Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/fs.h>
20#include <linux/bootmem.h>
21#include <asm/fpu.h>
22#include <asm/page.h>
23#include <asm/cacheflush.h>
24#include <asm/mmu_context.h>
25#include <asm/pgtable.h>
26
27#include <linux/kvm_host.h>
28
29#include "interrupt.h"
30#include "commpage.h"
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35#ifndef VECTORSPACING
36#define VECTORSPACING 0x100 /* for EI/VI mode */
37#endif
38
39#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
40struct kvm_stats_debugfs_item debugfs_entries[] = {
41 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
42 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
43 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
44 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
45 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
46 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
47 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
48 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
49 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
50 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
51 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
52 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
53 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
54 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
55 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
56 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
57 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
58 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
59 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
60 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
61 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
62 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
63 {NULL}
64};
65
66static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67{
68 int i;
69
70 for_each_possible_cpu(i) {
71 vcpu->arch.guest_kernel_asid[i] = 0;
72 vcpu->arch.guest_user_asid[i] = 0;
73 }
74
75 return 0;
76}
77
78/*
79 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
80 * Config7, so we are "runnable" if interrupts are pending
81 */
82int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
83{
84 return !!(vcpu->arch.pending_exceptions);
85}
86
87int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88{
89 return 1;
90}
91
92int kvm_arch_hardware_enable(void)
93{
94 return 0;
95}
96
97int kvm_arch_hardware_setup(void)
98{
99 return 0;
100}
101
102void kvm_arch_check_processor_compat(void *rtn)
103{
104 *(int *)rtn = 0;
105}
106
107static void kvm_mips_init_tlbs(struct kvm *kvm)
108{
109 unsigned long wired;
110
111 /*
112 * Add a wired entry to the TLB, it is used to map the commpage to
113 * the Guest kernel
114 */
115 wired = read_c0_wired();
116 write_c0_wired(wired + 1);
117 mtc0_tlbw_hazard();
118 kvm->arch.commpage_tlb = wired;
119
120 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
121 kvm->arch.commpage_tlb);
122}
123
124static void kvm_mips_init_vm_percpu(void *arg)
125{
126 struct kvm *kvm = (struct kvm *)arg;
127
128 kvm_mips_init_tlbs(kvm);
129 kvm_mips_callbacks->vm_init(kvm);
130
131}
132
133int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134{
135 if (atomic_inc_return(&kvm_mips_instance) == 1) {
136 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
137 __func__);
138 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
139 }
140
141 return 0;
142}
143
144bool kvm_arch_has_vcpu_debugfs(void)
145{
146 return false;
147}
148
149int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
150{
151 return 0;
152}
153
154void kvm_mips_free_vcpus(struct kvm *kvm)
155{
156 unsigned int i;
157 struct kvm_vcpu *vcpu;
158
159 /* Put the pages we reserved for the guest pmap */
160 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
161 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
162 kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
163 }
164 kfree(kvm->arch.guest_pmap);
165
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_arch_vcpu_free(vcpu);
168 }
169
170 mutex_lock(&kvm->lock);
171
172 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173 kvm->vcpus[i] = NULL;
174
175 atomic_set(&kvm->online_vcpus, 0);
176
177 mutex_unlock(&kvm->lock);
178}
179
180static void kvm_mips_uninit_tlbs(void *arg)
181{
182 /* Restore wired count */
183 write_c0_wired(0);
184 mtc0_tlbw_hazard();
185 /* Clear out all the TLBs */
186 kvm_local_flush_tlb_all();
187}
188
189void kvm_arch_destroy_vm(struct kvm *kvm)
190{
191 kvm_mips_free_vcpus(kvm);
192
193 /* If this is the last instance, restore wired count */
194 if (atomic_dec_return(&kvm_mips_instance) == 0) {
195 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
196 __func__);
197 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
198 }
199}
200
201long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
202 unsigned long arg)
203{
204 return -ENOIOCTLCMD;
205}
206
207int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
208 unsigned long npages)
209{
210 return 0;
211}
212
213int kvm_arch_prepare_memory_region(struct kvm *kvm,
214 struct kvm_memory_slot *memslot,
215 const struct kvm_userspace_memory_region *mem,
216 enum kvm_mr_change change)
217{
218 return 0;
219}
220
221void kvm_arch_commit_memory_region(struct kvm *kvm,
222 const struct kvm_userspace_memory_region *mem,
223 const struct kvm_memory_slot *old,
224 const struct kvm_memory_slot *new,
225 enum kvm_mr_change change)
226{
227 unsigned long npages = 0;
228 int i;
229
230 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
231 __func__, kvm, mem->slot, mem->guest_phys_addr,
232 mem->memory_size, mem->userspace_addr);
233
234 /* Setup Guest PMAP table */
235 if (!kvm->arch.guest_pmap) {
236 if (mem->slot == 0)
237 npages = mem->memory_size >> PAGE_SHIFT;
238
239 if (npages) {
240 kvm->arch.guest_pmap_npages = npages;
241 kvm->arch.guest_pmap =
242 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
243
244 if (!kvm->arch.guest_pmap) {
245 kvm_err("Failed to allocate guest PMAP\n");
246 return;
247 }
248
249 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
250 npages, kvm->arch.guest_pmap);
251
252 /* Now setup the page table */
253 for (i = 0; i < npages; i++)
254 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
255 }
256 }
257}
258
259static inline void dump_handler(const char *symbol, void *start, void *end)
260{
261 u32 *p;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (p = start; p < (u32 *)end; ++p)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
277{
278 int err, size;
279 void *gebase, *p, *handler;
280 int i;
281
282 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
283
284 if (!vcpu) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = kvm_vcpu_init(vcpu, kvm, id);
290
291 if (err)
292 goto out_free_cpu;
293
294 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
295
296 /*
297 * Allocate space for host mode exception handlers that handle
298 * guest mode exits
299 */
300 if (cpu_has_veic || cpu_has_vint)
301 size = 0x200 + VECTORSPACING * 64;
302 else
303 size = 0x4000;
304
305 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
306
307 if (!gebase) {
308 err = -ENOMEM;
309 goto out_uninit_cpu;
310 }
311 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
312 ALIGN(size, PAGE_SIZE), gebase);
313
314 /*
315 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
316 * limits us to the low 512MB of physical address space. If the memory
317 * we allocate is out of range, just give up now.
318 */
319 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
320 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
321 gebase);
322 err = -ENOMEM;
323 goto out_free_gebase;
324 }
325
326 /* Save new ebase */
327 vcpu->arch.guest_ebase = gebase;
328
329 /* Build guest exception vectors dynamically in unmapped memory */
330 handler = gebase + 0x2000;
331
332 /* TLB Refill, EXL = 0 */
333 kvm_mips_build_exception(gebase, handler);
334
335 /* General Exception Entry point */
336 kvm_mips_build_exception(gebase + 0x180, handler);
337
338 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
339 for (i = 0; i < 8; i++) {
340 kvm_debug("L1 Vectored handler @ %p\n",
341 gebase + 0x200 + (i * VECTORSPACING));
342 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
343 handler);
344 }
345
346 /* General exit handler */
347 p = handler;
348 p = kvm_mips_build_exit(p);
349
350 /* Guest entry routine */
351 vcpu->arch.vcpu_run = p;
352 p = kvm_mips_build_vcpu_run(p);
353
354 /* Dump the generated code */
355 pr_debug("#include <asm/asm.h>\n");
356 pr_debug("#include <asm/regdef.h>\n");
357 pr_debug("\n");
358 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
359 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
360 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
361
362 /* Invalidate the icache for these ranges */
363 flush_icache_range((unsigned long)gebase,
364 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
365
366 /*
367 * Allocate comm page for guest kernel, a TLB will be reserved for
368 * mapping GVA @ 0xFFFF8000 to this page
369 */
370 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
371
372 if (!vcpu->arch.kseg0_commpage) {
373 err = -ENOMEM;
374 goto out_free_gebase;
375 }
376
377 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
378 kvm_mips_commpage_init(vcpu);
379
380 /* Init */
381 vcpu->arch.last_sched_cpu = -1;
382
383 /* Start off the timer */
384 kvm_mips_init_count(vcpu);
385
386 return vcpu;
387
388out_free_gebase:
389 kfree(gebase);
390
391out_uninit_cpu:
392 kvm_vcpu_uninit(vcpu);
393
394out_free_cpu:
395 kfree(vcpu);
396
397out:
398 return ERR_PTR(err);
399}
400
401void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
402{
403 hrtimer_cancel(&vcpu->arch.comparecount_timer);
404
405 kvm_vcpu_uninit(vcpu);
406
407 kvm_mips_dump_stats(vcpu);
408
409 kfree(vcpu->arch.guest_ebase);
410 kfree(vcpu->arch.kseg0_commpage);
411 kfree(vcpu);
412}
413
414void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
415{
416 kvm_arch_vcpu_free(vcpu);
417}
418
419int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
420 struct kvm_guest_debug *dbg)
421{
422 return -ENOIOCTLCMD;
423}
424
425/* Must be called with preemption disabled, just before entering guest */
426static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
427{
428 struct mips_coproc *cop0 = vcpu->arch.cop0;
429 int i, cpu = smp_processor_id();
430 unsigned int gasid;
431
432 /*
433 * Lazy host ASID regeneration for guest user mode.
434 * If the guest ASID has changed since the last guest usermode
435 * execution, regenerate the host ASID so as to invalidate stale TLB
436 * entries.
437 */
438 if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
439 gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
440 if (gasid != vcpu->arch.last_user_gasid) {
441 kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
442 vcpu);
443 vcpu->arch.guest_user_asid[cpu] =
444 vcpu->arch.guest_user_mm.context.asid[cpu];
445 for_each_possible_cpu(i)
446 if (i != cpu)
447 vcpu->arch.guest_user_asid[cpu] = 0;
448 vcpu->arch.last_user_gasid = gasid;
449 }
450 }
451}
452
453int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
454{
455 int r = 0;
456 sigset_t sigsaved;
457
458 if (vcpu->sigset_active)
459 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
460
461 if (vcpu->mmio_needed) {
462 if (!vcpu->mmio_is_write)
463 kvm_mips_complete_mmio_load(vcpu, run);
464 vcpu->mmio_needed = 0;
465 }
466
467 lose_fpu(1);
468
469 local_irq_disable();
470 /* Check if we have any exceptions/interrupts pending */
471 kvm_mips_deliver_interrupts(vcpu,
472 kvm_read_c0_guest_cause(vcpu->arch.cop0));
473
474 guest_enter_irqoff();
475
476 /* Disable hardware page table walking while in guest */
477 htw_stop();
478
479 trace_kvm_enter(vcpu);
480
481 kvm_mips_check_asids(vcpu);
482
483 r = vcpu->arch.vcpu_run(run, vcpu);
484 trace_kvm_out(vcpu);
485
486 /* Re-enable HTW before enabling interrupts */
487 htw_start();
488
489 guest_exit_irqoff();
490 local_irq_enable();
491
492 if (vcpu->sigset_active)
493 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
494
495 return r;
496}
497
498int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
499 struct kvm_mips_interrupt *irq)
500{
501 int intr = (int)irq->irq;
502 struct kvm_vcpu *dvcpu = NULL;
503
504 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
505 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
506 (int)intr);
507
508 if (irq->cpu == -1)
509 dvcpu = vcpu;
510 else
511 dvcpu = vcpu->kvm->vcpus[irq->cpu];
512
513 if (intr == 2 || intr == 3 || intr == 4) {
514 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
515
516 } else if (intr == -2 || intr == -3 || intr == -4) {
517 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
518 } else {
519 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
520 irq->cpu, irq->irq);
521 return -EINVAL;
522 }
523
524 dvcpu->arch.wait = 0;
525
526 if (swait_active(&dvcpu->wq))
527 swake_up(&dvcpu->wq);
528
529 return 0;
530}
531
532int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
533 struct kvm_mp_state *mp_state)
534{
535 return -ENOIOCTLCMD;
536}
537
538int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
539 struct kvm_mp_state *mp_state)
540{
541 return -ENOIOCTLCMD;
542}
543
544static u64 kvm_mips_get_one_regs[] = {
545 KVM_REG_MIPS_R0,
546 KVM_REG_MIPS_R1,
547 KVM_REG_MIPS_R2,
548 KVM_REG_MIPS_R3,
549 KVM_REG_MIPS_R4,
550 KVM_REG_MIPS_R5,
551 KVM_REG_MIPS_R6,
552 KVM_REG_MIPS_R7,
553 KVM_REG_MIPS_R8,
554 KVM_REG_MIPS_R9,
555 KVM_REG_MIPS_R10,
556 KVM_REG_MIPS_R11,
557 KVM_REG_MIPS_R12,
558 KVM_REG_MIPS_R13,
559 KVM_REG_MIPS_R14,
560 KVM_REG_MIPS_R15,
561 KVM_REG_MIPS_R16,
562 KVM_REG_MIPS_R17,
563 KVM_REG_MIPS_R18,
564 KVM_REG_MIPS_R19,
565 KVM_REG_MIPS_R20,
566 KVM_REG_MIPS_R21,
567 KVM_REG_MIPS_R22,
568 KVM_REG_MIPS_R23,
569 KVM_REG_MIPS_R24,
570 KVM_REG_MIPS_R25,
571 KVM_REG_MIPS_R26,
572 KVM_REG_MIPS_R27,
573 KVM_REG_MIPS_R28,
574 KVM_REG_MIPS_R29,
575 KVM_REG_MIPS_R30,
576 KVM_REG_MIPS_R31,
577
578#ifndef CONFIG_CPU_MIPSR6
579 KVM_REG_MIPS_HI,
580 KVM_REG_MIPS_LO,
581#endif
582 KVM_REG_MIPS_PC,
583
584 KVM_REG_MIPS_CP0_INDEX,
585 KVM_REG_MIPS_CP0_CONTEXT,
586 KVM_REG_MIPS_CP0_USERLOCAL,
587 KVM_REG_MIPS_CP0_PAGEMASK,
588 KVM_REG_MIPS_CP0_WIRED,
589 KVM_REG_MIPS_CP0_HWRENA,
590 KVM_REG_MIPS_CP0_BADVADDR,
591 KVM_REG_MIPS_CP0_COUNT,
592 KVM_REG_MIPS_CP0_ENTRYHI,
593 KVM_REG_MIPS_CP0_COMPARE,
594 KVM_REG_MIPS_CP0_STATUS,
595 KVM_REG_MIPS_CP0_CAUSE,
596 KVM_REG_MIPS_CP0_EPC,
597 KVM_REG_MIPS_CP0_PRID,
598 KVM_REG_MIPS_CP0_CONFIG,
599 KVM_REG_MIPS_CP0_CONFIG1,
600 KVM_REG_MIPS_CP0_CONFIG2,
601 KVM_REG_MIPS_CP0_CONFIG3,
602 KVM_REG_MIPS_CP0_CONFIG4,
603 KVM_REG_MIPS_CP0_CONFIG5,
604 KVM_REG_MIPS_CP0_CONFIG7,
605 KVM_REG_MIPS_CP0_ERROREPC,
606
607 KVM_REG_MIPS_COUNT_CTL,
608 KVM_REG_MIPS_COUNT_RESUME,
609 KVM_REG_MIPS_COUNT_HZ,
610};
611
612static u64 kvm_mips_get_one_regs_fpu[] = {
613 KVM_REG_MIPS_FCR_IR,
614 KVM_REG_MIPS_FCR_CSR,
615};
616
617static u64 kvm_mips_get_one_regs_msa[] = {
618 KVM_REG_MIPS_MSA_IR,
619 KVM_REG_MIPS_MSA_CSR,
620};
621
622static u64 kvm_mips_get_one_regs_kscratch[] = {
623 KVM_REG_MIPS_CP0_KSCRATCH1,
624 KVM_REG_MIPS_CP0_KSCRATCH2,
625 KVM_REG_MIPS_CP0_KSCRATCH3,
626 KVM_REG_MIPS_CP0_KSCRATCH4,
627 KVM_REG_MIPS_CP0_KSCRATCH5,
628 KVM_REG_MIPS_CP0_KSCRATCH6,
629};
630
631static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
632{
633 unsigned long ret;
634
635 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
636 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
637 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
638 /* odd doubles */
639 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
640 ret += 16;
641 }
642 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
643 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
644 ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
645 ret += kvm_mips_callbacks->num_regs(vcpu);
646
647 return ret;
648}
649
650static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
651{
652 u64 index;
653 unsigned int i;
654
655 if (copy_to_user(indices, kvm_mips_get_one_regs,
656 sizeof(kvm_mips_get_one_regs)))
657 return -EFAULT;
658 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
659
660 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
661 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
662 sizeof(kvm_mips_get_one_regs_fpu)))
663 return -EFAULT;
664 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
665
666 for (i = 0; i < 32; ++i) {
667 index = KVM_REG_MIPS_FPR_32(i);
668 if (copy_to_user(indices, &index, sizeof(index)))
669 return -EFAULT;
670 ++indices;
671
672 /* skip odd doubles if no F64 */
673 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
674 continue;
675
676 index = KVM_REG_MIPS_FPR_64(i);
677 if (copy_to_user(indices, &index, sizeof(index)))
678 return -EFAULT;
679 ++indices;
680 }
681 }
682
683 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
684 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
685 sizeof(kvm_mips_get_one_regs_msa)))
686 return -EFAULT;
687 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
688
689 for (i = 0; i < 32; ++i) {
690 index = KVM_REG_MIPS_VEC_128(i);
691 if (copy_to_user(indices, &index, sizeof(index)))
692 return -EFAULT;
693 ++indices;
694 }
695 }
696
697 for (i = 0; i < 6; ++i) {
698 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
699 continue;
700
701 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
702 sizeof(kvm_mips_get_one_regs_kscratch[i])))
703 return -EFAULT;
704 ++indices;
705 }
706
707 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
708}
709
710static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
711 const struct kvm_one_reg *reg)
712{
713 struct mips_coproc *cop0 = vcpu->arch.cop0;
714 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
715 int ret;
716 s64 v;
717 s64 vs[2];
718 unsigned int idx;
719
720 switch (reg->id) {
721 /* General purpose registers */
722 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
723 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
724 break;
725#ifndef CONFIG_CPU_MIPSR6
726 case KVM_REG_MIPS_HI:
727 v = (long)vcpu->arch.hi;
728 break;
729 case KVM_REG_MIPS_LO:
730 v = (long)vcpu->arch.lo;
731 break;
732#endif
733 case KVM_REG_MIPS_PC:
734 v = (long)vcpu->arch.pc;
735 break;
736
737 /* Floating point registers */
738 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
739 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
740 return -EINVAL;
741 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
742 /* Odd singles in top of even double when FR=0 */
743 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
744 v = get_fpr32(&fpu->fpr[idx], 0);
745 else
746 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
747 break;
748 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
749 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
750 return -EINVAL;
751 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
752 /* Can't access odd doubles in FR=0 mode */
753 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
754 return -EINVAL;
755 v = get_fpr64(&fpu->fpr[idx], 0);
756 break;
757 case KVM_REG_MIPS_FCR_IR:
758 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
759 return -EINVAL;
760 v = boot_cpu_data.fpu_id;
761 break;
762 case KVM_REG_MIPS_FCR_CSR:
763 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
764 return -EINVAL;
765 v = fpu->fcr31;
766 break;
767
768 /* MIPS SIMD Architecture (MSA) registers */
769 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
770 if (!kvm_mips_guest_has_msa(&vcpu->arch))
771 return -EINVAL;
772 /* Can't access MSA registers in FR=0 mode */
773 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
774 return -EINVAL;
775 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
776#ifdef CONFIG_CPU_LITTLE_ENDIAN
777 /* least significant byte first */
778 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
779 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
780#else
781 /* most significant byte first */
782 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
783 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
784#endif
785 break;
786 case KVM_REG_MIPS_MSA_IR:
787 if (!kvm_mips_guest_has_msa(&vcpu->arch))
788 return -EINVAL;
789 v = boot_cpu_data.msa_id;
790 break;
791 case KVM_REG_MIPS_MSA_CSR:
792 if (!kvm_mips_guest_has_msa(&vcpu->arch))
793 return -EINVAL;
794 v = fpu->msacsr;
795 break;
796
797 /* Co-processor 0 registers */
798 case KVM_REG_MIPS_CP0_INDEX:
799 v = (long)kvm_read_c0_guest_index(cop0);
800 break;
801 case KVM_REG_MIPS_CP0_CONTEXT:
802 v = (long)kvm_read_c0_guest_context(cop0);
803 break;
804 case KVM_REG_MIPS_CP0_USERLOCAL:
805 v = (long)kvm_read_c0_guest_userlocal(cop0);
806 break;
807 case KVM_REG_MIPS_CP0_PAGEMASK:
808 v = (long)kvm_read_c0_guest_pagemask(cop0);
809 break;
810 case KVM_REG_MIPS_CP0_WIRED:
811 v = (long)kvm_read_c0_guest_wired(cop0);
812 break;
813 case KVM_REG_MIPS_CP0_HWRENA:
814 v = (long)kvm_read_c0_guest_hwrena(cop0);
815 break;
816 case KVM_REG_MIPS_CP0_BADVADDR:
817 v = (long)kvm_read_c0_guest_badvaddr(cop0);
818 break;
819 case KVM_REG_MIPS_CP0_ENTRYHI:
820 v = (long)kvm_read_c0_guest_entryhi(cop0);
821 break;
822 case KVM_REG_MIPS_CP0_COMPARE:
823 v = (long)kvm_read_c0_guest_compare(cop0);
824 break;
825 case KVM_REG_MIPS_CP0_STATUS:
826 v = (long)kvm_read_c0_guest_status(cop0);
827 break;
828 case KVM_REG_MIPS_CP0_CAUSE:
829 v = (long)kvm_read_c0_guest_cause(cop0);
830 break;
831 case KVM_REG_MIPS_CP0_EPC:
832 v = (long)kvm_read_c0_guest_epc(cop0);
833 break;
834 case KVM_REG_MIPS_CP0_PRID:
835 v = (long)kvm_read_c0_guest_prid(cop0);
836 break;
837 case KVM_REG_MIPS_CP0_CONFIG:
838 v = (long)kvm_read_c0_guest_config(cop0);
839 break;
840 case KVM_REG_MIPS_CP0_CONFIG1:
841 v = (long)kvm_read_c0_guest_config1(cop0);
842 break;
843 case KVM_REG_MIPS_CP0_CONFIG2:
844 v = (long)kvm_read_c0_guest_config2(cop0);
845 break;
846 case KVM_REG_MIPS_CP0_CONFIG3:
847 v = (long)kvm_read_c0_guest_config3(cop0);
848 break;
849 case KVM_REG_MIPS_CP0_CONFIG4:
850 v = (long)kvm_read_c0_guest_config4(cop0);
851 break;
852 case KVM_REG_MIPS_CP0_CONFIG5:
853 v = (long)kvm_read_c0_guest_config5(cop0);
854 break;
855 case KVM_REG_MIPS_CP0_CONFIG7:
856 v = (long)kvm_read_c0_guest_config7(cop0);
857 break;
858 case KVM_REG_MIPS_CP0_ERROREPC:
859 v = (long)kvm_read_c0_guest_errorepc(cop0);
860 break;
861 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
862 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
863 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
864 return -EINVAL;
865 switch (idx) {
866 case 2:
867 v = (long)kvm_read_c0_guest_kscratch1(cop0);
868 break;
869 case 3:
870 v = (long)kvm_read_c0_guest_kscratch2(cop0);
871 break;
872 case 4:
873 v = (long)kvm_read_c0_guest_kscratch3(cop0);
874 break;
875 case 5:
876 v = (long)kvm_read_c0_guest_kscratch4(cop0);
877 break;
878 case 6:
879 v = (long)kvm_read_c0_guest_kscratch5(cop0);
880 break;
881 case 7:
882 v = (long)kvm_read_c0_guest_kscratch6(cop0);
883 break;
884 }
885 break;
886 /* registers to be handled specially */
887 default:
888 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
889 if (ret)
890 return ret;
891 break;
892 }
893 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
894 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
895
896 return put_user(v, uaddr64);
897 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
898 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
899 u32 v32 = (u32)v;
900
901 return put_user(v32, uaddr32);
902 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
903 void __user *uaddr = (void __user *)(long)reg->addr;
904
905 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
906 } else {
907 return -EINVAL;
908 }
909}
910
911static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
912 const struct kvm_one_reg *reg)
913{
914 struct mips_coproc *cop0 = vcpu->arch.cop0;
915 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
916 s64 v;
917 s64 vs[2];
918 unsigned int idx;
919
920 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
921 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
922
923 if (get_user(v, uaddr64) != 0)
924 return -EFAULT;
925 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
926 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
927 s32 v32;
928
929 if (get_user(v32, uaddr32) != 0)
930 return -EFAULT;
931 v = (s64)v32;
932 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
933 void __user *uaddr = (void __user *)(long)reg->addr;
934
935 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
936 } else {
937 return -EINVAL;
938 }
939
940 switch (reg->id) {
941 /* General purpose registers */
942 case KVM_REG_MIPS_R0:
943 /* Silently ignore requests to set $0 */
944 break;
945 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
946 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
947 break;
948#ifndef CONFIG_CPU_MIPSR6
949 case KVM_REG_MIPS_HI:
950 vcpu->arch.hi = v;
951 break;
952 case KVM_REG_MIPS_LO:
953 vcpu->arch.lo = v;
954 break;
955#endif
956 case KVM_REG_MIPS_PC:
957 vcpu->arch.pc = v;
958 break;
959
960 /* Floating point registers */
961 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
962 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
963 return -EINVAL;
964 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
965 /* Odd singles in top of even double when FR=0 */
966 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
967 set_fpr32(&fpu->fpr[idx], 0, v);
968 else
969 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
970 break;
971 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
972 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
973 return -EINVAL;
974 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
975 /* Can't access odd doubles in FR=0 mode */
976 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
977 return -EINVAL;
978 set_fpr64(&fpu->fpr[idx], 0, v);
979 break;
980 case KVM_REG_MIPS_FCR_IR:
981 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
982 return -EINVAL;
983 /* Read-only */
984 break;
985 case KVM_REG_MIPS_FCR_CSR:
986 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
987 return -EINVAL;
988 fpu->fcr31 = v;
989 break;
990
991 /* MIPS SIMD Architecture (MSA) registers */
992 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
993 if (!kvm_mips_guest_has_msa(&vcpu->arch))
994 return -EINVAL;
995 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
996#ifdef CONFIG_CPU_LITTLE_ENDIAN
997 /* least significant byte first */
998 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
999 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
1000#else
1001 /* most significant byte first */
1002 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1003 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1004#endif
1005 break;
1006 case KVM_REG_MIPS_MSA_IR:
1007 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1008 return -EINVAL;
1009 /* Read-only */
1010 break;
1011 case KVM_REG_MIPS_MSA_CSR:
1012 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1013 return -EINVAL;
1014 fpu->msacsr = v;
1015 break;
1016
1017 /* Co-processor 0 registers */
1018 case KVM_REG_MIPS_CP0_INDEX:
1019 kvm_write_c0_guest_index(cop0, v);
1020 break;
1021 case KVM_REG_MIPS_CP0_CONTEXT:
1022 kvm_write_c0_guest_context(cop0, v);
1023 break;
1024 case KVM_REG_MIPS_CP0_USERLOCAL:
1025 kvm_write_c0_guest_userlocal(cop0, v);
1026 break;
1027 case KVM_REG_MIPS_CP0_PAGEMASK:
1028 kvm_write_c0_guest_pagemask(cop0, v);
1029 break;
1030 case KVM_REG_MIPS_CP0_WIRED:
1031 kvm_write_c0_guest_wired(cop0, v);
1032 break;
1033 case KVM_REG_MIPS_CP0_HWRENA:
1034 kvm_write_c0_guest_hwrena(cop0, v);
1035 break;
1036 case KVM_REG_MIPS_CP0_BADVADDR:
1037 kvm_write_c0_guest_badvaddr(cop0, v);
1038 break;
1039 case KVM_REG_MIPS_CP0_ENTRYHI:
1040 kvm_write_c0_guest_entryhi(cop0, v);
1041 break;
1042 case KVM_REG_MIPS_CP0_STATUS:
1043 kvm_write_c0_guest_status(cop0, v);
1044 break;
1045 case KVM_REG_MIPS_CP0_EPC:
1046 kvm_write_c0_guest_epc(cop0, v);
1047 break;
1048 case KVM_REG_MIPS_CP0_PRID:
1049 kvm_write_c0_guest_prid(cop0, v);
1050 break;
1051 case KVM_REG_MIPS_CP0_ERROREPC:
1052 kvm_write_c0_guest_errorepc(cop0, v);
1053 break;
1054 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1055 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1056 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1057 return -EINVAL;
1058 switch (idx) {
1059 case 2:
1060 kvm_write_c0_guest_kscratch1(cop0, v);
1061 break;
1062 case 3:
1063 kvm_write_c0_guest_kscratch2(cop0, v);
1064 break;
1065 case 4:
1066 kvm_write_c0_guest_kscratch3(cop0, v);
1067 break;
1068 case 5:
1069 kvm_write_c0_guest_kscratch4(cop0, v);
1070 break;
1071 case 6:
1072 kvm_write_c0_guest_kscratch5(cop0, v);
1073 break;
1074 case 7:
1075 kvm_write_c0_guest_kscratch6(cop0, v);
1076 break;
1077 }
1078 break;
1079 /* registers to be handled specially */
1080 default:
1081 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1082 }
1083 return 0;
1084}
1085
1086static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1087 struct kvm_enable_cap *cap)
1088{
1089 int r = 0;
1090
1091 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1092 return -EINVAL;
1093 if (cap->flags)
1094 return -EINVAL;
1095 if (cap->args[0])
1096 return -EINVAL;
1097
1098 switch (cap->cap) {
1099 case KVM_CAP_MIPS_FPU:
1100 vcpu->arch.fpu_enabled = true;
1101 break;
1102 case KVM_CAP_MIPS_MSA:
1103 vcpu->arch.msa_enabled = true;
1104 break;
1105 default:
1106 r = -EINVAL;
1107 break;
1108 }
1109
1110 return r;
1111}
1112
1113long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1114 unsigned long arg)
1115{
1116 struct kvm_vcpu *vcpu = filp->private_data;
1117 void __user *argp = (void __user *)arg;
1118 long r;
1119
1120 switch (ioctl) {
1121 case KVM_SET_ONE_REG:
1122 case KVM_GET_ONE_REG: {
1123 struct kvm_one_reg reg;
1124
1125 if (copy_from_user(®, argp, sizeof(reg)))
1126 return -EFAULT;
1127 if (ioctl == KVM_SET_ONE_REG)
1128 return kvm_mips_set_reg(vcpu, ®);
1129 else
1130 return kvm_mips_get_reg(vcpu, ®);
1131 }
1132 case KVM_GET_REG_LIST: {
1133 struct kvm_reg_list __user *user_list = argp;
1134 struct kvm_reg_list reg_list;
1135 unsigned n;
1136
1137 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1138 return -EFAULT;
1139 n = reg_list.n;
1140 reg_list.n = kvm_mips_num_regs(vcpu);
1141 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1142 return -EFAULT;
1143 if (n < reg_list.n)
1144 return -E2BIG;
1145 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1146 }
1147 case KVM_NMI:
1148 /* Treat the NMI as a CPU reset */
1149 r = kvm_mips_reset_vcpu(vcpu);
1150 break;
1151 case KVM_INTERRUPT:
1152 {
1153 struct kvm_mips_interrupt irq;
1154
1155 r = -EFAULT;
1156 if (copy_from_user(&irq, argp, sizeof(irq)))
1157 goto out;
1158
1159 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1160 irq.irq);
1161
1162 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1163 break;
1164 }
1165 case KVM_ENABLE_CAP: {
1166 struct kvm_enable_cap cap;
1167
1168 r = -EFAULT;
1169 if (copy_from_user(&cap, argp, sizeof(cap)))
1170 goto out;
1171 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1172 break;
1173 }
1174 default:
1175 r = -ENOIOCTLCMD;
1176 }
1177
1178out:
1179 return r;
1180}
1181
1182/* Get (and clear) the dirty memory log for a memory slot. */
1183int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1184{
1185 struct kvm_memslots *slots;
1186 struct kvm_memory_slot *memslot;
1187 unsigned long ga, ga_end;
1188 int is_dirty = 0;
1189 int r;
1190 unsigned long n;
1191
1192 mutex_lock(&kvm->slots_lock);
1193
1194 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1195 if (r)
1196 goto out;
1197
1198 /* If nothing is dirty, don't bother messing with page tables. */
1199 if (is_dirty) {
1200 slots = kvm_memslots(kvm);
1201 memslot = id_to_memslot(slots, log->slot);
1202
1203 ga = memslot->base_gfn << PAGE_SHIFT;
1204 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1205
1206 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1207 ga_end);
1208
1209 n = kvm_dirty_bitmap_bytes(memslot);
1210 memset(memslot->dirty_bitmap, 0, n);
1211 }
1212
1213 r = 0;
1214out:
1215 mutex_unlock(&kvm->slots_lock);
1216 return r;
1217
1218}
1219
1220long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1221{
1222 long r;
1223
1224 switch (ioctl) {
1225 default:
1226 r = -ENOIOCTLCMD;
1227 }
1228
1229 return r;
1230}
1231
1232int kvm_arch_init(void *opaque)
1233{
1234 if (kvm_mips_callbacks) {
1235 kvm_err("kvm: module already exists\n");
1236 return -EEXIST;
1237 }
1238
1239 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1240}
1241
1242void kvm_arch_exit(void)
1243{
1244 kvm_mips_callbacks = NULL;
1245}
1246
1247int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1248 struct kvm_sregs *sregs)
1249{
1250 return -ENOIOCTLCMD;
1251}
1252
1253int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1254 struct kvm_sregs *sregs)
1255{
1256 return -ENOIOCTLCMD;
1257}
1258
1259void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1260{
1261}
1262
1263int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1264{
1265 return -ENOIOCTLCMD;
1266}
1267
1268int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1269{
1270 return -ENOIOCTLCMD;
1271}
1272
1273int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1274{
1275 return VM_FAULT_SIGBUS;
1276}
1277
1278int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1279{
1280 int r;
1281
1282 switch (ext) {
1283 case KVM_CAP_ONE_REG:
1284 case KVM_CAP_ENABLE_CAP:
1285 r = 1;
1286 break;
1287 case KVM_CAP_COALESCED_MMIO:
1288 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1289 break;
1290 case KVM_CAP_MIPS_FPU:
1291 /* We don't handle systems with inconsistent cpu_has_fpu */
1292 r = !!raw_cpu_has_fpu;
1293 break;
1294 case KVM_CAP_MIPS_MSA:
1295 /*
1296 * We don't support MSA vector partitioning yet:
1297 * 1) It would require explicit support which can't be tested
1298 * yet due to lack of support in current hardware.
1299 * 2) It extends the state that would need to be saved/restored
1300 * by e.g. QEMU for migration.
1301 *
1302 * When vector partitioning hardware becomes available, support
1303 * could be added by requiring a flag when enabling
1304 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1305 * to save/restore the appropriate extra state.
1306 */
1307 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1308 break;
1309 default:
1310 r = 0;
1311 break;
1312 }
1313 return r;
1314}
1315
1316int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1317{
1318 return kvm_mips_pending_timer(vcpu);
1319}
1320
1321int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1322{
1323 int i;
1324 struct mips_coproc *cop0;
1325
1326 if (!vcpu)
1327 return -1;
1328
1329 kvm_debug("VCPU Register Dump:\n");
1330 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1331 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1332
1333 for (i = 0; i < 32; i += 4) {
1334 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1335 vcpu->arch.gprs[i],
1336 vcpu->arch.gprs[i + 1],
1337 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1338 }
1339 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1340 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1341
1342 cop0 = vcpu->arch.cop0;
1343 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1344 kvm_read_c0_guest_status(cop0),
1345 kvm_read_c0_guest_cause(cop0));
1346
1347 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1348
1349 return 0;
1350}
1351
1352int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1353{
1354 int i;
1355
1356 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1357 vcpu->arch.gprs[i] = regs->gpr[i];
1358 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1359 vcpu->arch.hi = regs->hi;
1360 vcpu->arch.lo = regs->lo;
1361 vcpu->arch.pc = regs->pc;
1362
1363 return 0;
1364}
1365
1366int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1367{
1368 int i;
1369
1370 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1371 regs->gpr[i] = vcpu->arch.gprs[i];
1372
1373 regs->hi = vcpu->arch.hi;
1374 regs->lo = vcpu->arch.lo;
1375 regs->pc = vcpu->arch.pc;
1376
1377 return 0;
1378}
1379
1380static void kvm_mips_comparecount_func(unsigned long data)
1381{
1382 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1383
1384 kvm_mips_callbacks->queue_timer_int(vcpu);
1385
1386 vcpu->arch.wait = 0;
1387 if (swait_active(&vcpu->wq))
1388 swake_up(&vcpu->wq);
1389}
1390
1391/* low level hrtimer wake routine */
1392static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1393{
1394 struct kvm_vcpu *vcpu;
1395
1396 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1397 kvm_mips_comparecount_func((unsigned long) vcpu);
1398 return kvm_mips_count_timeout(vcpu);
1399}
1400
1401int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1402{
1403 kvm_mips_callbacks->vcpu_init(vcpu);
1404 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1405 HRTIMER_MODE_REL);
1406 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1407 return 0;
1408}
1409
1410int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1411 struct kvm_translation *tr)
1412{
1413 return 0;
1414}
1415
1416/* Initial guest state */
1417int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1418{
1419 return kvm_mips_callbacks->vcpu_setup(vcpu);
1420}
1421
1422static void kvm_mips_set_c0_status(void)
1423{
1424 u32 status = read_c0_status();
1425
1426 if (cpu_has_dsp)
1427 status |= (ST0_MX);
1428
1429 write_c0_status(status);
1430 ehb();
1431}
1432
1433/*
1434 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1435 */
1436int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437{
1438 u32 cause = vcpu->arch.host_cp0_cause;
1439 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1440 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1441 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1442 enum emulation_result er = EMULATE_DONE;
1443 int ret = RESUME_GUEST;
1444
1445 /* re-enable HTW before enabling interrupts */
1446 htw_start();
1447
1448 /* Set a default exit reason */
1449 run->exit_reason = KVM_EXIT_UNKNOWN;
1450 run->ready_for_interrupt_injection = 1;
1451
1452 /*
1453 * Set the appropriate status bits based on host CPU features,
1454 * before we hit the scheduler
1455 */
1456 kvm_mips_set_c0_status();
1457
1458 local_irq_enable();
1459
1460 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1461 cause, opc, run, vcpu);
1462 trace_kvm_exit(vcpu, exccode);
1463
1464 /*
1465 * Do a privilege check, if in UM most of these exit conditions end up
1466 * causing an exception to be delivered to the Guest Kernel
1467 */
1468 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1469 if (er == EMULATE_PRIV_FAIL) {
1470 goto skip_emul;
1471 } else if (er == EMULATE_FAIL) {
1472 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1473 ret = RESUME_HOST;
1474 goto skip_emul;
1475 }
1476
1477 switch (exccode) {
1478 case EXCCODE_INT:
1479 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1480
1481 ++vcpu->stat.int_exits;
1482
1483 if (need_resched())
1484 cond_resched();
1485
1486 ret = RESUME_GUEST;
1487 break;
1488
1489 case EXCCODE_CPU:
1490 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1491
1492 ++vcpu->stat.cop_unusable_exits;
1493 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1494 /* XXXKYMA: Might need to return to user space */
1495 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1496 ret = RESUME_HOST;
1497 break;
1498
1499 case EXCCODE_MOD:
1500 ++vcpu->stat.tlbmod_exits;
1501 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1502 break;
1503
1504 case EXCCODE_TLBS:
1505 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1506 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1507 badvaddr);
1508
1509 ++vcpu->stat.tlbmiss_st_exits;
1510 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1511 break;
1512
1513 case EXCCODE_TLBL:
1514 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1515 cause, opc, badvaddr);
1516
1517 ++vcpu->stat.tlbmiss_ld_exits;
1518 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1519 break;
1520
1521 case EXCCODE_ADES:
1522 ++vcpu->stat.addrerr_st_exits;
1523 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1524 break;
1525
1526 case EXCCODE_ADEL:
1527 ++vcpu->stat.addrerr_ld_exits;
1528 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1529 break;
1530
1531 case EXCCODE_SYS:
1532 ++vcpu->stat.syscall_exits;
1533 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1534 break;
1535
1536 case EXCCODE_RI:
1537 ++vcpu->stat.resvd_inst_exits;
1538 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1539 break;
1540
1541 case EXCCODE_BP:
1542 ++vcpu->stat.break_inst_exits;
1543 ret = kvm_mips_callbacks->handle_break(vcpu);
1544 break;
1545
1546 case EXCCODE_TR:
1547 ++vcpu->stat.trap_inst_exits;
1548 ret = kvm_mips_callbacks->handle_trap(vcpu);
1549 break;
1550
1551 case EXCCODE_MSAFPE:
1552 ++vcpu->stat.msa_fpe_exits;
1553 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1554 break;
1555
1556 case EXCCODE_FPE:
1557 ++vcpu->stat.fpe_exits;
1558 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1559 break;
1560
1561 case EXCCODE_MSADIS:
1562 ++vcpu->stat.msa_disabled_exits;
1563 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1564 break;
1565
1566 default:
1567 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1568 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1569 kvm_read_c0_guest_status(vcpu->arch.cop0));
1570 kvm_arch_vcpu_dump_regs(vcpu);
1571 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1572 ret = RESUME_HOST;
1573 break;
1574
1575 }
1576
1577skip_emul:
1578 local_irq_disable();
1579
1580 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1581 kvm_mips_deliver_interrupts(vcpu, cause);
1582
1583 if (!(ret & RESUME_HOST)) {
1584 /* Only check for signals if not already exiting to userspace */
1585 if (signal_pending(current)) {
1586 run->exit_reason = KVM_EXIT_INTR;
1587 ret = (-EINTR << 2) | RESUME_HOST;
1588 ++vcpu->stat.signal_exits;
1589 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1590 }
1591 }
1592
1593 if (ret == RESUME_GUEST) {
1594 trace_kvm_reenter(vcpu);
1595
1596 kvm_mips_check_asids(vcpu);
1597
1598 /*
1599 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1600 * is live), restore FCR31 / MSACSR.
1601 *
1602 * This should be before returning to the guest exception
1603 * vector, as it may well cause an [MSA] FP exception if there
1604 * are pending exception bits unmasked. (see
1605 * kvm_mips_csr_die_notifier() for how that is handled).
1606 */
1607 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1608 read_c0_status() & ST0_CU1)
1609 __kvm_restore_fcsr(&vcpu->arch);
1610
1611 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1612 read_c0_config5() & MIPS_CONF5_MSAEN)
1613 __kvm_restore_msacsr(&vcpu->arch);
1614 }
1615
1616 /* Disable HTW before returning to guest or host */
1617 htw_stop();
1618
1619 return ret;
1620}
1621
1622/* Enable FPU for guest and restore context */
1623void kvm_own_fpu(struct kvm_vcpu *vcpu)
1624{
1625 struct mips_coproc *cop0 = vcpu->arch.cop0;
1626 unsigned int sr, cfg5;
1627
1628 preempt_disable();
1629
1630 sr = kvm_read_c0_guest_status(cop0);
1631
1632 /*
1633 * If MSA state is already live, it is undefined how it interacts with
1634 * FR=0 FPU state, and we don't want to hit reserved instruction
1635 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1636 * play it safe and save it first.
1637 *
1638 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1639 * get called when guest CU1 is set, however we can't trust the guest
1640 * not to clobber the status register directly via the commpage.
1641 */
1642 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1643 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1644 kvm_lose_fpu(vcpu);
1645
1646 /*
1647 * Enable FPU for guest
1648 * We set FR and FRE according to guest context
1649 */
1650 change_c0_status(ST0_CU1 | ST0_FR, sr);
1651 if (cpu_has_fre) {
1652 cfg5 = kvm_read_c0_guest_config5(cop0);
1653 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654 }
1655 enable_fpu_hazard();
1656
1657 /* If guest FPU state not active, restore it now */
1658 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1659 __kvm_restore_fpu(&vcpu->arch);
1660 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1661 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1662 } else {
1663 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1664 }
1665
1666 preempt_enable();
1667}
1668
1669#ifdef CONFIG_CPU_HAS_MSA
1670/* Enable MSA for guest and restore context */
1671void kvm_own_msa(struct kvm_vcpu *vcpu)
1672{
1673 struct mips_coproc *cop0 = vcpu->arch.cop0;
1674 unsigned int sr, cfg5;
1675
1676 preempt_disable();
1677
1678 /*
1679 * Enable FPU if enabled in guest, since we're restoring FPU context
1680 * anyway. We set FR and FRE according to guest context.
1681 */
1682 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1683 sr = kvm_read_c0_guest_status(cop0);
1684
1685 /*
1686 * If FR=0 FPU state is already live, it is undefined how it
1687 * interacts with MSA state, so play it safe and save it first.
1688 */
1689 if (!(sr & ST0_FR) &&
1690 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1691 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1692 kvm_lose_fpu(vcpu);
1693
1694 change_c0_status(ST0_CU1 | ST0_FR, sr);
1695 if (sr & ST0_CU1 && cpu_has_fre) {
1696 cfg5 = kvm_read_c0_guest_config5(cop0);
1697 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1698 }
1699 }
1700
1701 /* Enable MSA for guest */
1702 set_c0_config5(MIPS_CONF5_MSAEN);
1703 enable_fpu_hazard();
1704
1705 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1706 case KVM_MIPS_AUX_FPU:
1707 /*
1708 * Guest FPU state already loaded, only restore upper MSA state
1709 */
1710 __kvm_restore_msa_upper(&vcpu->arch);
1711 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1712 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1713 break;
1714 case 0:
1715 /* Neither FPU or MSA already active, restore full MSA state */
1716 __kvm_restore_msa(&vcpu->arch);
1717 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1718 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1719 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1720 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1721 KVM_TRACE_AUX_FPU_MSA);
1722 break;
1723 default:
1724 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1725 break;
1726 }
1727
1728 preempt_enable();
1729}
1730#endif
1731
1732/* Drop FPU & MSA without saving it */
1733void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1734{
1735 preempt_disable();
1736 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1737 disable_msa();
1738 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1739 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1740 }
1741 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1742 clear_c0_status(ST0_CU1 | ST0_FR);
1743 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1744 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1745 }
1746 preempt_enable();
1747}
1748
1749/* Save and disable FPU & MSA */
1750void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1751{
1752 /*
1753 * FPU & MSA get disabled in root context (hardware) when it is disabled
1754 * in guest context (software), but the register state in the hardware
1755 * may still be in use. This is why we explicitly re-enable the hardware
1756 * before saving.
1757 */
1758
1759 preempt_disable();
1760 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1761 set_c0_config5(MIPS_CONF5_MSAEN);
1762 enable_fpu_hazard();
1763
1764 __kvm_save_msa(&vcpu->arch);
1765 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1766
1767 /* Disable MSA & FPU */
1768 disable_msa();
1769 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1770 clear_c0_status(ST0_CU1 | ST0_FR);
1771 disable_fpu_hazard();
1772 }
1773 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1774 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1775 set_c0_status(ST0_CU1);
1776 enable_fpu_hazard();
1777
1778 __kvm_save_fpu(&vcpu->arch);
1779 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1780 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1781
1782 /* Disable FPU */
1783 clear_c0_status(ST0_CU1 | ST0_FR);
1784 disable_fpu_hazard();
1785 }
1786 preempt_enable();
1787}
1788
1789/*
1790 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1791 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1792 * exception if cause bits are set in the value being written.
1793 */
1794static int kvm_mips_csr_die_notify(struct notifier_block *self,
1795 unsigned long cmd, void *ptr)
1796{
1797 struct die_args *args = (struct die_args *)ptr;
1798 struct pt_regs *regs = args->regs;
1799 unsigned long pc;
1800
1801 /* Only interested in FPE and MSAFPE */
1802 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1803 return NOTIFY_DONE;
1804
1805 /* Return immediately if guest context isn't active */
1806 if (!(current->flags & PF_VCPU))
1807 return NOTIFY_DONE;
1808
1809 /* Should never get here from user mode */
1810 BUG_ON(user_mode(regs));
1811
1812 pc = instruction_pointer(regs);
1813 switch (cmd) {
1814 case DIE_FP:
1815 /* match 2nd instruction in __kvm_restore_fcsr */
1816 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1817 return NOTIFY_DONE;
1818 break;
1819 case DIE_MSAFP:
1820 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1821 if (!cpu_has_msa ||
1822 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1823 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1824 return NOTIFY_DONE;
1825 break;
1826 }
1827
1828 /* Move PC forward a little and continue executing */
1829 instruction_pointer(regs) += 4;
1830
1831 return NOTIFY_STOP;
1832}
1833
1834static struct notifier_block kvm_mips_csr_die_notifier = {
1835 .notifier_call = kvm_mips_csr_die_notify,
1836};
1837
1838static int __init kvm_mips_init(void)
1839{
1840 int ret;
1841
1842 ret = kvm_mips_entry_setup();
1843 if (ret)
1844 return ret;
1845
1846 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1847
1848 if (ret)
1849 return ret;
1850
1851 register_die_notifier(&kvm_mips_csr_die_notifier);
1852
1853 return 0;
1854}
1855
1856static void __exit kvm_mips_exit(void)
1857{
1858 kvm_exit();
1859
1860 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1861}
1862
1863module_init(kvm_mips_init);
1864module_exit(kvm_mips_exit);
1865
1866EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/bitops.h>
13#include <linux/errno.h>
14#include <linux/err.h>
15#include <linux/kdebug.h>
16#include <linux/module.h>
17#include <linux/uaccess.h>
18#include <linux/vmalloc.h>
19#include <linux/sched/signal.h>
20#include <linux/fs.h>
21#include <linux/memblock.h>
22#include <linux/pgtable.h>
23
24#include <asm/fpu.h>
25#include <asm/page.h>
26#include <asm/cacheflush.h>
27#include <asm/mmu_context.h>
28#include <asm/pgalloc.h>
29
30#include <linux/kvm_host.h>
31
32#include "interrupt.h"
33
34#define CREATE_TRACE_POINTS
35#include "trace.h"
36
37#ifndef VECTORSPACING
38#define VECTORSPACING 0x100 /* for EI/VI mode */
39#endif
40
41const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43};
44
45const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52};
53
54const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82#ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84#endif
85};
86
87const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94};
95
96bool kvm_trace_guest_mode_change;
97
98int kvm_guest_mode_change_trace_reg(void)
99{
100 kvm_trace_guest_mode_change = true;
101 return 0;
102}
103
104void kvm_guest_mode_change_trace_unreg(void)
105{
106 kvm_trace_guest_mode_change = false;
107}
108
109/*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114{
115 return !!(vcpu->arch.pending_exceptions);
116}
117
118bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119{
120 return false;
121}
122
123int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124{
125 return 1;
126}
127
128int kvm_arch_hardware_enable(void)
129{
130 return kvm_mips_callbacks->hardware_enable();
131}
132
133void kvm_arch_hardware_disable(void)
134{
135 kvm_mips_callbacks->hardware_disable();
136}
137
138int kvm_arch_hardware_setup(void *opaque)
139{
140 return 0;
141}
142
143int kvm_arch_check_processor_compat(void *opaque)
144{
145 return 0;
146}
147
148extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151{
152 switch (type) {
153 case KVM_VM_MIPS_AUTO:
154 break;
155 case KVM_VM_MIPS_VZ:
156 break;
157 default:
158 /* Unsupported KVM type */
159 return -EINVAL;
160 }
161
162 /* Allocate page table to map GPA -> RPA */
163 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164 if (!kvm->arch.gpa_mm.pgd)
165 return -ENOMEM;
166
167#ifdef CONFIG_CPU_LOONGSON64
168 kvm_init_loongson_ipi(kvm);
169#endif
170
171 return 0;
172}
173
174static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175{
176 /* It should always be safe to remove after flushing the whole range */
177 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179}
180
181void kvm_arch_destroy_vm(struct kvm *kvm)
182{
183 kvm_destroy_vcpus(kvm);
184 kvm_mips_free_gpa_pt(kvm);
185}
186
187long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 unsigned long arg)
189{
190 return -ENOIOCTLCMD;
191}
192
193void kvm_arch_flush_shadow_all(struct kvm *kvm)
194{
195 /* Flush whole GPA */
196 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
197 kvm_flush_remote_tlbs(kvm);
198}
199
200void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
201 struct kvm_memory_slot *slot)
202{
203 /*
204 * The slot has been made invalid (ready for moving or deletion), so we
205 * need to ensure that it can no longer be accessed by any guest VCPUs.
206 */
207
208 spin_lock(&kvm->mmu_lock);
209 /* Flush slot from GPA */
210 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
211 slot->base_gfn + slot->npages - 1);
212 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
213 spin_unlock(&kvm->mmu_lock);
214}
215
216int kvm_arch_prepare_memory_region(struct kvm *kvm,
217 const struct kvm_memory_slot *old,
218 struct kvm_memory_slot *new,
219 enum kvm_mr_change change)
220{
221 return 0;
222}
223
224void kvm_arch_commit_memory_region(struct kvm *kvm,
225 struct kvm_memory_slot *old,
226 const struct kvm_memory_slot *new,
227 enum kvm_mr_change change)
228{
229 int needs_flush;
230
231 /*
232 * If dirty page logging is enabled, write protect all pages in the slot
233 * ready for dirty logging.
234 *
235 * There is no need to do this in any of the following cases:
236 * CREATE: No dirty mappings will already exist.
237 * MOVE/DELETE: The old mappings will already have been cleaned up by
238 * kvm_arch_flush_shadow_memslot()
239 */
240 if (change == KVM_MR_FLAGS_ONLY &&
241 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
242 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
243 spin_lock(&kvm->mmu_lock);
244 /* Write protect GPA page table entries */
245 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
246 new->base_gfn + new->npages - 1);
247 if (needs_flush)
248 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
249 spin_unlock(&kvm->mmu_lock);
250 }
251}
252
253static inline void dump_handler(const char *symbol, void *start, void *end)
254{
255 u32 *p;
256
257 pr_debug("LEAF(%s)\n", symbol);
258
259 pr_debug("\t.set push\n");
260 pr_debug("\t.set noreorder\n");
261
262 for (p = start; p < (u32 *)end; ++p)
263 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
264
265 pr_debug("\t.set\tpop\n");
266
267 pr_debug("\tEND(%s)\n", symbol);
268}
269
270/* low level hrtimer wake routine */
271static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
272{
273 struct kvm_vcpu *vcpu;
274
275 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
276
277 kvm_mips_callbacks->queue_timer_int(vcpu);
278
279 vcpu->arch.wait = 0;
280 rcuwait_wake_up(&vcpu->wait);
281
282 return kvm_mips_count_timeout(vcpu);
283}
284
285int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
286{
287 return 0;
288}
289
290int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
291{
292 int err, size;
293 void *gebase, *p, *handler, *refill_start, *refill_end;
294 int i;
295
296 kvm_debug("kvm @ %p: create cpu %d at %p\n",
297 vcpu->kvm, vcpu->vcpu_id, vcpu);
298
299 err = kvm_mips_callbacks->vcpu_init(vcpu);
300 if (err)
301 return err;
302
303 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
304 HRTIMER_MODE_REL);
305 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
306
307 /*
308 * Allocate space for host mode exception handlers that handle
309 * guest mode exits
310 */
311 if (cpu_has_veic || cpu_has_vint)
312 size = 0x200 + VECTORSPACING * 64;
313 else
314 size = 0x4000;
315
316 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
317
318 if (!gebase) {
319 err = -ENOMEM;
320 goto out_uninit_vcpu;
321 }
322 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
323 ALIGN(size, PAGE_SIZE), gebase);
324
325 /*
326 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
327 * limits us to the low 512MB of physical address space. If the memory
328 * we allocate is out of range, just give up now.
329 */
330 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
331 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
332 gebase);
333 err = -ENOMEM;
334 goto out_free_gebase;
335 }
336
337 /* Save new ebase */
338 vcpu->arch.guest_ebase = gebase;
339
340 /* Build guest exception vectors dynamically in unmapped memory */
341 handler = gebase + 0x2000;
342
343 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
344 refill_start = gebase;
345 if (IS_ENABLED(CONFIG_64BIT))
346 refill_start += 0x080;
347 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
348
349 /* General Exception Entry point */
350 kvm_mips_build_exception(gebase + 0x180, handler);
351
352 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
353 for (i = 0; i < 8; i++) {
354 kvm_debug("L1 Vectored handler @ %p\n",
355 gebase + 0x200 + (i * VECTORSPACING));
356 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
357 handler);
358 }
359
360 /* General exit handler */
361 p = handler;
362 p = kvm_mips_build_exit(p);
363
364 /* Guest entry routine */
365 vcpu->arch.vcpu_run = p;
366 p = kvm_mips_build_vcpu_run(p);
367
368 /* Dump the generated code */
369 pr_debug("#include <asm/asm.h>\n");
370 pr_debug("#include <asm/regdef.h>\n");
371 pr_debug("\n");
372 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
373 dump_handler("kvm_tlb_refill", refill_start, refill_end);
374 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
375 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
376
377 /* Invalidate the icache for these ranges */
378 flush_icache_range((unsigned long)gebase,
379 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
380
381 /* Init */
382 vcpu->arch.last_sched_cpu = -1;
383 vcpu->arch.last_exec_cpu = -1;
384
385 /* Initial guest state */
386 err = kvm_mips_callbacks->vcpu_setup(vcpu);
387 if (err)
388 goto out_free_gebase;
389
390 return 0;
391
392out_free_gebase:
393 kfree(gebase);
394out_uninit_vcpu:
395 kvm_mips_callbacks->vcpu_uninit(vcpu);
396 return err;
397}
398
399void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
400{
401 hrtimer_cancel(&vcpu->arch.comparecount_timer);
402
403 kvm_mips_dump_stats(vcpu);
404
405 kvm_mmu_free_memory_caches(vcpu);
406 kfree(vcpu->arch.guest_ebase);
407
408 kvm_mips_callbacks->vcpu_uninit(vcpu);
409}
410
411int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
412 struct kvm_guest_debug *dbg)
413{
414 return -ENOIOCTLCMD;
415}
416
417/*
418 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
419 * the vCPU is running.
420 *
421 * This must be noinstr as instrumentation may make use of RCU, and this is not
422 * safe during the EQS.
423 */
424static int noinstr kvm_mips_vcpu_enter_exit(struct kvm_vcpu *vcpu)
425{
426 int ret;
427
428 guest_state_enter_irqoff();
429 ret = kvm_mips_callbacks->vcpu_run(vcpu);
430 guest_state_exit_irqoff();
431
432 return ret;
433}
434
435int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
436{
437 int r = -EINTR;
438
439 vcpu_load(vcpu);
440
441 kvm_sigset_activate(vcpu);
442
443 if (vcpu->mmio_needed) {
444 if (!vcpu->mmio_is_write)
445 kvm_mips_complete_mmio_load(vcpu);
446 vcpu->mmio_needed = 0;
447 }
448
449 if (vcpu->run->immediate_exit)
450 goto out;
451
452 lose_fpu(1);
453
454 local_irq_disable();
455 guest_timing_enter_irqoff();
456 trace_kvm_enter(vcpu);
457
458 /*
459 * Make sure the read of VCPU requests in vcpu_run() callback is not
460 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
461 * flush request while the requester sees the VCPU as outside of guest
462 * mode and not needing an IPI.
463 */
464 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
465
466 r = kvm_mips_vcpu_enter_exit(vcpu);
467
468 /*
469 * We must ensure that any pending interrupts are taken before
470 * we exit guest timing so that timer ticks are accounted as
471 * guest time. Transiently unmask interrupts so that any
472 * pending interrupts are taken.
473 *
474 * TODO: is there a barrier which ensures that pending interrupts are
475 * recognised? Currently this just hopes that the CPU takes any pending
476 * interrupts between the enable and disable.
477 */
478 local_irq_enable();
479 local_irq_disable();
480
481 trace_kvm_out(vcpu);
482 guest_timing_exit_irqoff();
483 local_irq_enable();
484
485out:
486 kvm_sigset_deactivate(vcpu);
487
488 vcpu_put(vcpu);
489 return r;
490}
491
492int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
493 struct kvm_mips_interrupt *irq)
494{
495 int intr = (int)irq->irq;
496 struct kvm_vcpu *dvcpu = NULL;
497
498 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
499 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
500 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
501 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
502 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
503 (int)intr);
504
505 if (irq->cpu == -1)
506 dvcpu = vcpu;
507 else
508 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
509
510 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
511 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
512
513 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
514 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
515 } else {
516 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
517 irq->cpu, irq->irq);
518 return -EINVAL;
519 }
520
521 dvcpu->arch.wait = 0;
522
523 rcuwait_wake_up(&dvcpu->wait);
524
525 return 0;
526}
527
528int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
529 struct kvm_mp_state *mp_state)
530{
531 return -ENOIOCTLCMD;
532}
533
534int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
535 struct kvm_mp_state *mp_state)
536{
537 return -ENOIOCTLCMD;
538}
539
540static u64 kvm_mips_get_one_regs[] = {
541 KVM_REG_MIPS_R0,
542 KVM_REG_MIPS_R1,
543 KVM_REG_MIPS_R2,
544 KVM_REG_MIPS_R3,
545 KVM_REG_MIPS_R4,
546 KVM_REG_MIPS_R5,
547 KVM_REG_MIPS_R6,
548 KVM_REG_MIPS_R7,
549 KVM_REG_MIPS_R8,
550 KVM_REG_MIPS_R9,
551 KVM_REG_MIPS_R10,
552 KVM_REG_MIPS_R11,
553 KVM_REG_MIPS_R12,
554 KVM_REG_MIPS_R13,
555 KVM_REG_MIPS_R14,
556 KVM_REG_MIPS_R15,
557 KVM_REG_MIPS_R16,
558 KVM_REG_MIPS_R17,
559 KVM_REG_MIPS_R18,
560 KVM_REG_MIPS_R19,
561 KVM_REG_MIPS_R20,
562 KVM_REG_MIPS_R21,
563 KVM_REG_MIPS_R22,
564 KVM_REG_MIPS_R23,
565 KVM_REG_MIPS_R24,
566 KVM_REG_MIPS_R25,
567 KVM_REG_MIPS_R26,
568 KVM_REG_MIPS_R27,
569 KVM_REG_MIPS_R28,
570 KVM_REG_MIPS_R29,
571 KVM_REG_MIPS_R30,
572 KVM_REG_MIPS_R31,
573
574#ifndef CONFIG_CPU_MIPSR6
575 KVM_REG_MIPS_HI,
576 KVM_REG_MIPS_LO,
577#endif
578 KVM_REG_MIPS_PC,
579};
580
581static u64 kvm_mips_get_one_regs_fpu[] = {
582 KVM_REG_MIPS_FCR_IR,
583 KVM_REG_MIPS_FCR_CSR,
584};
585
586static u64 kvm_mips_get_one_regs_msa[] = {
587 KVM_REG_MIPS_MSA_IR,
588 KVM_REG_MIPS_MSA_CSR,
589};
590
591static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
592{
593 unsigned long ret;
594
595 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
596 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
597 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
598 /* odd doubles */
599 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
600 ret += 16;
601 }
602 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
603 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
604 ret += kvm_mips_callbacks->num_regs(vcpu);
605
606 return ret;
607}
608
609static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
610{
611 u64 index;
612 unsigned int i;
613
614 if (copy_to_user(indices, kvm_mips_get_one_regs,
615 sizeof(kvm_mips_get_one_regs)))
616 return -EFAULT;
617 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
618
619 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
620 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
621 sizeof(kvm_mips_get_one_regs_fpu)))
622 return -EFAULT;
623 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
624
625 for (i = 0; i < 32; ++i) {
626 index = KVM_REG_MIPS_FPR_32(i);
627 if (copy_to_user(indices, &index, sizeof(index)))
628 return -EFAULT;
629 ++indices;
630
631 /* skip odd doubles if no F64 */
632 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
633 continue;
634
635 index = KVM_REG_MIPS_FPR_64(i);
636 if (copy_to_user(indices, &index, sizeof(index)))
637 return -EFAULT;
638 ++indices;
639 }
640 }
641
642 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
643 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
644 sizeof(kvm_mips_get_one_regs_msa)))
645 return -EFAULT;
646 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
647
648 for (i = 0; i < 32; ++i) {
649 index = KVM_REG_MIPS_VEC_128(i);
650 if (copy_to_user(indices, &index, sizeof(index)))
651 return -EFAULT;
652 ++indices;
653 }
654 }
655
656 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
657}
658
659static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
660 const struct kvm_one_reg *reg)
661{
662 struct mips_coproc *cop0 = vcpu->arch.cop0;
663 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
664 int ret;
665 s64 v;
666 s64 vs[2];
667 unsigned int idx;
668
669 switch (reg->id) {
670 /* General purpose registers */
671 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
672 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
673 break;
674#ifndef CONFIG_CPU_MIPSR6
675 case KVM_REG_MIPS_HI:
676 v = (long)vcpu->arch.hi;
677 break;
678 case KVM_REG_MIPS_LO:
679 v = (long)vcpu->arch.lo;
680 break;
681#endif
682 case KVM_REG_MIPS_PC:
683 v = (long)vcpu->arch.pc;
684 break;
685
686 /* Floating point registers */
687 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
688 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
689 return -EINVAL;
690 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
691 /* Odd singles in top of even double when FR=0 */
692 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
693 v = get_fpr32(&fpu->fpr[idx], 0);
694 else
695 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
696 break;
697 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
698 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
699 return -EINVAL;
700 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
701 /* Can't access odd doubles in FR=0 mode */
702 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
703 return -EINVAL;
704 v = get_fpr64(&fpu->fpr[idx], 0);
705 break;
706 case KVM_REG_MIPS_FCR_IR:
707 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708 return -EINVAL;
709 v = boot_cpu_data.fpu_id;
710 break;
711 case KVM_REG_MIPS_FCR_CSR:
712 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
713 return -EINVAL;
714 v = fpu->fcr31;
715 break;
716
717 /* MIPS SIMD Architecture (MSA) registers */
718 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
719 if (!kvm_mips_guest_has_msa(&vcpu->arch))
720 return -EINVAL;
721 /* Can't access MSA registers in FR=0 mode */
722 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
723 return -EINVAL;
724 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
725#ifdef CONFIG_CPU_LITTLE_ENDIAN
726 /* least significant byte first */
727 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
728 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
729#else
730 /* most significant byte first */
731 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
732 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
733#endif
734 break;
735 case KVM_REG_MIPS_MSA_IR:
736 if (!kvm_mips_guest_has_msa(&vcpu->arch))
737 return -EINVAL;
738 v = boot_cpu_data.msa_id;
739 break;
740 case KVM_REG_MIPS_MSA_CSR:
741 if (!kvm_mips_guest_has_msa(&vcpu->arch))
742 return -EINVAL;
743 v = fpu->msacsr;
744 break;
745
746 /* registers to be handled specially */
747 default:
748 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
749 if (ret)
750 return ret;
751 break;
752 }
753 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
754 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
755
756 return put_user(v, uaddr64);
757 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
758 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
759 u32 v32 = (u32)v;
760
761 return put_user(v32, uaddr32);
762 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
763 void __user *uaddr = (void __user *)(long)reg->addr;
764
765 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
766 } else {
767 return -EINVAL;
768 }
769}
770
771static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
772 const struct kvm_one_reg *reg)
773{
774 struct mips_coproc *cop0 = vcpu->arch.cop0;
775 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
776 s64 v;
777 s64 vs[2];
778 unsigned int idx;
779
780 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
781 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
782
783 if (get_user(v, uaddr64) != 0)
784 return -EFAULT;
785 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
786 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
787 s32 v32;
788
789 if (get_user(v32, uaddr32) != 0)
790 return -EFAULT;
791 v = (s64)v32;
792 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
793 void __user *uaddr = (void __user *)(long)reg->addr;
794
795 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
796 } else {
797 return -EINVAL;
798 }
799
800 switch (reg->id) {
801 /* General purpose registers */
802 case KVM_REG_MIPS_R0:
803 /* Silently ignore requests to set $0 */
804 break;
805 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
806 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
807 break;
808#ifndef CONFIG_CPU_MIPSR6
809 case KVM_REG_MIPS_HI:
810 vcpu->arch.hi = v;
811 break;
812 case KVM_REG_MIPS_LO:
813 vcpu->arch.lo = v;
814 break;
815#endif
816 case KVM_REG_MIPS_PC:
817 vcpu->arch.pc = v;
818 break;
819
820 /* Floating point registers */
821 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
822 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
823 return -EINVAL;
824 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
825 /* Odd singles in top of even double when FR=0 */
826 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
827 set_fpr32(&fpu->fpr[idx], 0, v);
828 else
829 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
830 break;
831 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
832 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
833 return -EINVAL;
834 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
835 /* Can't access odd doubles in FR=0 mode */
836 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
837 return -EINVAL;
838 set_fpr64(&fpu->fpr[idx], 0, v);
839 break;
840 case KVM_REG_MIPS_FCR_IR:
841 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
842 return -EINVAL;
843 /* Read-only */
844 break;
845 case KVM_REG_MIPS_FCR_CSR:
846 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
847 return -EINVAL;
848 fpu->fcr31 = v;
849 break;
850
851 /* MIPS SIMD Architecture (MSA) registers */
852 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
853 if (!kvm_mips_guest_has_msa(&vcpu->arch))
854 return -EINVAL;
855 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
856#ifdef CONFIG_CPU_LITTLE_ENDIAN
857 /* least significant byte first */
858 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
859 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
860#else
861 /* most significant byte first */
862 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
863 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
864#endif
865 break;
866 case KVM_REG_MIPS_MSA_IR:
867 if (!kvm_mips_guest_has_msa(&vcpu->arch))
868 return -EINVAL;
869 /* Read-only */
870 break;
871 case KVM_REG_MIPS_MSA_CSR:
872 if (!kvm_mips_guest_has_msa(&vcpu->arch))
873 return -EINVAL;
874 fpu->msacsr = v;
875 break;
876
877 /* registers to be handled specially */
878 default:
879 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
880 }
881 return 0;
882}
883
884static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
885 struct kvm_enable_cap *cap)
886{
887 int r = 0;
888
889 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
890 return -EINVAL;
891 if (cap->flags)
892 return -EINVAL;
893 if (cap->args[0])
894 return -EINVAL;
895
896 switch (cap->cap) {
897 case KVM_CAP_MIPS_FPU:
898 vcpu->arch.fpu_enabled = true;
899 break;
900 case KVM_CAP_MIPS_MSA:
901 vcpu->arch.msa_enabled = true;
902 break;
903 default:
904 r = -EINVAL;
905 break;
906 }
907
908 return r;
909}
910
911long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
912 unsigned long arg)
913{
914 struct kvm_vcpu *vcpu = filp->private_data;
915 void __user *argp = (void __user *)arg;
916
917 if (ioctl == KVM_INTERRUPT) {
918 struct kvm_mips_interrupt irq;
919
920 if (copy_from_user(&irq, argp, sizeof(irq)))
921 return -EFAULT;
922 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
923 irq.irq);
924
925 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
926 }
927
928 return -ENOIOCTLCMD;
929}
930
931long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
932 unsigned long arg)
933{
934 struct kvm_vcpu *vcpu = filp->private_data;
935 void __user *argp = (void __user *)arg;
936 long r;
937
938 vcpu_load(vcpu);
939
940 switch (ioctl) {
941 case KVM_SET_ONE_REG:
942 case KVM_GET_ONE_REG: {
943 struct kvm_one_reg reg;
944
945 r = -EFAULT;
946 if (copy_from_user(®, argp, sizeof(reg)))
947 break;
948 if (ioctl == KVM_SET_ONE_REG)
949 r = kvm_mips_set_reg(vcpu, ®);
950 else
951 r = kvm_mips_get_reg(vcpu, ®);
952 break;
953 }
954 case KVM_GET_REG_LIST: {
955 struct kvm_reg_list __user *user_list = argp;
956 struct kvm_reg_list reg_list;
957 unsigned n;
958
959 r = -EFAULT;
960 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
961 break;
962 n = reg_list.n;
963 reg_list.n = kvm_mips_num_regs(vcpu);
964 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
965 break;
966 r = -E2BIG;
967 if (n < reg_list.n)
968 break;
969 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
970 break;
971 }
972 case KVM_ENABLE_CAP: {
973 struct kvm_enable_cap cap;
974
975 r = -EFAULT;
976 if (copy_from_user(&cap, argp, sizeof(cap)))
977 break;
978 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
979 break;
980 }
981 default:
982 r = -ENOIOCTLCMD;
983 }
984
985 vcpu_put(vcpu);
986 return r;
987}
988
989void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
990{
991
992}
993
994int kvm_arch_flush_remote_tlb(struct kvm *kvm)
995{
996 kvm_mips_callbacks->prepare_flush_shadow(kvm);
997 return 1;
998}
999
1000void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1001 const struct kvm_memory_slot *memslot)
1002{
1003 kvm_flush_remote_tlbs(kvm);
1004}
1005
1006long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1007{
1008 long r;
1009
1010 switch (ioctl) {
1011 default:
1012 r = -ENOIOCTLCMD;
1013 }
1014
1015 return r;
1016}
1017
1018int kvm_arch_init(void *opaque)
1019{
1020 if (kvm_mips_callbacks) {
1021 kvm_err("kvm: module already exists\n");
1022 return -EEXIST;
1023 }
1024
1025 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1026}
1027
1028void kvm_arch_exit(void)
1029{
1030 kvm_mips_callbacks = NULL;
1031}
1032
1033int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034 struct kvm_sregs *sregs)
1035{
1036 return -ENOIOCTLCMD;
1037}
1038
1039int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1040 struct kvm_sregs *sregs)
1041{
1042 return -ENOIOCTLCMD;
1043}
1044
1045void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1046{
1047}
1048
1049int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1050{
1051 return -ENOIOCTLCMD;
1052}
1053
1054int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1055{
1056 return -ENOIOCTLCMD;
1057}
1058
1059vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1060{
1061 return VM_FAULT_SIGBUS;
1062}
1063
1064int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1065{
1066 int r;
1067
1068 switch (ext) {
1069 case KVM_CAP_ONE_REG:
1070 case KVM_CAP_ENABLE_CAP:
1071 case KVM_CAP_READONLY_MEM:
1072 case KVM_CAP_SYNC_MMU:
1073 case KVM_CAP_IMMEDIATE_EXIT:
1074 r = 1;
1075 break;
1076 case KVM_CAP_NR_VCPUS:
1077 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1078 break;
1079 case KVM_CAP_MAX_VCPUS:
1080 r = KVM_MAX_VCPUS;
1081 break;
1082 case KVM_CAP_MAX_VCPU_ID:
1083 r = KVM_MAX_VCPU_IDS;
1084 break;
1085 case KVM_CAP_MIPS_FPU:
1086 /* We don't handle systems with inconsistent cpu_has_fpu */
1087 r = !!raw_cpu_has_fpu;
1088 break;
1089 case KVM_CAP_MIPS_MSA:
1090 /*
1091 * We don't support MSA vector partitioning yet:
1092 * 1) It would require explicit support which can't be tested
1093 * yet due to lack of support in current hardware.
1094 * 2) It extends the state that would need to be saved/restored
1095 * by e.g. QEMU for migration.
1096 *
1097 * When vector partitioning hardware becomes available, support
1098 * could be added by requiring a flag when enabling
1099 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1100 * to save/restore the appropriate extra state.
1101 */
1102 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1103 break;
1104 default:
1105 r = kvm_mips_callbacks->check_extension(kvm, ext);
1106 break;
1107 }
1108 return r;
1109}
1110
1111int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1112{
1113 return kvm_mips_pending_timer(vcpu) ||
1114 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1115}
1116
1117int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1118{
1119 int i;
1120 struct mips_coproc *cop0;
1121
1122 if (!vcpu)
1123 return -1;
1124
1125 kvm_debug("VCPU Register Dump:\n");
1126 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1127 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1128
1129 for (i = 0; i < 32; i += 4) {
1130 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1131 vcpu->arch.gprs[i],
1132 vcpu->arch.gprs[i + 1],
1133 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1134 }
1135 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1136 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1137
1138 cop0 = vcpu->arch.cop0;
1139 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1140 kvm_read_c0_guest_status(cop0),
1141 kvm_read_c0_guest_cause(cop0));
1142
1143 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1144
1145 return 0;
1146}
1147
1148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1149{
1150 int i;
1151
1152 vcpu_load(vcpu);
1153
1154 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1155 vcpu->arch.gprs[i] = regs->gpr[i];
1156 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1157 vcpu->arch.hi = regs->hi;
1158 vcpu->arch.lo = regs->lo;
1159 vcpu->arch.pc = regs->pc;
1160
1161 vcpu_put(vcpu);
1162 return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167 int i;
1168
1169 vcpu_load(vcpu);
1170
1171 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172 regs->gpr[i] = vcpu->arch.gprs[i];
1173
1174 regs->hi = vcpu->arch.hi;
1175 regs->lo = vcpu->arch.lo;
1176 regs->pc = vcpu->arch.pc;
1177
1178 vcpu_put(vcpu);
1179 return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1183 struct kvm_translation *tr)
1184{
1185 return 0;
1186}
1187
1188static void kvm_mips_set_c0_status(void)
1189{
1190 u32 status = read_c0_status();
1191
1192 if (cpu_has_dsp)
1193 status |= (ST0_MX);
1194
1195 write_c0_status(status);
1196 ehb();
1197}
1198
1199/*
1200 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1201 */
1202static int __kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1203{
1204 struct kvm_run *run = vcpu->run;
1205 u32 cause = vcpu->arch.host_cp0_cause;
1206 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1207 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1208 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1209 enum emulation_result er = EMULATE_DONE;
1210 u32 inst;
1211 int ret = RESUME_GUEST;
1212
1213 vcpu->mode = OUTSIDE_GUEST_MODE;
1214
1215 /* Set a default exit reason */
1216 run->exit_reason = KVM_EXIT_UNKNOWN;
1217 run->ready_for_interrupt_injection = 1;
1218
1219 /*
1220 * Set the appropriate status bits based on host CPU features,
1221 * before we hit the scheduler
1222 */
1223 kvm_mips_set_c0_status();
1224
1225 local_irq_enable();
1226
1227 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228 cause, opc, run, vcpu);
1229 trace_kvm_exit(vcpu, exccode);
1230
1231 switch (exccode) {
1232 case EXCCODE_INT:
1233 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1234
1235 ++vcpu->stat.int_exits;
1236
1237 if (need_resched())
1238 cond_resched();
1239
1240 ret = RESUME_GUEST;
1241 break;
1242
1243 case EXCCODE_CPU:
1244 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1245
1246 ++vcpu->stat.cop_unusable_exits;
1247 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1248 /* XXXKYMA: Might need to return to user space */
1249 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1250 ret = RESUME_HOST;
1251 break;
1252
1253 case EXCCODE_MOD:
1254 ++vcpu->stat.tlbmod_exits;
1255 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1256 break;
1257
1258 case EXCCODE_TLBS:
1259 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1260 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1261 badvaddr);
1262
1263 ++vcpu->stat.tlbmiss_st_exits;
1264 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1265 break;
1266
1267 case EXCCODE_TLBL:
1268 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1269 cause, opc, badvaddr);
1270
1271 ++vcpu->stat.tlbmiss_ld_exits;
1272 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1273 break;
1274
1275 case EXCCODE_ADES:
1276 ++vcpu->stat.addrerr_st_exits;
1277 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1278 break;
1279
1280 case EXCCODE_ADEL:
1281 ++vcpu->stat.addrerr_ld_exits;
1282 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1283 break;
1284
1285 case EXCCODE_SYS:
1286 ++vcpu->stat.syscall_exits;
1287 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1288 break;
1289
1290 case EXCCODE_RI:
1291 ++vcpu->stat.resvd_inst_exits;
1292 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1293 break;
1294
1295 case EXCCODE_BP:
1296 ++vcpu->stat.break_inst_exits;
1297 ret = kvm_mips_callbacks->handle_break(vcpu);
1298 break;
1299
1300 case EXCCODE_TR:
1301 ++vcpu->stat.trap_inst_exits;
1302 ret = kvm_mips_callbacks->handle_trap(vcpu);
1303 break;
1304
1305 case EXCCODE_MSAFPE:
1306 ++vcpu->stat.msa_fpe_exits;
1307 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1308 break;
1309
1310 case EXCCODE_FPE:
1311 ++vcpu->stat.fpe_exits;
1312 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1313 break;
1314
1315 case EXCCODE_MSADIS:
1316 ++vcpu->stat.msa_disabled_exits;
1317 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1318 break;
1319
1320 case EXCCODE_GE:
1321 /* defer exit accounting to handler */
1322 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1323 break;
1324
1325 default:
1326 if (cause & CAUSEF_BD)
1327 opc += 1;
1328 inst = 0;
1329 kvm_get_badinstr(opc, vcpu, &inst);
1330 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1331 exccode, opc, inst, badvaddr,
1332 kvm_read_c0_guest_status(vcpu->arch.cop0));
1333 kvm_arch_vcpu_dump_regs(vcpu);
1334 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335 ret = RESUME_HOST;
1336 break;
1337
1338 }
1339
1340 local_irq_disable();
1341
1342 if (ret == RESUME_GUEST)
1343 kvm_vz_acquire_htimer(vcpu);
1344
1345 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1346 kvm_mips_deliver_interrupts(vcpu, cause);
1347
1348 if (!(ret & RESUME_HOST)) {
1349 /* Only check for signals if not already exiting to userspace */
1350 if (signal_pending(current)) {
1351 run->exit_reason = KVM_EXIT_INTR;
1352 ret = (-EINTR << 2) | RESUME_HOST;
1353 ++vcpu->stat.signal_exits;
1354 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1355 }
1356 }
1357
1358 if (ret == RESUME_GUEST) {
1359 trace_kvm_reenter(vcpu);
1360
1361 /*
1362 * Make sure the read of VCPU requests in vcpu_reenter()
1363 * callback is not reordered ahead of the write to vcpu->mode,
1364 * or we could miss a TLB flush request while the requester sees
1365 * the VCPU as outside of guest mode and not needing an IPI.
1366 */
1367 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1368
1369 kvm_mips_callbacks->vcpu_reenter(vcpu);
1370
1371 /*
1372 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1373 * is live), restore FCR31 / MSACSR.
1374 *
1375 * This should be before returning to the guest exception
1376 * vector, as it may well cause an [MSA] FP exception if there
1377 * are pending exception bits unmasked. (see
1378 * kvm_mips_csr_die_notifier() for how that is handled).
1379 */
1380 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1381 read_c0_status() & ST0_CU1)
1382 __kvm_restore_fcsr(&vcpu->arch);
1383
1384 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1385 read_c0_config5() & MIPS_CONF5_MSAEN)
1386 __kvm_restore_msacsr(&vcpu->arch);
1387 }
1388 return ret;
1389}
1390
1391int noinstr kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1392{
1393 int ret;
1394
1395 guest_state_exit_irqoff();
1396 ret = __kvm_mips_handle_exit(vcpu);
1397 guest_state_enter_irqoff();
1398
1399 return ret;
1400}
1401
1402/* Enable FPU for guest and restore context */
1403void kvm_own_fpu(struct kvm_vcpu *vcpu)
1404{
1405 struct mips_coproc *cop0 = vcpu->arch.cop0;
1406 unsigned int sr, cfg5;
1407
1408 preempt_disable();
1409
1410 sr = kvm_read_c0_guest_status(cop0);
1411
1412 /*
1413 * If MSA state is already live, it is undefined how it interacts with
1414 * FR=0 FPU state, and we don't want to hit reserved instruction
1415 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1416 * play it safe and save it first.
1417 */
1418 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1419 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1420 kvm_lose_fpu(vcpu);
1421
1422 /*
1423 * Enable FPU for guest
1424 * We set FR and FRE according to guest context
1425 */
1426 change_c0_status(ST0_CU1 | ST0_FR, sr);
1427 if (cpu_has_fre) {
1428 cfg5 = kvm_read_c0_guest_config5(cop0);
1429 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1430 }
1431 enable_fpu_hazard();
1432
1433 /* If guest FPU state not active, restore it now */
1434 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1435 __kvm_restore_fpu(&vcpu->arch);
1436 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1437 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1438 } else {
1439 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1440 }
1441
1442 preempt_enable();
1443}
1444
1445#ifdef CONFIG_CPU_HAS_MSA
1446/* Enable MSA for guest and restore context */
1447void kvm_own_msa(struct kvm_vcpu *vcpu)
1448{
1449 struct mips_coproc *cop0 = vcpu->arch.cop0;
1450 unsigned int sr, cfg5;
1451
1452 preempt_disable();
1453
1454 /*
1455 * Enable FPU if enabled in guest, since we're restoring FPU context
1456 * anyway. We set FR and FRE according to guest context.
1457 */
1458 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1459 sr = kvm_read_c0_guest_status(cop0);
1460
1461 /*
1462 * If FR=0 FPU state is already live, it is undefined how it
1463 * interacts with MSA state, so play it safe and save it first.
1464 */
1465 if (!(sr & ST0_FR) &&
1466 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1467 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1468 kvm_lose_fpu(vcpu);
1469
1470 change_c0_status(ST0_CU1 | ST0_FR, sr);
1471 if (sr & ST0_CU1 && cpu_has_fre) {
1472 cfg5 = kvm_read_c0_guest_config5(cop0);
1473 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1474 }
1475 }
1476
1477 /* Enable MSA for guest */
1478 set_c0_config5(MIPS_CONF5_MSAEN);
1479 enable_fpu_hazard();
1480
1481 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1482 case KVM_MIPS_AUX_FPU:
1483 /*
1484 * Guest FPU state already loaded, only restore upper MSA state
1485 */
1486 __kvm_restore_msa_upper(&vcpu->arch);
1487 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1488 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1489 break;
1490 case 0:
1491 /* Neither FPU or MSA already active, restore full MSA state */
1492 __kvm_restore_msa(&vcpu->arch);
1493 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1494 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1495 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1496 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1497 KVM_TRACE_AUX_FPU_MSA);
1498 break;
1499 default:
1500 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1501 break;
1502 }
1503
1504 preempt_enable();
1505}
1506#endif
1507
1508/* Drop FPU & MSA without saving it */
1509void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1510{
1511 preempt_disable();
1512 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1513 disable_msa();
1514 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1515 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1516 }
1517 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1518 clear_c0_status(ST0_CU1 | ST0_FR);
1519 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1520 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1521 }
1522 preempt_enable();
1523}
1524
1525/* Save and disable FPU & MSA */
1526void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1527{
1528 /*
1529 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1530 * is disabled in guest context (software), but the register state in
1531 * the hardware may still be in use.
1532 * This is why we explicitly re-enable the hardware before saving.
1533 */
1534
1535 preempt_disable();
1536 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1537 __kvm_save_msa(&vcpu->arch);
1538 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1539
1540 /* Disable MSA & FPU */
1541 disable_msa();
1542 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1543 clear_c0_status(ST0_CU1 | ST0_FR);
1544 disable_fpu_hazard();
1545 }
1546 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1547 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1548 __kvm_save_fpu(&vcpu->arch);
1549 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1550 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1551
1552 /* Disable FPU */
1553 clear_c0_status(ST0_CU1 | ST0_FR);
1554 disable_fpu_hazard();
1555 }
1556 preempt_enable();
1557}
1558
1559/*
1560 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1561 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1562 * exception if cause bits are set in the value being written.
1563 */
1564static int kvm_mips_csr_die_notify(struct notifier_block *self,
1565 unsigned long cmd, void *ptr)
1566{
1567 struct die_args *args = (struct die_args *)ptr;
1568 struct pt_regs *regs = args->regs;
1569 unsigned long pc;
1570
1571 /* Only interested in FPE and MSAFPE */
1572 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1573 return NOTIFY_DONE;
1574
1575 /* Return immediately if guest context isn't active */
1576 if (!(current->flags & PF_VCPU))
1577 return NOTIFY_DONE;
1578
1579 /* Should never get here from user mode */
1580 BUG_ON(user_mode(regs));
1581
1582 pc = instruction_pointer(regs);
1583 switch (cmd) {
1584 case DIE_FP:
1585 /* match 2nd instruction in __kvm_restore_fcsr */
1586 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1587 return NOTIFY_DONE;
1588 break;
1589 case DIE_MSAFP:
1590 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1591 if (!cpu_has_msa ||
1592 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1593 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1594 return NOTIFY_DONE;
1595 break;
1596 }
1597
1598 /* Move PC forward a little and continue executing */
1599 instruction_pointer(regs) += 4;
1600
1601 return NOTIFY_STOP;
1602}
1603
1604static struct notifier_block kvm_mips_csr_die_notifier = {
1605 .notifier_call = kvm_mips_csr_die_notify,
1606};
1607
1608static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1609 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1610 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1611 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1612 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1613};
1614
1615static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1616 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1617 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1618 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1619 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1620};
1621
1622u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1623
1624u32 kvm_irq_to_priority(u32 irq)
1625{
1626 int i;
1627
1628 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1629 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1630 return i;
1631 }
1632
1633 return MIPS_EXC_MAX;
1634}
1635
1636static int __init kvm_mips_init(void)
1637{
1638 int ret;
1639
1640 if (cpu_has_mmid) {
1641 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1642 return -EOPNOTSUPP;
1643 }
1644
1645 ret = kvm_mips_entry_setup();
1646 if (ret)
1647 return ret;
1648
1649 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1650
1651 if (ret)
1652 return ret;
1653
1654 if (boot_cpu_type() == CPU_LOONGSON64)
1655 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1656
1657 register_die_notifier(&kvm_mips_csr_die_notifier);
1658
1659 return 0;
1660}
1661
1662static void __exit kvm_mips_exit(void)
1663{
1664 kvm_exit();
1665
1666 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1667}
1668
1669module_init(kvm_mips_init);
1670module_exit(kvm_mips_exit);
1671
1672EXPORT_TRACEPOINT_SYMBOL(kvm_exit);