Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
 
 
 
  34#include <keys/user-type.h>
  35
  36#include <linux/device-mapper.h>
  37
  38#define DM_MSG_PREFIX "crypt"
  39
  40/*
  41 * context holding the current state of a multi-part conversion
  42 */
  43struct convert_context {
  44	struct completion restart;
  45	struct bio *bio_in;
  46	struct bio *bio_out;
  47	struct bvec_iter iter_in;
  48	struct bvec_iter iter_out;
  49	sector_t cc_sector;
  50	atomic_t cc_pending;
  51	struct skcipher_request *req;
 
 
 
 
  52};
  53
  54/*
  55 * per bio private data
  56 */
  57struct dm_crypt_io {
  58	struct crypt_config *cc;
  59	struct bio *base_bio;
 
 
  60	struct work_struct work;
  61
  62	struct convert_context ctx;
  63
  64	atomic_t io_pending;
  65	int error;
  66	sector_t sector;
  67
  68	struct rb_node rb_node;
  69} CRYPTO_MINALIGN_ATTR;
  70
  71struct dm_crypt_request {
  72	struct convert_context *ctx;
  73	struct scatterlist sg_in;
  74	struct scatterlist sg_out;
  75	sector_t iv_sector;
  76};
  77
  78struct crypt_config;
  79
  80struct crypt_iv_operations {
  81	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  82		   const char *opts);
  83	void (*dtr)(struct crypt_config *cc);
  84	int (*init)(struct crypt_config *cc);
  85	int (*wipe)(struct crypt_config *cc);
  86	int (*generator)(struct crypt_config *cc, u8 *iv,
  87			 struct dm_crypt_request *dmreq);
  88	int (*post)(struct crypt_config *cc, u8 *iv,
  89		    struct dm_crypt_request *dmreq);
  90};
  91
  92struct iv_essiv_private {
  93	struct crypto_ahash *hash_tfm;
  94	u8 *salt;
  95};
  96
  97struct iv_benbi_private {
  98	int shift;
  99};
 100
 101#define LMK_SEED_SIZE 64 /* hash + 0 */
 102struct iv_lmk_private {
 103	struct crypto_shash *hash_tfm;
 104	u8 *seed;
 105};
 106
 107#define TCW_WHITENING_SIZE 16
 108struct iv_tcw_private {
 109	struct crypto_shash *crc32_tfm;
 110	u8 *iv_seed;
 111	u8 *whitening;
 112};
 113
 114/*
 115 * Crypt: maps a linear range of a block device
 116 * and encrypts / decrypts at the same time.
 117 */
 118enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 119	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 120
 
 
 
 
 
 121/*
 122 * The fields in here must be read only after initialization.
 123 */
 124struct crypt_config {
 125	struct dm_dev *dev;
 126	sector_t start;
 127
 128	/*
 129	 * pool for per bio private data, crypto requests and
 130	 * encryption requeusts/buffer pages
 131	 */
 132	mempool_t *req_pool;
 133	mempool_t *page_pool;
 134	struct bio_set *bs;
 135	struct mutex bio_alloc_lock;
 136
 137	struct workqueue_struct *io_queue;
 138	struct workqueue_struct *crypt_queue;
 139
 
 140	struct task_struct *write_thread;
 141	wait_queue_head_t write_thread_wait;
 142	struct rb_root write_tree;
 143
 144	char *cipher;
 145	char *cipher_string;
 
 146	char *key_string;
 147
 148	const struct crypt_iv_operations *iv_gen_ops;
 149	union {
 150		struct iv_essiv_private essiv;
 151		struct iv_benbi_private benbi;
 152		struct iv_lmk_private lmk;
 153		struct iv_tcw_private tcw;
 154	} iv_gen_private;
 155	sector_t iv_offset;
 156	unsigned int iv_size;
 
 
 157
 158	/* ESSIV: struct crypto_cipher *essiv_tfm */
 159	void *iv_private;
 160	struct crypto_skcipher **tfms;
 
 161	unsigned tfms_count;
 
 162
 163	/*
 164	 * Layout of each crypto request:
 165	 *
 166	 *   struct skcipher_request
 167	 *      context
 168	 *      padding
 169	 *   struct dm_crypt_request
 170	 *      padding
 171	 *   IV
 172	 *
 173	 * The padding is added so that dm_crypt_request and the IV are
 174	 * correctly aligned.
 175	 */
 176	unsigned int dmreq_start;
 177
 178	unsigned int per_bio_data_size;
 179
 180	unsigned long flags;
 181	unsigned int key_size;
 182	unsigned int key_parts;      /* independent parts in key buffer */
 183	unsigned int key_extra_size; /* additional keys length */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184	u8 key[0];
 185};
 186
 187#define MIN_IOS        64
 
 
 
 
 
 
 
 
 188
 189static void clone_init(struct dm_crypt_io *, struct bio *);
 190static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 191static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 192
 193/*
 194 * Use this to access cipher attributes that are the same for each CPU.
 195 */
 196static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 197{
 198	return cc->tfms[0];
 
 
 
 
 
 199}
 200
 201/*
 202 * Different IV generation algorithms:
 203 *
 204 * plain: the initial vector is the 32-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 207 * plain64: the initial vector is the 64-bit little-endian version of the sector
 208 *        number, padded with zeros if necessary.
 209 *
 
 
 
 210 * essiv: "encrypted sector|salt initial vector", the sector number is
 211 *        encrypted with the bulk cipher using a salt as key. The salt
 212 *        should be derived from the bulk cipher's key via hashing.
 213 *
 214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 215 *        (needed for LRW-32-AES and possible other narrow block modes)
 216 *
 217 * null: the initial vector is always zero.  Provides compatibility with
 218 *       obsolete loop_fish2 devices.  Do not use for new devices.
 219 *
 220 * lmk:  Compatible implementation of the block chaining mode used
 221 *       by the Loop-AES block device encryption system
 222 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 223 *       It operates on full 512 byte sectors and uses CBC
 224 *       with an IV derived from the sector number, the data and
 225 *       optionally extra IV seed.
 226 *       This means that after decryption the first block
 227 *       of sector must be tweaked according to decrypted data.
 228 *       Loop-AES can use three encryption schemes:
 229 *         version 1: is plain aes-cbc mode
 230 *         version 2: uses 64 multikey scheme with lmk IV generator
 231 *         version 3: the same as version 2 with additional IV seed
 232 *                   (it uses 65 keys, last key is used as IV seed)
 233 *
 234 * tcw:  Compatible implementation of the block chaining mode used
 235 *       by the TrueCrypt device encryption system (prior to version 4.1).
 236 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 237 *       It operates on full 512 byte sectors and uses CBC
 238 *       with an IV derived from initial key and the sector number.
 239 *       In addition, whitening value is applied on every sector, whitening
 240 *       is calculated from initial key, sector number and mixed using CRC32.
 241 *       Note that this encryption scheme is vulnerable to watermarking attacks
 242 *       and should be used for old compatible containers access only.
 243 *
 244 * plumb: unimplemented, see:
 245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 246 */
 247
 248static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 249			      struct dm_crypt_request *dmreq)
 250{
 251	memset(iv, 0, cc->iv_size);
 252	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 253
 254	return 0;
 255}
 256
 257static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 258				struct dm_crypt_request *dmreq)
 259{
 260	memset(iv, 0, cc->iv_size);
 261	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 262
 263	return 0;
 264}
 265
 266/* Initialise ESSIV - compute salt but no local memory allocations */
 267static int crypt_iv_essiv_init(struct crypt_config *cc)
 268{
 269	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 270	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 271	struct scatterlist sg;
 272	struct crypto_cipher *essiv_tfm;
 273	int err;
 274
 275	sg_init_one(&sg, cc->key, cc->key_size);
 276	ahash_request_set_tfm(req, essiv->hash_tfm);
 277	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 278	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 279
 280	err = crypto_ahash_digest(req);
 281	ahash_request_zero(req);
 282	if (err)
 283		return err;
 284
 285	essiv_tfm = cc->iv_private;
 286
 287	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 288			    crypto_ahash_digestsize(essiv->hash_tfm));
 289	if (err)
 290		return err;
 291
 292	return 0;
 293}
 294
 295/* Wipe salt and reset key derived from volume key */
 296static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 297{
 298	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 299	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 300	struct crypto_cipher *essiv_tfm;
 301	int r, err = 0;
 302
 303	memset(essiv->salt, 0, salt_size);
 304
 305	essiv_tfm = cc->iv_private;
 306	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 307	if (r)
 308		err = r;
 309
 310	return err;
 311}
 312
 313/* Set up per cpu cipher state */
 314static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 315					     struct dm_target *ti,
 316					     u8 *salt, unsigned saltsize)
 317{
 318	struct crypto_cipher *essiv_tfm;
 319	int err;
 320
 321	/* Setup the essiv_tfm with the given salt */
 322	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 323	if (IS_ERR(essiv_tfm)) {
 324		ti->error = "Error allocating crypto tfm for ESSIV";
 325		return essiv_tfm;
 326	}
 327
 328	if (crypto_cipher_blocksize(essiv_tfm) !=
 329	    crypto_skcipher_ivsize(any_tfm(cc))) {
 330		ti->error = "Block size of ESSIV cipher does "
 331			    "not match IV size of block cipher";
 332		crypto_free_cipher(essiv_tfm);
 333		return ERR_PTR(-EINVAL);
 334	}
 335
 336	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 337	if (err) {
 338		ti->error = "Failed to set key for ESSIV cipher";
 339		crypto_free_cipher(essiv_tfm);
 340		return ERR_PTR(err);
 341	}
 342
 343	return essiv_tfm;
 344}
 345
 346static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 347{
 348	struct crypto_cipher *essiv_tfm;
 349	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 350
 351	crypto_free_ahash(essiv->hash_tfm);
 352	essiv->hash_tfm = NULL;
 353
 354	kzfree(essiv->salt);
 355	essiv->salt = NULL;
 356
 357	essiv_tfm = cc->iv_private;
 358
 359	if (essiv_tfm)
 360		crypto_free_cipher(essiv_tfm);
 361
 362	cc->iv_private = NULL;
 363}
 364
 365static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 366			      const char *opts)
 367{
 368	struct crypto_cipher *essiv_tfm = NULL;
 369	struct crypto_ahash *hash_tfm = NULL;
 370	u8 *salt = NULL;
 371	int err;
 372
 373	if (!opts) {
 374		ti->error = "Digest algorithm missing for ESSIV mode";
 375		return -EINVAL;
 376	}
 377
 378	/* Allocate hash algorithm */
 379	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 380	if (IS_ERR(hash_tfm)) {
 381		ti->error = "Error initializing ESSIV hash";
 382		err = PTR_ERR(hash_tfm);
 383		goto bad;
 384	}
 385
 386	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 387	if (!salt) {
 388		ti->error = "Error kmallocing salt storage in ESSIV";
 389		err = -ENOMEM;
 390		goto bad;
 391	}
 392
 393	cc->iv_gen_private.essiv.salt = salt;
 394	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 395
 396	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 397				crypto_ahash_digestsize(hash_tfm));
 398	if (IS_ERR(essiv_tfm)) {
 399		crypt_iv_essiv_dtr(cc);
 400		return PTR_ERR(essiv_tfm);
 401	}
 402	cc->iv_private = essiv_tfm;
 403
 404	return 0;
 405
 406bad:
 407	if (hash_tfm && !IS_ERR(hash_tfm))
 408		crypto_free_ahash(hash_tfm);
 409	kfree(salt);
 410	return err;
 411}
 412
 413static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 414			      struct dm_crypt_request *dmreq)
 415{
 416	struct crypto_cipher *essiv_tfm = cc->iv_private;
 417
 
 
 418	memset(iv, 0, cc->iv_size);
 419	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 420	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 421
 422	return 0;
 423}
 424
 425static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 426			      const char *opts)
 427{
 428	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 429	int log = ilog2(bs);
 430
 431	/* we need to calculate how far we must shift the sector count
 432	 * to get the cipher block count, we use this shift in _gen */
 433
 434	if (1 << log != bs) {
 435		ti->error = "cypher blocksize is not a power of 2";
 436		return -EINVAL;
 437	}
 438
 439	if (log > 9) {
 440		ti->error = "cypher blocksize is > 512";
 441		return -EINVAL;
 442	}
 443
 444	cc->iv_gen_private.benbi.shift = 9 - log;
 445
 446	return 0;
 447}
 448
 449static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 450{
 451}
 452
 453static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 454			      struct dm_crypt_request *dmreq)
 455{
 456	__be64 val;
 457
 458	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 459
 460	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 461	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 462
 463	return 0;
 464}
 465
 466static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 467			     struct dm_crypt_request *dmreq)
 468{
 469	memset(iv, 0, cc->iv_size);
 470
 471	return 0;
 472}
 473
 474static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 475{
 476	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 477
 478	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 479		crypto_free_shash(lmk->hash_tfm);
 480	lmk->hash_tfm = NULL;
 481
 482	kzfree(lmk->seed);
 483	lmk->seed = NULL;
 484}
 485
 486static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 487			    const char *opts)
 488{
 489	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 490
 
 
 
 
 
 491	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 492	if (IS_ERR(lmk->hash_tfm)) {
 493		ti->error = "Error initializing LMK hash";
 494		return PTR_ERR(lmk->hash_tfm);
 495	}
 496
 497	/* No seed in LMK version 2 */
 498	if (cc->key_parts == cc->tfms_count) {
 499		lmk->seed = NULL;
 500		return 0;
 501	}
 502
 503	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 504	if (!lmk->seed) {
 505		crypt_iv_lmk_dtr(cc);
 506		ti->error = "Error kmallocing seed storage in LMK";
 507		return -ENOMEM;
 508	}
 509
 510	return 0;
 511}
 512
 513static int crypt_iv_lmk_init(struct crypt_config *cc)
 514{
 515	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 516	int subkey_size = cc->key_size / cc->key_parts;
 517
 518	/* LMK seed is on the position of LMK_KEYS + 1 key */
 519	if (lmk->seed)
 520		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 521		       crypto_shash_digestsize(lmk->hash_tfm));
 522
 523	return 0;
 524}
 525
 526static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 527{
 528	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 529
 530	if (lmk->seed)
 531		memset(lmk->seed, 0, LMK_SEED_SIZE);
 532
 533	return 0;
 534}
 535
 536static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 537			    struct dm_crypt_request *dmreq,
 538			    u8 *data)
 539{
 540	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 541	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 542	struct md5_state md5state;
 543	__le32 buf[4];
 544	int i, r;
 545
 546	desc->tfm = lmk->hash_tfm;
 547	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 548
 549	r = crypto_shash_init(desc);
 550	if (r)
 551		return r;
 552
 553	if (lmk->seed) {
 554		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 555		if (r)
 556			return r;
 557	}
 558
 559	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 560	r = crypto_shash_update(desc, data + 16, 16 * 31);
 561	if (r)
 562		return r;
 563
 564	/* Sector is cropped to 56 bits here */
 565	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 566	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 567	buf[2] = cpu_to_le32(4024);
 568	buf[3] = 0;
 569	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 570	if (r)
 571		return r;
 572
 573	/* No MD5 padding here */
 574	r = crypto_shash_export(desc, &md5state);
 575	if (r)
 576		return r;
 577
 578	for (i = 0; i < MD5_HASH_WORDS; i++)
 579		__cpu_to_le32s(&md5state.hash[i]);
 580	memcpy(iv, &md5state.hash, cc->iv_size);
 581
 582	return 0;
 583}
 584
 585static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 586			    struct dm_crypt_request *dmreq)
 587{
 
 588	u8 *src;
 589	int r = 0;
 590
 591	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 592		src = kmap_atomic(sg_page(&dmreq->sg_in));
 593		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 
 594		kunmap_atomic(src);
 595	} else
 596		memset(iv, 0, cc->iv_size);
 597
 598	return r;
 599}
 600
 601static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 602			     struct dm_crypt_request *dmreq)
 603{
 
 604	u8 *dst;
 605	int r;
 606
 607	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 608		return 0;
 609
 610	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 611	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 612
 613	/* Tweak the first block of plaintext sector */
 614	if (!r)
 615		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 616
 617	kunmap_atomic(dst);
 618	return r;
 619}
 620
 621static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 622{
 623	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 624
 625	kzfree(tcw->iv_seed);
 626	tcw->iv_seed = NULL;
 627	kzfree(tcw->whitening);
 628	tcw->whitening = NULL;
 629
 630	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 631		crypto_free_shash(tcw->crc32_tfm);
 632	tcw->crc32_tfm = NULL;
 633}
 634
 635static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 636			    const char *opts)
 637{
 638	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 639
 
 
 
 
 
 640	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 641		ti->error = "Wrong key size for TCW";
 642		return -EINVAL;
 643	}
 644
 645	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 646	if (IS_ERR(tcw->crc32_tfm)) {
 647		ti->error = "Error initializing CRC32 in TCW";
 648		return PTR_ERR(tcw->crc32_tfm);
 649	}
 650
 651	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 652	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 653	if (!tcw->iv_seed || !tcw->whitening) {
 654		crypt_iv_tcw_dtr(cc);
 655		ti->error = "Error allocating seed storage in TCW";
 656		return -ENOMEM;
 657	}
 658
 659	return 0;
 660}
 661
 662static int crypt_iv_tcw_init(struct crypt_config *cc)
 663{
 664	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 665	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 666
 667	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 668	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 669	       TCW_WHITENING_SIZE);
 670
 671	return 0;
 672}
 673
 674static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 675{
 676	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 677
 678	memset(tcw->iv_seed, 0, cc->iv_size);
 679	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 680
 681	return 0;
 682}
 683
 684static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 685				  struct dm_crypt_request *dmreq,
 686				  u8 *data)
 687{
 688	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 689	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 690	u8 buf[TCW_WHITENING_SIZE];
 691	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 692	int i, r;
 693
 694	/* xor whitening with sector number */
 695	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 696	crypto_xor(buf, (u8 *)&sector, 8);
 697	crypto_xor(&buf[8], (u8 *)&sector, 8);
 698
 699	/* calculate crc32 for every 32bit part and xor it */
 700	desc->tfm = tcw->crc32_tfm;
 701	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 702	for (i = 0; i < 4; i++) {
 703		r = crypto_shash_init(desc);
 704		if (r)
 705			goto out;
 706		r = crypto_shash_update(desc, &buf[i * 4], 4);
 707		if (r)
 708			goto out;
 709		r = crypto_shash_final(desc, &buf[i * 4]);
 710		if (r)
 711			goto out;
 712	}
 713	crypto_xor(&buf[0], &buf[12], 4);
 714	crypto_xor(&buf[4], &buf[8], 4);
 715
 716	/* apply whitening (8 bytes) to whole sector */
 717	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 718		crypto_xor(data + i * 8, buf, 8);
 719out:
 720	memzero_explicit(buf, sizeof(buf));
 721	return r;
 722}
 723
 724static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 725			    struct dm_crypt_request *dmreq)
 726{
 
 727	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 728	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 729	u8 *src;
 730	int r = 0;
 731
 732	/* Remove whitening from ciphertext */
 733	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 734		src = kmap_atomic(sg_page(&dmreq->sg_in));
 735		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 
 736		kunmap_atomic(src);
 737	}
 738
 739	/* Calculate IV */
 740	memcpy(iv, tcw->iv_seed, cc->iv_size);
 741	crypto_xor(iv, (u8 *)&sector, 8);
 742	if (cc->iv_size > 8)
 743		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 
 744
 745	return r;
 746}
 747
 748static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 749			     struct dm_crypt_request *dmreq)
 750{
 
 751	u8 *dst;
 752	int r;
 753
 754	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 755		return 0;
 756
 757	/* Apply whitening on ciphertext */
 758	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 759	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 
 760	kunmap_atomic(dst);
 761
 762	return r;
 763}
 764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765static const struct crypt_iv_operations crypt_iv_plain_ops = {
 766	.generator = crypt_iv_plain_gen
 767};
 768
 769static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 770	.generator = crypt_iv_plain64_gen
 771};
 772
 
 
 
 
 773static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 774	.ctr       = crypt_iv_essiv_ctr,
 775	.dtr       = crypt_iv_essiv_dtr,
 776	.init      = crypt_iv_essiv_init,
 777	.wipe      = crypt_iv_essiv_wipe,
 778	.generator = crypt_iv_essiv_gen
 779};
 780
 781static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 782	.ctr	   = crypt_iv_benbi_ctr,
 783	.dtr	   = crypt_iv_benbi_dtr,
 784	.generator = crypt_iv_benbi_gen
 785};
 786
 787static const struct crypt_iv_operations crypt_iv_null_ops = {
 788	.generator = crypt_iv_null_gen
 789};
 790
 791static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 792	.ctr	   = crypt_iv_lmk_ctr,
 793	.dtr	   = crypt_iv_lmk_dtr,
 794	.init	   = crypt_iv_lmk_init,
 795	.wipe	   = crypt_iv_lmk_wipe,
 796	.generator = crypt_iv_lmk_gen,
 797	.post	   = crypt_iv_lmk_post
 798};
 799
 800static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 801	.ctr	   = crypt_iv_tcw_ctr,
 802	.dtr	   = crypt_iv_tcw_dtr,
 803	.init	   = crypt_iv_tcw_init,
 804	.wipe	   = crypt_iv_tcw_wipe,
 805	.generator = crypt_iv_tcw_gen,
 806	.post	   = crypt_iv_tcw_post
 807};
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809static void crypt_convert_init(struct crypt_config *cc,
 810			       struct convert_context *ctx,
 811			       struct bio *bio_out, struct bio *bio_in,
 812			       sector_t sector)
 813{
 814	ctx->bio_in = bio_in;
 815	ctx->bio_out = bio_out;
 816	if (bio_in)
 817		ctx->iter_in = bio_in->bi_iter;
 818	if (bio_out)
 819		ctx->iter_out = bio_out->bi_iter;
 820	ctx->cc_sector = sector + cc->iv_offset;
 821	init_completion(&ctx->restart);
 822}
 823
 824static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 825					     struct skcipher_request *req)
 826{
 827	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 828}
 829
 830static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 831					       struct dm_crypt_request *dmreq)
 832{
 833	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 834}
 835
 836static u8 *iv_of_dmreq(struct crypt_config *cc,
 837		       struct dm_crypt_request *dmreq)
 838{
 839	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 840		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 841}
 842
 843static int crypt_convert_block(struct crypt_config *cc,
 844			       struct convert_context *ctx,
 845			       struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846{
 847	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 848	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 849	struct dm_crypt_request *dmreq;
 850	u8 *iv;
 851	int r;
 
 
 
 
 
 
 
 852
 853	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 854	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	dmreq->iv_sector = ctx->cc_sector;
 
 
 857	dmreq->ctx = ctx;
 858	sg_init_table(&dmreq->sg_in, 1);
 859	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 860		    bv_in.bv_offset);
 861
 862	sg_init_table(&dmreq->sg_out, 1);
 863	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 864		    bv_out.bv_offset);
 865
 866	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 867	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	if (cc->iv_gen_ops) {
 870		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 871		if (r < 0)
 872			return r;
 
 
 
 
 
 
 
 
 
 
 873	}
 874
 875	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 876				   1 << SECTOR_SHIFT, iv);
 877
 878	if (bio_data_dir(ctx->bio_in) == WRITE)
 879		r = crypto_skcipher_encrypt(req);
 880	else
 881		r = crypto_skcipher_decrypt(req);
 882
 883	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 884		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 885
 886	return r;
 887}
 888
 889static void kcryptd_async_done(struct crypto_async_request *async_req,
 890			       int error);
 891
 892static void crypt_alloc_req(struct crypt_config *cc,
 893			    struct convert_context *ctx)
 894{
 895	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 896
 897	if (!ctx->req)
 898		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 899
 900	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 901
 902	/*
 903	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 904	 * requests if driver request queue is full.
 905	 */
 906	skcipher_request_set_callback(ctx->req,
 907	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 908	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 909}
 910
 911static void crypt_free_req(struct crypt_config *cc,
 912			   struct skcipher_request *req, struct bio *base_bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913{
 914	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 915
 916	if ((struct skcipher_request *)(io + 1) != req)
 917		mempool_free(req, cc->req_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918}
 919
 920/*
 921 * Encrypt / decrypt data from one bio to another one (can be the same one)
 922 */
 923static int crypt_convert(struct crypt_config *cc,
 924			 struct convert_context *ctx)
 925{
 
 
 926	int r;
 927
 928	atomic_set(&ctx->cc_pending, 1);
 929
 930	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 931
 932		crypt_alloc_req(cc, ctx);
 933
 934		atomic_inc(&ctx->cc_pending);
 935
 936		r = crypt_convert_block(cc, ctx, ctx->req);
 
 
 
 937
 938		switch (r) {
 939		/*
 940		 * The request was queued by a crypto driver
 941		 * but the driver request queue is full, let's wait.
 942		 */
 943		case -EBUSY:
 944			wait_for_completion(&ctx->restart);
 945			reinit_completion(&ctx->restart);
 946			/* fall through */
 947		/*
 948		 * The request is queued and processed asynchronously,
 949		 * completion function kcryptd_async_done() will be called.
 950		 */
 951		case -EINPROGRESS:
 952			ctx->req = NULL;
 953			ctx->cc_sector++;
 
 954			continue;
 955		/*
 956		 * The request was already processed (synchronously).
 957		 */
 958		case 0:
 959			atomic_dec(&ctx->cc_pending);
 960			ctx->cc_sector++;
 
 961			cond_resched();
 962			continue;
 963
 964		/* There was an error while processing the request. */
 
 
 
 
 
 
 
 965		default:
 966			atomic_dec(&ctx->cc_pending);
 967			return r;
 968		}
 969	}
 970
 971	return 0;
 972}
 973
 974static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 975
 976/*
 977 * Generate a new unfragmented bio with the given size
 978 * This should never violate the device limitations (but only because
 979 * max_segment_size is being constrained to PAGE_SIZE).
 980 *
 981 * This function may be called concurrently. If we allocate from the mempool
 982 * concurrently, there is a possibility of deadlock. For example, if we have
 983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 984 * the mempool concurrently, it may deadlock in a situation where both processes
 985 * have allocated 128 pages and the mempool is exhausted.
 986 *
 987 * In order to avoid this scenario we allocate the pages under a mutex.
 988 *
 989 * In order to not degrade performance with excessive locking, we try
 990 * non-blocking allocations without a mutex first but on failure we fallback
 991 * to blocking allocations with a mutex.
 992 */
 993static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 994{
 995	struct crypt_config *cc = io->cc;
 996	struct bio *clone;
 997	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 998	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 999	unsigned i, len, remaining_size;
1000	struct page *page;
1001
1002retry:
1003	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1004		mutex_lock(&cc->bio_alloc_lock);
1005
1006	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1007	if (!clone)
1008		goto return_clone;
1009
1010	clone_init(io, clone);
1011
1012	remaining_size = size;
1013
1014	for (i = 0; i < nr_iovecs; i++) {
1015		page = mempool_alloc(cc->page_pool, gfp_mask);
1016		if (!page) {
1017			crypt_free_buffer_pages(cc, clone);
1018			bio_put(clone);
1019			gfp_mask |= __GFP_DIRECT_RECLAIM;
1020			goto retry;
1021		}
1022
1023		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1024
1025		bio_add_page(clone, page, len, 0);
1026
1027		remaining_size -= len;
1028	}
1029
1030return_clone:
 
 
 
 
 
 
1031	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1032		mutex_unlock(&cc->bio_alloc_lock);
1033
1034	return clone;
1035}
1036
1037static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1038{
1039	unsigned int i;
1040	struct bio_vec *bv;
 
1041
1042	bio_for_each_segment_all(bv, clone, i) {
1043		BUG_ON(!bv->bv_page);
1044		mempool_free(bv->bv_page, cc->page_pool);
1045		bv->bv_page = NULL;
1046	}
1047}
1048
1049static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1050			  struct bio *bio, sector_t sector)
1051{
1052	io->cc = cc;
1053	io->base_bio = bio;
1054	io->sector = sector;
1055	io->error = 0;
1056	io->ctx.req = NULL;
 
 
1057	atomic_set(&io->io_pending, 0);
1058}
1059
1060static void crypt_inc_pending(struct dm_crypt_io *io)
1061{
1062	atomic_inc(&io->io_pending);
1063}
1064
1065/*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 */
1069static void crypt_dec_pending(struct dm_crypt_io *io)
1070{
1071	struct crypt_config *cc = io->cc;
1072	struct bio *base_bio = io->base_bio;
1073	int error = io->error;
1074
1075	if (!atomic_dec_and_test(&io->io_pending))
1076		return;
1077
1078	if (io->ctx.req)
1079		crypt_free_req(cc, io->ctx.req, base_bio);
 
 
 
 
 
1080
1081	base_bio->bi_error = error;
1082	bio_endio(base_bio);
1083}
1084
1085/*
1086 * kcryptd/kcryptd_io:
1087 *
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1090 *
1091 * kcryptd performs the actual encryption or decryption.
1092 *
1093 * kcryptd_io performs the IO submission.
1094 *
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1098 *
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1101 */
1102static void crypt_endio(struct bio *clone)
1103{
1104	struct dm_crypt_io *io = clone->bi_private;
1105	struct crypt_config *cc = io->cc;
1106	unsigned rw = bio_data_dir(clone);
1107	int error;
1108
1109	/*
1110	 * free the processed pages
1111	 */
1112	if (rw == WRITE)
1113		crypt_free_buffer_pages(cc, clone);
1114
1115	error = clone->bi_error;
1116	bio_put(clone);
1117
1118	if (rw == READ && !error) {
1119		kcryptd_queue_crypt(io);
1120		return;
1121	}
1122
1123	if (unlikely(error))
1124		io->error = error;
1125
1126	crypt_dec_pending(io);
1127}
1128
1129static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1130{
1131	struct crypt_config *cc = io->cc;
1132
1133	clone->bi_private = io;
1134	clone->bi_end_io  = crypt_endio;
1135	clone->bi_bdev    = cc->dev->bdev;
1136	clone->bi_opf	  = io->base_bio->bi_opf;
1137}
1138
1139static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1140{
1141	struct crypt_config *cc = io->cc;
1142	struct bio *clone;
1143
1144	/*
1145	 * We need the original biovec array in order to decrypt
1146	 * the whole bio data *afterwards* -- thanks to immutable
1147	 * biovecs we don't need to worry about the block layer
1148	 * modifying the biovec array; so leverage bio_clone_fast().
1149	 */
1150	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1151	if (!clone)
1152		return 1;
1153
1154	crypt_inc_pending(io);
1155
1156	clone_init(io, clone);
1157	clone->bi_iter.bi_sector = cc->start + io->sector;
1158
 
 
 
 
 
 
1159	generic_make_request(clone);
1160	return 0;
1161}
1162
1163static void kcryptd_io_read_work(struct work_struct *work)
1164{
1165	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1166
1167	crypt_inc_pending(io);
1168	if (kcryptd_io_read(io, GFP_NOIO))
1169		io->error = -ENOMEM;
1170	crypt_dec_pending(io);
1171}
1172
1173static void kcryptd_queue_read(struct dm_crypt_io *io)
1174{
1175	struct crypt_config *cc = io->cc;
1176
1177	INIT_WORK(&io->work, kcryptd_io_read_work);
1178	queue_work(cc->io_queue, &io->work);
1179}
1180
1181static void kcryptd_io_write(struct dm_crypt_io *io)
1182{
1183	struct bio *clone = io->ctx.bio_out;
1184
1185	generic_make_request(clone);
1186}
1187
1188#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1189
1190static int dmcrypt_write(void *data)
1191{
1192	struct crypt_config *cc = data;
1193	struct dm_crypt_io *io;
1194
1195	while (1) {
1196		struct rb_root write_tree;
1197		struct blk_plug plug;
1198
1199		DECLARE_WAITQUEUE(wait, current);
1200
1201		spin_lock_irq(&cc->write_thread_wait.lock);
1202continue_locked:
1203
1204		if (!RB_EMPTY_ROOT(&cc->write_tree))
1205			goto pop_from_list;
1206
1207		set_current_state(TASK_INTERRUPTIBLE);
1208		__add_wait_queue(&cc->write_thread_wait, &wait);
1209
1210		spin_unlock_irq(&cc->write_thread_wait.lock);
1211
1212		if (unlikely(kthread_should_stop())) {
1213			set_task_state(current, TASK_RUNNING);
1214			remove_wait_queue(&cc->write_thread_wait, &wait);
1215			break;
1216		}
1217
1218		schedule();
1219
1220		set_task_state(current, TASK_RUNNING);
1221		spin_lock_irq(&cc->write_thread_wait.lock);
1222		__remove_wait_queue(&cc->write_thread_wait, &wait);
1223		goto continue_locked;
1224
1225pop_from_list:
1226		write_tree = cc->write_tree;
1227		cc->write_tree = RB_ROOT;
1228		spin_unlock_irq(&cc->write_thread_wait.lock);
1229
1230		BUG_ON(rb_parent(write_tree.rb_node));
1231
1232		/*
1233		 * Note: we cannot walk the tree here with rb_next because
1234		 * the structures may be freed when kcryptd_io_write is called.
1235		 */
1236		blk_start_plug(&plug);
1237		do {
1238			io = crypt_io_from_node(rb_first(&write_tree));
1239			rb_erase(&io->rb_node, &write_tree);
1240			kcryptd_io_write(io);
1241		} while (!RB_EMPTY_ROOT(&write_tree));
1242		blk_finish_plug(&plug);
1243	}
1244	return 0;
1245}
1246
1247static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1248{
1249	struct bio *clone = io->ctx.bio_out;
1250	struct crypt_config *cc = io->cc;
1251	unsigned long flags;
1252	sector_t sector;
1253	struct rb_node **rbp, *parent;
1254
1255	if (unlikely(io->error < 0)) {
1256		crypt_free_buffer_pages(cc, clone);
1257		bio_put(clone);
1258		crypt_dec_pending(io);
1259		return;
1260	}
1261
1262	/* crypt_convert should have filled the clone bio */
1263	BUG_ON(io->ctx.iter_out.bi_size);
1264
1265	clone->bi_iter.bi_sector = cc->start + io->sector;
1266
1267	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1268		generic_make_request(clone);
1269		return;
1270	}
1271
1272	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
 
 
1273	rbp = &cc->write_tree.rb_node;
1274	parent = NULL;
1275	sector = io->sector;
1276	while (*rbp) {
1277		parent = *rbp;
1278		if (sector < crypt_io_from_node(parent)->sector)
1279			rbp = &(*rbp)->rb_left;
1280		else
1281			rbp = &(*rbp)->rb_right;
1282	}
1283	rb_link_node(&io->rb_node, parent, rbp);
1284	rb_insert_color(&io->rb_node, &cc->write_tree);
1285
1286	wake_up_locked(&cc->write_thread_wait);
1287	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1288}
1289
1290static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1291{
1292	struct crypt_config *cc = io->cc;
1293	struct bio *clone;
1294	int crypt_finished;
1295	sector_t sector = io->sector;
1296	int r;
1297
1298	/*
1299	 * Prevent io from disappearing until this function completes.
1300	 */
1301	crypt_inc_pending(io);
1302	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1303
1304	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1305	if (unlikely(!clone)) {
1306		io->error = -EIO;
1307		goto dec;
1308	}
1309
1310	io->ctx.bio_out = clone;
1311	io->ctx.iter_out = clone->bi_iter;
1312
1313	sector += bio_sectors(clone);
1314
1315	crypt_inc_pending(io);
1316	r = crypt_convert(cc, &io->ctx);
1317	if (r)
1318		io->error = -EIO;
1319	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1320
1321	/* Encryption was already finished, submit io now */
1322	if (crypt_finished) {
1323		kcryptd_crypt_write_io_submit(io, 0);
1324		io->sector = sector;
1325	}
1326
1327dec:
1328	crypt_dec_pending(io);
1329}
1330
1331static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1332{
1333	crypt_dec_pending(io);
1334}
1335
1336static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1337{
1338	struct crypt_config *cc = io->cc;
1339	int r = 0;
1340
1341	crypt_inc_pending(io);
1342
1343	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1344			   io->sector);
1345
1346	r = crypt_convert(cc, &io->ctx);
1347	if (r < 0)
1348		io->error = -EIO;
1349
1350	if (atomic_dec_and_test(&io->ctx.cc_pending))
1351		kcryptd_crypt_read_done(io);
1352
1353	crypt_dec_pending(io);
1354}
1355
1356static void kcryptd_async_done(struct crypto_async_request *async_req,
1357			       int error)
1358{
1359	struct dm_crypt_request *dmreq = async_req->data;
1360	struct convert_context *ctx = dmreq->ctx;
1361	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1362	struct crypt_config *cc = io->cc;
1363
1364	/*
1365	 * A request from crypto driver backlog is going to be processed now,
1366	 * finish the completion and continue in crypt_convert().
1367	 * (Callback will be called for the second time for this request.)
1368	 */
1369	if (error == -EINPROGRESS) {
1370		complete(&ctx->restart);
1371		return;
1372	}
1373
1374	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1375		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1376
1377	if (error < 0)
1378		io->error = -EIO;
 
 
 
 
 
1379
1380	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1381
1382	if (!atomic_dec_and_test(&ctx->cc_pending))
1383		return;
1384
1385	if (bio_data_dir(io->base_bio) == READ)
1386		kcryptd_crypt_read_done(io);
1387	else
1388		kcryptd_crypt_write_io_submit(io, 1);
1389}
1390
1391static void kcryptd_crypt(struct work_struct *work)
1392{
1393	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1394
1395	if (bio_data_dir(io->base_bio) == READ)
1396		kcryptd_crypt_read_convert(io);
1397	else
1398		kcryptd_crypt_write_convert(io);
1399}
1400
1401static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1402{
1403	struct crypt_config *cc = io->cc;
1404
1405	INIT_WORK(&io->work, kcryptd_crypt);
1406	queue_work(cc->crypt_queue, &io->work);
1407}
1408
1409/*
1410 * Decode key from its hex representation
1411 */
1412static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1413{
1414	char buffer[3];
1415	unsigned int i;
1416
1417	buffer[2] = '\0';
1418
1419	for (i = 0; i < size; i++) {
1420		buffer[0] = *hex++;
1421		buffer[1] = *hex++;
1422
1423		if (kstrtou8(buffer, 16, &key[i]))
1424			return -EINVAL;
 
1425	}
1426
1427	if (*hex != '\0')
1428		return -EINVAL;
1429
1430	return 0;
1431}
1432
1433static void crypt_free_tfms(struct crypt_config *cc)
1434{
1435	unsigned i;
1436
1437	if (!cc->tfms)
1438		return;
1439
1440	for (i = 0; i < cc->tfms_count; i++)
1441		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1442			crypto_free_skcipher(cc->tfms[i]);
1443			cc->tfms[i] = NULL;
1444		}
1445
1446	kfree(cc->tfms);
1447	cc->tfms = NULL;
1448}
1449
1450static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
 
 
 
 
 
 
 
 
1451{
1452	unsigned i;
1453	int err;
1454
1455	cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1456			   GFP_KERNEL);
1457	if (!cc->tfms)
 
1458		return -ENOMEM;
1459
1460	for (i = 0; i < cc->tfms_count; i++) {
1461		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1462		if (IS_ERR(cc->tfms[i])) {
1463			err = PTR_ERR(cc->tfms[i]);
1464			crypt_free_tfms(cc);
1465			return err;
1466		}
1467	}
1468
 
 
 
 
 
 
 
1469	return 0;
1470}
1471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472static int crypt_setkey(struct crypt_config *cc)
1473{
1474	unsigned subkey_size;
1475	int err = 0, i, r;
1476
1477	/* Ignore extra keys (which are used for IV etc) */
1478	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
 
 
 
 
 
 
 
 
 
1479
1480	for (i = 0; i < cc->tfms_count; i++) {
1481		r = crypto_skcipher_setkey(cc->tfms[i],
1482					   cc->key + (i * subkey_size),
1483					   subkey_size);
 
 
 
 
 
 
 
 
1484		if (r)
1485			err = r;
1486	}
1487
 
 
 
1488	return err;
1489}
1490
1491#ifdef CONFIG_KEYS
1492
1493static bool contains_whitespace(const char *str)
1494{
1495	while (*str)
1496		if (isspace(*str++))
1497			return true;
1498	return false;
1499}
1500
1501static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1502{
1503	char *new_key_string, *key_desc;
1504	int ret;
1505	struct key *key;
1506	const struct user_key_payload *ukp;
1507
1508	/*
1509	 * Reject key_string with whitespace. dm core currently lacks code for
1510	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1511	 */
1512	if (contains_whitespace(key_string)) {
1513		DMERR("whitespace chars not allowed in key string");
1514		return -EINVAL;
1515	}
1516
1517	/* look for next ':' separating key_type from key_description */
1518	key_desc = strpbrk(key_string, ":");
1519	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1520		return -EINVAL;
1521
1522	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1523	    strncmp(key_string, "user:", key_desc - key_string + 1))
1524		return -EINVAL;
1525
1526	new_key_string = kstrdup(key_string, GFP_KERNEL);
1527	if (!new_key_string)
1528		return -ENOMEM;
1529
1530	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1531			  key_desc + 1, NULL);
1532	if (IS_ERR(key)) {
1533		kzfree(new_key_string);
1534		return PTR_ERR(key);
1535	}
1536
1537	down_read(&key->sem);
1538
1539	ukp = user_key_payload(key);
1540	if (!ukp) {
1541		up_read(&key->sem);
1542		key_put(key);
1543		kzfree(new_key_string);
1544		return -EKEYREVOKED;
1545	}
1546
1547	if (cc->key_size != ukp->datalen) {
1548		up_read(&key->sem);
1549		key_put(key);
1550		kzfree(new_key_string);
1551		return -EINVAL;
1552	}
1553
1554	memcpy(cc->key, ukp->data, cc->key_size);
1555
1556	up_read(&key->sem);
1557	key_put(key);
1558
1559	/* clear the flag since following operations may invalidate previously valid key */
1560	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1561
1562	ret = crypt_setkey(cc);
1563
1564	/* wipe the kernel key payload copy in each case */
1565	memset(cc->key, 0, cc->key_size * sizeof(u8));
1566
1567	if (!ret) {
1568		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1569		kzfree(cc->key_string);
1570		cc->key_string = new_key_string;
1571	} else
1572		kzfree(new_key_string);
1573
1574	return ret;
1575}
1576
1577static int get_key_size(char **key_string)
1578{
1579	char *colon, dummy;
1580	int ret;
1581
1582	if (*key_string[0] != ':')
1583		return strlen(*key_string) >> 1;
1584
1585	/* look for next ':' in key string */
1586	colon = strpbrk(*key_string + 1, ":");
1587	if (!colon)
1588		return -EINVAL;
1589
1590	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1591		return -EINVAL;
1592
1593	*key_string = colon;
1594
1595	/* remaining key string should be :<logon|user>:<key_desc> */
1596
1597	return ret;
1598}
1599
1600#else
1601
1602static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1603{
1604	return -EINVAL;
1605}
1606
1607static int get_key_size(char **key_string)
1608{
1609	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
1610}
1611
1612#endif
1613
1614static int crypt_set_key(struct crypt_config *cc, char *key)
1615{
1616	int r = -EINVAL;
1617	int key_string_len = strlen(key);
1618
1619	/* Hyphen (which gives a key_size of zero) means there is no key. */
1620	if (!cc->key_size && strcmp(key, "-"))
1621		goto out;
1622
1623	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624	if (key[0] == ':') {
1625		r = crypt_set_keyring_key(cc, key + 1);
1626		goto out;
1627	}
1628
1629	/* clear the flag since following operations may invalidate previously valid key */
1630	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1631
1632	/* wipe references to any kernel keyring key */
1633	kzfree(cc->key_string);
1634	cc->key_string = NULL;
1635
1636	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
1637		goto out;
1638
1639	r = crypt_setkey(cc);
1640	if (!r)
1641		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1642
1643out:
1644	/* Hex key string not needed after here, so wipe it. */
1645	memset(key, '0', key_string_len);
1646
1647	return r;
1648}
1649
1650static int crypt_wipe_key(struct crypt_config *cc)
1651{
 
 
1652	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1653	memset(&cc->key, 0, cc->key_size * sizeof(u8));
 
 
 
 
 
 
 
 
1654	kzfree(cc->key_string);
1655	cc->key_string = NULL;
 
 
1656
1657	return crypt_setkey(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658}
1659
1660static void crypt_dtr(struct dm_target *ti)
1661{
1662	struct crypt_config *cc = ti->private;
1663
1664	ti->private = NULL;
1665
1666	if (!cc)
1667		return;
1668
1669	if (cc->write_thread)
1670		kthread_stop(cc->write_thread);
1671
1672	if (cc->io_queue)
1673		destroy_workqueue(cc->io_queue);
1674	if (cc->crypt_queue)
1675		destroy_workqueue(cc->crypt_queue);
1676
1677	crypt_free_tfms(cc);
1678
1679	if (cc->bs)
1680		bioset_free(cc->bs);
1681
1682	mempool_destroy(cc->page_pool);
1683	mempool_destroy(cc->req_pool);
 
 
 
 
1684
1685	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1686		cc->iv_gen_ops->dtr(cc);
1687
1688	if (cc->dev)
1689		dm_put_device(ti, cc->dev);
1690
1691	kzfree(cc->cipher);
1692	kzfree(cc->cipher_string);
1693	kzfree(cc->key_string);
 
 
 
 
1694
1695	/* Must zero key material before freeing */
1696	kzfree(cc);
 
 
 
 
 
 
1697}
1698
1699static int crypt_ctr_cipher(struct dm_target *ti,
1700			    char *cipher_in, char *key)
1701{
1702	struct crypt_config *cc = ti->private;
1703	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704	char *cipher_api = NULL;
1705	int ret = -EINVAL;
1706	char dummy;
1707
1708	/* Convert to crypto api definition? */
1709	if (strchr(cipher_in, '(')) {
1710		ti->error = "Bad cipher specification";
1711		return -EINVAL;
1712	}
1713
1714	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1715	if (!cc->cipher_string)
1716		goto bad_mem;
1717
1718	/*
1719	 * Legacy dm-crypt cipher specification
1720	 * cipher[:keycount]-mode-iv:ivopts
1721	 */
1722	tmp = cipher_in;
1723	keycount = strsep(&tmp, "-");
1724	cipher = strsep(&keycount, ":");
1725
1726	if (!keycount)
1727		cc->tfms_count = 1;
1728	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1729		 !is_power_of_2(cc->tfms_count)) {
1730		ti->error = "Bad cipher key count specification";
1731		return -EINVAL;
1732	}
1733	cc->key_parts = cc->tfms_count;
1734	cc->key_extra_size = 0;
1735
1736	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1737	if (!cc->cipher)
1738		goto bad_mem;
1739
1740	chainmode = strsep(&tmp, "-");
1741	ivopts = strsep(&tmp, "-");
1742	ivmode = strsep(&ivopts, ":");
1743
1744	if (tmp)
1745		DMWARN("Ignoring unexpected additional cipher options");
1746
1747	/*
1748	 * For compatibility with the original dm-crypt mapping format, if
1749	 * only the cipher name is supplied, use cbc-plain.
1750	 */
1751	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1752		chainmode = "cbc";
1753		ivmode = "plain";
1754	}
1755
1756	if (strcmp(chainmode, "ecb") && !ivmode) {
1757		ti->error = "IV mechanism required";
1758		return -EINVAL;
1759	}
1760
1761	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1762	if (!cipher_api)
1763		goto bad_mem;
1764
1765	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1766		       "%s(%s)", chainmode, cipher);
1767	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1768		kfree(cipher_api);
1769		goto bad_mem;
1770	}
1771
1772	/* Allocate cipher */
1773	ret = crypt_alloc_tfms(cc, cipher_api);
1774	if (ret < 0) {
1775		ti->error = "Error allocating crypto tfm";
1776		goto bad;
 
1777	}
 
1778
1779	/* Initialize IV */
1780	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1781	if (cc->iv_size)
1782		/* at least a 64 bit sector number should fit in our buffer */
1783		cc->iv_size = max(cc->iv_size,
1784				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1785	else if (ivmode) {
1786		DMWARN("Selected cipher does not support IVs");
1787		ivmode = NULL;
1788	}
1789
1790	/* Choose ivmode, see comments at iv code. */
1791	if (ivmode == NULL)
1792		cc->iv_gen_ops = NULL;
1793	else if (strcmp(ivmode, "plain") == 0)
1794		cc->iv_gen_ops = &crypt_iv_plain_ops;
1795	else if (strcmp(ivmode, "plain64") == 0)
1796		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1797	else if (strcmp(ivmode, "essiv") == 0)
1798		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1799	else if (strcmp(ivmode, "benbi") == 0)
1800		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1801	else if (strcmp(ivmode, "null") == 0)
1802		cc->iv_gen_ops = &crypt_iv_null_ops;
1803	else if (strcmp(ivmode, "lmk") == 0) {
1804		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1805		/*
1806		 * Version 2 and 3 is recognised according
1807		 * to length of provided multi-key string.
1808		 * If present (version 3), last key is used as IV seed.
1809		 * All keys (including IV seed) are always the same size.
1810		 */
1811		if (cc->key_size % cc->key_parts) {
1812			cc->key_parts++;
1813			cc->key_extra_size = cc->key_size / cc->key_parts;
1814		}
1815	} else if (strcmp(ivmode, "tcw") == 0) {
1816		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1817		cc->key_parts += 2; /* IV + whitening */
1818		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1819	} else {
1820		ret = -EINVAL;
1821		ti->error = "Invalid IV mode";
1822		goto bad;
1823	}
1824
 
 
 
 
 
 
 
 
 
 
 
 
1825	/* Initialize and set key */
1826	ret = crypt_set_key(cc, key);
1827	if (ret < 0) {
1828		ti->error = "Error decoding and setting key";
1829		goto bad;
1830	}
1831
1832	/* Allocate IV */
1833	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1834		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1835		if (ret < 0) {
1836			ti->error = "Error creating IV";
1837			goto bad;
1838		}
1839	}
1840
1841	/* Initialize IV (set keys for ESSIV etc) */
1842	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1843		ret = cc->iv_gen_ops->init(cc);
1844		if (ret < 0) {
1845			ti->error = "Error initialising IV";
1846			goto bad;
1847		}
1848	}
1849
1850	ret = 0;
1851bad:
1852	kfree(cipher_api);
 
1853	return ret;
 
1854
1855bad_mem:
1856	ti->error = "Cannot allocate cipher strings";
1857	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858}
1859
1860/*
1861 * Construct an encryption mapping:
1862 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1863 */
1864static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1865{
1866	struct crypt_config *cc;
 
1867	int key_size;
1868	unsigned int opt_params;
1869	unsigned long long tmpll;
1870	int ret;
1871	size_t iv_size_padding;
1872	struct dm_arg_set as;
1873	const char *opt_string;
1874	char dummy;
1875
1876	static struct dm_arg _args[] = {
1877		{0, 3, "Invalid number of feature args"},
1878	};
1879
1880	if (argc < 5) {
1881		ti->error = "Not enough arguments";
1882		return -EINVAL;
1883	}
1884
1885	key_size = get_key_size(&argv[1]);
1886	if (key_size < 0) {
1887		ti->error = "Cannot parse key size";
1888		return -EINVAL;
1889	}
1890
1891	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1892	if (!cc) {
1893		ti->error = "Cannot allocate encryption context";
1894		return -ENOMEM;
1895	}
1896	cc->key_size = key_size;
 
 
1897
1898	ti->private = cc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1900	if (ret < 0)
1901		goto bad;
1902
1903	cc->dmreq_start = sizeof(struct skcipher_request);
1904	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
 
 
 
 
 
 
 
1905	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1906
1907	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1908		/* Allocate the padding exactly */
1909		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1910				& crypto_skcipher_alignmask(any_tfm(cc));
1911	} else {
1912		/*
1913		 * If the cipher requires greater alignment than kmalloc
1914		 * alignment, we don't know the exact position of the
1915		 * initialization vector. We must assume worst case.
1916		 */
1917		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1918	}
1919
1920	ret = -ENOMEM;
1921	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1922			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1923	if (!cc->req_pool) {
 
 
 
 
 
1924		ti->error = "Cannot allocate crypt request mempool";
1925		goto bad;
1926	}
1927
1928	cc->per_bio_data_size = ti->per_io_data_size =
1929		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1930		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1931		      ARCH_KMALLOC_MINALIGN);
1932
1933	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1934	if (!cc->page_pool) {
1935		ti->error = "Cannot allocate page mempool";
1936		goto bad;
1937	}
1938
1939	cc->bs = bioset_create(MIN_IOS, 0);
1940	if (!cc->bs) {
1941		ti->error = "Cannot allocate crypt bioset";
1942		goto bad;
1943	}
1944
1945	mutex_init(&cc->bio_alloc_lock);
1946
1947	ret = -EINVAL;
1948	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
 
1949		ti->error = "Invalid iv_offset sector";
1950		goto bad;
1951	}
1952	cc->iv_offset = tmpll;
1953
1954	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1955	if (ret) {
1956		ti->error = "Device lookup failed";
1957		goto bad;
1958	}
1959
1960	ret = -EINVAL;
1961	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1962		ti->error = "Invalid device sector";
1963		goto bad;
1964	}
1965	cc->start = tmpll;
1966
1967	argv += 5;
1968	argc -= 5;
1969
1970	/* Optional parameters */
1971	if (argc) {
1972		as.argc = argc;
1973		as.argv = argv;
1974
1975		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1976		if (ret)
1977			goto bad;
1978
1979		ret = -EINVAL;
1980		while (opt_params--) {
1981			opt_string = dm_shift_arg(&as);
1982			if (!opt_string) {
1983				ti->error = "Not enough feature arguments";
1984				goto bad;
1985			}
1986
1987			if (!strcasecmp(opt_string, "allow_discards"))
1988				ti->num_discard_bios = 1;
1989
1990			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1991				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1992
1993			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1994				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1995
1996			else {
1997				ti->error = "Invalid feature arguments";
1998				goto bad;
1999			}
2000		}
 
 
2001	}
2002
2003	ret = -ENOMEM;
2004	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
 
 
2005	if (!cc->io_queue) {
2006		ti->error = "Couldn't create kcryptd io queue";
2007		goto bad;
2008	}
2009
2010	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2011		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
 
 
2012	else
2013		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2014						  num_online_cpus());
 
2015	if (!cc->crypt_queue) {
2016		ti->error = "Couldn't create kcryptd queue";
2017		goto bad;
2018	}
2019
2020	init_waitqueue_head(&cc->write_thread_wait);
2021	cc->write_tree = RB_ROOT;
2022
2023	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2024	if (IS_ERR(cc->write_thread)) {
2025		ret = PTR_ERR(cc->write_thread);
2026		cc->write_thread = NULL;
2027		ti->error = "Couldn't spawn write thread";
2028		goto bad;
2029	}
2030	wake_up_process(cc->write_thread);
2031
2032	ti->num_flush_bios = 1;
2033	ti->discard_zeroes_data_unsupported = true;
2034
2035	return 0;
2036
2037bad:
2038	crypt_dtr(ti);
2039	return ret;
2040}
2041
2042static int crypt_map(struct dm_target *ti, struct bio *bio)
2043{
2044	struct dm_crypt_io *io;
2045	struct crypt_config *cc = ti->private;
2046
2047	/*
2048	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2049	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2050	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2051	 */
2052	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2053	    bio_op(bio) == REQ_OP_DISCARD)) {
2054		bio->bi_bdev = cc->dev->bdev;
2055		if (bio_sectors(bio))
2056			bio->bi_iter.bi_sector = cc->start +
2057				dm_target_offset(ti, bio->bi_iter.bi_sector);
2058		return DM_MAPIO_REMAPPED;
2059	}
2060
2061	/*
2062	 * Check if bio is too large, split as needed.
2063	 */
2064	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2065	    bio_data_dir(bio) == WRITE)
2066		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2067
 
 
 
 
 
 
 
 
 
 
2068	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2069	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2070	io->ctx.req = (struct skcipher_request *)(io + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071
2072	if (bio_data_dir(io->base_bio) == READ) {
2073		if (kcryptd_io_read(io, GFP_NOWAIT))
2074			kcryptd_queue_read(io);
2075	} else
2076		kcryptd_queue_crypt(io);
2077
2078	return DM_MAPIO_SUBMITTED;
2079}
2080
2081static void crypt_status(struct dm_target *ti, status_type_t type,
2082			 unsigned status_flags, char *result, unsigned maxlen)
2083{
2084	struct crypt_config *cc = ti->private;
2085	unsigned i, sz = 0;
2086	int num_feature_args = 0;
2087
2088	switch (type) {
2089	case STATUSTYPE_INFO:
2090		result[0] = '\0';
2091		break;
2092
2093	case STATUSTYPE_TABLE:
2094		DMEMIT("%s ", cc->cipher_string);
2095
2096		if (cc->key_size > 0) {
2097			if (cc->key_string)
2098				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2099			else
2100				for (i = 0; i < cc->key_size; i++)
2101					DMEMIT("%02x", cc->key[i]);
2102		} else
2103			DMEMIT("-");
2104
2105		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2106				cc->dev->name, (unsigned long long)cc->start);
2107
2108		num_feature_args += !!ti->num_discard_bios;
2109		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2110		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
2111		if (num_feature_args) {
2112			DMEMIT(" %d", num_feature_args);
2113			if (ti->num_discard_bios)
2114				DMEMIT(" allow_discards");
2115			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2116				DMEMIT(" same_cpu_crypt");
2117			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2118				DMEMIT(" submit_from_crypt_cpus");
 
 
 
 
 
 
2119		}
2120
2121		break;
2122	}
2123}
2124
2125static void crypt_postsuspend(struct dm_target *ti)
2126{
2127	struct crypt_config *cc = ti->private;
2128
2129	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2130}
2131
2132static int crypt_preresume(struct dm_target *ti)
2133{
2134	struct crypt_config *cc = ti->private;
2135
2136	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2137		DMERR("aborting resume - crypt key is not set.");
2138		return -EAGAIN;
2139	}
2140
2141	return 0;
2142}
2143
2144static void crypt_resume(struct dm_target *ti)
2145{
2146	struct crypt_config *cc = ti->private;
2147
2148	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2149}
2150
2151/* Message interface
2152 *	key set <key>
2153 *	key wipe
2154 */
2155static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
2156{
2157	struct crypt_config *cc = ti->private;
2158	int key_size, ret = -EINVAL;
2159
2160	if (argc < 2)
2161		goto error;
2162
2163	if (!strcasecmp(argv[0], "key")) {
2164		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2165			DMWARN("not suspended during key manipulation.");
2166			return -EINVAL;
2167		}
2168		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2169			/* The key size may not be changed. */
2170			key_size = get_key_size(&argv[2]);
2171			if (key_size < 0 || cc->key_size != key_size) {
2172				memset(argv[2], '0', strlen(argv[2]));
2173				return -EINVAL;
2174			}
2175
2176			ret = crypt_set_key(cc, argv[2]);
2177			if (ret)
2178				return ret;
2179			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2180				ret = cc->iv_gen_ops->init(cc);
 
 
 
2181			return ret;
2182		}
2183		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2184			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2185				ret = cc->iv_gen_ops->wipe(cc);
2186				if (ret)
2187					return ret;
2188			}
2189			return crypt_wipe_key(cc);
2190		}
2191	}
2192
2193error:
2194	DMWARN("unrecognised message received.");
2195	return -EINVAL;
2196}
2197
2198static int crypt_iterate_devices(struct dm_target *ti,
2199				 iterate_devices_callout_fn fn, void *data)
2200{
2201	struct crypt_config *cc = ti->private;
2202
2203	return fn(ti, cc->dev, cc->start, ti->len, data);
2204}
2205
2206static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2207{
 
 
2208	/*
2209	 * Unfortunate constraint that is required to avoid the potential
2210	 * for exceeding underlying device's max_segments limits -- due to
2211	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2212	 * bio that are not as physically contiguous as the original bio.
2213	 */
2214	limits->max_segment_size = PAGE_SIZE;
 
 
 
 
 
 
2215}
2216
2217static struct target_type crypt_target = {
2218	.name   = "crypt",
2219	.version = {1, 15, 0},
2220	.module = THIS_MODULE,
2221	.ctr    = crypt_ctr,
2222	.dtr    = crypt_dtr,
2223	.map    = crypt_map,
2224	.status = crypt_status,
2225	.postsuspend = crypt_postsuspend,
2226	.preresume = crypt_preresume,
2227	.resume = crypt_resume,
2228	.message = crypt_message,
2229	.iterate_devices = crypt_iterate_devices,
2230	.io_hints = crypt_io_hints,
2231};
2232
2233static int __init dm_crypt_init(void)
2234{
2235	int r;
2236
2237	r = dm_register_target(&crypt_target);
2238	if (r < 0)
2239		DMERR("register failed %d", r);
2240
2241	return r;
2242}
2243
2244static void __exit dm_crypt_exit(void)
2245{
2246	dm_unregister_target(&crypt_target);
2247}
2248
2249module_init(dm_crypt_init);
2250module_exit(dm_crypt_exit);
2251
2252MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2253MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2254MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/key.h>
  16#include <linux/bio.h>
  17#include <linux/blkdev.h>
  18#include <linux/mempool.h>
  19#include <linux/slab.h>
  20#include <linux/crypto.h>
  21#include <linux/workqueue.h>
  22#include <linux/kthread.h>
  23#include <linux/backing-dev.h>
  24#include <linux/atomic.h>
  25#include <linux/scatterlist.h>
  26#include <linux/rbtree.h>
  27#include <linux/ctype.h>
  28#include <asm/page.h>
  29#include <asm/unaligned.h>
  30#include <crypto/hash.h>
  31#include <crypto/md5.h>
  32#include <crypto/algapi.h>
  33#include <crypto/skcipher.h>
  34#include <crypto/aead.h>
  35#include <crypto/authenc.h>
  36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  37#include <keys/user-type.h>
  38
  39#include <linux/device-mapper.h>
  40
  41#define DM_MSG_PREFIX "crypt"
  42
  43/*
  44 * context holding the current state of a multi-part conversion
  45 */
  46struct convert_context {
  47	struct completion restart;
  48	struct bio *bio_in;
  49	struct bio *bio_out;
  50	struct bvec_iter iter_in;
  51	struct bvec_iter iter_out;
  52	u64 cc_sector;
  53	atomic_t cc_pending;
  54	union {
  55		struct skcipher_request *req;
  56		struct aead_request *req_aead;
  57	} r;
  58
  59};
  60
  61/*
  62 * per bio private data
  63 */
  64struct dm_crypt_io {
  65	struct crypt_config *cc;
  66	struct bio *base_bio;
  67	u8 *integrity_metadata;
  68	bool integrity_metadata_from_pool;
  69	struct work_struct work;
  70
  71	struct convert_context ctx;
  72
  73	atomic_t io_pending;
  74	blk_status_t error;
  75	sector_t sector;
  76
  77	struct rb_node rb_node;
  78} CRYPTO_MINALIGN_ATTR;
  79
  80struct dm_crypt_request {
  81	struct convert_context *ctx;
  82	struct scatterlist sg_in[4];
  83	struct scatterlist sg_out[4];
  84	u64 iv_sector;
  85};
  86
  87struct crypt_config;
  88
  89struct crypt_iv_operations {
  90	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  91		   const char *opts);
  92	void (*dtr)(struct crypt_config *cc);
  93	int (*init)(struct crypt_config *cc);
  94	int (*wipe)(struct crypt_config *cc);
  95	int (*generator)(struct crypt_config *cc, u8 *iv,
  96			 struct dm_crypt_request *dmreq);
  97	int (*post)(struct crypt_config *cc, u8 *iv,
  98		    struct dm_crypt_request *dmreq);
  99};
 100
 
 
 
 
 
 101struct iv_benbi_private {
 102	int shift;
 103};
 104
 105#define LMK_SEED_SIZE 64 /* hash + 0 */
 106struct iv_lmk_private {
 107	struct crypto_shash *hash_tfm;
 108	u8 *seed;
 109};
 110
 111#define TCW_WHITENING_SIZE 16
 112struct iv_tcw_private {
 113	struct crypto_shash *crc32_tfm;
 114	u8 *iv_seed;
 115	u8 *whitening;
 116};
 117
 118/*
 119 * Crypt: maps a linear range of a block device
 120 * and encrypts / decrypts at the same time.
 121 */
 122enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 123	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 124
 125enum cipher_flags {
 126	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
 127	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 128};
 129
 130/*
 131 * The fields in here must be read only after initialization.
 132 */
 133struct crypt_config {
 134	struct dm_dev *dev;
 135	sector_t start;
 136
 137	struct percpu_counter n_allocated_pages;
 
 
 
 
 
 
 
 138
 139	struct workqueue_struct *io_queue;
 140	struct workqueue_struct *crypt_queue;
 141
 142	spinlock_t write_thread_lock;
 143	struct task_struct *write_thread;
 
 144	struct rb_root write_tree;
 145
 
 146	char *cipher_string;
 147	char *cipher_auth;
 148	char *key_string;
 149
 150	const struct crypt_iv_operations *iv_gen_ops;
 151	union {
 
 152		struct iv_benbi_private benbi;
 153		struct iv_lmk_private lmk;
 154		struct iv_tcw_private tcw;
 155	} iv_gen_private;
 156	u64 iv_offset;
 157	unsigned int iv_size;
 158	unsigned short int sector_size;
 159	unsigned char sector_shift;
 160
 161	union {
 162		struct crypto_skcipher **tfms;
 163		struct crypto_aead **tfms_aead;
 164	} cipher_tfm;
 165	unsigned tfms_count;
 166	unsigned long cipher_flags;
 167
 168	/*
 169	 * Layout of each crypto request:
 170	 *
 171	 *   struct skcipher_request
 172	 *      context
 173	 *      padding
 174	 *   struct dm_crypt_request
 175	 *      padding
 176	 *   IV
 177	 *
 178	 * The padding is added so that dm_crypt_request and the IV are
 179	 * correctly aligned.
 180	 */
 181	unsigned int dmreq_start;
 182
 183	unsigned int per_bio_data_size;
 184
 185	unsigned long flags;
 186	unsigned int key_size;
 187	unsigned int key_parts;      /* independent parts in key buffer */
 188	unsigned int key_extra_size; /* additional keys length */
 189	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 190
 191	unsigned int integrity_tag_size;
 192	unsigned int integrity_iv_size;
 193	unsigned int on_disk_tag_size;
 194
 195	/*
 196	 * pool for per bio private data, crypto requests,
 197	 * encryption requeusts/buffer pages and integrity tags
 198	 */
 199	unsigned tag_pool_max_sectors;
 200	mempool_t tag_pool;
 201	mempool_t req_pool;
 202	mempool_t page_pool;
 203
 204	struct bio_set bs;
 205	struct mutex bio_alloc_lock;
 206
 207	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 208	u8 key[0];
 209};
 210
 211#define MIN_IOS		64
 212#define MAX_TAG_SIZE	480
 213#define POOL_ENTRY_SIZE	512
 214
 215static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 216static unsigned dm_crypt_clients_n = 0;
 217static volatile unsigned long dm_crypt_pages_per_client;
 218#define DM_CRYPT_MEMORY_PERCENT			2
 219#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
 220
 221static void clone_init(struct dm_crypt_io *, struct bio *);
 222static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 223static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 224					     struct scatterlist *sg);
 225
 226/*
 227 * Use this to access cipher attributes that are independent of the key.
 228 */
 229static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 230{
 231	return cc->cipher_tfm.tfms[0];
 232}
 233
 234static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 235{
 236	return cc->cipher_tfm.tfms_aead[0];
 237}
 238
 239/*
 240 * Different IV generation algorithms:
 241 *
 242 * plain: the initial vector is the 32-bit little-endian version of the sector
 243 *        number, padded with zeros if necessary.
 244 *
 245 * plain64: the initial vector is the 64-bit little-endian version of the sector
 246 *        number, padded with zeros if necessary.
 247 *
 248 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 249 *        number, padded with zeros if necessary.
 250 *
 251 * essiv: "encrypted sector|salt initial vector", the sector number is
 252 *        encrypted with the bulk cipher using a salt as key. The salt
 253 *        should be derived from the bulk cipher's key via hashing.
 254 *
 255 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 256 *        (needed for LRW-32-AES and possible other narrow block modes)
 257 *
 258 * null: the initial vector is always zero.  Provides compatibility with
 259 *       obsolete loop_fish2 devices.  Do not use for new devices.
 260 *
 261 * lmk:  Compatible implementation of the block chaining mode used
 262 *       by the Loop-AES block device encryption system
 263 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 264 *       It operates on full 512 byte sectors and uses CBC
 265 *       with an IV derived from the sector number, the data and
 266 *       optionally extra IV seed.
 267 *       This means that after decryption the first block
 268 *       of sector must be tweaked according to decrypted data.
 269 *       Loop-AES can use three encryption schemes:
 270 *         version 1: is plain aes-cbc mode
 271 *         version 2: uses 64 multikey scheme with lmk IV generator
 272 *         version 3: the same as version 2 with additional IV seed
 273 *                   (it uses 65 keys, last key is used as IV seed)
 274 *
 275 * tcw:  Compatible implementation of the block chaining mode used
 276 *       by the TrueCrypt device encryption system (prior to version 4.1).
 277 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 278 *       It operates on full 512 byte sectors and uses CBC
 279 *       with an IV derived from initial key and the sector number.
 280 *       In addition, whitening value is applied on every sector, whitening
 281 *       is calculated from initial key, sector number and mixed using CRC32.
 282 *       Note that this encryption scheme is vulnerable to watermarking attacks
 283 *       and should be used for old compatible containers access only.
 284 *
 285 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 286 *        The IV is encrypted little-endian byte-offset (with the same key
 287 *        and cipher as the volume).
 288 */
 289
 290static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 291			      struct dm_crypt_request *dmreq)
 292{
 293	memset(iv, 0, cc->iv_size);
 294	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 295
 296	return 0;
 297}
 298
 299static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 300				struct dm_crypt_request *dmreq)
 301{
 302	memset(iv, 0, cc->iv_size);
 303	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 304
 305	return 0;
 306}
 307
 308static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 309				  struct dm_crypt_request *dmreq)
 310{
 311	memset(iv, 0, cc->iv_size);
 312	/* iv_size is at least of size u64; usually it is 16 bytes */
 313	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314
 315	return 0;
 316}
 317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 319			      struct dm_crypt_request *dmreq)
 320{
 321	/*
 322	 * ESSIV encryption of the IV is now handled by the crypto API,
 323	 * so just pass the plain sector number here.
 324	 */
 325	memset(iv, 0, cc->iv_size);
 326	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 327
 328	return 0;
 329}
 330
 331static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 332			      const char *opts)
 333{
 334	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 335	int log = ilog2(bs);
 336
 337	/* we need to calculate how far we must shift the sector count
 338	 * to get the cipher block count, we use this shift in _gen */
 339
 340	if (1 << log != bs) {
 341		ti->error = "cypher blocksize is not a power of 2";
 342		return -EINVAL;
 343	}
 344
 345	if (log > 9) {
 346		ti->error = "cypher blocksize is > 512";
 347		return -EINVAL;
 348	}
 349
 350	cc->iv_gen_private.benbi.shift = 9 - log;
 351
 352	return 0;
 353}
 354
 355static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 356{
 357}
 358
 359static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 360			      struct dm_crypt_request *dmreq)
 361{
 362	__be64 val;
 363
 364	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 365
 366	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 367	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 368
 369	return 0;
 370}
 371
 372static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 373			     struct dm_crypt_request *dmreq)
 374{
 375	memset(iv, 0, cc->iv_size);
 376
 377	return 0;
 378}
 379
 380static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 381{
 382	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 383
 384	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 385		crypto_free_shash(lmk->hash_tfm);
 386	lmk->hash_tfm = NULL;
 387
 388	kzfree(lmk->seed);
 389	lmk->seed = NULL;
 390}
 391
 392static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 393			    const char *opts)
 394{
 395	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 396
 397	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 398		ti->error = "Unsupported sector size for LMK";
 399		return -EINVAL;
 400	}
 401
 402	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 403	if (IS_ERR(lmk->hash_tfm)) {
 404		ti->error = "Error initializing LMK hash";
 405		return PTR_ERR(lmk->hash_tfm);
 406	}
 407
 408	/* No seed in LMK version 2 */
 409	if (cc->key_parts == cc->tfms_count) {
 410		lmk->seed = NULL;
 411		return 0;
 412	}
 413
 414	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 415	if (!lmk->seed) {
 416		crypt_iv_lmk_dtr(cc);
 417		ti->error = "Error kmallocing seed storage in LMK";
 418		return -ENOMEM;
 419	}
 420
 421	return 0;
 422}
 423
 424static int crypt_iv_lmk_init(struct crypt_config *cc)
 425{
 426	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 427	int subkey_size = cc->key_size / cc->key_parts;
 428
 429	/* LMK seed is on the position of LMK_KEYS + 1 key */
 430	if (lmk->seed)
 431		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 432		       crypto_shash_digestsize(lmk->hash_tfm));
 433
 434	return 0;
 435}
 436
 437static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 438{
 439	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 440
 441	if (lmk->seed)
 442		memset(lmk->seed, 0, LMK_SEED_SIZE);
 443
 444	return 0;
 445}
 446
 447static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 448			    struct dm_crypt_request *dmreq,
 449			    u8 *data)
 450{
 451	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 452	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 453	struct md5_state md5state;
 454	__le32 buf[4];
 455	int i, r;
 456
 457	desc->tfm = lmk->hash_tfm;
 
 458
 459	r = crypto_shash_init(desc);
 460	if (r)
 461		return r;
 462
 463	if (lmk->seed) {
 464		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 465		if (r)
 466			return r;
 467	}
 468
 469	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 470	r = crypto_shash_update(desc, data + 16, 16 * 31);
 471	if (r)
 472		return r;
 473
 474	/* Sector is cropped to 56 bits here */
 475	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 476	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 477	buf[2] = cpu_to_le32(4024);
 478	buf[3] = 0;
 479	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 480	if (r)
 481		return r;
 482
 483	/* No MD5 padding here */
 484	r = crypto_shash_export(desc, &md5state);
 485	if (r)
 486		return r;
 487
 488	for (i = 0; i < MD5_HASH_WORDS; i++)
 489		__cpu_to_le32s(&md5state.hash[i]);
 490	memcpy(iv, &md5state.hash, cc->iv_size);
 491
 492	return 0;
 493}
 494
 495static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 496			    struct dm_crypt_request *dmreq)
 497{
 498	struct scatterlist *sg;
 499	u8 *src;
 500	int r = 0;
 501
 502	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 503		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 504		src = kmap_atomic(sg_page(sg));
 505		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 506		kunmap_atomic(src);
 507	} else
 508		memset(iv, 0, cc->iv_size);
 509
 510	return r;
 511}
 512
 513static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 514			     struct dm_crypt_request *dmreq)
 515{
 516	struct scatterlist *sg;
 517	u8 *dst;
 518	int r;
 519
 520	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 521		return 0;
 522
 523	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 524	dst = kmap_atomic(sg_page(sg));
 525	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 526
 527	/* Tweak the first block of plaintext sector */
 528	if (!r)
 529		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 530
 531	kunmap_atomic(dst);
 532	return r;
 533}
 534
 535static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 536{
 537	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 538
 539	kzfree(tcw->iv_seed);
 540	tcw->iv_seed = NULL;
 541	kzfree(tcw->whitening);
 542	tcw->whitening = NULL;
 543
 544	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 545		crypto_free_shash(tcw->crc32_tfm);
 546	tcw->crc32_tfm = NULL;
 547}
 548
 549static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 550			    const char *opts)
 551{
 552	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 553
 554	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 555		ti->error = "Unsupported sector size for TCW";
 556		return -EINVAL;
 557	}
 558
 559	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 560		ti->error = "Wrong key size for TCW";
 561		return -EINVAL;
 562	}
 563
 564	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 565	if (IS_ERR(tcw->crc32_tfm)) {
 566		ti->error = "Error initializing CRC32 in TCW";
 567		return PTR_ERR(tcw->crc32_tfm);
 568	}
 569
 570	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 571	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 572	if (!tcw->iv_seed || !tcw->whitening) {
 573		crypt_iv_tcw_dtr(cc);
 574		ti->error = "Error allocating seed storage in TCW";
 575		return -ENOMEM;
 576	}
 577
 578	return 0;
 579}
 580
 581static int crypt_iv_tcw_init(struct crypt_config *cc)
 582{
 583	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 584	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 585
 586	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 587	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 588	       TCW_WHITENING_SIZE);
 589
 590	return 0;
 591}
 592
 593static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 594{
 595	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 596
 597	memset(tcw->iv_seed, 0, cc->iv_size);
 598	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 599
 600	return 0;
 601}
 602
 603static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 604				  struct dm_crypt_request *dmreq,
 605				  u8 *data)
 606{
 607	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 608	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 609	u8 buf[TCW_WHITENING_SIZE];
 610	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 611	int i, r;
 612
 613	/* xor whitening with sector number */
 614	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 615	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 
 616
 617	/* calculate crc32 for every 32bit part and xor it */
 618	desc->tfm = tcw->crc32_tfm;
 
 619	for (i = 0; i < 4; i++) {
 620		r = crypto_shash_init(desc);
 621		if (r)
 622			goto out;
 623		r = crypto_shash_update(desc, &buf[i * 4], 4);
 624		if (r)
 625			goto out;
 626		r = crypto_shash_final(desc, &buf[i * 4]);
 627		if (r)
 628			goto out;
 629	}
 630	crypto_xor(&buf[0], &buf[12], 4);
 631	crypto_xor(&buf[4], &buf[8], 4);
 632
 633	/* apply whitening (8 bytes) to whole sector */
 634	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 635		crypto_xor(data + i * 8, buf, 8);
 636out:
 637	memzero_explicit(buf, sizeof(buf));
 638	return r;
 639}
 640
 641static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 642			    struct dm_crypt_request *dmreq)
 643{
 644	struct scatterlist *sg;
 645	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 646	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 647	u8 *src;
 648	int r = 0;
 649
 650	/* Remove whitening from ciphertext */
 651	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 652		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 653		src = kmap_atomic(sg_page(sg));
 654		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 655		kunmap_atomic(src);
 656	}
 657
 658	/* Calculate IV */
 659	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 
 660	if (cc->iv_size > 8)
 661		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 662			       cc->iv_size - 8);
 663
 664	return r;
 665}
 666
 667static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 668			     struct dm_crypt_request *dmreq)
 669{
 670	struct scatterlist *sg;
 671	u8 *dst;
 672	int r;
 673
 674	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 675		return 0;
 676
 677	/* Apply whitening on ciphertext */
 678	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 679	dst = kmap_atomic(sg_page(sg));
 680	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 681	kunmap_atomic(dst);
 682
 683	return r;
 684}
 685
 686static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 687				struct dm_crypt_request *dmreq)
 688{
 689	/* Used only for writes, there must be an additional space to store IV */
 690	get_random_bytes(iv, cc->iv_size);
 691	return 0;
 692}
 693
 694static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 695			    const char *opts)
 696{
 697	if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags)) {
 698		ti->error = "AEAD transforms not supported for EBOIV";
 699		return -EINVAL;
 700	}
 701
 702	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 703		ti->error = "Block size of EBOIV cipher does "
 704			    "not match IV size of block cipher";
 705		return -EINVAL;
 706	}
 707
 708	return 0;
 709}
 710
 711static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 712			    struct dm_crypt_request *dmreq)
 713{
 714	u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
 715	struct skcipher_request *req;
 716	struct scatterlist src, dst;
 717	struct crypto_wait wait;
 718	int err;
 719
 720	req = skcipher_request_alloc(any_tfm(cc), GFP_KERNEL | GFP_NOFS);
 721	if (!req)
 722		return -ENOMEM;
 723
 724	memset(buf, 0, cc->iv_size);
 725	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 726
 727	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 728	sg_init_one(&dst, iv, cc->iv_size);
 729	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 730	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 731	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 732	skcipher_request_free(req);
 733
 734	return err;
 735}
 736
 737static const struct crypt_iv_operations crypt_iv_plain_ops = {
 738	.generator = crypt_iv_plain_gen
 739};
 740
 741static const struct crypt_iv_operations crypt_iv_plain64_ops = {
 742	.generator = crypt_iv_plain64_gen
 743};
 744
 745static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
 746	.generator = crypt_iv_plain64be_gen
 747};
 748
 749static const struct crypt_iv_operations crypt_iv_essiv_ops = {
 
 
 
 
 750	.generator = crypt_iv_essiv_gen
 751};
 752
 753static const struct crypt_iv_operations crypt_iv_benbi_ops = {
 754	.ctr	   = crypt_iv_benbi_ctr,
 755	.dtr	   = crypt_iv_benbi_dtr,
 756	.generator = crypt_iv_benbi_gen
 757};
 758
 759static const struct crypt_iv_operations crypt_iv_null_ops = {
 760	.generator = crypt_iv_null_gen
 761};
 762
 763static const struct crypt_iv_operations crypt_iv_lmk_ops = {
 764	.ctr	   = crypt_iv_lmk_ctr,
 765	.dtr	   = crypt_iv_lmk_dtr,
 766	.init	   = crypt_iv_lmk_init,
 767	.wipe	   = crypt_iv_lmk_wipe,
 768	.generator = crypt_iv_lmk_gen,
 769	.post	   = crypt_iv_lmk_post
 770};
 771
 772static const struct crypt_iv_operations crypt_iv_tcw_ops = {
 773	.ctr	   = crypt_iv_tcw_ctr,
 774	.dtr	   = crypt_iv_tcw_dtr,
 775	.init	   = crypt_iv_tcw_init,
 776	.wipe	   = crypt_iv_tcw_wipe,
 777	.generator = crypt_iv_tcw_gen,
 778	.post	   = crypt_iv_tcw_post
 779};
 780
 781static struct crypt_iv_operations crypt_iv_random_ops = {
 782	.generator = crypt_iv_random_gen
 783};
 784
 785static struct crypt_iv_operations crypt_iv_eboiv_ops = {
 786	.ctr	   = crypt_iv_eboiv_ctr,
 787	.generator = crypt_iv_eboiv_gen
 788};
 789
 790/*
 791 * Integrity extensions
 792 */
 793static bool crypt_integrity_aead(struct crypt_config *cc)
 794{
 795	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
 796}
 797
 798static bool crypt_integrity_hmac(struct crypt_config *cc)
 799{
 800	return crypt_integrity_aead(cc) && cc->key_mac_size;
 801}
 802
 803/* Get sg containing data */
 804static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 805					     struct scatterlist *sg)
 806{
 807	if (unlikely(crypt_integrity_aead(cc)))
 808		return &sg[2];
 809
 810	return sg;
 811}
 812
 813static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
 814{
 815	struct bio_integrity_payload *bip;
 816	unsigned int tag_len;
 817	int ret;
 818
 819	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
 820		return 0;
 821
 822	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 823	if (IS_ERR(bip))
 824		return PTR_ERR(bip);
 825
 826	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
 827
 828	bip->bip_iter.bi_size = tag_len;
 829	bip->bip_iter.bi_sector = io->cc->start + io->sector;
 830
 831	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
 832				     tag_len, offset_in_page(io->integrity_metadata));
 833	if (unlikely(ret != tag_len))
 834		return -ENOMEM;
 835
 836	return 0;
 837}
 838
 839static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
 840{
 841#ifdef CONFIG_BLK_DEV_INTEGRITY
 842	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
 843	struct mapped_device *md = dm_table_get_md(ti->table);
 844
 845	/* From now we require underlying device with our integrity profile */
 846	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
 847		ti->error = "Integrity profile not supported.";
 848		return -EINVAL;
 849	}
 850
 851	if (bi->tag_size != cc->on_disk_tag_size ||
 852	    bi->tuple_size != cc->on_disk_tag_size) {
 853		ti->error = "Integrity profile tag size mismatch.";
 854		return -EINVAL;
 855	}
 856	if (1 << bi->interval_exp != cc->sector_size) {
 857		ti->error = "Integrity profile sector size mismatch.";
 858		return -EINVAL;
 859	}
 860
 861	if (crypt_integrity_aead(cc)) {
 862		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
 863		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
 864		       cc->integrity_tag_size, cc->integrity_iv_size);
 865
 866		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
 867			ti->error = "Integrity AEAD auth tag size is not supported.";
 868			return -EINVAL;
 869		}
 870	} else if (cc->integrity_iv_size)
 871		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
 872		       cc->integrity_iv_size);
 873
 874	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
 875		ti->error = "Not enough space for integrity tag in the profile.";
 876		return -EINVAL;
 877	}
 878
 879	return 0;
 880#else
 881	ti->error = "Integrity profile not supported.";
 882	return -EINVAL;
 883#endif
 884}
 885
 886static void crypt_convert_init(struct crypt_config *cc,
 887			       struct convert_context *ctx,
 888			       struct bio *bio_out, struct bio *bio_in,
 889			       sector_t sector)
 890{
 891	ctx->bio_in = bio_in;
 892	ctx->bio_out = bio_out;
 893	if (bio_in)
 894		ctx->iter_in = bio_in->bi_iter;
 895	if (bio_out)
 896		ctx->iter_out = bio_out->bi_iter;
 897	ctx->cc_sector = sector + cc->iv_offset;
 898	init_completion(&ctx->restart);
 899}
 900
 901static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 902					     void *req)
 903{
 904	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 905}
 906
 907static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
 908{
 909	return (void *)((char *)dmreq - cc->dmreq_start);
 910}
 911
 912static u8 *iv_of_dmreq(struct crypt_config *cc,
 913		       struct dm_crypt_request *dmreq)
 914{
 915	if (crypt_integrity_aead(cc))
 916		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 917			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
 918	else
 919		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 920			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 921}
 922
 923static u8 *org_iv_of_dmreq(struct crypt_config *cc,
 924		       struct dm_crypt_request *dmreq)
 925{
 926	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
 927}
 928
 929static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
 930		       struct dm_crypt_request *dmreq)
 931{
 932	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
 933	return (__le64 *) ptr;
 934}
 935
 936static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
 937		       struct dm_crypt_request *dmreq)
 938{
 939	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
 940		  cc->iv_size + sizeof(uint64_t);
 941	return (unsigned int*)ptr;
 942}
 943
 944static void *tag_from_dmreq(struct crypt_config *cc,
 945				struct dm_crypt_request *dmreq)
 946{
 947	struct convert_context *ctx = dmreq->ctx;
 948	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
 949
 950	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
 951		cc->on_disk_tag_size];
 952}
 953
 954static void *iv_tag_from_dmreq(struct crypt_config *cc,
 955			       struct dm_crypt_request *dmreq)
 956{
 957	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
 958}
 959
 960static int crypt_convert_block_aead(struct crypt_config *cc,
 961				     struct convert_context *ctx,
 962				     struct aead_request *req,
 963				     unsigned int tag_offset)
 964{
 965	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 966	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 967	struct dm_crypt_request *dmreq;
 968	u8 *iv, *org_iv, *tag_iv, *tag;
 969	__le64 *sector;
 970	int r = 0;
 971
 972	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
 973
 974	/* Reject unexpected unaligned bio. */
 975	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
 976		return -EIO;
 977
 978	dmreq = dmreq_of_req(cc, req);
 979	dmreq->iv_sector = ctx->cc_sector;
 980	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
 981		dmreq->iv_sector >>= cc->sector_shift;
 982	dmreq->ctx = ctx;
 983
 984	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
 985
 986	sector = org_sector_of_dmreq(cc, dmreq);
 987	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
 988
 989	iv = iv_of_dmreq(cc, dmreq);
 990	org_iv = org_iv_of_dmreq(cc, dmreq);
 991	tag = tag_from_dmreq(cc, dmreq);
 992	tag_iv = iv_tag_from_dmreq(cc, dmreq);
 993
 994	/* AEAD request:
 995	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
 996	 *  | (authenticated) | (auth+encryption) |              |
 997	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
 998	 */
 999	sg_init_table(dmreq->sg_in, 4);
1000	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1001	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1002	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1003	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1004
1005	sg_init_table(dmreq->sg_out, 4);
1006	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1007	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1008	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1009	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1010
1011	if (cc->iv_gen_ops) {
1012		/* For READs use IV stored in integrity metadata */
1013		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1014			memcpy(org_iv, tag_iv, cc->iv_size);
1015		} else {
1016			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1017			if (r < 0)
1018				return r;
1019			/* Store generated IV in integrity metadata */
1020			if (cc->integrity_iv_size)
1021				memcpy(tag_iv, org_iv, cc->iv_size);
1022		}
1023		/* Working copy of IV, to be modified in crypto API */
1024		memcpy(iv, org_iv, cc->iv_size);
1025	}
1026
1027	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1028	if (bio_data_dir(ctx->bio_in) == WRITE) {
1029		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1030				       cc->sector_size, iv);
1031		r = crypto_aead_encrypt(req);
1032		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1033			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1034			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1035	} else {
1036		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1037				       cc->sector_size + cc->integrity_tag_size, iv);
1038		r = crypto_aead_decrypt(req);
1039	}
1040
1041	if (r == -EBADMSG) {
1042		char b[BDEVNAME_SIZE];
1043		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1044			    (unsigned long long)le64_to_cpu(*sector));
1045	}
1046
1047	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1048		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1049
1050	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1051	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1052
1053	return r;
1054}
1055
1056static int crypt_convert_block_skcipher(struct crypt_config *cc,
1057					struct convert_context *ctx,
1058					struct skcipher_request *req,
1059					unsigned int tag_offset)
1060{
1061	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1062	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1063	struct scatterlist *sg_in, *sg_out;
1064	struct dm_crypt_request *dmreq;
1065	u8 *iv, *org_iv, *tag_iv;
1066	__le64 *sector;
1067	int r = 0;
1068
1069	/* Reject unexpected unaligned bio. */
1070	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1071		return -EIO;
1072
1073	dmreq = dmreq_of_req(cc, req);
1074	dmreq->iv_sector = ctx->cc_sector;
1075	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1076		dmreq->iv_sector >>= cc->sector_shift;
1077	dmreq->ctx = ctx;
 
 
 
 
 
 
 
1078
1079	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1080
1081	iv = iv_of_dmreq(cc, dmreq);
1082	org_iv = org_iv_of_dmreq(cc, dmreq);
1083	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1084
1085	sector = org_sector_of_dmreq(cc, dmreq);
1086	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1087
1088	/* For skcipher we use only the first sg item */
1089	sg_in  = &dmreq->sg_in[0];
1090	sg_out = &dmreq->sg_out[0];
1091
1092	sg_init_table(sg_in, 1);
1093	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1094
1095	sg_init_table(sg_out, 1);
1096	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1097
1098	if (cc->iv_gen_ops) {
1099		/* For READs use IV stored in integrity metadata */
1100		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1101			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1102		} else {
1103			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1104			if (r < 0)
1105				return r;
1106			/* Store generated IV in integrity metadata */
1107			if (cc->integrity_iv_size)
1108				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1109		}
1110		/* Working copy of IV, to be modified in crypto API */
1111		memcpy(iv, org_iv, cc->iv_size);
1112	}
1113
1114	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1115
1116	if (bio_data_dir(ctx->bio_in) == WRITE)
1117		r = crypto_skcipher_encrypt(req);
1118	else
1119		r = crypto_skcipher_decrypt(req);
1120
1121	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1122		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1123
1124	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1125	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1126
1127	return r;
1128}
1129
1130static void kcryptd_async_done(struct crypto_async_request *async_req,
1131			       int error);
1132
1133static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1134				     struct convert_context *ctx)
1135{
1136	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1137
1138	if (!ctx->r.req)
1139		ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1140
1141	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1142
1143	/*
1144	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1145	 * requests if driver request queue is full.
1146	 */
1147	skcipher_request_set_callback(ctx->r.req,
1148	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1149	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1150}
1151
1152static void crypt_alloc_req_aead(struct crypt_config *cc,
1153				 struct convert_context *ctx)
1154{
1155	if (!ctx->r.req_aead)
1156		ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1157
1158	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1159
1160	/*
1161	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1162	 * requests if driver request queue is full.
1163	 */
1164	aead_request_set_callback(ctx->r.req_aead,
1165	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1166	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1167}
1168
1169static void crypt_alloc_req(struct crypt_config *cc,
1170			    struct convert_context *ctx)
1171{
1172	if (crypt_integrity_aead(cc))
1173		crypt_alloc_req_aead(cc, ctx);
1174	else
1175		crypt_alloc_req_skcipher(cc, ctx);
1176}
1177
1178static void crypt_free_req_skcipher(struct crypt_config *cc,
1179				    struct skcipher_request *req, struct bio *base_bio)
1180{
1181	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1182
1183	if ((struct skcipher_request *)(io + 1) != req)
1184		mempool_free(req, &cc->req_pool);
1185}
1186
1187static void crypt_free_req_aead(struct crypt_config *cc,
1188				struct aead_request *req, struct bio *base_bio)
1189{
1190	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1191
1192	if ((struct aead_request *)(io + 1) != req)
1193		mempool_free(req, &cc->req_pool);
1194}
1195
1196static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1197{
1198	if (crypt_integrity_aead(cc))
1199		crypt_free_req_aead(cc, req, base_bio);
1200	else
1201		crypt_free_req_skcipher(cc, req, base_bio);
1202}
1203
1204/*
1205 * Encrypt / decrypt data from one bio to another one (can be the same one)
1206 */
1207static blk_status_t crypt_convert(struct crypt_config *cc,
1208			 struct convert_context *ctx)
1209{
1210	unsigned int tag_offset = 0;
1211	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1212	int r;
1213
1214	atomic_set(&ctx->cc_pending, 1);
1215
1216	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1217
1218		crypt_alloc_req(cc, ctx);
 
1219		atomic_inc(&ctx->cc_pending);
1220
1221		if (crypt_integrity_aead(cc))
1222			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1223		else
1224			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1225
1226		switch (r) {
1227		/*
1228		 * The request was queued by a crypto driver
1229		 * but the driver request queue is full, let's wait.
1230		 */
1231		case -EBUSY:
1232			wait_for_completion(&ctx->restart);
1233			reinit_completion(&ctx->restart);
1234			/* fall through */
1235		/*
1236		 * The request is queued and processed asynchronously,
1237		 * completion function kcryptd_async_done() will be called.
1238		 */
1239		case -EINPROGRESS:
1240			ctx->r.req = NULL;
1241			ctx->cc_sector += sector_step;
1242			tag_offset++;
1243			continue;
1244		/*
1245		 * The request was already processed (synchronously).
1246		 */
1247		case 0:
1248			atomic_dec(&ctx->cc_pending);
1249			ctx->cc_sector += sector_step;
1250			tag_offset++;
1251			cond_resched();
1252			continue;
1253		/*
1254		 * There was a data integrity error.
1255		 */
1256		case -EBADMSG:
1257			atomic_dec(&ctx->cc_pending);
1258			return BLK_STS_PROTECTION;
1259		/*
1260		 * There was an error while processing the request.
1261		 */
1262		default:
1263			atomic_dec(&ctx->cc_pending);
1264			return BLK_STS_IOERR;
1265		}
1266	}
1267
1268	return 0;
1269}
1270
1271static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1272
1273/*
1274 * Generate a new unfragmented bio with the given size
1275 * This should never violate the device limitations (but only because
1276 * max_segment_size is being constrained to PAGE_SIZE).
1277 *
1278 * This function may be called concurrently. If we allocate from the mempool
1279 * concurrently, there is a possibility of deadlock. For example, if we have
1280 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1281 * the mempool concurrently, it may deadlock in a situation where both processes
1282 * have allocated 128 pages and the mempool is exhausted.
1283 *
1284 * In order to avoid this scenario we allocate the pages under a mutex.
1285 *
1286 * In order to not degrade performance with excessive locking, we try
1287 * non-blocking allocations without a mutex first but on failure we fallback
1288 * to blocking allocations with a mutex.
1289 */
1290static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1291{
1292	struct crypt_config *cc = io->cc;
1293	struct bio *clone;
1294	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1296	unsigned i, len, remaining_size;
1297	struct page *page;
1298
1299retry:
1300	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1301		mutex_lock(&cc->bio_alloc_lock);
1302
1303	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1304	if (!clone)
1305		goto out;
1306
1307	clone_init(io, clone);
1308
1309	remaining_size = size;
1310
1311	for (i = 0; i < nr_iovecs; i++) {
1312		page = mempool_alloc(&cc->page_pool, gfp_mask);
1313		if (!page) {
1314			crypt_free_buffer_pages(cc, clone);
1315			bio_put(clone);
1316			gfp_mask |= __GFP_DIRECT_RECLAIM;
1317			goto retry;
1318		}
1319
1320		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1321
1322		bio_add_page(clone, page, len, 0);
1323
1324		remaining_size -= len;
1325	}
1326
1327	/* Allocate space for integrity tags */
1328	if (dm_crypt_integrity_io_alloc(io, clone)) {
1329		crypt_free_buffer_pages(cc, clone);
1330		bio_put(clone);
1331		clone = NULL;
1332	}
1333out:
1334	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1335		mutex_unlock(&cc->bio_alloc_lock);
1336
1337	return clone;
1338}
1339
1340static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1341{
 
1342	struct bio_vec *bv;
1343	struct bvec_iter_all iter_all;
1344
1345	bio_for_each_segment_all(bv, clone, iter_all) {
1346		BUG_ON(!bv->bv_page);
1347		mempool_free(bv->bv_page, &cc->page_pool);
 
1348	}
1349}
1350
1351static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1352			  struct bio *bio, sector_t sector)
1353{
1354	io->cc = cc;
1355	io->base_bio = bio;
1356	io->sector = sector;
1357	io->error = 0;
1358	io->ctx.r.req = NULL;
1359	io->integrity_metadata = NULL;
1360	io->integrity_metadata_from_pool = false;
1361	atomic_set(&io->io_pending, 0);
1362}
1363
1364static void crypt_inc_pending(struct dm_crypt_io *io)
1365{
1366	atomic_inc(&io->io_pending);
1367}
1368
1369/*
1370 * One of the bios was finished. Check for completion of
1371 * the whole request and correctly clean up the buffer.
1372 */
1373static void crypt_dec_pending(struct dm_crypt_io *io)
1374{
1375	struct crypt_config *cc = io->cc;
1376	struct bio *base_bio = io->base_bio;
1377	blk_status_t error = io->error;
1378
1379	if (!atomic_dec_and_test(&io->io_pending))
1380		return;
1381
1382	if (io->ctx.r.req)
1383		crypt_free_req(cc, io->ctx.r.req, base_bio);
1384
1385	if (unlikely(io->integrity_metadata_from_pool))
1386		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1387	else
1388		kfree(io->integrity_metadata);
1389
1390	base_bio->bi_status = error;
1391	bio_endio(base_bio);
1392}
1393
1394/*
1395 * kcryptd/kcryptd_io:
1396 *
1397 * Needed because it would be very unwise to do decryption in an
1398 * interrupt context.
1399 *
1400 * kcryptd performs the actual encryption or decryption.
1401 *
1402 * kcryptd_io performs the IO submission.
1403 *
1404 * They must be separated as otherwise the final stages could be
1405 * starved by new requests which can block in the first stages due
1406 * to memory allocation.
1407 *
1408 * The work is done per CPU global for all dm-crypt instances.
1409 * They should not depend on each other and do not block.
1410 */
1411static void crypt_endio(struct bio *clone)
1412{
1413	struct dm_crypt_io *io = clone->bi_private;
1414	struct crypt_config *cc = io->cc;
1415	unsigned rw = bio_data_dir(clone);
1416	blk_status_t error;
1417
1418	/*
1419	 * free the processed pages
1420	 */
1421	if (rw == WRITE)
1422		crypt_free_buffer_pages(cc, clone);
1423
1424	error = clone->bi_status;
1425	bio_put(clone);
1426
1427	if (rw == READ && !error) {
1428		kcryptd_queue_crypt(io);
1429		return;
1430	}
1431
1432	if (unlikely(error))
1433		io->error = error;
1434
1435	crypt_dec_pending(io);
1436}
1437
1438static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1439{
1440	struct crypt_config *cc = io->cc;
1441
1442	clone->bi_private = io;
1443	clone->bi_end_io  = crypt_endio;
1444	bio_set_dev(clone, cc->dev->bdev);
1445	clone->bi_opf	  = io->base_bio->bi_opf;
1446}
1447
1448static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1449{
1450	struct crypt_config *cc = io->cc;
1451	struct bio *clone;
1452
1453	/*
1454	 * We need the original biovec array in order to decrypt
1455	 * the whole bio data *afterwards* -- thanks to immutable
1456	 * biovecs we don't need to worry about the block layer
1457	 * modifying the biovec array; so leverage bio_clone_fast().
1458	 */
1459	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1460	if (!clone)
1461		return 1;
1462
1463	crypt_inc_pending(io);
1464
1465	clone_init(io, clone);
1466	clone->bi_iter.bi_sector = cc->start + io->sector;
1467
1468	if (dm_crypt_integrity_io_alloc(io, clone)) {
1469		crypt_dec_pending(io);
1470		bio_put(clone);
1471		return 1;
1472	}
1473
1474	generic_make_request(clone);
1475	return 0;
1476}
1477
1478static void kcryptd_io_read_work(struct work_struct *work)
1479{
1480	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1481
1482	crypt_inc_pending(io);
1483	if (kcryptd_io_read(io, GFP_NOIO))
1484		io->error = BLK_STS_RESOURCE;
1485	crypt_dec_pending(io);
1486}
1487
1488static void kcryptd_queue_read(struct dm_crypt_io *io)
1489{
1490	struct crypt_config *cc = io->cc;
1491
1492	INIT_WORK(&io->work, kcryptd_io_read_work);
1493	queue_work(cc->io_queue, &io->work);
1494}
1495
1496static void kcryptd_io_write(struct dm_crypt_io *io)
1497{
1498	struct bio *clone = io->ctx.bio_out;
1499
1500	generic_make_request(clone);
1501}
1502
1503#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1504
1505static int dmcrypt_write(void *data)
1506{
1507	struct crypt_config *cc = data;
1508	struct dm_crypt_io *io;
1509
1510	while (1) {
1511		struct rb_root write_tree;
1512		struct blk_plug plug;
1513
1514		spin_lock_irq(&cc->write_thread_lock);
 
 
1515continue_locked:
1516
1517		if (!RB_EMPTY_ROOT(&cc->write_tree))
1518			goto pop_from_list;
1519
1520		set_current_state(TASK_INTERRUPTIBLE);
 
1521
1522		spin_unlock_irq(&cc->write_thread_lock);
1523
1524		if (unlikely(kthread_should_stop())) {
1525			set_current_state(TASK_RUNNING);
 
1526			break;
1527		}
1528
1529		schedule();
1530
1531		set_current_state(TASK_RUNNING);
1532		spin_lock_irq(&cc->write_thread_lock);
 
1533		goto continue_locked;
1534
1535pop_from_list:
1536		write_tree = cc->write_tree;
1537		cc->write_tree = RB_ROOT;
1538		spin_unlock_irq(&cc->write_thread_lock);
1539
1540		BUG_ON(rb_parent(write_tree.rb_node));
1541
1542		/*
1543		 * Note: we cannot walk the tree here with rb_next because
1544		 * the structures may be freed when kcryptd_io_write is called.
1545		 */
1546		blk_start_plug(&plug);
1547		do {
1548			io = crypt_io_from_node(rb_first(&write_tree));
1549			rb_erase(&io->rb_node, &write_tree);
1550			kcryptd_io_write(io);
1551		} while (!RB_EMPTY_ROOT(&write_tree));
1552		blk_finish_plug(&plug);
1553	}
1554	return 0;
1555}
1556
1557static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1558{
1559	struct bio *clone = io->ctx.bio_out;
1560	struct crypt_config *cc = io->cc;
1561	unsigned long flags;
1562	sector_t sector;
1563	struct rb_node **rbp, *parent;
1564
1565	if (unlikely(io->error)) {
1566		crypt_free_buffer_pages(cc, clone);
1567		bio_put(clone);
1568		crypt_dec_pending(io);
1569		return;
1570	}
1571
1572	/* crypt_convert should have filled the clone bio */
1573	BUG_ON(io->ctx.iter_out.bi_size);
1574
1575	clone->bi_iter.bi_sector = cc->start + io->sector;
1576
1577	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1578		generic_make_request(clone);
1579		return;
1580	}
1581
1582	spin_lock_irqsave(&cc->write_thread_lock, flags);
1583	if (RB_EMPTY_ROOT(&cc->write_tree))
1584		wake_up_process(cc->write_thread);
1585	rbp = &cc->write_tree.rb_node;
1586	parent = NULL;
1587	sector = io->sector;
1588	while (*rbp) {
1589		parent = *rbp;
1590		if (sector < crypt_io_from_node(parent)->sector)
1591			rbp = &(*rbp)->rb_left;
1592		else
1593			rbp = &(*rbp)->rb_right;
1594	}
1595	rb_link_node(&io->rb_node, parent, rbp);
1596	rb_insert_color(&io->rb_node, &cc->write_tree);
1597	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
 
 
1598}
1599
1600static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1601{
1602	struct crypt_config *cc = io->cc;
1603	struct bio *clone;
1604	int crypt_finished;
1605	sector_t sector = io->sector;
1606	blk_status_t r;
1607
1608	/*
1609	 * Prevent io from disappearing until this function completes.
1610	 */
1611	crypt_inc_pending(io);
1612	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1613
1614	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1615	if (unlikely(!clone)) {
1616		io->error = BLK_STS_IOERR;
1617		goto dec;
1618	}
1619
1620	io->ctx.bio_out = clone;
1621	io->ctx.iter_out = clone->bi_iter;
1622
1623	sector += bio_sectors(clone);
1624
1625	crypt_inc_pending(io);
1626	r = crypt_convert(cc, &io->ctx);
1627	if (r)
1628		io->error = r;
1629	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1630
1631	/* Encryption was already finished, submit io now */
1632	if (crypt_finished) {
1633		kcryptd_crypt_write_io_submit(io, 0);
1634		io->sector = sector;
1635	}
1636
1637dec:
1638	crypt_dec_pending(io);
1639}
1640
1641static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1642{
1643	crypt_dec_pending(io);
1644}
1645
1646static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1647{
1648	struct crypt_config *cc = io->cc;
1649	blk_status_t r;
1650
1651	crypt_inc_pending(io);
1652
1653	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1654			   io->sector);
1655
1656	r = crypt_convert(cc, &io->ctx);
1657	if (r)
1658		io->error = r;
1659
1660	if (atomic_dec_and_test(&io->ctx.cc_pending))
1661		kcryptd_crypt_read_done(io);
1662
1663	crypt_dec_pending(io);
1664}
1665
1666static void kcryptd_async_done(struct crypto_async_request *async_req,
1667			       int error)
1668{
1669	struct dm_crypt_request *dmreq = async_req->data;
1670	struct convert_context *ctx = dmreq->ctx;
1671	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1672	struct crypt_config *cc = io->cc;
1673
1674	/*
1675	 * A request from crypto driver backlog is going to be processed now,
1676	 * finish the completion and continue in crypt_convert().
1677	 * (Callback will be called for the second time for this request.)
1678	 */
1679	if (error == -EINPROGRESS) {
1680		complete(&ctx->restart);
1681		return;
1682	}
1683
1684	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1685		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1686
1687	if (error == -EBADMSG) {
1688		char b[BDEVNAME_SIZE];
1689		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1690			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1691		io->error = BLK_STS_PROTECTION;
1692	} else if (error < 0)
1693		io->error = BLK_STS_IOERR;
1694
1695	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1696
1697	if (!atomic_dec_and_test(&ctx->cc_pending))
1698		return;
1699
1700	if (bio_data_dir(io->base_bio) == READ)
1701		kcryptd_crypt_read_done(io);
1702	else
1703		kcryptd_crypt_write_io_submit(io, 1);
1704}
1705
1706static void kcryptd_crypt(struct work_struct *work)
1707{
1708	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1709
1710	if (bio_data_dir(io->base_bio) == READ)
1711		kcryptd_crypt_read_convert(io);
1712	else
1713		kcryptd_crypt_write_convert(io);
1714}
1715
1716static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1717{
1718	struct crypt_config *cc = io->cc;
1719
1720	INIT_WORK(&io->work, kcryptd_crypt);
1721	queue_work(cc->crypt_queue, &io->work);
1722}
1723
1724static void crypt_free_tfms_aead(struct crypt_config *cc)
 
 
 
1725{
1726	if (!cc->cipher_tfm.tfms_aead)
1727		return;
 
 
 
 
 
 
1728
1729	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1730		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1731		cc->cipher_tfm.tfms_aead[0] = NULL;
1732	}
1733
1734	kfree(cc->cipher_tfm.tfms_aead);
1735	cc->cipher_tfm.tfms_aead = NULL;
 
 
1736}
1737
1738static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1739{
1740	unsigned i;
1741
1742	if (!cc->cipher_tfm.tfms)
1743		return;
1744
1745	for (i = 0; i < cc->tfms_count; i++)
1746		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1747			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1748			cc->cipher_tfm.tfms[i] = NULL;
1749		}
1750
1751	kfree(cc->cipher_tfm.tfms);
1752	cc->cipher_tfm.tfms = NULL;
1753}
1754
1755static void crypt_free_tfms(struct crypt_config *cc)
1756{
1757	if (crypt_integrity_aead(cc))
1758		crypt_free_tfms_aead(cc);
1759	else
1760		crypt_free_tfms_skcipher(cc);
1761}
1762
1763static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1764{
1765	unsigned i;
1766	int err;
1767
1768	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1769				      sizeof(struct crypto_skcipher *),
1770				      GFP_KERNEL);
1771	if (!cc->cipher_tfm.tfms)
1772		return -ENOMEM;
1773
1774	for (i = 0; i < cc->tfms_count; i++) {
1775		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1776		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1777			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1778			crypt_free_tfms(cc);
1779			return err;
1780		}
1781	}
1782
1783	/*
1784	 * dm-crypt performance can vary greatly depending on which crypto
1785	 * algorithm implementation is used.  Help people debug performance
1786	 * problems by logging the ->cra_driver_name.
1787	 */
1788	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1789	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1790	return 0;
1791}
1792
1793static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1794{
1795	int err;
1796
1797	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1798	if (!cc->cipher_tfm.tfms)
1799		return -ENOMEM;
1800
1801	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1802	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1803		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1804		crypt_free_tfms(cc);
1805		return err;
1806	}
1807
1808	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1809	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1810	return 0;
1811}
1812
1813static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1814{
1815	if (crypt_integrity_aead(cc))
1816		return crypt_alloc_tfms_aead(cc, ciphermode);
1817	else
1818		return crypt_alloc_tfms_skcipher(cc, ciphermode);
1819}
1820
1821static unsigned crypt_subkey_size(struct crypt_config *cc)
1822{
1823	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1824}
1825
1826static unsigned crypt_authenckey_size(struct crypt_config *cc)
1827{
1828	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1829}
1830
1831/*
1832 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1833 * the key must be for some reason in special format.
1834 * This funcion converts cc->key to this special format.
1835 */
1836static void crypt_copy_authenckey(char *p, const void *key,
1837				  unsigned enckeylen, unsigned authkeylen)
1838{
1839	struct crypto_authenc_key_param *param;
1840	struct rtattr *rta;
1841
1842	rta = (struct rtattr *)p;
1843	param = RTA_DATA(rta);
1844	param->enckeylen = cpu_to_be32(enckeylen);
1845	rta->rta_len = RTA_LENGTH(sizeof(*param));
1846	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1847	p += RTA_SPACE(sizeof(*param));
1848	memcpy(p, key + enckeylen, authkeylen);
1849	p += authkeylen;
1850	memcpy(p, key, enckeylen);
1851}
1852
1853static int crypt_setkey(struct crypt_config *cc)
1854{
1855	unsigned subkey_size;
1856	int err = 0, i, r;
1857
1858	/* Ignore extra keys (which are used for IV etc) */
1859	subkey_size = crypt_subkey_size(cc);
1860
1861	if (crypt_integrity_hmac(cc)) {
1862		if (subkey_size < cc->key_mac_size)
1863			return -EINVAL;
1864
1865		crypt_copy_authenckey(cc->authenc_key, cc->key,
1866				      subkey_size - cc->key_mac_size,
1867				      cc->key_mac_size);
1868	}
1869
1870	for (i = 0; i < cc->tfms_count; i++) {
1871		if (crypt_integrity_hmac(cc))
1872			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1873				cc->authenc_key, crypt_authenckey_size(cc));
1874		else if (crypt_integrity_aead(cc))
1875			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1876					       cc->key + (i * subkey_size),
1877					       subkey_size);
1878		else
1879			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1880						   cc->key + (i * subkey_size),
1881						   subkey_size);
1882		if (r)
1883			err = r;
1884	}
1885
1886	if (crypt_integrity_hmac(cc))
1887		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1888
1889	return err;
1890}
1891
1892#ifdef CONFIG_KEYS
1893
1894static bool contains_whitespace(const char *str)
1895{
1896	while (*str)
1897		if (isspace(*str++))
1898			return true;
1899	return false;
1900}
1901
1902static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
1903{
1904	char *new_key_string, *key_desc;
1905	int ret;
1906	struct key *key;
1907	const struct user_key_payload *ukp;
1908
1909	/*
1910	 * Reject key_string with whitespace. dm core currently lacks code for
1911	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1912	 */
1913	if (contains_whitespace(key_string)) {
1914		DMERR("whitespace chars not allowed in key string");
1915		return -EINVAL;
1916	}
1917
1918	/* look for next ':' separating key_type from key_description */
1919	key_desc = strpbrk(key_string, ":");
1920	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
1921		return -EINVAL;
1922
1923	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
1924	    strncmp(key_string, "user:", key_desc - key_string + 1))
1925		return -EINVAL;
1926
1927	new_key_string = kstrdup(key_string, GFP_KERNEL);
1928	if (!new_key_string)
1929		return -ENOMEM;
1930
1931	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
1932			  key_desc + 1, NULL);
1933	if (IS_ERR(key)) {
1934		kzfree(new_key_string);
1935		return PTR_ERR(key);
1936	}
1937
1938	down_read(&key->sem);
1939
1940	ukp = user_key_payload_locked(key);
1941	if (!ukp) {
1942		up_read(&key->sem);
1943		key_put(key);
1944		kzfree(new_key_string);
1945		return -EKEYREVOKED;
1946	}
1947
1948	if (cc->key_size != ukp->datalen) {
1949		up_read(&key->sem);
1950		key_put(key);
1951		kzfree(new_key_string);
1952		return -EINVAL;
1953	}
1954
1955	memcpy(cc->key, ukp->data, cc->key_size);
1956
1957	up_read(&key->sem);
1958	key_put(key);
1959
1960	/* clear the flag since following operations may invalidate previously valid key */
1961	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1962
1963	ret = crypt_setkey(cc);
1964
 
 
 
1965	if (!ret) {
1966		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1967		kzfree(cc->key_string);
1968		cc->key_string = new_key_string;
1969	} else
1970		kzfree(new_key_string);
1971
1972	return ret;
1973}
1974
1975static int get_key_size(char **key_string)
1976{
1977	char *colon, dummy;
1978	int ret;
1979
1980	if (*key_string[0] != ':')
1981		return strlen(*key_string) >> 1;
1982
1983	/* look for next ':' in key string */
1984	colon = strpbrk(*key_string + 1, ":");
1985	if (!colon)
1986		return -EINVAL;
1987
1988	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
1989		return -EINVAL;
1990
1991	*key_string = colon;
1992
1993	/* remaining key string should be :<logon|user>:<key_desc> */
1994
1995	return ret;
1996}
1997
1998#else
1999
2000static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2001{
2002	return -EINVAL;
2003}
2004
2005static int get_key_size(char **key_string)
2006{
2007	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2008}
2009
2010#endif
2011
2012static int crypt_set_key(struct crypt_config *cc, char *key)
2013{
2014	int r = -EINVAL;
2015	int key_string_len = strlen(key);
2016
2017	/* Hyphen (which gives a key_size of zero) means there is no key. */
2018	if (!cc->key_size && strcmp(key, "-"))
2019		goto out;
2020
2021	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2022	if (key[0] == ':') {
2023		r = crypt_set_keyring_key(cc, key + 1);
2024		goto out;
2025	}
2026
2027	/* clear the flag since following operations may invalidate previously valid key */
2028	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2029
2030	/* wipe references to any kernel keyring key */
2031	kzfree(cc->key_string);
2032	cc->key_string = NULL;
2033
2034	/* Decode key from its hex representation. */
2035	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2036		goto out;
2037
2038	r = crypt_setkey(cc);
2039	if (!r)
2040		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2041
2042out:
2043	/* Hex key string not needed after here, so wipe it. */
2044	memset(key, '0', key_string_len);
2045
2046	return r;
2047}
2048
2049static int crypt_wipe_key(struct crypt_config *cc)
2050{
2051	int r;
2052
2053	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2054	get_random_bytes(&cc->key, cc->key_size);
2055
2056	/* Wipe IV private keys */
2057	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2058		r = cc->iv_gen_ops->wipe(cc);
2059		if (r)
2060			return r;
2061	}
2062
2063	kzfree(cc->key_string);
2064	cc->key_string = NULL;
2065	r = crypt_setkey(cc);
2066	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2067
2068	return r;
2069}
2070
2071static void crypt_calculate_pages_per_client(void)
2072{
2073	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2074
2075	if (!dm_crypt_clients_n)
2076		return;
2077
2078	pages /= dm_crypt_clients_n;
2079	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2080		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2081	dm_crypt_pages_per_client = pages;
2082}
2083
2084static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2085{
2086	struct crypt_config *cc = pool_data;
2087	struct page *page;
2088
2089	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2090	    likely(gfp_mask & __GFP_NORETRY))
2091		return NULL;
2092
2093	page = alloc_page(gfp_mask);
2094	if (likely(page != NULL))
2095		percpu_counter_add(&cc->n_allocated_pages, 1);
2096
2097	return page;
2098}
2099
2100static void crypt_page_free(void *page, void *pool_data)
2101{
2102	struct crypt_config *cc = pool_data;
2103
2104	__free_page(page);
2105	percpu_counter_sub(&cc->n_allocated_pages, 1);
2106}
2107
2108static void crypt_dtr(struct dm_target *ti)
2109{
2110	struct crypt_config *cc = ti->private;
2111
2112	ti->private = NULL;
2113
2114	if (!cc)
2115		return;
2116
2117	if (cc->write_thread)
2118		kthread_stop(cc->write_thread);
2119
2120	if (cc->io_queue)
2121		destroy_workqueue(cc->io_queue);
2122	if (cc->crypt_queue)
2123		destroy_workqueue(cc->crypt_queue);
2124
2125	crypt_free_tfms(cc);
2126
2127	bioset_exit(&cc->bs);
 
2128
2129	mempool_exit(&cc->page_pool);
2130	mempool_exit(&cc->req_pool);
2131	mempool_exit(&cc->tag_pool);
2132
2133	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2134	percpu_counter_destroy(&cc->n_allocated_pages);
2135
2136	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2137		cc->iv_gen_ops->dtr(cc);
2138
2139	if (cc->dev)
2140		dm_put_device(ti, cc->dev);
2141
 
2142	kzfree(cc->cipher_string);
2143	kzfree(cc->key_string);
2144	kzfree(cc->cipher_auth);
2145	kzfree(cc->authenc_key);
2146
2147	mutex_destroy(&cc->bio_alloc_lock);
2148
2149	/* Must zero key material before freeing */
2150	kzfree(cc);
2151
2152	spin_lock(&dm_crypt_clients_lock);
2153	WARN_ON(!dm_crypt_clients_n);
2154	dm_crypt_clients_n--;
2155	crypt_calculate_pages_per_client();
2156	spin_unlock(&dm_crypt_clients_lock);
2157}
2158
2159static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
 
2160{
2161	struct crypt_config *cc = ti->private;
2162
2163	if (crypt_integrity_aead(cc))
2164		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2165	else
2166		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2167
2168	if (cc->iv_size)
2169		/* at least a 64 bit sector number should fit in our buffer */
2170		cc->iv_size = max(cc->iv_size,
2171				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2172	else if (ivmode) {
2173		DMWARN("Selected cipher does not support IVs");
2174		ivmode = NULL;
2175	}
2176
2177	/* Choose ivmode, see comments at iv code. */
2178	if (ivmode == NULL)
2179		cc->iv_gen_ops = NULL;
2180	else if (strcmp(ivmode, "plain") == 0)
2181		cc->iv_gen_ops = &crypt_iv_plain_ops;
2182	else if (strcmp(ivmode, "plain64") == 0)
2183		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2184	else if (strcmp(ivmode, "plain64be") == 0)
2185		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2186	else if (strcmp(ivmode, "essiv") == 0)
2187		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2188	else if (strcmp(ivmode, "benbi") == 0)
2189		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2190	else if (strcmp(ivmode, "null") == 0)
2191		cc->iv_gen_ops = &crypt_iv_null_ops;
2192	else if (strcmp(ivmode, "eboiv") == 0)
2193		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2194	else if (strcmp(ivmode, "lmk") == 0) {
2195		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2196		/*
2197		 * Version 2 and 3 is recognised according
2198		 * to length of provided multi-key string.
2199		 * If present (version 3), last key is used as IV seed.
2200		 * All keys (including IV seed) are always the same size.
2201		 */
2202		if (cc->key_size % cc->key_parts) {
2203			cc->key_parts++;
2204			cc->key_extra_size = cc->key_size / cc->key_parts;
2205		}
2206	} else if (strcmp(ivmode, "tcw") == 0) {
2207		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2208		cc->key_parts += 2; /* IV + whitening */
2209		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2210	} else if (strcmp(ivmode, "random") == 0) {
2211		cc->iv_gen_ops = &crypt_iv_random_ops;
2212		/* Need storage space in integrity fields. */
2213		cc->integrity_iv_size = cc->iv_size;
2214	} else {
2215		ti->error = "Invalid IV mode";
2216		return -EINVAL;
2217	}
2218
2219	return 0;
2220}
2221
2222/*
2223 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2224 * The HMAC is needed to calculate tag size (HMAC digest size).
2225 * This should be probably done by crypto-api calls (once available...)
2226 */
2227static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2228{
2229	char *start, *end, *mac_alg = NULL;
2230	struct crypto_ahash *mac;
2231
2232	if (!strstarts(cipher_api, "authenc("))
2233		return 0;
2234
2235	start = strchr(cipher_api, '(');
2236	end = strchr(cipher_api, ',');
2237	if (!start || !end || ++start > end)
2238		return -EINVAL;
2239
2240	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2241	if (!mac_alg)
2242		return -ENOMEM;
2243	strncpy(mac_alg, start, end - start);
2244
2245	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2246	kfree(mac_alg);
2247
2248	if (IS_ERR(mac))
2249		return PTR_ERR(mac);
2250
2251	cc->key_mac_size = crypto_ahash_digestsize(mac);
2252	crypto_free_ahash(mac);
2253
2254	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2255	if (!cc->authenc_key)
2256		return -ENOMEM;
2257
2258	return 0;
2259}
2260
2261static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2262				char **ivmode, char **ivopts)
2263{
2264	struct crypt_config *cc = ti->private;
2265	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2266	int ret = -EINVAL;
2267
2268	cc->tfms_count = 1;
2269
2270	/*
2271	 * New format (capi: prefix)
2272	 * capi:cipher_api_spec-iv:ivopts
2273	 */
2274	tmp = &cipher_in[strlen("capi:")];
2275
2276	/* Separate IV options if present, it can contain another '-' in hash name */
2277	*ivopts = strrchr(tmp, ':');
2278	if (*ivopts) {
2279		**ivopts = '\0';
2280		(*ivopts)++;
2281	}
2282	/* Parse IV mode */
2283	*ivmode = strrchr(tmp, '-');
2284	if (*ivmode) {
2285		**ivmode = '\0';
2286		(*ivmode)++;
2287	}
2288	/* The rest is crypto API spec */
2289	cipher_api = tmp;
2290
2291	/* Alloc AEAD, can be used only in new format. */
2292	if (crypt_integrity_aead(cc)) {
2293		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2294		if (ret < 0) {
2295			ti->error = "Invalid AEAD cipher spec";
2296			return -ENOMEM;
2297		}
2298	}
2299
2300	if (*ivmode && !strcmp(*ivmode, "lmk"))
2301		cc->tfms_count = 64;
2302
2303	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2304		if (!*ivopts) {
2305			ti->error = "Digest algorithm missing for ESSIV mode";
2306			return -EINVAL;
2307		}
2308		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2309			       cipher_api, *ivopts);
2310		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2311			ti->error = "Cannot allocate cipher string";
2312			return -ENOMEM;
2313		}
2314		cipher_api = buf;
2315	}
2316
2317	cc->key_parts = cc->tfms_count;
2318
2319	/* Allocate cipher */
2320	ret = crypt_alloc_tfms(cc, cipher_api);
2321	if (ret < 0) {
2322		ti->error = "Error allocating crypto tfm";
2323		return ret;
2324	}
2325
2326	if (crypt_integrity_aead(cc))
2327		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2328	else
2329		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2330
2331	return 0;
2332}
2333
2334static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2335				char **ivmode, char **ivopts)
2336{
2337	struct crypt_config *cc = ti->private;
2338	char *tmp, *cipher, *chainmode, *keycount;
2339	char *cipher_api = NULL;
2340	int ret = -EINVAL;
2341	char dummy;
2342
2343	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
2344		ti->error = "Bad cipher specification";
2345		return -EINVAL;
2346	}
2347
 
 
 
 
2348	/*
2349	 * Legacy dm-crypt cipher specification
2350	 * cipher[:keycount]-mode-iv:ivopts
2351	 */
2352	tmp = cipher_in;
2353	keycount = strsep(&tmp, "-");
2354	cipher = strsep(&keycount, ":");
2355
2356	if (!keycount)
2357		cc->tfms_count = 1;
2358	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2359		 !is_power_of_2(cc->tfms_count)) {
2360		ti->error = "Bad cipher key count specification";
2361		return -EINVAL;
2362	}
2363	cc->key_parts = cc->tfms_count;
 
 
 
 
 
2364
2365	chainmode = strsep(&tmp, "-");
2366	*ivmode = strsep(&tmp, ":");
2367	*ivopts = tmp;
 
 
 
2368
2369	/*
2370	 * For compatibility with the original dm-crypt mapping format, if
2371	 * only the cipher name is supplied, use cbc-plain.
2372	 */
2373	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2374		chainmode = "cbc";
2375		*ivmode = "plain";
2376	}
2377
2378	if (strcmp(chainmode, "ecb") && !*ivmode) {
2379		ti->error = "IV mechanism required";
2380		return -EINVAL;
2381	}
2382
2383	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2384	if (!cipher_api)
2385		goto bad_mem;
2386
2387	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2388		if (!*ivopts) {
2389			ti->error = "Digest algorithm missing for ESSIV mode";
2390			kfree(cipher_api);
2391			return -EINVAL;
2392		}
2393		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2394			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2395	} else {
2396		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2397			       "%s(%s)", chainmode, cipher);
2398	}
2399	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2400		kfree(cipher_api);
2401		goto bad_mem;
2402	}
2403
2404	/* Allocate cipher */
2405	ret = crypt_alloc_tfms(cc, cipher_api);
2406	if (ret < 0) {
2407		ti->error = "Error allocating crypto tfm";
2408		kfree(cipher_api);
2409		return ret;
2410	}
2411	kfree(cipher_api);
2412
2413	return 0;
2414bad_mem:
2415	ti->error = "Cannot allocate cipher strings";
2416	return -ENOMEM;
2417}
 
 
 
 
 
2418
2419static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2420{
2421	struct crypt_config *cc = ti->private;
2422	char *ivmode = NULL, *ivopts = NULL;
2423	int ret;
2424
2425	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2426	if (!cc->cipher_string) {
2427		ti->error = "Cannot allocate cipher strings";
2428		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429	}
2430
2431	if (strstarts(cipher_in, "capi:"))
2432		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2433	else
2434		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2435	if (ret)
2436		return ret;
2437
2438	/* Initialize IV */
2439	ret = crypt_ctr_ivmode(ti, ivmode);
2440	if (ret < 0)
2441		return ret;
2442
2443	/* Initialize and set key */
2444	ret = crypt_set_key(cc, key);
2445	if (ret < 0) {
2446		ti->error = "Error decoding and setting key";
2447		return ret;
2448	}
2449
2450	/* Allocate IV */
2451	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2452		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2453		if (ret < 0) {
2454			ti->error = "Error creating IV";
2455			return ret;
2456		}
2457	}
2458
2459	/* Initialize IV (set keys for ESSIV etc) */
2460	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2461		ret = cc->iv_gen_ops->init(cc);
2462		if (ret < 0) {
2463			ti->error = "Error initialising IV";
2464			return ret;
2465		}
2466	}
2467
2468	/* wipe the kernel key payload copy */
2469	if (cc->key_string)
2470		memset(cc->key, 0, cc->key_size * sizeof(u8));
2471
2472	return ret;
2473}
2474
2475static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2476{
2477	struct crypt_config *cc = ti->private;
2478	struct dm_arg_set as;
2479	static const struct dm_arg _args[] = {
2480		{0, 6, "Invalid number of feature args"},
2481	};
2482	unsigned int opt_params, val;
2483	const char *opt_string, *sval;
2484	char dummy;
2485	int ret;
2486
2487	/* Optional parameters */
2488	as.argc = argc;
2489	as.argv = argv;
2490
2491	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2492	if (ret)
2493		return ret;
2494
2495	while (opt_params--) {
2496		opt_string = dm_shift_arg(&as);
2497		if (!opt_string) {
2498			ti->error = "Not enough feature arguments";
2499			return -EINVAL;
2500		}
2501
2502		if (!strcasecmp(opt_string, "allow_discards"))
2503			ti->num_discard_bios = 1;
2504
2505		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2506			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2507
2508		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2509			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2510		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2511			if (val == 0 || val > MAX_TAG_SIZE) {
2512				ti->error = "Invalid integrity arguments";
2513				return -EINVAL;
2514			}
2515			cc->on_disk_tag_size = val;
2516			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2517			if (!strcasecmp(sval, "aead")) {
2518				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2519			} else  if (strcasecmp(sval, "none")) {
2520				ti->error = "Unknown integrity profile";
2521				return -EINVAL;
2522			}
2523
2524			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2525			if (!cc->cipher_auth)
2526				return -ENOMEM;
2527		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2528			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2529			    cc->sector_size > 4096 ||
2530			    (cc->sector_size & (cc->sector_size - 1))) {
2531				ti->error = "Invalid feature value for sector_size";
2532				return -EINVAL;
2533			}
2534			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2535				ti->error = "Device size is not multiple of sector_size feature";
2536				return -EINVAL;
2537			}
2538			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2539		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2540			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2541		else {
2542			ti->error = "Invalid feature arguments";
2543			return -EINVAL;
2544		}
2545	}
2546
2547	return 0;
2548}
2549
2550/*
2551 * Construct an encryption mapping:
2552 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2553 */
2554static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2555{
2556	struct crypt_config *cc;
2557	const char *devname = dm_table_device_name(ti->table);
2558	int key_size;
2559	unsigned int align_mask;
2560	unsigned long long tmpll;
2561	int ret;
2562	size_t iv_size_padding, additional_req_size;
 
 
2563	char dummy;
2564
 
 
 
 
2565	if (argc < 5) {
2566		ti->error = "Not enough arguments";
2567		return -EINVAL;
2568	}
2569
2570	key_size = get_key_size(&argv[1]);
2571	if (key_size < 0) {
2572		ti->error = "Cannot parse key size";
2573		return -EINVAL;
2574	}
2575
2576	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2577	if (!cc) {
2578		ti->error = "Cannot allocate encryption context";
2579		return -ENOMEM;
2580	}
2581	cc->key_size = key_size;
2582	cc->sector_size = (1 << SECTOR_SHIFT);
2583	cc->sector_shift = 0;
2584
2585	ti->private = cc;
2586
2587	spin_lock(&dm_crypt_clients_lock);
2588	dm_crypt_clients_n++;
2589	crypt_calculate_pages_per_client();
2590	spin_unlock(&dm_crypt_clients_lock);
2591
2592	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2593	if (ret < 0)
2594		goto bad;
2595
2596	/* Optional parameters need to be read before cipher constructor */
2597	if (argc > 5) {
2598		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2599		if (ret)
2600			goto bad;
2601	}
2602
2603	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2604	if (ret < 0)
2605		goto bad;
2606
2607	if (crypt_integrity_aead(cc)) {
2608		cc->dmreq_start = sizeof(struct aead_request);
2609		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2610		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2611	} else {
2612		cc->dmreq_start = sizeof(struct skcipher_request);
2613		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2614		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2615	}
2616	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2617
2618	if (align_mask < CRYPTO_MINALIGN) {
2619		/* Allocate the padding exactly */
2620		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2621				& align_mask;
2622	} else {
2623		/*
2624		 * If the cipher requires greater alignment than kmalloc
2625		 * alignment, we don't know the exact position of the
2626		 * initialization vector. We must assume worst case.
2627		 */
2628		iv_size_padding = align_mask;
2629	}
2630
2631	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2632	additional_req_size = sizeof(struct dm_crypt_request) +
2633		iv_size_padding + cc->iv_size +
2634		cc->iv_size +
2635		sizeof(uint64_t) +
2636		sizeof(unsigned int);
2637
2638	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2639	if (ret) {
2640		ti->error = "Cannot allocate crypt request mempool";
2641		goto bad;
2642	}
2643
2644	cc->per_bio_data_size = ti->per_io_data_size =
2645		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
 
2646		      ARCH_KMALLOC_MINALIGN);
2647
2648	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2649	if (ret) {
2650		ti->error = "Cannot allocate page mempool";
2651		goto bad;
2652	}
2653
2654	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2655	if (ret) {
2656		ti->error = "Cannot allocate crypt bioset";
2657		goto bad;
2658	}
2659
2660	mutex_init(&cc->bio_alloc_lock);
2661
2662	ret = -EINVAL;
2663	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2664	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2665		ti->error = "Invalid iv_offset sector";
2666		goto bad;
2667	}
2668	cc->iv_offset = tmpll;
2669
2670	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2671	if (ret) {
2672		ti->error = "Device lookup failed";
2673		goto bad;
2674	}
2675
2676	ret = -EINVAL;
2677	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2678		ti->error = "Invalid device sector";
2679		goto bad;
2680	}
2681	cc->start = tmpll;
2682
2683	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2684		ret = crypt_integrity_ctr(cc, ti);
 
 
 
 
 
 
 
2685		if (ret)
2686			goto bad;
2687
2688		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2689		if (!cc->tag_pool_max_sectors)
2690			cc->tag_pool_max_sectors = 1;
2691
2692		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2693			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2694		if (ret) {
2695			ti->error = "Cannot allocate integrity tags mempool";
2696			goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
2697		}
2698
2699		cc->tag_pool_max_sectors <<= cc->sector_shift;
2700	}
2701
2702	ret = -ENOMEM;
2703	cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2704				       WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2705				       1, devname);
2706	if (!cc->io_queue) {
2707		ti->error = "Couldn't create kcryptd io queue";
2708		goto bad;
2709	}
2710
2711	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2712		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2713						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2714						  1, devname);
2715	else
2716		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2717						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2718						  num_online_cpus(), devname);
2719	if (!cc->crypt_queue) {
2720		ti->error = "Couldn't create kcryptd queue";
2721		goto bad;
2722	}
2723
2724	spin_lock_init(&cc->write_thread_lock);
2725	cc->write_tree = RB_ROOT;
2726
2727	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2728	if (IS_ERR(cc->write_thread)) {
2729		ret = PTR_ERR(cc->write_thread);
2730		cc->write_thread = NULL;
2731		ti->error = "Couldn't spawn write thread";
2732		goto bad;
2733	}
2734	wake_up_process(cc->write_thread);
2735
2736	ti->num_flush_bios = 1;
 
2737
2738	return 0;
2739
2740bad:
2741	crypt_dtr(ti);
2742	return ret;
2743}
2744
2745static int crypt_map(struct dm_target *ti, struct bio *bio)
2746{
2747	struct dm_crypt_io *io;
2748	struct crypt_config *cc = ti->private;
2749
2750	/*
2751	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2752	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2753	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2754	 */
2755	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2756	    bio_op(bio) == REQ_OP_DISCARD)) {
2757		bio_set_dev(bio, cc->dev->bdev);
2758		if (bio_sectors(bio))
2759			bio->bi_iter.bi_sector = cc->start +
2760				dm_target_offset(ti, bio->bi_iter.bi_sector);
2761		return DM_MAPIO_REMAPPED;
2762	}
2763
2764	/*
2765	 * Check if bio is too large, split as needed.
2766	 */
2767	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2768	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2769		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2770
2771	/*
2772	 * Ensure that bio is a multiple of internal sector encryption size
2773	 * and is aligned to this size as defined in IO hints.
2774	 */
2775	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2776		return DM_MAPIO_KILL;
2777
2778	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2779		return DM_MAPIO_KILL;
2780
2781	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2782	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2783
2784	if (cc->on_disk_tag_size) {
2785		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2786
2787		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2788		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2789				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2790			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2791				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2792			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
2793			io->integrity_metadata_from_pool = true;
2794		}
2795	}
2796
2797	if (crypt_integrity_aead(cc))
2798		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2799	else
2800		io->ctx.r.req = (struct skcipher_request *)(io + 1);
2801
2802	if (bio_data_dir(io->base_bio) == READ) {
2803		if (kcryptd_io_read(io, GFP_NOWAIT))
2804			kcryptd_queue_read(io);
2805	} else
2806		kcryptd_queue_crypt(io);
2807
2808	return DM_MAPIO_SUBMITTED;
2809}
2810
2811static void crypt_status(struct dm_target *ti, status_type_t type,
2812			 unsigned status_flags, char *result, unsigned maxlen)
2813{
2814	struct crypt_config *cc = ti->private;
2815	unsigned i, sz = 0;
2816	int num_feature_args = 0;
2817
2818	switch (type) {
2819	case STATUSTYPE_INFO:
2820		result[0] = '\0';
2821		break;
2822
2823	case STATUSTYPE_TABLE:
2824		DMEMIT("%s ", cc->cipher_string);
2825
2826		if (cc->key_size > 0) {
2827			if (cc->key_string)
2828				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2829			else
2830				for (i = 0; i < cc->key_size; i++)
2831					DMEMIT("%02x", cc->key[i]);
2832		} else
2833			DMEMIT("-");
2834
2835		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2836				cc->dev->name, (unsigned long long)cc->start);
2837
2838		num_feature_args += !!ti->num_discard_bios;
2839		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2840		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2841		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2842		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2843		if (cc->on_disk_tag_size)
2844			num_feature_args++;
2845		if (num_feature_args) {
2846			DMEMIT(" %d", num_feature_args);
2847			if (ti->num_discard_bios)
2848				DMEMIT(" allow_discards");
2849			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2850				DMEMIT(" same_cpu_crypt");
2851			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2852				DMEMIT(" submit_from_crypt_cpus");
2853			if (cc->on_disk_tag_size)
2854				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2855			if (cc->sector_size != (1 << SECTOR_SHIFT))
2856				DMEMIT(" sector_size:%d", cc->sector_size);
2857			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2858				DMEMIT(" iv_large_sectors");
2859		}
2860
2861		break;
2862	}
2863}
2864
2865static void crypt_postsuspend(struct dm_target *ti)
2866{
2867	struct crypt_config *cc = ti->private;
2868
2869	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2870}
2871
2872static int crypt_preresume(struct dm_target *ti)
2873{
2874	struct crypt_config *cc = ti->private;
2875
2876	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
2877		DMERR("aborting resume - crypt key is not set.");
2878		return -EAGAIN;
2879	}
2880
2881	return 0;
2882}
2883
2884static void crypt_resume(struct dm_target *ti)
2885{
2886	struct crypt_config *cc = ti->private;
2887
2888	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2889}
2890
2891/* Message interface
2892 *	key set <key>
2893 *	key wipe
2894 */
2895static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
2896			 char *result, unsigned maxlen)
2897{
2898	struct crypt_config *cc = ti->private;
2899	int key_size, ret = -EINVAL;
2900
2901	if (argc < 2)
2902		goto error;
2903
2904	if (!strcasecmp(argv[0], "key")) {
2905		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2906			DMWARN("not suspended during key manipulation.");
2907			return -EINVAL;
2908		}
2909		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2910			/* The key size may not be changed. */
2911			key_size = get_key_size(&argv[2]);
2912			if (key_size < 0 || cc->key_size != key_size) {
2913				memset(argv[2], '0', strlen(argv[2]));
2914				return -EINVAL;
2915			}
2916
2917			ret = crypt_set_key(cc, argv[2]);
2918			if (ret)
2919				return ret;
2920			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2921				ret = cc->iv_gen_ops->init(cc);
2922			/* wipe the kernel key payload copy */
2923			if (cc->key_string)
2924				memset(cc->key, 0, cc->key_size * sizeof(u8));
2925			return ret;
2926		}
2927		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
2928			return crypt_wipe_key(cc);
 
2929	}
2930
2931error:
2932	DMWARN("unrecognised message received.");
2933	return -EINVAL;
2934}
2935
2936static int crypt_iterate_devices(struct dm_target *ti,
2937				 iterate_devices_callout_fn fn, void *data)
2938{
2939	struct crypt_config *cc = ti->private;
2940
2941	return fn(ti, cc->dev, cc->start, ti->len, data);
2942}
2943
2944static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2945{
2946	struct crypt_config *cc = ti->private;
2947
2948	/*
2949	 * Unfortunate constraint that is required to avoid the potential
2950	 * for exceeding underlying device's max_segments limits -- due to
2951	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2952	 * bio that are not as physically contiguous as the original bio.
2953	 */
2954	limits->max_segment_size = PAGE_SIZE;
2955
2956	limits->logical_block_size =
2957		max_t(unsigned short, limits->logical_block_size, cc->sector_size);
2958	limits->physical_block_size =
2959		max_t(unsigned, limits->physical_block_size, cc->sector_size);
2960	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
2961}
2962
2963static struct target_type crypt_target = {
2964	.name   = "crypt",
2965	.version = {1, 19, 0},
2966	.module = THIS_MODULE,
2967	.ctr    = crypt_ctr,
2968	.dtr    = crypt_dtr,
2969	.map    = crypt_map,
2970	.status = crypt_status,
2971	.postsuspend = crypt_postsuspend,
2972	.preresume = crypt_preresume,
2973	.resume = crypt_resume,
2974	.message = crypt_message,
2975	.iterate_devices = crypt_iterate_devices,
2976	.io_hints = crypt_io_hints,
2977};
2978
2979static int __init dm_crypt_init(void)
2980{
2981	int r;
2982
2983	r = dm_register_target(&crypt_target);
2984	if (r < 0)
2985		DMERR("register failed %d", r);
2986
2987	return r;
2988}
2989
2990static void __exit dm_crypt_exit(void)
2991{
2992	dm_unregister_target(&crypt_target);
2993}
2994
2995module_init(dm_crypt_init);
2996module_exit(dm_crypt_exit);
2997
2998MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2999MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3000MODULE_LICENSE("GPL");