90}
  91
  92/*
  93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  94 * Config7, so we are "runnable" if interrupts are pending
  95 */
  96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  97{
  98	return !!(vcpu->arch.pending_exceptions);
  99}
 100
 101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 102{
 103	return false;
 104}
 105
 106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 107{
 108	return 1;
 109}
 110
 111int kvm_arch_hardware_enable(void)
 112{
 113	return kvm_mips_callbacks->hardware_enable();
 114}
 115
 116void kvm_arch_hardware_disable(void)
 117{
 118	kvm_mips_callbacks->hardware_disable();
 119}
 120
 121int kvm_arch_hardware_setup(void)
 122{
 123	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 124}
 125
 126int kvm_arch_check_processor_compat(void)
 127{
 128	return 0;
 
 
 
 
 129}
 130
 131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 132{
 133	switch (type) {
 134#ifdef CONFIG_KVM_MIPS_VZ
 135	case KVM_VM_MIPS_VZ:
 136#else
 137	case KVM_VM_MIPS_TE:
 138#endif
 139		break;
 140	default:
 141		/* Unsupported KVM type */
 142		return -EINVAL;
 143	};
 144
 145	/* Allocate page table to map GPA -> RPA */
 146	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 147	if (!kvm->arch.gpa_mm.pgd)
 148		return -ENOMEM;
 149
 
 
 150	return 0;
 151}
 152
 153void kvm_mips_free_vcpus(struct kvm *kvm)
 154{
 155	unsigned int i;
 156	struct kvm_vcpu *vcpu;
 157
 
 
 
 
 
 
 
 158	kvm_for_each_vcpu(i, vcpu, kvm) {
 159		kvm_arch_vcpu_free(vcpu);
 160	}
 161
 162	mutex_lock(&kvm->lock);
 163
 164	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 165		kvm->vcpus[i] = NULL;
 166
 167	atomic_set(&kvm->online_vcpus, 0);
 168
 169	mutex_unlock(&kvm->lock);
 170}
 171
 172static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 173{
 174	/* It should always be safe to remove after flushing the whole range */
 175	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 176	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 
 
 177}
 178
 179void kvm_arch_destroy_vm(struct kvm *kvm)
 180{
 181	kvm_mips_free_vcpus(kvm);
 182	kvm_mips_free_gpa_pt(kvm);
 
 
 
 
 
 
 183}
 184
 185long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 186			unsigned long arg)
 187{
 188	return -ENOIOCTLCMD;
 189}
 190
 191int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 192			    unsigned long npages)
 193{
 194	return 0;
 195}
 196
 197void kvm_arch_flush_shadow_all(struct kvm *kvm)
 198{
 199	/* Flush whole GPA */
 200	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 201
 202	/* Let implementation do the rest */
 203	kvm_mips_callbacks->flush_shadow_all(kvm);
 204}
 205
 206void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 207				   struct kvm_memory_slot *slot)
 208{
 209	/*
 210	 * The slot has been made invalid (ready for moving or deletion), so we
 211	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 212	 */
 213
 214	spin_lock(&kvm->mmu_lock);
 215	/* Flush slot from GPA */
 216	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 217			      slot->base_gfn + slot->npages - 1);
 218	/* Let implementation do the rest */
 219	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
 220	spin_unlock(&kvm->mmu_lock);
 221}
 222
 223int kvm_arch_prepare_memory_region(struct kvm *kvm,
 224				   struct kvm_memory_slot *memslot,
 225				   const struct kvm_userspace_memory_region *mem,
 226				   enum kvm_mr_change change)
 227{
 228	return 0;
 229}
 230
 231void kvm_arch_commit_memory_region(struct kvm *kvm,
 232				   const struct kvm_userspace_memory_region *mem,
 233				   const struct kvm_memory_slot *old,
 234				   const struct kvm_memory_slot *new,
 235				   enum kvm_mr_change change)
 236{
 237	int needs_flush;
 
 238
 239	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 240		  __func__, kvm, mem->slot, mem->guest_phys_addr,
 241		  mem->memory_size, mem->userspace_addr);
 242
 243	/*
 244	 * If dirty page logging is enabled, write protect all pages in the slot
 245	 * ready for dirty logging.
 246	 *
 247	 * There is no need to do this in any of the following cases:
 248	 * CREATE:	No dirty mappings will already exist.
 249	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 250	 *		kvm_arch_flush_shadow_memslot()
 251	 */
 252	if (change == KVM_MR_FLAGS_ONLY &&
 253	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 254	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 255		spin_lock(&kvm->mmu_lock);
 256		/* Write protect GPA page table entries */
 257		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 258					new->base_gfn + new->npages - 1);
 259		/* Let implementation do the rest */
 260		if (needs_flush)
 261			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
 262		spin_unlock(&kvm->mmu_lock);
 
 
 263	}
 264}
 265
 266static inline void dump_handler(const char *symbol, void *start, void *end)
 267{
 268	u32 *p;
 269
 270	pr_debug("LEAF(%s)\n", symbol);
 271
 272	pr_debug("\t.set push\n");
 273	pr_debug("\t.set noreorder\n");
 274
 275	for (p = start; p < (u32 *)end; ++p)
 276		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 277
 278	pr_debug("\t.set\tpop\n");
 279
 280	pr_debug("\tEND(%s)\n", symbol);
 281}
 282
 283struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 284{
 285	int err, size;
 286	void *gebase, *p, *handler, *refill_start, *refill_end;
 287	int i;
 288
 289	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 290
 291	if (!vcpu) {
 292		err = -ENOMEM;
 293		goto out;
 294	}
 295
 296	err = kvm_vcpu_init(vcpu, kvm, id);
 297
 298	if (err)
 299		goto out_free_cpu;
 300
 301	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 302
 303	/*
 304	 * Allocate space for host mode exception handlers that handle
 305	 * guest mode exits
 306	 */
 307	if (cpu_has_veic || cpu_has_vint)
 308		size = 0x200 + VECTORSPACING * 64;
 309	else
 310		size = 0x4000;
 311
 312	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 313
 314	if (!gebase) {
 315		err = -ENOMEM;
 316		goto out_uninit_cpu;
 317	}
 318	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 319		  ALIGN(size, PAGE_SIZE), gebase);
 320
 321	/*
 322	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 323	 * limits us to the low 512MB of physical address space. If the memory
 324	 * we allocate is out of range, just give up now.
 325	 */
 326	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 327		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 328			gebase);
 329		err = -ENOMEM;
 330		goto out_free_gebase;
 331	}
 332
 333	/* Save new ebase */
 334	vcpu->arch.guest_ebase = gebase;
 335
 336	/* Build guest exception vectors dynamically in unmapped memory */
 337	handler = gebase + 0x2000;
 338
 339	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 340	refill_start = gebase;
 341	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
 342		refill_start += 0x080;
 343	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 344
 345	/* General Exception Entry point */
 346	kvm_mips_build_exception(gebase + 0x180, handler);
 347
 348	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 349	for (i = 0; i < 8; i++) {
 350		kvm_debug("L1 Vectored handler @ %p\n",
 351			  gebase + 0x200 + (i * VECTORSPACING));
 352		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 353					 handler);
 354	}
 355
 356	/* General exit handler */
 357	p = handler;
 358	p = kvm_mips_build_exit(p);
 359
 360	/* Guest entry routine */
 361	vcpu->arch.vcpu_run = p;
 362	p = kvm_mips_build_vcpu_run(p);
 363
 364	/* Dump the generated code */
 365	pr_debug("#include <asm/asm.h>\n");
 366	pr_debug("#include <asm/regdef.h>\n");
 367	pr_debug("\n");
 368	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 369	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 370	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 371	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 372
 373	/* Invalidate the icache for these ranges */
 374	flush_icache_range((unsigned long)gebase,
 375			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 376
 377	/*
 378	 * Allocate comm page for guest kernel, a TLB will be reserved for
 379	 * mapping GVA @ 0xFFFF8000 to this page
 380	 */
 381	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 382
 383	if (!vcpu->arch.kseg0_commpage) {
 384		err = -ENOMEM;
 385		goto out_free_gebase;
 386	}
 387
 388	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 389	kvm_mips_commpage_init(vcpu);
 390
 391	/* Init */
 392	vcpu->arch.last_sched_cpu = -1;
 393	vcpu->arch.last_exec_cpu = -1;
 
 
 394
 395	return vcpu;
 396
 397out_free_gebase:
 398	kfree(gebase);
 399
 400out_uninit_cpu:
 401	kvm_vcpu_uninit(vcpu);
 402
 403out_free_cpu:
 404	kfree(vcpu);
 405
 406out:
 407	return ERR_PTR(err);
 408}
 409
 410void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 411{
 412	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 413
 414	kvm_vcpu_uninit(vcpu);
 415
 416	kvm_mips_dump_stats(vcpu);
 417
 418	kvm_mmu_free_memory_caches(vcpu);
 419	kfree(vcpu->arch.guest_ebase);
 420	kfree(vcpu->arch.kseg0_commpage);
 421	kfree(vcpu);
 422}
 423
 424void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 425{
 426	kvm_arch_vcpu_free(vcpu);
 427}
 428
 429int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 430					struct kvm_guest_debug *dbg)
 431{
 432	return -ENOIOCTLCMD;
 433}
 434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 436{
 437	int r = -EINTR;
 
 438
 439	vcpu_load(vcpu);
 440
 441	kvm_sigset_activate(vcpu);
 442
 443	if (vcpu->mmio_needed) {
 444		if (!vcpu->mmio_is_write)
 445			kvm_mips_complete_mmio_load(vcpu, run);
 446		vcpu->mmio_needed = 0;
 447	}
 448
 449	if (run->immediate_exit)
 450		goto out;
 451
 452	lose_fpu(1);
 453
 454	local_irq_disable();
 
 
 
 
 455	guest_enter_irqoff();
 
 
 
 
 456	trace_kvm_enter(vcpu);
 457
 458	/*
 459	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 460	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 461	 * flush request while the requester sees the VCPU as outside of guest
 462	 * mode and not needing an IPI.
 463	 */
 464	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 465
 466	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
 
 467
 468	trace_kvm_out(vcpu);
 469	guest_exit_irqoff();
 470	local_irq_enable();
 471
 472out:
 473	kvm_sigset_deactivate(vcpu);
 474
 475	vcpu_put(vcpu);
 476	return r;
 477}
 478
 479int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 480			     struct kvm_mips_interrupt *irq)
 481{
 482	int intr = (int)irq->irq;
 483	struct kvm_vcpu *dvcpu = NULL;
 484
 485	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 486		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 487			  (int)intr);
 488
 489	if (irq->cpu == -1)
 490		dvcpu = vcpu;
 491	else
 492		dvcpu = vcpu->kvm->vcpus[irq->cpu];
 493
 494	if (intr == 2 || intr == 3 || intr == 4) {
 495		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 496
 497	} else if (intr == -2 || intr == -3 || intr == -4) {
 498		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 499	} else {
 500		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 501			irq->cpu, irq->irq);
 502		return -EINVAL;
 503	}
 504
 505	dvcpu->arch.wait = 0;
 506
 507	if (swq_has_sleeper(&dvcpu->wq))
 508		swake_up_one(&dvcpu->wq);
 509
 510	return 0;
 511}
 512
 513int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 514				    struct kvm_mp_state *mp_state)
 515{
 516	return -ENOIOCTLCMD;
 517}
 518
 519int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 520				    struct kvm_mp_state *mp_state)
 521{
 522	return -ENOIOCTLCMD;
 523}
 524
 525static u64 kvm_mips_get_one_regs[] = {
 526	KVM_REG_MIPS_R0,
 527	KVM_REG_MIPS_R1,
 528	KVM_REG_MIPS_R2,
 529	KVM_REG_MIPS_R3,
 530	KVM_REG_MIPS_R4,
 531	KVM_REG_MIPS_R5,
 532	KVM_REG_MIPS_R6,
 533	KVM_REG_MIPS_R7,
 534	KVM_REG_MIPS_R8,
 535	KVM_REG_MIPS_R9,
 536	KVM_REG_MIPS_R10,
 537	KVM_REG_MIPS_R11,
 538	KVM_REG_MIPS_R12,
 539	KVM_REG_MIPS_R13,
 540	KVM_REG_MIPS_R14,
 541	KVM_REG_MIPS_R15,
 542	KVM_REG_MIPS_R16,
 543	KVM_REG_MIPS_R17,
 544	KVM_REG_MIPS_R18,
 545	KVM_REG_MIPS_R19,
 546	KVM_REG_MIPS_R20,
 547	KVM_REG_MIPS_R21,
 548	KVM_REG_MIPS_R22,
 549	KVM_REG_MIPS_R23,
 550	KVM_REG_MIPS_R24,
 551	KVM_REG_MIPS_R25,
 552	KVM_REG_MIPS_R26,
 553	KVM_REG_MIPS_R27,
 554	KVM_REG_MIPS_R28,
 555	KVM_REG_MIPS_R29,
 556	KVM_REG_MIPS_R30,
 557	KVM_REG_MIPS_R31,
 558
 559#ifndef CONFIG_CPU_MIPSR6
 560	KVM_REG_MIPS_HI,
 561	KVM_REG_MIPS_LO,
 562#endif
 563	KVM_REG_MIPS_PC,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564};
 565
 566static u64 kvm_mips_get_one_regs_fpu[] = {
 567	KVM_REG_MIPS_FCR_IR,
 568	KVM_REG_MIPS_FCR_CSR,
 569};
 570
 571static u64 kvm_mips_get_one_regs_msa[] = {
 572	KVM_REG_MIPS_MSA_IR,
 573	KVM_REG_MIPS_MSA_CSR,
 574};
 575
 
 
 
 
 
 
 
 
 
 576static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 577{
 578	unsigned long ret;
 579
 580	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 581	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 582		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 583		/* odd doubles */
 584		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 585			ret += 16;
 586	}
 587	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 588		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 
 589	ret += kvm_mips_callbacks->num_regs(vcpu);
 590
 591	return ret;
 592}
 593
 594static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 595{
 596	u64 index;
 597	unsigned int i;
 598
 599	if (copy_to_user(indices, kvm_mips_get_one_regs,
 600			 sizeof(kvm_mips_get_one_regs)))
 601		return -EFAULT;
 602	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 603
 604	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 605		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 606				 sizeof(kvm_mips_get_one_regs_fpu)))
 607			return -EFAULT;
 608		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 609
 610		for (i = 0; i < 32; ++i) {
 611			index = KVM_REG_MIPS_FPR_32(i);
 612			if (copy_to_user(indices, &index, sizeof(index)))
 613				return -EFAULT;
 614			++indices;
 615
 616			/* skip odd doubles if no F64 */
 617			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 618				continue;
 619
 620			index = KVM_REG_MIPS_FPR_64(i);
 621			if (copy_to_user(indices, &index, sizeof(index)))
 622				return -EFAULT;
 623			++indices;
 624		}
 625	}
 626
 627	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 628		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 629				 sizeof(kvm_mips_get_one_regs_msa)))
 630			return -EFAULT;
 631		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 632
 633		for (i = 0; i < 32; ++i) {
 634			index = KVM_REG_MIPS_VEC_128(i);
 635			if (copy_to_user(indices, &index, sizeof(index)))
 636				return -EFAULT;
 637			++indices;
 638		}
 639	}
 640
 
 
 
 
 
 
 
 
 
 
 641	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 642}
 643
 644static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 645			    const struct kvm_one_reg *reg)
 646{
 647	struct mips_coproc *cop0 = vcpu->arch.cop0;
 648	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 649	int ret;
 650	s64 v;
 651	s64 vs[2];
 652	unsigned int idx;
 653
 654	switch (reg->id) {
 655	/* General purpose registers */
 656	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 657		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 658		break;
 659#ifndef CONFIG_CPU_MIPSR6
 660	case KVM_REG_MIPS_HI:
 661		v = (long)vcpu->arch.hi;
 662		break;
 663	case KVM_REG_MIPS_LO:
 664		v = (long)vcpu->arch.lo;
 665		break;
 666#endif
 667	case KVM_REG_MIPS_PC:
 668		v = (long)vcpu->arch.pc;
 669		break;
 670
 671	/* Floating point registers */
 672	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 673		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 674			return -EINVAL;
 675		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 676		/* Odd singles in top of even double when FR=0 */
 677		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 678			v = get_fpr32(&fpu->fpr[idx], 0);
 679		else
 680			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 681		break;
 682	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 683		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 684			return -EINVAL;
 685		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 686		/* Can't access odd doubles in FR=0 mode */
 687		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 688			return -EINVAL;
 689		v = get_fpr64(&fpu->fpr[idx], 0);
 690		break;
 691	case KVM_REG_MIPS_FCR_IR:
 692		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 693			return -EINVAL;
 694		v = boot_cpu_data.fpu_id;
 695		break;
 696	case KVM_REG_MIPS_FCR_CSR:
 697		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 698			return -EINVAL;
 699		v = fpu->fcr31;
 700		break;
 701
 702	/* MIPS SIMD Architecture (MSA) registers */
 703	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 704		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 705			return -EINVAL;
 706		/* Can't access MSA registers in FR=0 mode */
 707		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 708			return -EINVAL;
 709		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 710#ifdef CONFIG_CPU_LITTLE_ENDIAN
 711		/* least significant byte first */
 712		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 713		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 714#else
 715		/* most significant byte first */
 716		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 717		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 718#endif
 719		break;
 720	case KVM_REG_MIPS_MSA_IR:
 721		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 722			return -EINVAL;
 723		v = boot_cpu_data.msa_id;
 724		break;
 725	case KVM_REG_MIPS_MSA_CSR:
 726		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 727			return -EINVAL;
 728		v = fpu->msacsr;
 729		break;
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* registers to be handled specially */
 732	default:
 733		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 734		if (ret)
 735			return ret;
 736		break;
 737	}
 738	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 739		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 740
 741		return put_user(v, uaddr64);
 742	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 743		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 744		u32 v32 = (u32)v;
 745
 746		return put_user(v32, uaddr32);
 747	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 748		void __user *uaddr = (void __user *)(long)reg->addr;
 749
 750		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 751	} else {
 752		return -EINVAL;
 753	}
 754}
 755
 756static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 757			    const struct kvm_one_reg *reg)
 758{
 759	struct mips_coproc *cop0 = vcpu->arch.cop0;
 760	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 761	s64 v;
 762	s64 vs[2];
 763	unsigned int idx;
 764
 765	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 766		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 767
 768		if (get_user(v, uaddr64) != 0)
 769			return -EFAULT;
 770	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 771		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 772		s32 v32;
 773
 774		if (get_user(v32, uaddr32) != 0)
 775			return -EFAULT;
 776		v = (s64)v32;
 777	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 778		void __user *uaddr = (void __user *)(long)reg->addr;
 779
 780		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 781	} else {
 782		return -EINVAL;
 783	}
 784
 785	switch (reg->id) {
 786	/* General purpose registers */
 787	case KVM_REG_MIPS_R0:
 788		/* Silently ignore requests to set $0 */
 789		break;
 790	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 791		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 792		break;
 793#ifndef CONFIG_CPU_MIPSR6
 794	case KVM_REG_MIPS_HI:
 795		vcpu->arch.hi = v;
 796		break;
 797	case KVM_REG_MIPS_LO:
 798		vcpu->arch.lo = v;
 799		break;
 800#endif
 801	case KVM_REG_MIPS_PC:
 802		vcpu->arch.pc = v;
 803		break;
 804
 805	/* Floating point registers */
 806	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 807		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 808			return -EINVAL;
 809		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 810		/* Odd singles in top of even double when FR=0 */
 811		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 812			set_fpr32(&fpu->fpr[idx], 0, v);
 813		else
 814			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 815		break;
 816	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 817		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 818			return -EINVAL;
 819		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 820		/* Can't access odd doubles in FR=0 mode */
 821		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 822			return -EINVAL;
 823		set_fpr64(&fpu->fpr[idx], 0, v);
 824		break;
 825	case KVM_REG_MIPS_FCR_IR:
 826		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 827			return -EINVAL;
 828		/* Read-only */
 829		break;
 830	case KVM_REG_MIPS_FCR_CSR:
 831		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 832			return -EINVAL;
 833		fpu->fcr31 = v;
 834		break;
 835
 836	/* MIPS SIMD Architecture (MSA) registers */
 837	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 838		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 839			return -EINVAL;
 840		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 841#ifdef CONFIG_CPU_LITTLE_ENDIAN
 842		/* least significant byte first */
 843		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 844		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 845#else
 846		/* most significant byte first */
 847		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 848		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 849#endif
 850		break;
 851	case KVM_REG_MIPS_MSA_IR:
 852		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 853			return -EINVAL;
 854		/* Read-only */
 855		break;
 856	case KVM_REG_MIPS_MSA_CSR:
 857		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 858			return -EINVAL;
 859		fpu->msacsr = v;
 860		break;
 861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	/* registers to be handled specially */
 863	default:
 864		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 865	}
 866	return 0;
 867}
 868
 869static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 870				     struct kvm_enable_cap *cap)
 871{
 872	int r = 0;
 873
 874	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 875		return -EINVAL;
 876	if (cap->flags)
 877		return -EINVAL;
 878	if (cap->args[0])
 879		return -EINVAL;
 880
 881	switch (cap->cap) {
 882	case KVM_CAP_MIPS_FPU:
 883		vcpu->arch.fpu_enabled = true;
 884		break;
 885	case KVM_CAP_MIPS_MSA:
 886		vcpu->arch.msa_enabled = true;
 887		break;
 888	default:
 889		r = -EINVAL;
 890		break;
 891	}
 892
 893	return r;
 894}
 895
 896long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 897			       unsigned long arg)
 898{
 899	struct kvm_vcpu *vcpu = filp->private_data;
 900	void __user *argp = (void __user *)arg;
 901
 902	if (ioctl == KVM_INTERRUPT) {
 903		struct kvm_mips_interrupt irq;
 904
 905		if (copy_from_user(&irq, argp, sizeof(irq)))
 906			return -EFAULT;
 907		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 908			  irq.irq);
 909
 910		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 911	}
 912
 913	return -ENOIOCTLCMD;
 914}
 915
 916long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 917			 unsigned long arg)
 918{
 919	struct kvm_vcpu *vcpu = filp->private_data;
 920	void __user *argp = (void __user *)arg;
 921	long r;
 922
 923	vcpu_load(vcpu);
 924
 925	switch (ioctl) {
 926	case KVM_SET_ONE_REG:
 927	case KVM_GET_ONE_REG: {
 928		struct kvm_one_reg reg;
 929
 930		r = -EFAULT;
 931		if (copy_from_user(&reg, argp, sizeof(reg)))
 932			break;
 933		if (ioctl == KVM_SET_ONE_REG)
 934			r = kvm_mips_set_reg(vcpu, &reg);
 935		else
 936			r = kvm_mips_get_reg(vcpu, &reg);
 937		break;
 938	}
 939	case KVM_GET_REG_LIST: {
 940		struct kvm_reg_list __user *user_list = argp;
 941		struct kvm_reg_list reg_list;
 942		unsigned n;
 943
 944		r = -EFAULT;
 945		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 946			break;
 947		n = reg_list.n;
 948		reg_list.n = kvm_mips_num_regs(vcpu);
 949		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 950			break;
 951		r = -E2BIG;
 952		if (n < reg_list.n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953			break;
 954		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 955		break;
 956	}
 957	case KVM_ENABLE_CAP: {
 958		struct kvm_enable_cap cap;
 959
 960		r = -EFAULT;
 961		if (copy_from_user(&cap, argp, sizeof(cap)))
 962			break;
 963		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 964		break;
 965	}
 966	default:
 967		r = -ENOIOCTLCMD;
 968	}
 969
 970	vcpu_put(vcpu);
 971	return r;
 972}
 973
 974/**
 975 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 976 * @kvm: kvm instance
 977 * @log: slot id and address to which we copy the log
 978 *
 979 * Steps 1-4 below provide general overview of dirty page logging. See
 980 * kvm_get_dirty_log_protect() function description for additional details.
 981 *
 982 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 983 * always flush the TLB (step 4) even if previous step failed  and the dirty
 984 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 985 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 986 * writes will be marked dirty for next log read.
 987 *
 988 *   1. Take a snapshot of the bit and clear it if needed.
 989 *   2. Write protect the corresponding page.
 990 *   3. Copy the snapshot to the userspace.
 991 *   4. Flush TLB's if needed.
 992 */
 993int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 994{
 995	struct kvm_memslots *slots;
 996	struct kvm_memory_slot *memslot;
 997	bool flush = false;
 
 998	int r;
 
 999
1000	mutex_lock(&kvm->slots_lock);
1001
1002	r = kvm_get_dirty_log_protect(kvm, log, &flush);
 
 
1003
1004	if (flush) {
 
1005		slots = kvm_memslots(kvm);
1006		memslot = id_to_memslot(slots, log->slot);
1007
1008		/* Let implementation handle TLB/GVA invalidation */
1009		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1010	}
1011
1012	mutex_unlock(&kvm->slots_lock);
1013	return r;
1014}
1015
1016int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1017{
1018	struct kvm_memslots *slots;
1019	struct kvm_memory_slot *memslot;
1020	bool flush = false;
1021	int r;
1022
1023	mutex_lock(&kvm->slots_lock);
1024
1025	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1026
1027	if (flush) {
1028		slots = kvm_memslots(kvm);
1029		memslot = id_to_memslot(slots, log->slot);
1030
1031		/* Let implementation handle TLB/GVA invalidation */
1032		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1033	}
1034
 
 
1035	mutex_unlock(&kvm->slots_lock);
1036	return r;
 
1037}
1038
1039long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1040{
1041	long r;
1042
1043	switch (ioctl) {
1044	default:
1045		r = -ENOIOCTLCMD;
1046	}
1047
1048	return r;
1049}
1050
1051int kvm_arch_init(void *opaque)
1052{
1053	if (kvm_mips_callbacks) {
1054		kvm_err("kvm: module already exists\n");
1055		return -EEXIST;
1056	}
1057
1058	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1059}
1060
1061void kvm_arch_exit(void)
1062{
1063	kvm_mips_callbacks = NULL;
1064}
1065
1066int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1067				  struct kvm_sregs *sregs)
1068{
1069	return -ENOIOCTLCMD;
1070}
1071
1072int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1073				  struct kvm_sregs *sregs)
1074{
1075	return -ENOIOCTLCMD;
1076}
1077
1078void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1079{
1080}
1081
1082int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1083{
1084	return -ENOIOCTLCMD;
1085}
1086
1087int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1088{
1089	return -ENOIOCTLCMD;
1090}
1091
1092vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1093{
1094	return VM_FAULT_SIGBUS;
1095}
1096
1097int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1098{
1099	int r;
1100
1101	switch (ext) {
1102	case KVM_CAP_ONE_REG:
1103	case KVM_CAP_ENABLE_CAP:
1104	case KVM_CAP_READONLY_MEM:
1105	case KVM_CAP_SYNC_MMU:
1106	case KVM_CAP_IMMEDIATE_EXIT:
1107		r = 1;
1108		break;
1109	case KVM_CAP_NR_VCPUS:
1110		r = num_online_cpus();
1111		break;
1112	case KVM_CAP_MAX_VCPUS:
1113		r = KVM_MAX_VCPUS;
1114		break;
1115	case KVM_CAP_MAX_VCPU_ID:
1116		r = KVM_MAX_VCPU_ID;
1117		break;
1118	case KVM_CAP_MIPS_FPU:
1119		/* We don't handle systems with inconsistent cpu_has_fpu */
1120		r = !!raw_cpu_has_fpu;
1121		break;
1122	case KVM_CAP_MIPS_MSA:
1123		/*
1124		 * We don't support MSA vector partitioning yet:
1125		 * 1) It would require explicit support which can't be tested
1126		 *    yet due to lack of support in current hardware.
1127		 * 2) It extends the state that would need to be saved/restored
1128		 *    by e.g. QEMU for migration.
1129		 *
1130		 * When vector partitioning hardware becomes available, support
1131		 * could be added by requiring a flag when enabling
1132		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1133		 * to save/restore the appropriate extra state.
1134		 */
1135		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1136		break;
1137	default:
1138		r = kvm_mips_callbacks->check_extension(kvm, ext);
1139		break;
1140	}
1141	return r;
1142}
1143
1144int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1145{
1146	return kvm_mips_pending_timer(vcpu) ||
1147		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1148}
1149
1150int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1151{
1152	int i;
1153	struct mips_coproc *cop0;
1154
1155	if (!vcpu)
1156		return -1;
1157
1158	kvm_debug("VCPU Register Dump:\n");
1159	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1160	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1161
1162	for (i = 0; i < 32; i += 4) {
1163		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1164		       vcpu->arch.gprs[i],
1165		       vcpu->arch.gprs[i + 1],
1166		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1167	}
1168	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1169	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1170
1171	cop0 = vcpu->arch.cop0;
1172	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1173		  kvm_read_c0_guest_status(cop0),
1174		  kvm_read_c0_guest_cause(cop0));
1175
1176	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1177
1178	return 0;
1179}
1180
1181int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1182{
1183	int i;
1184
1185	vcpu_load(vcpu);
1186
1187	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1188		vcpu->arch.gprs[i] = regs->gpr[i];
1189	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1190	vcpu->arch.hi = regs->hi;
1191	vcpu->arch.lo = regs->lo;
1192	vcpu->arch.pc = regs->pc;
1193
1194	vcpu_put(vcpu);
1195	return 0;
1196}
1197
1198int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1199{
1200	int i;
1201
1202	vcpu_load(vcpu);
1203
1204	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1205		regs->gpr[i] = vcpu->arch.gprs[i];
1206
1207	regs->hi = vcpu->arch.hi;
1208	regs->lo = vcpu->arch.lo;
1209	regs->pc = vcpu->arch.pc;
1210
1211	vcpu_put(vcpu);
1212	return 0;
1213}
1214
1215static void kvm_mips_comparecount_func(unsigned long data)
1216{
1217	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1218
1219	kvm_mips_callbacks->queue_timer_int(vcpu);
1220
1221	vcpu->arch.wait = 0;
1222	if (swq_has_sleeper(&vcpu->wq))
1223		swake_up_one(&vcpu->wq);
1224}
1225
1226/* low level hrtimer wake routine */
1227static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1228{
1229	struct kvm_vcpu *vcpu;
1230
1231	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1232	kvm_mips_comparecount_func((unsigned long) vcpu);
1233	return kvm_mips_count_timeout(vcpu);
1234}
1235
1236int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1237{
1238	int err;
1239
1240	err = kvm_mips_callbacks->vcpu_init(vcpu);
1241	if (err)
1242		return err;
1243
1244	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1245		     HRTIMER_MODE_REL);
1246	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1247	return 0;
1248}
1249
1250void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1251{
1252	kvm_mips_callbacks->vcpu_uninit(vcpu);
1253}
1254
1255int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1256				  struct kvm_translation *tr)
1257{
1258	return 0;
1259}
1260
1261/* Initial guest state */
1262int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1263{
1264	return kvm_mips_callbacks->vcpu_setup(vcpu);
1265}
1266
1267static void kvm_mips_set_c0_status(void)
1268{
1269	u32 status = read_c0_status();
1270
1271	if (cpu_has_dsp)
1272		status |= (ST0_MX);
1273
1274	write_c0_status(status);
1275	ehb();
1276}
1277
1278/*
1279 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1280 */
1281int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1282{
1283	u32 cause = vcpu->arch.host_cp0_cause;
1284	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1285	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1286	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1287	enum emulation_result er = EMULATE_DONE;
1288	u32 inst;
1289	int ret = RESUME_GUEST;
1290
1291	vcpu->mode = OUTSIDE_GUEST_MODE;
1292
1293	/* re-enable HTW before enabling interrupts */
1294	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1295		htw_start();
1296
1297	/* Set a default exit reason */
1298	run->exit_reason = KVM_EXIT_UNKNOWN;
1299	run->ready_for_interrupt_injection = 1;
1300
1301	/*
1302	 * Set the appropriate status bits based on host CPU features,
1303	 * before we hit the scheduler
1304	 */
1305	kvm_mips_set_c0_status();
1306
1307	local_irq_enable();
1308
1309	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1310			cause, opc, run, vcpu);
1311	trace_kvm_exit(vcpu, exccode);
1312
1313	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1314		/*
1315		 * Do a privilege check, if in UM most of these exit conditions
1316		 * end up causing an exception to be delivered to the Guest
1317		 * Kernel
1318		 */
1319		er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1320		if (er == EMULATE_PRIV_FAIL) {
1321			goto skip_emul;
1322		} else if (er == EMULATE_FAIL) {
1323			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324			ret = RESUME_HOST;
1325			goto skip_emul;
1326		}
1327	}
1328
1329	switch (exccode) {
1330	case EXCCODE_INT:
1331		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1332
1333		++vcpu->stat.int_exits;
1334
1335		if (need_resched())
1336			cond_resched();
1337
1338		ret = RESUME_GUEST;
1339		break;
1340
1341	case EXCCODE_CPU:
1342		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1343
1344		++vcpu->stat.cop_unusable_exits;
1345		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1346		/* XXXKYMA: Might need to return to user space */
1347		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1348			ret = RESUME_HOST;
1349		break;
1350
1351	case EXCCODE_MOD:
1352		++vcpu->stat.tlbmod_exits;
1353		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1354		break;
1355
1356	case EXCCODE_TLBS:
1357		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1358			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1359			  badvaddr);
1360
1361		++vcpu->stat.tlbmiss_st_exits;
1362		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1363		break;
1364
1365	case EXCCODE_TLBL:
1366		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1367			  cause, opc, badvaddr);
1368
1369		++vcpu->stat.tlbmiss_ld_exits;
1370		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1371		break;
1372
1373	case EXCCODE_ADES:
1374		++vcpu->stat.addrerr_st_exits;
1375		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1376		break;
1377
1378	case EXCCODE_ADEL:
1379		++vcpu->stat.addrerr_ld_exits;
1380		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1381		break;
1382
1383	case EXCCODE_SYS:
1384		++vcpu->stat.syscall_exits;
1385		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1386		break;
1387
1388	case EXCCODE_RI:
1389		++vcpu->stat.resvd_inst_exits;
1390		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1391		break;
1392
1393	case EXCCODE_BP:
1394		++vcpu->stat.break_inst_exits;
1395		ret = kvm_mips_callbacks->handle_break(vcpu);
1396		break;
1397
1398	case EXCCODE_TR:
1399		++vcpu->stat.trap_inst_exits;
1400		ret = kvm_mips_callbacks->handle_trap(vcpu);
1401		break;
1402
1403	case EXCCODE_MSAFPE:
1404		++vcpu->stat.msa_fpe_exits;
1405		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1406		break;
1407
1408	case EXCCODE_FPE:
1409		++vcpu->stat.fpe_exits;
1410		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1411		break;
1412
1413	case EXCCODE_MSADIS:
1414		++vcpu->stat.msa_disabled_exits;
1415		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1416		break;
1417
1418	case EXCCODE_GE:
1419		/* defer exit accounting to handler */
1420		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1421		break;
1422
1423	default:
1424		if (cause & CAUSEF_BD)
1425			opc += 1;
1426		inst = 0;
1427		kvm_get_badinstr(opc, vcpu, &inst);
1428		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1429			exccode, opc, inst, badvaddr,
1430			kvm_read_c0_guest_status(vcpu->arch.cop0));
1431		kvm_arch_vcpu_dump_regs(vcpu);
1432		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433		ret = RESUME_HOST;
1434		break;
1435
1436	}
1437
1438skip_emul:
1439	local_irq_disable();
1440
1441	if (ret == RESUME_GUEST)
1442		kvm_vz_acquire_htimer(vcpu);
1443
1444	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1445		kvm_mips_deliver_interrupts(vcpu, cause);
1446
1447	if (!(ret & RESUME_HOST)) {
1448		/* Only check for signals if not already exiting to userspace */
1449		if (signal_pending(current)) {
1450			run->exit_reason = KVM_EXIT_INTR;
1451			ret = (-EINTR << 2) | RESUME_HOST;
1452			++vcpu->stat.signal_exits;
1453			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1454		}
1455	}
1456
1457	if (ret == RESUME_GUEST) {
1458		trace_kvm_reenter(vcpu);
1459
1460		/*
1461		 * Make sure the read of VCPU requests in vcpu_reenter()
1462		 * callback is not reordered ahead of the write to vcpu->mode,
1463		 * or we could miss a TLB flush request while the requester sees
1464		 * the VCPU as outside of guest mode and not needing an IPI.
1465		 */
1466		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1467
1468		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1469
1470		/*
1471		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1472		 * is live), restore FCR31 / MSACSR.
1473		 *
1474		 * This should be before returning to the guest exception
1475		 * vector, as it may well cause an [MSA] FP exception if there
1476		 * are pending exception bits unmasked. (see
1477		 * kvm_mips_csr_die_notifier() for how that is handled).
1478		 */
1479		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1480		    read_c0_status() & ST0_CU1)
1481			__kvm_restore_fcsr(&vcpu->arch);
1482
1483		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1484		    read_c0_config5() & MIPS_CONF5_MSAEN)
1485			__kvm_restore_msacsr(&vcpu->arch);
1486	}
1487
1488	/* Disable HTW before returning to guest or host */
1489	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1490		htw_stop();
1491
1492	return ret;
1493}
1494
1495/* Enable FPU for guest and restore context */
1496void kvm_own_fpu(struct kvm_vcpu *vcpu)
1497{
1498	struct mips_coproc *cop0 = vcpu->arch.cop0;
1499	unsigned int sr, cfg5;
1500
1501	preempt_disable();
1502
1503	sr = kvm_read_c0_guest_status(cop0);
1504
1505	/*
1506	 * If MSA state is already live, it is undefined how it interacts with
1507	 * FR=0 FPU state, and we don't want to hit reserved instruction
1508	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1509	 * play it safe and save it first.
1510	 *
1511	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1512	 * get called when guest CU1 is set, however we can't trust the guest
1513	 * not to clobber the status register directly via the commpage.
1514	 */
1515	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1516	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1517		kvm_lose_fpu(vcpu);
1518
1519	/*
1520	 * Enable FPU for guest
1521	 * We set FR and FRE according to guest context
1522	 */
1523	change_c0_status(ST0_CU1 | ST0_FR, sr);
1524	if (cpu_has_fre) {
1525		cfg5 = kvm_read_c0_guest_config5(cop0);
1526		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1527	}
1528	enable_fpu_hazard();
1529
1530	/* If guest FPU state not active, restore it now */
1531	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1532		__kvm_restore_fpu(&vcpu->arch);
1533		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1534		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1535	} else {
1536		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1537	}
1538
1539	preempt_enable();
1540}
1541
1542#ifdef CONFIG_CPU_HAS_MSA
1543/* Enable MSA for guest and restore context */
1544void kvm_own_msa(struct kvm_vcpu *vcpu)
1545{
1546	struct mips_coproc *cop0 = vcpu->arch.cop0;
1547	unsigned int sr, cfg5;
1548
1549	preempt_disable();
1550
1551	/*
1552	 * Enable FPU if enabled in guest, since we're restoring FPU context
1553	 * anyway. We set FR and FRE according to guest context.
1554	 */
1555	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1556		sr = kvm_read_c0_guest_status(cop0);
1557
1558		/*
1559		 * If FR=0 FPU state is already live, it is undefined how it
1560		 * interacts with MSA state, so play it safe and save it first.
1561		 */
1562		if (!(sr & ST0_FR) &&
1563		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1564				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1565			kvm_lose_fpu(vcpu);
1566
1567		change_c0_status(ST0_CU1 | ST0_FR, sr);
1568		if (sr & ST0_CU1 && cpu_has_fre) {
1569			cfg5 = kvm_read_c0_guest_config5(cop0);
1570			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1571		}
1572	}
1573
1574	/* Enable MSA for guest */
1575	set_c0_config5(MIPS_CONF5_MSAEN);
1576	enable_fpu_hazard();
1577
1578	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1579	case KVM_MIPS_AUX_FPU:
1580		/*
1581		 * Guest FPU state already loaded, only restore upper MSA state
1582		 */
1583		__kvm_restore_msa_upper(&vcpu->arch);
1584		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1585		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1586		break;
1587	case 0:
1588		/* Neither FPU or MSA already active, restore full MSA state */
1589		__kvm_restore_msa(&vcpu->arch);
1590		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1591		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1592			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1593		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1594			      KVM_TRACE_AUX_FPU_MSA);
1595		break;
1596	default:
1597		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1598		break;
1599	}
1600
1601	preempt_enable();
1602}
1603#endif
1604
1605/* Drop FPU & MSA without saving it */
1606void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1607{
1608	preempt_disable();
1609	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1610		disable_msa();
1611		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1612		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1613	}
1614	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1615		clear_c0_status(ST0_CU1 | ST0_FR);
1616		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1617		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1618	}
1619	preempt_enable();
1620}
1621
1622/* Save and disable FPU & MSA */
1623void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1624{
1625	/*
1626	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1627	 * is disabled in guest context (software), but the register state in
1628	 * the hardware may still be in use.
1629	 * This is why we explicitly re-enable the hardware before saving.
1630	 */
1631
1632	preempt_disable();
1633	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1634		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635			set_c0_config5(MIPS_CONF5_MSAEN);
1636			enable_fpu_hazard();
1637		}
1638
1639		__kvm_save_msa(&vcpu->arch);
1640		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1641
1642		/* Disable MSA & FPU */
1643		disable_msa();
1644		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1645			clear_c0_status(ST0_CU1 | ST0_FR);
1646			disable_fpu_hazard();
1647		}
1648		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1649	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1650		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1651			set_c0_status(ST0_CU1);
1652			enable_fpu_hazard();
1653		}
1654
1655		__kvm_save_fpu(&vcpu->arch);
1656		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1657		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1658
1659		/* Disable FPU */
1660		clear_c0_status(ST0_CU1 | ST0_FR);
1661		disable_fpu_hazard();
1662	}
1663	preempt_enable();
1664}
1665
1666/*
1667 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1668 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1669 * exception if cause bits are set in the value being written.
1670 */
1671static int kvm_mips_csr_die_notify(struct notifier_block *self,
1672				   unsigned long cmd, void *ptr)
1673{
1674	struct die_args *args = (struct die_args *)ptr;
1675	struct pt_regs *regs = args->regs;
1676	unsigned long pc;
1677
1678	/* Only interested in FPE and MSAFPE */
1679	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1680		return NOTIFY_DONE;
1681
1682	/* Return immediately if guest context isn't active */
1683	if (!(current->flags & PF_VCPU))
1684		return NOTIFY_DONE;
1685
1686	/* Should never get here from user mode */
1687	BUG_ON(user_mode(regs));
1688
1689	pc = instruction_pointer(regs);
1690	switch (cmd) {
1691	case DIE_FP:
1692		/* match 2nd instruction in __kvm_restore_fcsr */
1693		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1694			return NOTIFY_DONE;
1695		break;
1696	case DIE_MSAFP:
1697		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1698		if (!cpu_has_msa ||
1699		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1700		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1701			return NOTIFY_DONE;
1702		break;
1703	}
1704
1705	/* Move PC forward a little and continue executing */
1706	instruction_pointer(regs) += 4;
1707
1708	return NOTIFY_STOP;
1709}
1710
1711static struct notifier_block kvm_mips_csr_die_notifier = {
1712	.notifier_call = kvm_mips_csr_die_notify,
1713};
1714
1715static int __init kvm_mips_init(void)
1716{
1717	int ret;
1718
1719	if (cpu_has_mmid) {
1720		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1721		return -EOPNOTSUPP;
1722	}
1723
1724	ret = kvm_mips_entry_setup();
1725	if (ret)
1726		return ret;
1727
1728	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1729
1730	if (ret)
1731		return ret;
1732
1733	register_die_notifier(&kvm_mips_csr_die_notifier);
1734
1735	return 0;
1736}
1737
1738static void __exit kvm_mips_exit(void)
1739{
1740	kvm_exit();
1741
1742	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1743}
1744
1745module_init(kvm_mips_init);
1746module_exit(kvm_mips_exit);
1747
1748EXPORT_TRACEPOINT_SYMBOL(kvm_exit);