Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
 
  19#include <linux/fs.h>
  20#include <linux/bootmem.h>
 
 
  21#include <asm/fpu.h>
  22#include <asm/page.h>
  23#include <asm/cacheflush.h>
  24#include <asm/mmu_context.h>
  25#include <asm/pgtable.h>
  26
  27#include <linux/kvm_host.h>
  28
  29#include "interrupt.h"
  30#include "commpage.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include "trace.h"
  34
  35#ifndef VECTORSPACING
  36#define VECTORSPACING 0x100	/* for EI/VI mode */
  37#endif
  38
  39#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  40struct kvm_stats_debugfs_item debugfs_entries[] = {
  41	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
  42	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
  43	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
  44	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
  45	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  46	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
  47	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
  48	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
  49	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
  50	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
  51	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
  52	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
  53	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
  54	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
  55	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
  56	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
  57	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  58	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  59	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  60	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  61	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  62	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
  63	{NULL}
  64};
  65
  66static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  67{
  68	int i;
 
 
 
 
 
  69
  70	for_each_possible_cpu(i) {
  71		vcpu->arch.guest_kernel_asid[i] = 0;
  72		vcpu->arch.guest_user_asid[i] = 0;
  73	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
 
 
 
  75	return 0;
  76}
  77
 
 
 
 
 
  78/*
  79 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  80 * Config7, so we are "runnable" if interrupts are pending
  81 */
  82int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  83{
  84	return !!(vcpu->arch.pending_exceptions);
  85}
  86
 
 
 
 
 
  87int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  88{
  89	return 1;
  90}
  91
  92int kvm_arch_hardware_enable(void)
  93{
  94	return 0;
  95}
  96
  97int kvm_arch_hardware_setup(void)
  98{
  99	return 0;
 100}
 101
 102void kvm_arch_check_processor_compat(void *rtn)
 103{
 104	*(int *)rtn = 0;
 105}
 106
 107static void kvm_mips_init_tlbs(struct kvm *kvm)
 108{
 109	unsigned long wired;
 110
 111	/*
 112	 * Add a wired entry to the TLB, it is used to map the commpage to
 113	 * the Guest kernel
 114	 */
 115	wired = read_c0_wired();
 116	write_c0_wired(wired + 1);
 117	mtc0_tlbw_hazard();
 118	kvm->arch.commpage_tlb = wired;
 119
 120	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
 121		  kvm->arch.commpage_tlb);
 122}
 123
 124static void kvm_mips_init_vm_percpu(void *arg)
 125{
 126	struct kvm *kvm = (struct kvm *)arg;
 127
 128	kvm_mips_init_tlbs(kvm);
 129	kvm_mips_callbacks->vm_init(kvm);
 130
 131}
 132
 133int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 134{
 135	if (atomic_inc_return(&kvm_mips_instance) == 1) {
 136		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
 137			  __func__);
 138		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
 
 
 
 
 139	}
 140
 141	return 0;
 142}
 
 
 143
 144bool kvm_arch_has_vcpu_debugfs(void)
 145{
 146	return false;
 147}
 148
 149int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 150{
 151	return 0;
 152}
 153
 154void kvm_mips_free_vcpus(struct kvm *kvm)
 155{
 156	unsigned int i;
 157	struct kvm_vcpu *vcpu;
 158
 159	/* Put the pages we reserved for the guest pmap */
 160	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
 161		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
 162			kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
 163	}
 164	kfree(kvm->arch.guest_pmap);
 165
 166	kvm_for_each_vcpu(i, vcpu, kvm) {
 167		kvm_arch_vcpu_free(vcpu);
 168	}
 169
 170	mutex_lock(&kvm->lock);
 171
 172	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 173		kvm->vcpus[i] = NULL;
 174
 175	atomic_set(&kvm->online_vcpus, 0);
 176
 177	mutex_unlock(&kvm->lock);
 178}
 179
 180static void kvm_mips_uninit_tlbs(void *arg)
 181{
 182	/* Restore wired count */
 183	write_c0_wired(0);
 184	mtc0_tlbw_hazard();
 185	/* Clear out all the TLBs */
 186	kvm_local_flush_tlb_all();
 187}
 188
 189void kvm_arch_destroy_vm(struct kvm *kvm)
 190{
 191	kvm_mips_free_vcpus(kvm);
 192
 193	/* If this is the last instance, restore wired count */
 194	if (atomic_dec_return(&kvm_mips_instance) == 0) {
 195		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
 196			  __func__);
 197		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
 198	}
 199}
 200
 201long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 202			unsigned long arg)
 203{
 204	return -ENOIOCTLCMD;
 205}
 206
 207int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 208			    unsigned long npages)
 209{
 210	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211}
 212
 213int kvm_arch_prepare_memory_region(struct kvm *kvm,
 214				   struct kvm_memory_slot *memslot,
 215				   const struct kvm_userspace_memory_region *mem,
 216				   enum kvm_mr_change change)
 217{
 218	return 0;
 219}
 220
 221void kvm_arch_commit_memory_region(struct kvm *kvm,
 222				   const struct kvm_userspace_memory_region *mem,
 223				   const struct kvm_memory_slot *old,
 224				   const struct kvm_memory_slot *new,
 225				   enum kvm_mr_change change)
 226{
 227	unsigned long npages = 0;
 228	int i;
 229
 230	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 231		  __func__, kvm, mem->slot, mem->guest_phys_addr,
 232		  mem->memory_size, mem->userspace_addr);
 233
 234	/* Setup Guest PMAP table */
 235	if (!kvm->arch.guest_pmap) {
 236		if (mem->slot == 0)
 237			npages = mem->memory_size >> PAGE_SHIFT;
 238
 239		if (npages) {
 240			kvm->arch.guest_pmap_npages = npages;
 241			kvm->arch.guest_pmap =
 242			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
 243
 244			if (!kvm->arch.guest_pmap) {
 245				kvm_err("Failed to allocate guest PMAP\n");
 246				return;
 247			}
 248
 249			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
 250				  npages, kvm->arch.guest_pmap);
 251
 252			/* Now setup the page table */
 253			for (i = 0; i < npages; i++)
 254				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
 255		}
 256	}
 257}
 258
 259static inline void dump_handler(const char *symbol, void *start, void *end)
 260{
 261	u32 *p;
 262
 263	pr_debug("LEAF(%s)\n", symbol);
 264
 265	pr_debug("\t.set push\n");
 266	pr_debug("\t.set noreorder\n");
 267
 268	for (p = start; p < (u32 *)end; ++p)
 269		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 270
 271	pr_debug("\t.set\tpop\n");
 272
 273	pr_debug("\tEND(%s)\n", symbol);
 274}
 275
 276struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 
 277{
 278	int err, size;
 279	void *gebase, *p, *handler;
 280	int i;
 281
 282	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 283
 284	if (!vcpu) {
 285		err = -ENOMEM;
 286		goto out;
 287	}
 
 
 
 
 
 
 
 
 288
 289	err = kvm_vcpu_init(vcpu, kvm, id);
 
 
 
 
 290
 
 
 
 
 291	if (err)
 292		goto out_free_cpu;
 293
 294	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 
 
 295
 296	/*
 297	 * Allocate space for host mode exception handlers that handle
 298	 * guest mode exits
 299	 */
 300	if (cpu_has_veic || cpu_has_vint)
 301		size = 0x200 + VECTORSPACING * 64;
 302	else
 303		size = 0x4000;
 304
 305	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 306
 307	if (!gebase) {
 308		err = -ENOMEM;
 309		goto out_uninit_cpu;
 310	}
 311	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 312		  ALIGN(size, PAGE_SIZE), gebase);
 313
 314	/*
 315	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 316	 * limits us to the low 512MB of physical address space. If the memory
 317	 * we allocate is out of range, just give up now.
 318	 */
 319	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 320		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 321			gebase);
 322		err = -ENOMEM;
 323		goto out_free_gebase;
 324	}
 325
 326	/* Save new ebase */
 327	vcpu->arch.guest_ebase = gebase;
 328
 329	/* Build guest exception vectors dynamically in unmapped memory */
 330	handler = gebase + 0x2000;
 331
 332	/* TLB Refill, EXL = 0 */
 333	kvm_mips_build_exception(gebase, handler);
 
 
 
 334
 335	/* General Exception Entry point */
 336	kvm_mips_build_exception(gebase + 0x180, handler);
 337
 338	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 339	for (i = 0; i < 8; i++) {
 340		kvm_debug("L1 Vectored handler @ %p\n",
 341			  gebase + 0x200 + (i * VECTORSPACING));
 342		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 343					 handler);
 344	}
 345
 346	/* General exit handler */
 347	p = handler;
 348	p = kvm_mips_build_exit(p);
 349
 350	/* Guest entry routine */
 351	vcpu->arch.vcpu_run = p;
 352	p = kvm_mips_build_vcpu_run(p);
 353
 354	/* Dump the generated code */
 355	pr_debug("#include <asm/asm.h>\n");
 356	pr_debug("#include <asm/regdef.h>\n");
 357	pr_debug("\n");
 358	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 
 359	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 360	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 361
 362	/* Invalidate the icache for these ranges */
 363	flush_icache_range((unsigned long)gebase,
 364			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 365
 366	/*
 367	 * Allocate comm page for guest kernel, a TLB will be reserved for
 368	 * mapping GVA @ 0xFFFF8000 to this page
 369	 */
 370	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 371
 372	if (!vcpu->arch.kseg0_commpage) {
 373		err = -ENOMEM;
 374		goto out_free_gebase;
 375	}
 376
 377	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 378	kvm_mips_commpage_init(vcpu);
 379
 380	/* Init */
 381	vcpu->arch.last_sched_cpu = -1;
 
 382
 383	/* Start off the timer */
 384	kvm_mips_init_count(vcpu);
 
 
 385
 386	return vcpu;
 387
 388out_free_gebase:
 389	kfree(gebase);
 390
 391out_uninit_cpu:
 392	kvm_vcpu_uninit(vcpu);
 393
 394out_free_cpu:
 395	kfree(vcpu);
 396
 397out:
 398	return ERR_PTR(err);
 399}
 400
 401void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 402{
 403	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 404
 405	kvm_vcpu_uninit(vcpu);
 406
 407	kvm_mips_dump_stats(vcpu);
 408
 
 409	kfree(vcpu->arch.guest_ebase);
 410	kfree(vcpu->arch.kseg0_commpage);
 411	kfree(vcpu);
 412}
 413
 414void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 415{
 416	kvm_arch_vcpu_free(vcpu);
 417}
 418
 419int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 420					struct kvm_guest_debug *dbg)
 421{
 422	return -ENOIOCTLCMD;
 423}
 424
 425/* Must be called with preemption disabled, just before entering guest */
 426static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 427{
 428	struct mips_coproc *cop0 = vcpu->arch.cop0;
 429	int i, cpu = smp_processor_id();
 430	unsigned int gasid;
 431
 432	/*
 433	 * Lazy host ASID regeneration for guest user mode.
 434	 * If the guest ASID has changed since the last guest usermode
 435	 * execution, regenerate the host ASID so as to invalidate stale TLB
 436	 * entries.
 437	 */
 438	if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
 439		gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
 440		if (gasid != vcpu->arch.last_user_gasid) {
 441			kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
 442						vcpu);
 443			vcpu->arch.guest_user_asid[cpu] =
 444				vcpu->arch.guest_user_mm.context.asid[cpu];
 445			for_each_possible_cpu(i)
 446				if (i != cpu)
 447					vcpu->arch.guest_user_asid[cpu] = 0;
 448			vcpu->arch.last_user_gasid = gasid;
 449		}
 450	}
 451}
 452
 453int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 454{
 455	int r = 0;
 456	sigset_t sigsaved;
 
 457
 458	if (vcpu->sigset_active)
 459		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 460
 461	if (vcpu->mmio_needed) {
 462		if (!vcpu->mmio_is_write)
 463			kvm_mips_complete_mmio_load(vcpu, run);
 464		vcpu->mmio_needed = 0;
 465	}
 466
 
 
 
 467	lose_fpu(1);
 468
 469	local_irq_disable();
 470	/* Check if we have any exceptions/interrupts pending */
 471	kvm_mips_deliver_interrupts(vcpu,
 472				    kvm_read_c0_guest_cause(vcpu->arch.cop0));
 473
 474	guest_enter_irqoff();
 475
 476	/* Disable hardware page table walking while in guest */
 477	htw_stop();
 478
 479	trace_kvm_enter(vcpu);
 480
 481	kvm_mips_check_asids(vcpu);
 
 
 
 
 
 
 482
 483	r = vcpu->arch.vcpu_run(run, vcpu);
 484	trace_kvm_out(vcpu);
 485
 486	/* Re-enable HTW before enabling interrupts */
 487	htw_start();
 
 
 
 
 
 
 
 
 
 
 488
 489	guest_exit_irqoff();
 
 490	local_irq_enable();
 491
 492	if (vcpu->sigset_active)
 493		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 494
 
 495	return r;
 496}
 497
 498int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 499			     struct kvm_mips_interrupt *irq)
 500{
 501	int intr = (int)irq->irq;
 502	struct kvm_vcpu *dvcpu = NULL;
 503
 504	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 
 
 
 505		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 506			  (int)intr);
 507
 508	if (irq->cpu == -1)
 509		dvcpu = vcpu;
 510	else
 511		dvcpu = vcpu->kvm->vcpus[irq->cpu];
 512
 513	if (intr == 2 || intr == 3 || intr == 4) {
 514		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 515
 516	} else if (intr == -2 || intr == -3 || intr == -4) {
 517		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 518	} else {
 519		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 520			irq->cpu, irq->irq);
 521		return -EINVAL;
 522	}
 523
 524	dvcpu->arch.wait = 0;
 525
 526	if (swait_active(&dvcpu->wq))
 527		swake_up(&dvcpu->wq);
 528
 529	return 0;
 530}
 531
 532int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 533				    struct kvm_mp_state *mp_state)
 534{
 535	return -ENOIOCTLCMD;
 536}
 537
 538int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 539				    struct kvm_mp_state *mp_state)
 540{
 541	return -ENOIOCTLCMD;
 542}
 543
 544static u64 kvm_mips_get_one_regs[] = {
 545	KVM_REG_MIPS_R0,
 546	KVM_REG_MIPS_R1,
 547	KVM_REG_MIPS_R2,
 548	KVM_REG_MIPS_R3,
 549	KVM_REG_MIPS_R4,
 550	KVM_REG_MIPS_R5,
 551	KVM_REG_MIPS_R6,
 552	KVM_REG_MIPS_R7,
 553	KVM_REG_MIPS_R8,
 554	KVM_REG_MIPS_R9,
 555	KVM_REG_MIPS_R10,
 556	KVM_REG_MIPS_R11,
 557	KVM_REG_MIPS_R12,
 558	KVM_REG_MIPS_R13,
 559	KVM_REG_MIPS_R14,
 560	KVM_REG_MIPS_R15,
 561	KVM_REG_MIPS_R16,
 562	KVM_REG_MIPS_R17,
 563	KVM_REG_MIPS_R18,
 564	KVM_REG_MIPS_R19,
 565	KVM_REG_MIPS_R20,
 566	KVM_REG_MIPS_R21,
 567	KVM_REG_MIPS_R22,
 568	KVM_REG_MIPS_R23,
 569	KVM_REG_MIPS_R24,
 570	KVM_REG_MIPS_R25,
 571	KVM_REG_MIPS_R26,
 572	KVM_REG_MIPS_R27,
 573	KVM_REG_MIPS_R28,
 574	KVM_REG_MIPS_R29,
 575	KVM_REG_MIPS_R30,
 576	KVM_REG_MIPS_R31,
 577
 578#ifndef CONFIG_CPU_MIPSR6
 579	KVM_REG_MIPS_HI,
 580	KVM_REG_MIPS_LO,
 581#endif
 582	KVM_REG_MIPS_PC,
 583
 584	KVM_REG_MIPS_CP0_INDEX,
 585	KVM_REG_MIPS_CP0_CONTEXT,
 586	KVM_REG_MIPS_CP0_USERLOCAL,
 587	KVM_REG_MIPS_CP0_PAGEMASK,
 588	KVM_REG_MIPS_CP0_WIRED,
 589	KVM_REG_MIPS_CP0_HWRENA,
 590	KVM_REG_MIPS_CP0_BADVADDR,
 591	KVM_REG_MIPS_CP0_COUNT,
 592	KVM_REG_MIPS_CP0_ENTRYHI,
 593	KVM_REG_MIPS_CP0_COMPARE,
 594	KVM_REG_MIPS_CP0_STATUS,
 595	KVM_REG_MIPS_CP0_CAUSE,
 596	KVM_REG_MIPS_CP0_EPC,
 597	KVM_REG_MIPS_CP0_PRID,
 598	KVM_REG_MIPS_CP0_CONFIG,
 599	KVM_REG_MIPS_CP0_CONFIG1,
 600	KVM_REG_MIPS_CP0_CONFIG2,
 601	KVM_REG_MIPS_CP0_CONFIG3,
 602	KVM_REG_MIPS_CP0_CONFIG4,
 603	KVM_REG_MIPS_CP0_CONFIG5,
 604	KVM_REG_MIPS_CP0_CONFIG7,
 605	KVM_REG_MIPS_CP0_ERROREPC,
 606
 607	KVM_REG_MIPS_COUNT_CTL,
 608	KVM_REG_MIPS_COUNT_RESUME,
 609	KVM_REG_MIPS_COUNT_HZ,
 610};
 611
 612static u64 kvm_mips_get_one_regs_fpu[] = {
 613	KVM_REG_MIPS_FCR_IR,
 614	KVM_REG_MIPS_FCR_CSR,
 615};
 616
 617static u64 kvm_mips_get_one_regs_msa[] = {
 618	KVM_REG_MIPS_MSA_IR,
 619	KVM_REG_MIPS_MSA_CSR,
 620};
 621
 622static u64 kvm_mips_get_one_regs_kscratch[] = {
 623	KVM_REG_MIPS_CP0_KSCRATCH1,
 624	KVM_REG_MIPS_CP0_KSCRATCH2,
 625	KVM_REG_MIPS_CP0_KSCRATCH3,
 626	KVM_REG_MIPS_CP0_KSCRATCH4,
 627	KVM_REG_MIPS_CP0_KSCRATCH5,
 628	KVM_REG_MIPS_CP0_KSCRATCH6,
 629};
 630
 631static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 632{
 633	unsigned long ret;
 634
 635	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 636	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 637		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 638		/* odd doubles */
 639		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 640			ret += 16;
 641	}
 642	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 643		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 644	ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
 645	ret += kvm_mips_callbacks->num_regs(vcpu);
 646
 647	return ret;
 648}
 649
 650static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 651{
 652	u64 index;
 653	unsigned int i;
 654
 655	if (copy_to_user(indices, kvm_mips_get_one_regs,
 656			 sizeof(kvm_mips_get_one_regs)))
 657		return -EFAULT;
 658	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 659
 660	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 661		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 662				 sizeof(kvm_mips_get_one_regs_fpu)))
 663			return -EFAULT;
 664		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 665
 666		for (i = 0; i < 32; ++i) {
 667			index = KVM_REG_MIPS_FPR_32(i);
 668			if (copy_to_user(indices, &index, sizeof(index)))
 669				return -EFAULT;
 670			++indices;
 671
 672			/* skip odd doubles if no F64 */
 673			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 674				continue;
 675
 676			index = KVM_REG_MIPS_FPR_64(i);
 677			if (copy_to_user(indices, &index, sizeof(index)))
 678				return -EFAULT;
 679			++indices;
 680		}
 681	}
 682
 683	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 684		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 685				 sizeof(kvm_mips_get_one_regs_msa)))
 686			return -EFAULT;
 687		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 688
 689		for (i = 0; i < 32; ++i) {
 690			index = KVM_REG_MIPS_VEC_128(i);
 691			if (copy_to_user(indices, &index, sizeof(index)))
 692				return -EFAULT;
 693			++indices;
 694		}
 695	}
 696
 697	for (i = 0; i < 6; ++i) {
 698		if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
 699			continue;
 700
 701		if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
 702				 sizeof(kvm_mips_get_one_regs_kscratch[i])))
 703			return -EFAULT;
 704		++indices;
 705	}
 706
 707	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 708}
 709
 710static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 711			    const struct kvm_one_reg *reg)
 712{
 713	struct mips_coproc *cop0 = vcpu->arch.cop0;
 714	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 715	int ret;
 716	s64 v;
 717	s64 vs[2];
 718	unsigned int idx;
 719
 720	switch (reg->id) {
 721	/* General purpose registers */
 722	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 723		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 724		break;
 725#ifndef CONFIG_CPU_MIPSR6
 726	case KVM_REG_MIPS_HI:
 727		v = (long)vcpu->arch.hi;
 728		break;
 729	case KVM_REG_MIPS_LO:
 730		v = (long)vcpu->arch.lo;
 731		break;
 732#endif
 733	case KVM_REG_MIPS_PC:
 734		v = (long)vcpu->arch.pc;
 735		break;
 736
 737	/* Floating point registers */
 738	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 739		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 740			return -EINVAL;
 741		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 742		/* Odd singles in top of even double when FR=0 */
 743		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 744			v = get_fpr32(&fpu->fpr[idx], 0);
 745		else
 746			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 747		break;
 748	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 749		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 750			return -EINVAL;
 751		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 752		/* Can't access odd doubles in FR=0 mode */
 753		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 754			return -EINVAL;
 755		v = get_fpr64(&fpu->fpr[idx], 0);
 756		break;
 757	case KVM_REG_MIPS_FCR_IR:
 758		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 759			return -EINVAL;
 760		v = boot_cpu_data.fpu_id;
 761		break;
 762	case KVM_REG_MIPS_FCR_CSR:
 763		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 764			return -EINVAL;
 765		v = fpu->fcr31;
 766		break;
 767
 768	/* MIPS SIMD Architecture (MSA) registers */
 769	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 770		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 771			return -EINVAL;
 772		/* Can't access MSA registers in FR=0 mode */
 773		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 774			return -EINVAL;
 775		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 776#ifdef CONFIG_CPU_LITTLE_ENDIAN
 777		/* least significant byte first */
 778		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 779		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 780#else
 781		/* most significant byte first */
 782		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 783		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 784#endif
 785		break;
 786	case KVM_REG_MIPS_MSA_IR:
 787		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 788			return -EINVAL;
 789		v = boot_cpu_data.msa_id;
 790		break;
 791	case KVM_REG_MIPS_MSA_CSR:
 792		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 793			return -EINVAL;
 794		v = fpu->msacsr;
 795		break;
 796
 797	/* Co-processor 0 registers */
 798	case KVM_REG_MIPS_CP0_INDEX:
 799		v = (long)kvm_read_c0_guest_index(cop0);
 800		break;
 801	case KVM_REG_MIPS_CP0_CONTEXT:
 802		v = (long)kvm_read_c0_guest_context(cop0);
 803		break;
 804	case KVM_REG_MIPS_CP0_USERLOCAL:
 805		v = (long)kvm_read_c0_guest_userlocal(cop0);
 806		break;
 807	case KVM_REG_MIPS_CP0_PAGEMASK:
 808		v = (long)kvm_read_c0_guest_pagemask(cop0);
 809		break;
 810	case KVM_REG_MIPS_CP0_WIRED:
 811		v = (long)kvm_read_c0_guest_wired(cop0);
 812		break;
 813	case KVM_REG_MIPS_CP0_HWRENA:
 814		v = (long)kvm_read_c0_guest_hwrena(cop0);
 815		break;
 816	case KVM_REG_MIPS_CP0_BADVADDR:
 817		v = (long)kvm_read_c0_guest_badvaddr(cop0);
 818		break;
 819	case KVM_REG_MIPS_CP0_ENTRYHI:
 820		v = (long)kvm_read_c0_guest_entryhi(cop0);
 821		break;
 822	case KVM_REG_MIPS_CP0_COMPARE:
 823		v = (long)kvm_read_c0_guest_compare(cop0);
 824		break;
 825	case KVM_REG_MIPS_CP0_STATUS:
 826		v = (long)kvm_read_c0_guest_status(cop0);
 827		break;
 828	case KVM_REG_MIPS_CP0_CAUSE:
 829		v = (long)kvm_read_c0_guest_cause(cop0);
 830		break;
 831	case KVM_REG_MIPS_CP0_EPC:
 832		v = (long)kvm_read_c0_guest_epc(cop0);
 833		break;
 834	case KVM_REG_MIPS_CP0_PRID:
 835		v = (long)kvm_read_c0_guest_prid(cop0);
 836		break;
 837	case KVM_REG_MIPS_CP0_CONFIG:
 838		v = (long)kvm_read_c0_guest_config(cop0);
 839		break;
 840	case KVM_REG_MIPS_CP0_CONFIG1:
 841		v = (long)kvm_read_c0_guest_config1(cop0);
 842		break;
 843	case KVM_REG_MIPS_CP0_CONFIG2:
 844		v = (long)kvm_read_c0_guest_config2(cop0);
 845		break;
 846	case KVM_REG_MIPS_CP0_CONFIG3:
 847		v = (long)kvm_read_c0_guest_config3(cop0);
 848		break;
 849	case KVM_REG_MIPS_CP0_CONFIG4:
 850		v = (long)kvm_read_c0_guest_config4(cop0);
 851		break;
 852	case KVM_REG_MIPS_CP0_CONFIG5:
 853		v = (long)kvm_read_c0_guest_config5(cop0);
 854		break;
 855	case KVM_REG_MIPS_CP0_CONFIG7:
 856		v = (long)kvm_read_c0_guest_config7(cop0);
 857		break;
 858	case KVM_REG_MIPS_CP0_ERROREPC:
 859		v = (long)kvm_read_c0_guest_errorepc(cop0);
 860		break;
 861	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
 862		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
 863		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
 864			return -EINVAL;
 865		switch (idx) {
 866		case 2:
 867			v = (long)kvm_read_c0_guest_kscratch1(cop0);
 868			break;
 869		case 3:
 870			v = (long)kvm_read_c0_guest_kscratch2(cop0);
 871			break;
 872		case 4:
 873			v = (long)kvm_read_c0_guest_kscratch3(cop0);
 874			break;
 875		case 5:
 876			v = (long)kvm_read_c0_guest_kscratch4(cop0);
 877			break;
 878		case 6:
 879			v = (long)kvm_read_c0_guest_kscratch5(cop0);
 880			break;
 881		case 7:
 882			v = (long)kvm_read_c0_guest_kscratch6(cop0);
 883			break;
 884		}
 885		break;
 886	/* registers to be handled specially */
 887	default:
 888		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 889		if (ret)
 890			return ret;
 891		break;
 892	}
 893	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 894		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 895
 896		return put_user(v, uaddr64);
 897	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 898		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 899		u32 v32 = (u32)v;
 900
 901		return put_user(v32, uaddr32);
 902	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 903		void __user *uaddr = (void __user *)(long)reg->addr;
 904
 905		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 906	} else {
 907		return -EINVAL;
 908	}
 909}
 910
 911static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 912			    const struct kvm_one_reg *reg)
 913{
 914	struct mips_coproc *cop0 = vcpu->arch.cop0;
 915	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 916	s64 v;
 917	s64 vs[2];
 918	unsigned int idx;
 919
 920	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 921		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 922
 923		if (get_user(v, uaddr64) != 0)
 924			return -EFAULT;
 925	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 926		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 927		s32 v32;
 928
 929		if (get_user(v32, uaddr32) != 0)
 930			return -EFAULT;
 931		v = (s64)v32;
 932	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 933		void __user *uaddr = (void __user *)(long)reg->addr;
 934
 935		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 936	} else {
 937		return -EINVAL;
 938	}
 939
 940	switch (reg->id) {
 941	/* General purpose registers */
 942	case KVM_REG_MIPS_R0:
 943		/* Silently ignore requests to set $0 */
 944		break;
 945	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 946		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 947		break;
 948#ifndef CONFIG_CPU_MIPSR6
 949	case KVM_REG_MIPS_HI:
 950		vcpu->arch.hi = v;
 951		break;
 952	case KVM_REG_MIPS_LO:
 953		vcpu->arch.lo = v;
 954		break;
 955#endif
 956	case KVM_REG_MIPS_PC:
 957		vcpu->arch.pc = v;
 958		break;
 959
 960	/* Floating point registers */
 961	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 962		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 963			return -EINVAL;
 964		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 965		/* Odd singles in top of even double when FR=0 */
 966		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 967			set_fpr32(&fpu->fpr[idx], 0, v);
 968		else
 969			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 970		break;
 971	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 972		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 973			return -EINVAL;
 974		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 975		/* Can't access odd doubles in FR=0 mode */
 976		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 977			return -EINVAL;
 978		set_fpr64(&fpu->fpr[idx], 0, v);
 979		break;
 980	case KVM_REG_MIPS_FCR_IR:
 981		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 982			return -EINVAL;
 983		/* Read-only */
 984		break;
 985	case KVM_REG_MIPS_FCR_CSR:
 986		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 987			return -EINVAL;
 988		fpu->fcr31 = v;
 989		break;
 990
 991	/* MIPS SIMD Architecture (MSA) registers */
 992	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 993		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 994			return -EINVAL;
 995		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 996#ifdef CONFIG_CPU_LITTLE_ENDIAN
 997		/* least significant byte first */
 998		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 999		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
1000#else
1001		/* most significant byte first */
1002		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1003		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1004#endif
1005		break;
1006	case KVM_REG_MIPS_MSA_IR:
1007		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1008			return -EINVAL;
1009		/* Read-only */
1010		break;
1011	case KVM_REG_MIPS_MSA_CSR:
1012		if (!kvm_mips_guest_has_msa(&vcpu->arch))
1013			return -EINVAL;
1014		fpu->msacsr = v;
1015		break;
1016
1017	/* Co-processor 0 registers */
1018	case KVM_REG_MIPS_CP0_INDEX:
1019		kvm_write_c0_guest_index(cop0, v);
1020		break;
1021	case KVM_REG_MIPS_CP0_CONTEXT:
1022		kvm_write_c0_guest_context(cop0, v);
1023		break;
1024	case KVM_REG_MIPS_CP0_USERLOCAL:
1025		kvm_write_c0_guest_userlocal(cop0, v);
1026		break;
1027	case KVM_REG_MIPS_CP0_PAGEMASK:
1028		kvm_write_c0_guest_pagemask(cop0, v);
1029		break;
1030	case KVM_REG_MIPS_CP0_WIRED:
1031		kvm_write_c0_guest_wired(cop0, v);
1032		break;
1033	case KVM_REG_MIPS_CP0_HWRENA:
1034		kvm_write_c0_guest_hwrena(cop0, v);
1035		break;
1036	case KVM_REG_MIPS_CP0_BADVADDR:
1037		kvm_write_c0_guest_badvaddr(cop0, v);
1038		break;
1039	case KVM_REG_MIPS_CP0_ENTRYHI:
1040		kvm_write_c0_guest_entryhi(cop0, v);
1041		break;
1042	case KVM_REG_MIPS_CP0_STATUS:
1043		kvm_write_c0_guest_status(cop0, v);
1044		break;
1045	case KVM_REG_MIPS_CP0_EPC:
1046		kvm_write_c0_guest_epc(cop0, v);
1047		break;
1048	case KVM_REG_MIPS_CP0_PRID:
1049		kvm_write_c0_guest_prid(cop0, v);
1050		break;
1051	case KVM_REG_MIPS_CP0_ERROREPC:
1052		kvm_write_c0_guest_errorepc(cop0, v);
1053		break;
1054	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1055		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1056		if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1057			return -EINVAL;
1058		switch (idx) {
1059		case 2:
1060			kvm_write_c0_guest_kscratch1(cop0, v);
1061			break;
1062		case 3:
1063			kvm_write_c0_guest_kscratch2(cop0, v);
1064			break;
1065		case 4:
1066			kvm_write_c0_guest_kscratch3(cop0, v);
1067			break;
1068		case 5:
1069			kvm_write_c0_guest_kscratch4(cop0, v);
1070			break;
1071		case 6:
1072			kvm_write_c0_guest_kscratch5(cop0, v);
1073			break;
1074		case 7:
1075			kvm_write_c0_guest_kscratch6(cop0, v);
1076			break;
1077		}
1078		break;
1079	/* registers to be handled specially */
1080	default:
1081		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1082	}
1083	return 0;
1084}
1085
1086static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1087				     struct kvm_enable_cap *cap)
1088{
1089	int r = 0;
1090
1091	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1092		return -EINVAL;
1093	if (cap->flags)
1094		return -EINVAL;
1095	if (cap->args[0])
1096		return -EINVAL;
1097
1098	switch (cap->cap) {
1099	case KVM_CAP_MIPS_FPU:
1100		vcpu->arch.fpu_enabled = true;
1101		break;
1102	case KVM_CAP_MIPS_MSA:
1103		vcpu->arch.msa_enabled = true;
1104		break;
1105	default:
1106		r = -EINVAL;
1107		break;
1108	}
1109
1110	return r;
1111}
1112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1114			 unsigned long arg)
1115{
1116	struct kvm_vcpu *vcpu = filp->private_data;
1117	void __user *argp = (void __user *)arg;
1118	long r;
1119
 
 
1120	switch (ioctl) {
1121	case KVM_SET_ONE_REG:
1122	case KVM_GET_ONE_REG: {
1123		struct kvm_one_reg reg;
1124
 
1125		if (copy_from_user(&reg, argp, sizeof(reg)))
1126			return -EFAULT;
1127		if (ioctl == KVM_SET_ONE_REG)
1128			return kvm_mips_set_reg(vcpu, &reg);
1129		else
1130			return kvm_mips_get_reg(vcpu, &reg);
 
1131	}
1132	case KVM_GET_REG_LIST: {
1133		struct kvm_reg_list __user *user_list = argp;
1134		struct kvm_reg_list reg_list;
1135		unsigned n;
1136
 
1137		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1138			return -EFAULT;
1139		n = reg_list.n;
1140		reg_list.n = kvm_mips_num_regs(vcpu);
1141		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1142			return -EFAULT;
 
1143		if (n < reg_list.n)
1144			return -E2BIG;
1145		return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1146	}
1147	case KVM_NMI:
1148		/* Treat the NMI as a CPU reset */
1149		r = kvm_mips_reset_vcpu(vcpu);
1150		break;
1151	case KVM_INTERRUPT:
1152		{
1153			struct kvm_mips_interrupt irq;
1154
1155			r = -EFAULT;
1156			if (copy_from_user(&irq, argp, sizeof(irq)))
1157				goto out;
1158
1159			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1160				  irq.irq);
1161
1162			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1163			break;
1164		}
 
 
1165	case KVM_ENABLE_CAP: {
1166		struct kvm_enable_cap cap;
1167
1168		r = -EFAULT;
1169		if (copy_from_user(&cap, argp, sizeof(cap)))
1170			goto out;
1171		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1172		break;
1173	}
1174	default:
1175		r = -ENOIOCTLCMD;
1176	}
1177
1178out:
1179	return r;
1180}
1181
1182/* Get (and clear) the dirty memory log for a memory slot. */
1183int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1184{
1185	struct kvm_memslots *slots;
1186	struct kvm_memory_slot *memslot;
1187	unsigned long ga, ga_end;
1188	int is_dirty = 0;
1189	int r;
1190	unsigned long n;
1191
1192	mutex_lock(&kvm->slots_lock);
1193
1194	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1195	if (r)
1196		goto out;
1197
1198	/* If nothing is dirty, don't bother messing with page tables. */
1199	if (is_dirty) {
1200		slots = kvm_memslots(kvm);
1201		memslot = id_to_memslot(slots, log->slot);
1202
1203		ga = memslot->base_gfn << PAGE_SHIFT;
1204		ga_end = ga + (memslot->npages << PAGE_SHIFT);
1205
1206		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1207			 ga_end);
1208
1209		n = kvm_dirty_bitmap_bytes(memslot);
1210		memset(memslot->dirty_bitmap, 0, n);
1211	}
1212
1213	r = 0;
1214out:
1215	mutex_unlock(&kvm->slots_lock);
1216	return r;
 
1217
 
 
 
 
1218}
1219
1220long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1221{
1222	long r;
1223
1224	switch (ioctl) {
1225	default:
1226		r = -ENOIOCTLCMD;
1227	}
1228
1229	return r;
1230}
1231
1232int kvm_arch_init(void *opaque)
1233{
1234	if (kvm_mips_callbacks) {
1235		kvm_err("kvm: module already exists\n");
1236		return -EEXIST;
1237	}
1238
1239	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1240}
1241
1242void kvm_arch_exit(void)
1243{
1244	kvm_mips_callbacks = NULL;
1245}
1246
1247int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1248				  struct kvm_sregs *sregs)
1249{
1250	return -ENOIOCTLCMD;
1251}
1252
1253int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1254				  struct kvm_sregs *sregs)
1255{
1256	return -ENOIOCTLCMD;
1257}
1258
1259void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1260{
1261}
1262
1263int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1264{
1265	return -ENOIOCTLCMD;
1266}
1267
1268int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1269{
1270	return -ENOIOCTLCMD;
1271}
1272
1273int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1274{
1275	return VM_FAULT_SIGBUS;
1276}
1277
1278int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1279{
1280	int r;
1281
1282	switch (ext) {
1283	case KVM_CAP_ONE_REG:
1284	case KVM_CAP_ENABLE_CAP:
 
 
 
1285		r = 1;
1286		break;
1287	case KVM_CAP_COALESCED_MMIO:
1288		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 
 
 
 
 
 
1289		break;
1290	case KVM_CAP_MIPS_FPU:
1291		/* We don't handle systems with inconsistent cpu_has_fpu */
1292		r = !!raw_cpu_has_fpu;
1293		break;
1294	case KVM_CAP_MIPS_MSA:
1295		/*
1296		 * We don't support MSA vector partitioning yet:
1297		 * 1) It would require explicit support which can't be tested
1298		 *    yet due to lack of support in current hardware.
1299		 * 2) It extends the state that would need to be saved/restored
1300		 *    by e.g. QEMU for migration.
1301		 *
1302		 * When vector partitioning hardware becomes available, support
1303		 * could be added by requiring a flag when enabling
1304		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1305		 * to save/restore the appropriate extra state.
1306		 */
1307		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1308		break;
1309	default:
1310		r = 0;
1311		break;
1312	}
1313	return r;
1314}
1315
1316int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1317{
1318	return kvm_mips_pending_timer(vcpu);
 
1319}
1320
1321int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1322{
1323	int i;
1324	struct mips_coproc *cop0;
1325
1326	if (!vcpu)
1327		return -1;
1328
1329	kvm_debug("VCPU Register Dump:\n");
1330	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1331	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1332
1333	for (i = 0; i < 32; i += 4) {
1334		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1335		       vcpu->arch.gprs[i],
1336		       vcpu->arch.gprs[i + 1],
1337		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1338	}
1339	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1340	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1341
1342	cop0 = vcpu->arch.cop0;
1343	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1344		  kvm_read_c0_guest_status(cop0),
1345		  kvm_read_c0_guest_cause(cop0));
1346
1347	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1348
1349	return 0;
1350}
1351
1352int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1353{
1354	int i;
1355
 
 
1356	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1357		vcpu->arch.gprs[i] = regs->gpr[i];
1358	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1359	vcpu->arch.hi = regs->hi;
1360	vcpu->arch.lo = regs->lo;
1361	vcpu->arch.pc = regs->pc;
1362
 
1363	return 0;
1364}
1365
1366int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1367{
1368	int i;
1369
 
 
1370	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1371		regs->gpr[i] = vcpu->arch.gprs[i];
1372
1373	regs->hi = vcpu->arch.hi;
1374	regs->lo = vcpu->arch.lo;
1375	regs->pc = vcpu->arch.pc;
1376
1377	return 0;
1378}
1379
1380static void kvm_mips_comparecount_func(unsigned long data)
1381{
1382	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1383
1384	kvm_mips_callbacks->queue_timer_int(vcpu);
1385
1386	vcpu->arch.wait = 0;
1387	if (swait_active(&vcpu->wq))
1388		swake_up(&vcpu->wq);
1389}
1390
1391/* low level hrtimer wake routine */
1392static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1393{
1394	struct kvm_vcpu *vcpu;
1395
1396	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1397	kvm_mips_comparecount_func((unsigned long) vcpu);
1398	return kvm_mips_count_timeout(vcpu);
1399}
1400
1401int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1402{
1403	kvm_mips_callbacks->vcpu_init(vcpu);
1404	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1405		     HRTIMER_MODE_REL);
1406	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1407	return 0;
1408}
1409
1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411				  struct kvm_translation *tr)
1412{
1413	return 0;
1414}
1415
1416/* Initial guest state */
1417int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1418{
1419	return kvm_mips_callbacks->vcpu_setup(vcpu);
1420}
1421
1422static void kvm_mips_set_c0_status(void)
1423{
1424	u32 status = read_c0_status();
1425
1426	if (cpu_has_dsp)
1427		status |= (ST0_MX);
1428
1429	write_c0_status(status);
1430	ehb();
1431}
1432
1433/*
1434 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1435 */
1436int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437{
 
1438	u32 cause = vcpu->arch.host_cp0_cause;
1439	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1440	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1441	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1442	enum emulation_result er = EMULATE_DONE;
 
1443	int ret = RESUME_GUEST;
1444
1445	/* re-enable HTW before enabling interrupts */
1446	htw_start();
1447
1448	/* Set a default exit reason */
1449	run->exit_reason = KVM_EXIT_UNKNOWN;
1450	run->ready_for_interrupt_injection = 1;
1451
1452	/*
1453	 * Set the appropriate status bits based on host CPU features,
1454	 * before we hit the scheduler
1455	 */
1456	kvm_mips_set_c0_status();
1457
1458	local_irq_enable();
1459
1460	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1461			cause, opc, run, vcpu);
1462	trace_kvm_exit(vcpu, exccode);
1463
1464	/*
1465	 * Do a privilege check, if in UM most of these exit conditions end up
1466	 * causing an exception to be delivered to the Guest Kernel
1467	 */
1468	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1469	if (er == EMULATE_PRIV_FAIL) {
1470		goto skip_emul;
1471	} else if (er == EMULATE_FAIL) {
1472		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1473		ret = RESUME_HOST;
1474		goto skip_emul;
1475	}
1476
1477	switch (exccode) {
1478	case EXCCODE_INT:
1479		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1480
1481		++vcpu->stat.int_exits;
1482
1483		if (need_resched())
1484			cond_resched();
1485
1486		ret = RESUME_GUEST;
1487		break;
1488
1489	case EXCCODE_CPU:
1490		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1491
1492		++vcpu->stat.cop_unusable_exits;
1493		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1494		/* XXXKYMA: Might need to return to user space */
1495		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1496			ret = RESUME_HOST;
1497		break;
1498
1499	case EXCCODE_MOD:
1500		++vcpu->stat.tlbmod_exits;
1501		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1502		break;
1503
1504	case EXCCODE_TLBS:
1505		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1506			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1507			  badvaddr);
1508
1509		++vcpu->stat.tlbmiss_st_exits;
1510		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1511		break;
1512
1513	case EXCCODE_TLBL:
1514		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1515			  cause, opc, badvaddr);
1516
1517		++vcpu->stat.tlbmiss_ld_exits;
1518		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1519		break;
1520
1521	case EXCCODE_ADES:
1522		++vcpu->stat.addrerr_st_exits;
1523		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1524		break;
1525
1526	case EXCCODE_ADEL:
1527		++vcpu->stat.addrerr_ld_exits;
1528		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1529		break;
1530
1531	case EXCCODE_SYS:
1532		++vcpu->stat.syscall_exits;
1533		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1534		break;
1535
1536	case EXCCODE_RI:
1537		++vcpu->stat.resvd_inst_exits;
1538		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1539		break;
1540
1541	case EXCCODE_BP:
1542		++vcpu->stat.break_inst_exits;
1543		ret = kvm_mips_callbacks->handle_break(vcpu);
1544		break;
1545
1546	case EXCCODE_TR:
1547		++vcpu->stat.trap_inst_exits;
1548		ret = kvm_mips_callbacks->handle_trap(vcpu);
1549		break;
1550
1551	case EXCCODE_MSAFPE:
1552		++vcpu->stat.msa_fpe_exits;
1553		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1554		break;
1555
1556	case EXCCODE_FPE:
1557		++vcpu->stat.fpe_exits;
1558		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1559		break;
1560
1561	case EXCCODE_MSADIS:
1562		++vcpu->stat.msa_disabled_exits;
1563		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1564		break;
1565
 
 
 
 
 
1566	default:
1567		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1568			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
 
 
 
 
1569			kvm_read_c0_guest_status(vcpu->arch.cop0));
1570		kvm_arch_vcpu_dump_regs(vcpu);
1571		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1572		ret = RESUME_HOST;
1573		break;
1574
1575	}
1576
1577skip_emul:
1578	local_irq_disable();
1579
 
 
 
1580	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1581		kvm_mips_deliver_interrupts(vcpu, cause);
1582
1583	if (!(ret & RESUME_HOST)) {
1584		/* Only check for signals if not already exiting to userspace */
1585		if (signal_pending(current)) {
1586			run->exit_reason = KVM_EXIT_INTR;
1587			ret = (-EINTR << 2) | RESUME_HOST;
1588			++vcpu->stat.signal_exits;
1589			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1590		}
1591	}
1592
1593	if (ret == RESUME_GUEST) {
1594		trace_kvm_reenter(vcpu);
1595
1596		kvm_mips_check_asids(vcpu);
 
 
 
 
 
 
 
 
1597
1598		/*
1599		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1600		 * is live), restore FCR31 / MSACSR.
1601		 *
1602		 * This should be before returning to the guest exception
1603		 * vector, as it may well cause an [MSA] FP exception if there
1604		 * are pending exception bits unmasked. (see
1605		 * kvm_mips_csr_die_notifier() for how that is handled).
1606		 */
1607		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1608		    read_c0_status() & ST0_CU1)
1609			__kvm_restore_fcsr(&vcpu->arch);
1610
1611		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1612		    read_c0_config5() & MIPS_CONF5_MSAEN)
1613			__kvm_restore_msacsr(&vcpu->arch);
1614	}
 
 
1615
1616	/* Disable HTW before returning to guest or host */
1617	htw_stop();
 
 
 
 
 
1618
1619	return ret;
1620}
1621
1622/* Enable FPU for guest and restore context */
1623void kvm_own_fpu(struct kvm_vcpu *vcpu)
1624{
1625	struct mips_coproc *cop0 = vcpu->arch.cop0;
1626	unsigned int sr, cfg5;
1627
1628	preempt_disable();
1629
1630	sr = kvm_read_c0_guest_status(cop0);
1631
1632	/*
1633	 * If MSA state is already live, it is undefined how it interacts with
1634	 * FR=0 FPU state, and we don't want to hit reserved instruction
1635	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1636	 * play it safe and save it first.
1637	 *
1638	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1639	 * get called when guest CU1 is set, however we can't trust the guest
1640	 * not to clobber the status register directly via the commpage.
1641	 */
1642	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1643	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1644		kvm_lose_fpu(vcpu);
1645
1646	/*
1647	 * Enable FPU for guest
1648	 * We set FR and FRE according to guest context
1649	 */
1650	change_c0_status(ST0_CU1 | ST0_FR, sr);
1651	if (cpu_has_fre) {
1652		cfg5 = kvm_read_c0_guest_config5(cop0);
1653		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654	}
1655	enable_fpu_hazard();
1656
1657	/* If guest FPU state not active, restore it now */
1658	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1659		__kvm_restore_fpu(&vcpu->arch);
1660		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1661		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1662	} else {
1663		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1664	}
1665
1666	preempt_enable();
1667}
1668
1669#ifdef CONFIG_CPU_HAS_MSA
1670/* Enable MSA for guest and restore context */
1671void kvm_own_msa(struct kvm_vcpu *vcpu)
1672{
1673	struct mips_coproc *cop0 = vcpu->arch.cop0;
1674	unsigned int sr, cfg5;
1675
1676	preempt_disable();
1677
1678	/*
1679	 * Enable FPU if enabled in guest, since we're restoring FPU context
1680	 * anyway. We set FR and FRE according to guest context.
1681	 */
1682	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1683		sr = kvm_read_c0_guest_status(cop0);
1684
1685		/*
1686		 * If FR=0 FPU state is already live, it is undefined how it
1687		 * interacts with MSA state, so play it safe and save it first.
1688		 */
1689		if (!(sr & ST0_FR) &&
1690		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1691				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1692			kvm_lose_fpu(vcpu);
1693
1694		change_c0_status(ST0_CU1 | ST0_FR, sr);
1695		if (sr & ST0_CU1 && cpu_has_fre) {
1696			cfg5 = kvm_read_c0_guest_config5(cop0);
1697			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1698		}
1699	}
1700
1701	/* Enable MSA for guest */
1702	set_c0_config5(MIPS_CONF5_MSAEN);
1703	enable_fpu_hazard();
1704
1705	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1706	case KVM_MIPS_AUX_FPU:
1707		/*
1708		 * Guest FPU state already loaded, only restore upper MSA state
1709		 */
1710		__kvm_restore_msa_upper(&vcpu->arch);
1711		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1712		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1713		break;
1714	case 0:
1715		/* Neither FPU or MSA already active, restore full MSA state */
1716		__kvm_restore_msa(&vcpu->arch);
1717		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1718		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1719			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1720		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1721			      KVM_TRACE_AUX_FPU_MSA);
1722		break;
1723	default:
1724		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1725		break;
1726	}
1727
1728	preempt_enable();
1729}
1730#endif
1731
1732/* Drop FPU & MSA without saving it */
1733void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1734{
1735	preempt_disable();
1736	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1737		disable_msa();
1738		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1739		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1740	}
1741	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1742		clear_c0_status(ST0_CU1 | ST0_FR);
1743		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1744		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1745	}
1746	preempt_enable();
1747}
1748
1749/* Save and disable FPU & MSA */
1750void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1751{
1752	/*
1753	 * FPU & MSA get disabled in root context (hardware) when it is disabled
1754	 * in guest context (software), but the register state in the hardware
1755	 * may still be in use. This is why we explicitly re-enable the hardware
1756	 * before saving.
1757	 */
1758
1759	preempt_disable();
1760	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1761		set_c0_config5(MIPS_CONF5_MSAEN);
1762		enable_fpu_hazard();
1763
1764		__kvm_save_msa(&vcpu->arch);
1765		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1766
1767		/* Disable MSA & FPU */
1768		disable_msa();
1769		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1770			clear_c0_status(ST0_CU1 | ST0_FR);
1771			disable_fpu_hazard();
1772		}
1773		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1774	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1775		set_c0_status(ST0_CU1);
1776		enable_fpu_hazard();
1777
1778		__kvm_save_fpu(&vcpu->arch);
1779		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1780		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1781
1782		/* Disable FPU */
1783		clear_c0_status(ST0_CU1 | ST0_FR);
1784		disable_fpu_hazard();
1785	}
1786	preempt_enable();
1787}
1788
1789/*
1790 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1791 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1792 * exception if cause bits are set in the value being written.
1793 */
1794static int kvm_mips_csr_die_notify(struct notifier_block *self,
1795				   unsigned long cmd, void *ptr)
1796{
1797	struct die_args *args = (struct die_args *)ptr;
1798	struct pt_regs *regs = args->regs;
1799	unsigned long pc;
1800
1801	/* Only interested in FPE and MSAFPE */
1802	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1803		return NOTIFY_DONE;
1804
1805	/* Return immediately if guest context isn't active */
1806	if (!(current->flags & PF_VCPU))
1807		return NOTIFY_DONE;
1808
1809	/* Should never get here from user mode */
1810	BUG_ON(user_mode(regs));
1811
1812	pc = instruction_pointer(regs);
1813	switch (cmd) {
1814	case DIE_FP:
1815		/* match 2nd instruction in __kvm_restore_fcsr */
1816		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1817			return NOTIFY_DONE;
1818		break;
1819	case DIE_MSAFP:
1820		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1821		if (!cpu_has_msa ||
1822		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1823		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1824			return NOTIFY_DONE;
1825		break;
1826	}
1827
1828	/* Move PC forward a little and continue executing */
1829	instruction_pointer(regs) += 4;
1830
1831	return NOTIFY_STOP;
1832}
1833
1834static struct notifier_block kvm_mips_csr_die_notifier = {
1835	.notifier_call = kvm_mips_csr_die_notify,
1836};
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838static int __init kvm_mips_init(void)
1839{
1840	int ret;
1841
 
 
 
 
 
1842	ret = kvm_mips_entry_setup();
1843	if (ret)
1844		return ret;
1845
1846	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1847
1848	if (ret)
1849		return ret;
 
 
 
1850
1851	register_die_notifier(&kvm_mips_csr_die_notifier);
1852
1853	return 0;
1854}
1855
1856static void __exit kvm_mips_exit(void)
1857{
1858	kvm_exit();
1859
1860	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1861}
1862
1863module_init(kvm_mips_init);
1864module_exit(kvm_mips_exit);
1865
1866EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
v6.2
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/memblock.h>
  22#include <linux/pgtable.h>
  23
  24#include <asm/fpu.h>
  25#include <asm/page.h>
  26#include <asm/cacheflush.h>
  27#include <asm/mmu_context.h>
  28#include <asm/pgalloc.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
 
  33
  34#define CREATE_TRACE_POINTS
  35#include "trace.h"
  36
  37#ifndef VECTORSPACING
  38#define VECTORSPACING 0x100	/* for EI/VI mode */
  39#endif
  40
  41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
  42	KVM_GENERIC_VM_STATS()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43};
  44
  45const struct kvm_stats_header kvm_vm_stats_header = {
  46	.name_size = KVM_STATS_NAME_SIZE,
  47	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
  48	.id_offset = sizeof(struct kvm_stats_header),
  49	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  50	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  51		       sizeof(kvm_vm_stats_desc),
  52};
  53
  54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  55	KVM_GENERIC_VCPU_STATS(),
  56	STATS_DESC_COUNTER(VCPU, wait_exits),
  57	STATS_DESC_COUNTER(VCPU, cache_exits),
  58	STATS_DESC_COUNTER(VCPU, signal_exits),
  59	STATS_DESC_COUNTER(VCPU, int_exits),
  60	STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
  61	STATS_DESC_COUNTER(VCPU, tlbmod_exits),
  62	STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
  63	STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
  64	STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
  65	STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
  66	STATS_DESC_COUNTER(VCPU, syscall_exits),
  67	STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
  68	STATS_DESC_COUNTER(VCPU, break_inst_exits),
  69	STATS_DESC_COUNTER(VCPU, trap_inst_exits),
  70	STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
  71	STATS_DESC_COUNTER(VCPU, fpe_exits),
  72	STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
  73	STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
  74	STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
  75	STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
  76	STATS_DESC_COUNTER(VCPU, vz_hc_exits),
  77	STATS_DESC_COUNTER(VCPU, vz_grr_exits),
  78	STATS_DESC_COUNTER(VCPU, vz_gva_exits),
  79	STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
  80	STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
  81	STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
  82#ifdef CONFIG_CPU_LOONGSON64
  83	STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
  84#endif
  85};
  86
  87const struct kvm_stats_header kvm_vcpu_stats_header = {
  88	.name_size = KVM_STATS_NAME_SIZE,
  89	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  90	.id_offset = sizeof(struct kvm_stats_header),
  91	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  92	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  93		       sizeof(kvm_vcpu_stats_desc),
  94};
  95
  96bool kvm_trace_guest_mode_change;
  97
  98int kvm_guest_mode_change_trace_reg(void)
  99{
 100	kvm_trace_guest_mode_change = true;
 101	return 0;
 102}
 103
 104void kvm_guest_mode_change_trace_unreg(void)
 105{
 106	kvm_trace_guest_mode_change = false;
 107}
 108
 109/*
 110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 111 * Config7, so we are "runnable" if interrupts are pending
 112 */
 113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 114{
 115	return !!(vcpu->arch.pending_exceptions);
 116}
 117
 118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 119{
 120	return false;
 121}
 122
 123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 124{
 125	return 1;
 126}
 127
 128int kvm_arch_hardware_enable(void)
 129{
 130	return kvm_mips_callbacks->hardware_enable();
 131}
 132
 133void kvm_arch_hardware_disable(void)
 134{
 135	kvm_mips_callbacks->hardware_disable();
 136}
 137
 138int kvm_arch_hardware_setup(void *opaque)
 139{
 140	return 0;
 141}
 142
 143int kvm_arch_check_processor_compat(void *opaque)
 144{
 145	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147
 148extern void kvm_init_loongson_ipi(struct kvm *kvm);
 
 
 
 
 
 
 
 149
 150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 151{
 152	switch (type) {
 153	case KVM_VM_MIPS_AUTO:
 154		break;
 155	case KVM_VM_MIPS_VZ:
 156		break;
 157	default:
 158		/* Unsupported KVM type */
 159		return -EINVAL;
 160	}
 161
 162	/* Allocate page table to map GPA -> RPA */
 163	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 164	if (!kvm->arch.gpa_mm.pgd)
 165		return -ENOMEM;
 166
 167#ifdef CONFIG_CPU_LOONGSON64
 168	kvm_init_loongson_ipi(kvm);
 169#endif
 
 170
 
 
 171	return 0;
 172}
 173
 174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175{
 176	/* It should always be safe to remove after flushing the whole range */
 177	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 178	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 
 
 179}
 180
 181void kvm_arch_destroy_vm(struct kvm *kvm)
 182{
 183	kvm_destroy_vcpus(kvm);
 184	kvm_mips_free_gpa_pt(kvm);
 
 
 
 
 
 
 185}
 186
 187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 188			unsigned long arg)
 189{
 190	return -ENOIOCTLCMD;
 191}
 192
 193void kvm_arch_flush_shadow_all(struct kvm *kvm)
 
 194{
 195	/* Flush whole GPA */
 196	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 197	kvm_flush_remote_tlbs(kvm);
 198}
 199
 200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 201				   struct kvm_memory_slot *slot)
 202{
 203	/*
 204	 * The slot has been made invalid (ready for moving or deletion), so we
 205	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 206	 */
 207
 208	spin_lock(&kvm->mmu_lock);
 209	/* Flush slot from GPA */
 210	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 211			      slot->base_gfn + slot->npages - 1);
 212	kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
 213	spin_unlock(&kvm->mmu_lock);
 214}
 215
 216int kvm_arch_prepare_memory_region(struct kvm *kvm,
 217				   const struct kvm_memory_slot *old,
 218				   struct kvm_memory_slot *new,
 219				   enum kvm_mr_change change)
 220{
 221	return 0;
 222}
 223
 224void kvm_arch_commit_memory_region(struct kvm *kvm,
 225				   struct kvm_memory_slot *old,
 
 226				   const struct kvm_memory_slot *new,
 227				   enum kvm_mr_change change)
 228{
 229	int needs_flush;
 
 230
 231	/*
 232	 * If dirty page logging is enabled, write protect all pages in the slot
 233	 * ready for dirty logging.
 234	 *
 235	 * There is no need to do this in any of the following cases:
 236	 * CREATE:	No dirty mappings will already exist.
 237	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 238	 *		kvm_arch_flush_shadow_memslot()
 239	 */
 240	if (change == KVM_MR_FLAGS_ONLY &&
 241	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 242	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 243		spin_lock(&kvm->mmu_lock);
 244		/* Write protect GPA page table entries */
 245		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 246					new->base_gfn + new->npages - 1);
 247		if (needs_flush)
 248			kvm_arch_flush_remote_tlbs_memslot(kvm, new);
 249		spin_unlock(&kvm->mmu_lock);
 
 
 
 
 
 
 
 250	}
 251}
 252
 253static inline void dump_handler(const char *symbol, void *start, void *end)
 254{
 255	u32 *p;
 256
 257	pr_debug("LEAF(%s)\n", symbol);
 258
 259	pr_debug("\t.set push\n");
 260	pr_debug("\t.set noreorder\n");
 261
 262	for (p = start; p < (u32 *)end; ++p)
 263		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 264
 265	pr_debug("\t.set\tpop\n");
 266
 267	pr_debug("\tEND(%s)\n", symbol);
 268}
 269
 270/* low level hrtimer wake routine */
 271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
 272{
 273	struct kvm_vcpu *vcpu;
 
 
 274
 275	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
 276
 277	kvm_mips_callbacks->queue_timer_int(vcpu);
 278
 279	vcpu->arch.wait = 0;
 280	rcuwait_wake_up(&vcpu->wait);
 281
 282	return kvm_mips_count_timeout(vcpu);
 283}
 284
 285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 286{
 287	return 0;
 288}
 289
 290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 291{
 292	int err, size;
 293	void *gebase, *p, *handler, *refill_start, *refill_end;
 294	int i;
 295
 296	kvm_debug("kvm @ %p: create cpu %d at %p\n",
 297		  vcpu->kvm, vcpu->vcpu_id, vcpu);
 298
 299	err = kvm_mips_callbacks->vcpu_init(vcpu);
 300	if (err)
 301		return err;
 302
 303	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
 304		     HRTIMER_MODE_REL);
 305	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
 306
 307	/*
 308	 * Allocate space for host mode exception handlers that handle
 309	 * guest mode exits
 310	 */
 311	if (cpu_has_veic || cpu_has_vint)
 312		size = 0x200 + VECTORSPACING * 64;
 313	else
 314		size = 0x4000;
 315
 316	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 317
 318	if (!gebase) {
 319		err = -ENOMEM;
 320		goto out_uninit_vcpu;
 321	}
 322	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 323		  ALIGN(size, PAGE_SIZE), gebase);
 324
 325	/*
 326	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 327	 * limits us to the low 512MB of physical address space. If the memory
 328	 * we allocate is out of range, just give up now.
 329	 */
 330	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 331		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 332			gebase);
 333		err = -ENOMEM;
 334		goto out_free_gebase;
 335	}
 336
 337	/* Save new ebase */
 338	vcpu->arch.guest_ebase = gebase;
 339
 340	/* Build guest exception vectors dynamically in unmapped memory */
 341	handler = gebase + 0x2000;
 342
 343	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 344	refill_start = gebase;
 345	if (IS_ENABLED(CONFIG_64BIT))
 346		refill_start += 0x080;
 347	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 348
 349	/* General Exception Entry point */
 350	kvm_mips_build_exception(gebase + 0x180, handler);
 351
 352	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 353	for (i = 0; i < 8; i++) {
 354		kvm_debug("L1 Vectored handler @ %p\n",
 355			  gebase + 0x200 + (i * VECTORSPACING));
 356		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 357					 handler);
 358	}
 359
 360	/* General exit handler */
 361	p = handler;
 362	p = kvm_mips_build_exit(p);
 363
 364	/* Guest entry routine */
 365	vcpu->arch.vcpu_run = p;
 366	p = kvm_mips_build_vcpu_run(p);
 367
 368	/* Dump the generated code */
 369	pr_debug("#include <asm/asm.h>\n");
 370	pr_debug("#include <asm/regdef.h>\n");
 371	pr_debug("\n");
 372	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 373	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 374	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 375	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 376
 377	/* Invalidate the icache for these ranges */
 378	flush_icache_range((unsigned long)gebase,
 379			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	/* Init */
 382	vcpu->arch.last_sched_cpu = -1;
 383	vcpu->arch.last_exec_cpu = -1;
 384
 385	/* Initial guest state */
 386	err = kvm_mips_callbacks->vcpu_setup(vcpu);
 387	if (err)
 388		goto out_free_gebase;
 389
 390	return 0;
 391
 392out_free_gebase:
 393	kfree(gebase);
 394out_uninit_vcpu:
 395	kvm_mips_callbacks->vcpu_uninit(vcpu);
 396	return err;
 
 
 
 
 
 
 397}
 398
 399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 400{
 401	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 402
 
 
 403	kvm_mips_dump_stats(vcpu);
 404
 405	kvm_mmu_free_memory_caches(vcpu);
 406	kfree(vcpu->arch.guest_ebase);
 
 
 
 407
 408	kvm_mips_callbacks->vcpu_uninit(vcpu);
 
 
 409}
 410
 411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 412					struct kvm_guest_debug *dbg)
 413{
 414	return -ENOIOCTLCMD;
 415}
 416
 417/*
 418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
 419 * the vCPU is running.
 420 *
 421 * This must be noinstr as instrumentation may make use of RCU, and this is not
 422 * safe during the EQS.
 423 */
 424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 425{
 426	int ret;
 
 
 427
 428	guest_state_enter_irqoff();
 429	ret = kvm_mips_callbacks->vcpu_run(vcpu);
 430	guest_state_exit_irqoff();
 431
 432	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433}
 434
 435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 436{
 437	int r = -EINTR;
 438
 439	vcpu_load(vcpu);
 440
 441	kvm_sigset_activate(vcpu);
 
 442
 443	if (vcpu->mmio_needed) {
 444		if (!vcpu->mmio_is_write)
 445			kvm_mips_complete_mmio_load(vcpu);
 446		vcpu->mmio_needed = 0;
 447	}
 448
 449	if (vcpu->run->immediate_exit)
 450		goto out;
 451
 452	lose_fpu(1);
 453
 454	local_irq_disable();
 455	guest_timing_enter_irqoff();
 
 
 
 
 
 
 
 
 456	trace_kvm_enter(vcpu);
 457
 458	/*
 459	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 460	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 461	 * flush request while the requester sees the VCPU as outside of guest
 462	 * mode and not needing an IPI.
 463	 */
 464	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 465
 466	r = kvm_mips_vcpu_enter_exit(vcpu);
 
 467
 468	/*
 469	 * We must ensure that any pending interrupts are taken before
 470	 * we exit guest timing so that timer ticks are accounted as
 471	 * guest time. Transiently unmask interrupts so that any
 472	 * pending interrupts are taken.
 473	 *
 474	 * TODO: is there a barrier which ensures that pending interrupts are
 475	 * recognised? Currently this just hopes that the CPU takes any pending
 476	 * interrupts between the enable and disable.
 477	 */
 478	local_irq_enable();
 479	local_irq_disable();
 480
 481	trace_kvm_out(vcpu);
 482	guest_timing_exit_irqoff();
 483	local_irq_enable();
 484
 485out:
 486	kvm_sigset_deactivate(vcpu);
 487
 488	vcpu_put(vcpu);
 489	return r;
 490}
 491
 492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 493			     struct kvm_mips_interrupt *irq)
 494{
 495	int intr = (int)irq->irq;
 496	struct kvm_vcpu *dvcpu = NULL;
 497
 498	if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
 499	    intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
 500	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
 501	    intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
 502		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 503			  (int)intr);
 504
 505	if (irq->cpu == -1)
 506		dvcpu = vcpu;
 507	else
 508		dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
 509
 510	if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
 511		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 512
 513	} else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
 514		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 515	} else {
 516		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 517			irq->cpu, irq->irq);
 518		return -EINVAL;
 519	}
 520
 521	dvcpu->arch.wait = 0;
 522
 523	rcuwait_wake_up(&dvcpu->wait);
 
 524
 525	return 0;
 526}
 527
 528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 529				    struct kvm_mp_state *mp_state)
 530{
 531	return -ENOIOCTLCMD;
 532}
 533
 534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 535				    struct kvm_mp_state *mp_state)
 536{
 537	return -ENOIOCTLCMD;
 538}
 539
 540static u64 kvm_mips_get_one_regs[] = {
 541	KVM_REG_MIPS_R0,
 542	KVM_REG_MIPS_R1,
 543	KVM_REG_MIPS_R2,
 544	KVM_REG_MIPS_R3,
 545	KVM_REG_MIPS_R4,
 546	KVM_REG_MIPS_R5,
 547	KVM_REG_MIPS_R6,
 548	KVM_REG_MIPS_R7,
 549	KVM_REG_MIPS_R8,
 550	KVM_REG_MIPS_R9,
 551	KVM_REG_MIPS_R10,
 552	KVM_REG_MIPS_R11,
 553	KVM_REG_MIPS_R12,
 554	KVM_REG_MIPS_R13,
 555	KVM_REG_MIPS_R14,
 556	KVM_REG_MIPS_R15,
 557	KVM_REG_MIPS_R16,
 558	KVM_REG_MIPS_R17,
 559	KVM_REG_MIPS_R18,
 560	KVM_REG_MIPS_R19,
 561	KVM_REG_MIPS_R20,
 562	KVM_REG_MIPS_R21,
 563	KVM_REG_MIPS_R22,
 564	KVM_REG_MIPS_R23,
 565	KVM_REG_MIPS_R24,
 566	KVM_REG_MIPS_R25,
 567	KVM_REG_MIPS_R26,
 568	KVM_REG_MIPS_R27,
 569	KVM_REG_MIPS_R28,
 570	KVM_REG_MIPS_R29,
 571	KVM_REG_MIPS_R30,
 572	KVM_REG_MIPS_R31,
 573
 574#ifndef CONFIG_CPU_MIPSR6
 575	KVM_REG_MIPS_HI,
 576	KVM_REG_MIPS_LO,
 577#endif
 578	KVM_REG_MIPS_PC,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579};
 580
 581static u64 kvm_mips_get_one_regs_fpu[] = {
 582	KVM_REG_MIPS_FCR_IR,
 583	KVM_REG_MIPS_FCR_CSR,
 584};
 585
 586static u64 kvm_mips_get_one_regs_msa[] = {
 587	KVM_REG_MIPS_MSA_IR,
 588	KVM_REG_MIPS_MSA_CSR,
 589};
 590
 
 
 
 
 
 
 
 
 
 591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 592{
 593	unsigned long ret;
 594
 595	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 596	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 597		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 598		/* odd doubles */
 599		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 600			ret += 16;
 601	}
 602	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 603		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 
 604	ret += kvm_mips_callbacks->num_regs(vcpu);
 605
 606	return ret;
 607}
 608
 609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 610{
 611	u64 index;
 612	unsigned int i;
 613
 614	if (copy_to_user(indices, kvm_mips_get_one_regs,
 615			 sizeof(kvm_mips_get_one_regs)))
 616		return -EFAULT;
 617	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 618
 619	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 620		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 621				 sizeof(kvm_mips_get_one_regs_fpu)))
 622			return -EFAULT;
 623		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 624
 625		for (i = 0; i < 32; ++i) {
 626			index = KVM_REG_MIPS_FPR_32(i);
 627			if (copy_to_user(indices, &index, sizeof(index)))
 628				return -EFAULT;
 629			++indices;
 630
 631			/* skip odd doubles if no F64 */
 632			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 633				continue;
 634
 635			index = KVM_REG_MIPS_FPR_64(i);
 636			if (copy_to_user(indices, &index, sizeof(index)))
 637				return -EFAULT;
 638			++indices;
 639		}
 640	}
 641
 642	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 643		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 644				 sizeof(kvm_mips_get_one_regs_msa)))
 645			return -EFAULT;
 646		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 647
 648		for (i = 0; i < 32; ++i) {
 649			index = KVM_REG_MIPS_VEC_128(i);
 650			if (copy_to_user(indices, &index, sizeof(index)))
 651				return -EFAULT;
 652			++indices;
 653		}
 654	}
 655
 
 
 
 
 
 
 
 
 
 
 656	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 657}
 658
 659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 660			    const struct kvm_one_reg *reg)
 661{
 662	struct mips_coproc *cop0 = vcpu->arch.cop0;
 663	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 664	int ret;
 665	s64 v;
 666	s64 vs[2];
 667	unsigned int idx;
 668
 669	switch (reg->id) {
 670	/* General purpose registers */
 671	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 672		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 673		break;
 674#ifndef CONFIG_CPU_MIPSR6
 675	case KVM_REG_MIPS_HI:
 676		v = (long)vcpu->arch.hi;
 677		break;
 678	case KVM_REG_MIPS_LO:
 679		v = (long)vcpu->arch.lo;
 680		break;
 681#endif
 682	case KVM_REG_MIPS_PC:
 683		v = (long)vcpu->arch.pc;
 684		break;
 685
 686	/* Floating point registers */
 687	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 688		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 689			return -EINVAL;
 690		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 691		/* Odd singles in top of even double when FR=0 */
 692		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 693			v = get_fpr32(&fpu->fpr[idx], 0);
 694		else
 695			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 696		break;
 697	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 698		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 699			return -EINVAL;
 700		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 701		/* Can't access odd doubles in FR=0 mode */
 702		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 703			return -EINVAL;
 704		v = get_fpr64(&fpu->fpr[idx], 0);
 705		break;
 706	case KVM_REG_MIPS_FCR_IR:
 707		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708			return -EINVAL;
 709		v = boot_cpu_data.fpu_id;
 710		break;
 711	case KVM_REG_MIPS_FCR_CSR:
 712		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 713			return -EINVAL;
 714		v = fpu->fcr31;
 715		break;
 716
 717	/* MIPS SIMD Architecture (MSA) registers */
 718	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 719		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 720			return -EINVAL;
 721		/* Can't access MSA registers in FR=0 mode */
 722		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 723			return -EINVAL;
 724		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 725#ifdef CONFIG_CPU_LITTLE_ENDIAN
 726		/* least significant byte first */
 727		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 728		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 729#else
 730		/* most significant byte first */
 731		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 732		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 733#endif
 734		break;
 735	case KVM_REG_MIPS_MSA_IR:
 736		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 737			return -EINVAL;
 738		v = boot_cpu_data.msa_id;
 739		break;
 740	case KVM_REG_MIPS_MSA_CSR:
 741		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 742			return -EINVAL;
 743		v = fpu->msacsr;
 744		break;
 745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746	/* registers to be handled specially */
 747	default:
 748		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 749		if (ret)
 750			return ret;
 751		break;
 752	}
 753	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 754		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 755
 756		return put_user(v, uaddr64);
 757	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 758		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 759		u32 v32 = (u32)v;
 760
 761		return put_user(v32, uaddr32);
 762	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 763		void __user *uaddr = (void __user *)(long)reg->addr;
 764
 765		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 766	} else {
 767		return -EINVAL;
 768	}
 769}
 770
 771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 772			    const struct kvm_one_reg *reg)
 773{
 774	struct mips_coproc *cop0 = vcpu->arch.cop0;
 775	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 776	s64 v;
 777	s64 vs[2];
 778	unsigned int idx;
 779
 780	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 781		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 782
 783		if (get_user(v, uaddr64) != 0)
 784			return -EFAULT;
 785	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 786		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 787		s32 v32;
 788
 789		if (get_user(v32, uaddr32) != 0)
 790			return -EFAULT;
 791		v = (s64)v32;
 792	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 793		void __user *uaddr = (void __user *)(long)reg->addr;
 794
 795		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 796	} else {
 797		return -EINVAL;
 798	}
 799
 800	switch (reg->id) {
 801	/* General purpose registers */
 802	case KVM_REG_MIPS_R0:
 803		/* Silently ignore requests to set $0 */
 804		break;
 805	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 806		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 807		break;
 808#ifndef CONFIG_CPU_MIPSR6
 809	case KVM_REG_MIPS_HI:
 810		vcpu->arch.hi = v;
 811		break;
 812	case KVM_REG_MIPS_LO:
 813		vcpu->arch.lo = v;
 814		break;
 815#endif
 816	case KVM_REG_MIPS_PC:
 817		vcpu->arch.pc = v;
 818		break;
 819
 820	/* Floating point registers */
 821	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 822		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 823			return -EINVAL;
 824		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 825		/* Odd singles in top of even double when FR=0 */
 826		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 827			set_fpr32(&fpu->fpr[idx], 0, v);
 828		else
 829			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 830		break;
 831	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 832		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 833			return -EINVAL;
 834		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 835		/* Can't access odd doubles in FR=0 mode */
 836		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 837			return -EINVAL;
 838		set_fpr64(&fpu->fpr[idx], 0, v);
 839		break;
 840	case KVM_REG_MIPS_FCR_IR:
 841		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 842			return -EINVAL;
 843		/* Read-only */
 844		break;
 845	case KVM_REG_MIPS_FCR_CSR:
 846		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 847			return -EINVAL;
 848		fpu->fcr31 = v;
 849		break;
 850
 851	/* MIPS SIMD Architecture (MSA) registers */
 852	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 853		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 854			return -EINVAL;
 855		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 856#ifdef CONFIG_CPU_LITTLE_ENDIAN
 857		/* least significant byte first */
 858		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 859		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 860#else
 861		/* most significant byte first */
 862		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 863		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 864#endif
 865		break;
 866	case KVM_REG_MIPS_MSA_IR:
 867		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 868			return -EINVAL;
 869		/* Read-only */
 870		break;
 871	case KVM_REG_MIPS_MSA_CSR:
 872		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 873			return -EINVAL;
 874		fpu->msacsr = v;
 875		break;
 876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	/* registers to be handled specially */
 878	default:
 879		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 880	}
 881	return 0;
 882}
 883
 884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 885				     struct kvm_enable_cap *cap)
 886{
 887	int r = 0;
 888
 889	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 890		return -EINVAL;
 891	if (cap->flags)
 892		return -EINVAL;
 893	if (cap->args[0])
 894		return -EINVAL;
 895
 896	switch (cap->cap) {
 897	case KVM_CAP_MIPS_FPU:
 898		vcpu->arch.fpu_enabled = true;
 899		break;
 900	case KVM_CAP_MIPS_MSA:
 901		vcpu->arch.msa_enabled = true;
 902		break;
 903	default:
 904		r = -EINVAL;
 905		break;
 906	}
 907
 908	return r;
 909}
 910
 911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 912			       unsigned long arg)
 913{
 914	struct kvm_vcpu *vcpu = filp->private_data;
 915	void __user *argp = (void __user *)arg;
 916
 917	if (ioctl == KVM_INTERRUPT) {
 918		struct kvm_mips_interrupt irq;
 919
 920		if (copy_from_user(&irq, argp, sizeof(irq)))
 921			return -EFAULT;
 922		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 923			  irq.irq);
 924
 925		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 926	}
 927
 928	return -ENOIOCTLCMD;
 929}
 930
 931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 932			 unsigned long arg)
 933{
 934	struct kvm_vcpu *vcpu = filp->private_data;
 935	void __user *argp = (void __user *)arg;
 936	long r;
 937
 938	vcpu_load(vcpu);
 939
 940	switch (ioctl) {
 941	case KVM_SET_ONE_REG:
 942	case KVM_GET_ONE_REG: {
 943		struct kvm_one_reg reg;
 944
 945		r = -EFAULT;
 946		if (copy_from_user(&reg, argp, sizeof(reg)))
 947			break;
 948		if (ioctl == KVM_SET_ONE_REG)
 949			r = kvm_mips_set_reg(vcpu, &reg);
 950		else
 951			r = kvm_mips_get_reg(vcpu, &reg);
 952		break;
 953	}
 954	case KVM_GET_REG_LIST: {
 955		struct kvm_reg_list __user *user_list = argp;
 956		struct kvm_reg_list reg_list;
 957		unsigned n;
 958
 959		r = -EFAULT;
 960		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 961			break;
 962		n = reg_list.n;
 963		reg_list.n = kvm_mips_num_regs(vcpu);
 964		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 965			break;
 966		r = -E2BIG;
 967		if (n < reg_list.n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968			break;
 969		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 970		break;
 971	}
 972	case KVM_ENABLE_CAP: {
 973		struct kvm_enable_cap cap;
 974
 975		r = -EFAULT;
 976		if (copy_from_user(&cap, argp, sizeof(cap)))
 977			break;
 978		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 979		break;
 980	}
 981	default:
 982		r = -ENOIOCTLCMD;
 983	}
 984
 985	vcpu_put(vcpu);
 986	return r;
 987}
 988
 989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
 
 990{
 
 
 
 
 
 
 
 
 991
 992}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
 995{
 996	kvm_mips_callbacks->prepare_flush_shadow(kvm);
 997	return 1;
 998}
 999
1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001					const struct kvm_memory_slot *memslot)
1002{
1003	kvm_flush_remote_tlbs(kvm);
1004}
1005
1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007{
1008	long r;
1009
1010	switch (ioctl) {
1011	default:
1012		r = -ENOIOCTLCMD;
1013	}
1014
1015	return r;
1016}
1017
1018int kvm_arch_init(void *opaque)
1019{
1020	if (kvm_mips_callbacks) {
1021		kvm_err("kvm: module already exists\n");
1022		return -EEXIST;
1023	}
1024
1025	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026}
1027
1028void kvm_arch_exit(void)
1029{
1030	kvm_mips_callbacks = NULL;
1031}
1032
1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034				  struct kvm_sregs *sregs)
1035{
1036	return -ENOIOCTLCMD;
1037}
1038
1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040				  struct kvm_sregs *sregs)
1041{
1042	return -ENOIOCTLCMD;
1043}
1044
1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046{
1047}
1048
1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050{
1051	return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056	return -ENOIOCTLCMD;
1057}
1058
1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060{
1061	return VM_FAULT_SIGBUS;
1062}
1063
1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065{
1066	int r;
1067
1068	switch (ext) {
1069	case KVM_CAP_ONE_REG:
1070	case KVM_CAP_ENABLE_CAP:
1071	case KVM_CAP_READONLY_MEM:
1072	case KVM_CAP_SYNC_MMU:
1073	case KVM_CAP_IMMEDIATE_EXIT:
1074		r = 1;
1075		break;
1076	case KVM_CAP_NR_VCPUS:
1077		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078		break;
1079	case KVM_CAP_MAX_VCPUS:
1080		r = KVM_MAX_VCPUS;
1081		break;
1082	case KVM_CAP_MAX_VCPU_ID:
1083		r = KVM_MAX_VCPU_IDS;
1084		break;
1085	case KVM_CAP_MIPS_FPU:
1086		/* We don't handle systems with inconsistent cpu_has_fpu */
1087		r = !!raw_cpu_has_fpu;
1088		break;
1089	case KVM_CAP_MIPS_MSA:
1090		/*
1091		 * We don't support MSA vector partitioning yet:
1092		 * 1) It would require explicit support which can't be tested
1093		 *    yet due to lack of support in current hardware.
1094		 * 2) It extends the state that would need to be saved/restored
1095		 *    by e.g. QEMU for migration.
1096		 *
1097		 * When vector partitioning hardware becomes available, support
1098		 * could be added by requiring a flag when enabling
1099		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100		 * to save/restore the appropriate extra state.
1101		 */
1102		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103		break;
1104	default:
1105		r = kvm_mips_callbacks->check_extension(kvm, ext);
1106		break;
1107	}
1108	return r;
1109}
1110
1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112{
1113	return kvm_mips_pending_timer(vcpu) ||
1114		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115}
1116
1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118{
1119	int i;
1120	struct mips_coproc *cop0;
1121
1122	if (!vcpu)
1123		return -1;
1124
1125	kvm_debug("VCPU Register Dump:\n");
1126	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129	for (i = 0; i < 32; i += 4) {
1130		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131		       vcpu->arch.gprs[i],
1132		       vcpu->arch.gprs[i + 1],
1133		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134	}
1135	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138	cop0 = vcpu->arch.cop0;
1139	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140		  kvm_read_c0_guest_status(cop0),
1141		  kvm_read_c0_guest_cause(cop0));
1142
1143	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145	return 0;
1146}
1147
1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149{
1150	int i;
1151
1152	vcpu_load(vcpu);
1153
1154	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155		vcpu->arch.gprs[i] = regs->gpr[i];
1156	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157	vcpu->arch.hi = regs->hi;
1158	vcpu->arch.lo = regs->lo;
1159	vcpu->arch.pc = regs->pc;
1160
1161	vcpu_put(vcpu);
1162	return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167	int i;
1168
1169	vcpu_load(vcpu);
1170
1171	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172		regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174	regs->hi = vcpu->arch.hi;
1175	regs->lo = vcpu->arch.lo;
1176	regs->pc = vcpu->arch.pc;
1177
1178	vcpu_put(vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179	return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183				  struct kvm_translation *tr)
1184{
1185	return 0;
1186}
1187
 
 
 
 
 
 
1188static void kvm_mips_set_c0_status(void)
1189{
1190	u32 status = read_c0_status();
1191
1192	if (cpu_has_dsp)
1193		status |= (ST0_MX);
1194
1195	write_c0_status(status);
1196	ehb();
1197}
1198
1199/*
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201 */
1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203{
1204	struct kvm_run *run = vcpu->run;
1205	u32 cause = vcpu->arch.host_cp0_cause;
1206	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209	enum emulation_result er = EMULATE_DONE;
1210	u32 inst;
1211	int ret = RESUME_GUEST;
1212
1213	vcpu->mode = OUTSIDE_GUEST_MODE;
 
1214
1215	/* Set a default exit reason */
1216	run->exit_reason = KVM_EXIT_UNKNOWN;
1217	run->ready_for_interrupt_injection = 1;
1218
1219	/*
1220	 * Set the appropriate status bits based on host CPU features,
1221	 * before we hit the scheduler
1222	 */
1223	kvm_mips_set_c0_status();
1224
1225	local_irq_enable();
1226
1227	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228			cause, opc, run, vcpu);
1229	trace_kvm_exit(vcpu, exccode);
1230
 
 
 
 
 
 
 
 
 
 
 
 
 
1231	switch (exccode) {
1232	case EXCCODE_INT:
1233		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234
1235		++vcpu->stat.int_exits;
1236
1237		if (need_resched())
1238			cond_resched();
1239
1240		ret = RESUME_GUEST;
1241		break;
1242
1243	case EXCCODE_CPU:
1244		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245
1246		++vcpu->stat.cop_unusable_exits;
1247		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248		/* XXXKYMA: Might need to return to user space */
1249		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250			ret = RESUME_HOST;
1251		break;
1252
1253	case EXCCODE_MOD:
1254		++vcpu->stat.tlbmod_exits;
1255		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256		break;
1257
1258	case EXCCODE_TLBS:
1259		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261			  badvaddr);
1262
1263		++vcpu->stat.tlbmiss_st_exits;
1264		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265		break;
1266
1267	case EXCCODE_TLBL:
1268		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269			  cause, opc, badvaddr);
1270
1271		++vcpu->stat.tlbmiss_ld_exits;
1272		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273		break;
1274
1275	case EXCCODE_ADES:
1276		++vcpu->stat.addrerr_st_exits;
1277		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278		break;
1279
1280	case EXCCODE_ADEL:
1281		++vcpu->stat.addrerr_ld_exits;
1282		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283		break;
1284
1285	case EXCCODE_SYS:
1286		++vcpu->stat.syscall_exits;
1287		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288		break;
1289
1290	case EXCCODE_RI:
1291		++vcpu->stat.resvd_inst_exits;
1292		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293		break;
1294
1295	case EXCCODE_BP:
1296		++vcpu->stat.break_inst_exits;
1297		ret = kvm_mips_callbacks->handle_break(vcpu);
1298		break;
1299
1300	case EXCCODE_TR:
1301		++vcpu->stat.trap_inst_exits;
1302		ret = kvm_mips_callbacks->handle_trap(vcpu);
1303		break;
1304
1305	case EXCCODE_MSAFPE:
1306		++vcpu->stat.msa_fpe_exits;
1307		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308		break;
1309
1310	case EXCCODE_FPE:
1311		++vcpu->stat.fpe_exits;
1312		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313		break;
1314
1315	case EXCCODE_MSADIS:
1316		++vcpu->stat.msa_disabled_exits;
1317		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318		break;
1319
1320	case EXCCODE_GE:
1321		/* defer exit accounting to handler */
1322		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323		break;
1324
1325	default:
1326		if (cause & CAUSEF_BD)
1327			opc += 1;
1328		inst = 0;
1329		kvm_get_badinstr(opc, vcpu, &inst);
1330		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1331			exccode, opc, inst, badvaddr,
1332			kvm_read_c0_guest_status(vcpu->arch.cop0));
1333		kvm_arch_vcpu_dump_regs(vcpu);
1334		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335		ret = RESUME_HOST;
1336		break;
1337
1338	}
1339
 
1340	local_irq_disable();
1341
1342	if (ret == RESUME_GUEST)
1343		kvm_vz_acquire_htimer(vcpu);
1344
1345	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346		kvm_mips_deliver_interrupts(vcpu, cause);
1347
1348	if (!(ret & RESUME_HOST)) {
1349		/* Only check for signals if not already exiting to userspace */
1350		if (signal_pending(current)) {
1351			run->exit_reason = KVM_EXIT_INTR;
1352			ret = (-EINTR << 2) | RESUME_HOST;
1353			++vcpu->stat.signal_exits;
1354			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355		}
1356	}
1357
1358	if (ret == RESUME_GUEST) {
1359		trace_kvm_reenter(vcpu);
1360
1361		/*
1362		 * Make sure the read of VCPU requests in vcpu_reenter()
1363		 * callback is not reordered ahead of the write to vcpu->mode,
1364		 * or we could miss a TLB flush request while the requester sees
1365		 * the VCPU as outside of guest mode and not needing an IPI.
1366		 */
1367		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368
1369		kvm_mips_callbacks->vcpu_reenter(vcpu);
1370
1371		/*
1372		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373		 * is live), restore FCR31 / MSACSR.
1374		 *
1375		 * This should be before returning to the guest exception
1376		 * vector, as it may well cause an [MSA] FP exception if there
1377		 * are pending exception bits unmasked. (see
1378		 * kvm_mips_csr_die_notifier() for how that is handled).
1379		 */
1380		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381		    read_c0_status() & ST0_CU1)
1382			__kvm_restore_fcsr(&vcpu->arch);
1383
1384		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385		    read_c0_config5() & MIPS_CONF5_MSAEN)
1386			__kvm_restore_msacsr(&vcpu->arch);
1387	}
1388	return ret;
1389}
1390
1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392{
1393	int ret;
1394
1395	guest_state_exit_irqoff();
1396	ret = __kvm_mips_handle_exit(vcpu);
1397	guest_state_enter_irqoff();
1398
1399	return ret;
1400}
1401
1402/* Enable FPU for guest and restore context */
1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404{
1405	struct mips_coproc *cop0 = vcpu->arch.cop0;
1406	unsigned int sr, cfg5;
1407
1408	preempt_disable();
1409
1410	sr = kvm_read_c0_guest_status(cop0);
1411
1412	/*
1413	 * If MSA state is already live, it is undefined how it interacts with
1414	 * FR=0 FPU state, and we don't want to hit reserved instruction
1415	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416	 * play it safe and save it first.
 
 
 
 
1417	 */
1418	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420		kvm_lose_fpu(vcpu);
1421
1422	/*
1423	 * Enable FPU for guest
1424	 * We set FR and FRE according to guest context
1425	 */
1426	change_c0_status(ST0_CU1 | ST0_FR, sr);
1427	if (cpu_has_fre) {
1428		cfg5 = kvm_read_c0_guest_config5(cop0);
1429		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430	}
1431	enable_fpu_hazard();
1432
1433	/* If guest FPU state not active, restore it now */
1434	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435		__kvm_restore_fpu(&vcpu->arch);
1436		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438	} else {
1439		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440	}
1441
1442	preempt_enable();
1443}
1444
1445#ifdef CONFIG_CPU_HAS_MSA
1446/* Enable MSA for guest and restore context */
1447void kvm_own_msa(struct kvm_vcpu *vcpu)
1448{
1449	struct mips_coproc *cop0 = vcpu->arch.cop0;
1450	unsigned int sr, cfg5;
1451
1452	preempt_disable();
1453
1454	/*
1455	 * Enable FPU if enabled in guest, since we're restoring FPU context
1456	 * anyway. We set FR and FRE according to guest context.
1457	 */
1458	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459		sr = kvm_read_c0_guest_status(cop0);
1460
1461		/*
1462		 * If FR=0 FPU state is already live, it is undefined how it
1463		 * interacts with MSA state, so play it safe and save it first.
1464		 */
1465		if (!(sr & ST0_FR) &&
1466		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468			kvm_lose_fpu(vcpu);
1469
1470		change_c0_status(ST0_CU1 | ST0_FR, sr);
1471		if (sr & ST0_CU1 && cpu_has_fre) {
1472			cfg5 = kvm_read_c0_guest_config5(cop0);
1473			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474		}
1475	}
1476
1477	/* Enable MSA for guest */
1478	set_c0_config5(MIPS_CONF5_MSAEN);
1479	enable_fpu_hazard();
1480
1481	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482	case KVM_MIPS_AUX_FPU:
1483		/*
1484		 * Guest FPU state already loaded, only restore upper MSA state
1485		 */
1486		__kvm_restore_msa_upper(&vcpu->arch);
1487		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489		break;
1490	case 0:
1491		/* Neither FPU or MSA already active, restore full MSA state */
1492		__kvm_restore_msa(&vcpu->arch);
1493		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497			      KVM_TRACE_AUX_FPU_MSA);
1498		break;
1499	default:
1500		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501		break;
1502	}
1503
1504	preempt_enable();
1505}
1506#endif
1507
1508/* Drop FPU & MSA without saving it */
1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510{
1511	preempt_disable();
1512	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513		disable_msa();
1514		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516	}
1517	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518		clear_c0_status(ST0_CU1 | ST0_FR);
1519		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521	}
1522	preempt_enable();
1523}
1524
1525/* Save and disable FPU & MSA */
1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527{
1528	/*
1529	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530	 * is disabled in guest context (software), but the register state in
1531	 * the hardware may still be in use.
1532	 * This is why we explicitly re-enable the hardware before saving.
1533	 */
1534
1535	preempt_disable();
1536	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
 
 
 
1537		__kvm_save_msa(&vcpu->arch);
1538		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539
1540		/* Disable MSA & FPU */
1541		disable_msa();
1542		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543			clear_c0_status(ST0_CU1 | ST0_FR);
1544			disable_fpu_hazard();
1545		}
1546		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
 
 
 
1548		__kvm_save_fpu(&vcpu->arch);
1549		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551
1552		/* Disable FPU */
1553		clear_c0_status(ST0_CU1 | ST0_FR);
1554		disable_fpu_hazard();
1555	}
1556	preempt_enable();
1557}
1558
1559/*
1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562 * exception if cause bits are set in the value being written.
1563 */
1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565				   unsigned long cmd, void *ptr)
1566{
1567	struct die_args *args = (struct die_args *)ptr;
1568	struct pt_regs *regs = args->regs;
1569	unsigned long pc;
1570
1571	/* Only interested in FPE and MSAFPE */
1572	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573		return NOTIFY_DONE;
1574
1575	/* Return immediately if guest context isn't active */
1576	if (!(current->flags & PF_VCPU))
1577		return NOTIFY_DONE;
1578
1579	/* Should never get here from user mode */
1580	BUG_ON(user_mode(regs));
1581
1582	pc = instruction_pointer(regs);
1583	switch (cmd) {
1584	case DIE_FP:
1585		/* match 2nd instruction in __kvm_restore_fcsr */
1586		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587			return NOTIFY_DONE;
1588		break;
1589	case DIE_MSAFP:
1590		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591		if (!cpu_has_msa ||
1592		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594			return NOTIFY_DONE;
1595		break;
1596	}
1597
1598	/* Move PC forward a little and continue executing */
1599	instruction_pointer(regs) += 4;
1600
1601	return NOTIFY_STOP;
1602}
1603
1604static struct notifier_block kvm_mips_csr_die_notifier = {
1605	.notifier_call = kvm_mips_csr_die_notify,
1606};
1607
1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1610	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1611	[MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612	[MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613};
1614
1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616	[MIPS_EXC_INT_TIMER] = C_IRQ5,
1617	[MIPS_EXC_INT_IO_1]  = C_IRQ0,
1618	[MIPS_EXC_INT_IO_2]  = C_IRQ1,
1619	[MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620};
1621
1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623
1624u32 kvm_irq_to_priority(u32 irq)
1625{
1626	int i;
1627
1628	for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629		if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630			return i;
1631	}
1632
1633	return MIPS_EXC_MAX;
1634}
1635
1636static int __init kvm_mips_init(void)
1637{
1638	int ret;
1639
1640	if (cpu_has_mmid) {
1641		pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642		return -EOPNOTSUPP;
1643	}
1644
1645	ret = kvm_mips_entry_setup();
1646	if (ret)
1647		return ret;
1648
1649	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650
1651	if (ret)
1652		return ret;
1653
1654	if (boot_cpu_type() == CPU_LOONGSON64)
1655		kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656
1657	register_die_notifier(&kvm_mips_csr_die_notifier);
1658
1659	return 0;
1660}
1661
1662static void __exit kvm_mips_exit(void)
1663{
1664	kvm_exit();
1665
1666	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667}
1668
1669module_init(kvm_mips_init);
1670module_exit(kvm_mips_exit);
1671
1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);