Loading...
1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/key.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/crypto.h>
21#include <linux/workqueue.h>
22#include <linux/kthread.h>
23#include <linux/backing-dev.h>
24#include <linux/atomic.h>
25#include <linux/scatterlist.h>
26#include <linux/rbtree.h>
27#include <linux/ctype.h>
28#include <asm/page.h>
29#include <asm/unaligned.h>
30#include <crypto/hash.h>
31#include <crypto/md5.h>
32#include <crypto/algapi.h>
33#include <crypto/skcipher.h>
34#include <keys/user-type.h>
35
36#include <linux/device-mapper.h>
37
38#define DM_MSG_PREFIX "crypt"
39
40/*
41 * context holding the current state of a multi-part conversion
42 */
43struct convert_context {
44 struct completion restart;
45 struct bio *bio_in;
46 struct bio *bio_out;
47 struct bvec_iter iter_in;
48 struct bvec_iter iter_out;
49 sector_t cc_sector;
50 atomic_t cc_pending;
51 struct skcipher_request *req;
52};
53
54/*
55 * per bio private data
56 */
57struct dm_crypt_io {
58 struct crypt_config *cc;
59 struct bio *base_bio;
60 struct work_struct work;
61
62 struct convert_context ctx;
63
64 atomic_t io_pending;
65 int error;
66 sector_t sector;
67
68 struct rb_node rb_node;
69} CRYPTO_MINALIGN_ATTR;
70
71struct dm_crypt_request {
72 struct convert_context *ctx;
73 struct scatterlist sg_in;
74 struct scatterlist sg_out;
75 sector_t iv_sector;
76};
77
78struct crypt_config;
79
80struct crypt_iv_operations {
81 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
82 const char *opts);
83 void (*dtr)(struct crypt_config *cc);
84 int (*init)(struct crypt_config *cc);
85 int (*wipe)(struct crypt_config *cc);
86 int (*generator)(struct crypt_config *cc, u8 *iv,
87 struct dm_crypt_request *dmreq);
88 int (*post)(struct crypt_config *cc, u8 *iv,
89 struct dm_crypt_request *dmreq);
90};
91
92struct iv_essiv_private {
93 struct crypto_ahash *hash_tfm;
94 u8 *salt;
95};
96
97struct iv_benbi_private {
98 int shift;
99};
100
101#define LMK_SEED_SIZE 64 /* hash + 0 */
102struct iv_lmk_private {
103 struct crypto_shash *hash_tfm;
104 u8 *seed;
105};
106
107#define TCW_WHITENING_SIZE 16
108struct iv_tcw_private {
109 struct crypto_shash *crc32_tfm;
110 u8 *iv_seed;
111 u8 *whitening;
112};
113
114/*
115 * Crypt: maps a linear range of a block device
116 * and encrypts / decrypts at the same time.
117 */
118enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
119 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
120
121/*
122 * The fields in here must be read only after initialization.
123 */
124struct crypt_config {
125 struct dm_dev *dev;
126 sector_t start;
127
128 /*
129 * pool for per bio private data, crypto requests and
130 * encryption requeusts/buffer pages
131 */
132 mempool_t *req_pool;
133 mempool_t *page_pool;
134 struct bio_set *bs;
135 struct mutex bio_alloc_lock;
136
137 struct workqueue_struct *io_queue;
138 struct workqueue_struct *crypt_queue;
139
140 struct task_struct *write_thread;
141 wait_queue_head_t write_thread_wait;
142 struct rb_root write_tree;
143
144 char *cipher;
145 char *cipher_string;
146 char *key_string;
147
148 const struct crypt_iv_operations *iv_gen_ops;
149 union {
150 struct iv_essiv_private essiv;
151 struct iv_benbi_private benbi;
152 struct iv_lmk_private lmk;
153 struct iv_tcw_private tcw;
154 } iv_gen_private;
155 sector_t iv_offset;
156 unsigned int iv_size;
157
158 /* ESSIV: struct crypto_cipher *essiv_tfm */
159 void *iv_private;
160 struct crypto_skcipher **tfms;
161 unsigned tfms_count;
162
163 /*
164 * Layout of each crypto request:
165 *
166 * struct skcipher_request
167 * context
168 * padding
169 * struct dm_crypt_request
170 * padding
171 * IV
172 *
173 * The padding is added so that dm_crypt_request and the IV are
174 * correctly aligned.
175 */
176 unsigned int dmreq_start;
177
178 unsigned int per_bio_data_size;
179
180 unsigned long flags;
181 unsigned int key_size;
182 unsigned int key_parts; /* independent parts in key buffer */
183 unsigned int key_extra_size; /* additional keys length */
184 u8 key[0];
185};
186
187#define MIN_IOS 64
188
189static void clone_init(struct dm_crypt_io *, struct bio *);
190static void kcryptd_queue_crypt(struct dm_crypt_io *io);
191static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
192
193/*
194 * Use this to access cipher attributes that are the same for each CPU.
195 */
196static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
197{
198 return cc->tfms[0];
199}
200
201/*
202 * Different IV generation algorithms:
203 *
204 * plain: the initial vector is the 32-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
206 *
207 * plain64: the initial vector is the 64-bit little-endian version of the sector
208 * number, padded with zeros if necessary.
209 *
210 * essiv: "encrypted sector|salt initial vector", the sector number is
211 * encrypted with the bulk cipher using a salt as key. The salt
212 * should be derived from the bulk cipher's key via hashing.
213 *
214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215 * (needed for LRW-32-AES and possible other narrow block modes)
216 *
217 * null: the initial vector is always zero. Provides compatibility with
218 * obsolete loop_fish2 devices. Do not use for new devices.
219 *
220 * lmk: Compatible implementation of the block chaining mode used
221 * by the Loop-AES block device encryption system
222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223 * It operates on full 512 byte sectors and uses CBC
224 * with an IV derived from the sector number, the data and
225 * optionally extra IV seed.
226 * This means that after decryption the first block
227 * of sector must be tweaked according to decrypted data.
228 * Loop-AES can use three encryption schemes:
229 * version 1: is plain aes-cbc mode
230 * version 2: uses 64 multikey scheme with lmk IV generator
231 * version 3: the same as version 2 with additional IV seed
232 * (it uses 65 keys, last key is used as IV seed)
233 *
234 * tcw: Compatible implementation of the block chaining mode used
235 * by the TrueCrypt device encryption system (prior to version 4.1).
236 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
237 * It operates on full 512 byte sectors and uses CBC
238 * with an IV derived from initial key and the sector number.
239 * In addition, whitening value is applied on every sector, whitening
240 * is calculated from initial key, sector number and mixed using CRC32.
241 * Note that this encryption scheme is vulnerable to watermarking attacks
242 * and should be used for old compatible containers access only.
243 *
244 * plumb: unimplemented, see:
245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
246 */
247
248static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
249 struct dm_crypt_request *dmreq)
250{
251 memset(iv, 0, cc->iv_size);
252 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
253
254 return 0;
255}
256
257static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
258 struct dm_crypt_request *dmreq)
259{
260 memset(iv, 0, cc->iv_size);
261 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
262
263 return 0;
264}
265
266/* Initialise ESSIV - compute salt but no local memory allocations */
267static int crypt_iv_essiv_init(struct crypt_config *cc)
268{
269 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
270 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
271 struct scatterlist sg;
272 struct crypto_cipher *essiv_tfm;
273 int err;
274
275 sg_init_one(&sg, cc->key, cc->key_size);
276 ahash_request_set_tfm(req, essiv->hash_tfm);
277 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
278 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
279
280 err = crypto_ahash_digest(req);
281 ahash_request_zero(req);
282 if (err)
283 return err;
284
285 essiv_tfm = cc->iv_private;
286
287 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
288 crypto_ahash_digestsize(essiv->hash_tfm));
289 if (err)
290 return err;
291
292 return 0;
293}
294
295/* Wipe salt and reset key derived from volume key */
296static int crypt_iv_essiv_wipe(struct crypt_config *cc)
297{
298 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
299 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
300 struct crypto_cipher *essiv_tfm;
301 int r, err = 0;
302
303 memset(essiv->salt, 0, salt_size);
304
305 essiv_tfm = cc->iv_private;
306 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
307 if (r)
308 err = r;
309
310 return err;
311}
312
313/* Set up per cpu cipher state */
314static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
315 struct dm_target *ti,
316 u8 *salt, unsigned saltsize)
317{
318 struct crypto_cipher *essiv_tfm;
319 int err;
320
321 /* Setup the essiv_tfm with the given salt */
322 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
323 if (IS_ERR(essiv_tfm)) {
324 ti->error = "Error allocating crypto tfm for ESSIV";
325 return essiv_tfm;
326 }
327
328 if (crypto_cipher_blocksize(essiv_tfm) !=
329 crypto_skcipher_ivsize(any_tfm(cc))) {
330 ti->error = "Block size of ESSIV cipher does "
331 "not match IV size of block cipher";
332 crypto_free_cipher(essiv_tfm);
333 return ERR_PTR(-EINVAL);
334 }
335
336 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
337 if (err) {
338 ti->error = "Failed to set key for ESSIV cipher";
339 crypto_free_cipher(essiv_tfm);
340 return ERR_PTR(err);
341 }
342
343 return essiv_tfm;
344}
345
346static void crypt_iv_essiv_dtr(struct crypt_config *cc)
347{
348 struct crypto_cipher *essiv_tfm;
349 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
350
351 crypto_free_ahash(essiv->hash_tfm);
352 essiv->hash_tfm = NULL;
353
354 kzfree(essiv->salt);
355 essiv->salt = NULL;
356
357 essiv_tfm = cc->iv_private;
358
359 if (essiv_tfm)
360 crypto_free_cipher(essiv_tfm);
361
362 cc->iv_private = NULL;
363}
364
365static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
366 const char *opts)
367{
368 struct crypto_cipher *essiv_tfm = NULL;
369 struct crypto_ahash *hash_tfm = NULL;
370 u8 *salt = NULL;
371 int err;
372
373 if (!opts) {
374 ti->error = "Digest algorithm missing for ESSIV mode";
375 return -EINVAL;
376 }
377
378 /* Allocate hash algorithm */
379 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
380 if (IS_ERR(hash_tfm)) {
381 ti->error = "Error initializing ESSIV hash";
382 err = PTR_ERR(hash_tfm);
383 goto bad;
384 }
385
386 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
387 if (!salt) {
388 ti->error = "Error kmallocing salt storage in ESSIV";
389 err = -ENOMEM;
390 goto bad;
391 }
392
393 cc->iv_gen_private.essiv.salt = salt;
394 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
395
396 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
397 crypto_ahash_digestsize(hash_tfm));
398 if (IS_ERR(essiv_tfm)) {
399 crypt_iv_essiv_dtr(cc);
400 return PTR_ERR(essiv_tfm);
401 }
402 cc->iv_private = essiv_tfm;
403
404 return 0;
405
406bad:
407 if (hash_tfm && !IS_ERR(hash_tfm))
408 crypto_free_ahash(hash_tfm);
409 kfree(salt);
410 return err;
411}
412
413static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
414 struct dm_crypt_request *dmreq)
415{
416 struct crypto_cipher *essiv_tfm = cc->iv_private;
417
418 memset(iv, 0, cc->iv_size);
419 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
420 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
421
422 return 0;
423}
424
425static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427{
428 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
429 int log = ilog2(bs);
430
431 /* we need to calculate how far we must shift the sector count
432 * to get the cipher block count, we use this shift in _gen */
433
434 if (1 << log != bs) {
435 ti->error = "cypher blocksize is not a power of 2";
436 return -EINVAL;
437 }
438
439 if (log > 9) {
440 ti->error = "cypher blocksize is > 512";
441 return -EINVAL;
442 }
443
444 cc->iv_gen_private.benbi.shift = 9 - log;
445
446 return 0;
447}
448
449static void crypt_iv_benbi_dtr(struct crypt_config *cc)
450{
451}
452
453static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
454 struct dm_crypt_request *dmreq)
455{
456 __be64 val;
457
458 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
459
460 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
461 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
462
463 return 0;
464}
465
466static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
467 struct dm_crypt_request *dmreq)
468{
469 memset(iv, 0, cc->iv_size);
470
471 return 0;
472}
473
474static void crypt_iv_lmk_dtr(struct crypt_config *cc)
475{
476 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477
478 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
479 crypto_free_shash(lmk->hash_tfm);
480 lmk->hash_tfm = NULL;
481
482 kzfree(lmk->seed);
483 lmk->seed = NULL;
484}
485
486static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
487 const char *opts)
488{
489 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
490
491 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
492 if (IS_ERR(lmk->hash_tfm)) {
493 ti->error = "Error initializing LMK hash";
494 return PTR_ERR(lmk->hash_tfm);
495 }
496
497 /* No seed in LMK version 2 */
498 if (cc->key_parts == cc->tfms_count) {
499 lmk->seed = NULL;
500 return 0;
501 }
502
503 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
504 if (!lmk->seed) {
505 crypt_iv_lmk_dtr(cc);
506 ti->error = "Error kmallocing seed storage in LMK";
507 return -ENOMEM;
508 }
509
510 return 0;
511}
512
513static int crypt_iv_lmk_init(struct crypt_config *cc)
514{
515 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 int subkey_size = cc->key_size / cc->key_parts;
517
518 /* LMK seed is on the position of LMK_KEYS + 1 key */
519 if (lmk->seed)
520 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
521 crypto_shash_digestsize(lmk->hash_tfm));
522
523 return 0;
524}
525
526static int crypt_iv_lmk_wipe(struct crypt_config *cc)
527{
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529
530 if (lmk->seed)
531 memset(lmk->seed, 0, LMK_SEED_SIZE);
532
533 return 0;
534}
535
536static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
537 struct dm_crypt_request *dmreq,
538 u8 *data)
539{
540 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
541 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
542 struct md5_state md5state;
543 __le32 buf[4];
544 int i, r;
545
546 desc->tfm = lmk->hash_tfm;
547 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
548
549 r = crypto_shash_init(desc);
550 if (r)
551 return r;
552
553 if (lmk->seed) {
554 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
555 if (r)
556 return r;
557 }
558
559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 r = crypto_shash_update(desc, data + 16, 16 * 31);
561 if (r)
562 return r;
563
564 /* Sector is cropped to 56 bits here */
565 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
566 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
567 buf[2] = cpu_to_le32(4024);
568 buf[3] = 0;
569 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
570 if (r)
571 return r;
572
573 /* No MD5 padding here */
574 r = crypto_shash_export(desc, &md5state);
575 if (r)
576 return r;
577
578 for (i = 0; i < MD5_HASH_WORDS; i++)
579 __cpu_to_le32s(&md5state.hash[i]);
580 memcpy(iv, &md5state.hash, cc->iv_size);
581
582 return 0;
583}
584
585static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
586 struct dm_crypt_request *dmreq)
587{
588 u8 *src;
589 int r = 0;
590
591 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
592 src = kmap_atomic(sg_page(&dmreq->sg_in));
593 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
594 kunmap_atomic(src);
595 } else
596 memset(iv, 0, cc->iv_size);
597
598 return r;
599}
600
601static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
602 struct dm_crypt_request *dmreq)
603{
604 u8 *dst;
605 int r;
606
607 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
608 return 0;
609
610 dst = kmap_atomic(sg_page(&dmreq->sg_out));
611 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
612
613 /* Tweak the first block of plaintext sector */
614 if (!r)
615 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
616
617 kunmap_atomic(dst);
618 return r;
619}
620
621static void crypt_iv_tcw_dtr(struct crypt_config *cc)
622{
623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
624
625 kzfree(tcw->iv_seed);
626 tcw->iv_seed = NULL;
627 kzfree(tcw->whitening);
628 tcw->whitening = NULL;
629
630 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
631 crypto_free_shash(tcw->crc32_tfm);
632 tcw->crc32_tfm = NULL;
633}
634
635static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
636 const char *opts)
637{
638 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
639
640 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
641 ti->error = "Wrong key size for TCW";
642 return -EINVAL;
643 }
644
645 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
646 if (IS_ERR(tcw->crc32_tfm)) {
647 ti->error = "Error initializing CRC32 in TCW";
648 return PTR_ERR(tcw->crc32_tfm);
649 }
650
651 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
652 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
653 if (!tcw->iv_seed || !tcw->whitening) {
654 crypt_iv_tcw_dtr(cc);
655 ti->error = "Error allocating seed storage in TCW";
656 return -ENOMEM;
657 }
658
659 return 0;
660}
661
662static int crypt_iv_tcw_init(struct crypt_config *cc)
663{
664 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
665 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
666
667 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
668 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
669 TCW_WHITENING_SIZE);
670
671 return 0;
672}
673
674static int crypt_iv_tcw_wipe(struct crypt_config *cc)
675{
676 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677
678 memset(tcw->iv_seed, 0, cc->iv_size);
679 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
680
681 return 0;
682}
683
684static int crypt_iv_tcw_whitening(struct crypt_config *cc,
685 struct dm_crypt_request *dmreq,
686 u8 *data)
687{
688 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
689 __le64 sector = cpu_to_le64(dmreq->iv_sector);
690 u8 buf[TCW_WHITENING_SIZE];
691 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
692 int i, r;
693
694 /* xor whitening with sector number */
695 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
696 crypto_xor(buf, (u8 *)§or, 8);
697 crypto_xor(&buf[8], (u8 *)§or, 8);
698
699 /* calculate crc32 for every 32bit part and xor it */
700 desc->tfm = tcw->crc32_tfm;
701 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
702 for (i = 0; i < 4; i++) {
703 r = crypto_shash_init(desc);
704 if (r)
705 goto out;
706 r = crypto_shash_update(desc, &buf[i * 4], 4);
707 if (r)
708 goto out;
709 r = crypto_shash_final(desc, &buf[i * 4]);
710 if (r)
711 goto out;
712 }
713 crypto_xor(&buf[0], &buf[12], 4);
714 crypto_xor(&buf[4], &buf[8], 4);
715
716 /* apply whitening (8 bytes) to whole sector */
717 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
718 crypto_xor(data + i * 8, buf, 8);
719out:
720 memzero_explicit(buf, sizeof(buf));
721 return r;
722}
723
724static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
725 struct dm_crypt_request *dmreq)
726{
727 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
728 __le64 sector = cpu_to_le64(dmreq->iv_sector);
729 u8 *src;
730 int r = 0;
731
732 /* Remove whitening from ciphertext */
733 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
734 src = kmap_atomic(sg_page(&dmreq->sg_in));
735 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
736 kunmap_atomic(src);
737 }
738
739 /* Calculate IV */
740 memcpy(iv, tcw->iv_seed, cc->iv_size);
741 crypto_xor(iv, (u8 *)§or, 8);
742 if (cc->iv_size > 8)
743 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8);
744
745 return r;
746}
747
748static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
749 struct dm_crypt_request *dmreq)
750{
751 u8 *dst;
752 int r;
753
754 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
755 return 0;
756
757 /* Apply whitening on ciphertext */
758 dst = kmap_atomic(sg_page(&dmreq->sg_out));
759 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
760 kunmap_atomic(dst);
761
762 return r;
763}
764
765static const struct crypt_iv_operations crypt_iv_plain_ops = {
766 .generator = crypt_iv_plain_gen
767};
768
769static const struct crypt_iv_operations crypt_iv_plain64_ops = {
770 .generator = crypt_iv_plain64_gen
771};
772
773static const struct crypt_iv_operations crypt_iv_essiv_ops = {
774 .ctr = crypt_iv_essiv_ctr,
775 .dtr = crypt_iv_essiv_dtr,
776 .init = crypt_iv_essiv_init,
777 .wipe = crypt_iv_essiv_wipe,
778 .generator = crypt_iv_essiv_gen
779};
780
781static const struct crypt_iv_operations crypt_iv_benbi_ops = {
782 .ctr = crypt_iv_benbi_ctr,
783 .dtr = crypt_iv_benbi_dtr,
784 .generator = crypt_iv_benbi_gen
785};
786
787static const struct crypt_iv_operations crypt_iv_null_ops = {
788 .generator = crypt_iv_null_gen
789};
790
791static const struct crypt_iv_operations crypt_iv_lmk_ops = {
792 .ctr = crypt_iv_lmk_ctr,
793 .dtr = crypt_iv_lmk_dtr,
794 .init = crypt_iv_lmk_init,
795 .wipe = crypt_iv_lmk_wipe,
796 .generator = crypt_iv_lmk_gen,
797 .post = crypt_iv_lmk_post
798};
799
800static const struct crypt_iv_operations crypt_iv_tcw_ops = {
801 .ctr = crypt_iv_tcw_ctr,
802 .dtr = crypt_iv_tcw_dtr,
803 .init = crypt_iv_tcw_init,
804 .wipe = crypt_iv_tcw_wipe,
805 .generator = crypt_iv_tcw_gen,
806 .post = crypt_iv_tcw_post
807};
808
809static void crypt_convert_init(struct crypt_config *cc,
810 struct convert_context *ctx,
811 struct bio *bio_out, struct bio *bio_in,
812 sector_t sector)
813{
814 ctx->bio_in = bio_in;
815 ctx->bio_out = bio_out;
816 if (bio_in)
817 ctx->iter_in = bio_in->bi_iter;
818 if (bio_out)
819 ctx->iter_out = bio_out->bi_iter;
820 ctx->cc_sector = sector + cc->iv_offset;
821 init_completion(&ctx->restart);
822}
823
824static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
825 struct skcipher_request *req)
826{
827 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
828}
829
830static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
831 struct dm_crypt_request *dmreq)
832{
833 return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
834}
835
836static u8 *iv_of_dmreq(struct crypt_config *cc,
837 struct dm_crypt_request *dmreq)
838{
839 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
840 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
841}
842
843static int crypt_convert_block(struct crypt_config *cc,
844 struct convert_context *ctx,
845 struct skcipher_request *req)
846{
847 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
848 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
849 struct dm_crypt_request *dmreq;
850 u8 *iv;
851 int r;
852
853 dmreq = dmreq_of_req(cc, req);
854 iv = iv_of_dmreq(cc, dmreq);
855
856 dmreq->iv_sector = ctx->cc_sector;
857 dmreq->ctx = ctx;
858 sg_init_table(&dmreq->sg_in, 1);
859 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
860 bv_in.bv_offset);
861
862 sg_init_table(&dmreq->sg_out, 1);
863 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
864 bv_out.bv_offset);
865
866 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
867 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
868
869 if (cc->iv_gen_ops) {
870 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
871 if (r < 0)
872 return r;
873 }
874
875 skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
876 1 << SECTOR_SHIFT, iv);
877
878 if (bio_data_dir(ctx->bio_in) == WRITE)
879 r = crypto_skcipher_encrypt(req);
880 else
881 r = crypto_skcipher_decrypt(req);
882
883 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
884 r = cc->iv_gen_ops->post(cc, iv, dmreq);
885
886 return r;
887}
888
889static void kcryptd_async_done(struct crypto_async_request *async_req,
890 int error);
891
892static void crypt_alloc_req(struct crypt_config *cc,
893 struct convert_context *ctx)
894{
895 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
896
897 if (!ctx->req)
898 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
899
900 skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
901
902 /*
903 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
904 * requests if driver request queue is full.
905 */
906 skcipher_request_set_callback(ctx->req,
907 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
908 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
909}
910
911static void crypt_free_req(struct crypt_config *cc,
912 struct skcipher_request *req, struct bio *base_bio)
913{
914 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
915
916 if ((struct skcipher_request *)(io + 1) != req)
917 mempool_free(req, cc->req_pool);
918}
919
920/*
921 * Encrypt / decrypt data from one bio to another one (can be the same one)
922 */
923static int crypt_convert(struct crypt_config *cc,
924 struct convert_context *ctx)
925{
926 int r;
927
928 atomic_set(&ctx->cc_pending, 1);
929
930 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
931
932 crypt_alloc_req(cc, ctx);
933
934 atomic_inc(&ctx->cc_pending);
935
936 r = crypt_convert_block(cc, ctx, ctx->req);
937
938 switch (r) {
939 /*
940 * The request was queued by a crypto driver
941 * but the driver request queue is full, let's wait.
942 */
943 case -EBUSY:
944 wait_for_completion(&ctx->restart);
945 reinit_completion(&ctx->restart);
946 /* fall through */
947 /*
948 * The request is queued and processed asynchronously,
949 * completion function kcryptd_async_done() will be called.
950 */
951 case -EINPROGRESS:
952 ctx->req = NULL;
953 ctx->cc_sector++;
954 continue;
955 /*
956 * The request was already processed (synchronously).
957 */
958 case 0:
959 atomic_dec(&ctx->cc_pending);
960 ctx->cc_sector++;
961 cond_resched();
962 continue;
963
964 /* There was an error while processing the request. */
965 default:
966 atomic_dec(&ctx->cc_pending);
967 return r;
968 }
969 }
970
971 return 0;
972}
973
974static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
975
976/*
977 * Generate a new unfragmented bio with the given size
978 * This should never violate the device limitations (but only because
979 * max_segment_size is being constrained to PAGE_SIZE).
980 *
981 * This function may be called concurrently. If we allocate from the mempool
982 * concurrently, there is a possibility of deadlock. For example, if we have
983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
984 * the mempool concurrently, it may deadlock in a situation where both processes
985 * have allocated 128 pages and the mempool is exhausted.
986 *
987 * In order to avoid this scenario we allocate the pages under a mutex.
988 *
989 * In order to not degrade performance with excessive locking, we try
990 * non-blocking allocations without a mutex first but on failure we fallback
991 * to blocking allocations with a mutex.
992 */
993static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
994{
995 struct crypt_config *cc = io->cc;
996 struct bio *clone;
997 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
998 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
999 unsigned i, len, remaining_size;
1000 struct page *page;
1001
1002retry:
1003 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1004 mutex_lock(&cc->bio_alloc_lock);
1005
1006 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1007 if (!clone)
1008 goto return_clone;
1009
1010 clone_init(io, clone);
1011
1012 remaining_size = size;
1013
1014 for (i = 0; i < nr_iovecs; i++) {
1015 page = mempool_alloc(cc->page_pool, gfp_mask);
1016 if (!page) {
1017 crypt_free_buffer_pages(cc, clone);
1018 bio_put(clone);
1019 gfp_mask |= __GFP_DIRECT_RECLAIM;
1020 goto retry;
1021 }
1022
1023 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1024
1025 bio_add_page(clone, page, len, 0);
1026
1027 remaining_size -= len;
1028 }
1029
1030return_clone:
1031 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032 mutex_unlock(&cc->bio_alloc_lock);
1033
1034 return clone;
1035}
1036
1037static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038{
1039 unsigned int i;
1040 struct bio_vec *bv;
1041
1042 bio_for_each_segment_all(bv, clone, i) {
1043 BUG_ON(!bv->bv_page);
1044 mempool_free(bv->bv_page, cc->page_pool);
1045 bv->bv_page = NULL;
1046 }
1047}
1048
1049static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050 struct bio *bio, sector_t sector)
1051{
1052 io->cc = cc;
1053 io->base_bio = bio;
1054 io->sector = sector;
1055 io->error = 0;
1056 io->ctx.req = NULL;
1057 atomic_set(&io->io_pending, 0);
1058}
1059
1060static void crypt_inc_pending(struct dm_crypt_io *io)
1061{
1062 atomic_inc(&io->io_pending);
1063}
1064
1065/*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 */
1069static void crypt_dec_pending(struct dm_crypt_io *io)
1070{
1071 struct crypt_config *cc = io->cc;
1072 struct bio *base_bio = io->base_bio;
1073 int error = io->error;
1074
1075 if (!atomic_dec_and_test(&io->io_pending))
1076 return;
1077
1078 if (io->ctx.req)
1079 crypt_free_req(cc, io->ctx.req, base_bio);
1080
1081 base_bio->bi_error = error;
1082 bio_endio(base_bio);
1083}
1084
1085/*
1086 * kcryptd/kcryptd_io:
1087 *
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1090 *
1091 * kcryptd performs the actual encryption or decryption.
1092 *
1093 * kcryptd_io performs the IO submission.
1094 *
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1098 *
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1101 */
1102static void crypt_endio(struct bio *clone)
1103{
1104 struct dm_crypt_io *io = clone->bi_private;
1105 struct crypt_config *cc = io->cc;
1106 unsigned rw = bio_data_dir(clone);
1107 int error;
1108
1109 /*
1110 * free the processed pages
1111 */
1112 if (rw == WRITE)
1113 crypt_free_buffer_pages(cc, clone);
1114
1115 error = clone->bi_error;
1116 bio_put(clone);
1117
1118 if (rw == READ && !error) {
1119 kcryptd_queue_crypt(io);
1120 return;
1121 }
1122
1123 if (unlikely(error))
1124 io->error = error;
1125
1126 crypt_dec_pending(io);
1127}
1128
1129static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130{
1131 struct crypt_config *cc = io->cc;
1132
1133 clone->bi_private = io;
1134 clone->bi_end_io = crypt_endio;
1135 clone->bi_bdev = cc->dev->bdev;
1136 clone->bi_opf = io->base_bio->bi_opf;
1137}
1138
1139static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140{
1141 struct crypt_config *cc = io->cc;
1142 struct bio *clone;
1143
1144 /*
1145 * We need the original biovec array in order to decrypt
1146 * the whole bio data *afterwards* -- thanks to immutable
1147 * biovecs we don't need to worry about the block layer
1148 * modifying the biovec array; so leverage bio_clone_fast().
1149 */
1150 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151 if (!clone)
1152 return 1;
1153
1154 crypt_inc_pending(io);
1155
1156 clone_init(io, clone);
1157 clone->bi_iter.bi_sector = cc->start + io->sector;
1158
1159 generic_make_request(clone);
1160 return 0;
1161}
1162
1163static void kcryptd_io_read_work(struct work_struct *work)
1164{
1165 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166
1167 crypt_inc_pending(io);
1168 if (kcryptd_io_read(io, GFP_NOIO))
1169 io->error = -ENOMEM;
1170 crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_queue_read(struct dm_crypt_io *io)
1174{
1175 struct crypt_config *cc = io->cc;
1176
1177 INIT_WORK(&io->work, kcryptd_io_read_work);
1178 queue_work(cc->io_queue, &io->work);
1179}
1180
1181static void kcryptd_io_write(struct dm_crypt_io *io)
1182{
1183 struct bio *clone = io->ctx.bio_out;
1184
1185 generic_make_request(clone);
1186}
1187
1188#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189
1190static int dmcrypt_write(void *data)
1191{
1192 struct crypt_config *cc = data;
1193 struct dm_crypt_io *io;
1194
1195 while (1) {
1196 struct rb_root write_tree;
1197 struct blk_plug plug;
1198
1199 DECLARE_WAITQUEUE(wait, current);
1200
1201 spin_lock_irq(&cc->write_thread_wait.lock);
1202continue_locked:
1203
1204 if (!RB_EMPTY_ROOT(&cc->write_tree))
1205 goto pop_from_list;
1206
1207 set_current_state(TASK_INTERRUPTIBLE);
1208 __add_wait_queue(&cc->write_thread_wait, &wait);
1209
1210 spin_unlock_irq(&cc->write_thread_wait.lock);
1211
1212 if (unlikely(kthread_should_stop())) {
1213 set_task_state(current, TASK_RUNNING);
1214 remove_wait_queue(&cc->write_thread_wait, &wait);
1215 break;
1216 }
1217
1218 schedule();
1219
1220 set_task_state(current, TASK_RUNNING);
1221 spin_lock_irq(&cc->write_thread_wait.lock);
1222 __remove_wait_queue(&cc->write_thread_wait, &wait);
1223 goto continue_locked;
1224
1225pop_from_list:
1226 write_tree = cc->write_tree;
1227 cc->write_tree = RB_ROOT;
1228 spin_unlock_irq(&cc->write_thread_wait.lock);
1229
1230 BUG_ON(rb_parent(write_tree.rb_node));
1231
1232 /*
1233 * Note: we cannot walk the tree here with rb_next because
1234 * the structures may be freed when kcryptd_io_write is called.
1235 */
1236 blk_start_plug(&plug);
1237 do {
1238 io = crypt_io_from_node(rb_first(&write_tree));
1239 rb_erase(&io->rb_node, &write_tree);
1240 kcryptd_io_write(io);
1241 } while (!RB_EMPTY_ROOT(&write_tree));
1242 blk_finish_plug(&plug);
1243 }
1244 return 0;
1245}
1246
1247static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1248{
1249 struct bio *clone = io->ctx.bio_out;
1250 struct crypt_config *cc = io->cc;
1251 unsigned long flags;
1252 sector_t sector;
1253 struct rb_node **rbp, *parent;
1254
1255 if (unlikely(io->error < 0)) {
1256 crypt_free_buffer_pages(cc, clone);
1257 bio_put(clone);
1258 crypt_dec_pending(io);
1259 return;
1260 }
1261
1262 /* crypt_convert should have filled the clone bio */
1263 BUG_ON(io->ctx.iter_out.bi_size);
1264
1265 clone->bi_iter.bi_sector = cc->start + io->sector;
1266
1267 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1268 generic_make_request(clone);
1269 return;
1270 }
1271
1272 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1273 rbp = &cc->write_tree.rb_node;
1274 parent = NULL;
1275 sector = io->sector;
1276 while (*rbp) {
1277 parent = *rbp;
1278 if (sector < crypt_io_from_node(parent)->sector)
1279 rbp = &(*rbp)->rb_left;
1280 else
1281 rbp = &(*rbp)->rb_right;
1282 }
1283 rb_link_node(&io->rb_node, parent, rbp);
1284 rb_insert_color(&io->rb_node, &cc->write_tree);
1285
1286 wake_up_locked(&cc->write_thread_wait);
1287 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1288}
1289
1290static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1291{
1292 struct crypt_config *cc = io->cc;
1293 struct bio *clone;
1294 int crypt_finished;
1295 sector_t sector = io->sector;
1296 int r;
1297
1298 /*
1299 * Prevent io from disappearing until this function completes.
1300 */
1301 crypt_inc_pending(io);
1302 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1303
1304 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1305 if (unlikely(!clone)) {
1306 io->error = -EIO;
1307 goto dec;
1308 }
1309
1310 io->ctx.bio_out = clone;
1311 io->ctx.iter_out = clone->bi_iter;
1312
1313 sector += bio_sectors(clone);
1314
1315 crypt_inc_pending(io);
1316 r = crypt_convert(cc, &io->ctx);
1317 if (r)
1318 io->error = -EIO;
1319 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1320
1321 /* Encryption was already finished, submit io now */
1322 if (crypt_finished) {
1323 kcryptd_crypt_write_io_submit(io, 0);
1324 io->sector = sector;
1325 }
1326
1327dec:
1328 crypt_dec_pending(io);
1329}
1330
1331static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1332{
1333 crypt_dec_pending(io);
1334}
1335
1336static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1337{
1338 struct crypt_config *cc = io->cc;
1339 int r = 0;
1340
1341 crypt_inc_pending(io);
1342
1343 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1344 io->sector);
1345
1346 r = crypt_convert(cc, &io->ctx);
1347 if (r < 0)
1348 io->error = -EIO;
1349
1350 if (atomic_dec_and_test(&io->ctx.cc_pending))
1351 kcryptd_crypt_read_done(io);
1352
1353 crypt_dec_pending(io);
1354}
1355
1356static void kcryptd_async_done(struct crypto_async_request *async_req,
1357 int error)
1358{
1359 struct dm_crypt_request *dmreq = async_req->data;
1360 struct convert_context *ctx = dmreq->ctx;
1361 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1362 struct crypt_config *cc = io->cc;
1363
1364 /*
1365 * A request from crypto driver backlog is going to be processed now,
1366 * finish the completion and continue in crypt_convert().
1367 * (Callback will be called for the second time for this request.)
1368 */
1369 if (error == -EINPROGRESS) {
1370 complete(&ctx->restart);
1371 return;
1372 }
1373
1374 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1375 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1376
1377 if (error < 0)
1378 io->error = -EIO;
1379
1380 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1381
1382 if (!atomic_dec_and_test(&ctx->cc_pending))
1383 return;
1384
1385 if (bio_data_dir(io->base_bio) == READ)
1386 kcryptd_crypt_read_done(io);
1387 else
1388 kcryptd_crypt_write_io_submit(io, 1);
1389}
1390
1391static void kcryptd_crypt(struct work_struct *work)
1392{
1393 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1394
1395 if (bio_data_dir(io->base_bio) == READ)
1396 kcryptd_crypt_read_convert(io);
1397 else
1398 kcryptd_crypt_write_convert(io);
1399}
1400
1401static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1402{
1403 struct crypt_config *cc = io->cc;
1404
1405 INIT_WORK(&io->work, kcryptd_crypt);
1406 queue_work(cc->crypt_queue, &io->work);
1407}
1408
1409/*
1410 * Decode key from its hex representation
1411 */
1412static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1413{
1414 char buffer[3];
1415 unsigned int i;
1416
1417 buffer[2] = '\0';
1418
1419 for (i = 0; i < size; i++) {
1420 buffer[0] = *hex++;
1421 buffer[1] = *hex++;
1422
1423 if (kstrtou8(buffer, 16, &key[i]))
1424 return -EINVAL;
1425 }
1426
1427 if (*hex != '\0')
1428 return -EINVAL;
1429
1430 return 0;
1431}
1432
1433static void crypt_free_tfms(struct crypt_config *cc)
1434{
1435 unsigned i;
1436
1437 if (!cc->tfms)
1438 return;
1439
1440 for (i = 0; i < cc->tfms_count; i++)
1441 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1442 crypto_free_skcipher(cc->tfms[i]);
1443 cc->tfms[i] = NULL;
1444 }
1445
1446 kfree(cc->tfms);
1447 cc->tfms = NULL;
1448}
1449
1450static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1451{
1452 unsigned i;
1453 int err;
1454
1455 cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1456 GFP_KERNEL);
1457 if (!cc->tfms)
1458 return -ENOMEM;
1459
1460 for (i = 0; i < cc->tfms_count; i++) {
1461 cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1462 if (IS_ERR(cc->tfms[i])) {
1463 err = PTR_ERR(cc->tfms[i]);
1464 crypt_free_tfms(cc);
1465 return err;
1466 }
1467 }
1468
1469 return 0;
1470}
1471
1472static int crypt_setkey(struct crypt_config *cc)
1473{
1474 unsigned subkey_size;
1475 int err = 0, i, r;
1476
1477 /* Ignore extra keys (which are used for IV etc) */
1478 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1479
1480 for (i = 0; i < cc->tfms_count; i++) {
1481 r = crypto_skcipher_setkey(cc->tfms[i],
1482 cc->key + (i * subkey_size),
1483 subkey_size);
1484 if (r)
1485 err = r;
1486 }
1487
1488 return err;
1489}
1490
1491#ifdef CONFIG_KEYS
1492
1493static bool contains_whitespace(const char *str)
1494{
1495 while (*str)
1496 if (isspace(*str++))
1497 return true;
1498 return false;
1499}
1500
1501static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1502{
1503 char *new_key_string, *key_desc;
1504 int ret;
1505 struct key *key;
1506 const struct user_key_payload *ukp;
1507
1508 /*
1509 * Reject key_string with whitespace. dm core currently lacks code for
1510 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1511 */
1512 if (contains_whitespace(key_string)) {
1513 DMERR("whitespace chars not allowed in key string");
1514 return -EINVAL;
1515 }
1516
1517 /* look for next ':' separating key_type from key_description */
1518 key_desc = strpbrk(key_string, ":");
1519 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1520 return -EINVAL;
1521
1522 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1523 strncmp(key_string, "user:", key_desc - key_string + 1))
1524 return -EINVAL;
1525
1526 new_key_string = kstrdup(key_string, GFP_KERNEL);
1527 if (!new_key_string)
1528 return -ENOMEM;
1529
1530 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1531 key_desc + 1, NULL);
1532 if (IS_ERR(key)) {
1533 kzfree(new_key_string);
1534 return PTR_ERR(key);
1535 }
1536
1537 down_read(&key->sem);
1538
1539 ukp = user_key_payload(key);
1540 if (!ukp) {
1541 up_read(&key->sem);
1542 key_put(key);
1543 kzfree(new_key_string);
1544 return -EKEYREVOKED;
1545 }
1546
1547 if (cc->key_size != ukp->datalen) {
1548 up_read(&key->sem);
1549 key_put(key);
1550 kzfree(new_key_string);
1551 return -EINVAL;
1552 }
1553
1554 memcpy(cc->key, ukp->data, cc->key_size);
1555
1556 up_read(&key->sem);
1557 key_put(key);
1558
1559 /* clear the flag since following operations may invalidate previously valid key */
1560 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1561
1562 ret = crypt_setkey(cc);
1563
1564 /* wipe the kernel key payload copy in each case */
1565 memset(cc->key, 0, cc->key_size * sizeof(u8));
1566
1567 if (!ret) {
1568 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1569 kzfree(cc->key_string);
1570 cc->key_string = new_key_string;
1571 } else
1572 kzfree(new_key_string);
1573
1574 return ret;
1575}
1576
1577static int get_key_size(char **key_string)
1578{
1579 char *colon, dummy;
1580 int ret;
1581
1582 if (*key_string[0] != ':')
1583 return strlen(*key_string) >> 1;
1584
1585 /* look for next ':' in key string */
1586 colon = strpbrk(*key_string + 1, ":");
1587 if (!colon)
1588 return -EINVAL;
1589
1590 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1591 return -EINVAL;
1592
1593 *key_string = colon;
1594
1595 /* remaining key string should be :<logon|user>:<key_desc> */
1596
1597 return ret;
1598}
1599
1600#else
1601
1602static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1603{
1604 return -EINVAL;
1605}
1606
1607static int get_key_size(char **key_string)
1608{
1609 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
1610}
1611
1612#endif
1613
1614static int crypt_set_key(struct crypt_config *cc, char *key)
1615{
1616 int r = -EINVAL;
1617 int key_string_len = strlen(key);
1618
1619 /* Hyphen (which gives a key_size of zero) means there is no key. */
1620 if (!cc->key_size && strcmp(key, "-"))
1621 goto out;
1622
1623 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624 if (key[0] == ':') {
1625 r = crypt_set_keyring_key(cc, key + 1);
1626 goto out;
1627 }
1628
1629 /* clear the flag since following operations may invalidate previously valid key */
1630 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1631
1632 /* wipe references to any kernel keyring key */
1633 kzfree(cc->key_string);
1634 cc->key_string = NULL;
1635
1636 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1637 goto out;
1638
1639 r = crypt_setkey(cc);
1640 if (!r)
1641 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1642
1643out:
1644 /* Hex key string not needed after here, so wipe it. */
1645 memset(key, '0', key_string_len);
1646
1647 return r;
1648}
1649
1650static int crypt_wipe_key(struct crypt_config *cc)
1651{
1652 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1653 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1654 kzfree(cc->key_string);
1655 cc->key_string = NULL;
1656
1657 return crypt_setkey(cc);
1658}
1659
1660static void crypt_dtr(struct dm_target *ti)
1661{
1662 struct crypt_config *cc = ti->private;
1663
1664 ti->private = NULL;
1665
1666 if (!cc)
1667 return;
1668
1669 if (cc->write_thread)
1670 kthread_stop(cc->write_thread);
1671
1672 if (cc->io_queue)
1673 destroy_workqueue(cc->io_queue);
1674 if (cc->crypt_queue)
1675 destroy_workqueue(cc->crypt_queue);
1676
1677 crypt_free_tfms(cc);
1678
1679 if (cc->bs)
1680 bioset_free(cc->bs);
1681
1682 mempool_destroy(cc->page_pool);
1683 mempool_destroy(cc->req_pool);
1684
1685 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1686 cc->iv_gen_ops->dtr(cc);
1687
1688 if (cc->dev)
1689 dm_put_device(ti, cc->dev);
1690
1691 kzfree(cc->cipher);
1692 kzfree(cc->cipher_string);
1693 kzfree(cc->key_string);
1694
1695 /* Must zero key material before freeing */
1696 kzfree(cc);
1697}
1698
1699static int crypt_ctr_cipher(struct dm_target *ti,
1700 char *cipher_in, char *key)
1701{
1702 struct crypt_config *cc = ti->private;
1703 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1704 char *cipher_api = NULL;
1705 int ret = -EINVAL;
1706 char dummy;
1707
1708 /* Convert to crypto api definition? */
1709 if (strchr(cipher_in, '(')) {
1710 ti->error = "Bad cipher specification";
1711 return -EINVAL;
1712 }
1713
1714 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1715 if (!cc->cipher_string)
1716 goto bad_mem;
1717
1718 /*
1719 * Legacy dm-crypt cipher specification
1720 * cipher[:keycount]-mode-iv:ivopts
1721 */
1722 tmp = cipher_in;
1723 keycount = strsep(&tmp, "-");
1724 cipher = strsep(&keycount, ":");
1725
1726 if (!keycount)
1727 cc->tfms_count = 1;
1728 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1729 !is_power_of_2(cc->tfms_count)) {
1730 ti->error = "Bad cipher key count specification";
1731 return -EINVAL;
1732 }
1733 cc->key_parts = cc->tfms_count;
1734 cc->key_extra_size = 0;
1735
1736 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1737 if (!cc->cipher)
1738 goto bad_mem;
1739
1740 chainmode = strsep(&tmp, "-");
1741 ivopts = strsep(&tmp, "-");
1742 ivmode = strsep(&ivopts, ":");
1743
1744 if (tmp)
1745 DMWARN("Ignoring unexpected additional cipher options");
1746
1747 /*
1748 * For compatibility with the original dm-crypt mapping format, if
1749 * only the cipher name is supplied, use cbc-plain.
1750 */
1751 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1752 chainmode = "cbc";
1753 ivmode = "plain";
1754 }
1755
1756 if (strcmp(chainmode, "ecb") && !ivmode) {
1757 ti->error = "IV mechanism required";
1758 return -EINVAL;
1759 }
1760
1761 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1762 if (!cipher_api)
1763 goto bad_mem;
1764
1765 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1766 "%s(%s)", chainmode, cipher);
1767 if (ret < 0) {
1768 kfree(cipher_api);
1769 goto bad_mem;
1770 }
1771
1772 /* Allocate cipher */
1773 ret = crypt_alloc_tfms(cc, cipher_api);
1774 if (ret < 0) {
1775 ti->error = "Error allocating crypto tfm";
1776 goto bad;
1777 }
1778
1779 /* Initialize IV */
1780 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1781 if (cc->iv_size)
1782 /* at least a 64 bit sector number should fit in our buffer */
1783 cc->iv_size = max(cc->iv_size,
1784 (unsigned int)(sizeof(u64) / sizeof(u8)));
1785 else if (ivmode) {
1786 DMWARN("Selected cipher does not support IVs");
1787 ivmode = NULL;
1788 }
1789
1790 /* Choose ivmode, see comments at iv code. */
1791 if (ivmode == NULL)
1792 cc->iv_gen_ops = NULL;
1793 else if (strcmp(ivmode, "plain") == 0)
1794 cc->iv_gen_ops = &crypt_iv_plain_ops;
1795 else if (strcmp(ivmode, "plain64") == 0)
1796 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1797 else if (strcmp(ivmode, "essiv") == 0)
1798 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1799 else if (strcmp(ivmode, "benbi") == 0)
1800 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1801 else if (strcmp(ivmode, "null") == 0)
1802 cc->iv_gen_ops = &crypt_iv_null_ops;
1803 else if (strcmp(ivmode, "lmk") == 0) {
1804 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1805 /*
1806 * Version 2 and 3 is recognised according
1807 * to length of provided multi-key string.
1808 * If present (version 3), last key is used as IV seed.
1809 * All keys (including IV seed) are always the same size.
1810 */
1811 if (cc->key_size % cc->key_parts) {
1812 cc->key_parts++;
1813 cc->key_extra_size = cc->key_size / cc->key_parts;
1814 }
1815 } else if (strcmp(ivmode, "tcw") == 0) {
1816 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1817 cc->key_parts += 2; /* IV + whitening */
1818 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1819 } else {
1820 ret = -EINVAL;
1821 ti->error = "Invalid IV mode";
1822 goto bad;
1823 }
1824
1825 /* Initialize and set key */
1826 ret = crypt_set_key(cc, key);
1827 if (ret < 0) {
1828 ti->error = "Error decoding and setting key";
1829 goto bad;
1830 }
1831
1832 /* Allocate IV */
1833 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1834 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1835 if (ret < 0) {
1836 ti->error = "Error creating IV";
1837 goto bad;
1838 }
1839 }
1840
1841 /* Initialize IV (set keys for ESSIV etc) */
1842 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1843 ret = cc->iv_gen_ops->init(cc);
1844 if (ret < 0) {
1845 ti->error = "Error initialising IV";
1846 goto bad;
1847 }
1848 }
1849
1850 ret = 0;
1851bad:
1852 kfree(cipher_api);
1853 return ret;
1854
1855bad_mem:
1856 ti->error = "Cannot allocate cipher strings";
1857 return -ENOMEM;
1858}
1859
1860/*
1861 * Construct an encryption mapping:
1862 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1863 */
1864static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1865{
1866 struct crypt_config *cc;
1867 int key_size;
1868 unsigned int opt_params;
1869 unsigned long long tmpll;
1870 int ret;
1871 size_t iv_size_padding;
1872 struct dm_arg_set as;
1873 const char *opt_string;
1874 char dummy;
1875
1876 static struct dm_arg _args[] = {
1877 {0, 3, "Invalid number of feature args"},
1878 };
1879
1880 if (argc < 5) {
1881 ti->error = "Not enough arguments";
1882 return -EINVAL;
1883 }
1884
1885 key_size = get_key_size(&argv[1]);
1886 if (key_size < 0) {
1887 ti->error = "Cannot parse key size";
1888 return -EINVAL;
1889 }
1890
1891 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1892 if (!cc) {
1893 ti->error = "Cannot allocate encryption context";
1894 return -ENOMEM;
1895 }
1896 cc->key_size = key_size;
1897
1898 ti->private = cc;
1899 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1900 if (ret < 0)
1901 goto bad;
1902
1903 cc->dmreq_start = sizeof(struct skcipher_request);
1904 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1905 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1906
1907 if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1908 /* Allocate the padding exactly */
1909 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1910 & crypto_skcipher_alignmask(any_tfm(cc));
1911 } else {
1912 /*
1913 * If the cipher requires greater alignment than kmalloc
1914 * alignment, we don't know the exact position of the
1915 * initialization vector. We must assume worst case.
1916 */
1917 iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1918 }
1919
1920 ret = -ENOMEM;
1921 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1922 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1923 if (!cc->req_pool) {
1924 ti->error = "Cannot allocate crypt request mempool";
1925 goto bad;
1926 }
1927
1928 cc->per_bio_data_size = ti->per_io_data_size =
1929 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1930 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1931 ARCH_KMALLOC_MINALIGN);
1932
1933 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1934 if (!cc->page_pool) {
1935 ti->error = "Cannot allocate page mempool";
1936 goto bad;
1937 }
1938
1939 cc->bs = bioset_create(MIN_IOS, 0);
1940 if (!cc->bs) {
1941 ti->error = "Cannot allocate crypt bioset";
1942 goto bad;
1943 }
1944
1945 mutex_init(&cc->bio_alloc_lock);
1946
1947 ret = -EINVAL;
1948 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1949 ti->error = "Invalid iv_offset sector";
1950 goto bad;
1951 }
1952 cc->iv_offset = tmpll;
1953
1954 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1955 if (ret) {
1956 ti->error = "Device lookup failed";
1957 goto bad;
1958 }
1959
1960 ret = -EINVAL;
1961 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1962 ti->error = "Invalid device sector";
1963 goto bad;
1964 }
1965 cc->start = tmpll;
1966
1967 argv += 5;
1968 argc -= 5;
1969
1970 /* Optional parameters */
1971 if (argc) {
1972 as.argc = argc;
1973 as.argv = argv;
1974
1975 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1976 if (ret)
1977 goto bad;
1978
1979 ret = -EINVAL;
1980 while (opt_params--) {
1981 opt_string = dm_shift_arg(&as);
1982 if (!opt_string) {
1983 ti->error = "Not enough feature arguments";
1984 goto bad;
1985 }
1986
1987 if (!strcasecmp(opt_string, "allow_discards"))
1988 ti->num_discard_bios = 1;
1989
1990 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1991 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1992
1993 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1994 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1995
1996 else {
1997 ti->error = "Invalid feature arguments";
1998 goto bad;
1999 }
2000 }
2001 }
2002
2003 ret = -ENOMEM;
2004 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
2005 if (!cc->io_queue) {
2006 ti->error = "Couldn't create kcryptd io queue";
2007 goto bad;
2008 }
2009
2010 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2011 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2012 else
2013 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2014 num_online_cpus());
2015 if (!cc->crypt_queue) {
2016 ti->error = "Couldn't create kcryptd queue";
2017 goto bad;
2018 }
2019
2020 init_waitqueue_head(&cc->write_thread_wait);
2021 cc->write_tree = RB_ROOT;
2022
2023 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2024 if (IS_ERR(cc->write_thread)) {
2025 ret = PTR_ERR(cc->write_thread);
2026 cc->write_thread = NULL;
2027 ti->error = "Couldn't spawn write thread";
2028 goto bad;
2029 }
2030 wake_up_process(cc->write_thread);
2031
2032 ti->num_flush_bios = 1;
2033 ti->discard_zeroes_data_unsupported = true;
2034
2035 return 0;
2036
2037bad:
2038 crypt_dtr(ti);
2039 return ret;
2040}
2041
2042static int crypt_map(struct dm_target *ti, struct bio *bio)
2043{
2044 struct dm_crypt_io *io;
2045 struct crypt_config *cc = ti->private;
2046
2047 /*
2048 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2049 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2050 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2051 */
2052 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2053 bio_op(bio) == REQ_OP_DISCARD)) {
2054 bio->bi_bdev = cc->dev->bdev;
2055 if (bio_sectors(bio))
2056 bio->bi_iter.bi_sector = cc->start +
2057 dm_target_offset(ti, bio->bi_iter.bi_sector);
2058 return DM_MAPIO_REMAPPED;
2059 }
2060
2061 /*
2062 * Check if bio is too large, split as needed.
2063 */
2064 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2065 bio_data_dir(bio) == WRITE)
2066 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2067
2068 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2069 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2070 io->ctx.req = (struct skcipher_request *)(io + 1);
2071
2072 if (bio_data_dir(io->base_bio) == READ) {
2073 if (kcryptd_io_read(io, GFP_NOWAIT))
2074 kcryptd_queue_read(io);
2075 } else
2076 kcryptd_queue_crypt(io);
2077
2078 return DM_MAPIO_SUBMITTED;
2079}
2080
2081static void crypt_status(struct dm_target *ti, status_type_t type,
2082 unsigned status_flags, char *result, unsigned maxlen)
2083{
2084 struct crypt_config *cc = ti->private;
2085 unsigned i, sz = 0;
2086 int num_feature_args = 0;
2087
2088 switch (type) {
2089 case STATUSTYPE_INFO:
2090 result[0] = '\0';
2091 break;
2092
2093 case STATUSTYPE_TABLE:
2094 DMEMIT("%s ", cc->cipher_string);
2095
2096 if (cc->key_size > 0) {
2097 if (cc->key_string)
2098 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2099 else
2100 for (i = 0; i < cc->key_size; i++)
2101 DMEMIT("%02x", cc->key[i]);
2102 } else
2103 DMEMIT("-");
2104
2105 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2106 cc->dev->name, (unsigned long long)cc->start);
2107
2108 num_feature_args += !!ti->num_discard_bios;
2109 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2110 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2111 if (num_feature_args) {
2112 DMEMIT(" %d", num_feature_args);
2113 if (ti->num_discard_bios)
2114 DMEMIT(" allow_discards");
2115 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2116 DMEMIT(" same_cpu_crypt");
2117 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2118 DMEMIT(" submit_from_crypt_cpus");
2119 }
2120
2121 break;
2122 }
2123}
2124
2125static void crypt_postsuspend(struct dm_target *ti)
2126{
2127 struct crypt_config *cc = ti->private;
2128
2129 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2130}
2131
2132static int crypt_preresume(struct dm_target *ti)
2133{
2134 struct crypt_config *cc = ti->private;
2135
2136 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2137 DMERR("aborting resume - crypt key is not set.");
2138 return -EAGAIN;
2139 }
2140
2141 return 0;
2142}
2143
2144static void crypt_resume(struct dm_target *ti)
2145{
2146 struct crypt_config *cc = ti->private;
2147
2148 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2149}
2150
2151/* Message interface
2152 * key set <key>
2153 * key wipe
2154 */
2155static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2156{
2157 struct crypt_config *cc = ti->private;
2158 int key_size, ret = -EINVAL;
2159
2160 if (argc < 2)
2161 goto error;
2162
2163 if (!strcasecmp(argv[0], "key")) {
2164 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2165 DMWARN("not suspended during key manipulation.");
2166 return -EINVAL;
2167 }
2168 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2169 /* The key size may not be changed. */
2170 key_size = get_key_size(&argv[2]);
2171 if (key_size < 0 || cc->key_size != key_size) {
2172 memset(argv[2], '0', strlen(argv[2]));
2173 return -EINVAL;
2174 }
2175
2176 ret = crypt_set_key(cc, argv[2]);
2177 if (ret)
2178 return ret;
2179 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2180 ret = cc->iv_gen_ops->init(cc);
2181 return ret;
2182 }
2183 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2184 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2185 ret = cc->iv_gen_ops->wipe(cc);
2186 if (ret)
2187 return ret;
2188 }
2189 return crypt_wipe_key(cc);
2190 }
2191 }
2192
2193error:
2194 DMWARN("unrecognised message received.");
2195 return -EINVAL;
2196}
2197
2198static int crypt_iterate_devices(struct dm_target *ti,
2199 iterate_devices_callout_fn fn, void *data)
2200{
2201 struct crypt_config *cc = ti->private;
2202
2203 return fn(ti, cc->dev, cc->start, ti->len, data);
2204}
2205
2206static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2207{
2208 /*
2209 * Unfortunate constraint that is required to avoid the potential
2210 * for exceeding underlying device's max_segments limits -- due to
2211 * crypt_alloc_buffer() possibly allocating pages for the encryption
2212 * bio that are not as physically contiguous as the original bio.
2213 */
2214 limits->max_segment_size = PAGE_SIZE;
2215}
2216
2217static struct target_type crypt_target = {
2218 .name = "crypt",
2219 .version = {1, 15, 0},
2220 .module = THIS_MODULE,
2221 .ctr = crypt_ctr,
2222 .dtr = crypt_dtr,
2223 .map = crypt_map,
2224 .status = crypt_status,
2225 .postsuspend = crypt_postsuspend,
2226 .preresume = crypt_preresume,
2227 .resume = crypt_resume,
2228 .message = crypt_message,
2229 .iterate_devices = crypt_iterate_devices,
2230 .io_hints = crypt_io_hints,
2231};
2232
2233static int __init dm_crypt_init(void)
2234{
2235 int r;
2236
2237 r = dm_register_target(&crypt_target);
2238 if (r < 0)
2239 DMERR("register failed %d", r);
2240
2241 return r;
2242}
2243
2244static void __exit dm_crypt_exit(void)
2245{
2246 dm_unregister_target(&crypt_target);
2247}
2248
2249module_init(dm_crypt_init);
2250module_exit(dm_crypt_exit);
2251
2252MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2253MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2254MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/key.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/crypto.h>
21#include <linux/workqueue.h>
22#include <linux/kthread.h>
23#include <linux/backing-dev.h>
24#include <linux/atomic.h>
25#include <linux/scatterlist.h>
26#include <linux/rbtree.h>
27#include <linux/ctype.h>
28#include <asm/page.h>
29#include <asm/unaligned.h>
30#include <crypto/hash.h>
31#include <crypto/md5.h>
32#include <crypto/algapi.h>
33#include <crypto/skcipher.h>
34#include <crypto/aead.h>
35#include <crypto/authenc.h>
36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37#include <keys/user-type.h>
38
39#include <linux/device-mapper.h>
40
41#define DM_MSG_PREFIX "crypt"
42
43/*
44 * context holding the current state of a multi-part conversion
45 */
46struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 u64 cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59};
60
61/*
62 * per bio private data
63 */
64struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78} CRYPTO_MINALIGN_ATTR;
79
80struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 u64 iv_sector;
85};
86
87struct crypt_config;
88
89struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99};
100
101struct iv_benbi_private {
102 int shift;
103};
104
105#define LMK_SEED_SIZE 64 /* hash + 0 */
106struct iv_lmk_private {
107 struct crypto_shash *hash_tfm;
108 u8 *seed;
109};
110
111#define TCW_WHITENING_SIZE 16
112struct iv_tcw_private {
113 struct crypto_shash *crc32_tfm;
114 u8 *iv_seed;
115 u8 *whitening;
116};
117
118/*
119 * Crypt: maps a linear range of a block device
120 * and encrypts / decrypts at the same time.
121 */
122enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
123 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
124
125enum cipher_flags {
126 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
127 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
128};
129
130/*
131 * The fields in here must be read only after initialization.
132 */
133struct crypt_config {
134 struct dm_dev *dev;
135 sector_t start;
136
137 struct percpu_counter n_allocated_pages;
138
139 struct workqueue_struct *io_queue;
140 struct workqueue_struct *crypt_queue;
141
142 spinlock_t write_thread_lock;
143 struct task_struct *write_thread;
144 struct rb_root write_tree;
145
146 char *cipher_string;
147 char *cipher_auth;
148 char *key_string;
149
150 const struct crypt_iv_operations *iv_gen_ops;
151 union {
152 struct iv_benbi_private benbi;
153 struct iv_lmk_private lmk;
154 struct iv_tcw_private tcw;
155 } iv_gen_private;
156 u64 iv_offset;
157 unsigned int iv_size;
158 unsigned short int sector_size;
159 unsigned char sector_shift;
160
161 union {
162 struct crypto_skcipher **tfms;
163 struct crypto_aead **tfms_aead;
164 } cipher_tfm;
165 unsigned tfms_count;
166 unsigned long cipher_flags;
167
168 /*
169 * Layout of each crypto request:
170 *
171 * struct skcipher_request
172 * context
173 * padding
174 * struct dm_crypt_request
175 * padding
176 * IV
177 *
178 * The padding is added so that dm_crypt_request and the IV are
179 * correctly aligned.
180 */
181 unsigned int dmreq_start;
182
183 unsigned int per_bio_data_size;
184
185 unsigned long flags;
186 unsigned int key_size;
187 unsigned int key_parts; /* independent parts in key buffer */
188 unsigned int key_extra_size; /* additional keys length */
189 unsigned int key_mac_size; /* MAC key size for authenc(...) */
190
191 unsigned int integrity_tag_size;
192 unsigned int integrity_iv_size;
193 unsigned int on_disk_tag_size;
194
195 /*
196 * pool for per bio private data, crypto requests,
197 * encryption requeusts/buffer pages and integrity tags
198 */
199 unsigned tag_pool_max_sectors;
200 mempool_t tag_pool;
201 mempool_t req_pool;
202 mempool_t page_pool;
203
204 struct bio_set bs;
205 struct mutex bio_alloc_lock;
206
207 u8 *authenc_key; /* space for keys in authenc() format (if used) */
208 u8 key[0];
209};
210
211#define MIN_IOS 64
212#define MAX_TAG_SIZE 480
213#define POOL_ENTRY_SIZE 512
214
215static DEFINE_SPINLOCK(dm_crypt_clients_lock);
216static unsigned dm_crypt_clients_n = 0;
217static volatile unsigned long dm_crypt_pages_per_client;
218#define DM_CRYPT_MEMORY_PERCENT 2
219#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
220
221static void clone_init(struct dm_crypt_io *, struct bio *);
222static void kcryptd_queue_crypt(struct dm_crypt_io *io);
223static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
224 struct scatterlist *sg);
225
226/*
227 * Use this to access cipher attributes that are independent of the key.
228 */
229static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
230{
231 return cc->cipher_tfm.tfms[0];
232}
233
234static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
235{
236 return cc->cipher_tfm.tfms_aead[0];
237}
238
239/*
240 * Different IV generation algorithms:
241 *
242 * plain: the initial vector is the 32-bit little-endian version of the sector
243 * number, padded with zeros if necessary.
244 *
245 * plain64: the initial vector is the 64-bit little-endian version of the sector
246 * number, padded with zeros if necessary.
247 *
248 * plain64be: the initial vector is the 64-bit big-endian version of the sector
249 * number, padded with zeros if necessary.
250 *
251 * essiv: "encrypted sector|salt initial vector", the sector number is
252 * encrypted with the bulk cipher using a salt as key. The salt
253 * should be derived from the bulk cipher's key via hashing.
254 *
255 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
256 * (needed for LRW-32-AES and possible other narrow block modes)
257 *
258 * null: the initial vector is always zero. Provides compatibility with
259 * obsolete loop_fish2 devices. Do not use for new devices.
260 *
261 * lmk: Compatible implementation of the block chaining mode used
262 * by the Loop-AES block device encryption system
263 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
264 * It operates on full 512 byte sectors and uses CBC
265 * with an IV derived from the sector number, the data and
266 * optionally extra IV seed.
267 * This means that after decryption the first block
268 * of sector must be tweaked according to decrypted data.
269 * Loop-AES can use three encryption schemes:
270 * version 1: is plain aes-cbc mode
271 * version 2: uses 64 multikey scheme with lmk IV generator
272 * version 3: the same as version 2 with additional IV seed
273 * (it uses 65 keys, last key is used as IV seed)
274 *
275 * tcw: Compatible implementation of the block chaining mode used
276 * by the TrueCrypt device encryption system (prior to version 4.1).
277 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
278 * It operates on full 512 byte sectors and uses CBC
279 * with an IV derived from initial key and the sector number.
280 * In addition, whitening value is applied on every sector, whitening
281 * is calculated from initial key, sector number and mixed using CRC32.
282 * Note that this encryption scheme is vulnerable to watermarking attacks
283 * and should be used for old compatible containers access only.
284 *
285 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
286 * The IV is encrypted little-endian byte-offset (with the same key
287 * and cipher as the volume).
288 */
289
290static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
291 struct dm_crypt_request *dmreq)
292{
293 memset(iv, 0, cc->iv_size);
294 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
295
296 return 0;
297}
298
299static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
300 struct dm_crypt_request *dmreq)
301{
302 memset(iv, 0, cc->iv_size);
303 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
304
305 return 0;
306}
307
308static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
309 struct dm_crypt_request *dmreq)
310{
311 memset(iv, 0, cc->iv_size);
312 /* iv_size is at least of size u64; usually it is 16 bytes */
313 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
314
315 return 0;
316}
317
318static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
319 struct dm_crypt_request *dmreq)
320{
321 /*
322 * ESSIV encryption of the IV is now handled by the crypto API,
323 * so just pass the plain sector number here.
324 */
325 memset(iv, 0, cc->iv_size);
326 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
327
328 return 0;
329}
330
331static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
332 const char *opts)
333{
334 unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
335 int log = ilog2(bs);
336
337 /* we need to calculate how far we must shift the sector count
338 * to get the cipher block count, we use this shift in _gen */
339
340 if (1 << log != bs) {
341 ti->error = "cypher blocksize is not a power of 2";
342 return -EINVAL;
343 }
344
345 if (log > 9) {
346 ti->error = "cypher blocksize is > 512";
347 return -EINVAL;
348 }
349
350 cc->iv_gen_private.benbi.shift = 9 - log;
351
352 return 0;
353}
354
355static void crypt_iv_benbi_dtr(struct crypt_config *cc)
356{
357}
358
359static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
360 struct dm_crypt_request *dmreq)
361{
362 __be64 val;
363
364 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
365
366 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
367 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
368
369 return 0;
370}
371
372static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
373 struct dm_crypt_request *dmreq)
374{
375 memset(iv, 0, cc->iv_size);
376
377 return 0;
378}
379
380static void crypt_iv_lmk_dtr(struct crypt_config *cc)
381{
382 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
383
384 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
385 crypto_free_shash(lmk->hash_tfm);
386 lmk->hash_tfm = NULL;
387
388 kzfree(lmk->seed);
389 lmk->seed = NULL;
390}
391
392static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
393 const char *opts)
394{
395 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
396
397 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
398 ti->error = "Unsupported sector size for LMK";
399 return -EINVAL;
400 }
401
402 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
403 if (IS_ERR(lmk->hash_tfm)) {
404 ti->error = "Error initializing LMK hash";
405 return PTR_ERR(lmk->hash_tfm);
406 }
407
408 /* No seed in LMK version 2 */
409 if (cc->key_parts == cc->tfms_count) {
410 lmk->seed = NULL;
411 return 0;
412 }
413
414 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
415 if (!lmk->seed) {
416 crypt_iv_lmk_dtr(cc);
417 ti->error = "Error kmallocing seed storage in LMK";
418 return -ENOMEM;
419 }
420
421 return 0;
422}
423
424static int crypt_iv_lmk_init(struct crypt_config *cc)
425{
426 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
427 int subkey_size = cc->key_size / cc->key_parts;
428
429 /* LMK seed is on the position of LMK_KEYS + 1 key */
430 if (lmk->seed)
431 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
432 crypto_shash_digestsize(lmk->hash_tfm));
433
434 return 0;
435}
436
437static int crypt_iv_lmk_wipe(struct crypt_config *cc)
438{
439 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
440
441 if (lmk->seed)
442 memset(lmk->seed, 0, LMK_SEED_SIZE);
443
444 return 0;
445}
446
447static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
448 struct dm_crypt_request *dmreq,
449 u8 *data)
450{
451 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
452 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
453 struct md5_state md5state;
454 __le32 buf[4];
455 int i, r;
456
457 desc->tfm = lmk->hash_tfm;
458
459 r = crypto_shash_init(desc);
460 if (r)
461 return r;
462
463 if (lmk->seed) {
464 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
465 if (r)
466 return r;
467 }
468
469 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
470 r = crypto_shash_update(desc, data + 16, 16 * 31);
471 if (r)
472 return r;
473
474 /* Sector is cropped to 56 bits here */
475 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
476 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
477 buf[2] = cpu_to_le32(4024);
478 buf[3] = 0;
479 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
480 if (r)
481 return r;
482
483 /* No MD5 padding here */
484 r = crypto_shash_export(desc, &md5state);
485 if (r)
486 return r;
487
488 for (i = 0; i < MD5_HASH_WORDS; i++)
489 __cpu_to_le32s(&md5state.hash[i]);
490 memcpy(iv, &md5state.hash, cc->iv_size);
491
492 return 0;
493}
494
495static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
496 struct dm_crypt_request *dmreq)
497{
498 struct scatterlist *sg;
499 u8 *src;
500 int r = 0;
501
502 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
503 sg = crypt_get_sg_data(cc, dmreq->sg_in);
504 src = kmap_atomic(sg_page(sg));
505 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
506 kunmap_atomic(src);
507 } else
508 memset(iv, 0, cc->iv_size);
509
510 return r;
511}
512
513static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
514 struct dm_crypt_request *dmreq)
515{
516 struct scatterlist *sg;
517 u8 *dst;
518 int r;
519
520 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
521 return 0;
522
523 sg = crypt_get_sg_data(cc, dmreq->sg_out);
524 dst = kmap_atomic(sg_page(sg));
525 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
526
527 /* Tweak the first block of plaintext sector */
528 if (!r)
529 crypto_xor(dst + sg->offset, iv, cc->iv_size);
530
531 kunmap_atomic(dst);
532 return r;
533}
534
535static void crypt_iv_tcw_dtr(struct crypt_config *cc)
536{
537 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
538
539 kzfree(tcw->iv_seed);
540 tcw->iv_seed = NULL;
541 kzfree(tcw->whitening);
542 tcw->whitening = NULL;
543
544 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
545 crypto_free_shash(tcw->crc32_tfm);
546 tcw->crc32_tfm = NULL;
547}
548
549static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
550 const char *opts)
551{
552 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
553
554 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
555 ti->error = "Unsupported sector size for TCW";
556 return -EINVAL;
557 }
558
559 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
560 ti->error = "Wrong key size for TCW";
561 return -EINVAL;
562 }
563
564 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
565 if (IS_ERR(tcw->crc32_tfm)) {
566 ti->error = "Error initializing CRC32 in TCW";
567 return PTR_ERR(tcw->crc32_tfm);
568 }
569
570 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
571 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
572 if (!tcw->iv_seed || !tcw->whitening) {
573 crypt_iv_tcw_dtr(cc);
574 ti->error = "Error allocating seed storage in TCW";
575 return -ENOMEM;
576 }
577
578 return 0;
579}
580
581static int crypt_iv_tcw_init(struct crypt_config *cc)
582{
583 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
584 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
585
586 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
587 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
588 TCW_WHITENING_SIZE);
589
590 return 0;
591}
592
593static int crypt_iv_tcw_wipe(struct crypt_config *cc)
594{
595 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
596
597 memset(tcw->iv_seed, 0, cc->iv_size);
598 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
599
600 return 0;
601}
602
603static int crypt_iv_tcw_whitening(struct crypt_config *cc,
604 struct dm_crypt_request *dmreq,
605 u8 *data)
606{
607 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
608 __le64 sector = cpu_to_le64(dmreq->iv_sector);
609 u8 buf[TCW_WHITENING_SIZE];
610 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
611 int i, r;
612
613 /* xor whitening with sector number */
614 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
615 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
616
617 /* calculate crc32 for every 32bit part and xor it */
618 desc->tfm = tcw->crc32_tfm;
619 for (i = 0; i < 4; i++) {
620 r = crypto_shash_init(desc);
621 if (r)
622 goto out;
623 r = crypto_shash_update(desc, &buf[i * 4], 4);
624 if (r)
625 goto out;
626 r = crypto_shash_final(desc, &buf[i * 4]);
627 if (r)
628 goto out;
629 }
630 crypto_xor(&buf[0], &buf[12], 4);
631 crypto_xor(&buf[4], &buf[8], 4);
632
633 /* apply whitening (8 bytes) to whole sector */
634 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
635 crypto_xor(data + i * 8, buf, 8);
636out:
637 memzero_explicit(buf, sizeof(buf));
638 return r;
639}
640
641static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
642 struct dm_crypt_request *dmreq)
643{
644 struct scatterlist *sg;
645 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
646 __le64 sector = cpu_to_le64(dmreq->iv_sector);
647 u8 *src;
648 int r = 0;
649
650 /* Remove whitening from ciphertext */
651 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
652 sg = crypt_get_sg_data(cc, dmreq->sg_in);
653 src = kmap_atomic(sg_page(sg));
654 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
655 kunmap_atomic(src);
656 }
657
658 /* Calculate IV */
659 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
660 if (cc->iv_size > 8)
661 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
662 cc->iv_size - 8);
663
664 return r;
665}
666
667static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
668 struct dm_crypt_request *dmreq)
669{
670 struct scatterlist *sg;
671 u8 *dst;
672 int r;
673
674 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
675 return 0;
676
677 /* Apply whitening on ciphertext */
678 sg = crypt_get_sg_data(cc, dmreq->sg_out);
679 dst = kmap_atomic(sg_page(sg));
680 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
681 kunmap_atomic(dst);
682
683 return r;
684}
685
686static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
687 struct dm_crypt_request *dmreq)
688{
689 /* Used only for writes, there must be an additional space to store IV */
690 get_random_bytes(iv, cc->iv_size);
691 return 0;
692}
693
694static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
695 const char *opts)
696{
697 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
698 ti->error = "AEAD transforms not supported for EBOIV";
699 return -EINVAL;
700 }
701
702 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
703 ti->error = "Block size of EBOIV cipher does "
704 "not match IV size of block cipher";
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
712 struct dm_crypt_request *dmreq)
713{
714 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
715 struct skcipher_request *req;
716 struct scatterlist src, dst;
717 struct crypto_wait wait;
718 int err;
719
720 req = skcipher_request_alloc(any_tfm(cc), GFP_KERNEL | GFP_NOFS);
721 if (!req)
722 return -ENOMEM;
723
724 memset(buf, 0, cc->iv_size);
725 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
726
727 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
728 sg_init_one(&dst, iv, cc->iv_size);
729 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
730 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
731 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
732 skcipher_request_free(req);
733
734 return err;
735}
736
737static const struct crypt_iv_operations crypt_iv_plain_ops = {
738 .generator = crypt_iv_plain_gen
739};
740
741static const struct crypt_iv_operations crypt_iv_plain64_ops = {
742 .generator = crypt_iv_plain64_gen
743};
744
745static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
746 .generator = crypt_iv_plain64be_gen
747};
748
749static const struct crypt_iv_operations crypt_iv_essiv_ops = {
750 .generator = crypt_iv_essiv_gen
751};
752
753static const struct crypt_iv_operations crypt_iv_benbi_ops = {
754 .ctr = crypt_iv_benbi_ctr,
755 .dtr = crypt_iv_benbi_dtr,
756 .generator = crypt_iv_benbi_gen
757};
758
759static const struct crypt_iv_operations crypt_iv_null_ops = {
760 .generator = crypt_iv_null_gen
761};
762
763static const struct crypt_iv_operations crypt_iv_lmk_ops = {
764 .ctr = crypt_iv_lmk_ctr,
765 .dtr = crypt_iv_lmk_dtr,
766 .init = crypt_iv_lmk_init,
767 .wipe = crypt_iv_lmk_wipe,
768 .generator = crypt_iv_lmk_gen,
769 .post = crypt_iv_lmk_post
770};
771
772static const struct crypt_iv_operations crypt_iv_tcw_ops = {
773 .ctr = crypt_iv_tcw_ctr,
774 .dtr = crypt_iv_tcw_dtr,
775 .init = crypt_iv_tcw_init,
776 .wipe = crypt_iv_tcw_wipe,
777 .generator = crypt_iv_tcw_gen,
778 .post = crypt_iv_tcw_post
779};
780
781static struct crypt_iv_operations crypt_iv_random_ops = {
782 .generator = crypt_iv_random_gen
783};
784
785static struct crypt_iv_operations crypt_iv_eboiv_ops = {
786 .ctr = crypt_iv_eboiv_ctr,
787 .generator = crypt_iv_eboiv_gen
788};
789
790/*
791 * Integrity extensions
792 */
793static bool crypt_integrity_aead(struct crypt_config *cc)
794{
795 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
796}
797
798static bool crypt_integrity_hmac(struct crypt_config *cc)
799{
800 return crypt_integrity_aead(cc) && cc->key_mac_size;
801}
802
803/* Get sg containing data */
804static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
805 struct scatterlist *sg)
806{
807 if (unlikely(crypt_integrity_aead(cc)))
808 return &sg[2];
809
810 return sg;
811}
812
813static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
814{
815 struct bio_integrity_payload *bip;
816 unsigned int tag_len;
817 int ret;
818
819 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
820 return 0;
821
822 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
823 if (IS_ERR(bip))
824 return PTR_ERR(bip);
825
826 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
827
828 bip->bip_iter.bi_size = tag_len;
829 bip->bip_iter.bi_sector = io->cc->start + io->sector;
830
831 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
832 tag_len, offset_in_page(io->integrity_metadata));
833 if (unlikely(ret != tag_len))
834 return -ENOMEM;
835
836 return 0;
837}
838
839static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
840{
841#ifdef CONFIG_BLK_DEV_INTEGRITY
842 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
843 struct mapped_device *md = dm_table_get_md(ti->table);
844
845 /* From now we require underlying device with our integrity profile */
846 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
847 ti->error = "Integrity profile not supported.";
848 return -EINVAL;
849 }
850
851 if (bi->tag_size != cc->on_disk_tag_size ||
852 bi->tuple_size != cc->on_disk_tag_size) {
853 ti->error = "Integrity profile tag size mismatch.";
854 return -EINVAL;
855 }
856 if (1 << bi->interval_exp != cc->sector_size) {
857 ti->error = "Integrity profile sector size mismatch.";
858 return -EINVAL;
859 }
860
861 if (crypt_integrity_aead(cc)) {
862 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
863 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
864 cc->integrity_tag_size, cc->integrity_iv_size);
865
866 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
867 ti->error = "Integrity AEAD auth tag size is not supported.";
868 return -EINVAL;
869 }
870 } else if (cc->integrity_iv_size)
871 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
872 cc->integrity_iv_size);
873
874 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
875 ti->error = "Not enough space for integrity tag in the profile.";
876 return -EINVAL;
877 }
878
879 return 0;
880#else
881 ti->error = "Integrity profile not supported.";
882 return -EINVAL;
883#endif
884}
885
886static void crypt_convert_init(struct crypt_config *cc,
887 struct convert_context *ctx,
888 struct bio *bio_out, struct bio *bio_in,
889 sector_t sector)
890{
891 ctx->bio_in = bio_in;
892 ctx->bio_out = bio_out;
893 if (bio_in)
894 ctx->iter_in = bio_in->bi_iter;
895 if (bio_out)
896 ctx->iter_out = bio_out->bi_iter;
897 ctx->cc_sector = sector + cc->iv_offset;
898 init_completion(&ctx->restart);
899}
900
901static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
902 void *req)
903{
904 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
905}
906
907static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
908{
909 return (void *)((char *)dmreq - cc->dmreq_start);
910}
911
912static u8 *iv_of_dmreq(struct crypt_config *cc,
913 struct dm_crypt_request *dmreq)
914{
915 if (crypt_integrity_aead(cc))
916 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
917 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
918 else
919 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
920 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
921}
922
923static u8 *org_iv_of_dmreq(struct crypt_config *cc,
924 struct dm_crypt_request *dmreq)
925{
926 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
927}
928
929static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
930 struct dm_crypt_request *dmreq)
931{
932 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
933 return (__le64 *) ptr;
934}
935
936static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
937 struct dm_crypt_request *dmreq)
938{
939 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
940 cc->iv_size + sizeof(uint64_t);
941 return (unsigned int*)ptr;
942}
943
944static void *tag_from_dmreq(struct crypt_config *cc,
945 struct dm_crypt_request *dmreq)
946{
947 struct convert_context *ctx = dmreq->ctx;
948 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
949
950 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
951 cc->on_disk_tag_size];
952}
953
954static void *iv_tag_from_dmreq(struct crypt_config *cc,
955 struct dm_crypt_request *dmreq)
956{
957 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
958}
959
960static int crypt_convert_block_aead(struct crypt_config *cc,
961 struct convert_context *ctx,
962 struct aead_request *req,
963 unsigned int tag_offset)
964{
965 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
966 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
967 struct dm_crypt_request *dmreq;
968 u8 *iv, *org_iv, *tag_iv, *tag;
969 __le64 *sector;
970 int r = 0;
971
972 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
973
974 /* Reject unexpected unaligned bio. */
975 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
976 return -EIO;
977
978 dmreq = dmreq_of_req(cc, req);
979 dmreq->iv_sector = ctx->cc_sector;
980 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
981 dmreq->iv_sector >>= cc->sector_shift;
982 dmreq->ctx = ctx;
983
984 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
985
986 sector = org_sector_of_dmreq(cc, dmreq);
987 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
988
989 iv = iv_of_dmreq(cc, dmreq);
990 org_iv = org_iv_of_dmreq(cc, dmreq);
991 tag = tag_from_dmreq(cc, dmreq);
992 tag_iv = iv_tag_from_dmreq(cc, dmreq);
993
994 /* AEAD request:
995 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
996 * | (authenticated) | (auth+encryption) | |
997 * | sector_LE | IV | sector in/out | tag in/out |
998 */
999 sg_init_table(dmreq->sg_in, 4);
1000 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1001 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1002 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1003 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1004
1005 sg_init_table(dmreq->sg_out, 4);
1006 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1007 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1008 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1009 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1010
1011 if (cc->iv_gen_ops) {
1012 /* For READs use IV stored in integrity metadata */
1013 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1014 memcpy(org_iv, tag_iv, cc->iv_size);
1015 } else {
1016 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1017 if (r < 0)
1018 return r;
1019 /* Store generated IV in integrity metadata */
1020 if (cc->integrity_iv_size)
1021 memcpy(tag_iv, org_iv, cc->iv_size);
1022 }
1023 /* Working copy of IV, to be modified in crypto API */
1024 memcpy(iv, org_iv, cc->iv_size);
1025 }
1026
1027 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1028 if (bio_data_dir(ctx->bio_in) == WRITE) {
1029 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1030 cc->sector_size, iv);
1031 r = crypto_aead_encrypt(req);
1032 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1033 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1034 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1035 } else {
1036 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1037 cc->sector_size + cc->integrity_tag_size, iv);
1038 r = crypto_aead_decrypt(req);
1039 }
1040
1041 if (r == -EBADMSG) {
1042 char b[BDEVNAME_SIZE];
1043 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1044 (unsigned long long)le64_to_cpu(*sector));
1045 }
1046
1047 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1048 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1049
1050 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1051 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1052
1053 return r;
1054}
1055
1056static int crypt_convert_block_skcipher(struct crypt_config *cc,
1057 struct convert_context *ctx,
1058 struct skcipher_request *req,
1059 unsigned int tag_offset)
1060{
1061 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1062 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1063 struct scatterlist *sg_in, *sg_out;
1064 struct dm_crypt_request *dmreq;
1065 u8 *iv, *org_iv, *tag_iv;
1066 __le64 *sector;
1067 int r = 0;
1068
1069 /* Reject unexpected unaligned bio. */
1070 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1071 return -EIO;
1072
1073 dmreq = dmreq_of_req(cc, req);
1074 dmreq->iv_sector = ctx->cc_sector;
1075 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1076 dmreq->iv_sector >>= cc->sector_shift;
1077 dmreq->ctx = ctx;
1078
1079 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1080
1081 iv = iv_of_dmreq(cc, dmreq);
1082 org_iv = org_iv_of_dmreq(cc, dmreq);
1083 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1084
1085 sector = org_sector_of_dmreq(cc, dmreq);
1086 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1087
1088 /* For skcipher we use only the first sg item */
1089 sg_in = &dmreq->sg_in[0];
1090 sg_out = &dmreq->sg_out[0];
1091
1092 sg_init_table(sg_in, 1);
1093 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1094
1095 sg_init_table(sg_out, 1);
1096 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1097
1098 if (cc->iv_gen_ops) {
1099 /* For READs use IV stored in integrity metadata */
1100 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1101 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1102 } else {
1103 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1104 if (r < 0)
1105 return r;
1106 /* Store generated IV in integrity metadata */
1107 if (cc->integrity_iv_size)
1108 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1109 }
1110 /* Working copy of IV, to be modified in crypto API */
1111 memcpy(iv, org_iv, cc->iv_size);
1112 }
1113
1114 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1115
1116 if (bio_data_dir(ctx->bio_in) == WRITE)
1117 r = crypto_skcipher_encrypt(req);
1118 else
1119 r = crypto_skcipher_decrypt(req);
1120
1121 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1122 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1123
1124 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1125 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1126
1127 return r;
1128}
1129
1130static void kcryptd_async_done(struct crypto_async_request *async_req,
1131 int error);
1132
1133static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1134 struct convert_context *ctx)
1135{
1136 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1137
1138 if (!ctx->r.req)
1139 ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1140
1141 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1142
1143 /*
1144 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1145 * requests if driver request queue is full.
1146 */
1147 skcipher_request_set_callback(ctx->r.req,
1148 CRYPTO_TFM_REQ_MAY_BACKLOG,
1149 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1150}
1151
1152static void crypt_alloc_req_aead(struct crypt_config *cc,
1153 struct convert_context *ctx)
1154{
1155 if (!ctx->r.req_aead)
1156 ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1157
1158 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1159
1160 /*
1161 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1162 * requests if driver request queue is full.
1163 */
1164 aead_request_set_callback(ctx->r.req_aead,
1165 CRYPTO_TFM_REQ_MAY_BACKLOG,
1166 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1167}
1168
1169static void crypt_alloc_req(struct crypt_config *cc,
1170 struct convert_context *ctx)
1171{
1172 if (crypt_integrity_aead(cc))
1173 crypt_alloc_req_aead(cc, ctx);
1174 else
1175 crypt_alloc_req_skcipher(cc, ctx);
1176}
1177
1178static void crypt_free_req_skcipher(struct crypt_config *cc,
1179 struct skcipher_request *req, struct bio *base_bio)
1180{
1181 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1182
1183 if ((struct skcipher_request *)(io + 1) != req)
1184 mempool_free(req, &cc->req_pool);
1185}
1186
1187static void crypt_free_req_aead(struct crypt_config *cc,
1188 struct aead_request *req, struct bio *base_bio)
1189{
1190 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1191
1192 if ((struct aead_request *)(io + 1) != req)
1193 mempool_free(req, &cc->req_pool);
1194}
1195
1196static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1197{
1198 if (crypt_integrity_aead(cc))
1199 crypt_free_req_aead(cc, req, base_bio);
1200 else
1201 crypt_free_req_skcipher(cc, req, base_bio);
1202}
1203
1204/*
1205 * Encrypt / decrypt data from one bio to another one (can be the same one)
1206 */
1207static blk_status_t crypt_convert(struct crypt_config *cc,
1208 struct convert_context *ctx)
1209{
1210 unsigned int tag_offset = 0;
1211 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1212 int r;
1213
1214 atomic_set(&ctx->cc_pending, 1);
1215
1216 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1217
1218 crypt_alloc_req(cc, ctx);
1219 atomic_inc(&ctx->cc_pending);
1220
1221 if (crypt_integrity_aead(cc))
1222 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1223 else
1224 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1225
1226 switch (r) {
1227 /*
1228 * The request was queued by a crypto driver
1229 * but the driver request queue is full, let's wait.
1230 */
1231 case -EBUSY:
1232 wait_for_completion(&ctx->restart);
1233 reinit_completion(&ctx->restart);
1234 /* fall through */
1235 /*
1236 * The request is queued and processed asynchronously,
1237 * completion function kcryptd_async_done() will be called.
1238 */
1239 case -EINPROGRESS:
1240 ctx->r.req = NULL;
1241 ctx->cc_sector += sector_step;
1242 tag_offset++;
1243 continue;
1244 /*
1245 * The request was already processed (synchronously).
1246 */
1247 case 0:
1248 atomic_dec(&ctx->cc_pending);
1249 ctx->cc_sector += sector_step;
1250 tag_offset++;
1251 cond_resched();
1252 continue;
1253 /*
1254 * There was a data integrity error.
1255 */
1256 case -EBADMSG:
1257 atomic_dec(&ctx->cc_pending);
1258 return BLK_STS_PROTECTION;
1259 /*
1260 * There was an error while processing the request.
1261 */
1262 default:
1263 atomic_dec(&ctx->cc_pending);
1264 return BLK_STS_IOERR;
1265 }
1266 }
1267
1268 return 0;
1269}
1270
1271static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1272
1273/*
1274 * Generate a new unfragmented bio with the given size
1275 * This should never violate the device limitations (but only because
1276 * max_segment_size is being constrained to PAGE_SIZE).
1277 *
1278 * This function may be called concurrently. If we allocate from the mempool
1279 * concurrently, there is a possibility of deadlock. For example, if we have
1280 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1281 * the mempool concurrently, it may deadlock in a situation where both processes
1282 * have allocated 128 pages and the mempool is exhausted.
1283 *
1284 * In order to avoid this scenario we allocate the pages under a mutex.
1285 *
1286 * In order to not degrade performance with excessive locking, we try
1287 * non-blocking allocations without a mutex first but on failure we fallback
1288 * to blocking allocations with a mutex.
1289 */
1290static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1291{
1292 struct crypt_config *cc = io->cc;
1293 struct bio *clone;
1294 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1296 unsigned i, len, remaining_size;
1297 struct page *page;
1298
1299retry:
1300 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1301 mutex_lock(&cc->bio_alloc_lock);
1302
1303 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1304 if (!clone)
1305 goto out;
1306
1307 clone_init(io, clone);
1308
1309 remaining_size = size;
1310
1311 for (i = 0; i < nr_iovecs; i++) {
1312 page = mempool_alloc(&cc->page_pool, gfp_mask);
1313 if (!page) {
1314 crypt_free_buffer_pages(cc, clone);
1315 bio_put(clone);
1316 gfp_mask |= __GFP_DIRECT_RECLAIM;
1317 goto retry;
1318 }
1319
1320 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1321
1322 bio_add_page(clone, page, len, 0);
1323
1324 remaining_size -= len;
1325 }
1326
1327 /* Allocate space for integrity tags */
1328 if (dm_crypt_integrity_io_alloc(io, clone)) {
1329 crypt_free_buffer_pages(cc, clone);
1330 bio_put(clone);
1331 clone = NULL;
1332 }
1333out:
1334 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1335 mutex_unlock(&cc->bio_alloc_lock);
1336
1337 return clone;
1338}
1339
1340static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1341{
1342 struct bio_vec *bv;
1343 struct bvec_iter_all iter_all;
1344
1345 bio_for_each_segment_all(bv, clone, iter_all) {
1346 BUG_ON(!bv->bv_page);
1347 mempool_free(bv->bv_page, &cc->page_pool);
1348 }
1349}
1350
1351static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1352 struct bio *bio, sector_t sector)
1353{
1354 io->cc = cc;
1355 io->base_bio = bio;
1356 io->sector = sector;
1357 io->error = 0;
1358 io->ctx.r.req = NULL;
1359 io->integrity_metadata = NULL;
1360 io->integrity_metadata_from_pool = false;
1361 atomic_set(&io->io_pending, 0);
1362}
1363
1364static void crypt_inc_pending(struct dm_crypt_io *io)
1365{
1366 atomic_inc(&io->io_pending);
1367}
1368
1369/*
1370 * One of the bios was finished. Check for completion of
1371 * the whole request and correctly clean up the buffer.
1372 */
1373static void crypt_dec_pending(struct dm_crypt_io *io)
1374{
1375 struct crypt_config *cc = io->cc;
1376 struct bio *base_bio = io->base_bio;
1377 blk_status_t error = io->error;
1378
1379 if (!atomic_dec_and_test(&io->io_pending))
1380 return;
1381
1382 if (io->ctx.r.req)
1383 crypt_free_req(cc, io->ctx.r.req, base_bio);
1384
1385 if (unlikely(io->integrity_metadata_from_pool))
1386 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1387 else
1388 kfree(io->integrity_metadata);
1389
1390 base_bio->bi_status = error;
1391 bio_endio(base_bio);
1392}
1393
1394/*
1395 * kcryptd/kcryptd_io:
1396 *
1397 * Needed because it would be very unwise to do decryption in an
1398 * interrupt context.
1399 *
1400 * kcryptd performs the actual encryption or decryption.
1401 *
1402 * kcryptd_io performs the IO submission.
1403 *
1404 * They must be separated as otherwise the final stages could be
1405 * starved by new requests which can block in the first stages due
1406 * to memory allocation.
1407 *
1408 * The work is done per CPU global for all dm-crypt instances.
1409 * They should not depend on each other and do not block.
1410 */
1411static void crypt_endio(struct bio *clone)
1412{
1413 struct dm_crypt_io *io = clone->bi_private;
1414 struct crypt_config *cc = io->cc;
1415 unsigned rw = bio_data_dir(clone);
1416 blk_status_t error;
1417
1418 /*
1419 * free the processed pages
1420 */
1421 if (rw == WRITE)
1422 crypt_free_buffer_pages(cc, clone);
1423
1424 error = clone->bi_status;
1425 bio_put(clone);
1426
1427 if (rw == READ && !error) {
1428 kcryptd_queue_crypt(io);
1429 return;
1430 }
1431
1432 if (unlikely(error))
1433 io->error = error;
1434
1435 crypt_dec_pending(io);
1436}
1437
1438static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1439{
1440 struct crypt_config *cc = io->cc;
1441
1442 clone->bi_private = io;
1443 clone->bi_end_io = crypt_endio;
1444 bio_set_dev(clone, cc->dev->bdev);
1445 clone->bi_opf = io->base_bio->bi_opf;
1446}
1447
1448static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1449{
1450 struct crypt_config *cc = io->cc;
1451 struct bio *clone;
1452
1453 /*
1454 * We need the original biovec array in order to decrypt
1455 * the whole bio data *afterwards* -- thanks to immutable
1456 * biovecs we don't need to worry about the block layer
1457 * modifying the biovec array; so leverage bio_clone_fast().
1458 */
1459 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1460 if (!clone)
1461 return 1;
1462
1463 crypt_inc_pending(io);
1464
1465 clone_init(io, clone);
1466 clone->bi_iter.bi_sector = cc->start + io->sector;
1467
1468 if (dm_crypt_integrity_io_alloc(io, clone)) {
1469 crypt_dec_pending(io);
1470 bio_put(clone);
1471 return 1;
1472 }
1473
1474 generic_make_request(clone);
1475 return 0;
1476}
1477
1478static void kcryptd_io_read_work(struct work_struct *work)
1479{
1480 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1481
1482 crypt_inc_pending(io);
1483 if (kcryptd_io_read(io, GFP_NOIO))
1484 io->error = BLK_STS_RESOURCE;
1485 crypt_dec_pending(io);
1486}
1487
1488static void kcryptd_queue_read(struct dm_crypt_io *io)
1489{
1490 struct crypt_config *cc = io->cc;
1491
1492 INIT_WORK(&io->work, kcryptd_io_read_work);
1493 queue_work(cc->io_queue, &io->work);
1494}
1495
1496static void kcryptd_io_write(struct dm_crypt_io *io)
1497{
1498 struct bio *clone = io->ctx.bio_out;
1499
1500 generic_make_request(clone);
1501}
1502
1503#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1504
1505static int dmcrypt_write(void *data)
1506{
1507 struct crypt_config *cc = data;
1508 struct dm_crypt_io *io;
1509
1510 while (1) {
1511 struct rb_root write_tree;
1512 struct blk_plug plug;
1513
1514 spin_lock_irq(&cc->write_thread_lock);
1515continue_locked:
1516
1517 if (!RB_EMPTY_ROOT(&cc->write_tree))
1518 goto pop_from_list;
1519
1520 set_current_state(TASK_INTERRUPTIBLE);
1521
1522 spin_unlock_irq(&cc->write_thread_lock);
1523
1524 if (unlikely(kthread_should_stop())) {
1525 set_current_state(TASK_RUNNING);
1526 break;
1527 }
1528
1529 schedule();
1530
1531 set_current_state(TASK_RUNNING);
1532 spin_lock_irq(&cc->write_thread_lock);
1533 goto continue_locked;
1534
1535pop_from_list:
1536 write_tree = cc->write_tree;
1537 cc->write_tree = RB_ROOT;
1538 spin_unlock_irq(&cc->write_thread_lock);
1539
1540 BUG_ON(rb_parent(write_tree.rb_node));
1541
1542 /*
1543 * Note: we cannot walk the tree here with rb_next because
1544 * the structures may be freed when kcryptd_io_write is called.
1545 */
1546 blk_start_plug(&plug);
1547 do {
1548 io = crypt_io_from_node(rb_first(&write_tree));
1549 rb_erase(&io->rb_node, &write_tree);
1550 kcryptd_io_write(io);
1551 } while (!RB_EMPTY_ROOT(&write_tree));
1552 blk_finish_plug(&plug);
1553 }
1554 return 0;
1555}
1556
1557static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1558{
1559 struct bio *clone = io->ctx.bio_out;
1560 struct crypt_config *cc = io->cc;
1561 unsigned long flags;
1562 sector_t sector;
1563 struct rb_node **rbp, *parent;
1564
1565 if (unlikely(io->error)) {
1566 crypt_free_buffer_pages(cc, clone);
1567 bio_put(clone);
1568 crypt_dec_pending(io);
1569 return;
1570 }
1571
1572 /* crypt_convert should have filled the clone bio */
1573 BUG_ON(io->ctx.iter_out.bi_size);
1574
1575 clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1578 generic_make_request(clone);
1579 return;
1580 }
1581
1582 spin_lock_irqsave(&cc->write_thread_lock, flags);
1583 if (RB_EMPTY_ROOT(&cc->write_tree))
1584 wake_up_process(cc->write_thread);
1585 rbp = &cc->write_tree.rb_node;
1586 parent = NULL;
1587 sector = io->sector;
1588 while (*rbp) {
1589 parent = *rbp;
1590 if (sector < crypt_io_from_node(parent)->sector)
1591 rbp = &(*rbp)->rb_left;
1592 else
1593 rbp = &(*rbp)->rb_right;
1594 }
1595 rb_link_node(&io->rb_node, parent, rbp);
1596 rb_insert_color(&io->rb_node, &cc->write_tree);
1597 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1598}
1599
1600static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1601{
1602 struct crypt_config *cc = io->cc;
1603 struct bio *clone;
1604 int crypt_finished;
1605 sector_t sector = io->sector;
1606 blk_status_t r;
1607
1608 /*
1609 * Prevent io from disappearing until this function completes.
1610 */
1611 crypt_inc_pending(io);
1612 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1613
1614 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1615 if (unlikely(!clone)) {
1616 io->error = BLK_STS_IOERR;
1617 goto dec;
1618 }
1619
1620 io->ctx.bio_out = clone;
1621 io->ctx.iter_out = clone->bi_iter;
1622
1623 sector += bio_sectors(clone);
1624
1625 crypt_inc_pending(io);
1626 r = crypt_convert(cc, &io->ctx);
1627 if (r)
1628 io->error = r;
1629 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1630
1631 /* Encryption was already finished, submit io now */
1632 if (crypt_finished) {
1633 kcryptd_crypt_write_io_submit(io, 0);
1634 io->sector = sector;
1635 }
1636
1637dec:
1638 crypt_dec_pending(io);
1639}
1640
1641static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1642{
1643 crypt_dec_pending(io);
1644}
1645
1646static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1647{
1648 struct crypt_config *cc = io->cc;
1649 blk_status_t r;
1650
1651 crypt_inc_pending(io);
1652
1653 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1654 io->sector);
1655
1656 r = crypt_convert(cc, &io->ctx);
1657 if (r)
1658 io->error = r;
1659
1660 if (atomic_dec_and_test(&io->ctx.cc_pending))
1661 kcryptd_crypt_read_done(io);
1662
1663 crypt_dec_pending(io);
1664}
1665
1666static void kcryptd_async_done(struct crypto_async_request *async_req,
1667 int error)
1668{
1669 struct dm_crypt_request *dmreq = async_req->data;
1670 struct convert_context *ctx = dmreq->ctx;
1671 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1672 struct crypt_config *cc = io->cc;
1673
1674 /*
1675 * A request from crypto driver backlog is going to be processed now,
1676 * finish the completion and continue in crypt_convert().
1677 * (Callback will be called for the second time for this request.)
1678 */
1679 if (error == -EINPROGRESS) {
1680 complete(&ctx->restart);
1681 return;
1682 }
1683
1684 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1685 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1686
1687 if (error == -EBADMSG) {
1688 char b[BDEVNAME_SIZE];
1689 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1690 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1691 io->error = BLK_STS_PROTECTION;
1692 } else if (error < 0)
1693 io->error = BLK_STS_IOERR;
1694
1695 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1696
1697 if (!atomic_dec_and_test(&ctx->cc_pending))
1698 return;
1699
1700 if (bio_data_dir(io->base_bio) == READ)
1701 kcryptd_crypt_read_done(io);
1702 else
1703 kcryptd_crypt_write_io_submit(io, 1);
1704}
1705
1706static void kcryptd_crypt(struct work_struct *work)
1707{
1708 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1709
1710 if (bio_data_dir(io->base_bio) == READ)
1711 kcryptd_crypt_read_convert(io);
1712 else
1713 kcryptd_crypt_write_convert(io);
1714}
1715
1716static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1717{
1718 struct crypt_config *cc = io->cc;
1719
1720 INIT_WORK(&io->work, kcryptd_crypt);
1721 queue_work(cc->crypt_queue, &io->work);
1722}
1723
1724static void crypt_free_tfms_aead(struct crypt_config *cc)
1725{
1726 if (!cc->cipher_tfm.tfms_aead)
1727 return;
1728
1729 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1730 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1731 cc->cipher_tfm.tfms_aead[0] = NULL;
1732 }
1733
1734 kfree(cc->cipher_tfm.tfms_aead);
1735 cc->cipher_tfm.tfms_aead = NULL;
1736}
1737
1738static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1739{
1740 unsigned i;
1741
1742 if (!cc->cipher_tfm.tfms)
1743 return;
1744
1745 for (i = 0; i < cc->tfms_count; i++)
1746 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1747 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1748 cc->cipher_tfm.tfms[i] = NULL;
1749 }
1750
1751 kfree(cc->cipher_tfm.tfms);
1752 cc->cipher_tfm.tfms = NULL;
1753}
1754
1755static void crypt_free_tfms(struct crypt_config *cc)
1756{
1757 if (crypt_integrity_aead(cc))
1758 crypt_free_tfms_aead(cc);
1759 else
1760 crypt_free_tfms_skcipher(cc);
1761}
1762
1763static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1764{
1765 unsigned i;
1766 int err;
1767
1768 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1769 sizeof(struct crypto_skcipher *),
1770 GFP_KERNEL);
1771 if (!cc->cipher_tfm.tfms)
1772 return -ENOMEM;
1773
1774 for (i = 0; i < cc->tfms_count; i++) {
1775 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1776 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1777 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1778 crypt_free_tfms(cc);
1779 return err;
1780 }
1781 }
1782
1783 /*
1784 * dm-crypt performance can vary greatly depending on which crypto
1785 * algorithm implementation is used. Help people debug performance
1786 * problems by logging the ->cra_driver_name.
1787 */
1788 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1789 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1790 return 0;
1791}
1792
1793static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1794{
1795 int err;
1796
1797 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1798 if (!cc->cipher_tfm.tfms)
1799 return -ENOMEM;
1800
1801 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1802 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1803 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1804 crypt_free_tfms(cc);
1805 return err;
1806 }
1807
1808 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1809 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1810 return 0;
1811}
1812
1813static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1814{
1815 if (crypt_integrity_aead(cc))
1816 return crypt_alloc_tfms_aead(cc, ciphermode);
1817 else
1818 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1819}
1820
1821static unsigned crypt_subkey_size(struct crypt_config *cc)
1822{
1823 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1824}
1825
1826static unsigned crypt_authenckey_size(struct crypt_config *cc)
1827{
1828 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1829}
1830
1831/*
1832 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1833 * the key must be for some reason in special format.
1834 * This funcion converts cc->key to this special format.
1835 */
1836static void crypt_copy_authenckey(char *p, const void *key,
1837 unsigned enckeylen, unsigned authkeylen)
1838{
1839 struct crypto_authenc_key_param *param;
1840 struct rtattr *rta;
1841
1842 rta = (struct rtattr *)p;
1843 param = RTA_DATA(rta);
1844 param->enckeylen = cpu_to_be32(enckeylen);
1845 rta->rta_len = RTA_LENGTH(sizeof(*param));
1846 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1847 p += RTA_SPACE(sizeof(*param));
1848 memcpy(p, key + enckeylen, authkeylen);
1849 p += authkeylen;
1850 memcpy(p, key, enckeylen);
1851}
1852
1853static int crypt_setkey(struct crypt_config *cc)
1854{
1855 unsigned subkey_size;
1856 int err = 0, i, r;
1857
1858 /* Ignore extra keys (which are used for IV etc) */
1859 subkey_size = crypt_subkey_size(cc);
1860
1861 if (crypt_integrity_hmac(cc)) {
1862 if (subkey_size < cc->key_mac_size)
1863 return -EINVAL;
1864
1865 crypt_copy_authenckey(cc->authenc_key, cc->key,
1866 subkey_size - cc->key_mac_size,
1867 cc->key_mac_size);
1868 }
1869
1870 for (i = 0; i < cc->tfms_count; i++) {
1871 if (crypt_integrity_hmac(cc))
1872 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1873 cc->authenc_key, crypt_authenckey_size(cc));
1874 else if (crypt_integrity_aead(cc))
1875 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1876 cc->key + (i * subkey_size),
1877 subkey_size);
1878 else
1879 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1880 cc->key + (i * subkey_size),
1881 subkey_size);
1882 if (r)
1883 err = r;
1884 }
1885
1886 if (crypt_integrity_hmac(cc))
1887 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1888
1889 return err;
1890}
1891
1892#ifdef CONFIG_KEYS
1893
1894static bool contains_whitespace(const char *str)
1895{
1896 while (*str)
1897 if (isspace(*str++))
1898 return true;
1899 return false;
1900}
1901
1902static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1903{
1904 char *new_key_string, *key_desc;
1905 int ret;
1906 struct key *key;
1907 const struct user_key_payload *ukp;
1908
1909 /*
1910 * Reject key_string with whitespace. dm core currently lacks code for
1911 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1912 */
1913 if (contains_whitespace(key_string)) {
1914 DMERR("whitespace chars not allowed in key string");
1915 return -EINVAL;
1916 }
1917
1918 /* look for next ':' separating key_type from key_description */
1919 key_desc = strpbrk(key_string, ":");
1920 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1921 return -EINVAL;
1922
1923 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1924 strncmp(key_string, "user:", key_desc - key_string + 1))
1925 return -EINVAL;
1926
1927 new_key_string = kstrdup(key_string, GFP_KERNEL);
1928 if (!new_key_string)
1929 return -ENOMEM;
1930
1931 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1932 key_desc + 1, NULL);
1933 if (IS_ERR(key)) {
1934 kzfree(new_key_string);
1935 return PTR_ERR(key);
1936 }
1937
1938 down_read(&key->sem);
1939
1940 ukp = user_key_payload_locked(key);
1941 if (!ukp) {
1942 up_read(&key->sem);
1943 key_put(key);
1944 kzfree(new_key_string);
1945 return -EKEYREVOKED;
1946 }
1947
1948 if (cc->key_size != ukp->datalen) {
1949 up_read(&key->sem);
1950 key_put(key);
1951 kzfree(new_key_string);
1952 return -EINVAL;
1953 }
1954
1955 memcpy(cc->key, ukp->data, cc->key_size);
1956
1957 up_read(&key->sem);
1958 key_put(key);
1959
1960 /* clear the flag since following operations may invalidate previously valid key */
1961 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1962
1963 ret = crypt_setkey(cc);
1964
1965 if (!ret) {
1966 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1967 kzfree(cc->key_string);
1968 cc->key_string = new_key_string;
1969 } else
1970 kzfree(new_key_string);
1971
1972 return ret;
1973}
1974
1975static int get_key_size(char **key_string)
1976{
1977 char *colon, dummy;
1978 int ret;
1979
1980 if (*key_string[0] != ':')
1981 return strlen(*key_string) >> 1;
1982
1983 /* look for next ':' in key string */
1984 colon = strpbrk(*key_string + 1, ":");
1985 if (!colon)
1986 return -EINVAL;
1987
1988 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1989 return -EINVAL;
1990
1991 *key_string = colon;
1992
1993 /* remaining key string should be :<logon|user>:<key_desc> */
1994
1995 return ret;
1996}
1997
1998#else
1999
2000static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2001{
2002 return -EINVAL;
2003}
2004
2005static int get_key_size(char **key_string)
2006{
2007 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2008}
2009
2010#endif
2011
2012static int crypt_set_key(struct crypt_config *cc, char *key)
2013{
2014 int r = -EINVAL;
2015 int key_string_len = strlen(key);
2016
2017 /* Hyphen (which gives a key_size of zero) means there is no key. */
2018 if (!cc->key_size && strcmp(key, "-"))
2019 goto out;
2020
2021 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2022 if (key[0] == ':') {
2023 r = crypt_set_keyring_key(cc, key + 1);
2024 goto out;
2025 }
2026
2027 /* clear the flag since following operations may invalidate previously valid key */
2028 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2029
2030 /* wipe references to any kernel keyring key */
2031 kzfree(cc->key_string);
2032 cc->key_string = NULL;
2033
2034 /* Decode key from its hex representation. */
2035 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2036 goto out;
2037
2038 r = crypt_setkey(cc);
2039 if (!r)
2040 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2041
2042out:
2043 /* Hex key string not needed after here, so wipe it. */
2044 memset(key, '0', key_string_len);
2045
2046 return r;
2047}
2048
2049static int crypt_wipe_key(struct crypt_config *cc)
2050{
2051 int r;
2052
2053 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2054 get_random_bytes(&cc->key, cc->key_size);
2055
2056 /* Wipe IV private keys */
2057 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2058 r = cc->iv_gen_ops->wipe(cc);
2059 if (r)
2060 return r;
2061 }
2062
2063 kzfree(cc->key_string);
2064 cc->key_string = NULL;
2065 r = crypt_setkey(cc);
2066 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2067
2068 return r;
2069}
2070
2071static void crypt_calculate_pages_per_client(void)
2072{
2073 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2074
2075 if (!dm_crypt_clients_n)
2076 return;
2077
2078 pages /= dm_crypt_clients_n;
2079 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2080 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2081 dm_crypt_pages_per_client = pages;
2082}
2083
2084static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2085{
2086 struct crypt_config *cc = pool_data;
2087 struct page *page;
2088
2089 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2090 likely(gfp_mask & __GFP_NORETRY))
2091 return NULL;
2092
2093 page = alloc_page(gfp_mask);
2094 if (likely(page != NULL))
2095 percpu_counter_add(&cc->n_allocated_pages, 1);
2096
2097 return page;
2098}
2099
2100static void crypt_page_free(void *page, void *pool_data)
2101{
2102 struct crypt_config *cc = pool_data;
2103
2104 __free_page(page);
2105 percpu_counter_sub(&cc->n_allocated_pages, 1);
2106}
2107
2108static void crypt_dtr(struct dm_target *ti)
2109{
2110 struct crypt_config *cc = ti->private;
2111
2112 ti->private = NULL;
2113
2114 if (!cc)
2115 return;
2116
2117 if (cc->write_thread)
2118 kthread_stop(cc->write_thread);
2119
2120 if (cc->io_queue)
2121 destroy_workqueue(cc->io_queue);
2122 if (cc->crypt_queue)
2123 destroy_workqueue(cc->crypt_queue);
2124
2125 crypt_free_tfms(cc);
2126
2127 bioset_exit(&cc->bs);
2128
2129 mempool_exit(&cc->page_pool);
2130 mempool_exit(&cc->req_pool);
2131 mempool_exit(&cc->tag_pool);
2132
2133 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2134 percpu_counter_destroy(&cc->n_allocated_pages);
2135
2136 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2137 cc->iv_gen_ops->dtr(cc);
2138
2139 if (cc->dev)
2140 dm_put_device(ti, cc->dev);
2141
2142 kzfree(cc->cipher_string);
2143 kzfree(cc->key_string);
2144 kzfree(cc->cipher_auth);
2145 kzfree(cc->authenc_key);
2146
2147 mutex_destroy(&cc->bio_alloc_lock);
2148
2149 /* Must zero key material before freeing */
2150 kzfree(cc);
2151
2152 spin_lock(&dm_crypt_clients_lock);
2153 WARN_ON(!dm_crypt_clients_n);
2154 dm_crypt_clients_n--;
2155 crypt_calculate_pages_per_client();
2156 spin_unlock(&dm_crypt_clients_lock);
2157}
2158
2159static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2160{
2161 struct crypt_config *cc = ti->private;
2162
2163 if (crypt_integrity_aead(cc))
2164 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2165 else
2166 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2167
2168 if (cc->iv_size)
2169 /* at least a 64 bit sector number should fit in our buffer */
2170 cc->iv_size = max(cc->iv_size,
2171 (unsigned int)(sizeof(u64) / sizeof(u8)));
2172 else if (ivmode) {
2173 DMWARN("Selected cipher does not support IVs");
2174 ivmode = NULL;
2175 }
2176
2177 /* Choose ivmode, see comments at iv code. */
2178 if (ivmode == NULL)
2179 cc->iv_gen_ops = NULL;
2180 else if (strcmp(ivmode, "plain") == 0)
2181 cc->iv_gen_ops = &crypt_iv_plain_ops;
2182 else if (strcmp(ivmode, "plain64") == 0)
2183 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2184 else if (strcmp(ivmode, "plain64be") == 0)
2185 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2186 else if (strcmp(ivmode, "essiv") == 0)
2187 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2188 else if (strcmp(ivmode, "benbi") == 0)
2189 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2190 else if (strcmp(ivmode, "null") == 0)
2191 cc->iv_gen_ops = &crypt_iv_null_ops;
2192 else if (strcmp(ivmode, "eboiv") == 0)
2193 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2194 else if (strcmp(ivmode, "lmk") == 0) {
2195 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2196 /*
2197 * Version 2 and 3 is recognised according
2198 * to length of provided multi-key string.
2199 * If present (version 3), last key is used as IV seed.
2200 * All keys (including IV seed) are always the same size.
2201 */
2202 if (cc->key_size % cc->key_parts) {
2203 cc->key_parts++;
2204 cc->key_extra_size = cc->key_size / cc->key_parts;
2205 }
2206 } else if (strcmp(ivmode, "tcw") == 0) {
2207 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2208 cc->key_parts += 2; /* IV + whitening */
2209 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2210 } else if (strcmp(ivmode, "random") == 0) {
2211 cc->iv_gen_ops = &crypt_iv_random_ops;
2212 /* Need storage space in integrity fields. */
2213 cc->integrity_iv_size = cc->iv_size;
2214 } else {
2215 ti->error = "Invalid IV mode";
2216 return -EINVAL;
2217 }
2218
2219 return 0;
2220}
2221
2222/*
2223 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2224 * The HMAC is needed to calculate tag size (HMAC digest size).
2225 * This should be probably done by crypto-api calls (once available...)
2226 */
2227static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2228{
2229 char *start, *end, *mac_alg = NULL;
2230 struct crypto_ahash *mac;
2231
2232 if (!strstarts(cipher_api, "authenc("))
2233 return 0;
2234
2235 start = strchr(cipher_api, '(');
2236 end = strchr(cipher_api, ',');
2237 if (!start || !end || ++start > end)
2238 return -EINVAL;
2239
2240 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2241 if (!mac_alg)
2242 return -ENOMEM;
2243 strncpy(mac_alg, start, end - start);
2244
2245 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2246 kfree(mac_alg);
2247
2248 if (IS_ERR(mac))
2249 return PTR_ERR(mac);
2250
2251 cc->key_mac_size = crypto_ahash_digestsize(mac);
2252 crypto_free_ahash(mac);
2253
2254 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2255 if (!cc->authenc_key)
2256 return -ENOMEM;
2257
2258 return 0;
2259}
2260
2261static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2262 char **ivmode, char **ivopts)
2263{
2264 struct crypt_config *cc = ti->private;
2265 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2266 int ret = -EINVAL;
2267
2268 cc->tfms_count = 1;
2269
2270 /*
2271 * New format (capi: prefix)
2272 * capi:cipher_api_spec-iv:ivopts
2273 */
2274 tmp = &cipher_in[strlen("capi:")];
2275
2276 /* Separate IV options if present, it can contain another '-' in hash name */
2277 *ivopts = strrchr(tmp, ':');
2278 if (*ivopts) {
2279 **ivopts = '\0';
2280 (*ivopts)++;
2281 }
2282 /* Parse IV mode */
2283 *ivmode = strrchr(tmp, '-');
2284 if (*ivmode) {
2285 **ivmode = '\0';
2286 (*ivmode)++;
2287 }
2288 /* The rest is crypto API spec */
2289 cipher_api = tmp;
2290
2291 /* Alloc AEAD, can be used only in new format. */
2292 if (crypt_integrity_aead(cc)) {
2293 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2294 if (ret < 0) {
2295 ti->error = "Invalid AEAD cipher spec";
2296 return -ENOMEM;
2297 }
2298 }
2299
2300 if (*ivmode && !strcmp(*ivmode, "lmk"))
2301 cc->tfms_count = 64;
2302
2303 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2304 if (!*ivopts) {
2305 ti->error = "Digest algorithm missing for ESSIV mode";
2306 return -EINVAL;
2307 }
2308 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2309 cipher_api, *ivopts);
2310 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2311 ti->error = "Cannot allocate cipher string";
2312 return -ENOMEM;
2313 }
2314 cipher_api = buf;
2315 }
2316
2317 cc->key_parts = cc->tfms_count;
2318
2319 /* Allocate cipher */
2320 ret = crypt_alloc_tfms(cc, cipher_api);
2321 if (ret < 0) {
2322 ti->error = "Error allocating crypto tfm";
2323 return ret;
2324 }
2325
2326 if (crypt_integrity_aead(cc))
2327 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2328 else
2329 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2330
2331 return 0;
2332}
2333
2334static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2335 char **ivmode, char **ivopts)
2336{
2337 struct crypt_config *cc = ti->private;
2338 char *tmp, *cipher, *chainmode, *keycount;
2339 char *cipher_api = NULL;
2340 int ret = -EINVAL;
2341 char dummy;
2342
2343 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2344 ti->error = "Bad cipher specification";
2345 return -EINVAL;
2346 }
2347
2348 /*
2349 * Legacy dm-crypt cipher specification
2350 * cipher[:keycount]-mode-iv:ivopts
2351 */
2352 tmp = cipher_in;
2353 keycount = strsep(&tmp, "-");
2354 cipher = strsep(&keycount, ":");
2355
2356 if (!keycount)
2357 cc->tfms_count = 1;
2358 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2359 !is_power_of_2(cc->tfms_count)) {
2360 ti->error = "Bad cipher key count specification";
2361 return -EINVAL;
2362 }
2363 cc->key_parts = cc->tfms_count;
2364
2365 chainmode = strsep(&tmp, "-");
2366 *ivmode = strsep(&tmp, ":");
2367 *ivopts = tmp;
2368
2369 /*
2370 * For compatibility with the original dm-crypt mapping format, if
2371 * only the cipher name is supplied, use cbc-plain.
2372 */
2373 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2374 chainmode = "cbc";
2375 *ivmode = "plain";
2376 }
2377
2378 if (strcmp(chainmode, "ecb") && !*ivmode) {
2379 ti->error = "IV mechanism required";
2380 return -EINVAL;
2381 }
2382
2383 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2384 if (!cipher_api)
2385 goto bad_mem;
2386
2387 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2388 if (!*ivopts) {
2389 ti->error = "Digest algorithm missing for ESSIV mode";
2390 kfree(cipher_api);
2391 return -EINVAL;
2392 }
2393 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2394 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2395 } else {
2396 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2397 "%s(%s)", chainmode, cipher);
2398 }
2399 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2400 kfree(cipher_api);
2401 goto bad_mem;
2402 }
2403
2404 /* Allocate cipher */
2405 ret = crypt_alloc_tfms(cc, cipher_api);
2406 if (ret < 0) {
2407 ti->error = "Error allocating crypto tfm";
2408 kfree(cipher_api);
2409 return ret;
2410 }
2411 kfree(cipher_api);
2412
2413 return 0;
2414bad_mem:
2415 ti->error = "Cannot allocate cipher strings";
2416 return -ENOMEM;
2417}
2418
2419static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2420{
2421 struct crypt_config *cc = ti->private;
2422 char *ivmode = NULL, *ivopts = NULL;
2423 int ret;
2424
2425 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2426 if (!cc->cipher_string) {
2427 ti->error = "Cannot allocate cipher strings";
2428 return -ENOMEM;
2429 }
2430
2431 if (strstarts(cipher_in, "capi:"))
2432 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2433 else
2434 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2435 if (ret)
2436 return ret;
2437
2438 /* Initialize IV */
2439 ret = crypt_ctr_ivmode(ti, ivmode);
2440 if (ret < 0)
2441 return ret;
2442
2443 /* Initialize and set key */
2444 ret = crypt_set_key(cc, key);
2445 if (ret < 0) {
2446 ti->error = "Error decoding and setting key";
2447 return ret;
2448 }
2449
2450 /* Allocate IV */
2451 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2452 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2453 if (ret < 0) {
2454 ti->error = "Error creating IV";
2455 return ret;
2456 }
2457 }
2458
2459 /* Initialize IV (set keys for ESSIV etc) */
2460 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2461 ret = cc->iv_gen_ops->init(cc);
2462 if (ret < 0) {
2463 ti->error = "Error initialising IV";
2464 return ret;
2465 }
2466 }
2467
2468 /* wipe the kernel key payload copy */
2469 if (cc->key_string)
2470 memset(cc->key, 0, cc->key_size * sizeof(u8));
2471
2472 return ret;
2473}
2474
2475static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2476{
2477 struct crypt_config *cc = ti->private;
2478 struct dm_arg_set as;
2479 static const struct dm_arg _args[] = {
2480 {0, 6, "Invalid number of feature args"},
2481 };
2482 unsigned int opt_params, val;
2483 const char *opt_string, *sval;
2484 char dummy;
2485 int ret;
2486
2487 /* Optional parameters */
2488 as.argc = argc;
2489 as.argv = argv;
2490
2491 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2492 if (ret)
2493 return ret;
2494
2495 while (opt_params--) {
2496 opt_string = dm_shift_arg(&as);
2497 if (!opt_string) {
2498 ti->error = "Not enough feature arguments";
2499 return -EINVAL;
2500 }
2501
2502 if (!strcasecmp(opt_string, "allow_discards"))
2503 ti->num_discard_bios = 1;
2504
2505 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2506 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2507
2508 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2509 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2510 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2511 if (val == 0 || val > MAX_TAG_SIZE) {
2512 ti->error = "Invalid integrity arguments";
2513 return -EINVAL;
2514 }
2515 cc->on_disk_tag_size = val;
2516 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2517 if (!strcasecmp(sval, "aead")) {
2518 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2519 } else if (strcasecmp(sval, "none")) {
2520 ti->error = "Unknown integrity profile";
2521 return -EINVAL;
2522 }
2523
2524 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2525 if (!cc->cipher_auth)
2526 return -ENOMEM;
2527 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2528 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2529 cc->sector_size > 4096 ||
2530 (cc->sector_size & (cc->sector_size - 1))) {
2531 ti->error = "Invalid feature value for sector_size";
2532 return -EINVAL;
2533 }
2534 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2535 ti->error = "Device size is not multiple of sector_size feature";
2536 return -EINVAL;
2537 }
2538 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2539 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2540 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2541 else {
2542 ti->error = "Invalid feature arguments";
2543 return -EINVAL;
2544 }
2545 }
2546
2547 return 0;
2548}
2549
2550/*
2551 * Construct an encryption mapping:
2552 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2553 */
2554static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2555{
2556 struct crypt_config *cc;
2557 const char *devname = dm_table_device_name(ti->table);
2558 int key_size;
2559 unsigned int align_mask;
2560 unsigned long long tmpll;
2561 int ret;
2562 size_t iv_size_padding, additional_req_size;
2563 char dummy;
2564
2565 if (argc < 5) {
2566 ti->error = "Not enough arguments";
2567 return -EINVAL;
2568 }
2569
2570 key_size = get_key_size(&argv[1]);
2571 if (key_size < 0) {
2572 ti->error = "Cannot parse key size";
2573 return -EINVAL;
2574 }
2575
2576 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2577 if (!cc) {
2578 ti->error = "Cannot allocate encryption context";
2579 return -ENOMEM;
2580 }
2581 cc->key_size = key_size;
2582 cc->sector_size = (1 << SECTOR_SHIFT);
2583 cc->sector_shift = 0;
2584
2585 ti->private = cc;
2586
2587 spin_lock(&dm_crypt_clients_lock);
2588 dm_crypt_clients_n++;
2589 crypt_calculate_pages_per_client();
2590 spin_unlock(&dm_crypt_clients_lock);
2591
2592 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2593 if (ret < 0)
2594 goto bad;
2595
2596 /* Optional parameters need to be read before cipher constructor */
2597 if (argc > 5) {
2598 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2599 if (ret)
2600 goto bad;
2601 }
2602
2603 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2604 if (ret < 0)
2605 goto bad;
2606
2607 if (crypt_integrity_aead(cc)) {
2608 cc->dmreq_start = sizeof(struct aead_request);
2609 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2610 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2611 } else {
2612 cc->dmreq_start = sizeof(struct skcipher_request);
2613 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2614 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2615 }
2616 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2617
2618 if (align_mask < CRYPTO_MINALIGN) {
2619 /* Allocate the padding exactly */
2620 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2621 & align_mask;
2622 } else {
2623 /*
2624 * If the cipher requires greater alignment than kmalloc
2625 * alignment, we don't know the exact position of the
2626 * initialization vector. We must assume worst case.
2627 */
2628 iv_size_padding = align_mask;
2629 }
2630
2631 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2632 additional_req_size = sizeof(struct dm_crypt_request) +
2633 iv_size_padding + cc->iv_size +
2634 cc->iv_size +
2635 sizeof(uint64_t) +
2636 sizeof(unsigned int);
2637
2638 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2639 if (ret) {
2640 ti->error = "Cannot allocate crypt request mempool";
2641 goto bad;
2642 }
2643
2644 cc->per_bio_data_size = ti->per_io_data_size =
2645 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2646 ARCH_KMALLOC_MINALIGN);
2647
2648 ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2649 if (ret) {
2650 ti->error = "Cannot allocate page mempool";
2651 goto bad;
2652 }
2653
2654 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2655 if (ret) {
2656 ti->error = "Cannot allocate crypt bioset";
2657 goto bad;
2658 }
2659
2660 mutex_init(&cc->bio_alloc_lock);
2661
2662 ret = -EINVAL;
2663 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2664 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2665 ti->error = "Invalid iv_offset sector";
2666 goto bad;
2667 }
2668 cc->iv_offset = tmpll;
2669
2670 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2671 if (ret) {
2672 ti->error = "Device lookup failed";
2673 goto bad;
2674 }
2675
2676 ret = -EINVAL;
2677 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2678 ti->error = "Invalid device sector";
2679 goto bad;
2680 }
2681 cc->start = tmpll;
2682
2683 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2684 ret = crypt_integrity_ctr(cc, ti);
2685 if (ret)
2686 goto bad;
2687
2688 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2689 if (!cc->tag_pool_max_sectors)
2690 cc->tag_pool_max_sectors = 1;
2691
2692 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2693 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2694 if (ret) {
2695 ti->error = "Cannot allocate integrity tags mempool";
2696 goto bad;
2697 }
2698
2699 cc->tag_pool_max_sectors <<= cc->sector_shift;
2700 }
2701
2702 ret = -ENOMEM;
2703 cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2704 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2705 1, devname);
2706 if (!cc->io_queue) {
2707 ti->error = "Couldn't create kcryptd io queue";
2708 goto bad;
2709 }
2710
2711 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2712 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2713 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2714 1, devname);
2715 else
2716 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2717 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2718 num_online_cpus(), devname);
2719 if (!cc->crypt_queue) {
2720 ti->error = "Couldn't create kcryptd queue";
2721 goto bad;
2722 }
2723
2724 spin_lock_init(&cc->write_thread_lock);
2725 cc->write_tree = RB_ROOT;
2726
2727 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2728 if (IS_ERR(cc->write_thread)) {
2729 ret = PTR_ERR(cc->write_thread);
2730 cc->write_thread = NULL;
2731 ti->error = "Couldn't spawn write thread";
2732 goto bad;
2733 }
2734 wake_up_process(cc->write_thread);
2735
2736 ti->num_flush_bios = 1;
2737
2738 return 0;
2739
2740bad:
2741 crypt_dtr(ti);
2742 return ret;
2743}
2744
2745static int crypt_map(struct dm_target *ti, struct bio *bio)
2746{
2747 struct dm_crypt_io *io;
2748 struct crypt_config *cc = ti->private;
2749
2750 /*
2751 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2752 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2753 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2754 */
2755 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2756 bio_op(bio) == REQ_OP_DISCARD)) {
2757 bio_set_dev(bio, cc->dev->bdev);
2758 if (bio_sectors(bio))
2759 bio->bi_iter.bi_sector = cc->start +
2760 dm_target_offset(ti, bio->bi_iter.bi_sector);
2761 return DM_MAPIO_REMAPPED;
2762 }
2763
2764 /*
2765 * Check if bio is too large, split as needed.
2766 */
2767 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2768 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2769 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2770
2771 /*
2772 * Ensure that bio is a multiple of internal sector encryption size
2773 * and is aligned to this size as defined in IO hints.
2774 */
2775 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2776 return DM_MAPIO_KILL;
2777
2778 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2779 return DM_MAPIO_KILL;
2780
2781 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2782 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2783
2784 if (cc->on_disk_tag_size) {
2785 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2786
2787 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2788 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2789 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2790 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2791 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2792 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2793 io->integrity_metadata_from_pool = true;
2794 }
2795 }
2796
2797 if (crypt_integrity_aead(cc))
2798 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2799 else
2800 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2801
2802 if (bio_data_dir(io->base_bio) == READ) {
2803 if (kcryptd_io_read(io, GFP_NOWAIT))
2804 kcryptd_queue_read(io);
2805 } else
2806 kcryptd_queue_crypt(io);
2807
2808 return DM_MAPIO_SUBMITTED;
2809}
2810
2811static void crypt_status(struct dm_target *ti, status_type_t type,
2812 unsigned status_flags, char *result, unsigned maxlen)
2813{
2814 struct crypt_config *cc = ti->private;
2815 unsigned i, sz = 0;
2816 int num_feature_args = 0;
2817
2818 switch (type) {
2819 case STATUSTYPE_INFO:
2820 result[0] = '\0';
2821 break;
2822
2823 case STATUSTYPE_TABLE:
2824 DMEMIT("%s ", cc->cipher_string);
2825
2826 if (cc->key_size > 0) {
2827 if (cc->key_string)
2828 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2829 else
2830 for (i = 0; i < cc->key_size; i++)
2831 DMEMIT("%02x", cc->key[i]);
2832 } else
2833 DMEMIT("-");
2834
2835 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2836 cc->dev->name, (unsigned long long)cc->start);
2837
2838 num_feature_args += !!ti->num_discard_bios;
2839 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2840 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2841 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2842 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2843 if (cc->on_disk_tag_size)
2844 num_feature_args++;
2845 if (num_feature_args) {
2846 DMEMIT(" %d", num_feature_args);
2847 if (ti->num_discard_bios)
2848 DMEMIT(" allow_discards");
2849 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2850 DMEMIT(" same_cpu_crypt");
2851 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2852 DMEMIT(" submit_from_crypt_cpus");
2853 if (cc->on_disk_tag_size)
2854 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2855 if (cc->sector_size != (1 << SECTOR_SHIFT))
2856 DMEMIT(" sector_size:%d", cc->sector_size);
2857 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2858 DMEMIT(" iv_large_sectors");
2859 }
2860
2861 break;
2862 }
2863}
2864
2865static void crypt_postsuspend(struct dm_target *ti)
2866{
2867 struct crypt_config *cc = ti->private;
2868
2869 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2870}
2871
2872static int crypt_preresume(struct dm_target *ti)
2873{
2874 struct crypt_config *cc = ti->private;
2875
2876 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2877 DMERR("aborting resume - crypt key is not set.");
2878 return -EAGAIN;
2879 }
2880
2881 return 0;
2882}
2883
2884static void crypt_resume(struct dm_target *ti)
2885{
2886 struct crypt_config *cc = ti->private;
2887
2888 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2889}
2890
2891/* Message interface
2892 * key set <key>
2893 * key wipe
2894 */
2895static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
2896 char *result, unsigned maxlen)
2897{
2898 struct crypt_config *cc = ti->private;
2899 int key_size, ret = -EINVAL;
2900
2901 if (argc < 2)
2902 goto error;
2903
2904 if (!strcasecmp(argv[0], "key")) {
2905 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2906 DMWARN("not suspended during key manipulation.");
2907 return -EINVAL;
2908 }
2909 if (argc == 3 && !strcasecmp(argv[1], "set")) {
2910 /* The key size may not be changed. */
2911 key_size = get_key_size(&argv[2]);
2912 if (key_size < 0 || cc->key_size != key_size) {
2913 memset(argv[2], '0', strlen(argv[2]));
2914 return -EINVAL;
2915 }
2916
2917 ret = crypt_set_key(cc, argv[2]);
2918 if (ret)
2919 return ret;
2920 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2921 ret = cc->iv_gen_ops->init(cc);
2922 /* wipe the kernel key payload copy */
2923 if (cc->key_string)
2924 memset(cc->key, 0, cc->key_size * sizeof(u8));
2925 return ret;
2926 }
2927 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
2928 return crypt_wipe_key(cc);
2929 }
2930
2931error:
2932 DMWARN("unrecognised message received.");
2933 return -EINVAL;
2934}
2935
2936static int crypt_iterate_devices(struct dm_target *ti,
2937 iterate_devices_callout_fn fn, void *data)
2938{
2939 struct crypt_config *cc = ti->private;
2940
2941 return fn(ti, cc->dev, cc->start, ti->len, data);
2942}
2943
2944static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2945{
2946 struct crypt_config *cc = ti->private;
2947
2948 /*
2949 * Unfortunate constraint that is required to avoid the potential
2950 * for exceeding underlying device's max_segments limits -- due to
2951 * crypt_alloc_buffer() possibly allocating pages for the encryption
2952 * bio that are not as physically contiguous as the original bio.
2953 */
2954 limits->max_segment_size = PAGE_SIZE;
2955
2956 limits->logical_block_size =
2957 max_t(unsigned short, limits->logical_block_size, cc->sector_size);
2958 limits->physical_block_size =
2959 max_t(unsigned, limits->physical_block_size, cc->sector_size);
2960 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
2961}
2962
2963static struct target_type crypt_target = {
2964 .name = "crypt",
2965 .version = {1, 19, 0},
2966 .module = THIS_MODULE,
2967 .ctr = crypt_ctr,
2968 .dtr = crypt_dtr,
2969 .map = crypt_map,
2970 .status = crypt_status,
2971 .postsuspend = crypt_postsuspend,
2972 .preresume = crypt_preresume,
2973 .resume = crypt_resume,
2974 .message = crypt_message,
2975 .iterate_devices = crypt_iterate_devices,
2976 .io_hints = crypt_io_hints,
2977};
2978
2979static int __init dm_crypt_init(void)
2980{
2981 int r;
2982
2983 r = dm_register_target(&crypt_target);
2984 if (r < 0)
2985 DMERR("register failed %d", r);
2986
2987 return r;
2988}
2989
2990static void __exit dm_crypt_exit(void)
2991{
2992 dm_unregister_target(&crypt_target);
2993}
2994
2995module_init(dm_crypt_init);
2996module_exit(dm_crypt_exit);
2997
2998MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2999MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3000MODULE_LICENSE("GPL");